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Abstract 

With the development of nuclear engineering, there is an increasing demand for 

structural integrity assessment for the design and life extension of nuclear reactors. 

The high operating temperature and cyclic loading conditions could significantly affect 

the longevity of nuclear components, causing creep and fatigue damage. The Bree 

diagram has been proposed for the quick determination of structural response and 

cyclic plasticity behaviours. As a series of direct methods, the Linear Matching Method 

(LMM) framework has also been proposed to provide a complete solution for high-

temperature structural integrity assessment. 

In this work, the Bree-like diagrams are extended for structural design and 

assessment. At lower temperatures, the shakedown limit is extended by considering 

kinematic hardening materials. Constant low cycle fatigue life curves are also added 

to the Bree-like diagram. At higher temperatures, the creep rupture limit can be plotted 

considering cyclic loads. Constant creep-fatigue life curves are also added to the 

Bree-like diagram. Meanwhile, the LMM framework is further developed for the 

evaluation of extended Bree-like diagrams. In the LMM shakedown algorithm, a two-

surface kinematic hardening model is implemented. In the LMM creep rupture 

algorithm, a Unified Creep Rupture Equation (UCRE) is implemented for the 

interpolation of creep rupture curves. Based on the LMM DSCA algorithm, a Unified 

Procedure for Fatigue and Ratchet Analysis (UPFRA) is developed to evaluate the 

constant fatigue life curves and ratchet limit. Based on the LMM eDSCA algorithm, an 

extended UPFRA is developed to evaluate the constant creep-fatigue life curves. In 

addition, several engineering examples are presented in this work and the 

mechanisms of creep and cyclic plasticity behaviours of high-temperature structures 

have been investigated and discussed.  

Therefore, the capability and functionality of the existing LMM framework have been 

improved by implementing multiple numerical procedures for different aspects of 

structural integrity assessment. The Bree-like diagram has also been enhanced in 

various ways to provide a reliable engineering tool for high-temperature design and 

assessment.  
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 Introduction 

1.1 Research background 

With the economic growth and increasing demand for electric energy, supercritical 

and ultra-supercritical water reactors have been widely constructed and deployed 

worldwide. Compared to fossil fuel power plants which burn natural gas and coal, 

nuclear power plants have less greenhouse gas emissions and environmental 

pollution. Also, nuclear fuels produce millions of times of more energy density than 

fossil fuels which significantly reduces the transportation cost and the effect on the 

international economic situation. In the UK, around 21% of the electricity is generated 

by 15 nuclear power plants across the country. However, by 2025, almost half of 

reactors are expected to be retired. Therefore, there is an increasing demand for high-

temperature structural integrity assessment of key components in the reactors to 

extend the service life of existing reactors and design a new generation of reactors. 

As a new generation of design of nuclear reactors, the Generation IV reactors have 

been developed with two main types: the fast reactors and the thermal reactors with 

three systems each [1, 2]. Generally, the efficiency of nuclear power plants can be 

significantly improved by increasing operating temperature [3]. The Very High 

Temperature Reactor (VHTR) is a typical thermal reactor whose primary outlet 

temperature can reach 1000 °C during the operation process.  

The tsunami in Japan and the following Fukushima Daiichi nuclear accident have 

raised the alarm of the danger of nuclear meltdown and radiation leaks [4]. Therefore, 

the safety of nuclear reactors has become a high priority, while a robust standard is 

needed to regulate the design and assessment procedures. Popular international 

design codes for high-temperature structures include the ASME Boiler and Pressure 

Vessel Code (NH) [5] from the American Society of Mechanical Engineers in the USA, 

the RCC-MR Code [6] in France, and the R5 procedure for Assessing the High 

Temperature Response of Structure [7] in the UK. These rule-based codes provide 

comprehensive procedures to standardize the design and assessment of pressure 

vessels based on elastic Finite Element (FE) analyses. For safety concerns, the 

results obtained with the rule-based methods are highly conservative to allow margins 

of error and extreme loading conditions. Also, due to the limitation of standardized 

procedures, high-temperature design codes are only applicable for typical 
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engineering components and specific materials. For complicated geometry and 

loading condition, inelastic FE analyses are suggested to consider sophisticated 

constitutive equations and damage models. The nonlinear FE analyses are highly 

accuracy and less conservative, but they can be computational consuming and 

difficult to converge. Therefore, an alternative method is widely demanded among 

industries which can perform structural integrity assessment with high accuracy and 

efficiency.  

The traditional FE analyses and alternative methods can be used for physical 

characterization and evaluation of the cyclic response of structures at high 

temperatures. They can be further used to evaluate the creep, fatigue and thermal 

fatigue damage which could greatly affect the lifespan of nuclear components [8]. 

Creep behaviour can cause a change in dimension, which leads to distortion, leakage 

and cavitation at critical locations, such as steam pipes, boiler headers, superheated 

reactor tubes, turbine serrations and blades [9]. The load-bearing capacity of steel 

may also degrade at high temperatures while the structure would rupture at a 

relatively low stress level. Fatigue behaviour is another common failure mechanism 

induced by cyclic loading conditions, which can interact with creep behaviour in 

various ways. Fatigue induces transgranular cracks at the surface of components, 

while creep induces intergranular cracks within the body. The interaction between 

creep and fatigue can cause significant damage to the component leading to many 

failure cases [10]. Depending on the stress type in the load cycle, the failure 

mechanism can be dominated by either creep or fatigue. Cyclic thermal stress is 

common and dominant in rotor grooves and blades, which is often caused by thermal 

gradient and thermal expansion differences [9]. For components operating in 

relatively low temperatures, the creep effect can be neglected, but low cycle fatigue 

becomes the major concern where the number of cycles to failure is lower than 5 × 

104 [11]. An interaction diagram has been introduced by Bree [12] so that the structural 

response can be determined directly for various combinations of thermal-mechanical 

loads. Several cyclic behaviours are differentiated by the shakedown and ratchet 

boundaries in the Bree diagram: elastic shakedown behaviour, plastic shakedown 

behaviour leading to low cycle fatigue damage, and ratchetting behaviour leading to 

incremental collapse. Therefore, the Bree diagram has become a useful tool for 

structural integrity assessment.  
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To calculate Bree-like diagrams and provide an alternative method for structural 

integrity assessment, the Linear Matching Method (LMM) framework has been 

proposed by previous researchers [13] based on a series of direct methods. The 

original LMM framework consists of several modules for different types of industrial 

problems, including shakedown analysis, creep rupture analysis, ratchet analysis, low 

cycle fatigue analysis and creep-fatigue analysis. Several algorithms have been 

adopted to support the various modules within the LMM framework, including the 

Linear Matching Method (LMM) algorithm [14], the extended LMM algorithm [15], the 

Direct Steady Cycle Analysis (DSCA) algorithm [16-18] and the extended Direct 

Steady Cycle Analysis (eDSCA) [19, 20]. The LMM framework has also been 

implemented in the commercial FE software ABAQUS/CAE [21] as a plug-in for better 

usability and adopted to solve a number of academic and industrial problems. It can 

also be coupled with the rule-based codes mentioned above to reduce the 

requirement of inelastic FE analyses. In this thesis, the LMM framework is further 

extended and improved in various ways to assist in solving a broader range of 

engineering problems.  

1.2 Key issues to be solved 

Although the existing LMM framework has covered several aspects of structural 

integrity assessment, it can still be improved in several ways. The classical Bree 

diagram can also be extended for better functionality. Four different issues are listed 

below which need a deep investigation on solid mechanisms and computer algorithms 

to be solved: 

1) The Bauschinger effect [22] is often observed in materials under cyclic loads, 

which is caused by kinematic hardening. The shakedown analysis module in 

the current LMM framework only considers the Elastic Perfectly Plastic (EPP) 

model to describe the stress-strain relationship, which can be over-

conservative and inaccurate when the material hardening effect is significant. 

Sophisticated constitutive models have been proposed based on experimental 

results to describe the hardening effect. However, they are only suitable for 

cycle-by-cycle inelastic analysis and are not applicable for direct methods. 

Therefore, it is necessary to develop an extended shakedown theorem within 

the LMM framework to consider the kinematic hardening materials. 
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2) Based on an extended shakedown algorithm, the creep rupture analysis 

module has been developed by previous researchers in the LMM framework. 

To achieve the structural creep rupture boundary for a specific rupture time, 

the module adopts the temperature-dependent rupture strength of material to 

replace the yield stress in the LMM shakedown algorithm. However, the 

current rupture analysis module only adopts linear interpolation and 

extrapolation techniques to calculate the rupture stress based on input data 

points, which is considered inaccurate to describe the curved relationship 

between rupture stress, time, and temperature. Thus, a uniform creep rupture 

equation suitable for various materials is required to be implemented in the 

LMM framework. 

3) The constant life diagrams have been widely used for fatigue design among 

industries, but they are limited to the material level. Based on the concept of 

the Bree diagram, it is meaningful to extend the constant life diagrams to the 

structural level, on which the low cycle fatigue (LCF) or creep-fatigue life is 

constant. The DSCA subroutine has been adopted in the fatigue analysis 

module, and the eDSCA subroutine has been adopted in the creep-fatigue 

analysis module for the current LMM framework. Further development on the 

DSCA and eDSCA is required for the evaluation of the constant structural life 

boundary.   

4) The DSCA is combined with the shakedown algorithm to evaluate the 

structural ratchet boundary in the current LMM framework. However, the 

current ratchet analysis module is limited to solving Bree-like problems with a 

constant mechanical load and a cyclic thermal load. Thus, it is not suitable for 

complex loading conditions where both thermal and mechanical loads are 

cyclic. Therefore, it becomes crucial to develop a numerical procedure to fully 

utilize the DSCA subroutine to calculate the ratchet boundaries for structures 

subjected to arbitrary cyclic thermal-mechanical loading histories. 

1.3 Objectives and research methods 

The general goal of the study is to extend the Bree-like diagrams and solve the key 

issues mentioned above. A series of computational methods are to be developed to 

evaluate cyclic plasticity and creep behaviours of high-temperature structures. The 

computational methods are then programmed and implemented in engineering tools 
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based on ABAQUS for structural design and integrity assessment. To accomplish the 

goal, four main objectives and corresponding research methods are given as follows: 

1) Develop and implement an extended LMM algorithm for shakedown analysis 

considering the limited kinematic hardening effect. To achieve this objective, 

a two-stage numerical procedure is proposed. Melan’s static shakedown 

theorem is extended using a two-surface hardening model to evaluate the 

shakedown limit considering the unlimited hardening effect. Then the original 

LMM algorithm is adopted to evaluate the ultimate bounding shakedown limit. 

After the convergence of both stages, the shakedown limit considering the 

limited kinematic hardening effect is evaluated, which is bounded by the 

results from both stages. The numerical procedure is verified by comparing 

the calculated shakedown boundaries with results from the literature. 

2) Create a uniform creep rupture equation for the interpolation and extrapolation 

of experimental data for various materials. The equation can be implemented 

in the existing LMM creep rupture analysis module to evaluate the rupture limit. 

To achieve this objective, a Unified Creep Rupture Equation (UCRE) is 

developed based on the experiment results from the ECCC data sheet. The 

numerical model is verified by comparing the predicted creep rupture curves 

with ones from the literature.  

3) Develop a numerical procedure for the evaluation of the structural constant life 

diagram. To achieve this objective, a three-stage procedure is proposed. 

Bounded by the shakedown limit and limit load, the constant life diagram is 

evaluated using the Unified Procedure for Fatigue and Ratchet Analysis 

(UPFRA). The UPFRA is further extended to support the eDSCA module for 

creep-fatigue interaction. Both fatigue and creep-fatigue problems can be 

solved by iteratively running the existing DSCA and eDSCA modules, 

respectively. The numerical procedure is verified by the ABAQUS step-by-step 

(SBS) inelastic FE analysis.  

4) Develop an alternate procedure for the evaluation of the ratchet limit of 

structures subjected to arbitrary thermal-mechanical loading histories.  Based 

on previous works [23, 24], a small and consistent value of ratchet strain is 

found alongside the structural ratchet boundary. Therefore, this objective is 

achieved by utilizing the UPFRA to scale the thermal-mechanical loads and 

call the DSCA module iteratively. The ratchet limit is determined when the 
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ratchet strain induced by the load point converges to the specified value. The 

numerical procedure is also verified by the SBS inelastic analysis. 

A technology roadmap of the study is presented in Figure 1.1 for an intuitive illustration 

of the methodology of this thesis. The Bree-like diagrams are extended in four 

different ways, including the shakedown limit, creep rupture limit, the constant low 

cycle fatigue (LCF) life curves and the constant creep-fatigue life curves. This work is 

based on four different modules in the original platform of the LMM framework. A two-

surface model is implemented in the LMM shakedown analysis module to calculate 

the shakedown limit considering kinematic hardening materials. Temperature-

dependent material properties are considered. The UCRE has been developed and 

implemented in the LMM creep rupture analysis module. A general equation for the 

description of creep rupture curves of various types of steel is proposed. The UPFRA 

has been developed and implemented in the LMM fatigue analysis module. The 

extended UPFRA has been developed and implemented in the LMM creep-fatigue 

analysis module. A unified numerical procedure for fatigue, creep-fatigue and ratchet 

analyses is proposed for the evaluation of structural constant life diagram and ratchet 

limit. All the numerical methods stated above have been applied in several numerical 

examples, including benchmark cases and engineering cases. For benchmark cases, 

simple numerical examples are considered and the results are justified by comparing 

with either literature results or ABAQUS SBS analysis. For engineering cases, 

complicated numerical examples are considered and the structural cyclic plasticity 

and creep behaviours at high temperatures are illustrated and investigated.  

 

Figure 1.1: Technology roadmap of the study 
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1.4 Outline of the thesis 

This thesis is composed of seven chapters as given below: 

Chapter 2 presents a general review of high-temperature design and assessment 

methods. The theoretical backgrounds of the research are briefly introduced, 

including high-temperature structural cyclic response, R5 procedure and the current 

LMM framework.  

Chapter 3 proposes a limited kinematic hardening algorithm for shakedown analysis, 

including the introduction of the two-surface model, Melan’s extended shakedown 

algorithm and the implementation of the proposed method in the current LMM 

shakedown analysis module. Two numerical examples are presented. 

Chapter 4 proposes a mathematical equation for creep rupture analysis. A Unified 

Creep Rupture Equation (UCRE) is introduced and implemented in the current LMM 

creep rupture analysis module. The equation is used to fit the rupture curves of 

various materials and is utilized in the parametric study of an industrial component. 

The corresponding creep rupture limit diagrams are presented. 

Chapter 5 proposes a numerical procedure for fatigue and ratchet analysis. The 

Unified Procedure for Fatigue and Ratchet Analysis (UPFRA) is introduced to 

evaluate both the constant low cycle fatigue life curves and the ratchet boundary in 

the Bree-like diagrams considering arbitrary thermal-mechanical load histories. The 

procedure is integrated with the DSCA algorithm and implemented in the current LMM 

fatigue and ratchet analysis modules. Two numerical examples are presented.  

Chapter 6 proposes a numerical procedure for creep-fatigue analysis, which is 

extended from the UPFRA and used to evaluate the structural constant creep-fatigue 

life curves. The procedure is integrated with the eDSCA algorithm and implemented 

in the current LMM creep-fatigue analysis modules. Constant LCF life curves are 

included in the existing Bree-like diagram. Two numerical examples are presented. 

Chapter 7 concludes the outputs of the research and provides recommendations for 

future works.  
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 Review of high-temperature analysis 

and assessment methods 

2.1 Introduction 

The topics of creep and cyclic plasticity have been intensely studied by numerous 

researchers in the past decades. The cyclic response of structures at high 

temperatures is introduced and reviewed in this chapter to give insight into the basic 

concept and fundamentals of this work. Cyclic plasticity response and corresponding 

failure mechanisms are briefly discussed with consideration of the creep effect. In 

addition, rule-based methods such as ASME NH and the R5 procedure have been 

introduced for the structural integrity assessment at high temperatures. Inelastic FE 

analysis is suggested for complicated cases that are not suitable to be designed by 

rules. For these complicated industrial problems, the Linear Matching Method (LMM) 

is one of the most advanced direct methods proposed to replace the inelastic FE 

analysis. With years of development, the LMM framework has included several 

modules for different steps in the R5 procedure. Since most works in this thesis are 

based on the LMM framework, the development history, advantages, and numerical 

procedures of the LMM are fully reviewed.  

2.2 Cyclic response of structures at high temperature 

2.2.1 The Bree diagram 

When monotonic loads are applied within a structure, the load-bearing capacity of the 

structure is represented by the limit load. If the stress level reaches the limit load, the 

structure would fail by instantaneous collapse. However, the structural response 

becomes complicated when the loads applied are cyclic. An interaction diagram has 

been introduced by Bree [12] so that the structural response can be determined 

directly for various loading conditions. In Figure 2.1, a typical Bree diagram is 

presented for a cylinder subjected to constant pressure and cyclic thermal load. Both 

the mechanical and thermal stress has been normalised by the yield stress of material 

as the coordinate axes of the diagram. With different combinations of thermal and 

mechanical loads, four different structural responses are predicted in various regions 

separated by the Bree diagram.  
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When the applied stress is lower than the yield stress, the whole structure would 

remain elastic with limitless service life. When the applied stress goes beyond the 

yield stress but within the shakedown and ratchet limit, the elastic shakedown 

behaviour is expected. The stress-strain relationship becomes elastic after a few 

cycles, and the plastic strain remains constant. The lifespan of components operating 

in this region is often considered very long at more than 10000 cycles. When the cyclic 

thermal stress increases above twice the yield stress, the structural response of 

plastic shakedown would appear, and a closed hysteresis loop would form in local 

areas of the structure. In this case, the structural life highly depends on the strain 

range of the hysteresis loop with consideration of low cycle fatigue (LCF) damage. 

When the stress level increases over the ratchet limit, the ratchetting behaviour is 

observed where plastic strain accumulates at each cycle. The structure would fail by 

the mechanism of incremental collapse after a limited number of cycles. For most 

engineering problems, the component is usually designed to operate in the elastic or 

the elastic shakedown region for safety concerns.  

 

Figure 2.1: Typical Bree diagram [12] and cyclic response of structures 
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2.2.1.1 Elastic shakedown 

The elastic shakedown region in the Bree diagram is delimited by the shakedown limit. 

For the evaluation of the shakedown limit, Melan’s [25] and Koiter’s [26] theories have 

been widely adopted for structural analysis. Considering elastic-perfectly plastic 

material, Melan’s static shakedown theorem is given by:  

“For given cyclic loads, the structure will shakedown if a constant self-equilibrium 

residual stress field is found while the yield condition is satisfied for any composition 

of cyclic stress and residual stress.”  

Koiter’s kinematic shakedown theorem is defined by: 

“For given cyclic loads 𝑃(𝑡) over time period 𝑡, the structure will shakedown if the 

kinematically admissible strain rate is found while the strain field is compatible with 

the displacement field 𝑢  satisfying specified boundary conditions and ∫ ∑ 𝑃�̇�
𝑡

0
≥

∫ ∫ �̇�𝑑𝑉𝑑𝑡
𝑉

𝑡

0
, where �̇� is the plastic dissipation rate corresponding to the admissible 

strain rate 𝜀̇.”  

Melan’s theorem produces a lower bound shakedown limit which is lower than the 

actual elastic shakedown limit. It is thus considered conservative and highly affected 

by the local stress concentration in the structure. Koiter’s theorem provides an upper 

bound shakedown limit that is higher than the actual elastic shakedown limit. It is 

based on the global energy match between the internal and external work and is 

considered more reliable and accurate than Melan’s theory. However, Koiter’s 

theorem is also less conservative so that the actual elastic shakedown limit can be 

predicted between the upper and lower bound limits.  

2.2.1.2 Plastic shakedown 

The plastic shakedown region in the Bree diagram is delimited by both the reverse 

plasticity limit and the ratchet limit. For load cases inside the plastic shakedown region 

in the Bree diagram, the failure mechanism of low cycle fatigue (LCF) is observed, 

which significantly affects the predicted life of structures. LCF induces local failure in 

high-stress areas and crack initiation. Unlike high cycle fatigue (HCF), which is 

estimated using the stress amplitude 𝜎𝑎 and stress-life (S-N) curves, LCF considers 

the total strain range Δ𝜀𝑡 as the main factor of damage evaluation. The total strain 
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range Δ𝜀 is considered to be made up of two parts, the elastic strain range Δ𝜀𝑒 and 

the plastic strain range Δ𝜀𝑝: 

 Δ𝜀𝑒𝑁𝑓
𝛼1 = 𝐶1 (2.1) 

 Δ𝜀𝑝𝑁𝑓
𝛼2 = 𝐶2 (2.2) 

where 𝛼1, 𝛼2, 𝐶1, and 𝐶2 are material constants corresponding to fatigue ductility. The 

Coffin-Manson [27, 28] relationship has been proposed to describe the relationship 

between the total strain range Δ𝜀𝑡 and the number of cycles to failure 𝑁𝑓: 

 
Δ𝜀𝑡

2
=

𝜎𝑓
′ (2𝑁𝑓)

𝑏

𝐸
+ 𝜀𝑓

′ (2𝑁𝑓)
𝑐
 (2.3) 

where 𝜎𝑓
′ denotes the fatigue strength and 𝜀𝑓

′  is the fatigue ductility strength of the 

material. However, the Coffin-Manson model is based on several assumptions and 

lacks consideration of acceleration effects caused by stress relaxation and creep 

behaviour [29]. Based on the Coffin-Manson relationship, Manson has worked with 

other researchers and proposed a number of improved methods, including the 

Universal Slope Method (USM) [30] and the Modified Universal Slopes Method 

(MUSM) [31]. In addition, some other numerical methods have also been proposed 

for a better description of experiment curves, including the modified four-point 

correlation method [32], Mitchell’s method [33], the Modified Mitchell’s method [34], 

the Uniform material law [35], and the Medians method [36].  

2.2.1.3 Ratchetting 

The ratchetting region in the Bree diagram is delimited by both the ratchet limit and 

the limit load. When the load level is large enough to reach beyond the ratchet limit, 

the failure mechanism becomes incremental collapse where the plastic strain 

accumulates cycle by cycle. Ratchetting is a global behaviour and can be observed 

in multiple regions of the structure. It is considered dangerous for structures to operate 

in the ratchetting zone as the component's lifespan becomes extremely short after a 

few cycles. Therefore, ratchetting behaviour is usually avoided during the design 

process as recommended by design codes and assessment procedures.  

There are several differences between the ratchetting behaviour observed at the 

material and structure level. At the material level, ratchetting is found in open 
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hysteresis loops caused by non-zero mean stress or zero mean stress with tension-

compression asymmetry [37]. It is investigated in the bar experiment with cyclic 

tension loads, which creates a homogeneous cyclic stress field without residual stress. 

Material ratchetting involves a variable accumulation rate, and various complicated 

constitutive models have been proposed to describe the behaviour [38]. On the 

contrary, at the structure level, ratchetting can be detected in part of a component 

when the structural ratchet limit is reached. In this case, the cyclic stress field 

becomes inhomogeneous with complex residual stress. For the sake of simplicity, a 

constant accumulation is assumed for steady-state stress-strain behaviour. Also, the 

Elastic Perfectly Plastic (EPP) model is often used for the evaluation of the ratchet 

limit in engineering design and structural integrity assessment [39]. A two-bar 

experiment is presented in [40, 41] to further explain the structural ratchetting 

behaviour.  

2.2.2 Material hardening under cyclic loads 

2.2.2.1 Isotropic hardening 

Plastic deformation can cause metals to harden under cyclic loads. In this case, the 

strength of the material would increase, which is related to the accumulated plastic 

strain 𝑝: 

 𝑝 = ∫ 𝑑𝜺𝑝 = ∫ 𝜺�̇�𝑑𝑡 (2.4) 

where 𝜺�̇� is the plastic strain rate and 𝑑𝜺𝑝 is the effective plastic strain increment. In 

the 2D stress space, as shown in Figure 2.2, the yield surface expands when the 

stress level goes above the initial yield stress. The reverse yield stress also increases 

so that the material behaves elastically during the unloading stage while the overall 

strength grows. Since the yield surface expands uniformly in all directions, the 

hardening behaviour is considered isotropic [42]. The yield function is given by: 

 𝑓(𝝈, 𝑝) = �̅� − 𝜎𝑌(𝑝) = 0 (2.5) 

where the effective stress �̅� = √
3

2
𝝈′: 𝝈′ . 𝜎𝑌(𝑝) is also given by: 

 𝜎𝑌(𝑝) = 𝜎𝑌0
+ 𝑟(𝑝) (2.6) 
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where 𝜎𝑌0
 denotes the initial yield stress and 𝑟(𝑝) represents an isotropic hardening 

function. To simulate an exponential stress-strain curve that gradually approaches a 

constant value, one of the most common forms of 𝑟(𝑝) is given by: 

 �̇�(𝑝) = 𝑏(𝑄 − 𝑟)�̇� (2.7) 

where 𝑄 and 𝑏 are material parameters. Integrating equation (2.7) with 𝑟(0) = 0: 

 𝑟(𝑝) = 𝑄(1 − 𝑒−𝑏𝑝) (2.8) 

where the mathematical constant 𝑒 ≈ 2.718. The maximum size of the expended yield 

stress is determined by 𝑄 while the growth rate of the yield stress is dependent on 𝑏.  

 

Figure 2.2: The yield surface and stress-strain curve of isotropic hardening behaviour 

 

2.2.2.2 Kinematic hardening 

For monotonic loading, isotropic hardening models can be considered reasonable to 

describe the stress-strain behaviour. However, for reversed loading cases, the 

isotropic hardening models would predict a large elastic region during the unloading 

stage. Thus, another type of hardening model – the kinematic hardening is introduced 

for cyclic loading cases, which produces smaller elastic regions. Instead of expansion, 

a translation of the yield surface is assumed in the stress space, which is also named 

the Bauschinger effect [22]. As shown in Figure 2.3, the yield surface translates 

upward by a back stress |𝑨| when the stress reaches beyond the yield strength. The 

reversed yield stress also increases so that the elastic region during the unloading 

stage is twice the yield stress 2𝜎𝑌, while for isotropic hardening, the elastic region is 

2(𝜎𝑌 + 𝑟). The consistency and normality conditions are still satisfied regarding the 
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plastic flow, so that the load point lies on the yield surface and the plastic strain is in 

the direction normal to the tangent line of the yield surface [42]. The yield function 

considering kinematic hardening then becomes: 

 𝑓 = √
3

2
(𝝈′ − 𝑨′): (𝝈′ − 𝑨′) − 𝜎𝑌 (2.9) 

A general form is considered to describe the back stress 𝑨 in non-linear kinematic 

hardening: 

 𝑑𝑨 =
2

3
𝑐𝑑𝜺𝑝 − 𝛾𝑨𝑑𝑝 (2.10) 

where 𝑐 and 𝛾 are material constants.  

 

Figure 2.3: The yield surface and stress-strain curve of kinematic hardening behaviour 

 

Over the years, many constitutive models have been proposed [43-45] to describe 

the cyclic hardening behaviour based on experiment results. Nevertheless, these 

models usually require a specific loading spectrum and evaluate the explicit back 

stress evolution, which can be complex and unrealistic to be implemented in direct 

methods. A two-surface model has thus been proposed [46] to simplify the problem 

by assuming the movement of the yield surface is constrained by an ultimate bounding 

surface. 

2.2.2.3 Combined isotropic and kinematic hardening 

For a component subjected to cyclic loading conditions, the isotropic and kinematic 

hardening behaviour can be observed simultaneously. The kinematic hardening 
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process is prominent as observed in each individual cycle, while the isotropic 

hardening process also accumulates cycle by cycle until saturation is achieved. The 

hysteresis loop is then formed when plotting the stress-strain relationship over the 

cycles. The increase of peak stress and strain in the hysteresis loop caused by the 

accumulated isotropic hardening is also called cyclic hardening [42]. By combining 

equations (2.8) and (2.9), the yield function considering combined hardening is then 

given by: 

 𝑓 = √
3

2
(𝝈′ − 𝑨′): (𝝈′ − 𝑨′) − 𝑟(𝑝) − 𝜎𝑌 (2.11) 

The consistency condition is also given by: 

 
𝜕𝑓

𝜕𝝈
∙ 𝑑𝝈 +

𝜕𝑓

𝜕𝑨
∙ 𝑑𝑨 +

𝜕𝑓

𝜕𝑝
𝑑𝑝 = 0 (2.12) 

Considering Hooke’s law and equations (2.7) and (2.10), the consistency condition 

becomes: 

 
𝜕𝑓

𝜕𝝈
∙ 𝑪(𝑑𝜺 − 𝑑𝜺𝑝) +

𝜕𝑓

𝜕𝑨
∙ (

2

3
𝑐𝑑𝜺𝑝 − 𝛾𝑨𝑑𝑝) − 𝑏(𝑄 − 𝑟(𝑝))𝑑𝑝 = 0 (2.13) 

where 𝑪  is the elastic stiffness matrix. According to the normality hypothesis of 

plasticity: 

 𝑑𝜺𝑝 = 𝑑𝑝
𝜕𝑓

𝜕𝝈
 (2.14) 

The effective plastic strain increment 𝑑𝑝  can then be calculated by rearranging 

equation (2.13) and substituting equation (2.14): 

 𝑑𝑝 =
𝜕𝑓

𝜕𝝈
∙𝑪𝑑𝜺

𝜕𝑓

𝜕𝝈
∙𝑪

𝜕𝑓

𝜕𝝈
−𝛾

𝜕𝑓

𝜕𝝈
∙𝑨+

2

3
𝑐

𝜕𝑓

𝜕𝝈
∙
𝜕𝑓

𝜕𝝈
+𝑏(𝑄−𝑟(𝑝))

 (2.15) 

The effective plastic strain increment 𝑑𝑝 can also be determined by the increment of 

stress: 

 𝑑𝑝 =
𝜕𝑓

𝜕𝝈
∙𝜕𝝈

2

3
𝑐

𝜕𝑓

𝜕𝝈
∙
𝜕𝑓

𝜕𝝈
−𝛾

𝜕𝑓

𝜕𝝈
∙𝑨+𝑏(𝑄−𝑟(𝑝))

 (2.16) 
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2.2.3 Creep mechanism in structures subjected to monotonic load 

Creep is a mechanism that affects the load-bearing capacity of materials at high 

temperatures. Influenced by time, pressure and temperature, the creep behaviour can 

be expressed in a creep strain versus time plot, as shown in Figure 2.4. There are 

three distinct stages in a tensile creep test curve: primary stage, secondary stage and 

tertiary stage. For the primary stage, the creep strain rate gradually reduces due to 

the hardening effect. For the secondary stage, the creep strain rate remains constant 

at a relatively low level. Intergranular damage can be observed during this stage. After 

that, the tertiary stage is reached while the creep strain rate progressively increases 

until creep rupture occurs. For some materials, the tertiary stage has a short period 

of time, which can be dangerous since the material would fail quickly. The 

microstructural mechanism of creep failure includes dislocation slipping, grain 

boundary sliding and diffusion of vacancies [47].  

2.2.3.1 Primary and secondary creep 

For the description of primary and secondary stages of creep, a Norton-Bailey law is 

proposed in the form of: 

 𝜀̅̇𝑐 = 𝐴�̅�𝑛𝑡𝑚 (2.17) 

where 𝜀̅̇𝑐 denotes the effective creep strain rate, �̅� denotes the effective von-Mises 

stress, 𝑡  denotes the dwell time, and 𝐴 , 𝑛 , and 𝑚  are power-law parameters. As 

shown in Figure 2.4, the first two stages predicted by the Norton-Bailey law agree well 

with experimental curves. The total strain is then the sum of elastic, plastic and creep 

strain. For some materials, the primary stage of creep has a relatively short time 

period so that it can be neglected. The Norton law can then be adopted by setting 

𝑚 = 0  in equation (2.17) so that the equation becomes time-independent. 

Considering the non-isothermal effect, creep parameter 𝐴 is temperature-dependent 

with application of the Arrhenius law: 

 𝐴 = 𝐴∗exp (−
𝑄

𝑅𝑇
) (2.18) 

where 𝐴∗  denotes the frequency factor, 𝑄  denotes the activation energy, 𝑅  is the 

global gas constant, and 𝑇 denotes the local temperature.  
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Figure 2.4: A tensile creep test curve interpolated by the Norton-Bailey law 

 

2.2.3.2 Tertiary creep and creep rupture 

At the end of the tertiary stage of creep, the creep rupture behaviour would occur due 

to the development and coalescence of micro voids in the structure. The fracture is 

initiated by three main factors. The first factor is the reduction of cross-section caused 

by the deformation of the whole component. The second factor is the recrystallization 

and the precipitation behaviours in the material caused by high operating temperature. 

The third factor is the stress concentration and intergranular cracking induced by the 

growth of original defects. Therefore, it is vital to study the relationship between creep 

rupture stress, temperature, and time to rupture in order to avoid the occurrence of 

creep rupture during the design stage.  

The European Creep Collaborative Committee (ECCC) was established in 1991 to 

create systematic standards and design codes on creep rupture assessment for 

Europe. A “guidance for the assessment of full size creep rupture datasets” was 

published by the ECCC in 1996 to provide recommendations on the approaches for 

Creep Rupture Data Assessment (CRDA) [48]. A vast amount of creep rupture 

experiments have been performed by various members of ECCC, and the results 

have been collated and included in the ECCC data sheets [49]. Since many creep 

rupture tests are conducted in a short period of time at higher stress levels and 

temperatures, several extrapolation methods have been proposed for the prediction 

of long-term rupture data. The linear interpolation and extrapolation techniques are 

widely used due to their simplicity of implementation. However, these techniques are 
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often considered inaccurate to simulate curves with significant nonlinearity. The 

concept of temperature-dependent parameters is then proposed to combine rupture 

curves at different temperatures into one curve. The combined curve can be easily 

described with polynomial or exponential equations. One of the methods using this 

concept is the Larson-Miller parameter [50] with the form of: 

 𝑃𝐿𝑀 = (𝑇 + 273.15) ∙ (log(𝑡𝑅) + 𝐶) (2.19) 

The Larson-Miller parameter assumes the presence of coincidence for all the iso-

stress curves which is controlled by the material parameter 𝐶. For most steel, 𝐶 is 

usually considered between 20 and 22. However, the Larson-Miller parameter may 

produce unreliable results for cases involving high temperature and low stress [51]. 

To solve this problem, the Manson-Haferd model [52] is then proposed, which 

contains two material parameters: 

 𝑃𝑀𝐻 =
log(𝑡𝑅)−log(𝑡𝑎)

𝑇−𝑇𝑎
 (2.20) 

In addition, the Ordd-Sherby-Dorn parameter [53] is proposed considering the 

physical and thermal behaviours of the material: 

 𝑃𝑂𝑆𝐷 = log(𝑡𝑅) −
𝑄

𝑅𝑇
 (2.21) 

The Ordd-Sherby-Dorn parameter includes the activation energy 𝑄 and the universal 

gas constant 𝑅 . Compared to models mentioned before, the Ordd-Sherby-Dorn 

parameter is capable of considering a wider range of temperatures. In decades, many 

other models [53-55] have also been proposed to improve and optimize the fitting 

process of creep rupture curves. However, most models mentioned above are only 

suitable to be applied for specific types of steel. They are not applicable for a wide 

range of materials and can be difficult to be implemented in direct methods. A 

numerical scheme has been developed in the Stress Compensation Method (SCM) 

[56, 57] for creep rupture assessment. However, this direct method is not considered 

user-friendly and its computational efficiency could be further improved. 

2.2.4 Creep mechanism in structures subjected to cyclic load 

Creep and fatigue are different structural mechanisms, but they interact with each 

other in various ways. On the micro level, the creep mechanism induces intergranular 
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damage with the growth of cavities, while the fatigue mechanism induces 

transgranular damage with the propagation of cracks [58]. Four different scenarios of 

interaction between creep and fatigue have been introduced in [59, 60]. The first 

scenario is pure fatigue behaviour, and surface crack is the primary failure mechanism. 

The second scenario is transgranular competing, where the cavity growth starts 

during creep dwell with the presence of transgranular cracks. The third scenario is 

mixed interaction, where intergranular damage gradually becomes dominant over 

transgranular damage. The fourth scenario is pure creep behaviour, where the creep 

dwell period is so long that the load cycle can be simplified to monotonic loads. 

Different creep mechanisms have various impact on the cyclic plasticity behaviour. A 

thermodynamically based model [61] has also been proposed to describe the 

interaction between creep and plasticity behaviours. 

The effect of creep dwell on the stress-strain behaviour of typical cyclic responses 

has been presented in Figure 2.5. A simplified load cycle is considered with three 

stages: loading, creep dwell and unloading. A reduction of stress is often found in 

high-stress regions with the structure during the creep dwell stage. The phenomenon 

is called stress relaxation, which is caused by the conversion of elastic strain to creep 

strain. The reduction of elastic strain results in the decrease of stress under certain 

boundary conditions. When the overall stress is lower than the yield stress, the stress 

relaxation is observed with no plasticity in the structure, as shown in Figure 2.5(a). 

With the increase of stress level, the cyclic response becomes elastic shakedown with 

plasticity in the first few cycles, as shown in Figure 2.5(b). It can be observed that the 

curves at stress dwell follow the relaxation curve under monotonic load marked in red 

dashed lines. In Figure 2.5(c), a longer creep dwell time is applied in the load cycle, 

and a larger amount of stress relaxation is thus observed, which induces a higher 

level of residual stress at the unloading stage. Therefore, additional reverse plasticity 

is enhanced by creep dwell, and the stress-strain behaviour forms a closed loop. 

Figure 2.5(d) shows the plastic shakedown behaviour due to the high level of cyclic 

stress in the structure. The reverse plasticity is further enhanced by creep dwell and 

is observed at both loading and unloading stages. Both Figure 2.5(c) and Figure 2.5(d) 

show closed hysteresis loops, and the creep behaviour is also affected by cyclic 

plasticity. For each cycle, the creep strain and accumulated creep damage are 

enlarged due to the higher stress level at the start of the creep dwell stage compared 

to the monotonic load case. Therefore, this phenomenon is called “cyclically 

enhanced creep” [47]. 
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The presence of creep dwell can also cause an open hysteresis loop which is known 

as the creep ratchetting behaviour. Ratchetting can be driven by the high level of 

either mechanical or thermal load while the plastic strain accumulates in each cycle 

[62, 63]. Although the cyclic behaviour without creep is elastic or plastic shakedown, 

structural ratcheting behaviour is still possible with the inclusion of the creep dwell 

period. Therefore, the creep ratchetting is a complex mechanism controlled by dwell 

time, load type, stress level and material properties. Two typical hysteresis loops of 

creep ratchetting are shown in Figure 2.5(e) and Figure 2.5(f). When the creep strain 

is relatively large, but the stress relaxation is small, the creep strain dominates and 

the hysteresis loop shifts toward the direction of creep strain (right), as shown in 

Figure 2.5(e). When the creep strain is relatively small but the stress relaxation is 

large, the reverse plastic strain dominates, and the hysteresis loop shifts toward the 

opposite direction (left), as shown in Figure 2.5(f). The enlarged amount of reverse 

plasticity is caused by the residual stress field after the stress relaxation behaviour. 

This phenomenon of creep-fatigue interaction is called “creep enhanced plasticity” 

[47]. Similar to regular ratchetting behaviour, the creep ratchetting can induce large 

creep-fatigue damage and should be avoided as possible during the design stage.  

 

Figure 2.5: Effect of creep dwell on cyclic responses of (a) pure elastic (b) elastic shakedown (c) 
creep enhanced reverse plasticity (d) creep enhanced plastic shakedown (e) creep ratchetting 

dominated by creep strain (f) creep ratchetting dominated by plastic strain 
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2.2.5 The evaluation of creep-fatigue damage 

2.2.5.1 The saturated hysteresis loops 

To evaluate the creep and fatigue damage, it is important to plot the hysteresis loop 

at steady-state cycles. An example saturated hysteresis loop is presented in Figure 

2.6(a). The nonlinear cyclic stress-strain relationship can be described by the 

Ramberg-Osgood (R-O) relationship by: 

 Δ𝜀 = Δ𝜀𝑒 + Δ𝜀𝑝 (2.22) 

 Δ𝜀𝑒 =
Δ𝜎

𝐸
 (2.23) 

 Δ𝜀𝑝 = (
Δ𝜎

𝐴
)

1

𝛽
 (2.24) 

where 𝐴  and 𝛽  are material parameters. Several parameters obtained from the 

hysteresis loop are crucial, including the start of dwell stress 𝜎𝑠, the elastic follow up 

factor 𝑍  and the effective total strain range Δ𝜀̅. The elastic follow up factor 𝑍  is 

calculated by dividing the effective creep strain 𝜀�̅� by the decrease of elastic strain 

during creep dwell: 

 𝑍 =
�̅��̅�𝑐

�̅�𝑠−�̅�𝑐
 (2.25) 

where �̅�𝑐 denotes the effective stress at the end of dwell the effective elastic modulus 

�̅� =
3𝐸

2(1+𝜈)
. The value of 𝑍 highly depends on the boundary conditions. For extreme 

cases observed in experiments, 𝑍 → ∞ when the specimen is stress-controlled or the 

load applied is primary, while 𝑍 = 1 when the specimen is strain-controlled or the load 

applied is secondary. With 𝑍  and 𝜎𝑠  available, the stress relaxation curve can be 

plotted and the average stress �̅�𝑎𝑐  during creep dwell can also be evaluated, as 

shown in Figure 2.6(b).  



 

22 
 

 

Figure 2.6: (a) Saturated hysteresis loop (b) stress relaxation curve (c) creep rupture curve (d) 
strain-life (E-N) curve (e) creep-fatigue interaction diagram 

 

2.2.5.2 The evaluation of creep damage 

With the assumption that the creep damage is unrelated to the loading sequence of 

stress, a linear damage accumulation rule has been proposed which is known as the 

Time Fraction rule (TF) rule [64]. The creep damage is determined by the limited creep 

life: 

 𝜔𝐶
𝑇𝐹 =

Δ𝑡

𝑡∗(�̅�𝑎𝑐,𝑇)
 (2.26) 

where 𝜔𝐶 denotes the creep damage accumulated per cycle, Δ𝑡 denotes the time of 

creep dwell, and 𝑡∗  denotes the time to creep rupture. 𝑡∗  can be evaluated by 

substituting the �̅�𝑎𝑐 and the temperature 𝑇 in the creep rupture curve shown in Figure 

2.6(c). The TF rule has also been adopted in ASME BPVC Section III Subsection NH 
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[5] for the evaluation of creep damage of structures subjected to varying tension loads. 

The TF rule is simple to use but lacks prediction accuracy [65]. 

With similar assumptions, another linear accumulation rule has been proposed which 

is known as the creep Ductility Exhaustion (DE) rule [66, 67]. The creep damage is 

determined by the limited creep strain: 

 𝜔𝐶
𝐷𝐸 =

�̇̅�𝑐Δ𝑡

�̅�𝑐(�̇̅�𝑐,𝑇)
 (2.27) 

where 𝜀̅�̇� denotes the creep strain rate and 𝜀�̅� is the uniaxial creep ductility calculated 

from the creep strain rate and temperature 𝑇. The DE rule has been adopted in the 

R5 procedure [7]. The DE rule provides better prediction accuracy but lacks 

consideration of creep-fatigue interaction [65]. In addition, some improved methods 

have been proposed based on the DE method, such as the Stress Modified Ductility 

Exhaustion (SMDE) method [68-70]. The effect of stress has been taken into account 

in the function 𝜀�̅� by: 

 𝜔𝐶
𝑆𝑀𝐷𝐸 =

�̇̅�𝑐Δ𝑡

�̅�𝑐(�̇̅�𝑐,𝜎,𝑇)
 (2.28) 

To improve the systematic prediction of creep-fatigue life considering multiple 

materials, the energy-based ductility exhaustion method (SEDE) has been proposed 

[71]. The creep damage at a saturated cycle 𝜔𝐶
𝑆𝐸𝐷𝐸 is given by: 

 𝜔𝐶
𝑆𝐸𝐷𝐸 = ∫

�̇�𝑖𝑛

𝑤𝑓(�̇�𝑖𝑛,𝑇)
𝑑𝑡

Δ𝑡

0
 (2.29) 

where �̇�𝑖𝑛 denotes the energy density rate of inelastic strain, 𝑤𝑓 denotes the failure 

strain energy density. The SEDE rule has both physical meaning and good prediction 

accuracy [65]. To consider the influence of multiaxial ductility, the multiaxial ductility 

factor (MDF) can also be multiplied in the denominator of creep ductility exhaustion 

rules described above. The MDF from the R5 procedure is given by: 

 𝑀𝐷𝐹 = exp [𝑝 (1 −
𝜎1

�̅�
) + 𝑞 (

1

2
−

3𝜎𝑚

2�̅�
)] (2.30) 

where 𝜎1 denotes the maximum principal stress, 𝜎𝑚 denotes the mean stress, 𝑝 and 

𝑞 are material constants.  
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2.2.5.3 The evaluation of fatigue damage 

The fatigue life of materials can be described in three different forms: stress-life, 

strain-life, and energy-life [72]. The high cycle fatigue (HCF) damage can be 

determined by the stress amplitude 𝜎𝑎 and stress-life (S-N) curves, while the low cycle 

fatigue (LCF) damage can be evaluated based on the strain-life (E-N) diagram of the 

material and the effective total strain range Δ𝜀,̅ as shown in Figure 2.6(d). The S-N 

curves are not suitable for the evaluation of LCF life for EPP models when the stress 

is unable to rise above the yield stress. Other methods for the LCF damage calculation 

have been mentioned in Section 2.2.1.2.  

A linear accumulation rule known as the Palmgren-Miner rule [73, 74] has been 

proposed for the evaluation of fatigue damage. With the number of cycles to fatigue 

failure 𝑁∗ available, the fatigue damage per cycle 𝜔𝐹 is given by: 

 𝜔𝐹 =
1

𝑁∗ (2.31) 

The total fatigue damage 𝐷𝐹 is then determined by the number of cycles 𝑛: 

 𝐷𝐹 = ∑ 𝜔𝐹 =
𝑛

𝑁∗ (2.32) 

The failure of material occurs at 𝐷𝐹 = 1 when the capacity of fatigue life is exhausted.  

2.2.5.4 The evaluation of creep-fatigue damage 

After the calculation of creep and fatigue damage separately, the total damage can 

then be evaluated using the creep-fatigue interaction diagram, as shown in Figure 

2.6(e). R5 procedure introduces the linear damage summation (LDS) rule as follows: 

 𝜔𝑇 = 𝜔𝐶 + 𝜔𝐹 (2.33) 

where 𝜔𝑇 denotes the total damage. The structure is considered safe without issues 

of crack initiation when 𝜔𝑇 < 1. ASME NH and RCC-MR [6] suggest the use of a bi-

linear relationship for the evaluation of total damage: 

 𝐷𝐶 + 𝐷𝐹 ≤ 𝐷 (2.34) 

where 𝐷𝐶  and 𝐷𝐹  are accumulated creep and fatigue damage, and 𝐷 denotes the 

creep-fatigue damage factor for the material. In addition, a nonlinear model has been 
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proposed in [75] to evaluate the combined creep-fatigue damage. When the total 

damage is smaller than 1, the concave failure locus is given by: 

 
𝐷𝐶

1−𝐷𝐹
+

𝐷𝐹

1−𝐷𝐶
≤ 1 (2.35) 

The LDS rule is simple to use but is unable to describe the creep-fatigue interaction 

properly. The strain range partitioning (SRP) model [76] is then proposed to address 

this issue. Based on the tensile or compressive portion of the cycle, the SRP divides 

the inelastic strain into three parts: 𝜀𝑝𝑝 , 𝜀𝑐𝑐 , and 𝜀𝑝𝑐 . Each part is described by a 

power-law relationship: 

 𝜀𝑗𝑘 = 𝐶𝑗𝑘𝑁
𝑗𝑘

−𝛽𝑗𝑘
 (2.36) 

The accumulative damage is calculated by: 

 𝐷𝑗𝑘 = ∑ 𝑛𝑖 (
𝜀𝑗𝑘(𝑖)

𝐶𝑗𝑘
)

1

𝛽𝑗𝑘
𝑖  (2.37) 

The creep-fatigue failure occurs when 𝐷𝑝𝑝 + 𝐷𝑐𝑐 + 𝐷𝑝𝑐 = 1 . The SRP model can 

predict the creep-fatigue interaction better than the LDS rule, but it can be highly 

difficult to separate the strain components in the hysteresis loop. Therefore, several 

numerical models have been proposed based on the mechanics of creep-fatigue 

interaction. A crack growth model [77] has been introduced based on the creep 

fracture mechanics: 

 
𝑑𝑎

𝑑𝑁
|
𝑐𝑦𝑐𝑙𝑒

=
𝑑𝑎

𝑑𝑁
|
𝑐𝑟𝑒𝑒𝑝

+
𝑑𝑎

𝑑𝑁
|
𝑓𝑎𝑡𝑖𝑔𝑢𝑒

 (2.38) 

 
𝑑𝑎

𝑑𝑁
|
𝑓𝑎𝑡𝑖𝑔𝑢𝑒

= 𝐶1Δ𝐽
𝑒𝑓𝑓

𝑛

2  (2.39) 

 
𝑑𝑎

𝑑𝑁
|
𝑐𝑟𝑒𝑒𝑝

= 𝐶2𝐶∗𝑛′
 (2.40) 

where Δ𝐽𝑒𝑓𝑓  denotes the effective range of 𝐽 -integral and 𝐶∗  denotes the time-

dependent path integral. Both creep fracture parameters are dependent on the crack 

size of the structure. Assuming the fatigue damage is determined by the crack size 𝑎 

while the creep damage is determined by the cavity size 𝑐, another mechanism-based 

model [78] has been proposed as follows: 
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1

𝑎

𝑑𝑎

𝑑𝑡
= (𝑇

𝐶
) (1 + 𝛼 ln

𝑐

𝑐0
) |𝜀𝑖𝑛

𝑚||𝜀�̇�𝑛
𝑘 | (2.41) 

 
1

𝑐

𝑑𝑐

𝑑𝑡
= ( 𝐺𝑇

−𝐺𝑐
) |𝜀𝑖𝑛

𝑚||𝜀�̇�𝑛
𝑘 | (2.42) 

where 𝑐0 denotes a threshold cavity size for the evaluation of the interaction between 

the growth of crack size and creep cavity. Based on the Kachanov’s damage model 

[79], a unified damage model [80] is further proposed by: 

 �̇�|𝑐𝑟𝑒𝑒𝑝 =
�̇�0,𝑐

(1−𝜔)𝑟 (2.43) 

 
𝑑𝜔

𝑑𝑁
|

𝑓𝑎𝑡𝑖𝑔𝑢𝑒
=

�̇�0,𝑓

(1−𝜔)𝑞 (2.44) 

 �̇�0,𝑐 = 𝐵1𝜎𝑘 (2.45) 

 �̇�0,𝑓 = 𝐵2Δ𝜎𝑠 (2.46) 

where �̇�0,𝑐 and �̇�0,𝑓 are the growth rate of creep and fatigue damage when 𝜔 = 0, 𝐵1 

and 𝐵2 are temperature-dependent parameters, 𝑘, 𝑠, 𝑟 and 𝑞 are positive parameters, 

and 𝜔  is the common damage parameter for the description of creep-fatigue 

interaction damage. For a clear and intuitive demonstration of the proposed numerical 

methods in this thesis, the TF rule is adopted for the creep damage evaluation, the E-

N diagram is adopted for the fatigue damage evaluation, and the LDS rule is adopted 

for creep-fatigue damage evaluation, as presented in Figure 2.6. 

2.3 The R5 high-temperature assessment procedure 

A preliminary version of the high-temperature assessment procedure was firstly 

proposed by the UK Central Electricity Generating Board (CEGB). The procedure is 

further developed by EDF Energy to include sections of defect, weldment, etc. Hence 

the R5 procedure has been proposed and widely adopted in nuclear industries in the 

UK. The R5 procedure provides a series of step-by-step instructions for engineers to 

assess the failure mechanism, crack initiation, crack propagation and life prediction 

for high-temperature components subjected to cyclic loads. In this section, the 

“volume 2/3: Creep-fatigue initiation procedure for defect-free structures” of the R5 

procedure is introduced. This volume provides comprehensive step-by-step 

procedures to assess the number of cycles to crack initiation and the total creep-
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fatigue damage. The last two steps have been neglected here since they are 

considered irrelevant to the scope of this study. The other 16 steps in the R5 volume 

2/3 are briefly described below. 

Step 1: resolve load history into cycle types. 

The realistic loading history is simplified to reduce the number of service cycles for 

following fatigue assessment procedures. Standard techniques for the simplification 

process include the rainflow method or the reservoir method.  

Step 2: perform elastic stress analysis. 

The elastic analyses can be performed with Finite Element analysis or analytical 

solutions. The critical locations are selected where the maximum stress level or 

temperature is observed. Then the von Mises equivalent stress and strain ranges can 

be computed before the calculation of key equivalent stress values 𝑃𝑚, 𝑃𝐿, 𝑃𝐵, 𝑄 and 

𝐹 through the thickness of the structure.  

Step 3: demonstrate sufficient margins against plastic collapse. 

It is ensured that the plastic collapse does not occur upon the first loading process 

before the steady cyclic state is reached. The following conditions should be satisfied: 

 𝑃𝑚 ≤ 0.67𝑆𝑦
′  (2.47) 

 𝑃𝐿 + 𝑃𝐵 ≤ 𝑆𝑦
′  (2.48) 

 Δ(𝑃𝐿 + 𝑃𝐵 + 𝑄) ≤ 2.0𝑆𝑦
′  for ferritic steels (2.49) 

 Δ(𝑃𝐿 + 𝑃𝐵 + 𝑄) ≤ 2.7𝑆𝑦
′  for austenitic steels (2.50) 

where 𝑆𝑦
′ = 𝑆𝑦 = 𝜎𝑌  for typical ferritic and austenitic steels. The satisfaction of 

equations (2.49) and (2.50) means the steady cyclic state operates within the global 

shakedown region. If the above conditions are not satisfied, further inelastic analyses 

may be required for the demonstration of margins. 

Step 4: determine whether creep is significant. 

The significance of creep strain depends on the type of loading cycle and temperature. 

The creep effect can be neglected when the following condition is satisfied: 
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 ∑ 𝑁𝑗𝑗 [
𝑡

𝑡𝑚(𝑇𝑟𝑒𝑓)
]

𝑗

≤ 1 (2.51) 

where 𝑁𝑗 denotes the total number of cycles of each type of cycle 𝑗, 𝑡 denotes the 

creep dwell time and 𝑡𝑚 denotes the allowable time at the reference temperature 𝑇𝑟𝑒𝑓. 

The insignificant creep curves have also been provided for the evaluation of 𝑡𝑚 for 

different materials.  

Step 5: demonstrate that creep rupture endurance is satisfactory. 

Creep rupture is caused by primary loads on the structure so that the primary load 

reference stress is required. Together with Step 3, the primary loads are limited to 

prevent plastic collapse and creep rupture failure. For a simple geometry with a 

rectangular cross-section, the primary load reference stress 𝜎𝑟𝑒𝑓 is given by: 

 𝜎𝑟𝑒𝑓 =
𝑃𝐵

3
+ √(

𝑃𝐵

3
)

2
+ 𝑃𝐿

2 (2.52) 

Then the rupture reference stress 𝜎𝑟𝑒𝑓
𝑅  is calculated by: 

 𝜎𝑟𝑒𝑓
𝑅 = [1 + 0.13(𝜒 − 1)]𝜎𝑟𝑒𝑓 for creep ductile materials (2.53) 

 𝜎𝑟𝑒𝑓
𝑅 = [1 +

1

𝑛
(𝜒 − 1)] 𝜎𝑟𝑒𝑓 for other materials (2.54) 

where 𝑛 is the parameter from the Norton law and the stress concentration factor 𝜒 =

�̅�𝑒𝑙,𝑚𝑎𝑥/𝜎𝑟𝑒𝑓. Here �̅�𝑒𝑙,𝑚𝑎𝑥 denotes the maximum equivalent stress that is evaluated 

elastically. For the above equations, it is acceptable to use 𝜒 ≤ 4.0. Otherwise, it is 

suggested to consider existing defects in the structure using the R5 volume 4/5. The 

creep usage factor 𝑈 is evaluated by: 

 𝑈 = ∑ 𝑁𝑗𝑗 [
𝑡

𝑡𝑓(𝜎𝑟𝑒𝑓
𝑅 ,𝑇𝑟𝑒𝑓)

]
𝑗

≤ 1 (2.55) 

where 𝑡𝑓 denotes the allowable time before rupture, which is derived from the creep 

rupture curves based on 𝜎𝑟𝑒𝑓
𝑅  and 𝑇𝑟𝑒𝑓. 

Step 6: perform simple test for shakedown and check for insignificant cyclic 

loading. 
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With the satisfaction of global shakedown conditions in Step 3, a test for the 

shakedown state can be conducted by assuming a zero residual stress field. The 

linearised equivalent elastic stress �̅�𝑒𝑙,𝑙𝑖𝑛 at every location 𝑥 in the structure over the 

time period 𝑡 is limited by the modified yield stress: 

 �̅�𝑒𝑙,𝑙𝑖𝑛(𝑥, 𝑡) ≤ 𝐾𝑠𝑆𝑦 (2.56) 

where 𝐾𝑠 is a material constant. Also, the region of cyclic plasticity should satisfy the 

following condition: 

 (𝑟𝑝)
𝑖

+ (𝑟𝑝)
𝑜

≤ 0.2𝑤 (2.57) 

where 𝑤 denotes the section thickness. When the equations (2.56) and (2.57) are 

both satisfied, Step 7 can be skipped. In addition, it may be possible to determine the 

insignificant cyclic loading where the fatigue and creep behaviours are not affected 

by the cyclic loads applied. In this case, Steps 8 to 14 can be skipped. The insignificant 

cyclic loading is determined by the following criteria: 

a) The load cycle operates within the elastic limit of the material. 

b) The total fatigue damage is less than 0.05. 

c) The creep behaviour is not affected by cyclic loading. 

Step 7: perform global shakedown check and calculate cyclic plastic zone size. 

For a detailed check on the shakedown status of the structure, both primary and 

secondary loads are considered. A constant residual stress field �̂�(𝑥)  should be 

evaluated manually or achieved by post-processing the elastic analysis results. When 

checking the shakedown state manually, the stress at steady-state �̂�𝑠(𝑥, 𝑡) is given 

by: 

 �̂�𝑠(𝑥, 𝑡) = �̂�𝑒𝑙(𝑥, 𝑡) + �̂�(𝑥) (2.58) 

where �̂�𝑒𝑙(𝑥, 𝑡) denotes the elastic stress field. The equivalent stress at steady-state 

�̅�𝑠(𝑥, 𝑡) should satisfy the following shakedown criterion: 

 �̅�𝑠(𝑥, 𝑡) ≤ 𝐾𝑠𝑆𝑦 (2.59) 

where 𝐾𝑠  is a material constant. When using the post-processing technique, it is 

essential to present contours that distinguish shakedown and non-shakedown regions. 
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If the shakedown criterion is satisfied at over 80% of the thickness of each section, 

the whole structure may be considered to operate in the shakedown state.  

Step 8: calculate shakedown reference stress, reference temperature and the 

start of dwell stress. 

The steady-state equivalent stress from Step 7 is adopted to calculate the shakedown 

reference stress 𝜎𝑟𝑒𝑓
𝑆  at the reference temperature 𝑇𝑟𝑒𝑓

𝑆 . The overall creep 

deformation and the creep rupture life can be further evaluated based on 𝜎𝑟𝑒𝑓
𝑆  and 

𝑇𝑟𝑒𝑓
𝑆 . When the structural response is global shakedown, a conservative creep usage 

is predicted. When the structural response is elastic shakedown, the start of dwell 

stress is considered identical to the primary load reference stress 𝜎𝑟𝑒𝑓. Therefore, the 

start of dwell stress 𝜎0 is given by: 

 𝜎0 = Δ�̅�𝑒𝑙,𝑚𝑎𝑥 − (𝐾𝑠𝑆𝑦)
𝑛𝑐

 (2.60) 

For load points outside the shakedown limit, the predicted 𝜎0 may go above yield 

stress. In this case, a realistic value of 𝜎0 can be achieved by evaluating the steady-

state hysteresis loop with cyclic stress-strain curves. 

Step 9: estimate elastic follow-up factor and associated stress drop during 

creep dwell. 

For components subjected to relatively large thermal stress and small mechanical 

loads, the stress relaxation and increase of strain may be observed during the creep 

dwell period. To describe the stress relaxation behaviour, the elastic follow up factor 

𝑍 is given by: 

 𝑍 = −
Δ�̅�𝑐

Δ�̅�𝑒 (2.61) 

where Δ𝜀̅𝑐  denotes the equivalent creep strain increment and Δ𝜀̅𝑒  denotes the 

equivalent elastic strain increment. Three simplified methods have been provided to 

evaluate the elastic follow up factor for different types of load cycles: 

a) The stress relaxation is neglected by assuming 𝑍 → ∞. This will lead to a 

conservative estimation of creep damage.  
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b) If the maximum variation of temperature in the structure is lower than 10 °C 

and the primary loads are much smaller than the secondary loads, it is 

conservatively assumed that 𝑍 = 3 when the following inequality is satisfied: 

 𝑃𝐿 + 𝑃𝐵 < 0.2𝜎𝑟𝑒𝑓
𝑠  (2.62) 

c) An inelastic elastic-creep computation is required with monotonic loading 

conditions applied. The alternation plasticity and creep behaviours are not 

considered to simplify the procedure. In this case, the elastic follow up factor 

is given by: 

 𝑍 =
Δ�̅�𝑡𝑜𝑡+

Δ𝜎𝑟𝐷
�̅�

Δ𝜎𝑟𝐷
�̅�

 (2.63) 

where Δ𝜀�̅�𝑜𝑡 denotes the total strain increment, �̅� = 3𝐸/2(1 + 𝜈) denotes the 

effective Young’s modulus and Δ𝜎𝑟𝐷 denotes the drop in stress. If 𝑍 ≤ 1, Δ𝜎𝑟𝐷 

is taken from experiment results; if 𝑍 > 1, Δ𝜎𝑟𝐷 is replaced by Δ𝜎′ which is a 

constant value from the cyclic relaxation data. 

Step 10: calculate the total strain range. 

To determine the strain range for fatigue assessment, the elastic stress history 

�̂�𝑒𝑙(𝑥, 𝑡) from Step 2 is used. A simplified method considering the enhancement of 

plasticity and creep is then given to estimate the maximum equivalent fatigue strain 

range Δ𝜀�̅� for each loading cycle type. The elastic stress range is enhanced by the 

stress relaxation value Δ𝜎𝑟𝐷 to compute the increased elastic stress range Δ�̅�𝑒𝑙,𝑟: 

 Δ�̅�𝑒𝑙,𝑟 = Δ�̅�𝑒𝑙 + Δ𝜎𝑟𝐷 (2.64) 

The corresponding elastic strain range Δ𝜀�̅�𝑙,𝑟 is given by: 

 Δ𝜀�̅�𝑙,𝑟 =
Δ�̅�𝑒𝑙,𝑟

�̅�
 (2.65) 

The steady-state cyclic stress-strain curves can be described by the Ramberg-

Osgood (R-O) model by: 

 Δ𝜀 =
Δ𝜎

𝐸
+ (

Δ𝜎

𝐴
)

1

𝛽
 (2.66) 
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where 𝐴  and 𝛽  are material parameters. The equivalent total strain range Δ�̅�  is 

achieved by solving the following equation: 

 Δ�̅�𝑒𝑙,𝑟Δ𝜀�̅�𝑙,𝑟 =
(Δ�̅�𝑒𝑙+Δ𝜎𝑟𝐷)2

�̅�
= Δ�̅� [

Δ�̅�

�̅�
+ (

Δ�̅�

𝐴
)

1

𝛽
] (2.67) 

The total strain range Δ𝜀�̅� is then given by: 

 Δ𝜀�̅� = [
Δ�̅�

�̅�
+ (

Δ�̅�

𝐴
)

1

𝛽
] + Δ𝜀�̅�𝑜𝑙 (2.68) 

where Δ𝜀�̅�𝑜𝑙  denotes the enhancement caused by constant volume deformation, 

which is defined by: 

 Δ𝜀�̅�𝑜𝑙 = (𝐾𝜈 − 1)Δ𝜀�̅�𝑙,𝑟 (2.69) 

where 

 𝐾𝜈 = (
1+�̅�

1+𝜈
) (

1−𝜈

1−�̅�
) (2.70) 

 �̅� =
𝜈𝐸𝑠

�̅�
+ 0.5 (1 −

𝐸𝑠

�̅�
) (2.71) 

 𝐸𝑠 =
Δ�̅�

Δ�̅�

�̅�
+(

Δ�̅�

𝐴
)

1
𝛽

 (2.72) 

where 𝐸𝑠 denotes the secant modulus.  

Step 11: check limits on cyclically enhanced creep and calculate creep usage 

factor. 

The shakedown reference stress 𝜎𝑟𝑒𝑓
𝑠  and the reference temperature 𝑇𝑟𝑒𝑓

𝑠  from Step 

8 can be used here to check the enhancement of creep strain induced by cyclic 

thermal stress. To consider the effect of stress controlling deformation, the core stress 

is proposed which represents the stress level within the cross-section. For 

components subjected to constant primary loads and cyclic secondary loads, the load 

parameters 𝑋 and 𝑌 are first calculated by: 

 𝑋 =
𝜎𝑟𝑒𝑓

𝑆𝑦
 (2.73) 
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 𝑌 =
Δ𝑄

𝑆𝑦
 (2.74) 

where 𝜎𝑟𝑒𝑓 denotes the reference stress from Step 5, and Δ𝑄 denotes the maximum 

elastic thermal stress range within the structure. The core stress 𝜎𝑐𝑜𝑟𝑒 is then given 

by: 

 𝜎𝑐𝑜𝑟𝑒 = [𝑌 − 2√𝑌(1 − 𝑋) + 1] 𝑆𝑦            𝑌(1 − 𝑋) < 1 (2.75) 

 𝜎𝑐𝑜𝑟𝑒 = 𝑋𝑌𝑆𝑦                                          𝑌(1 − 𝑋) ≥ 1 (2.76) 

The core stress 𝜎𝑐𝑜𝑟𝑒  is considered to be less conservative to replace 𝜎𝑟𝑒𝑓
𝑠  in the 

following calculation. The limit on the creep usage factor 𝑊 is given by: 

 𝑊 = ∑ 𝑛𝑗𝑗 [
𝑡

𝑡𝑓(𝜎𝑟𝑒𝑓
𝑠 ,𝑇𝑟𝑒𝑓

𝑠 )
]

𝑗

< 1.0 (2.77) 

where 𝑛𝑗 denotes the total number of cycles for cycle type 𝑗, 𝑡 denotes the time period 

when creep is significant, and 𝑡𝑓 denotes the allowable time from the creep rupture 

curves. 

Step 12: summarise assessment parameters. 

A number of important parameters are summarised in this section to be used for the 

evaluation of creep-fatigue damage in Steps 14 and 15. The parameters required are 

listed as follows: 

𝑟𝑝: The size of the cyclic plastic zone is given in Step 7. It is further adopted in Step 

14 for the estimation of initiation crack size. 

𝑇𝑟𝑒𝑓
𝑠  and 𝜎0: The shakedown reference temperature and stress at the start of creep 

dwell are given in Step 8. They are both used in Step 15 for creep damage evaluation. 

𝑍 and Δ�̅�′: The elastic follow up factor and the drop of stress during creep dwell are 

given in Step 9. They are both used in Step 10 for the evaluation of the total strain 

range and in Step 15 for creep damage evaluation. 

Δ𝜀�̅�: The total strain range is given in Step 10 and is used in Step 14 for the evaluation 

of fatigue damage. 
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𝑊: The creep usage factor is given in Step 11. It is essential to ensure that 𝑊 < 1.0 

during the lifetime of the structure, but the value of 𝑊 is not necessarily used for the 

evaluation of creep damage in Step 15.  

Step 13: treatment of weldments. 

For welded structures, the weldments are normally treated similarly to the parent 

material with several exceptions: 

a) Differences in material properties between parent and weldment materials.  

b) Welding defects introduced during the welding procedure.  

c) Large residual stress introduced during the cooling process. 

d) Differences in surface finish between “dressed” and “undressed” weldments. 

With the presence of conditions listed above, it becomes necessary to treat the 

weldments differently from the parent material. The detailed procedure is not 

described here since it is out of the scope of this review. 

Step 14: calculate fatigue damage per cycle. 

The fatigue damage per cycle 𝜔𝐹 is calculated by: 

 𝜔𝐹 =
1

𝑁0
 (2.78) 

where 𝑁0 denotes the number of cycles to crack initiation with a crack size of 𝑎0. It 

can be computed by the procedure given below: 

a) The fatigue endurance data is acquired as well as the fatigue strength 

reduction factor for the consideration of ageing and environment.  

b) The fatigue endurance data is divided into curves that show the relationship 

between the number of cycles to failure and the total strain range. The number 

of cycles to crack nucleation 𝑁𝑖 and crack growth 𝑁𝑔 are given by: 

 ln(𝑁𝑖) = ln(𝑁𝑙) − 8.06𝑁𝑙
−0.28 (2.79) 

 𝑁𝑔 = 𝑁𝑙 − 𝑁𝑖 (2.80) 

c) Assume the initial crack size 𝑎𝑖  grows to size 𝑎0 and the number of cycles 

𝑁𝑔
′ = 𝑀𝑁𝑔. The value 𝑀 is given by: 
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 𝑀 =
𝑎𝑚𝑖𝑛 ln(

𝑎0
𝑎𝑚𝑖𝑛

)+(𝑎𝑚𝑖𝑛−𝑎𝑖)

𝑎𝑚𝑖𝑛 ln(
𝑎𝑙

𝑎𝑚𝑖𝑛
)+(𝑎𝑚𝑖𝑛−𝑎𝑖)

           for 𝑎0 > 𝑎𝑚𝑖𝑛 (2.81) 

 𝑀 =
𝑎0−𝑎𝑖

𝑎𝑚𝑖𝑛 ln(
𝑎𝑙

𝑎𝑚𝑖𝑛
)+(𝑎𝑚𝑖𝑛−𝑎𝑖)

           for 𝑎0 < 𝑎𝑚𝑖𝑛 (2.82) 

where 𝑎𝑚𝑖𝑛 = 0.2 mm. The fatigue endurance 𝑁0 for crack size 𝑎0 is then given by: 

 𝑁0 = 𝑁𝑖 + 𝑁𝑔
′  (2.83) 

Step 15: calculate creep damage per cycle. 

If the insignificant cyclic loading criteria in Step 6 are satisfied, the creep damage per 

cycle 𝜔𝐶 is calculated by: 

 𝜔𝐶 =
𝑡ℎ

𝑡𝑟(𝜎𝑟𝑒𝑓
𝑅 )

 (2.84) 

where 𝑡ℎ denotes the creep dwell time and 𝑡𝑟(𝜎𝑟𝑒𝑓
𝑅 ) denotes the creep rupture time of 

the material at the rupture reference stress 𝜎𝑟𝑒𝑓
𝑅  from equation (2.54). For cases with 

significant cyclic loading, the ductility exhaustion method is adopted to evaluate creep 

damage 𝜔𝐶: 

 𝜔𝐶 = ∫
�̇̅�𝑐

�̅�𝑓(�̇̅�𝑐)
𝑑𝑡

𝑡ℎ

0
 (2.85) 

where 𝜀̅�̇�  denotes the equivalent creep strain rate and 𝜀�̅�(𝜀̅�̇�)  denotes the 

corresponding creep ductility.  

Step 16: calculate total damage. 

The total damage 𝐷 is evaluated by the sum of total fatigue damage 𝐷𝐹  and total 

creep damage 𝐷𝐶 over the cyclic history: 

 𝐷 = 𝐷𝐹 + 𝐷𝐶 (2.86) 

 𝐷𝐹 = ∑
𝑛𝑗

𝑁0𝑗
𝑗 = ∑ 𝑛𝑗𝑑𝐹𝑗𝑗  (2.87) 

 𝐷𝐶 = ∑ 𝑛𝑗𝑑𝐶𝑗𝑗  (2.88) 
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where 𝑛𝑗  denotes the number of cycles of type 𝑗 and 𝑁0𝑗 , 𝑑𝐹𝑗  and 𝑑𝐶𝑗  denote the 

corresponding values of 𝑁0, 𝑑𝐹 and 𝑑𝐶 of type 𝑗. A crack initiation envelope can then 

be plotted on which 𝐷𝐹 + 𝐷𝐶 = 1. For an assessment point (𝐷𝐹 , 𝐷𝐶) located inside the 

envelope, 𝐷 < 1 and the crack initiation does not occur. For the assessment point 

outside the envelope, 𝐷 ≥ 1 and crack initiation occurs. A further creep-fatigue crack 

growth assessment is then required, which is given in the R5 volume 4/5.  

2.4 The Linear Matching Method (LMM) framework 

In the R5 procedure and ASME codes, the incremental Finite Element (FE) analysis 

is recommended as the primary approach during the design by analysis process. The 

incremental FE analysis can be performed on complicated engineering structures 

subjected to cyclic thermal-mechanical loads. Also, sophisticated constitutive models 

can be applied to describe the inelastic stress-strain relationship of realistic 

engineering materials. However, it is often considered time-consuming and difficult to 

converge. In addition, a large number of repetitive simulations are required when 

plotting the structural response boundaries, such as the Bree diagram. Therefore, 

numerical direct methods have been developed to replace the incremental FE 

analysis gradually. Based on a few assumptions, the direct methods can provide 

results with similar accuracy but also with better efficiency compared to the 

incremental FE analysis.  

Over the past decades, many direct methods have been proposed, including the 

mathematical programming methods [81-86] and a number of modified elastic 

modulus methods [14, 87-90], including the Reduced Modulus Method [87], the 

Generalised Local Stress-Strain (GLOSS) Method [88, 91], the Elastic Compensation 

Method (ECM) [89, 92], the Modified Elastic Compensation Method (MECM) [93], the 

Non-linear Superposition Method [94], the Stress Compensation Method (SCM) [95] 

[96], and the Linear Matching Method (LMM) [14, 90]. Among them, the LMM 

framework is one of the most advanced and versatile tools for structural integrity 

assessment.  

2.4.1 The general numerical procedure of the current LMM 

Consider a body with volume 𝑉 and surface 𝑆. It is subjected to cyclic temperature 

𝜆𝜃𝜃(𝑥, 𝑡)  in 𝑉  and cyclic pressure 𝜆𝑃𝑃(𝑥, 𝑡)  on the part of the surface 𝑆𝑇 . The 
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remainder part of the surface 𝑆  is restricted to have zero displacements. Here 𝑥 

denotes the location in the body, and 𝑡 is constrained by the time cycle 0 ≤ 𝑡 ≤ Δ𝑡. 

Assume the body is constructed with an elastic-perfectly plastic (EPP) material. The 

linear elastic stress history in the structure is then given by: 

 �̂�𝑖𝑗(𝑥, 𝑡) = 𝜆𝜃�̂�𝑖𝑗
𝜃(𝑥, 𝑡) + 𝜆𝑃�̂�𝑖𝑗

𝑃(𝑥, 𝑡) (2.89) 

where �̂�𝑖𝑗
𝜃 and �̂�𝑖𝑗

𝑃 are the linear elastic solution calculated with 𝜃(𝑥, 𝑡) and 𝑃(𝑥, 𝑡), 𝜆𝜃 

and 𝜆𝑃  are the thermal and mechanical multipliers which are used to construct 

arbitrary combinations of loading history. The general stress field is then given by: 

 𝜎𝑖𝑗(𝑥, 𝑡) = �̂�𝑖𝑗(𝑥, 𝑡) + �̅�𝑖𝑗(𝑥) + 𝜌𝑖𝑗
𝑟 (𝑥, 𝑡) (2.90) 

where �̅�𝑖𝑗(𝑥)  denotes a constant residual stress field that is self-equilibrium and 

independent of time, 𝜌𝑖𝑗
𝑟  denotes a varying residual stress field that is dependent on 

time. For elastic shakedown problems, the varying residual stress field is ignored so 

that 𝜌𝑖𝑗
𝑟 = 0 . Considering a kinematically admissible strain rate history 𝜀�̇�𝑗

𝑐 , a 

minimization procedure has been proposed to evaluate various structural limits and 

cyclic responses. The simplified minimization function is given by: 

 𝐼(𝜀�̇�𝑗
𝑐 , 𝜆) = ∑ 𝐼𝑛𝑁

𝑛=1  (2.91) 

 𝐼𝑛(Δ𝜀𝑖𝑗
𝑛 , 𝜆) = ∫ (𝜎𝑖𝑗

𝑛Δ𝜀𝑖𝑗
𝑛 − 𝜎𝑖𝑗(𝑥, 𝑡)Δ𝜀𝑖𝑗

𝑛 )
𝑉

𝑑𝑉 (2.92) 

 𝜌𝑖𝑗
𝑟 (𝑥, 𝑡) = ∑ Δ𝜌𝑖𝑗(𝑡𝑛)𝑁

𝑛=1  (2.93) 

where 𝑁 denotes the number of load instances in a load cycle, 𝑡𝑛 denotes the current 

load instance, 𝜆 denotes a general load multiplier which is applied on all loads in the 

structure, Δ𝜌𝑖𝑗  denotes the varying residual tress increment and Δ𝜀𝑖𝑗
𝑛  denotes the 

strain increment. To iteratively solve the minimization problem, a series of linear 

equations are defined by: 

 Δ𝜀𝑖𝑗,𝑘+1(𝑡𝑛)′ =
1

2�̅�𝑘(𝑡𝑛)
[�̂�𝑖𝑗(𝑡𝑛) + 𝜌𝑖𝑗,𝑘+1(𝑡𝑛−1) + Δ𝜌𝑖𝑗,𝑘+1(𝑡𝑛)]

′
 (2.94) 

 Δ𝜀𝑘𝑘,𝑘+1(𝑡𝑛)′ = 0 (2.95) 
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where symbol ′ denotes the deviatoric stress component, 𝑘 is the iteration number 

and �̅�𝑘 denotes the iterative shear modulus, which is constantly revised to match the 

yield condition. At iteration 𝑘 + 1, the shear modulus is updated by: 

 �̅�𝑘+1(𝑥, 𝑡𝑛) =
�̅�𝑘(𝑥,𝑡𝑛)𝜎𝑌(𝑥,𝑡𝑛)𝑘

�̅�[�̂�𝑖𝑗(𝑥,𝑡𝑛)+𝜌𝑖𝑗
𝑟 (𝑥,𝑡𝑛)𝑘]

 (2.96) 

where 𝜌𝑖𝑗
𝑟 (𝑥, 𝑡𝑛)𝑘  denotes the summation of constant and varying residual stress 

fields at different load instances. 𝜎𝑌(𝑥, 𝑡𝑛)𝑘 denotes the iterative yield stress. It can be 

a constant value for the EPP model or a strain-dependent value based on the 

Ramberg-Osgood (R-O) model to consider cyclic hardening behaviour. For evaluation 

of creep rupture limit, the yield stress is revised by the rupture strength of the material. 

For load cycles with creep dwell, the yield stress is revised by the creep flow stress. 

The original LMM algorithm for shakedown analysis is shown below. All the other 

modules in the LMM framework are based on the concept of the original LMM 

algorithm. A detailed introduction of the numerical procedures for different modules in 

the LMM framework is given in the following chapters.  

2.4.2 The original LMM algorithm for shakedown analysis 

2.4.2.1 Melan’s static shakedown theorem 

For the computation of the lower bound shakedown limit, Melan’s static shakedown 

theorem [97] has been adopted. The total linear elastic stress field is first calculated 

by: 

 𝜆�̂�𝑖𝑗 = 𝜆�̂�𝑖𝑗
𝜃 + 𝜆�̂�𝑖𝑗

𝑃 (2.97) 

where �̂�𝑖𝑗
𝜃 and �̂�𝑖𝑗

𝑃 are linear elastic stress fields generated by 𝜃(𝑥𝑖, 𝑡) and 𝑃𝑖(𝑥𝑖, 𝑡). 

A residual stress field is observed in the structure when steady-state is reached during 

the time cycle 0 ≤ 𝑡 ≤ Δ𝑡: 

 𝜎𝑖𝑗(𝑥𝑖, 𝑡) = 𝜆�̂�𝑖𝑗(𝑥𝑖, 𝑡) + �̅�𝑖𝑗(𝑥𝑖) + 𝜌𝑖𝑗
𝑟 (𝑥𝑖, 𝑡) (2.98) 

where �̅�𝑖𝑗(𝑥𝑖) denotes a self-equilibrium constant residual stress field, while 𝜌𝑖𝑗
𝑟 (𝑥𝑖, 𝑡) 

denotes a varying residual stress field. For shakedown problems, 𝜌𝑖𝑗
𝑟 (𝑥𝑖 , 𝑡) = 0 . 

Melan’s static shakedown theorem is then given by: 
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The structure will shake down, when a constant residual stress field can be found so 

that the steady-state stress field satisfies the von Mises yield condition for arbitrary 

load paths from a specific loading domain: 

 𝑓𝑌[𝜆�̂�𝑖𝑗(𝑥𝑖, 𝑡) + �̅�𝑖𝑗(𝑥𝑖), 𝜎𝑌(𝑥𝑖)] ≤ 0, ∀𝑥 ∈ 𝑉, ∀𝑡 (2.99) 

2.4.2.2 The LMM theorem 

The LMM method considers a kinematically admissible strain rate history 𝜀�̇�𝑗
𝑐 , which 

matches a compatible strain increment Δ𝜀𝑖𝑗
𝑐 : 

 ∫ 𝜀�̇�𝑗
𝑐 𝑑𝑡

Δ𝑡

0
= Δ𝜀𝑖𝑗

𝑐  (2.100) 

which is also compatible with a displacement increment field: 

 Δ𝜀𝑖𝑗
𝑐 =

1

2
(

𝜕Δ𝑢𝑖
𝑐

𝜕𝑥𝑗
+

𝜕Δ𝑢𝑗
𝑐

𝜕𝑥𝑖
) (2.101) 

The upper bound shakedown limit is calculated by: 

 𝜆𝑈𝐵 ∫ ∫ (�̂�𝑖𝑗𝜀�̇�𝑗
𝑐 )𝑑𝑡𝑑𝑉

Δ𝑡

0𝑉
= ∫ ∫ (𝜎𝑖𝑗

𝑐 𝜀�̇�𝑗
𝑐 )𝑑𝑡𝑑𝑉

Δ𝑡

0𝑉
 (2.102) 

where 𝜎𝑖𝑗
𝑐  is the stress at yield state, �̂�𝑖𝑗 is the elastic linear solution from equation 

(2.97). Adopting the corresponding flow rule, equation (2.102) can be further 

simplified by: 

 𝜆𝑈𝐵 =
∫ ∫ 𝜎𝑌 �̅̇�(�̇�𝑖𝑗

𝑐 )𝑑𝑡𝑑𝑉
Δ𝑡

0𝑉

∫ ∫ (�̂�𝑖𝑗�̇�𝑖𝑗
𝑐 )𝑑𝑡𝑑𝑉

Δ𝑡

0𝑉

 (2.103) 

where 𝜀̇̅ = √
2

3
𝜀�̇�𝑗𝜀�̇�𝑗 denotes the effective strain rate. 

A series of linear equations is then defined using the general programming skill given 

in [98]. The final plastic strain rate history 𝜀�̇�𝑗
𝑓
 is derived from an initial kinematically 

admissible strain rate history 𝜀�̇�𝑗
𝑖 : 

 𝜀�̇�𝑗
𝑓 ′

=
1

𝜇
(𝜆𝑈𝐵

𝑖 �̂�𝑖𝑗 + �̅�𝑖𝑗
𝑓

)
′
 (2.104) 

 𝜀�̇�𝑘
𝑖 = 0 (2.105) 
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 𝜇 =
𝜎𝑌

�̅̇�𝑖  (2.106) 

where �̅�𝑖𝑗
𝑓

 is a constant residual stress field defined in equation (2.98). The symbol ′ 

denotes the deviatoric component of a tensor. The shear modulus 𝜇 is defined by 

matching the stress state to elastic perfectly plastic material at the start of each 

iteration. Over the time cycle, equation (2.104) can be integrated so that: 

 Δ𝜀𝑖𝑗
𝑓 ′

=
1

�̅�
(�̅�𝑖𝑗

𝑓 ′
+ 𝜎𝑖𝑗

𝑖𝑛′
) (2.107) 

 𝜎𝑖𝑗
𝑖𝑛′

= �̅� {∫
1

𝜇(𝑡)
𝜆𝑈𝐵

𝑖 �̂�𝑖𝑗
′ (𝑡)𝑑𝑡

Δ𝑡

0
} (2.108) 

 
1

�̅�
= ∫

1

𝜇𝑛
𝑑𝑡

Δ𝑡

0
 (2.109) 

The linear problem described above would produce a monotonically decreasing 

shakedown multiplier which becomes a converged minimum upper bound eventually 

using equation (2.103): 

 𝜆𝑖𝑗
𝑓

≤ 𝜆𝑖𝑗
𝑖  (2.110) 

2.4.2.3 Implementation of numerical procedures in ABAQUS 

For the convex yield condition, the load history is described by straight loading paths 

in load space. Plastic strains are only observed at the vertices of the loading space. 

The vertices are expressed by individual load instances, which simplified the problem 

proposed above. The integration process of the strain rate history is then replaced by 

the sum of values at load instances: 

 Δ𝜀𝑖𝑗
𝑐 = ∑ Δ𝜀𝑖𝑗

𝑛𝑟
𝑛=1  (2.111) 

An initial stress field is then defined to solve the linear problem in equation (2.104): 

 𝜎𝑖𝑗
𝑖𝑛′

= �̅� {∑
1

𝜇𝑛
𝜆�̂�𝑖𝑗

′ (𝑡𝑛)𝑟
𝑛=1 } (2.112) 

 
1

�̅�
= ∑

1

𝜇𝑛

𝑟
𝑛=1  (2.113) 

where 
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 𝜇𝑛 =
𝜎𝑌

�̅�(Δ𝜀𝑖𝑗
𝑛𝑖)

 (2.114) 

To implement the procedure described above in ABAQUS, an iterative process is 

proposed using the user subroutine UMAT and URDFIL [99]. At the first iteration 𝑘 =

1, �̅�1 = 1. �̂�𝑖𝑗(𝑡𝑛) is calculated with external loads without scaling. At the (𝑘 + 1)th 

iteration,  

 𝜆𝑘+1 = 𝜆𝑈𝐵
𝑘  (2.115) 

 𝜇𝑛
𝑘+1 =

𝜎𝑌

�̅�𝑛
𝑘 (2.116) 

where 

 𝜀�̅�
𝑘 = 𝜀(̅Δ𝜀𝑖𝑗

𝑛𝑘) (2.117) 

 
1

�̅�𝑘+1 = ∑
1

𝜇𝑛
𝑘+1

𝑟
𝑛=1  (2.118) 

Then the Jacobian matrix [𝐽]𝑘+1 is defined with updated shear modulus �̅�𝑘+1 in UMAT, 

which describes the relationship between stress and strain. The initial stress field is 

then given by: 

 𝜎𝑖𝑗
𝑖𝑛𝑘+1

= �̅�𝑘+1 (∑
𝜆𝑘+1�̂�𝑖𝑗(𝑡𝑛)

𝜇𝑛
𝑘+1

𝑟
𝑛=1 ) (2.119) 

The constant residual stress field is computed by: 

 �̅�𝑖𝑗
𝑘+1 = [𝐽]𝑘+1Δ𝜀𝑖𝑗

𝑘+1 − 𝜎𝑖𝑗
𝑖𝑛𝑘+1

 (2.120) 

The strain rate at the vertices of load space is calculated by: 

 Δ𝜀𝑖𝑗
𝑛(𝑘+1)

= [𝐶]𝑛
𝑘+1 (�̅�𝑖𝑗

𝑘+1 + �̂�𝑖𝑗
𝑘+1(𝑡𝑛)) (2.121) 

where [𝐶]𝑛
𝑘+1  denotes the stiffness matrix calculated with �̅�𝑛

𝑘+1 . Using the energy 

output function in ABAQUS, the volume integration ∫ (𝜎𝑌 ∑ 𝜀�̅�
𝑘+1𝑟

𝑛=1 )𝑑𝑉
𝑉

 and 

∫ (∑ Δ𝜀𝑖𝑗
𝑛(𝑘+1)

�̂�𝑖𝑗(𝑡𝑛)𝑟
𝑛=1 ) 𝑑𝑉

𝑉
 are then calculated. The shakedown multiplier is 

determined by: 
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 𝜆𝑈𝐵
𝑘+1 =

∫ (𝜎𝑌 ∑ �̅�𝑛
𝑘+1𝑟

𝑛=1 )𝑑𝑉
𝑉

∫ (∑ �̇�
𝑖𝑗
𝑛(𝑘+1)

�̂�𝑖𝑗(𝑡𝑛)𝑟
𝑛=1 )𝑑𝑉

𝑉

 (2.122) 

2.4.3 The development of the current LMM plug-in 

As one of the most advanced Finite Element software, ABAQUS/CAE provides a 

comprehensive solution for FE modelling, visualization and process automation. 

Based on the ABAQUS platform, Abaqus/Standard is a generalised FE analysis 

programme with a powerful nonlinear solver, a user-friendly graphic interface and a 

versatile development platform [21]. ABAQUS plug-in is a tool located in the 

ABAQUS/CAE interface, which provides a programming environment for user 

customization. As shown in Figure 2.7(a), there are two main types of ABAQUS plug-

in: kernel plug-in and GUI plug-in. Kernel plug-in directly issues commands to the 

kernel to accomplish simple tasks such as setting viewport and display options. For 

more complicated tasks, the GUI plug-in is user-friendly and can be constructed using 

the GUI toolkit or the RSG dialog builder. The RSG dialog builder is a built-in plug-in 

in ABAQUS and contains basic widgets for the execution of kernel commands. The 

GUI toolkit is an advanced option for the creation of a GUI plug-in. It provides over 

500 Python classes to control the pre-processing, modelling and post-processing 

stages during the simulation process. It can also work with user-subroutines based 

on FORTRAN to describe material constitutive equations and configure user-defined 

elements. A complete GUI plug-in typically consists of several elements, including 

start-up script, application object, main window, GUI modules, modes, dialogs, and 

widgets. As shown in Figure 2.7(b), the ABAQUS GUI plug-in is based on Abaqus, 

Python and GUI, which are also mutually connected. Firstly, the kernel of 

ABAQUS/CAE is scripted by Python, which is an open-source, object-oriented 

programming language. Python has become one the most popular language in the 

world with high efficiency, high compatibility and short development periods. Also, 

ABAQUS/CAE provides a GUI toolkit for the creation of a user-defined interface. In 

addition, GUI commands include both basic Python modules and Abaqus kernel 

scripts. The GUI plug-in interacts with the kernel by a series of procedures, including 

post dialog box, process query, execute commands and handle exceptions [21].  
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Figure 2.7: (a) The main types of ABAQUS plug-ins (b) The composition of the ABAQUS GUI 
plug-in  

 

At the early stage of development, the LMM is written in FORTRAN as ABAQUS user 

subroutines. Since the use of subroutines requires sufficient knowledge of FORTRAN 

programming and LMM algorithms, it becomes difficult for engineers to learn and use 

the LMM subroutine. Users are prone to make mistakes due to the large number of 

modifications needed when employing the LMM in industrial cases. Therefore, the 

LMM subroutines are gradually updated to the version of an ABAQUS GUI plug-in. 

The LMM plug-in is capable of gathering information in a graphic interface, modifying 

the FE model for LMM computation, and updating keywords for LMM outputs. Users 

can firstly configure the FE model for elastic analysis in ABAQUS/CAE, before running 

the LMM plug-in and filling in the material properties and load cycles. The LMM job is 

then created for submission. The whole process is straightforward and user-friendly, 

while the chance of encountering errors is minimized. In addition, the LMM plug-in 

enables the use of multiple processors when submitting the job, which dramatically 

improves the overall computational efficiency. The main progression during the 

developing history of the LMM is given in Figure 2.8(a). In 2001, the LMM subroutine 

for shakedown and limit analyses for 3D structures was created [14]. In 2003, the 

LMM subroutine for creep rupture analysis was developed based on the extended 

shakedown algorithm [15]. Then in 2010, the Direct Steady Cycle Analysis (DSCA) 

subroutine was proposed for ratchet and fatigue analysis [16]. In 2014, the LMM plug-

in was developed with LMM and DSCA subroutines included [17, 18]. In the same 

year, the extended Direct Steady Cycle Analysis (eDSCA) subroutine was developed 

for creep-fatigue analysis based on the DSCA subroutine [19]. In 2017, the LMM plug-

in was further extended by including the eDSCA subroutine [20]. Therefore, the 

original version of the LMM plug-in is comprised of 5 different modules for different 
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types of industrial problems, as shown in Figure 2.8(b). An LMM framework has been 

established with the implementation of shakedown, creep rupture, ratchet, low-cycle 

fatigue and creep-fatigue modules, which provides a complete solution to structural 

integrity assessment problems.  

 

Figure 2.8: (a) The history of the development of the LMM (b) Original modules in the LMM 
framework 

 

As presented in Figure 2.9, there are several main features of the LMM framework. 

Firstly, the LMM plug-in is based on ABAQUS/CAE, which is a popular commercial 

FE software with a large user base. Secondly, as a direct method, the LMM calculates 

much faster than the inelastic step-by-step FE analysis but with similar accuracy. The 

LMM procedure is also easier to converge, especially for complicated geometry and 

loading spectrum. Thirdly, the LMM framework has been successfully adopted in 

many industrial and research projects and produced satisfactory results. Fourthly, as 

an Abaqus plug-in, the LMM is designed to be easy to install and simple to use for 

engineers among industries. Fifthly, the LMM framework is continuously being 

developed and updated with new features added and bugs fixed by the Structural 

Integrity and Life Assessment (SILA) group based at the University of Strathclyde. 

Lastly, the LMM framework has been developed to be an alternative method for 

international codes and procedures, such as ASME, R5 and RCC-MRx.  
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Figure 2.9: Main features of the LMM framework 

 

The LMM framework can be used to support the computation of several main steps 

of the R5 volume 2/3 introduced in Section 2.3, as shown in Figure 2.10. For some 

steps, full inelastic analyses are suggested by R5 for the evaluation of some key 

parameters. Since full inelastic analyses require a lot of computational resources and 

detailed constitutive equations, they are often not viable and efficient enough for 

engineering problems. The LMM framework is thus developed to solve the main steps 

in the R5 procedure with high efficiency and reliability. The R5 procedure starts by 

defining the load, temperature and material properties. The linear elastic FE analysis 

is then performed for both thermal and mechanical loads. This process is also 

performed in the pre-processing module in the LMM framework. Then in R5, the safe 

margins against plastic collapse are assessed, as well as the rupture limit if creep is 

significant. The limit analysis is done using a special case in the LMM shakedown 

module, and the creep rupture analysis is done using the LMM extended shakedown 

module. After that, the shakedown analysis is recommended by R5 by considering 

the residual stress field. This part is performed by the LMM shakedown module, which 

provides both upper and lower bound solutions. The LMM can also produce the 

ratchet limit of the structure to prevent incremental collapse using a combined 

shakedown and DSCA module. If reverse plasticity is significant, R5 recommends a 

low cycle fatigue assessment by evaluating the total strain range. This part is 

conducted in the LMM DSCA module, which produces the hysteresis loop and fatigue 

damage per cycle. When the creep is considered significant during the load cycle, R5 

suggests the creep-fatigue analysis, where the creep and fatigue damage is 

evaluated separately. This part can be accomplished in the LMM eDSCA module, 

which calculates the saturated hysteresis loop with creep dwell and creep-fatigue 

interaction damage. Therefore, the LMM framework provides a viable solution for 

nearly every step in the R5 volume 2/3 for a complete structural integrity assessment. 
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Figure 2.10: The use of the LMM framework in support of the R5 procedure 

 

2.5 Summary 

In this chapter, the cyclic response of structures at high temperatures is 

comprehensively reviewed. The Bree diagram and corresponding failure mechanisms 

have been introduced for the time-independent cyclic response. The differences 

between HCF and LCF, structural ratchetting and material ratchetting, have been 

discussed. The material hardening under cyclic loads and numerical models have 

also been introduced, including isotropic hardening, kinematic hardening and 

combined hardening. In addition, the creep mechanism in structures subjected to 

monotonic load has been reviewed, including the introduction of primary, secondary 

and tertiary creep stages. The creep rupture behaviour is also reviewed, as well as 

popular numerical models to describe the relationship between rupture stress, time to 

rupture and temperature. Finally, the creep mechanism in structures subjected to 

cyclic load has been introduced where the creep and fatigue behaviours interact with 

each other. The creep ratchetting behaviour is also discussed, as well as creep-

fatigue interaction phenomena such as “cyclically enhanced creep” and “creep 

enhanced plasticity”. The evaluation of creep-fatigue damage is further introduced 

based on several international design codes such as ASME NH, R5 procedure and 

RCC-MR. 

The main steps in volume 2/3 of the R5 procedure have been reviewed in detail due 

to their correlation with the scope of the thesis. Some key concepts in R5 have been 

introduced, as well as the rule-based procedures for complete structural integrity 

assessment. For complicated cases where rules are not suitable to comply with, 
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inelastic FE analysis is suggested for the evaluation of specific parameters. As a 

replacement for the inelastic FE analysis, the LMM framework is proposed by previous 

researchers as one of the most advanced direct methods. The LMM consists of 

several modules to support each step in the R5 volume 2/3, including the shakedown, 

fatigue, ratchet, creep rupture and creep-fatigue modules based on different 

algorithms. With decades of development by the SILA group, the LMM plug-in has 

become a versatile, efficient and reliable engineering tool for structural integrity 

assessment.  
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 The evaluation of the shakedown limit 

considering limited kinematic hardening 

material 

3.1 Introduction 

To evaluate the load-bearing capacity of structures undergoing cyclic thermal-

mechanical loads, the shakedown analysis is often performed as part of the structural 

integrity assessment. By allowing a relatively small amount of plastic strain, the 

shakedown limit has been considered as an essential indicator when the total plastic 

dissipation is bounded in the structure [100]. The shakedown factor is then proposed, 

which scales the external loads proportionally to the limit of structural failure. Two 

failure mechanisms are often observed when the loads exceed the shakedown limit: 

low-cycle fatigue and incremental collapse [101]. Many approaches have been 

proposed to evaluate the shakedown factor, as introduced in Chapter 2. The Linear 

Matching Method (LMM) is one of the direct methods that calculate the shakedown 

limit considering elastic-perfectly plastic (EPP) material. The LMM theorem is based 

on a small deformation assumption without considering any creep effect. It consists 

of Koiter’s kinematic theorem [26] for the upper bound shakedown solution, as well 

as Melan’s static theorem [97] for the lower bound shakedown limit calculation.  

However, for materials subjected to cyclic loading with reverse plasticity, the 

Bauschinger effect [22] may be observed so that the yield strength would be different 

from the one with monotonic loading. Due to the kinematic hardening effect of 

materials, the shakedown limit computed using the EPP constitutive model may be 

over-conservative and inaccurate. A two-surface model [46] is adopted in this work to 

describe the translation of yield surface. This model has been combined with Melan’s 

static theorem [97] and adopted in many direct methods [46, 100, 102-109] to consider 

the influence of kinematic hardening on the shakedown limit. Unlike unlimited 

kinematic hardening where the yield surface translation is unrestricted [110, 111], 

limited nonlinear kinematic hardening is considered in this work where the back stress 

is implicitly restricted by the ultimate bounding surface [100]. Some researchers have 

also considered linear hardening laws for the bounding of back stress known as 
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limited linear kinematic hardening [104, 109], but it is only applicable for specific types 

of material.  

Although many researchers have considered thermal stress in their research [108, 

109, 112, 113], few have investigated the effect of temperature-dependent material 

properties. It is widely acknowledged that the yield strength of some materials greatly 

varies due to the non-isothermal effect in a component. The corresponding 

shakedown limit also significantly differs from the case when constant material 

parameters are applied throughout the structure. In this work, the LMM algorithm has 

been extended to include limited nonlinear kinematic hardening for general materials 

using the two-surface model [114]. Temperature-dependent material parameters 

have also been considered and applied in the computation of shakedown boundaries 

for complex engineering structures. The LMM subroutines have been newly updated 

so that the shakedown boundaries considering EPP materials, unlimited hardening, 

and limited kinematic hardening can be calculated simultaneously. In addition, since 

the LMM framework uses the concept of the shakedown theorem in the ratchet 

analysis module [16, 24], the ratchet limit considering kinematic hardening has also 

been realized.  

In this study, the Bree-like diagram is extended by including the shakedown limit 

considering limited kinematic hardening material. The description of the extended 

LMM algorithm considering limited kinematic hardening material in Section 3.2. Two 

numerical examples are given in Section 3.3 to demonstrate the reliability and 

usability of the proposed method.  

3.2 Extended LMM algorithm considering limited kinematic 

hardening material 

3.2.1 Extended Melan’s static shakedown theorem 

Considering an isotropic material with limited kinematic hardening, which satisfies the 

two-surface hardening model. The yield surface is bounded by an initial yield stress 

𝜎𝑌 and an ultimate strength 𝜎𝑈. 

A two-surface model proposed by [46] has been considered here to simulate the 

limited kinematic hardening behaviour. The yield surface can freely move inside the 

bounding surface, where the size of both surfaces is fixed, as shown in Figure 3.1. 
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The back stress is denoted by 𝐴𝑖𝑗(𝑥𝑖) which is the translation tensor of the yield 

surface centre. The stress at yield is denoted by 𝜎𝑖𝑗
′𝑐, where 𝜎𝑖𝑗

′𝑐(𝑥𝑖, 𝑡) = 𝜆�̂�𝑖𝑗(𝑥𝑖, 𝑡) +

�̅�𝑖𝑗(𝑥𝑖). Within the original yield stress, the reduced stress is denoted by 𝜈𝑖𝑗
′ (𝑥𝑖 , 𝑡), so 

that: 

 𝑓𝑌[ 𝜎𝑖𝑗
′𝑐(𝑥𝑖, 𝑡) − 𝐴𝑖𝑗(𝑥𝑖), 𝜎𝑌(𝑥𝑖)] ≤ 0 (3.1) 

The stress at yield 𝜎𝑖𝑗
′𝑐(𝑥𝑖, 𝑡) is also bounded by the outer bounding surface: 

 𝑓𝑈[𝜎𝑖𝑗
′𝑐(𝑥𝑖, 𝑡), 𝜎𝑈(𝑥𝑖)] ≤ 0 (3.2) 

Since the stress at yield can be expressed as 𝜎𝑖𝑗
′𝑐(𝑥𝑖, 𝑡) = 𝜆�̂�𝑖𝑗(𝑥𝑖 , 𝑡) + �̅�𝑖𝑗(𝑥𝑖), the 

extended Melan’s static shakedown theorem is given as follows: 

The structure will shake down, when a constant residual stress field and a constant 

back stress field can be found so that both the von Mises yield condition and the 

bounding condition are satisfied for arbitrary load paths from a specific loading domain: 

 𝑓𝑌[𝜆�̂�𝑖𝑗(𝑥𝑖, 𝑡) + �̅�𝑖𝑗(𝑥𝑖) − 𝐴𝑖𝑗(𝑥𝑖), 𝜎𝑌(𝑥𝑖)] ≤ 0 (3.3) 

 𝑓𝑈[𝜆�̂�𝑖𝑗(𝑥𝑖, 𝑡) + �̅�𝑖𝑗(𝑥𝑖), 𝜎𝑈(𝑥𝑖)] ≤ 0 (3.4) 

The theorem has been explained in [108], where no particular hardening rules are 

adopted. It has also been implemented in several direct methods as a general 

nonlinear kinematic hardening law. No explicit back stress field is calculated during 

the iteration process, so the extended shakedown theory has been greatly simplified 

with only two parameters: the yield stress and the ultimate stress. However, it is worth 

mentioning that there are a number of assumptions in the theorem as stated in [115], 

such as the maximal dissipation hypothesis, the positive hysteresis postulate, the 

multiaxial Bauschinger hypothesis, and the strictly-stable hardening hypothesis.  
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Figure 3.1: A two-surface model for the description of limited kinematic hardening behaviour in 
the deviatoric plane 

 

3.2.2 The effect of temperature-dependent material properties 

Since the performance of material can significantly degrade with increasing 

temperature, it is vital to consider the non-isothermal effect during FE analysis. In this 

work, both the yield stress 𝜎𝑌 and the ultimate stress 𝜎𝑈 in the two-surface model are 

defined to be temperature-dependent. Linear interpolation and extrapolation 

techniques are adopted when evaluating parameters at integration points in the 

structure. The ultimate stress is often defined as follows: 

 𝜎𝑈 = 𝐾𝜎𝑌 (3.5) 

where 𝐾  is a constant hardening factor. Due to the consideration of the non-

isothermal effect, the hardening factor also becomes a dynamic ratio between the 

ultimate stress and the yield stress: 

 𝐾(𝑇) =
𝜎𝑈(𝑇)

𝜎𝑌(𝑇)
 (3.6) 

For the selection of material parameters mentioned above, it is recommended in [116] 

to take the “fatigue limit for arbitrary high-cycle loading” for 𝜎𝑌 and the “high-cycle 

ratchetting” for 𝜎𝑈. However, these material properties are rarely mentioned in other 

literature and corresponding experimental data are also limited. Thus in this work, 0.2% 

proof stress 𝜎𝑠(𝑇)  and the ultimate tensile strength UTS(𝑇)  are selected for the 

numerical examples in Section 3.3, so that: 
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 UTS(𝑇) = 𝐾(𝑇)𝜎𝑠(𝑇) (3.7) 

3.2.3 A two-stage numerical procedure 

The proposed numerical procedure of the extended shakedown algorithm consists of 

two stages. Two stages are operated in the UMAT subroutine simultaneously to 

satisfy equations (3.3) and (3.4). Based on the maximum work principle: 

 (𝜎𝑖𝑗
′𝑐 − 𝐴𝑖𝑗)𝜀�̇�𝑗

𝑐 ≥ (𝜎𝑖𝑗
′∗ − 𝐴𝑖𝑗)𝜀�̇�𝑗

𝑐  (3.8) 

The strain increment Δ𝜀𝑖𝑗
𝑐  is compatible and is the integration of the kinematically 

admissible strain rate history 𝜀�̇�𝑗
𝑐 : 

 ∫ 𝜀�̇�𝑗
𝑐 𝑑𝑡 = Δ𝜀𝑖𝑗

𝑐Δ𝑡

0
 (3.9) 

A displacement increment field Δ𝑢𝑖
𝑐 is also given by, 

 Δ𝜀𝑖𝑗
𝑐 =

1

2
(

𝜕Δ𝑢𝑖
𝑐

𝜕𝑥𝑗
+

𝜕Δ𝑢𝑗
𝑐

𝜕𝑥𝑖
) (3.10) 

Stage 1 evaluates the shakedown limit considering unlimited hardening, which 

satisfies equation (3.3). The corresponding shakedown factor 𝜆𝑈𝐻 is defined by: 

 𝜆𝑈𝐻 = min {
𝜎𝑌(𝑇)

�̅�(�̂�𝑖𝑗(𝑡𝑛)+�̅�𝑖𝑗𝑈𝐻−𝐴𝑖𝑗)
} (3.11) 

where �̅� denotes the effective von Mises stress. Stage 2 utilizes the original LMM 

shakedown subroutine to evaluate the shakedown multiplier 𝜆  which satisfies 

equation (3.4): 

 𝜆 =
∫ ∫ 𝜎𝑈(𝑇)�̅̇�(�̇�𝑖𝑗

𝑐 )𝑑𝑡𝑑𝑉
Δ𝑡

0𝑉

∫ ∫ �̂�𝑖𝑗�̇�𝑖𝑗
𝑐 𝑑𝑡𝑑𝑉

Δ𝑡

0𝑉

 (3.12) 

where the effective strain rate 𝜀̇̅ = √(2/3)𝜀�̇�𝑗𝜀�̇�𝑗. The shakedown factor considering 

kinematic hardening 𝜆𝐾𝐻 is then calculated after the completion of both stages: 

 𝜆𝐾𝐻 = min{𝜆𝑈𝐻 , 𝜆} (3.13) 

A series of linear equations are then given to solve the numerical problem described 

above. The shear modulus is updated iteratively at every gauss point in the structure 
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to match the von Mises yield condition, as shown in Figure 3.2. For stage 1, the linear 

problem is: 

 𝜀�̇�𝑗𝑈𝐻
𝑓′

=
1

𝜇𝑈𝐻(𝑡)
{𝜆𝑈𝐻

𝑖 �̂�𝑖𝑗(𝑡) + (�̅�𝑖𝑗𝑈𝐻 − 𝐴𝑖𝑗)
𝑓

}
′

 (3.14) 

where the shear modulus 𝜇𝑈𝐻(𝑡) = 𝜎𝑌(𝑇)/𝜀̇(̅𝜀�̇�𝑗
𝑖 ). The symbol ′ denotes the deviatoric 

component of tensors. 𝜀�̇�𝑗𝑈𝐻
𝑓

 denotes a kinematically admissible strain rate history. 

�̅�𝑖𝑗𝑈𝐻 denotes a constant residual stress field. 𝐴𝑖𝑗 denotes the back stress. Equation 

(3.14) is further integrated over the time cycle: 

 Δ𝜀𝑖𝑗𝑈𝐻
𝑓′

= {∫
1

𝜇𝑈𝐻
𝜆𝑈𝐻

𝑖 �̂�𝑖𝑗𝑑𝑡
Δ𝑡

0
} + {∫

1

𝜇𝑈𝐻

Δ𝑡

0
𝑑𝑡 } (�̅�𝑖𝑗𝑈𝐻 − 𝐴𝑖𝑗)

𝑓′

 (3.15) 

For unlimited hardening limit, Δ𝜀𝑖𝑗𝑈𝐻
𝑓′

= 0. (�̅�𝑖𝑗𝑈𝐻 − 𝐴𝑖𝑗)
𝑓′

 can then be solved by: 

 (�̅�𝑖𝑗𝑈𝐻 − 𝐴𝑖𝑗)
𝑓′

= −
∫

1

𝜇𝑈𝐻

Δ𝑡

0
𝜆𝑈𝐻

𝑖 �̂�𝑖𝑗𝑑𝑡

∫
1

𝜇𝑈𝐻

Δ𝑡

0
𝑑𝑡

 (3.16) 

Equation (3.16) is then substituted into Equation (3.14) for the evaluation of 𝜀�̇�𝑗𝑈𝐻
𝑓′

. The 

unlimited hardening limit multiplier 𝜆𝑈𝐻 is finally calculated with Equation (3.11). 

 

Figure 3.2: The matching procedure of the LMM considering kinematic hardening behaviour 
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For stage 2, the original LMM shakedown algorithm is adopted as given in Section 

2.4.2.2. Instead of using the yield stress 𝜎𝑌, the ultimate strength 𝜎𝑈 is adopted here 

when evaluating the shear modulus. The linear problem is given as: 

 𝜀�̇�𝑗
𝑓′

=
1

𝜇
(𝜆𝑖�̂�𝑖𝑗 + �̅�𝑖𝑗

𝑓
)

′
 (3.17) 

where 𝜇 = 𝜎𝑈(𝑇)/𝜀̇.̅ Equation (3.17) is then integrated over the time cycle: 

 Δ𝜀𝑖𝑗
𝑓′

=
1

�̅�
(�̅�𝑖𝑗

𝑓 ′
+ 𝜎𝑖𝑗

𝑖𝑛′
) (3.18) 

where 𝜎𝑖𝑗
𝑖𝑛′

= �̅�{∫
1

𝜇(𝑡)
𝜆𝑖Δ𝑡

0
�̂�𝑖𝑗

′ (𝑡)𝑑𝑡}  and 
1

�̅�
= ∫

1

𝜇𝑛
𝑑𝑡

Δ𝑡

0
. A monotonically decreasing 

upper bound multiplier 𝜆 is finally evaluated with Equation (3.12).  

3.2.4 Implementation of numerical procedures in ABAQUS 

The numerical procedure described above has been fully implemented in ABAQUS 

using the FORTRAN subroutine. Similar to Section 2.4.2.3, the integration function 

over the time cycle has been simplified to the sum operator at each load instance. 

The iteration process is presented in a flowchart, as shown in Figure 3.3. 

1) For iteration number 𝑘 = 1, the initialization procedure is firstly performed: 

 𝜇1 = 𝜇𝑈𝐻
1 =

𝐸

2(1+𝑣)
, 𝜆1 = 𝜆𝑈𝐻

1 = 1 (3.19) 

where 𝜇  denotes the shear modulus, 𝐸  denotes Young’s modulus, 𝑣  denotes the 

Poisson’s ratio, 𝜆 denotes the shakedown multiplier. The elastic stress history �̂�𝑖𝑗(𝑡𝑛) 

is also calculated during the first iteration. 

2) For the (𝑘 + 1)th iteration, stage 1 given in Section 3.2.3 is conducted by: 

 𝜆𝑈𝐻
𝑘+1 = 𝜆𝑈𝐻

𝑘  (3.20) 

 𝜇𝑛𝑈𝐻
𝑘+1 =

𝜎𝑌(𝑇)

�̅�(Δ𝜀𝑖𝑗𝑈𝐻
𝑛𝑘 )

 (3.21) 

The equations (3.14) – (3.16) have been simplified by: 

 𝑑𝜀𝑖𝑗𝑈𝐻
𝑛(𝑘+1)

=
1

𝜆𝑈𝐻
𝑘+1(𝑡𝑛)

{𝜆𝑈𝐻
𝑘+1�̂�𝑖𝑗(𝑡𝑛) + (�̅�𝑖𝑗𝑈𝐻 − 𝐴𝑖𝑗)

𝑘+1
} (3.22) 
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 (�̅�𝑖𝑗𝑈𝐻 − 𝐴𝑖𝑗)
𝑘+1

= −
∑

1

𝜇𝑛𝑈𝐻
𝑘+1 𝜆𝑈𝐻

𝑘+1�̂�𝑖𝑗(𝑡𝑛)𝑟
𝑛=1

∑
1

𝜇𝑛𝑈𝐻
𝑘+1 (𝑡𝑛)

𝑟
𝑛=1

 (3.23) 

Meanwhile, stage 2 from Section 3.2.3 is performed in parallel: 

 𝜆𝑘+1 = 𝜆𝑘 (3.24) 

 𝜇𝑛
𝑘+1 =

𝜎𝑈(𝑇)

�̅�(Δ𝜀𝑖𝑗
𝑛𝑘)

 (3.25) 

 
1

�̅�𝑘+1 = ∑
1

𝜇𝑛
𝑘+1

𝑟
𝑛=1  (3.26) 

 𝜎𝑖𝑗
𝑖𝑛(𝑘+1)

= �̅�𝑘+1 (∑
𝜆𝑘+1�̂�𝑖𝑗(𝑡𝑛)

𝜇𝑛
𝑘+1

𝑟
𝑛=1 ) (3.27) 

Then a Jacobian matrix [𝐽]𝑘+1 is built based on the updated shear modulus �̅�𝑘+1. The 

constant residual stress field �̅�𝑖𝑗
𝑘+1 is given by: 

 �̅�𝑖𝑗
𝑘+1 = [𝐽]𝑘+1Δ𝜀𝑖𝑗

𝑘+1 − 𝜎𝑖𝑗
𝑖𝑛(𝑘+1)

 (3.28) 

After that, the compliance matrix [𝐶]𝑛
𝑘+1 is constructed as an inverse matrix of [𝐽]𝑘+1. 

The strain rate at load instances Δ𝜀𝑖𝑗
𝑛(𝑘+1)

 is computed by: 

 Δ𝜀𝑖𝑗
𝑛(𝑘+1)

= [𝐶]𝑛
𝑘+1 (�̅�𝑖𝑗

𝑘+1 + �̂�𝑖𝑗
𝑘+1(𝑡𝑛)) (3.29) 

3) At the end of (𝑘 + 1)th iteration, the user subroutine URDFIL is called for post-

processing. The unlimited hardening multiplier 𝜆𝑈𝐻
𝑘+1 is calculated by: 

 𝜆𝑈𝐻
𝑘+1 = min {

𝜎𝑌(𝑇)

�̅�(�̂�𝑖𝑗(𝑡𝑛)+(�̅�𝑖𝑗𝑈𝐻−𝐴𝑖𝑗)
𝑘+1

)
} (3.30) 

The shakedown multiplier bounded by the ultimate stress 𝜎𝑈 is also calculated by: 

 𝜆𝑘+1 =
∫ (𝜎𝑈(𝑇) ∑ �̅�𝑛

𝑘+1𝑟
𝑛=1 )𝑑𝑉

𝑉

∫ (∑ �̇�𝑖𝑗
𝑛(𝑘+1)

�̂�𝑖𝑗(𝑡𝑛)𝑟
𝑛=1 )𝑑𝑉

𝑉

 (3.31) 

After the load multiplier at both stages has satisfied the corresponding convergence 

criteria, the shakedown multiplier considering limited kinematic hardening 𝜆𝐾𝐻  is 

computed with equation (3.13). 
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Figure 3.3: Flowchart of the extended LMM algorithm for shakedown analysis considering 
limited kinematic hardening material 
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3.3 Numerical examples 

3.3.1 A thin cylindrical pipe 

3.3.1.1 FE model and material parameters 

As a typical benchmark problem, the thin cylindrical pipe has been used by several 

researchers [108, 109, 112, 113] for shakedown analysis considering kinematic 

hardening material. The geometry from [109] has been adopted in this work, which is 

a 2D axisymmetric model with the radius 𝑅 and the thickness 𝑑 = 0.1𝑅, as shown in 

Figure 3.4(a). A reference pressure 𝑃 = 1 MPa and a temperature of 204.38 ºC are 

subjected to the inner surface, while a temperature of 0 ºC is applied on the outer 

surface. A thermal difference Δ𝑇 is created and the steady-state temperature field is 

presented in Figure 3.4(b). The FE model is further meshed into 500 CAX8R elements 

in Abaqus/CAE. The loading domain for shakedown analysis consists of four load 

vertices: 𝑉(1) = (𝑃, 0); 𝑉(2) = (0, Δ𝑇); 𝑉(3) = (𝑃, Δ𝑇); 𝑉(4) = (0,0) , as shown in 

Figure 3.4(c). The corresponding loading spectrum is presented in Figure 3.5.  

 

Figure 3.4: (a) The geometry of a typical thin pipe [109] (b) FE mesh and temperature 
distribution (c) The loading domain for shakedown analysis 

  

 

Figure 3.5: The loading condition for shakedown analysis 
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3.3.1.2 Results and discussions 

The shakedown and ratchet analyses on the cylindrical pipe considering kinematic 

hardening material have been performed, as shown in Figure 3.6. The extended 

shakedown algorithm described in Section 3.2 has been adopted for the shakedown 

analysis, while the LMM DSCA module has been used for the ratchet analysis. The 

inner pressure 𝑃 and temperature Δ𝑇 have been normalised by the limit load 𝑃0 and 

the reverse plasticity limit Δ𝑇0, respectively. A number of fictitious hardening factors 

𝐾 have been chosen, ranging from 1.2 to 1.5. 

It can be observed in Figure 3.6 that the ratchet boundaries enlarge proportionally 

with increasing 𝐾. Since the ratchet limit is controlled by the failure mechanism of 

incremental collapse, it is greatly influenced by the ultimate bounding stress 𝜎𝑈. In 

addition to incremental collapse, the shakedown boundaries are controlled by another 

failure mechanism – reverse plasticity. This mechanism can be demonstrated by the 

unlimited hardening limit [110]. The unlimited hardening limit is only determined by 

the yield stress 𝜎𝑌. Therefore, the lower part of shakedown limit is bounded by ratchet 

limit, which intersects with the X-axis at 𝑃/𝑃0 = 1, 1.2, 1.35, 1.5. Meanwhile, the upper 

part of the shakedown limit is bounded by a uniform unlimited hardening limit, which 

is unaffected by the hardening factor 𝐾. 

 

Figure 3.6: Ratchet and shakedown limit of the thin pipe with various fictitious hardening 
factors 
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3.3.1.3 Verification of results 

To validate the calculated boundaries, the results from the extended LMM algorithm 

have been compared with ones from the literature. As shown in Figure 3.7, the 

shakedown limit with a hardening factor of 1.35 generally agrees well with the results 

from Heitzer [109] using the modified basis reduction method. As shown in Figure 3.8, 

the shakedown limit with various hardening factors also matches well with the results 

from Simon [108] using the interior-point algorithm. Some minor deviations can be 

observed when compared with the literature, which are mainly caused by model 

processing and numerical errors. To further verify the accuracy of the proposed 

method, the shakedown multipliers 𝜆 are selected in radial directions to compare with 

the corresponding data points provided in the literature [108, 109, 113]. As shown in 

Figure 3.9, all the comparison data points can fit in the region with a deviation factor 

of 0.7, with a coefficient of determination 𝑅2 = 0.98. Therefore, the reliability of the 

extended LMM method has been proved for shakedown analyses considering limited 

kinematic hardening material.  

 

Figure 3.7: Comparison of shakedown boundaries with results from Heitzer [109] 
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Figure 3.8: Comparison of shakedown boundaries with results from Simon [108] 

 

 

Figure 3.9: Comparison of the shakedown multiplier λ from the LMM and literature 

 

3.3.2 An aero-engine turbine disk 

3.3.2.1 FE model and material parameters 

In the field of the aerospace industry, turbine disks are significant components for the 

generation of thrust power in an aero-engine. Since they are operated at high speed 

in a high-temperature environment, cyclic thermal-mechanical loads are often 

subjected to turbine disks for typical loading conditions. The structural integrity 

analysis is crucial for the reliability and lifespan of the engine [117], so the shakedown 
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analysis has been conducted considering limited kinematic hardening material for 

improved accuracy and usability in engineering problems.  

An axisymmetric FE model has been created to simulate a rotating turbine disk, with 

its dimensions given in Figure 3.10. It should be noticed that the mounting parts and 

tiny bores in the structure have been neglected for the sake of simplicity. The model 

has been meshed into 1975 elements of type CAX8R, as shown in Figure 3.11. For a 

typical loading condition, the turbine disk is subjected to the centrifugal force 𝐹 due to 

the rotating speed 𝜔 = 1780.24 rad/s, the equivalent pressure 𝑃𝑒𝑞 = 148.835 MPa at 

the end of the disk due to the reaction force caused by connected turbine blades. The 

cyclic thermal stress is also considered in the body caused by the temperature 

difference Δ𝑇. Beside the axisymmetric boundary condition, the normal displacement 

at the bottom edge of the disk has been restricted to prevent rigid movement in the 

axial direction.  

 

Figure 3.10: The geometry of a typical turbine disk (dimensions in millimetres) 

 

 

Figure 3.11: The FE mesh and a typical operating condition 
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A simplified load spectrum and the corresponding loading domains have been 

presented in Figure 3.12. Some fluctuations in the loading spectrum have been 

neglected due to the path-independency of the extended LMM algorithm. Two 

different loading conditions are considered here for comparison. Loading domain Ⅰ 

consists of cyclic thermal loads and cyclic mechanical loads with two load instances 

𝑉(1) = (0,0), 𝑉(2) = (𝑀, Δ𝜃). Loading domain Ⅱ consists of cyclic thermal loads and 

constant mechanical loads with two load instances 𝑉(2) = (𝑀, Δ𝜃), 𝑉(3) = (𝑀, 0), 

where 𝑀 indicates mechanical loads while Δ𝜃 indicates temperature difference.  

The turbine disk is manufactured from a nickel-based superalloy GH4169. The 

material is widely used in the aerospace industry due to its superior high-temperature 

performance, weldability and formability. Temperature-independent and temperature-

dependent material parameters of GH4169 are given in Table 3.1 and Table 3.2, 

respectively. The non-isothermal effect on the material performance is considered by 

using a dynamic parameter 𝐾(𝑇) = UTS(𝑇)/𝜎𝑠(𝑇) based on temperature dependent 

yield stress and tensile strength from [118].  

 

Figure 3.12: Simplified load spectrums and the corresponding loading domains 

 

Table 3.1: Temperature-independent material parameters of superalloy GH4169 

Conductivity, k [W/(m∙ºC)] 23.6 

Density, ρ [g/cm3] 8.24 

Young’s modulus, E [GPa] 177 

Poisson’s ratio, v 0.3 

Thermal expansion coefficient, α [10-6/ºC] 17 

Specific heat capacity, c [J/(kg∙ºC)] 573.4 
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Table 3.2: Temperature-dependent material parameters of superalloy GH4169 

Temperature, T (ºC) 𝜎𝑠 (MPa) UTS (MPa) K 

0 1177 1377 1.170 

350 1156 1294 1.119 

450 1088 1196 1.099 

550 1117 1215 1.088 

600 1078 1215 1.127 

650 1000 1166 1.166 

700 951 1039 1.093 

750 764 862 1.128 

 

3.3.2.2 Results and discussions 

The elastic analysis is first performed to generate the von Mises stress filed �̂�𝑖𝑗 for the 

shakedown analysis. Steady-state thermal analysis is also conducted to compute the 

temperature field at the loading stage, as shown in Figure 3.13(a). The heat is 

conducted from the high-temperature turbine blade to the connected turbine disk. A 

temperature gradient is thus formed with the highest temperature of 624.1 ºC at the 

outer edge of the turbine disk, as well as the lowest temperature of 252.9 ºC at the 

inner part of the disk. The thermal stress is then calculated by importing the predefined 

temperature field into an elastic analysis, as shown in Figure 3.13(b). With the 

centrifugal force 𝐹  and the equivalent pressure 𝑃𝑒𝑞  applied, the mechanical stress 

field can also be evaluated, as shown in Figure 3.13(c). It is worth mentioning that the 

stress concentration in the mechanical stress field can be found at the inner edge of 

the disk, while thermal stress concentrates at the outer edge of the disk.   

 

Figure 3.13: Elastic analysis contours of (a) temperature field (b) thermal von Mises stress (c) 
mechanical von Mises stress 
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Based on the elastic analysis results, the shakedown analysis considering kinematic 

hardening with loading domain Ⅰ has been performed, as presented in Figure 3.14. In 

the diagram, both mechanical and thermal loads are normalised by the reference 

value given in Figure 3.12. For normal operating conditions, the load point 

(𝑀/𝑀0, Δ𝜃/Δ𝜃0) = (1, 1) is found inside the shakedown envelope, so the structure 

would not shake down during the standard operation process. Unlike a typical Bree-

like diagram [119], the reverse plasticity limit is not horizontal for load domain Ⅰ with 

cyclic thermal-mechanical loads. It is due to the counteraction effect between the 

thermal and mechanical loads, where the stress concentration is cancelled out with 

the application of both loads.  

The shakedown boundary is plotted by scaling the loads proportionally with various 

fixed ratios between mechanical and thermal load: 𝜂 = 𝑀/Δ𝜃. The diagram can be 

divided into two sections by the load ratio 𝜂 = 0.8, as shown in Figure 3.14. Two 

distinct failure mechanisms are observed for load points in each region. For 𝜂 < 0.8, 

the thermal load is dominant, and the failure mode is low cycle fatigue in local areas 

of the structure. It can be observed that the reverse plasticity limits are identical for 

the EPP model and limited kinematic hardening model, which are both bounded by 

the unlimited hardening limit. For 𝜂 > 0.8, the mechanical load becomes dominant, 

and the failure mode is incremental collapse which is a global structural behaviour. 

After load point (1.12, 1.40), the unlimited kinematic hardening limit separates from 

the EPP shakedown limit. The shakedown limit considering limited hardening is then 

bounded by both the unlimited hardening limit and the ratchet limit controlled by the 

temperature-dependent UTS. Two load points beside the separation point have been 

chosen for further clarification of the failure mechanism, as presented in Figure 3.15. 

The coordinate for load point (1) is (0.96, 1.38) and the local failure location caused 

by the dominant thermal load is spotted at the corner of the outer edge of the disk. 

The coordinate for load point (2) is (1.28, 1.28) which is mechanical load dominant. 

The corresponding failure mechanism is global, initiated from the inner edge of the 

turbine disk.  
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Figure 3.14: Shakedown analysis considering kinematic hardening and temperature-dependent 
material properties for loading domain Ⅰ 

 

 

Figure 3.15: The failure mechanism for two different load cases 

 

3.3.2.3 The effect of temperature-dependent material parameters 

To further investigate the importance of using temperature-dependent material 

properties, the shakedown analysis has been performed again using temperature-

independent yield stress and UTS, as presented in Figure 3.16. The loading domain 

Ⅰ from Figure 3.12 is considered with a cyclic thermal-mechanical load. Constant 

material properties are selected from Table 3.2 with the temperature at 0 ºC. It can be 

observed that when the temperature level is low, the shakedown boundaries 

calculated with both temperature-dependent material parameters and constant 
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parameters are nearly identical. With the increase of thermal load, the shakedown 

limit obtained with temperature-dependent material parameters become more 

conservative, which is also found in [120]. The largest difference between the 

shakedown envelopes is found at the transition point when the thermal and 

mechanical stress counteracts with each other.  

The parametric study has also been performed considering load domain Ⅱ with 

constant mechanical load and cyclic thermal load, as shown in Figure 3.17. A typical 

Bree-like diagram [119] is obtained with a horizontal reverse plasticity limit on which 

the scaled thermal stress is twice the yield stress. With the increase of temperature, 

the influence of using the temperature-dependent material properties becomes more 

substantial. It can also be observed that the adoption of non-isothermal parameters 

has a more significant effect on the shakedown boundary considering limited 

kinematic hardening at lower temperature levels, suggesting that the shakedown 

analysis with hardening material could be more sensitive to temperature-dependent 

parameters. Therefore, it is essential to implement non-isothermal material 

parameters as part of the proposed extended LMM method for more accurate and 

conservative results.  

 

Figure 3.16: Comparison of shakedown boundaries considering temperature-dependent and 

constant material properties for loading domain Ⅰ 
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Figure 3.17: Comparison of shakedown boundaries considering temperature-dependent and 
constant material properties for loading domain Ⅱ 

 

3.4 Summary 

In this chapter, a shakedown algorithm considering limited kinematic hardening 

material is introduced and implemented in the extended LMM shakedown module. 

The material properties considering the non-isothermal effect are adopted using the 

proposed direct method. Based on the two-surface hardening model, the method uses 

fictitious hardening factors calculated from temperature-dependent yield stress and 

UTS. A thin cylindrical pipe has been modelled and analysed with the extended LMM 

shakedown module. The result shakedown boundaries match well with ones from 

literature with a deviation factor of 0.07, where the reliability and accuracy of the 

proposed method are successfully validated.  

A case study on an aero-engine turbine disk has also been conducted to show the 

versatility of the extended LMM shakedown algorithm for generic industrial problems. 

Two distinct failure mechanisms have been observed in the structure, which are 

caused by different loading combinations with dominant thermal or mechanical loads. 

Due to the counteracting effect between thermal and mechanical loads, a transition 

point in the shakedown boundaries has been spotted. Two failure modes are 

separated by the transition point. The shape of the shakedown envelope is affected 

by the choice of loading domain. The size of the shakedown envelope is affected by 

the use of temperature-dependent material parameters. Compared to constant 

material properties, the shakedown limit considering temperature-dependent material 
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parameters would be much more conservative at high temperatures. Therefore, the 

benchmark example of the thin cylindrical pipe indicates that the results from the 

extended LMM shakedown module agree well with the ones from literature. The 

engineering example of the aero-engine turbine disk illustrate the versatility of the 

proposed method. In addition, an extended Bree-like diagram considering limited 

kinematic hardening and non-isothermal effect has also been plotted and discussed.  
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 The evaluation of the creep rupture limit 

using a unified creep rupture equation 

4.1 Introduction 

With superior heat transfer efficiency and compactness, the Printed Circuit Heat 

Exchangers (PCHE) have become increasingly popular in the nuclear industry. Due 

to the large surface area inside the channels, they are highly suitable for gaseous 

heat transfer in high-temperature gas-cooled reactors (HTGRs) [121]. Helium loops 

are often used as coolants, and the temperature in the channels could reach over 

950 °C [122]. Time-dependent behaviours such as creep are often found in such 

engineering structures when the operating temperature reaches the material’s creep 

range. In the circumstances when the components are affected by both plasticity and 

creep behaviour, the load-bearing capacity of structures would be significantly 

reduced. Therefore, creep rupture analysis has been introduced to study the load-

carrying limit of a component before reaching the creep rupture state [15]. The creep 

rupture analysis has thus become highly important as part of the structural integrity 

assessment of a PCHE core. Although the creep effect on the PCHE has been 

considered by some researchers with experiments and Finite Element (FE) analysis 

[123, 124], the structural creep rupture limits and the creep rupture mechanisms have 

been rarely discussed in the literature.  

The R5 procedure [7] has been widely adopted for comprehensive structural integrity 

assessment, including shakedown, ratchet, creep, and fatigue analyses. A series of 

simplified inelastic methods have been introduced in R5 to replace inaccurate elastic 

analyses or costly cycle-by-cycle plastic analyses. Regarding the creep rupture 

endurance, R5 defined a rupture reference stress 𝜎𝑟𝑒𝑓
𝑅  for the evaluation of structural 

creep rupture life based on rupture data of the material. The reference stress of a 

constant primary load is used to calculate 𝜎𝑟𝑒𝑓
𝑅 , with further correction of the stress 

concentration factor 𝜒. The bounding limit can then be predicted based on the creep 

rupture data conservatively. According to the R5 procedure, the shakedown boundary 

would reduce correspondingly when the structures experience creep behaviour during 

high-temperature operation. Some modifications can be made to evaluate the creep 

rupture boundaries based on traditional shakedown theory. For locations in a 

structure where the temperature is below the creep range, a temperature-dependent 
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yield stress 𝜎𝑦(𝑇) can be applied. While for areas with higher temperature above the 

creep range, the yield stress is substituted by the rupture stress 𝜎𝑅(𝑡𝑅 , 𝑇) which is 

based on both temperature 𝑇 and time to rupture 𝑡𝑅. Therefore, existing shakedown 

theorem can be directly used to solve creep rupture problems with provision of the 

creep rupture strength. 

As introduced in Section 2.4, the Linear Matching Method (LMM) framework has been 

integrated with ABAQUS [21] for comprehensive structural integrity assessment. An 

extended shakedown algorithm has also been implemented in the LMM framework 

for creep rupture analysis. The creep rupture module was developed in [15] and has 

successfully solved many engineering problems [13, 20, 125-129]. The main 

technique used in the LMM for evaluating the temperature-dependent rupture stress 

𝜎𝑅(𝑡𝑅, 𝑇) is linear interpolation and extrapolation. The linear technique is simple to 

implement but sometimes difficult and unreliable to use. For instance, a large number 

of data points for various rupture times need to be entered in the LMM plug-in to 

simulate nonlinear rupture curves. Also, linear extrapolation may produce inaccurate 

results for some materials due to the nonlinearity of creep rupture curves. In addition, 

it can be time-consuming to input all the data manually when conducting parametric 

studies with different materials. Therefore, it is crucial to develop a numerical scheme 

for rupture strength evaluation with better usability and reliability.  

To generate the master equations to describe the relationship between rupture stress, 

temperature and time to rupture, several numerical models have been adopted by the 

European Creep Collaborative Committee (ECCC), including the Larson-Miller 

parameter [50], standard ISO 6303 method [130], and Manson-Haferd model [52]. 

These models have been proved to be more accurate and reliable than linear 

interpolation and extrapolation, but they are often limited to being used for specific 

materials. This actively demonstrates that the form of equations heavily depends on 

the type of material, so it is challenging to implement them respectively in the LMM 

framework by including a uniform material database. To solve this problem, a Unified 

Creep Rupture Equation (UCRE) has been proposed to simulate the creep rupture 

curves for a broader range of materials. The UCRE refers to the format of the 

traditional Larson-Miller parameter method with the advantages of fitting the rupture 

curves for most steels included in the ECCC data sheets [49] with good efficiency and 

reliability. A Matlab script [131] has been developed to extract and fit the curves 

automatically, and fitted parameters have been exported into a database. A 
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modification has also been made in the LMM creep rupture module to implement the 

UCRE equations. Therefore, it becomes more practical and efficient to use the LMM 

creep rupture module to determine the most suitable material for engineering 

structures by performing parametric studies.  

In this study, the Bree-like diagram is extended by including the creep rupture limit 

and a unified mathematical equation is introduced for the evaluation of rupture 

strength. The current LMM algorithm for creep rupture analysis is briefly introduced in 

Section 4.2. Then the UCRE is proposed and compared with other numerical 

schemes for the description of creep rupture curves in Section 4.3, followed by a 

comprehensive validation of the proposed mathematical equation using the ECCC 

guidelines in Section 4.4. Finally, a numerical example of creep rupture analysis on a 

PCHE core is presented in Section 4.5. Several parametric studies have been further 

conducted by changing the material, channel shape and channel dimensions to show 

the usability and reliability of the proposed mathematical equation. 

4.2 The current LMM algorithm for creep rupture analysis 

According to the R5 procedure [7], the shakedown boundary of the structure would 

reduce when the thermal loads are significant, and the creep effect is involved. The 

creep effect can be represented by applying a temperature-dependent revised yield 

stress 𝜎𝑦
𝑅(𝑇) for each integration point in the component. The creep rupture limit for 

constant a rupture time can then be calculated with an extended LMM shakedown 

analysis. In the original LMM subroutine, this problem is addressed by introducing 

functions 𝑅 and 𝑔 [15]. The revised yield stress for a point in the body at time 𝑡 is 

given by: 

 𝜎𝑦
𝑅(𝑥, 𝑡) = min{𝜎𝑦(𝑇), 𝜎𝑅(𝑡𝑅 , 𝑇(𝑥, 𝑡))} (4.1) 

where the creep rupture stress 𝜎𝑅(𝑡𝑅, 𝑇) is calculated by: 

 𝜎𝑅(𝑡𝑅, 𝑇) = 𝑅(
𝑡𝑅

𝑡0
)𝑔(

𝑇

𝑇0
) (4.2) 

where 𝑅 is a function of the ratio of creep rupture time 𝑡𝑅 to reference time 𝑡0, and 𝑔 

is a function of the ratio of local temperature 𝑇 to reference temperature 𝑇0. 

However, it becomes difficult to define these functions for many realistic engineering 

problems. A simplified numerical scheme to describe the revised yield stress has been 
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proposed in [126]. The LMM subroutine has been modified by including both linear 

and the Larson-Miller parameter [50] for the calculation of creep rupture stress 𝜎𝑅 for 

given rupture time. The revised yield stress 𝜎𝑦
𝑅 can then be computed with Equation 

(4.1) by comparing 𝜎𝑅  with the yield stress 𝜎𝑦  of the material. The field of 𝜎𝑦
𝑅  is 

updated iteratively at every integration point based on a scaled temperature field. The 

general procedure of the extended shakedown algorithm for creep rupture analysis in 

the LMM is presented as follows. 

Considering an isotropic, EPP material that forms a body with volume 𝑉 and surface 

𝑆. The body is subjected to cyclic mechanical stress 𝜆𝑅�̂�𝑖𝑗
𝑃 on the part of surface 𝑆𝑇 

and thermal stress 𝜆𝑅�̂�𝑖𝑗
𝜃 in 𝑉. On the remaining part of surface 𝑆𝑢, the displacement 

rate �̇�𝑖 = 0. The linear elastic stress field is then given by: 

 𝜆𝑅�̂�𝑖𝑗 = 𝜆𝑅�̂�𝑖𝑗
𝑃 + 𝜆𝑅�̂�𝑖𝑗

𝜃 (4.3) 

where 𝜆𝑅 denotes the load multiplier for creep rupture analysis. The strain rate history 

𝜀�̇�𝑗
𝑐  is considered to be incompressible and kinematically admissible, forming a 

compatible strain increment Δ𝜀𝑖𝑗
𝑐 : 

 ∫ 𝜀�̇�𝑗
𝑐 𝑑𝑡

Δ𝑡

0
= Δ𝜀𝑖𝑗

𝑐  (4.4) 

The displacement increment is also related to the strain increment: 

 Δ𝜀𝑖𝑗
𝑐 =

1

2
(

𝜕Δ𝑢𝑖
𝑐

𝜕𝑥𝑗
+

𝜕Δ𝑢𝑗
𝑐

𝜕𝑥𝑖
) (4.5) 

Combined with the flow rule, the upper bound creep rupture limit multiplier is given by: 

 𝜆𝑅 =
∫ ∫ 𝜎𝑦

𝑅(𝑡)�̅̇�(�̇�𝑖𝑗
𝑐 )𝑑𝑡𝑑𝑉

Δ𝑡

0𝑉

∫ ∫ (�̂�𝑖𝑗�̇�𝑖𝑗
𝑐 )𝑑𝑡𝑑𝑉

Δ𝑡

0𝑉

 (4.6) 

where the effective strain rate 𝜀̇̅ = √
2

3
𝜀�̇�𝑗𝜀�̇�𝑗  and the revised yield stress 𝜎𝑦

𝑅  is 

calculated by Equation (4.1). An iterative linear process has been developed in [98] 

to solve the creep rupture multiplier. The process begins with an initial kinematically 

admissible plastic strain rate history 𝜀�̇�𝑗
𝑖  to derive a final kinematically admissible strain 

rate history 𝜀�̇�𝑗
𝑓
: 
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 𝜀�̇�𝑗
𝑓 ′

=
1

𝜇
(𝜆𝑅

𝑖 �̂�𝑖𝑗 + �̅�𝑖𝑗
𝑓

)
′
 (4.7) 

 𝜀�̇�𝑘
𝑓

= 0 (4.8) 

 𝜇 =
𝜎𝑦

𝑅

�̅̇�𝑖  (4.9) 

where (′) denotes the deviatoric component of stress or strain, �̅�𝑖𝑗
𝑓

 is a constant 

residual stress field. The shear stress 𝜇 is modified linearly to match the perfectly 

plastic material. Equation (4.7) is further integrated over the time cycle: 

 Δ𝜀𝑖𝑗
𝑓 ′

=
1

�̅�
(�̅�𝑖𝑗

𝑓
+ �̂�𝑖𝑗

𝑖𝑛)
′
 (4.10) 

where 

 𝜎′
𝑖𝑗
𝑖𝑛

= �̅�{∫
1

𝜇(𝑡)
𝜆𝑅

𝑖 �̂�′
𝑖𝑗(𝑡)𝑑𝑡

Δ𝑡

0
} (4.11) 

 
1

�̅�
= ∫

1

𝜇𝑛
𝑑𝑡

Δ𝑡

0
 (4.12) 

where 𝜎′
𝑖𝑗
𝑖𝑛

 is the scaled linear stress over the time cycle, Δ𝜀𝑖𝑗
𝑓

 is the plastic strain 

increment. A final creep rupture multiplier 𝜆𝑅
𝑓

 is then found by substituting 𝜀�̇�𝑗
𝑓

 into 

Equation (4.6). By repeating the process described above, a monotonically reducing 

𝜆𝑅 is computed iteratively so that: 

 𝜆𝑅
𝑓

≤ 𝜆𝑅
𝑖  (4.13) 

When the difference between 𝜆𝑅
𝑓

 and 𝜆𝑅
𝑖  becomes considerably small, the scaled 

stress at every integration point is lower or equal to 𝜎𝑦
𝑅  while the convergence is 

achieved. The process can be further simplified for a convex yield surface, where load 

histories are described by connecting vertices in the load space with straight lines. 

Thus, the plastic strain can only be observed at the vertices of a loading history. The 

strain rate history can then be evaluated as follows: 

 Δ𝜀𝑖𝑗
𝑐 = ∑ Δ𝜀𝑖𝑗

𝑛𝑟
𝑛=1  (4.14) 

where 𝑛 is the number of load instances. Equation (4.11) then becomes: 
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 𝜎′
𝑖𝑗
𝑖𝑛

= �̅�{∑
1

𝜇𝑛

𝑟
𝑛=1 𝜆𝑅�̂�′

𝑖𝑗(𝑡𝑛)} (4.15) 

where 

 
1

�̅�
= ∑

1

𝜇𝑛

𝑟
𝑛=1  (4.16) 

 𝜇𝑛 =
𝜎𝑦

𝑅(𝑡)

�̅�(Δ𝜀𝑖𝑗
𝑛𝑖)

 (4.17) 

The simplified procedure reduces the use of the integration function, which benefits 

the implementation process in commercial FE software. Based on user subroutines 

and Python scripts in ABAQUS [21], the LMM algorithm for creep rupture analysis has 

been implemented as an individual module in the LMM plug-in [20]. 

4.3 Numerical schemes for the evaluation of creep rupture 

strength 

To evaluate the creep rupture strength in Equation (4.1), many numerical schemes 

have been adopted, including different interpolation and extrapolation techniques that 

can predict the creep rupture properties of materials based on limited data points from 

experiments. Creep rupture experiments can be highly time-consuming when the 

stress or temperature applied to the specimen is relatively low, so it is crucial to 

develop a reliable and unsophisticated mathematical model to describe the creep 

rupture behaviour.  

One of the most commonly used techniques is linear interpolation or extrapolation. 

Being simple and mostly conservative, this technique has been implemented in the 

LMM plug-in to calculate the temperature-dependent revised yield stress based on 

the input data points [18]. However, the accuracy of linear interpolation heavily relies 

on the number of data points provided. If the database is small, the non-linear material 

behaviour would not be adequately described. Also, linear extrapolation is often 

considered unreliable when the temperature is scaled beyond the range of input 

values, which is a common scenario during the operation of the LMM algorithm given 

in Section 4.2.  

Another method used to fit creep rupture data is the Larson-Miller parameter [50]. It 

has been widely used in industries to predict long term rupture data based on short 
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term experimental data. The Larson-Miller parameter has also been adopted to 

generate master equations for a number of materials to demonstrate the relationship 

between rupture stress, temperature, and rupture time. The form is defined by: 

 𝑃𝐿𝑀 =
𝑇(log(𝑡𝑅)+𝐶)

1000
 (4.18) 

where 𝑃𝐿𝑀  is the Larson-Miller parameter, 𝑇  is the absolute temperature, 𝐶  is a 

constant, generally between 20 and 22, and 𝑡𝑅 is the creep rupture time in hours. After 

processing the rupture data using this technique, the creep rupture curves would 

ideally become a single curve of 𝑃𝐿𝑀 versus log (𝜎). Then a third-order polynomial 

form can be used to fit this curve using the least square method: 

 log(𝜎) = 𝐵1(𝑃𝐿𝑀(𝑇))
3

+ 𝐵2(𝑃𝐿𝑀(𝑇))
2

+ 𝐵3𝑃𝐿𝑀(𝑇) + 𝐵4 (4.19) 

The Larson-Miller equation has been proved to be robust and accurate while fitting 

the creep rupture data for some materials. It has also been included in the LMM 

algorithm as a tool to interpolate and extrapolate creep rupture stress [126]. The 

Larson-Miller parameter relies on the assumption that all the iso-stress curves would 

coincide at one single point. However, for many ferritic steels and nickel base alloys, 

such assumption may not be fully satisfied as the experiment data points are unable 

to converge to a single curve after applying the Larson-Miller relationship.  

Based on the concept of the Larson-Miller parameter and other similar models, a 

Unified Creep Rupture Equation (UCRE) has been proposed to fit the creep rupture 

data for a broader range of steel types. It combines the form of logarithm and 

polynomial by: 

 𝜎𝑅 = 𝑓1(𝑇)ln (𝑡𝑅) + 𝑓2(𝑇) (4.20) 

 𝑓1(𝑇) = 𝑎1𝑇3 + 𝑎2𝑇2 + 𝑎3𝑇 + 𝑎4 (4.21) 

 𝑓2(𝑇) = 𝑏1𝑇3 + 𝑏2𝑇2 + 𝑏3𝑇 + 𝑏4 (4.22) 

where 𝑇 is the absolute temperature and 𝑡𝑅 is the creep rupture time in hours. Instead 

of fitting a 3D surface equation with variables of 𝜎𝑅 , 𝑇 , and 𝑡𝑅 , the procedure is 

simplified by fitting two 2D curves with the least square method. Thus, the fitting 

process becomes both efficient and accurate, which can produce material parameters 

within the 95% confidence bounds of the 3D surface fitting. To show the capability of 
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the proposed method, the UCRE has been used to fit the creep rupture curves for 

different types of steels from the ECCC data sheets [49], including carbon-

manganese steels, low alloy ferritic steels, high alloy ferritic steels, austenitic steels, 

nickel-base alloys, and high temperature bolting steels. A Matlab script [131] has also 

been developed to read and process the rupture data from the ECCC data sheets. In 

this way, the UCRE parameters for various materials can be fitted automatically so 

that the fitting process becomes highly efficient. The UCRE parameters for the 

materials to be mentioned in the following sections are provided in Table 4.1.  

Table 4.1: The UCRE parameters fitted for several materials 

Material 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 

5CrMo -3.20E-05 7.58E-02 -59.69 15605.03 2.44E-04 -5.66E-01 434.09 -109799.51 

2.25Cr1Mo 4.66E-06 -1.24E-02 11.05 -3299.84 -7.03E-05 1.88E-01 -169.16 51018.72 

11CrMoVNb 1.37E-05 -3.14E-02 23.87 -6084.54 -7.94E-05 1.78E-01 -135.54 35828.53 

18Cr11Ni 2.94E-06 -8.61E-03 8.39 -2739.02 -3.26E-05 9.66E-02 -95.97 32090.30 

31Ni20CrAlTi 7.80E-08 -4.08E-04 0.65 -329.76 -3.96E-06 1.54E-02 -19.99 8679.64 

Alloy 617 -5.10E-07 1.45E-03 -1.25 297.31 -9.68E-07 7.72E-03 -14.68 8232.79 

Alloy 800H 7.42E-07 -2.51E-03 2.86 -1096.63 -1.21E-05 4.10E-02 -46.61 17881.59 

 

To compare the accuracy and performance of the numerical schemes mentioned 

above, they have been adopted to fit the data points of the carbon-manganese steel 

– 5CrMo (normalised and tempered), as shown in Figure 4.1. During the fitting 

process, instead of using the realistic data points, only 13 of them are used to 

demonstrate the potential ability to interpolate and extrapolate experimental creep 

rupture data. Equations (4.18) and (4.19) are used for the Larson-Miller fitting process. 

The fitted parameters are given as follows: 𝐵1 = −0.00107, 𝐵2 = 0.0633, 𝐵3 =

−1.516, 𝐵4 = 15.417, 𝐶 = 20. In practice, this material is not suitable to be fitted by the 

Larson-Miller parameter as the curves for various creep rupture times are poorly 

superimposed after being processed by Equation (4.18). Thus in Figure 4.1, it can be 

observed that “LM 3rd order” curves deviate heavily from the real data points for 

rupture time 𝑡𝑅 = 10 kh and 𝑡𝑅 = 200 kh. For rupture time 𝑡𝑅 = 100 kh, the Larson-

Miller method is also slightly conservative when the temperature is lower than 763K 

or higher than 803K.  
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In terms of the linear technique, linear interpolation can provide acceptable results but 

predicted curves are still not able to pass all the realistic data points. Extrapolated 

results from the linear technique are generally too conservative, so the predicted 

curves fail to pass the actual data points at the end of the curves. Therefore, the linear 

technique is unable to predict non-linear curves correctly when the amount of 

available points is low. On the other hand, the curves fitted by the Unified Creep 

Rupture Equation (UCRE) can almost pass through all the real data points, showing 

the best performance of all three methods. The UCRE is better than the linear 

technique when describing the nonlinearity of creep rupture curves and more reliable 

than the Larson-Miller technique when predicting the curves for different creep rupture 

times. The accuracy and reliability of the proposed mathematical equation will be 

further justified in the next section.  

 

Figure 4.1: Interpolation and extrapolation of experimental creep rupture data using three 
different methods 

 

4.4 Validation of the proposed mathematical equation 

Since a large number of numerical models have been proposed for Creep Rupture 

Data Assessment (CRDA) on various materials, a general procedure has been 

provided by the ECCC to give guidance on model development and select appropriate 

models as shortlisted ones in the ECCC guidelines. Four main steps are involved in 

the procedure, including data pre-assessment, model fitting, Post Assessment 

Testing (PAT), and comparison of independent models to finally determine the models 

adopted by the ECCC. Although it is recommended by ECCC PATs to use different 



 

78 
 

models for various materials, the UCRE is developed to describe the creep rupture 

behaviour of a broader range of steels in a simple but effective form. So that the UCRE 

can be easily implemented in the LMM framework, and a linked database can also be 

created for the storage of the material parameters.  

Four different types of steel have been considered to verify the credibility of UCRE, 

including low alloy ferritic steel (2.25Cr1Mo), high alloy martensitic steel 

(11CrMoVNb), and austenitic steel (18Cr11Ni and 31Ni20CrAlTi). The creep rupture 

strengths at the main temperatures generated by nine individual models are 

presented in Table 4.2. Eight of them have been adopted by ECCC PATs [132] due 

to their high effectiveness and credibility. For each material, the creep rupture 

strengths with rupture times of 100,000 hours and 300,000 hours from two ECCC 

shortlisted models are given and compared with the values from UCRE. It can be 

observed that for 2.25Cr1Mo and 18Cr11Ni, the UCRE is more conservative than 

other models, while for 11CrMoVNb and 31Ni20CrAlTi, the UCRE is less conservative 

than other models. The overall rupture strengths predicted by UCRE are comparable 

to other models, with a maximum margin of error of ±10%. The most considerable 

difference can be found when comparing the rupture stress of austenitic stainless 

steel. It is suggested by ECCC that to pass the PATs, the 100,000-hour rupture 

strengths at main temperatures should be within 10% of two different models, and the 

300,000-hour rupture strengths should be within 20% [132]. Therefore, the numerical 

errors between the UCRE and other models are within the acceptable range given by 

the ECCC PATs. 

Table 4.2: Creep rupture strength for various materials at the main temperatures predicted by 
several numerical models 

 

 

The creep rupture curves simulated by UCRE and ECCC shortlisted models have 

been further compared in Figure 4.2. The material properties for both steel types can 

be found in Table 4.1. It can be observed that for 2.25Cr1Mo at 550 °C, the UCRE 
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produces overall lower rupture strengths compared to the other two models. For 

11CrMoVNb at 550 °C, the creep rupture strengths predicted by UCRE are slightly 

higher than other models when the rupture time is shorter than 700,000 hours, and 

then the curve gradually becomes lower than the other models when the rupture time 

is longer than 700,000 hours. Nevertheless, the deviation of curves is potentially 

caused by the form of equations and regression techniques adopted by different 

models. It can be concluded that the UCRE is capable of fitting the creep rupture 

curves for four different types of steel mentioned above precisely and versatilely. 

 

Figure 4.2: Comparisons of creep rupture strength predicted by UCRE and ECCC shortlisted 
models for (a) 2.25Cr1Mo at 550°C (b) 11CrMoVNb at 550°C 

 

To further validate the proposed model, the creep rupture curves of more than 40 

different materials from the ECCC data sheets [49] have been fitted by UCRE, as 

given in Appendix A. The comparisons of predicted creep rupture strengths using 

UCRE with the observed ones from ECCC data sheets have been presented in Figure 

4.3. Three different creep rupture times (10000, 100000 and 200000 hours) have 

been chosen and grouped by various colours. The data points are collected by 

comparing the calculated creep rupture stress with the original database at equivalent 

temperature and rupture time. It can be seen that all the data points are situated 

alongside the mean line, within the boundaries of a deviation factor of 0.55. The 

predicted creep rupture strengths particularly agree well with the observed ones when 

the rupture stress is high, and the temperature is low. While at the higher temperature, 

the rupture stress becomes lower, and some predicted creep rupture strengths 

deviate from the observed ones. Most deviations are considered to be conservative 

as the predicted values are lower than the observed ones. In addition, more minor 

deviations can be found when the creep rupture time is longer and the overall 
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coefficient of determination 𝑅2 = 0.99927. Therefore, despite a few materials that are 

not compatible with the numerical scheme proposed, the UCRE is capable of 

predicting the creep curves for most of the steels listed in the ECCC data sheets 

correctly, with minor conservativeness at high temperatures for several materials.  

 

Figure 4.3: Comparisons of predicted creep rupture strength using UCRE with the observed 
rupture strength from the ECCC data sheets 

 

4.5 Numerical examples 

4.5.1 Creep rupture analysis on a PCHE core 

To demonstrate the usability of the proposed mathematical equation, a 

comprehensive creep rupture analysis has been performed on a typical PCHE core 

and a series of creep rupture boundaries have been derived considering variable 

materials, geometry shape and dimensions. The PCHE channels are manufactured 

by photochemical etching on a number of metal plates before stacking them together, 

as shown in Figure 4.4(a). Instead of conventional welding, the diffusion bonding 

technique is used to merge the plates into a single component [133]. Thus numerous 

semi-circular channels are formed in the component without having weld joints, filler 

materials and heat-affected zones. To simplify the problem, a 2D unitary cell model 

has been considered by a few researchers [134, 135], as given in Figure 4.4(b). The 

plane strain condition has been applied to simulate the sufficiently long body for the 

sake of conservativeness. Also, a quarter model is created by applying symmetry 

boundary conditions on the right and bottom edges while any rigid body movements 

have been prevented in the meantime. The normal displacements on the top and left 
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edges have been coupled to consider the repetition of the unitary model along these 

edges, which simulates the pattern of channels on the cross-section surface of a 

PCHE core. The hot channels, marked in red, are subjected to relatively high pressure 

𝑃𝐻 and high temperature 𝑇𝐻; while the cold channels, marked in blue, are subjected 

to relatively low pressure 𝑃𝐶 and low temperature 𝑇𝐶. To avoid numerical singularity 

during FE analysis, a fillet radius r is applied at the corner of each channel. The FE 

model is then meshed into 5357 quadratic elements of type CPE8R in Abaqus/CAE. 

 

Figure 4.4: (a) Plate stacking of a PCHE core (b) The geometry, mesh and boundary conditions 
of a unitary cell model (dimensions in millimetres) 

 

For loading conditions, the PCHE channels are subjected to constant inner pressure 

and cyclic temperature gradient, as shown in Figure 4.5. For hot channels, the initial 

pressure 𝑃𝐻 = 250 MPa  and the initial temperature 𝑇𝐻 = 𝑇0 + Δ𝑇𝐶(𝑡)  with extreme 

temperatures of 0 °C and 100 °C; for cold channels, the initial pressure 𝑃𝐶 = 100 MPa 

and the initial temperature 𝑇𝐶 = 𝑇0 + Δ𝑇𝐶(𝑡) with extreme temperatures of 0 °C and 

90 °C. The temperature field is then evaluated by a steady-state thermal analysis, and 

the thermal stress 𝜃 is caused by the temperature difference between the hot and 

cold channels. After the linear elastic analysis with both the initial pressure and 

temperature, an extended shakedown algorithm is employed to scale the loads by a 

multiplier to reach the creep rupture boundary for a given rupture time.  

Operated at high temperature and high pressure, the preferred materials for 

Intermediate Heat Exchangers (IHX) are alloy 617 and alloy 800H [133]. As described 

in Section 4.2, the revised yield strength is determined by the smaller value between 

the yield stress of the material and the creep rupture stress calculated by the UCRE, 
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as shown in Figure 4.6. The temperature-dependent yield stress is obtained from 

ASME BPVC Section II [136], and the parameters for creep rupture stress evaluation 

are given in Table 4.1. Two different creep rupture times 𝑇𝑅 are also considered for 

both materials: 10000 hours and 100000 hours. It can be seen in Figure 4.6 that yield 

stress is dominant for lower temperature and the creep effect dominate for higher 

temperature. For alloy 617, the transition temperature is around 700 °C (𝑡𝑅 = 10000 h) 

and 650 °C (𝑡𝑅 = 100000 h); for alloy 800H, the transition temperature is around 

650 °C (𝑡𝑅 = 10000 h) and 575 °C (𝑡𝑅 = 100000 h). The overall allowable stress of 

alloy 617 is higher than alloy 800H. Other material properties used in this work are 

temperature-independent for the sake of simplicity. For alloy 617, the Young’s 

modulus 𝐸1 = 211 GPa and the thermal expansion coefficient 𝛼1 = 1.58 × 10−5 °C−1; 

for alloy 800H, the Young’s modulus 𝐸1 = 196.5 GPa  and the thermal expansion 

coefficient 𝛼1 = 1.44 × 10−5 °C−1. 

 

Figure 4.5: The loading history considered for the creep rupture assessment of the PCHE core 
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Figure 4.6: The revised yield strength with various rupture times for alloy 617 and alloy 800H 

 

The shakedown and creep rupture limits of the PCHE core manufactured of alloy 617 

with creep rupture time 𝑡𝑅 = 100000 h are firstly evaluated and presented in Figure 

4.7. The pressure difference Δ𝑃 between the hot and cold channels is presented in 

megapascal [MPa], and the temperature difference Δ𝑇  between the hot and cold 

channels is shown in degrees Celsius [°C]. The creep rupture limit denotes an 

envelope on which the time to rupture is constant for any load case applied. It is 

calculated by specifying the ratio 𝜑 = Δ𝑃/𝜃 between thermal and mechanical loads, 

before scaling both loads to the rupture boundary by the extended shakedown 

algorithm. Compared to the shakedown boundary, the effect of creep becomes 

significant with the increase of temperature. When Δ𝑇 ≤ 66 °C, the creep rupture 

boundary is controlled by original yield stress only; when Δ𝑇 ≥ 66 °C, the boundary is 

controlled by the creep rupture strength instead. The contours of the temperature field 

and corresponding revised yield stress for load point (B) are shown in Figure 4.8. It 

can be observed that the upper part of the component is affected by the creep rupture 

strength due to high temperature while the lower part is not.  

Unlike Bree-like diagrams, which contain reverse plasticity limit segment and ratchet 

limit segment, the creep rupture limit comprises three distinct segments divided by 

the grey dashed line in Figure 4.7. Similar phenomena have also been reported in [56, 

126]. To further study the difference in failure mechanisms, three cyclic load points 

have been chosen from various segments in the diagram with their effective strain 

increment Δ𝜀𝑒𝑞
𝑐  given in Figure 4.9. For load point (A) (10.5, 81), the failure 

mechanism is local creep rupture with maximum Δ𝜀𝑒𝑞
𝑐  appears at the corner of the 
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cold channels caused by dominant thermal stress. For load point (B) (50.8, 72), the 

failure mechanism is global creep rupture with a strain zone across the body starting 

from the corner of the hot channel. Similarly, for load point (C) (97.2, 25), the failure 

mechanism is global plastic rupture with a strain zone at the upper part of the structure. 

There are slight differences between Figure 4.9(b) and Figure 4.9(c), which are 

caused by the interaction between creep and plasticity, proving the distinction 

between the global creep rupture and global ratchetting. A similar contour of failure 

mechanisms of PCHE cores can also be found in [135], proving the accuracy of the 

proposed direct method. 

 

Figure 4.7: The shakedown and creep rupture limit of the PCHE core manufactured of alloy 617 

 

 

Figure 4.8: The temperature field and corresponding revised yield stress for load point (B) 
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Figure 4.9: The failure mechanisms for three different load points 

 

4.5.2 Effect of changing material 

The shakedown and creep rupture analyses have also been performed on the PCHE 

core manufactured of alloy 800H considering identical boundary and loading 

conditions compared to previous analyses. The comparisons of the shakedown and 

creep rupture boundaries of the PCHE core manufactured of both materials are given 

in Figure 4.10. Although similar patterns of shakedown and creep rupture boundaries 

can be found for 800H, the overall boundaries are smaller than the structure made 

from 617 because the overall revised yield stress of 800H is lower than 617, as shown 

in Figure 4.6. For alloy 800H, the creep effect becomes significant when the 

temperature reaches 64 °C (𝑡𝑅 = 10000 h) and 62 °C (𝑡𝑅 = 100000 h). It is worth 

noting that there is a minor difference in reverse plasticity limits on shakedown and 

creep rupture boundaries for alloy 800H at 𝑡𝑅 = 10 kh. The reason is that the failure 

mechanism at that load point is local creep rupture and the damage concentrates at 

the corner of the bottom channels, similarly in Figure 4.9(a). However, after scaling 

the thermal stress to the reverse plasticity limit, the revised yield stress at the corner 

of cold channels is not affected by the creep rupture stress since the temperature is 

around 675 °C. With the increase of pressure, the failure location shifted to the hot 

channels, making the creep rupture limit deviate from the horizontal reverse plasticity 

limit. Another notable difference of the boundaries between 617 and 800H lines in the 

segment of ratchet limit. A concave ratchet limit for alloy 617 can be observed due to 

a sharp decrease in yield stress when the temperature is low. The parametric study 

with different materials has been dramatically simplified by the implementation of 

UCRE in the LMM framework. Instead of inputting the temperature-dependent rupture 
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stress manually, the rupture behaviour can be readily described by entering several 

material constants. 

 

Figure 4.10: Comparisons of the shakedown and creep rupture limit of the PCHE core 
manufactured of alloy 617 and alloy 800H 

 

4.5.3 Effect of changing channel shapes 

It has been reported that the shape of channels may be distorted to semielliptical after 

the process of diffusion bonding [123]. Therefore, a PCHE core with semielliptical 

channels with corner radius 𝑟 = 6%𝑅 has been modelled as shown in Figure 4.11(a). 

The shakedown and creep rupture analyses have been performed considering 𝑡𝑅 =

100000 h, as shown in Figure 4.11(b). The results have been compared with the 

shakedown and creep rupture boundaries of the PCHE core with semicircular 

channels considering identical corner radius and rupture time. It can be observed that 

the limit load and the ratchet limit of the PCHE core with semielliptical channels are 

slightly smaller than the one with semicircular channels. However, the reverse 

plasticity parts of the boundaries are unaffected by the change of channel shape. The 

reason is that the change of reverse plasticity parts of the boundaries mainly depends 

on the corner angle. In contrast, the change of ratchet parts of the boundaries mostly 

depends on the thickness of the material. In this case, both semicircular and 

semielliptical channels share the same corner radius, but the obtuse angle of 

semielliptical channels at the bottom corner causes a loss of material, which slightly 

reduces the thickness of structure at that location. Therefore, it can be concluded that 

the change of channel shape has a limited influence on the shakedown and creep 

rupture limits. 



 

87 
 

 

Figure 4.11: (a) The geometry and mesh of the PCHE core with semicircular and semielliptical 
channels (b) Comparisons of the shakedown and creep rupture limit of the PCHE core with 

different channel shapes 

 

4.5.4 Effect of changing channel dimensions 

Since a PCHE core can be designed in various scales and dimensions depending on 

its working condition, an investigation of the effect of changing channel dimensions 

becomes highly significant. The shakedown and creep rupture limit of the PCHE core 

with various channel radius R, and corner radius r have been evaluated and presented 

in Figure 4.12, where R [mm] is taken as 0.65,  0.75, 0.9, and 1; r is taken as 1%, 3%, 

6%, and 10% of the channel radius R. For parametric studies, r remains constant at 

10%R when R is variable; R is kept constant at 0.75 mm when r is variable. The shape 

of the channels is semicircular, and the material adopted is alloy 617. The reverse 

plasticity limit and limit load have been extracted from the curves and plotted in Figure 

4.13 for further comparison. For the shakedown boundaries considering various 

channel radius R in Figure 4.12(a) and Figure 4.13(a), the limit load reduces 

significantly with increasing R due to the loss of material in the component. The 

reverse plasticity limit, on the other hand, increases with increasing R. The reason is 

that in this case, the ratio of corner radius r to the channel radius R is fixed at 10%. 

Thus an increase of R also results in a growth of r. Since low cycle fatigue is highly 

related to the stress concentration in the local region, the reverse plasticity limit would 

increase correspondingly with an increasing r. A similar trend can be observed in the 

creep rupture limits when the temperature reaches around 650 °C and the creep 

rupture boundaries begin to separate from the shakedown boundaries. As presented 
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in Figure 4.12(b) and Figure 4.13(b), the effect of changing the corner radius r is also 

considered for the shakedown. The limit load is barely affected in this case, but the 

reverse plasticity limit significantly increases with increasing r due to a lower stress 

concentration at the corner of channels. In terms of the creep rupture limit, the effect 

of global creep rupture becomes notable when the temperature is higher than 650 °C, 

making the creep rupture boundaries shrink towards the Y-axis. It is worth mentioning 

that for the case 𝑟 = 1%𝑅, the temperature at the reverse plasticity limit is lower than 

650 °C. In this case, the creep effect is negligible and the creep rupture limit becomes 

identical to the shakedown limit.  

 

Figure 4.12: Comparisons of the shakedown and creep rupture limit of the PCHE core with (a) 
various channel radius R (b) various corner radius r 

 

 

Figure 4.13: Comparisons of the reverse plasticity limit and limit load from the shakedown and 
creep rupture limits 

 

4.6 Summary 
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In this chapter, a Unified Creep Rupture Equation (UCRE) has been developed to 

describe the creep rupture curve for a broader range of steel types. A Python code 

has also been developed to facilitate the fitting process and generate a database for 

material parameters storage. Furthermore, a modification has been made in the 

current LMM framework to include the proposed equations for creep rupture analysis 

as part of structural integrity assessment.  

The UCRE has been comprehensively compared with two other numerical schemes: 

linear interpolation/extrapolation and Larson-Miller parameter. The UCRE shows 

better accuracy than the other two techniques when predicting the creep rupture 

curves for 5CrMo with insufficient data points. The UCRE has also been adopted to 

fit the rupture strength for four other types of benchmark steel and agrees well with 

the results from several individual models shortlisted by the ECCC. Further validation 

of the proposed method has been performed by comparing predicted creep rupture 

stress using UCRE with the observed rupture stress from ECCC data sheets for more 

than 40 different steels. For most steels, the predicted rupture strengths are either 

identical or slightly more conservative than the observed ones within the deviation 

factor of 0.55, proving the reliability of the proposed technique.  

To illustrate the utility of the proposed approach, a creep rupture analysis has been 

performed on a typical PCHE core. The UCRE has been adopted to generate the 

temperature-dependent revised yield stress in the structure. The shakedown and 

creep rupture boundaries have been presented considering cyclic thermal-

mechanical loading conditions. Three different failure mechanisms have been 

observed in the creep rupture boundary: local creep rupture, global creep rupture and 

global plastic rupture. A series of parametric studies have also been conducted 

considering various materials and geometries. Compared to alloy 800H, alloy 617 is 

more suitable for PCHE cores considering the load-bearing capacity at high 

temperatures. The shape of PCHE channels has a limited effect on the creep rupture 

boundary, while the channel dimension has a great influence on the rupture limits. 

Therefore, by comparing the creep rupture curves fitted using UCRE and other 

numerical models from literature, the UCRE has shown good accuracy and reliability 

for the interpolation of material parameters for various materials. With a numerical 

example of a PCHE core, the UCRE has shown good applicability for engineering 

cases. In addition, the Bree-like diagram is further extended by considering the creep 

rupture curves.  



 

90 
 

 The evaluation of the structural constant 

fatigue life diagram and ratchet limit 

5.1 Introduction 

For the evaluation and extension of the lifespan of large-scale pressure vessels in 

various industries, it has become essential to conduct a structural integrity 

assessment during the design and assessment procedures [137-139]. Having been 

investigated by many researchers [140-145], fatigue and ratchetting are two critical 

problems during the structural integrity assessment. Although these two problems are 

both caused by cyclic loading conditions, there are still some distinctions between 

them. Low cycle fatigue usually induces local crack initiation, while ratchetting would 

lead to incremental collapse, which is a global behaviour. 

For the assessment of structural ratchetting, the Bree diagram has been proposed 

[12] as the foundation of NB-3222.5 in ASME III [146]. The classic Bree problem 

considers a thin cylindrical pipe subjected to constant internal pressure and cyclic 

thermal stress. Different ratio of thermal and mechanical loads is considered and the 

loads are scaled proportionally to form the Bree diagram. For arbitrary thermal-

mechanical loading conditions, the modified Bree problem is proposed [24, 147], 

considering cyclic thermal stress and cyclic mechanical stress. Several numerical 

methods have been proposed for Bree-like problems, including analytical solution [12, 

147], incremental Finite Element (FE) analysis, Direct Cycle Analysis (DCA) [148-150], 

Noncyclic Method [151, 152], and several direct methods [14, 81-85, 87-90]. As one 

of the direct methods, the Linear Matching Method (LMM) framework features high 

accuracy and computational efficiency compared to other approaches.   

As another crucial part of structural integrity assessment, fatigue problems are split 

into two categories, high cycle fatigue (HCF) and low cycle fatigue (LCF) [153, 154]. 

For HCF problems, the structure typically operates in the elastic region, and the typical 

number of cycles to failure is higher than 5 × 104. The HCF life is calculated using the 

material’s stress-life (S-N) curves based on the alternating stress [155]. For LCF 

problems, plasticity may be observed in the structure, and the typical number of cycles 

to failure is lower than 5 × 104 [11]. The LCF life can be evaluated using the material’s 

strain-life (E-N) curves based on the total strain range or plastic strain range. 
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Numerical formulae have also been proposed for LCF life prediction, including the 

Coffin and Manson Law [27, 28]. At the material level, the constant life diagram has 

been introduced for LCF design, where the constant amplitude cyclic loading is 

depicted for constant fatigue life [156]. The constant life diagram is often plotted with 

alternating stress versus mean stress [157]. In this work, the concept of constant life 

diagrams is extended from the material level to the structure level. The LCF life 

boundary is plotted with the thermal load versus the mechanical load, where the 

number of cycles to failure is constant for any load combinations on the LCF life 

boundaries. The fatigue life can then be rapidly determined for arbitrary loading 

conditions in structural design.  

Several numerical approaches have been proposed for the evaluation of strain range, 

including Neuber's rule [158-160], the elastic-plastic method in ASME VIII-2 [161], and 

the Direct Steady Cycle Analysis (DSCA) method [20, 90] in the Linear Matching 

Method (LMM) framework. Neuber's rule uses linear elastic analysis to estimate the 

plastic strain range in areas with stress concentration. This method is considered safe 

and efficient, but it is restricted to local geometry and can be over-conservative for 

cases with sharp notches [162]. The elastic-plastic method is based on cycle-by-cycle 

analyses in Finite Element (FE) software using nonlinear constitutive models. 

Therefore, this method is usually accurate but highly time-consuming. On the other 

hand, the DSCA method is a direct method with both high accuracy and efficiency. 

Several linear elastic equations are introduced to evaluate the residual stress and the 

plastic strain range iteratively. The stress and strain at steady state is calculated 

directly for the plotting of saturated hysteresis loops and the evaluation of fatigue 

damage.  

A generalised method [23, 24] has been previously proposed for the evaluation of the 

ratchet limits of structures subjected to arbitrary thermal-mechanical load histories. 

To further evaluate the LCF life boundaries effectively, a Unified Procedure for Fatigue 

and Ratchet Analysis (UPFRA) [163] is proposed in this work as a one-stop solution 

for the ratchet and fatigue analysis considering arbitrary thermal-mechanical load 

conditions. Based on a bisection scheme, the DSCA subroutine is called iteratively 

for the evaluation of structural ratchet limit and LCF life boundaries considering 

different target LCF lives. The boundaries are then combined with the shakedown limit 

to form a complete interaction diagram. Temperature-dependent material properties 
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are also considered and implemented in the procedure for better accuracy and 

usability.  

In this study, the Bree-like diagram is extended by including the constant fatigue life 

curves. The numerical methods for ratchet and fatigue analysis are extensively 

introduced in Section 5.2, including the introduction of DSCA in Section 5.2.1, the 

current LMM algorithm for ratchet analysis in Section 5.2.2, and the UPFRA in Section 

5.2.3.  Then two numerical examples are presented to show the advantages of the 

UPFRA for practical engineering problems in Section 5.3. 

5.2 Numerical procedures for ratchet and fatigue analysis 

For Bree-like problems, the load condition considered is usually composed of cyclic 

thermal loads and constant mechanical loads. In the LMM framework, the DSCA [164, 

165] and Koiter's kinematic shakedown theorem [166] are adopted together to 

evaluate the structural ratchet limit. A two-stage procedure has been proposed, where 

the fixed cyclic load amplitude is firstly considered using the DSCA algorithm before 

the constant load history is scaled using the shakedown algorithm to reach the ratchet 

boundary.  

For modified Bree problems or engineering problems concerning arbitrary thermal-

mechanical load histories, a three-stage procedure has been proposed, which is 

included in the UPFRA [163]. The load ratio between two types of loads is first 

selected before the loadings are scaled proportionately to reach the ratchet boundary 

or the fatigue boundary. The load ratio can then be adjusted to achieve different points 

on the diagram.  

5.2.1 The current DSCA algorithm 

A body of volume 𝑉  and surface 𝑆  is considered, with cyclic temperatures 𝜃(𝑥, 𝑡) 

applied in 𝑉 and cyclic surface loads 𝑃(𝑥, 𝑡) on the part of the body surface 𝑆𝑇. The 

displacement rate �̇� = 0 on the other part of the body surface 𝑆𝑈. Considering time 

cycle 0 ≤ 𝑡 ≤ Δ𝑡, the load history is decomposed into the thermal and surface load by: 

 𝐹(𝑥, 𝑡) = 𝜃(𝑥, 𝑡) + 𝑃(𝑥, 𝑡) (5.1) 

where 𝜃(𝑥, 𝑡) is the thermal load history, and 𝑃(𝑥, 𝑡) is the mechanical load history. 

The linear stress history is then calculated by: 
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 �̂�𝑖𝑗(𝑥, 𝑡) = �̂�𝑖𝑗
𝜃(𝑥, 𝑡) + �̂�𝑖𝑗

𝑃(𝑥, 𝑡) (5.2) 

where �̂�𝑖𝑗
𝜃(𝑥, 𝑡) and �̂�𝑖𝑗

𝑃(𝑥, 𝑡) are linear stress fields calculated from the linear elastic 

analyses with 𝜃(𝑥, 𝑡) and 𝑃(𝑥, 𝑡), respectively. The cyclic steady state is reached after 

a few cycles, so that: 

 𝜎𝑖𝑗(𝑥, 𝑡) = 𝜎𝑖𝑗(𝑥, 𝑡 + Δ𝑡) and 𝜀�̇�𝑗(𝑥, 𝑡) = 𝜀�̇�𝑗(𝑥, 𝑡 + Δ𝑡) (5.3) 

The cyclic solution at steady-state is composed of three components: 

 𝜎𝑖𝑗(𝑥, 𝑡) = �̂�𝑖𝑗(𝑥, 𝑡) + �̅�𝑖𝑗(𝑥) + 𝜌𝑖𝑗
𝑟 (𝑥, 𝑡) (5.4) 

where �̅�𝑖𝑗(𝑥) is a constant residual stress field with the satisfaction of zero surface 

traction on 𝑆𝑇 . 𝜌𝑖𝑗
𝑟 (𝑥, 𝑡)  is a varying residual stress field with the satisfaction of 

𝜌𝑖𝑗
𝑟 (𝑥, 0) = 𝜌𝑖𝑗

𝑟 (𝑥, Δ𝑡) = 0. The von Mises yield function 𝑓(𝜎𝑖𝑗) ≤ 0 indicates a convex 

yield surface. Based on the flow rule: 

 𝜀�̇�𝑗
𝑝

= �̇�
𝜕𝑓

𝜕𝜎𝑖𝑗
,   𝑓 = 0 (5.5) 

where �̇� denotes a plastic multiplier. According to the maximum work principle: 

 (𝜎𝑖𝑗
𝑐 − 𝜎𝑖𝑗

∗ )𝜀�̇�𝑗
𝑐 ≥ 0 (5.6) 

where 𝑓(𝜎𝑖𝑗
𝑐 ) = 0 and 𝑓(𝜎𝑖𝑗

∗ ) ≤ 0. 𝜎𝑖𝑗
𝑐  denotes the stress at yield while 𝜎𝑖𝑗

∗  the stress 

state with the satisfaction of the yield condition. The function 𝐼 is defined by: 

 𝐼(𝜀�̇�𝑗
𝑐 ) = ∫ ∫ {𝜎𝑖𝑗

𝑐 𝜀�̇�𝑗
𝑐 − (�̂�𝑖𝑗(𝑥, 𝑡) + 𝜌𝑖𝑗(𝑡))𝜀�̇�𝑗

𝑐 }𝑑𝑡𝑑𝑉
Δ𝑡

0𝑉
 (5.7) 

where 𝜀�̇�𝑗
𝑐  denotes the kinematically admissible strain rate at yield and 𝜌𝑖𝑗(𝑡) = �̅�𝑖𝑗 +

𝜌𝑖𝑗
𝑟 . For the sake of simplicity, the time integrations are replaced by the sum of values 

at 𝑁 time instants: 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑁. The cyclic history is discretized into several time 

instants 𝑡𝑛 and plastic strain is only observed at the vertices of stress history. The 

function 𝐼 is then simplified by: 

 𝐼(𝜀�̇�𝑗
𝑐 ) = ∑ 𝐼𝑛𝑁

𝑛=1  (5.8) 

 Δ𝜀𝑖𝑗
𝑐 = ∑ Δ𝜀𝑖𝑗

𝑛𝑁
𝑛=1  (5.9) 
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 𝐼𝑛(Δ𝜀𝑖𝑗
𝑛 , 𝜌𝑖𝑗(𝑡𝑛)) = ∫ {𝜎𝑖𝑗

𝑛Δ𝜀𝑖𝑗
𝑛 − (�̂�𝑖𝑗(𝑡𝑛) + 𝜌𝑖𝑗(𝑡𝑛)) Δ𝜀𝑖𝑗

𝑛 }𝑑𝑉
𝑉

 (5.10) 

 𝜌𝑖𝑗(𝑡𝑛) = �̅�𝑖𝑗 + ∑ Δ𝜌𝑖𝑗
𝑙𝑛

𝑙=1  (5.11) 

 Δ𝜀𝑖𝑗
𝑇𝑛 = 𝐶Δ𝜌𝑖𝑗

𝑛 + Δ𝜀𝑖𝑗
𝑛  (5.12) 

where Δ𝜌𝑖𝑗
𝑛  satisfies equilibrium condition and Δ𝜀𝑖𝑗

𝑇𝑛 is compatible. The minimization 

procedure of functions 𝐼𝑛  is then introduced. Assuming Δ𝜀𝑖𝑗
𝑛 = Δ𝜀𝑖𝑗

𝑛𝑖 , the shear 

modulus is given by: 

 𝜎𝑦 = 2�̅�𝑢𝑖𝜀(̅Δ𝜀𝑖𝑗
𝑛𝑖) (5.13) 

where 𝜎𝑦 denotes the yield strength. A linear problem is then proposed by: 

 Δ𝜀𝑖𝑗
𝑇𝑓′

=
1

2𝜇
Δ𝜌𝑖𝑗

𝑛𝑓′

+ Δ𝜀𝑖𝑗
𝑛𝑓′

 (5.14) 

 Δ𝜀𝑘𝑘
𝑇𝑓

=
1

3𝐾
Δ𝜌𝑘𝑘

𝑛𝑓
 (5.15) 

 Δ𝜀𝑖𝑗
𝑛𝑓′

=
1

2�̅�𝑢𝑖
{�̂�𝑖𝑗(𝑡𝑛) + 𝜌𝑖𝑗(𝑡𝑛−1) + Δ𝜌𝑖𝑗

𝑛𝑓
}

′
 (5.16) 

where 

 𝜌𝑖𝑗(𝑡𝑛−1) = 𝜌𝑖𝑗(𝑡0) + Δ𝜌𝑖𝑗
1 + Δ𝜌𝑖𝑗

2 + Δ𝜌𝑖𝑗
3 + ⋯ + Δ𝜌𝑖𝑗

𝑛−1, 𝜌𝑖𝑗(𝑡0) = �̅�𝑖𝑗 (5.17) 

To solve the linear problem, the varying residual stress Δ𝜌𝑖𝑗𝑚

𝑛  is evaluated at load 

instance 𝑛 and iteration number 𝑚, where 𝑛 = 1,2,3, … , 𝑁 and 𝑚 = 1,2,3, … , 𝑀. The 

convergence criterion ∑ Δ𝜌𝑖𝑗𝑀

𝑛𝑁
𝑛=1 = 0  is met at 𝑀 th iteration, where the constant 

residual stress is given by: 

 �̅�𝑖𝑗 = ∑ Δ𝜌𝑖𝑗1

𝑛𝑁
𝑛=1 + ∑ Δ𝜌𝑖𝑗2

𝑛𝑁
𝑛=1 + ∑ Δ𝜌𝑖𝑗3

𝑛𝑁
𝑛=1 + ⋯ + ∑ Δ𝜌𝑖𝑗𝑀

𝑛𝑁
𝑛=1  (5.18) 

The plastic strain amplitude at 𝑡𝑛 is given by: 

 Δ𝜀𝑖𝑗
𝑃 (𝑡𝑛) =

1

2�̅�𝑛
(�̂�𝑖𝑗

′ (𝑡𝑛) + 𝜌𝑖𝑗
′ (𝑡𝑛)) (5.19) 

The equivalent ratchet strain over the cycle is calculated by: 
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 𝜀̅𝑅 = 𝜀̅ (∑ Δ𝑁
𝑛=1 𝜀𝑖𝑗

𝑃 (𝑡𝑛)) (5.20) 

The total strain range Δ𝜀 ̅over the cycle can also be evaluated by: 

 Δ𝜀̅ = max(𝜀(̅𝑡𝑎) − 𝜀(̅𝑡𝑏)),   ∀𝑎 ∈ [1, 𝑁], ∀𝑏 ∈ [1, 𝑁] (5.21) 

5.2.2 The current approach for the evaluation of ratchet boundary 

For Bree-like problems where the mechanical load is constant, a procedure with two 

stages has been given in [16]: 

• Stage 1: the varying residual stress field caused by fixed cyclic loads is 

evaluated with the DSCA algorithm. 

• Stage 2: the constant residual stress field is evaluated by scaling the constant 

loads to the ratchet limit with Koiter's kinematic shakedown algorithm.  

Koiter's shakedown theorem [166] is given by: 

 ∫ ∫ �̂�𝑖𝑗𝜀𝑖𝑗
𝑐 𝑑𝑡𝑑𝑉

𝑉

Δ𝑡

0
= ∫ ∫ 𝜎𝑖𝑗

𝑐 𝜀𝑖𝑗
𝑐 𝑑𝑡𝑑𝑉

𝑉

Δ𝑡

0
 (5.22) 

where 

 �̂�𝑖𝑗 = 𝜆�̂�𝑖𝑗
�̅� + �̂�𝑖𝑗

Δ(𝑥, 𝑡) + 𝜌𝑖𝑗(𝑥, 𝑡) (5.23) 

where 𝜆 denotes the load multiplier, �̂�𝑖𝑗
�̅�  denotes the constant stress field, �̂�𝑖𝑗

Δ(𝑥, 𝑡) 

denotes the cyclic stress field, 𝜌𝑖𝑗(𝑥, 𝑡) denotes the total residual stress field from 

Equation (5.11). Based on the flow rule and time discretization: 

 ∫ ∫ 𝜎𝑖𝑗
𝑐 𝜀𝑖𝑗

𝑐 𝑑𝑡𝑑𝑉
𝑉

Δ𝑡

0
= ∫ ∑ 𝜎𝑖𝑗

𝑐𝑛
Δ𝜀𝑖𝑗

𝑛 𝑑𝑉𝑁
𝑛=1𝑉

= ∫ ∑ 𝜎𝑦
𝑁
𝑛=1 𝜀(̅Δ𝜀𝑖𝑗

𝑛 )𝑑𝑉
𝑉

 (5.24) 

where 

 𝜀(̅Δ𝜀𝑖𝑗
𝑛 ) = √

2

3
Δ𝜀𝑖𝑗

𝑛 Δ𝜀𝑖𝑗
𝑛  (5.25) 

The upper bound ratchet limit multiplier is then calculated by: 

 𝜆 =
∫ ∑ 𝜎𝑦

𝑁
𝑛=1 �̅�(Δ𝜀𝑖𝑗

𝑛 )𝑑𝑉
𝑉

−∫ ∑ (�̂�ij
Δ(𝑡𝑛)+𝜌𝑖𝑗(𝑡𝑛))Δ𝜀𝑖𝑗

𝑛 𝑑𝑉𝑁
𝑛=1𝑉

∫ �̂�ij
�̅�(∑ Δ𝜀𝑖𝑗

𝑛𝑁
𝑛=1𝑉

)𝑑𝑉
 (5.26) 
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The difference between the ratchet and shakedown analyses in the LMM framework 

is that ratchet analysis includes a varying residual stress field calculated in Stage 1 

as the input condition for Stage 2. 

5.2.3 The Unified Procedure for Fatigue and Ratchet Analysis (UPFRA) 

For modified Bree problems, cyclic thermal load and cyclic mechanical load are 

subjected to a component, where no phase shift is defined between both loads. An 

illustration of the typical shakedown limit, ratchet limit and constant fatigue life curve 

for modified Bree problems has been presented in Figure 5.1. The cyclic mechanical 

load 𝑃 is normalised by the limit load 𝑃𝑙𝑖𝑚 and the cyclic thermal load 𝜎𝑇 is normalised 

by the yield stress 𝜎𝑌. The shakedown limit intersects with X-axis at the limit load and 

with Y-axis at twice the yield stress. An example constant low cycle fatigue life curve 

is also given, on which the load points would yield identical the target number cycles 

to failure 𝑁𝑇. For load points above, the number of cycles 𝑁 < 𝑁𝑇; while for load points 

below, 𝑁 > 𝑁𝑇. The failure mechanisms in different regions are also shown in Figure 

5.1, which are separated by the plotted boundaries. The evaluation of shakedown 

boundary and limit load has already been considered in the existing LMM framework. 

To calculate the ratchet limit and fatigue boundaries for arbitrary thermal-mechanical 

loading conditions, a Unified Procedure for Fatigue and Ratchet Analysis (UPFRA) 

has been proposed in this work. 

 

Figure 5.1: An illustration of typical shakedown limit, ratchet limit and constant fatigue life 
curve for modified Bree problems 
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It can be postulated that ratchet limit and fatigue boundaries always lie between the 

limit load and shakedown limit. Thus, a general procedure with three stages is 

proposed for faster calculation: 

• Stage 1: the shakedown limit is evaluated for load ratio 𝑅 using the LMM 

shakedown module. 

• Stage 2: the limit load is evaluated using a special case in the LMM 

shakedown module. 

• Stage 3: the ratchet limit or the constant life load multiplier is evaluated using 

the UPFRA. 

A flowchart of key procedures in the UPFRA is given in Figure 5.2. The DSCA module 

has been modified to include damage models, and Python scripts have been 

developed to implement the numerical procedures in the UPFRA. Several input 

parameters are required for the procedure, including the load ratio R, convergence 

parameters CONV1, CONV2, lower bound multiplier 𝜆1
𝐿𝐵 and upper bound multiplier 

𝜆1
𝑈𝐵 at first iteration. Here 𝜆1

𝐿𝐵 is the shakedown multiplier from Stage 1; while 𝜆1
𝑈𝐵 is 

the limit load multiplier from Stage 2.  

The analysis mode can be chosen at the start of the script. For fatigue analysis, it is 

required to input a target number of cycles to failure 𝑁𝑇 . The bisection numerical 

scheme is then used to call the DSCA repeatedly until the convergence condition is 

met. For the first iteration, the load multiplier  𝜆1 = (𝜆1
𝐿𝐵1 + 𝜆1

𝑈𝐵1)/2 . For the 𝑖 th 

iteration, the load multiplier 𝜆𝑖
𝐹 is computed by: 

 𝜆𝑖
𝐿𝐵1 = {

𝜆𝑖−2, 𝑁𝑖−2 > 𝑁𝑇

𝜆𝑖−1
𝐿𝐵1, 𝑁𝑖−2 ≤ 𝑁𝑇

 (5.27) 

 𝜆𝑖
𝑈𝐵1 = {

𝜆𝑖−1
𝑈𝐵1, 𝑁𝑖−2 > 𝑁𝑇

𝜆𝑖−2, 𝑁𝑖−2 ≤ 𝑁𝑇
 (5.28) 

 𝜆𝑖
𝐹 = {

𝜆𝑖−1+𝜆𝑖
𝑈𝐵1

2
, 𝑁𝑖−1 > 𝑁𝑇

𝜆𝑖−1+𝜆𝑖
𝐿𝐵1

2
, 𝑁𝑖−1 ≤ 𝑁𝑇

 (5.29) 

where 𝜆𝑖
𝐿𝐵1  and 𝜆𝑖

𝑈𝐵1  denote the lower and upper bound load multiplier at the 𝑖 th 

iteration. The structural loads applied are then scaled by the multiplier 𝜆𝑖
𝐹  and 

substituted into the DSCA subroutine. When the DSCA calculation is completed, the 
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minimum number of cycles to failure 𝑁𝑖 within the component can be evaluated at the 

post-processing stage. Finally, 𝑁𝑖 is compared with the target life 𝑁𝑇 to determine the 

convergence of UPFRA. The whole procedure is repeated several times until the 

difference between 𝑁𝑖 and 𝑁𝑇 satisfies the convergence criterion.  

For ratchet analysis, it is required to provide a target equivalent ratchet strain 𝜀𝑇
𝑅 . 

Considering acceptable numerical errors for direct methods, 𝜀𝑇
𝑅  can be taken as 

0.02%/cycle [24]. For the first iteration, the load multiplier 𝜆1 = (𝜆1
𝐿𝐵2 + 𝜆1

𝑈𝐵2)/2. For 

the 𝑖th iteration, the load multiplier 𝜆𝑖
𝑅 is computed by: 

 𝜆𝑖
𝐿𝐵2 = {

𝜆𝑖−2, 𝜀𝑖−2
𝑅 < 𝜀𝑇

𝑅

𝜆𝑖−1
𝐿𝐵2, 𝜀𝑖−2

𝑅 ≥ 𝜀𝑇
𝑅 (5.30) 

 𝜆𝑖
𝑈𝐵2 = {

𝜆𝑖−1
𝑈𝐵2, 𝜀𝑖−2

𝑅 < 𝜀𝑇
𝑅

𝜆𝑖−2, 𝜀𝑖−2
𝑅 ≥ 𝜀𝑇

𝑅 (5.31) 

 𝜆𝑖
𝑅 = {

𝜆𝑖−1+𝜆𝑖
𝑈𝐵2

2
, 𝜀𝑖−1

𝑅 < 𝜀𝑇
𝑅

𝜆𝑖−1+𝜆𝑖
𝐿𝐵2

2
, 𝜀𝑖−1

𝑅 ≥ 𝜀𝑇
𝑅
 (5.32) 

where 𝜆𝑖
𝐿𝐵2  and 𝜆𝑖

𝑈𝐵2  denote the lower and upper bound load multiplier at the 𝑖 th 

iteration. Unlike fatigue analysis, the maximum equivalent ratchet strain 𝜀𝑖
𝑅  is 

evaluated and compared to 𝜀𝑇
𝑅 to check convergence status. The UPFRA script has 

been fully optimised so that a number of different load ratios can be specified at the 

beginning, and a result CSV file is automatically generated at the end.  
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Figure 5.2: Simplified flowchart of the UPFRA 

 

5.3 Numerical examples 

5.3.1 A holed plate 

5.3.1.1 FE model and material parameters 

The holed plate has become a simplified but effective model to simulate the tubesheet 

in a heat exchanger [96]. As shown in Figure 5.3(a), the dimensionless geometry of 

the holed plate is taken from [24], where 𝐷/𝐿 = 0.2 and 𝑑/𝐿 = 0.05. The full plate is 

further simplified with a quarter model by applying symmetry boundary conditions. An 

axial pressure 𝜎𝑃 and a temperature gradient Δ𝑇 = 𝑇 − 𝑇0 is also applied in the model. 

The model is meshed into 642 quadratic hexahedral elements of type C3D20R, 

followed by a steady-state thermal analysis to compute the thermal field at loading 

stage, as shown in Figure 5.3(b). 
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Figure 5.3: (a) The geometry of a holed plate [24] (b) The temperature distribution and FE mesh 

 

The ratchet analysis on the holed plate subjected to arbitrary thermal-mechanical load 

histories has been introduced in [24]. Based on that work, the fatigue analysis and 

non-isothermal effect are further considered in this work. The X2CrNiMo17-12-2 steel 

is considered here, with its temperature-dependent material parameters for the EPP 

model given in Table 5.1. Ramberg-Osgood (R-O) model has also been adopted to 

describe the cyclic stress-strain behaviour, where the steady-state total strain ranges 

are given by: 

 
Δ�̅�𝑡

2
=

𝛥�̅�

2𝐸
+ (

𝛥�̅�

2𝐴(𝑇)
)

1

𝛽(𝑇)
 (5.33) 

The temperature-dependent material parameters for the R-O model are given in Table 

5.2. As shown in Figure 5.4(a), the yield stress in the EPP model is taken as the 0.2% 

proof stress from the R-O curves. The effective Young’s modulus �̅� used in EPP 

model is derived from the elastic modulus 𝐸 in R-O model by: 

 �̅� =
3𝐸

2(1+𝜈)
 (5.34) 

where the Poisson's ratio 𝜈 = 0.3. Linear interpolation and extrapolation techniques 

have been adopted to calculate values based on the local temperature in the structure. 

It should be mentioned that all the material parameters considered here are from [165].  

The fatigue curves of X2CrNiMo17-12-2 steel at various temperatures have been 

given in Figure 5.4(b) for fatigue damage evaluation. A bilinear interpolation technique 

has been employed to compute the number of cycles to failure 𝑁 based on local 

temperature 𝑇 and total strain range Δ𝜀𝑡. Then the lowest 𝑁 in the structure is derived 
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and compared with the target fatigue life 𝑁𝑇  for the plot of constant fatigue life 

diagrams.  

Table 5.1: Temperature-dependent material parameters of X2CrNiMo17-12-2 steel considering 
the EPP model 

Temper
ature, T 

[ºC] 

Heat capacity, 
Cp(T) 

[J/(kg∙ºC)] 

Conductivity, 

𝜆(𝑇) 
[W/(m∙ºC)] 

Thermal 
expansion, 

α(T) [10-5/ºC] 

𝑅𝑝0.2(𝑇) 

[MPa] 

�̅� 
[MPa] 

20 472 14.28 1.53 258 

2.17×105 

100 501 15.48 1.59 252 

200 522 16.98 1.66 248 

300 538 18.49 1.72 240 

400 556 19.99 1.78 240 

 

Table 5.2: Temperature-dependent material parameters for considering the R-O model 

Temperature, T [ºC] 𝐴(𝑇) [MPa] 𝛽(𝑇)  

20 2286 0.351 

100 2082 0.339 

200 1860 0.325 

300 1650 0.31 

400 1650 0.31 

 

 

Figure 5.4: (a) Cyclic steady-state stress-strain curves described with the EPP model and the R-
O model [167] (b) Fatigue curves of X2CrNiMo17-12-2 steel at various temperatures [6] 

 

Two different load cases are considered here, as shown in Figure 5.5. For load case 

Ⅰ, both the axial load and the thermal load are cyclic with two load vertices in the 

loading domain: (𝑃, Δ𝑇) and (0, 0). For load case Ⅱ, the axial load is constant while 

the thermal load is cyclic with two load vertices in the loading domain: (𝑃, Δ𝑇) and 

(𝑃, 0). 

Using the shakedown module in the LMM framework, the limit load 𝑃0 = 225.5 MPa 

and the reverse plasticity limit Δ𝑇0 = 200 °C  has been evaluated for future 

normalization. As shown in Figure 5.6, the elastic analysis has been performed on the 
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component subjected to pure axial pressure 𝑃0 or pure thermal load Δ𝑇0. Both thermal 

and mechanical loads would induce stress concentration at the inner edge of the 

holed plate.  

 

Figure 5.5: (a) Two simplified load cases (b) The corresponding loading domains 

 

 

Figure 5.6: Elastic analysis contours of (a) the mechanical von Mises stress (b) the thermal von 
Mises stress during the loading stage 

 

5.3.1.2 Results and discussions 

For load case Ⅰ, the shakedown limit, ratchet limit and constant fatigue life curves have 

been computed and presented in Figure 5.7(a). The EPP model is firstly considered 

for simplicity. The axial pressure 𝑃  and the temperature difference Δ𝑇 have been 

normalised by 𝑃0 and Δ𝑇0, respectively. In the reverse plasticity region, a series of 

fatigue boundaries are plotted, on which the number of cycles to fatigue failure is 

identical. These curves would greatly benefit the design and check procedure so that 

the expected fatigue life can be quickly determined from arbitrary loading 

combinations. It can be observed that the fatigue boundaries are mostly parallel to 
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the reverse plasticity limit. The lower the number of cycles to failure, the distance 

between the fatigue boundary and the reverse plasticity limit becomes larger. Due to 

the application of cyclic mechanical loads, a downward slope is found in the reverse 

plasticity limit. The other part of the shakedown boundary is shared with the lower part 

of the ratchet boundary, which is not vertical, as shown in [24]. The slight shrink of the 

lower part of the ratchet boundary is caused by the decrease of yield stress with 

increasing temperature. The upper part of the ratchet limit would approach the Y-axis 

rapidly when the thermal load increases.  

For load case Ⅱ, the shakedown limit, ratchet limit and constant fatigue life curves of 

the holed plate are presented in Figure 5.7(b). Since the mechanical load is constant, 

a Bree-like diagram is observed with a horizontal reverse plasticity limit. The fatigue 

boundaries are also parallel to the reverse plasticity limit and horizontal. The low cycle 

fatigue life is not affected by the increase of mechanical load as the thermal load 

dominates within the reverse plasticity region. Therefore, the plotting of a fatigue 

boundary may be simplified by only calculating the load point with pure thermal load 

and drawing the line parallel to the reverse plasticity limit.  

 

Figure 5.7: Shakedown limit, ratchet limit and constant fatigue life curves of the holed plate with 
EPP model subjected to (a) load case Ⅰ (b) load case Ⅱ 

 

For materials with a significant hardening effect, the R-O model is further considered 

for the problem. The shakedown limit, ratchet limit and constant fatigue life curves of 

the holed plate obtained with the R-O model are shown in Figure 5.8. The fatigue 

boundaries obtained with the EPP model are also presented for comparison. It can 

be observed that the fatigue boundaries obtained with the R-O model still follow the 

slope of the reverse plasticity limit but are greatly influenced by the stress level in the 



 

104 
 

component. For both load cases, a transition point can be found in the fatigue 

boundary, after which the curve travels upward due to the hardening effect with 

increasing mechanical loads. Also, for higher temperatures, the fatigue boundaries 

obtained with the R-O model also move away from the ones obtained with the EPP 

model due to the hardening effect with a larger thermal load.  

Two load points have been chosen in Figure 5.8(a) to further illustrate the difference 

induced by using different numerical models. The comparisons of the hysteresis loop 

obtained with R-O and EPP models have been presented in Figure 5.9. For load point 

(A), the hardening effect is minor, and the stress calculated by the R-O equation is 

lower than the yield stress of the EPP model. Thus the R-O model produces lower 

stress and a larger total strain range in the hysteresis loop. For load point (B), the 

hardening effect becomes significant, and the R-O model becomes more conservative, 

which results in a smaller total strain range and a higher fatigue life compared to the 

EPP model. 

 

Figure 5.8: Shakedown limit, ratchet limit and constant fatigue life curves of the holed plate with 
R-O model subjected to (a) load case Ⅰ (b) load case Ⅱ 
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Figure 5.9: The comparisons of hysteresis loops obtained with R-O and EPP models for (a) load 
point (A) (b) load point (B) 

 

Three different scale paths are shown in Figure 5.10(a). In the UPFRA, a fixed load 

ratio is firstly decided, and the loads are scaled proportionally to reach the specified 

target value. The target 𝜀𝑅 = 0.04% for ratchet analysis, as given in [23]. The target 

𝑁 = 1000 for fatigue analysis in this example. By selecting different load ratio, various 

scale paths are specified to obtain different load points on the boundary. The 

convergence histories of the maximum equivalent ratchet strain and the minimum 

number of cycles to failure for three scale paths are shown in Figure 5.10(b). By 

adopting the bisection scheme, both 𝜀𝑅 and 𝑁 converge within five successive sub-

cycles. For the same geometry considering load case Ⅰ, a generalised numerical 

scheme has also been proposed in [24], which requires 10-15 sub-cycles for the 

convergence of 𝜀𝑅 . Therefore, the bisection scheme proposed in this work is 

considered more efficient than the generalised method from the previous work.  

 

Figure 5.10: (a) Three scale paths used to plot ratchet limit and constant fatigue life curves (b) 
The convergence histories of the maximum equivalent ratchet strain and the minimum number 

of cycles to failure for three scale paths 
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5.3.1.3 Verification of results 

The shakedown and ratchet boundaries obtained with the EPP model are further 

compared in Figure 5.11(a). It can be observed that the shakedown boundaries 

intercept with both axes at the same points, but the slope of reverse plasticity limits 

are different. The consideration of cyclic mechanical load would also significantly 

influence the shape of the ratchet limit by expanding its coverage area. To justify the 

accuracy of shakedown and ratchet boundaries of the holed plated subjected to load 

case Ⅰ, several load points have been chosen for step-by-step (SBS) calculation, as 

shown in Figure 5.11(a). A total of 100 steps are created in ABAQUS to achieve the 

saturate stress-strain state. The evolution of the maximum plastic strain magnitude 

(PEMAG) in the structure subjected to load points (3), (7) and (8) has been plotted, 

as given in Figure 5.11(b). Load point (3) locates in the reverse plasticity region, and 

its PEMAG fluctuate around a particular value during steady-state. Load point (7) is 

in the shakedown region, and the corresponding PEMAG remains constant after a 

few cycles. Load point (8) is outside the ratchet limit, and its PEMAG keeps growing 

indefinitely with increasing time increment. Therefore, the behaviours of interesting 

load points have been justified by the evolution of PEMAG, proving the accuracy of 

the shakedown and ratchet limit calculated by the UPFRA.  

 

Figure 5.11: (a) Comparison of boundaries of the holed plate subjected to two load cases, and 
load points considered for SBS analysis (b) The evolution of the maximum plastic strain 

magnitude of the holed plate obtained with SBS analysis 

 

To validate the constant fatigue life diagram, the load point (3) has been chosen from 

one of the constant life curves 𝑁 = 1000. The failure mechanism is demonstrated by 

the equivalent ratchet strain 𝜀𝑅, as shown in Figure 5.12(a). It can be observed that 
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the structure would first fail at the upper edge of the hole and the upper left corner 

simultaneously. Then the plastic zone would expand across the left side and connect 

both failure locations. The largest 𝜀𝑅 is found to be 0.01013%, which is less than the 

target 𝜀𝑅 = 0.04% as the load point (3) is situated within the ratchet limit. The total 

strain range Δ𝜀𝑡 has been evaluated to calculate the fatigue life, as displayed in Figure 

5.12(b). The largest Δ𝜀𝑡  is found at the lower edge of the hole, where the largest 

fatigue damage is also determined. By looking up the Δ𝜀𝑡 and local temperature into 

the Figure 5.4, the number of cycles to failure 𝑁 can be evaluated using a bilinear 

interpolation scheme, as given in Figure 5.12(c). The lowest 𝑁 is found to be 1000, 

proving the accuracy of the constant fatigue life curves computed by the UPFRA.  

A series of SBS analyses have also been performed on the holed plate subjected to 

load point (3). Some contours obtained with SBS and DSCA have been presented 

and compared in Figure 5.13. The von Mises stress value and distribution during 

loading and unloading stages from SBS and DSCA are highly comparable, which 

indicates the reliability of DSCA. The equivalent plastic strain range Δ𝜀𝑃 from DSCA 

and SBS have also been extracted and compared. The Δ𝜀𝑃 from DSCA is slightly less 

conservative due to the different post-processing procedures, as discussed in Section 

5.3.1. The maximum Δ𝜀𝑃 is found at the lower edge of the hole, where an interesting 

integration point is selected for the further investigation of the stress-strain behaviour. 

 

Figure 5.12: DSCA contours for load point (3) of (a) equivalent ratchet strain (b) equivalent total 
strain range (c) number of cycles to failure 
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Figure 5.13: Comparison of contours for load point (3) of (a) von Mises steady-state stress 
during loading process obtained with DSCA (b) von Mises steady-state stress during unloading 
process obtained with DSCA (c) 𝚫𝛆p obtained with DSCA and the location of maximum 𝚫𝛆p (d) 

von Mises steady-state stress during loading process obtained with SBS (e) von Mises steady-
state stress during the unloading process obtained with SBS (f) 𝚫𝛆p obtained with SBS and the 

location of maximum 𝚫𝛆p 

 

The saturated hysteresis loops at the location of the largest Δ𝜀𝑃 for the holed plate 

considering various load points have been evaluated with DSCA and SBS, as shown 

in Figure 5.14(a). Due to the nature of the EPP model, the von Mises stress could not 

exceed the temperature-dependent yield stress. The largest effective tensile stress is 

controlled by the highest local temperature, while the largest effective compressive 

stress equals the yield stress at 𝑇 = 0 °C. For load points chosen from Figure 5.11(a), 

load point (1) represents higher axial load and lower temperature, while load point (3) 

represents lower axial load and higher temperature. It can be observed in Figure 

5.14(a) that the hysteresis loop for load point (1) has a lower total strain range than 

load point (3). The reason is that the failure mechanisms for these load points are low 

cycle fatigue and are thermal load dominant.  

The maximum total strain range Δ𝜀𝑝  in the structure subjected to 6 different load 

points is further compared in Figure 5.14(b). As discussed in Section 5.3.1, the Δ𝜀𝑝 

calculated by the DSCA is slightly smaller than the  Δ𝜀𝑝 from SBS because of the 

different sequence during the post-processing of effective values. In DSCA, the strain 

tensors at the loading and unloading stages are first subtracted before calculating the 

effective values. In SBS, the effective values are first calculated before the subtraction 

in a user-defined field. An average error of 2.96% between results obtained with 

DSCA and SBS is found for load points (1) – (6), proving the precision and reliability 

of the proposed method.  
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Figure 5.14: Comparison of (a) saturated hysteresis loops obtained with DSCA and SBS (b) 
maximum plastic strain range obtained with DSCA and SBS 

 

5.3.2 A heat exchanger in aero-engine 

5.3.2.1 FE model and material parameters 

For typical aero-engines, lubricating oil is circulated within the rotating components to 

reduce friction. With the increase of ambient temperature and influence of friction 

force, the temperature of the turbine oil would also rise. In this way, the performance 

of the turbine oil would be significantly reduced due to the decrease in viscosity and 

oxidation stability [168]. Therefore, it is essential to employ a heat exchanger to cool 

down the lubricating oil. The geometry of an assembled shell-and-tube heat 

exchanger is shown in Figure 5.15. Because of the limited available space in the aero-

engine, a small-scaled heat exchanger has been designed for this study. In addition, 

instead of using a thick and walled tubesheet [161], a thin and flexible tubesheet has 

been designed to be welded to the outer shell so that the total weight of the heat 

exchanger can be further reduced.  
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Figure 5.15: The geometry of an assembled shell-and-tube heat exchanger (dimensions in 
millimetres) 

 

 

Figure 5.16: The FE mesh, material designation and a typical operating condition 

 

A 1/8 FE model has been created in ABAQUS/CAE [21] for simplification, as shown 

in Figure 5.16. Some features such as the traverse baffles between tubes have also 

been ignored to improve efficiency. The FE model has been meshed into 245534 

linear hexahedral elements of type C3D8 and 1968 linear wedge elements of type 

C3D6. The mesh on the tubesheet has been further refined due to stress 

concentration in the region. During the typical working condition, the turbine oil with 

pressure 𝑃𝑡 and temperature 𝑇𝑡 enters through the inlet and flow inside the thin tubes. 

Meanwhile, the coolant water with pressure 𝑃𝑠  and temperature 𝑇𝑠  is circulated 

between the tubes with the shell. An equivalent pressure 𝑃𝑒𝑛𝑑 is applied to the inlet 

surface due to the closed end effect. Symmetry boundary conditions have also been 

applied on symmetric surfaces to simulate the whole body.  

As shown in Figure 5.16, three different metal grades of aluminium have been 

adopted and assigned in different parts. The temperature-independent material 
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parameters are presented in Table 5.3. Since the highest temperature of turbine oil is 

found to be 150 ºC, the material parameters of aluminium at 150 ºC have been chosen 

for conservative results. Due to the complexity of the geometry, the use of 

temperature-independent properties could avoid convergence problems and improve 

computational efficiency. The justification for adopting temperature-dependent and 

temperature-independent material properties has been given in [120, 165]. 

Table 5.3: Material parameters for specified metal grades of aluminium at 150 ºC 

Metal grade 5A02-H112 5A02 5A03 

Conductivity, k [W/(m∙ºC)] 168 168 175 

Density, ρ [g/cm3] 2.68 2.68 2.77 

Young’s modulus, E [GPa] 70 70 65 

Poisson’s ratio, v 0.3 0.3 0.3 

Thermal expansion coefficient, α [10-5/ºC] 2.57 2.57 4 

Specific heat capacity, c [J/(kg∙ºC)] 825 825 875 

Yield stress, σs [MPa] 186 78 202 

 

Two simplified load cases are chosen for this problem, as shown in Figure 5.17. The 

general cyclic loading condition of start-up and shut-down is considered, and the 

creep effect is neglected. For typical operating conditions, the temperature of the inlet 

turbine oil 𝑇𝑡 = 150 ℃ and the tube pressure 𝑃𝑡 = 3 MPa. The shell pressure caused 

by the coolant water 𝑃𝑠 = 1 MPa. A Bree-like problem with constant inner pressure 

and cyclic temperature has been considered, as shown in Figure 5.17(a). A modified 

Bree problem with cyclic inner pressure and cyclic temperature has also been 

considered, as shown in Figure 5.17(b). 

 

Figure 5.17: Simplified load cases with (a) constant inner pressure and cyclic temperature (b) 
cyclic inner pressure and cyclic temperature 
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5.3.2.2 Results and discussions 

A steady-state thermal analysis has been performed to evaluate the temperature field, 

as given in Figure 5.18(a). Since the transient thermal effect is not considered in this 

case, the loading and unloading time is ignored. The inlet temperature of turbine oil is 

150 ºC, and the shell temperature of coolant water is 55 ºC. A significant temperature 

gradient is then created around the tubesheet area. After that, linear elastic analysis 

has been conducted to generate the stress field for later use. The mechanical con 

Mises stress is shown in Figure 5.18(b), and the thermal von Mises stress at the 

tubesheet is given in Figure 5.18(c). Besides the tubesheet, the other part of the heat 

exchanger is subjected to relatively low thermal stress, so the stress distribution on 

the other part is not presented. It is worth mentioning that for traditional thick and 

walled tubesheet design, the concentration of thermal stress is usually found at the 

connection weldment between the tubesheet and outer shell. In this case, the use of 

a thin and flexible tubesheet translates the thermal stress concentration area to the 

corner of the tubesheet, away from the weldment part. The largest stress caused by 

the internal pressure is found at the vessel head with the largest diameter and 

smallest thickness.  

 

Figure 5.18: Contours during loading stage showing (a) the temperature distribution (b) the 
mechanical von Mises stress (c) thermal von Mises stress at the tubesheet 

 

For this case, only the ratchet analysis has been conducted because of limited 

computation resources and the requirement of structural design. The shakedown and 

ratchet limit of the aero-engine heat exchanger undergoing constant mechanical load 

and cyclic thermal load is presented in Figure 5.19(a). The characteristic of a Bree-

like diagram is observed, including a horizontal reverse plasticity limit and a ratchet 

limit approaching the Y-axis. Several regions can then be determined, which are 

separated by the shakedown and ratchet boundaries. Load points located within the 

shakedown envelope would experience elastic shakedown, which is considered safe 

for structural design. For load points located above the shakedown boundary but 
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within the ratchet boundary, the structure behaviour would be plastic shakedown 

where a closed hysteresis loop would form. In this case, the failure mechanism would 

be low cycle fatigue leading to crack initiation. For load points located outside the 

ratchet boundary, the structural behaviour becomes ratchetting leading to incremental 

collapse. The vertical green line in Figure 5.19(a) denotes the limit load. The structure 

would collapse instantaneously when the pressure reaches the limit load. Both axes 

of the diagram have been normalised for better clarification and comparison. The 

inner pressure is normalised by the limit load 𝑃0 = 2.939 MPa  and the cyclic 

temperature is normalised by the reverse plasticity limit Δ𝑇0 = 229.2 °C.  

As described in Section 5.2.2, a two-stage procedure is employed for ratchet limit 

evaluation. The procedure sequence is visually displayed in Figure 5.19(a) for a load 

point (0.657, 2.356) on the ratchet boundary. Stage Ⅰ only considers the cyclic thermal 

load by using the DSCA module. The saturated loading and unloading stress state is 

shown in Figure 5.20(a-b) by the end of stage Ⅰ. The highest stress is found in the 

tubesheet, which would yield local fatigue damage. The failure mechanism at stage Ⅱ 

is also presented in Figure 5.20(c) with the form of the equivalent strain increment 

Δ𝜀𝑒𝑞
𝑐 . It can be observed that the critical failure location translates to the vessel head 

which is caused by dominant constant inner pressure at ratchetting state.  

 

Figure 5.19: Shakedown and ratchet limit of the aero-engine heat exchanger subjected to (a) 
constant mechanical load and cyclic thermal load (b) cyclic mechanical load and cyclic thermal 

load 
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Figure 5.20: Contours obtained with the two-stage ratchet analysis of (a) von Mises steady-state 
stress for stage Ⅰ during the loading process (b) von Mises steady-state stress for stage Ⅰ 

during the unloading process (c) the failure mechanism for stage Ⅱ 

 

The modified Bree problem has also been considered here, which involves cyclic 

thermal load and cyclic inner pressure, as shown in Figure 5.19(b). Both axes have 

been normalised by 𝑃0 and Δ𝑇0 from the Bree-like problem. It can be observed that 

the shakedown boundary intersects with X-axis at 0.679 instead of coinciding with the 

lower part of the ratchet boundary. The consideration of cyclic mechanical stress 

introduces the bending stress to the component in addition to the membrane stress 

caused by constant mechanical stress, which induces a shrink of the lower part of the 

shakedown boundary. With the increase of temperature, the shakedown envelope 

expands accordingly, forming a sharp angle at the transition point. It could be caused 

by the counteract effect between the thermal and mechanical loads in high-stress 

regions. Therefore, the maximum shakedown multiplier is achieved at load point 

(0.838, 0.940), where the thermal and mechanical loads are comparable.  

For the ratchet boundary of the modified Bree problem, a target ratchet strain 𝜀𝑅 =

0.02% is set. The result ratchet limit lies between the limit load and the shakedown 

limit. It can be observed that the lower part of the ratchet limit follows an identical 

tendency to the shakedown limit. With the increase of temperature, the ratchet 

boundary becomes a vertical line before finally approaching the Y-axis. As introduced 

in Section 5.2.3, several different ratios of Δ𝑇/𝑃 have been specified to obtain the 

data points on the ratchet boundary. A scale path has been chosen in Figure 5.19(b) 

for illustration, showing the convergence history of load points for each sub-cycle. The 

convergence history of the load multiplier λ has also been plotted and presented in 

Figure 5.21(a). At the first sub-cycle, the lower bound multiplier 𝜆𝑠 = 0.151 is selected 

on the shakedown boundary. At the second sub-cycle, the upper bound multiplier 



 

115 
 

𝜆𝐿 = 0.979  is chosen from the limit load. A series of bisection scheme is then 

conducted repeatedly until the load multiplier converges at the fifth sub-cycle: 𝜆5 =

0.798.  

 

Figure 5.21: (a) Convergence history of the load multiplier λ for a specific scale path (b) 
evolution of the maximum plastic strain magnitude of the aero-engine heat exchanger obtained 

with SBS analysis 

 

5.3.2.3 Verification of results 

To validate the results, the inelastic SBS analysis has been performed in ABAQUS. 

To ensure the achievement of steady-state stress-strain behaviour, a total of 100 

static steps have been created with the help of a Python script. All the material 

parameters and boundary conditions considered are the same as the settings in the 

LMM framework. It usually takes several increments for each step to converge, so 

SBS analysis is considered accurate but highly time-consuming. The SBS analysis 

has been widely adopted as an effective validation tool in several existing works [169, 

170].  

Four different load points have been selected in Figure 5.19(b) for SBS verification. 

Load points (A) and (B) are located in the reverse plasticity region. The evolution of 

PEMAG in the structure has been evaluated and plotted in Figure 5.21(b). For both 

load points, the PEMAG remains at a steady level after a few cycles, showing the 

characteristic of reverse plasticity behaviour. Therefore, the accuracy of the ratchet 

boundary produced by the UPFRA has been proved. To evaluate the plastic strain 

range Δ𝜀𝑝 at the final cycle, the equivalent plastic strain (PEEQ) at the last step is 

subtracted by the PEEQ at the step before the last step. As shown in Figure 5.22, the 

Δ𝜀𝑝 obtained with SBS and DSCA for both load points are compared. For load point 
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(A), the thermal stress dominates and the largest Δ𝜀𝑝 appears at the tubesheet. For 

load point (B), the mechanical stress dominant and the largest Δ𝜀𝑝 is found on the 

vessel head. It can be seen that the results obtained with SBS and DSCA are highly 

compatible, proving the accuracy of the proposed method.  

 

Figure 5.22: Contours of the equivalent plastic strain range 𝚫𝛆p for (a) load point (A) obtained 
with DSCA (b) load point (A) obtained with SBS (c) load point (B) obtained with DSCA (d) load 

point (B) obtained with SBS  
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Figure 5.23: Contours of the equivalent ratchet strain 𝛆R for (a) load point (C) obtained with 
DSCA (b) load point (C) obtained with SBS (c) load point (D) obtained with DSCA (d) load point 

(D) obtained with SBS  

 

On the ratchet boundary, load points (C) and (D) have been chosen from Figure 

5.19(b) for SBS validation. The contours of equivalent ratchet strain 𝜀𝑅 from the SBS 

and DSCA are compared in Figure 5.23. The maximum 𝜀𝑅 is found to be around to 

be 0.02%, identical to the target settings in the UPFRA. It can be observed that the 

distribution of 𝜀𝑅  are comparable for both methods, but the SBS produces overall 

higher values of 𝜀𝑅 than the results from DSCA. The difference is mainly caused by 

the post-processing procedures used to obtain 𝜀𝑅 . For SBS, 𝜀𝑅  is evaluated by 

subtracting the PEEQ accumulated during the unloading stage by the PEEQ at the 

loading stage. For DSCA, the plastic strain component during the unloading and 

loading stages are subtracted first before calculating the equivalent value of 𝜀𝑅. In this 

case, the 𝜀𝑅 from DSCA is proved to be more precise than the one from SBS.  

The total CPU time required for each load point using the DSCA and SBS has been 

compared in Table 5.4. It can be found that for all the load points, the DSCA requires 

less time than SBS, with a speed advantage of up to 73.1%. The reason is that 

inelastic analysis in SBS usually takes several iterations for each increment to 
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converge, while the DSCA aims directly at the final cycle by solving a series of linear 

equations. Therefore, the DSCA has been proved to offer better efficiency without 

potential convergence issues.   

Table 5.4: Comparisons of total CPU time using the DSCA and SBS 

 Load 
point (A) 

Load 
point (B) 

Load 
point (C) 

Load 
point (D) 

CPU time (SBS) [sec]  45711 40672 62136 76529 

CPU time (DSCA) [sec]  20426 20358 20404 20602 

Speed improvement 55.3% 49.9% 67.2% 73.1% 

 

5.4 Summary 

In this chapter, the differences between material and structural ratchetting have been 

discussed. The constant life diagram has been extended from the material level to the 

structure level. For the evaluation of ratchet boundary and fatigue boundary for 

structures subjected to arbitrary cyclic thermal-mechanical load histories, a Unified 

Procedure for Fatigue and Ratchet Analysis (UPFRA) has been proposed as part of 

the LMM framework. The R-O model has also been introduced to consider the cyclic 

hardening effect. Two case studies have been conducted using the UPFRA to show 

the usability of the proposed method.  

It has been discovered that material ratchetting is usually considered with a 

homogeneous stress field and no residual stress. In contrast, structural ratchetting is 

considered with an inhomogeneous stress field and sophisticated residual stress field. 

For Bree-like problems, an existing two-stage procedure has been introduced based 

on the DSCA subroutine and Koiter's shakedown algorithm, while for modified Bree 

problems, a three-stage procedure is proposed based on the LMM shakedown 

module and the UPFRA. A series of DSCA subroutine is called iteratively by the 

bisection scheme in the UPFRA, which is capable of computing the ratchet and fatigue 

boundaries for complex engineering structures considering temperature-dependent 

material properties. The validation of the proposed method is performed by comparing 

the results with the ones obtained with the SBS analysis. The stress-strain contours 

and saturated hysteresis loops from the UPFRA agree well with those from the SBS. 

Therefore, in the benchmark case of a holed plate, the support for R-O model is 

illustrated and the constant LCF life diagram is verified by the SBS analysis. In the 
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engineering case of a heat exchanger in aero-engine, complex FE model and material 

parameters are considered and the UPFRA is proved to be more efficient than the 

SBS analysis. In addition, the Bree-like diagram is further extended by including the 

constant LCF life curves. 
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 The evaluation of the structural 

constant creep-fatigue life diagram 

6.1 Introduction 

During the process of structural integrity assessment for components subjected to 

cyclic loads in a high-temperature environment, one of the most critical problems is 

the prediction of the number of cycles to crack initiation. The creep effect also 

becomes significant due to the degeneration of material performance and stress 

relaxation during creep dwell. The inclusion of creep strain may cause the creep 

ratchetting mechanism where the open hysteresis loop is formed. Creep and fatigue 

could also interact with each other in various ways and induce phenomena such as 

“cyclically enhanced creep” and “creep enhanced plasticity”, as introduced in [47]. 

The accurate estimation of structural life would greatly benefit the optimization of 

operation routine and prevent system failure. In addition, the structural location with 

the largest potential creep-fatigue damage can also be discovered for reinforcement 

and periodic maintenance.  

Among industries, two approaches are usually adopted for creep-fatigue design and 

assessment, including the rule-based and analysis-based methods. Rule-based 

approaches introduced in the R5 procedure [7] and ASME NH [5] are simple to apply 

but often considered over-conservative and inaccurate. Analysis-based approaches 

include inelastic cycle-by-cycle FE analysis and direct methods. The cycle-by-cycle 

analysis considers sophisticated constitutive models which can be highly precise but 

time-consuming. Direct methods utilise specific hypotheses to simplify the material 

models and aim at solving the stress-strain relationship at the steady-state cycles 

directly. Thus the time efficiency is greatly improved with potential convergence 

issues avoided. As part of the Linear Matching Method (LMM) framework, the 

extended Direct Steady Cycle Analysis (eDSCA) has been proposed by previous 

researchers for creep-fatigue assessment and applied to various types of engineering 

problems [171-175]. The eDSCA has also been widely validated with ABAQUS step-

by-step analysis and proved to be an efficient, robust and easy-to-use engineering 

tool.  
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A number of numerical approaches to evaluate the creep damage have also been 

implemented in the existing eDSCA subroutine, including the Time Fraction rule (TF), 

Ductility Exhaustion method (DE), Stress Modified Ductility Exhaustion method 

(SMDE) [176] and Strain Energy Ductility Exhaustion method (SEDE) [175]. The 

fatigue damage can also be calculated with a fitted equation using the Modified 

Universal Slope Method (MUSM) [175] or the bilinear interpolation technique using 

the fatigue life curves [163]. Since the fatigue damage is determined by the total strain 

range, the creep strain accumulated during creep dwell could result in an increase of 

strain range and fatigue damage. The total damage is then calculated by combining 

the creep and fatigue damage using the Linear Damage Summation (LDS) method, 

the bilinear method introduced in ASME NH [5], and the combined damage rules [177]. 

For the simplicity and conservativeness of this work, the TF rule and the bilinear 

interpolation technique have been selected for creep and fatigue damage evaluation.  

Considering the effect of creep at high temperatures, the concept of constant life 

diagrams is further extended to the structural level as constant creep-fatigue life 

curves. Different combinations of thermal-mechanical loads with identical total creep-

fatigue life are plotted in a diagram, considering the effect of creep dwell time. It is 

challenging to solve engineering problems with creep-fatigue interaction using 

traditional inelastic step-by-step (SBS) analysis even for a single load combination, 

as the SBS method can be highly time-consuming and difficult to converge. Thanks 

to the development of direct methods, it becomes possible to efficiently plot the 

constant creep-fatigue life curves containing a large number of data points. To 

evaluate the constant fatigue life boundaries for engineering structures, the Unified 

Procedure for Fatigue and Ratchet Analysis (UPFRA) [163] has been introduced 

comprehensively in Section 5. In this work, a post-processing module for creep-

fatigue damage evaluation has been implemented in eDSCA. The UPFRA algorithm 

is also extended and improved to call the eDSCA iteratively for the computation of 

creep-fatigue interaction and total damage. The constant creep-fatigue life curves are 

then combined with the shakedown and ratchet boundary to describe the structural 

behaviour for arbitrary loading combinations. The newly developed Python script 

contains the UPFRA and extended UPFRA, providing a one-stop solution for 

structural ratchetting, fatigue and creep-fatigue analyses.  

In this study, the Bree-like diagram is extended by including the constant creep-fatigue 

life curves. The numerical methods for creep-fatigue analysis are extensively 



 

122 
 

introduced in Section 6.2, including the introduction of the current eDSCA in Section 

6.2.1, the adopted creep and fatigue damage rules in Section 6.2.2, and the extended 

UPFRA in Section 6.2.3. Then two numerical examples are presented to show the 

advantages of the extended UPFRA for practical engineering problems in Section 6.3. 

6.2 Numerical procedures for creep-fatigue analysis 

6.2.1 The current eDSCA algorithm 

Consider a body subjected to cyclic temperature 𝜃(𝑥, 𝑡)  within the volume 𝑉  and 

cyclic load 𝑃(𝑥, 𝑡)  on the part of the surface 𝑆𝑇  over the cycle 0 ≤ 𝑡 ≤ Δ𝑡 . The 

displacement 𝑢 = 0 on the rest of the surface 𝑆𝑢. The linear elastic stress history is 

calculated by: 

 �̂�𝑖𝑗(𝑥, 𝑡) = �̂�𝑖𝑗
𝜃(𝑥, 𝑡) + �̂�𝑖𝑗

𝑃(𝑥, 𝑡) (6.1) 

where �̂�𝑖𝑗
𝜃(𝑥, 𝑡)  and �̂�𝑖𝑗

𝑃(𝑥, 𝑡)  are elastic solutions derived with 𝜃(𝑥, 𝑡)  and 𝑃(𝑥, 𝑡) , 

respectively. The stress state at steady-state is then given by: 

 𝜎𝑖𝑗(𝑥, 𝑡) = �̂�𝑖𝑗(𝑥, 𝑡) + �̅�𝑖𝑗(𝑥) + 𝜌𝑖𝑗
𝑟 (𝑥, 𝑡) (6.2) 

where �̅�𝑖𝑗(𝑥) is a constant residual stress field in which the surface traction is zero on 

𝑆𝑇.  𝜌𝑖𝑗
𝑟 (𝑥, 𝑡) denotes varying residual stress which meets the condition: 

 𝜌𝑖𝑗
𝑟 (𝑥, 0) = 𝜌𝑖𝑗

𝑟 (𝑥, Δ𝑡) (6.3) 

The similar minimization process adopted here has been described in Section 5.2.1. 

Considering a series of time instant 𝑡𝑛  to replace integration computation, the 

minimization function is given by: 

 𝐼𝑛(Δ𝜀𝑖𝑗
𝑛 ) = ∫ {𝜎𝑖𝑗

𝑛Δ𝜀𝑖𝑗
𝑛 − [�̂�𝑖𝑗(𝑥, 𝑡𝑛) + 𝜌𝑖𝑗

𝑟 (𝑥, 𝑡𝑛)]Δ𝜀𝑖𝑗
𝑛 }

𝑉
𝑑𝑉 (6.4) 

A total number of load instance 𝑁 and a total number of cycles 𝑀 are considered 

before convergence. The accumulated residual stress 𝜌𝑖𝑗
𝑟 (𝑥, 𝑡𝑛) is then given by: 

 𝜌𝑖𝑗
𝑟 (𝑥, 𝑡𝑛)𝑚 = ∑ ∑ Δ𝑁

𝑛=1 𝜌𝑖𝑗
𝑟 (𝑥, 𝑡𝑛)𝑘

𝑚−1
𝑘=1 + ∑ Δ𝜌𝑖𝑗

𝑟 (𝑥, 𝑡𝑘)𝑚
𝑛
𝑘=1  (6.5) 

For load instances 𝑡𝑛 with no creep dwell, the plastic strain amplitude is calculated by: 
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 Δ𝜀𝑖𝑗
𝑝 (𝑥, 𝑡𝑛) =

1

2�̅�(𝑥,𝑡𝑛)
{�̂�𝑖𝑗(𝑥, 𝑡𝑛) + 𝜌𝑖𝑗

𝑟 (𝑥, 𝑡𝑛)}
′
 (6.6) 

where �̅�(𝑥, 𝑡𝑛) denotes an iterative shear modulus.  

For load instances 𝑡𝑛  with creep dwell, the creep strain is calculated with a time 

hardening power law: 

 𝜀̅̇𝑐 = 𝐴�̅�𝑛𝑡𝑚 (6.7) 

where 𝜀̅̇𝑐 denotes the effective creep strain rate, �̅� denotes the effective von-Mises 

stress, 𝑡  denotes the dwell time, and 𝐴 , 𝑛 , and 𝑚  are power-law parameters. 

Considering the non-isothermal effect, creep parameter 𝐴 is temperature-dependent 

with the application of the Arrhenius law: 

 𝐴 = 𝐴∗exp (−
𝑄

𝑅𝑇
) (6.8) 

where 𝐴∗  denotes the frequency factor, 𝑄  denotes the activation energy, 𝑅  is the 

global gas constant, and 𝑇 denotes the local temperature. The effective creep strain 

increment during creep dwell is computed by: 

 Δ𝜀̅𝑐 =
𝐴(𝑛−1)Δ𝑡𝑚+1(�̅�𝑠−�̅�𝑐)

(�̅�𝑐
1−𝑛−�̅�𝑠

1−𝑛)(𝑚+1)
 (6.9) 

where �̅�𝑠 denotes the effective stress at the start of creep dwell and �̅�𝑐 denotes the 

effective stress at the end of creep dwell (creep flow stress). For pure creep conditions 

when �̅�𝑠 = �̅�𝑐, the effective creep strain becomes: 

 Δ𝜀̅𝑐 =
𝐴�̅�𝑠

𝑛Δ𝑡𝑚+1

𝑚+1
 (6.10) 

The creep strain rate at the end of dwell is given by: 

 𝜀̅̇𝑓 =
Δ�̅�𝑐(𝑚+1)�̅�𝑐

𝑛

(𝑛−1)(�̅�𝑠−�̅�𝑐)Δ𝑡
(�̅�𝑐

1−𝑛 − �̅�𝑠
1−𝑛) (6.11) 

For pure creep condition, the creep strain rate becomes: 

 𝜀̅̇𝑓 = 𝐴�̅�𝑠
𝑛Δ𝑡𝑚 (6.12) 

During the iteration procedure, the estimated values of �̅�𝑐
𝑖 and �̅�𝑠

𝑖 are used to compute 

the final creep flow stress as the new creep flow stress �̅�𝑐 = �̅�𝑐
𝑓
: 
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 �̅�𝑐 = (
�̇̅�𝑓

𝐴Δ𝑡𝑚)

1

𝑛
 (6.13) 

The iterative shear modulus �̅�𝑚(𝑥, 𝑡𝑛) is updated for every integration point at the end 

of each cycle 𝑚 using the linear matching equation: 

 �̅�𝑚+1(𝑥, 𝑡𝑛) =
�̅�𝑚(𝑥,𝑡𝑛)𝜎𝑦

𝑅(𝑥,𝑡𝑛)𝑚

�̅�(�̂�𝑖𝑗(𝑥,𝑡𝑛)+𝜌𝑖𝑗
𝑟 (𝑥,𝑡𝑛)𝑚)

 (6.14) 

where 𝜎𝑦
𝑅(𝑥, 𝑡𝑛)𝑚 denotes revised yield stress. For load instances without creep dwell, 

the revised yield stress equal to the yield stress of the material 𝜎𝑦
𝑅 = 𝜎𝑦; for load 

instances with creep dwell, the revised yield stress is replaced by the creep flow stress 

𝜎𝑦
𝑅 = �̅�𝑐. The convergence check is performed at the end of each cycle. The whole 

process is repeated until the convergence criterion is satisfied. The detailed 

introduction of the eDSCA procedure can be further found in [19]. 

6.2.2 The evaluation of creep-fatigue damage 

Based on the results from the eDSCA subroutine, a series of post-processing 

subroutines have been developed and implemented in the LMM plug-in to evaluate 

the creep-fatigue damage. The elastic follow up factor 𝑍 is given by: 

 𝑍 =
�̅�Δ�̅�𝑐

�̅�𝑠−�̅�𝑐
 (6.15) 

where the effective elastic modulus �̅� =
3𝐸

2(1+𝜈)
.  

Assuming a constant elastic follow up factor during the creep dwell, the stress during 

the creep can be calculated using the power-law equation: 

 �̅�(𝑡, 𝑍, �̅�𝑠) = [�̅�𝑠
1−𝑛 −

�̅�𝐴(1−𝑛)𝑡𝑚+1

𝑍(𝑚+1)
]

1

1−𝑛
 (6.16) 

The effective creep strain at steady-state is therefore given by: 

 𝜀̅𝑐 =
[�̅�𝑠−�̅�(𝑡,𝑍,�̅�𝑠)]𝑍

�̅�
 (6.17) 

The average creep stress �̅�𝑎𝑐 can then be evaluated by integrating (6.16) over total 

dwell time Δ𝑡: 
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 �̅�𝑎𝑐 =
1

Δ𝑡
∫ �̅�(𝑡, 𝑍, �̅�𝑠)𝑑𝑡

Δ𝑡

0
 (6.18) 

The integration is not directly applicable in the FORTRAN subroutine, so the dwell 

time Δ𝑡 is split into a number of small segments and substituted into (6.16) before 

summation. For the evaluation of creep damage, the Time Fraction rule has been 

implemented as part of the subroutine. The time to creep rupture 𝑡∗(�̅�𝑎𝑐, 𝑇) is firstly 

determined by local temperature and average creep stress based on the rupture 

curves from creep experiments. The creep damage accumulated per cycle 𝜔𝐶 is then 

given by: 

 𝜔𝐶 =
Δ𝑡

𝑡∗(�̅�𝑎𝑐,𝑇)
 (6.19) 

The total strain range Δ𝜀 ̅can also be calculated considering the influence of creep 

strain: 

 Δ𝜀̅ = max(𝜀(̅𝑡𝑎) − 𝜀(̅𝑡𝑏)),   ∀𝑎 ∈ [1, 𝑁], ∀𝑏 ∈ [1, 𝑁] (6.20) 

The number of cycles to failure 𝑁∗(Δ𝜀,̅ 𝑇) is then determined by the total strain range 

and local temperature based on the fatigue curves. The fatigue damage accumulated 

per cycle 𝜔𝐹 is given by: 

 𝜔𝐹 =
1

𝑁∗(Δ�̅�,𝑇)
 (6.21) 

Considering a bilinear creep-fatigue interaction envelope, the intersection coordinate 

of two lines is (𝑐, 𝑓) where 𝑐, 𝑓 are material parameters and 0 < 𝑐 < 0.5, 0 < 𝑓 < 0.5. 

The total number of cycles to failure 𝑁𝑡𝑜𝑡 is finally given by: 

 𝑁𝑡𝑜𝑡 = {
(𝜔𝐹 +

𝜔𝐶(1−𝑓)

𝑐
)

−1
, 𝜔𝐶 < 𝜔𝐹

(𝜔𝐶 +
𝜔𝐹(1−𝑐)

𝑓
)

−1
, 𝜔𝐶 ≥ 𝜔𝐹

 (6.22) 

6.2.3 The extended UPFRA 

One of the UPFRA modules for fatigue analysis described in Section 5.2.3 has been 

adopted and extended here for the evaluation of constant creep-fatigue life diagrams. 

Due to the limitation of direct methods, the creep effect on the shakedown and ratchet 
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boundaries is not considered in the LMM. A three-stage procedure is then proposed 

for faster computation: 

• Stage 1: the shakedown limit is evaluated for load ratio 𝑅 using the LMM 

shakedown module for load cycle without creep. 

• Stage 2: the limit load is evaluated using a special case in the LMM 

shakedown module. 

• Stage 3: the constant creep-fatigue life load multiplier is evaluated using the 

extended UPFRA. 

A simplified flowchart of the extended UPFRA is shown in Figure 6.1. The eDSCA 

module in the LMM plug-in has been further modified for the implementation of 

damage models introduced in Section 6.2.2. The modified eDSCA is iteratively called 

under the control of the extended UPFRA using Python script. As input parameters, 

the load ratio R, convergence parameter CONV, the target number of cycles to creep-

fatigue failure 𝑁𝑇, lower bound multiplier 𝜆1
𝐿𝐵 and upper bound multiplier 𝜆1

𝑈𝐵 at first 

iteration are firstly determined by the user, where 𝜆1
𝐿𝐵 and 𝜆1

𝑈𝐵 can be defined as the 

shakedown multiplier from Stage 1 and the limit load multiplier from Stage 2, 

respectively. The Abaqus model is pre-processed by the LMM plug-in to create UMAT 

parameters and steps for LMM analysis. The LMM data file configures the load 

multipliers which is modified by the extended UPFRA at the start of every iteration 

and transferred to eDSCA. Controlled by a bisection scheme, the load multipliers are 

scaled proportionally so that the total creep-fatigue life would converge to 𝑁𝑇. At the 

first iteration, the load multiplier 𝜆1 = (𝜆1
𝐿𝐵 + 𝜆1

𝑈𝐵)/2. At the 𝑖 th iteration, the load 

multiplier 𝜆𝑖 is computed by: 

 𝜆𝑖
𝐿𝐵 = {

𝜆𝑖−2, 𝑁𝑖−2 > 𝑁𝑇

𝜆𝑖−1
𝐿𝐵 , 𝑁𝑖−2 ≤ 𝑁𝑇

 (6.23) 

 𝜆𝑖
𝑈𝐵 = {

𝜆𝑖−1
𝑈𝐵 , 𝑁𝑖−2 > 𝑁𝑇

𝜆𝑖−2, 𝑁𝑖−2 ≤ 𝑁𝑇
 (6.24) 

 𝜆𝑖 = {

𝜆𝑖−1+𝜆𝑖
𝑈𝐵

2
, 𝑁𝑖−1 > 𝑁𝑇

𝜆𝑖−1+𝜆𝑖
𝐿𝐵

2
, 𝑁𝑖−1 ≤ 𝑁𝑇

 (6.25) 

where 𝜆𝑖
𝐿𝐵  and 𝜆𝑖

𝑈𝐵  denote the lower and upper bound load multiplier at the 𝑖 th 

iteration. After computing the stress-strain behaviour considering the creep-fatigue 
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interaction effect at steady-state by the eDSCA subroutine, a series of post-

processing procedures are taken to calculate the creep-fatigue damage. The creep 

and fatigue damage is first evaluated separately based on the TF rule and total strain 

range, respectively. Then the total damage is evaluated based on the bilinear creep-

fatigue interaction lotus. After that, the minimum number of cycles to failure 𝑁𝑖 in the 

structure is read from the Abaqus output database file to compare with the target life 

𝑁𝑇 . If not converged, the load multiplier 𝜆𝑖  is adjusted by equations (6.23)-(6.25) 

before submitting the eDSCA job again with the updated loads applied. When the 

divergence between 𝑁𝑖 and 𝑁𝑇 meets the convergence criterion, the iteration stops, 

and a result CSV file is created as the output. The extended UPFRA also support the 

input of multiple load ratio 𝑅 to generate a full constant life curve consisting of several 

data points efficiently. The unified procedures containing the UPFRA and extended 

UPFRA Python codes for ratchet, fatigue and creep-fatigue analyses have been 

combined together for better usability, as presented in Appendix B.  
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Figure 6.1: Simplified flowchart of the numerical procedure for the evaluation of constant creep-
fatigue life diagram 

 

6.3 Numerical examples 

6.3.1 A holed plate 

6.3.1.1 FE model and material parameters 

The geometry of a holed plate has been shown in Figure 6.2(a), which is identical to 

the one given in Section 5.3.1. The dimensionless geometry with 𝐷/𝐿 = 0.2  and 

𝑑/𝐿 = 0.05 has also been used in [24]. An axial pressure 𝜎𝑃 is applied at the edge 

surface and a temperature gradient Δ𝑇 = 𝑇 − 𝑇0  is caused by the temperature 

difference between inner and outer surfaces. A steady-state thermal analysis is firstly 
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performed on a quarter FE model, as shown in Figure 6.2(b). It is worth mentioning 

that the temperature field adopted here has a higher base temperature and a lower 

temperature difference compared to the one in Section 5.3.1. It is intended to produce 

a much higher scaled temperature at the inner surface, and the creep effect becomes 

much more significant. 

 

Figure 6.2: (a) The geometry of a holed plate [24] (b) The temperature distribution and FE mesh 

 

The material used for the holed plate is X2CrNiMo17-12-2 steel, which is also identical 

to the material in Section 5.3.1. Only the EPP model is considered here due to the 

complexity of creep-fatigue problems. The temperature-dependent yield stress is 

taken as 0.2% proof stress from the cyclic steady-state stress-strain curves, as given 

in Table 6.1. Linear interpolation and extrapolation techniques are also adopted to 

evaluate the yield stress at an arbitrary temperature in local regions.  

For creep behaviour, a Norton law has been adopted to describe the secondary creep 

regime. The Arrhenius law is also used to consider the non-isothermal effect, as given 

in Equations (6.7) and (6.8). The corresponding creep parameters are taken from 

[175], as listed in Table 6.2. 

Table 6.1: Temperature-dependent yield strength of X2CrNiMo17-12-2 steel 

Temperature, T [ºC] 20 100 200 300 400 

𝑅𝑝0.2(𝑇) [MPa] 258 252 248 240 240 

 

Table 6.2: Creep parameters for the Norton law 

𝐴∗  Q [J/mol] R [J/(mol•K)] 𝑛  

46333.8 330000 8.314 6.1 
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For fatigue damage, the total strain range is first evaluated with Equation (6.20) and 

then substituted into the fatigue damage curves from  [6], as given in Figure 6.3(a). A 

bilinear interpolation technique has been developed to compute the number of cycles 

to fatigue failure in a local region with arbitrary temperature. After that, the fatigue 

damage accumulated per cycle 𝜔𝐹 can be calculated using Equation (6.21).  

For creep damage, although the TF rule is often considered less accurate compared 

to other damage models such as DE and SMDE, we still use the TF rule here due to 

its simplicity and usability. Other damage models have also been implemented in the 

LMM subroutine and can be adopted for creep-fatigue assessment if required. In the 

TF model, the average creep stress �̅�𝑎𝑐  during the creep dwell stage is firstly 

calculated with Equation (6.18). Then the time to creep rupture 𝑡∗(�̅�𝑎𝑐 , 𝑇) is evaluated 

using the creep rupture curves from [49], as shown in Figure 6.3(b). A master equation 

has also been fitted to describe the rupture curves considering various temperatures 

and rupture times: 

 ln(𝑡∗) = −672.826 + 185.925 lg(𝑇) −
8250.515 lg(�̅�𝑎𝑐)

𝑇
+

139204.547

𝑇
−

19.972�̅�𝑎𝑐

𝑇
 (6.26) 

where 𝑇  is the absolute temperature and 𝑡∗  is the rupture failure time in hours. 

Considering the creep dwell time in the load cycle, the creep damage accumulated 

per cycle 𝜔𝐶 can be finally calculated with Equation (6.19).  

 

Figure 6.3: (a) Fatigue curves at various temperatures [6] (b) Creep rupture stress at various 
temperatures and rupture times [49] 

 

After the separate computation of creep and fatigue damage, the total damage is 

evaluated using a bilinear creep-fatigue interaction diagram from [5], as shown in 

Figure 6.4. The X-axis is defined as the fatigue damage, and the Y-axis is defined as 
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the creep damage. An intersection point can be observed between two lines with the 

coordinate of (𝑐, 𝑓). The value of 𝑐 and 𝑓 are dependent on the choose of material 

and the intensity of creep-fatigue interaction. For X2CrNiMo17-12-2 steel, 𝑐 = 0.3 and 

𝑓 = 0.3. The total life 𝑁𝑡𝑜𝑡 can then be evaluated with Equation (6.22) for the further 

computation of constant creep-fatigue life diagram. 

 

Figure 6.4: Creep-fatigue damage envelope for X2CrNiMo17-12-2 steel [5] 

 

Two different simplified load cases are presented in Figure 6.5. Load case (A) 

represents a constant axial pressure and cyclic temperature field, while for load case 

(B), both thermal and mechanical loads are cyclic. Unlike previous examples, the 

influence of time and creep effect has been considered here. The start-up and cool-

down stages are still considered instant, but the creep dwell time Δ𝑡  has been 

included between both stages. During the creep dwell stage, both thermal and 

mechanical loads remain constant. The shakedown analysis is firstly conducted to 

determine the limit load 𝑃0 and reverse plasticity limit Δ𝑇0 for normalization. Using the 

shakedown module in the LMM framework, it has been calculated that 𝑃0 = 225.5 MPa 

and Δ𝑇0 = 204 °C. Meanwhile, at the reverse plasticity state when pressure is zero, 

the inner temperature is 360 °C, and the outer temperature is 156 °C.  
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Figure 6.5: Simplified load cases with (A) constant pressure and cyclic temperature (B) cyclic 
pressure and cyclic temperature 

 

6.3.1.2 Results and discussions 

For load case (A), the shakedown limit, ratchet limit and constant creep-fatigue life 

curves have been calculated and shown in Figure 6.6(a). The axial pressure 𝑃 and 

the temperature difference Δ𝑇 have been normalised by 𝑃0 and Δ𝑇0, respectively. The 

shakedown and ratchet limits are evaluated using the original LMM plug-in, and the 

constant life curves are evaluated using the extended UPFRA. The creep dwell time 

is fixed at 𝑡 = 100 h. Three different target numbers of cycles (𝑁 = 10, 40, 100) are 

considered for the constant life curves located within the reverse plasticity region. 

Since the mechanical load is constant for this case, the reverse plasticity limit is 

horizontal as part of the shakedown boundary.  The constant life curve 𝑁 = 100 is 

also mainly horizontal because for lower temperatures, the value of creep damage is 

minimal considering the magnitude of fatigue damage. However, a slight ascension 

can be observed when the curve approaches the Y-axis, indicating a change of 

mechanism. Compared with load points with larger constant pressure, the creep strain 

for load points near the Y-axis is smaller due to the decrease of mechanical load. The 

fatigue damage is thus more minor and comparable to the creep damage. The lower 

the target number of cycles to failure, the further the constant life curve moves away 

from the reverse plasticity limit. A large curvature can be found in the curve 𝑁 = 10 

while the temperature is very high. The creep and fatigue damage are highly 

comparable and interact with each other. The lower the magnitude of constant 

pressure, the lower the fatigue damage, allowing for higher creep damage to reach 

specified total damage. The constant creep-fatigue life curve thus gradually 

approaches the Y-axis with increasing temperature. It should be noted that the 

temperature is capped at 650 °C when computing fatigue damage using fatigue 
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curves from Figure 6.3(a). The example is primarily an illustration of the numerical 

method, so the constant life curves may not climb up indefinitely for other engineering 

cases. Four different load points have been selected and highlighted in Figure 6.6(a) 

for further investigation.  

For load case (B), the shakedown limit, ratchet limit and constant creep-fatigue life 

curves have been computed and shown in Figure 6.6(b). The shakedown limit is 

evaluated using the original LMM plug-in; the ratchet limit is evaluated using the 

UPFRA, while the constant life curves are evaluated using the extended UPFRA. The 

computation process of the shakedown and ratchet limit has been extensively 

discussed in Section 5.3.1. For a larger number of cycles to failure, the constant 

creep-fatigue life curves are nearly parallel to the reverse plasticity limit due to the 

lower temperature. For a lower number of cycles to failure, the constant life curves 

consist of two parts. For the part with higher cyclic pressure, the curves mostly follow 

the same slope as the reverse plasticity limit due to the dominance of fatigue damage; 

for the part with lower cyclic pressure, the curves become steeper and gradually 

approach the Y-axis due to the creep-fatigue interaction.  

 

Figure 6.6: The shakedown, ratchet and fatigue limit of the holed plate subjected to (a) load 
case (A) (b) load case (B) 

 

For a better understanding of the effect of dwell time, the load case (A) with cyclic 

thermal load and constant mechanical load has been chosen for a series of parametric 

studies. The constant creep-fatigue life diagram considering various creep dwell times 

(𝑡 = 10 h, 100 h, 1000 h) with fixed target life 𝑁 = 10 has been presented in Figure 

6.7(a). Other target numbers of cycles to failure are not considered because of the 

dominance of fatigue damage in those cases. It can be observed that the curvature 
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of the curves follows a similar trend for various dwell times because of the same 

creep-fatigue failure mechanism. The longer the dwell time, the larger the creep strain 

and creep damage, resulting in a shrink of the constant life curve. Load cycles without 

creep dwell have also been considered and compared with load cycles with dwell time 

𝑡 = 100 h, as shown in Figure 6.7(b). Although the constant life curves for 𝑁 = 40 and 

𝑁 = 100 are dominant by fatigue damage, they are still different from the constant 

fatigue life curves without creep dwell. The reason is that the creep strain would 

increase the total strain range, which induces larger fatigue damage. Hence for the 

same number of cycles to failure, the constant creep-fatigue life curves are much 

closer to the reverse plasticity limit than the constant fatigue life curves without creep 

dwell. It can also be observed that the constant creep-fatigue life curve for 𝑁 = 40 is 

not completely horizontal compared to the constant fatigue life curve. When the 

constant pressure increases, the primary stress also increases in the structure, which 

is not affected by stress relaxation during creep dwell. In this case, the average stress 

would also increase which induces larger creep damage and a shrink of the constant 

creep-fatigue life curve. Therefore, the inclusion of creep dwell in the load cycle has 

a significant influence on the shape and size of the constant life diagram.  

 

Figure 6.7: The constant life diagram of the holed plate subjected to load case (A) considering 
(a) various dwell times (b) no dwell time 

 

To plot the hysteresis loop, the contours of equivalent steady-state stress at the end 

of each load stage for load points (1) and (4) have been presented in Figure 6.8. Load 

point (1) represents higher thermal load and lower mechanical load. Thus the stress 

fields at the loading and unloading stages are nearly symmetric along the diagonal. A 

more considerable amount of stress relaxation is also noticed at the end of creep 

dwell due to the high composition of secondary stress. Load point (4) is composed of 
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lower thermal load and higher mechanical load. So the stress fields at the loading and 

unloading stages are not symmetric due to the additional axial pressure. Due to the 

higher composition of primary stress, the amount of stress relaxation at the end of 

creep dwell is smaller. During the creep dwell, the elastic strain turns into creep strain 

which causes a significant stress reduction in the high-stress region near the hole. A 

stress redistribution is also observed at the end of the creep dwell. The high-stress 

area grows at the corners of the holed plate whereas the low-stress region expands 

near the hole.  

 

Figure 6.8: The equivalent steady-state stress at the end of each load stage for load points (1) 
and (4) 

 

The contours of total strain range, creep strain, and creep/fatigue dominance for 

different load points have been shown in Figure 6.9. The total strain range is used for 

fatigue damage evaluation, and the creep strain is used for the plotting of hysteresis 

loops. Since creep strain is considered part of the total strain range, the larger creep 

strain in load point (2) leads to a more extensive total strain range compared to load 

point (1), as shown in Figure 6.9(a)(b).  Although the temperature is lower for load 

point (2), the overall stress level is higher due to the additional constant pressure than 

load case (1). According to Equation (6.9), the higher initial stress value would induce 

a larger creep strain, as shown in Figure 6.9(d)(e). For load points (4), the distribution 

of the total strain range and the creep strain shows a different pattern due to the 

different composition of thermal and mechanical stress, as shown in Figure 6.9(c)(f). 

The overall magnitude of strain for load point (4) is lower than the one for load points 

(1) and (2) because of the different target numbers of cycles to creep-fatigue failure. 

The creep damage 𝜔𝐶  and fatigue damage 𝜔𝐹  for each load point has been 

evaluated and compared. According to Equation (6.22), for 𝜔𝐶 ≥ 𝜔𝐹 in local area of 
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the holed plate, it is considered to be dominated by creep; for 𝜔𝐶 < 𝜔𝐹 , it is 

determined as fatigue-dominant. For load points (1) and (2), the high-stress region 

near the hole experience significant stress relaxation during creep dwell, which 

induces lower average stress based on Equation (6.18). In this case, the creep 

damage near the hole also decreases and is overwhelmed by the fatigue damage. As 

shown in Figure 6.9(g)(h), the creep damage dominates at the centre area of the holed 

plate and the area of creep-dominance is larger for load point (1) due to the higher 

local temperature compared to load point (2). As shown in Figure 6.9(i), the fatigue 

damage is dominant across the whole body because of the relatively lower 

temperature for load point (4). Based on the creep rupture curve in Figure 6.3(b), the 

creep damage is thus much lower and unable to compete with the fatigue damage.  

 

Figure 6.9: Comparison of contours of total strain range, creep strain and creep/fatigue 
dominance between different load points 

 

Based on the results from the eDSCA, a series of post-processing user subroutines 

have been developed to evaluate the creep-fatigue damage. The creep, fatigue and 

total damage contours for various load points have been given in Figure 6.10. The 

critical location with the largest total damage has been chosen for stress-strain 

behaviour investigation. The saturated hysteresis loops at the same critical location 

for different load points are also plotted and compared in Figure 6.11. The most 

considerable creep damage for all load points can be found around the corner of the 
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hole because of the high local temperature. The creep damage not only depends on 

the local temperature but also depends on the average stress during the creep dwell. 

The largest fatigue damage is also located around the hole near the left edge of the 

body. As shown in Figure 6.11(a), load point (2) induces a larger creep strain and a 

larger total strain range compared to load point (1) due to the introduction of an 

additional mechanical load. More stress relaxation can also be observed for load point 

(1), which causes larger residual stress and thus more reverse plasticity during the 

unloading stage. The creep ratchetting behaviour in the open steady-state hysteresis 

loop is driven by the “cyclically enhanced creep” mechanism. The creep strain is 

enhanced by the cyclic stress at the start of dwell, and the accumulation of creep 

strain induces the ratcheting response simultaneously. As shown in Figure 

6.10(a)(b)(d)(e), compared to load point (2), the affected area of great creep damage 

is larger, but the large fatigue damage region is smaller for load point (1). As shown 

in Figure 6.10(g)(h), with creep and fatigue damage combined, balanced total damage 

contours are created for both load points, and the lowest creep-fatigue life in the 

structure is also identical on a constant life curve of 𝑁 = 10. 

For load point (4), a different distribution of creep and fatigue damage is found around 

the hole due to the different load compositions. As shown in Figure 6.11(b), significant 

stress relaxation is also observed because both load cases are selected in the reverse 

plasticity region controlled by dominant secondary stress and peak stress caused by 

stress concentration at the corner of the edge. Significant stress relaxation enhances 

reverse plasticity at the unloading stage so that a closed saturated hysteresis loop 

appears, which is driven by the mechanism of “creep enhanced plasticity”. The creep 

and fatigue damage contours for load point (3) are not shown here because they are 

similar to load point (4). As shown in Figure 6.10(c)(f)(i), the magnitude of creep 

damage is much less than the fatigue damage due to the relatively low temperature. 

Hence the total damage is mainly determined by the fatigue damage, and the lowest 

creep-fatigue life in the structure is found to be 𝑁 = 100 . Therefore, with the 

presentation of damage contours for several load points, the accuracy and reliability 

of the proposed constant life diagrams have been validated.  
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Figure 6.10: Comparison of damage contours between different load points 

 

 

Figure 6.11: Saturated hysteresis loops at the critical location for different load points 

 

6.3.2 A hydrogenation reactor 

6.3.2.1 FE model and material parameters 

In the field of petrochemical engineering, hydrogenation reactors are used in various 

industrial processes including hydrocracking and hydrodesulphurization. Being one of 

the most critical pressure vessels, they require complete creep-fatigue assessment 

due to the extreme operating environment with hydrogen, high temperature and large 

pressure involved. The damage caused by creep-fatigue interaction has been 



 

139 
 

confirmed to have a major impact on the design life of hydro-processing equipment 

[178]. For the design and assessment of hydrogenation reactors operating at 

temperatures between 371 °C and 500 °C, Code Case 2605 [179] of ASME BPV VIII-

2 has provided a series of simplified procedures including shakedown analysis, creep 

damage evaluation and creep-fatigue damage interaction. However, for complicated 

industrial cases where the simplified procedures are not applicable, it is suggested to 

perform cycle-by-cycle inelastic analysis which is often considered computational 

consuming. Therefore, based on a series of direct methods, the extended UPFRA has 

been utilised for the complete creep-fatigue assessment of a typical hydrogenation 

reactor shell.  

A hydrogenation reactor has been modelled in Abaqus, as shown in Figure 6.12(a). 

With relatively large strength at elevated temperatures and good resistance to creep 

and hydrogen corrosion, 2.25Cro1Mo steel has been adopted for the manufacture of 

hydrogenation reactors. The FE model is composed of several components, including 

the inlet nozzle, the reactor head, the cylindrical shell and the flange. The thickness 

of the reactor varies from 38 mm to 48 mm. To further simplify the model, the flange 

bores on the flange are neglected and an axisymmetric 2D model is created. The axial 

displacement is restricted at the bottom, the inner pressure is applied on the internal 

surface, and the corresponding pressure is applied at the top end to simulate the 

closed-end boundary condition. A steady-state thermal analysis has been performed 

to generate the temperature field for normal operating conditions, as shown in Figure 

6.12(b). Since the solid catalyst used during the hydrogenation process has a limited 

lifetime, it must be replaced periodically to remain active. During the replacement 

procedure of the catalyst, the inner pressure is released while the inner temperature 

drops due to the absence of the catalyst. The temperature field during the unloading 

stage is shown in Figure 6.12(c). The model is then meshed into 755 quadratic 

DCAX8 elements, as shown in Figure 6.12(b)(c). A denser mesh is configured at the 

transition area between the nozzle and head due to the presence of geometric 

discontinuities. 
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Figure 6.12: (a) The geometry of a hydrogenation reactor (b) The temperature distribution at the 
loading stage (c) The temperature distribution at the unloading stage 

 

The temperature-dependent parameters of 2.25Cr1Mo used for the LMM analysis are 

provided by [180], as shown in Table 6.3. The temperature-independent parameters 

of 2.25Cr1Mo at 600°C are used to achieve conservative results, as shown in Table 

6.5. The Norton law has been adopted to simulate the secondary stage of the creep 

behaviour: 

 𝜀̇𝑐 = 𝐴𝜎𝑛 (6.27) 

where 𝜀̇𝑐 denotes the creep strain rate, material constants 𝐴 and 𝑛 are temperature-

dependent, as provided in [181]. The Norton parameters are listed in Table 6.4 and 

implemented in the eDSCA using piecewise functions.  

Table 6.3: Temperature-dependent material parameters of 2.25Cr1Mo 

Temperature, T [ºC] 
Thermal expansion, 

α(T) [10-5/ºC] 
Yield stress, 𝜎𝑌(𝑇) 

[MPa] 

20 1.2 300 

100 1.2 280 

200 1.2 270 

300 1.21 250 

400 1.25 223 

500 1.32 207 

600 1.36 180 

700 1.38 111 

800 1.4 40 
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Table 6.4: Temperature-dependent Norton parameters of 2.25Cr1Mo 

Temperature, T [ºC] 𝐴  𝑛  

450 8.334×10
-38

 12.430  

475 6.665×10
-33

 10.880  

500 1.246×10
-33

 11.420  

525 3.286×10
-28

 9.493  

550 1.240×10
-18

 5.651  

 

Table 6.5: Temperature-independent material parameters of 2.25Cr1Mo at 600°C 

Young’s modulus, �̅�(𝑇) 
[MPa] 

1.75×105 

Poisson ratio 0.3 

Conductivity, 𝜆(𝑇) 
[W/(m∙ºC)] 

35.6 

Heat capacity, 𝐶𝑃(𝑇) 
[J/(kg∙ºC)] 

723 

 

The damage models used in this case are identical to the ones used in Section 6.3.1. 

For the evaluation of low cycle fatigue damage, the total strain range is used to 

compute the number of cycles to failure using the fatigue damage curves from [182], 

as shown in Figure 6.13(a). The fatigue damage curves have been fitted to be 

implemented in the extended DSCA using the polynomial function. For the evaluation 

of creep damage during creep dwell, the time fraction method is adopted where the 

creep rupture curves are used to acquire the time to rupture based on the average 

stress during creep dwell. As shown in Figure 6.13(b), the creep rupture curves at 

various temperatures from [183] have been modified by the Manson-Haferd 

parameter 𝑃𝑀𝐻 [52] to achieve a master curve: 

 𝑃𝑀𝐻 =
log(𝑡𝑅)−16.053

𝑇𝐾−380
 (6.28) 

where 𝑡𝑅 denotes time to creep rupture and 𝑇𝐾 denotes temperature in Kelvin. The 

master rupture curve is then implemented in the extended DSCA using the polynomial 

function. For the evaluation of creep-fatigue damage, a bilinear creep-fatigue 

interaction diagram from [5] has been adopted, as shown in Figure 6.14. For 

2.25Cr1Mo steel, two line segments of creep and fatigue envelope intersect at the 

coordinate (0.1,0.1). 
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Figure 6.13: (a) Fatigue curves at various temperatures (b) The master creep rupture curve 
obtained with the Manson-Haferd parameter method 

 

 

Figure 6.14: Creep-fatigue damage envelope for 2.25Cr1Mo 

 

The simplified loading history for a typical hydrogenation operation cycle is presented 

in Figure 6.15. As mentioned before, the replacement of catalyst is required to ensure 

the normal operation process. Hence a load cycle is formed as the catalyst is removed 

and replaced periodically. At time sequence 𝑡2, the high-temperature mixture of oil 

and hydrogen is first transferred into the reactor while the temperature of the inner 

surface rises to 432.4°C. Considering the room temperature and the insulation layer 

outside the reactor, a temperature gradient is observed across the thickness direction, 

as shown in Figure 6.12(b). At time sequence 𝑡3, the replaced catalyst is put into the 

reactor to activate the hydrogenation reaction. At this stage, the inner pressure rises 

to 10 MPa and the corresponding pressure at the end surface is 33.49 MPa. Typical 

catalyst requires replacement after 10000 hours of the operation time, causing a creep 



 

143 
 

dwell time Δ𝑇 = 10000 h. The influence of operation time is discussed in this work to 

consider the use of inferior catalysts with a shorter lifespan. At time sequence 𝑡5, the 

performance limit of catalyst is reached and the pressure is released from the reactor 

to remove the catalyst. At time sequence 𝑡6, the temperature drops to idle state and 

the whole load cycle is completed. The temperature distribution at the unloading stage 

is shown in Figure 6.12(c). It is important to ensure that the pressure elevates after 

the operation temperature is reached so that the temper embrittlement behaviour of 

2.25Cr1Mo is prevented. A similar operation procedure is applied during the 

unloading stage while the pressure is released before the drop of temperature. 

 

Figure 6.15: Simplified loading history for a typical hydrogenation operation cycle 

 

6.3.2.2 Results and discussions 

The creep-fatigue limit is bounded by several factors including the ratchet limit, the 

interaction between thermal and mechanical stress, the damage models and the 

dominance of creep and fatigue damage. Therefore, the shape of a structural constant 

creep-fatigue life curve is highly unpredictable and is greatly affected by the choice of 

material properties, unlike the constant low-cycle-fatigue damage curves which are 

mostly parallel to the reverse plasticity limit. The constant creep-fatigue life diagram 

considering various numbers of cycles to failure and various dwell times is presented 

in Figure 6.16. Due to the complexity of the geometry and loading spectrum, the 

constant creep-fatigue life curves are directly calculated without the aid of shakedown 

and ratchet boundaries. The diagram provides a series of design limits for various 

combinations of pressure and loading temperature at the inner surface of the reactor. 

In Figure 6.16(a), the dwell time is fixed at Δ𝑡 = 10000 h and five different target 
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numbers of cycles (𝑁 = 20, 40, 60, 80, 100) are considered. In this scenario, the design 

life of the reactor varies accordingly, ranging from 22 to 114 years. It can be seen that 

the higher the target 𝑁, the more the constant life curve shrinks, while the difference 

between the curves across various 𝑁 is relatively small. Some discontinuities can be 

observed along the curves which are caused by the change of the failure mechanism. 

A bulge can also be found in the middle part of the diagram where the thermal and 

mechanical loads counteract with each other. When the temperature is high, the creep 

behaviour becomes prominent and horizontal creep-fatigue life limits are found near 

the Y-axis. This phenomenon is distinct from the one observed in Figure 6.6 due to 

the use of the temperature-independent Norton creep law. Also, the fatigue damage 

is calculated conservatively without the use of bilinear interpolation. In Figure 6.16(b), 

the target numbers of cycles are fixed at 𝑁 = 20 and five different creep dwell times 

( Δ𝑡 = 10000, 8000, 6000, 4000, 2000 h ) are considered. In this scenario, the 

performance of catalyst is considered with various hours between maintenances. A 

similar trend can be observed that the higher the creep dwell time, the more the 

constant life curve shrinks. The alteration of dwell time greatly affects the creep strain 

and creep damage accumulated during a load cycle. Therefore, the lower part of the 

diagram is unaffected by the change of dwell time because the creep damage is 

minimal at lower temperatures.  

 

Figure 6.16: The constant creep-fatigue life diagram considering (a) various numbers of cycles 
to failure (b) various dwell times 

 

It is worth mentioning that the constant creep-fatigue life curves are quite smooth 

when the body temperature is relatively low. But when the max loading temperature 

reaches a certain level, the curves become slightly irregular with some fluctuations. 

This phenomenon could be caused by several factors considering the complexity of 
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creep-fatigue interaction. Firstly, the main reason could be the discontinuity of 

material parameters for different temperatures. Due to the limited number of 

experimental data points obtained from literature, the curves of certain material 

parameters may not be smooth and there could be a lack of parameters at a certain 

temperature. For instance, in Figure 6.13, there is a slight fluctuation in fatigue curves 

between 𝑁 = 1000 and 𝑁 = 10000. Also, since there are only two fatigue curves for 

two different temperature intervals, the interpolation and extrapolation of material 

parameters for additional temperatures could be highly inaccurate. Hence for body 

temperature over 425 °C, the fatigue curve for 480 °C - 595 °C is used; for body 

temperature below 425 °C, the fatigue curve for 425 °C is used for conservative 

results. Secondly, the fluctuations in constant creep-fatigue life curves could be 

caused by the displacement of critical locations in the structure. The total creep-

fatigue life of the structure is determined by the integration point with the largest creep-

fatigue damage which is also known as the critical point. The critical point may not be 

consistent with various combinations of thermal and mechanical loads applied, 

inducing inconsistency and discontinuity in the calculation of total damage. For 

example, in Figure 6.18, the critical locations of the largest total damage are identical 

for load points (1) and (3). But for load point (2), the critical location shifts to the 

internal surface of the reactor head, causing a fluctuation in the constant life curves 

around load point (2). Thirdly, the fluctuations could also be caused by the difference 

in convergence performance with the transformation of failure mechanisms. Although 

several techniques have been utilised to ensure the satisfaction of the convergence 

criterion for various load combinations, the interaction of creep-fatigue failure 

mechanisms has a great impact on the convergence rate of eDSCA and extended 

UPFRA. Based on previous experience, the number of increments required for final 

convergence could cause slight deviations of stress-strain results and consequent 

fluctuations in constant creep-fatigue life curves.  

A benchmark operation case (𝑁 = 20, Δ𝑡 = 10000 h) has been selected to further 

study the interaction between creep and fatigue behaviour, as shown in Figure 6.17. 

Three load points have been chosen and numbered along the constant creep-fatigue 

life curve. The dominance of creep or fatigue is determined by comparing the creep 

and fatigue damage at each integration point and presented in form of contours. It can 

be observed that for load point (1), at high temperature, the entire body is mostly 

creep-dominant due to the large overall creep damage. For load point (2), with the 

decrease of temperature, fatigue-dominance is observed at the transition part of the 
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body. Geometric discontinuity is found in that region that causes the stress 

concentration and large strain range. Thus the fatigue damage exceeds the creep 

damage and contributes more to the total damage. For load point (3), the dominance 

of fatigue gradually spread from the transition area to the whole body. It is caused by 

the decrease of temperature and increase of mechanical load in the body. Therefore, 

the evolution of creep and fatigue dominance is explicitly illustrated and discussed 

with the aid of several contours.  

The creep, fatigue and total damage contours for different load points are presented 

and compared in Figure 6.18. The failure mechanisms caused by creep and fatigue 

are highly different and the distribution of total damage contours is identical to the 

dominant creep/fatigue damage contour. Large creep damage is observed at the 

inner surface of the reactor due to the effect of high temperature, while large fatigue 

damage is observed at the transition area between the reactor head and the 

cylindrical shell due to the presence of stress concentration. For load points (1) and 

(2), the overall creep damage is larger than the fatigue damage. It can be seen that 

the creep damage contours are not smooth as the fatigue damage. It could be caused 

by the mismatch between the use of time fraction law and the interpolation post-

processing algorithm of Abaqus. For load point (3), the overall fatigue damage is 

larger than the creep damage. It is worth noting that for all the load points on the same 

constant creep-fatigue life curve, the largest total damage in the structure is around 

0.05, resulting in the same number of cycles to failure at 𝑁 = 20. 

To further investigate the stress-strain behaviour considering various load 

combinations and creep dwell times, the hysteresis loops for load point (1) and load 

point (3) have been presented in Figure 6.19. The results are calculated with the LMM 

eDSCA subroutine. The integration point for the plotting of hysteresis loops is chosen 

based on the location of the largest total damage, as shown in Figure 6.18(c)(i). For 

the sake of consistency, the same integration point is considered for the additional 

illustration of the saturated stress-strain relationship for other load points. Two 

different creep dwell times are also considered for each load point to show the 

influence of dwell time.  

It can be observed in Figure 6.19 that the stress-strain behaviour of load point (1) is 

distinct from load point (3) due to the dominance of creep or fatigue behaviour. Load 

point (1) is creep dominant, with higher thermal stress and lower mechanical stress. 
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During the creep dwell stage, a large amount of stress relaxation is observed due to 

the presence of large secondary loads. The elastic follow up factor 𝑍 is assumed 

constant during creep dwell because of the limitations of the eDSCA. With the 

decreasing creep dwell time, the creep strain and 𝑍 become smaller accordingly. 

Unlike the example in Section 6.3.1, the range of the creep dwell time considered for 

this case is quite small, ranging from 2000 hours to 10000 hours. Therefore, the effect 

of dwell time on the creep-fatigue is relatively insignificant considering the better anti-

creep performance of 2.25Cr1Mo. Load point (3) is fatigue dominant, with higher 

mechanical stress and lower thermal stress. Compared to load point (1), the yield 

stress at the loading stage is larger and creep strain is smaller for load point (3) due 

to the lower maximum temperature in the structure. During the creep dwell stage, 𝑍 →

∞ since the load applied is mostly primary load. The large mechanical stress also 

induces large plastic strain and total strain range, resulting in significant fatigue 

damage, as shown in Figure 6.18(h). It is worth mentioning that the creep ratchetting 

behaviour is also observed in the hysteresis loops of load point (3), especially when 

the creep dwell time is large. The reason is that the small stress relaxation and 

residual stress field during the creep dwell has little contribution to the reverse 

plasticity at unloading stage. Therefore, the additional creep strain is not fully covered 

during unloading and a open hysteresis loop is observed.  

 

Figure 6.17: The evolution of creep/fatigue dominance along the constant creep-fatigue life 
curve 
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Figure 6.18: Comparison of damage contours between different load points 
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Figure 6.19: Hysteresis loops obtained with eDSCA considering effect of different dwell times 
for two different load points 

 

6.3.2.3 Verification of results 

To verify the accuracy of the proposed method, two load points have been selected 

from the constant creep-fatigue life curve of 𝑁 = 20, Δ𝑡 = 10000 h for inelastic SBS 

analysis, as shown in Figure 6.17. Load point (4) is slightly above the benchmark 

curve and load point (5) is slightly below the benchmark curve. The creep-fatigue 

damage for both load points is evaluated and compared with the target number of 

cycles to failure 𝑁 = 20. The material properties adopted for the SBS analysis are 

identical to the ones used in the eDSCA. In addition, the time-hardening creep 

constitutive relationship is considered and 40 load cycles are established to ensure 

the steady-state is reached. Each cycle contains 5 steps and the corresponding load 

spectrum is shown in Figure 6.15. The creep FORTRAN subroutine implementing the 

temperature-dependent Norton law is given in Appendix C.  

The SBS contours of von Mises steady-state stress and creep strain during creep 

dwell are presented in Figure 6.20. Stress concentration is observed at the transition 

area between the reactor head and nozzle due to the geometric discontinuity. During 

the creep dwell, a significant drop in stress and stress redistribution behaviour is 

observed due to the relaxation of thermal stress. Since the temperature at load point 

(4) is higher than the temperature at load point (5), the largest yield stress in the 

structure is higher for load point (5). A larger creep strain is also observed for load 
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point (4) because of the higher temperature. The integration point for the largest creep 

strain has been selected from Figure 6.20(c)(d) for the evaluation of hysteresis loops, 

as plotted in Figure 6.21. Different stages of loading have been marked with various 

colours. The stress-strain behaviour at the first loading and unloading stages is mostly 

elastic and a drop in stress level can be seen during the creep dwell stage. The 

steady-state hysteresis loops are both closed, hence the creep ratchetting behaviour 

is not detected. It is also noticed that compared to load point (5), the total strain range 

for load point (4) is greater due to the larger thermal load. Therefore, the structural 

creep-fatigue damage is also different for both load points. For load point (4), the 

number of cycles to creep-fatigue failure 𝑁 = 12 < 20; for load point (5), the number 

of cycles to creep-fatigue failure 𝑁 = 49 > 20. Since both load points are selected 

from the inside and outside of the constant creep-fatigue life boundary of 𝑁 = 20, the 

SBS results agree well with the constant life diagram calculated with the extended 

UPFRA. The accuracy and robustness of the proposed method are thus proved, with 

further advantages of great computational efficiency and convergence performance 

compared to the conventional SBS method as stated below.  
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Figure 6.20: Stress and creep strain contours for SBS validation 

 

 

Figure 6.21: Hysteresis loops for load points near the constant creep-fatigue life curve of N = 

20, 𝚫t = 10000h obtained with SBS analysis 
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To further validate the eDSCA subroutine which is the basis of the extended UPFRA, 

SBS analysis has also been conducted for load points (1) and (3) located on the 

constant creep-fatigue life curve of 𝑁 = 20, as shown in Figure 6.22. The hysteresis 

loops obtained with SBS are plotted for the integration point highlighted in Figure 6.18 

and compared with the results obtained with eDSCA from Figure 6.19. Considering 

identical loading conditions and material parameters, it can be noticed that the 

hysteresis loops obtained with SBS and eDSCA agree well with each other. The 

numbers of cycles to creep-fatigue failure calculated with SBS are slightly smaller 

than the ones computed with eDSCA. In this case, the results obtained with eDSCA 

are less conservative because of the numerical errors and differences in creep 

evaluation techniques during the creep dwell stage. For load point (1), the stress 

relaxation predicted by SBS is smaller than eDSCA, causing an increase in average 

stress and creep damage. For load point (2), the creep strain predicted by SBS is 

larger than eDSCA, inducing an increase in total strain range and fatigue damage.  

The CPU time required for eDSCA and SBS for both load points is listed and 

compared in Table 6.6. As one of the direct methods, eDSCA has a large advantage 

in calculation speed with an improvement of more than 50% over SBS. In addition, to 

plot a constant creep-fatigue life diagram, the use of SBS analysis requires a large 

amount of trial and error to find the load points with a designated number of cycles to 

failure. SBS calculation of different load points and dwell times also requires the 

renewal of boundary conditions, material properties and step configurations in the FE 

model. The whole process can thus be highly time-consuming and inefficient, with 

possibilities of potential convergence issues at steps of creep dwell. On the other 

hand, eDSCA utilises a series of linear equations for creep-fatigue computation to 

deliver accurate results and improve convergence performance significantly. 

Therefore, based on eDSCA and creep-fatigue damage models, the extended 

UPFRA provides an effective and reliable solution to the evaluation of the constant 

creep-fatigue life diagram. 
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Figure 6.22: Comparisons of hysteresis loops for load points on the constant creep-fatigue life 
curve of N = 20, 𝚫t = 10000h obtained with SBS and eDSCA 

 

Table 6.6: Comparisons of total CPU time using the eDSCA and SBS 

 Load 
point (1) 

Load 
point (3) 

CPU time (SBS) [sec]  332.9 202.7 

CPU time (eDSCA) [sec]  135.9 98.9 

Speed improvement 59.2% 51.2% 

 

6.3.2.4 A 3D constant creep-fatigue life diagram 

A 3D constant creep-fatigue life diagram considering various numbers of cycles to 

failure and various dwell times has been plotted, as shown in Figure 6.23. For 𝑁 = 20, 

the 2D curves from Figure 6.16 have been combined into a surface in the 3D space. 

A number of extended UPFRA analyses have been conducted considering various 

numbers of cycles to failure to generate enough data points for a whole 3D diagram. 

The 2D constant creep-fatigue life curves have been marked out with black lines on 

the 3D surface. The influence of thermal load, mechanical load and dwell time can be 

readily observed in the 3D diagram. At low temperatures, the difference between the 

surfaces is minimal and the intersection line between the constant life surfaces and 

the X-Y plane is parallel to the Y-axis. This part of the diagram is mainly controlled by 

fatigue damage and is not affected by creep dwell time. With the increase of 

temperature, a transition point is observed in the constant life diagram and a bending 
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edge is shown on the 3D surface, indicating a change of the failure mechanism. At 

high temperatures, the difference between the surfaces becomes larger and the 

intersection line between the constant life surfaces and the Y-Z plane inclines toward 

the X-axis with the increase of dwell time. The reason is that the creep damage takes 

dominance at this stage and the constant life surfaces are greatly affected by the 

temperature and creep dwell time. As mentioned before, the range of the dwell time 

considered for this case is relatively small. Thus the influence of dwell time is not 

significantly shown in Figure 6.23. The constant creep-fatigue life surfaces have 

provided an intuitive and convenient way for the design and assessment of 

hydrogenation reactors. The extended UPFRA has also been proved to be a robust 

and efficient tool for practical engineering cases. 

 

Figure 6.23: A 3D constant creep-fatigue life diagram considering various numbers of cycles to 
failure and various dwell times 

 

6.4 Summary  

In this chapter, the concept of the structural constant life diagram has been extended 

to consider the effect of creep-fatigue interaction. The user subroutines for creep-

fatigue damage calculation have been implemented in the existing LMM plug-in for 

better usability. The Unified Procedure for Fatigue and Ratchet Analysis (UPFRA) has 

also been extended by calling the eDSCA module iteratively in the LMM framework. 

A three-stage process has been further proposed to evaluate the constant creep-
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fatigue life diagrams for engineering components subjected to arbitrary thermal-

mechanical loads.  

A numerical example of a holed plate is given to demonstrate and validate the 

proposed method. In this example, temperature-dependent material properties are 

adopted to consider the non-isothermal effect and typical creep-fatigue damage 

models are adopted. The constant creep-fatigue life curves of the holed plate 

subjected to different load cases considering various target numbers of cycles to 

failure have been evaluated, and the influence of dwell time is also investigated. In 

addition, the failure mechanisms induced by creep and fatigue damage have been 

discussed, and a series of hysteresis loops have been plotted. The creep ratchetting 

behaviour is found as the result of creep-fatigue interaction, which is driven by 

“cyclically enhanced creep” and “creep enhanced plasticity” mechanisms. Another 

industrial numerical example of a hydrogenation reactor is given to demonstrate the 

viability of the proposed method for practical engineering problems. A different type 

of steel and thermal-mechanical loading history is considered for this problem. A 3D 

constant creep-fatigue life diagram is plotted for design and assessment purposes. 

The interaction and dominance of creep and fatigue damage have been further 

discussed for various load points from the diagram. The accuracy of the results has 

been further verified by a series of SBS analyses. Therefore, the benchmark case of 

a holed plate from Section 5.3.1 is further extended in this section to show the 

versatility of proposed procedure. The creep effect is illustrated by comparing the 

constant LCF life curves and the constant creep-fatigue life curves. In the engineering 

case of a hydrogenation reactor, the effect of creep dwell time is investigated by 

plotting a 3D constant creep-fatigue life diagram. The accuracy and efficiency of the 

extended UPFRA is illustrated by comparing the results with SBS analysis. In addition, 

the Bree-like diagram is further extended by including the constant creep-fatigue life 

curves. 
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 Conclusions 

7.1 Summary of the thesis 

In this thesis, the capability and functionality of the existing LMM framework have 

been enhanced by implementing multiple numerical procedures for different aspects 

of high-temperature structural integrity assessment. The Bree-like diagrams have 

been developed in various ways for high-temperature design and assessment. The 

primary outcomes of the research are summarised as follows: 

1) A literature review of high-temperature structural cyclic response, current 

numerical methods, and international design codes has been presented. 

2) A limited kinematic hardening algorithm for shakedown analysis and a 

corresponding two-stage numerical procedure has been implemented in the 

LMM shakedown analysis module. 

3) A numerical scheme for the prediction of creep rupture stress has been 

developed which has been implemented in the LMM creep rupture analysis 

module. 

4) The evaluation of structural ratchet limit and constant fatigue life curves 

considering arbitrary thermal-mechanical loading histories for the extended 

Bree-like diagram has been proposed by a numerical procedure, which is 

based on the existing LMM DSCA module. 

5) The evaluation of structural constant creep-fatigue life curves considering 

creep-fatigue interaction for the extended Bree-like diagram has been 

proposed by a numerical procedure, which is based on the existing LMM 

eDSCA module. 

The main findings of this work are concluded below. 

7.2 Key achievements, justification and scientific impacts 

With decades of development, the LMM plug-in has become one of the most 

advanced software tools to perform the LMM direct methods for structural integrity 

assessment. This work focuses on the novel application of these direct methods for 

extending the Bree-like diagram in four stages.  
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For the first stage, the Bree-like diagram is extended by including the shakedown limit 

considering kinematic hardening materials. The structural shakedown boundaries 

could be greatly affected by the kinematic hardening behaviour which is difficult to 

consider in direct methods. Temperature-dependent material properties are fully 

supported so that the accuracy of the shakedown boundaries is greatly improved. A 

shakedown algorithm considering limited kinematic hardening material has been 

implemented in the current LMM framework based on a two-surface hardening model. 

An overall deviation factor of 0.07 is achieved when comparing the results from the 

extended LMM shakedown module with the ones from other researchers.  

For the second stage, the Bree-like diagram is extended by including the creep 

rupture limit. The creep rupture limit determines the load-bearing capacity for high-

temperature components subjected to cyclic loading conditions. The UCRE has been 

proposed to predict the creep rupture strength and it is capable of fitting the rupture 

curves for more than 40 different types of steel with satisfactory accuracy. A deviation 

factor of 0.55 is observed when comparing the predicted rupture strengths with 

experimental data points. The UCRE has then been implemented in the LMM 

framework for the derivation of the temperature-dependent revised yield stress. 

For the third stage, the Bree-like diagram is extended by including the constant LCF 

life curves. The constant life diagram provides a convenient way of determining the 

structural life based on any combination of thermal-mechanical loads. The UPFRA 

has been proposed to use the LMM DSCA subroutine for the evaluation of the 

constant fatigue life diagram and ratchet boundary. The R-O model has also been 

utilised in the fatigue analysis to describe the saturated stress-strain relationship 

considering the hardening effect. The R-O model produces more conservative results 

than the EPP model when the hardening effect is significant at a high load level. The 

numerical procedure is validated by a series of SBS analyses for various load points 

along the boundaries.  

For the fourth stage, the Bree-like diagram is extended by including the constant 

creep-fatigue life curves. The consideration of creep-fatigue interaction damage is 

crucial for high-temperature structures. Creep dwell time also has an enormous 

impact on the constant life curves. The extended UPFRA has been proposed to use 

the LMM eDSCA subroutine for the evaluation of the constant creep-fatigue life 
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diagram. SBS analyses have also been performed on several load points to show the 

accuracy and efficiency of the proposed method.  

Therefore, several contributions have been made to the development of 

computational tools for the evaluation of cyclic plasticity and creep behaviours of high-

temperature structures. With the implementation of the proposed numerical methods, 

the LMM framework has become a more powerful engineering tool for high-

temperature structural integrity assessment with better accuracy, efficiency, and 

versatility.  

7.3 Future work 

Although the LMM framework has become one of the most advanced numerical 

methods in the field of direct methods, it can still be further improved in various ways 

as given below: 

1) In Chapter 3, Melan’s static shakedown theorem has been extended to 

consider limited kinematic hardening material. The extended shakedown 

theorem is proposed using a general nonlinear kinematic hardening model 

bounded by the ultimate stress and unlimited hardening behaviour. For a more 

accurate estimation of the kinematic hardening behaviour, it could be possible 

to implement specific hardening rules such as Prager linear hardening rule [44] 

and Chaboche constitutive models [38] in the shakedown algorithm. 

Furthermore, isotropic hardening rules or combined hardening rules could be 

included for further development in the LMM shakedown analysis module. 

2) In Chapter 6, a numerical procedure for the evaluation of the constant creep-

fatigue life diagram has been proposed. For better clarification of the proposed 

method, the numerical example only considers EPP constitutive model and 

basic creep-fatigue damage models. For complicated engineering problems, 

the R-O model can be used to describe the steady-state stress-strain 

relationship to consider the hardening effect. Also, complex damage models 

such as the DE method, SMDE method and nonlinear creep-fatigue damage 

interaction envelope may be adopted for creep-fatigue damage calculation. In 

addition, multiple creep dwell stages can be considered in the load cycle 

based on industrial loading spectrums.  
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3) Since this research work primarily focuses on FE simulations and numerical 

algorithms, there is a lack of physical characterization and experiments to 

support and validate the proposed methods. Material experiments could be 

performed to determine the realistic material parameters, especially for the 

two-surface kinematic hardening model. Physical characterization could be 

conducted to investigate the mechanics of creep rupture and provide physical 

meanings to the UCRE. Structural experiments could also be performed to 

validate the accuracy of constant life diagrams calculated by the UPFRA or 

extended UPFRA. 

4) As an engineering tool for the general structural integrity assessment, the 

LMM plug-in could be further developed in various ways. A post-processing 

module could be developed which directly shows the user-specified contours 

instead of displaying SDV values. The shakedown limit, ratchet limit and the 

hysteresis loop can also be plotted automatically with the post-processing 

module. A “design by rule” module could also be implemented in the LMM 

framework, including numerical equations from international design codes 

such as ASME and R5. Additionally, a material database could be built 

containing the essential parameters of commonly used materials for the LMM 

analysis. The UPFRA and extended UPFRA could be further implemented in 

the LMM plug-in in the form of GUI for improved usability and efficiency.  
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Appendix A. The UCRE parameters fitted for materials from 

the ECCC data sheets [49] 

Material 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 

Carbon-manganese and low alloy ferritic steels 

P235 (C / 
CMn) 

1.46E-05 -3.10E-02 2.20E+01 -5.25E+03 -1.72E-04 3.69E-01 -2.66E+02 6.45E+04 

P355 (CMnNb) -2.79E-05 6.15E-02 -4.50E+01 1.09E+04 2.88E-04 -6.27E-01 4.51E+02 -1.07E+05 

16Mo3 
(0.3Mo) 

-1.25E-05 3.28E-02 -2.80E+01 7.83E+03 1.64E-04 -4.10E-01 3.35E+02 -8.98E+04 

8MoB5-4 
(MoB) 

-1.09E-04 2.56E-01 -1.99E+02 5.14E+04 1.32E-03 -3.07E+00 2.36E+03 -6.04E+05 

25CrMo4 
(1CrMo) 

-3.30E-05 7.58E-02 -5.77E+01 1.45E+04 3.64E-04 -8.30E-01 6.25E+02 -1.55E+05 

12CrMoV6-2-2 
(0.5Cr0.5Mo0.

25V) 
-6.82E-06 1.73E-02 -1.44E+01 3.93E+03 8.15E-05 -1.98E-01 1.57E+02 -4.00E+04 

11CrMo9-10 
(2.25Cr1Mo) 

4.66E-06 -1.24E-02 1.11E+01 -3.30E+03 -7.03E-05 1.88E-01 -1.69E+02 5.10E+04 

20CrMoV13-5 
(3CrMoV) 

-8.49E-05 1.96E-01 -1.50E+02 3.81E+04 8.09E-04 -1.85E+00 1.40E+03 -3.52E+05 

X11CrMo5 
(5CrMo) 

-3.20E-05 7.58E-02 -5.97E+01 1.56E+04 2.44E-04 -5.66E-01 4.34E+02 -1.10E+05 

9NiMoCuNb5-
6-4 

(1NiMoCuNb) 
-1.10E-06 3.37E-03 -3.36E+00 1.06E+03 5.13E-05 -1.32E-01 1.09E+02 -2.89E+04 

High alloy ferritic steels 

X11CrMo9-1 
(9Cr-1Mo) 

7.88E-06 -1.89E-02 1.52E+01 -4.09E+03 -8.79E-05 2.16E-01 -1.79E+02 5.03E+04 

X10CrMoVNb9
-1 (P91/T91) 

-2.12E-06 6.01E-03 -5.59E+00 1.69E+03 3.64E-05 -9.50E-02 8.06E+01 -2.19E+04 

GX12CrMoVN
bN9-1 (Cast 

Steel 91) 
1.15E-05 -2.78E-02 2.24E+01 -6.02E+03 -1.34E-04 3.27E-01 -2.68E+02 7.38E+04 

X11CrMoWVN
b9-1-1 (E911) 

1.15E-05 -2.85E-02 2.34E+01 -6.41E+03 -9.64E-05 2.38E-01 -1.97E+02 5.51E+04 

X10CrWMoVN
b9-2 (P92/T92) 

8.22E-06 -2.07E-02 1.73E+01 -4.85E+03 -7.76E-05 1.97E-01 -1.68E+02 4.83E+04 

X20CrMoNiV1
1-1 (12CrMoV) 

1.37E-06 -2.33E-03 1.13E+00 -1.42E+02 -1.33E-05 2.84E-02 -2.24E+01 7.03E+03 

Austenitic steels 
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X2CrNi18-9 
(Type 304L) 

9.16E-06 -2.54E-02 2.35E+01 -7.29E+03 -1.06E-04 2.96E-01 -2.76E+02 8.63E+04 

X2CrNiN 18-
10 (Type 304 

LN) 
-4.13E-06 1.15E-02 -1.06E+01 3.17E+03 4.09E-05 -1.11E-01 9.83E+01 -2.81E+04 

X6CrNi 18-10 
(Type 304H) 

-2.40E-07 6.74E-04 -5.57E-01 1.14E+02 9.19E-06 -2.24E-02 1.64E+01 -3.06E+03 

X2CrNiMo17-
12-2 (Type 

316L) 
-8.60E-07 2.36E-03 -2.08E+00 5.69E+02 6.41E-06 -1.40E-02 7.74E+00 -6.55E+01 

X5CrNiMo17-
12-2 (Type 

316) 
-1.07E-06 2.95E-03 -2.63E+00 7.31E+02 6.87E-06 -1.57E-02 9.40E+00 -4.90E+02 

X6CrNiMoTi17
-12-2 (Type 

316Ti) 
-7.30E-07 1.97E-03 -1.68E+00 4.24E+02 1.23E-06 8.02E-04 -6.54E+00 4.64E+03 

X2CrNiMoN 
17-13-3 (Type 

316LN) 
-6.73E-06 1.94E-02 -1.84E+01 5.75E+03 7.91E-05 -2.23E-01 2.07E+02 -6.25E+04 

X2CrNiMo17-
12-2 (Type 
316L(N)) 

-2.46E-07 5.19E-04 -2.50E-01 -3.32E+01 -3.43E-06 1.43E-02 -1.95E+01 8.78E+03 

X3CrNiMoBN 
17-13-3 (Type 

316LNB) 
-3.01E-06 8.56E-03 -7.96E+00 2.40E+03 2.58E-05 -6.99E-02 6.05E+01 -1.63E+04 

X7CrNiTi 18-
10 (Type 

321H) 
4.03E-06 -1.04E-02 8.98E+00 -2.64E+03 -4.28E-05 1.13E-01 -1.02E+02 3.13E+04 

X6CrNiNb 18-
10 (Type 347) 

-3.48E-06 8.89E-03 -7.45E+00 2.02E+03 3.06E-05 -7.43E-02 5.76E+01 -1.36E+04 

X8CrNiNb 16-
13 (16-13Nb) 

-1.93E-06 5.26E-03 -4.69E+00 1.35E+03 2.33E-05 -6.07E-02 5.07E+01 -1.32E+04 

X5 NiCrAlTi 
31-20 (Alloy 

800) 
-3.82E-06 9.85E-03 -8.31E+00 2.27E+03 5.92E-05 -1.50E-01 1.23E+02 -3.26E+04 

X8NiCrAlTi 32-
21 (Alloy 

800H) 
7.42E-07 -2.51E-03 2.86E+00 -1.10E+03 -1.21E-05 4.10E-02 -4.66E+01 1.79E+04 

X6NiCrNbCe3
2-27 (Type AC 

66) 
-6.51E-07 1.97E-03 -1.92E+00 5.93E+02 3.95E-06 -9.83E-03 6.65E+00 -6.21E+02 

CrNiSiNCe 21-
11 (253MA) 

6.31E-08 -3.61E-04 5.96E-01 -3.07E+02 -4.02E-06 1.57E-02 -2.03E+01 8.76E+03 

X10CrNiMoMn
NbVB 15-10-1 

(Esshete 
1250) 

-6.53E-05 1.88E-01 -1.79E+02 5.69E+04 7.65E-04 -2.19E+00 2.08E+03 -6.58E+05 

BS1503 
310S31 (Type 

310) 
2.15E-06 -6.76E-03 7.11E+00 -2.50E+03 -3.72E-05 1.17E-01 -1.22E+02 4.29E+04 

HR3C -1.60E-05 4.42E-02 -4.06E+01 1.23E+04 1.53E-04 -4.16E-01 3.75E+02 -1.11E+05 

NF709 4.48E-07 -1.65E-03 2.04E+00 -8.53E+02 -1.46E-05 4.95E-02 -5.67E+01 2.20E+04 
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NF709R 1.35E-06 -4.45E-03 4.96E+00 -1.87E+03 -2.67E-05 8.71E-02 -9.59E+01 3.57E+04 

Nickel base alloys 

NiCr23Co12M
o (Alloy 617) 

-5.10E-07 1.45E-03 -1.25E+00 2.97E+02 -9.68E-07 7.72E-03 -1.47E+01 8.23E+03 

NiCr20TiAl 
(Nimonic 80A) 

8.75E-06 -2.12E-02 1.70E+01 -4.56E+03 -7.39E-05 1.78E-01 -1.44E+02 4.07E+04 

High temperature bolting steels 

42CrMo5-6 
(Durehete 900) 

-4.46E-04 1.03E+00 -7.85E+02 2.00E+05 5.04E-03 -1.16E+01 8.81E+03 -2.24E+06 

20CrMoVTiB4-
10 (Durehete 

1055) 
9.37E-05 -2.18E-01 1.68E+02 -4.32E+04 -9.81E-04 2.28E+00 -1.76E+03 4.55E+05 

21CrMoV 5-7 
(1CrMoV) 

5.46E-06 -1.17E-02 8.36E+00 -2.00E+03 -4.26E-05 9.02E-02 -6.54E+01 1.69E+04 
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Appendix B. The UPFRA Python code for ratchet, fatigue and 

creep-fatigue analysis 

from abaqus import * 
from abaqusConstants import * 
import job 
import winsound 
import sys 
import os 
import shutil 
import xml.dom.minidom 
from odbAccess import * 
from abaqusConstants import* 
import re 
import csv 
 
''' 
Note: 
Please run LMM Plug-in once for the input file and *_LMM_LC.dat file, 
then rename *_LMM_LC.dat to *_LMM_LC.txt, in *_LMM_LC.txt,  
substitute scalable pressure for PPP, substitute scalable temperature for TTT. 
 
Result is saved in your working directory as Results.csv, 
the file gives effective ratchet strain/number of cycles to failure for each iteration, 
as well as converged scaled pressure and temperature. 
''' 
 
## User Input: 
Mode = 1 # Select mode: ratchet analysis = 0, fatigue analysis = 1, creep-fatigue analysis = 2 
Ratio = [0,1] # Ratio between P and T: Ratio = T/P; Calculate multiple ratios one by one 
jobName = 'test' # Name of input file generated by LMM Plug-in 
LowerBound = 0.0# Input first upper bound multiplier of Lambda (normally shakedown limit or zero) 
UpperBound = 1.0# Input first lower bound multiplier of Lambda (normally limit load) 
Iteration = 12 # Input max number of iteration, suggest 5 or above 
Target = 100 # Input target max effective ratchet strain per cycle (normally 0.0002) for ratchet 

analysis or target number of cycles to failure for fatigue/creep-fatigue analysis 
Convergence = 0.01# Input convergence parameter 
 
## Create Results.csv 
csvFile = open('Results.csv', 'w') 
writer = csv.writer(csvFile,dialect='excel',lineterminator='\n') 
fileHeader = ['Ratio'] 
for j in range(Iteration): 
 fileHeader.append('I'+str(j+1)) 
fileHeader.append('P') 
fileHeader.append('T') 
writer.writerow(fileHeader) 
 
for R in Ratio: 
 ## Initialization 
 LB = [0.0] * Iteration 
 UB = [0.0] * Iteration 
 Lambda = [0.0] * Iteration 
 P = [0.0] * Iteration 
 T = [0.0] * Iteration 
 maxODB = [0.0] * Iteration 
 maxODB1 = [0.0] * Iteration 
 LB[0] = LowerBound 
 UB[0] = UpperBound 
 flag = -1 
 ## Bisection scheme 
 for i in range(Iteration): 
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  if Mode == 1 or Mode == 2: 
   if i == 0: 
    Lambda[i] = (LB[i]+UB[i])/2.0 
   elif i == 1: 
    LB[i] = LB[i-1] 
    UB[i] = UB[i-1] 
    if maxODB[i-1] > Target: 
     Lambda[i] = (Lambda[i-1]+UB[i])/2.0 
    else: 
     Lambda[i] = (Lambda[i-1]+LB[i])/2.0 
   else: 
    if maxODB[i-2] > Target: 
     LB[i] = Lambda[i-2] 
     UB[i] = UB[i-1] 
    else: 
     LB[i] = LB[i-1] 
     UB[i] = Lambda[i-2] 
    if maxODB[i-1] > Target: 
     Lambda[i] = (Lambda[i-1]+UB[i])/2.0 
    else: 
     Lambda[i] = (Lambda[i-1]+LB[i])/2.0  
  else: 
   if i == 0: 
    Lambda[i] = (LB[i]+UB[i])/2.0 
   elif i == 1: 
    LB[i] = LB[i-1] 
    UB[i] = UB[i-1] 
    if maxODB[i-1] < Target: 
     Lambda[i] = (Lambda[i-1]+UB[i])/2.0 
    else: 
     Lambda[i] = (Lambda[i-1]+LB[i])/2.0 
   else: 
    if maxODB[i-2] < Target: 
     LB[i] = Lambda[i-2] 
     UB[i] = UB[i-1] 
    else: 
     LB[i] = LB[i-1] 
     UB[i] = Lambda[i-2] 
    if maxODB[i-1] < Target: 
     Lambda[i] = (Lambda[i-1]+UB[i])/2.0 
    else: 
     Lambda[i] = (Lambda[i-1]+LB[i])/2.0  
  P[i]=Lambda[i] 
  T[i]=P[i]*R 
  ## Modify _LMM_LC.dat file 
  fp3 = open(jobName+'_LMM.txt','r') 
  fp4 = open(jobName+'_LMM_LC.txt','w') 
  for s in fp3.readlines(): 
   if P[i] < 10: 
    s0 = s.replace('PPP',format(P[i],'.5f')) 
   else: 
    s0 = s.replace('PPP',format(P[i],'.4f')) 
   if T[i] < 10: 
    fp4.write(s0.replace('TTT',format(T[i],'.5f'))) 
   else: 
    fp4.write(s0.replace('TTT',format(T[i],'.4f'))) 
  fp3.close() 
  fp4.close() 
  try: 
   os.rename(jobName+'_LMM_LC.txt',jobName+'_LMM_LC.dat') 
  except WindowsError: 
   os.remove(jobName+'_LMM_LC.dat') 
   os.rename(jobName+'_LMM_LC.txt',jobName+'_LMM_LC.dat') 
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  ## Abaqus job submission 
  if Mode == 0 or Mode == 1: 
   mdb.JobFromInputFile(name=jobName,inputFileName=\ 
    jobName+'.inp',userSubroutine='C:/SIMULIA/Abaqus/LMM/\ 
    LMM_Steady_Cycle_and_RatchetTEST.obj',numCpus=4) 
   mdb.jobs[jobName].submit() 
   mdb.jobs[jobName].waitForCompletion() 
  else: 
   mdb.JobFromInputFile(name=jobName,inputFileName=\ 
    jobName+'.inp',userSubroutine='C:/SIMULIA/Abaqus/LMM/\ 
    LMM_Creep_FatigueTEST.obj',numCpus=4) 
   mdb.jobs[jobName].submit() 
   mdb.jobs[jobName].waitForCompletion() 
 
  ## Read odb file 
  OdbFilePath = jobName + '.odb' 
  myodb = openOdb(OdbFilePath) 
  if Mode == 0: 
   mySDV = myodb.steps['LMM-Shakedown'].frames[-1].\ 
   fieldOutputs['SDV11'] 
  elif Mode == 1: 
   mySDV = myodb.steps['LMM-Shakedown'].frames[-1].\ 
   fieldOutputs['SDV100'] 
  else: 
   mySDV = myodb.steps['LMM-Shakedown'].frames[-1].\ 
   fieldOutputs['SDV176'] 
  val1 = mySDV.values 
  val1SDV = [] 
  for v1 in val1:  
   val1SDV.append(v1.data) 
  if Mode == 1 or Mode == 2: 
   maxODB[i] = min(val1SDV) 
  else: 
   maxODB[i] = max(val1SDV) 
  myodb.close() 
 
  ## In case DSCA gives NaN results 
  myodb1 = openOdb(OdbFilePath) 
  mySDV1 = myodb1.steps['LMM-Shakedown'].frames[-1].fieldOutputs['SDV10'] 
  val11 = mySDV1.values 
  val11SDV = [] 
  for v11 in val11:  
   val11SDV.append(v11.data) 
  maxODB1[i] = max(val11SDV) 
  if maxODB1[i] == 0.0: 
   maxODB[i] = 0.0 
  myodb1.close() 
  ## Check convergence 
  if abs((maxODB[i]-Target)/Target) <= Convergence: 
   flag = i 
   break 
  
 ## Write Results.csv 
 if flag != -1: 
  for k in range(flag+1, Iteration): 
   maxODB[k] = '-' 
  maxODB.append(P[flag]) 
  maxODB.append(T[flag]) 
 else: 
  maxODB.append(P[Iteration-1]) 
  maxODB.append(T[Iteration-1]) 
 maxODB.insert(0,R) 
 writer.writerow(maxODB) 
csvFile.close()
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Appendix C. The creep FORTRAN subroutine for SBS creep-

fatigue analysis 

      SUBROUTINE CREEP(DECRA,DESWA,STATEV,SERD,EC,ESW,P,QTILD, 
     1 TEMP,DTEMP,PREDEF,DPRED,TIME,DTIME,CMNAME,LEXIMP,LEND, 
     2 COORDS,NSTATV,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 CMNAME 
C 
      DIMENSION DECRA(5),DESWA(5),STATEV(*),PREDEF(*),DPRED(*), 
     1 TIME(2),COORDS(*),EC(2),ESW(2) 
C 
      DO 3 KK=1,5 
    3 DECRA(KK)=0.D0 
      IF(QTILD.LT.100.) GO TO 10 
      IF(TEMP.LE.450.0) then 
        A=8.334E-38 
        XN=12.43 
        XM=0.0 
      ELSE IF(TEMP.LE.475.0) THEN 
        A=6.665E-33 
        XN=10.88 
        XM=0.0 
      ELSE IF(TEMP.LE.500.0) THEN 
        A=1.246E-33 
        XN=11.42 
        XM=0.0 
      ELSE IF(TEMP.LE.525.0) THEN 
        A=3.286E-28 
        XN=9.493 
        XM=0.0 
      ELSE 
        A=1.24E-18 
        XN=5.651 
        XM=0.0 
      END IF 
      C1=1./(1.+XM) 
C TIME HARDENING 
      TERM1=A*QTILD**XN*C1 
      DECRA(1)=TERM1*(TIME(1)**(1.+XM)-(TIME(1)-DTIME)**(1.+XM)) 
      DECRA(5)=DECRA(1)*XN/QTILD 
      GO TO 10 
    5 CONTINUE 
   10 CONTINUE 
      RETURN 
      END 
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