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Abstract

The research presented in this thesis deals with the concepts of distributed sensing
for multiple-input multiple-output (MIMO) radar systems and important signal
processing algorithms with regard to multiple sensing optimisations. These novel
algorithms include an edge detection scheme based on the phase stretch transform
(PST) for synthetic aperture radar (SAR) imaging systems, the application of
the fractional Fourier transform (FrFT) in generating new waveform libraries
and the synthesis of a generalised MIMO ambiguity function (AF) based on the
Kullback-Leibler divergence (KLD).

In particular, a new edge detection algorithm for SAR images is proposed.
This method is an enhanced scheme that is based on the phase stretch transform
(PST). The high-accuracy of the presented edge detection method is tested and
verified experimentally using two SAR image datasets. Experimental results show
that thresholding and further morphological operation leads in excellent edge
extraction despite the noise embedded into the image. Including PST into the
structure of the edge detection algorithm is proved to be very advantageous, since
the efficiency in edge determining could be improved by means of tuning the
strength and wrap parameters of PST phase kernel. It is shown that the proposed
method is very effective and capable to remove embedded noise and introduced
artefacts even from image parts corresponding to the surface of the sea.

A novel waveform design scheme is proposed to create waveform libraries
employing the FrFT. Additionally an efficient algorithm based on a modified
Gerchberg-Saxton algorithm (MGSA) is developed to reconstruct the proposed
fractional waveform libraries under constant envelope (CE) constrain. This efficient
technique is capable of generating novel libraries of phase-coded waveforms through
FrFT and optimise the signal retrieval, while the signal waveforms retain their
constant modulus. Specifically, the reconstruction of sequences from the FrFT
based waveforms is achieved by means of the error reduction algorithm (ERA).
The performance of this new method is evaluated via simulation analysis, showing
the good properties of the waveforms in terms of AF performance parameters and
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in attaining high diversity between waveforms for both fractional and CE fractional
libraries. In addition, the applicability of the derived fractional waveforms is
experimentally validated, while their performance is evaluated through comparing
with conventional techniques in a distributed MIMO radar scenario.

Moreover, a novel-multiplexing scheme also based on the FrFT is introduced
enabling radar systems to operate in a message exchange mode via embedding the
required information into fractional waveforms. The efficiency of the proposed
waveform design is evaluated regarding the AF properties of the communicating
radar (Co-Radar) waveform.

A new, generalised AF is presented based on the KLD and applied in a
MIMO radar signal model. The proposed MIMO AF can be factorised into
auto-correlation and cross-correlation signal matrices, and channel correlation
matrices. Moreover, it is shown that the proposed MIMO AF maximally stretches
between 0 and 1, while also being flexible for various geometrical and operating
signal configurations. The relationship of the proposed MIMO AF with other
definition is also examined, showing that it reduces to the traditional Woodward
definition when the same signal model is assumed. In addition, the behaviour
of the proposed MIMO AF is investigated for different target placements and
operating waveforms highlighting the advantages of each configuration. Finally,
the good performance of the AF is demonstrated in a simulated MIMO radar
system.
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Chapter 1

Introduction

1.1 Preface

In recent years multiple-input and multiple-output (MIMO) radar systems have
attracted the interest of the research community due to their capability to signifi-
cantly increase their performance compared to traditional phased array radars.
Generally, MIMO radar systems are classified into two main categories: co-located
and distributed, depending on how the antennas of each system are spatially allo-
cated (Haimovich et al., 2008; Li and Stoica, 2007). The co-located configuration
is similar in geometry to the phased array systems with all the antennas placed
in a close proximity, while in the distributed, also known as statistical, structure
the antennas are widely extended in a large area. The co-located configuration
offers superior parameter identification and flexibility of transmitted beampat-
tern designs (Hassanien and Vorobyov, 2010; Nysaeter and Iwe, 2016), while
the distributed configuration allows enhanced target localization and detection
performance (Fishler et al., 2006; Godrich et al., 2010). In addition, MIMO radar
systems generally have shown great potential supporting fading mitigation (Mao
et al., 2015), and interference and jamming suppression (Bechter et al., 2017;
Li et al., 2014a). The main distinctive characteristic between MIMO and other
multisensor radar systems it that in MIMO each antenna unit can independently
transmit an arbitrary waveform, while each receiving antenna can receive all the
reflected signals. These echo signals can be re-assigned to each transmitter-receiver
pair separately considering the diversity in the operating waveforms.

In MIMO radar applications, the use of optimised waveform designs is of
primary importance allowing significant improvement in target detection per-
formance, tracking and resolution (Li and Stoica, 2009; Yang and Blum, 2007;
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Zhou et al., 2016). Several design methods based on fixed and adaptive radar
waveforms have been extensively investigated providing waveforms suitable for
different applications (Cui et al., 2014; Liu et al., 2014b; Mehany et al., 2015;
Wang, 2015a; Wen-kun et al., 2016). In (Clemente et al., 2014b) a new approach
was proposed to generate radar waveform libraries through applying the fractional
Fourier Transform (FrFT) (Ozaktas et al., 2001) to sequences with good ambiguity
function (AF) properties such as Barker 13 code. These novel libraries were shown
to provide significant advantages considering delay resolution, interference and
sidelobe level reduction. Furthermore, a reuse evaluation in (Clemente et al.,
2014a) demonstrated that multiple low cross-correlation waveforms could be gener-
ated by applying a FrFT of different order to the same sequence and also changing
its cardinality.

The AF is one of most common tools used to evaluate the performance of a
radar system providing information regarding the resolution, estimation accuracy,
probability of detection and false alarm etc. In the case of mono-static radar
systems the AF is defined as the response of a filter matched to the transmitted
signal for different time delays and Doppler shifts in the received signal (Levanon
and Mozeson, 2004). However, the application of the same concept is not sufficient
to evaluate a MIMO radar system since parameters such as the system’s geometry
and the degree of correlation between the operating waveforms play a significant
role in the overall performance of the system. In recent years various formulations
of the AF for multi-static radars have been proposed based on optimal detectors
(Chen et al., 2012; Derham et al., 2010; Radmard et al., 2014; San Antonio
et al., 2007). Using the concept of optimum detector, the MIMO AF can be
obtained by summing the matched filtered result from each receiver (Derham et al.,
2010; San Antonio et al., 2007). Following a different approach, an alternative
AF definition could be based on the log-likelihood function and the concept
of information theory (Chen et al., 2012; Li and Stoica, 2009; Radmard et al.,
2014). A very similar definition approach of the AF based on the Kullback-Leibler
divergence (KLD) was first introduced for a monostatic system configuration in
(Rendas and Moura, 1998).

Synthetic aperture radar (SAR) refers to a particular form of imaging radar
system, where a real aperture or antenna is moved through a series of sequential
positions along the inspected area to implement a larger synthetic antenna. Apply-
ing a combination of signal processing techniques, the SAR returns can synthesise
a fine resolution, photograph-like rendering of the illuminated scene (Richards
et al., 2010). Edge detection in SAR images can provide valuable information
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such as coastline, road and man-made target returns. While the same techniques
from optical image processing can also be applied to SAR images, the later suffers
from multiplicative noise, called speckle, and therefore often preprocessing is
required. Through the last decades, several approaches for reducing speckle noise
have been suggested (Lopes et al., 1990; Yu and Acton, 2002), while others focus
directly on edge detection in its presence (Baselice et al., 2014; Jiang et al., 2015;
Prasad et al., 2013; Touzi et al., 1988). In (Asghari and Jalali, 2014), a novel edge
detection scheme based on the phase stretch transform (PST) is proposed. The
good performance of the PST was demonstrated both in optical and biomedical
images.

1.2 Motivation

One of the aims of this thesis is to investigate new signal processing algorithms in
generating novel waveform libraries with good AF properties and reconstructing
these waveforms under CE constraints. Intent of this waveform design scheme
is to offer a large number of low cross-correlation waveforms suitable for MIMO
radar systems, while also providing the basis to allow message exchange operations
through embedding information into the radar waveforms. Moreover, this thesis
targets to explore a generalised AF for facilitating both narrowband and wideband
signals in a MIMO sensor system. In addition this thesis is aimed to investigate
an enhanced algorithm for SAR image edge detection, which can effectively reduce
the embedded noise and remove phase image artefacts.

The research objectives presented in this thesis are: the development of an effec-
tive technique to obtain radar waveform libraries applying FrFT on code sequences;
the development of a low complexity and efficient algorithm to reconstruct FrFT
based waveforms under CE constraints using a modified Gerchberg-Saxton algo-
rithm (MGSA); a preliminary study regarding the information exchange between
radar systems using FrFT based waveform design; the invention of the generalised
signal model for MIMO radar systems and the corresponding MIMO AF utilizing
the KLD and expressed by the channel and operating signal correlation matri-
ces; the design and implementation of an enhanced algorithm for edge detection
of SAR images exploiting the advantages of the PST; the study of algorithm
parameter tuning for optimising the image edge detection. The applicability
and the performance of the aforementioned signal processing techniques will be
evaluated through simulations and experiments in various MIMO radar scenarios.
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Moreover, the thesis will address the inventions, developments, enhancements
and modifications required to accomplish the research, as to achieve enhanced
resolution and target identification in MIMO environments and excellent quality
in performing edge detection of SAR images.

1.3 Contribution

The research enclosed in this thesis includes original contributions in the field of
MIMO radar networks, spectrum sharing and SAR image processing. The thesis
contributions are as follows:

• A new method for edge detection in SAR images is developed, using an
enchanted scheme based on the PST. The presented algorithm is shown to
be capable of reducing speckle noise effects while also removing phase image
artefacts introduced by the PST implementation. Experimental results based
on two SAR image datasets demonstrate the high-accuracy edge extraction
capabilities of the proposed scheme. In addition, the ability of the developed
scheme to adjust for different tasks is shown.

• A novel waveform design scheme to generate waveform libraries based on the
FrFT is introduced. In conjunction with the proposed design, an efficient
algorithm based on the MGSA is employed in order to reconstruct the
proposed waveforms libraries under constant envelope constrains. The
suitability of the generated waveforms for monostatic and MIMO radar
applications is demonstrated though simulation analysis. Furthermore, the
applicability of the proposed scheme is experimentally validated, while its
performance is evaluated and compared with conventional techniques in a
distributed MIMO radar scenario. The research results highlight that the
proposed design scheme is able to provide an efficient way of generating
multiple near-orthogonal waveforms with good AF properties suitable for
MIMO radar scenarios.

• A new modulation scheme is developed utilising the FrFT based waveform
design for joint radar communication systems. The proposed technique allows
information to be embedded into waveforms suitable for radar operations.
The performance of the proposed waveform design is also examined based
on its AF properties.
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• A novel AF designed for MIMO radar systems is presented. The definition
of the MIMO AF is based on the KLD and applied on a generalised MIMO
signal model. The proposed approach offers a flexible definition composed by
channel and signal correlation matrices, accounting for different geometry and
operating waveforms configurations respectively. Moreover, the described
MIMO AF maximally stretched between 0 and 1 while its relationship with
other proposed definition is also examined. The behaviour of the proposed
MIMO AF is investigated for different target and waveform configuration.
Lastly the performance of the proposed MIMO AF is evaluated and compared
with more conventional approaches in simulated MIMO systems.

1.4 Publications

Journal Papers

• Persico, A. R., Clemente, C., Gaglione, D., Ilioudis, C., Cao, J., Pallotta, L.,
Maio, A. D., Proudler, I., and Soraghan, J. J. (2017). On Model, Algorithms
and Experiment for Micro-Doppler based Recognition of Ballistic Targets.
IEEE Transactions on Aerospace and Electronic Systems, PP(99):1–1

Conference Papers

• Ilioudis, C. V., Clemente, C., Proudler, I., and Soraghan, J. (2016b). MIMO
Radar Ambiguity Functions: A Case Study. In 11th IMA International
Conference on Mathematics in Signal Processing, pages 1–5

• Ilioudis, C. V., Clemente, C., Proudler, I., and Soraghan, J. (2016a). Ambi-
guity function for distributed MIMO radar systems. In 2016 IEEE Radar
Conference (RadarConf), pages 1–6

• Gaglione, D., Clemente, C., Persico, A. R., Ilioudis, C. V., Proudler, I. K.,
and Soraghan, J. J. (2016b). Fractional Fourier Transform Based Co-Radar
Waveform: Experimental Validation. In 2016 Sensor Signal Processing for
Defence (SSPD), pages 1–5

• Gaglione, D., Clemente, C., Ilioudis, C. V., Persico, A. R., Proudler, I. K.,
and Soraghan, J. J. (2016a). Fractional fourier based waveform for a joint
radar-communication system. In 2016 IEEE Radar Conference (RadarConf),
pages 1–6
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• Ilioudis, C. V., Clemente, C., Asghari, M. H., Jalali, B., and Soraghan, J. J.
(2015a). Edge detection in SAR images using Phase Stretch Transform.
In 2nd IET International Conference on Intelligent Signal Processing 2015
(ISP), pages 1–5

• Persico, A. R., Clemente, C., Ilioudis, C., Gaglione, D., Cao, J., and Soraghan,
J. (2015). Micro-Doppler Based Recognition of Ballistic Targets Using 2D
Gabor Filters. In 2015 Sensor Signal Processing for Defence (SSPD), pages
1–5

• Clemente, C., Parry, T., Galston, G., Hammond, P., Berry, C., Ilioudis,
C., Gaglione, D., and Soraghan, J. J. (2015). GNSS based passive bistatic
radar for micro-Doppler based classification of helicopters: Experimental
validation. In 2015 IEEE Radar Conference (RadarCon), pages 1104–1108

• Ilioudis, C. V., Clemente, C., Proudler, I., and Soraghan, J. J. (2015b).
Performance analysis of fractional waveform libraries in MIMO radar scenario.
In 2015 IEEE Radar Conference (RadarCon), pages 1119–1124

• Ilioudis, C., Clemente, C., Proudler, I., and Soraghan, J. (2014). Constant
Envelope Fractional Fourier Transform based Radar Waveforms Detection
and Localization Performance in DMRS. In Sensor Signal Processing for
Defence Conference 2014 (SSPD 2014), Edinburgh, UK, pages 1–6

• Clemente, C., Ilioudis, C., Gaglione, D., Thompson, K., Weiss, S., Proudler,
I., and Soraghan, J. (2014a). Reuse of Fractional Waveform Libraries
for MIMO Radar and Electronic Countermeasures. In 6th International
Symposium on Communications, Control, and Signal Processing (ISCCSP
2014), Athens, Greece

1.5 Thesis Organization

The remainder of the thesis is divided into six chapters organised as follows:
Chapter 2 introduces the key concepts of radar systems including basic operations
and advanced systems. The basic principles of pulse compression is also discussed
along with the most common techniques in waveform design. Later, the notion of
multisensor systems and their categorisation in connection with their operating
waveforms and spatial geometry. The topical issue of spectrum sharing is also
investigated along with the most recent advances in waveform diversity and joint
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communication radar systems. Finally, the basic principles of SAR and the current
issues in radar image processing are described.

Chapter 3 is dedicated to advanced time-frequency transforms. First the
concept of time-frequency analysis is introduced with commonly time-frequency
signal representations being also discussed. Later, the concept of AF is introduced
with the traditional, KLD based and other common definitions being also provided.
Additionally, an extensive analysis in FrFT is presented. Specifically, the properties,
implementations and applications of FrFT in radar systems are discussed in more
detail. Finally, the PST is presented with focus on its applications in image edge
detection.

Chapter 4 introduces a new method to extract edge images based on the PST.
The proposed method attempts to address issues associated with the presence of
speckle noise in SAR images and the cancellation of the introduced artifacts in
the edge images due to pre-processing stages. The performance of the proposed
method method is experimentally evaluated using real SAR images from two
different datasets.

Chapter 5 is dedicated in the proposed design of fractional waveforms. The
first section of the chapter introduces the concept of utilising the FrFT to generate
waveforms suitable for MIMO radar applications and how constant envelope
restriction can also be addressed. Validation of the proposed waveform generation
scheme is later held using experimental results and simulations. Finally, a new
method is introduced for achieving joint communication and radar functionality
using information embedded waveforms based on the concept of the fractional
waveforms.

Chapter 6 presents an in depth investigation concerning the concept of the AF
applied on MIMO radar systems. First, the signal model of MIMO radar systems
for extended targets is derived. Based in this signal model a framework is defined
to approximate the degree of correlation between the different transmitter-receiver
channels. Later the proposed MIMO AF is formulated based on the KLD with
examples and illustration being provided. Moreover, Chapter 6 discusses the
relation of the proposed and other AF definitions. Finally, simulations are carried
out to explore the performance and efficiency of the proposed framework.

Chapter 7 presents a summary of the thesis conclusions in connection with
the future direction of research.

The appendices provide a proof regarding the relationship of FrFT and the
AF, the relation of phase integral and the sinc function, the inverse correlation
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matrix of a MIMO radar signal, lower limits, and definition of matrices used in
the thesis.



Chapter 2

Radar Systems

2.1 Introduction

In this chapter, a review of radar research concepts is discussed. Key areas,
such as basic radar concepts, advanced radar techniques, radar waveform design
and signal processing will be reviewed. Pulse compression techniques will be an
area of focus, providing a short summary of the most commonly used waveform
modulation algorithms and code sequences, while the current challenges of research
in waveform design field are also introduced. Additionally, different categories
of multisensing are discussed and an overview in most challenging research area
is presented combining basic operation principles and advanced multiple-input
multiple-output (MIMO) radar techniques. Various aspects of the spectrum
overcrowding are also discussed with focus on their effects in radar systems. More
specifically, recent advances regarding spectrum sharing (SS) techniques such
as waveform diversity (WD) in MIMO radar systems and dual-function radar
communication (DFRC) systems are discussed in order to identify the introduced
assets and trade-offs. Finally, the advanced concepts in synthetic aperture radar
(SAR) are presented including SAR imaging, speckle noise reduction and edge
detection.

2.2 Basic and Advanced Techniques

Radar is a highly multidisciplinary field with researchers focusing among other sub-
jects on phenomenology, antenna technology, waveform design, detection, tracking
and target identification, multi-sensor fusion and concepts of operation (Gini et al.,
2012; Levanon and Mozeson, 2004; Richards, 2005; Richards et al., 2010). Modern
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radar are highly complex sensing systems, employing the latest advances in tech-
nology and relying on sophisticated algorithms and signal processing techniques
to accomplish accurate results. Over the last decades many researchers have
made great efforts to develop new techniques of advanced target identification and
parameter estimation for various types of applications. More specifically, there
have been numerous publications focused on modern radar systems improving
significantly the parameter identifiability, applicability of adaptive MIMO arrays
for target detection, parameter estimation, and design flexibility for transmitted
beampattern (Godrich et al., 2010, 2011; Li et al., 2007; Maio and Lops, 2007;
Yang and Blum, 2007).

Basic principles and advanced techniques of modern radar systems are critical
to the performance of current and future radar systems. Basic techniques of
modern radar include principal radar concepts, i.e. fundamental radar principles
and functions, radar signal characteristics, external factors affecting target tracking,
radar subsystems and key aspects of radar signal processing (Richards et al., 2010).
Advanced techniques cover the most recent developments in the radar research
community including advanced signal processing methods essential to current and
future implementations of radar systems, such as enhanced waveform schemes,
SAR imaging, speckle reduction, edge detection and MIMO ambiguity function
design (Levanon and Mozeson, 2004; Melvin and Scheer, 2014; Richards, 2005;
Richards et al., 2010). Particularly, applications of advanced techniques may
require specific hardware configurations or radar topologies, as discussed later
herein.

2.2.1 Basic Operation Principles

As implied by the their acronym (RAdio Detecting And Raging), radar systems are
used to detect the presence of an object and determine its location by measuring
the object’s distance or range and specifying its direction. The main principle on
which radar operation is based in the property of an electromagnetic (EM) wave
to be reflected or echoed back if it is emitted in the direction of an object or a
target (Melvin and Scheer, 2014; Nathanson et al., 1991; Richards et al., 2010).

Briefly, the operating principle of a radar can be described in three steps. First
the radar antenna transmits an EM wave and it switches to listening or receiving
mode. Then if a target is present and illuminated by the transmitted wave, an
echo is reflected. This echo is then propagated back to the radar and picked up by
a receiving device. Supposing that the speed of EM wave c is known, the distance
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Fig. 2.1 Basic radar operation schematic.

d0 of the object can be estimated using the time τ0 required for an echo of the
transmitted pulse to return. Since the total distance the EM wave has to travel
towards and back from the target, the basic range radar equation is written as:

d0 = cτ0

2 (2.1)

The aforementioned steps are actually describing the operating principles of what
is called a pulse radar. In a different operating configuration, a radar may have
dedicated transmitter and receiver systems allowing it to continuously emit EM
waves while listening in parallel. This configuration is called continuous wave
(CW) radar. A schematic of a pulse radar operation is illustrated in Fig. 2.1. The
time difference between consequent transmissions in a pulse radar is called pulse
repetition interval (PRI). A graphical illustration of how PRI is defined is given in
Fig.2.2. Another usual term is the pulse repetition frequency (PRF) which is given
as PRF = 1/PRI. Moreover, the ratio between the pulse’s duration, or width, T
and the PRI is defined as the duty circle (DC) of the radar, i.e. DC = T/PRI.

Modern radar systems are composed of a number of smaller subsystems.
Although these subsystems can vary depending on the particular radar system,

PRI

Transmission
Reception

Time

Fig. 2.2 Pulse radar transmission and reception operations.
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they almost always include a transmitter, an antenna, a receiver, and a signal
processor. In a typical radar system, the transmitter subsystem generates the
EM waves which the antenna subsystem takes as input and introduces them
into the propagation medium. The incident EM waves induce currents on the
target causing retransmission of the resulting EM waves into the environment. In
reception, the antenna system first captures and amplifies the received signal before
it is passed to the the receiver sybsystem. The RF signal is then down-converted
to an intermediate frequency (IF), and subsequently applied to an analog-to-
digital converter (ADC) before passed to the signal processor. In pulse radar the
transmitter and receiver are connected to the antenna through a transmit/receive
(T/R) device, which is usually a circulator or a switch. The T/R device has
the function of providing a connection point so that the transmitter and the
receiver can both be attached to the same antenna simultaneously while providing
isolation between the transmitter and receiver protecting the sensitive receiver
components from the high-powered transmit signal (Richards et al., 2010). Finally,
the processed radar signals are displayed on the traditional plan position indicator
(PPI) or other more advanced radar display systems showing a map-like picture of
the area scanned by the radar beam (Melvin and Scheer, 2014; Nathanson et al.,
1991).

The target’s direction is determined by the directivity of the antenna, sometimes
known as the directive gain, which represents the ability of the antenna to transmit
the energy in a particular direction. An antenna characterised by high directivity
is also called directive antenna. Both the target’s azimuth and elevation angles
referred to radar, can be determined by measuring the direction in which the
antenna is pointing when the echo signal is received. In Fig.2.3 it is graphically
illustrated how directive antennas can be used to illuminated different azimuth
and elevation angle.

Elevation

Azimuth

Directional Radiation

Fig. 2.3 Illumination in different azimuth and elevation angles using a directional
antenna.
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In radar systems the term accuracy is used to express the degree of convergence
between the estimated and real position and/or the velocity of a target at a given
time. Usually a statistical measure of error represents the accuracy performance
of the system. The resolution of radar is its ability to distinguish between targets
that are in a very close proximity and it is different from accuracy. Radar spatial
resolution is usually divided into two categories; range resolution and angular or
bearing resolution. In Fig. 2.4 an example of the resolution being able to resolve
(a) both and (b) only one of the two present targets is illustrated. Weapons-control
radars, which require great precision, should be able to distinguish between targets
that are only meters apart. On the other hand, search radar are usually less
precise and are required to only distinguish between targets that are hundreds of
meters or even kilometres apart.

Normally, the transmitted signal is echoed in a wide number of directions.
The term backscatter is referred to the reflections in the opposite direction to the
incident electromagnetic waves. While a powerful transmitter is used to generate
the radar signal, only a small portion of the reflected energy is captured on a
highly sensitive receiver. The degree of that return energy is highly dependent
from what is called radar cross-section (RCS) of the target. In a general sense,
RCS is a measure of how detectable an object is to a radar and is expressed in
units of area (e.g., m2). The RCS of a target is not static but varies depending on
the viewing angle of the target relative to the radar, the operating frequency and
the polarization of the EM wave. Moreover, signal echoes occur not only from the
desired target but also from other surfaces on the ground and in the atmosphere.
These unintentional and unwanted signals are called clutter.

Propagation effects of the atmosphere and earth on the waves may also alter
the strength of the EM waves both at the target and at the receive antenna. Echo

Range

T
im

e

(a) Two resolved targets.

Range

T
im

e

(b) One resolved target.

Fig. 2.4 Range resolution issue between targets in close proximity with each other.
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signals from targets are received in the presence of interference, which is due to
the following four different causes: a) internal and external electronic noise, b)
reflection from unrelated objects, clutter, c) unintentional EM waves created by
other human activities, i.e. electromagnetic interference (EMI) and d) intentional
jamming from an electronic countermeasures (ECM) system in the form of noise or
false target information. A primary function of a signal processor is the extraction
of target information in the presence of clutter, and EMI and ECM noise. Noise
coming from electric motors or engine ignition is considered as EMI noise, while
jamming signals can appear as much like internal receiver thermal noise or false
targets (Richards et al., 2010).

2.2.2 Advanced Techniques of Radar Systems

Advanced techniques for modern radar systems are addressing the most important
aspects of current and critical research topics (Levanon and Mozeson, 2004; Melvin
and Scheer, 2014; Skolnik, 1970). In the following paragraphs the most important
current advanced techniques are discussed.

Waveform design: In radar systems waveform design comprises advanced
pulse compression techniques to provide high resolution and adjust compressed
waveform impulse response. Jointly optimised or adapted transmit waveforms
with complementary processing is a challenging research subject employing the
advances in waveform generation and multiple antenna array technologies (Melvin
and Scheer, 2014; Richards, 2006). The topic of waveform design will be extensively
discussed in Section 2.2.3.

Ambiguty function (AF): The radar AF is a significative analytical tool for
waveform design and analysis, which describes much clearly the behaviour of a
waveform paired with its matched filter. For a given waveform the AF is useful
in examining resolution, sidelobe behaviour, and ambiguities concerning range
and Doppler, as well as phenomena such as range-Doppler coupling (Levanon and
Mozeson, 2004; Melvin and Scheer, 2014). More details in the canonical definition,
KLD based definition and other definitions of AF are presented in Section 3.3.

Multi-input, multi-output (MIMO): In a broader definition, MIMO radar
could be considered as a multi sensor system that employs antenna arrays to
advance target identification via sophisticated signal processing algorithms. In



2.2 Basic and Advanced Techniques 15

addition to the tremendous advances in computing technology, a trend in modern
radar is to move the digitisation advances closer and closer to the antenna element.
This places great emphasis on the importance of the collection approach, sensor
topology, and the particular algorithms and techniques applied to the incoming
data to provide a superior performance.

It has been recently shown that the MIMO systems are advantageous over
single antenna systems, since they have the potential to greatly improve the
overall communication performance. Unlike beamforming, where high correlation
is presumed between transmitted or received signals from an antenna array, the
MIMO radar concept exploits the independence between transmitted/received
signals from array elements (Melvin and Scheer, 2014; Skolnik, 1970). An extensive
discussion of MIMO radar systems and their configuration is held in Section 2.3.
Moreover studying deterministic waveforms with ideally low cross-correlation
functions, allows exploiting the benefits of the additional phase diversity on
transmit, which has the potential to enhance the radar system capabilities to
resolve targets in angle (Li and Stoica, 2009; Melvin and Scheer, 2014; Skolnik,
1970). A discussion on waveform diversity (WD) and waveform design suitable for
MIMO radar is held in Section 2.2.3. In addition, extending the radar AF to the
MIMO radar systems allows not only the range and Doppler resolution but also
the angular resolution to be improved through proper choice of radar waveform.
A proposed definition on MIMO AF is extensively presented in Chapter 6.

Synthetic aperture radar (SAR): In an abstract definition, a SAR system
can be defined as a combination of a radar and moving platform system that
can exploit the relative motion and signal processing techniques to generate a
photograph-like rendering of the scene of interest (Richards et al., 2010). Some
of the main advantages of SAR are their potential of very fine resolution, ability
to penetrate the foliage and ground to expose targets beneath tree covering and
buried objects respectively, and ability to provide information regarding the type
of the illuminated surface and ground vehicle identification (Richards et al., 2010).
A discussion in SAR imaging principles and the current challenges in the field is
held in Section 2.5.

Passive radar: A passive radar utilises signals emitted from a non-cooperative
illuminator to perform radar operation such as target detection and tracking
(Baker et al., 2005; Griffiths and Baker, 2005). Examples of these illuminators
of opportunity (IOs) include but are not limited to radio, television, cellular,
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and satellite signals. The main distinctive characteristic of passive radar systems
compared to active is that it does not emit EM waves. This introduces advantages
associated with lower power requirements, high tolerance in ECM, and no need of
dedicated spectrum for its operation. Moreover by utilising multiple IOs, passive
radar systems can easily operate in multistatic configuration (He and Blum, 2014).

Cognitive radar: Cognition in radar is a recently introduced concept with very
high potentials on surveillance applications in fast altering environments. In a
general definition cognitive radar are intelligent systems aware of their environment,
that can adjust to adopt in real time statistical variation of their environment
(Abad et al., 2016). While having many similarities with adaptive radar, cognitive
radar distinguish themselves in three different aspects (Haykin, 2006):

• The radar system progressively acquires knowledge of its operating environ-
ment though interactions from its transmitter, while constantly updating
the receiver with relevant information.

• The transmitter takes into account information from the environment, such
as target range and size, in order to adjust its operation in an effective,
efficient, and reliable manner.

• The entire system’s architecture is characterised by a dynamic closed feedback
loop between the transmitter, environment, and receiver.

Cognitive radar have various applications in advanced operations such as target
detection and tracing (Bell et al., 2015a,b; Wang et al., 2016b). In (Smith
et al., 2016) the authors presented experimental results on the Cognitive Radar
Engineering Workspace (CREW) system. The results demonstrated the superior
performance that cognitive approaches have when compared with traditional fixed
parameter approaches.

Compressive sensing (CS): Despite of the common conception in data ac-
quisition, CS is a novel sensing/sampling method that allows the recovery of
certain signals from significantly fewer samples or measurements than conven-
tional methods require (e.g. Shannon theorem based on the so-called Nyquist
rate). Compressive sensing could attain this based on two principles: sparsity and
incoherence. Sparsity is associated with the signals of interest, while incoherence
is associated with the detection modality (Candès and Wakin, 2008). In (Bara-
niuk and Steeghs, 2007) the authors investigated the application of CS in radar
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system proposing two potential improvements regarding the elimination of the
matched filter at the radar receiver and reduction of the required ADC sampling
rate. Moreover, the application of CS in SAR imaging to acquire high-quality
images by using undersampling in a novel collection scheme was investigated in
(Patel et al., 2010). In (Berger et al., 2010) the potential benefits of applying
CS techniques for underwater communication channels were demonstrated using
numerical simulations and field result.

In addition to the afforementioned advanced techniques applied in modern
radar, the space-time coded apertures are also siginicant for mission-tailored
beampatterns. In remote sensing MIMO SAR can provide potential solutions to
resolving the disadvantages of conventional SAR in high-resolution wide-swatch
(HRWS). Also electronic protection is a critical issue enabling the radar system to
resist electronic attacks due to hostile denial or manipulation of the electromagnetic
spectrum. Additionally post-processing techniques, such as the application of
polarimetry, enhance the radar performance in automatic target recognition, and
multitarget tracking (Melvin and Scheer, 2014).

2.2.3 Waveforms Design and Pulse Compression

Following, the basic aspects of waveform design are discussed including range
resolution, pulse compression concept and related techniques, such as frequency
and phase modulation. The peak side lobe level (SLL) phenomenon and its effects
in pulse compression are also presented.

Waveform design attempts to find an appropriate solution that best fits
to the relevant application. In a simple pulsed radar applications the average
radiation power and pulse length restrict the range sensitivity and resolution
respectively. Therefore the design of any radar system always should involve a
compromise between these two constraints. Using of optimised waveform designs
allows significant improvement in target detection performance, tracking and
resolution (Levanon and Mozeson, 2004; Melvin and Scheer, 2014; Nathanson
et al., 1991; Richards et al., 2010; Skolnik, 1970). Additionally many different
aspects have been considered aiming to achieve higher signal-to-noise ratio (SNR)
at the receiver through waveform optimization. As modern radar systems are
increasingly being required to operate in fast changing and electromagnetically
overcrowded environments, their effective operation may be significantly degraded
due to interference, frequency occupancy and performance constraint.
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Matched Filter

In radar theory, the probability of detection is highly related to the SNR rather
than to the exact received signal. As a consequence, there is a need to maximise
the SNR rather than maintain the shape of received waveform. To achieve this in
radar applications, the knowledge of the transmitted signal is utilised to design a
linear filter that maximises the SNR. In the presence of additive white Gaussian
noise, the impulse response of the optimum filter, in terms of SNR, is a time
reversed version of the transmitted signal or simply a filter “matched” to the
transmitted pulse.

For a better understanding, first let us consider an arbitrary continuous signal
x(t). The matched filter of x(t) will have an impulse response given as (Richards
et al., 2010):

hMF(t) = kx∗(τmax − t) (2.2)

where k is a constant, {·}∗ denotes the complex conjugate operation and τmax is
the time instant in which the SNR is maximised (Richards, 2005). If the signal x(t)
is of a finite length T , then τmax 6 T for causality and the response hMF(t) will be
finite. On the other hand, hMF(t) will be infinite only if the signal x(t) that it is
matched to is infinite in duration. Examining (2.2) it can be derived that filtering
a signal with its matched filter corresponds in computing its autocorrelation (AC)
function. This can be better illustrated by deriving the convolution of x(t) and
hMF(t):

y(t) =
∫ ∞

−∞
hMF(u)x(t− u)du

=
∫ ∞

−∞
x∗(τmax − u)x(t− u)du

=
∫ ∞

−∞
x∗(u)x(u+ τmax − t)du

= Rxx(t− τmax) (2.3)

where Rxx(t) denotes the AC of the signal x(t). As it can be seen the last step
of (2.3) return the AC of x(t) at a lag equal to t − τmax. Moreover it can be
easily derived that (2.3) will have maximum at y(τmax) = Ex where Ex is the total
energy of the signal x(t). Finally, in the presence of additive white Gaussian noise
with a distribution CN (0, σ2

n), the peak SNR is given as:

SNRmax = Ex
σ2
n

(2.4)
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Similar to the continuous or analog matched filter definition in (2.2), the discrete-
time matched filter is given as:

hMF[n] = kx∗[nmax − n] (2.5)

where nmax is the sample lag giving the maximum SNR. Moreover, the discrete
equivalent of (2.3) is given as:

y[n] =
∞∑

m=−∞
h[m]x[n−m]

=
∞∑

m=−∞
x[m]x∗[m+ nmax − n]

= Rxx[n− nmax] (2.6)

In both continuous and discrete definition the matched filter exhibits the same
properties as they will be discussed in the next paragraphs.

Pulse compression

Normally a radar system should be able to distinguish individual targets separated
in a distance of a tens of meters to tens of millimetres of each other depending
on the application (Melvin and Scheer, 2014). If only the received power is
considered as a detection criterion, then a radar system should be capable to
generate and radiate the total transmit energy in just a few µs or even ns to
avoid overlapping between echoes from different targets (see Fig. 2.4). However,
high-power transmitters based on semiconductors cannot produce such pulses
due to their limited dielectric strength and operating temperature. Therefore the
transmitted radar pulse must last much longer to radiate the same energy to avoid
technical limitations for the peak power, i.e. maximum high voltage or power at
the output stage (Levanon and Mozeson, 2004; Melvin and Scheer, 2014; Skolnik,
1970).

Pulse compression came from the necessity to amplify the transmitted pulse
through time compression. In general the pulse compression term describes a
wave shaping process that allows radar to use long waveforms in order to obtain
high energy and simultaneously achieve the resolution of a short pulse by internal
modulation. In this methodology the high energy of a long pulse width and the
high resolution of a short pulse width can be combined together.
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Having relatively large transmitting pulse duration, the pulse is modulated
internally in order to improve range resolution of radar. Since each part of
the pulse has unique frequency, the returns from the target can be completely
separated and integrated into a shorter single output pulse. In addition, the pulse
compression filter contribute greatly to the noise level reduction and moreover
the pulse compression methodology can succeed in an output signal even when
the noise level is larger than the input signal (Melvin and Scheer, 2014).

By definition, range resolution represents the ability to detect and distinguish
targets that are located in close proximity to each other (see Section 2.2.1). The
resolution in the range domain ∆d corresponds to the resolution in the time
domain ∆τ and is ultimately governed by the shape and width of the mainlobe in
the matched filter response. In the literature two more common metrics are used
to define resolution (Richards et al., 2010):

1. The width between the mainlobe peak and the first null (Rayleigh criterion).

2. The width of the mainlobe at specific point bellow the peak, most commonly
half drop or −3dB point.

Following, the second definition at the −3dB point will be used. In compressed
pulses the resolution is associated to the signal’s bandwidth according to the
relation:

∆d = c∆τ
2 ≈ c

2B (2.7)

Increasing the bandwidth of the waveform can therefore improve range resolution
without the need of decresing the pulsewidth (Levanon and Mozeson, 2004; Skolnik,
1970). Essentially, the pulse compression permits a decoupling between range
resolution and waveform energy allowing higher range resolution and better
detection probability at the same time. In Fig.2.5 the amplitude of the matched
filter output of (a) an unmodulated square pulse and (b) a compressed pulse of the
same duration in which linear frequency modulation (LFM) has been applied are
illustrated. As it can be seen the LFM pulse, i.e. the compressed pulse, exhibits
a much narrower mainlobe width leading to finer range resolution compared to
the unmodulated pulse. On the other hand, applying pulse compression has also
introduced secondary lobes, also called sidelobes alongside the mainlobe while the
unmodulated pulse exhibits only a mainlobe.

Sidelobes are undesired side effects of applying matched filter in compressed
or modulated signals. In real radar measurements, sidelobes associated with
targets of high RCS may be equal or even higher in amplitude than the mainlobe
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Fig. 2.5 Matched filter output of (a) an unmodulated square pulse and (b) a LFM
pulse.

corresponding to a weaker target. It is therefore possible for high RCS targets to
mask smaller targets even if they are well resolved in range in terms of resolution.
One of the most important property of modulated pulses is the ratio between
the mainlobe peak and maximum sidelobe peak. This ratio is most commonly
referred as sidelobe level (SLL) and is usually expressed in dBs.

Following, the most common pulse compression techniques are discussed. A
summary of the categorisation between different waveform designs is illustrated
in Fig.2.6. As it can be seen, two main categories are identified depending on if
the design is based on the frequency or the phase of the waveform. Those two
main categories are also partitioned in their respective sub-categories according
to their respective characteristics.

Waveform Design

Frequency modulation 

(FM)

Phase Coding

(PC)

Linear FM

(LFM)

Non-Linear FM 

(NLFM)

Binary Coding 

(BC)

Chirp-like PC 

(CLPC)

Polyphase Coding 

(PPC)

T-F Coding Modulation 

(TFCM)

Fig. 2.6 Waveform design categorisation.
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Fig. 2.7 Time-frequency profile of (a) linear and (b) non-linear FM waveforms.

Frequency Modulation

In the frequency modulated (FM) waveforms the applied modulation or coding
can be linear FM (LFM or Chirp), non-linear frequency modulation (NLFM) or
time-frequency coded modulation (e.g. Costas code) of the transmitted waveform.

Linear Frequency Modulation: Linear FM waveform is a very popular choice
in modern radar systems because it can achieve high range resolution holding the
advantage that the hardware implementation can relatively be kept simple. The
complex envelope of a LFM pulse with increasing instantaneous frequency and
amplitude equal to 1 is expressed as:

x(t) = ejπ(B/T )t2 , 0 6 t 6 T (2.8)

where B and T are the bandwidth and duration of the pulse respectively. A
graphical represtation of the LFM time-frequncy profile is illustrated in Fig. 2.7a.
Other advantages of LFM include its insensitivity to Doppler shifts and the
good hardware availability to form and process it. However, due to their ease
of generation LFM pulses are very susceptible to jamming. Moreover when the
bandwidth is on the order of hundreds of MHz, or even GHz, it becomes difficult
to perform matched filtering or pulse compression, because high-quality ADC
are hard to operate at such data rates (Levanon and Mozeson, 2004; Melvin
and Scheer, 2014; Richards et al., 2010). Also the range-Doppler cross coupling
is among the disadvantages resulting in measurement errors unless one of the
coordinates (range or Doppler) is determined. Another drawback is that the range
sidelobes are high compared with non-linear FM and phase-coded waveforms.
Weighting, also kown as windowing, is usually required for reducing the SLLs,
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resulting to a 1 − 2 dB loss in SNR while also degrading the spatial resolution
(Richards, 2006; Skolnik, 1970).

Non-Linear Frequency Modulation: The non-linear FM waveforms have
several distinct advantages compared to their LFM counterparts. In NLFM low
sidelobe levels of the compressed pulse can be achieved without requiring the use
of special weighting for their suppression. Hence NLFM has no signal-to-noise
ratio losses, as in the LFM. On the other hand, NLFM is more sensitive to Doppler
frequency shifts. In addition this pulse modulation technique is more complex
and the development of waveform generation is limited (Richards, 2006; Richards
et al., 2010; Skolnik, 1970). In Fig. 2.7b, a graphical representation of the NLFM
time-frequency profile is presented.

Time-Frequency Coded Modulation: In time-frequency (T-F) coded mod-
ulated waveforms a relatively long pulse of length T is divided into Nc sub-pulses
in time bins with duration ∆T = T/Nc, with each sub-pulse allocated in different
frequency bin ∆B = B/Nc, where B is the total bandwidth. Those sub-pulses are
usually referred as chips. Generally, the time and frequencies are equally spaced
and the pulses are of the same amplitude but may also vary. As a special case, if
the frequencies are monotonically increasing or decreasing, the waveform is simply
a stepped approximation of LFM (see Fig. 2.8a).

Costas codes, originally introduced by (Costas, 1984), compose one of the most
important classes of frequency-coded waveforms. The uniqueness of Costas codes
is that the number of ovelaping sub-pulses of an original and a time-frequency
shifted Costas code cannot be larger than one for all but the zero-shift case (Cohen,
1991; Levanon and Mozeson, 2004). The time-frequency coding of a Costas 7 code
is illustrated in Fig. 2.8b.

Phase Coding

Phase-coded (PC) waveforms differ from LFM and NLFM waveforms in that a
long pulse is sub-divided into a number of shorter sub-pulses of equal duration.
Each sub-pulse has a particular phase, which is selected in accordance with a
specified phase code or code sequence. In general each sub-pulse corresponds with
a range bin. Binary coding (BC) is the most widely used type of phase coding.
Among the common advantageous characteristic of phase-coded waveforms are
their lower range sidelobes compared with LFM waveforms and their robustness
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Fig. 2.8 Time-frequency profile of (a) LFM and (b) Costas 7 code.

in jamming conditions, since coding of the transmitted signal offers additional
protection against ECM. However the resolution performance of PC waveforms
can be rather poor in a dense target environment or in presence of distributed
clutter (Nathanson et al., 1991; Richards, 2006; Skolnik, 1970).

Binary coding: Binary coding is the most widely used phase coded waveform.
In this coding method, the binary code of pulse compression consists of a sequence
of either +1 or −1 associated with the set of phases to be selected. First a long
pulse of duration T is divided in time equally into Nc sub-pulses of width ∆T . The
phase of each sub-pulse then is chosen to be either 0 or π radians corresponding to a
code bit of +1 or −1 respectively. The transmitted signal alternates between 0 and
π radians in accordance with the sequence of elements permitting an increment of
pulse bandwidth by means of changing appropriately the phase of each sub-pulse.
Since the transmitted frequency is usually not a multiple of the reciprocal of the
sub-pulse width, the coded signal is generally discontinuous at the phase-reversal
points (Levanon and Mozeson, 2004; Nathanson et al., 1991; Skolnik, 1970).

The matched filter output could be similar to a spike of width ∆T . The pulse
compression ratio (PCR) is thus given as ϱPC = T/∆T ≈ BT , where B ≈ 1/∆T
represents the bandwidth of a sub-pulse1. Also the output waveform extends a
time distance of T to either side of the peak response (or central spike) having
waveform segments other than spike, which are called time or range sidelobes.
After receiving the echo signal the compression filter readjusts the relative phases

1The pulse compression ratio can be expressed as the ratio of the range resolution of an
unmodulated pulse of length T to that of the modulated pulse of the same length and bandwidth
B.
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Table 2.1 Known Barker Codes

Length Codes Sidelobe level ratio

2 +− ++ −6 dB
3 + + − −9.5 dB
4 + + −+ + + +− −12 dB
5 + + + − + −14 dB
7 + + + − − + − −16.9 dB
11 + + + − − − + − − + − −20.8 dB
13 + + + + + − − + + − + − + −22.3 dB

of the frequency components so that a narrow or compressed pulse is reproduced
or reconstructed. Targets with noise overlapping can be separated in the receiver
using suitable processing algorithms (Levanon and Mozeson, 2004; Nathanson
et al., 1991; Skolnik, 1970). As a matter of fact the selection of the so-called
random 0, π phases are very critical.

Optimum or Barker codes are a special class of binary codes, which are
considered optimum in the sense that provide low sidelobes of equal magnitude in
equal time. A limited number of these optimum codes exist, while a computer
based study searching for Barker codes up to 6000 elements has obtained only 13
(see Table 2.1). Since there are no Barker codes greater than 13, the maximum
compression ratio is 13 which is rather low. Setting Nc equal to code length, the
main lobe to SLL peak ratio of Barker code is 1/Nc giving a minimum of −22.3
dB power ratio for Nc = 13 (Skolnik, 1970). Binary codes that are characterised
by minimum sidelobes but do not meet the 1/Nc Barker criterion are often called
minimum peak sidelobe (MPS) codes. These codes are found using exhaustive
computation and have a peak SLL for each maximum code length Nc, i.e. peak
SLL of 1 for Nc ≤ 13, peak SLL of 2 for Nc ≤ 28, peak SLL of 3 for Nc ≤ 51, etc.
(Levanon and Mozeson, 2004).

Polyphase coding: In polyphase coding the phase values are allowed to take
any value, in comparison to binary which only values of 0 and 1 are permitted.
This can lead to lower to SLL with however the mainlobe to peak SLL ratio being
always bounded by the 1/Nc limit (Levanon and Mozeson, 2004). The polyphase
coded sequences with minimal main lobe to SLL peak ratio are called generalised
Barker or polyphase Barker sequences and are usually derived using numerical
methods that optimise the AC function sidelobes.
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Chirp-like phase coding: The main drawback of binary and polyphase coding
is that they aim to optimise only the AC of the signal and do not take into
account the response of the matched filter if a Doppler shift is introduced due
to the targets relative motion in radar applications. Chirp-like phase codes use
phase coding to achieve responses similar to LFM pulses also called chirps. More
precisely, the Frank codes are derived from the phase history of a linear frequency
stepped pulses (Levanon and Mozeson, 2004) with the main drawback that the
code sequence must be of a perfect square length, i.e. Nc = m2. The P1, P2 and
Px codes are modified version of the Frank codes with the dc or center frequency
being moved in the middle of the pule instead of the beginning, as in Frank.
Although the mainlobe to SLL peak ratio in both Px and Frank codes is the same,
the integrated sidelobe of the Px is lower. Unlike Frank and Px codes, Zadoff-Chu
codes are chirp-like phase codes that can be generated for any desired length Nc

given by cZC = ejφc , where φc is a Nc length vector with each of its elements
calculated as:

φc =


2π
Nc
r (m−1)2

2 if Nc is even
2π
Nc
r (m−1)

2 if Nc is odd
(2.9)

where 1 ≤ m ≤ Nc, and r is any integer relatively prime to Nc, i.e. r and Nc are
commonly divisible by only 1. Other chirp-like phase codes include the P3, P4
and Golomb polyphase codes which are cyclically shifted and decimated versions
of the Zadoff-Chu codes.

It should be mentioned that while other, more advanced pulse compression
waveform modulations, such as stepped chirp waveforms and adaptive waveform
designs (Melvin and Scheer, 2014), are widely used in radar applications they are
not in the scope of this thesis and hence will not be examined.

2.3 Multisensor Systems

Nowadays many tracking and surveillance systems are arranged as multisensor
configurations, which are used to enhance the breadth of measurement and
increase the capability of the system to overcome the failure of any individual
sensor. Multisensor radar systems are a promising technology, which has received
significant attention for both military and non-military applications. These
multiple sensing systems are characterized by utilizing a large variety of sensors
to detect, to classify and track targets.
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Currently, most of the multisensor system architectures depend on either a
central processor unit for the implementation of global data fusion or a central
communications medium for all message exchanges between individual sensors. By
decentralising the information processing, detection, target estimation, and other
high level products of local processing are communicated to a central processor.
This pre-processing limits the amount of information that needs to be passed
on to develop a final detection decision or estimation. The central processor
takes advantage of the information provided by individual radars to improve
detection/estimation performance (Blum, 1999; Blum et al., 1997; Chernyak, 1998;
Viswanathan and Varshney, 1997).

Depending on the radar waveforms transmitted from each radar system, the
multisensor radar systems are classified into two categories: Multistatic and
MIMO radar systems (Haimovich et al., 2008). In multistatic radar system, each
radar component transmits the same waveform that might shift in phase. Often
multistatic radar is also referred to as ‘multisite’ or ‘netted’ radar. While in the
literature MIMO radar has been oftenly viewed as a type of multistatic radar,
in contrast to multistatic , MIMO radar is characterized by the distinction of
waveforms attributed to each transmitter and the joint processing that MIMO
is emphasised (Bliss and Forsythe, 2003; Haimovich et al., 2008). Due to the
different waveforms that MIMO radar employ, the echo signals can be re-assigned
to the single transmitter. Additionally the multiple arbitrary waveforms affect
the range and Doppler resolution of the radar system, while the probability of
target detection is also increased improving the SNR (Li and Stoica, 2007, 2009;
Li et al., 2007). Furthermore, this type of sensor network can significantly improve
target detection, parameter estimation, as well as target tracking and recognition
performance (Lehmann et al., 2006; Li and Stoica, 2007; Li et al., 2007).

Multisensor systems can also be categorised by the way the nodes are allocated
in the space. Generally, mulisensor systems fall into two main spatial configu-
rations: co-located and distributed characterising systems with sensors placed
in close and wide proximity respectively (Haimovich et al., 2008). In Fig.2.9 an
illustration of how multisensor systems can be categorised depending on their
operating waveforms and spatial configurations is provided.

2.3.1 Co-located Radar Systems

Co-located arrays are a typical radar configuration, where the arrays of T/R
antenna units are placed in a close proximity, such that their directions to the area



2.3 Multisensor Systems 28

Co-located Distributed

Multistatic

MIMO

 Separate waveform 
generators

 Sensors in wide 
proximity

 Same waveform 
generator

 Sensors in close 
proximity

 Separate waveform 
generators

 Sensors in close 
proximity

 Same waveform 
generator

 Sensors in wide 
proximity

Fig. 2.9 Multisensor systems categorisation.

of interest is the same. Since both transmitters and receivers are in closely spaced
arrays, the target bearings are the same with respect to both transmitting and
receiving arrays. Considering this antenna configuration, the transmitting antennas
are positioned closely enough such that the target RCS observed is identical for
all transmitter-receiver pairs. Hence the target is approximated as a point like
target similar to the traditional radar systems. This orientation offers superior
parameter identification, direct applicability of adaptive non-parametric techniques
for parameter estimation, enhanced performance of parametric algorithms and
flexibility of transmitted beampattern designs (Li and Stoica, 2009).

Phased Arrays Antenna

One of the most commonly used configuration of co-located radar systems in phased
arrays antennas. In main principle, a thinned array of antennas with controllable
phase are used to create a beam of radio waves that can be electronically steered
to point in different directions, without moving the antennas (Balanis, 2016;
Fishler et al., 2006; Milligan, 2005; Stutzman and Thiele, 2012). In a phased array
antenna system, although each T/R unit has its own transceiver and ADC, it
only transmits a copy of a transmission signal obtained from a central waveform
generator, which is possibly time-shifted. The power from the transmitter is fed
to the antennas through devices called phase shifters, controlled by a computer
system, which can alter the phase electronically, thus steering the beam of radio
waves to a different direction. Shifting the phase of the signal emitted from each
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Fig. 2.10 Example of phased array antenna beam-forming.

radiating element, to provide constructive/destructive interference so as to steer
the beams in the desired direction (Fishler et al., 2006; Milligan, 2005). In Fig 2.10
a graphical illustration of a phased array in given. As it can be seen the antenna
elements are placed in a line with a distance d from each other. To control the
beam angle the phase delay ∆φ is chosen as:

∆φ = 2π
λ
d sin θst (2.10)

where λ is the wavelength of the input signal and θst is the steering direction. To
avoid grating lobes and simplify the system usually half of a wavelength is chosen
as the distance between the antenna elements, i.e. d = λ/2 (Richards et al., 2010).

Co-located MIMO

Although the configuration of co-located MIMO and phased array systems is very
similar, on contrary to phase array scheme, in a co-located MIMO radar system
each radiator has its own arbitrary waveform generator. This implies that each
transmitter of co-located MIMO uses an individual waveform, which is the basis for
the assignment of the echo signals to the corresponding source. The fundamental
difference between co-located MIMO and phased array radar is that MIMO radar
always transmits multiple probing signals via its antennas that may be correlated
or uncorrelated with each other, whereas phased array radars transmit shifted
versions of a single waveform, which are fully correlated. In literature phased
array antenna system is often referred as single-input multiple-output (SIMO), if
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it is compared with MIMO radar system (Li and Stoica, 2007, 2009; Melvin and
Scheer, 2014).

In co-located systems, the receiver always knows the properties of the transmit-
ted vector signal for a given array configuration. Similarly, parameters estimated
at the receiver can be fed back to the transmitter as well. This is a major advan-
tage of the co-located systems having the potentials to develop novel techniques
that could adaptively optimise various transmitter characteristics, such as array
geometry and waveform design, depending on the fed back parameters estimated
at the receiver. Moreover, the co-located systems configuration has further prac-
tical advantages due to array geometry, since required processing tasks could
be performed locally without wireless communication link to a central processor
(Li and Stoica, 2009). Supposing that the T/R elements of a narrowband signal
model are placed within relatively small area of a common phase origin, then
known relative antenna displacements lead to predictable phase offsets of signal.
This allows co-located array response vectors to be defined as a function of signal
bearings and array properties (Lehmann et al., 2006; Li and Stoica, 2009).

2.3.2 Distributed Radar Systems

Recently the technology of distributed radar system (DRS) or also known as
distributed radar networks received increasing attention providing an ability
to survey an area of interest with multiple transmitters and receivers. In the
distributed radar arrangements, the antennas are widely separated and the radar
data processing is much more complex than in the co-located systems case. Using
this configuration, a very large area is possible to be kept under surveillance by
distributing the sensors accordingly. Normally the radar sensors are located in a
random distribution over the entire area, while the number of devices comprising
the network should be considered into analysis of such a radar system.

In contrast to co-located systems, distributed radar networks consist of several
transmitter and receiver units spread over an extended area. It is obvious that
a major difference between a distributed system and a co-located system is the
need for communication between the individual nodes of the radar network. This
implies that communication media, wavebands and paths, reliability in information
traffic and speed, and security of performance should be involved into the desired
surveillance scheme (Beide, 2001). The criterion regarding communication issues
may be decided upon whether or not the link between the nodes and/or the central
processing station will be wireless or wired. Wireless communication is preferable
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solution for distributed radar referred to a long baseline scenario, since it can offer
more flexibility in implementing particular radar system formation.

Distributed Multistatic

Distributed multistatic radar systems (DMRS) also known as distributed aperture
coherent radars, can exploit spatial diversity as they contain multiple spatially
diverse monostatic or bistatic radar components covering an extensive area. Simi-
larly to phased array systems, the DMRS are characterised by coherent transmitted
signals often shifted in phase (Attia and Abend, 1991; Haimovich et al., 2008; Lin
et al., 2016). Each of the radar sensors contains a transmitter and/or a receiver
dedicated on radar operation and a communication link with the beam controller
through networking cables, fibres or wireless (Attia and Abend, 1991; Li and
Stoica, 2009). As described in (Lin et al., 2016) a DMRS of N sensors can achieve
a N3 SNR gain if full coherency is achieved. Their main advantages include
increse of target detection range, high accuracy of target localization, improved
estimation of both target speed and acceleration, increased resistance in jamming
and reduced clutter density. It should be noted that the real possibilities of taking
certain advantages depend on the specific type of multistatic system (Chernyak,
1998). However there are several drawbacks as additional difficulties, which should
be addressed when creating and operating a multistatic radar system. Among the
main disadvantages are the necessity of centralised control and synchronization,
the necessity of data transmission lines, additional requirements for phasing of
stations, increased requirements for signal and data processing, the necessity of
accurate station positioning and mutual alignment, need for lines-of-sight (not
necessary straight) between stations and targets, system complexity and system
cost (Chernyak, 1998).

Distributed MIMO

As described in previous paragraphs, the distinctive difference between MIMO
and multistatic radar is the diversity in the waveforms operated by the different
sensors. One of the main advantage is that this diversity can offer the ability to
improve radar performance by exploiting RCS diversity in radar systems with
widely separated antennas. In (Fishler et al., 2006) the authors have provided a
simplified method for modeling the signals received from complex targets, based in
which the necessary sensor spacing conditions for a MIMO radar system to be able
to categorised as distributed were derived. Moreover a comparison of phased-array
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and distributed MIMO radar systems was presented in (He et al., 2010) in terms of
detection performance on moving targets in homogeneous clutter. Results showed
that distributed MIMO can better handle slow moving targets by exploiting
Doppler estimates from multiple directions. The ability of distributed MIMO to
support high resolution target localization was also discussed in (Haimovich et al.,
2008) and (Lehmann et al., 2006). More precisely, in (Haimovich et al., 2008) it
was shown that if phase synchronisation and coherent processing of the received
signals is achieved, the spatial resolution of MIMO radar with widely separated
antennas scales with the wavelength of the carrier frequency and therefore can
greatly exceed the bandwidth resolution of the operating waveforms waveform.

2.3.3 Current Challenges in MIMO Radar

MIMO technologies have been intensively researched in recent years. New opera-
tional scenarios demand greater flexibility and higher capacity detection for radar
systems. One of the most important current challenges in MIMO radar is the
search for orthogonal waveforms, aim to remove interference problems between
the antenna during both the transmission and matched filtering phases. Since
the bandwidth of a radar pulse is highly related to its resolution in time (see
Section 2.2.3), orthogonal waveforms for MIMO radar are desired to share the
same bandwidth. This falls to the spectrum sharing (SS) and waveform diversity
(WD) challenge which is more extensively discussed in Section 2.4.1.

Optimum sensor placement and power allocation are two very important
considerations in both co-located and distributed MIMO systems which usually
are expressed as a joint problem. In the literature many approaches addressing
this complex issue have been proposed. In (Gorji et al., 2014) the optimal sensor
placement problem is considered based on the Cramer-Rao lower bound (CRLB)
accounting for co-located MIMO configurations. Simulation results indicated that
superior localisation performance can be achieved when the proposed optimal
antenna configuration is used.

Considering distributed configurations, in (Sun et al., 2002) an antenna place-
ment analysis is held based on the Fisher information matrix (FIM) of the system
accounting for both radar signal and SNR. Moreover, the optimum subset of
the available sensors to be operating is derived based on the Fisher information
distance and an exhaustive search method. Furthermore, in (Ma et al., 2014) the
FIM and squared position error bound are used as metrics for a joint optimisation
of a sensor subset selection and a power allocation problem. Additionally, in
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(Chen et al., 2015a) the power allocation problem is investigated for range-only
target tracking based on the Bayesian FIM examining different sensor geometries.
From the above discussion it is concluded that different antenna-target geometries
obtain variant information about the target location due to the fluctuation of
the target’s RCS in different observation angles. Moreover different metrics such
as the Fisher information distance and the Kullback-Leibler divergence (KLD)
(see Section 3.3.4) may yield different results when optimum sensor selection is
considered. In addition, allocating the constrained available power into a small
subset of sensors can significantly improve the localisation accuracy of the overall
system, while use of more sensors leads to better tracking performance, regardless
of the power allocation strategies and antenna geometries.

Finally, the optimisation of sensor allocation for MIMO radar system in multi-
target scenarios has been investigated. In (Gao et al., 2014b) and (Gao et al.,
2014a) an antenna only and an antenna-time allocation scheme were introduced
based on the relative entropy and applied in distributed configurations. The
derived analysis indicated that antenna allocation generally outperforms time
allocation while the proposed antenna-time allocation scheme is able to achieve
the best detection performance.

Concluding, it should be pointed out that most of the work in the reviewed
literature has investigated the various optimisation approaches based on prior
assumptions regarding either the operating waveform designs or the sensor-target
geometries while also focusing on specific performance aspects of the MIMO radar
system. In Section 3.3.5 the concept of the MIMO ambiguity function (AF) will
be discussed in an attempt to define a more general performance evaluation tool
for MIMO radar systems.

2.4 Spectrum Sharing In Radar

The vast rise of wireless technology through the last decades has allowed a
dramatical growth on the number of users and services that operate in the range
of radio frequencies (RF). Moreover, predictions indicate that the amount of
active devices and data trafficking will continue to grow in the next years with
much higher rates (Cisco, 2016). In addition due to their advantage to operate
in any light and weather conditions, radar systems have been introduced in
numerous military and civilian applications. As both wireless communication
and radar devices need to operate in the same medium, spectrum management
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and allocation have been very challenging issues attracting the interest of the
research community. Here the definitions of spectrum sharing (SS) will be used
for methods and techniques which allow simultaneous usage of a specific RF band
in a specified spatial occupancy.

In general, SS can be employed between communication systems, radar systems,
and between communication and radar systems. While the spectrum management
between communication systems is a very topical subject in communication
research community, it does not fall into the scope of this research and will not be
further discussed in this section. Due to the nature of the transmitted signal, SS
between radar systems can be better expressed by the term of waveform diversity
(WD) (Gini et al., 2012; Wicks and Mokole, 2011). Main goals of WD is to address
the issue of ever-growing competition for radar allocated spectrum and exploit
the rapid advances in digital signal generation and processing (Blunt and Mokole,
2016). Further discussion regarding WD in modern radar systems will be given in
Section 2.4.1.

During the last decade researchers have proposed various SS schemes allowing
the simultaneous radar and communication operations. In (Hayvaci and Tavli,
2014) these techniques were categorised into three broad categories summarised in
Table 2.2. The first category addresses scenarios in which the radar operation is
prioritised and remains unaffected while the communication system needs to ensure
the shared spectrum restrictions are satisfied. In the second category, systems are
prioritising the communication operations and the interference is mitigated at the
radar side. In (Aubry et al., 2016) an extensive review is presented on waveform
designs allowing spectral coexistence with overlaid RF system while trading in
radar performance features such as resolution and SLL. While the examined
methods follow different approaches, their aim is to provide dynamic optimization
of the spectrum usage only on the radar side. Finally, in the third category,
more sophisticated schemes employ joint Radar-Communication designs to allow
both the systems to co-operate to achieve better overall performance. Basic
techniques and recent advances regarding joint Radar-Communication designs
will be discussed in Section 2.4.2.

2.4.1 Waveform Diversity

As discussed in Section 2.3, MIMO radar is a rising technology with many advan-
tages compared to their more traditional monostatic and mulitstatic counterparts.
The main discriminative characteristic of MIMO radar is the diversity governing
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Table 2.2 Spectrum Sharing for Radar and Communication systems

System category Radar operation Comms operation
Comms in presence of Radar Not affected Restricted
Radar in presence of Comms Interfered Not restricted

Joint Radar and Comms Co-operation Co-operation

the operating waveforms. One of the most general assumption made when the
performance of MIMO radar schemes is assessed, is the full orthogonality of the
operating waveforms i.e.:

Rkl(τ) =
∫ ∞

−∞
sk(t)∗sl(t− τ)dt = 0, for all k ̸= l (2.11)

where sk(t) and sl(t) denote the waveforms operating on the k-th and l-th trans-
mitter respectively, and Rkl(τ) is the cross-correlation function between sk(t) and
sl(t). A straight forward approach of a such WD design scheme is implementing
orthogonal frequency division multiplexing (OFDM) to place the transmitted
signals into different orthogonal sub-carriers i.e.:

siOFDM(t) = m(t)ej2πfit (2.12)

where m(t) and fi are the modulated signal and carrier frequency on the i-th
transmitter respectively. To achieve full orthogonality the carrier frequencies must
be chosen as:

fi > f0 + (i− 1)Bm (2.13)

where f0 is the starting frequency, and Bm is the modulation bandwidth of the
signal m(t). Among others, the authors in (Wen-kun et al., 2016) adopted this
signal model using linear frequency modulated (LFM) baseband waveforms. In
this special but very widely used case the signal in (2.12) can be expressed as:

siOFDM−LFM(t) = 1√
T

rect
(
t

T

)
ej2πfit+jπ(BLFM/T )t2 (2.14)

where BLFM/T is the chirp rate and BLFM is the modulation bandwidth of the
LFM waveform.

While this so called OFMD scheme has the advantage of being easy to im-
plement, it comes with two main drawbacks. The first is associated with the
choice of fi being restricted by the maximum Doppler shift fDi introduced on
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each transmitted pulse. In cases of relative motion between the nodes in each
transmitter-target-receiver signals will be moved to different harmonic sub-carriers
f̂i = fi + fDi on the reception. This implies that for a proper orthogonality and
complete decorrelation of the signals on the receiver side the sub-carrier frequencies
in (2.13) shall be reformed as:

fi > f0 + (i− 1)(Bm + fDmax) (2.15)

where fDmax is the maximum estimated frequency shift. In (Fang et al., 2008)
an extended analysis on the effects of different frequency intervals fi − fi−1

was investigated for the OFDM-LFM case showing how high sidelobes can be
introduced on the matched filter output. The second drawback is associated with
the SS problem. As it can be easily extracted from (2.12) and (2.13) the total
occupied bandwidth of OFMD-WD scheme will be:

B > NsBm (2.16)

where Ns is the total number of orthogonal waveforms. Since the bandwidth
of a signal in highly associated with its time/range radar resolution; it can be
easily seen from (2.16) that for a fixed bandwidth B there will be a trade-off
between the number of orthogonal waveforms that can be generated and their
radar range resolution. To address this SS problem, various WD techniques
have been proposed in the literature. While the term “orthogonal signals” or
“orthogonal waveforms” is widely used to describe such SS-WD designs, in reality
the condition in (2.11) generally is is not met in SS-WD designs. Here a more
loose condition will be used to describe waveforms with low cross-correlation i.e.:

Rkl(τ) =
∫ ∞

−∞
sk(t)∗sl(t− τ)dt ≤ ϵ (2.17)

where ϵ is a tresshold parameter the value of which depends on the degree of
orthogonality or how the low the cross-correlation between the waveforms should
be for a specific application. The next paragraphs will discuss WD schemes that
generate low cross-correlation (CC) that can apply on MIMO radar applications.

Discrete Frequency-Coding Waveform

The discrete frequency-coding waveforms (DFCW) has been commonly used in
wideband radars, as they can allow high range resolution and improve detection
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capability (Wehner, 1987). In the literature many authors have proposed variations
of DFCM, as schemes for SS-WD designs. A technique based on frequency coding
used to generate low CC waveforms for “super low cross-correlation noise” in MIMO
SAR was presented in (Meng et al., 2013). The applied technique, also called
“same frequency coding orthogonal signals” (SFCOS), uses series of consequent
sub-pulses each of which has a constant randomly selected phase. Special cases
of these waveforms include the traditional up and down chirps where the phase
instead of being random is in an increasing or decreasing order respectively. In
(Liu, 2009) the AC and CC properties of DFCW with basis of fixed frequency
(FF) pulses (DFCW-FF) and LFM pulses (DFCW-LFM) were investigated. An
illustration of the time-frequency profiles of a random DFCW-FF and DFCW-
LFM waveform are presented in Fig.2.11a and Fig.2.11b respectively. As it can
be seen while DFCW-FF uses monotonic sub-pulses, DFCW-LFM utilises LFM
in a sub-pulse level to achieve higher diversity. In fact, as demonstrated in (Liu,
2009), DFCW-LFM can offer lower AC SLL as well as nullify the grating lobes
compared to DFCW-FF. Moreover a relationship between the CC peak levels of
DFCW-LFM generated waveforms and their time-bandwidth product was also
presented. A numerically optimized method to generate low CC DFCW-LFM
with good AC properties was proposed in (Reddy et al., 2012).

In (Wang, 2015b) the authors presented a hybrid LFM coding technique, also
called “OFDM Chirp Basis Design”, to generate low CC waveforms. As it can
be seen in Fig.2.11c, the proposed scheme utilises an extra degree of freedom
compared to DFCW-LFM as it uses both up and down chirps allocated in different
time-frequency bins based on a random mapping matrix. The good performance
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Fig. 2.11 Example of time-frequency mapping in (a) DFCW-FF, (b) DFCW-LFM,
and (c) Hybrid DFCW-LFM schemes
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of the waveforms was illustrated in terms of AF and cross-ambiguity function
(CAF) properties and SAR imaging simulation. The authors in (Shen et al., 2014)
proposed chaotic DFCW (CDFCW) designs, showing that Tent and Bernoulli
DFCW outperform the design presented in (Liu, 2009). In (Yong-Hua et al., 2015)
a discontinuous spectra DFCW design method for MIMO sky-wave radar was
presented. The design showed to offer DFCW-FF and DFCW-LFM waveform sets
with low CC but hight AC SLL introduced by the spectra discontinue. Authors
in (Mehany et al., 2015) showed that by replacing LFM with modified LFM in
a DFCM scheme the peak and integrated sidelobe rations can be significantly
reduced.

Other techniques

While DFCW has been demonstrated to be an attractive scheme for MIMO radar
waveform design, other techniques can be also applied to achieve WD with good
spectrum utilisation. In particular, time division multiplexing (TDM) can be used
to decorrelate waveforms in different time slots. Being a straight forward and easy
to implement approach, TDM unfortunately is not applicable in all radar systems
due to the requirement of good synchronisation and the range ambiguities that
are introduced. For these reasons, TDM has been mostly proposed for co-located
configurations system (see Section 2.3.1). Namely, in (Rambach and Yang, 2013)
and (Rambach et al., 2014) an investigation on the performance of DOA estimation
of moving targets in TDM MIMO radar was held, deriving also the conditions
for optimal TDM schemes based on the Cramer-Rao bound (CRB). Moreover, a
comparison of motion compensation methods for TDM continuous wave (FMCW)
radar was demonstrated in (Guetlein-Holzer et al., 2014). Experimental results
showed that both intertwined and triangular TDM schemes are able to deal with
the presence of different velocities in the same scene.

In a different approach, a MIMO radar waveform design based on chirp rate
diversity was presented in (Wang, 2015a). As shown the proposed scheme can
generate a large number of low CC waveforms with large time-bandwidth product,
constant envelope (CE), no range-Doppler coupling target response,and Doppler
tolerance. Furthermore, chirp rate diversity was also utilised in (Li et al., 2017)
where an OFDM chirp WD design was proposed. This modulation scheme shares
the same principle with DFCW, with the sub-pulses composing the waveforms
however having different time duration or different bandwidths, and constituently
different chirp rates with each other. As the authors demonstrate, this allows
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for lower AC and CC SLL compared to the DFCW-LFM and DFCW-HLFM
methods.

2.4.2 Joint Comunication and Radar

Recent technological advancements have increased the number of applications in
which both communication and radar operations are required simultaniously by the
same system. Examples of this kind of scenarios include intelligent transportation
systems (ITS) in which automotive vehicles must detect changes in their envi-
ronment while also performing vehicle-to vehicle and/or vehicle-to-infrastructure
communication in order to exchange information and alerts (Hartenstein and
Laberteaux, 2008; Hubaux et al., 2004). Another example of such applications is
distributed MIMO sensing networks in which the nodes must be able to perform
radar operations while also being aware of the state and position of collaborating
sensors.

The simplest and more straight-forward approach in joint comunication and
radar systems is to employ two separate sub-systems dedicated for each task. An
obvious drawback of such an approach however is the need of separate hardware
and spectrum resources which can be very significant for systems restricted
by low size, weight and power (SWAP), and areas/bands with high spectrum
occupancy respectively. To address these drawbacks, many researchers have
adapted the concept of joint communication-radar designs also called dual-function
radar communication (DFRC) systems (Hassanien et al., 2016). In (Blunt et al.,
2010) the authors exploited WD to embed a communication signal into radar
emissions using a bank of radar waveforms with each of which corresponding to a
communication symbol. The proposed design allows the communication receiver
to retrieve the correct transmitted symbol by matched filtering the received signal.

A different approach where time-modulated arrays are employed in order to
transmit information in a certain spatial direction by controlling the SLL while
also being able to perform radar operations though the main lobe was introduced
in (Euzière et al., 2014) and further examined in (Euzière et al., 2015). Moreover,
the authors in (Hassanien et al., 2015a) employ both WD and bi-level sidelobe
control to transmit series of bits in each radar waveform emission while keeping
the main lobe constant to perform radar operations. Lastly in (Hassanien et al.,
2015b) the authors proposed a phase-modulation (PM) method which uses two
orthogonal waveforms and a phase dictionary to map a phase symbol on the total
transmitted waveform. By applying a phase detector the receiver can determine
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Table 2.3 Comparison Between Different Information-Embedding Techniques
(Hassanien et al., 2016)

Waveform
diversity

Sidelobe
AM

Multiwaveform
ASK

PM
method

Number of
waveforms 2Nb One Nb One pair

SSLs change from
pulse to pulse No Yes Yes No

Communication
via side/main lobe Both Sidelobe Sidelobe Both

Directivety in
communication Broadcasting Directional Directional Either

the phase difference between the two waveforms and retrieve the transmitted
symbol.

A comparison between the aforementioned DFRC schemes was presented
in (Hassanien et al., 2016) with the result being summarised in Table 2.3. In
general, all the discussed joint communication and radar strategies aim to share
the available resources, such as hardware, power and bandwidth, to perform
both operations simultaneously, prioritising however the radar function of the
system. Nevertheless, inspecting Table 2.3 it can be seen that four discriminative
characteristics are identified. Namely, the number of waveforms used by each
respective method can significantly effect the memory requirements of the system.
As it can be seen the WD method (Blunt et al., 2010) requires the larger number
of waveforms among all the discussed techniques. Moreover, SSLs variation
between pulse to pulse transmissions may significantly distort the clutter and
signal dependent interference perceived by the radar system, consequently limiting
its ability to compensate these components. As previsly discussed, sidelobe
AM (Euzière et al., 2015) and multiwaveform ASK (Hassanien et al., 2015a)
schemes utilise these SLLs changes to embed information in their transmissions.
Another consequence of employing the SLLs for communication operations, is
that the system must support for digital beamforming, i.e. sensor array, while the
communication receiver must also be located in specific directions. In this manner,
the WD (Blunt et al., 2010) and PM (Hassanien et al., 2015b) methods can be
considered more flexible as they do not require any specific antenna structure, with
the former method however also not allowing for directivity in the communication.



2.5 Radar Imaging and Edge Detection 41

2.5 Radar Imaging and Edge Detection

Synthetic aperture radar (SAR) refers to a particular implementation of an imaging
radar system that utilizes the movement of the radar platform and specialized
signal processing to generate high-resolution images. A SAR is principally an
airborne or spaceborne coherent side-looking radar. This configuration takes
advantage of the echoes history as the radar platform is moving forward to
synthesise an antenna of larger aperture called syntetic aperture (Curlander and
McDonough, 1991; Melvin and Scheer, 2014; Skolnik, 1970).

Since SAR is an active radar system, it can overcome some of the fundamental
problems associated with conventional passive remote sensing, e.g. cloud cover,
changes of solar illumination, etc. The structures in SAR images give important
contextual information useful to the detection and the classification of entities,
as vegetation, urban area, and industrial area. Although SAR is a very effective
terrain and sea surface-mapping device, the provided images may be strongly
affected by speckle noise (Goodman, 1976). Significant aspects such as SAR
imaging principles, speckle noise reduction and edge detection are briefly discussed
in next paragraphs.

2.5.1 Synthetic Aperture Radar

Synthetic aperture radar systems have a side-looking imaging geometry based
on pulsed radar, which is installed on a forward moving platform. A graphical
illustration of a typical SAR geometry is given in Fig. 2.12. The direction of the
moving platform is commonly called along-track direction while perpendicular
direction in which the radar antenna is pointing is called cross-track direction. As
the radar moves continuously, high power pulses are transmitted from different of
its individual positions. Each transmission period is followed by the echo window
operation during which the radar captures the scattered echoes and stores the
received signals in a system memory. The transmission and reception or listen
procedure compose a complete T/R cycle repeated every PRI of time equal to the
inverse of the PRF (see Section 2.2). After passing through the receiver, the return
echoes are kept in the system memory. Therefore over the time, individual T/R
cycles are completed with the data from each cycle being stored in a processing
memory.

The SAR signal processing algorithms use both magnitude and phase of the
received signals over successive pulses from the elements of a synthetic aperture.
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Fig. 2.12 SAR system geometry

The inherent Doppler effects is also taken into account for the different transmitter
to target geometry in each succeeding cycle. Using these effects, targets can
be separated in the along-track direction on the basis of their different Doppler
frequencies. This technique was originally known as Doppler beam sharpening, but
later became known as SAR (Curlander and McDonough, 1991; Melvin and Scheer,
2014). Using the different delays in cross-track and the different Doppler shifts in
along-track direction the radar system can resolve the returns in down-range and
cross-range respectively (see Fig. 2.12) synthesising a 2-D map or a SAR image of
the illuminated area (Carrara et al., 1995).

The SAR operation is similar of a phased array (see Section 2.3.1), however
SAR uses one antenna in time-multiplexing mode in contrary to the large number
of the parallel antenna elements of a phased array. The range or down-range
resolution of a SAR image is directly related to the bandwidth of the transmitted
signal, while the azimuth or cross-range resolution improves as the length of the
real antenna aperture reduces. Therefore, transmitting wide bandwidth waveforms
allows to obtain fine down-range resolution, while high cross-range resolution
is achieved through coherently processing the echoes from the various positions
along flight path when emulating a large aperture (Elachi and Van Zyl, 2006;
Massonnet and Souyris, 2008; Oliver and Quegan, 2004).

As discussed previously, each position of the radar platform is taken into
account when adding the signals to integrate the energy for the along-track
direction. As a result of the radar movement, the distance between the radar and
the scatterer changes continuously with the minimum distance occurring when
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the scatterer is directly broadside of the radar platform. The distance changing
between the radar and the scatterer implies that after range compression, the
phase of the signal will be different for the separate positions along the flight path
(Melvin and Scheer, 2014). In practice, the phase of the return signal is affected
by several factors, which together can make the absolute phase return in any SAR
data collection essentially arbitrary, with no correlation from pixel to pixel. To
get any useful information from the phase, some of these effects must be isolated
and removed.

The most important factor affecting the phase is the interaction with the
ground surface. Depending on the properties of the material, the phase of the
wave may change on reflection. Therefore SAR system can measure target physical
properties (roughness and dielectric constant). Also coherent phase measurements
allow for digital elevation maps (DEM) and deformation mapping (Fetterer et al.,
1994). Operation of SAR system requires a complex integrated array of on-board,
navigational and control systems, with location accuracy provided by both Doppler
and inertial navigation equipment. A stable, full-coherent transmitter, an efficient
and powerful SAR-processor, and exact knowledge of the flight path and the
velocity of the platform are the main requirements of SAR system (Cumming and
Wong, 2005; Curlander and McDonough, 1991; Franceschetti and Lanari, 1999).

2.5.2 Speckle Noise

Electromagnetic waves emitted by active sensors travel in phase and interact
minimally on their way to the target area. After interaction with the target, these
waves are no longer in phase even though they are coherent in frequency. This is
caused by several factors, such as the difference in distance the waves travel back
from different targets, or the single versus multiple scattering due to the variance
in surface roughness (Lee et al., 1994). Also it should be noted that the signals
might go out of phase as the synthesized antenna moves (Hervet et al., 1998).

As a SAR image is formed by coherently processing the backscatter returns of
successive radar pulses, out-of-phase waves are superimposed producing a resultant
wave of greater, lower or the same amplitude. This interference effect causes a
pixel-to-pixel variation in intensity, which appears as a granular pattern having
bright and dark pixels called speckle noise. This irregularity of pixels result in
a SAR image not to have a constant mean radiometric level in homogeneous
areas. The coherent nature of the SAR imaging system inevitably leads to speckle
noise (Bruniquel and Lopes, 1997; Goodman, 1976; Lee et al., 1994). In Fig. 2.13
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(a) Original (b) Gaussian (c) Speckle

(d) Original (e) Gaussian (f) Speckle

Fig. 2.13 Example of two images before (left) and after introducing Gaussian
(middle) and speckle (right) noise.

examples in two images injected with artificial Gaussian and speckle noise are
illustrated. The main difference between the two different kinds of noise is that
Gaussian is an additional noise process while speckle noise is multiplicative (Singh
and Shree, 2016). This can be better illustrating by comparing the black region
in subfigures Fig. 2.13e and Fig. 2.13f. As it can be seen when speckle noise is
introduced in completely black or zero value pixels the effect is suppressed.

The presence of speckle reduces the radiometric resolution of the image and
the detectability of the image features. Speckle reduction is becoming a commonly
used routine process, since it is desirable to reduce the speckle noise prior to image
applications. In the literature various filtering approaches to reduce the speckle
noise have been proposed (Mansourpour et al., 2006; Meenakshi and Punitham,
2011; Podder and Hasan, 2016). Namely, simple approaches such as mean, median
and local region filters can be employed to mitigate the speckle intensity. Moreover,
Gamma-MAP, Frost and Lee filter which take into consideration further statistical
characteristics of the image usually have better performance (Mansourpour et al.,
2006). In (Yu and Acton, 2002) a speckle reducing anisotropic diffusion method
was prosed, demonstrating its superior performance compared to conventional
techniques in preserving edges. Further speckle reduction techniques include,
among others, wavelet based methods (Jagadesh and Rani, 2016; Liu et al., 2014a)
and local polynomial regression (Sharabati and Xi, 2016) . In (Mohan et al., 2016)
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an approach based on Wiener filtering and adaptive wavelet thresholding ,which
outperforms the method proposed in (Liu et al., 2014a), was demonstrated.

2.5.3 Edge Detection

In radar applications, it is common to apply image processing techniques for
target detection in SAR images. A fundamental step in image analysis is the
image segmentation which consists of partitioning an image into homogeneous
regions that share some common properties. There are two main strategies
approaching the image segmentation problem: edge and region based. Edge-
based segmentation looks for discontinuities in the intensity of an image, while
region-based segmentation looks for uniformity within a sub-region based on a
desired property, e.g. intensity, color, and texture. In gray-scale images, edges
are associated with intensity changes and are efficient descriptors of the image
structure. Results of the edge detection process are used in higher-level image
analysis stages such as pattern recognition and three dimensional (3-D) image
reconstruction (Le Moigne and Tilton, 1995; Marr and Hildreth, 1980; Wang,
1993).

Edge detection process plays a key role in image analysis. In images with
no texture, an edge can be defined as the boundary between two regions with
relatively distinct properties. Among the main criteria that should be satisfied
by an edge detector are the low sensitivity to noise, the good edge localization
and the avoidance of incorrect edge detection (Canny, 1983). Over the time
many classical edge detectors have been developed including morphological edge
detectors and differentiation-based edge detectors (Holyer and Peckinpaugh, 1989;
Jensen, 1986; Lee et al., 1987; North and Yu, 2001; Shen and Castan, 1992). Some
of them are mainly based on either detection of maxima of the gradient or zero
crossings of the second derivatives. Since differential operators are sensitive to
noise, a pre-processing smoothing is often required. Particularly in processing
SAR images, operators of very low sensitivity to noise should be considered to
efficiently detect edges. The usual gradient-based edge detectors, developed for
optical images, compute the difference between the local mean values on opposite
sides of considered pixel. Some of the well-known edge detection operators based
on the first derivative of the image are Roberts, Prewitt, and Sobel, which are
traditionally implemented by convolving the image with masks (Ulaby et al., 1981).
In Fig.2.14 an example of edge extraction using (b) a Sobel and (c) a Canny
detector is illustrated, using automatic threshold as implemented in (MathWorks,
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(a) Original Image (b) Sobel Detector (c) Canny Detector

Fig. 2.14 Example of edge detection in (a) an original using (b) a Sobel and (c) a
Canny detector.

2017a). As it can be seen the Canny detector is more sensitive to weak edges (see
shapes inside the coins) compared to the Sobel detector. However, it should be
mentioned that generally Sobel detectors are much simpler to implement than
Canny detectors.

In the literature various edge detection techniques specialised for SAR images
have bee proposed. Namely, in (Touzi et al., 1988) an edge detector based on
the ratio of averages (ROA) between pixel values has been developed. For better
edge extraction, the detector operates along four directions over windows of
increasing size while a geometrical operator is also applied to thin the retained
edges. Following more recent studies, in (Wang et al., 2011) a method for
detecting edges in SAR images based on edge localisation from their respective
optical images is presented. While the obvious disadvantage of such technique is
that both SAR and optical images are required for the same area, the proposed
method demonstrated to outperform the ROA and Canny detectors. An edge
detection technique using real and imaginary decomposition was proposed in
(Baselice et al., 2014). As demonstrated, the proposed method is robust to
phase offset artifacts while achieving good edge detection performance, in the
cost however of high computational cost. In (Hazarika et al., 2015) an echanced
Lee filter based on the Lapped orthogonal transform was introduced to allow
simultaneous speckle reduction and edge detection. Moreover, in (Wei et al., 2016)
crater-shaped windows were employed to replace the more traditional square-
shaped windows. Applied in combination with an edge compensation strategy,
the proposed technique demonstrated its good edge detection performance in
simulated and real images.
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2.6 Summary

This chapter presented a critical research review in a number of very important
aspects in radar systems. Basic and advanced radar techniques were discussed
with more focus on radar waveform design and pulse compression techniques.
The multisensor radar systems were also introduced exploring their categorisation
depending on the operating signals and geometry. Later, the topical subject of
spectrum sharing was discussed addressing recent advances regarding WD in
MIMO radar and DFRC. Analytically, proposed WD schemes such as OFDM and
DFCW that allow design of multiple waveforms with good AC properties and
low CC peak levels were investigated. Moreover, recently proposed techniques
that allow joint communication and radar operations were investigated. Namely
schemes exploiting WD, sidelobe AM, multiwaveform ASK, and PM to allow
communication transmission through radar emissions were discussed. Lastly, the
concept of SAR was introduced with focus on the speckle reduction and edge
detection challenges.



Chapter 3

Advanced Time-Frequency
Transforms

3.1 Introduction

In this chapter the basic concepts of time-frequency (T-F) analysis are discussed
in the context of radar signal processing. Commonly used T-F transforms and
signal representations such as the short-time Fourier Transform (STFT) and
Wigner-Ville distribution (WVD) are introduced in conjunction with their general
radar applications. Moreover, the ambiguity function (AF) will be extensively
discussed highlighting its importance as a performance evaluation tool for radar
systems. In detail, the canonical or Woodward AF definition and its applications
in waveform design are firstly discussed. A different, less common definition of the
AF based on the Kullback-Leibler divergence (KLD) is also introduced, considering
its more generic approach compared to the canonical definition. For completion,
other common AF definitions are also provided concerning both monostatic and
multisensor systems. Next, the fractional Fourier transform (FrFT) is introduced
as a generalisation of the conventional Fourier transform (FT), while its various
applications in radar signal processing are also discussed. Lastly, the phase stretch
transform (PST) is presented in connection with its good performance in edge
detection applications.

3.2 Time-Frequency Analysis

Signal analysis in both time and frequency domains is fundamental for almost all
radar applications. As discussed in Chapter 2, in basic radar processing, time
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and frequency measurements are directly converted, respectively, into the target’s
range and relative velocity from the radar sensor. As a results, the signal needs
to be examined in either of these two domains to extract the desired parameters.
Since the received signal is sampled in the time domain, to transfer it into the
frequency domain the FT is commonly employed. While for basic radar processes
the FT is sufficient, examining signals in more complex scenarios usually requires
more sophisticated tools.

In signal processing, T-F analysis includes representations and processing
techniques that allow the study of a signal in both time and frequency domains
simultaneously. Essentially, in T-F analysis rather than examining a 1-dimensional
signal as function of time or frequency separately, T-F transforms are employed to
extract information of the signal as a function of both or even in between domains.
Generally, the T-F transforms can be divided into two classes: linear and bi-linear
or quadratic transforms coresponding to their dependance on the applied signal
(Hlawatsch and Boudreaux-Bartels, 1992).

3.2.1 Linear Transforms

Linear transforms include operations which satisfy superposition and linearity
principles, i.e.:

T {c1x1(t) + c2x2(t)} = c1Tx1 + c2Tx2 (3.1)

where T {·} is a T-F transform, x1(t) and x2(t) are two arbitrary functions, c1

and c2 are two arbitrary constants, and Tx1 and Tx2 are the transformed results
of x1(t) and x2(t) respectively. A very important property that can be derived
from (3.1), is that the output of a linear transform applied on the summation
of different signals, depends only on their individual behaviour and not their
in-between relationship. As a direct result,cross-interference between correlated
signals can generally be avoided. Linear T-F transforms include among others the
STFT and wavelet transform, with the former being extensively used for radar
signal representations (Boultadakis et al., 2004).

Sort-Time Fourier Transform

The STFT of an arbitrary time signal x(t) is defined as:

STFT{x(t)}(t′, f) =
∫ ∞

−∞
x(t)w∗(t− t′)e−j2πftdt (3.2)
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Fig. 3.1 Illustration of the STFT of a LFM pulse and the projection of its real
part in time domain and absolute value in frequency domain (spectrum).

where w(t) is a window function, e.g. Hamming or Gaussian window, centred at
zero delay (Heinzel et al., 2002). Examining (3.2) it can be easily derived that the
STFT uses a window to divide a long non-stationary signal into shorter segments
centred at t′ and perform spectrum analysis in each segment separately using the
FT. Similarly to FT, the STFT of a signal results to values in the complex plane.
For this reason visual representation of its modulus, i.e. |STFT{x(t)}(t′, f)|, is
usually employed to provide an illustration of the signals intensity in different
T-F resolution bins.

The STFT finds various applications in radar T-F analysis, with waveform
design being a typical example. As discussed in Section 2.2.3, pulse compression
is directly related to the T-F profile of the modulation scheme. In Fig. 3.1 the
STFT of a LFM waveform is illustrated along with its real part and absolute value
projections in time and frequency plane respectively. As it can be seen, while time
and frequency representations can offer informations of the signal’s characteristic
on the respective domains, the STFT provides a complete profile of the signal in
both domains simultaneously.

While using STFT is the most straight-forward approach for T-F analysis, its
main drawback is that it always poses a trade-off between time and frequency
resolution, depending on the size of the window. Particularly, larger window sizes
lead to finer frequency resolution but also result into poorer time resolution (Allen
and Mills, 2003). Window overlapping can mitigate this issue to a degree, however
too high overlap can lead to the segments being strongly correlated and hence not
providing more inform on the signal (Heinzel et al., 2002).
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3.2.2 Quadratic transforms

In contrary to the linear, quadratic transforms satisfies the quadratic superposition
principle:

T {c1x1(t) + c2x2(t)} = |c1|2Tx1 + |c2|2Tx2 + c1c
∗
2Tx1,x2 + c2c

∗
1Tx2,x1 (3.3)

where Tx1,x2 and Tx1,x2 are the results of the cross-transforms of x1(t) with x2(t)
and x2(t) with x1(t) respectively. While the results of these cross terms, i.e. Tx1,x2

and Tx1,x2 , will vary depending on the applied transform and the correlation
between the different components, i.e. x1(t) and x2(t), they usually characterised
as cross-term interference and are undesirable (Kadambe and Boudreaux-Bartels,
1992). In the literature, several techniques such as windowing, smoothing and
scaling in T-F domain (Amirmazlaghani and Amindavar, 2009; Xing et al., 2009)
have been proposed to reduce this effect. Commonly used quadratic transforms
include among other the AF, WVD, pseudo Winger distribution and Choi–Williams
transform (Allen and Mills, 2003; Hlawatsch et al., 1995; Levanon and Mozeson,
2004).

Wigner-Ville Distribution

The WVD of an arbitrary signal x(t) is defined as:

WVD{x(t)}(t, f) =
∫ ∞

−∞
x(t+ τ

2)x∗(t− τ

2)e−j2πfτdτ (3.4)

Comparing (3.4) with the STFT definition in (3.2), it can be seen that instead
of using a window w(t) to segment the examined signal x(t), WVD correlates
time and frequency shifted versions of x(t) with each other to generate a T-F
representation of the signal. As a significant consequence, WVD does not exhibit
the T-F resolution trade-off that STFT suffers from (Boashash, 2015). Being a
quadratic transform however, WVD suffers from cross-term interference between
correlated components. In Fig. 3.2 the (a) WVD and (b) STFT are illustrated for
two consequent LFM pulses centred at t = −T/4 and t = T/4 respectively. As it
can be seen while the WVD exhibits superior resolution compared to the STFT,
it does suffer from interference terms cantered at t = 0.

To cope with the undesired interference terms, smoothing can be applied in
both time and frequency domains to provide the what is known as smoothed-
pseudo-WVD (Hlawatsch and Boudreaux-Bartels, 1992). Unfortunately, while
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Fig. 3.2 Illustration of the (a) WVD and (b) STFT for two consequent LFM
pulses.

smoothing can attenuate the interference terms, it generally causes a broadening
of signal terms and hence degradation in resolution. In the literature various
generalisations and modified versions of the WVD have been proposed to provide
good resolution and free of interference signal analysis (Goncalves and Baraniuk,
1998; Pikula and Beneš, 2014; Ren et al., 2016; Stankovic, 1994).

3.3 Ambiguity Function

As discussed in Section 2.2.3, the matched filter is a fundamental tool in radar
signal processing. While the matched filter output of a waveform can provide
information regarding the expected resolution and sidelobes in time domain, it
is not sufficient for predicting the performance of the system in cases that the
return signal is miss-matched in the frequency domain due to Doppler shifts.

The AF is one of the most important tools in radar signal processing. Being a
quadratic transform, usually expressed as a function of time and frequency shifts,
the AF aims to provide a metric for the parameter estimation performance of
a sensor system. Since its first conception for radar signals, the AF has been
extensively applied in a variety of fields, such as sonar, communications and optics,
many different definitions have been proposed in the literature. Following a review
of the most common radar related AF definitions is held.
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3.3.1 Canonical AF Definition

In 1967, Woodward P. introduced the general AF concept, aiming to characterize
how well a system could identify the target’s range and velocity parameters,
based on the transmission of a known waveform (Woodward, 1953). The general
definition of the AF is given as (Richards et al., 2010):

ACa(τ, fD) =
∫ +∞

−∞
x(t)x∗(t− τ)ej2πfDtdt (3.5)

where τ and fD are time and frequency shifts respectively, and {·}∗ is the complex
conjugate operator.

Comparing (3.5) with (3.4) it can be seen that there is a strong relationship
between the AF and the WDV. In fact the AF of a signal can be expressed as
the 2D FT of its WVD (Allen and Mills, 2003). It is worth noting that unlike
the STFT and WVD which aim to provide a T/F profile of the examined signal
x(t), the AF describes the response of a filter matched to x(t) when the signal
is received with a delay τ and a Doppler shift fD relative to the nominal values
expected by the filter (Levanon and Mozeson, 2004). In the concept or radar
systems positive values of time delay, i.e. τ > 0, imply that the target is located
away from the reference position τ = 0 while negative values, i.e. τ < 0, indicate
that the target is located closer. Moreover, positive and negative Doppler shift, i.e.
fD > 0 and fD < 0 , indicate that the target is moving toward or in an opposite
direction from the radar.

The AF is also used to describe the interference caused by the range and/or
Doppler shift of a target when compared to a reference target of equal radar cross
section (RCS) called nominal targets. Therefore the AF at nonzero points, i.e. all
other points except the origin, represents returns from some range and Doppler
different from those for the nominal target, while returns from nominal target are
located at the origin of the AF (Richards, 2005).

3.3.2 AF Cuts and Properties

By its definition, the AF of an arbitrary signal returns complex values. It is there-
fore common in radar processing to use the modulus of the AF, i.e. |ACa(τ, fD)|
to describe performance characteristics of the examined signal (Levanon and
Mozeson, 2004). Following the absolute value of the AF in (3.5) will be considered
to review some of its major properties.
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One-dimensional cuts of the AF are commonly use to provide very important
properties associated with the expected resolution and ambiguities in the time
and Doppler domain separately. First, consider the cut along the delay axis or the
so called zero-Doppler cut. Setting fD = 0 the AF formula in 3.5 can be rewritten
as follows:

|ACa(τ, 0)| =
∣∣∣∣∫ +∞

−∞
x(t)x∗(t− τ)dt

∣∣∣∣ (3.6)

As it can be easily seen in (3.6) the zero-Doppler cut is described by the the AC
of the signal x(t) which can also be expressed as the inverse Fourier transform
(IFT) of the signal’s power spectrum:

∫ +∞

−∞
x(t)x∗(t− τ)dt = F −1{|F{x(t)}|2} (3.7)

where F{·} and F −1{·} denote the FT and IFT respectively. It can therefore be
derived that the zero-Doppler AF cut of a signal x(t) can be manipulated with
proper design of its spectrum.

The second examined AF cut is along the Doppler frequency axis also called
zero-delay cut. Setting τ = 0 the AF formula in 3.5 can be rewritten as follows:

|ACa(0, fD)| =
∣∣∣∣∫ +∞

−∞
|x(t)|2ej2πfDtdt

∣∣∣∣ (3.8)

The formula in (3.8) implies that the zero-delay cut of the AF is a function only
of the magnitude of the signal x(t) and is equal to the Fourier transform of its
squared magnitude. In other words, this cut remains unchanged to any phase
or frequency modulation in x(t) (Levanon and Mozeson, 2004). Some further
properties of the AF are described as follows:

Maximum Value: The maximum value of the AF of any signal will be located
at the origin of its axes:

|ACa(τ, fD)| ≤ |ACa(0, 0)| = E (3.9)

Symmetry about the origin: The AF of any signal will be symmetric at its
origin:

|ACa(τ, fD)| = |ACa(−τ,−fD)| (3.10)
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Volume invariance: The AF of any signal with finite energy E will have a
finite volume equal to E2:

∫ +∞

−∞

∫ +∞

−∞
|ACa(τ, fD)|2 dtdfD = E2 (3.11)

3.3.3 Ideal and basic signal AF

Usually the ideal shape of the AF is described as a spike of infinitesimal width
that peaks at the origin of time-Doppler axes, τ = 0 and fD = 0, and is zero
everywhere else, corresponding to an ideal resolution between neighbouring targets.
This, usually described as “thumbtack”, AF shape however cannot physically exist,
since such an AF should have finite peak value equal to E and a finite volume
also equal to E2 at the same time (see AF properties in (3.9) and (3.11)). As a
direct consequence of these limitations, reducing the “height” of the AF in certain
regions, e.g. close to the centre to increase the resolution, will push the volume
in other areas leading to secondary sidelobes in the delay-Doppler plain. Similar
to the AC (see Section 2.2.3), sidelobes in the AF are undesired as any non-zero
values other than its origin represents a potential range and Doppler shifts that
could be mistaken for the correct one.

In general, AFs are analysed on a single pulse basis. Hence there is no error
considering the AF analysis on CW radars, since the results apply equally well to
CW radar waveforms. However, in CW radars there is an advantage referred to the
concept of periodic ambiguity function (PAF), which is not shared by modulated
pulsed radars. The concept of PAF allows attaining an AC function without
sidelobes on the delay axis for certain class of phase-coded signals employed in CW
radars (Levanon, 2010). Following the AF of two basic signals will be discussed.

Unmodulated Square Pulse

Consider the normalized rectangular x(t) pulse, i.e.
∫+∞

−∞ |x(t)|2 dt = 1, defined
by:

x(t) = 1√
T

rect
{
t

T

}
(3.12)
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Fig. 3.3 Ambiguity function of an unmodulated square pulse.

where T is the duration of the pulse and rect{·} is the rectangular function.
Substituting (3.12) in (3.5) the AF of x(t) is given as:

|ACa(τ, fD)| =

∣∣∣∣∣∣∣∣∣∣
(

1 − |τ |
T

) sin
(
πfDT

(
1 − |τ |

T

))

πfDT

(
1 − |τ |

T

)
∣∣∣∣∣∣∣∣∣∣
, |τ | ≤ T (3.13)

From (3.13) the zero-Doppler AF cut can also be calculated as:

|ACa(τ, 0)| =
∣∣∣∣∣
(

1 − |τ |
T

)∣∣∣∣∣ (3.14)

What should be pointed form (3.14) is that the first null of the zero-Doppler
cut is located at τnull = T . These indicates that the width of the main lobe is
proportional to the pulse width. Moreover the zero-delay cut is given as:

|ACa(0, fD)| =
∣∣∣∣∣sin(πfDT )

πfDT

∣∣∣∣∣ (3.15)

As mentioned previously in this section, the zero-delay cut only depends on the
modulus of the signal |x(t)|. As it can be seen in (3.15), any signal with a square
modulus has a zero-delay cut described by a sinc function. In Fig. 3.3 a graphical
representation of the AF of a square pulse is given.
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LFM Pulse

Consider the normalized LFM x(t) pulse defined by:

x(t) = 1√
T

rect
{
t

T

}
ejπ(B/T )t2 (3.16)

where B is the bandwidth of the pulse. Substituting (3.16) in (3.5) the AF of x(t)
is given as:

|ACa(τ, fD)| =

∣∣∣∣∣∣∣∣∣∣
(

1 − |τ |
T

) sin
(
πT

(
fD + B

T
τ
)(

1 − |τ |
T

))

πT
(
fD + B

T
τ
)(

1 − |τ |
T

)
∣∣∣∣∣∣∣∣∣∣
, |τ | ≤ T (3.17)

From (3.13) the zero-Doppler AF cut can also be calculated as:

|ACa(τ, 0)| =

∣∣∣∣∣∣∣∣∣∣
(

1 − |τ |
T

) sin
(
πBτ

(
1 − |τ |

T

))

πBτ

(
1 − |τ |

T

)
∣∣∣∣∣∣∣∣∣∣

(3.18)

From (3.18) it can be extracted that if the time-bandwidth of the pulse is large
enough, i.e. TB ≫ 4, the first null of the zero-Doppler cut is located at τnull ≈ 1/B.

Comparing with the results from the square pulse it can be seen that after
applying LFM the main lobe of zero-Doppler depends on the bandwidth B instead
of the pulse width T . This indicates that the choice of B can completely determine
the compressed pulse width of the matched filter output. Consequently the LFM
AF cut along the time delay axis is narrower than that of the unmodulated pulse
by a factor of:

ϱLFM = T

1/B = TB (3.19)

Here the factor ϱLFM is referred to as the compression ratio, also called time-
bandwidth product or compression gain. All three names can be used inter-
changeably having the same meaning. Equation (3.19) simply indicates that the
compression ratio is getting greater as the radar bandwidth is increased (Mahafza,
2002). Finally, since the modulus of the LFM pulse has the same shape with the
modulated pulse, the zero-delay AF cut of an LFM pulse will be the one given in
(3.15). In Fig.3.4 a graphical representation of the AF of a LFM pulse is given.
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Fig. 3.4 Ambiguity function of a LFM with TB = 20.

3.3.4 Kullback-Leibler Divergence based AF

In probability and information theory, the KLD is considered as a measure of
difference between two probability distributions p and q over a variable x (Kullback,
1968; Kullback and Leibler, 1951). Kullback S. and Leibler R. originally introduced
the KLD in 1951 as the directed divergence between two distributions (Kullback,
1968). It is also closely related to relative entropy, information divergence, and
information for discrimination. In applications, p typically represents the “true”
distribution of data, observations, or a precisely calculated theoretical distribution,
while q typically represents a theory, model, description, or approximation of p.
The KLD is sometimes also called the information gain achieved if p distribution
is used instead of q distribution.

The concept of KLD has been mainly used in the data mining literature and it
was originated from probability theory and information theory. The mathematical
representation of the KLD from q to p is denoted as:

I(p : q) = Ep
{

lnp
q

}
(3.20)

where Ep {·} is expectation with respect to the probability distribution p. More
specifically it represents a measure of the information gained when revising from
the prior probability distribution q to the posterior probability distribution p. In
other words, it is the amount of information lost when q is used to approximate
p. The KLD is also used to express a short of distance between p and q. While
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the KLD does not satisfy all the properties of a distance such as symmetry and
triangular inequality , as seen from its definition in (3.20), it can be shown that
(Kullback, 1968):

I(p : q) > 0 and I(p : q) = 0 ⇔ p = q (3.21)

In a different aspect, the KLD also measures the expected number of extra bits
required to code samples from p using a code optimised for q rather than the code
optimised for p (Kullback and Leibler, 1951).

There is an increasing interest in the study of the detection and location of
targets in inhomogeneous mediums, where many authors have considered the
complex multipath structure. Besides the design of signal processing algorithms
that can effectively deal with the peculiarities of multipath propagation, it is
important to establish limits on the performance attainable in this situation. Two
distinct methods of performance analysis are usually considered: local and global.

In a local performance analysis, the Cramér-Rao bound is determined for
the location of sources propagating over multipath channels. In the context
of target location problems, global performance analysis traditionally involves
the computation of the AF. The typical AF has been defined only for very
simple models and is not adequate to the global analysis of source location in
inhomogeneous mediums. Moreover, it is not applicable in studying passive
systems, since the signal correlation function is supposed to be known. In addtion,
radar resolution based on conventional AF considers only the waveform, regardless
of the noise influence. The introduced noise can degrade the achievable resolution
to a high degree affecting the target detection and tracking performance (Radmard
et al., 2014).

A general definition of AF based on the KLD between probability densities
can measure the difficulty in distinguishing any two points in the parameter space
(Cochran et al., 2009). Introducing KLD concept in AF design, the distance
between probability density functions (PDFs) of radar measurements can be
efficiently specified. Thus the radar resolution could be greatly improved including
the waveform effect and the SNR measurements (Chen et al., 2012; Radmard
et al., 2014; Rendas and Moura, 1998).

In (Rendas and Moura, 1998) it was shown that in a localisation system, such
as radar or sonar sensor systems, where the location parameter θ is to be estimated
from the received signal r, the estimation problem can be completely defined by
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the family of PDFs or manifold:

Gθ = {p(r|θ), θ ∈ Θ} (3.22)

where p(r|θ) is the PDF of the observed data indexed by the vector θ, and θ takes
values in the parameter space Θ. Additionally by the definition given in (Rendas
and Moura, 1998) the ambiguity provides an index on the ability to discriminate
between different values of θ in the model manifold Gθ and is solely dependent on
the geometric properties of Gθ.

To evaluate the problem of estimating the real value θ0 of an unknown param-
eter θ, the following binary decision test can be employed:

H0 : r → pθ0 = {p(r|θ0)}
H1 : r → pθ = {p(r|θ)}

(3.23)

where hypotheses H0 and H1 are defined as events corresponding to the presence
and absence of the target, respectively. The estimation of θ0 can therefore be
derived as the problem of distinguishing between the two PDFs p(r|θ0) and p(r|θ)
in the family Gθ. By denoting I(θ0 : θ) = I(p(r|θ0) : p(r|θ)) a definition of the
AF can be given as (Rendas and Moura, 1998):

AKLD(θ0, θ) , 1 − I(θ0 : θ)
Iub(θ0)

(3.24)

where Iub(θ0) denotes the upper bound of I(θ0 : θ). From (3.21) and (3.24) it can
be easily derived that 1 > AKLD(θ0, θ) > 0 with AKLD(θ0, θ) = 1 when θ0 = θ.

3.3.5 MIMO AF Definitions

The traditional AF applies to monostatic narrowband applications. However,
ever since it was firstly introduced various interpretations were adapted to suit
different applications of interest. Namely a number of wideband AFs have been
investigated in (Dawood and Narayanan, 2003; Lush and Hudson, 1991; Sibul and
Titlebaum, 1981) while in (Urkowitz et al., 1962) an AF parametrised by azimuth,
elevation, range and Doppler was introduced.

More recently and due to the promising tendency of radar technology to extend
to multi-sensor/multi-platform configurations, various formulations of AFs for
MIMO systems (see Section 2.3) have been proposed (Chen et al., 2012; Derham
et al., 2010; Li and Stoica, 2009; Radmard et al., 2014; San Antonio et al., 2007). In
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Fig. 3.5 Graphical representation of the MIMO AF proposed in (San Antonio
et al., 2007) as a function of range, Doppler shift and azimuth angle

(San Antonio et al., 2007) and (Derham et al., 2010) the optimum detector concept
is used and the MIMO AF is obtained by summing the matched filtered result from
each receiver. A graphical illustration of the MIMO AF in a range-angle-Dopper
cube is illustrated in Fig. 3.5. One obvious but very important observation is
that the MIMO AF is represented in a higher dimension than the canonical AF
discussed in Section 3.3.3. This is due to the extra spatial parameter, azimuth
angle in this case, that has to be added to fully illustrate the performance of the
system. In closer inspection it can be seen that Fig. 3.5 provides an intensity map
in different cuts of the MIMO AF. Most importantly, examining the zero-Doppler
cut it can be seen that the MIMO AF is composed by various ridges crossing the
origin of the axes. As extensively discussed in (San Antonio et al., 2007), the
number of these ridges is depended on the number of transmitter-receiver pairs
and the correlation between the operating waveforms, while the placement of the
ridges depends on the geometry of the system.

In (Li et al., 2014b) and (Li et al., 2015) , a MIMO AF definion similar to the
one proposed in (San Antonio et al., 2007), considering however arbitrary transmit
power allocation, was proposed in order examine MIMO radar with correlated
waveforms. The performance improvement that a proper waveform correlation
matrix design can introduce is also investigated in (Li et al., 2014b) and (Li et al.,
2015) through a comparison with the AF metric defined in (Abramovich and
Frazer, 2008) where spatially diverse waveforms are proposed. Lastly, the authors
in (Khan et al., 2014) used the matched filter definition to derive an AF and its
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properties, for a special case of MIMO radar, called phased-MIMO radar, in which
waveform diversity is employed to divide an array into phased subarrays.

Under the similar concept of matched filter summation, a MIMO AF based
on a general ultrawideband signal model is derived in (Yan et al., 2013). Here,
the authors also propose a factorisation of three MIMO AF parameters, the
transmitted signal, system topology, and relative motions, while an analysis is
presented focusing on how each of these parameters affect the performance of the
system without calculating the entire MIMO AF. Furthermore, in (Hussain, 2016)
a MIMO AF based on the squared-sum of all matched filter responses was derived
as an analytic tool for designing orthogonal ultrawideband impulse waveforms.

A different approach, based on the KLD AF definition in (Rendas and Moura,
1998) (see 3.3.4), is explored in (Li and Stoica, 2009) where the suggested MIMO
AF definition is based on the log-likelihood function and the concept of information
theory. Although this approach is very similar to the KLD, the proposed AF
is not bounded in values between 0 and 1. Moreover, the authors derive a
formulation composed by the transmitted signals’ expected and actual matched
filter outputs while a comparison of the proposed MIMO AF was also carried
out under different transmitted waveforms scenarios. In (Chen et al., 2012) a
log-likelihood based MIMO AF was derived based on bistatic MIMO radar systems.
A similar log-likelihood based MIMO AF definition, was also applied on a widely
distributed MIMO system signal model in (Radmard et al., 2014). Additionally,
an optimisation of the MIMO AF (Radmard et al., 2014) through waveform design
is presented in (Radmard et al., 2015). Later, in Chapter 6 a proposed definition
of a generalised MIMO AF is analytically derived based on the KLD definition.

3.4 Fractional Fourier Trasform

The fractional Fourier transform (FrFT) was firstly introduced in (Namias, 1980)
as a technique to help in solving certain classes of ordinary and partial differential
equations with applications in quantum mechanics. Later, it was rediscovered
by (Alieva et al., 1994) and (Kutay et al., 1997; Mendlovic and Ozaktas, 1993;
Ozaktas et al., 2001) for application in optic and by (Almeida, 1994) in signal
processing. The FrFT is defined as a generalization of the canonical Fourier
transform (FT) covering fractional orders, with the ordinary FT having an order
of 1. Let x(u) be an arbitrary signal defined in the domain u, the a-th ordered
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FrFT of x(u) is given by (Ozaktas et al., 2001):

xa(u′) = F a{x(u)} =
∫
Ka(u′, u)x(u)du (3.25)

where a is the fractional order, u′ is the domain in which xa(u′) is defined and
Ka(u′, u) is the kernel of the transform defined as (Ozaktas et al., 2001):

Ka(u′, u) =



ejϑ/2√
j sinϑ

ejπ(u′2+u2) cotϑ−2u′u cscϑ if ϑ is not a multiple of π

δ(u′ − u) if ϑ is a multiple of 2π

δ(u′ + u) if ϑ+ π is a multiple of 2π
(3.26)

where ϑ = aπ2 is the rotation angle associated with the fractional order a. As it
can be seen from the kernel in (3.26), the FrFT can be parametrised by an angle
ϑ which is the rotation angle between the domain u and u′ in the phase plane that
the signal is defined. For a better understanding, consider the stationary time
signal x(t), with its phase plane being defined by the time and frequency axis.
By applying the ordinary FT the one-dimensional signal x(t) is mapped form the
time to frequency axis. In the case of FrFT the signal is mapped in an in-between
axis along the time-frequency plane. Translating this mapping into rotation of
the signal in the time-frequency plane, a time signal x(t) is rotated by the angle
ϑ when FrFT is applied with the special case of the canonical FT corresponding
to a rotation of ϑ = 90◦. In Fig. 3.6 a graphical illustration of this rotation is
illustrated. Equation (3.26) shows that for angles that are not multiples of π , the
computation of the FrFT can be described by the following steps:

1. A product by a chirp;

2. A FT scaled by cscϑ;

3. Another product by a chirp;

4. A product by a complex amplitude factor.

In summary, the FrFT is an invertible linear transform, continuous in the
angle ϑ, which satisfies the basic conditions for it to be meaningful as a rotation
in the time-frequency plane. This rotation can be better illustrated in Fig. 3.7
where the STFT of a complex Gaussian pulse is illustrated after FrFT of different
orders has been applied on the pulse.
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Fig. 3.6 FrFT as a rotation in the time-frequency plane.
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Fig. 3.7 Time-frequency representation using STFT of a Gaussian pulse after
applying FrFT of different orders.

3.4.1 FrFT Properties

In the literature the various properties of FrFT have been investigated (Ozaktas
et al., 2001; Poularikas, 2010). In the following paragraphs the most important
properties of FrFT will be discussed. Moreover, some further properties of FrFT
are also provided in Appendix A.
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Linearity: Similar to the original FT, the FrFT is a linear transform i.e.:

F a
{∑

k

hkxk(u)
}

=
∑
k

hkF
axk(u) (3.27)

where hk is a constant and xk(u) is an arbitrary function.

Integer Order: The integer orders of FrFT return well-know functions as listed:

F 4 = F 0 = I (Identity Function) (3.28)
F 1 = F (Fourier Transform) (3.29)
F 2 = P (Parity Operator) (3.30)
F 3 = F −1 = (F )−1 (Inverse Fourier Transform) (3.31)

where the parity operation of an arbitrary signal x(t) is given by P{x(t)} = x(−t).

Index additivity: Sequential FrFTs are equivalent to a FrFT with an order
equal to the summation of all the orders, i.e.:

F a1F a2 = F a1+a2 (3.32)

Repetition: From (3.28) and (3.32) it can be easily derived that:

F 4m+a = F a ∀m ∈ Z (3.33)

Inverse: From (3.28) and (3.32) it also follows that the inverse of a FrFT of an
order a is a FrFT of order −a, i.e.:

(F a)−1 = F −a (3.34)

Commutativity and Associativity: Sequential FrFTs follow both the com-
mutativity and associativity properties, i.e.:

(F a1F a2)F a3 = F a1(F a3F a2) (3.35)

Parseval’s Theorem: Similar to FT, FrFT satisfies the Parseval’s theorem
which implies that a signal will contain the same energy before and after FrFT is
applied, i.e.: ∫ ∞

−∞
x(t)y∗(t)du =

∫ ∞

−∞
F a{x(t)}F a{y∗(t)}du (3.36)
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where x(t) and y(t) are arbitrary signals and u is the variable of fractional domain
in which F a{x(t)} and F a{y∗(t)} are defined.

3.4.2 FrFT Implementations

The discussion on FrFT has only covered application on continuous signals as it
can be also seen in the definition provided in (3.25). In the following paragraphs,
the two mainly used approaches for implementation of FrFT in discrete signals
will be discussed.

Discrete FrFT

Assume an arbitrary discrete signal described by the vector x:

x = [x[1], x[2], . . . , x[N ]]T (3.37)

where {·}T is the transpose matrix operation. The discrete fractional Fourier
transform (DFrFT) of x is defined as the vector xa = Fax , i.e., the vector
populated as:

xa[n] =
N∑
k=1

Fa[n, k]x[k], n = 0, . . . ,N (3.38)

where Fa is the N × N DFrFT matrix. Moreover the DFrFT matrix can be
decomposed as:

Fa = EΛaET (3.39)

where E is the eigenvectors’ matrix and Λ is the diagonal eigenvalues’ matrix of
discrete FT (DFT), i.e. F = EΛET . In general, the DFrFT can be employed
as an approximation of the continuous FrFT if the value of N is large (Bultheel
and Sulbaran, 2004). However, more direct and less complex methods have been
proposed for the approximation of continuous FrFT as it will be discussed bellow.

Fast Approximation of FrFT

To define the fast approximation of FrFT we use the definition given in (Bultheel
and Sulbaran, 2004). The algorithms discussed in (Bultheel and Sulbaran, 2004)
are algorithms that approximate the continuous FrFT in the sense that they map
samples of the signal to samples of the continuous FrFT. This comes to a difference
with the fast FT (FFT), introduced in (Brigham and Brigham, 1974), which is a
much lower in complexity technique of implementing the DFT. More particularly,
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when the computation of the DFT of a vector x with length N is applied using
matrix multiplication, i.e. F{x} = Fx, the technique will have a complexity of
O(N2). On the other hand, FFT offers a much lower complexity of O(N log(N))
(Van Loan, 1992). While FFT and inverse FFT (IFFT) can be used to perform
fast calculation of DFrFT of order a = 1 and a = 3 respectively, there is not a
known genuine fast FrFT (FFrFT) that satisfies all the conditions in (3.27)-(3.36)
(Bultheel and Sulbaran, 2004), (Singh and Saxena, 2013).

3.4.3 Applications of FrFT in Signal processing

Similar to the traditional FT, FrFT has many applications in digital signal process-
ing (DSP) covering even larger field due to its higher degree of freedom which can
allow further optimisation and thus achiving better performance. Application of
FrFT in time-varying filtering on non-stationary processes was invesigated in (Ku-
tay et al., 1997) while a novel fractional adaptive filtering scheme was presented in
(Durak and Aldirmaz, 2010) showcasing the advantages of non-adaptive filtering
and adaptive filter in fractional domain compared to the time and frequency
domain counterparts. Techniques implementing the FrFT for digital watermarking
applications were studied in (Djurovic et al., 2001), (Yu et al., 2006) and (Cui,
2009) where 2-D FrFT is used to embed a large number of watermarks in images.

Communications is another area of application for FrFT with the authors in
(Martone, 2001) proposing a multicarrier multiplexing scheme where FrFT is used
instead of DFT significantly improving the performance in fast varying channels.
Recent publications showed, among others, applications of FrFT also in fibre optic
communications (Chandra and Sahu, 2015), underwater communications (Ashri
et al., 2016), and security-coded multiplexing (Wang et al., 2016a). Application
of FrFT for image compression was introduced in (Yetik et al., 2001) while
modified and multiparameter interpretations of FrFT were used for cryptography
applications in (Cusmario, 2004), (Pei and Hsue, 2006), (Youssef, 2008), (Ran
et al., 2009) and (Bhatnagar and Wu, 2014).

The FrFT has also been extensively used in radar applications. Namely, FrFT
based techniques for SAR images have been proposed in (Amein and Soraghan,
2005; Chen et al., 2015b; Pelich et al., 2015; Sun et al., 2002). Moreover, the
autors in (Clemente and Soraghan, 2010a,b,c) showed how FrFT can be useful
in performing high resolution SAR processing. In (Liu et al., 2014b) the authors
proposed an optimisation of OFDM radar signals based on FrFT showing that
the proposed design offers better wideband AF shape as well as higher range
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(a) Original (b) ϑ = 30◦

Fig. 3.8 Wideband AF of a FFT-based signal (a) before and (b) after applying
FrFT of ϑ = 30◦ as presented in (Liu, 2009).

and velocity resolution compared to traditional OFDM, see Fig. 3.8. Moreover,
in (Clemente et al., 2014b) a novel waveform design scheme based on FrFT
was introduced showing that the generated waveforms are suitable for radar
applications while in (Clemente et al., 2014a) the low cross-correlation properties
of the designed waveforms were investigated. Recently the authors in (Zhang
et al., 2016) proposed a FrFT based optimal waveform design in signal-dependent
interference and additive channel noise. Simulation results showed that waveform
design based on fractional domain can be more flexible and effective than one
based on Fourier domain. Further discussion on waveform designs based on FrFT
will be held in Chapter 5.

3.5 Phase Stretch Transform

The phase stretch transform (PST) is a physics-inspired transform that emulates
propagation of an electromagnetic wave through a diffractive medium with a
dielectric function that has a warped dispersive (frequency dependent) property
(Asghari and Jalali, 2015). Originally introduced in (Asghari and Jalali, 2014) as
a method applied for edge detection in natural images, PST has been recently
used in biomedical applications for segmentation of optic disc (Firdausy and
Oktoeberza, 2016) and a diagnostic tool for pneumothorax (Suthar et al., 2016).
It is worth mentioning that in previous work a similar approach has been employed
for signal and SAR image compression in (Asghari et al., 2014) and (Asghari and
Jalali, 2013) respectively.
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(a) No curvature (b) Small curvature (c) Large curvature (d) Increased strength

Fig. 3.9 Phase derivative profiles comparison for four different kernels.

The PST of a 2-D array B is defined as:

A = PST {B} = ]⟨IFFT2 {KPST · FFT2{B}}⟩ (3.40)

where A is the output phase image, ]⟨·⟩ is the angle operator, FFT2 and IFFT2
are the 2-D Fast Fourier Transform and its inverse operation respectively, and
KPST is the phase kernel described by a frequency dependent phase φPST as
follows:

KPST[p, q] = ejφPST[p,q] (3.41)

where p and q are the two dimensional frequency variables. In the case of circular
symmetry, the phase φPST[p, q] can also be expressed as:

φPST[p, q] = φPST,polar[r, ϑ] = φPST,polar[r] (3.42)

where r =
√
p2 + q2 and ϑ = tan−1(q/p). Although there is no restriction on the

applied phase kernel KPST[p, q], it is desirable to use kernels of which the phase
derivative PD[p, q] is a linear or sublinear function of the frequency variables. As
shown in (Asghari and Jalali, 2015) the inverse tangent can be used as a simple
example of such phase derivative profiles leading to the PST kernel defined as:

φPST,polar[r] = SPh
WPhrtan−1 (WPhr) − 1

2 ln (1 + (WPhr)2)
WPhrmaxtan−1 (WPhrmax) − 1

2 ln (1 + (WPhrmax)2) (3.43)

where rmax is the maximum value of r. The variables SPh and WPh in (3.43) are
real numbers related to the strength and wrap of the phase profile applied to the
image. Those values determine the phase derivative of the kernel and therefore
the amount of phase applied to each frequency.

In Fig. 3.9 four representative derivative profiles are illustrated along with
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their respective SPh and WPh values. As it can be seen in Fig. 3.9a choosing near
zero value for WPh returns a linear phase derivative profile. Increasing the value
of WPh will produce a small curvature on the kernel, while for very high values of
WPh the curvature increases even more as it can be seen in Fig. 3.9b and Fig. 3.9c
respectively. Finally the value of SPh scales the total phase derivative profile as it
can be seen comparing Fig. 3.9c and Fig. 3.9d.

3.5.1 PST Based Edge Detection

In (Asghari and Jalali, 2014) and (Asghari and Jalali, 2015) the authors discussed
the good properties of PST as a tool to extract edges from natural images. The
block diagram of the algorithm proposed in (Asghari and Jalali, 2015) is illustrated
in Fig. 3.10. As it can be seen, the process is composed by four main steps: First
the original image is passed through a localisation filter with a certain bandwidth
BLo. In (Asghari and Jalali, 2015) a Gaussian filter was proposed. On the
resulting image a PST of certain SPh and WPh is applied to extract the phase
image. The amount of phase that will be applied on each pixel of the image
is frequency dependent meaning that for higher frequencies a higher amount of
phase will be applied. Since edges are mostly contained in higher frequencies,
PST will emphasise them by applying more phase to higher frequencies (Asghari
and Jalali, 2015). On the resulting phase image a threshold TEd is applied that
will determine the desired sensitivity in edges. In the last step, the tresholded
image is post-processed by morphological operations to generate the detected
edges. As it was discussed in (Asghari and Jalali, 2015), the proposed method
offers a trade-off between spatial resolution and edge detection. In general, a
large phase strength SPh results in edges with less noise but it lowers the spatial
resolution. On the other hand larger wrap WPh offers sharper edges increasing
however the edge noise.

A demonstration on how the different values of WPh and SPh affect the detected
edges is presented in Fig. 3.11. The test image is the well known “Barbara” from

PST

Original Image

Threshold
Morphological

operations

Phase Image
Detected edges

Localisation
Filter

Fig. 3.10 Edge detection method based on PST as it was proposed in (Asghari
and Jalali, 2015).
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(a) WPh = 0, SPh = 5 (b) WPh = 14, SPh = 5 (c) WPh = 80, SPh = 5

(d) WPh = 14, SPh = 3 (e) WPh = 14, SPh = 50 (f) Original image

Fig. 3.11 Effect on detected edges of warp WPh and the strength SPh of phase
applied to a sample image (Asghari and Jalali, 2015).

Marco Schmidt’s standard test images database. In all cases the bandwidth
of the localisation kernel is BLo = 2, the threshold is set as TEd = 0.047 and
morphological operations are used (Asghari and Jalali, 2015). Fist a comparison
between edge images resulted by the same SPh = 5 and different WPh is held in
figures Fig. 3.11a, Fig. 3.11b and Fig. 3.11c. The compared regions are indicated
with triangular (△), circular (⃝) and rectangular (�) marks. As it can be seen
medium wrap results to better edge detection (see Fig. 3.11b) than very small wrap
(see Fig. 3.11a) or very large wrap (see Fig. 3.11c). Additionally, a comparison
between edge images resulted by the same WPh = 14 and different SPh is shown
in figures Fig. 3.11b, Fig. 3.11d and Fig. 3.11e. As it can be observed increasing
larger phase strength results in less noisy edges but also degrades the resolution in
edge detection. In Chapter 4 a modified edge detection scheme will be presented
to accommodate edge detection in SAR images.
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3.6 Summary

In this chapter the concept of T-F analysis and its most commonly used tools were
discussed. In particular, the STFT and WVD were presented as exemplars of linear
and quadratic T-F transforms respectively, referencing the trade-offs that each
approach poses. Moreover, an extensive discussion on the AF was held, highlighting
its importance on radar applications. Specifically, the canonical definition of the
AF was presented in conjunction with its most important properties. In addition,
the AF definition base on the KLD was discussed considering its more generalised
approach compared to the canonical definition. The concept of the MIMO AF as
a tool to evaluate the performance of MIMO radar systems was also introduced,
reviewing the most important proposed MIMO AF definitions. In the later part of
the chapter, the FrFT and its applications in general and radar signal processing
were extensively discussed. Lastly the PST was presented in connection with its
application in the field of image edge detection.



Chapter 4

Edge Detection in SAR Images
using Phase Stretch Transform

4.1 Introduction

In this chapter a novel edge detection scheme for SAR images is described.
The proposed scheme is based on the phase stretch transform (PST), discussed
in Section 3.5. Extending previous work, the proposed scheme accommodates
denoising processes and phase artifacts removal to offer accurate edge detection
in SAR images. More precisely, 2D median filters are employed to mitigate the
speckle noise effect related with SAR images. In addition, a masking method is
proposed in order to remove phase artifacts occurring in low intensity parts of
the image after the application of PST. The ability of the proposed technique to
effectively extract edges is validated using real SAR images from two different
datasets. Moreover, the flexibility of the presented scheme to control the degree of
the preserved details, depending on the scaling of the original image is presented.

4.2 Edge Detection Based on PST

The different steps of the proposed edge detection method are shown in Fig. 4.1.
In the first step, the SAR image is smoothed by applying a localisation kernel. A
Gaussian localisation filter with variable bandwidth is used in this work. In the
next step the smoothed image is denoised to reduce the undesired speckle noise.
Here the noise removal process is implemented by applying a 2-D median filter. It
is worth noting that while different, more advanced, speckle reduction methods
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can be found in the literature (see Section 2.5.2), the median filter is chosen due
to its simple implementation.

Afterwards the denoised image is passed through the PST, which returns a
phase image. The amount of phase applied to each pixel of the image is frequency
dependent meaning that a higher amount of phase is applied to higher frequency
features of the image. Since image edges contain higher frequency features, the
PST emphasises the edge information in the image by applying more phase to
higher frequency features (Asghari and Jalali, 2015).

SAR Image

Localisation
Kernel

Denoising

Phase Stretch
Transform

(PST)

Artifact
Removal

Thresholding

Morphological
Operations

Edge Detection

Fig. 4.1 Block diagram of proposed edge detection method.

The resulting phase image is further processed to remove artifacts occurring
in the low intensity areas of the denoised image. An example of this phenomenon
is illustrated in Fig. 4.2. As it can be seen after applying PST, artifacts appear
where extended dark areas are located in the original image (see the top left
square in Fig. 4.2b). To remove those unwanted patterns a minimum threshold
is firstly applied to the original image to determine the low intensity or “dark”
areas that may contain artifacts. In the resulting binary image all the pixels below
the threshold will have a value of one while brighter pixels will have a zero value.
To ensure that real edges, which may also be located in those “dark” areas, are
preserved (see the perimeter of bottom left square in Fig. 4.2b) this binary image
is then convolved with the kernel presented in Fig. 4.3. Using this kernel allows
us to determine if a pixel is “dark” and how many “dark” neighbours it possesses.

For a better understanding of the artifact removal process, let us consider an
example of a “dark” pixel with 8 “dark” neighbours which after the thresholding
will result to a 3 × 3 block of ones. After convolving the thresholded binary image
with the given kernel, the examined centre pixel will have a value of 9 + 8 = 17. It
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(a) Original (b) Phase (c) Artifact Free

Fig. 4.2 Example of (a) a grayscale image with extended “dark” areas (black color)
and the PST output phase image with the intensity of red color representing the
intensity of the phase (b) including artifacts and (c) after removing the artifacts.

can be easily derived that for a pixel to be considered “dark” it must have a value
equal or greater than 9 (see centre element in kernel presented in Fig 4.3). If a
value is greater than 9 then by subtracting 9 from the total value, the number
of “dark” neighbours can also be found. Therefore, in the resulted from the
convolution image a new threshold can now be applied that will determine if a
pixel is “dark” and if it has enough “dark” neighbours to be reasonably to assume
that this pixel contains no edge information. This threshold must be at least 9
to ensure that the examined pixel is “dark” while higher values will determine
the least number of “dark” neighbours that the pixel should have to not be a
part of an edge. Using the resulting binary image as a mask forces the selected
pixels in the phase image to have minimum phase (−π) and as a result to clear
the artifacts (compare the inside of the top left square in Fig. 4.2b and Fig. 4.2c).

The resulting image is finally thresholded and morphologically filtered in order
to form the edges. In this work four morphological operations are used. First
an edge thinning is performed on the binary image (MathWorks, 2017b). Then
a perimeter calculation using a 4-connected neighbourhood is applied (Math-
Works, 2017c). Isolated pixels removal is also performed, where individual pixels
surrounded by zeros are removed (MathWorks, 2017b). Finally object outlining
is applied by setting a pixel to zero if all its 4-connected neighbours are one
(MathWorks, 2017b).

1 1 1
1 9 1
1 1 1

Fig. 4.3 Kernel used to determine the number of “dark” neighbours surrounding a
“dark” pixel.
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The parameters of the proposed design are summarised in Table 4.1. Here
the parameter ∆f defines the width of the applied Gaussian filter. Consequently
∆f also determines the frequencies that PST will later apply in the third step of
edge detection algorithm (see Fig. 4.1). The parameter N defines the N -by-N
neighbourhood window of the 2-D median filter applied to denoise the image from
speckle noise. Higher values of N will result to better noise reduction but will blur
the image and loose resolution in exchange. The strength (SPh) and wrap (WPh)
of the phase kernel determine its phase derivative profile. In principle, values of
WPh resulting in medium warp have better noise performance, while large values
of SPh provide less edge noise, but also reduce the resolution (Asghari and Jalali,
2015). The dark threshold Td determines the intensity limit above of which a pixel
in the denoised image is considered “dark”. For convenience Td will be expressed
as a percentage of the maximum intensity in the image. The artifact threshold
Ta controls the minimum number of “dark” neighbours that a “dark” pixel must
have not to be considered as an edge and therefore may contain only artifacts.
Finally the edge threshold Te sets the minimum phase that a pixel must have to
be considered as an edge.

Table 4.1 Design Parameters of Edge Detection Algorithm

Parameter Variable Description
Localisation Kernel ∆f Bandwidth of the Gaussian

localisation filter.
Denoising Factor N Size of the 2-D median filter.

Phase Kernel SPh Strength of the phase kernel.

WPh Warp of the phase kernel.

Dark Threshold Td Minimum threshold for pixels
to be considered “dark”.

Artifact Threshold Ta Maximum threshold for pixels
containing artifacts.

Edge Threshold Te Maximum threshold for pixels
containing edges.
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(a) Original image (b) Edge image

Fig. 4.4 Edge detection performance of the proposed technique on a sample
from the Coherent Change Detection Challenge data set, (a) Original sample,
(b) Detected edges using the proposed method using the following parameters:
∆f = 1.8, N = 12, SPh = 5, WPh = 14, Td = 3.3%, Ta = 16, Te = 0.2.

4.3 Experimental Results

In this section the performance of the method proposed in Section 4.2 is experi-
mentally evaluated. For the experimental results two datasets were used. First the
proposed technique is applied on the X-band data from the Coherent Change De-
tection Challenge (CCDC) dataset provided by the Air Force Research Laboratory
(AFRL)(Scarborough et al., 2010). The data are in the form of focused complex
images with range and cross-range resolution of 0.3m, while the original size of
the image is 4501 × 4501 pixels. The proposed method was also applied in C-band
data from the Vancouver, BC dataset included in RADARSAT-2 sample dataset
(Corporation, 2007). In this case the original size of the image is 5954 × 7930
pixels and it has a cross-range resolution of 3 m. Only one acquisition from each
dataset is utilised for the tests performed using the intensity of the SAR image to
form a gray-scale image. Additionally due to the large size of the original images,
smaller image samples are preferably used in the edge detection algorithm for
practical reasons. It is worth noting that in all described examples the various
algorithm parameters were assigned manually. The values of the parameters were
chosen through observations according to the properties discussed in Section 3.5.1
and Section 4.2.

The edge detection capability of the proposed method in the CCDC data set
is illustrated in Fig. 4.4. As it can be seen in Fig. 4.4a, the original image does
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not suffer from high level of white noise and therefore a large value of ∆f = 1.8
is used for small smoothing in the image. Moreover a median filter of N = 12 is
applied to reduce the high speckle noise. The values of strength and wrap are
tuned at SPh = 5 and WPh = 14 to provide good resolution along with edge noise
reduction. The dark threshold is set at Td = 3.3% of the maximum intensity, while
the artifact threshold is Ta = 16 implying that only “dark” pixels with all their
neighbours being “dark” will be masked for artifact removal. Finally the edge
threshold is set at Te = 0.2. The resulting edge image is illustrated in Fig. 4.4b.
As it can be observed, the proposed method has the ability to extract the edges
in the image while mitigating the noise at the same time.

The performance of the proposed method in the Vancouver, BC dataset is
illustrated in Fig. 4.5. The original image used for edge extraction is shown in
Fig. 4.5a. In contrast with the CCDC dataset, the image used from Vancouver, BC
dataset appears to suffer from higher levels of additive white noise. For this reason
a smaller bandwidth ∆f = 0.12 is used to smooth the image. A median filter
of N = 14 is also applied to reduce the speckle noise. In the PST, the strength
and wrap parameters of phase kernel are chosen as SPh = 0.7 and WPh = 10
respectively to provide better resolution in exchange of higher edge noise. The
dark threshold is set at Td = 3.3% of the maximum intensity, while the artifact
threshold is Ta = 16. Finally the edge threshold is set at Te = 0.2. The resulting
edge image is illustrated at Fig. 4.5b. It is worthy to note that although the
presence of the sea makes this image more challenging from the one presented in

(a) Original image (b) Edge image (c) Overlay of zoomed part

Fig. 4.5 Edge detection performance on a sample from the Vancouver, BC dataset
(a) Original sample, (b) Detected edges using the proposed method with parame-
ters: ∆f = 0.12, N = 14, SPh = 0.7, WPh = 10, Td = 3.3%, Ta = 16, Te = 0.0042,
(c) Overlay edges in a part of the sample image using the following parameters:
∆f = 0.2, N = 5, SPh = 0.7, WPh = 8, Td = 33%, Ta = 16, Te = 0.008.
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Fig 4.4, the proposed method can still extract most of the edges while keeping
the noise at very low level. Furthermore in Fig. 4.5c an overlay of a smaller
part of the sample image with the detected edges is illustrated. In the case of
inspecting a smaller area, different settings are used to provide more details for
the zoomed part of image. Here the bandwidth is set at ∆f = 0.2 and the size
of the median filter is N = 5, thus allowing more details to be preserved in the
image. In providing finer resolution, the values of SPh = 0.7 and WPh = 10 are
used for the strength and wrap parameters of the PST phase kernel respectively.
Moreover, the dark threshold is set at Td = 33%. The reason that Td is set much
higher than previously is to remove the parts of the image where the sea area is
located at and therefore eliminate its noise along with the phase artifacts.

It should be mentioned that here the Td is used mainly as a morphological
operator since the artifacts appear in pixels with much lower intensities. Finally
the artifact threshold and the edge threshold are set at Ta = 16 and Te = 0.008
respectively. Inspecting Fig. 4.5c, it is observed that more details can be preserved,
while removing the noise from the sea areas. Finally, it is worth noting that while
in the tuning process the presented parameters appear to achieve the best edge
detection performance on the respective images, the algorithm is robust for small
deviations of these values.

4.4 Summary

In this chapter a novel algorithm for edge detection in SAR images has been
presented. This method uses an enhanced scheme based on the PST edge detection
method presented in Section 3.5.1. The algorithm reduces the noise effects
and removes phase image artefacts, while PST emphasises the edge information
applying more phase to higher frequency features. As a consequence the edge
detection of the original image can be effectively improved. Experimental results
demonstrate that thresholding and further morphological operation leads to the
edge extraction despite the noise presence into the provided image. The edge
detection capability if the scheme has been tested and verified experimentally
using two real datasets.



Chapter 5

Novel Fractional Fourier
Transform Based Radar
Waveforms

5.1 Introduction

In this chapter a novel approach of generating radar waveform libraries is presented.
The method is based on the application of fractional Fourier transform (FrFT) on
code sequences with good ambiguity function (AF) properties such as Barker 13 and
P4 25, that were discussed in Section 2.2.3. An efficient low complexity technique
to reconstruct the FrFT based waveforms under constant envelope (CE) constraints
is also presented. The technique uses a modified Gerchberg-Saxton algorithm
(MGSA). Furthermore reuse evaluation of the generated waveforms is conducted
showing that multiple near-orthogonal waveforms can be generated when FrFTs
of different orders is applied in the same code sequence. The applicability of the
proposed design is experimentally validated while its performance is evaluated
for a simulated MIMO radar scenario. Finally a novel technique of embedding
arbitrary information into radar waveforms based on the FrFT is developed.

5.2 FrFT based Waveforms

In this section an approach in designing novel libraries of waveforms is presented.
First it will be shown how the previously introduced FrFT (see Section 3.4) can be
applied to commonly used radar waveforms, such as phase modulated waveforms
with different codes (e.g. Barker or P4 codes) to generate new waveforms. These
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waveforms, called fractional waveforms, have enhanced properties compared to
their original regarding radar performance. Although the principles of the proposed
design was firstly introduced in (Clemente et al., 2014b) and is a part of previous
work, a detailed description of the waveform generation process is presented to
provide better reasoning for the choice and further development of this scheme.
In addition, a method is designed to reconstruct the fractional waveform taking
into account constant modulus or constant envelope (CE) constraints. Lastly the
ability of the proposed design scheme to generate a large number of waveforms
with low cross-correlation properties and suitable for MIMO radar applications
is explored and validated in terms of hardware implementation and simulation
analysis.

5.2.1 Fractional Waveforms Design and Libraries

The proposed fractional waveform design is analysed in the next paragraphs. First
let us consider a baseband waveform s[n] where n = 1, . . . , N . Even though s[n]
can be any arbitrary waveform, the waveforms examined here are those generated
by code sequences with good AF properties. A description of such codes is
provided in Section 2.2.3. Defining the vector containing the K symbols of the
original code sequence (e.g. Barker code) as c = [c1, . . . , cK ]T , the waveform s[n]
is generated as:

s[n] =
K∑
k=1

rect
(
n/o− k

2

)
ck (5.1)

where o represents the samples per bit, and rect{·} is the rectangular function
give as:

rect(x) =

0 for |x| ≥ 1/2

1 for |x| < 1/2
(5.2)

From (5.1) it can be easily derived that each symbol of c will be repeated o times
leading to the total length of s[n] being N = o×K. Using the properties of FrFT
described in Section 3.4.1, a fractional waveform can be defined as:

sa[u] = F̃ a{s[n]} =
√

1 − j cotϑ
2π

N∑
n=1

K∑
k=1

rect
(
n/o− k

2

)
cke

j n2+u2
2 cotϑ−jun cscϑ

(5.3)
where F̃ a denotes the fast discrete approximation of FrFT (see Section 3.4.2) with
a fractional order a and ϑ = aπ2 . The real and imaginary parts of a Barker 13 code
and its corresponding fractional waveform are illustrated in Fig. 5.1. Here, the
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fractional waveform of the Barker 13 code is generated using o = 50 and a = 0.5.
As it can be observed, the resulting fractional waveform exhibits a very different
structure compared to the original one. On closer inspection of Fig. 5.1, it can
be seen that the fractional waveforms are composed of different linear frequency
modulated or chirp components. Moreover, it should be noted that a code with
only real part could lead to a fractional waveform with non-zero imaginary part
in most cases.

Having shown in (5.3) how a fractional waveform can be generated from a
canonical waveform s[n] by applying a FrFT of order a, we can now define a library
S composed by Ls unique waveforms generated by applying different fractional
orders:

S = [sa1 [u], sa2 [u], . . . , saLS
[u]] (5.4)

From (5.3) it can be derived that the lth element of S is the sum of N chirped
functions weighted by the original code sequence c with a modulation rate that
depends on the fractional order a. The number of chirped components depends
on N which is the product of the code sequence length K and the sample per bit
rate o. This implies that for a given code c different waveforms libraries can be
obtained by changing o. As it will be discussed in the Section 5.2.3 the size LS of
a library can vary depending on the desired AF properties and correlation that
the waveforms should have.

In (Clemente et al., 2014b) an extensive analysis of the suitability of the
fractional waveforms for radar applications was presented. More precisely, the
effectiveness of the design was quantified in terms of performance ratios between
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Fig. 5.1 Real (Re) and imaginary (Im) parts of (a) a Barker 13 code and (b) a
fractional Barker 13 waveform generated using samples per bit rate o = 50,and
fractional order a = 0.5.



5.2 FrFT based Waveforms 83

-40

0
-1

-20

5
0

0

10 1
-40

-30

-20

-10

0

(a) Barker13

-1

-40

0

-20

5
0

0

10 1
-40

-30

-20

-10

0

(b) Fractional Barker 13

Fig. 5.2 Ambiguity function in logarithmic scale of (a) a Barker 13 code and (b) a
fractional Barker 13 waveform generated using o = 50, a = 0.5.

the original and generated waveforms s[n] and sa[n] respectively. It has been
shown that the introduced novel libraries have significant advantages in delay
resolution, interference and sidelobe level (SLL) reduction (Clemente et al., 2014b).

In Fig. 5.2 the AF of (a) a Barker 13 code sequence and (b) a fractional
Barker 13 waveform generated using o = 50, a = 0.5 is illustrated. Comparing
the two AFs it can be noted that the application of a FrFT leads to a more
concentrated AF. This phenomenon is very similar to the effect that LFM has
on an unmodulated pulse (see Section 2.2.3). A comparison between the AF of
a LFM pulse of time-bandwidth product TB = 1300 and a fractional Barker 13
waveform generated using a bit rate o = 200 and fractional order a = 0.25 is shown
in Fig 5.3. As it can be seen, both AF contours of the LFM pulse (Fig. 5.3a) and
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Fig. 5.3 Ambiguty function contour of (a) a LFM pulse with time-bandwidth
product TB = 2600 and, (b) a fractional Barker 13 waveform generated using
o = 200, a = 0.5.
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the fractional barker waveform (Fig. 5.3b) are very similar to each other for values
higher than −6 dB (see yellow and orange color-mapped contour lines). In reality,
applying a FrFT of order a in a sequence will rotate its AF in the delay-Doppler
plane by and angle ϑ = aπ2 . Namely, it can be derived (see Appendix A) that the
AF of an arbitrary signal x(t) and its FrFT xa(u) are related as:

ACa(τ, ω){x(t)} = ACa(d, ν){xa(u)} (5.5)

where d = ω sinϑ+τ cosϑ and ν = ω cosϑ−τ sinϑ. This behaviour is very similar
to the relation between the FrFT and WVD discussed in (Almeida, 1994), since
the canonical AF can be described as the 2D FT of the WVD (see Section 3.3.1).

5.2.2 Constant Envelope Fractional Waveforms

In this subsection the design of novel waveform libraries is addressed under
constant envelope (CE) constraints applying a method based on the FrFT and
the error reduction algorithm (ERA). Reconstruction of the fractional waveforms
described in Section 5.2.1 is achieved by means phase retrieval applying the
Gerchberg-Saxton algorithm (GSA) to retain the CE property.

Constant modulus or peak-to-average power ratio (PAPR) is an essential
characteristic for real world applications, as radar signal amplifiers usually work
in a saturation condition that maximizes their efficiency but preventing amplitude
modulation in waveforms at the same time. Unfortunately, despite the fact
that fractional waveforms libraries offer good properties, unlike the original code
sequences (Barker 13, Frank, P4, etc.), they do not preserve the CE property.

For a better understanding of the CE constraint let x[n] be an arbitrary
waveform. The vector x[n] can be represented as:

x[n] = |x[n]|ejη[n] (5.6)

where | · | denotes the amplitude and η[n] is the phase of the waveform. For x[n]
the requirement of CE means that its magnitude must be kept constant for all n,
which is equivalent to:

|x[n]| = A, ∀n (5.7)

where A is a suitable positive constant that can be also used to sustain the energy
of x[n] at a desired level (Pillai et al., 2009).
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Fig. 5.4 Complex plane representation of a Barker 13 code modulated with FrFT
using a = 0.5 and o = 200 before (a) and after reconstruction with CE constraint
(b).

Typically in current power amplifiers high linearity implies low power efficiency
and vice-versa (Cripps, 2002). This low efficiency operation is due to the fact
that the amplifying device must be biased to an average output power level
low enough to accommodate peak input signal levels without over-driving the
amplifying device. Therefore, linearity requirement can be met by driving the
power amplifier well below its saturation point. To achieve better performance
the use of non-linear components is required. In Fig. 5.4 samples of a fractional
Barker 13 waveform generated using a = 0.5 and o = 200 are illustrated in the
complex plane (a) before and (b) after CE constraints have been applied. As
it can be seen in Fig.5.4a, for the original fractional waveform, the samples are
scattered in the complex plane with varying distance from the origin. On the
other hand, after CE constraints have been applied, all the samples are placed in
a circle meaning that they have equal distance from the origin and consequently
constant modulus (see Fig.5.4b).

A straight-forward approach of enforcing CE on non-CE a waveform x[n] is to
simply divide each sample of the waveform by its absolute value:

x̃[n] = x[n]/|x[n]| ⇒ |x̃[n]| = 1 (5.8)

where x̃[n] is a CE waveform. While this method is fairly simple and easy to
implement, it cannot guaranty that the reconstructed waveform x̃[n] will have
similar radar performance compared with the original waveform x[n]. In Fig. 5.5
the spectrum and the auto-correlation (AC) function of a fractional waveform
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Fig. 5.5 Spectrum and AC function of a fractional waveforms of different fractional
Barker 13 waveform generated using o = 200 and a = 0.5 before (s0.5) and after
(s̃0.5) dividing it by its modulus.

generated using a Barker 13 code with o = 200 and a = 0.5 are illustrated
before and after being divided by its modulus. As it can be seen in Fig. 5.5a the
signal does not retain its spectrum shape after being divided by its modulus. As
described in Section 3.3.1, this, has a direct influence on the AC function of the
waveform. In Fig. 5.5b it can be seen that the AC of the waveform has higher
sidelobes close to the main peak after dividing by its modulus. In the following
paragraph the proposed algorithm of reconstructing fractional waveforms while
retaining their good properties is discussed.

Error-Reduction Algorithm and Waveform Reconstruction

The error-reduction or Gerchberg-Saxton algorithm (GSA) was first introduced
in connection with the problem of reconstructing phase from two intensity mea-
surements (Gerchberg and Saxton, 1972). The algorithm can be described by the
following simple four steps (Fienup, 1982):

1. Apply FT on an estimate of the reference sequence;

2. Replace the modulus of the resulting computed FT with the modulus of the
FT of the reference sequence to form an estimate in the FT domain;

3. Apply IFT on the FT domain estimate;

4. Replace the modulus of the resulted computed sequence with the reference
sequence modulus to form a new estimate of the reference sequence.
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Fig. 5.6 Block diagram of the Gerchberg-Saxton algorithm.

In a more general definition, GSA transforms back and forth between the frequency
and time domain, satisfying the constraints in one before returning to the other
resulting in a decreased error at each iteration.

For this particular case the reference sequence is a non-CE fractional Fourier
modulated waveform sa[n] and gk[n] is a CE sequence which iterates closer to
sa[u] in every execution of the GSA loop. Zadoff-Chu sequences, intoduced in
(Frank et al., 1962), are chosen as starting point of GSA due to its faster and
better performance compared to random initial seed sequences according to the
results presented in (Santra et al., 2013). To generate Zadoff-Chu sequences a
modified formula intoruced in (Budisin, 2010) is implemented supporting both
odd and even sequence lengths. Additionally, to apply the CE constraint on the
new waveforms, the modulus of the referenced sequence has been replaced with a
constant, A, in the fourth step of GSA.

A graphical representation of the algorithm is provided in Fig. 5.6, where the
modified GSA (MGSA) loops are repeated. The kth loop of the MGSA can be
described by the following four steps:

Gk[f ] = |Gk[f ]|ejφk[f ] = F
[
gk[n]

]
, (5.9)

G′
k[f ] = |Sa[f ]|ejφk[f ] = |F

[
sa[n]

]
|ejφk[f ] (5.10)

g′
k[n] = |g′

k[n]|ejψ′
k[n] = F−1

[
G′
k[f ]

]
, (5.11)

gk+1[n] = Aejψk+1[n] = Aejψ
′
k[u] (5.12)

where F [·] represents the discrete Fourier transform and, φk[n] and ψk[n] are the
phases in time and frequency domain of gk[n]. Through simulation analysis the
MGSA appear to converge satisfactory after 50 repetitions. The performance of the
proposed reconstruction technique will be discussed in the following paragraphs.
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Fig. 5.7 Peak-to-average power ratio (PARP) of CE and non-CE Barker 13 (a)
and P4 25 (b) fractional waveforms of different fractional order using r = 50 and
r = 200.

Performance Evaluation

In verifying the CE constraint, the PAPR of both the constant and non-CE
waveforms are evaluated for altering fractional orders and different chip sampling
rates. Although the proposed method can be applied in fractional waveforms
generated from any code sequence, here the performance parameters are evaluated
for the Barker 13 and P4 25 code sequences using samples per bit rate o = 50 and
o = 200. In Fig. 5.7a and Fig 5.7b it is observed that the non-CE waveforms tend
to have higher PAPR as the fractional order increases for both canonical sequences.
On the other hand, the CE waveforms have unity PAPR for all fractional orders
which confirms the CE constraint. In both cases of non-CE waveforms and CE
waveforms, the chip rate o does not have any significant impact.

To quantify the effectiveness of the novel libraries, various AF performance
parameters are examined using the following criteria:

• Delay and Doppler resolution, computed as the −3 dB width of the zero-
Doppler and zero-delay cut of the AF respectively. Generally, finer resolution
is desired to be able to resolve targets that are in very close proximity (see
Section 2.2.1);

• Delay and Doppler SLL, computed as the level of the first sidelobe of the
zero-Doppler and zero-delay cut of the AF respectively. As discussed in
Section 2.2.3, sidelobes are undesired as high SLL can mask reflections from
weaker RCS targets;

• Interfering power, computed as the power outside the main lobe. As dis-
cussed in Section 3.3, ideally the entire volume of the AF is desired to
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be concentrated at its centre. Even if this cannot be practically achieved
(see Section 3.3.3), generally power outside the main lobe is considered as
interference;

• Interfering power ratio, computed as the ratio between the power in the
sidelobes of the AF and main lobe power.

In the presented analysis, constant envelope fractional waveforms are compared
with their originals in terms of the performance parameters defined above. Accord-
ing to the key performance definitions previously expressed, better performance
results for smaller values of all parameters.

The performance of CE and non-CE FrFT modulated Barker 13 code are
compared in Fig. 5.8. Examining the performance ratios when o = 50, Fig. 5.8a
shows that delay resolution is identical for both cases, while Doppler resolution is
improved for higher fractional orders after using the CE constraint. Also, Fig. 5.8b
demonstrates that delay and Doppler sidelobes have the same behaviour for both
CE and non-CE waveforms. Additionally interference and interference power ratio
perform similarly for both cases as it is shown in Fig. 5.8c. Examining the the
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Fig. 5.8 Ratios of the AF quality parameter for fractional Barker 13 waveforms of
different a before and after applying CE constraints in terms of resolution (a), SLL
(b) and interference (c) for o = 50 and resolution (d), SLL (e) and interference (f)
for o = 200.
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Fig. 5.9 Ratios of the AF quality parameter for fractional P4 25 waveforms of
different a before and after applying CE constraints in terms of resolution (a), SLL
(b) and interference (c) for o = 50 and resolution (d), SLL (e) and interference (f)
for o = 200.

performance ratios using o = 200, it can be observed that after increasing o the
performance of CE and non-CE waveforms has been increased similarly in terms
of resolution and sidelobes (see Fig 5.8d and Fig 5.8e). Also interference and
interference power ratio have been decreased, for both cases with CE waveform
performing better at high fractional orders (see Fig 5.8f).

To compare different canonical sequences, the same simulation analysis is
repeated using P4 25 code sequence. In Fig. 5.9 the results of CE and non-CE
FrFT for both cases of o = 50 and o = 200 are summarised. Namely, when
examining the range and Doppler resolution for o = 50 and o = 200 in Fig.5.9a
and Fig.5.9d respectively, it can be seen that the delay resolution remains identical
for both CE and non-CE waveforms, while the CE waveforms have better Doppler
resolution in higher orders a. A similar trend can also be observed for the delay
SLL in Fig.5.9b and Fig.5.9e, where the CE and non-CE waveforms perform
similar to each other for both values of o, with the non-CE however having lower
delay SLL than the CE for certain fractional orders. Moreover, examining the
Doppler SLL in the same figures, it can be seen that while the values for the CE
waveforms remain constant all the cases of o and a, non-CE appear to perform
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worse for all fraction orders a except for a very small region of values close to 1
when o = 50. Finally, as it can be seen in Fig.5.9c when o = 50 the interference
and interference power ratio perform similarly for both CE and non-CE waveforms,
while increasing the samples per bit rate to o = 200 offers significantly better
performance in CE waveforms for higher values of a. Those results demonstrate
that the performance ratios follow each other very close for both CE and non-CE
cases, similarly to the ones presented for the Barker 13 fractional waveforms.

From the presented analysis it follows that the reconstructed waveforms retain
the good properties of the fractional waveforms while also satisfying CE constraints.
Finally no considerable improvement or declination was observed associated with
the bandwidth usage after the modulation in performed simulations.

In conclusion, a constructive technique for numerical estimation of CE wave-
forms has been described and illustrated on several waveform simulation examples.
The performance of the new waveform library has been evaluated as a function
of the FrFT order and samples per bit rate. The results illustrate cases where
fractional waveforms can be reconstructed under CE constraints while retaining
their good AF properties.

5.2.3 Diversity In Fractional Waveform Libraries

This subsection focusses on how the diversity between waveforms populating the
non-CE and CE fractional libraries discussed in Section 5.2.1 and Section 5.2.2
respectively can be achieved. The performance of these novel waveform libraries
are analysed numerically in order to determine the degree of correlation between
waveforms generated from the same code sequence c[n] and sample/bit rate o but
different fractional order a.

In order to analyse the correlation properties of a waveform library it is
assumed that two fractional waveforms sam [n] and sal

[n] generated from the same
canonical waveform s[n] and different orders i.e. am ̸= al and am, al ∈ [0, 2],
are near-orthogonal if their cross-correlation is below the 1st SLL of the original
sequence c[n]. The same principle applies also for CE fractional waveform libraries.
Namely Barker 13 code has SLL = −22.28 dB while P4 25 has SLL = −22.22.
In Fig. 5.10 the SLL-thresholded maxima of the cross-correlations between the
waveforms with different a and the same c[n] are reported for o = 50. Examining
the results, it is derived that the non-CE waveform libraries (see Fig.5.10a and
Fig.5.10b) show significantly less above-the-threshold values compared to their
respective CE libraries. This can be justified, as the non-CE waveforms can utilise
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Fig. 5.10 SLL-thresholded maxima of the cross-correlations between the waveforms
generated using different a and the same c for o = 50. The cases above the
thresholds are shown in black.

their modulus as an extra degree of freedom for diversity compared to the CE
waveforms which can vary only in phase.

Moreover in Fig. 5.11 the SLL-thresholded maxima of waveforms generated
using o = 200 are illustrated. Comparing the results for the non-CE waveform
libraries (see Fig.5.11a and Fig.5.11b) and the CE (see Fig.5.11c and Fig.5.11d),
it can be observed that the number of the above-the-threshold values in non-CE
and CE libraries is more similar to each other compared to the cases of o = 50,
with the non-CE libraries having lower floor values due to their non constraint
modulus.

Comparing the cross-correlation maxima graphs for all waveforms cases in
Fig.5.10 with their respective subfigures in Fig.5.11, it can be seen that for all
the analysed cases the number of waveform pairs with cross-correlation below
the threshold is getting greater as o increases. This effect is apparent due to the
higher length of waveforms generated from larger o and the fact that for higher
values of o the number of chirped components composing the fractional waveforms
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Fig. 5.11 SLL-thresholded maxima of the cross-correlations between the waveforms
generated using different a and the same c for o = 200. The cases above the
thresholds are shown in black.

sa increases. As a consequence the mismatching between waveforms of the same
libraries modulated with different fractional orders becomes stronger leading to
a higher number of near-orthogonal waveforms that can populate the library S.
It is worth noting that different seed sequences (i.e. starting points in GSA) are
used for each individual fractional order in simulation examples. This is achieved
by changing the root of Zadoff-Chu sequences (Budisin, 2010).

Table 5.1 summarizes maxima (worst cases) of the reuse intervals extracted for
both CE and non-CE fractional libraries. The reuse intervals are estimated for each

Table 5.1 Fractional order reuse interval for different values of o

Sequence Constant Envelope non-Constant Envelope
o = 50 o = 200 o = 50 o = 200

Barker 13 1.43 0.21 0.77 0.22
P4 25 0.4 0.12 0.49 0.12
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Fig. 5.12 Reuse interval of CE fractional P4 25 waveforms of different a for o = 200
and its overall and optimum maxima resulting for different interval of a.

value of a by measuring the gaps in terms of fractional orders between the used
sam [n] and the first sal

[n] with a cross-correlation maximum below the threshold.
In essence, the reuse interval shows what is the higher step, in fractional order,
that a waveform generated using an order a must have with another waveform in
the same library to satisfy the near-orthogonal constraint. Essentially, the reuse
interval provides a metric of how many near-orthogonal waveforms can be fitted in
the same library. As it can be seen CE libraries present higher reuse intervals for
small values of o compared to the non-CE. However both CE and non-CE libraries
have significantly lower reuse interval for higher values of o. This results in a higher
reuse, since the number of near-orthogonal waveforms in the same library is given
by the ratio of the available fractional order interval (max(a) = 1 due to symmetry
of FrFT) to their maximum reuse interval. Specifically up to eight orthogonal
waveforms can be obtained in the case of P4 25 with o = 200 (i.e. 1/0.12 ≃ 8).
This number can be increased by limiting the values of fractional order to lower
reuse interval ranges. In Fig. 5.12 the case in which the fractional order a has
been limited to values between 0.13 and 1 is illustrated. As it can be seen, these
limits decreasing maximum to 0.02, which consequently results in a number of
available near-orthogonal waveforms greater than 40 (i.e. 0.87/0.02 ≃ 43).

5.2.4 Validation and Performance Analysis

In the following paragraphs the performance analysis of the novel CE fractional
waveforms discussed in Section 5.2.2 will be examined. First the applicability of
the proposed waveforms is experimentally validated. Later the performance of
the waveform will be examined in terms of simulation analysis in a distributed
multiple input-multiple output radar system (DMRS) scenario. Simulation and
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experimental results demonstrate the effectiveness of the novel technique and its
capability to provide a reliable and robust waveform generation tool.

Experimental Validation

For our experimental validation three CE fractional waveforms s1, s2 and s3

are generated from a Barker 13 code using fractional orders of 0.52, 0.57 and
0.62 respectively and r = 200 samples per chip to establish good AF properties
and orthogonality (Ilioudis et al., 2014). Using these waveforms three pulses are
constructed as follow:

w1(t) = s1(t− t1) (5.13)
w2(t) = s1(t− t2) + s2(t− t2) (5.14)
w3(t) = s1(t− t3) + s2(t− t3) + s3(t− t3) (5.15)

where t1 < t2 < t3 are the delays applied to separate the pulses. The overall
transmitted sequence wtr(t) is the sum of the pulses described in (5.13), (5.14)
and (5.15), i.e. :

wtr(t) = w1(t) + w2(t) + w3(t) (5.16)

This scenario helps in examining the orthogonality of the waveforms when none,
two or three of them are overlapping at t1, t2 and t3 respectively.

To transmit the sequence wtr(t) a vector signal generator (The Keithley Instru-
ments, 2008) is used at a sampling rate of fs = 1.25 MHz and carrier frequency of
fc = 1.4 GHz. Low-cost software defined radio (SDR) dongles (NooElec, 2013)
are then used for reception via MATLAB/Simulink model interface (MathWorks,
2013). To evaluate the orthogonality of the used waveforms, the respective matched
filter for each of them is applied to the received signal. The three filtered outputs
are illustrated in Fig. 5.13. In particular in Fig. 5.13a three spikes with values close
to 0dB indicate the presence of waveform s1 in each of the three pulses. Similarly
in Fig. 5.13b the two spikes on the second and third pulse indicate the presence
of s2 in each respectively, while values close to −20dB indicate the absence in the
first pulse. Finally, as it can be seen in Fig. 5.13c, only the waveform s3 present
in the third pulse. It is therefore concluded that all waveform s1, s2 and s3 can
be retrieved correctly from the three pulses using a threshold equal or higher to
the maximum inference level of −17.8 dB (second pulse in Fig. 5.13c).

In Fig. 5.14 the zero Doppler cuts of waveform’s s1 auto-AF (solid line) and
its cross-AF with waveform s2 (dashed line with dot marks) are illustrated for
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both theoretical and experimental results. After comparing the auto-AF for the
theoretical and experimental results in Fig. 5.14a and Fig. 5.14b respectively, it
can be seen that in the experimental results the main lobe is narrower with two
residual sidelobes, whose maximum level is right below −13.5 dB. Analysing the
captured data in an extended range indicates that this phenomenon occurs due
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Fig. 5.13 Matched filter outputs of the transmitted sequence wtr after applying
the matched filter with (a) s1, (b) s2 and (c) s3 respectively.
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to noise and performance limitations (e.g. sample drop, latency) on the receiver.
Furthermore the maximum level of the cross-AF in theoretical and experimental
results remains below −22.3 dB and −20.4 dB respectively. This shows a good
level of orthogonality between the three used waveforms.

MIMO Radar Signal Model and Localization

Let us consider a MIMO radar system comprising NT transmitters, NR receivers
and NK targets. The position of the ith transmitter, jth receiver and κth target
are denoted by xi,T , xj,R and xk,K respectively, where x = [x, y] denotes the
Cartesian co-ordinates in x-axis and y-axis. It is assumed that the MIMO
radar configuration consists of stationary sensors and point targets with spatial
homogeneous reflectivities modelled by the complex value ζk. The emitted signal
from ith transmitter si(t) is a complex signal with 1/T

∫
T |si(t)|2dt = 1, where T

denotes the transmitting duration. It is also assumed that the transmitters are
using orthogonal signals satisfying the condition:

∫ ∞

−∞
si1(t)∗si2(t− τ)dt = 0, for all i1 ̸= i2 (5.17)

where {·}∗ denotes the complex conjugate operator.
The received signal in the jth receiver can be expressed as the superposition of

the reflected signals from every target:

rj(t) =
K∑
k=1

T∑
i=1

hkijsi(t− τ kij) + nj(t) (5.18)

where τ kij defines the propagation delay of a signal emitted from ith transmitter,
reflected from kth target and received by jth receiver and nj(t) corresponds
to a complex white Gaussian additive noise with zero mean and variance σ2

n.
Additionally hij = ζk exp(jωkDij

t) captures the attenuation ζk and Doppler shift
ωkDij

in the ijth pair due to the reflection from the kth target. The time delay is
calculated as:

τ kij = 1
c

(√
(xk,K − xi,T )2 − (yk,K − yi,T )2 +

√
(xk,K − xj,R)2 − (yk,K − yj,R)2

)
(5.19)
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Using the delay τ kij observed in a transmitter-receiver pair the distance of the
target from each sensor can be described in circular or ellipsoid range bins for
monostatic or bistatic radar configurations respectively.

Simulation Analysis

Here a DMRS scenario is used to evaluate the performance of novel fractional
waveform libraries compared to different approaches. The tested DMRS scenario
consists of three transmitters and three receivers co-located in pairs, i.e. NT =
3, NR = 3 and xi,T = xj,R for i = j. The geometry of the overall system
is illustrated in Fig. 5.15. The sensors are positioned symmetrically in the
surveillance area with location calculated from xi,T = xi,R = [R cos(φi), R sin(φi)]
with R = 500 m and θbe = [0, 2π/3, 4π/3] being the range and bearing of the ith
monostatic transmitter-receiver pair respectively. This orientation is chosen to
achieve optimum localization near the center of the scene (Godrich et al., 2010).
Additionally two targets are placed in the surveillance region, i.e. NK = 2.

In the simulation analysis three different sets of near-orthogonal waveforms
were used to evaluate their impact in localization performance. Firstly, the three
CE fractional waveforms are used. Secondly three linear frequency modulated
(LFM) waveforms are used using up-chirp, down-chirp and half up-chirp half
down-chirp modulation as defined in (5.20), (5.21) and (5.22) respectively as
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Table 5.2 Time-Bandwidth Product

Library T ×B

CE-FrFT 1872 2012 2132

LMF 2069 2064 2194

DSSS 2340 2028 1456

follows:

sLFM,1(t) = ejπ
BW

T
t2 (5.20)

sLFM,2(t) = ejπ
BW

T
(T−t)t (5.21)

sLFM,3(t) =

e
jπ 2BW

T
t2 t < T/2

ejπ
2BW

T
(T−t)t t ≥ T/2

(5.22)

where BW is the occupied bandwidth and T is the signal duration. Finally LFM
waveforms using direct sequence spread spectrum (DSSS) to achieve orthogonality
(Majumder et al., 2013) are also tested.

In DSSS technique each waveform is coded with different orthogonal sequences
and uses different chirp rates to achieve better orthogonality. In our simulations a
2048 Walsh-Hadamard code is used and three chirp rates B/T , (B/2)/T , (B/3)/T
for each of the three waveforms respectively, where B is the appropriate bandwidth
to be used with the chosen code as calculated in (Majumder et al., 2013). All the
waveform sets are allocated on an available bandwidth of BW = 500MHz and
have a duration of T = 5.2µs. The AF zero-Doppler cut of the three sequences
from each set is shown in Fig. 5.16. In Fig. 5.16a and Fig. 5.16b it is observed that
both CE-FrFT and LFM sets have SLL constantly below −20dB. In constraint
waveforms obtained using DSSS modulation achieve different SLL with the first
one having a maximum of −10dB and the second and third waveforms reaching
levels up to −6dB. The frequency characteristics of the three sets are illustrated
in Fig. 5.17. As it can be seen all sets are occupying approximately the same
bandwidth while the sample rate at the transmitter ensures that none of the
waveforms’ bandwidth exceed the 500MHz. Finally the time-bandwidth products
of the waveforms in each library are presented in Table 5.2.

Through the literature numerous coherent and non-coherent techniques have
been proposed for target localization in MIMO radar systems (Godrich et al., 2010),
(Gorji et al., 2013). In this work a best linear unbiased estimator (BLUE) based
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on the time of arrival (TOA) is chosen for its closed-form expression (Godrich
et al., 2010). This estimator uses the TOA or τ kij as defined in (5.19) and the
bearing of the ith transmitter and jth receiver to estimate the position of the
kth target. In the examined scenario nine possible [i, j] transmitter-receiver pairs
can be defined, three in monostatic configurations [1, 1], [2, 2] and [3, 3], and six
in bistatic [1, 2], [1, 3], [2, 1], [2, 3], [3, 1] and [3, 2]. It should be noted that each
observed delay for every transmitter-receiver pair is correctly correlated with its
respective target before applying BLUE.

One target is positioned at the center of the scene x1,K = [0, 0] while the
second target is placed left of the center at different location on the horizontal
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Fig. 5.16 Ambiguity Function Zero-Doppler cut for all three waveforms in (a) CE
fractional, (b) LFM and (c) DSSS sets.
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Fig. 5.17 Occupied bandwidth for each waveform of (a) CE fractional, (b) LFM
and (c) DSSS sets.

axis x2,K = [0, d̂] with d̂ ∈ [0, 3] m. Estimates of targets’ locations are made as the
distance between the two targets increases. The mean error after 20 Monte Carlo
runs between the true and estimated location of the first target using the three
families of waveforms was calculated for a signal to noise ratio SNR= 20dB. In
Fig. 5.18 the simulated results are illustrated. As it can be seen, the CE fractional
and LFM waveforms have very similar performance with the estimation error
remaining relatively small for all different distances. On the other hand DSSS
waveforms return a fluctuating error which reaches the value of 1.7m. In Fig. 5.19
the mean localization error of the left target is also presented for the same scenario.
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Similarly to the first case CE fractional and LFM waveform sets have similar
performance with the mean error remaining below 0.3m for distances higher than
2.1m. For smaller distances the mean error becomes very high and the localization
of the target is not reliable. Furthermore the DSSS set also performs in a similar
way to the previous case with the error fluctuating and reaching values of 1.7m
for distances higher than 2.6m while for smaller distances the localization error is
very high. The range profile of the two targets when their distance is 2.5m for the
[2,2] pair is illustrated in Fig. 5.20. From the results it can be seen how the DSSS
fails to correctly detect the position of the second target due to the high SLL. On
the other hand when LFM and CE fractional waveforms are applied, the system
is able to distinguish correctly their different locations.

The simulation results indicate that the CE fractional waveforms have sim-
ilar performance to the traditional LFM waveforms in a MIMO radar scenario
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Fig. 5.18 Mean error of center target’s real and estimated location for different
horizontal distances from the left target using three different waveform libraries.
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Fig. 5.19 Mean error of left target’s real and estimated location for different
horizontal distances from the center target using three different waveform libraries.
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Fig. 5.20 Range profile of the two targets with distance 2.5m to each other in the
first transmitter-receiver pair (2,2) (north-west) using CE fractional, LFM and
DSSS waveform sets.

while outperforming the DSSS modulation technique. Additionally as shown
in Section 5.2.3 the proposed technique can generate numerous near-orthogonal
waveforms with good AF performance using, different modulated sequences (e.g.
Barker13 and P4 25), and changing their samples per bit rate and the order of the
FrFT. Therefore the proposed technique offers an efficient method of generating
waveforms suitable for MIMO radar applications.

5.3 Information embedded Fractional
Waveforms

As described in Section 2.4.2 in many application simultaneous radar and commu-
nication operations are required. Moreover in Section 5.2.1 a scheme of generating
fractional waveforms by applying FrFT of different fractional order on code
sequences with good AF parameters was discussed. In this section a novel mod-
ulation scheme based on fractional waveform design is presented for joint radar
communication systems.

First let us consider an arbitrary binary code sequence c containing the digital
message to be transmitted. By applying inverse demultiplexing, c can be divided
into a number of parallel binary codes ci with i = 1, . . . , Nc. Each of these code
sequences ci is first oversampled by a factor o and then mapped into symbol
sequences mi[n] with n = 1, . . . , Nm using some modulation constellation (BPSQ,
QPSK, etc.). The length of the symbol sequences Nm can vary depending on the
length of the message c, the number of parallel code sequences I, the sample/bit
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rate o, and the modulation constellation used. Moreover, the bandwidth of mi[n],
Bm, will depend on c and o. In real applications Nm and Bm can also vary due
to other factors such as additive guard and signal filtering. Since those factors
will not influence the principles of the proposed multiplexing scheme, they are not
in the scope of this work and will not be taken into account.

In a conventional orthogonal frequency division multiplexing (OFDM) scheme,
the symbol sequences mi[n] would be multiplexed by applying an inverse fast
Fourier transform (IFFT) on each set of Nc symbols giving a time-domain signal
(Molisch, 2007). In a similar approach, the proposed technique applies a FrFT
of different order ai on each symbol sequence mi[n] to generate a number of Nc

near-orthogonal fractional waveforms si[n]:

si[n] = F̃ ai{mi[n]} (5.23)

where ai ∈ [0, 2) and ai ̸= ai′ , if i ̸= i′. Here it should be also noted that while the
length of the fractional waveforms remains Nm, the bandwidth of si, Bsi will be
higher than Bm and will depend on the applied fractional order ai. From (5.23)
the communication-radar (Co-Radar) waveform can be generated by summing all
the fractional waveforms:

sCo[n] =
Nc∑
i

si[n] (5.24)

Since all the added fractional waveforms will have the same length, the final
Co-Radar waveform sCo will also have a length of Nm. On the other hand
the bandwidth of sCo can be approximated by the maximum bandwidth of the
fractional waveforms composing sCo, i.e. BCo ≈ maxBsi

. A block diagram of
the proposed multiplexing scheme is illustrated in Fig. 5.21. In essence, the
proposed technique maps the Nc different channels into different near-orthogonal
chirp sub-carries. The spectrogram of two Co-Radar waveforms is illustrated in
Fig. 5.22 for (a) Nc = 6 and (b) Nc = 20 chirp sub-carriers. To achieve occupancy
of the entire available time and bandwidth the fractional order of each sub-carrier
is given as: ai = 2(i− 1)/Nc. This configuration also places the chirp sub-caries
as far as possible with each other in the time-frequency space leading in less
overlapping.

To demultiplex the signal and extract the binary information the inverse
process must be followed adding however an extra step. First Nc number FrFTs
are applied on Co-Radar waveform sCo. Each FrFT will have a fractional order
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Fig. 5.21 Block diagram of the proposed multiplexing scheme.
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Fig. 5.22 Time-frequency representation though spectrogram a Co-radar waveform
with (a) Nc = 6 and (b) Nc = 20 chirp sub-carriers.

opposite to the one applied on the multiplexer, i.e.:

ŝi[n] = F̃ −ai{sCo[n]} (5.25)

The resulting waveform ŝi[n] still has a bandwidth of BCo and contains all the
I channels. However after applying a FrFT of opposite order, i.e. −ai, the i-th
sub-carrier has been moved to baseband. By applying a low-pass filter with cut-off
frequency fcut ≈ Bm/2 waveform m̂[n] is generated. Since the chirp sub-carriers
are not orthogonal m̂[n] ̸= m[n]. However after applying the correct de-mapper
and convolving the signal with a square pulse o length equal to o, the majority of,
or even all, the information can be reconstructed.
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In (Gaglione et al., 2016a) a complete Co-Radar system based on the proposed
scheme was presented. Among others, techniques to achieve synchronisation for
correct reconstruction and techniques to mitigate information retrieving errors are
discussed. Namely, coarse/acquisition (C/A) codes are proposed to accomplish
synchronisation on the receiver ensuring that the FrFTs are correctly on the receiver.
Moreover, techniques such as adding a guard and/or applying an interleaver on the
symbol waveforms m[n] were shown to be able to allow full information retrieval on
the receiver (Gaglione et al., 2016a). The proposed system was also experimentally
validated though implementation in software defined radios (SDR) in (Gaglione
et al., 2016b).

Co-Radar Waveforms AF

In order to assess the performance of the proposed multiplexing scheme in radar
applications the properties of its AF are examined. At this point it should be noted
that for radar operations the waveform can be used as is and no demultiplexing
of the signal is required and the waveform is used as is. Moreover, since the
structure of the waveform depends among other on the information sequence c,
which in a standard communication-radar transmission cannot be controlled, the
AF function of the waveforms will not be constant. On the other hand, other
controlled parameters such as sample per bit rate, modulation constellation map
and most importantly number and choice of the chirp sub-carriers play very
significant role on the structure of the AF. From the Co-Radar signal definition
in (5.24) the AF can be expressed as:

ACo(τ, fd) =
Nm∑
n=1

sCo[n]s∗
Co[n+ ⌊τfs⌋]ej2πfdn/fs

=
Nm∑
n=1

(
Nc∑
i=1

si[n]
Nc∑
i=1

s∗
i [n+ ⌊τfs⌋]ej2πfdn/fs

)

=
Nm∑
n=1

( Nc∑
i=1

(si[n]s∗
i [n+ ⌊τfs⌋]) ej2πfdn/fs

+
Nc∑
i=1

Nc∑
i′=1

((1 − δ(i− i′)) si[n]s′∗
i [n+ ⌊τfs⌋]) ej2πfdn/fs

)
= ACo,Orth(τ, fd) + ACo,Cross(τ, fd) (5.26)

where τ and fd denote the time and Doppler shifts respectively, fs is the sampling
frequency and ⌊·⌋ is the mathematical floor function. As it can be seen, the AF
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(a) Real Co-Radar AF (ACo(τ, fd)) (b) Approximated (ACo,Orth(τ, fd))

Fig. 5.23 Real ((a)) and approximated ((b)) AF of a Co-Radar waveform generated
for Nc = 6.

in equation (5.26) can be factorized into two terms:

ACo,Orth(τ, fd) =
Nc∑
i=1

Nm∑
n=1

(si[n]s∗
i [n+ ⌊τfs⌋]) ej2πfdn/fs (5.27)

which is the AF assuming that all the sub-carriers are orthogonal and:

ACo,Cross(τ, fd) =
Nc∑
i=1

Nc∑
i′=1

Nm∑
n=1

((1 − δ(i− i′)) si[n]s′∗
i [n+ ⌊τfs⌋]) ej2πfdn/fs (5.28)

which is the cross-AF between different sub-carriers. Examining (5.27) it can be
seen that it actually expresses the sum of all the the sub-carriers AF. Assuming
that ACo,Orth(τ, fd) ≫ ACo,Cross(τ, fd) the total AF of the Co-Radar signal can be
approximated as ACo(τ, fd) ≈ ACo,Orth(τ, fd). While this approximation might
not hold, especially for a large number of sub-carriers Nc where the overlapping
can be more intense, it can still provide a good indication of the AF shape during
the design process. In Fig. 5.23 the contour of (a) the real AF ACo and (b) its
approximation ACo,Orth(τ, fd) are illustrated respectively for Nc = 6. As it can
be seen the two AFs are quite similar with both of them being composed by 6
ridges crossing the centre of axis (note that the ridge extending in the time axes is
whole wile the rest 5 are extended in the negative Doppler). Those ridges actually
correspond to the AF of each sub-carrier which in essence is a fractional waveform
generated by a random information binary code. In Fig. 5.24 similar illustrations
are held for the (a) the real and (b) approximated AF for Nc = 20. In this case
it can be seen that for areas close to the centre of the axis the ridges are much
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(a) Real Co-Radar AF (ACo(τ, fd)) (b) Approximated (ACo,Orth(τ, fd))

Fig. 5.24 Real ((a)) and approximated ((b)) AF of a Co-Radar waveform generated
for Nc = 20.

less distinguishable in the real AF (Fig. 5.24a) compare to its approximation
(Fig. 5.24b). This is caused due to the higher degree and area of overlap that a
larger number of sub-carriers introduce.

5.4 Summary

In this section a novel waveform library generation scheme based on the fractional
Fourier transform (FrFT) was introduced. Moreover an efficient algorithm based
on a modified Gerchberg-Saxton algorithm (MGSA) was employed in order to
reconstruct the proposed fractional waveform libraries under constant envelope
(CE) constraints. Simulation analysis showed the good properties of the wave-
forms and that high diversity between waveforms in fractional and CE fractional
libraries can be achieved. The applicability of the proposed waveforms was also
experimentally validated while their performance was evaluated and compared
with more conventional techniques in a distributed MIMO radar scenario.

The results highlight the suitability of the proposed design scheme for various
radar applications such as co-located and distributed MIMO radar, pulse agile
radar and in electronic countermeasures such as low probability of intercept (PLI)
radar. Lastly a novel multiplexing scheme based on the FrFT was introduced,
allowing information to be embedded into waveforms suitable for radar operations.
The performance of the proposed waveform design was evaluated in terms of AF
properties.



Chapter 6

Generalised MIMO Ambiguity
Function

6.1 Introduction

In this chapter a novel generalised signal model is presented to accommodate both
narrowband and wideband signals in a MIMO sensor system scenario. The derived
model is then used to define a MIMO AF based on the KLD. Moreover, the
proposed formulation is parametrised by the auto-correlation and cross-correlation
matrices of the expected and received with expected signal matrices, and the
channel correlation matrices allowing a flexible modelling approach. A comparison
between the proposed definition and the more conventional approach of summing
the squared matched filter outputs is held for different sensors and waveforms
configurations.

6.2 Signal Model

Let us consider a MIMO radar system configuration consisting of NT transmitters
and NR receivers, with all their antennas having an isotropic radiation pattern.
The location and velocity of the i-th transmitter and the j-th receiver are denoted
in the Cartesian plane by the column vectors xi,T and ui,T for i = 1, . . . , NT ,
and xj,R and uj,R for j = 1, . . . , NR respectively. Moreover, assume an extended
target within the surveillance area consisted by a finite number NQ of independent
isotropic scatterers with location and velocity defined respectively by xq,Q and uq,Q
for q = 1, . . . , NQ. The reflectivity of the scatterer is modelled by an independent
and identically distributed (i.i.d) complex random variable ζq with zero mean and
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variance E{|ζq|2} = σ2
0/NQ, where σ2

0 is the average radar cross section (RCS) of
the target. Additionally the target is assumed to follow the classic Swerling I
model, while its RCS centre of gravity is located at x0,Q and its velocity is v0,Q.

The propagation of a signal from a transmitter to a receiver consists of three
sequential steps: 1) the propagation from a transmitter to the scatterers of the
target, 2) the reflection from the scatterers and 3) the propagation from the target
to a receiver. Considering a stationary system, the delay of a signal emitted by
i-th transmitter, reflected by the q-th scatterers and received by j-th receiver can
be written as:

τ
(q)
j,i =

|D(q)
i,T | + |D(q)

j,R|
c

(6.1)

where D(q)
i,T = xq,Q − xi,T and D(q)

j,R = xq,Q − xj,R are the distance vectors from the
q-th scatter of the target to the i-th transmitter and j-th receiver respectively, and
c is the speed of light. If the relative motion within the transmitter-target-receiver
system is also taken into account, the delay of the signal will vary in time and
can be described in a Taylor series τ̃ (q)

j,i (t) around a certain time reference τ (q)
j,i :

τ̃
(q)
j,i (t) = τ

(q)
j,i + (t− τ

(q)
j,i ) d

dt τ̃
(q)
j,i (τ (q)

j,i ) +
(t− τ

(q)
j,i )2

2!
d2

dt2 τ̃
(q)
j,i (τ (q)

j,i ) + . . . (6.2)

where dn/dtn denotes the n-th order derivative with respect to time. Under
the assumption that the total range varies slowly with time over the coherent
processing interval, the higher order components can be neglected (Tsao et al.,
1997) and the delay in (6.2) can be approximated by:

τ̃
(q)
j,i (t) ≈ τ

(q)
j,i + (t− τ

(q)
j,i ) d

dt τ̃
(q)
j,i (τ (q)

j,i ) (6.3)

Furthermore, the first-order derivative can be calculated as:

d
dt τ̃

(q)
j,i (τ (q)

j,i ) =
(U(q)

i,T )T
D(q)
i,T

|D(q)
i,T |

+ (U(q)
j,R)T

D(q)
j,R

|D(q)
j,R|

 /c (6.4)

where U(q)
i,T = vq,Q − vi,T and U(q)

j,R = vq,Q − vi,R are the relative velocity vectors
between the q-th scatter and the i-th transmitter and j-th receiver respectively at
the time reference τ (q)

j,i . For sake of simplification, it is assumed that all the scatters
have the same velocity as the gravity centre of the target ,i.e. vq,Q = v0,Q, and
since |xq,Q − x0,Q| ≪ |x0,Q − xi,T | and |xq,Q − x0,Q| ≪ |x0,Q − xj,R| the expression
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in (6.4) can be simplified as:

d
dt τ̃

(q)
j,i (τ (q)

j,i ) ≈ d
dt τ̃j,i(τj,i) =

(
(Ui,T )T Di,T

|Di,T |
+ (Uj,R)T Dj,R

|Dj,R|

)
/c (6.5)

where Ui,T = v0,Q − vi,T and Uj,R = v0,Q − vi,R are the relative velocity vectors
and, Di,T = x0,Q − xi,T and Dj,R = x0,Q − xj,R are the distance vectors between
the centre of gravity of the target and the i-th transmitter and j-th receiver
respectively at the time reference τj,i = (|Di,T | + |Dj,R|)/c.

Accounting for the two-way radar equation and for unit RCS, the energy
propagated from i-th transmitter, q-th scatter and j-th receiver path is calculated
as:

E
(q)
j,i = Êi,T Gi,T Gj,R λ2

(4π)3|D(q)
i,T |2|D(q)

j,R|2Lj,i
(6.6)

where Êi,T and Gi,T are the energy and gain at the i-th transmitter respectively,
Gj,R is the gain at the j-th receiver, λ is the wavelength of the carrier, and Lj,i de-
notes other non free-space losses in the i-th transmitter j-th receiver path. Taking
the reasonable assumption that the distance between the different scatters and the
RCS centre of gravity of the target is significantly smaller than its distance from
each transmitter and receiver, the approximation |D(q)

i,T |2|D(q)
j,R|2 ≈ |Di,T |2|Dj,R|2

can be substituting in (6.6) leading to the following relation:

E
(q)
j,i ≈ Ej,i = Êi,T Gi,T Gj,R λ2

(4π)3|Di,T |2|Dj,R|2Lj,i
(6.7)

The received signal at the j-th receiver due to the i-th transmitter can be therefore
expressed as:

r̂j,i(t) =
√
Ej,i

NQ∑
q=1

ζqgi
(
t− τ̃

(q)
j,i (t)

)
+ nj(t) (6.8)

where gi(t) is the normalised signal ,
∫
T |gi(t)|2dt = 1, emitted from the i-th

transmitter, and nj(t) is a complex additive Gaussian noise with distribution
CN (0, σ2

n), where σ2
n is the variance of the noise. Additionally, by substituting

(6.3) in (6.8) the received signal can be expressed as:

r̂j,i(t) =
√
Ej,i

NQ∑
q=1

ζqgi
(
αj,i(t− τ

(q)
j,i )

)
+ nj(t) (6.9)
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where αj,i is the time scaling factor defined as:

αj,i = 1 − d
dt τ̃j,i(τj,i) (6.10)

Moreover, considering the assumption that the percentage bandwidth of gi(t) is
“reasonably small” (e.g. less than 50% of fc (Rihaczek, 1996)), the narrow-band
signal expression can be adopted:

gi(t) = si(t)ej2πfct (6.11)

where si(t) is the complex envelope of the signal on the i-th transmitter and fc

is the carrier frequency. By substituting (6.11) in (6.9) and after removing the
carrier the received signal be expressed as:

rj,i(t) =
√
Ej,i

NQ∑
q=1

ζqe
φ

(q)
j,i si

(
αj,i(t− τ

(q)
j,i )

)
ejωj,it + nj(t) (6.12)

where ωj,i = 2πfc(aj,i − 1) and φ
(q)
j,i = −j2πfcaj,iτ (q)

j,i account respectively for the
angular frequency and phase shifts applied to the signal due to the relative motion
and delay in the i-th transmitter, q-th scatter, j-th receiver system. Assuming
that the resolution of the baseband signals si(t) is not high enough to distinguish
the individual scatters, i.e. si(t− τ

(q)
j,i ) ≈ si(t− τj,i) , the received signal in (6.12)

can be further simplified as:

rj,i(t) =
√
Ej,i

NQ∑
q=1

ζqe
φ

(q)
j,i si (αj,i(t− τj,i)) ejωj,it + nj(t) (6.13)

For simplicity, two intermediate variables are introduced:

h
(q)
j,i (θ) =

√
Ej,iζqe

φ
(q)
j,i (6.14)

yj,i(t, θ) = si(αj,i(t− τj,i))ejωj,it (6.15)

were θ = [x0,v0]T and therefore (6.13) can be expressed as:

rj,i(t, θ) =
NQ∑
q=1

h
(q)
j,i (θ)yj,i(t, θ) + nj(t) (6.16)

Since the received signal is sampled at the receiver before being processed, it is
more practical to define it by using a M×1 column vector, where M is the number
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of captured samples. First si is defined as a M × 1 column vector composed of
the discrete samples of si(t). Additionally a M ×M matrix aj,i(θ) is introduced
accounting for the time delay, time scaling, and frequency shift experienced by si
in the respective transmitter-receiver pair. A complete formulation of aj,i(θ) is
given in Appendix B.1. Using the aforementioned notations, the M × 1 column
vector populated by the discrete samples of yj,i(t, θ) can be derived as:

yj,i(θ) = aj,i(θ)si (6.17)

Additionally, the M × 1 column vector describing the sampled rj,i(t) can be
expressed as:

rj,i(θ) = yj,i(θ)hj,i(θ) + nj (6.18)

where nj is the M × 1 column vector associated with the nj(t), and hj,i(θ) is
defined as:

hj,i(θ) =
NQ∑
q=1

h
(q)
j,i (θ) (6.19)

The variable hj,i(θ) can also be expressed as:

hj,i(θ) =
√
Ej,ikj,i(θ)z (6.20)

where kj,i(θ) is the 1 ×NQ row vector matrix defined as:

kj,i(θ) =
[
eφ

(1)
j,i , eφ

(2)
j,i , . . . , eφ

(NQ)
j,i

]
(6.21)

and z is the NQ × 1 column vector matrix given by:

z =
[
ζ1, ζ2, . . . , ζNQ

]T
(6.22)

In examining the total signal at each receiver, we define yj(θ) as the M ×NT

matrix given by:
yj(θ) = aj(θ)s (6.23)

where aj(θ) is the M ×MNT block matrix defined as:

aj(θ) = [aj,1(θ), aj,2(θ), . . . , aj,NT (θ)] (6.24)
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and s is the NT M ×NT block diagonal matrix given by:

s =


s1 0 · · · 0
0 s2 · · · 0
... ... . . . ...
0 0 · · · sNT

 (6.25)

Additionally, hj(θ) is defined as the NT × 1 column vector given by:

hj(θ) =
√

Ej(θ)kj(θ)z (6.26)

where Ej(θ) is the NT ×NT diagonal matrix given by:

Ej(θ) =


E1,j 0 · · · 0

0 E2,j · · · 0
... ... . . . ...
0 0 · · · ENT ,j

 (6.27)

and kj(θ) is a NT ×NQ matrix given by:

kj(θ) = [kj,1(θ),kj,2(θ), . . . ,kj,NT (θ)]T (6.28)

Using (6.23) and (6.26), the M × 1 column vector of the overall received signal
on the j-th receiver can be expressed as:

rj(θ) = yj(θ)hj(θ) + nj (6.29)

For a total examination of the complete MIMO system, Y(θ) is defined as the
NRM ×NT NR block diagonal matrix given by:

Y(θ) = A(θ)S (6.30)

where A(θ) is the NRM ×MNT NR block diagonal matrix defined as:

A(θ) =


a(θ, 1) 0 · · · 0

0 a(θ, 2) · · · 0
... ... . . . ...
0 0 · · · a(θ,NR)

 (6.31)
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and S is the NRNT M ×NT NR block diagonal matrix given by:

S = INR ⊗ s =


s 0 · · · 0
0 s · · · 0
... ... . . . ...
0 0 · · · s

 (6.32)

Moreover the NRNT × 1 block matrix H(θ) is defined as:

H(θ) =
√

E(θ)K(θ)Z (6.33)

where K(θ) is the NRNT ×NQNR block matrix defined as:

K(θ) =


k1(θ) 0 · · · 0

0 k2(θ) · · · 0
... ... . . . ...
0 0 · · · kNR(θ)

 (6.34)

and Z is the NRNQ × 1 block matrix given by:

Z = 1NR ⊗ z (6.35)

where 1m is the m×1 column vector of ones. Moreover, E(θ) is the NRNT ×NT NR

diagonal matrix given by:

E(θ) =


E1(θ) 0 · · · 0

0 E2(θ) · · · 0
... ... . . . ...
0 0 · · · ER(θ)

 (6.36)

The total MIMO system’s output can now be defined as the NRM×1 block matrix
r(θ) populated by the samples of the discrete signal captured in all receivers given
by:

r(θ) = [r1(θ), r2(θ), . . . , rNR(θ)]T (6.37)

or
r(θ) = Y(θ)H(θ) + n (6.38)
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where n is a NRM × 1 block diagonal matrix defined as:

n = [n1,n2, . . . ,nNR ]T (6.39)

It should be mentioned at this point that no specific assumptions have been
made regarding the geometry of the system. In the next section the behaviour of
the phase channel matrix H(θ) in different spatial configurations will be discussed.

6.3 Channel Correlation

As was shown in the previous section the received signal is composed of its
envelope time shift, scaling matrix Y(θ) and the channel matrix H(θ) accounting
for phase and amplitude shifts. In this section the covariance matrix of H(θ) will
be modelled for arbitrary spatial system configurations. Additionally, the two
extremes of co-located and widely distributed cases will be examined separately.
The proposed formulation was introduced in (Fishler et al., 2006). In this work,
this conceptual framework is extended taking into account the relative velocity
between target and sensors.

Following the signal model in Section 6.2, the covariance matrix C(θ) of the
channel matrix H(θ) can be calculated as:

C(θ) = E{H(θ)H(θ)†}

= E
{√

E(θ)K(θ)ZZ†K(θ)†
√

E(θ)
}

=
√

E(θ)K(θ)E
{
Z̃
}

K(θ)†
√

E(θ) (6.40)

where, under the assumption that the complex reflectivity of the scatters is
uncorrelated i.e. E

{
ζ†
qζq′

}
= δ(q − q′)|ζq|2, the NRNQ ×NQNR matrix Z̃ = ZZ†

is given as:

Z̃ = 1NR ⊗


|ζ1|2 0 · · · 0

0 |ζ2|2 · · · 0
... ... . . . ...
0 0 · · · |ζNQ|2

 (6.41)
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From (6.40) and (6.41) it can be easily shown that each element of C(θ) could be
written as follows:

C(θ)(i,j)(i′,j′) =
√
Ei,jEi′,j′

NQ∑
q=1

|ζq|2eφ
(q)
j,i −φ(q)

j′,i′ (6.42)

where the subscript index (i, j)(i′, j′) imply the element in C(θ) referring to the
correlation between the i-th,j-th and i′-th,j′-th transmitter-receiver channels, or
more precisely, the element of which the row and column are given as i+NT (j−1)
and i′ +NT (j′ − 1) respectively.

To get a better understanding of how the summation in (6.42) behaves, first let
us express the delay τ (q)

j,i as a function of sensors and scatters coordinates (Fishler
et al., 2006):

τ
(q)
i,T =

√
(xq,Q − xi,T )2 + (ya,Q − yi,T )2

c

=

√
((x0,Q + x̃q,Q) − xi,T )2 + ((y0,Q + ỹq,Q) − yi,T )2

c

≈

√
(x0,Q − xi,T )2 + 2x̃q,Q(x0,Q − xi,T ) + (y0,Q − yi,T )2 + 2ỹq,Q(y0,Q − yi,T )

c

≈

√
(x0,Q − xi,T )2 + (y0,Q − yi,T )2

c
+ x̃q,Q(x0,Q − xi,T ) + ỹq,Q(y0,Q − yi,T )

c
√

(x0,Q − xi,T )2 + (y0,Q − yi,T )2

= τi,T +
x̃Tq,QDi,T

c|Di,T |
(6.43)

where x̃q,Q = [x̃q,Q, ỹq,Q]T , with x̃q,Q = xq,Q − x0,Q and ỹq,Q = yq,Q − y0,Q being
the coordinates of the q-th scatter when the target’s centre of gravity is considered
the centre of axes. Following the same process for the delay from the q-th scatter
to the j-th receiver the total phase can be approximated as:

φ
(q)
j,i = φj,i + φ̃

(q)
j,i (6.44)

where φj,i = −j2πfcαj,iτj,i and φ̃
(q)
j,i is given as:

φ̃
(q)
j,i = − j2παj,i

(
x̃Tq,Q

(
Di,T

|Di,T |
+ Dj,R

|Dj,R|

))
/λ (6.45)
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Using (6.44), the summation term in (6.42) can now be approximated as:

NQ∑
q=1

|ζq|2eφ
(q)
j,i −φ(q)

j′,i′ = eφj,i−φj′,i′
NQ∑
q=1

|ζq|2eφ̃
(q)
j,i −φ̃(q)

j′,i′ (6.46)

As discussed in Section 6.2, the target is assumed to be composed of a large
number of NQ scatters. While the location of each scatter does not have to be
directly specified, two conditions must be met. First, two scatters cannot share
the same location, i.e. xq,Q ≠ xq′,Q for q ̸= q′. In addition, assuming a uniform
target with symmetry in x and y axes, for any scatter q its distance from the
target’s centre of gravity along the x-axis and y-axis cannot be larger than the half
of the target’s dimensions ∆x and ∆y in the respective axis, i.e. |x̃q,Q| ≤ ∆x/2
and |ỹq,Q| ≤ ∆y/2. Accounting for these two conditions, it is reasonable describe
the reflectivity ζq by a continuous, spatial function rather than the index q:

ζq = Z(x̃q,Q, ỹq,Q) (6.47)

where Z(x, y) denotes the reflectively of the target at the x and y point relative
to its centre of gravity x0,Q. Assuming that the scatters’ location in the area
occupied by the target is sampled from a uniform distribution, for very large
numbers of NQ it can be approximated:

E
{
|Z(x, y)|2

}
= E

{
|ζq|2

}
, ∀x ∈ [−∆x/2,∆x/2], y ∈ [−∆y/2,∆y/2] (6.48)

Moreover since the average RCS σ2
0 of the target is expressed as the summation

of the reflectivity from all scatters it can be easily derived that:

∫ ∆x/2

−∆x/2

∫ ∆y/2

−∆y/2
E
{
|Z(x, y)|2

}
dydx = E

{∫ ∆x/2

−∆x/2

∫ ∆y/2

−∆y/2
|Z(x, y)|2dydx

}
= σ2

0

(6.49)
From (6.49), the expected reflectivity at any location is given as:

E
{
|Z(x, y)|2

}
= σ0

∆x∆y

, ∀x ∈ [−∆x/2,∆x/2], y ∈ [−∆y/2,∆y/2] (6.50)
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Using (6.48) and (6.50), the weighted phases summation in (6.46) can be therefore
reformed as:

E


NQ∑
q=1

|ζq|2eφ̃
(q)
j,i −φ̃(q)

j′,i′

 =
∫ ∆x/2

−∆x/2

∫ ∆y/2

−∆y/2
E
{
|Z(x, y)|2

}

× e
−j2π[x,y]

(
αj,i

(
Di,T

|Di,T | +
Dj,R

|Dj,R|

)
−αj′,i′

( Di′,T
|Di′,T | +

Dj′,R
|Dj′,R|

))
/λ

dydx

= σ2
0

∆x∆y

∫ ∆x/2

−∆x/2
e

−j2πx
(
αj,i

(
xi−x0
|Di,T | +

xj −x0
|Dj,R|

)
−αj′,i′

(
xi′ −x0
|Di′,T | +

xj′ −x0
|Dj′,R|

))
/λ

dx

×
∫ ∆y/2

−∆y/2
e

−j2πy
(
αj,i

(
yi−y0
|Di,T | +

yj −y0
|Dj,R|

)
−αj′,i′

(
yi′ −y0
|Di′,T | +

yj′ −y0
|Dj′,R|

))
/λ

dy

= σ2
0sinc

(
π∆x

(
αj,i

(
xi − x0

|Di,T |
+ xj − x0

|Dj,R|

)
− αj′,i′

(
xi′ − x0

|Di′,T |
+ xj′ − x0

|Dj′,R|

))
/λ

)

× sinc
(
π∆y

(
αj,i

(
yi − y0

|Di,T |
+ yj − y0

|Dj,R|

)
− αj′,i′

(
yi′ − y0

|Di′,T |
+ yj′ − y0

|Dj′,R|

))
/λ

)
(6.51)

The relationship between the integral of complex exponentials and the sinc function
is given in Appendix B.2. A more simplified expression of C(θ) can now be given
as:

C(θ) =
√

E(θ)K0(θ)E {Ω(θ)} K0(θ)†
√

E(θ) (6.52)

Here, K0(θ) is the NRNT × NT NR diagonal matrix populated by the steering
vectors of each transmitter receiver pair:

K0(θ) =


eφ1,1 0 · · · 0

0 eφ1,2 · · · 0
... ... . . . ...
0 0 · · · eφNR,NT

 (6.53)

and Ω(θ) is the NRNT ×NT NR channel correlation matrix with each of its element
given by (6.51), i.e. :

Ω(θ)(i,j)(i′,j′) =

σ2
0sinc

(
π∆x

(
αj,i

(
xi − x0

|Di,T |
+ xj − x0

|Dj,R|

)
− αj′,i′

(
xi′ − x0

|Di′,T |
+ xj′ − x0

|Dj′,R|

))
/λ

)

× sinc
(
π∆y

(
αj,i

(
yi − y0

|Di,T |
+ yj − y0

|Dj,R|

)
− αj′,i′

(
yi′ − y0

|Di′,T |
+ yj′ − y0

|Dj′,R|

))
/λ

)
(6.54)



6.3 Channel Correlation 120

(a) Distributed (b) Co-located

Fig. 6.1 System geometry assuming (a) distributed and (b) co-located sensor
allocation.

In the following, two different cases of system geometries, the distributed and co-
located, will be examined. A high level illustration of the two systems geometries
is illustrated in Figure 6.1.

6.3.1 Distributed System

The first spatial configuration considered is the widely distributed case. In this
scenario the system’s sensors are assumed to be located with a large enough
distance between them, so that the beam-width of an antenna the same size as the
target to not be able to illuminate two sensors simultaneously (Fishler et al., 2006),
see Figure 6.1a. The correlation matrix Ω(θ) can therefore be approximated by a
diagonal matrix indicating that the i-th, j-th and i′-th, j′-th transmitter-receiver
channels are uncorrelated. From (6.51) it can be seen that for the non-diagonal
elements of Ω(θ) to be approximated by 0 at least one of the following conditions
must hold:

∣∣∣∣αj,i
(
xi − x0

|Di,T |
+ xj − x0

|Dj,R|

)
− αj′,i′

(
xi′ − x0

|Di′,T |
+ xj′ − x0

|Dj′,R|

) ∣∣∣∣ ≥ λ

∆x

(6.55)
∣∣∣∣αj,i

(
yi − y0

|Di,T |
+ yj − y0

|Dj,R|

)
− αj′,i′

(
yi′ − y0

|Di′,T |
+ yj′ − y0

|Dj′,R|

) ∣∣∣∣ ≥ λ

∆y

(6.56)

The resulting conditions are similar to those presented in (Haimovich et al., 2008),
scaled however by the time scaling factor and more importantly having dependency
on targets position. Using (6.55) and (6.56), and assuming a coordinate system
with centre of axes the target’s centre of gravity and αj,i ≈ 1 for all transmitter-
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 j,R

 j',R

i,T 

Δy

Δx

Δy

Δx

γ

x

y

x

y

i',T 

Fig. 6.2 Example of two transmitter-receiver pairs (i, j) and (i′, j′) and a target
with dimensions ∆x and ∆y, with each sensor’s line of sight (dashed line) having
a different angle γ with the positive x-axis

receiver pairs, these conditions can also be expressed as:
∣∣∣∣ cos(γi) − cos(γi′) + cos(γj) − cos(γj′)

∣∣∣∣ ≥ λ

∆x

(6.57)∣∣∣∣ sin(γi) − sin(γi′) + sin(γj) − sin(γj′)
∣∣∣∣ ≥ λ

∆y

(6.58)

where γ denotes the aspect angle, starting from the positive x-axis, of which the
respective node is facing the target. For a better understanding, in Figure 6.2
an illustration of the described geometry is given. As it can be seen from the
aforementioned conditions, to assume that a system is widely distributed a prior
knowledge of the target’s expected position is required.

If one of the conditions in (6.55) and (6.56) or (6.57) and (6.58) are satisfied, the
elements of the matrix H(θ) can be assumed uncorrelated and thus its covariance
matrix C(θ) can be expressed as:

C(θ) =
√

E(θ)K0(θ)INRNT K0(θ)†
√

E(θ) = σ2
0E(θ) (6.59)

Unlike the widely distributed system, the channels of co-located system are fully
correlated. This second special case of antenna configuration is discussed in the
following paragraphs.

6.3.2 Co-Located System

In a co-located configuration, it is assumed that the sensors can be divided into
two groups, one composed of transmitter and one of receiver nodes. Furthermore,
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sensors in the same group are located in a very close proximity to each other
compared to their distance from the target, see Figure 6.1b. The system’s sensors
can therefore be modelled into two clusters, one composed of the transmitters
and one by the receivers with centres of gravity at x0,T and x0,R respectively. It
is therefore reasonable to assume that all the sensors in each cluster experience
the same delay to and from the individual scatters of the target. Moreover, it is
assumed that all the sensors in each cluster experience similar velocity, u0,T for
transmitters and u0,R for receivers respectively.

Under these assumptions it is valid to approximate the same time scaling
factor for all the transmitter-receiver pairs:

αj,i ≈ α = 1 −
(

(U0,T )T D0,T

|D0,T |
+ (U0,R)T D0,R

|D0,R|

)
/c (6.60)

where D0,T = x0,Q − x0,T and D0,R = x0,Q − x0,R are the distance vectors, and
U0,T = u0,Q − u0,T and U0,R = u0,Q − u0,R are the relative velocity vectors be-
tween the target’s centre of gravity and the transmitters’ and receivers’ centre
of gravity respectively. Additionally, the total time delay in the i-th transmitter,
target, j-th receiver path can be expressed as:

τi,j = τi,T + τj,R (6.61)

where τi,T = |D0,T |/c and τj,R = |D0,R|/c are the delays from the transmitter and
the receiver to the gravity centre of target respectively. From (6.60) and (6.61) it
is derived that the observed phase φj,i can be decomposed as:

φi,j ≈ φi,T + φj,R (6.62)

where φi,T = 2πfcατi,T and φj,R = 2πfcατj,R. Under this approximation it can
seen that K0(θ) in (6.53) can be also be decomposed as:

K0(θ) = KT (θ)KR(θ) (6.63)

where KT (θ) is the NRNT ×NT NR diagonal matrix defined as:

KT (θ) = INR ⊗


eφ1,T 0 · · · 0

0 eφ1,T · · · 0
... ... . . . ...
0 0 · · · eφNT ,T

 (6.64)
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and KR(θ) is the NRNT ×NT NR diagonal matrix given by:

KR(θ) =


eφ1,R 0 · · · 0

0 eφ1,R · · · 0
... ... . . . ...
0 0 · · · eφNR,T

⊗ INT (6.65)

The channel matrix H(θ) in (6.33) can therefore be expressed as:

H(θ) =
√

E(θ)KT (θ)KR(θ)Z (6.66)

From (6.54) it can be easily derived that if αj,i ≈ α and xi,T ≈ x0,T , the matrix
Ω(θ) will be populated by ones. As a result the elements of the channel matrix
H(θ) are completely correlated.

From (6.42) and (6.51) it follows that to approximate the co-located configu-
ration, all the following conditions should be satisfied:

∣∣∣∣αj,i
(
xi − x0

|Di,T |
+ xj − x0

|Dj,R|

)
− αj′,i′

(
xi′ − x0

|Di′,T |
+ xj′ − x0

|Dj′,R|

) ∣∣∣∣ ≪ λ

∆x

(6.67)
∣∣∣∣αj,i

(
yi − y0

|Di,T |
+ yj − y0

|Dj,R|

)
− αj′,i′

(
yi′ − y0

|Di′,T |
+ yj′ − y0

|Dj′,R|

) ∣∣∣∣ ≪ λ

∆y

(6.68)

It is obvious that if αj,i ≈ α and xi,T ≈ x0,T , the left part of the inequalities
will always be approximately zero and therefore the co-located system can be
considered independent of the position of the target.

6.4 MIMO Ambiguity Function Formulation

In this section a definition of the AF based on the Kullback-Leibler divergence
(KLD) and the signal model described in Section 6.2 is provided. At this point it
should be noted that the notion of using the KLD to describe ambiguity in radar
and sonar measurement was originally introduced in (Rendas and Moura, 1998)
see (Section 3.3.4) for the mono-static system case. This work is mainly focused
on examining how this definition can be applied for a generalised MIMO radar
framework.
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Kullback Leibler divergence (KLD)

In Section 6.2, the total received signal r(θ) in (6.38) is described as the summation
of products between i.i.d random variables in H(θ) multiplied by the deterministic
signals in Y(θ). For a large number of scatters NQ and according to the central
limit theorem, the received signal follows a Gaussian distribution r ∼ CN (0,Rθ).
Moreover, the covariance matrix Rθ of the received signal can be calculated as:

Rθ = E{r(θ)r(θ)†}

= E{(Y(θ)H(θ) + n)(Y(θ)H(θ) + n)†}

= Y(θ)E{H(θ)H(θ)†}Y(θ)† + σ2
nIMNR

= Y(θ)C(θ)Y(θ)† + σ2
nIMNR (6.69)

The KLD between two MNR sized normal probability measures with zero mean
and covariance matrices Rθ0 and Rθ is (Rendas and Moura, 1998):

I(θ0 : θ) = 1
2
(
tr
{
R−1
θ Rθ0

}
−MNR − ln

(
det

{
R−1
θ Rθ0

}))
(6.70)

where I(θ0 : θ) , I(p(r|θ0), p(r|θ)). In this case the two normal probability
measures are those described by the return from the target being at the spa-
tial/velocity location θ0 and the expected location θ respectively. Using (6.69)
and applying linear algebra (see Appendix B.3) it can be shown that:

R−1
θ = 1

σ2
n

(
IMNR − Y(θ)C(θ)[Y(θ)†Y(θ)C(θ) + σ2

nINT NR ]−1Y(θ)†
)

(6.71)

det {Rθ} = det
{
Y(θ)†Y(θ)C(θ) + σ2

nINT NR

}
(6.72)
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Using (6.71) and (6.72) the trace and logarithmic determinant terms of the KLD
in (6.70) are written as:

tr
{
R−1
θ Rθ0

}
= tr

{ 1
σ2
n

(
IMNR − Y(θ)C(θ)

[
Y(θ)†Y(θ)C(θ) + σ2

nINT NR

]−1
Y(θ)†

)
×
(

Y(θ0)C(θ0)Y(θ0)† + σ2
nIMNR

)}
= −tr

{
Ψ(θ0, θ)† C(θ0)

σ2
n

Ψ(θ0, θ)
C(θ)
σ2
n

[Φ(θ)C(θ)
σ2
n

+ INT NR ]−1
}

+ tr
{

Φ(θ0)
C(θ0)
σ2
n

}
+MNR

− tr
{

Φ(θ)C(θ)
σ2
n

[Φ(θ)C(θ)
σ2
n

+ INT NR ]−1
}

(6.73)

ln
(
det[R−1

θ Rθ0 ]
)

= ln
σ−2MNR

n det
{

Y(θ)†Y(θ)C(θ)
σ2
n

+ INT NR

}−1

× σ2MNR
n det

{
Y(θ0)†Y(θ0)

C(θ0)
σ2
n

+ INT NR

}
= −ln

(
det

{
Φ(θ)C(θ)

σ2
n

+ INT NR

})

+ ln
(

det
{

Φ(θ0)
C(θ0)
σ2
n

+ INT NR

})
(6.74)

Here, for simplicity and better understanding the waveform correlation matrices
are defined as:

Φ(θ) = Y(θ)†Y(θ) (6.75)
Ψ(θ1, θ2) = Y(θ1)†Y(θ2) (6.76)
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Finally, the KLD between the two probability measures can be rewritten as:

I(θ0 : θ) = 1
2

− tr
{

Ψ(θ0, θ)† C(θ0)
σ2
n

Ψ(θ0, θ)
C(θ)
σ2
n

[Φ(θ)C(θ)
σ2
n

+ INT NR ]−1
}

+ tr
{

Φ(θ0)
C(θ0)
σ2
n

}
− tr

{
Φ(θ)C(θ)

σ2
n

[Φ(θ)C(θ)
σ2
n

+ INT NR ]−1
}

+ ln
(

det
{

Φ(θ)C(θ)
σ2
n

+ INT NR

})

− ln
(

det
{

Φ(θ0)
C(θ0)
σ2
n

+ INT NR

}) (6.77)

which is derived by substituting (6.73) and (6.74) in (6.70). Note the KLD is
expressed in terms of auto-correlation, cross-correlation and channel covariance
matrices.

MIMO Ambiguity Function

Applying a similar analysis to the one presented in (Rendas and Moura, 1998) for
a single-input single-output system (SISO), and taking into consideration that it
is desired for the AF to take values between 0 and 1, the MIMO AF is defined as:

AMIMO(θ0, θ) , 1 − I(θ0 : θ)
Iub(θ0)

(6.78)

where Iub(θ0) is the upper-bound of I(θ0 : θ). Examining the different terms in
(6.77) it can be easily shown that all the traces and logarithms will return positive
values. Moreover, to maximise I(θ0 : θ), the upper bound of each term can be
examined separately and then combined altogether. It is worth noting that since
the terms in (6.77) are not independent, treating them separately will not provide
a tight upper bound, i.e. Iub(θ0) ≥ max

θ
I(θ0 : θ), but a more relaxed limit.

Considering the first term in (6.77) and assuming that there is at least one θ
for which Y(θ)†Y(θ0) = 0, it can be shown that the maximum value of this term
is also zero. This can occur, for example, if the difference between the tested and
actual Doppler shift is large enough so that the Y (θ) and Y (θ0) do not overlap in
the frequency domain. Furthermore, by using the eigenvalue decomposition of the
matrix product Φ(θ)C(θ) (see Appendix B.4) the maximum value of the third
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term in (6.77) is calculated from the following relation:

− tr
{

Φ(θ)C(θ)/σ2
n

Φ(θ)C(θ)/σ2
n + INT NR

}
≤ − SNRθ

SNRθ + 1 (6.79)

where SNRθ = tr {Φ(θ)C(θ)} /σ2
n denotes the total expected signal-to-noise ratio

in the resolution bin θ. Here the term expected is used as the SNRθ is calculated
using the auto-correlation matrix of Y(θ) and not its cross correlation with Y(θ0).
Using the same procedure (see Appendix B.4), the maximum value of the fourth
and fifth terms in (6.77) can be written as:

ln
(
det

{
Φ(θ)C(θ)/σ2

n + INT NR

})
≤ SNRθ (6.80)

−ln
(
det

{
Φ(θ0)C(θ0)/σ2

n + INT NR

})
≤ 0 (6.81)

Using (6.79), (6.80) and (6.81) the upper bound of the KLD in (6.77) can be
calculated as:

Iub(θ0) = 1
2

(
SNRθ0 + max

θ

(
SNR2

θ/(SNRθ + 1)
))

(6.82)

Inspecting (6.82) it is observed that the KLD can get its maximum value at the
resolution bin θ, in which the SNRθ is also maximum. This is expected as the
ability to discriminate between the true and the approximated PDFs p(r|θ0) and
p(r|θ) will be better for θ in which the SNR is higher. A closer examination
reveals that the term SNRθ can be expressed as:

SNRθ =
NR∑
j,j′

NT∑
i,i′

Re
{
Φ(θ)(i,j)(i′,j′)C(θ)(i,j)(i′,j′)

}
(6.83)

were the double index in the summations indicates the unique pairs i.e.∑
m,m′ [·] = ∑

m

∑m
m′=1[·]. It can be therefore deduced that the defined SNRθ

value is highly dependent on the geometry of the system through the channel
correlation matrix C(θ), and the design of the operating waveforms thought the
waveform correlation matrix Φ(θ). For example waveforms for which the cross-
correlation has a negative real part assuming that the target is located θ, will
have lower SNRθ in cases of positive channel correlation than if the channels were
uncorrelated.
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Having defined an upper bound it can be ensured that AMIMO(θ0, θ) ≥ 0, ∀θ.
From (3.21) it can be shown that:

I(θ0 : θ) ≥ 0 ∀θ0, θ (6.84)

The equality in (6.84) holds for θ = θ0 → I(θ0 : θ) = 0 and therefore from (6.78)
AMIMO ≤ 1.

6.5 Reduction to Woodward AF

In this section it is demonstrated that the proposed MIMO AF could be reduced
to the canonical AF if a more simplified and closer to the canonical signal model
is considered. First let us assume a co-located monostatic system with a point-
modelled target located at the resolution bin θ0. Additionally let us assume a
narrowband signal model, where the SNR remains constant across resolution bins.
The KLD in (6.77) can be expressed as:

I(θ0 : θ) = SNR2

2(SNR + 1)

(
1 − 1

Φ
∣∣∣y(θ0)†y(θ)

∣∣∣2) (6.85)

where Φ = |y(θ)†y(θ)| = |s|2 and SNR = Φε/σ2
n, with ε being the power parameter.

Since the negative signed parameter in (6.85) can only take positive values, the
upper bound can be extracted as:

Iub(θ0) = SNR2

2(SNR + 1) (6.86)

Under the assumption that the signal is also normalised i.e. |s|2 = 1, the AF can
be derived as:

A(θ0, θ) =
∣∣∣y(θ0)†y(θ)

∣∣∣2 (6.87)

Equation (6.87) shows that the proposed MIMO AF reduced to the Woodward’s
AF for the same signal model.

6.6 Example and Illustrations

In this section a number of MIMO radar system configurations will be examined
to illustrate the behaviour of the proposed MIMO AF. To offer a broader under-
standing and keep the results generalised all the spatial values, values of speed,
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Fig. 6.3 Sensors geometry in the surveillance area

and bandwidths will be expressed as factors of the carrier wavelengths λ, carrier
speed c, and as factor of the carrier frequency fc respectively.

In Figure 6.3 the geometry of the sensors that will be used in this section is
presented. We define a (103 × 103)λ2 surveillance area with the position of the
sensors being chosen randomly in a (500 × 500)λ2 area centred at the centre of
the scene. Moreover, the velocities of the sensors are considered 0 in both axes i.e.
ui,T = [0, 0]T , i = 1, . . . , NT and uj,R = [0, 0]T , i = 1, . . . , NR. In the following,
this system will be examined for different configurations.

6.6.1 Normalised Channel Correlation Matrix

In Section 6.3 a formulation of the covariance matrix was presented. To better
illustrate how the channel correlation matrix varies through the different resolution
bins, in Fig. 6.4a the normalised summation of the absolute value of non-diagonal
elements in Ω(θ) is illustrated for a target with dimensions ∆x = ∆y = λ. This
quantity denotes the degree of correlation that the channels will have if the target
is positioned at the resolution bin θ. Namely, the value for each resolution bin θ

is calculated as:

Ω̂(θ) =
∑NR
j

∑NT
i

∑NR
j′

∑NT
i′ (1 − δ(i− i′)δ(j − j′))|Ω(θ)(j,i)(j′,i′)|
NRNT (NRNT − 1) (6.88)

From (6.88) it can be seen that for values of Ω̂(θ) close to 1 the system can be
considered fully co-located while for values close to 0 the system can be considered
widely distributed. As it can be seen areas closer to the centre of the scene where
the target is surrounded by sensors from many directions are characterised by
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higher decorrelation between the channels. On the other hand, in more distant
areas the system can be categorised as co-located as the sensors are facing the
target from similar aspect angles. The same illustration for a target of dimensions
∆x = 1/2λ and ∆y = 2λ is presented in Fig. 6.4b. As it can be seen, the area in
which the channels are considered uncorrelated has been stretched parallel to the
x-axis and squashed parallel to the y-axis due to the different shape of the target.

6.6.2 Disrtributed and Co-located System Performance

In this section the performance of the system will be assessed for different target
placement and different operating waveforms. In all examples we consider a
constant energy parameter for all resolution bins i.e

√
E(θ) = INRNT .

Orthogonal waveforms

First let us consider a library of four orthogonal waveforms operating at each
transmitter. The sequences used in the system are orthogonal frequency division
multiplexed linear frequency modulated (OFDM-LFM) waveforms described as:

si(t) = ejπB( 1
T
t+i−1)t (6.89)

where T and B are the corresponding period and the bandwidth of the signal.
All the variables of the system are summarised on Table 6.1. In Fig. 6.5 the
proposed MIMO AF is illustrated in logarithmic scale for a target with velocity
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Fig. 6.4 Normalized sum of non diagonal elements of the channel correlation
matrix Ω for target dimensions (a) ∆x = ∆y = λ and (b) ∆x = 1/2λ and ∆y = 2λ;
transmitters and receivers are denoted by squares (�) and rhombi (♦) respectively.
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Fig. 6.5 MIMO AF when the target’s centre of gravity is positioned in
(a) x0,Q = [0, 0]T and (b) x0,Q = [−400,−400]T , and orthogonal waveforms and
constant energy parameter is considered; transmitters and receivers are denoted
by squares (�) and rhombi (♦) respectively.

u0,Q = [0, 0]T and centre of gravity is positioned at (a) x0,Q = [0, 0]T and (b)
x0,Q = [−400λ,−400λ]T .

Consulting Fig. 6.4 it can be seen that in the first target placement the system
is closer to the widely distributed geometry while in the second case is modeled
better by the co-located. In Fig. 6.6 a zoomed version of the MIMO AF for these
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Fig. 6.6 Zoomed part of the MIMO AF when the target’s centre of gravity is
positioned in (a) x0,Q = [0, 0]T and (b) x0,Q = [−400,−400]T , and orthogonal
waveforms and constant energy parameter is considered.

two case is illustrated for regions close to the target’s position. In both cases,
the MIMO AF is populated by 16 ellipsoid shaped ridges corresponding to each
bistatic transmitter-target-receiver system, all of which intersect at the target’s
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Fig. 6.7 Values of SNRθ in (a) random and (b) line sensor configuration, when
orthogonal waveforms and constant energy parameter are considered; transmitters
and receivers are denoted by squares (�) and rhombi (♦) respectively.

location. On closer inspection it can be seen that in the distributed case these
ridges are added incoherently to form a “smooth” representation with peak at the
position of the target. In contrast, in the co-located case fluctuations are present
due to the way the ridges from different correlated channels are added with each
other. The ridges can be added constructively or destructively depending on the
ridges being in-phase or off-phase and the correlation of the different channels
being negative or positive. The values of SNRθ for this scenario are illustrated in
Fig. 6.7a. As it can be seen, the SNRθ remains constant in the entire area. This
is expected as from (6.83) it can be seen that for orthogonal waveforms the sum
will always be the total energy of the signals multiplied by the ratio NRNTσ

2
0/σ

2
n.

To confirm that changing the system’s geometry will not impact the values of
SNRθ, a different configuration is illustrated in 6.7b. Here, the sensors are placed
in a horizontal line with the a transmitter and receiver being placed together at
each point. As it can be seen, the SNRθ remains constant in all the examined
area for both configurations.

Correlated Waveforms

In the second example the same system variables summarised in Table 6.1 will be
assumed. In contrast to the previous section, here we assume that the transmitters
are using fully correlated waveforms given by:

si(t) = ejπ
B
T
t2 , i = 1, . . . , 4 (6.90)
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Table 6.1 Theoretical MIMO System Variables

Description Variable Value
Signal Bandwidth B 0.1fc

Signal Period T 103/B

Target x-axis dimension ∆x λ

Target y-axis dimension ∆y λ

Target RCS variance σ2
0 1

Noise variance σ2
n 16 × 10−5
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Fig. 6.8 MIMO AF when the target’s centre of gravity is positioned in
(a) x0,Q = [0, 0]T and (b) x0,Q = [−400,−400]T , and fully correlated waveforms
and constant energy parameter is considered; transmitters and receivers are
denoted by squares (�) and rhombi (♦) respectively.

In Fig. 6.8 the MIMO AF of the system is illustrated for the two different
positions of the target. Additionally, Fig. 6.9 provides a zoomed version of the
MIMO AF for areas close to the target. Examining both figures it can be seen
that in for highly correlated waveforms the number of ellipsoid ridges populating
the MIMO AF is higher than when low cross-correlation waveforms are used. In
fact 64 ridges are formed as the different transmitters cannot be decorrelated
at the receivers. A direct consequence of that is that the extra ridges will not
fall on the target’s resolution bin if the resolution of the baseband signal si,as
determined by its bandwidth, is high enough. The impact of this phenomenon is
more apparent in the distributed case and becomes less apparent as the system
approaches the fully co-located case, where all the ridges will eventually overlap.
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Fig. 6.9 Zoomed part of the MIMO AF when the target’s centre of gravity is
positioned in (a) x0,Q = [0, 0]T and (b) x0,Q = [−400,−400]T , and fully correlated
waveforms and constant energy parameter is considered.
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Fig. 6.10 Values of SNRθ in (a) random and (b) line sensor configuration, when fully
correlated waveforms and constant energy parameter are considered; transmitters
and receivers are denoted by squares (�) and rhombi (♦) respectively.

Moreover in Figure 6.10 the values of SNRθ are illustrated across the surveillance
area. By comparing the results with the ones in Figure 6.7 it can be seen that
when the waveforms are non orthogonal fluctuations in the SNRθ occur. From
(6.83) it can be seen that those fluctuations depend on the correlation between
the channels and the degree of correlation that the waveforms will have at each
resolution bin θ. Comparing the random and line sensor configuration in 6.10a
and 6.10b respectively it can be easily seen that by manipulating the system
geometry it is possible to increase the SNRθ in areas of interest.
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6.7 Simulations and Comparison

In this section the performance of the proposed AF will be examined in a simulated
MIMO radar scenario. It should be noted that the main difference compared to
the analysis presented in Section 6.6, is that here the received signal is extracted
by simulating the returns of an extended target and not by using the mathematical
model of the covariance matrix Rθ0 presented in (6.69). The impact of estimating
the covariance matrices and required modifications are needed to be made on
proposed MIMO AF will be discussed in the following paragraphs.

6.7.1 Modified AF

One of the main matters in applying the proposed AF definition using the KLD
in (6.77) for simulated or real data, is that the received signal r0 cannot be
decomposed into its individual terms. As a result, the formulation in (6.77) has to
be modified to accommodate the processing on the entire received signal r0 and not
each individual factor i.e. Y(θ0), C(θ0), and σn. The trace and logarithmic terms
of the KDL in (6.70) for a received signal r0 with covariance matrix R0 = r0r†

0

are derived as follows:

tr
{
R−1
θ R0

}
= 1
σ2
n

r†
0r0 − Ψ̂(θ)C(θ)

σ2
n

[
Φ(θ)C(θ)

σ2
n

+ INT NR

]−1

Ψ̂(θ)† (6.91)

ln|R−1
θ R0| = −2MNRln(σ2

n) − ln
(

det
{

Φ(θ)C(θ)
σ2
n

+ INT NR

})
+ ln

(
det

{
r0r†

0

})
(6.92)

where Ψ̂(θ) is the 1 ×NRNT row vector populated by the output of the received
signal matched filtered for each transmitter-receiver pair i.e.:

Ψ̂(θ) = r†
0Y(θ) (6.93)

Due to the high computational cost, the logarithmic terms in (6.92) will not be
taken into account in the MIMO AF computation. Therefore the approximated
KLD Î(θ0, θ) assuming that det

{
R−1
θ R0

}
= 1 for every test resolution bin θ is

described as:
Î(θ0, θ) = 1

2
(
tr[R−1

θ R0] −MNR
)

(6.94)
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Moreover the results are normalised so that the minimum and maximum values
are always 0 and 1 respectively. The definition of the MIMO AF used in this
scenario is given as:

ÂMIMO(θ0, θ) = 1 −
Î(θ0, θ) − min

θ
Î(θ0, θ)

max
θ

Î(θ0, θ) − min
θ

Î(θ0, θ)
(6.95)

The main reason of normalising the results is to provide an easier comparison
between the theoretical and other proposed AFs.

6.7.2 Correlation matrix approximation

A secondary matter in using the proposed definition on simulated or real data is
that the definition of the channel correlation matrix in (6.54) and consequently
the matrix C(θ0) is based in assumption that the target is composed of scatters
with a reflectivity modelled by i.d.d complex random variables (see Section 6.3).
The main result of this assumption is that E

{
ζ†
qζq′

}
= δ(q − q′)|ζq|2, which is

not true if only an individual measurement of ζq is taken. To address this issue
a coherent processing of NP pulses is assumed. As a consequence, the received
signal r0 has to be expressed by a M ×NP matrix, each column of which contains
the M samples of one coherent acquisition. Consequently the matrix Ψ̂(θ) will
also change its size to NP ×NRNT . Moreover the trace in (6.91) is reformed as
follows:

tr
{
R−1
θ R0

}
= 1
σ2
n

tr
r†

0r0 − Ψ̂(θ)C(θ)
σ2
n

[
Φ(θ)C(θ)

σ2
n

+ INT NR

]−1

Ψ̂(θ)†

 (6.96)

To evaluate the degree of similarity between the theoretical value of C(θ0)
and the one expected from the simulation Ĉ(θ0), the Frobenius norm of their
difference is calculated, i.e. ||{Ĉ(θ0) − C(θ0)}||. The system configuration is
the one described in Fig. 6.3 with the target located at x0 = [0, 0]T and (a)
x0 = [−400,−400]T , while the x-axis and y-axis dimensions of the target are
∆x = ∆y = λ. Consulting Fig. 6.4a it can be observed that for the target location
x0 = [0, 0]T , the system can be approximated as distributed and therefore C(θ0)
can be approximated by a diagonal matrix. On the other hand when the target
is located at x0 = [−400,−400]T , the system can be approximated as co-located
and C(θ0) will be a fully populated matrix. In Fig. 6.11 the resulting norm after
a Monte Carlo of 1000 iterations is illustrated for different number on coherent
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Fig. 6.11 Euclidean distance between the theoretical and simulated channel corre-
lation matrix for an approximated (a) distributed and (b) co-located system.

pulses NP and different number of scatters NQ. It is worth noting that while the
Frobenius norm provides a good measure of similarity, in the examined case it
also highly depends on the size of the matrices NRNT ×NT NR.

Examining the impact of NQ, in Figure 6.11 it can be seen that generally larger
number of scatters result to smaller norm and therefore better similarity between
the theoretical and simulated channel correlation matrices. This is expected as
returns from more scatters will result to better approximation of the sinc functions
in (6.51) as discussed in Section 6.3. Moreover, comparing the results for different
values of NQ in the distributed case, it can be seen in Figure 6.11a that the
improvement saturated for NQ > 100. On the other hand, for the co-located case
it appears that the approximation behaves similar for all the examined values of
NQ.

Comparing the results for different values of it can be seen the norm of the
difference, expressed as Euclidean distance, between the theoretical and simulated
C(θ0) is decreasing as the number of coherent pulses NP increases. This is
expected, as in each pulse a new observation for each ζq is also acquired, i.e.
ζq = [ζq(1), ..., ζq(NP)]T . It can be therefore derived that as NP increases the
sample cross-correlation ζ†

qζq′ will be approximately zero. However, as previously
mentioned, the norm will also depend on the NQ. In fact, for NP = 104 (not
included in Figure 6.11) the norm for NQ = 10 is close to 1.9 and 1.1 for the
distributed and co-located cases respectively, while for NQ = 200 these norms
drop to 0.2 and 0.15 respectively.
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Fig. 6.12 Sensor geometry for the simulatied system in (a) distributed and (b)
co-located configureation.

6.7.3 Simulated results

To evaluate the performance of the proposed AF, a 4 × 4 MIMO radar system
with an extended target is simulated. The variables of the system are summarised
in Table 6.2, while a coherent processing of NP = 50 pulses is used to generate
the MIMO AF. For comparison, the more canonical approach of summing the
square matched filter outputs is also employed, calculated as:

Âcan,MIMO = tr
{
Ψ̂(θ)†Ψ̂(θ)

}
(6.97)

The performance of the proposed and canonical MIMO AF is compared for
a distributed and co-located system geometric configurations as illustrated in
Fig.6.12a and Fig.6.12b respectively. It should be noted that in all simulation, a
5 × 5Km2 area is examined with the target located at x0,Q = [0, 0].

Distributed System

In the following paragraphs, the distributed system in Fig. 6.12a is simulated
to examine the behaviour of the proposed and canonical MIMO AF definition.
First the system is explored using the orthogonal waveforms described in (6.89).
In Fig. 6.13 the proposed and canonical MIMO AFs are illustrated. Comparing
Fig. 6.13a and Fig. 6.13b, it is observed that both MIMO AFs have identical
behaviour being composed of 16 ridges corresponding to the NT NR = 16 individual
transmitter-receiver pairs. The similarity in the results is expected and can be
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Fig. 6.13 Illustration of (a) proposed and (b) traditonal MIMO AF in a distributed
system configuration using orthogonal waveforms.

easily validated theoretically by replacing the correlation matrices Φ(θ) and C(θ)
with diagonals in (6.96).

Using the same geometry, the system was simulated using the fully correlated
waveforms described in (6.90). In Fig. 6.14 the two MIMO AFs are illustrated.
As it can be observed in Fig. 6.14a and Fig. 6.14b both MIMO AFs are composed
of a larger number of ridges compared to when orthogonal waveforms are used.

Table 6.2 Simulated MIMO System Variables

Description Variable Value
Carrier frequency f0 10MHz

Signal bandwidth B 10GHz

Signal period T 50µs

Target x-axis dimension ∆x 1m

Target y-axis dimension ∆y 1m

Target RCS variance σ2
0 1 m

Noise variance σ2
n 1−13

Gain on transmitters GT 40dB

Gain on receivers GR 40dB

Energy on transmitters ÊT 20dB
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Fig. 6.14 Illustration of (a) proposed and (b) traditonal MIMO AF in a distributed
system configuration using correlated waveforms.
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Fig. 6.15 Illustration of (a) proposed and (b) traditonal MIMO AF in a distributed
system configuration using correlated waveforms. The red line marks the −3dB
contours of the MIMO AFs, while the white line marks the contour where the
proposed MIMO AF is 50% lower than the canonical.

The actual number of ridges is N2
T NR = 64, as discussed in Section 6.6.2. For a

better examination, Fig. 6.15 offer a zoomed illustration of the MIMO AFs for an
area close to the target. Moreover a red line marks the −3dB contour of the two
MIMO AFs, while in Fig. 6.15a the contour for which the proposed MIMO AF is
50% lower than the canonical is shown in white. Examining Fig. 6.15a, it can be
seen that the proposed MIMO AF has values over −3dB only in the main lobe to
where the target is placed. In contrast, in Fig. 6.15b it is shown that the canonical
MIMO AF exhibits a sidelobe of values higher than −3dB in a distant point from
the target’s position. This is caused due to the way the canonical MIMO AF
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Fig. 6.16 Illustration of (a) proposed and (b) traditonal MIMO AF in a co-located
system configuration using orthogonal waveforms.

is constructed by adding all the resulting ridges constructively. Inspection of
Fig. 6.15a shows that in those areas in which the different ridges are crossing, the
value of the proposed MIMO AF is at least half of those in the canonical.

Co-located System

In this example scenario the co-located system configuration in Fig. 6.12b is
used. In Fig. 6.16 the resulting MIMO AFs are illustrated when the operating
waveforms are orthogonal as given in (6.89). As it can be seen in both cases the
MIMO AF is described by a circular ridge crossing the position of the target.
In reality, as described in Section 6.6.2, this ridge is composed of 16 secondary
ridges corresponding to the individual transmitter-receiver pairs. To provide
closer inspection, Fig. 6.17 illustrate the two different MIMO AFs only for the
area close to the target, while a red line marks the −3dB contour. As it can
be seen in Fig. 6.17a the proposed MIMO AF has a distinctive peak at the
area surrounding the target while it reduces and fluctuates moving further away.
This phenomenon is caused by the constructive and destructive correlation of
the different transmitter-target-receiver channels, as discussed in Section 6.6.2.
On the other hand, after examining the canonical MIMO AF in Fig. 6.17b it is
observed that it remains constant moving on the main ridge.

Using the same configuration the system was simulated for fully correlated
waveforms as given in (6.90). In Fig. 6.18 the MIMO AFs for the proposed and
canonical definition are presented. As it can be seen, the main structure of the
two MIMO AFs is similar the case of orthogonal waveforms, with a single circular
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Fig. 6.17 Illustration of (a) proposed and (b) traditonal MIMO AF for area close
to the target, in a co-located system configuration using orthogonal waveforms.
The red line marks the −3dB contours of the MIMO AFs.
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Fig. 6.18 Illustration of (a) proposed and (b) traditonal MIMO AF in a co-located
system configuration using fully corelated waveforms.

ridge crossing the target. In this case however, the main ridge is composed of
N2

T NR = 64 secondary ridges. This increase on the number of secondary ridges
leads to a lower floor level as it can be observed in both figures. Moreover, in
Fig.6.18a regions of very low values can be seen as lines radiating out from the
position of the sensors are present. Those line are connected with the fluctuation
of the SNRθ, as discussed in Section 6.6.2. In Fig. 6.19 the MIMO AFs for the
area close to the target are illustrated. As it can be seen, the canonical MIMO
AF in Fig. 6.19b has a very similar behaviour as in Fig. 6.17b with a lower floor
level. Looking at the proposed MIMO AF in Fig. 6.19a it is observed that the
−3dB contour (see red line) is larger than when orthogonal waveforms are used as
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Fig. 6.19 Illustration of (a) proposed and (b) traditonal MIMO AF for area close
to the target, in a co-located system configuration using fully corelated waveforms.
The red line marks the −3dB contours of the MIMO AFs, while the white line
marks the 10dB contour of SNRθ.

it can be seen in Fig. 6.17a, with the floor level however being significantly lower
in the correlated waveform case. For a better understanding on how the SNRθ

have an effect on the proposed MIMO AF, the contour of the 10dB SNRθ is also
drawn in Fig. 6.19a. As it is seen, the values of SNRθ can dictate the fluctuations
of the proposed MIMO AF placing increasing and decreasing its values.

6.8 Summary

In this chapter a new, generalised MIMO AF is presented. The proposed definitions
is based on the Kullback Leibler divergence and applied in a MIMO radar signal
model. Theoretical analysis showed that the proposed MIMO AF can be factorised
in auto-correlation and cross-correlation signal matrices, and channel correlation
matrices. In addition, it is proven that the proposed MIMO AF takes values
between 0 and 1 while also being flexible for various system spatial configuration
assumptions. The relationship of the proposed MIMO AF with the commonly used
definition is also examined, showing that it reduces to the canonical Woodward
definition when the same signal model is assumed. Moreover, the behaviour of
the proposed MIMO AF was investigated for different target placements and
operating waveform highlighting the advantages of each configuration. Finally,
the performance of the proposed AF was demonstrated in a simulated MIMO
radar system. Comparing the results for the described simulated scenarios it can
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be derived that the proposed definition offers better target localisation offering
higher spatial resolution and lower floor levels.



Chapter 7

Conclusions and Future Works

7.1 Conclusion

In this thesis, a variety of important signal processing algorithms have been
analysed for multi-input multi-output (MIMO) radar system, concerning the
edge detection based on phase stretch transform (PST) for synthetic aperture
radar (SAR) imaging systems, the design of radar waveforms libraries utilising
the advantageous properties of fractional Fourier transform (FrFT), and the
synthesis of a generalised MIMO ambiguity function based on the Kullback Leibler
divergence (KLD).

In Chapter 2 an extensive research review was presented, dedicated to a
number of very important aspects of modern radar systems. Key areas, such
as basic radar concepts and advanced radar techniques were discussed mainly
focused on radar waveform design and pulse compression through signal processing
techniques. In addition, the concept of multisensor radar systems was introduced
exploring their categorisation relating to their geometry and operating waveforms.
Furthermore, the topical subject of spectrum sharing (SS) was presented referring
the recent advances with regard to waveform diversity (WD) in MIMO radar.
Proposed WD schemes such as orthogonal frequency division multiplexing (OFDM)
and discrete frequency-coding waveforms (DFCW) were discussed exploring the
design of multiple waveforms with good auto-correlation properties and low cross-
correlation peak levels. The aim of these designs was to generate waveforms
suitable for MIMO radar applications. Moreover, recently proposed techniques
that allow joint communication and radar operations were investigated, including
schemes exploiting WD, sidelobe amplitude modulation (AM), multiwaveform
amplitude shift keying (ASK), and phase modulation (PM). Lastly, the concept
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of SAR was introduced, while current challenges in SAR images processing were
presented.

In Chapter 3 the basic concepts of time-frequency (T/F) analysis were dis-
cussed in connection with the commonly used tools associated with it. Moreover,
the importance of the ambiguity function (AF) was discussed by highlighting
its significant properties and referring to various proposed definitions, such as
traditional or Woodward AF and the Kullback Leibler divergence (KLD) based
definition. In addition, the fractional Fourier transform (FrFT) and the phase
stretch transform (PST) were extensively presented. First, the notion of fractional
domain and the FrFT were discussed included the FrFT properties, implementa-
tions (i.e. discrete and fast approximation) and applications in signal processing.
Later on, the PST was introduced included, referencing also its application in SAR
image compression and biomedical diagnoses. Moreover, a specific mention was
made to aspects of PST in image edge detection. A provided example illustrated
how the PST based edge detection algorithm can effectively extract edges while
trading between noise reduction and resolution.

An algorithm for edge detection in SAR images was presented in Chapter 4.
This method is an enchanted scheme based on the previously proposed PST
based edge detection method.Examining its different steps, it has been shown
that the presented algorithm reduces the noise effects and removes phase image
artefacts, while the PST emphasises the edge information applying more phase to
higher frequency features. The good performance of the presented edge detection
algorithm has been tested and verified experimentally using two real datasets.
Experimental results demonstrated that thresholding and further morphological
operation leads to the edge extraction despite the noise presence into the original
image. Moreover, it was observed that more details could be preserved, while
removing completely the noise from the sea areas.

In Chapter 5, a novel scheme was introduced that is capable to create waveform
libraries utilising the FrFT. The potentials of the FrFT based or also called
fractional waveforms were demonstrated though mathematical analysis and an
illustrative example for Barker 13 code, examining the resulted waveforms and
their AFs. Subsequently, an efficient algorithm based on a modified Gerchberg-
Saxton algorithm (MGSA) was proposed, to reconstruct the proposed fractional
waveform libraries under constant envelope (CE) constrains. Simulation analysis
showed the good properties of the waveforms and that high diversity between
waveforms could be achieved in fractional and CE fractional libraries. The
development and reconstruction of the novel waveform libraries for MIMO radar
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was one of the most significant contributions in this thesis. It is worthy to
note that the applicability of the proposed waveforms was also experimentally
validated, while their performance was evaluated and compared with conventional
techniques in a distributed MIMO radar scenario. The results confirmed that
the proposed design scheme is very competent for various radar applications such
as those related to co-located and distributed MIMO radar, pulse agile radar
and electronic countermeasures. Moreover, a novel multiplexing scheme based
on the FrFT was introduced allowing the radar systems to operate in message
exchange mode via embedding the information into waveforms. The efficiency of
the proposed waveform design was evaluated in connection with the AF properties
of communicative radar (Co-radar) waveform.

In Chapter 6, a MIMO AF is presented based on the Kullback Leibler divergence
and applied in a MIMO radar system framework. Theoretical analysis showed that
the proposed MIMO AF can be factorised in auto-correlation and crosscorrelation
signal matrices, and channel correlation matrices. In addition, the MIMO AF
maximally stretched between 0 and 1 while also being flexible for various system
spatial configuration assumptions. The relationship of the proposed MIMO AF
with other proposed definition is also examined. Moreover, the behaviour of the
proposed MIMO AF was investigated for different target placements and operating
waveform. Finally, the performance of the AF was demonstrated in a simulated
MIMO radar system.

7.2 Future Work

In the presented work there are various topics worthy of future research. In
Chapter 5, novel waveform libraries design has proposed suitable for MIMO
radar systems based on FrFT. These radar waveforms are very effective in target
localisation problem, but may suffer from the introduced noise. Although the
proposed constant envelope fractional waveform has shown good performance, the
further fractional domain optimisation still remains an interesting challenge. A
future developed approach may increase the estimation of target parameters against
the mismatches through improved filtering approach. One of the most important
current challenges in MIMO radar is the search for fully orthogonal waveforms
aimed to remove interference problems between the antennae during both the
transmission and pulse compression phases. Future requirements may include
novel design of fully orthogonal waveforms to increase transmitted information in
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the same bandwidth. Utilisation of multi-order FrFT (MoFrFT) can also provide
additional degrees of freedom potentially leading to better optimised waveform
libraries.

Moreover the novel technique of embedding arbitrary information into radar
waveforms could be further investigated employing the potentials of the FrFT.
Radar waveform design based on FrFT is proved to be a much promising method-
ology in extending message exchange between radar systems. In addition, the
applicability and adaptation of the proposed designs will be evaluated in modern
radar/communication application areas including vehicular communications. In
addition, diversity between different Co-Radar waveforms can allow simultaneous
radar and commutation operations between different platforms.

Considering the research presented in Chapter 6, future work may include
further investigating of the generalised MIMO AF. The proposed formulation
could be further parametrised to increase flexibility of the signal model approach.
Also, an extension would be the formulation simplification, approximating some
of its terms to decrease the complexity and therefore the total time consumed for
AF calculation. In addition the presented work on the generalised AF may extend
to search from matched filter processing to mismatched filtering aimed to improve
the the systems performance.

The presented edge detection technique in Chapter 4 is much promising and has
the potential advantages to further improve noise removal and edge appearance.
Future work could explore the PST parameter optimisation in recovering image
edges. This may involve the design of a dynamic parameter regulation that could
optimise the removal of the embedded noise while eliminating the phase image
artifacts.



Appendix A

A.1 Further FrFT Properties

In this section a number of properties of further FrFT properties not listed in
Section 3.4.1 are provided. In all properties x(t) denotes and arbitrary signal.

Inverse FrFT

x(t) = F −a{xa(u)} =
∫ ∞

−∞
xa(u)K−a(u, t)du (A.1)

Time Shift

F ax(t− τ) = xa(u− τ cosϑ)ejτ2/2 sinϑ cosϑ−juτ sinϑ (A.2)

Phase modulation

F ax(t)ejωt = xa(u+ ω sinϑ)e−jω2/2 sinϑ cosϑ−juω cosϑ (A.3)

Moreover some other useful relations regarding the FrFT kernel are listed bellow:

K∗
a(t, u) = K−a(t, u) (A.4)

Ka(t, u) = Ka(u, t) (A.5)

where Ka(t, u) is the FrFT kernel of an order a. There properties and relations
will be useful in later sections.
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A.2 FrFT and AF relationship Proof

In this section the relationship between the traditional AF and the FrFT will
be derived. In the following lines we denote the AF of an arbitrary signal x(t)
as A(τ, ω){x(t)} following the definition provided in (Hlawatsch and Boudreaux-
Bartels, 1992):

A(τ, ω){x(t)} =
∫ ∞

−∞
x(t+ τ

2)x∗(t− τ

2)e−jωtdt (A.6)

This definition is slightly different but equivalent to the AF described in Sec-
tion 3.3.1. Namely computing the modulo of (A.6) results to the same definition
as in (3.5).

The following approach is very similar to the one held in (Almeida, 1994) for
the Winger distribution. For ease of notation the Doppler has been replace with
the phase ω = 2πfD. Based on the definition in (A.6), the AF of an arbitrary
signal x(t) is given as:

A(τ, ω){x(t)} =
∫ ∞

−∞
x(t+ τ

2)x∗(t− τ

2)e−jωtdt (A.7)
(A.9)= ejωτ/2

∫ ∞

−∞
x(t)x∗(t− τ)e−jωtdt

(A.1)= ejωτ/2
∫ ∞

−∞
x(t)e−jωt

∫ ∞

−∞
F a{x(t− τ)}K∗

−a(u, t)dudt
(A.2)= ejωτ/2

∫ ∞

−∞
x(t)e−jωt

∫ ∞

−∞
x∗
a(t− τ cosϑ)e−jτ2/2 sinϑ cosϑ+juτ sinϑK∗

−a(u, t)dudt
(A.4)= ejωτ/2

∫ ∞

−∞
x(t)e−jωt

∫ ∞

−∞
x∗
a(u− τ cosϑ)e−jτ2/2 sinϑ cosϑ+juτ sinϑKa(u, t)dudt

= ejωτ/2
∫ ∞

−∞

∫ ∞

−∞
x(t)e−jωtx∗

a(u− τ cosϑ)e−jτ2/2 sinϑ cosϑ+juτ sin aKa(u, t)dtdu

= ejωτ/2
∫ ∞

−∞
x∗
a(u− τ cosϑ)e−jτ2/2 sin a cosϑ+juτ sinϑ

∫ ∞

−∞
x(t)e−jωtKa(u, t)dtdu

(A.5)= ejωτ/2
∫ ∞

−∞
x∗
a(u− τ cosϑ)e−jτ2/2 sinϑ cosϑ+juτ sinϑ

∫ ∞

−∞
x(t)e−jωtKa(t, u)dtdu

(A.3)= ejωτ/2
∫ ∞

−∞
x∗
a(u− τ cosϑ)e−jτ2/2 sin a cos a+juτ sinϑ

xa(u+ ω sinϑ)e−jω2/2 sinϑ cos a−juω cosϑdu
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= ejωτ/2
∫ ∞

−∞
xa(u+ ω sinϑ)x∗

a(u− τ cosϑ)

e−j(τ2/2+ω2/2) sinϑ cosϑ+ju(τ sinϑ−ω cosϑ)du
(A.10)= ejωτ/2

∫ ∞

−∞
xa(u)x∗

a(u− ω sinϑ− τ cosϑ)

e−j(τ2/2+ω2/2) sinϑ cosϑ+j(u−ω sinϑ)(τ sinϑ−ω cosϑ)du

= ejωτ/2
∫ ∞

−∞
xa(u)x∗

a(u− ω sinϑ− τ cosϑ)

ej(ω
2/2−τ2/2) sin a cos a+ju(τ sin a−ω cosϑ)−ωτ sin2 ϑdu

(A.11)= ejωτ/2
∫ ∞

−∞
xa(u)x∗

a(u− d)ej(ω2/2−τ2/2) sinϑ cosϑ−juν−ωτ sin2 ϑdu

= ejωτ/2
∫ ∞

−∞
xa(u)x∗

a(u− d)ejdν/2+ωτ/2(sin2 ϑ−cos2 ϑ)−juν−ωτ sin2 ϑdu

= ejωτ/2
∫ ∞

−∞
xa(u)x∗

a(u− d)ejdv/2−ωτ/2−juνdu

= ejdv/2
∫ ∞

−∞
xa(u)x∗

a(u− d)e−juvdu (A.8)

where the substituting relationships are given as:

t , t− τ/2 (A.9)
u , u− ω sin a (A.10)
d = ω sinϑ+ τ cosϑ and ν = ω cosϑ− τ sinϑ (A.11)

It should be pointed that by substituting the integrating variables in (A.9) and
(A.10) the limits of the integers do not change. Observing (A.8) it can be easily
extracted that the right-hand side of the equation simplifies to AF of xa for the
variables d and ν, i.e. :

A(τ, ω){x(t)} = A(d, ν){xa(u)} (A.12)

As it can be seen (A.12) the AF of x expressed as a function of the delay τ and the
phase modulation ω related to the Doppler shift is equal to the AF of xa expressed
as a function of variables d and ν given in (A.11). This relationships shows that
the AF of xa, coincides with the AF of x if we take into account the rotation
that corresponds to the fact that we are using different axes. This indicates that
essentially the AF of xa is the AF of x rotated by an angle ϑ (Almeida, 1994).



Appendix B

B.1 Definition of Time Delay, Time Scale and
Frequency Shift Matrix

In this section the M × M matrix aj,i is defined to account for the time delay,
time scale and frequency shift experienced by the baseband signal si due to the
distance and relative motion in the i-th transmitter, q-th scatter, j-th receiver
system.

First let us consider that the signal experiences only a frequency shift f .
The frequency shift matrix a(f)

j,i can be described as a M × M diagonal matrix
populated by the discrete samples of ej2πft. Furthermore, let us consider that the
signal experiences only a delay of mτ samples. The time shift matrix a(τ)

j,i can be
described as:

a(τ)
j,i =

0mτ 0M−mτ

IM−mτ 0mτ

 (B.1)

where 0ℓ denotes a ℓ× ℓ square matrix populated by zeros. Moreover, let us now
consider that the signal only experiences a time scale of a factor α. The time shift
matrix a(α)

j,i can be described as:

a(α)
j,i = ⌊αM⌋


o⌊α⌋−1 1 oM−⌊α⌋

o⌊2α⌋−1 1 oM−⌊2α⌋
... ... ...

o⌊Mα⌋−1 1 oM−⌊Mα⌋

 (B.2)

where oℓ denotes a 1 × ℓ column matrix populated by zeros and ⌊·⌋ indicates the
floor function giving the largest integer less than or equal to input. We can now
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describe the total time delay, time scale and frequency shift matrix as:

aj,i = a(α)
j,i × a(τ)

j,i × a(f)
j,i (B.3)

B.2 Phase Integral and Sinc function Relation
Proof

In this part the approximation of the phase integral being close to 0 is examined.
As it can be seen the integral of a complex exponential can be described by a
cardinal sine or sinc function:

∫ 1/2

−1/2
ej2πβmdm = 1

jπβ
ejβm

∣∣∣∣∣
1/2

−1/2
= 1

j2πβ
(
ejπβ − e−jπβ

)
= 1
πβ

sin(πβ) = sinc(πβ) (B.4)

It is known the sinc(πβ) will have its fist zero at |β| = 1 and will continue
to decrease its absolute value as |β| increases. It is therefore reasonable to
approximate the output of the integral to 0 for |β| > 1.

B.3 Inverse Corelation Matix Proof

In this part the proof of the matrix R−1
θ in (6.71) being the inverse of the covariance

matrix Rθ in (6.69) is provided. In this section the index θ will be ignored for
better illustration.

By definition the inverse of the matrix Rθ should satisfy the condition
RθR−1

θ = IMNR . Following the multiplication of the two matrices is provided
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step-by-step:

RR−1 =
(
YCY† + σ2

nIMNR

) 1
σ2
n

(
IMNR − YC[Y†YC + σ2

nINT NR ]−1Y†
)

= 1
σ2
n

YCY† + IMNR − 1
σ2
n

YCY†YC[Y†YC + σ2
nINT NR ]−1Y†

− YC[Y†YC + σ2
nINT NR ]−1Y†

= IMNR + 1
σ2
n

YC
(

INT NR − Y†YC[Y†YC + σ2
nINT NR ]−1

− σ2
n[Y†YC + σ2

nINT NR ]−1
)

Y†

= IMNR + 1
σ2
n

YC
(
Y†YC + σ2

nINT NR − Y†YC − σ2
nINT NR

)
× [Y†YC + σ2

nINT NR ]−1Y†

= IMNR + 1
σ2
n

YC
(

0NT NR

)
[Y†YC + σ2

nINT NR ]−1Y† = IMNR (B.5)

Additively it is proven that the matrix [Y†YC + σ2
nINT NR ] is positive definite and

hence is also invertible since:

det(Y†YC + σ2
nINT NR) =

det(Y†YHH† + σ2
nINT NR) =

det(H†Y†YH + σ2
nINT NR) =

det((YH)†(YH) + σ2
nINQNR) =

det(UΛU† + σ2
nINT NR) =

det(U(Λ + σ2
nINΛ)U†) =

∏(
Λm,m + σ2

n

)
> 0 (B.6)

where U and Λ are the eigenvector and eigenvalue matrices of the positive
semi-definite covariance matrix [(YH)†(YH)]. The inequality in (B.6) holds as
Λm,m ≥ 0 and σ2

n > 0.

B.4 Proof of Lower Limits

In this part the minimum values for the of the third and fifth terms in (6.77) and
the maximum value of the fourth term are examined. In this section the index θ
will be ignored for better illustration.
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Starting from the third term, first let us consider the eigenvalue decomposition
of the matrices inside the trace:

tr
{
ΦC[ΦC + σ2

nINT NR ]−1
}

=

tr
{
UΛU−1[UΛU−1 + σ2

nINT NR ]−1
}

=

tr
{
UΛU−1[U(Λ + σ2

nINT NR)U−1]−1
}

=

tr
{
Λ[Λ + σ2

nINT NR ]−1
}

=
∑(

Λm,m

Λm,m + σ2
n

)
(B.7)

where U and Λ are the eigenvector and eigenvalue matrices so ΦC = UΛU−1. It
can be easily sown that:

∑(
Λm,m

Λm,m + σ2
n

)
≥

∑Λm,m

max(Λm,m) + σ2
n

(B.8)

Moreover since all the eigenvalues are positive we have:

tr {ΦC} ≥ max(Λm,m) (B.9)

and therefore the following inequality holds:

tr
{

ΦC
ΦC + σ2

nINT NR

}
≥ tr {ΦC}

tr {ΦC} + σ2
n

(B.10)

Examining the positive logarithmic determinant it can be shown that:

ln
∣∣∣ΦC/σ2

n + INT NR

∣∣∣ = ln
∏(

Λ(m,m)/σ2
n + 1

)
(B.11)

Using the arithmetic mean - geometric mean inequality (AM-GM) it can be easily
shown that:

ln
∣∣∣ΦC/σ2

n + INT NR

∣∣∣ ≤ NRNT ln
(

tr {ΦC}
NRNT σ2

n

+ 1
)

(B.12)

From the upper-bound of of the natural logarithm ln(m) ≤ m− 1,m > 0 we have:

ln
∣∣∣ΦC/σ2

n + INT NR

∣∣∣ ≤ tr {ΦC} /σ2
n (B.13)

Finally to extract the lower bound of the negative logarithmic term we can
use the natural logarithm lower bound ln(m) ≥ 1/m− 1,m > 0. It can be also
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easily seen that:

ln
∣∣∣ΦC/σ2

n + INT NR

∣∣∣ ≥ 1 − 1∏(Λm,m + 1) (B.14)

Since Λm,m ≥ 0 it can be extracted that:

−ln
∣∣∣ΦC/σ2

n + INT NR

∣∣∣ ≤ 0 (B.15)
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