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Abstract 

Android has been a dominant mobile operating system since 2012 as shown in Figure 1. This 

popularity coupled with a ubiquitous usage of smartphone in all aspects of our lives, e.g. online 

banking, social networking, and online shopping etc. have made Android a lucrative target for 

malware developers.  

To combat the threat of malware stealing our private information, researchers have suggested 

various techniques for detecting Android malware. Broadly speaking, three primary techniques 

have been used for malware detection. Static Analysis, performed without running the 

application, has been used to generate signatures of malware, that can be used to differentiate 

between malware and benign applications. Another technique, Dynamic Analysis, has been 

used to create a behaviour profile of malware and benign applications by executing them in a 

controlled environment and monitoring their behaviour to detect malware. Hybrid Analysis has 

been used to utilise signatures generated from static analysis and behaviour profile created 

from dynamic analysis for detecting Android malware. In recent years, complementary 

techniques such as Machine Learning and Deep Learning have been used to extract features 

from the three primary analysis techniques and feed them to several algorithms for 

classification purposes. Deep Learning is a subfield of Machine Learning that relates to 

structuring algorithms in layers to mimic human neural network. The artificial neural network 

is used to solve complex problems using different algorithms. 

In this dissertation, firstly, a systematic review is presented to amalgamate current approaches 

for detecting Android malware, and custom-built malware detection technologies. As a result 

of the literature evaluation, a taxonomy is suggested for Android malware detection. 

Furthermore, trends in the usage of the major analytical techniques and complementary 

techniques are shown. Research gaps in the Android malware detection area are identified 

for future research direction. 

Secondly, Droid Fence, a custom-built web-based framework, for managing experiments is 

developed. Droid Fence automates the extraction of the required features from malware and 

benign applications directory by conducting static analysis via a frontend. Next, Droid Fence 

completes the automated process by storing the extracted features against each application 

record in a relational database, feeding them to the required machine learning and deep 

learning algorithms, storing the result into the database, and finally displaying the outcome of 

each experiment. 

Thirdly, developed an approach that amalgamates a set of permissions, services, and six other 

features (usage of https, database, dynamic code, native code, reflection, and cryptography) 
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to generate a matrix that is used for detecting malware effectively. To the best of our 

knowledge, this is a novel approach that combines these features to detect malware. Droid 

Fence is evaluated on a dataset of 13191 applications consisting of 5787 malware and 7404 

benign applications. Our results show that Droid Fence is very effective when it utilises a 

Sequential (Deep Learning) algorithm to detect malware, achieving accuracy, F1-measure, 

precision, and recall scores of 0.971, 0.967, 0.977, and 0.956 respectively. Our experiments, 

conducted using Droid Fence, demonstrates that deep learning Sequential algorithm scored 

consistently highly when compared against eight machine learning algorithms. However, the 

difference between the accuracy scores achieved by the Sequential (97.1%) and Random 

Forest Classifier (95.8%) is minimal in comparison with the remaining algorithms used in our 

experiments. We used a stratified k-fold cross-validation method, and the result was compared 

for four metrics: accuracy, F1 score, precision, and recall. 

Finally, a conclusion and future research direction are suggested for both Android malware 

detection area and improvement in Droid Fence. 
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1. Introduction 

Android, having more than 2.9 million applications on Android Google Play alone, has 

emerged as the leading mobile platform [1]. The markets for mobile applications, for instance, 

Android Google Play, have fundamentally transformed how consumers receive software, with 

daily updating and inclusion of many applications. The rapid expansion of the applications 

market, coupled with the pervasive nature of applications provided on such platforms, has 

seen a parallel rise in the sophistication and number of security threats targeting mobile 

platforms [2]. 

Studies undertaken in the last few years indicate that mobile markets have vulnerable or 

malicious applications, thus compromising millions of gadgets [2]. Malware has threatened 

computer systems for many years. With the invention of Android systems and significant 

market share, it was only a matter of time before malware developers developed them for the 

Android platform. Android market share has increased significantly in the last few years; with 

the growth attracting multiple malware attacks which keep on changing concerning complexity 

and scope [2]. Since its release in 2008, the Android platform has experienced immense 

growth with significant share over the years. The popularity and extensive usage of the 

platform are associated with a heightened interest from malware developers with varied 

malicious interests. Multiple aspects and vulnerabilities of the platform have been exploited 

with continued improvement and enhancement of security features. Different frameworks with 

varying capabilities and limitations have progressively been developed. The popularity of the 

Android platform has seen market share globally reach more than 86% according to recent 

statistics. Estimates place the figure at more than 1.5 billion monthly Android users. Android 

is the leader in the market, with a dominance of 86.6% when compared to 13.4% of Apple iOS 

[3]. Policies employed by Google have enabled the Android platform to experience this kind 

of growth and acceptance. Its open policy has allowed millions of applications to be available 

on the platform with a high level of tolerance regarding verification and release. Many culprits 

are responsible for Android malware growth, and some of them are not technical; for instance, 
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the absence of a regulatory body in open markets along with the lack of consequences for the 

people providing applications with malicious potential or vulnerabilities. The scenario is likely 

to increase because mobile applications are becoming ubiquitous and complex. 

Some of the policies applied by Google also pose security hazards to users. Open policies 

are allowing third parties to have an unofficial application store where users can download 

applications without verifying security and authenticity. Digital certificates usage on the 

Android platform is not strictly managed, meaning that some application developer cannot be 

traced to their initial developers through digital signatures [4]. The lack of digital certificates 

usage makes it easy for malware developers to release cracked versions of authentic 

applications as well as Trojan horses which may be disguised as regular applications. As a 

result, the Android ecosystem has become one of the most targeted platforms by malware 

architects with many malicious intentions [5]. Even though the malware threat is apparent, 

Google policymakers maintain that the open policy applied by the corporation has done more 

good than harm as it has benefited millions of developers as well as security architects seeking 

to safeguard the platform. There have been around 1.9 million instances of Android malware 

discovered in the first half of 2019, which means an infected application has been published 

every eight seconds. [5] With more utilities being developed for the Android platform, it is 

bound to continue being a target for malware.  

Attackers mainly seek to access private information for individuals and entities which is used 

to orchestrate identity theft and hacking incidences. Attackers can obtain private information 

from users’ private profiles such as online wallet access details, call logs and contact 

information which can all be used for malicious purposes. Due to the adverse consequences 

of Android malware and millions of potential victims, malware detection has been an ongoing 

security issue which has received significant interest from multiple stakeholders. Multiple 

detection and security measures have been proposed and developed with varying degrees of 

success and reliability. For instance, a typical detection technique is the signature-based 

warning mechanism which compares individual applications with known malware signatures 
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[6]. However, the method is limited with regards to detecting mobile malware, which keeps on 

emerging at a rapid rate, because a database may not contain their signature. This 

conventional technique has necessitated the invention of other methods such as static, 

dynamic, hybrid, and machine learning which are more efficient in detecting malware [7]. Even 

with robust detection techniques, malware architects still find ways to avoid detection, hence 

making the process even more complicated. 

Security may be considered a dynamic target. The significant part of the society has 

recognised the tedious form of protection used on computers as a virtually unavoidable effect 

in contemporary times. However, compared to the personal computer world, mobile presents 

an emerging field.  Currently, mobile gadgets constitute a critical part of the daily lives of 

people because they allow them to access various ubiquitous services [8]. The existence of 

such mobile and universal services has increased considerably because of different types of 

connectivity offered by mobile gadgets; for instance, Wi-Fi, Bluetooth, General Packet Radio 

Service, and Global System for Mobile Communications. Android also provides fully-

developed features for exploiting cloud-computing resources [8]. 

The security of Android has emerged as an exciting research topic. Such research attempts 

have examined the security threats of Android from different viewpoints. They are spread 

across different research communities, thus resulting in a literature body that cuts across 

various publication venues and domains. A significant quantity of the reviewed literature is 

published within the software security and engineering domains. However, research about the 

security of Android also runs parallel with that for analysing programming language, mobile 

computing, and HCI which considers topics such as the usability of security approaches. 

1.1 Research Questions 

The thesis attempt to answer the following research questions. 

• RQ1: How can we classify the work on Android application security analysis reported 

in the literature? Chapter 5 will endeavour to answer the first research question. 
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• RQ2: What is the current state of Android malware detection techniques and 

technologies? Chapter 5 will attempt to answer this research question. 

• RQ3: What challenges, gaps, and patterns might be deduced from the existing 

research attempts, which will inform further research? Chapter 5 will attempt to answer 

this research question. 

The third research question has helped identified further research questions to devise our 

research path. 

• RQ4: Is it possible to devise an efficient process for running experiments, decompiling 

the APK, obtaining the required features, and viewing and comparing the results? 

Chapter 6 – Droid Fence Overview and Background on features – will attempt to 

answer fourth research question. 

• RQ5: Will the use of neglected features identified in literature review along with Android 

permissions and services allow us to build an Android malware detection model 

capable of achieving over 90% accuracy whilst keeping the False Positive Rate (FPR) 

less than 3%? Chapter 7 – Droid Fence Methodology & Performance Evaluation – will 

attempt to answer research questions five. 

• RQ6: How does the performance of the proposed deep learning algorithm (in terms of 

accuracy, F1 score, precision, and recall) compared to that of existing machine 

learning algorithms? Chapter 7 – Droid Fence Methodology & Performance Evaluation 

– will attempt to answer research questions six. 

• RQ7: Does the approach developed as part of RQ5 performs better (in terms of 

Accuracy) than comparative methods? Chapter 7 – Droid Fence Methodology & 

Performance Evaluation – will attempt to answer research questions seven. RQ6 and 

RQ7 are different because the former compares the algorithms used in our 
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experiments whereas the latter compares our approach with the comparative methods 

in literature. 

1.2 Contribution 

The thesis makes the following contributions: 

a. A systematic review of current approaches for analysis of Android malware, Android 

malware analysis, and custom-built malware detection technologies. The contribution 

is made as part of research into RQ1 and RQ2. 

b. Presented a systematic literature review of research within the Android malware 

detection area through a suggested taxonomy. The contribution is made as part of 

research into RQ1 and RQ2. 

c. Located gaps, patterns, and trends through comparative analyses and observations 

across Android malware security. The contribution is made as part of research into 

RQ3. 

d. Developed an approach that amalgamates a set of permissions, services, and six other 

features (usage of https, database, dynamic code, native code, reflection, and 

cryptography) to generate a matrix that is used for detecting malware effectively. To 

the best of our knowledge, this is a novel approach that combines these features to 

detect malware. The contribution is made as part of research into RQ5, RQ6 and RQ7. 

e. Developed Droid Fence, a web-based framework, which allows users to run 

experiments to extract various static features, store them in a relational database, and 

apply different machine learning and deep learning algorithms to detect malware and 

commit the result into a database. The contribution is made as part of research into 

RQ4. 

f. Droid Fence provides a web frond-end to view, evaluate, and compare the results of 

nine algorithms stored against each experiment. The contribution is made as part of 

research into RQ4. 
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g. Our experiment demonstrates that deep learning Sequential algorithm scored 

consistently highly when compared against eight machine learning algorithms. 

However, the difference between the scores achieved by the Sequential and Random 

Forest Classifier is minimal in comparison with the remaining algorithms used in our 

experiments. We used a stratified k-fold cross-validation method, and the result was 

compared for four metrics: accuracy, F1 score, precision, and recall. The contribution 

is made as part of research into RQ5, RQ6 and RQ7 

h. Offered suggestions for building research agendas for further developments. The 

contribution is made as part of research into RQ4, RQ5, RQ6 and RQ7. 

1.3 The organisation of the thesis 

The rest of the thesis is organised as follows. In Chapter 2 – Android Operating System – an 

overview of the Android operating system will be provided. Chapter 3 – Android Malware – will 

provide a brief history of Malware and their family, how malware have evolved over the year, 

how malware are monetised, and their attack and evasion techniques. Chapter 4 – Systematic 

Literature Review – will provide a description of the related surveys, our methodology, 

research questions, and the scope of our systematic literature review.  

Chapter 5 – A Classification of Android Malware Security Analysis – will provide answers to 

our research questions through suggested taxonomy and the outcome of the literature review. 

The chapter will endeavour to answer the first research question, i.e., How do we classify 

Android application security analysis provided in the literature? The Chapter 5 will further 

attempt to answer the next two research questions: What is the current state of analysing 

Android malware detection techniques and technologies? And what challenges, gaps, and 

patterns might be deduced from the existing research attempts which have directed our 

research. 

Chapter 6 – Droid Fence Overview and Background on features – will attempt to answer fourth 

research question (RQ4) and will provide an overview of our custom-built technology Droid 
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Fence and how it works. It will also offer a summary of the features that we are using in our 

experiment. Chapter 7 – Droid Fence Methodology & Performance Evaluation – will attempt 

to answer research questions five (RQ5), six (RQ6), and seven (RQ7) by providing detail on 

methodology, our experimental settings, data set collections, our results and the comparison 

with related methods. It will also provide a brief overview of the machine learning algorithms 

that are utilised in our experiments. 

Chapter 8 – Conclusion and Future work – will present the conclusion of our thesis and the 

future direction in two domains: Android Malware Detection and enhancing Droid Fence. 
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2. Android Operating System 

This section succinctly presents an overview of the Android operating system and its security 

mechanism. Android is an open-sourced mobile operating system developed and maintained 

by Google. Android is designed on top of a Linux kernel, and its source code is released under 

Apache license. Google acquired Android Inc. - the company that developed the Android 

operating system initially - in August 2005; this was a strategic step by Google to dive into the 

mobile market [9]. Google released Android in 2007 [10] paving the way for HTC to release 

the first commercially produced Android device called the ‘HTC Dream’ in Sep 2008 [11]. 

Android has since become a ubiquitous operating system with over two billion activated 

Android-powered devices and over two billion monthly active Android users [12]. Figure 1 

below shows that Android has a dominant market share of smartphones sales to end users. 

 

Figure 1:  Android OS market share of smartphone sales to end users from 2009 to 2021 [13] 
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2.1 Android Components 

The Android operating system consists of various components, and we will explain each 

element in subsequent subsections below. 

2.1.1 Android Platform Architecture 

Android refers to a platform intended for mobile gadgets; its architecture is classified into six 

layers, as shown in Figure 2 below. We will briefly examine all six layers in the following 

subsections [14]. 

 

Figure 2: The Android Software Stack [14] 

2.1.2 Android Applications 

System applications, developed by the Android team, and all third-party applications are 

installed in the topmost layer of the Android software stack. Android contains a set of core 

applications which allows users to perform some basic operations such as SMS messaging, 

calendars, contacts, making or attending phone calls and more. System applications do not 

have any precedence over third-party applications if user would like to use a different 
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application for a given purpose instead of using the default system one. Android provides 

facility to use individual applications for a basic functionality offered by a system application, 

e.g., any third-party application can become a default application for sending and receiving 

SMS messages. 

2.1.3 Java API Framework 

The Java programming language is mainly used for writing Android applications through a 

broad range of application programming interfaces (API) that the Android software 

development kit (SDK) provides. This layer consists of modular and reusable core components 

and services which are used to create Android applications. These reusable components 

include View System for building application’s user interface by using UI components such as 

list boxes, grids, buttons etc., Resource Manager for supplying access to static non-code 

assets such as graphics, localised date-time or string variables, Notification Manager for 

allowing applications to present alerts to users, Activity Manager for controlling the life cycle 

of applications and supplying navigation, and finally, Content Provider for enabling 

applications to share data across applications [14]. 

2.1.4 Native C/C++ Libraries 

The native C/C++ layer is in charge of supplying support to many core Android features such 

as ART and HAL. These fundamental features are built from native code, and they require 

access to native C/C++ libraries to work seamlessly. The Android platform ensures this access 

via Java framework APIs. For instance, Java OpenGL API can be used to access OpenGL ES 

for adding drawing and graphics manipulation support in an application [14]. Third-party 

application developers requiring access to C/C++ code can utilise the Android Native 

Development Kit (NDK) for accessing native libraries. 

2.1.5 Android Runtime 

Android Runtime (ART) is the managed runtime environment utilised by some Android system 

services and third-party applications. The Dalvik virtual machine (Dalvik VM) was the Android 



20 
 

runtime environment preceding Android version 5.0, API level 21 [15]. Applications running on 

Android version 5.0, API level 21 or later utilise ART for faster startup and on-going execution, 

as each application runs in its process, which in turn has its instance of the Android Runtime. 

ART pre-compiles the bytecode into native code, at installation time, by using a method called 

Ahead of time (AOT), this removes the need to execute applications in interpreted code, 

resulting in faster execution. ART also has an optimised garbage collector (GC) as well as 

enhanced debugging support [15]. 

2.1.6 Hardware Abstraction Layer 

The hardware abstraction layer (HAL) provides functionalities for application developers to 

access the device's hardware capabilities. Applications can leverage Java API framework to 

use multiple library modules, which implements an interface for different hardware 

components, exposed by HAL. This layer also provides developers to build their drivers. 

2.1.7 Linux Kernel 

The Linux Kernel is the lowest level layer in the Android software stack and is the foundation 

of the Android platform architecture. The Kernel is responsible for low-level operating system 

tasks such as memory management, multi-threading, network stack, process isolation, 

storage management security management and more. 

2.2 Inter-Component Communication 

As one of its security mechanisms, Android protects applications from one another and system 

resources against applications through a sandboxing mechanism. Such insulation of 

applications on which Android relies for protection of applications needs interactions to take 

place via a message-passing tool, known as inter-component communication (ICC). In 

Android, ICC is mainly undertaken through intent-filters, which represent the types of requests 

to which a specific component may respond. An intent message refers to an event that should 

be available for actions to be done alongside the data supporting those actions. Component 

invocations exist in a variety of flavours, such as inter-app, intra-app, implicit, or explicit. The 
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ICC of Android allows for late runtime binding involving components within different or similar 

applications, where calls are not explicit within the code rather than enabled via event 

messaging, a significant characteristic for event-oriented systems. It has emerged that the 

ICC interaction mechanism for Android introduces numerous security issues [16]. For 

instance, intent-event messages that interacted in components may be tampered with or 

intercepted because there is no typical authentication or encryption applied to them [17]. 

Additionally, there is no mechanism for blocking an ICC callee against misrepresenting its 

caller's intentions toward third parties [18]. 

2.3 Application Configuration 

The manifest refers to a necessary configuration file (AndroidManifest.xml), which 

accompanies all Android applications. It specifies many things, including the principal 

components that make up the application; this includes their abilities and types, along with 

enforced and required permissions. The values of the manifest file are attached to the Android 

application during the time of compilation, and modification cannot be undertaken during run-

time.  

Apart from sandboxing, permission enforcement is another mechanism that the Android 

framework provides for the protection of applications. Indeed, permissions constitute the 

Android security model's strong point. The permissions defined within the application manifest 

allow secure access to sensitive resources and cross-app interactions. When users install 

applications, the Android system asks the user's agreement to requested permissions before 

installation. If the user declines to provide the application the required consent, the installation 

of the application is cancelled. Further, with in-built permissions that the Android system 

provides to shield different resources of the system, any Android application may also describe 

its permissions for self-protection. 

Because the access control model of Android is at the individual applications level, there is no 

mechanism for checking the security state of the seemingly benign applications colluding with 
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each other. This type of access control model triggers numerous security challenges that 

include application collusions [19] and re-delegation attacks [20], which have been found to 

exist within the applications in the market [17] [21]. Application collusion attacks occur when 

malware developers split malicious code among two or more applications and initiate attack 

when a user installs all those applications that contain part of the malicious code. Intra 

applications communication feature of Android is used to communicate among the affected 

applications. Re-delegation attack is a form of application collusion where an application with 

fewer privileges colludes with an application that has higher rights to perform unauthorised 

operations [20]. 

2.4 Android Security Model 

The Android security model is designed to respond to specific security needs of the platform. 

The Android security model can be divided into 5 domains each defining various security rules 

on the platform [22]. The first domain involves multiparty consent. In this regard, the android 

platform can be divided into the user, developer, and platform. Users control the data located 

in shared storage, while developers control the information contained in application folders. 

The platform controls data in special locations that are only reserved for the operating system. 

Each party must consent to provide the data whenever it is requested by a certain program 

and can revoke the privilege anytime. The rule ensures that all the stakeholders are aware of 

their data being used elsewhere.  

The second domain is the android platform being an open ecosystem platform. It enables the 

developers to have power over the data they are willing to share with other programs thereby 

enhancing security. Further, mobile devices are required to be security compatible. Mobile 

phones must pass Google's Compatibility Test Suite in order for them to be compatible with 

Android operating system [22]. Manufacturers must adhere to various recommendations that 

help to guarantee the security of the devices when using the Android operating system.  
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The third domain involves the application programs acting as security controllers. In the 

traditional desktop, running a program with administrative user privileges ensures that it has 

total access to the resources of the system. The same case does not apply to the Android 

platform and applications are not considered to be able to fully authorise user actions. Such a 

design creates a sandbox environment for the applications to execute without an impact on 

others or the system settings and application. An application that needs data from other areas 

uses multiparty consent by requiring permission from the owner of the data such as the 

platform, application program, or from the user.  

The fourth domain is the recommended platform, Google Play, to download applications. The 

platform is a service provided by Google that ensures that the company has control over the 

programs installed on user devices [23]. The control is mainly aimed to ensure the data 

security of users by ensuring that mobile applications fulfil various security related 

requirements. Furthermore, since Google Play is installed on the devices of Android users it 

acts as an anti-virus by checking applications for harmful code during downloads just before 

it is installed on the device. Additionally, Google Play scans an android phone periodically to 

ensure that application updates are not malware [23]. When applications with malware are 

detected during download, a user is usually warned about the issue to make them aware of 

the problem. The application also continues to be available on the Google Play store until it is 

removed after extensive review of the problems detected by play protect.    

The last dimension is the fail-safe that restores a device to its factory settings, which are 

usually safe [22]. When a mobile phone becomes compromised by persistent malware, a user 

can reset the mobile phone to a safe state, which involves formatting the writable parts and 

returning it to a state that uses only verified system code. Thus, the Android security model 

consists of various distinct dimensions that help to guarantee the overall security of a device 

running the operating system. 
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3. Android Malware 

In this section, a brief history of malware and its evolution are discussed. Our primary focus 

will be Android malware, but inevitably we will provide a brief overview of mobile malware in 

general. We will also discuss the attacks and evasion tactics that malware use to avoid 

detection. 

3.1 The Evolution of Malware 

The mobile malware have come a long way since the first mobile worm, Cabir, designed to 

infect Nokia 60 series was developed. The infection seems innocuous as the worm would 

display the word ‘Caribe’ on the screen. The infection would spread itself, using Bluetooth, to 

other nearby Bluetooth enabled devices such as printers, mobiles, etc. [24]. Symbian was a 

popular operating system at the time and would offer a vast market for mobile malware 

developers. Incidentally, 2005 also saw a sizable dip in Symbian market share, which could 

be the result of Cabir propagating in Symbian mobile phones [25]. In 2005, Cabir was followed 

up by CommWarrior which would proliferate itself using MMS as well as Bluetooth. The virus 

was designed for Symbian 60 platform and had infected over 100,000 mobile devices by 

sending greater than 450,000 MMS [24]. This propagation added monetary value to malware 

development as each MMS sent would incur a charge from a carrier. The financial incentive 

was further exploited by a trojan called RedBrowser, which was discovered in 2006. The trojan 

was designed to utilise premium rate SMS service as each SMS would typically cost $5 to the 

device's owner [24]. RedBrowser was a turning point in the evolution of mobile malware as it 

was the first malware that could contaminate mobile phones encompassing different operating 

systems by utilising weakness in universally supported Java 2 Micro Edition (J2ME) [24]. The 

next two years, 2007 and 2008, were idle periods regarding the evolution of new mobile 

malware threats and development of non-commercial malware almost died out [26]. An 

example of the non-commercial malware is the first mobile worm Cabir [24] which was not 

developed for monitory gains as discussed at the start of the chaprter. However, there was a 
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significant increment of exploiting premium rate services by several mobile malware [24]. The 

primary purpose of developing malware was to steal data as cybercriminals started targeting 

online gamers to acquire their passwords, in-game assets and virtual characters [26]. 

In 2009, the mobile botnet malware Yxes was discovered and hit the headlines as one of the 

first malware for Symbian OS 9 [27]. This discovery was another turning point in the evolution 

of mobile malware as well as technological innovation because it was the first malware to send 

an SMS and access the Internet [24]. Mobile malware has been rising exponentially since 

2009 due to technological enhancements offering new approaches for profit utilisation, an 

increase in black market accessibility for selling and buying stolen information, and malware 

developers collaborating on exchanging malware code and system vulnerabilities [25]. Apvrille 

et al. [24] describe 2010 as an industrial age for mobile malware as it transitions from 

individuals to organised cybercriminals as monetary incentives grew significantly. The first 

quarter of the same year also witnessed an increase in the popularity of Android. Its worldwide 

market share increased to 88% from 1.6% in Q1 2009. Figure 3 below shows this popularity 

trend.

 

Figure 3: Global market share [28] 
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The increased use of Android platforms has rendered the platform vulnerable to new and 

sophisticated malware. The malware are designed to evade detection with devastating effects 

on victims. Malware authors cause losses that run into billions of dollars annually. [29] As a 

result, this makes it a lucrative venture as Android system users continue to increment. It is 

estimated by Amro [30] that a new strain of malware is detected every 10 seconds. This rate 

is not only alarming but requires immense resources to identify and neutralise. The percentage 

increase in evasive malware jumped to more than 2000% in 2017, and the trend is expected 

to continue [31]. Massive attacks are being launched with thousands of users falling victims 

and experiencing losses. Malware authors have used crafty techniques to overcome 

authentication requirements put in as security measures. Some malware are attacking all 

authentication devices hence exposing authentication vulnerabilities. [32] 

Alarms have been raised primarily due to increased ransomware cases where malware 

authors hold Android systems to ransom until they are paid off. The malware authors would 

mainly use untraceable cryptocurrencies to cover their tracks [32]. Apart from the common 

malware targets of locking device screens, ransomware have targeted supporting other 

malicious intentions such as wiping out data, resetting security settings, GPS tracking, and 

theft of personal information. However, even with increased malware threats, antimalware 

companies and Google have been investing resources towards developing detection 

techniques progressively [33]. Critical databases have been developed over time and have 

played a considerable role in enhancing Android security for millions of users; however, it can 

be deduced that malware authors seem to be a step ahead all the time [33]. 

3.2 Malware Family 

The threat posed by Android Malware has provided a need for researchers across the globe 

to collect malware samples, identify malware families, and suggest methods for countering 

this threat. The need for a collection of Android malware became apparent after the detection 

of the first Android malware named ‘fake player' in 2010 [34]. Collection of malware samples 

is deemed essential for systematic examination to create robust detection platforms and 
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techniques. Collection of samples is carried out whenever new malware is reported and is 

updated in existing databases such as those held by antivirus companies [4].  

There are thousands of Android malware instances which keep on increasing based on their 

malicious intentions and engineering processes. Based on the capabilities of such malware, 

they are classified into different families. The number of malicious applications has risen 

steadily since 2010, and the trend is expected to continue [35]. In 2013, the number was 

estimated at 500,000, which rose to more than 2.5 million applications in 2015. The number 

increased to 3.5 million in 2017 and is expected to continue growing with more sophisticated 

and highly destructive malware expected [36].  Ransomware is one of the most reported forms 

of malware and accounted for close to 30% of cases in 2017. In 2017, the Rootnik malware 

family accounted for 42% of all cases, while PornClk family accounted for 14%. Other families 

such as Axent, Dloadr accounted for less than 10% of reported cases each. [36]  

Malware in the same malware family has similar traits and form of action or malicious activity. 

They may also have different variations which have different detection evasion patterns meant 

to avoid different detection techniques. For example, the KungFu family is one of the most 

harmful families of malware with different variations such as KungFu1, KungFuD, and 

KungFu3, among others [37]. Malware in the family is similar in the sense that they are 

packaged and downloaded from third-party platforms in the open markets. The malware has 

privilege root exploits which do not require the input of the user and transmits sensitive 

information such as IMEI number, phone number and contacts, Android model and versions. 

Subsequent versions of the malware have more detection evasion capabilities and more 

harmful features. [38] 

Most malware families are already defined and detected. This identification has seen a 

reduction in the number of new malware families reported annually. However, variations of 

malware within the families continue to increase. For instance, 2012 reported more than 100 

new families of Android malware when compared to only four new families in 2016, even 

though variations of malware within the families increased. 2014 reported 46 new families 
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while 2015 reported 18 new families [38]. Some of these malware have found their way to the 

Google Play store, while more of them are from third-party markets [38]. Malware families 

have similar malicious behaviour, which makes categorization easy. For instance, some 

malware families such as Grabos are designed to trick users into downloading other malicious 

applications which may facilitate malicious activities such as sharing of sensitive and personal 

information [39]. Such applications may be disguised in the form of other utility applications 

such as free music downloader, hence attracting huge followings. This disguise exposes users 

to downloading other harmful applications from unknown sites and also opening them without 

consent [25]. Other families operating and using this kind of approach include the 

TrojanDropper.Agent.BKY and AsiaHitGroup. Table 1 below displays a list of malware families 

and their descriptions. 

Table 1: List of malware families and their descriptions [25] [34] [36] [37] [38] [39] 

Malware 
family/Name 

Description/ how it works  

AnserverBot Infected host application displays a new dialogue to request, and 
upgrade a new application. The downloaded application contains a 
hidden payload. The payload communicates with a remote server 
for receiving commands. 

BaseBridge (AdSMS) When Infected host application is installed, it will trick user into 
upgrading the application. The downloaded application is installed 
and would communicate with a remote server for downloading 
configuration file. The file contains the premium numbers where the 
malware will call or send SMS messages 

BeanBot The malware sends device data to a remote server. It also sends 
premium SMS messages. 

Pjapps The malware communicates with a remote server and sends 
Browse’s history and bookmarks. It also sends premium rated 
SMS. 

BGSERV The malware sends premium rated SMS. It also communicates 
with a remote server for sending private information. 

CruseWin 
(CruseWind) 

The malware sends premium rated SMS. It can also upgrade itself. 

DroidCoupon It uses a simplified root exploit—" Rage against the Cage" in 
Android 2.2 and earlier, hide Platform, so it is challenging to detect 
it. The malware leaks users private information. 

DroidDeluxe Install a password recovery tool, and It will not work on Android 2.3, 
with a message: "This application has stopped.” 
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DroidDream 
(DORDRAE) 

It disguises itself as applications such as a battery-monitoring tool, 
a task-listing tool. The malware sends device’s information to a 
remote server. 

DreamLight Service named "CoreService" is started when infected device 
receives a phone call. The malware sends device’s information to 
a remote server. 

DroidKungFu (LeNa) The malware roots the device. The malware sends device’s 
information to a remote server. 

Smssend(fake player) The malware sends premium rated SMS.  
Gamblersms The malware asks user to provide a phone number and an email 

address. This information is then abused. 
Geinimi The malware extract information from the device and sends it to a 

remote location. A hacker can execute commands remotely, such 
as to send SMS and make phone calls. 

GGTracker The malware tricks user to download battery saver application via 
malicious advertisement. Once installed, it will send premium text 
messages. 

GoldDream The malware has bot capability as it communicates with a remote 
server for fetching commands or sending private information. It 
intercepts incoming and outgoing SMS messasges and forwards 
them to the remote server. 

GPSSMSSpy 
(mobinauten, 
SmsHowU, SMS spy) 

The malware sends premium rate SMS messages.  

Jifake The malware is installed when user opens the link to download apk 
from a malicious website, but users do not see any file being 
downloaded. The malware sends premium rate SMS messages. 

Plankton The malware is installed with an infected host application. It 
harvests user’s data and sends it to a central server. 

 

3.3 Malware Attacks and Evasions 

Malicious Android applications are developed with the evil intention that can lead to severe 

losses. In this regard, developers are always looking for evasion techniques to avoid detection 

and to carry out malicious plans [40]. Evasion techniques used are becoming more complex 

and sophisticated and spread across multiple families of malware. There are three most 

common evasion techniques that we have come across in existing literature: Anti-security 

techniques avoid detection by anti-malware software by hiding behind an existing process of 

some legitimate applications already running on a device, Anti-sandbox techniques detect 

automatic analysis and as a result, avoid executing a malicious behaviour, and Anti-analyst 
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technique uses monitoring tools such as obfuscation to prevent reverse engineering. These 

evasion tactics have been referred to extensively in existing research: Figure 4 presents break 

down of each of these techniques against several papers which reference them. 

 

Figure 4: Detection of evasion techniques by several papers 

A short description of additional evasion techniques is mentioned below: 

Packing: even though packed malicious applications have been present for long, recent trends 

have shown more sophisticated packing techniques which are challenging to detect. Packing 

allows applications to compress files, to reduce the size of applications, unpacks and executes 

these files in memory at run time. It is a legitimate technique, but it also allows malicious 

applications to compressed malicious code in encrypted classes.dex files and unpacks them 

at runtime for malicious purposes [37]. 

Muitidex Applications: standard malware detection focuses on Dalvik Executable (DEX) file in 

the Android system. Applications typically have one DEX file which contains executable code.  

Some Android malware are designed in a manner that the payload splits between two DEX 

files. This technique can be used as a simple way of evasion to avoid detection; this is 

especially true for static detection methods that analyse one DEX file and misses the second 

DEX file, which may contain part of the malicious code [41]. 
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Instant run-based malware: Instant-run is an Android feature that enables developers to 

release updates more quickly through a debug application which pushes a zip file into an 

application for updating purposes [42]. Malware authors are disguising malware payload into 

these zip files used by the instant-run feature to evade detection [43]. The approach is one 

available for Android Lollipop and later versions and can only be used on applications installed 

through side-loading. 

Malformed manifest files: this evasion technique uses strange values in the 

AndroidManifest.xml file and the resource file. The method can confuse static detectors and 

avoid detection. 

Chattr: Chattr, a Linux command, is being used to lock malware on Android systems, mainly 

where root privileges are acquired. The chattr utility can be packed into an app in an encrypted 

format and can be used to lock the app into the system folder. Once an app is locked, any 

attempts to remove it even with root privileges fails. 

Following table displays papers where each of the above evasion techniques has been 

discussed. 

Table 2: List of papers addressing each detection evasion technique 

Evasion 
Techniques 

Papers No of 
Papers 

Anti-security 
techniques 

[40] [37] [41] [42] [44] [45] [46] [4] [47] [48] [49] [50] [51] [52] [53] 
[31] [54] [55] [56] [34] [4] [35] [36] [37] [38] [57] [25] [58] [59] [60] 
[61] [62] [51] [63] 

34 

Anti-sandbox  
techniques 

[43] [64] [65] [66] [67] [68] [69] [63] [70] [2] [71] [36] [65] [72] [73] 16 

Anti analyst 
techniques 

[29] [43] [64] [65] [66] [67] [68] [69] [63] [70] [2] [71] [36] [65] [72] 
[73] [25] [58] [59] [60] [61] [74] [75] [76] [62] [51] [65] [49] 

29 

Packing 

 

[36] [65] [72] [73] [25] [58] [59] [60] [61] [74] [75] [76] 12 

Muitidex 
Applications 

[38] [57] [25] [58] [59] [60] [61] [62] [77] 9 
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Instant run-
based 
malware 

[55] [56] [34] [4] [35] [36] [37] [38] [57] [25] [58] [59] [60] [61] [62] 
[51] [49] [73] 

20 

Malformed 
manifest files 

[49] [73] [52] [53] [31] [63] [54] [55] [56] [34] [4] [35] [36] 13 

Chattr [2] [71] [36] [65] [72] [73] [29] [30] [31] [32] [33] 11 

 

In addition to evasion techniques, there are malware attacks such as evasion attacks, gradient 

descent attacks, and tree-ensemble attacks, poisoning attacks, classifiers and clustering 

attacks.  

Evasion attacks: this is a form of attack where malware may use benign application behaviour 

such as injecting API calls relevant to benign applications to manipulate antimalware software 

algorithms [78]. Evasion attacks are designed to avoid detection while releasing their payload 

on Android systems. Most malware use evasion techniques in a bid to counter exposure by 

existing antimalware systems [2]. Successful evasion attacks can be significantly expensive 

and harmful due to delayed or failed detection. 

Poisoning attacks: these are evasion techniques that target machine learning models for 

malware detection. The models are attacked at the training stage, hence jeopardising their 

capabilities to detect individual malware families [65]. The attack means that the model is 

trained on how to evade certain types of malware by injecting additional seeds or requesting 

additional permissions to misled the algorithm [65]. 

Classifier attack: This type of attack targets detection techniques where malware are classified 

incorrectly. The error in the detection means that suspicious application may pass for good 

ones while genuine ones may be flagged for malicious [72] [73]. An attacker with sufficient 

information belonging to a training set can temper classifier by choosing intrusion points that 

may confuse the detection model in a bid to pass malicious code without detection [79]. 
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3.4 Malware Monetisation Strategies 

There are a variety of approaches that malware attackers use for monetisation purposes. One 

of the strategies that such users have found they can exploit the victims is by using malware 

that performs tasks that provide financial rewards [80]. However, the attackers ensure that 

they receive the reward instead of the victim, which creates an incentive for engaging in such 

activities. There are various approaches that attackers use to monetize malware and ensure 

that their activities produce a financial gain for them. For example, some malware is designed 

to automatically click on specific advertisements that result in the developer being paid [81]. 

In this regard, the malware covertly opens specific web pages and begins automatically 

clicking on advertisements on the website, which results in the developer being paid through 

the google ads program. A similar approach involves the automatic subscription to targeted 

YouTube channels. Once subscribed, the malware also proceeds to play some of the videos 

so that ad revenue is paid to attacker. Some malware also help the developers to perpetrate 

financial fraud. For example, some applications can automatically pay for orders that will 

benefit the criminals at the expense of the victim. In addition, the user credentials can be 

stolen, and the attackers can use them to access financial accounts and steal funds from 

victims or use them to make personal purchases. Additionally, some malware is used to lock 

victims out of their devices and the attackers use the incident to demand ransom from the 

victims in exchange for access [82]. As such, there are a variety of approaches that attackers 

use to monetize malware on android platforms. 
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4. Systematic Literature Review 

In this chapter, we will describe the criteria for our systematic literature review. we will present 

related work to show literature surveys that have been submitted by different researchers over 

the years. We will also define our research method, research questions, search strategy and 

scope of our inclusion and exclusion criteria. 

4.1 Related Work 

Previous related surveys may be categorized into two groups: mobile malware studies and 

Android security studies. This review searched survey papers in the two research domains. 

Examining, classifying, and identifying mobile malware have emerged as an exciting research 

field because mobile platforms emerged. Before the emergence of current mobile platforms, 

for instance, Android and iOS, Dagon, Martin and Starner [83] presented a mobile malware 

taxonomy. Although threat models for old mobile gadgets were described, such as PDAs, this 

dissertation draws on some aspects from the study, particularly regarding the security 

taxonomy of Android. 

Felt et al. [20] assessed the malware behaviour spread over Symbian, Android, and iOS 

platforms. Additionally, they analysed the efficiency of techniques that official application 

markets, such as Google Play store, and Apple Appstore, apply to identify and prevent such 

malware. Along similar lines, a thorough survey regarding the malware evolution for smart 

gadgets is offered by Suarez-Tangil et al. [84] in 2014, indicating a specific rise in malware 

targeting mobile devices since 2010. Additionally, the paper analyses 20 research attempts 

that investigate and identify mobile malware. The studies fail to assess features of the 

techniques for investigating and detecting malware, nor the approaches for exposing the 

vulnerability of Android. Apart from the general, platform-independent malware surveys, there 

are several relevant surveys, which describe Android security subareas, mainly linked to 

certain kinds of security challenges within the Android platform. For example, Chin et al. [16] 
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investigated security issues within the Android inter-app communication and presented 

numerous categories of possible attacks on applications. 

Another study is a comprehensive survey taken by Sadeghi et al. [85] that offers a review of 

the existing approaches for analysis of Android security. The study presents an Android 

security analysis taxonomy, derived from existing literature, against multiple domains. 

However, the study has omitted a comprehensive analysis of existing custom-built detection 

frameworks and the evolution of Android malware. 

Another example is the survey undertaken by Shabtai et al. [86] that offers a thorough analysis 

of the security measures that the Android framework provides; however, it does not 

comprehensively examine other research attempts for detecting and mitigating security 

challenges within the Android platform. The study undertaken by Zhou et al. [4]  discusses 

and classifies 1,260 instances of Android malware. The set of malware known as Malware 

Genome is then utilized by researchers over the years to assess their suggested malware 

identification techniques. Each of the surveys summarizes specific domains; for instance, 

assessment of Android's inter-app threats or Android malware families. However, they did not 

offer a thorough overview of current research regarding the analysis of Android security. 

4.2 Research Method 

The review follows the guidelines of the systematic literature review (SLR) process suggested 

by Kitchenham [87].  Additionally, the review has considered Brereton's [88] lessons on using 

SLR within the domain of software engineering. The process consists of three major stages: 

reporting, conducting, and planning the review. According to the guidelines, the research 

questions below are formulated to direct the systematic literature review. 

• RQ1: How do we classify Android application security analysis provided in the 

literature? 
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• RQ2: What is the current state of analysing Android malware detection techniques and 

technologies? 

• RQ3: What challenges, gaps, and patterns might be deduced from the existing 

research attempts, which will inform further research? 

The first research question focuses on research on Android applications and how application 

analysis can be classified with regards to security.  The first question is linked to the second 

research question, which aims at examining the status of malware detection and Android 

protection as depicted by different players in the industry, such as developers and software 

engineers.  With continued interest in the Android platform, subsequent versions have been 

released from time to time with improvements and correction of previous weaknesses. This 

version increment has been associated with the continuous development of malware detection 

techniques which include static, dynamic, and hybrid. Detection and security frameworks such 

as Androguard and DroidOlytics, for example, are also critically analysed with their capabilities 

and limitations. Finally, the third research question focuses on gaps identified in Android 

malware detection and security and the several recommendations for moving forward. 

4.2.1 Search Strategy 

The search strategy was guided by search terms that are relevant and related to the subject 

topic. The keywords used for the study were picked from the main issue "Android malware 

detection and Android security". In this regard, the significant search terms were Android 

Malware detection and Android security. The keywords were used to locate papers which were 

then subjected to an inclusion and exclusion criteria from the selected databases with relevant 

articles. In addition to the Keywords used for guiding the primary search strategy, additional 

phrases emanating from the framework of the literature review as depicted by the research 

question were also used for the strategy, inclusion and exclusion criteria. For instance, Android 

malware detection techniques, which yielded terms such as Androguard, MIGDroid, and 

Dendroid, among other relevant words, were considered in the search strategy. Other phrases 
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that were used for the search strategy are linked to Android detection techniques which include 

static, dynamic, hybrid and machine learning. Due to the progressive nature of the subject 

topic, the search criteria were flexible initially; therefore, the current research being carried out 

in and most recent publications to that effect. After conducting an iterative search for the main 

topic, any additional phrases identified from the result and based on the scope of the survey, 

a definite list of keywords was created. The list contains following terms for conducting the 

review: “Android dynamic analysis”, “Android static analysis”, “Android vulnerability”, “Android 

malware prevention”, “Android intruder detection”, “Android intruder prevention”, “Android 

antimalware”, “Android Malware attacks”, “Android malware detection framework”, and 

“Android malware prevention framework”. An AND operator was used for each word in the 

quotation marks. Whereas an OR operator was used for each search term separated by 

comma e.g. 

Android AND Malware AND Detection 

OR 

Android AND Malware AND Prevention 

4.2.2 Digital Libraries 

Reputable databases and search engines within the review protocol were used to identify top-

quality referenced research articles from dependable places. The following databases were 

found to have the relevant publication in the area of interest 

1. Science Direct 

2. IEEE Xplore 

3. ACM Digital Library 

4. Wiley Library 

5. Springer library 
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6. USENIX Proceedings 

7. Google Scholar 

8. University of Strathclyde’s Digital Library 

4.2.3 Inclusion and Exclusion Criteria 

The inclusion and exclusion criteria were meant to identify papers that were mostly in line with 

the research questions and the objectives of the literature review. If a paper meets inclusion 

criteria, then it is included in our study.  

4.2.3.1 Inclusion Criteria 

1. The articles must have been published in the last eleven years, i.e., between 2008 and 

2019. Earlier publications from 2019 have summaries of previous millstones and 

research in Android security, hence providing a solid background.  2008 also marks 

the period when the Android platform was commercially launched.  

2. They must be full versions of journals and articles published from conferences and 

discuss Android malware detection and Android security. 

3. The papers must also identify at least one of the following items: specific problems, 

gaps, vulnerabilities and propose solutions.  

4. Papers must be written in English.  

Notably, some retrieved papers from the chosen keywords did not fit our literature review’s 

scope. As Figure 5 illustrates, the range for the surveyed research in the current study falls at 

the convergence of three dimensions: 
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Figure 5: Scope of the Survey 

4.2.3.2 Exclusion Criteria 

The exclusion criteria aimed at eliminating papers or publications that did not meet the quality 

or scope threshold of the literature review.  With thousands of articles published within the 

period of interest, coming up with 100 plus relevant ones required robust criteria. The 

exclusion criteria ensured that multiple publications that did not meet the requirements were 

eliminated and not used for the review. 

1. Summaries of conferences and workshops, editorials, and abstract due to their limited 

nature regarding information. 

2. Articles related to workshops during the early stages and are not yet published. 

3. Posters with limited information on the subject topic. 

4. Books and academic dissertations due to the scope of the literature review. 

5. Paper mentioning Android malware detection and Android security but do not mainly 

focus on these aspects.  
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6. Papers lacking accessibility with regards to full-text versions i.e. unable to download 

the full paper. 

7. Appear written in other languages apart from English. 

8. Opinionated papers with broad discussions that do not fall within our research scope 

The initial search returned 1067 papers; the breakdown for each search term is displayed in 

Table 3 below. 

Table 3: The breakdown of search terms and their results 

Search Term No of Papers 

"Android Malware Hybrid Analysis" 4 

"Android Malware Prevention" 8 

"Android Antimalware" 21 

"Android Malware Dynamic Analysis" 32 

"Android Malware Static Analysis" 74 

"Android Malware Attacks" 107 

"Android Dynamic Analysis" 169 

"Android Malware Detection Framework" 179 

"Android Static Analysis" 228 

"Android Vulnerability" 245 

Total 1067 

 

There were 195 duplicate papers, so 872 were left for further screening. In the screening 

phase, the abstracts of these papers were read to remove obvious candidates that do not 

conform to our research scope. The final count of documents which followed our research 

scope and were included in our literature review was 142. 

Figure 6 below illustrates the quantities of selected papers based on the year of publication.   
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Figure 6: Number of selected papers by publishing year 

4.3 Summary 

In this chapter, we have presented a summary of existing literature surveys related to our 

work. Furthermore, we have established the parameters for our systematic literature review – 

broken down by research method, research questions, search strategy, and scope of our 

literature review by defining an inclusion and exclusion criteria for existing research papers. 

We have also shown the search result of each of our search terms. 

The next chapter, Chapter 5 – A Classification of Android Malware Security Analysis – will 

provide answers to our research questions through a suggested taxonomy and the outcome 

of the literature review. Chapter 5 will endeavour to answer three research question, i.e., How 

do we classify Android application security analysis provided in the literature? What is the 

current state of analysing Android malware detection techniques and technologies? And what 

challenges, gaps, and patterns might be deduced from the existing research attempts which 

have directed our research. 
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5. A Classification of Android Malware Security Analysis 

This section endeavours to answer the first research questions, i.e., How do we classify 

Android application security analysis provided in the literature? The Android operating system 

is a mobile platform which runs on multiple devices ranging from mobile devices, smartphones, 

set-top boxes, among others. With security being a significant issue of concerns for the 

platform, the use of third-party applications and cloud-based systems increases the risk of 

malware and security breaches [60]. Developers are therefore keen on having a system which 

can counter malware which keeps on getting more complex and difficult to detect.  

Malware is used to target different types of applications in the Android system. Applications 

include entertainment applications, society tools, productivity applications, communication 

tools and puzzles, among others. Current research on Android application security has 

evolved significantly with new techniques being used for categorisation. Android application 

security analysis is categorised depending on the nature of the malware and previous 

experiences with similar patterns. The current automated Android malware detection and 

classification techniques are broadly divided into three categories, as shown in Figure 7 below: 

 

Figure 7: Categorisation of Android malware security analysis 

The first category is the signature-based approach that seeks to identify specific patterns in 

bytecodes and API calls in malware detection [39]. The second category is the behaviour-
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based approach that seeks to detect malware by observing the actions of an application. Both 

detectors are subject to evasion and may require complementary detection techniques to 

counter, i.e. the third category. The third category is the machine learning-based approaches 

which perform binary classification based on application behaviours and extracted features. 

In the following section, we will discuss each of these categories in more detail. 

5.1 Signature-Based Detection 

One of the primary methods for detecting malware is the signature-based approach which is 

used by most of the antimalware products sold commercially [89]. It extracts semantic patterns 

from applications, and a unique signature is created.  This approach operates under the simple 

model that malware exists when an application code matches the malware signatures [90]. 

Signature-based methods are not very useful in detecting unknown malware because a 

database may not contain their signature [47]. Therefore, if a database does not have a 

specific signature for new malware, then it fails to be detected.  

Signature malware classification uses multi-label classifiers that are designed to identify 

malware based on different classes that are known. Similar patterns help in flagging up 

unknown malware with similar characteristics such as API calls, package names, class names, 

string variables, and call graphs etc. The technique uses a malware graph database against 

which new threats are analysed – a graph database stores data in a graphical format as 

graphs. Vertices and edges create a graph whereby vertices are connected by edges. This 

representation is useful for finding a relationship by traversing over many edges.  Static 

analysis of malware is conducted with high similarity graphs being eliminated. There is also a 

challenge in the process of identifying repackaged applications that are mutated from millions 

of applications that are supposed to be genuine and threat free. Malware developers can 

quickly engineer malware into legitimate applications through obfuscated program segments 

that have a structure similar to legitimate applications but with malicious logic in them [58]. 

Another challenge is the association of malware with existing applications to enable security 

analysis. Unless malware patterns are already known and existing, it means that existing 
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databases must wait for the release of malware in the wild or possible attacks for them to be 

included in the analytics databases. Conventionally a cryptographic hash of malware was 

found to be ineffective as a hacker could easily change hash values and package names in 

an application to avoid detection.  

Signature-based malware detection has evolved significantly where approaches such as 

DroidAnalytics are being used for screening [59]. DroidAnalytics [61] is a signature-based 

static analysis tool to manage and analyse Android malware at the opcode level. The 

automated system is programmed to collect, analyse, and administer malware and create a 

mechanism of detection by creating a signature from the collected information such as 

package names, class numbers, API call number etc. Signatures of known and identified 

malware, based on this collected information, are created and then used to determine skewed 

patterns which alert to the possibility of new malware. This technique has been found to be 

more efficient and robust with high detection rates. The tool compares the signature generated 

as a result of the analysis with the existing malware database for classification purposes. 

DroidAnalytics has identified 2475 malware applications from 102 families. When compared 

to previous permissions-based malware detection techniques, signature-based DroidAnalytics 

easily tracks application mutations and their derivatives which generate new malware. The 

building block for signature-based malware analysis is also based on systems such as 

extensible crawlers in DroidAnalytics [59]. Third-party marketplaces for applications can be 

identified where the crawler performs a regular download of available applications. This aids 

in the enhancement of the existing database towards malware analysis and detection [49]. 

With continued updating of such third-party marketplaces or websites, extensible crawlers 

have continuously been developed to detect when new applications are available for 

download. This crawling functionality makes the DroidAnalytics system to be the initial 

evaluation point for the security of the applications. Detailed security analysis and security 

reports are given instantaneously with multiple developers and stakeholders on the lookout 

for signs of evasion of detection techniques. 
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The dynamic payload detectors are used to detect malicious malware packages that download 

malicious code via the internet using virtual machines. Attachments are scanned to detect 

suspicious files which may contain ‘.elf ' or ‘.jar' file types [61]. Camouflaged files are generally 

used by hackers to avoid detection. Signature dynamic payload detectors overcome this by 

checking magic numbers in the applications as opposed to the file extensions. The dynamic 

payload detector treats these files as targets if they have characteristics such as internet 

permissions or show attributes of re-delegating other applications to download the files.  The 

suspicious files, as well as the downloaded files, are then transferred to the signature 

generator which carries out further analysis based on existing data to determine the nature 

and threat level of the malware. 

Another form of Android application security analysis is the Android App Information (AIS) 

Parser which is a structure within Droid Analytics used for the reorientation of the ‘apk' file 

structure used for Android applications [61]. The underlying cryptographic signature of an 

application can be revealed using this approach where its package information, permissions, 

disassembled codes, among other aspects, can be identified [74]. The AIS parser conducts a 

decryption process which makes it easy to for analysis and retrieval of information which is 

checked against databases for malware detection purposes. Sophistication in current malware 

architecture has made it easy for perpetrators to bypass this through mutation or re-

engineering of applications. The signature-based analysis also requires a flexible analysis 

which is not facilitated by the cryptographic hash for security scrutiny. For DroidAnalytics 

signature analysis, three-level signature generation schemes have been developed and found 

to be more efficient. The DroidAnalytics signature analysis depends on the nature of the 

mobile application, the calls of the applications, methods as well as any dynamic payloads of 

malware [61]. This technique does not only cater to application obfuscation but classification 

and analysis for easier detection in the future. 

Androsimilar [47] utilises signature-based methods to detect variants of known Android 

malware families. They report a true positive rate (TPR) of 76.48% in deducting known 
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malware families using a signature-based method. DroidSift [74] implemented a signature-

based process to detect known malware instances, 93% of the time correctly. DroidSift uses 

an API dependency graph for constructing feature sets for classification purposes on a data 

set of 2200 malware and 13500 benign applications with an accuracy of 93% using Naïve 

Bayes classifier. 

DroidLegacy [91] extracts signatures that recognise malware developed by piggybacking 

benign applications with malicious code. DroidLegacy decompiles the piggybacking malware 

application into loosely coupled modules and then compares their API calls with a known 

malware family signatures. Their method has achieved 94% accuracy; however, their dataset 

is imbalanced with 1052 malware and 48 benign applications. DroidLegacy achieved 87% 

precision on the entire dataset, which may be due to the skewness. 

APK Auditor [92] is a permission-based Android malware detection tool; it utilises static 

analysis to extract permissions information and store it along with the analysis result into a 

signature database. The tool also contains an Android application that is stored on end-users’ 

mobiles to allow them to request analysis. The application communicates with a central server, 

which provides the result of the investigation. APK Auditor has been tested on 6909 malware 

and 1853 benign applications dataset with a reported accuracy of 88%. 

According to Howard, Pfeffer, Dalal, and Reposa, [93], most of the intrusions happens without 

the realization of the defender. It is, therefore, critical to anticipate and prepare for malware 

attacks in advance. Howard, Pfeffer, Dalal, and Reposa [93] present a technique based on 

the prediction of future malware variants' signatures. The predicted variants are then injected 

into the defensive system of the Android device. The study uses machine learning to identify 

and predict future patterns to create a malware signature that can be detected by the system. 

The signature-based analysis is added to machine learning so that it can be able to identify 

future attacks. Essentially, the researchers add the signatures to the predictive malware 

defence (PMD) to detect new variants of malware and initiate protection. By introducing 

signature-based analysis and retraining SESAME, 11 more samples were detected with no 
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false positives. The SESAME was retained on 114,000 malicious and 10,000 benign binaries 

[93]. This result indicates that it is possible to predict malware evolution and develop 

signatures for system defence. 

Alam, Adharbi and Yildirim [94] utilize signature-based analysis to build a signatures database 

in a vector space from a dominance tree using common Android application signatures. These 

signatures are then used to detect malware. The features used in this study include 

permissions and flow control from a sample of 1294 applications labelled as either benign or 

malicious. For malware detection, the application samples are processed and reconstructed 

for new signatures with similar characteristics as the original signatures. The study's findings 

show an improvement in detection rate and false-positive rates in the range of 1.7%-0.4%. 

The only limitation highlighted regarding the technique is that it is unable to detect malware 

that uses obfuscation and encryption techniques [94]. 

5.2 Behaviour-Based Detection 

Behaviour-based malware detection observes an application's behaviour for suspicious 

activity to classify it as malware or benign. The behaviour of an object, as well as its potential 

actions, are analysed for threats and suspicious activities. The behaviour-based Detection 

flags that the object is questionable, and it is suspected to be malicious when it attempts to 

execute unauthorized or abnormal actions. During run-time, there is a swam of behaviours 

that indicate the presence of potential danger. Examples of such acts include attempts to 

register for automatic-start, disable security controls, discover the sandbox environment, or 

install rootkits. 

The Behaviour-based detection technique works through observing and assessing the context 

of each line of code processed from the malware. The method analyses all access requests 

to services, specific files, connections, URL, and processes. The analysis includes all 

instructions invoked and processed at the program and operating system level, including low-

level lines of code embedded in rootkits. The technique determines all activities that are 
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considered suspicious and malicious, which, when aggregated, may distinguish malicious 

objects before they can be released into the system and network to execute its behaviour. The 

technique may utilise the following functionality for creating a behaviour profile of an 

application: monitoring sensitive API, network traffic monitoring, files operations, memory 

usage, and CPU usage. 

Calderon et al. [95] presented a behaviour analysis technique focusing on HTTP and HTTPs 

network traffic packets. Malware may try to communicate with a command and control server 

using HTTP or HTTPs protocol before executing malicious behaviour. Their technique used 

the occurrence of each client header used in HTTP packet and in the case of HTTPs, the 

encryption algorithm (TLS 1.0, 1.1, or 1.2) used. The features are fed to Machine Learning 

algorithms, and the experiment result shows that the technique has achieved over 90% of 

precision and recall. However, malware using deprecated protocols such as SSL cannot be 

detected by this method [95]. Marin et al. [96] presented a Deep Learning approach for 

detecting malware by monitoring network traffic. Their approach does not require expert 

knowledge on using the necessary features, i.e. instead of using shallow models where 

handpicked features are defined by experts for pre-processing, raw data received from the 

traffic stream is used as input for Deep Learning models. The results show that using their 

approach, the Deep Learning method performs better than the Random Forest algorithm. 

Lungana-Niculescu et al. [97] proposed a method of reducing the false negatives and false 

positives of a behavioural analysis technique in malware detection. The author introduces 

deep learning-based classification as a supplemental decision-making element. Their method 

monitors the actions performed by the malware process and sets the flag for suspicious 

activities as 1, otherwise 0. Examples of questionable actions are injecting itself into another 

process, launching sensitive operations, and establishing itself as a start-up process. These 

suspicious actions are used as features for the deep learning algorithm.  The experiment result 

showed 118 false negatives and 112 false positives, successfully reducing the false positives 

by 97%. Overall, they achieved 94.53% accuracy, 92.1% precision, and 87.88% recall on the 
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validation data set. However, the study was unable to establish the correlation between 

behaviours and malware files, which was classified as future work by the authors so that the 

results can be seen at a file level, not just behaviour level [97]. 

Onwuzurike et al. [98] sought to detect malware using behaviour analysis based on a 

sequence of abstracted API calls to capture the behavioural model of Android applications. 

The behavioural analysis technique was used to model the MAMADROID, a malware 

detection system that depends on transitions between different Android applications API calls. 

API features were used in this case. The MAMADROID system models a sequence of API 

calls that are, in turn, used as features for machine learning to classify applications as either 

malicious or benign. The study evaluates the effectiveness of the MAMADROID using a 

dataset of 8500 benign 35500 malicious applications [98]. The operation mechanism is based 

on the abstraction of API calls the Android applications without interfering with its behaviour. 

They reported F-measure of 0.99, 0.97, and 0.9, depending on different datasets the models 

were being tested. A limitation of their study was the skewed dataset as the malicious 

applications were more than four times of the benign applications used in their experiments. 

[98] 

Researchers are in a continuous race to determine effective ways of detecting malware due 

to the increasing vulnerability of Android applications. Alptekin, Yildizli, Savas and Levi [99] 

present the TRAPDROID framework that focuses on capturing the unified behaviour of 

applications. The framework detects malware by analyzing process events such as system 

calls, broadcast events (such as SMS_RECEIVED, SCREEN_ON, etc.) hardware 

performance, and binder statistics. The study uses behaviour analysis to evaluate suspicious 

applications from 355 malware and 281 benign samples [99]. The behavioural analysis helps 

determine whether a file is trying to open without the necessary permissions, making it easy 

to detect ransomware. After adjusting for SVM, the success rate of the framework reached 

93.2%, implying that the behavioural analysis technique was able to identify most of the 

malicious applications from the data set. 
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Olukoya, Mackenzie and Omoronyia [100] proposed the use of behavioural characterization 

to assess malware risks in new applications. In this case, the behavioural approach is used to 

describe permission sensitivity and mismatch by evaluating self-triggered permissions against 

the requested authorizations. Notably, the permissions requested by an application describe 

its behaviour and its interactions with the device, other applications, and stored data. Sensitive 

data that may require permissions in Android devices include call logs, text messages, and 

contact lists; As such, analyzing the behaviour of application permissions is critical to ensuring 

privacy. From a dataset of 33, 580 malware, and 10,000 benign permissions extracted from 

10,000 applications from google play, the study employs behavioural characterization to 

assess risk ratings of Android permissions based on intent and API call features [100]. 

According to Olukoya et al. [100] analyzing risk signals, in-app permissions can help protect 

innocent users from falling victims of malware intrusions. Further behavioural characterization 

helps in labelling malicious and benign applications. The proposed framework for this study 

demonstrated 95% accuracy in improving risk signalling. However, less flexible contextual 

factors (such as actual usage of permissions in the source code) limit the framework from 

attaining higher accuracy in estimating risk ratings [100]. 

Malicious activities such as phishing, spoofing, and eavesdropping have become widespread 

with the recent developments of Android applications, thus the need to develop more accurate 

and useful malware detection techniques. Sourav, Khulbe, and Kapoor [101] use behavioural 

analysis to run a test on Android application files to determine if these should be classified as 

benign or malware. To aid the investigation, the researchers extracted a dataset from the 

Kaggle database containing 338 applications labelled as malicious or benign. The presence 

of different permissions and calls indicated using specific codes (0 and 1) for ease of 

classification. The analysis was based on 330 features expressed in the binary form [101]. 

These features were categorized into application permissions, a standard operating system 

command, and API calls. The study's findings illustrate that the incorporation of behavioural 

analysis into the analysis of neural networks (ANN) model increased the accuracy level to 
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95%. This result coincides with Olukoya, Mackenzie and Omoronyia's findings [100]. Sourav 

et al. [101] succeeded in introducing an integrative method based on deep learning to detect 

malware that performs better than the traditional techniques. However, the analysis is limited 

in that it contains a smaller data set; future work is proposed to use a more significant data set 

so that this method can be tested on a complex data set.  According to Fan et al., [102], using 

an automatic behavioural approach (CTDroid) can help informative engineer features from 

Android malware. However, this technique is challenged by difficulties in recognizing 

information and semantic gaps between a programming language and extracted behaviours. 

After evaluating benign and malware applications, the model demonstrates that it can achieve 

95.8% with only 1% of false-positive rate [102]. 

5.3 Machine Learning-Based Detection 

The penetration of Android platform and sensitive industries such as banking, healthcare has 

increased the danger and risk associated with Android malware due to the dynamics of the 

targets [75]. Machine learning technique of malware detection has been in use and has 

developed significantly over the years as improvements to the platform are carried out, and 

more malware developed [103]. Challenges associated with machine-based classifiers include 

extraction of feature representations from applications and having to choose classifiers that 

can be trained exclusively on one class. Different approaches have been used to counter 

these challenges [76]. Significant research and testing have been established for detecting 

Android malware.  Some strategies use power consumption to determine where anomalous 

patterns are used to detect possible malware. In other methods, system approaches are used 

to identify unusual patterns which are flagged out for further analysis and possibility of 

malware.  

More conventional approaches use signatures to carry out comparisons with known malware 

structures. New Android malware may go undetected for prolonged periods even when 

antivirus infrastructures are set up.  The lack of timely updates of newly created malware 

signatures means that the malware architect has a significant window for carrying out attack 
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undetected [76]. In some instances, the presence of malware is only detected after the 

damage or intended malice has already taken place. Google has invested in detection 

infrastructure when applications are uploaded in the play store. However, malware developers 

are still able to craft malware that can be downloaded from the store undetected [104]. The 

aim of having no application infected by malware is also made more complicated by the open 

policy, which allows users to download applications from third-party platforms. Machine 

learning detection techniques have been developed to deal with the extended period that it 

may take to detect new malware [2].  The aim is to narrow the window of opportunity that 

attackers have before a threat is flagged and efficiently dealt. The machine-learning malware 

detection techniques are effective and significantly reduce the amount of time required to 

realise that new forms of malware have been released [2]. Abusnaina et al. [105] point out that 

this approach to malware detection entails an inbuilt set of methods that give Android devices 

learning abilities without explicit programming. In simpler terms, machine language use 

algorithms to identify and formalize the characteristics underlying the data availed rather than 

adding a programmatic set of rules for classification purposes [106]. 

Kumaran and Li [107] used Machine  Learning algorithms to improve malware detection from 

a data set using static analysis. The machine learning techniques are trained from a dataset 

of 500 benign and 500 malicious applications and accuracy determined by a 10-fold accuracy 

scheme. The features extracted (I83 in total) from the dataset were classified into requested 

permissions, declared permissions, and intent filters. Kumaran et al. establish that machine 

learning is an accurate (91.7% accuracy) classifier of complete data sets, especially when 

combined with permissions [107].  

Different machine learning techniques have been developed over time to deal with the ever-

growing list of Android malware. For instance, Risk Ranker [108] is an automated risk 

assessment technique which profiles applications in Android markets for the probable 

presence of malware. Profile Droid uses a multi-layered profiling system which seeks to 

characterise the behaviour of individual applications at different levels and aspects, flagging 
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out suspicious components for further analysis and categorisation [63]. The Android 

Application Sandbox [109] has been utilised in static and dynamic detection mechanisms 

where decompiling of Android applications codes is carried out, and risk scores determined 

and classified concerning risk priorities. Risky samples are then subjected to further analysis 

and comparison for further understanding of threat levels and capabilities. Most antivirus 

companies have used machine learning methods to detect computer malware, and the same 

is being replicated for the Android system. Benign and suspicious classifications have been 

used in the Bayesian classification as a way of categorising the risk level for applications [110]. 

The machine learning concept used samples of 49 Android malware families that have been 

earlier detected and classified as well as 1000 benign Android applications. Applications 

appearing to be suspicious are flagged for further analysis and categorisation. Other machine 

learning techniques use graphical representations and training where flow graphs and 

permissions on SVM models are used to differentiate benign and suspicious applications [89]. 

Machine learning that is trained using permission features has varying levels of accuracy in 

malware detection. The higher the number of malware samples and benign applications, the 

more robust and useful a machine learning detection technique is deemed to be [104]. 

Permission features are used to train SVM and Bayesian models, where the risks associated 

with respective applications are evaluated and ranked [63]. However, this is dependent on the 

framework of each machine learning technique and algorithms utilised therein. For instance, 

DroidMat uses k-means clustering through the SVD or Singular Value Decomposition 

approach [56]. The framework was based on 238 malware samples from 34 families as well 

as 1500 benign Android applications. The effectiveness of machine learning is also dependent 

on the extent of the database used for the process. The database also needs to be frequently 

updated either automatically or manually to capture a broader range of probable malware. 

An SVM-based approach has been used by Li et al. [111] that combines risky permissions 

and sensitive API calls and feeds them as features to the SVM algorithm. They have achieved 

86% accuracy on a data set of 700 applications, consisting of equal distribution of malware 
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and benign applications. Sanz et al. [112] acquired an accuracy of 86.41% on a data set of 

249 malware and 1811 benign applications. Their method extracts permissions from an 

Android manifest file and utilises various machine learning algorithms for detecting malware. 

A Random Forest algorithm trained with fifty trees achieved the highest accuracy. DroidDet 

[66] employed the Rotation Forest algorithm and trained it with features extracted by 

conducting a static analysis of 1065 malware and 1065 benign applications. Static analysis 

extracted permissions, monitoring system events, sensitive APIs, and permission rates as 

features for constructing the machine learning model. Their method achieves 88.26% 

accuracy, and they report a 3.33% improvement to the SVM algorithm. 

Deepa et al. [113] applied feature extraction and dimensionality reduction methods - namely 

Information Gain, Correlation Feature Selection (CFS), and Kruskal methods - in their static 

analysis approach. Their technique utilises the extraction of three types of features: method 

names, strings, and opcodes for constructing machine learning models. Their dataset 

consisted of 612 malware and 758 benign applications. Their techniques achieved 88.75% of 

accuracy by using Adaboost with J48 as the base classifier. 

AppContext [114] extracts security-sensitive behaviours by conducting a static analysis. The 

security-sensitive behaviour is classified as API calls to certain methods that are permission-

protected or are sink method, i.e., require access to functions that write data to a file. This 

information is used to train an SVM classifier. AppContext achieved 93.2% accuracy when 

applied on 202 malware and 633 benign applications datasets. 

Image representations can be used for detecting malware, a study by Darus, Ahman, and 

Ariffin [115] decompiled 300 malware applications and 300 benign applications into 

classes.dex files which are the binary files that are run on the Android operating system. They 

converted these files into 8-bit grayscale image representations and used GIST Descriptor to 

extract features for feeding to machine learning algorithms and managed to detect 183 

malware files. However, they were unable to generate images for 117 malware files due to 
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corrupt APK files. Their experiment result showed the accuracy of 84.14% with Random Forest 

algorithm. 

Machine learning can also be customised or designed for specific Android systems with 

particular functionalities to facilitate quicker detection and shorter windows of opportunity for 

full blow spread and attacks [67]. With more complex malware being developed in the current 

Android scope, machine learning techniques have also become more complex and 

sophisticated to facilitate early detection [116]. Machine learning has also been used in 

conjunction with other detection techniques as a way of complimenting them and having robust 

and highly capable systems. These techniques check for multiple indicators such as many 

packets sent, processes running at one given time, touch screen pressing [68]. These 

indicators are analysed for anomalies, which are then used to determine the risk of malware. 

Based on the machine learning algorithms and settings, the activities associated with the 

Android applications are used for data collection and then classified as normal or abnormal 

[117]. Abnormalities are further analysed and compared with existing malware patterns. For 

instance, Crowdroid uses behavioural based malware detection techniques where system call 

patterns are converted to feature vectors which are then subjected to k-mean algorithms which 

then detect the presence of malware in the applications [65]. 

Some of the typical features that are used in machine-learning malware detection techniques 

are the SMS manager’s API for receiving, sending and reading short messages, the phone 

manager’s API for accessing device identity, network operations and the identity of 

subscriptions [66]. Other features include the package manager’s API for retrieving 

information about installed packages as well as downloaded packages that are yet to be 

installed.  

A regular feature on the learning framework depicts safe application, while abnormality may 

represent the probability of malware [63]. However, this is dependent on the ability of the 

machine learning platform to utilise various feature such as permissions and bag of words 

extracted using text mining approach [63]. For most of the machine learning techniques used 
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for malware detection, robustness and performance are critical aspects. Robustness is the 

ability to extract various features to develop multiple detection mechanisms in case one or 

more elements have been designed to avoid detection. Robustness can be achieved through 

the extraction of different parts of APK application files with commands being detected from 

the executable files [54].  Having various features allows for faster identification of malware 

and their specific intentions. For instance, ensemble machine learning algorithms such as 

Random Forest can utilise these features simultaneously to detect malware [55]. 

On the other hand, performance is determined by the diversity of the employed features. The 

performance can be further enhanced by having a large malware repository which acts as a 

guideline to the features that are most targeted and probable loopholes that malware 

architects can take advantage. Machine learning is, therefore, dependent on the ability to 

progressively update feature and malware samples as new and more complex ones are 

developed. 

Fatima et al. [118] present a Machine Learning approach that uses a genetic algorithm for 

selecting discriminatory features in malware detection. Two sets of applications, including 

20,000 malware and 20,000 malware samples, are analysed using reverse engineering. 

Classification accuracy of 94% was obtained after reducing the number of 99 features to 33 

by using Genetic Algorithm. Their main contribution is the reduction of features using a 

heuristic searching approach based on fitness function for feature selection [118]. 

With the penetration of Android platforms and system, multiple features are developed 

progressively and are susceptible to malware as opposed to conventional functions.  Even 

though machine learning techniques are better than signature-based detection techniques, 

they also have some shortcomings [56]. One of the primary challenges lies in the identification 

of contributed features. API calls and permission are the most widely used feature for machine 

learning. The second challenge relates to the scope of machine learning with only a few large-

scale databases that can be relied on for efficient malware detection and machine training 

models [116].  
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5.4 Taxonomy of Android Malware Detection 

In previous three sections, we attempted to answer the first research question: How do we 

classify Android application security analysis provided in the literature? We have identified and 

reviewed two primary categories: Signature-based detection, and Behaviour-based detection, 

as well as complimentary category Machine/Deep learning. Whilst performing the literature 

review in pursuit of finding answer for our research questions, we have derived a taxonomy 

for Android malware detection. The proposed taxonomy is displayed in Figure 8 below. 

 

Figure 8: A Taxonomy of Android malware detection 
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We have discussed three broad categories of Android application analysis with regards to 

security in the current chapter, these categories are shown in the above figure. The first 

category Signature based detection utilises Static Analysis technique to extract the required 

features. Static Analysis uses one of the two methods to classify an application as malware or 

benign. The first method utilises the extracted features and compares them against malware 

database features for classification purposes. The second method utilises the third category: 

Machine Learning or Deep Learning for classification purposes. Similarly, the second category 

Behaviour based detection utilises Dynamic Analysis technique to extract the required 

features and uses either existing malware database or Machine/Deep Learning algorithms for 

classification purposes. The third technique, Hybrid Analysis, utilises features from both Static 

and Dynamic Analysis against existing malware database or utilises Machine/Deep Learning 

algorithms for classification purposes.  

The next three sections will discuss above-mentioned three analysis techniques in more detail. 

The next sections will also discuss the custom-build detection technologies use for detecting 

malware and will also attempt to answer the second and third research questions:  

RQ2 What is the current state of analysing Android malware detection techniques and 

technologies? 

RQ3 What challenges, gaps, and patterns might be deduced from the existing research 

attempts. 

5.5 Techniques for Malware Detection 

This section attempts to answer the first part (techniques) of the second research question. 

Broadly speaking, there are three types of techniques for detecting malware. We will now 

discuss each of these techniques in more detail. 



59 
 

5.5.1 Static Analysis Techniques for Malware Detection 

One of the common forms of malware detection is a static analysis which uses features that 

are extracted without executing code [119]. When compared to dynamic detection techniques, 

static analysis is considered to be more efficient while dynamic analysis is more useful when 

dealing with obfuscated code. Static analysis of malware detection uses code analysis to 

detect malware [120]. Obfuscation allows malware architects to bypass detection unless 

complementary techniques are used. However, it is useful in detecting well-known malware 

and has a low-cost implication [121]. It also consumes less time and resources to carry out 

static malware detection analysis.  

Static detection has two main techniques which include misuse detection and anomaly 

detection. The misuse detection technique is also referred to as a signature-based technique 

which uses a set of predefined sequences and instructions to detect if malware matches 

defined patterns. Semantic language-based signature approaches are used where families of 

malware have specific signatures that are used to identify them [25]. Data flow properties are 

also determined using static analysis techniques. The challenge, however, is to define 

signatures that can effectively detect obfuscation as well as dynamic code loading challenges 

[122]. The misuse technique also uses an approach where specific security features are 

extracted and checked against data flow to determine the presence or absence of malicious 

signatures. 

In addition to the misuse technique, the static analysis also utilizes anomaly detection, which 

relies on machine learning algorithms to identify Android malware. Features that are extracted 

from known and identified malware are used to train a machine learning model which then 

detects new or unknown malware [66]. For instance, a K-nearest neighbours approach to train 

a machine learning model based on features such as short message and call patterns as well 

as other applications. Android events and permissions are also used to prepare models which 

then classify malware as well as benign applications.  
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Chavan, Troia and Stamp [123] presents a comparative analysis of benign and malicious 

applications using the static feature. The dataset consisting of 989 benign and 2657 malware 

samples were analyzed using various machine learning techniques such as logistic model 

trees, artificial neural networks, and AdaBoost to extract permission features for Static 

Analysis. A total of 230 distinct permissions were obtained in experiment 118 of which were 

from the malware dataset [123]. The study's findings illustrate that even a small number of 

permissions can serve as a strong feature vector. Although the study faced a challenge in 

malware classification, it was able to attain 95% detection accuracy with random forest. 

Mehtab et al. [124] integrates machine learning techniques to train models based on static 

analysis for detecting malicious applications. The data set for the rule model involved a sample 

of 910 malicious applications and 510 benign applications. The model, which is rule-based, 

was founded on features such as permissions, functions, codes, and call features, which help 

determine the correlation between the possibility of an application being benign or malicious. 

By integrating machine learning, the accuracy of the model reached 99.11%, implying easier 

detection and categorization of malware [124]. However, the sample size used in this study 

was significantly small, which affects the quality, accuracy, and reliability of insights provided. 

A more significant data set would be more appropriate for future research. Another deficiency 

in their approach is that they trained the model on 40% sample and used the remaining 60% 

sample as the validation data set. However, stratified cross-validation was not used in their 

method, so extracting more information about the algorithm’s performance is not clear.  

Jiang et al. [125] develops model based on static analysis to evaluate application information 

using an opcode sequence. The study uses opcode sensitive features such as APIs, and 

STRS to classify malware into their respective families from a sample of 5560 malware 

applications. The experiment achieved 99.5% accuracy in allocating malware to their correct 

families [125]. However, they have not provided any result on identifying malware from a set 

of both benign and malware samples.  Gamao [126] uses permission-based static detection 

to generate application features from Android applications. Fifteen distinct permissions were 
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utilised for 25 benign and 25 malicious applications and classified using Random Forest and 

Naive Bayesian machine learning [126]. Their study showed that the Random Forest 

performed better than the Naïve Bayesian, as the former produced 4.8% error rate, compared 

to the latter that achieved a 9.5% error rate in classifying malware. 

Static analysis applications may also check for the functionality and probability of malware 

presence through analysis of the source code [127]. Android application source codes are 

known and can be detected for anomalies or unusual patterns or commands that can be linked 

to malicious intent. The detection is done without the execution of the application, which is 

essential in the discovery of malicious patterns that may not operate or function unless a 

particular set of conditions are met. Hence, the malware may remain inactive throughout 

multiple stages until its engineered designs identify that all requirements for it to cause malice 

are met. The static analysis identifies such patterns and raises a red flag over the same. 

However, if obfuscation such as renaming strings or variable names is incorporated into the 

application, it may be difficult for static analysis to identify unusual patterns [127]. 

With multiple malware being regularly developed, using static methods to detect malware may 

be inadequate hence the need for other techniques such as dynamic methods and machine 

learning. Static techniques are useful in instances where Android systems are not densely 

connected to the internet or do not receive new applications regularly [128]. Applications work 

under permissions granted by users to perform specific actions; hence permissions provide a 

critical role in controlling applications’ access rights.  Application installation prompts users to 

allow access to Android resources in the system.  The permissions-based approaches analyse 

the permissions sought by an application and determine whether unusual patterns are 

detected. For example, if a calculator application seeks permissions to read SMS or user’s 

location, then this is an abnormal pattern. Where unusual patterns of effects than usual are 

detected, applications can be flagged for further analysis with possible malware presence. 

This analysis is carried out on the manifest file leaving other types of data out [66]. Even 
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though most malware families target the manifest file, different targets cannot be detected 

using this approach, hence limiting its detection capabilities. 

A machine learning-based framework (AndMFC) developed by Turker and Can [129] 

succeeded in extracting 42 permission and 958 API call features from a 24467 malware 

samples and fed them to different machine learning algorithms. The framework had achieved 

higher than 96% accuracy; however, the recall (89.06%) and F1 scores (91.94%) were low 

[129]. Furthermore, the accuracy (93.63%) was lower than the overall accuracy in the 

detection and classification of unknown malware.  

The static analysis technique analyzes executable files on a structural basis. Such files have 

many static features that are extracted by Portable Executable (PE) file. Ijaz, Durand and 

Ismael [130] use a static analysis technique to extract features from a sample of 39,000 

malicious and 10,000 benign files. In total, 92 features were extracted statically, including PE 

files such as sections and headers, which contain other feature groups. Important features 

used the analysis include time-date-stamp, number-of-symbols, major-link-version, and 

subsystem, among others. The study succeeded in establishing that static analysis is more 

accurate in detecting malware in internet-based devices than dynamic analysis due to 

intelligent behaviour of malware. For example, malware may not execute its malicious code 

when it detects a controlled environment. 

Some of the techniques for signature and permission-based static approaches include entry 

point analysis which determines where a program may commence using call-backs and 

activities that are user-initiated. Malware detection using this technique analyses the nature of 

permissions to determine whether there are signs of program starts which are not user-

initiated. Another method used in the static analysis is the reachability analysis which tracks 

the possibility of following paths related to two locations [90]. Other static analysis methods 

include failed initialisation analysis which tracks whether objects have been initiated in the 

correct sequence and flags out abnormal sequences [131]. Cyclicity analysis, on the other 

hand, analyses whether running applications create a specific cycle of execution that may 
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have anomalous or malicious outcomes. If the cycles created matches the signature cycles of 

a known malware family, then they can be flagged for further analysis. Path length analysis 

reviews pointer differences from an application element or variable based on the maximum 

number recorded [119]. Safe applications lie within normal parameters, while wicked ones 

show signs of abnormal quantities. Data flow analysis on the static method focuses on the 

application’s aspects such as context-sensitivity, path sensitivity, flow sensitivity, 

interprocedural and intraprocedural analysis [119]. 

5.5.2 Dynamic Analysis Techniques for Malware Detection 

Dynamic analysis malware detection technique utilises data execution on a real-time basis. 

The method aims to detect anomalies in malware when they are operational or running as 

opposed to analysing the applications offline [62].  By loading target data, analysis of 

applications is enabled through the evaluation of behaviour, which can be used to detect 

anomalies or malicious patterns [132]. This technique is more resource-oriented than the static 

technique, which uses signature and permission-based analysis. The operating environment 

for the method uses a sandbox, virtual machines, among other ways to simulate the execution 

of an application to identify specific behavioural models [121]. The execution of the 

applications is done analogous to the real-time scenario. 

Dynamic analysis allows researchers to run the chosen malware in a controlled environment 

to collect its capabilities and purpose. A study by Uppin and George [133] provides a step by 

step process in the identification of a MasteryBot (the chosen malware) through dynamic 

analysis. The process entails setting up a safe malware environment that involves the host, 

guests, and Android emulator machines' configuration to facilitate the extraction of the 

required features for analysis. The findings show that the Trojan can hide as a fake adobe 

flash player and tries to download key logger from an external source [133]. The malware 

encrypts all files in folders and subfolders and automatically deletes the original files after 

encryption is completed. The malware displays a dialogue box to force users to watch 
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pornography and directs them to send an email to ‘googleprotect@mail.ru’ to retrieve their 

encrypted files [133]. 

Based on the complexity of malware, dynamic techniques can also aid in the identification of 

next targets based on the detected codes. For instance, IP addresses can be used to identify 

spatial addresses used to determine the uniformity and geographical distribution if a host is 

affected by the malware. In addition to detection of the malware, the dynamic technique also 

enables identification of malware patterns and intended targets for contingency purposes. 

Multiple methods have been tested using this approach with high detection rates of more than 

90%.  

The experiment results by Kumara et al. [134] illustrate the use of a semi-automated machine 

learning framework based on dynamic malware detection. The experiment, which includes 

1400 malware applications and 1600 benign applications, utilizes a machine-learning 

algorithm to classify behavioural features under a supervised model. In his case, the accuracy 

of detection depended on the monitoring time for the malware execution and applying k means 

cluster feature on the data collected. The results show that the framework can provide a 

reliable malware detection technique for Android applications [134]. Sang et al. [135] 

developed a three-step (feature extraction, model training, and assembling the models) for 

malware detection. This framework is based on deep learning. The study uses handcrafted 

features, including N-gram (a continuous sequence of n items from a given sequence), API 

calls, and image representation of binary file to analyse a sample of 14,000 malware and 

14,000 benign applications. The resulting framework attained 96.24% accuracy in malware 

detection from real-life datasets [135].  

The dynamic analysis technique is robust against obfuscation if malicious codes are 

executable as it does not rely on source code only [33]. Bacci et al. [136] illustrates how the 

application of Android morphing techniques affects the effectiveness of dynamic analysis. 

Specifically, the study investigates the degree at which obfuscation techniques jeopardize the 

efficacy of dynamic analysis through experimental analysis consisting of 3500 trusted (Google 
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Play Applications) and 3500 malware applications [136]. Each of the applications is executed 

on an Android device, and the effect is measured in terms of accuracy. From the experiment 

outcome, obfuscation techniques affect the effectiveness of the method moderately regarding 

false negative and positive rate. Therefore, the process performs reasonably well in analysing 

non-obfuscated and obfuscated malware. The technique is efficient in the sense that it induces 

minimal alterations to the application execution trace. The main limitation highlighted is the 

inability of the technique to evade intelligent malware behaviours [136]. 

Dynamic analysis can detect dynamic code loading, which happens during runtime where it is 

recorded [25]. However, it fails to determine the degree of code that is executed within an 

application because one path is identified for each execution, hence cannot achieve 100% 

malware detection rate. The overheating of hardware, when running applications, also makes 

it challenging to implement the dynamic analysis in comparison with the static technique. 

Overheating may occur due to high CPU usage due to parallel processing or other CPU 

intensive work when performing dynamic analysis directly on the device. However, this 

limitation is becoming a lesser issue as the newer mobiles has efficient cooling mechanism.  

Different algorithms are utilised when designing dynamic detection techniques [137]. The 

methods may focus on different Android functionalities that are mostly targeted by malware 

architects. These include network, API call, SMS and location, among others. Some 

techniques record the frequency of the system API calls where anomalies are flagged for 

possible malware presence. However, malware can only be detected when an application 

meets a specific API threshold.  

Another dynamic analysis technique is TaintDroid which captures data over networks for 

application analysis [138]. Abnormal patterns over the network can be identified and analysed 

further for malware capabilities. Other techniques used in the dynamic approach include 

monitoring and tracking of system calls where classification is later done based on algorithms 

developed using machine learning techniques. Using typical applications and samples of 

known malware such as GoldDream, Rio Unlocker and KungFu, allocated resources are 
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monitored once applications are started. The behavioural patterns are recorded and extracted, 

and the resource data converted into feature vectors; these vectors may be based on 

functional categories such as CPU usage, SMS, Network, Virtual memory, etc.  Using Naïve 

Bayes and Random Forest cross-validation elements, correct classification of data types that 

were considered normal yield high accuracy. However, some malware applications were 

detected as benign. Random forest was, however, superior in detecting benign and malicious 

applications when compared to other algorithms.  

Other dynamic techniques include the Bayesian method and the Chi-square methods which 

can be used separately or in a combined form. Both are machine learning algorithms which 

are being used for feature selection [139]. The Bayesian algorithm usage increases accuracy 

levels; accuracy levels are approximately 80% but rise to 89% when combined with Chi-square 

[140]. Benign applications and their repackaged versions can also be examined by dynamic 

analysis through self-written applications that are installed on Android devices and analysed 

for behavioural patterns.  

Sihwail et al. [141] takes an integrated approach by combining memory forensics and features 

of dynamic analysis in malware detection to extract malicious artefacts from memory using a 

data set of 1200 malware and 400 benign applications. The study aimed to determine whether 

using an integrated approach increased the accuracy of malware detection and reduced the 

creation of falsely alarmed files. The findings incorporate the relevant features from memory, 

and dynamic process reduced false positive rate to 1.7% [141]. In essence, the approach 

outperforms other analysis methods. In isolation, Dynamic analysis is limited in that it 

consumes a lot of resources; however, the approach of Sihwail et al.  overcomes the resources 

issue a little bit by incorporating features that are only available in the memory. However, 

dynamic analysis can be easily outsmarted by some malware that can detect the controlled 

environment and provides a single way of file execution [141]. 

Network Traffic analysis is another dynamic analysis technique, performed to extract features 

from network traffic generated by an application to create traffic patterns. Traffic patterns may 
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be generated by extracting information from packets, e.g. source IP, destination IP from 

outgoing packets only, incoming packets only, or both incoming and outgoing packets. Other 

features may include, the total number of packets in the inbound direction or outgoing direction 

or both, the maximum and minimum size of packets [142]. Traffic patterns are different for 

benign applications which aid in the identification of malicious ones.  The extracted features 

can be fed into machine learning algorithms for classification purposes. Rather than detecting 

malware when applications are offline, dynamic analysis enables the detection of malware 

when in action. This way, the target data can be identified, as well as the mode of operation 

[67]. Through dynamic analysis, the pattern of malware, e.g. API calls, system resource 

access, URL accessed, memory usage, and CPU usage etc. can be entered into databases 

to aid in future detection using other techniques as well.   

A study by Fallah and Bidgoly [143] benchmarks machine learning techniques by analysing 

features such as packet size, duration of the network flow etc. extracted from the network 

traffic to detect malware. Their experiment utilised 600 benign samples and 400 malware 

samples. Although the technique attains 90% F1-measure of malware detection, it does not 

show acceptable results in identifying new malware families [143].  

There are several dynamic approaches which yield varying results and accuracy levels. For 

instance, anomaly-based detection techniques use machine learning methodologies to 

identify and detect malicious patterns in applications. The anomaly-based approach carries 

out an in-depth analysis because it utilises a statistically higher number of features (e.g., 

network packets or system calls). Each feature is an anomaly in comparison with a baseline, 

hence requiring a lot of resources to execute. If the approach invokes excessive system calls, 

there is a likelihood of identifying benign applications as malware [69]. It may also fail to detect 

malware that are utilising dynamic code loading to avoid detection. Because the malicious 

behaviour may not be executed straight away, and malware may wait for a specific input, e.g. 

input of credit card information. Classification of benign applications as malware is one of the 

main drawbacks, hence leading to false alarms and unnecessary analysis.  
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The taint analysis method evaluates variables in applications that can be modified by the 

users. User inputs can be maliciously harmful if they are not well checked. The dynamic taint 

analysis process uses the TaintDroid system to check for possible malware [144]. Aspects or 

elements of importance are marked with a ‘taint' identifier which sticks with the information 

when it is used. The tainted information is then tracked with regards to movements and 

characteristics. Sensitive elements of targets such as camera, GPS and calls are monitored 

for possible malicious interferences. The tracking system tries to identify aspects such as 

information leakages from third-party developer applications. TaintDroid records all this 

information and any information leaving the system in a manner that it should not. TaintDroid 

can identify the application carrying out the data sending process for any suspicious patterns 

or behaviours [145]. One of the drawbacks of the Taint analysis is the inability to track 

information that leaves the target channel and has a corresponding return through a network 

reply. 

5.5.3 Hybrid Analysis Techniques for Malware Detection 

It is obvious from our literature review that neither static nor hybrid methods are 100% accurate 

in Android malware detection. The accuracy rates vary based on the approaches as well as 

the targeted areas of interest [44]. One technique may be suitable for one situation or Android 

system when compared to the others. Therefore, more than one approach may be required in 

some instances to achieve high accuracy and detection levels.  The hypothesis is that using 

more than one approach increases the chances and detection accuracy. Combining static and 

dynamic methods should increase the robustness of the detection system and enable 

monitoring of edited applications more effectively and more accurately. Due to the unknown 

nature of malicious applications, static analysis can be used initially from an online position 

and analysed accordingly [45]. After that, the same application can be dynamically analysed 

through kernel-level sandboxing with prior knowledge of the probability of malware as 

analysed through static techniques. Android application sandbox is a security technique which 

is used to distinguish running applications and is typically used for the execution of 
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applications that are not tested and trusted. For instance, third-party applications, unverified 

application sources, untrusted suppliers, and user websites applications qualify for testing 

using the sandboxing technique [70]. It is deemed useful for running applications before risking 

running them into host machines or Android operating system, which may be possible targets 

[52]. 

Static analysis technologies such as EvoDroid and Smartdroid provide higher code coverage 

for static analysis where possible activity paths are identified before applications can be logged 

into dynamic analysis systems [46]. The information from the static analysis can then be 

incorporated into machine learning databases to facilitate further dynamic analysis at a higher 

level of detection and accuracy. Execution paths can be analysed for the presence of malware 

where the two approaches are used for higher levels of accuracy and classification [4].  

Other approaches that have been utilised include testing where static and dynamic methods 

have been used to uncover malicious codes. An Android application sandbox is used as the 

first step to the hybrid analysis where applications are disassembled [109]. A search in the 

disassembled code is carried out to identify any suspicious patterns before the application is 

run through an Android emulator which carries out a real runtime analysis. However, caution 

should be taken while carrying out a hybrid analysis to avoid confusion and cumbersomeness. 

For instance, the long-time taken by static analysis combined with multiple resources required 

for dynamic analysis may work to the disadvantage of a hybrid system. It is a complicated and 

time-consuming operation to extract features from both static and dynamic analysis and may 

hinder scalability [48]. Based on the intention or the scope of the hybrid system, the 

disadvantages should be avoided by choosing approaches that do not contradict or complicate 

the detection process.  

Du et al. [146] proposes a combination of static and dynamic with machine learning to create 

a model for malware detection. Static features are extracted and vectored for testing and 

training support vector machines (SVM). The SVM model is then used to detect malware. In 

the study, the researcher uses static analysis to extract resources and information code 
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segments. This way, all the activities of data in Android software were extracted for use in the 

model. The advantage of using this static analysis technique is that it is relatively simple, and 

all the matching segments can be extracted directly. For static analysis, data obfuscation 

occurs because pattern matching is virtually impossible when it comes to matching 

maliciousness and application behaviour. API and Permission calls are the most common 

static features used in Android malware detection [146]. Their process can take either the 

signature-based or permission-based approaches. Combining static and dynamic analysis to 

create the SVM model that achieves malware detection accuracy of 94.38% [146].  

XU, Zhang, Jayasena and Cavazos [147] proposes a hybrid analysis for the detection of 

malware (HADM) for identification and grouping of malware. Notably, hybrid analysis utilizes 

features extracted from the dynamic model execution and uses them in a static analysis 

algorithm. For this study, a sample of 4002 benign and 1886 malicious applications was 

analysed. Some of the analysed features include permissions, intent filters, advertising 

networks, and API calls. The study succeeded in improving application classification accuracy 

by training deep neural networks (DNN) for each feature set. The accuracy ranged from 

87.3%-94.7% for all the tests conducted [147]. However, the Android hybrid analysis is 

cumbersome as it relies on multiple methods (static and dynamic analysis) to detect malware 

[147]. 

Due to difficulties in the construction of malware detection models, a study by Liu et al. [148] 

proposes the use of a hybrid malware detecting scheme to make improvements to the 

traditional methods. Some of the proposed techniques to support the scheme included new 

analysing features, clustering methods, and framework (Androguard) to improve the efficiency 

of malware detection. Liu et al. use different unique features such as com+ features (a 

combination of permissions and API calls) and function call graph generated by using 

Androguard. These features were extracted from a data set of 1000 benign and malicious 

applications [148]. These applications were categorized into 46 families of malware, and both 

dynamic and static calls and permission features were used for the study. The study 
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succeeded in developing a hybrid scheme with functional detection capabilities. All algorithms 

achieved higher than 86% accuracy while SVM achieved the highest accuracy of 96.92%, but 

it has the worst false positive rate as it inaccurately classified 24.54% of benign applications 

as malware. Similar to Xu et al. [147] the research points out that the complexity of using 

multiple methods limits the applicability of Hybrid analysis. 

In another study by Martın, Lara-Cabrerab and Camacho [149], hybrid analysis is used to 

generate behaviour information for developing a new malware detection approach by fusing 

static and dynamic features. The information generated during the analysis is critical in 

building a classifier that integrates dynamic and static feature vectors. A comprehensive 

dataset of 22 000 malicious and benign samples was analysed to extract static features such 

as permissions, intents, packages etc. and dynamic features such as files accessed, phone 

calls made, SMS sent etc. [149]. The resulting classifier is slightly more accurate (89.7%) 

compared to individual contributors, that is, dynamic (78.6%) and static analysis (89.2%) used 

in their experiments. One of the strengths of hybrid analysis is that it combines multiple 

analysis methods to detect suspicious activities within system applications. Besides, it 

generates malware information in real-time while conducting a dynamic analysis. Also, it 

consists of a security mechanism that runs untrusted and untested codes and programs mostly 

from unverified third parties, websites, suppliers, and users, without jeopardizing the well-

being of the operating system and host device. In isolation, dynamic and static analysis is 

subjective to a high cost of development and manual analysis. However, combining the two 

techniques yields a hybrid model, such as ONAMD, with the capacity to achieve 87.83% 

accuracy [150] when using the SVM algorithm. ONAMD used permissions, package 

information, content providers, broadcasters etc. as static features and control flow graphs as 

dynamic features extracted from 600 applications, 248 of these applications were benign while 

288 were malware. 

One of the main tools used for hybrid analysis approach is the sandbox method which is a 

combination of dynamic and static elements [49]. The sandbox technique utilises APK file 
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static analysis where aspects such as user permissions, and manifest.xml files are reviewed 

and analysed for suspicious codes. In the dynamic phase, an Android emulator is used where 

the application is run in a controlled environment, and analyses are carried out as the 

application is executed. The emulator is designed to detect anomalies in application 

behaviour. Some of the defects may have been identified at the static stage, depending on 

the family of malware. In cases where the static step fails to detect any malware due to code 

obfuscation etc., it can then be detected in the dynamic phase of the process when the 

malware executes the malicious obfuscated code or sends unauthorised network traffic [50]. 

To better understand the behaviour and functionality of an application, the dynamic phase 

may check elements such as network traffic and native calls which are possible malware 

targets [51].  

The Andrubis framework, on the other hand, uses the result of static analysis to guide the 

dynamic analysis. The presence or absence of malicious patterns after a static analysis 

informs the decision to carry out extensive dynamic analysis [53]. For example, the result of 

the static analysis may provide all possible entry points for an application, and this information 

may be used during dynamic analysis to execute the simulation events. Once the analysis of 

the bytecode and manifest.xml file is completed, the data generated is used for the dynamic 

analysis where simulations, taint analysis, or system-level analysis is carried out. Based on 

the complexity and amount of data generated by the static analysis, the dynamic analysis 

phase may even be longer. Different algorithms can be formulated where data from the two 

stages are complementarily used to identify malicious patterns and behaviours.  

With the current complexity and sophistication of Android malware, multiple level hybrid 

approaches have been developed to aid in the detection and neutralisation of such threats. 

Static, dynamic and hybrid methods are either performed on-device or off-device. On-device 

approaches yield quick results after analysis, although supportive hardware resources may 

be limited [31]. However, mobile devices which are the primary users of Android platforms are 

limited with regards to resources; hence hybrid analysis is limited. The limited resources make 
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off-device more effective where analysis is remotely done with adequate resources. Multilevel 

hybrid techniques such as SAMADroid have been proposed to overcome these challenges 

[64]. The method utilises different levels of detection, which increases the probability and 

accuracy of detection. For instance, the first level may comprise of static and dynamic analysis 

while the second entails local and remote host analysis which identifies the behaviour of 

applications in different platforms. The third stage of the multi-level hybrid analysis requires a 

machine learning intelligence approach where data generated is incorporated in the learning 

model that further complements the analysis process. 

5.5.4 Summary 

In this section, we attempted to answer the first part (techniques) of the second research 

question: what is the current state of analysing Android malware detection techniques? We 

have identified and reviewed three primary techniques: Static Analysis, Dynamic Analysis, and 

Hybrid Analysis. 

Static Analysis technique applies a signature-based and permission-based method to extract 

features from a set of benign and malware samples without running the applications. The 

extracted features are, but not limited to, permissions, intents, method names, string variables, 

package information, and text mining etc. These extracted features are passed as input to 

machine learning or deep learning algorithms to classify applications as benign or malware. 

The static analysis technique consumes fewer resources and efficient in detecting malware. 

Our survey indicates that static analysis has achieved up to 96% accuracy. However, the static 

analysis uses signature-based method so are prone to the limitation of the signature-based 

method, e.g. difficulty in detecting obfuscated malware. This limitation may be overcome if the 

analysis uses non-code-based features such as permissions, intents, and package 

information which are resilient to obfuscation due to Android’s development model. Another 

limitation is that the technique is unable to extract features from dynamic code. 

Dynamic Analysis technique extracts features from an application by executing them in a 

controlled environment. The method extracts features such as API calls, CPU usage, memory 
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usage, battery power. It may extract network traffic features such as IP address, length of 

packet lengths etc.  The technique is also useful in detecting obfuscated malware as it does 

not depend on code analysis. The feature may be fed to various machine learning and deep 

learning algorithms to obtain a classification score against different metrics. Our survey 

indicates that the dynamic analysis has achieved up to 96.24% accuracy, which is slightly 

better than the static analysis (96%). A limitation of the dynamic analysis technique is that it 

requires a lot of resources to employ as applications need to be run in a controlled 

environment. Another limitation is that it fails to detect intelligent malware which detects a 

sandbox environment and does not execute malicious code. 

Hybrid Analysis technique, as the name implies, consist of static and dynamic analysis. There 

are mainly three steps for hybrid analysis, employing static analysis, next executing 

applications in a controlled environment for conducting dynamic analysis, and finally feeding 

features extracted from both analysis to machine learning and deep learning algorithms. Our 

survey indicates that the hybrid analysis has achieved up to 96.92% accuracy, which is 

marginally better than static analysis (96%) and dynamic analysis (96.24%). Theoretically, 

combining both techniques should increase detection accuracy significantly; however, our 

survey shows that this is not the case. The main limitation of the hybrid technique is the 

complexity of combining both static and dynamic analysis, while marginally increasing overall 

accuracy. This complexity could be the reason for the decline in the usage of the hybrid 

analysis from 2017 onwards, as shown in Figure 10 in the Trends in Analysis Techniques 

Usage section below. 

5.6 Technologies for Android Malware Detection 

This section attempts to answer the second part (technologies) of the second research 

questions by discussing the state of Android malware custom-built detection technologies. 

Whether static, dynamic, or hybrid, multiple custom-built frameworks of Android malware 

detection have been developed and proposed. They are based on various algorithms which 

keep on changing and improving to handle new forms of malware [151]. These technologies 
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also attempt to counter the limitations associated with previous versions or have a unique 

element that can efficiently detect malware from multiple or specific families. These 

technologies may also have different versions based on continuous improvements and regular 

updates. Based on the approaches used, detection and security frameworks have various 

complexities which are also determined by processes, resources used and the extent of 

databases. In this section, we shall discuss these technologies: 

CrowDroid – This technology utilizes dynamic analysis in a real-time situation through a 

machine learning model. It recognizes Trojan-like malware in Android systems such as 

Android-based mobile devices. The machine learning model in CrowDroid analyses the 

number of times individual system calls within an Android system are issued by an application 

when executing an action that requires user authorisation [6]. It is designed to detect an 

anomaly when user authorisation patterns are suspicious. The K-means model is used to 

classify observations for malware analysis. One of the primary differences, when compared 

with other frameworks, is that authorised features are monitored in the cloud. 

Burguera, Zurutuza and Nadjm-Tehrani [6] describes CrowDroid as a machine learning-based 

framework used to detect Trojan-like malware from Android applications. In an experiment to 

demonstrate the functionality of CrowDroid model, a sample size of 10 malware and 50 benign 

applications was obtained from 20 clients. The framework utilised modified files and system 

call features. The model successfully differentiated the benign and malware applications 

based on the presence of Trojan at a 100% success rate. However, the experiment was done 

on only 60 applications, so it is not known how it would behave when a bigger sample size is 

used. The other limitation of CrowDroid identified was that it was not easy to convince the 

clients to adopt it due to privacy issues, i.e. private data needed to be accessed and stored 

for analysis [6]. 

TaintDroid – This framework utilises a dynamic approach to malware detection, whereby it 

aims to monitor malware that may facilitate the leakage of sensitive information. It is 

implemented on the Dalvik Virtual Machine, which identifies signs of information leakage 
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based on a machine learning model which categorises data based on the sensitivity [152]. 

Private information which is tainted is tracked based on anything that receives or reads the 

data, hence facilitating the detection process. Users of Android systems are notified every 

time private data leaves their devices. 

According to Enck et al. [152], Taintdroid is a malware detection technology used to analyse 

network traffic to detect anomaly behaviours from Android applications. The framework 

enables real-time analysis by leveraging on a virtual execution environment. To demonstrate 

the used of TaintDroid, Enck et al. [152] studied 30 popular third-party applications with access 

to sensitive and confidential data from the internet. Out of the 30 evaluated applications, the 

study established that 20 of them misused user's private information at a confidence level of 

95%. However, the sample size used in this study was relatively small (30 third party 

applications), making it difficult to generalize the study results. Although TaintDroid effectively 

tracks sensitive application data, it causes false positives if the tracked information contains 

configuration identifiers. Besides, it is incapable of tracking information once it leaves the 

phone. The experiment also shows that tracking incurs 14% performance overhead. 

DroidOlytic – This technology is one of the premier Android detection frameworks that use 

the signature-based static technique.  The technology creates malware signature database 

which is used to detect hidden malware in applications from third-party sources and suspicious 

suppliers. The statistical signature used in DriodOlytics is considered to be among the most 

robust in the detection of obfuscated and repackaged applications. Using the signature of 

known malware, DroidOlytics uses the statistical data to flag up applications with similar 

patterns, which are mostly used by malware architects. The concept of operation entails 

finding statistically similar regions with known malware to detect any variants from a sample. 

In demonstrating its operation, Faruki et al. [153] tested a sample of 6151 benign against 1260 

malware sample from 57 distinct families. From the stated sample, 251 obfuscated malware 

signature features were extracted. The results of the experiment demonstrated accuracy 

between 96.87% (third party dataset) and 99.4% (Google play dataset), depending on the 
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dataset used for the benign applications [153]. In testing obfuscated repackaged applications, 

the proposed approach attained 73% accuracy rate with a limited dataset; most of the 

obfuscated samples were missed since they had not been updated with new signatures. 

Androguard – This framework uses a Python tool to compare applications with known 

malware in a database using clustering and similarity distance approaches. Malware 

architects may design and reverse engineer applications in a repackaged manner that 

resembles benign or genuine applications [154]. Androguard is one of the leading frameworks 

that detect this with high levels of accuracy. It is one of the primary applications used for 

similarity analysis where malware and benign applications can be distinguished despite 

apparent similarities as engineered by malware architects [127].  

Chavan et al. [123] uses AndroGuard to filter malicious and broken application files from a 

dataset of 989 malware and 2657 benign samples using 230 distinct permission features. 

Specifically, the Androguard framework is used to reverse engineer application files based on 

the requested permissions. The identified applications are then classified using a binary 

architecture, that indicates whether the application asked each of the corresponding 

permission or not. From 230 permissions used, 118 were classified as malware. In total, 1260 

applications were classified as malware using the framework with an accuracy level of 96% 

[123]. However, the technology is limited in that it only extracts permission features from the 

malware sample, implying that some malware from a benign sample may go undetected. 

MigDroid – This technology uses an invocation graph technique to detect repackaged 

applications with Android malware. The technology reflects the interaction contention present 

in different approaches or detection methods [155]. The invocation graphs are exploited based 

on weaknesses that emerge from the difference between injected malware and genuine 

applications. The framework starts by constructing a method invocation graph on the smali 

code, which is then divided into graphs that are connected. The smali code is the human-

readable format of the binary Dalvik bytecode of .dex file of Android APK. Malicious codes are 

determined after calculation of threat scores associated with each subgroup. It is considered 
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to be a complementary framework to other approaches such as Androguard which are not 

based on application repackaging. 

The application of MigDroid framework for malware detection is illustrated in a study by Hu et 

al. [156]. MigDroid leverages on method invocation graph (MIG) based on statistical analysis 

to detect malware in repackaged applications. MIG detects malware by analysing the 

connection between injected malicious and benign applications. The experiment results from 

a sample of 1260 malware samples show that the framework attained 95.94% detection rate 

[156]. Some of the features used in the study include instruction code sequences, call graphs, 

API calls and application strings. 

Dendroid – This framework utilises modern approaches such as text mining to detect malware 

as malware threats got sophisticated and increased in number. This Intelligent malware 

detection framework relies on text mining the code as well as methods of retrieving information  

[157]. The technology is based on a statistical analysis of data found in Android operating 

systems malware families. The modelling processes used in text mining are analysed and 

modelled when measuring similarity levels with selected and known malware samples.  

In this technology, code structures (mined text) are used to compare samples and train the 

clustering algorithm and classification. The underlying Dendroid technology entails extraction 

of codes, features, and classification of the Android applications. The study by Suarez-Tangila 

et al. [157] applied the Dendroid technology to extract statistical features of code structures 

from a sample size of 1231 malware samples grouped into 33 families. Although the study 

does not indicate the actual accuracy level of the model, the results show that the model was 

accurate, scalable and fast in detection and classification of, malware [157]. The main setback 

of the study is that there are limited studies that use text mining to detect malicious codes, 

limiting comparative analysis on accuracy and performance [157]. 

EvoDroid – Mahmood, Mirzaei and Malek [158] presented EvoDroid technology. EvoDroid 

provides an evolutionary framework for evaluating Android applications capable of passing 
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genetic makeup of benign applications. The model operates by combining the Android-specific 

program analysis technique and the evolutionary algorithms noel technique [158]. The former 

finds the code segments which are amenable to be searched independently and the latter 

utilises code segments found in specific program analysis to create a stepwise search for 

achieving higher code coverage. Mahmood et al. [158] selected a dataset of 100 applications 

and performed a comparison with other technology such as DynoDroid and Monkey. 

Throughout the benchmarks, EvoDroid showed the code coverage of 98%, implying that it can 

be used effectively for cod analysis by other technologies for extracting features during static 

analysis. However, EvoDroid fails to generate models for applications that use native codes 

or third-party libraries. 

SmartDroid – Zheng et al. [159] proposes SmartDroid framework which integrates dynamic 

and static analysis to reveal UI-based trigger conditions automatically in Android applications. 

Static analysis, in this case, is used to extract switch paths for call graph and activity features. 

In contrast, dynamic analysis is used to transverse UI elements based on the information 

acquired, such as Activities during the static analysis. From the experiment consisting of six 

applications, the method demonstrated automatically triggering UI events identified (72 intents 

and 54 expected paths) during the static analysis [159]. It is, therefore, more effective 

compared to other models such as TaintDroid for triggering UI based events during dynamic 

analysis. However, SmartDroid does not cover sensitive behaviours such as rooting which 

reduces its effectiveness in malware detection. Furthermore, it does not include UI triggers 

that depend on data received from the server or some configuration files [159]. 

MalDroid – This technology is regarded as a Machine Learning based detector for Android 

malware. This framework has been utilised in Android malware detection with high success 

rates, see details below. The model collects data on different families of malware and extract 

the features that are most likely to be affected by these families of malware [160]. However, 

due to its static approach, it may be unable to detect repackaged and obfuscated applications. 
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Torregrosa [160] presents MalDroid; a machine learning-based framework. The model detects 

malware by performing static analysis to gather as many features as possible from the Android 

applications. From a dataset of 2295 malware and 426 benign samples, 299 permissions 

including intents, permissions, API calls, risks and system calls, were generated. The 

extracted features were then used to classify the applications as either benign r malware. The 

experiment results illustrate a 99.8% accuracy rate [160] however, the dataset is highly 

skewed as the number of malware applications is just over 84% of the total samples, and no 

steps were taken to compensate for this skewness. Regarding limitations, MalDroid suffers 

from the setbacks of static analysis and fails to detect malware that evolves with time [160]. 

As a result, it must be supplemented by other technologies such as Androguard to improve its 

performance. 

DroidRanger – This technology utilises imported packages, permissions, and API calls from 

applications as a way of detecting and classifying malware. The extracted features are 

compared with known malware where similar patterns and behaviours are identified [161]. The 

framework also focuses on system calls which are made from the native code in the Android 

system. It then looks for any patterns or attempts to hide this code, which indicates the 

presence or absence of malware. 

Zhou et al. [162] presents DroidRanger to detect malicious applications on Android markets 

such as Google Play and four alternative markets. A total of 204,040 applications were 

downloaded from five Android markets; their results indicated that 32 applications downloaded 

from the official Android market were infected, corresponding to 0.02% infection rate. The 

applications downloaded from the alternative markets showed infecting rate ranging from 

0.20% to 0.475%, as 179 applications were found to be malicious. Droid ranger uses 

permissions, packages, and API calls to create a signature of malicious applications. It also 

used behaviour-based detection by finding applications that did not have native code in the 

correct directory at phase one. In phase two, these applications were executed to classify 

them as benign or malicious. One limitation reported by authors was that they had focused 
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their research on free applications, and further study should be conducted to investigate paid 

applications as they offered unique differences in comparison with the free applications. 

However, they failed to explain the differences. Another limitation reported was the inability of 

DroidRanger to detect background SMS messages sent to unauthorised premium numbers. 

Andromaly – This technology is a host-based detection system which progressively monitors 

Android devices feature and events. It relies on machine learning techniques and models 

which review user behaviours by watching 88 characteristics such as scheduler, CPU load, 

system calls, messaging, and battery power etc. to determine the patterns of these behaviours 

[163]. The monitoring results in the creation of a database with standard parameters that 

depict the absence of malware. Using several classifiers such as Bayesian Networks, K-

means, and Logistic regression [164]. Users can be alerted once behaviours go beyond 

standard parameters, hence allowing further analysis which may indicate the presence of 

malicious applications. 

Shabtai et al. [165] presented Andromaly model for malware detection in Android applications. 

The framework operates through a malware detection system which continuously monitors 

specific features and then uses machine learning to classify them as either benign or 

malicious. During the experiment, a total of 44 applications were used, including 40 benign 

and four malicious samples from which 300 API call and permission features were generated 

from each; based on their availability. The framework yielded 4% misclassification rate. 

However, the model was constrained in that it had limited ability to govern feature access 

rights based on the installation time [165]. Another limitation is that the dataset used was small 

and needed to be subjected to a bigger dataset for detecting its efficacy. 

5.7 Discussion, Trends, and Research Gap 

In this section, an analysis of trends for the surveyed study is provided, followed by a 

discussion of the identified gaps within the surveyed literature, which may assist in directing 

future research attempts within the area. 
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5.7.1 Trends in Analysis Techniques Usage 

Based on the literature review result, it is evident that Android malware security has been 

accorded significant attention within recently published literature because of the extensive use 

of Android platforms. Moreover, critical trends since 2014 are observed as indicated by the 

literature review results.  

Figure 9 below shows the popularity of each of these three techniques. It is evident from the 

graph below that the Hybrid approach is the most used technique, followed closely by the 

Static method, in the papers that we included in our survey. A significant number of articles 

have used machine/deep learning technique as evident in Figure 9 below, further breakdown 

of this complimentary technique is shown in Figure 11 below, 

 

Figure 9: Malware Detection techniques by the number of surveyed papers 

Figure 10 below provides a further breakdown of Android malware techniques for the last few 

years. 
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Figure 10: Trends in Analysis techniques referenced in surveyed papers 

As indicated in Figure 10 above, the hybrid mechanism was dominant in security analysis 

within the Android malware. Additionally, the dynamic analysis mechanism has shown 

significant growth and is a widespread technique along with the static method. The primary 

assumption for the decline in the usage of hybrid technique could be the complexity involved 

in executing it, while not achieving significantly higher accuracy, as discussed in the Summary 

of Techniques for Malware Detection section above.  

Figure 11 below shows trends in the usage of machine learning and deep learning as 

complementary approaches over the years. It can be observed in the chart that their usage 

has increased significantly over the last three years. One of the reasons for this increment 

could be the advancement in machine learning and deep learning algorithms, as the world 

embraces Artificial Intelligence. 
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Figure 11: Trends in Machine/Deep learning techniques referenced in surveyed papers 

Despite significant research attempts directed toward mitigating security risks within mobile 

platforms, a considerable rise in the quantities of security threats targeting the platforms is 

being witnessed [165]. Given this, the first recommendation involves increasing collaboration 

and convergence among investigators in the area of mobility, security, and software 

engineering to attain the common objective of tackling such mobile attacks and threats. 

5.7.2 Research Gap in Android Malware Detection 

Antimalware architects are in the process of developing new ways of detecting and preventing 

Android malware attacks which are different from those found in operating systems such as 

windows [165]. One of the most apparent gaps in research is reliable detection techniques 

that have the capability of detecting Android malware quickly and reliably. Sometimes, it takes 

long before an Android malware is detected, categorized, and neutralized. At times, it is only 

discovered after their malicious intentions have already been met [166]. There is no single 

detecting technique, either static, dynamic or hybrid that has the capability of guaranteeing 

reliable detection with 100% accuracy. Malware architects are well versed in malware 

detection techniques and are increasingly developing ways of avoiding exposure by utilising 

existing behaviour gaps. Even though some detection techniques are superior to others, e.g. 
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hybrid methods are more robust than dynamic and static, they all have their advantages and 

shortcomings [167].   

The scope of Android malware has also become sophisticated and created gaps which have 

allowed the development and penetration of advanced malware as well.  There are instances 

where more than one application or point of attack is used. The multiple application or point of 

entry attack is also orchestrated from different devices to complete a malicious process [21]. 

Applications which look benign and pass the detection stage are designed to work function 

with other similar applications, where they have severe impacts on affected devices. Once 

both seemingly benign applications are installed on the same device, they may communicate 

in the background via services for malicious purposes [16]. Therefore, the usage of services 

in any detection technology’s feature set should minimise this threat. There is, therefore, a 

gap in detecting such applications and flagging them up.  

Another research area that requires more investigation is where the seemingly harmless 

application gets installed as there is no malicious code detected during static analysis, these 

seemingly benign applications then download and install malicious code. Although dynamic 

analysis may protect against this technique, the static analysis does not offer any detection 

capability [43]. Therefore, the usage of detecting if dynamic code is used during the static 

analysis may provide some resilience to the static analysis against this type of threat. With the 

relatively new techniques of malware architecture, antimalware companies are always 

carrying out research and staying vigilant to develop new ways of dealing with the new 

generation of malware [139]. 

With an increased number of Android users [12], which continues to grow progressively, the 

vulnerability of users is, therefore significantly high. The gap in research with regards to this 

aspect is the vulnerability levels and the probability of users falling victims to malware attacks. 

Even though users may be aware that there are some forms of malware present in 

applications, they have no way of discerning unless they suspect malicious activities in their 

devices. The nature of malware attacks is also likely to be complicated in a manner that users 
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do not understand or notice. A further complexity is added by the fact that anyone with the 

ability can develop a sophisticated malware by collaborating on hacking forums on the dark 

web. The open Android market has, therefore, been associated with a further complication in 

the fight against Android malware [57]. 

From the vast amount of literature reviewed in this thesis, several research gaps have been 

identified, which may serve as a source of hypothesis for further research. Most of the studies 

discussed provide malware analysis techniques but do not provide step by step process on 

how to analyze the latest malware threats with the suggested tools [133]. Conducting 

extensive research to ensure a step by step malware analysis process would be valuable. 

Developing workflows (process taxonomy for identifying malware) to determine the root cause 

of malware behaviours and classify them into their respective families also provides an 

essential avenue for further research [146], [106], [105], [97], [98], [123]. 

Further, limited research has been done on the cost of developing malware systems which 

are less interactive with malicious artefacts, that is, systems that cannot be compromised by 

malware [134], [115]. Kumara et al. [134] highlight that most of the research studies focus on 

the development of new effective models but rarely provide the cost structures of creating 

such models. Conducting further research in this area can help Android software companies 

to identify the most effective and efficient malware detection systems. In Mehtab [124] and 

Fan [102], the findings illustrate that more research is required to determine how obfuscated 

malware can be analyzed by integrating different techniques, such as static analysis and 

machine learning, to enhance malware sequence analysis capacity. Such integration is also 

paramount in analyzing the behaviour of unpacked malware samples exposed to similar 

attacks as packed samples which often give the attacker a higher success rate [130], [105]. In 

a packed sample, malicious code is hidden through compression or encryption, making 

analysis difficult. Besides system integration, Sihwail et al. [141] and Fatima et al. [118] 

suggests further research to evaluate the effects of combining genetic and machine learning 

algorithms. 
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Sang et al. [135], Alpletkin et al. [99] and Martin et al. [149] suggest that future research works 

can consider evaluating advanced network architectures such as DenseNetor, AndroPyTool, 

and NasNet. Network architectures can design components of Android applications 

configuration, communication protocols and principles of operation and can help in devising 

more effective malware detection systems. The principles of configuration and operation 

define the underlying guidelines and rules for deployment in advanced network architecture 

for malware detection, e.g. active monitoring of network assets. Another gap identified 

concerns the evolution of malware and classification of unbalanced datasets [129], [168], 

[107], [95], [93]. Understanding the evolution of malware to create signature features to be 

used as vaccines for future malware detection is an important area that requires further 

research. Notably, most of the malicious artefacts evolve with time necessitating for efficient 

techniques facilitate detection. As they evolve, the capacity of the current detection systems 

is constrained. Further research in this area will help to create more flexible systems whose 

effectiveness is not affected in the long term. 

Given the cumbersomeness, such as manual steps required from acquiring benign and 

malware samples to extracting features and storing results, more research is needed in the 

creation of automatic detection tools. Jiang et al. [125] suggest further research in the 

development of unsupervised and transfer machine learning in malware detection such as 

storing acquired knowledge for solving related problems and sharing it with the research 

community through automated APIs. This access to automated API will help to replace the 

current techniques, which are mostly manual and limited in real-time malware detection. In 

analyzing the most important features for use in malware detection [101], [148], it is also 

important to identify features that create 'noise' during the analysis process [143], [150]. This 

'noise' prevents the achievement of optimal outcome in the detection and affects the accuracy 

levels of the models used. It is, therefore, a research area that requires further examination. 

Another critical area of research identified entails the determination of whether dynamic and 

static analysis technique can accurately classify applications when subjected to new code 
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morphing techniques [136], [169], [100]. The two models may be bypassed if the code is 

altered.  

Table 4 below provides a breakdown of features used in publications. The table suggests that 

the most common features utilised in the literature are Permissions, Application components 

and System/API calls extracted during static analysis. 

Table 4: Publications utilising the required features 

Publication Features 
[2] [17] [19] [21] [36] [45] [46] [48] [52] [55] [58] [59] [61] [63] 
[64] [65] [66] [69] [70] [71] [75] [77] [82] [89] [92] [100] [101] 
[103] [107] [110] [111] [112] [114] [116] [118] [120] [121] 

Permissions 

[36] [37] [45] [48] [49] [60] [61] [64] [65] [77] [89] [107] [118] Application Components 
[6] [18] [19] [31] [34] [37] [39] [43] [44] [46] [48] [50] [51] [52] 
[53] [54] [55] [56] [59] [60] [61] [63] [64] [65] [66] [67] [70] [71] 
[74] [77] [78] [80] [91] [93] [94] [98] [99] [101] [103] [105] [106] 
[110] [111] [116] [121] 

System/API Calls 

[32] [56] Power/Battery Consumption 
[35] [48] [54] [56] [61] [71] [95] [96] [104] Network Traffic 
[37] [39] [49] [60] [68] [75] [99] [119] Flow/Communication 

Analysis 
[48] [58] [59] [93] [113] Strings 
[77] Native Code 
[115] Image Patterns 

 

The literature review suggests that different studies have used features such as permissions, 

API calls, system events, strings, and method names etc. in their static analysis. However, 

features such as services and the presence of useful functionality such as detection of code 

for cryptography, dynamic code loading, native code, HTTPs, database, and reflection have 

not been utilised in detail especially in same experiments. The cumbersome in extracting these 

features could be one of the reasons for less usage of these features. These features may be 

useful in detecting malware due to the following reasons: 

1) Services allow an application to run a long-running background process and 

communicate with other applications, so it will be useful for malware to use them 

for malicious purpose. 
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2) Malware may use cryptography, dynamic code loading, native code, and reflection 

to avoid static analysis detection. 

3) Malware may use HTTPs (secure communication) to send private information to a 

central server. 

4) Malware may use local database temporarily on a local device before sending data 

to a central server. 

The above gap in research can be fulfilled by creating an approach that amalgamates the 

above features for detecting Android Malware. The literature review also suggests that the 

process for extracting features from multiple malware and benign applications is not 

straightforward as it requires various steps. These steps are decompiling APK, obtaining the 

needed features, storing those features into some storage medium and feeding them to 

machine learning algorithms. There is a requirement to automate this process using a frontend 

interface. Taking all this into consideration, we developed Droid Fence which combines these 

neglected features (usage of services, cryptography, dynamic code loading, native code, 

HTTPs, database, and reflection) with forty permissions, and twenty services to prepare a 

matrix of sixty-six features. Nine machine learning and deep learning algorithms utilise these 

features for classification purposes.  

Considering all the above, the following research questions can be identified which can help 

devise our research path. The results of our experiments in detecting Android malware must 

achieve over 90% accuracy whilst keeping FPR less than 3%. These results will conform to 

the machine learning methodology proposed by Soviani, Scheianu and Suciu [168] to aid in 

the detection and recognition of malware. The primary hypothesis of the study was that the 

technique used should be able to detect malicious applications before they cause damage. As 

such, the accuracy target for malware detection should be at least 90% with false alarm (FPR) 

not exceeding 3% for a classifier [168]. 
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• RQ4: Is it possible to devise an efficient process for running experiments, decompiling 

the APK, obtaining the required features, and viewing and comparing the results? 

• RQ5: Will the usage of neglected features identified in literature review along with 

Android permissions and services allow the achievement of over 90% accuracy whilst 

keeping FPR less than 3% in detecting Android malware?  

• RQ6: How does the performance of the proposed deep learning algorithm (in terms of 

accuracy, F1 score, precision, and recall) compare to that of existing machine learning 

algorithms? 

• RQ7: Does the approach developed as part of RQ5 performs better (in terms of 

Accuracy) than comparative methods? 

The next two chapters will attempt to answer the above four questions. Chapter 6 – Droid 

fence Overview and Background on Features – will attempt to answer fourth research question 

and will provide an overview of our custom-built technology Droid Fence and how it works. 

The chapter will also offer a summary of the features that we are using in our experiment. 

Chapter 8 – Droid Fence Methodology & Performance Evaluation – will attempt to answer 

research question five, six, and seven by providing detail on methodology, our experimental 

settings, data set collections, our results, and the comparison with related methods. 
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6. Droid Fence – Overview and Background on Features 

Droid Fence is a custom-built web-based framework for managing experiments. Droid Fence 

is developed to automate the extraction of the required features from malware and benign 

applications directory by conducting static analysis via a frontend. Once features are 

extracted, Droid Fence completes the automated process by storing the extracted features 

against each application record in a relational database, feeding them to the required machine 

learning and deep learning algorithms, storing the result into the database, and finally 

displaying the outcome of each experiment. 

Droid Fence has contributed towards answering RQ4, RQ5, RQ6, and RQ7. In this chapter, 

whilst answering RQ4, an overview of Droid Fence and background on the selected features 

for experiments is presented. The remaining research questions RQ5, RQ6, and RQ7 will be 

addressed in the subsequent chapter Droid Fence – Methodology & Performance Evaluation 

6.1 Overview 
 

In this section, we attempt to answer the fourth research question. 

• RQ4: Is it possible to devise an efficient process for running experiments, decompiling 

the APK, obtaining the required features, and viewing and comparing the results? 

To answer the RQ4, we have developed Droid Fence, a framework for simplifying the steps 

involved in running experiments. There are different components that we built to achieve this 

goal. We will now provide an overview of Droid Fence architecture and outline the functionality 

of each of the components that are part of Droid Fence. Figure 12 displays an overall high-

level design of the Droid Fence. 
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Figure 12: Droid Fence - Overview 

There are four major components of Droid Fence: Experiment Manager, Feature Extraction, 

Detection System, and Database. The Experiment Manager component is responsible for 

managing each experiment, receiving malware and benign applications dataset, controlling 

flow between all components, and committing to the database. The Feature Extraction 

component analyses each application and extracts the required features and sends this 

information back to the Experiment Manager for storing in the database. The Detection System 

retrieves relevant features from the database for each application, trains machine learning and 

deep learning algorithms, evaluates them on our dataset against different metrics, and finally 

sends this information back to Experiment Manager for serialising into the database. The 

database is used for storing and retrieving features, dataset information, and classification 

results. The resultant outcome is viewed for each experiment via the Droid Fence interface. 

6.1.1 Experiment Manager 

The Experiment Manager (EM) is the first point of contact for commencing an experiment. An 

experiment can consist of one of three types: Feature extraction, Detection, and both. Feature 

extraction experiment, as the name suggests, is conducted to extract required features from 
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both malware and benign datasets and storing them into the database for utilising it in future 

experiments. EM uses two components for this purpose: Feature Extraction (FE) and 

Database. EM sends the dataset and required features to FE, which in turn analyses each 

application in a dataset and returns the required information to EM. EM then commits the 

relevant information into the database. The outcome interface does not show classification or 

detection rate for this type of experiment; however, it shows experiment details, applications 

and features extracted for each application via frontend. 

Detection experiments are executed to employ dataset features which have already been 

stored in the database as part of Feature extraction experiments. EM employs the Detection 

System (DS) and a database for this type of experiment. EM sends the required information, 

such as features and the required algorithm names, to be employed in an experiment to DS, 

which in turn retrieves the relevant features from the database. DS converts the data into a 

suitable two-dimensional tabular data structure and feeds them to required algorithms for 

classification purposes and sends the result back to EM. Finally, EM commits the result into 

the database. The outcome interface shows detection rates and comparison for each 

algorithm as well as features employed in the experiment. 

Droid Fence allows both of the above experiments to be conducted at the same time. For this 

type of operation, EM employs all four components; it first utilises FE component in the same 

way as it does for the Feature extraction experiment. Once Feature extraction returns control 

to EM, it serialises data into the database and executes the DS component for retrieving 

features and running classification algorithms. Finally, EM commits the data returned by DS 

into the database. The outcome interface displays features utilised in the experiment, 

detection rates, and comparison for each algorithm employed in the experiment. 

6.1.2 Feature Extraction 

The Feature Extraction (FE) component is utilised for traversing through a dataset and 

extracting the required features for each application. FE receives the dataset path and the 

requested features to be obtained from EM. FE employs two subcomponents to achieve the 



94 
 

desired functionality: App Manager (AM) and App Analyser (AA). The primary purpose of AM 

is to traverse through dataset path, pass each application to AA, temporarily store the analysis 

results, i.e., required features into a Python set, and finally return the analysis results to EM 

for committing into the database. AA receives an application as an input, and it utilises the 

Androguard tool [170] to disassemble and decompile the application in DEX files. Once an 

application is decompiled, AA uses Androguard API to extract the required features and 

returns this information to the AA subcomponent, which adds it into a python set. Once all 

applications have been analysed, AA returns the control to EM, which commits the features 

information into the database. Features supported by Droid Fence are permissions, services, 

presence of reflection, HTTPS, dynamic code, native code, cryptographic code, and database. 

The flexible design of the Droid Fence allows developers to extend its functionality for 

supporting additional features. Figure 13 shows feature information extracted by AA and 

displayed in the Droid Fence user interface. 

 

Figure 13: Droid Fence Feature Extraction - Application info 

6.1.3 Detection System 

The Detection System (DS) is employed by EM to retrieve dataset and features information 

from the database, prepare the data into a suitable format, execute machine learning and 

deep learning algorithms to detect malware for four metrics and return the result to EM. DS 
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accomplishes the above tasks with the help of two subcomponents: Data Manager, and 

Algorithm Manager. Data Manager (DM) ensures that the feature data retrieved is converted 

into a suitable format of zeros and ones, as shown in Figure 14. DM uses the ‘DataFrame’ 

class of pandas [171] to transform data into a two-dimensional tabular data structure. If a 

feature is present for an application, then it is represented by 1 else 0. DM drops the 

application name column before preparing data for the Algorithm Manager (AM) 

subcomponent. 

 

Figure 14: Droid Fence - Data Preparation 

AM subcomponent receives a dataset from DM and feeds it into eight machine learning and 

one Sequential (Deep Learning) algorithms. The flexible design of the Droid Fence ensures 

that developers can extend its functionality to support additional algorithms. AM uses a 

stratified k-fold method to train and validate data for classification purposes (more details can 

be found in section 7.1 Experimental Settings below). AM stores the classification result in 

Python dictionaries as temporary storage until all algorithms have been evaluated. The results 

are stored for four metrics: Accuracy, F1-Score, Precision, and recall. 

Furthermore, a confusion matrix is generated and stored. Once all results are acquired, the 

control is returned to EM, which commits results into the database. The outcomes of the 

experiment can be viewed in Droid Fence (examples of graphs and confusion matrix are 

shown in section 7.8 Experiment 2 - Performance Comparison below). 
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6.1.4 Database 

Droid Fence uses relational database MySQL [172] for storing experiment details, applications 

information, features, and experiment results. Figure 15 depicts an Entity-Relationship (ER) 

diagram for thirteen tables and their relationships. 

 

Figure 15:Droid Fence - Database ER Diagram 

We are displaying only those tables which store the required information for each experiment 

and its associated data. Some tables which do not store experiment related data have not 

been shown for brevity. Table 5 below describes the purpose of each table used in the Droid 

Fence database. The flexible database design ensures that Droid Fence allows developers to 

extend its functionality, such as increasing the number of features or algorithms used for 

evaluating malware and benign dataset while providing a comparison of each algorithm in a 
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relatively easy manner. This flexibility ensures that if the requirement changes in future, Droid 

Fence can be amended to incorporate the new requirements. 

Table 5: Droid Fence - Database Tables Descriptions 

Database Table Description 
algorithm A lookup table to store all algorithms supported by Droid Fence. 

It saves six machine learning and one Sequential (Deep 
Learning) algorithms. 

app A lookup table to store all applications across datasets. The table 
is linked to app_service, app_permission, and experiment_app 
tables. 

app_permission A linked table to store all permissions used by each application. 
The table is related to the app and permission tables. 

app_service A linked table to store all services used by each application. The 
table is related to the app and service tables. 

experiment A table to store information related to the experiment, e.g., 
analysis type, parameters used, etc. The table is linked to the 
user, experiment_app, and parameter tables. 

experiment_app A linked table to store applications that are used in each 
experiment. The table is related to the experiment and app 
tables. 

outcome A table to store the outcome for each algorithm in an experiment. 
The table is linked to parameter and outcome_kfold_iteration 
tables. 

outcome_kfold_iteration A table to store the outcome for each kfold iteration for each 
algorithm in an experiment. The table is linked to the outcome 
table. 

parameter A linked table to help combine the outcome for each algorithm in 
an experiment. The table is linked to parameter_algorithm, 
experiment, and outcome. 

parameter_algorithm A linked table to store algorithms and their parameters used in 
the experiment. The table is related to an algorithm, experiment, 
and outcome tables. 

permission A lookup table to store all permissions extracted from all 
applications across datasets. 

service A lookup table to store all services extracted from all applications 
across datasets. 

user A table to store user's information, including credentials, who 
may be running using Droid Fence after logging in. 
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6.2 Droid Fence - Background on selected features 

In this section, we give a background on features that we selected for utilising in Droid Fence. 

We will also clarify the distinction whether specified features were extracted by Droid Fence 

using its code or Androguard API. We will also discuss how Droid Fence feature extraction 

can be deceived by malware developers. In later sections, we describe in more detail how 

these features are extracted. We have used a total of 66 features consisting of the usage of 

forty top permissions, twenty top services in our dataset, presence of reflection, dynamic code 

loading, native code, database, HTTPS, and cryptographic code. 

6.2.1 Permissions 

The privacy of an Android user is secured by using the permission system built into the Android 

operating system. The permission system consists of four different protection levels: Normal, 

Signature, Dangerous, and Special Permissions. Normal permissions are granted at install 

time and must be requested in the application’s manifest file if an application requires to 

access resources or data outside the application’s sandbox. These permissions do not post a 

significant risk to the operation of other applications or user’s privacy, e.g., permission to setup 

up a time zone [173]. The signature permissions are granted at install time if both applications 

– the one which defines permissions and the one that uses those permissions – are signed by 

the same certificate. Dangerous permissions are requested to access users’ private 

information or operations that may potentially affect other applications, e.g., the permission to 

access a user’s call logs is dangerous, and users must explicitly approve the permission. 

Applications must prompt users to grant dangerous permissions at run time. Special 

permissions consist of sensitive permissions that do not behave like dangerous and normal 

permissions. The two primary examples of sensitive permissions are 

SYSTEM_ALERT_WINDOW and WRITE_SETTINGS. If an application needs to use these 

permissions, it must declare that in a manifest file and sends an intent at runtime, prompting 

the user’s approval. [173] 
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An application declares the permission it requires by using permission tags in the application 

manifest, e.g., if an application needs to read users’ contacts, then it must declare it, an 

example declaration is shown in Figure 16. Droid Fence has utilised Androguard API to extract 

the permissions from manifest files for each application. 

 

Figure 16: Android Manifest - Permission Declaration 

Permissions are classified into different groups depending on the device’s features or 

capabilities. Android handles permissions at a group level; therefore, if an application declares 

single permission belonging to a group, all permissions of that group will be declared in the 

application’s manifest. For example, if any permission in an ‘android.permission-

group.CONTACTS’ is declared and subsequently approved by a user then all permissions 

belonging to the permission group are granted. In this scenario, if ‘READ_CONTACT’ is 

granted, then the remaining two permissions of ‘android.permission-group.CONTACT’ group 

– ‘WRITE_CONTACTS’ and ‘GET_ACCOUNTS’ – are also sanctioned. [173] 

More information on the Permission features used by the Droid Fence in our experiment is 

discussed in section 7.5 Features below. 

6.2.2 Services 

Services provide a facility for an application to execute a long-running process without 

constant interaction with a user. Services use the application’s main thread, so it is imperative 

to start service in a secondary thread to avoid ‘application not responding’ errors if service is 

to perform any CPU intensive or blocking operations. Service is started by calling 



100 
 

‘Context.startService()’ function, which allocates resources to keep service running until it 

stops itself or someone else stops it. [174] 

Services also provide a means for interacting with other applications. An application can 

expose some of its functionality to other applications by allowing connectivity to its service. A 

long-standing connection can be approved by calling ‘Context.bindService()’ method to utilise 

the exposed functionality of an application. [174] 

An application must declare its intention of using services in a manifest file by using the 

‘service’ declaration tag. An example declaration of ‘MyService’ is shown in Figure 17. Droid 

Fence has utilised Androguard API to extract services from manifest files for each application. 

 

Figure 17: Android Manifest - Service Declaration 

More information on the Services features used by the Droid Fence in our experiment is 

discussed in section 7.5 Features below. 

6.2.3 Reflection 

Reflection is a useful concept of object-oriented programming as it allows access and 

inspection of interfaces, classes, fields, and functions at run time. Furthermore, it permits 

dynamic invocation of functions and instantiation of new objects, which allow greater flexibility 

at run time, if types of objects are not known at compile time. Another useful application of 

reflection is to allow developers to decide at runtime, if a required functionality (functions or 

classes) is available before using it, thus providing a solution for backward compatibility for 

older devices. In Android, ‘java.lang.reflect’ and ‘java.lang.class’ packages provide classes 



101 
 

which can be used to utilise reflection in an application, within the security constraints of 

Android. 

Figure 18 below shows an example code in Android that can be used to access a class and 

its methods at run time. Exception handling is omitted for brevity.  

 

Figure 18: Android - Reflection Example Code 

Droid Fence utilises Androguard API to extract strings, classes, and all methods from each 

file. Next, Droid Fence uses its App Analyser (AA) module to traverse through the extracted 

data to detect if any reflection packages or methods are being used by the application. The 

Droid Fence feature extraction component sets ‘use_reflection_code’ value to true if it detects 

the usage of reflection in an application. 

6.2.4 Dynamic code loading 

Android provides a dynamic code loading technique to allow developers to load code that 

exists outside of their application code. This facility will enable developers to use dynamic 

updating functionality, code reuse, reduce start-up time, and acquire extensibility, which 

ultimately helps them to build modular and leaner applications. 

An abstract class ‘ClassLoader’ in the ‘java.lang’ package is responsible for loading classes 

dynamically. The class loader tries to find the class’s definition data or generates it by 

converting the name of the class into a file name and then reading it from a file system. [175] 

Figure 19 shows example code for dynamically loading class files by a network class loader 

from a server. Two methods ‘findClass’ and ‘loadClassData’ are defined by a subclass 
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‘NetworkClassLoader’ that are used to download the binary data that constitute the class and 

then create a class instance using the ‘defineClass’ method [175].  

 

Figure 19: Android - Dynamic Class Loading [175] 

Droid Fence utilises Androguard API to extract classes, strings, and all methods from each 

file. Next, Droid Fence uses its App Analyser (AA) module to traverse through the extracted 

data to detect if any dynamic class packages or methods are being used by the application. 

Droid Fence feature extraction component sets ‘use_dynamic_code’ value to true if it detects 

the usage of dynamic code in an application. 

6.2.5 Native Code 

Applications for Android devices can be developed using different ways. Android SDK is used 

widely for application developments, which are classified as high-level developments. 

However, Android also allows developers to write native code application development 

specific to different processors using the Native Development Toolkit (NDK). Native code 

applications are less portable, more complex, and more likely to have memory corruption 

errors [176]. Despite these challenges, native code applications are created by developers for 

processor-bound applications as native code can increase performance for processor-

intensive tasks. The enhanced performance is achieved due to three main factors: [177] 
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a. Native code runs directly on the operating system because code is translated to a 

binary code instead of being compiled into Java byte code, which needs to be 

interpreted by Dalvik Virtual Machine. 

b. Native code allows accessibility to Single Instruction Multiple Data (SIMD) technology, 

which allows multiple data to be executed in parallel; this utilisation of processor 

features is not available at Android SDK. 

c. Native code allows developers to access code at the assembly level and optimise it. 

Droid Fence utilises Androguard API to extract classes, strings, and all methods from each 

file. Next, Droid Fence uses its App Analyser (AA) module to traverse through the extracted 

data to detect if any native class packages or methods are being used by the application. The 

Droid Fence feature extraction component sets ‘use_native_code’ value to true if it detects the 

usage of native code, otherwise false. 

6.2.6 Database 

The database is an ideal medium for storing structured data. Android provides ‘java.sql’ and 

‘android.database’ packages, which can be used for interaction with different databases. 

Figure 20 displays a sample code for creating and querying an in-memory database. 

 

Figure 20: Android - Database Access [178] 

Droid Fence utilises Androguard API to extract classes, strings, and all methods from each 

file. Next, Droid Fence uses its App Analyser (AA) module to traverse through the extracted 

data to detect if any database class packages or queries are being used by the application. 
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The Droid Fence feature extraction component sets ‘use_database’ boolean to true if an 

application uses a database and false otherwise. 

6.2.7 HTTPs 

HyperText Transfer Protocol Secure (HTTPS) is a protocol for communicating securely over 

the internet or any other network. Most applications require communication to be conducted 

over the internet. Applications may use encryption technology, i.e., Transport Layer Security 

(TLS) or formerly known as Secure Sockets Layer (SSL) to encrypt data transfer between the 

client application and the server.  Android provides classes in ‘java.net’ and ‘android.net’ 

packages, which can be used for secure communication.   

Figure 21 displays an example code for using secure connectivity if a certificate is issued by 

a widely known Certificate Authority (CA). 

 

Figure 21: Android - HTTPS Connectivity [179] 

Droid Fence utilises Androguard API to extract classes, strings, and all methods from each 

file. Next, Droid Fence uses its App Analyser (AA) module to traverse through the extracted 

data to detect if any class packages or methods linked to URLConnection are being used by 

the application. The Droid Fence feature extraction component sets the ‘use_https’ field to 

true if it detects the usage of TLS protocol. 

6.2.8 Cryptographic code 

Mobile applications may obscure part of code or resources by using cryptographic features of 

Android SDK. Android provides access to classes in ‘java.security’ and ‘javax.crypto’ 

packages. These packages can be used to encrypt sensitive information. Figure 22 displays 

a sample code for encrypting a message. 
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Figure 22: Android - Cryptography Code [180] 

Benign applications may protect sensitive information such as user credentials, messages, or 

documents by using cryptographic facilities provided by Android. Malware may use 

cryptography to obscure SMS short codes, methods’ signatures, or variables names. Droid 

Fence utilises Androguard API to extract classes, strings, and all methods from each file. Next, 

Droid Fence uses its App Analyser (AA) module to traverse through the extracted data to 

detect if any cryptography or encryption class packages or methods are being used by the 

application.  The Droid Fence feature extraction component sets the ‘use_cryptic_code’ field 

to true if it detects the usage of cryptographic APIs. 

6.2.9 Feature Extraction Deception 

Droid Fence extracts the required feature without executing an application, therefore it is prone 

to the limitations of static analysis. One of the limitations of static analysis is that it cannot 

scrutinize dynamically loaded code because the code is downloaded at runtime. Malware 

developers can use this information and use a combination of Reflection, Native Code, 

Database, HTTPs, or Cryptographic code in dynamically loaded code. Although Droid Fence 

can detect whether a dynamic code is used in an application or not, it will be unable to establish 

if the five features specified above are used or not. This is identified as one of the future 

directions in Android Malware Detection area in the last section 8.2 Future Work. 
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Permissions and Services features, that formed a bulk of our features, cannot be deceived in 

the same way as the five features identified above because these features must be declared 

in the manifest file of an application. 
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7. Droid Fence – Methodology & Performance Evaluation 

In this chapter, we attempt to evaluation Droid Fence by presenting results of four 

experiments. We describe software and hardware components utilised in our experiments, the 

methodology, features, data collections, and ethical challenges in data collection. We briefly 

provide detail of the algorithms that we utilise in our experiments. Furthermore, we discuss 

and assess the effectiveness of the Droid Fence framework for detecting malware. Finally, we 

also attempt to answer our fifth, sixth, and seventh research questions. 

• RQ5: Will the usage of neglected features identified in literature review along with 

Android permissions and services allow the achievement of over 90% accuracy whilst 

keeping FPR less than 3% in detecting Android malware? 

• RQ6: How does the performance of the proposed deep learning algorithm (in terms of 

accuracy, F1 score, precision, and recall) compare to that of existing machine learning 

algorithms? 

• RQ7: Does the approach developed as part of RQ5 performs better (in terms of 

Accuracy) than comparative methods? 

7.1 Experimental Settings 

The experiments were executed in a virtual environment to sandbox our environment. The 

underlying hardware consisted of Intel Core i7-6700HQ CPU @2.60GHZ and 32 GB RAM. 

The virtual environment was setup using Oracle VirtualBox version 5.2.16 r123759. The virtual 

machine was assigned four virtual CPU, 16GB RAM, and 32MB video memory. The operating 

system of the virtual machine was 64-bit Ubuntu 18.04.1 LTS. 

Droid Fence is implemented using Python v3.6, Flask v1.02, jinj2 v2.10, and HTML 5. It utilises 

pygal v2.4 for displaying charts and MySQL database for storing experiment results. The other 

required modules are Androguard v3.2.1, Scikit-learn v0.20, Tensorflow v1.13.1, and Keras 

v2.2.4.  
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7.2 Methodology 

Droid Fence uses eight machine learning and one deep learning algorithms. Each of the 

algorithms is evaluated by using a stratified k-fold cross-validation method, and each fold is 

divided into 80% training and 20% validation set. Stratified k-fold is a variation of the k-fold 

method, as it shuffles data initially and then splits into n_splits (5 folds in our case), this 

ensures that classes are correctly shuffled, and there is no overlap among each fold. For each 

fold, 20% of data is kept as a validation set, while the model is trained on the remaining 80% 

data set. The trained model is evaluated on the validation set, the result is retained, and finally, 

the model is discarded. The process is repeated five times for each iteration; this approach 

ensures that each fold is incorporated at least once in a validation set and four times in a 

training set. The concluding model measures the result by averaging the outcomes derived at 

each fold.  

7.3 Machine Learning Algorithms 

In this section a short description of the algorithms used in our experiments is provided. Figure 

23 below displays an image from the Droid Fence presenting parameters used for our 

experiment. The figure also provides the settings and configuration details of each algorithm. 
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Figure 23: Experiment Details 

7.3.1 Logistic Regression 

Logistic Regression may be used to predict a binary outcome. A binary outcome, as the term 

suggests, correspond to an event which has either taken place or have not taken place. The 

dependent variable in logistic regression is usually binary and can be used to classify various 

objects into groups based on the available data [181]. In this scenario, the algorithm can be 

called Binary Logistic Regression [166]. LR aids in establishing a probability that an input 

belongs to one of the two classes [182].  

A logistic regression model works in five key steps. First, the independent variables or the 

inputs are provided. The inputs can be binary or continuous variables. If they are binary 

variables, they need to be coded usually in 0’s and 1’s to label them appropriately for data 

analysis. The independent variables, which are also the predictors are combined linearly in 

order to produce the logarithm of the odds. The log odds are then converted to probabilities 

using a logistic function. The resulting probabilities are usually between 0 and 1 with 0 and 1 

being an indication of certainty on one side or the other. 

While logistic regression is mainly applied in situations with a binary outcome, it also supports 

multinomial and ordinal results. Multinomial Logistic Regression is also used to predict more 

than two outcomes. It is akin to Logistic Regression; however, you can have more than two 

possible outcomes in MLR. An example of MLR is predicting the most used transport system 

in a given year. The possible outcomes could be bus, planes, car, and train.  Another simple 

example of such compound events is the rolling of a die. It is different from a coin toss, which 

only has two possible outcomes [80]. In the case of ordinal results, the logistic regression 

classifier can be extended in order to handle more variables, but the result is usually an 

ordered set of categories. Interested readers can find more detail about the LR algorithm in 

an excellent book by Bonaccorso [183]. 
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In our case, we need to predict if an app is a malware or benign, so it is a binary classification 

problem. We have used ‘sklearn.linear_model.LogisticRegression’ module from Scikit-learn 

v0.20 to implement Logistic Regression. The parameters and configuration settings that we 

used are specified in Figure 23: Experiment Details Interested readers can find more 

information including definition and purpose of each parameter in Scikit documentation [184].  

7.3.2 Linear Discriminant Analysis 

Linear Discriminant Analysis is a dimensionality reduction technique used for classification 

problems. The algorithm classifies outcome by projecting the spaces in high dimension onto 

lower dimension in such a way that maximises the separability of different categories. The 

algorithm seeks to project the large space of features in a small subspace. [166] For example, 

consider a dataset that must be separated into two classes. In this case, the categories are 

binary such as yes or no, male or female, success and fail among others. However, the classes 

are multidimensional in that they have different features that characterize them and only 

selecting a single feature to make categorical decisions might result in some elements 

overlapping [185]. Consequently, LDA facilitates the classification of a dataset with multiple 

attributes into two classes without overlapping problems. In this regard, by increasing the 

number of features to be considered during classification, the likelihood of overlaps reduces. 

LDA mainly relies on two primary criteria in creating categories. One criterion is to maximize 

the distance between the means of the two groups and the other is to minimize the variation 

within the group. The technique achieves the two goals using three key steps. First, the 

separability of the classes is calculated by computing the difference between the classes. 

Second, the distance between the mean and the samples of each class is established. Last, 

LDA is then used to determine a lower dimension whereby the distance between classes is 

the highest and the one between elements of the same class is reduced. 

However, while LDA is useful in cases where the means of the two classes differ, it is usually 

not effective when they are the same. In this regard, the technique cannot be used to establish 

a category that will make the classes separable. Therefore. LDA is useful for data classification 
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and dimension reduction, but it has its limits, when working with datasets that have equal 

means. Interested readers can find more detail about the LR algorithm in an excellent book 

by Bonaccorso [183]. 

In our case, we have used ‘sklearn.discriminant_analysis.LinearDiscriminantAnalysis’ module 

from Scikit-learn v0.20 to implement Linear Discriminant Analysis to predict if an app is a 

malware or not. The parameters and configuration settings that we used are specified in Figure 

23: Experiment Details. Interested readers can find more information including definition and 

purpose of each parameter in Scikit documentation [184]. 

7.3.3 K Nearest Neighbor Classifier 

K Nearest Neighbor is used for both classification and regression problems. KNN classifier 

seeks to predict class for the validation data by calculating the Euclidean distance between 

the training data and the validation data. It uses the distance between the test data and the 

training data to identify the correct category for the test data [181]. In regression, the algorithm 

uses the mean value of the selected training data points. 

KNN classifies data using 6 main steps. The first step is to provide training data with known 

classifications. The classifications are represented in clusters based on their individual 

characteristics. The next step is to select the number K of neighbors for the test data. The next 

step involves providing the test data and calculating the distance between the test data and 

the K number of neighbors. The next step involves selecting the nearest K neighbors based 

on the calculated distances. The data points for the nearest K neighbors are then counted. 

The test data is assigned to the neighbor with the highest data points closer to the test data. 

For example, given a data point with two categories of data, one can find the best fit for the 

data point using KNN. The value K represents the data points from the training data that should 

be counted from the nearest neighbors based on their distance from the training data. 

Selecting K is a subjective process that is based on observation of the available training data. 

Heuristic techniques may be applied for large sets of data but general observation is suitable 
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when small sets of data are involved [181]. However, there is a key consideration that should 

be observed when selecting the value of k. For instance, choosing a small value for K can 

cause unstable decision boundaries [186]. Therefore, K should be large for classification 

decisions to reduce noise while also small enough to maintain distinct boundaries between 

the classes. Further, an even number as a K value when classifying test data with an even 

number of categories might result in a similar number of data points, thereby making the 

decision difficult in case of tied votes [181]. Interested readers can find more detail about the 

KNN algorithm in an excellent book by Bonaccorso [183]. 

In our case, KNN is used for classification purposes. We have used 

‘sklearn.neighbors.KNeighborsClassifer’ module from Scikit-learn v0.20 to implement KNN to 

predict if an app is a malware or not. The parameters and configuration settings that we used 

are specified in Figure 23: Experiment Details. Interested readers can find more information 

including definition and purpose of each parameter in Scikit documentation [184]. 

7.3.4 Decision Tree Classifier 

A decision tree classifier is a predictive modelling strategy that is used in machine learning 

and data mining. DT can be used for both regression and classification problems. It relies on 

the use of a decision tree to make conclusions about the elements in a dataset [187]. DT is a 

binary tree that recursively splits the dataset until we are left with pure leaf or terminal nodes 

i.e. the data with only one type of class. The topmost node in DT is called Root node. The 

splitting is a process of dividing a node into two or more sub nodes. When a sub nodes splits 

into further sub nodes, it is called decision node. The training dataset is used to create a 

decision tree [182].  

The decision tree algorithm makes binary decisions based on the attributes of the validation 

data and the training data. The algorithm traverses the tree, created as part of the training, for 

validation dataset to classify the sample. It starts from the root node and compares the 

attributes of the dataset and training data. Based on the identified path the algorithm follows 
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a branch from the root node and continues selecting specific branches until it reaches a leaf 

node. 

For example, consider a hiring manager who wants a job candidate based on certain 

attributes. The criteria include attributes such as the level of education, work experience, 

candidate’s performance during the interview, and salary requirements among others. Using 

a decision tree algorithm, the hiring manager can select the best candidate who fulfills all the 

required characteristics by categorising the applicants into different categories. First, the 

manager can examine the salary requirements and select those who fit within the category. 

Next, the manager can then select the candidates based on their work experience. Those with 

the necessary experience can then be categorised based on their level of education. The 

manager can then examine the level of education for the candidates and select those who 

have attained the required skills. Finally, those with the relevant education can then be 

categorised according to their performance in the interview and the best candidate throughout 

the selection process is likely to become employed. Thus, the decision tree algorithm involves 

classifying data based on criteria that enable the algorithm to produce a root, decision, and 

leaf nodes. Interested readers can find more detail about the DT algorithm in an excellent book 

by Bonaccorso [183]. 

In our case, DT classifier is used for classification purposes. We have used ‘sklearn.tree. 

DecisionTreeClassifier’ module from Scikit-learn v0.20 to implement DT to predict if an app is 

a malware or not. The parameters and configuration settings that we used are specified in 

Figure 23: Experiment Details. Interested readers can find more information including 

definition and purpose of each parameter in Scikit documentation [184]. 

7.3.5 Gaussian NB 

Gaussian NB is a classification and clustering algorithm derived from Bayes’ theorem. 

Gaussian NB classifiers are usually characterized by high scalability. The algorithm assumes 

that each feature present in a sample is irrelevant to the presence of any other feature. The 

algorithm utilises prior knowledge of the sample data and classes to predict classification of 
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an event. The algorithm calculates the probability of each feature and makes the classification 

decision based on Bayes theorem. [182]  

Guassian NB usually respond well to data that does not fit in memory [181]. Guassian NB 

classifiers are also characterized by the assumption of a feature’s conditional independence. 

However, such independence is usually not reflected in the real world, which makes the 

algorithm naïve. For example, the height and weight of a person, which is used to calculate 

their BMI, are a determinant of the development of lifestyle diseases such as diabetes, and 

cardiovascular conditions among others. In this case, the higher the weight of a person and 

the lower their height, the larger the BMI and the likelihood of becoming diabetic. However, 

when using a Gaussian NB to predict the probability of developing such conditions, the 

algorithm will consider the three variables independently. The algorithm uses calculus to 

predict the probability of a certain category and the chosen classification is the one with the 

highest. Naïve Bayes algorithms mostly deal with categorical variables, as such, they are 

easier to classify since they do not have experience fluctuations and in terms of their amount 

[181]. The Gaussian NB specializes in dealing with continuous variables. The algorithm also 

assumes that the variables are normally distributed. Thus, the Gaussian NB is a classifier that 

categorizes continuous variables using the principles of the Bayes theorem. Interested 

readers can find more detail about the Gaussian NB algorithm in an excellent book by 

Bonaccorso [183]. 

In our case, we have used ‘sklearn.naive_bayes.GaussianNB’ module from Scikit-learn v0.20 

to implement Gaussian NB to predict if an app is a malware or not. The parameters and 

configuration settings that we used are specified in Figure 23: Experiment Details. Interested 

readers can find more information including definition and purpose of each parameter in Scikit 

documentation [184]. 

7.3.6 Support Vector Classifier 

Support Vector Classifier is used for both regression and classification problems. SVM 

algorithm seeks to take data points and create a hyperplane that separates the classes in the 
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best possible way. The objective of the hyperplane is to minimise the classification error and 

maximise the marginal distance between classes. The classification is performed by 

identifying the hyperplane whereby two classes can be differentiated by maximum margin 

[182]. SVC selects the extreme vectors or data points, which are called support vectors, hence 

the name of the algorithm. The support vectors are then used to determine the hyperplane, 

which is then used to classify the data accordingly. The hyperplane relies on the support 

vectors to determine its position and angle of inclination when the model is plotted on a graph. 

For example, consider a dataset containing the characteristics of a cat and dog. The SVC 

algorithm will pick an extreme case of a cat and an extreme case of a dog and then develop 

a hyperplane during training [181]. When a new dataset is presented that needs to be 

classified, the algorithm will then use the support vectors, or the extreme cases to determine 

the category of each dataset as either a cat or dog. Such problems are encountered in image 

processing and malware detection among others and SVC can assist in categorising large 

amounts of data. Interested readers can find more detail about the SVC algorithm in an 

excellent book by Bonaccorso [183]. 

In our case, SVC classifier is used for classification purposes. We have used 

‘sklearn.svm.SVC’ module from Scikit-learn v0.20 to DT to predict if an app is a malware or 

not. The parameters and configuration settings that we used are specified in Figure 23: 

Experiment Details. Interested readers can find more information including definition and 

purpose of each parameter in Scikit documentation [184]. 

7.3.7 XGB Classifier 

Extreme gradient boosting (XGB) classifier is a machine learning algorithm that relies on 

regularizing gradient boosting. XGB is derived from gradient boosting, which is a machine 

learning method that is applied in classification among other tasks [167]. Gradient boosting 

produces a prediction model that is presented as a collection of weak learners that are typically 

presented as decision trees. 
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In machine learning, decision trees are usually built stepwise based on the prediction of the 

training data. Boosting involves adjusting the next prediction based on the results of the 

current step. However, there is usually an error that occurs between the predicted and the 

actual values. Gradient boosting attempts to minimise the error, also known as the loss 

function, by gradient descent algorithm, which involves the use of a first order partial 

derivatives of the error. XGB classifier improves upon gradient boosting by adding various 

software and hardware enhancements. 

First, XGB classifier works similar to a gradient boosting but instead uses the second order 

partial derivatives of the error. In addition, XGB also incorporates advanced regularisation 

through, lasso and ridge regression (L1, L2), which enhances the generalisability of the results 

of the prediction model. XGB also demonstrates sparsity awareness and allows sparse inputs 

by learning the best missing value. Furthermore, among weighted datasets, XGB uses the 

weighted quantile sketch to identify split points [167]. The XGB algorithm further supports 

parallelization and efficient use of hardware resources such as caching awareness and out-

of-core computing that enhance disk usage during processing. 

In our case, XGB classifier is used for classification purposes. We have used 

‘xgboost.XGBClassifier’ module from Scikit-learn v0.20 to implement DT to predict if an app is 

a malware or not. The parameters and configuration settings that we used are specified in 

Figure 23: Experiment Details. Interested readers can find more information including 

definition and purpose of each parameter in Scikit documentation [184]. 

7.3.8 Random Forest Classifier 

Random forest classifiers are a group of machine learning techniques that are mainly used for 

classification among other tasks including but not limited to regression. The random forest 

algorithm utilises ensemble learning, which involves the use of several classifiers to solve a 

complex problem [188]. The algorithm uses the decision tree algorithm to predict the outcome 

of the model. A key advantage of the random forest over the decision tree is its ability to 

eliminate the problem of overfitting. Overfitting in machine learning refers to the predicted 
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statistical model fitting the training data exactly, which increases the errors. Reducing 

overfitting helps to increase the precision of the statistical model. 

In order to understand the random forest classifier, it is important to examine the decision tree 

algorithm. A decision tree consists of branch/decision nodes, leaf nodes, and a root node. The 

algorithm divides a dataset into branches iteratively until a leaf node is formed, which cannot 

be divided any further [188]. The decision nodes are usually divided by a simple decision 

based on the attributes of the dataset that the algorithm is examining.  

The difference between the decision tree algorithm and random forest classifier is the 

randomisation that occurs in the latter. In random forest, the root node and segregating nodes 

are established randomly. Further, the random forest classifier utilises the bagging method, 

which involves using multiple sets of training data. The different datasets produce different 

statistical models, which are ranked and the category with the highest number of occurrences 

is selected. During classification, the decisions made by the algorithm are categorised on a 

decision tree. The leaf node represents the final output of a certain decision. In order to select 

the final output for the classification model, the algorithm uses a multi-voting approach to 

select the decision chosen by most decision trees. Interested readers can find more detail 

about the SVC algorithm in an excellent book by Bonaccorso [183]. 

In our case, Random Forest classifier is used for classification purposes. We have used 

‘sklearn.ensemble.RandomForestClassifier’ module from Scikit-learn v0.20 to implement DT 

to predict if an app is a malware or not. The parameters and configuration settings that we 

used are specified in Figure 23: Experiment Details. Interested readers can find more 

information including definition and purpose of each parameter in Scikit documentation [184]. 

7.3.9 Sequential (Deep Learning) 

Deep Learning is a subset of Machine Learning. It operates like Machine Learning, technically 

speaking, however it uses different approaches and capabilities. Deep Learning mimics the 

human brain when solving a problem whereas traditional Machine Learning algorithms use 
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binary logic to resolve a problem. Neural networks are a key aspect of deep learning. They 

are based on the current understanding of the human brain and how it works. Neural networks 

are able to learn complex relationships among various elements in both linear and non-linear 

outputs. A neural network is usually composed of an input, hidden, and output layer. Each 

layer contains several nodes also known as neurons. However, some neural networks have 

several layers and are known as deep learning networks.  

Keras is a python library for developing as well as evaluating deep learning models [189].  It 

is free and open source, which makes it widely available to most people. It provides two 

strategies for building the neural networks of a model, sequential and functional. In a 

sequential model, the Keras layers are in a linear composition. The model is advantageous 

because it is minimal and represents nearly all neural networks. It also facilitates the creation 

of custom and complex models. Thus, sequential deep learning Keras is a python library that 

facilitates the creation of complex neural networks. 

In our case, we have used ‘keras.models.Sequential’ module from Keras v2.2.4 to implement 

Sequential algorithm to predict if an app is a malware or not. The parameters and configuration 

settings that we used are specified in Figure 23: Experiment Details. Interested readers can 

find more information including definition and purpose of each parameter in Keras 

documentation [190]. 

7.4 Evaluation Metrics 

Following metrics are used to evaluate the performance of our experiment. 

• Accuracy: The Accuracy is defined as the ratio of the total number of correct 

predictions and the total number of predictions i.e. the proportion of all apps that 

are correctly classified as malware. The formula for calculating accuracy is: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
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• F1 Score: The F1 Score is the harmonic mean of the precision and recall. A perfect 

model has F-Score of 1. The formula for calculating F1 Score is provided below: 

 

𝐹𝐹1 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 2 ×
𝑇𝑇𝐴𝐴𝑆𝑆𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃 ×  𝑅𝑅𝑆𝑆𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅
𝑇𝑇𝐴𝐴𝑆𝑆𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃 + 𝑅𝑅𝑆𝑆𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

 

 

• Precision: The Precision is defined as the proportion of correct true positive 

predictions of all positive cases. In our case, the proportion of malware detection 

to the total number of actual malware. The formula for calculating Precision is given 

below:  

 

𝑇𝑇𝐴𝐴𝑆𝑆𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

 

• Recall:  The recall is the measure of how accurate the model is in identifying true 

positives. In our case, how many actual malware were recalled (found) by the 

model. The formula for calculating Recall is given below: 

 

𝑅𝑅𝑆𝑆𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
  

 

7.5 Features 

We used 66 features in three separate experiments, consisting of 40 permissions, 20 services, 

the presence of specific functionality such as reflection, dynamic code, native code, HTTPS, 

database, and cryptography. We have selected the top 40 permissions used by all applications 

(both malware and benign) in our dataset. Table 6 lists permissions that we have used in our 

experiments. The malware and benign columns show the number of applications in our 
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dataset using the permission specified in the Permission column. The total column shows the 

number of applications (malware and benign) using the specified permission. If an application 

is using any of these permissions, then 1 else 0 is used in a tabular data structure, as shown 

in Figure 14 above, presented to AM subcomponent for classification purposes. 

Table 6: Top Forty Permissions used in Experiment 2, 3, and 4 

Permission malware benign total 
android.permission.INTERNET 5434 6201 11635 
android.permission.ACCESS_NETWORK_STATE 3748 5871 9619 
android.permission.WRITE_EXTERNAL_STORAGE 3805 4699 8504 
android.permission.READ_PHONE_STATE 5021 2849 7870 
android.permission.ACCESS_WIFI_STATE 2471 2759 5230 
android.permission.WAKE_LOCK 2160 3047 5207 
android.permission.RECEIVE_BOOT_COMPLETED 2715 2064 4779 
android.permission.VIBRATE 1664 2542 4206 
android.permission.SEND_SMS 3058 453 3511 
android.permission.ACCESS_COARSE_LOCATION 1810 1561 3371 
android.permission.ACCESS_FINE_LOCATION 1688 1543 3231 
android.permission.READ_SMS 2126 625 2751 
android.permission.RECEIVE_SMS 2206 540 2746 
android.permission.READ_CONTACTS 1338 1298 2636 
com.android.launcher.permission.INSTALL_SHORTCUT 1425 785 2210 
android.permission.GET_ACCOUNTS 450 1630 2080 
android.permission.CHANGE_WIFI_STATE 1016 916 1932 
android.permission.GET_TASKS 762 1122 1884 
com.google.android.c2dm.permission.RECEIVE 380 1499 1879 
android.permission.WRITE_SETTINGS 688 1036 1724 
com.android.vending.BILLING 44 1644 1688 
android.permission.WRITE_SMS 1270 350 1620 
android.permission.READ_EXTERNAL_STORAGE 355 1174 1529 
android.permission.CALL_PHONE 764 658 1422 
com.android.browser.permission.READ_HISTORY_BOOKMARKS 1025 313 1338 
android.permission.CAMERA 253 1010 1263 
android.permission.SYSTEM_ALERT_WINDOW 365 829 1194 
com.android.browser.permission.WRITE_HISTORY_BOOKMARKS 930 201 1131 
android.permission.RESTART_PACKAGES 764 323 1087 
android.permission.WRITE_CONTACTS 551 492 1043 
com.android.launcher.permission.UNINSTALL_SHORTCUT 809 216 1025 
android.permission.CHANGE_NETWORK_STATE 414 588 1002 
android.permission.READ_LOGS 525 438 963 
android.permission.DISABLE_KEYGUARD 475 479 954 
android.permission.SET_WALLPAPER 533 416 949 
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android.permission.BLUETOOTH 212 688 900 
android.permission.INSTALL_PACKAGES 846 36 882 
com.android.launcher.permission.READ_SETTINGS 644 233 877 
android.permission.RECORD_AUDIO 132 635 767 
android.permission.ACCESS_LOCATION_EXTRA_COMMANDS 605 124 729 

 

The second set of features that are used in all four experiments is the top twenty services in 

our dataset. Table 7 lists the services that we have used in our experiment. The malware and 

benign columns show the number of applications in our dataset using the service specified in 

the Service column. The total column shows the number of applications (malware and benign) 

using the specified service. If an application is using any of these services, then 1 else 0 is 

used in a tabular data structure, as shown in Figure 14 above, presented to AM subcomponent 

for classification purposes. 

Table 7: Top Twenty Services used in Experiment 1, 2, 3, and 4 

Service malware benign total 
com.apperhand.device.android.AndroidSDKProvider 608 5 613 
com.airpush.android.PushService 552 6 558 
com.google.android.gms.measurement.AppMeasurementService 0 555 555 
com.google.firebase.iid.FirebaseInstanceIdService 0 519 519 
com.google.update.UpdateService 399 0 399 
com.google.android.gms.measurement.AppMeasurementJobService 0 229 229 
com.google.android.gms.auth.api.signin.RevocationBoundService 0 220 220 
com.google.analytics.tracking.android.CampaignTrackingService 0 220 220 
com.software.application.C2DMReceiver 213 0 213 
com.google.android.gms.analytics.CampaignTrackingService 0 212 212 
com.android.view.custom.FirstAService 188 0 188 
com.android.view.custom.SecondAService 188 0 188 
com.android.view.custom.ThirdAService 188 0 188 
com.google.firebase.messaging.FirebaseMessagingService 0 187 187 
com.android.view.custom.FourthAService 186 0 186 
com.google.android.gms.analytics.AnalyticsService 0 182 182 
com.appbrain.AppBrainService 13 168 181 
com.soft.android.appinstaller.services.SMSSenderService 153 0 153 
com.senddroid.AdService 115 3 118 
com.zanalytics.sms.SmsReceiverService 113 0 113 
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The final set of six features, utilised in three experiments, used by both malware and benign 

applications is shown in Figure 24 below. If an application is using any of these functionalities, 

then 1 else 0 is used in a tabular data structure presented to AM subcomponent for 

classification purposes. An illustration of tabular data is shown in Figure 14 above. 

 

Figure 24: Six specified features used in Experiment 2, 3, and 4 

The permissions that allow apps to access restricted data are classified as dangerous 

permissions [173]. As specified in section 6.2.1 Permissions above, certain operations that 

may potentially affect other applications, e.g., the permission to access a user’s call logs is 

dangerous, and users must explicitly approve the permission. We utilised dangerous 

permissions and list of services specified in Table 7 above in  Experiment 1 - Performance 

Comparison to establish if the usage of our neglected figures performs better or not. Table 8 

lists dangerous permissions that we have used in Experiment 1 - Performance Comparison. 

The malware and benign columns show the number of applications in our dataset using the 

permission specified in the Permission column. The total column shows the number of 

applications (malware and benign) using the specified permission. If an application is using 

any of these permissions, then 1 else 0 is used in a tabular data structure, as shown in Figure 

14 above, presented to AM subcomponent for classification purposes. 
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Table 8: Dangerous permissions used in Experiment 1 

Permission Malware Benign Total 
android.permission.WRITE_EXTERNAL_STORAGE 3806 4698 8504 
android.permission.SEND_SMS 3058 453 3511 
android.permission.READ_SMS 2126 625 2751 
android.permission.RECEIVE_SMS 2206 540 2746 
android.permission.READ_CONTACTS 1338 1298 2636 
android.permission.WRITE_SMS 1270 350 1620 
android.permission.READ_EXTERNAL_STORAGE 355 1174 1529 
android.permission.CAMERA 253 1010 1263 
android.permission.WRITE_CONTACTS 551 492 1043 
android.permission.RECORD_AUDIO 132 635 767 

 

7.6 Dataset Collection 

Automated data collection from app stores present ethical, legal, and technical issues. First, 

the Google Play store contains a lot of data, and an efficient approach to collect it is to use 

robots commonly known as bots. A web crawler is an appropriate bot for such an activity, as 

it can help scan as many applications as possible. However, the Google Play store was not 

designed for data collection using crawlers. Instead, it is meant as a web service where 

Android users can share mobile applications either for free or at a premium. While crawling 

for data is usually not explicitly mentioned on Google Play store’s terms of service (TOS), it 

involves undertaking various activities that are prohibited on the platform.  According to a study 

that attempted to implement a web crawler on Google store, the researchers performed 

various activities that were against the Google Play store terms of use [191]. For example, a 

user can have an unlimited number of email accounts that they can use on the Google Play 

store. However, they must belong to the owner. In addition, to ensure that a single user does 

not create an unlimited number of accounts in a short period Google restricts the creation of 

email accounts to five without requiring a phone number. Thus, to use a web crawler, such 

limitations must be overcome. The researchers circumvented the restrictions by 

crowdsourcing for Gmail accounts, which violates the terms of use [191]. Additionally, the 

researchers were also able to collect security keys from various applications, which exposed 

the data security of the users of such programs.  
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The ethical challenges in the situation are presented by the violation of Google Play store’s 

TOS. The technical issue from data collection on Google Play store is the lack of a fool proof 

restrictions by Google Play to guarantee security from such activities as developers are able 

to circumvent the restrictions. As such, data collection on the Google Play store is against its 

TOS, however, we believe that data collection for research purposes is ethically right. 

To evaluate our model, our data collection consisted of 13191 mobile applications divided 

between 5787 malware and 7404 benign samples. Malware samples were acquired from the 

Malgenome project [192], Drebin [193], and GitHub [194]. Benign samples were downloaded 

from the Google Play App Store [195] and Apps APK website [196] between November 2018 

and August 2019. The Malgenome project and Drebin dataset contained malware samples 

collected between 2010 and 2012, whereas the GitHub sample contained malware collected 

between 2015 and 2019. There is a risk of benign apps containing malware app which could 

affect the performance of our algorithms. In order to mitigate that, we utilised API service of 

Virus Total to confirm that the benign samples did not include malware. 

We performed four separate experiments on data samples. The purpose of conducting the 

first two experiments was to demonstrate whether the usage of our features is useful when 

using the same algorithms but different features. The purpose of the third experiment was to 

train our algorithms on Malgenome and Drebin datasets and test them on the GitHub samples 

which contained the samples from different time period. The fourth and the last experiment 

was conducted on all three datasets to measure the performance of our algorithms against a 

bigger dataset and compare it to the related methods published by researchers. The details 

of all experiments are provided in the next four sections. 

7.7 Experiment 1 - Performance Comparison 

In the first experiment, we used features specified in Table 7 and Table 8. These features are 

not the ones that we proposed for our final experiment. Droid Fence utilised eight machine 

learning algorithms and a deep learning Sequential algorithm in this experiment. The 
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performance of each algorithm is compared by observing accuracy, F1 score, precision, and 

recall metrics. Moreover, a confusion matrix for each algorithm is utilised for evaluation 

purposes. Figure 25 below shows an accuracy metric for training and validation data sets. The 

result shows that all algorithms have achieved accuracy score of 0.82 or above. Sequential 

(Deep Learning), Random Forest Classifier, and Decision Tree algorithms have performed 

very well against the training data set measuring accuracy score of 0.88. The same three 

algorithms also performed well on the validation data set, achieving an accuracy score of 0.87. 

 

Figure 25: Accuracy Metric for Experiment 1 for Training and Validation Data Set 

The XGB Classifier is marginally the second-best performing algorithm on the validation set, 

just ahead of the Logistic Regression. Gaussian NB has acquired a comparatively lowest 

score of 0.82. All algorithms have performed almost in the same fashion on both training and 

validation data sets. 

Figure 26 below reflects each algorithm’s performance when measured against the F1 Score 

metric. All algorithms except Guassian NB have achieved 0.80 scores for all but one algorithm. 

Random Forest algorithm is marginally the best performing classifier on the training data set, 

producing score of 0.853, followed closely by Decision Tree Classifier (0.852) and Sequential 

Deep Learning (0.846). The same three algorithms are the winners on the validation data set 

again, as they obtained F1 Score of 0.843 to 0.845. Gaussian NB appears last when measured 

against the F1 Score metric. Logistic Regression, Linear Discriminant Analysis, SVC, and 
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Gaussian NB have performed almost in the same fashion on both training and validation data 

sets also. 

 

Figure 26: F1 Score Metric for Experiment 1 for Training and Validation Data Set 

Figure 27 below illustrates the Precision metric results for all nine algorithms. All algorithms 

have acquired over 0.91 scores against the Precision metric. Both Sequential (Deep Learning) 

and Decision Tree Classifier algorithms have attained 0.959 and 0.957 scores respectively on 

the training data set, closely followed by Random Forest Classifier (0.95) and K Neighbours 

Classifier (0.954). The Sequential (Deep Learning) algorithm has attained the top position on 

the validation data set. K Neighbours Classifier is the second-best performing algorithm on 

the validation data set, marginally surpassing the Decision Tree Classifier. Gaussian NB is the 

worst performing algorithm in comparison to the remaining classifiers. 
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Figure 27: Precision Metric for Experiment 1 for Training and Validation Data Set 

Figure 28 below reveals outcomes for all algorithms measured against the Recall metric. Eight 

out of nine algorithms have gained a score of higher than 0.71. The Random Forest Classifier 

has obtained the highest recall score on the training data set, followed closely by a Decision 

Tree Classifier. K Neighbors and Gaussian NB are the lowest-performing algorithms on both 

training – acquiring recall scores of 0.748 and 0.656, respectively – and validation data set – 

achieving recall scores of 0.747 and 0.656, respectively. The best performing algorithm on the 

validation data set is Random Forest Classifier, obtaining a recall score of 0.767. 

 

Figure 28: Recall Metric for Experiment 1 for Training and Validation Data Set 

Table 9 below displays algorithms in the order of best performing to the worst. It summarises 

the result measured against accuracy, F1 score, precision, and recall metrics for each 
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algorithm applied to the validation data set. All algorithms have not performed well, achieving 

a score of less than 0.80 on twenty-six out of twenty-eight possible outcomes. 

Table 9: Detection Result Comparison of Nine Algorithms on Validation Data Set 

Algorithm Accuracy F1 Score Precision Recall 
Sequential (Deep Learning) 0.877 0.843 0.957 0.754 
Decision Tree Classifier 0.877 0.845 0.946 0.764 
Random Forest Classifier 0.877 0.845 0.941 0.767 
XGB Classifier 0.871 0.838 0.931 0.762 
SVC  0.865 0.831 0.919 0.758 
Logistic Regression 0.865 0.829 0.932 0.747 
K Neighbours 0.858 0.815 0.948 0.714 
Linear Discriminant Analysis 0.849 0.808 0.912 0.926 
Gaussian NB 0.822 0.764 0.913 0.656 

 

Sequential (Deep Learning) is the best performing algorithm as it obtained 0.957 against one 

metric and 0.843 or more against the two metrics. The recall rate is similar to most of the 

algorithms apart from Linear Discriminant Analysis which has the best recall rate. The top 

machine learning algorithm is the Decision Tree Classifier attaining 0.84 or more score on 

three of the four metrics when applied on the validation data set. The close second algorithm 

on machine learning family is Random Forest Classifier achieving 0.84 or more score on three 

of the four metrics. There is a marginal difference between the top three algorithms. Gaussian 

NB remains in the last position 

We are using a confusion matrix for summarising the performance of all classification 

algorithms that we used in our experiment. The confusion matrix provides helpful insight into 

inaccuracies made by our algorithms as well as the types of mistakes that are made by the 

classifiers. This insight is beneficial in overcoming constraints of using accuracy metric alone. 

Figure 29 below provides a confusion matrix for each algorithm obtained on the validation data 

set. 
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Figure 29: Confusion Matrix for Validation Data Set - Experiment 1 

Figure 29 above shows a slightly altered version of the confusion matrix, as we are showing 

additional information for each class. The additional information consists of True Positive Rate 

(TPR), False Positive Rate (FPR), False Negative Rate (FNR), and True Negative Rate (TNR). 

It is being shown in terms of percentage points in parenthesis for each class. 

Our confusion matrix illustrates that the top-performing algorithm, Sequential (Deep Learning), 

performs comparatively better at each of the four classes True Positive (TP), False Positive 

(FP), False Negative (FN), and True Negative (TN) in comparison to the other eight machine 

learning algorithms. However, the performance is still below par, when compared with the 

results of experiment 2 in the next section. 

7.8 Experiment 2 - Performance Comparison 

In the second experiment, Droid Fence was amended to use the features specified in Table 

6, Table 7, and Figure 24. These features are the ones that we identified as producing the 
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best result. The purpose of this experiment was to demonstrate that the usage of our features 

performs better than the ones utilised in Experiment 1 - Performance Comparison.  

The performance of each algorithm is compared by observing accuracy, F1 score, precision, 

and recall metrics. Moreover, a confusion matrix for each algorithm is utilised for evaluation 

purposes. Figure 30 below shows an accuracy metric for training and validation data sets. The 

result shows that all algorithms have achieved a high accuracy score; eight out of nine 

algorithms have scored 0.91 or above. The Decision Tree Classifier has performed very well 

against the training data set measuring accuracy score of 0.991; however, the Sequential 

(Deep Learning) algorithm is the best performing algorithm on the validation data set, 

achieving an accuracy score of 0.968. The Random Forest Classifier is not far behind 

achieving an accuracy score of 0.962. 

 

Figure 30: Accuracy Metric for Nine Algorithms for Training and Validation Data Set 

The Decision Tree Classifier is marginally the third-best performing algorithm on the validation 

set, just ahead of the K-Neighbours Classifier. Gaussian NB has acquired a comparatively 

lowest score of 0.878. Logistic Regression, Linear Discriminant Analysis, SVC, XGB 

Classifier, and Gaussian NB have performed almost in the same fashion on both training and 

validation data sets. 

Figure 31 below reflects each algorithm’s performance when measured against the F1 Score 

metric. All algorithms have performed very well, achieving over 0.90 scores for all but one 
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algorithm. The Decision Tree Classifier is again the best performing classifier on the training 

data set, producing an almost perfect score; however, the Sequential (Deep Learning) 

algorithm is the clear winner on the validation data set again, as it obtained F1 Score of 0.964. 

The Random Forest is again the second-best performing algorithm on the validation dataset 

acquiring an F1 Score of 0.956. Gaussian NB appears last when measured against the F1 

Score metric. Logistic Regression, Linear Discriminant Analysis, SVC, XGB Classifier, and 

Gaussian NB have performed almost in the same fashion on both training and validation data 

sets. 

 

Figure 31: F1 Score Metric for Nine Algorithms for Training and Validation Data Set 

Figure 32 below illustrates the Precision metric results for all nine algorithms. All algorithms 

have acquired over 0.91 scores against the Precision metric. The Random Forest Classifier, 

Decision Tree Classifier, and Sequential (Deep Learning) algorithms have attained almost 

perfect scores on the training data set. The Sequential (Deep Learning) algorithm has attained 

the top position on the validation data set. The Random Forest Classifier obtained the second 

position on the validation data set. The K Neighbours Classifier is the third-best performing 

algorithm on the validation data set, surpassing the Decision Tree Classifier by almost 0.2. 

The XGB Classifier is the worst performing algorithm in comparison to the remaining 

classifiers, even though it achieved an impressive score of 0.919. 
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Figure 32: Precision Metric for Nine Algorithms for Training and Validation Data Set 

Figure 33 below reveals outcomes for all algorithms measured against the Recall metric. 

Seven out of nine algorithms have gained a score of 0.91 or higher. The Decision Tree 

Classifier has obtained the highest recall score on the training data set, followed closely by 

the Random Forest Classifier and the Sequential (Deep Learning) algorithm, thus keeping the 

result consistent with the other three metrics. Linear Discriminant Analysis and Gaussian NB 

are the lowest-performing algorithms on both training – acquiring recall scores of 0.876 and 

0.782, respectively – and validation data set – achieving recall scores of 0.875 and 0.782, 

respectively. Again, the best performing algorithm on the validation data set is Sequential 

(Deep learning), obtaining a recall score of 0.956, followed closely by Random Forest and 

Decision Tree Classifiers. 

 

Figure 33: Recall Metric for Nine Algorithms for Training and Validation Data Set 
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Table 10 below displays algorithms in the order of best performing to the worst. It summarises 

the result measured against accuracy, F1 score, precision, and recall metrics for each 

algorithm applied to the validation data set. All algorithms have performed exceptionally well, 

achieving a score of 0.90 or more on thirty-two out of thirty-six possible outcomes.  

Table 10: Detection Result Comparison of Nine Algorithms on Validation Data Set 

Algorithm Accuracy F1 Score Precision Recall 
Sequential (Deep Learning) 0.969 0.964 0.973 0.956 
Random Forest Classifier 0.962 0.956 0.963 0.949 
Decision Tree Classifier 0.947 0.94 0.932 0.948 
K Neighbours Classifier 0.944 0.935 0.95 0.921 
SVC 0.932 0.922 0.934 0.909 
XGB Classifier 0.929 0.92 0.919 0.92 
Logistic Regression 0.927 0.917 0.921 0.912 
Linear Discriminant Analysis 0.919 0.904 0.936 0.875 
Gaussian NB 0.878 0.848 0.928 0.782 

 

Sequential (Deep Learning) is the best performing algorithm as it obtained 0.956 or more 

against all four metrics. The top machine learning algorithm is the ensemble method Random 

Forest Classifier acquiring 0.949 or more score on all four metrics. The second-best machine 

learning algorithm is the Decision Tree Classifier attaining 0.93 or more score on all four 

metrics when applied on the validation data set. The close third algorithm on machine learning 

family is the K Nearest Neighbours Classifier achieving 0.92 or more score on all four metrics. 

Gaussian NB remains in the last position; however, it is worth mentioning that using our 

approach, even the last positioned algorithm has achieved a score of 0.928 and mid to late 

eighties in three of the four metrics. 

We are using a confusion matrix for summarising the performance of all classification 

algorithms that we used in our experiment. The confusion matrix provides helpful insight into 

inaccuracies made by our algorithms as well as the types of mistakes that are made by the 

classifiers. This insight is beneficial in overcoming constraints of using accuracy metric alone. 
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Figure 34 below provides a confusion matrix for each algorithm obtained on the validation data 

set.   

 

Figure 34: Confusion Matrix for Validation Data Set 

Figure 34 shows a slightly altered version of the confusion matrix, as we are showing 

additional information for each class. The additional information consists of True Positive Rate 

(TPR), False Positive Rate (FPR), False Negative Rate (FNR), and True Negative Rate (TNR). 

It is being shown in terms of percentage points in parenthesis for each class. 

Our confusion matrix illustrates that the top-performing algorithm, Sequential (Deep Learning), 

excels at each of the four classes True Positive (TP), False Positive (FP), False Negative (FN), 

and True Negative (TN) in comparison to the other eight machine learning algorithms.  

All but one algorithm (Gaussian NB) have achieved over 90% accuracy, as shown in Table 10 

above, and none of the algorithms has FPR exceeding 3%, as shown in Figure 34 above. The 

FN of 248 for the Sequential algorithm means that it has wrongly identified 248 malware apps 

as benign (4.38%), similarly FP of 160 means that the algorithm has wrongly classified 160 

benign apps as malware (2.21%). The FPR is not exceeding 3% and therefore these results 
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conform to the machine learning methodology proposed by Soviani, Scheianu and Suciu [168] 

to aid in the detection and recognition of malware. The primary hypothesis of the study was 

that the technique used should be able to detect malicious applications before they cause 

damage. As such, the accuracy target for malware detection should be at least 90% with false 

alarm (FPR) not exceeding 3% for a classifier [168]. 

The experiment results show that deep learning algorithm performed slightly better than the 

machine learning algorithm. Sequential (Deep Learning) is the best performing algorithm in 

our experiments as it obtained 0.956 or more against all four metrics. The top machine learning 

algorithm is the ensemble method Random Forest Classifier, achieving a score of 0.949 or 

more on all four metrics. 

7.9 Result Comparison between Experiment 1 and 2 

The performance of Experiment 1 and Experiment 2 has demonstrated that the usage of the 

neglected features identified by us has performed better. Table 11 below lists the best 

performing algorithms in both experiments. Experiment 2 has performed better than 

Experiment 1 against all four matrices. Experiment 1 is slightly behind when we compare 

Precision matric of both experiments, however there is a big difference in performance for the 

remaining three metrics. 

Table 11: Best Algorithms in Experiment 1 and 2. 

Best Algorithm / Experiment No Accuracy F1 Score Precision Recall 
Experiment 1 - Sequential (Deep Learning) 0.877 0.843 0.957 0.754 
Experiment 2 - Sequential (Deep Learning) 0.969 0.964 0.973 0.956 

 

Table 12 below summarises the confusion matrix for the best algorithm of both experiments. 

The confusion matrix illustrates that the Experiment 2 has exceled at each of the four classes 

True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN) in 

comparison to the Experiment 1. The FN of 248 for the Experiment 2 means that it has wrongly 

identified 248 malware apps as benign (4.38%), whereas Experiment 1 has wrongly identified 
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1393 malware apps as benign (24.63%). Similarly, FP of 160 means that the Experiment 2 

has wrongly classified 160 benign apps as malware (2.21%), whereas Experiment 1 has 

wrongly classified 194 benign apps as malware (2.68%). 

Table 12: Confusion Matrix for Experiment 1 and 2. 

Best Algorithm / Experiment No TP FP FN TN 

Experiment 1 - Sequential (Deep 
Learning) 

4263 
(75.37% 

194 
(2.68%) 

1393 
(24.63%) 

7054 
(97.32%) 

Experiment 2 - Sequential (Deep 
Learning) 

5408 
(95.62%) 

160 
(2.21%) 

248 
(4.38%) 

7088 
(97.79%) 

 

The result of the experiment 2 confirmed that it performed better than the Experiment 1 - 

Performance Comparison. Although both experiments have achieved our target FPR of less 

than 3% but experiment 1 has missed target of over 90% accuracy. Similarly, experiment 1 

has performed poorly against F1 Score and Recall metrics. The result demonstrates that Droid 

Fence performed better when utilising the features combination proposed in Table 6, Table 7, 

and Figure 24. 

7.10 Experiment 3 – Performance Comparison 

The purpose of this experiment is to ascertain the performance of Droid Fence when it is 

trained and tested on malware and benign datasets being drawn from different time periods. 

For the purpose of this experiment, we trained Droid Fence on Malgenome and Drebin 

datasets (2010 – 2012) and tested it on the GitHub samples which contained samples from 

different time period (2015 – 2019). 

The performance of each algorithm is compared by observing accuracy, F1 score, precision, 

and recall metrics. Moreover, a confusion matrix for each algorithm is utilised for evaluation 

purposes. Figure 35 below shows an accuracy metric for training and validation data sets. The 

result shows that all algorithms have achieved a high accuracy score; seven out of nine 

algorithms have scored 0.91 or above. The Decision Tree Classifier has performed very well 
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against the training data set measuring accuracy score of 0.991; however, it performed poorly 

against the validation data set. The Sequential (Deep Learning) algorithm is the best 

performing algorithm on the validation data set, achieving an accuracy score of 0.969. The 

Logistic Regression is not far behind achieving an accuracy score of 0.958. 

 

Figure 35: Accuracy Metric for Experiment 3 for Training and Validation Data Set 

Both K-Neighbors and Random Forest Classifiers are the joint third-best performing algorithm 

on the validation set, just ahead of the XGB Classifier. Gaussian NB has acquired a 

comparatively lowest score of 0.878. Linear Discriminant Analysis, SVC, and Gaussian NB 

have performed almost in the same fashion on both training and validation data sets. 

Figure 36 below reflects each algorithm’s performance when measured against the F1 Score 

metric. Most algorithms have performed very well, achieving over 0.90 scores for six out of 

nine algorithms. The Decision Tree Classifier is again the best performing classifier on the 

training data set, producing an almost perfect score; however, the Sequential (Deep Learning) 

algorithm is the clear winner on the validation data set again, as it obtained F1 Score of 0.965. 

The Logistic Regression is again the second-best performing algorithm on the validation 

dataset acquiring an F1 Score of 0.952. Gaussian NB appears last when measured against 

the F1 Score metric. Linear Discriminant Analysis, SVC, XGB Classifier, and Gaussian NB 

have performed almost in the same fashion on both training and validation data sets. 
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Figure 36: F1 Score Metric for Experiment 3 for Training and Validation Data Set 

Figure 37 below illustrates the Precision metric results for all nine algorithms. All algorithms 

have acquired over 0.94 scores against the Precision metric. The Random Forest Classifier, 

Decision Tree Classifier, and Sequential (Deep Learning) algorithms have attained almost 

perfect scores on the training data set. However, Logistic Regression algorithm has attained 

the top position on the validation data set, followed closely by Linear Discriminant Analysis 

and SVC at joint-second position. The Sequential (Deep Learning) obtained the third position 

on the validation data set.  The Decision Tree Classifier is the worst performing algorithm in 

comparison to the remaining classifiers, even though it achieved an impressive score of 0.955. 

 

Figure 37: Precision Metric for Experiment 3 for Training and Validation Data Set 
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Figure 38 below reveals outcomes for all algorithms measured against the Recall metric. Two 

out of nine algorithms have gained a score of 0.91 or higher. The Decision Tree Classifier has 

obtained the highest recall score on the training data set, followed closely by the Random 

Forest Classifier and the Sequential (Deep Learning) algorithm. Linear Discriminant Analysis 

and Gaussian NB are the lowest-performing algorithms on both training – acquiring recall 

scores of 0.875 and 0.782, respectively – and validation data set – achieving recall scores of 

0.823 and 0.754, respectively. The best performing algorithm on the validation data set is 

Sequential (Deep learning), obtaining a recall score of 0.946, followed closely by Random 

Forest and Decision Tree Classifiers. 

 

Figure 38: Recall Metric for Experiment 3 for Training and Validation Data Set 

Table 13 below displays algorithms in the order of best performing to the worst. It summarises 

the result measured against accuracy, F1 score, precision, and recall metrics for each 

algorithm applied to the validation data set. All algorithms have performed well, achieving a 

score of 0.90 or more on twenty three out of thirty-six possible outcomes.  

Table 13: Detection Result Comparison of Experiment 3 on Validation Data Set 

Algorithm Accuracy F1 Score Precision Recall 
Sequential (Deep Learning) 0.969 0.965 0.984 0.946 
Logistic Regression 0.958 0.952 0.992 0.915 
Random Forest Classifier 0.937 0.928 0.967 0.892 
K Neighbours Classifier 0.937 0.927 0.983 0.877 
XGB Classifier 0.923 0.91 0.974 0.854 
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SVC 0.916 0.899 0.991 0.823 
Linear Discriminant Analysis 0.916 0.899 0.991 0.823 
Decision Tree Classifier 0.895 0.875 0.955 0.808 
Gaussian NB 0.878 0.848 0.955 0.754 

 

Sequential (Deep Learning) is the best performing algorithm as it obtained 0.946 or more 

against all four metrics. The top machine learning algorithm is the Logistic Regression 

acquiring 0.915 or more score on all four metrics. The second-best machine learning algorithm 

is the Random Forest Classifier attaining 0.892 or more score on all four metrics when applied 

on the validation data set. The close third algorithm on machine learning family is the K 

Nearest Neighbours Classifier achieving 0.877 or more score on all four metrics. Gaussian 

NB remains in the last position; however, it is worth mentioning that using our approach, even 

the last positioned algorithm has achieved a score of 0.848 to 0.955 in three out of four 

matrices. 

We are using a confusion matrix for summarising the performance of all classification 

algorithms that we used in our experiment. The confusion matrix provides helpful insight into 

inaccuracies made by our algorithms as well as the types of mistakes that are made by the 

classifiers. This insight is beneficial in overcoming constraints of using accuracy metric alone. 

Figure 39 below provides a confusion matrix for each algorithm obtained on the validation data 

set. 
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Figure 39: Confusion Matrix for Validation Data Set - Experiment 3 

Our confusion matrix illustrates that the top-performing algorithm, Sequential (Deep Learning), 

excels at each of the four classes True Positive (TP), False Positive (FP), False Negative (FN), 

and True Negative (TN) in comparison to the other eight machine learning algorithms. The 

FPR of 1.27%, thus achieving our target of FPR of less than 3% whilst achieving over 90% 

accuracy. The experiment results suggests that Droid Fence performs well when trained and 

tested on data samples being drawn from different time period. 

7.11 Experiment 4 – Performance Comparison 

The final experiment is conducted on all three datasets Malgenome, Drebin, GitHub. The 

performance of each algorithm is compared by observing accuracy, F1 score, precision, and 

recall metrics. Moreover, a confusion matrix for each algorithm is utilised for evaluation 

purposes. Figure 40 below shows an accuracy metric for training and validation data sets. The 

result shows that all algorithms have achieved a high accuracy score; eight out of nine 

algorithms have scored 0.92 or above. The Decision Tree Classifier has performed very well 

against the training data set measuring accuracy score of 0.991; however, the Sequential 
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(Deep Learning) algorithm is the best performing algorithm on the validation data set, 

achieving an accuracy score of 0.971. The Random Forest Classifier is not far behind 

achieving an accuracy score of 0.958. 

 

Figure 40: Accuracy Metric for Experiment 4 for Training and Validation Data Set 

The Decision Tree Classifier is the third-best performing algorithm on the validation set, just 

marginally ahead of the K-Neighbours Classifier. Gaussian NB has acquired a comparatively 

lowest score of 0.877. Logistic Regression, Linear Discriminant Analysis, SVC, XGB 

Classifier, and Gaussian NB have performed almost in the same fashion on both training and 

validation data sets. 

Figure 41 below reflects each algorithm’s performance when measured against the F1 Score 

metric. All algorithms have performed very well, achieving over 0.90 scores for all but one 

algorithm. The Decision Tree Classifier is again the best performing classifier on the training 

data set, producing an almost perfect score; however, the Sequential (Deep Learning) 

algorithm is the clear winner on the validation data set again, as it obtained F1 Score of 0.967. 

The Random Forest is again the second-best performing algorithm on the validation dataset 

acquiring an F1 Score of 0.952. Gaussian NB appears last when measured against the F1 

Score metric. Logistic Regression, Linear Discriminant Analysis, SVC, XGB Classifier, and 

Gaussian NB have performed almost in the same fashion on both training and validation data 

sets. 
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Figure 41: F1 Score Metric for Experiment 4 for Training and Validation Data Set 

Figure 42 below illustrates the Precision metric results for all nine algorithms. All algorithms 

have acquired over 0.92 scores against the Precision metric. The Random Forest Classifier, 

Decision Tree Classifier, and Sequential (Deep Learning) algorithms have attained almost 

perfect scores on the training data set. The Sequential (Deep Learning) algorithm has attained 

the top position on the validation data set. The Random Forest Classifier obtained the second 

position on the validation data set. The K Neighbours Classifier is the third-best performing 

algorithm on the validation data set, marginally surpassing the Decision Tree Classifier. The 

XGB Classifier and Logistic Regression are the joint-worst performing algorithm in comparison 

to the remaining classifiers, even though both achieved an impressive score of 0.92. 

 

Figure 42: Precision Metric for Experiment 4 for Training and Validation Data Set 
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Figure 43 below reveals outcomes for all algorithms measured against the Recall metric. 

Seven out of nine algorithms have gained a score of 0.91 or higher. The Decision Tree 

Classifier has obtained the highest recall score on the training data set, followed closely by 

the Random Forest Classifier and the Sequential (Deep Learning) algorithm, thus keeping the 

result consistent with the other three metrics. Linear Discriminant Analysis and Gaussian NB 

are the lowest-performing algorithms on both training – acquiring recall scores of 0.878 and 

0.783, respectively – and validation data set – achieving recall scores of 0.876 and 0.782, 

respectively. Again, the best performing algorithm on the validation data set is Sequential 

(Deep learning), obtaining a recall score of 0.956, followed closely by Random Forest and 

Decision Tree Classifiers. 

 

Figure 43: Recall Metric for Experiment 4 for Training and Validation Data Set 

Table 14 below displays algorithms in the order of best performing to the worst. It summarises 

the result measured against accuracy, F1 score, precision, and recall metrics for each 

algorithm applied to the validation data set. All algorithms have performed exceptionally well, 

achieving a score of 0.90 or more on thirty-two out of thirty-six possible outcomes. 

Table 14:Detection Result Comparison of Experiment 4 on Validation Data Set 

Algorithm Accuracy F1 Score Precision Recall 
Sequential (Deep Learning) 0.971 0.967 0.977 0.956 
Random Forest Classifier 0.958 0.952 0.958 0.946 
Decision Tree Classifier 0.945 0.937 0.932 0.943 
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K Neighbours Classifier 0.943 0.935 0.949 0.92 
SVC 0.933 0.923 0.934 0.912 
XGB Classifier 0.93 0.921 0.922 0.92 
Logistic Regression 0.928 0.917 0.92 0.916 
Linear Discriminant Analysis 0.919 0.904 0.934 0.876 
Gaussian NB 0.877 0.848 0.927 0.782 

 

Sequential (Deep Learning) is the best performing algorithm as it obtained 0.956 or more 

against all four metrics. The top machine learning algorithm is the ensemble method Random 

Forest Classifier acquiring 0.946 or more score on all four metrics. The second-best machine 

learning algorithm is the Decision Tree Classifier attaining 0.932 or more score on all four 

metrics when applied on the validation data set. The close third algorithm on machine learning 

family is the K Nearest Neighbours Classifier achieving 0.92 or more score on all four metrics. 

Gaussian NB remains in the last position; however, it is worth mentioning that using our 

approach, even the last positioned algorithm has achieved a score of 0.928 and mid to late 

eighties in three of the four metrics. 

We are using a confusion matrix for summarising the performance of all classification 

algorithms that we used in our experiment. The confusion matrix provides helpful insight into 

inaccuracies made by our algorithms as well as the types of mistakes that are made by the 

classifiers. This insight is beneficial in overcoming constraints of using accuracy metric alone. 

Figure 44 below provides a confusion matrix for each algorithm obtained on the validation data 

set. 
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Figure 44: Confusion Matrix for Validation Data Set - Experiment 4 

Our confusion matrix illustrates that the top-performing algorithm, Sequential (Deep Learning), 

excels at each of the four classes True Positive (TP), False Positive (FP), False Negative (FN), 

and True Negative (TN) in comparison to the other eight machine learning algorithms.  

All but one algorithm (Gaussian NB) have achieved over 90% accuracy, as shown in Table 14 

above, and none of the algorithms has FPR exceeding 3%, as shown in Figure 44 above. The 

FN of 253 for the Sequential algorithm means that it has wrongly identified 253 malware apps 

as benign (4.37%), similarly FP of 129 means that the algorithm has wrongly classified 129 

benign apps as malware (1.74%). The FPR is not exceeding 3% and therefore these results 

conform to the machine learning methodology proposed by Soviani, Scheianu and Suciu [168] 

to aid in the detection and recognition of malware. The primary hypothesis of the study was 

that the technique used should be able to detect malicious applications before they cause 

damage. As such, the accuracy target for malware detection should be at least 90% with false 

alarm (FPR) not exceeding 3% for a classifier [168]. 

The above results answers both research questions: RQ5 and RP6.  
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RQ5: Will the usage of neglected features identified in literature review along with Android 

permissions and services allow the achievement of over 90% accuracy whilst keeping FPR 

less than 3% in detecting Android malware?  

The Droid Fence has achieved an accuracy of 0.971 and a FPR of 1.74 (less than 3%) when 

utilised the above stated features. 

RQ6: How does the performance of the proposed deep learning algorithm (in terms of 

accuracy, F1 score, precision, and recall) compared to that of existing machine learning 

algorithms? 

Our experiment results show that deep learning algorithm performed slightly better than the 

machine learning algorithm. Sequential (Deep Learning) is the best performing algorithm in 

our experiments as it obtained 0.956 or more against all four metrics. The top machine learning 

algorithm is the ensemble method Random Forest Classifier, achieving a score of 0.946 or 

more on all four metrics. 

7.12 Comparison with related methods 

In this section, we attempt to answer our research question seven. 

• RQ7: Does the approach developed as part of RQ5 performs better (in terms of 

Accuracy) than comparative methods? 

We provide the performance of the Droid Fence against related methods which utilise static 

analysis and some of the similar features. We have used the results of experiment 4 for this 

purpose because this experiment contains the full dataset and our proposed features. There 

have been various Android malware detection techniques and tools presented over the years. 

An SVM-based approach has been used [111] that combines risky permissions and sensitive 

API calls and feeds them as features to the SVM algorithm. They have achieved 86% accuracy 

on a data set of 700 applications, consisting of equal distribution of malware and benign 

applications.  



148 
 

Sanz et al. [112] acquired an accuracy of 86.41% on a data set of 249 malware and 1811 

benign applications. Their method extracts permissions from an Android manifest file and 

utilises various machine learning algorithms for detecting malware. Random Forest algorithm 

trained with fifty trees achieved the highest accuracy. 

DroidDet [66] employs the Rotation Forest algorithm and trains it with features extracted by 

conducting a static analysis of 1065 malware and 1065 benign applications. Static analysis 

extracted permissions, monitoring system events, sensitive APIs, and permission rates as 

features for constructing the machine learning model. Their method achieves 88.26% 

accuracy, and they report a 3.33% improvement to the SVM algorithm. 

APK Auditor [92] is a permission-based Android malware detection tool; it utilises static 

analysis to extract permissions information and store it along with the analysis result into a 

signature database. The tool also contains an Android application that is stored on end-users’ 

mobiles to allow them to request analysis. The application communicates with a central server, 

which provides the result of the analysis. APK Auditor has been tested on 6909 malware and 

1853 benign applications dataset with a reported accuracy of 88%. 

Deepa et al. [113] applies feature extraction and dimensionality reduction methods - namely 

Information Gain, Correlation Feature Selection (CFS), and Kruskal methods - in their static 

analysis approach. Their technique utilises the extraction of three types of features: method 

names, strings, and opcodes for constructing machine learning models. Their dataset 

consisted of 612 malware and 758 benign applications. Their techniques achieved 88.75% of 

accuracy by using AdaBoost with J48 as the base classifier.  

AppContext [114] extracts security-sensitive behaviours by conducting a static analysis. The 

security-sensitive behaviour is classified as API calls to certain methods that are permission-

protected or are sink method, i.e., require access to functions that write data to a file. This data 

is used to train an SVM classifier. AppContext achieved 93.2% accuracy when applied on 202 

malware and 633 benign applications dataset. 
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Table 15 summarises the performance of the Droid Fence against other related methods. 

Droid Fence surpasses other approaches with an accuracy of 97.1%. The other methods 

acquired an accuracy rate between 86% and 93.2%. Droid Fence achieves an improvement 

of 3.9% against AppContext, the best performing approach among the comparative methods. 

Moreover, Droid Fence utilised a more extensive data set (13191 applications) in comparison 

to all comparative approaches and, therefore, been tested against an enhanced amount of 

data. 

Table 15: Comparison with related methods 

Method/Publication Accuracy Malware Benign 
Detecting Malware for Android Platform: An SVM based 
Approach [111] 86 350 350 
PUMA [112] 86.41 249 1811 
DroidDet [66] 88.26 1065 1065 
APK Auditor [92] 88.28 6909 1853 
Investigation of Feature Selection Methods for Android 
Malware Analysis [113] 88.75 612 758 
AppContext [114] 93.2 202 633 
Droid Fence 97.1 5787 7404 
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8. Conclusion and Future Work 

The popularisation and openness of Android devices have paved the way for cybercriminals 

to intrude individual privacy by introducing malware applications [2]. Malware is described as 

a set of instructions that can potentially harm a computer-related system within a network [4]. 

As the number of Android devices and applications increase, the number of malware 

applications also increases [2]. In efforts to address this problem, researchers have come 

together to develop malware detection techniques to identify and counter intrusion by 

malicious artefacts.  

8.1 Research Questions 

We had identified the following research questions. 

• RQ1: How do we classify Android application security analysis provided in the 

literature? 

• RQ2: What is the current state of analysing Android malware detection techniques and 

technologies? 

• RQ3: What challenges, gaps, and patterns might be deduced from the existing 

research attempts, which will inform further research? 

The third research question has helped identified further research questions to devise our 

research path. 

• RQ4: Is it possible to devise an efficient process for running experiments, decompiling 

the APK, obtaining the required features, and viewing and comparing the results? 

• RQ5: Will the usage of neglected features identified in literature review along with 

Android permissions and services allow the achievement of over 90% accuracy whilst 

keeping FPR less than 3% in detecting Android malware? 
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• RQ6: How does the performance of the proposed deep learning algorithm (in terms of 

accuracy, F1 score, precision, and recall) compare to that of existing machine learning 

algorithms? 

• RQ7: Does the approach developed as part of RQ5 performs better (in terms of 

Accuracy) than comparative methods? 

8.1.1 Research Question 1 (RQ1) 

In attempting to answer our first research questions: How do we classify Android application 

security analysis provided in the literature, we have identified and reviewed two primary 

analysis techniques: Signature-based detection, and Behaviour-based detection, as well as 

complimentary technique Machine/Deep learning [39]. 

Signature-based detection relies on creating signatures of benign and malware applications 

and compares these signatures with existing signatures stored in a database [90]. Signature-

based methods contain less overhead and provide a fast result as applications do not need to 

run in a sandbox environment to generate signatures of an application [109]. The process may 

use one of the combinations of the following items to create a unique signature: string 

variables, function names, permissions, intents, package names, and broadcast receivers etc. 

The technique is not useful in detecting zero-day malware because the signature of such 

malware may not exist in a signature database [47]. However, this limitation can be countered 

by using a supplementary technique such as machine learning or deep learning as these 

techniques do not rely on a signature database for classification purpose [103]. 

Another limitation of the signature-based method is the detection of obfuscated malware 

where malware developers may change names of string variables or function names in the 

code, which would change the signature of the malware application [58]. This limitation may 

be countered by using information (such as permissions) held in the manifest file, as the 

permission names cannot be obfuscated due to the Android development model [121]. 
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The behaviour-based technique relies on running applications in a controlled environment and 

observing their behaviours [95]. The method creates a behaviour-based profile for applications 

and flags them for further analysis if suspicious behaviour is observed [96]. The example of 

questionable behaviour could be accessing sensitive APIs that may not suit the description of 

an application, e.g. a weather application trying to access contacts. The technique is useful in 

detecting obfuscated malware as it does not rely on code-based signatures. However, 

behaviour-based detection is complicated as it requires manual steps to set up a controlled 

environment and execute each application. Another limitation is that the behaviour-based 

method does not cover the full code path execution [97]. 

Machine learning and deep learning-based methods offer complementary solutions to both 

signature-based detection and behaviour-based detection [75]. The supplementary solutions 

work by utilising features extracted from signature or behaviour-based solutions and feeding 

them to various machine learning and deep learning algorithms for classification purposes. 

The machine and deep learning methods overcome some of the shortcomings of the existing 

techniques as these methods do not rely on a signature database or behaviour profiles [76] 

[103]. 

8.1.2 Research Question 2 (RQ2) 

In attempting to answer the first part (techniques) of the second research question: what is the 

current state of analysing Android malware detection techniques, we have identified and 

reviewed three primary analysis techniques: Static Analysis, Dynamic Analysis, and Hybrid 

Analysis. The applicability of different techniques depends on their accuracy levels, features 

used and limitations. 

Static Analysis technique applies a signature-based and permission-based method to extract 

features from a set of benign and malware samples without running the applications [120]. 

The extracted features are, but not limited to, permissions, intents, method names, string 

variables, package information, and text mining etc [25]. The extracted features are passed 

as input to machine learning or deep learning algorithms to classify applications as benign or 
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malware [66]. The static analysis technique consumes fewer resources and efficient in 

detecting malware. Our survey indicates that static analysis has achieved up to 96% accuracy. 

However, the static analysis uses signature-based method so are prone to the limitation of the 

signature-based method, e.g. difficulty in detecting obfuscated malware. This limitation may 

be overcome if the analysis uses non-code-based features such as permissions, intents, and 

package information which are resilient to obfuscation due to Android’s development model. 

Another limitation is that the technique is unable to extract features from dynamic code [123]. 

Dynamic Analysis technique extracts features from an application by executing them in a 

controlled environment [62]. The method extracts features such as API calls, CPU usage, 

memory usage, battery power [121]. It may extract network traffic features such as IP address, 

length of packet lengths etc. The technique is also useful in detecting obfuscated malware as 

it does not depend on code analysis [138]. The feature may be fed to various machine learning 

and deep learning algorithms to obtain a classification score against different metrics. Our 

survey indicates that the dynamic analysis has achieved up to 96.24% accuracy, which is 

slightly better than the static analysis (96%) [135]. A limitation of the dynamic analysis 

technique is that it requires a lot of resources to employ as applications need to be run in a 

controlled environment [137]. Another limitation is that it fails to detect intelligent malware 

which detects a sandbox environment and does not execute malicious code. Android 

morphing techniques often compromise the effectiveness of dynamic analysis during 

execution [139]. 

Hybrid Analysis technique, as the name implies, consist of static and dynamic analysis. There 

are mainly three steps for hybrid analysis, employing static analysis, next executing 

applications in a controlled environment for conducting dynamic analysis, and finally feeding 

features extracted from both analysis to machine learning and deep learning algorithms [44]. 

Our survey indicates that the hybrid analysis has achieved up to 96.92% accuracy [148], which 

is marginally better than static analysis (96%) and dynamic analysis (96.24%). Theoretically, 

combining both techniques should increase detection accuracy significantly; however, our 
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survey shows that this is not the case. The main limitation of the hybrid technique is the 

complexity of combining both static and dynamic analysis, while marginally increasing overall 

accuracy [53]. This complexity could be the reason for the decline in the usage of the hybrid 

analysis from 2017 onwards. 

Several custom-built technologies have been identified in our attempt to answer the second 

part (technologies) of the second research question: What is the current state of analysing 

Android malware detection technologies? Several technologies have been proposed to 

facilitate malware detection and classification. These include CrowDroid, DroidOlytic, 

MigDroid, MalDroide, Dendroid, Androguard, Andromaly, TaintDroid, EvoDroid and 

SmartDroid. The technologies employ different tools and techniques to provide a high-

performance platform for malware analysis. The context of application differs in terms of how 

they operate, features used for analysis and success rates. All the technologies presented in 

the Technologies for Android Malware Detection section above illustrated a capacity to attain 

more than 90% accuracy rate with varied sets of data. For instance, the Androguard 

framework employs reverse engineering to train and analyse requested permissions with an 

accuracy rate of 96% [127]. Although the technology can extract features from even broken 

applications, it can only work with malware samples; this implies that benign samples that may 

contain traces of malware can bypass the framework which questions its effectiveness [127]. 

Other technologies such as Dendroid, MigDroid and CrowDroid are based on data mining and 

retrieval for extraction of codes and classification [155] [157]. A notable strength of such a 

model is that it is scalable, fast, and accurate in analysing malware. From the literature 

reviewed, CrowDroid is the only framework with a capacity to attain a 100% accuracy rate [6]. 

However, the experiment was done on only 60 applications, so it is not known how it would 

behave when a bigger sample size is used. Despite this success, the rising privacy issues 

have constrained its usability.   

Frameworks that combined multiple analysis methods illustrate a higher success rate. For 

instance, EvoDroid combines Android specific analysis and evolutionary algorithms novel 
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techniques to achieve higher code coverage [158]. Similarly, SmartDroid integrates dynamic 

and static analysis features to extract and transverse features which make it more effective 

compared to TaintDroid [159]. However, combining multiple analysis methods deems these 

technologies complex making it challenging to obtain native codes for unpacked malware 

samples. Further, from the literature reviewed, it is notable the accuracy of the discussed 

technologies depends on the sample size used with larger sample sizes being preferable. 

8.1.3 Research Question 3 (RQ3) 

Several gaps and limitations have been identified in our attempt to answer the final research 

question: what challenges, gaps, and patterns might be deduced from the existing research 

attempts, which will inform further research? One of the research gaps is where malicious 

code is hidden in more than one application, which may enable both applications to bypass 

detection individually [21]. Once both seemingly benign applications are installed on the same 

device, they may communicate in the background via services for malicious purposes. 

Therefore, the usage of Android services in any detection technology’s feature set should 

minimise this threat.  

Another limitation is the capabilities of the malicious applications to load malicious code at run 

time dynamically. Although dynamic analysis may protect against this technique, the static 

analysis does not provide any detection capability [43]. Therefore, the usage of detecting if 

dynamic code is used during the static analysis may provide some resilience to the static 

analysis against this type of threat. 

Limited research has been done on the financial cost of developing malware detection 

systems. A further comprehensive investigation into this area will help software development 

companies to build the most cost-effective and efficient malware detection technologies. 

Another limitation is the abilities of malware authors to hide malicious code through encryption 

in packed samples. The encryption hinders static analysis to be done correctly. It also affects 

the dynamic analysis, when encryption is combined with intelligent malware which detects a 
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controlled environment and does not execute the malicious encrypted code [130]. Therefore, 

detection of encrypted code usage should be used as a feature set during static analysis to 

mitigate this threat. 

Another gap identified is the development of advance network architectures that ceases the 

usage of legacy communication protocols which may be averse to malware. It further includes 

the principles of configuration, guidelines, and operation to be defined for malware detection, 

e.g. active monitoring of network assets [149]. 

Malware have been evolving over the years; therefore, a gap has been identified to use 

genetic algorithms for detecting malware. Understanding the evolution of malware to create 

signature features to be used as vaccines for future malware detection is an important area 

that requires further research [118]. 

Another weak link in the chain is the end-user, as malware authors are increasingly applying 

social engineering tactics into deceiving end-users to install the malicious application. Further 

research into this area for finding the best practices to educate end-users on the tactics 

employed by adversaries and to be vigilant of the dangers posed by unofficial Android markets 

is necessary [49]. 

Another gap identified is the manual steps required, from acquiring benign and malware 

samples to extracting features and storing results add to the cumbersomeness of designing 

and reviewing malware detections systems. Therefore, more research is needed in the 

creation of automated tools which could reduce or remove the complexity involving the 

detection process [16]. 

The literature review suggests that different studies have used features such as permissions, 

API calls, system events, strings, and method names etc. in their static analysis. However, 

features such as services and the presence of useful functionality such as detection of code 

for cryptography, dynamic code loading, native code, HTTPs, database, and reflection have 

not been utilised in detail, especially in the same experiments. 
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Some of the research gaps cited in the previous paragraphs can be fulfilled by creating an 

approach that amalgamates the features for detecting Android Malware. The literature review 

also suggests that the process for extracting features from multiple malware and benign 

applications is not straightforward as it requires various steps. These steps are decompiling 

APK, obtaining the needed features, storing those features into some storage medium and 

feeding them to machine learning algorithms. There is a requirement to automate this process 

using a visual interface.  

Taking all this into consideration, we developed a technique that amalgamates these 

neglected features: a set of permissions, services, and six other features (usage of https, 

database, dynamic code, native code, reflection, and cryptography) to generate a matrix that 

is used for detecting malware effectively. To the best of our knowledge, this is a novel 

approach that combines these features to detect malware. 

8.1.4 Research Question 4 (RQ4) 

In order to answer RQ4 Is it possible to devise an efficient process for running experiments, 

decompiling the APK, obtaining the required features, and viewing and comparing the 

results?), we developed Droid Fence, a web-based framework, which allows users to run 

experiments to extract various static features, store them in a relational database, and apply 

different machine learning and deep learning algorithms to detect malware and commit the 

result into a database. Droid Fence provides a web front-end to view, evaluate, and compare 

the results of nine algorithms stored against each experiment. 

8.1.5 Research Question 5 (RQ5) 

We utilised the Droid Fence to use our proposed technique in experiments to answer RQ5: 

Will the usage of neglected features identified in literature review along with Android 

permissions and services allow the achievement of over 90% accuracy whilst keeping FPR 

less than 3% in detecting Android malware? 
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Droid Fence is evaluated on a dataset of 13191 applications consisting of 5787 malware and 

7404 benign applications. Our results show that Droid Fence is particularly useful when it 

utilises a Sequential (Deep Learning) algorithm to detect malware, achieving accuracy, F1-

measure, precision, and recall scores of 0.971, 0.967, 0.977, and 0.956, respectively. The 

FPR acquired by Sequential is 1.74, less than 3%. 

8.1.6 Research Question 6 (RQ6) 

Our experiment, demonstrates that deep learning Sequential algorithm scored consistently 

highly when compared against eight machine learning algorithms, whilst achieving a FPR of 

1.74. However, the difference between the accuracy scores achieved by the Sequential 

(97.1%) and Random Forest Classifier (95.8%) is minimal in comparison with the remaining 

algorithms used in our experiments. We used a stratified k-fold cross-validation method, and 

the result was compared for four metrics: accuracy, F1 score, precision, and recall. 

8.1.7 Research Question 7 (RQ7) 

The answer to our seventh research question: ‘Does the approach developed as part of RQ5 

performs better (in terms of Accuracy) than comparative methods?’ is Yes. Droid Fence 

surpasses other approaches with an accuracy of 97.1%. The other methods acquired an 

accuracy rate between 86% and 93.2%. Droid Fence achieves an improvement of 3.9% 

against AppContext, the best performing approach among the comparative methods. 

8.1.8 Supplementary Questions 

As part of finding answers to our research questions, we have identified a couple of 

supplementary questions to evaluate Droid Fence further. The first question was to 

demonstrate whether our proposed features are better or not by using the same algorithms 

on different features. To answer this question, we conducted two experiments detailed in 

sections Experiment 1 - Performance Comparison and Experiment 2 - Performance 

Comparison. The experiment 2 utilised our proposed features whereas the experiment 1 

utilised different features. The results of both experiments demonstrated that using our 



159 
 

proposed features has performed much better. Although both experiments have achieved our 

target FPR of less than 3% but experiment 1 has missed target of over 90% accuracy. 

Similarly, experiment 1 has performed poorly against F1 Score and Recall metrics. The result 

demonstrates that Droid Fence performed better when utilising out proposed features 

combination detailed in Table 6, Table 7, and Figure 24. 

The second supplementary question was to ascertain the performance of Droid Fence when 

it is trained and tested on malware and benign datasets being drawn from different time 

periods. To answer this question, we conducted an experiment detailed in section Experiment 

3 – Performance Comparison, whereby we trained Droid Fence on Malgenome and Drebin 

datasets (2010 – 2012) and tested it on the GitHub samples which contained samples from 

different time period (2015 – 2019). The result confirms that the Droid Fence performs well on 

dataset from different time period. The best performing algorithm was again Sequential (Deep 

Learning) as it obtained 0.946 or more against all four metrics. The accuracy was 96.9% 

marginally behind the accuracy 97.1% of experiment 4. 

8.2 Future Work 

The future work can be proposed into two domains: Droid Fence and Android Malware 

Detection area. In this section, we briefly proposed the future direction for both domains. 

Droid Fence can be enhanced by implementing the following improvements: 

1) Droid Fence supports permissions, services and six other features (usage of https, 

database, dynamic code, native code, reflection, and cryptography) for analysis. New 

features such as package information, function names etc. can be added for further 

analysis. 

2) Droid Fence supports static analysis, and it can be extended to include dynamic and 

hybrid analysis for further research.  

3) Droid Fence supports Nine machine learning and deep learning algorithms. It can be 

extended to include support for more algorithms. 
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4) Droid Fence can be hosted in a cloud, and an external-facing API interface can be 

developed for Droid Fence, which can allow other researchers to access features and 

malware dataset which already exist in the database. 

A future direction for Android malware detection can be enhanced by researching the 

communication between seemingly different applications installed on the same device. The 

multiple application or point of entry attack is orchestrated from different applications to 

complete a malicious process. Applications which look benign and pass the detection stage 

are designed to function with other similar applications, where they have severe impacts on 

affected devices. Once both seemingly benign applications are installed on the same device, 

they may communicate in the background for malicious purposes. Hence, there is a need to 

dynamically detect the communication between different applications to detect whether there 

is a malicious behaviour among multiple applications. 

Another future direction for Android malware detection area is to detect malware which installs 

malicious code dynamically. Seemingly, benign applications can download and install dynamic 

code once an application has passed the detection phase. There is a need to scrutinize the 

downloaded dynamic code closely before application has a chance to execute it. 
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