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Abstract

In this thesis the propagation of high-frequency elastic waves in a spatially heteroge-
neous, randomly layered material is reported upon. The material is locally anisotropic
and a smooth function describes the spatial variation in the rotation of the associated
slowness surface in the plane of wave propagation. The layer thicknesses and the rota-
tion of their associated slowness curves follow a stochastic (Markovian) process. This
situation is found in ultrasonic wave propagation in polycrystalline materials; for exam-
ple, in the ultrasonic non-destructive testing of welds, additively manufactured metallic
components and carbon fibre reinforced polymer (CFRP) composites. The model for
wave propagation set out in later sections captures the attenuation and deformation
of the input wave as it interacts with the internal material microstructure via multiple
scattering. In early Chapters, a key parameter emerges (v) which captures the degree of
anisotropy in the medium and it is shown how this affects the transmitted and reflected
energy. Using the differences in length scales between the ultrasound wavelength, the
mean layer size, and the wave propagation distance, a small parameter is identified in
the stochastic differential equations that emerge. Using these stochastic equations al-
lows derivation of infinitesimal generators which encode information about the random
processes in the wave propagation problem, which affords for studies into the proba-
bility density functions of the coherent wave via the use of Fokker-Planck equations.
Later Chapters use diffusion approximations to study a broadband ultrasonic pulse via
Ricatti equations; in particular a line source. The incoherent component of the wave is
characterised via the autocorrelation of the reflection coefficient and an expression for

the reflected intensity of the wave at different lateral observation points is derived.
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Chapter 1

Introduction

1.0.1 Background and Motivation

Ultrasonic non-destructive evaluation (NDE) is an important technique for assessing the
structural integrity of industrial infrastructure. It involves sending mechanical waves
through the object of interest and analysing the resulting scattered field to determine if
there exists any embedded defects [1], [2]. It is common practice when performing NDE
on an unknown material to assume homogeneous material properties [3|. However, this
is a physically unrealistic assumption in many materials of interest [4]. Wavelength
size structures exist in many industrial materials which can lead to significant multi-
ple scattering and the medium not being well characterised using homogenisation [3].
Modern engineering materials that are produced via additive manufacturing techniques
[5], [6], [7] are becoming increasingly complex, and their structural integrity is essential
for quality assurance. Waves propagating through such heterogeneous media experi-
ence scattering that attenuates the coherent input wave and transfers energy into small
incoherent fluctuations [8]. The existence of such structures causes multiple scattering
to occur between the coupling of the wave and the medium when they are commensu-
rate in magnitude. A deterministic approach to studying horizontally polarised shear
waves was reported in [9] where the symmetry axis of rotation was out of plane (where
an austenitic steel weld was analysed) but with no consideration for random fluctua-
tions in the wave amplitude produced by scattering from interactions with the internal

material microstructure.



Recent studies using numerical simulations have outlined the effects of internal ma-
terial microstructures on beam propagation [10], [11]. When the size of the internal
grain microstructure is commensurate with the wavelength, amplitude fluctuations can
be observed in the transmitted and repeated waveforms [12]|. If these factors are ig-
nored, deterministic models of wave propagation can give a poor representation of the
transmitted and reflected waves and this in turn can negatively affect the ability to
reliably detect and resolve flaws [13], [14]. Understanding such phenomena is key to
developing NDE imaging methods based on the incoherent waves (coda waves) that
result from ultrasonic wave propagation in such materials. Elastic wave propagation
in anisotropic solids is also important in medical imaging [15], [16] and in migration

problems in geophysics [17], [18], [19] where time reversal techniques are of interest.

Wave propagation in layered media is a special case in the sense that the coda wave that
emerges is attenuated and has many fluctuations as it interacts with fine inhomogeneities
in the media [20], [21]. This thesis will use the analytical framework for studying random
wave propagation using stochastic differential equations, exploiting the separation of
scales present in such problems [22], [23], [24], [25], [26], [27]. Using the plethora of
analytical tools has led to the study of electromagnetic waves [28], [29] and elastic

waves [30], [8], [9] in randomly layered media.

The motivation for studying elastic waves in heterogeneous media stems from [9], where
a homogenised approach was used to study the structure of an austenitic steel weld.
The model presented in [8] studies the problem of elastic shear wave propagation where
the heterogeneity is modelled via a Markovian process. Since materials are naturally
heterogeneous, it is more appropriate to study the physics of wave propagation is such
media via a probabilistic approach. The application of this type of modelling is key to
building tools that can predict the physics of wave propagation which can be helpful
when trying to optimise the performance of imaging algorithms, many of which struggle
with heterogeneous media. Coherent interferometry is one such imaging technique [31],
[32], [33] that can cope with accurately detecting flaws in highly heterogeneous media

via the use of statistical cross correlations.



1.0.2 Key Objectives

The goal in this thesis is to study ultrasonic wave propagation in materials where
the separation of length scales in the problem (mean layer size, wavelength and wave
propagation distance in the medium) produce a complex received wave which exhibits
many fluctuations over a long time period, caused by its convoluted journey through
the heterogeneous medium. The wave is so affected by its interactions with the medium
that a homogenisation approach is inappropriate; that is, the received wave bears no
resemblance to the input wave and so there does not exist an equivalent homogenised
medium. This can occur when the propagation distance L is much larger than the
wavelength (A3) of propagation which in turn is much larger than the layer sizes | (L >
Az > 1) and the fluctuations in the material (the strength of the random fluctuations
has amplitude o) are large (o0 ~ 1); the so called strongly heterogeneous regime [26].
It can also occur in the regime where L3 > A3 ~ [ and ¢ < 1, which is the so called

weakly heterogeneous regime.

The decay of a coherent wave has been studied in the literature for general acoustic
and elastic systems. Articles [26], [25] consider acoustic systems in one dimension
and more recently [8] considered a three dimensional elastic medium. In each case,
stochastic differential equations (SDE’s) are used to model the random fluctuations in
the material properties [34]. The reason for employing random (stochastic) equations
is that their solution captures complex physical phenomena which cannot be described
using a deterministic (homogenised) model [35]. Each of these studies examined a wave
travelling in a medium whose properties only varied in the direction of propagation,
leading to a system of stochastic differential equations with a propagator matrix with
certain symmetry properties. Later chapters in this thesis will set out problems using a
similar approach, in order to study elastic shear wave propagation in a randomly layered,

locally anisotropic medium with spatial fluctuations in the material microstructure.



1.0.3 Outline of Thesis

The aim of this thesis is to develop new models for ultrasonic wave propagation in
heterogeneous, anisotropic elastic random media and study the affect that interactions
between the wave and the media have on the reflected and transmitted wave. The
thesis begins with a study of wave propagation in an austenitic steel weld, extending
the homogenised model in [9]. The drawback of the homogenisation approach, is that
there is no consideration for the random fluctuations in the material parameters which

create the observed coda in the transmitted or received wave.

Chapter 2 presents a model for high frequency elastic shear waves in a layered material,
in order to study the probability distribution of the transmitted energy. This class of
material (which includes austenitic steel [36]) is of interest in the engineering aerospace
industry where engineers would like to additively manufacture safety critical components
(which creates heterogeneities) using this metal. In Chapter 3, a different class of
material is studied, namely a CFRP (carbon fibre reinforced polymer). Due to the
geometry of the problem, the form of the stress tensor changes and so the equations
contain symmetries [37] which allows for a rich analytical study into the moments of the
reflected and transmitted energy. A key parameter emerges which is identified as being
related to the degree of anisotropy in the material. Chapter 4 expands on Chapter 3,
considering the case where the source is a broadband pulse instead of a monochromatic
elastic shear wave. The aim of this chapter is to study the autocorrelation function of the
reflection coefficient; a key quantity which is important when studying the intensity of
the reflected wave. Finally, Chapter 5 brings together elements of Chapters 2-4 to study
a two dimensional problem where the broadband point source lies along the x5 axis.
This is of interest in the physical application of imaging with ultrasonic transducers,
where a spatially distributed array of sensors [38], [39] is required to perform NDT
imaging methods such as the Total Focusing Method [3], [40], [41], [42]. The inspection
domain is formulated as a 2D grid, where the signals from each transmit and receive
pair of ultrasonic transducers are summed and focused to build an internal image of

the material. The work presented in this thesis is of interest to researchers in the NDT



community as the anisotropic and heterogeneous [4], [43] nature of many safety critical
materials (produced via modern additive manufacturing [5] methods or welding) hamper
the detection and characterisation of flaws when using standard imaging approaches,

based on homogenised material properties.
The original work in the thesis is stated below:

1. In Chapter 2 a model for the propagation of high-frequency monochromatic elastic
waves in a spatially heterogeneous, randomly layered material is derived. The ma-
terial is locally anisotropic and a smooth function describes the spatial variation in
the rotation of the associated slowness surface in the plane of wave propagation. The
layer thicknesses and the rotation of their associated slowness curves follow a stochas-
tic (Markovian) process. Using the differences in length scales between the ultrasound
wavelength, the mean layer size, and the wave propagation distance, a small param-
eter is identified in the stochastic differential equation that emerges. Its infinitesimal
generator leads to a Fokker-Planck equation via limit theorems involving this small pa-
rameter. A weak form of the Fokker-Planck equation is derived and then solved via a
finite element package. The numerical solution to the Fokker-Planck equation is used
to compute statistical moments of the power transmission coefficient. Finally, a para-
metric study on the effect of the degree of anisotropy of the material on the transmitted

energy is performed.

2. Chapter 3 considers the propagation (in the z3 direction) of high frequency elastic
waves in a layered material. Each layer is locally anisotropic and the layer thicknesses
and slowness surface orientations follow a stochastic (Markovian) process. The wave
displacement vector is in the out of plane direction (x2) and the model focuses on the
reflection and transmission of the wave at layer interfaces. The rotation of the slowness
surface in each layer lies in the (z1,z2) plane and varies with the wave propagation
direction (x3) only. Expressions for the local and global coefficients for the reflected and
transmitted wave amplitudes are derived and shown to satisfy energy conservation. The
resulting stochastic differential equations lead to a self-adjoint infinitesimal generator

and a Fokker-Planck equation emerges via limit theorems. Explicit expressions for
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the moments of the probability distributions of the power transmission and reflection
coefficients are then derived. The dependency of the mean and standard deviation of
the power transmission coefficient on the depth of wave penetration, the localisation
length, and the degree of anisotropy is then reported upon. This work is important in
deepening the understanding of the ultrasonic non-destructive testing of carbon fibre

reinforced polymer (CFRP) composites and polycrystalline materials.

3. Chapter 4 expands on the model presented in Chapter 3 by considering the source
wave as a broadband pulse rather than a monochromatic plane wave. Ricatti equations
are derived for the moments of the reflected signal of a high frequency, elastic shear wave
propagating in a randomly layered elastic material; each layer is locally anisotropic and
the layer thicknesses and associated slowness surface orientations are modelled by a
stochastic Markovian process. A system of transport equations is formulated for the
limit of the frequency autocorrelation function for the reflection coefficient. Analytical
and numerical solutions for a specific case of the frequency autocorrelation function are
produced via the use of a jump Markov process. The analytical results are compared

with the probabilistic solution to the transport equations using a Monte Carlo technique.

4. Chapter 5 utilises the learnings from the models presented in earlier chapters to
model the case where the input wave is a broadband pulse line source lying along the o
axis. The multifrequency problem is derived in terms of propagator matrices, each of
which encode information about specific frequencies in the problem. The separation of
scales used in this problem considers the strongly heterogeneous regime; that is where
the strength of the random fluctuations between the wave and the medium is order one
and the propagation distance is much larger than the wavelength, in order to produce
significant scattering in the observed wave. The problem is formulated first in terms
of stochastic matrix equations which are solved via a diffusion approximation theorem
[26] to obtain limit expressions for the transmitted and reflected waves. The problem is
then formulated in terms of a transport equation which, when solved, gives a solution
for the frequency autocorrelation function of the reflection coefficient. Using the limit

expressions derived earlier, a semi-analytical expression for the reflected intensity (of

10



the stress) is derived and plots show the effect of varying the lateral observation point

(along the x; axis) of the reflected energy.
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Chapter 2

Elastic Shear Wave Propagation in

Locally Anisotropic Heterogeneous

Media; Polycrystalline Rotations

about the Out of Plane Axis

2.1 Nomenclature

Parameter Equation
a Lumped non-dimensional parameter . . ... ... .. -] (2.261)
B Lumped non-dimensional parameter . ... ... . .. [—] (2.262)
ol Lumped non-dimensional parameter . ... ... . .. [—] (2.263)
r, Lumped parameter . .. .. ... .. .. ... . ... .. [—] (2.236)
I's Lumped parameter . ... ... ... ... .. ... .. -] (2.240)
0 Lumped parameter . ... ... ... . ... .. ... . [—] (2.279)
o Lumped parameter . ... ... ... .. .. .. .. ... [—] (2.280)
04 Lumped parameter . .. ... .. ... .. .. ... .. (-] (2.281)
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Ay Material expression . . . . ... ... ..., (-] (2.275)

Ay Material expression . . . ... ... ... ... ... (-] (2.276)
As Material expression . . . . ... ... ... L. (-] (2.277)
Ay Material expression . . . . ... ... ..., (-] (2.278)
€ Small dimensionless parameter . . . ... ... .. ... (-] (2.248)
¢ Lumped parameter . . ... ... ... ... ... .. .. L= (2.48)
n Material expression . . . .. ... ... . ... ... .. [M~1LT] (2.37)
7 Material expression . . . .. ... ... ... ... [M~1LT] (2.38)
6 Rotation angle of material slowness surface . ... .. (-] (2.220)
0 Typical slowness angle . . ... ... ... .. ... . .. (-] (2.220)
K1 Wavenumber in zqy . ... ... L~ (2.25)
A Eigenvalues of matrix M . . . . ... ... ... .. [L—1 (2.41)
A3 Wavelength in z3 direction . .. .. ... ... ... . . [L] (2.283)
1 Stress tensor component in half-space . .. .. .. .. [ML~—1T~2] (2.58)
v Ratio of wave numbers (Anisotropy parameter) ... [—] (2.259)
13 Velocity in zg direction . . ... .. ... ... ... .. LT (2.13)
£ Velocity in 3 direction (frequency domain) . . . . . . [L] (2.17)
é Velocity in z3 direction (frequency wavenumber do-

main) . ... [L?] (2.25)
w Dimensionless parameter . . . ... ... ... ... .. (-] (2.248)
p Constant material density . . ... ... ... ... ... [ML~3] (2.1)
o123  Pauli spin matrices . ... ... ... 00000 [—] (2.294)
o Random process amplitude . . ... .. ... ... .. (-] (2.220)
066 Amplitude term . . .. ... -] (2.226)
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064 Amplitude term . . . ... (-] (2.232)

o Amplitude term . . . ... (-] (2.236)
044 Amplitude term . . . ... (-] (2.229)
Oa4 Amplitude term . . . ... (-] (2.240)
o Amplitude term . . . ..o (-] (2.244)
S Lumped parameter . . ... ... ... ... ... .. .. L= (2.34)
¢ Lumped parameter . .. ... ... .. .. .. ... . .. L~ (2.35)
T Power transmission coefficient . .. ... ... ... .. (-] (2.400)
Tij Material stress tensor . . . .. ... ..., [ML=1T—2 (2.2)

7 Stress (frequency domain) . . . ... ... ... .. ... [ML=tT1] (2.20)
7 Stress (frequency wavenumber domain) . .. ... .. [MT—1 (2.31)
T Symmetric correlation integral . . ... ... ... ... (-] (2.318)
TS Anti-symmetric correlation integral . . . . . .. .. (-] (2.319)
10) Lumped phase parameter . . . .. ... .. ... .. .. [—] (2.266)
Xi2sa Propagator matrix functions . . ... . ... (-] (2.289)
) Lumped parameter . . ... ... ... ... ... . ... [ML=3T~1| (2.32)
0 Lumped parameter . ... ... ... ... .. ... .. [ML=3T~1] (2.33)
12 Lumped parameter . .. ... ... ... ... ... .. [ML=3T1] (2.242)
w Angular frequency . . ... ... [T~ (2.17)
a Propagator function . . ... ... .. ... .. ... (-] (2.347)
a PDE coefficient matrix . . . ... ... ... (-] (2.406)
Ay Propagator matrix evolution equation coefficient . . . [—] (2.322)
Ao Propagator matrix evolution equation coefficient . . . [—] (2.323)
As Propagator matrix evolution equation coefficient . . . -] (2.324)
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b*

S

Ca4
Cy4
Co4
Ce4
cs

C44
Ca4
Cy4
Ce4
Co4
Ce4
C66
C66
Ce6

€12

Propagator matrix evolution equation coefficient . . .
Propagator matrix evolution equation coefficient . . .
Forward wave mode in frequency domain . . . . . .
PDE coefficient matrix . . . ... ... ... ... . .
PDE coefficient matrix . . . ... ... . ... ... ..
Propagator function . . .. ... ... ... ... . .
Backward wave mode in frequency domain . . . . .
Drift vector . . . ... ...
Correlation integral matrix . .. ... ... ... ...
Lumped parameter . . . . ... ... ... ... .
Lumped parameter . . ... ... ... . ... ... . .
Lumped parameter . . ... ... ... . ... ... . .
Lumped parameter . . . . ... ... .. ... ... . .
Mean wave velocity in z3 direction . . .. . ... ..
Stress tensor component (random angle) . . .. . ..
Stress tensor component . . . ... ...
Non-dimensional Stress tensor component . . . . . .
Stress tensor component (random angle) . . . .. ..
Stress tensor component . . . ... ...
Non-dimensional Stress tensor component . . . . . .
Stress tensor component (random angle) . . . . . . .
Stress tensor component . . . . . ... ... ... ..
Non-dimensional Stress tensor component . . . . . .

Arbitrary constants . . . .. .. ...
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[M~1LT]
[M~1LT]
L~

L~
[LT~]
[ML~1T~2|
[ML-!T~2|
-]
[ML~1T~2|
[ML-1T~2|
-]
[ML—!T2|
[ML~1T~2|
-]

-]

(2.325)
(2.326)
(2.271)
(2.429)
(2.429)
(2.347)
(2.272)
(2.405)
(2.315)
(2.238)
(2.239)
(2.234)
(2.235)
(2.246)
(2.222)
(2.228)
(2.253)
(2.223)
(2.231)
(2.253)
(2.221)
(2.225)
(2.256)

(2.153)



Cijki Stress tensor . . .. ...
D3 Cosine lumped parameter . . . . .. . ... ... ...
Ds Sine lumped parameter . . . ... ... ... ...
D Diagonalised factor of matrix M . . .. . ... . ..
eLl Symmetric strain tensor . . ... ... ...
f Incident wave amplitude . . . . . . ... ... ... ..
F Stress tensor component . . . ... ...
g Substitution parameter . ... . ... ... ... ...
g Propagator function . ... ... ... . ... .. ... .
H Coupling matrix in wave amplitude evolution equation
H* Random matrix . . .. ... ... ...
h Propagator function . . . ... ... ... ...
J Propagator function . ... ... ... ... .. ... .
Jo Lumped parameter . . . . . ... .. ... ... ...
Jq Lumped parameter . . .. . ... .. .. ... . ... ..
k Propagator function . . . ... ... ... ...
K Linking matrix . .. ... ... ... ... ...
Lgp Infinitesimal generator . . . ... .. .. .. ... .. ..
L3 Typical propagation distance in z3 . . ... ... . ..
l Mean layer size . . . ... ...
M Stress-strain coupling matrix . ... ... ... . ... .
M Coupling matrix . ... ... ... ... .. ... .. ...
m Fluctuations in the crystal orientation . .. ... . ..

=

Stress tensor component . . .. ...
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Propagator function . . .. ... ... ... ... .. ..

Propagator matrix . ... ... ... ...

Propagator matrix . . . ... ... ...

Probability density function . .. .. ... ... .. ..

Propagator function . . .. ... ... ... ... ...

Lumped parameter . . . . . .. ... ... ... ...

Factor of matrix M (first row) . ... ... .. .. . ..

Factor of matrix M (second row) . . ... . ... . ..

Lumped parameter . . . . ... ... ... ... . ..

Lumped parameter . . . . . ... .. ... ... ..

Local reflection coefficient . . . . . . ... . . ... ...

Local reflection coefficient . . . . . . . ... . ... . ..

Local reflection coefficient . . . . . . . ... . ... ...

Local reflection coefficient . . . . . . . ... . ... ...

Local transmission coefficient . . . . .. .. . ... ...

Local transmission coefficient . . . . . ... . ... ...

Local transmission coefficient . . . . . ... . ... ...

Local transmission coefficient . . . . . ... . ... . ..

Wave displacement vector . . .. .. ... ... ... .

Test function
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2.2 Introduction

This Chapter focuses on the propagation of ultrasound waves in elastic media which
has a heterogeneous microstructure (that is, the material properties vary on a length
scale commensurate with the wavelength) and this microstructure varies in a random
manner from one sample to another. This property is present in a plethora of engineering
materials, and in particular welds and additively manufactured metals [9], [44]. It is
common practise when performing NDE (non-destructive evaluation) on an unknown
material to assume homogeneous material properties. However, this is a physically
unrealistic assumption in many materials of interest [45], [46], [47]. Wavelength-size
grain-like structures exist in many industry relevant materials and waves propagating
through such heterogeneous media experience scattering that converts the coherent
input wave into small incoherent fluctuations which distort and attenuate the wave [8],
[48], [49] which exits the material. There is interest within the non-destructive testing
community to better understand ultrasonic wave propagation through random media.
There are many examples of components in which a heterogeneous microstructure exists
and interacts with the propagating wave [4], [50], [51] to such an extent that the received
wave has a significant incoherent component and bears little resemblance to the input
waveform. This means that the medium cannot be characterised using homogenisation.
The received wave will vary from one sample/weld-site to the next and so it makes sense
to describe the wave properties as a distribution and to use a probabilistic framework
to model this phenomenon. Only via computationally prohibitive Monte Carlo [52],
[53], [54] simulations can deterministic models [55], [55] of wave propagation provide a

similar characterisation of wave propagation in such materials.

The form of the elastic tensor used here stems from [9] where the authors investigated
the propagation of elastic shear waves in a class of anisotropic material motivated by
non-destructive testing and geophysics problems. The deterministic model outlined in
[9] describes elastic waves propagating in heterogeneous locally anisotropic media. This
Chapter adopts this formulation of the constitutive law for a specific material (austenitic

steel) and the associated rotation of the slowness surface # about the xo axis, which is
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Figure 2.1: Elastic shear wavefront depiction moving in the (z1,z3) plane with displacement vector
u = (0,u2(z1,23),0)T. The arrows depict the orientation of the underlying crystalline material.

linked to the directionality of the cooling process [36]. As the metal cools in the weld,
the crystalline structures elongate and align with the direction of the thermal gradients
(see Figure 2.2). This crystal structure inside the material is characterised by the
grain angle 6(x3). In this Chapter however, a stochastic representation of the slowness
surface is presented in the form of additive noise to capture the random fluctuations in

the crystalline alignment in the material caused by cooling.

Propagation of monochromatic shear waves in a randomly stratified transversely isotropic
elastic media was studied in [8|, where the wave vibrates in the plane of propagation
and the wave amplitude is only dependent on x3. The rotation of the slowness surface
was however around the x3 axis; this class of material is also considered in [56]. In
addition, the displacement vector u = (uq(z3), u2(x3),0) vibrated the particles in both
the 1 and xo directions but the amplitude did not depend on the lateral direction .
The associated slowness surface then led to a set of wave-mode equations which had a

conjugate symmetry which led to a simplified set of governing equations.

This Chapter considers the case where the slowness surface rotates about the zo axis
with a fixed (random) rotation #(z3) in each layer of the material. In addition, the

amplitude of the shear wave is now allowed to vary in the lateral direction zo. This
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change leads to a richer and more complex model as illustrated by the intractable

Fokker-Planck equation which emerges.

3350
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Figure 2.2: Fanned grain structure of a heterogeneous weld structure. This image shows a simplified
representation of the material properties as measured destructively using electron backscatter diffraction
(EBSD) measurements, which shows clusters of grains of wavelength size. The colours correspond to
different crystal orientations (6) inside the weld. Image generated from data obtained in [57] and [58].

As the metal cools in the weld, the crystalline structures elongate and align with the
direction of the thermal gradients (see Figure 2.2). This crystal structure inside the

material is characterised by the grain angle 6(x3).

Section 2.3 introduces the governing elastic wave equation, the wave-mode equations
and the physical geometry of the problem. Sections 2.4 - 2.7 study the problem with
no stochastic fluctuations in the material parameters; the simplified problems in these
sections will allow for the formulation of key pieces of mathematical machinery needed
later on, such as the propagator formulation of the wave-mode problem. Section 2.8
introduces a stochastic (Markovian) process to model the variations in the local ori-
entation of the slowness surface. In the weakly heterogeneous scaling regime a small
parameter emerges in the governing random wave-mode evolution equations. A diffu-

sion approximation is then used to derive stochastic differential equations in order to
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study the probability distribution of the transmitted energy. A Fokker-Planck equation
is derived for the probability density function for the transmitted energy which then
is solved numerically via finite elements [59]. Section 2.9 contains a discussion of the
power transmission coefficient and a parametric study on an austenitic steel weld.

2.3 Governing Elastic Wave Equations

The elastodynamic equation of wave motion is [9]
P Ujtt = Tik s (2.1)

where p is the density of the medium, w is the displacement, and 7 is the stress. The

general stress-strain law is of the form
Tij = Cijki(0(23))en, (2.2)

with

er = = (upg +ug), (2.3)

1
2

where c;;i; is the stiffness tensor, and ey, is the direct strain. Define
Cpqrs = Qip Gjq Akr Qs Eijkla (24)
where a;; describes a rotation 6 about the xo axis given by

cos@ 0 —sind

sinf 0 cosf
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where ¢ is dependent on x3 and the locally transversely isotropic matrix ¢;jz; is of the

form

ci1 c2 c3 0

ci2 c11 c3 O

c13 ci13 ¢33 0
0 0 0 cy4
0 0 0 0 cu

0 0 0 0 0 & |

Eijkl = Cmn =

o o o O
o o o o o

(2.6)

Austenite welds are a commonly used material in the engineering world, exhibiting

material properties that align with equation (2.6). Considering a horizontally polarised

shear wave, u; can be expressed as

U,j = (0, UQ(l'l, 1‘3), 0).

(2.7)

The rotation matrix (equation 2.5) links with the stress tensor (equation (2.6)) by

picking out the non-zero stress components when the choice is made for the type of

wave polarisation, which comes from equation (2.7). Therefore, equations (2.2) and

(2.3) give

To1 = 666(1‘3)1‘[’271 + 046(‘/1"3)1‘[“273’

To3 = c46(T3)u21 + caa(z3)ua 3,
where (noting that cgq(z3) = cag(3))

ce6(23) = cos® O(x3)Ces + sin® O(x3)Cu
cea(w3) = — cosO(x3) sin O(x3)cep + sin O(x3) cos O(x3)caq

caa(23) = sin? 0(w3)Ce6 + cos® O(x3)Csa.

Defining the velocity

5 = uQ,tv

22
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then equation (2.1) can be written

p &= To1,1 + 7233, (2.14)

and differentiating (2.8) and (2.9) with respect to ¢ gives

To1,t = Co6 &1+ Ca6 €3, (2.15)

Togt = C46 &1 + Caq € 3. (2.16)

Note that since 6(x3), then c;;(x3), £(t, x1,23), T21(t, x1,23), and T23(t, 21, 23) become
spatially dependent. Now define the Fourier transforms with respect to time with

positive sign convention as

E(w,z) = /§g(t,x1,x3) et dt, (2.17)
To1(w, z) = /721@7561,5173) et dt, (2.18)
Toz(w, x) = /ng(t,xl,xg) et dt. (2.19)

Then equations (2.14), (2.15) and (2.16) become

—piwg = Fo11 + Tag 3, (2.20)
—iwT = c6é 1 + a6 3, (2.21)
—iwFag = caa€ 3 + capla. (2.22)

Defining the spatial Fourier transforms with respect to x; gives

To1(w, K1, 23) = /%gl(w,ml,xg)emlxlda:l, (2.23)
To3(w, K1, x3) /723 w, 71, T3)e" 1 day, (2.24)
w K1, X3) / w,T1,T3)e mlmldxl (2.25)
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Applying these to equations (2.20), (2.21), (2.22) gives

—piwé(w, k1, x3) = —ik1721 (W, K1, 73) + Faz 3(w, K1, 23),
—iwty (w, k1, 73) = —ir1ce6(23)E(w, K1, 73) + coa(3)E 3(w, K1, T3),

—iwio3(w, K1, 23) = caa(23)€ 3(w, K1, T3) — k1 cea(3)E(w, K1, T3).

From equations (2.27) and (2.28)

2 —iw7°21 i1€1666 2 —w R iH1664 2
§3= + §= T23 + 3
C64 C64 C44 C44

hence

cea(T3)
ca4(3)

7221((-‘-}1 K1, CC3) = CL)C44(.%'3) w

o3.3(w, K1, 73) = Y(23)E(w, k1, 23) + ¢ (3)Taa(w, K1, 3),

where
2 2 2
_ _ kices(z3) | Kicea(w3)® _ . o
Y(x3) = lw(ﬁ w2 + w2caq(23) = —iw(x3),
2 2 2
A _ Kices(xs) | Kicea(zs)
and
.”1064(533) .
§(xz) = 1—————= =15(x3),
(z3) cni(3) (z3)
N KJ1664(IL‘3)
S(x3) = —F——=.
(z3) caa(x3)

Then, from equation (2.28)

A S W
£3(w, k1, 23) = ¢(@3)€(w, K1, 23) — ——To3(w, K1, 73)
caa(x3)

= ¢(z3)&(w, k1, 23) — n(23)Ta3(w, K1, T3),

24

2
?23(W7F~‘1,$3) - <ch64($3) - mc%(mg))g(w’m’x?))'

(2.26)
(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)



where

n(xs) = i—e— = if(x3), (2.37)
caa(x3)

Aas) = —o . (2.38)
caa(z3)

Putting equations (2.31) and (2.36) into matrix form gives

K F(w,m,xs)] _ !C(%) 77(3?3)] F(wyﬁlaﬁl’))] ’ (2.39)
81‘3

7(w, k1, T3) Y(z3)  s(xs) | |T(w,k1,23)

where the subscript on 73 has been dropped to simplify the notation. Let

N s(zg)  —n(x3) (2.40)
W(ws)  olxs) |

whose eigenvalues (using equations (2.32), (2.34), (2.35), (2.37), (2.38) and (2.41)) are

given by

A*(x3) = (w3) i/ i (w3)n(3),

:z‘(cﬁ‘“‘” +w ¢>

Cq4 Cq4

=1i(¢£()

= i\T, (2.41)

with corresponding eigenvectors [i/v(z3)n(zs) 1/1(:v3)]T, [ —in/d(z3)n(z3) w(wg)]T. Letting

Qlrs) = iv(s)n(xs) —iv/P(xs)n(zs) 7 (2.42)
| (as) ¥(x3)

D(z3) = A" (as) ’ ; (2.43)
i 0 A7<$3)
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then M = Q(x3)D(z3)Q ! (z3). Therefore equation (2.39) can be written as

0 | &(w, k1, x3) B E(w, k1, x3)
e T — QD) () | (2.44)
L3 %(w,l‘il,fﬁg) %(w,l"il,fﬁg)
It will prove helpful in defining an ansatz for this system of equations to first consider
the problem where the material is homogeneous. The consideration of this simplified
problem will prove instructive and shape the treatment of the heterogeneous case in

later sections. Temporarily assuming Q is independent of z3 (so the material is homo-

geneous), then

o (118N s
e CINDECICRIN] (2.45)
where )
S 1 i (0 Zx/1/77 | (2.46)

which can be written as

o LYK 2.47
=g ] (247
where
¢C=/yn. (2.48)
By choosing new variables
R — (¢ ) Clomm) | (2.49)
a(w, k1, x3) 7(w, K1, 23)

and rearranging gives

S

R B e I LT ) .

Fw, k1, 23) PRIl (w, K1, 23)

>
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which in equation form gives

é(w, K1,T3) = iCl/wal/zlA)(w, K1,23) — i(lmwfl/zd(w, K1,23), (2.51)

Fw, k1, 23) = VY2V 2h(w, k1, 23) + Y2V 20(w, K1, x3). (2.52)

Notice that ¢ and ¥ both have degree of £1/2; this will be helpful later when balancing
the equations to satisfy energy conditions at each interface. Writing equation (2.45) in

decoupled form

o | blw, k1, b(w, k1,2
0 |blwmms) | 13), (2.53)
a.’Eg &(W7K1>m3) d(w,lﬁl,.il?g)
shows that it has solution
a(w, k1, 23) = a(w, k1)er 3, (2.54)
b(w, k1, x3) = b(w, ﬂ1)€A+x3. (2.55)

Equations (2.51) and (2.52) can then be rewritten (using equation (?7))

E(w, k1, x3) = i 27V 2b(w, k)N — iV 2 20w, ke ) e 2, (2.56)

T(w, k1,23) = wl/zg—l/%(w, /ﬂ)ei/\Jr“””’3 + wl/QC_l/Q&(w, m)eix“. (2.57)

2.4 Single Interface between two Homogeneous and Isotropic

Half-Spaces

Consider two homogeneous, locally isotropic half-spaces separated by an interface at

r3 = 0 and
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f(w) = ao(w,lib.%‘g) &1(&),%&1,%3)

bO(w7 K1, $3)

Medium 0 0 Medium 1 23

Figure 2.3: Single interface at x3 = 0 between two homogeneous, isotropic half-spaces.

assume the density is constant in each half-space, with material properties

1o if 3 < 0,

Ce6 — (258)
H1 if 3 > 0,
0 if z3 <0,
C64 =
0 if z3 >0,
po if zg <0,
C44 =
p1 if x3 >0,
2
Py = —iwhy = —iw PO — aalall if z3 < 0,
p= vy

2
P = —iwh = —iw <p1 — Hl';“) if zg > 0,
w

Go = Vuorpo if 23 <0,
G =vmyr if x3>0.

The interface at x3 = 0 has continuity conditions for the modes given by

é()(.%'g == 0) = 51(1'3 = 0), (2.59)
720(553 = O) = 7A'1(.733 = 0) (2'60)

Using equations (2.56) and (2.57), it follows that

a1(z3 = 0) = r¥ag(z3 = 0) + r " bg(z3 = 0), (2.61)
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b1($3 = 0) = T_do(l‘g = 0) + T+I;0($3 = 0), (2.62)

or in matrix form

M =0y |l =01 (263)
by (a3 = 0) bo (a3 = 0)
where
Sy = |7 @ @ (2.64)
W) )
and
ro-g(([h e ) parue e
Note that
det{J(W)} = ()2 - ()2 =1 (2.66)

The matrix J(w) can be thought of as an interface propagator, since it propagates the
modes from the left half-space to the right half-space. Taking into account boundary

conditions at the interface, the system can be written as

=J , (2.67)
0 bo(.%'3 = O)

where f (w) is the transmitted wave travelling to the right in the left half-space. Solving

this system gives

bo(z3 = 0) = Rf(w), (2.68)

a1 (x3 = 0) =Tf(w), (2.69)

where R and T are the reflection and transmission coefficients of the interface, given

by

_ 16 — %G (2.70)

rt 1o+ oy’
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7oL 2VhetiGG (2.71)

rt T Yol + Yo

These coefficients satisfy the energy conservation relation
RE+T2=1, (2.72)

which states that the sum of the energies of transmitted and reflected waves equals the
energy of the incoming wave; the energy put into the system equals the energy travelling

out of the system.
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2.5 A Transversely Isotropic, Homogeneous Layer Between

Two Homogeneous and Isotropic Half-Spaces

Consider the case of a transversely isotropic homogeneous layer with a single slowness

surface rotation 6, and thickness L, embedded between two homogeneous and isotropic

half-spaces. Assume that in each region the density of the medium is constant. For

brevity the k1 dependency is omitted from the modes.

f(w) = ao(w, k1, 3) a1 (w, k1, 23)

as(w, K1, x3)

bO(UJ, K1, x3)

~

bl ((.U, R1, x3)

Medium 0 9 Medium 1

L Medium 2

Figure 2.4: Single layer of a locally anisotropic but homogeneous material, sandwiched between two

homogeneous and isotropic half-spaces.

The material properties are (where p, is a constant)

o if z3 <0,
C66 = cge if 23 € [0, L], (2.73)
2 ifxg > L,
0 ifzg e (—00,0)U(L,00),
Co4 =
C64 if x5 € [O, L],
p
o if z3 <0,
Cq4 = cyq if 23 € [0, L],
2 if xg > L,
2
Yo = —iwy = —iw (po - ’1150 if z3 <0,
w
2 2.2
Y= P = —iw = —iw (p1 - HlCQGG R§064> if z3 € [0, L],
w w*eCqq
2
Y9 = —iwiy = —iw (pg — K;/f) if z3 > L,
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Co = Vmoo  if 23 <0,
C=9¢ G=Vnp ifzzel0, L],
G2 =22  if 23 > 0.

As before, conditions of continuity of velocity and stress are imposed at the interface

x3=0

o = &1, (2.74)

To = T1, (2.75)
and at the interface x3 = L

& =6, (2.76)

71 = To, (2.77)

where the subscript indicates the solution in region j = 0,1,2. Equations (2.56) and
(2.74) give

Z.Cé/2w0—1/280 g 3/21%—1/2&0 _ 11/2¢ 12y, C1/21/1 12, (2.78)
and similarly, equations (2.57) and (2.75) give
1/240 12y +¢1/2g0 V25 1/2Cl 12y +1,Z)1/2C1 V2, (2.79)

Solving these simultaneous equations gives

_ L[ oG Y10
e (\/wlco \/%Q) (280)
L woCl 1o

2 wlCo PoC1
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X 1 oG Y160
“ =5 (\/wlco \/%Q) (281)

L KIS R A

2\ Vo | voca

These conditions at the first interface can be written

C:Ll(w) = Jo(w) C:LO(W) , (2.82)
b1 (w) bo(w)
where
o) - F(w) ro<w>] | o5
ro (W) 1y (W)
and
rE(w) = ;( Zlgo £y Z;§?> (2.84)
As before
det{jg(w)} = (rg (W))? = (rg (w))? = 1. (2.85)

Similarly to equations (2.70) and (2.71), the local reflection and transmission coefficients

at 3 = 0 can be defined by

ro _ ¥ — Yol

Ro— —10 _ , 2.86
’ rg Yol + 1160 (2.86)
1 2
Ty= L = V¥oGo¥1lt (2.87)
T Yol + P10
Using equation (2.85) it is clear that
2 o (rg)*+1
0
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Repeating the above at the x3 = L interface in equations (2.56) and (2.76) gives

; 11/2¢;1/261(w)€i,\1+L _ icl/Qw—l/le(w)ei/\IL (2.89)
= i¢1 Py Pha(w)es b — igyPyy P ag(w)ee L.

Using equations (2.57) and (2.77) gives

1/2C1 1/2 b (w )ez’)\j'L+wi/2cfl/2&1(w)ei/\l_L (2.90)

= oy Pho(w)e L 4 pd 2 2y (w)e 2 L

ol
[

Solving these gives

M\H

} z,\1+L
2

V1(2 (18] )i L

\/%Cl \/%Cz) (2.91)
12 . a1
Va1 1C2

. L 16 V261 SN L
as = (W) = — 1 292
2= () 2 (\/%Q \/¢1C2 (2:92)
n L G G W)L
2\ | ¥ V1C2 '
Hence the modes at the second interface in the layer can be written

FQ(“)} ) [‘:”(“)] , (2.03)

where

(2.94)
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and similar to equation (2.84)

o) = L[ [Pl G
7“1(0«1)—2< ot 1/)1@). (2.95)

The local transmission and reflection coefficients can be defined for the second interface

at 3 = L via

Ry — L G — i (2.96)

ri UG+ el

T = 1 2V (2.97)

rt il ey

where

(rf (w)? = (17 (w)* = 1, (2.98)
with the conservation of energy property

(rp)*+1

RI+Tf =
N OO

=1. (2.99)

Using equations (2.82) and (2.93) the equations for the modes at each interface can be

combined to provide a global propagator matrix for the layer

=K(w) , (2.100)
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where

R(w) = 31 (@)do(w)
[ @e g @e ] [ @) g w)
T @)eN @M E| g @) ()
@ @M E g et s ]
| @@ b ) @)
@ @ENE g @) @)
| g @rf @) E g @) (w)eE |
@) G
V(w) Hw)

By applying the boundary conditions dg(w)

(2.100) can be written as

>

iw)| _ |Uw) Gw) fw)
0 Viw) Hw)| [bo(w)
This gives
. V. .
bo(w) = *f( ) = R(w) f(w),
where R is the global reflection coefficient and
in(w) = Uf(w) + Gy = T2V~ F(w) ()

(2.101)

(w) and by(w) = 0, then equation

(2.102)

(2.103)

(2.104)

where T is the global transmission coefficient. Energy conservation can be verified by

calculating
. . 1+|V|?
RI?+|T]* = Ehllds (2.105)
[H[?
1+ (rgrie™t + rarfei/\TL)(rarrfe_i)‘_L + rfrfe_iﬁL)
(rgryeMt + rarrfei’\;rL)(rarfe_i)‘fL +rgry FemiAl 1 L)
_ 1)) 4 (g )2 ()2 + (rg rg) (ry ri)e St + (g rg ) (ry 7 )e 4t
(rg )2(r1)2 + (1 )2(r{ ) + (rg g ) (ry i )e? 1l + (rg g ) (ry v e =21 L
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The following identity can be shown to hold (via algebraic checking in Mathematica)
L+ (rg )2 (ry)? + (rg )2 (1) = (rg )2 (r1))? + (i3 )2 ()2, (2.106)
and so the conservation of energy
IR+ |T)? =1, (2.107)

is preserved.

2.6 Wave Propagation in a Heterogeneous Layer

This Section will consider a heterogeneous layer whose material parameters vary con-
tinuously in space. Using an ansatz guided by observations in Section 2.3 for a homoge-
neous medium. For the generated right-moving modes a(w, x3) and left-moving modes
b(w, x3), it is assumed that the wave mode functions now have spatial dependence [60].
Inspired by equations (2.56) and (2.57), consider the following ansatz for the generated

right-moving modes a(w, k1, z3) and left-moving modes B(w, K1,3)

E(w, k1, m3) = i/ C /D b(w, Ky, 23)e™ @3 (2.108)

ij\_xg,
)

-1 [ a(w, k1, 23)e

7(w, k1, x3) = /Cb(w, /<51,a:3)ei5‘+3”3 (2.109)

/Ca(w, K, $3)ei;‘_x3.

—+

Note that their prefactors are independent of z3 (quantities which are not dependent

on xg are denoted by a bar). Combining equations (2.108) and (2.109) gives

a(w, k1, T3) = ;(w(/wT w, k1, x3) + i/ 1) E(w, K1, T3 ) 15‘7“, (2.110)



and

b(w, k1, w3) = ;(\/ (/7 (w, k1, x3) =iy /Cé(w#ﬁ,ﬂ??))) e~ @, (2.111)

Recall the governing equations from the linear system given by equation (2.39)

2

D5 s(x3)€ — n(x3)7, (2.112)
o7 R
8—;3 = (23)€ + (a3)7 (2.113)

Taking the spatial derivative of (2.110) gives

a1 [5=0F <~ [Z. [0 < 72\ e
8:53:2< C/wa—m—z)\ \/%T‘FZ\/MM‘F)\ ¢/C5>€ AT (2.114)

Inserting (2.112) and (2.113) into (2.114) gives

ad(wa,z;,xg) = <I‘1(w3)é(w,m,x3) +I’2(9c3)%(w,m,$3)> e, (2.115)
where
ian) = 5 (wlea S+ istann oS+ 3 JC), o)

Faan) = 5 (sCea)y/</6 = inaa) fi /€ - i3 /C10). (2117)

Inserting equations (2.108) and (2.109) into equation (2.115) gives

ad(wa,zgl, '7:3) _ d(w, H1,$3)A1($3) + 6(&), H17x3)A2(;(;3)’ (2118)

where
Ay (x3) = \/9/CTa(x3) — i/ ¢ /P T1(x3), (2.119)
Ay (z3) = (\/lb/grg(xg) + i/ /% Fl(x3)> e2icus, (2.120)
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Repeating the same calculation for the backward mode (by differentiating equation

(2.111)) gives

aé(wéf;;,xg) B <\/7_m+\/77—zr \/7£> ~idtay

(2.121)
Inserting equations (2.112) and (2.113) gives
Ob(w, k1, . _
where

Ty(z3) = ;( Wlaa)\/C/ — ic(es) [ B/C — A+\/7> (2.123)
Ti(zs) = ;( (23)\/</ 0 + in(zs) F-mﬂ/?) (2.124)

Substituting in equations (2.108) and (2.109) into equation (2.122) then gives

813(00, K1,3)

03 = a(w, k1, 3)Az(x3) + b(w, k1, 3) Ag(z3), (2.125)

where
Bafas) = (Taloa) 0/ = iTaCaapy &/ )2 (2.126)
Butea) = (Tataa)6/G + iDatea)y 670 (2.127)

The complex mode amplitudes a(w, 51, x3) and b(w, k1, x3) can be combined to show

that they satisfy the linear system

i &(w,xg) _ Al(xg) Az(xg) d(w,l‘:g)
973 | (w, 23) As(zs) Au(zs)| |b(w,zs)
g |1 ) (2.128)
b(w, z3)
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From equations (2.32), (2.34), (2.37) and (2.41) then

M) = 5 (2600 =+ 0= (£ )t - “Litay), (2129

e = 5 (S )bt = (1)) (2130

e = 5 () = (£)en). 2131
o

Aute) = 5 (26t0s) =5 -0+ (£ )i + oL

Note here useful relations about the expressions in the linear system (2.128) that will

be helpful in later sections: the complex conjugate of As is related to Ag via
Do(23) = As(x3), (2.133)

where the bar here denotes the complex conjugate. Also

Te(HL) = Ai(w3) + Ag(a) _ (2.134)
= (26 =00 (5 )dtos) - wg?_?(wso
#5(26) -0+ (8 )t + (2 )it
= 2i(¢(w3) — Q). (2.135)

Using equation (2.128) then, since A; = —A; from equation (2.129) and Ay = —Ay

from equation (2.132), then (where the bar denotes the complex conjugate)

8|€L\2 da —-0a — = A
=0—+a=—=~NAgab+ Ngab 2.136
D3 aax3+aax3 2ab+ Agab, ( )
bz -~ ab  =db -
=b— +b— = A3a
a$3 8:83 + 81’3 34

b+ Asab. (2.137)
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Hence, from equations (2.133), (2.136) and (2.137) the complex mode amplitudes have

the energy conservation property [8]

ol = e, 07 ) = 0. (2135)

8.7}3

The matching conditions at the interface z3 = 0 and xz3 = L are given by equations
(2.74) to (2.77). In a similar manner to the derivation of equations (2.82) and (2.93)

the modes in each layer are coupled via

c:L(w,O) o) C:LO(“%O) ’ (2.139)
b(w,O)_ bO(WaO)
@ D _ 50 17D (2.140)
bl(w,L)_ _b(w?L
where
Solw) = rg (W) g (W) | (2.141)
_ra(w) rar(w)
X Tf—(w)ei;\*L Tl—(w)ei/\+L
Ji(w) = @ e ) (2.142)
and
TR ¥ N L)
7’0(‘”)_2< z/_zcoi %5)7 21
TR ¥ N LS LTS
(W) 2( ¢1§i TPQ). .

Note that ( = yn = \/(iw/044)(—iw¢§) = /w2y /c4q is real and positive (provided
that ¢ = p% + % > 0) and 9 /¢; = 12/1211 is real and positive, hence T()i,l (w) and

30,1 are real. In the half-space z3 < 0, ap(w,0) = f(w) and in the half-space z3 > L,
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bi(w, L) = 0. This gives

: w f(w) a1(w, L) :jl(w) C:L(w’L) ) (2.145)
b(w, 0) bo(w, 0) 0 bw, L)

By eliminating bo(w,0) and é;(w, L), the boundary conditions for the forward and

backward modes in equation (2.128), since (rg)? — (ry)* = 1 are

i (W)a(w, 0) — 75 (w)b(w,0) = f(w), (2.146)

7 (w)e™ La(w, L) + rf (w)e Fh(w, L) = 0. (2.147)

Equations (2.146) and (2.147) can be rewritten as

A

i(w,0) + Rob(w, 0) = Ty f (w), (2.148)

Rie™ La(w, L) — e Lh(w, L) = 0, (2.149)

where the reflection and transmission coefficients at the interfaces r3 = 0 and 3 = L

are defined as

1 .
T T

where R;, Tj are real. A similar calculation to that used to derive equation (2.99) shows

at each interface energy is conserved
RI+T?=1, j=0,L (2.151)

2.6.1 Deriving The Propagator Matrix

Suppose that
w,T w, T
e I 3), (2.152)
x3(w, 3) xa(w, x3)
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form two linearly independent solutions of equation (2.128), then the general solution

with arbitrary constants ¢; and co is given by

a(w, z3) X1(w, z3) x2(w, x3) X1(w,z3) xo2(w,z3)| |1
b(w, z3) x3(w, r3) xa(w, 3) x3(w,z3) xa(w,z3)| |c2
(2.153)

- . (2.154)

Xg(w,ﬂfg) X4(w,$3) X3(w70) X4(w70)

&(wvx?)) _ Xl(w>x3) X2(w>x3) Xl(wvo) XQ((")’O) B Xl(w70) X2(w70
x3(w,0) x4(w,0
(

and by defining the propagator matrix

~1
w,T w,T w,0 w,0
P (. 23) = Xi(w,23) x2(w,z3)| |X1(w,0) x2(w,0) | (2.156)
Xg(W,CC?,) X4(w,l‘3) X3(w’0) X4(w’0)
equation (2.155) can be rewritten as
a(w,x a(w,0
A( 2 = P(w, z3) A( i (2.157)
b(w,IEg) b(w,())
Differentiating equation (2.157) with respect to 3 gives
alw,x P a(w,0
o [itw.a)] _ oPGo,ay) [ao.0) .
025 | bw, @3) 75 |b(w,0)
Using equation (2.128), then
a(w,x P a(w,0
g |00l | 0P x) ((.0) (2.159)

b(w, x3) 0r3 | j(w,0)
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and from equation (2.157) it follows that

AW, 0)| _ 0P(w,s) |a(w,0)

HP )
(w,0) 03 | h(w,0)

, (2.160)

S

and so
0P (w, x3)

0rs HP(w, x3). (2.161)

From equation (2.157) it can be deduced that P(w,0) = I, and from equation (2.156)

P (w, 13) = xalwzs) xaw,es) | (2.162)

x3(w,r3)  xa(w,z3)

Such propagator matrices in the literature [26] have a symmetry with elements that are

complex conjugate pairs. From equations (2.128) and (2.152) then

d

7dX1 = A1x1 + Aaxas, (2.163)
3

d

7dX3 = Agx1 + Agxs. (2.164)
3

Suppose that the complex conjugates (X3,X;)? also satisfy equation (2.128), then

dv

d7X1 = Asxs + A4X1, (2.165)
3

dv

TX?) = Al)_(g + Ag)_ﬁ. (2166)
T3

From equations (2.163) then, (2.165) holds if and only if

A1y + Aoz = Asys + Auxa, (2.167)
Asx1+ Agxs = Arxs + Aaxa, (2.168)

that is
Ag(3) = Az(xs), (2.169)
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Zl(xg) = A4(£1?3). (2170)

The first condition holds from equation (2.133) but the latter condition is violated and

so the symmetry cannot be exploited in the model equations.

2.6.2 Analytical Solution For the Propagator Equation

Equation (2.161) can be solved by recasting it in the form of a linear first-order differ-

ential system with variable coefficients

Ox1(r3)

ey = Di(Ea)xa(@s) + Ax(ws)xs(ea), (2.171)
8?&3) = A (@3)xa(w3) + Do(w3)xa(23),
8X§z3) = As(z3)x1(x3) + Ag(z3)xs(23),
a*g;j?’) — As(ws)xa () + Aalws)va(s).

This can be rewritten in matrix form as

X (z3) = A(zs) x(z3), x = (x1.X2, X3, X4) " (2.172)

where
A1 0 Ay O
0 Ay 0 A
A= . (2.173)
A3 0 Ay O

0 Ag 0 Ay

The solutions are given by

x(x3) = €B) xo,  x0=(1,0,0,1)", (2.174)
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B(z3)

where the initial condition P(w,0) = I was used, e denotes the matrix exponential

of B(z3) = [ A(¢)dy, and the matrix exponential is defined as

0
e k
B(zs) _ N\ (B(73))
Bl =y = (2.175)
k=0
Writing
di 0 dy O
0 d 0 d z3
B - TR () = / An(p) g, (2.176)
d3 0 d4 0 0
0 d3 0 dy

the solutions x,, are then found to be

(di — dy + VD)eVP/2 — (dy — dy — VD)e VP/?
(@) e(di+da) /2 2 (eVD/2 — ¢~VD/2) g,
gy =&
X\Z3 2D 9 (e\/ﬁ/Z _ 67\/5/2) ds

(di — dy + VD)e VP2 — (dy — dy — /D)eVP/?

. (2177)

where D = (d; — d4)2 + 4dsds. By inspection it can be seen that there is a lack
of complex conjugate symmetry in the solutions. Furthermore, this solution to the
propagator equation relates the reflection /transmission coefficients at different points in
the random media, which can be seen in equation (2.399). The parametric dependencies

contained within D reflect the material the wave is propagating through.

2.6.3 Solving the Propagator Equation Using Jacobi’s Formula

Taking the determinant of the propagator matrix and equations (2.135), (2.161) and
applying Jacobi’s formula [61] gives

d(det{P..})

i = Tr(H,) det{P,} = 2i(¢(x3) — <) x det{P,}, (2.178)
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That is

dIn(det{P,})
dzs

= 2i(¢(x3) — <)

= 2iQ(x3), (2.179)

where Q(x3) has been temporarily set to equal {(z3) — ¢. Note that from equations

(2.135) and (2.161) < is independent of z3. Integrating between 0 and x3 gives

det{P,(z3

2 2.180

oy o (2 o). (2150

The initial condition P (x3 = 0) = I gives
a3
det{P,(z3)} = exp (21/ Q(s) ds) , (2.181)
0

as the solution of equation (2.178). Note that det{P} is not a constant and depends on

xIs3.
2.6.4 Wave Modes From the Propagator

From equation (2.157)

=P, (0,L) ( . (2.182)

i(w, L) = x14(w,0) + x2b(w, 0), (2.183)

b(w, L) = x3a(w,0) + x4b(w, 0), (2.184)

which can be rearranged to give

[3(&), L)X? - &(wv L>X4
X2X3 — X1X4

i(w,0) = (2.185)
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7 &(W7L)X3 - i)(waL)Xl

b(w,0) = 2.186
(.0) X2X3 — X1X4 ( )
The boundary condition given by equation (2.149) can be written as
ML) L 2iCL{(w I
i(w, L) = Ve L) e bw, L) (2.187)

RieirxL Ry ’
Inserting equations (2.185) and (2.186) into the other boundary equation (2.148) gives

(e, L) (Roxa = xa) + b, D)2 = Roxa) _ p (2.188)
X2X3 — X1X4 ‘ |

Inputting equation (2.187) into equation (2.188) and rearranging gives

_ e?¢L (xaxs — xaxa)Tof (w)
%L (x3Ry — x4) + Ri1(x2 — x1Ro)’

bw, L) = — (xexs = xaxa) RiTo f (w) _ (2.190)
e? (xR0 — X4) + Ri(x2 — x1Ro)

(2.189)

a(w, L)

Substituting equations (2.189) and (2.190) into equations (2.185) and (2.186) gives

(e2Lyy — x2R1)To f(w)

a(w,0) = —— , (2.191)
e?¢L (x4 — x3Ro) + Ri(x1Ro — x2)

. 2L, _ ¢

b(w, 0) (€™ xs — x1f1)Tof () (2.192)

 e2iCL(y3Ry — x4) + Ri(x2 — x1Ro)’

This representation provides analytic expressions for the wave modes at the interfaces

between the heterogeneous layer and the two half-spaces.

2.7 The Riccati Equation for Local Reflection Coefficient

Consider the local reflection coefficient of a layer of heterogeneous material occupying

0 < z3 < L, with a wave incident from the homogeneous half-space x3 < 0, given by

R(w, x3) = b(w,xg)‘

(2.193)
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The functions a(w, 23) and b(w, 2:3) are the right and left-going wave modes respectively.

The boundary condition given by equation (2.149) at x3 = L can then be written

R(w, L) = Rye %L, (2.194)

By differentiating equation (2.193) with respect to x3 and using equation (2.128), it can

be seen that the local reflection coefficient satisfies a Ricatti equation [62] for x5 € [0, L]

dR a(w, 73) (0(b(w, ¥3)) /Ox3) — blw, 23) (0(@(w, 3)) /Ox3)
dzxs a?(w, x3)
= R(Ag(w3) — Ay(x3)) — R2Ag(23) + Ag(as). (2.195)

From the boundary condition given by equation (2.148) at z3 = 0, and equation (2.193),

then A
~ N T()R(w, 0) "
b(w,0) = 15 BB Roft(.0) f(w), (2.196)
and from equation (2.103)
bo(w, 0) = R(w) f(w). (2.197)

R(w) = 222 4+ Ry, (2.198)

which can be rewritten using equation (2.196) to obtain

. R(w,0)(T + R3) + R

R(w) = : (2.199)
1+ RoR(w,0)
Finally, since T§ + R3 = 1, then
R(w) = w, (2.200)
1+ RyR(w,0)

which is the global reflection coefficient of the heterogeneous slab where Ry is the local

reflection coefficient at x3 = 0. The Ricatti equation (2.195) is a nonlinear terminal
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value problem for the local reflection coefficient and presents an alternative method to
obtain the global reflection and transmission coefficients of the layer, replacing the linear
two-point boundary value problem given by equations (2.128), (2.148) and (2.149). This
is a backward Ricatti equation which must be solved in reverse from z3 = L to x3 = 0,
starting from the terminal condition given by equation (2.194), and this presents a
problem later in the stochastic case. One way to circumvent this (as outlined in [26]) is
to consider reflection from waves incident from a homogeneous half-space on the right of
the slab. The local reflection coefficient will therefore satisfy a forward Ricatti equation

with a terminal condition at x3 = —L.

The local reflection coefficient can be found by solving equation (2.195) subject to the
boundary condition (2.194). A nonlinear terminal value problem for the local transmis-
sion coeflicient can also be derived to give an analytical expression for the transmitted

wave. Define the local transmission coefficient for the random medium as
0<z3<L. (2.201)

Differentiating with respect to x3 and using equation (2.128) gives
dT ~Ta(w,L) 9 w0, 23)
— = —— " —|a(w,x
dzrs a?(w,x3) Oxs 3

= —T(w,z3) <A1(x3) + Ag(xg)R(w,x3)>, (2.202)

which forms a Ricatti equation in the interval zg € [0, L] for the local transmission

coefficient, with terminal condition at x3 = L
T(w,L)=T. (2.203)

The boundary condition given by equation (2.148) at the interface x3 = 0 and equation
(2.201) gives
Tva(w, L A .
Nalw. L) | pib(w,0) = Tof(w). (2.204)
T (w,0)

Combining the local reflection coefficient given by equation (2.193) and the local trans-
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mission coefficient given by equation (2.201) at x3 = 0 gives

R b(w,0)  b(w,0)T'(w,0)

w
R(w,0) = = 2.205
@.0) =200 =  Thaw L) (2:205)
Inserting (2.205) in equation (2.204) gives
Tia(w, L T a(w, L ;
16w, L) | BoTiR(w,0a(w, L) _ . (2.206)
T(w,0) T(w,0)
An expression for the forward mode at x3 = L in the medium is then given by
ToT'(w,0 s
a(w,L) = oT(w,0)  p0,) (2.207)
T + RoTlR(w, 0)
Using matrix equation (2.145) and rearranging for the transmitted wave gives
V2 _ ()2 _ -
a1(w,L) = (M)e_/\Ld(w, L) =Tie *a(w,L). (2.208)
1
The transmitted wave is therefore a;(w, L) = T (w)f(w), which gives
. ToT <
T(w) = —2—2—— (£.0) _ -iar (2.209)

1+ RoR(w,0)

where 7 is the global transmission coefficient for the slab.

2.7.1 Energy Conservation

An expression for the energy in the layer in terms of the local reflection and transmission

coefficients is given by |R(w,z3)|2 4 |T'(w, x3)|?. Taking the derivative with respect to
T3 gives
d dR= dR . dT = dT
—(|R T H=_—— —R+ —T+ —T 2.210
(R + [P 0)) = SR+ R T4 S (2210
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For simplicity, define the energy by Q(z3). From equations (2.195) and (2.202), its

derivative can be rewritten as

~ A~ AT~ —

—TT (A 4+ AoR) — TT (A} + Ao R),

IT|?(A1 + AgR) — T2 (A1 + AgR),

= [R2(Ag+ Ay — (Ay + A1) — |R2(RA; + RAy) + RAs + RAs

— |T((A1 + A1) + AsR + AsR).
Recall from equations (2.129) and (2.132) that A; = —A; and Ay = —Ay, so

dCL?igﬂ:s) _ R<A3 - A2(|R|2 + |T;2>> +R<A3 — Ay (Ilf?\2 + |T|2>)-
3

From equation (2.133), Ay = A3 so

90 _ g, <1 - <u%r2 n W)) + R (1 - (’R‘Z * 'T2>>

= (1 - Q(:L‘g)) (mg +RA3).
Defining
Flas) = - (R + s ).
then
d
9 (o)
and hence

Qlas) = 1 —i—Aexp{/xS F(s) ds}.

From equations (2.194) and (2.203)

Q(L) = |R(w, L)]? + |T(w, L) = |Rye 2" 4 T2 = 1,
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= |R|>(Ay — A1) — R|R|?As + RA3 + |R|*(Ay — A)) — RIR|?As + RA3

(2.211)

(2.212)

(2.213)

(2.214)

(2.215)

(2.216)

(2.217)



by equation (2.151). Hence A = 0 and so
Q(x3) = |R(w,23)> + |T(w,z3))> =1, 0<uz3<L. (2.218)

The global energy can be expressed using equations (2.200) and (2.209) as

~ 2 N 2
Ro + R(w,0) ThT(w,0)  —ixr
1+ RoR(w,0) 14+ RyR(w,0)

_ ( Ro + R(w,0) ) ( Ro + R(w,0) )
1+ RoR(w,0) ) \ 1 + RyR(w,0)

+< TyT(w,0) )( %T@ﬂ)>
1+ RoR(w,0) ) \ 1+ RoR(w,0)

 R2+ Ro(R(w,0) + B(w,0)) + | R(w,0)|? + T2|T'(w, 0) ]2

N (1+ RoR(w,0))(1 + RoR(w,0))

 R2+ Ro(R(w,0) + R(w,0)) + |R(w,0)]2 + (1 — R2)(1 — |R(w,0)[?)
N (1+ RoR(w,0))(1+ RoR(w,0))

[R(W)[?+ T ()* =

)

since Ry, Ty € R. Hence

o 14 RoR(w,0) + RoR(w,0) + (RoR(w,0))(RoR(w,0))
- (1 + RoR(w,0))(1 + RoR(w,0))
_ (1+ RoR(w,0))(1 + RyR(w,0))
(L4 RoR(w,0))(1 + RoR(w,0))
= 1. (2.219)

[RW)[* + T ()|

So the energy is conserved and this also implies that the complex-valued global reflection

and transmission coefficients are uniformly bounded in absolute value by one.
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2.8 Randomly Layered Anisotropic Medium

Assume that the local orientation of the slowness surface 6(z3) varies randomly over

the interval z3 € [0, L] according to the additive noise formulation

O(x3) = 0 + om(zs/l), =x3€]0,L],

(2.220)

where § ~ 1 is the mean angle and m(x3/1) is a stationary stochastic process (an ergodic

Markov process on a compact state space) with mean zero. The random process m(x3/1)

takes values in R!, on an interval which is closed and bounded. From equations (2.4)

and (2.5) the stress tensor components can be rewritten

ce6 = sin® (0 + om(z3/1))F + cos® (6 + om(z3/1))N,

caq = sin® (0 + om(23/1))N + cos® (0 + om(x3/1))F,
and

ces = sin (6 + om(z3/1)) cos (0 + om(x3/1))(F — N),
where N = g and F = 44 when 6 = 0. Taking a Taylor series in o gives

ce6 = Co6(1 + oeem(zs/l)) + O(a?),

where
Cee = N cos? 0 + F sin? 9,
osin20(F — N)
066 = — ’
Co6
and

Cq4 = 544(1 + 044m(x3/l)) + 0(02),
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(2.222)

(2.223)

(2.224)

(2.225)

(2.226)

(2.227)



where

and

where

¢4 = Nsin? 0 + F cos? 9,

044 =
Ca4

osin20(N — F)

Y

coa = Coa(1+ aeam(x3/1)) + O(0?),

Ceq =
2

(F — N)sin20

)

064 = 20 cot, 20.

Equation (2.227) (to order o) gives

1 N 1-— 044m(:c3/l)

C44 C44

Equation (2.34) becomes

where

1K1Cp4

+ O(c?).

¢ — (1 + 064m(x3/l)> (1 — 044m(x3/l)>

Ca4
1K1C64

= — <1 + (064 — 044)m(:v3/l)> + 0(02)

C44

= 664(1 =+ (364m(x3/l)).

C44

064 = 04 — O4gq = (T<2C0t20+
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sin20(F — N)

C44

)

olq,

(2.228)

(2.229)

(2.230)

(2.231)

(2.232)

(2.233)

(2.234)

(2.235)

(2.236)



and

= sin20(F — N
I, = 2c0t20 4 SR = N) (2.237)
C44
Equation (2.37) can now be written (to order o) as
n = Caa(1 + G4am(x3/1)), (2.238)
where
= 2 (2.239)
Ca4
and
Gaq = —o4a = 0. (2.240)

Equation (2.32) can now be rewritten (to order o) using equation (2.230)

2 2 .2
. KR7C66 KR7C
Y(w, k1) = —iw (p - 1244 64>

w? w2cyy

2 /2
. ki (¢ _
= —jw <p + w—; (564(1 + 064m)2(1 — ogam) — Ce(1 + Ugﬁm)>> + 0(02)
44
. k2 [ 2
= —iw (P +— <_64(1 + (2064 — oaa)m) — Ce6(1 + (766m)>>
w C44
= (1 + oym), (2.241)
where
_ Y R U
¢(W, /il) _ 1(064 C%Zﬁlﬁ:l 1pW 044’ (2'242)
2062 (9ges — e
op(w k1) = k1(C54(2064 — 044) — C44Ce6066) (2.243)

(€64 — Caalos)KT + pw?Caa
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Using equations (2.226), (2.229) and (2.232)
oy =0l (2.244)

where

ro_ k3(c2,(4cot 20 + sin20(F — N)/Ca4) — Cagsin20(F — N))
7 (524 — 644666)5% + pw2644

. (2.245)

2.8.1 Weakly Heterogeneous Scaling Regime

Denote the wavelength by A3, the wave propagation distance by L3 and the mean
layer size in the media by [. In what follows L3 > A3 ~ [ and the amplitude of the
fluctuations in the spatially varying material properties 0 < o < 1; this is the so called
weakly heterogeneous regime [26]. This setting causes fluctuations to build up behind
the transmitted wave, producing an incoherent coda wave containing the bulk of the

wave energy. Now non-dimensionalise the governing equations via the transformations

w= N and Fy‘l == I{1L3, (2246)

where c3 is the mean shear wave speed in the xg direction. T3 can be interpreted as a
ratio of distances in the propagation direction, @ as a ratio of the propagation distance
to the typical wavelength in the propagation direction and £ as a ratio of propagation
distance per wavelength in the x; direction. Define two dimensionless parameters € and

w to capture the length scale differences via

Ly 1 L
D<e<l, 2=, p=228_% (2.247)
C3 9

The ratio w/e is the propagation distance measured in units of wavelength. These

relations can be combined to write

€= ”LL’ and w = i\/ng. (2.248)
3

C3
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The non-dimensional velocity and stress fields take the form

- 1 -/ c30 w3k . P 1 [c3w w3k .
f(w7ﬁl7$3) = §< 5 3 17L3$3>7 T(W,K/l,xg) = 2T< ) 17L3$3>-
c3 c3 pc3 Ls  c3
(2.249)

The non-dimensional stress and velocity equations are then (from equations (2.31),

(2.36), (2.238) and (2.241))

3

€3 = L3Ceu <1 + 664m<§>>5— pcsLgCua (1 + 5’44m< 7, (2.250)

- L3 = . T ~ = . T
T3 = 31p<1 + J¢m<;)>§ + L3Cga (1 + 064m(§)
pPC3 3 3

These equations have three non-dimensional lumped parameters. From equation (2.235)

‘Hl
N———
N——

2

7. (2.251)

~——7" O,

_ Lac C
Laey = 1223501 — jj, 564 (2.252)
C44 C44
where
Goa= " and =2 (2.253)
pCy pCy
Also, from equations (2.239) and (2.246)
. 2 .~
= L
p03L3644 = ngLgffw = l@ﬁ = ffw (2.254)
C44 C44 C3 Ca4
Finally, from equation (2.242)
Ln = =2 /=2
Bap=—iw(1+ % (fm - 566>>a (2.255)
pCs W=\ C44
where
o = o (2.256)
pCy
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Equations (2.250) and (2.251) then become

~ C T —1 7
€5 = ifiy 2 <1 + (364m<w§>> i <> <1 + &44m<”5§>>%, (2.257)
C4q4 13 Cyq4 g
N ) / i
Lt Gym( =2is ) )€+ ik =2 (14 sgam( 22 ) )7,
l Cqq 62

(2.258)
where €44, Coa, Cos ~ 1. The prefactor in equation (2.258) is
K1 k1Ls K1
— = ——=— =1, 84 2.259
w (Lsw/c3) ks Y ( )

the ratio of wave numbers in the (z1, x3) directions. For a monochromatic wave the
ratio of wave-numbers is equal to the ratio of slowness (the inverse of the phase velocity)
values which in turn (for constant density materials) is the degree of anisotropy of the
medium as governed by the stiffness tensor (equation (2.6)). As the crystal orientation
0 changes, the phase velocities in the x1 and z3 direction change and hence, the wave-
numbers in these directions change commensurately. In Figure 2.5 a plot of the ratio
of the wave-numbers (v) versus the crystal orientation is shown. Hence, v is related to
the degree of anisotropy of the material in the (z1, x3) plane and hence to the degree

of asphericity of the associated slowness surface.
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Figure 2.5: A wavenumber surface plot for austenitic steel showing its aspherical nature due to the
anisotropic stiffness tensor. As the surface rotates through 6 radians, the ratio of the wavenumbers k1
and k3 vary (b). Plot of v (equation (2.259)) versus the rotation of the stiffness tensor ¢ using values
from Figure 2.5 (b).

Using equations (2.257), (2.258), (2.247) and (2.259) gives

o | &(@, k1, 73) w |a(1+oTam(is/e?)) B(1+oTgm(is/e?)| |E(@, k1, 73)

O3 (@, K1, 43) € 131+ ol ym(is/e?)) a(l+olam(Zs/e?))| |F(@, K1, 73)

where the new non-dimensional variables are defined as

a=v (2.261)
C44

1

=L (2.262)
C44

=2
y=- <1 +1° <?64 - 566))7 (2.263)
€14

where equation (2.245) now becomes

V2 (sin20(F — N)(¢3, — ¢2,) — 4€44¢2, cot 20)

Caa(V*(Co6Caa — Cy) — Caapc3)

y = : (2.264)

and where &, 3 and 4 are O(1). From now on the tildes are dropped and temporarily
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setting m(z3/e?) = 0 in equation (2.260) gives

EREAD _@ | Bl [&(v,x3) M £(v, ws) . (2.265)
Oxs

The eigenvalues of M are A* = iw/e(a 4 +/75) and the eigenvectors are [v/B7, 7|7 and
[—v/B7, 7)T. Let

1+ 02 (88— )

£ 2.266
” (2.266)

qb\/ﬁ*J

Now consider the following ansatz for the generated right-moving modes a°(v, x3) and

left-moving modes b° (v, z3)

é(u, 1‘3) _ V C/’V -V C/'y Bg(yvx3) (2.267)
(v, x3) /¢ V¢ | [t (v,as)
where
¢ = yam, (2.268)
and
at(v,x3) = a(v, IL‘3)€A(7)$3, (2.269)
b (v, z3) = b (v, .7}3)€A<+)I3. (2.270)

This produces a new system whose coefficients are zero centered random variables

() = 5 (VI ) = VATC &) Je N (2
b (v, 23) = ;(m v, 2) + V/CEW, x3>)e—A<*)x3. (2.272)

Taking partial derivatives in x3 gives

0ac _iw
2%

(Al (v, 23/e2)af (v, 23) + Ao (v, z3/2)bF (v, :1;3)> , (2.273)
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and

~

SZ(% r3) = % <A3(V7 w3/?)as (v, w3) + Aa(v, 23/%)b° (v, x3)> 7 (2.274)

where
A (v, x3/€%) = om(z3/e?)61(v), (2.275)
Aoy, 23/2%) = om(zs/e2)dy(v)e = 975, (2.276)
As(v,23/e2) = —om(xs/e2)da(v)e™ = 9" (2.277)
Ay(v,x3/e?) = om(xs/e%)04(v), (2.278)

and

§1(v) =2alg — ¢(Tp +T), (2.279)
S2(v) = ¢(Ty —T), (2.280)
64(v) = 2alq + ¢(Iy + T4). (2.281)

Note here that «, § and ~ are given by equations (2.261), (2.262) and (2.263) and so

are independent of x3. The wave-mode amplitude evolution equations are therefore

d |af(v,z3) wo T3 5 (v) 52(V)ei27w¢x3 af (v, x3)
dea |3 A 2e -
3 bs(yv .7,'3) c € _52(V)e_ZT¢x3 54(1/) ba(y’ 1'3)
(2.282)
Here Ls > A3 and so from equations (2.246) and (2.247)
L3 ng w w
1 =2 = = __ 2.2
< A3 2mcs T 2me (2.283)
Here A3 ~ [ and so from equation (2.248)
L
jo bl ekl @, (2.284)

)\3 - 27T03 B 27T63 L3 N 2me
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Hence, equation (2.284) implies (with 0 < ¢ < 1) that

~ 2.285
@ (2.285)

and so equation (2.283) holds. Since 0 < o < 1 then set o = . This gives the evolution

equation (2.282) in the form

at (v, x 1 at (v, x
@) :H‘5<1/,m?’ m<x3>> Fs)| (2.286)

d.’IJ3 Z;E(Va $3) £ bE(Va 333)
where
B0 s
1 14 v)e e
HE <u, ”Z’m<x§>> = Yin(as/e?) B . (2.287)
= € 2 —52(1/)6_z <2 54(1/)

The random fluctuations are assumed to have the form m(x3) = g(Y (x3)), where YV
is a homogeneous in z3 Markov process with values in a compact space [26], and that
this process is strongly ergodic and satisfies the Fredholm alternative [8], and the real
bounded function g satisfies the centering condition E[g(Y (0))] = 0. Equation (2.286)

can be recast into an initial value problem using

at (v, x a®(v,0
T ey |0 (2.288)
b% (v, x3) b*(v,0)

Pe (v, x3) = , (2.289)

is formed from eigensolutions of equation (2.286), and P¢(z3 = 0) = L. It follows that

gig (v,23) = H* <1/, ?,m<x3>>P5(u, 3). (2.290)

g2
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2.8.2 Diffusion Approximation Theorem

Expanding the right hand side of equation (2.286) gives

dzs | be (v, 24) e \é& 0 aly| [b°(v,23)
i T 0 ac (v, x3)

- 2m<3>¢(Fﬁ+TW) )
€ \¢ 0 —1| |b°(v,23)

This can be written in terms of the propagator matrix (2.289), so the random matrix

ordinary differential equation is in the form

d 1
—P(v,15) = -F <Pa(1/, xg),m<x3>,:§’>, (2.292)

dzs g2

1 €3 T3 ) x3
EF (PE(V, x3), m <52) , 52> =_m <82> al' JIP(v, z3)

) T3
— gm <€2) o(Tg+Ty) o3P (v, x3)
1 2
+ 2€m<f:3> ¢(I'g —T'y) cos (q;xg>agP5(u, r3)
1 2
+ 26m(?> $(I's — T,) sin ( i’fi”)alpf(y, 3),
(2.293)
and o1, 09,03 are the Pauli spin matrices
0 1 0 —i 1 0
g1 = , 09 = , O3 = . (2.294)
10 i 0 0 -1

64



The matrix field F can be written as

4
F =Y gy(m,7)h,P*, (2.295)
p=1
where 7 = 13/¢2 and
[ ol I | [ m |
_ifﬁ(rﬁ""rw)o.g m

h = L g(m, ) = (2.296)

Wﬂz m cos(247)

I @01 | | msin(2¢7) |

From equations (2.259), (2.262), (2.263) and (2.266) ¢ does not depend on frequency,
and is a function of p, c3,0, N and F. Equation (2.293) is independent of frequency with
the scaling requirement that w ~ 72 in the weakly heterogeneous regime, due to the
separation of scales. The correlation matrix C = (Cpq)p7q:1’27374 is computed using the
covariance of the random process m. The correlation integrals can be assembled in a
matrix, together with symmetric (S) and anti-symmetric (AS) elements. This can be
computed using the covariance of the random process m. So

Zo
e [ "5l

,T)g(q) (m(x3), 7+ x3)|dzsdr p,g=1,...,4,

(2.297)
where Zj is the phase. Starting with the diagonal elements it follows that
1 27 o0
Ci = / E [ )] dzsdz,
mTJo Jo
=2 E [m(O)m(mg)] dxsz = Y(0), (2.298)
0
1 2 00
Coo = / / E[m(O)m(xg)] dxsdz,
T™Jo Jo
=2 E [m(O)m(xg)] dxs = Y(0), (2.299)
0

2 o)
Cs3 = 1 / / E [m(O) cos(z)m(x3) cos(x + 2¢x3) | drsdz,
™Jo Jo
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and

1 2
/ / E[ ] cos(x) cos(z + 2¢x3)drzdx
o Jo

_ ! /0 7 o (@) /0 OoE[m(O)m(mg)] cos(26a3)dxs

s

_ ;/;W cos(z) sin(z)dx /OOO E [m(O)m(:Bg)] sin(2¢x3)dz3
= [ B[ o] cos2omdz = 5700)

Cu=2 / / [ ] 2)sin(z + 2633)dzsdz

— /0 n?(z )dm/ E[m(O) (z 3)] cos(2¢x3)dxs

™

— 1/0 cos(z) sin(z)dx /Ooo E {m(O)m(Cﬂg)] sin(2¢x3)dzs

™

) 0
“ )
— /OOOE[m(O)m(xg)} cos(2¢x3)drs = %T(@-

The off-diagonal elements of the first row are given by

and

Clp = — // [ ]dxgdx 1(0),
Ci3 = — / / [ ]cosx+2¢x3)da§3daz

-1 / cos(z [m(O)m( 3)} cos(26s)ds
- 0)m(z3)

; )dx/o E
/027r sin(z)dx /OOOIE{m( m

] sin(2¢x3)dzxs

Cy=2 / Qw / b E[m(O)m(fvg)] sin(z + 26ws)dwsde
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similarly, the second row can be completed to give

On=1 /0 7 /0 ooE[m(O)m(xg)] dzsdz = T(0),

2w poo
Cas = % /0 /0 E [m(O)m(:l:g)] cos(x + 2¢x3)drsdr = 0,

and

2w poo
Cos = % /0 /0 E [m(O)m(azg)] sin(x + 2¢x3)drsdr = 0.

The elements of the third row are then

cn=1 [ [T e[momir)

C@ziA%AwE@wmuJ
Coa =~ /0 - /0 OOE_mm)m(:ca):

cos(z)dxsdr =0,
cos(z)dxsdr =0,

cos(z) sin(x + 2¢x3)drsdr

= /0 E[m(O)m(xg)} sin(2¢x3)drs = %T(AS)@%

and those of the fourth row are

Oyt = % /0 7 /0 h E[m(O)m(mg)] sin(z)dasdr = 0,

Cuo = % /0 v /0 OoE[m(O)m(xg)] sin(z)dzsdz = 0,

and

Cys = i/ozﬂ /OOOE[m(O)m(xg)] sin(z) cos(z + 2¢x3)drsdx

—_ /0 E[m(())m(xg)} sin(2¢ws)drs = —%T“‘S) ().
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(2.307)

(2.308)

(2.309)

(2.310)

(2.311)

(2.312)

(2.313)
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T(0) T(0) 0 0 |
C_ T(0) Y(0) 0 0 ’ (2.315)
0 0 ) irA9(e)
L0 0 —3TU(g)  §Y(e) |
T() 0 0 0
c) — 0 T(0) 0 0 , (2.316)
0 0 iY(@) O
0 0 0 3T
and
[0 T(0) 0 0 ]
ctas) _ [TO) 0 0 O (2.317)
0 0 0 179 (¢)
00 1Y) () 0 |
where the correlation integrals are defined as
T(¢p) = 2/OOE[m(O)m(x3)] cos(2¢x3)dxs, (2.318)
0
and
TA9) () = /OOE[m(O)m(xg)] sin(2¢x3)dzs. (2.319)
0

The quantity Y (¢) is a non-negative real number, as it proportional to the power spectral
density of the stationary random process m. Details of how to compute the correlation
integrals numerically for a given material are in [63]. Now the diffusion approximation
theorem (|26], page 161) can be used to show that P¢(v, x3) converges in distribution
to P(v,x3) where P(v,xz3) is the solution of the Stratonovich stochastic differential

equation
dP(v,z3) =i,/ Y(0) (aFaP(V, x3) o dWi(z3) — g(f‘g +1'))osP(v,z3) o de(@’g))

68



+ i(rﬁ —I')VY(9) <02P(V, x3) o dWs(z3) + o1P(v, x3) o dW4($3))

2v/2
T4%(9)

L (r(())aragz)(rﬁ $Ty) i

T3

¢*(Tp — r7)2>03P(y, x3)drs. (2.320)
Using equations (2.289) and (2.294) this can be written

d{)ﬁ(%iﬂ?}) xQ<u,:c3>] a0 el

o dW1 (xg)
xs(v,23)  xa(v, 933)]

v, T v, T
id, xi(v,x3)  xa(v,x3) o dWWy(s)
—x3(v@3)  —xa(v, 33)
—x3(v,z3) —xulv,x
idg x3(v,23)  —xa(v; 3) o dWWs(xs)
| xa(v,w3)  xa(v,a3)

A {x:s(v, 23) Xa(v,z3)

9 dW4($3)
xi(v,z3)  xa(v, 553)]

+ (Aq +iA5) a(es) - xa(es) drs,  (2.321)
—x3(v,x3) —xa(v,23)
where
Ay = a0 /T(0), (2.322)
Ay = Mﬁ;m T(0), (2.323)
Ay = 5= (0 = 1) VT, (2.324)
Ay = % <ara¢>(rﬁ + FV)T(O)>, (2.325)
and
As = g (45 - T, PT5(0)). (2:326)
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Expanding equation (2.321) gives four coupled stochastic differential equations in Stratonovich

form

dx1 = iA1x1 0 dWy +iAzx1 0 dWa — iAzx3 0 dW3 + Azxz o dWy

+ (A4 + i4s5)x1 dzs, (2.327)
dxa = iA1x2 0 dWq +iAzx2 0 dWo — iA3x4 0 dW3 + A3y o dWy

+ (Ag +iAs)x2 dus, (2.328)
dxs = 1A1xs o dWy —iAoxs o dWsy + iAsx1 o dWs + Azxy o dWy

— (Aq 4+ iAs)x3 dxs, (2.329)
dxg = 1A1x4 0o dW1 — iAoxs 0 dWs 4+ iAzxo 0 dW3 + Agxo o dWy

— (A4 + iA5)X4 drs. (2.330)

Introduce the polar coordinate parameterisation for the elements of the propagator

matrix via

X1(z3) = a(zs)e ) (2.331)
X2(3) = g(as)e?), (2.332)
X3(x3) = j(xs)e™s) (2.333)
Xa(w3) = p(xs)e’’s) (2.334)
In the Stratonovich framework the standard chain rule applies, and so
dx1 = %de + %’gdb— (da + iadb)e™ (2.335)
dxs = %md + %;deh (dg + igdh)e'™, (2.336)
dxs = 88X3d + aaf’dk = (dj + ijdk)e’, (2.337)
dxs = %X‘*d + %’“dq = (dp + ipdg)e™ (2.338)
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Using (2.327) and (2.335) gives the two equations

da = Azjsin (k — b) o dW3 + Agjcos (k — b) o dWy + Agadxs, (2.339)
db = Ay o dWy + Ay 0 dWs — Agi cos (k — b) o dWs + Ag,% sin (k — b) o dWy + Asdzs.
(2.340)

Similarly, using equations (2.328) and (2.336) gives

dg = Aspsin (¢ — h) o dW3 + Agpcos (¢ — h) o dWy + Aygdzs, (2.341)
dh = Ay o dW; + Ay 0 AW — Agg cos (q — h) o dWs + Ag,g sin (g — h) o dWiy + Asdzs.

(2.342)

Nextly, using equations (2.329) and (2.337) gives

dj = —Asasin (b — k:) o dW3 + Aszacos (b — k:) odWy — Ayjdxs, (2.343)
dk = A1 0 dWi — As 0 dWa + A3 cos (b — k) o dWs + Az~ sin (b — k) o dWy — Asdzs.
J J

(2.344)

Finally, using equations (2.330) and (2.338) gives

dp = —Asgsin (h — q) o dW3 + Azgcos (h — q) 0 dWy — Agpdzs, (2.345)
dg=Ai0dWi; — Ay o dWy + Agg cos (h —q) o dW3 + Agg sin (h — q) o dWy — Asdxs.
p p

(2.346)
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The equations for the radial and phase parts of the propagator functions can be written

in matrix form as

_a_ | 0 0 Asjsin(k —b) Asjcos(k—0) ] | Aja ]

b Ay Ay —As(j/a)cos(k—b) As(j/a)sin(k —b) As

g 0 0 Aspsin (¢ — h) Aspcos (¢ —h) _a;W1_ Asg

a1 Ar Ay —As(p/g)cos(q—h) As(p/g)sin(q—h)| S| N As i,

J 0 0 —Asasin (b — k) Asacos (b — k) Ws —Ayj

k Ay —As  As(a/j)cos(b—k) As(a/j)sin(b—k) | Wy | —As

D 0 0 —Asgsin (h — q) Asgcos (h — q) —Aup

] |Ar A2 As(g/p)cos(h—q)  As(g/p)sin(h—q)] | — 45 |
(2.347)

Using Jacobi’s formula and equation (2.290) gives

ddet{P°} Tr

(H?) det{P*}, (2.348)
dxg

where equations (2.279), (2.281) and (2.287) give Tr(H®) = 2ial'ym(z3/€2). Solving

this differential equation yields

3

2
det{P°} = exp <2iaI‘a/ m(s)ds), (2.349)
0
and hence
|det{P*(x3)}] =1, (2.350)
and so equation (2.289) implies
IX1x4 — x2xs| = 1. (2.351)

This conservation of energy relationship can be written as

a2p2 4 92j2 -1
2apgj

cos(b+q—h—k)= = Di(a,g,j,p), (2.352)
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and so

q—h=cos™' (D) + (k—b), (2.353)

and so
cos (g — h) = Dycos (k —b) — /1 — D?sin (k — b), (2.354)
sin (h — q) = /1 — D? cos (k — b) + Dy sin (k — b). (2.355)

Equation (2.347) contains the Stratonovich subsystem

_g_ [ 0 0 Aspsin (¢ — h) Aspcos (¢ —h) ] _Wl_ [ Aug ]
h A A — A3k —h) AzBsi —h W- A
g A A 3gc0s(g—h)  Asgsin(g—h) | W I
P 0 0 Asgsin (¢ — h) Asgcos (g — h) W3 —Aup
4] A1 —Ay Aslcos(¢—h) —Aslsin(g—h)] Wa| | —A5

(2.356)

Using Jacobi’s formula and equation (2.293) (following the same approach as in equa-

tions (2.157) - (2.161))
ddet{P¢} _

Tr(H?) det{P®}. (2.357)
dl‘g

Equations (2.279), (2.281) and (2.287) then give Tr(H?®) = 2ial'ym(x3/?). Solving this

separable differential equation yields the solution for the determinant of the propagator

matrix
z%
det{P°} = det{P*(w,x3 = 0)} exp <2iaFa /E m(s)ds)
0
%
= exp <2iafa/6 m(s)ds). (2.358)
0

Hence

|det{P*(w, z3)}| = 1, (2.359)
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and equation (2.289) implies

Ix1x4 — x2x3| = 1. (2.360)

From equations (2.331) - (2.334), the conservation of energy relationship can be written

as

ae®pe — gejet*| = |ap cos (b+ q) — gj cos (h + k) + i(apsin (b + q) — gjsin (h + k))|

— <apcos (b+q) —gjcos(h+ k)>2

2
+ <apsin (b+q) — gjsin(h + k)) =1, (2.361)
which implies that
2.2, 2.2 . _
a’p”+97j° —2apgjcos(b+q—h—k)=1, (2.362)

which can be rewritten as

a2p2 +92j2 -1

cos(b+q—h—k)= = D1(a,g,7,p). (2.363)

2apgj
Equation (2.363) also implies that
q—h=cos™! (D) + (k—b). (2.364)

So from equation (2.364)

cos (g — h) = Dycos (k —b) — /1 — D?sin (k — b), (2.365)

sin (h — q) = /1 — D? cos (k — b) + Dy sin (k — b). (2.366)
Furthermore, from equation (2.363)

q=cos ' (D)) +k—b+h=Dsy(a,b,g,h,jkp). (2.367)
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Applying the chain rule to equation (2.367) then gives

_ 0Ds 0Dy 0Ds 0Dy 0Dy .. 0Do 0Dy
dqg = 9a da + a5 db + 39 dg + oh dh + 9j dj % dk + ap dp
1 8D2 8D2 8D2 . aDQ
=— da+ —=dg+ ——dj+ ——dp | — db+ dh + dk. 2.368
%1_1)%(8@ a—+ 39 g+ 3 lj + p p> + dh + ( )

To obtain this result, equation (2.368) was substituted into the left hand side of equation
(2.346), using also equations (2.363), (2.365) and (2.366). One can show through the
help of Mathematica that equation (2.346) holds and is consistent with the energy
conservation relation (2.361), allowing the system of eight coupled SDE’s to be reduced
to seven. Note that this new system of seven SDE’s decouples first into multiple coupled

systems; d(a, b, j, k), d(g, h,p) and then d(g,p).

2.8.3 Analysing the Diffusion Markov Process

Equations (2.341), (2.342), (2.345) and (2.346) give the Stratonovich system

_g_ [ 0 0 Aspsin (¢ — h) Aspcos (¢ —h) ] _Wl_ [ Aug ]
h A1 Ay —AszPcos(q—h) AszPsin(qg—h %% A
d _ 1 2 3y (q ) 3y (q ) od 2 n 5 s,
P 0 0 Asgsin (¢ — h) Asgcos (g — h) W3 —Ayp
4] A1 —Ay  Aslcos(¢—h) —Aslsin(g—h)] (Wa| | —A5
(2.369)

To convert system (2.369) into Ito form, first rewrite equation (2.369) using

0 0 Aspsin (¢ —h)  Aspcos(q¢—h)
A A —A32cos(q—h) AsBsin(qg—h
o — 1 2 3g (q ) 3g (q ) 7 (2.370)
0 0 Asgsin(q — h) Asgcos(q—h)

Al —A2 A3% COS (q — h) —Ag% sin (q — h)_

g Wy Aug
h Wy As
= ||, dW=d b= , (2.371)
p W3 —Ayp
4] A | —4s5 |
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to obtain
dwz = o'lpode—i-bdeCg, Z == 1727 374

In It6 form (see Section 6.7.2 [26])

4
1
dx; = O'idep + 3 Zl O'ijipyjdxg +b;dxs.
]:

Modified Drift

Calculating the modified drift (from equation (2.373)) for ¢ = 1,2, 3,4 gives

4
1 1
B} g OjpO1pjdr3 = 5(011011,1 + 0210112 + 0310113 + 0410114
j=1

+ 0120121 + 0220122 + 0320123 + 042012 4
+ 013013,1 + 0230132 + 0330133 + 0430134

+ 014014,1 + 0240142 + 0340143 + 044014,4)d$3

AQ 2
=3 <p + 2g> das,
2 \yg

4

1 1

B g Ojpoop jdrsy = 5(011021,1 + 0210212 + 031021,3 + 0410214
Jj=1

+ 0120221 + 0220222 + 0320223 + 042022 4
+ 0130231 + 0230232 + 0330233 + 043023 4
+ 0140241 + 0240242 + 0340243 + 044024 4)

=0,

4

1 1

5 g Ojp03p jdrs = 5(0’11031,1 + 0210312 + 031031,3 + 0410314
j=1

+ 0120321 + 0220322 + 0320323 + 042032 4
+ 0130331 + 0230332 + 0330333 + 043033 4

+ 0140341 + 0240342 + 0340343 + 044034 4)

A3 2
=‘5<2p+g>,
2 p
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and

4
1 1
B} E OjpOp jdr3 = 5(011041,1 + 0210412 + 0310413 + 0410414
Jj=1

+ 0120421 + 0220422 + 0320423 + 042042 4
+ 0130431 + 0230432 + 0330433 + 043043 4
+ 0140441 + 0240442 + 0340443 + 044044 4)

=0. (2.377)

Equation (2.369) in It form reads

g 0 0 Agpsin (g — h) Aspcos(q—h) Wy
h A Ay —Azbcos(q—h) Asbsin(qg—h) Wy
D 0 0 Asgsin(q — h) Asgcos(q—h) W3
q Ay —As Ag% cos(q — h) —Ag% sin (¢ — h)_ Wy

_ ol
Agg+ 3 <’; + 2g>
As

A2 2
—Aup + 73 <2p + gp)

—As

dzs. (2.378)

Introduce the orthogonal [t6 transform to separate this system

i / R IR (2.379)
0

wil o [oos by [
where, from equations (2.365) and (2.366)
Dy = —1/1— D?cos (k — b) — Dysin (k — b) = sin (q — h), (2.380)
and

D§ = Dy cos (k — b) — /1 — D¥sin (k — b) = cos (q — h). (2.381)

7



Note that

(D3)*+(D5)* =1, D3, g . |-Ds. D3] =0,

(2.382)

which ensures the transform is orthogonal. Furthermore, it can be shown that the

transform is justified by showing that the correlation is zero, and the variance of each

component is zero [34]. Start by defining the stochastic integral
b
/a X)W = 37 X (=) <W(zi+1) _ W(zi)> = Y XA,

where

AW, = W(ziq1) — W(z),
and W is a Wiener process. By definition W; has independent increments

E[AW;AW;] = §;5,
and is normally distributed
Wi = W; ~N(0,2 — 25), 2 <z,

so that

E[(W; = W;)?] = 2 — 2,
and

E[(AWl)z] = Zi+1 — Zj-
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(2.386)

(2.387)

(2.388)



Now consider the stochastic integral

= ([ ) ()] e[ (Sxeomm) (Sriepam)
|

=K X(Zl)Awl <Y(21)AW1 + Y(ZQ)AWQ + >

X () AW () + .

+

=E [ Z X(zi)Y(zi)(AWi)2] (using equation (2.385))
= ZE [X(zi)Y(zi)(AWi)Z}
= ZE [X(z )Y(zl)} (zi41 — z;) (using equation (2.388))

= [ZX %)Y (2)(zi41 — )}

:E[/a X(z)Y(z)dz} (2.389)

For two independent Wiener processes [34]

E[W, W] = 0, (2.390)

which implies

g (] bX(z)dW1> (/ bY(z)dWQ)] —0. (2.391)

Hence, it can be shown that the transform (2.379) satisfies

xrs3 €3
E[W;W}] = EK / D3dWs + ngm) < / DidWy — ngwgﬂ
0 0

T3 xr3 T3 xr3
:E[ D3dWs / DSAW, — / DSdW, / DSdWs
0 0 0 0
x3

x3 x3 x3
+ [ Dsaw, / D3dW, — / D§dWs / D§dW3]
0 0 0 0

T3 T3 T3 T3
—E[/ ngW4/ D3dW, —/ ngWg/ ngW;z,} (using equation (2.391))
0 0 0 0
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z z
= E[/ D5D5dz — / DSD;dz} (using equation (2.389))
0 0

=0.
This transform can be written

dW3 = sin (q — h)dW3 + cos (¢ — h)dWy,

dW; = —cos (¢ — h)dWs3 + sin (¢ — h)dWy,

so the system of [t6 SDE’s (2.378) can be rewritten as

- - ~ - - - [ A2 2
g 0 0 Agp 0 1% Agg + 3 (pg + 29)
h A A 0 Aj2 W- A

d _ 1 2 3g d 2 4 ] 5 2
p 0 0 Ay O w3 —Ap+ <2p + gp)
_q_ _Al —AQ 0 —A3%_ _WI_ —A5

2.8.4 Moments of the Power Transmission Coeflicient

dzs.

(2.392)

(2.393)

(2.394)

(2.395)

Consider an incident unit pulse impinging a slab of layered random media from the left

at 3 = 0 (the domain of the layered media is x3 € [0, L]) with a radiation condition

in the homogeneous half-space 3 € (0,00). Then the mode amplitudes governed by

equations (2.271) and (2.272) satisfy the boundary conditions

and the reflection and transmission coeflicients can then be written as
RE(L) = b°(w,0), and TE(L)=a°(L),
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and so

The transmission coefficient T/ (L) converges in distribution (as e — 0) to T,,(L) and

the power transmission coefficient (7,,(L) say) is given by
2 o 1
Tw(L) = |Tu(D)]” = [xa(L)| " = o (2.400)

where the conservation of energy relation (2.360) has been used. Note that the initial

condition of the power transmission coefficient
Tw(L=0)=1, (2.401)

follows from that fact that P(x3 = 0) = I. The moments of the power transmission

coeflicient can then be calculated via

sy = [ [T S22 i, (2.402)

where P(L, g,p) is the probability density function associated with p at 3 = L. From
equation (2.395) it is clear that (dg, dp) and (dh, dq) decouple into a two independent
subsystems. Studying the statistics of the power transmission coefficient requires solving

the (dg, dp) system

A2 2
Agg+ 32 (B +2
Asp 0 Wi 49 2( 9>
d g = 5P d 3 + !

) A | das. (2.403)
| |4sg 0| Wi _A4p+f;3(2p+gp>

The infinitesimal generator of the Markov process (g, p) is calculated via
2

1 0* 3,
Lop= 9 Z aijm + Z bi&Tci’ a;; = O}, 0;- (2.404)

ij=1 i=1
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By defining

2( o
Asp 0 Agg + ’?(’; +29>
o — 7 - 1 NE (2.405)
Aag 0 ~+ 4 (24 2)
it follows that
AQ 2 A2
_ | s (2.406)
Aipg A3
Thus, the infinitesimal generator £, ;, can be written
1 0? 0? 0? 0 0
= —(a11— +2a12—— — — 4 by
Lgp 5 (a11692 + 2a12 290p + a9z 8p2> +b B9 + bo o
1 0? 0? 0? A2 (p? 0
= —(A%p?— + 242 A — A B 42 —
A3 g* 0
— (2 —)-A —. 2.4
(B (D) - aw) o (2.407)
Now introduce the substitution
G =g (2.408)
which gives
0o 0G 0 0 172 0
2T T 9 -9 /2 Y 24
0? 0 0 oG 0 172 0 0 0?
= (29— ) =22 (GY? =) =2 +4G—. 2.41
9g° ag( gaG) 9y G <g ag) a6+ 49552 (2:410)
Inserting equations (2.409) and (2.410) into the generator (2.407) gives
Lo, = 2A2p2ga—2 + ( 242p% + G(2A4 + 2A2) 9 + 24%pG >
Gg,p 3 agg 3 3 8g 3 agap
A 92 A2 g 0
—=G— —(2p+ =] —Agp | —. 2411
+298p2+<2<p+p> 4p>8p (2.411)
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To compute the adjoint of equation (2.411), consider each term in turn. The first term
is

2

2,2

(2.412)

In the case where ¥(G, p) and ¢(G, p) are two compactly supported test functions

O [Poo 2 oo [Poo
2A§/O 1 ¢p2ggg‘§ dpdg_—zAg/ / <¢p2+ gﬁg) gd dg

2 2 2
_ZA/ / ( + PG+ oo >¢dpdg,
(2.413)

provided that

o6 :|Q=Qoo

B

and

oy 195
o+ 59),., =

That is, (G =0) = ¢(G = Go) = 0, and 9¢/IG(G = 0) = 9 /IG(G = G) = 0, hence

_ 2 2a
L =243 <p gag2 +2p ag> (2.414)

The second term in equation (2.411) is

Lo = <2A§p2 + G244 + 2A§)> 9 (2.415)

oG’
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Computing the inner product gives

goo Poo goo Poo
/ / 0 <2A§p2 + G(244 + 2A§)> bg dpdG = — / / ((2A4 +2A%)y
0 1 0 1

(A% +G(2A, + zA§>>wg> 6 dpdg,

(2.416)
and so
L= — <2A§p2 +G(2A4 + 2A§)> aag + (244 +243) 1. (2.417)
Next, in equation (2.411)
2 - O
=2A5pG—— 2.41
£3 3pg agap7 ( 8)

and so

Goo Poo Goo Poo
22 /0 ™ w0606, dpag = —245 /0 /1 (wp + wgpg) 6 dpdG
goo Poo
=243 /O /1 (l/J + Ypp + YgppG + wgg) ¢ dpdg,

(2.419)

provided that ¢(p = 1) = ¢(p = pe) = 0, %(p = 1) = Y(p = poo) = and I/0G(p =
1) = 0v/0G(p = pso) = 0. Hence

2

0 0
* 2
L =2A3 (pap +pgagap +056 T Id>. (2.420)

Considering the fourth term in equation (2.411)

80

£4: 9 8}727

(2.421)
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SO

A% goo Poo A?‘} goo Poo
= Gy dpig = -7 | Gpdp dpdd
2 Jo 1 2 Jo 1

2 (o [P
Az 3

= Gibypd dpdG, (2.422)
0

provided that 9¢/0p(p = 1) = 0¢/Ip(p = pe) = 0 and 9Y/Ip(p = 1) = 0¢/Ip(p =
Poo) = 0. Hence

A2 82
* _ 173
=305 (2.423)
Next in equation (2.411)
o= (25 (2p+9) —ap) L (2.424)
5 5 \ 7P D 4p op’ .

SO

Goo  [Poo A?; G
/0 /1 (2 <2p + p) - A4p> Yy dpdG
Goo oo 2 2
() e (2 (e 5) - o o,
0 1 2 p 2 P

(2.425)
hence
s = (‘42 (204 %) - aw) 5 - (A2 (2-5) -4 ) (2.426)
2 ap \ 2 p?
Using equations (2.412) - (2.426) the adjoint operator of (2.411) can be written as

0 A2 g 0
L 942 1202 _ 9G A A2 — A
gp = 2 gﬁgz (2 " =29 4) og (2 2 <2p + ) 4p> Op

9 A3 92 A2
+ 2A§gpag(9 39— + ( 39, 342 + 3A4> (2.427)
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The Fokker-Planck equation for the pair of processes (G, p) is then

0P

By defining the following

. 2o wan] 2A3p? — 2G4, o_ |9/99
a = 2 ) = ) = )
A3gp HiG 243p — AJ(2p + G/p) /2 + Aup 0/0p
(2.429)
and
A3G | oo
Q= o2 + 3A3 + 3Ay4, (2.430)
the Fokker-Planck equation (2.428) can be rewritten as
opP . N
S (L.G.0) = @V +b%)- VP(L,G.p) + QP(L.G.p). (2.431)
Equation (2.431) can be rewritten by using the identity
(@*V+b")-V=V-(a"V)+c" -V, (2.432)
where
—A2G —2GA
- =b* —Via= 3 ! . (2.433)
A3p — A3(2p +G/p)/2 + Aup
The Fokker-Planck equation may then be written as
opP N N
87(117 gap) =V-a VP<L7 gap) +c- VP<L7 gap) + QP(La g,p), (2434)
with Dirac delta initial condition
P(L=0,G,p) =0(G)d(p—1). (2.435)
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2.8.5 Weak Form of Fokker Planck Equation

The Fokker-Planck equation (2.434) is expressed in its weak form to obtain a numer-
ical solution for the probability density function P(L,G,p). This numerical solution
is obtained here using the FeniCS software package [59] in Python. With Neumann
boundary conditions and test function v(x) (x = (G,p), 2 =[0,1] x [1,00] ). First, the

length derivative is approximated via

Pn+1 _ pn

N (V-a*V+c*-V+Q)PH. (2.436)

By multiplying by a test function v(x) and integrating over the domain €2

/ <U(X)Pn+1 — AL (U(X)V . a*VPTL+1 + U(X)C* . VPnJrl + U(X)QPH+1>>dx
Q

= / v(x)P"dx. (2.437)
Q
To formulate the weak form of the problem, integrate by parts the second term to obtain
/ v(x)V - a*VPdx = / v(x)n-a*VPds — / Vu(x) - a*V Pdx. (2.438)
Q o0 Q

hence, the weak form of the problem is

a(P,v) = L(v), (2.439)
where
a(P,v) = /Q (v(x)P L AL 5<p)) dx, (2.440)
L(v) = /Q v(x) P dx, (2.441)
with
S(P) = Vo(x) - a*VP — v(x)c* - VP — v(x)QP. (2.442)
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This weak form of the problem is now solved directly using FeniCS [59] for discretised
length steps (AL). A rectangular mesh is used for the domain 2. A convergence study
for optimal mesh discretisation suggested a coarse mesh in the G direction and a very

fine mesh in the p direction.

2.9 Results

The properties of austenite (see Table 2.1) were used to obtain the diffusion coeffi-
cients given by equations (2.322) to (2.326) which appear in the Fokker-Planck equation
(2.439). The numerical solution of the the Fokker-Planck equation (2.434) provides the
probability density function P(L, G, p) which is then used to compute the statistical mo-
ments of the power transmission coefficients in equation (2.402). A frequency (& ~ £72)

1

and a mean wave speed of c3 = 4500 ms™" were used together with the stiffness tensor

constants in Table 2.1. In Figure 2.6 the mean power transmission coefficient versus the

Elastic Material Constants

c11 33 C44 C66 13

Austenite 217.1 GPa 263.2 GPa 82.4 GPa 128.4 GPa 144.4 GPa

Table 2.1: Table of material constants for Austenite [36] with density p = 8100 kgm 2.

depth into the random medium L is plotted. As the degree of anisotropy v is increased,
an increased decay in the amplitude of the coherent wave is observed. Figure 2.6 also

shows the mean and variance in the power transmission coefficient.
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E[z], Var|z]

Figure 2.6: Plots of the mean transmission coefficient (see equation (2.402)) (black) with the asso-
ciated variance (red) for the degree of anisotropy v = (1.1, 1.25) versus L. The non-dimensionalised
penetration depth L. The material parameters are given in Table 2.1. Eventually this will asymptote
to zero, and at that stage the process has self averaged. This means that very thick materials will
have a narrow probability density function and so the mean can be used to characterise the material.
Therefore homogenisation could be applied in such cases, however, in intermediate material thicknesses,
uncertainty quantification is needed.

For an infinitesimally thin material (characterised by L = 0) the energy of the wave
is fully transmitted with no uncertainty. As the thickness increases, then the mean
transmission coefficient decreases. This is more marked for materials with a higher
degree of anisotropy. At the same time the uncertainty increases and peaks at a depth
of material that varies with the degree of anisotropy. It can be seen that this high

uncertainty persists for a large range of lengths L for v = 1.1.

2.9.1 Concluding Remarks

A probabilistic model of a monochromatic horizontally polarised shear wave propagating
in a randomly layered heterogeneous medium constructed of locally anisotropic layers
has been constructed and studied. The spatial scaling regime is such that the internal

microstructure of the medium interacts with the probing wave to produce an incoherent
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coda wave. The orientation of the anisotropic material varies randomly from layer to
layer according to a Markov process. Using elastodynamic equations, expressions for
the forward and backward wave modes, which describe the reflected and transmitted
energy for the input wave were derived. Via a series of transformations, a system of
stochastic differential equations was then derived for a propagator formulation of this
wave-mode problem. Utilising a limit theorem from stochastic analysis a linear partial
differential equation (Fokker-Planck equation [64]) for the probability density function
associated with the transmitted power was derived which was solved via a finite element
package in Python [59]. Its numerical solution enabled an investigation into the effect
that the material parameters have on the decay of energy in the coherent part of the

transmitted probing wave.

In particular the statistics of the transmitted energy through a class of austenitic steel
welds was reported upon. Varying the degree of anisotropy parameter v had a signif-
icant impact on the attenuation of the coherent energy. By capturing the randomness
present in materials such as austenite welds, this model could be used by experimental
scientists in the NDT community. This model could be extended for a broadband pulse
to estimate optimal frequency ranges for a probing ultrasonic wave in order to image
(with good resolution) to a certain depth in a given random media. The model pre-
sented in this Chapter could also be used in finite element simulations of ultrasonic wave
propagation, to generate attenuation factors [65] for elastic wave propagation in such
layered materials without the need for explicitly including the layer geometry in the
simulation; calculations for the correlation integrals can be obtained from experimental

images [63].

The next chapter studies horizontally polarised elastic shear waves in a randomly lay-
ered media, but with the key difference that the form of the stress tensor will change.
This change creates a symmetry in the governing equations that allow for a special
parameterisation, which allows for more analytical headway in terms of computing the
moments of the reflected and transmitted energy, without the need for the finite element

method.
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Chapter 3

Elastic Shear Wave Propagation in
Locally Anisotropic Heterogeneous
Media; Polycrystalline Rotations

about the Lateral Direction

3.1 Nomenclature

Parameter Equation
! Lumped parameter . ... ... ... ... .. ... .. [M~1LT] (3.31)
a Lumped parameter . .. ... .. ... ... . ... .. [M~1LT] (3.122)
g Lumped parameter . . ... ... ... ... ... .. .. [ML=3T~!] (3.32)
B Lumped parameter . . ... ... ... ... .. .. ... [ML=3T—1| (3.126)
Iy Lumped parameter . ... ... ... ... .. ... .. -] (3.124)
s Lumped parameter . ... ... ... . ... .. ... . [—] (3.128)
2% Material expression . . ... ... ... ... ... ... [MzL=2T~2]  (3.54)
Yo Material expression . . . .. ... ... ... ... [M—2L~2Tz]  (3.55)
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Yv
Ay
Ag

Az

01

2

K1

A3

Propagator parameterisation function . . ... . . ..
Material expression . . . . ... ... ...
Material expression . . .. ... .. ... ... ...
Material expression . . .. . ... ... ...
Material expression . . . . ... ... ... ... ...
Lumped parameter . . . . . .. ... ... ... ..
Lumped parameter . . ... .. ... .. ... . ... ..
Small dimensionless parameter . . . . . .. .. . . ..
Lumped parameter . . . . ... ... . ... ... ...
Auxiliary (power transmission coefficient) process

Rotation angle of material slowness surface . . . . . .
Lumped parameter . . .. . .. ... .. ... . .. . ..
Wavenumber in x1 . . ... ... L.
Eigenvalues of matrix M . . . . . . ... ... .. .
Wavelength in xg direction . . .. . ... ... .. .. .
Legendre function of the first kind parameter . . . . .
Ratio of wave numbers . . . . . .. ... ...
Velocity in x3 direction . . . ... . ... ... ... ..
Dimensionless parameter . . . .. ... ... ... ..
Constant material density . . . .. . . ... ... .. ..
Lumped parameter . . . .. .. ... ... ... . ..
Pauli spin matrices . . .. ... ... ... ...
Stochastic differential equation matrix coefficient

Random process amplitude . . .. . ... ... . .
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X1,2,3,4

X

»

Yy

C3

Material stress tensor . . . .. ... ...
Power transmission coefficient . . . .. ... ... ...

Non-dimensional anti-symmetric correlation integral

Non-dimensional symmetric correlation integral

Lumped parameter . . . . ... ... ... ... . ..
Propagator parametrisation function . .. ... . . ..
Lumped phase parameter . . ... ... ... . .. ..
Propagator matrix functions . . . ... ... ... ..
Propagator matrix function . . .. . ... ... .. ..
Propagator matrix function . . . . . ... ... . .. ..
Propagator parameterisation function ... ... ..
Angular frequency ... ... ...
Independent stress tensor component . . . . . .. . ..

Poisson process intensity . ... ... ...

Propagator matrix evolution equation coefficients
Propagator matrix evolution equation coefficients

Propagator matrix evolution equation coefficients

Forward wave mode in frequency domain . . . . . . .
Backward wave mode in frequency domain . . . . ..
Drift vector . . . . .. ... ..
Correlation integral matrix . . ... .. ... ... ...

Stress tensor component Css (when the symmetry axis

points in the x; direction) . . . . ... ... ... ...

Mean wave velocity in z3 direction . . ... ... . ..
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C44 Stress tensor component (Voigt notation) . . ... .. [ML~—1T—2] (3.11)

Ca4 Non-dimensional stress tensor component . . ... .. [—] (3.137)
C66 Stress tensor component (Voigt notation) . ... ... [ML~1T—2] (3.10)
Co6 Non-dimensional stress tensor component . . .. . .. [—] (3.139)
1,2 Arbitrary constants . . ... ... (-] (3.65)
Cijkl Stress tensor . . ... ... [ML=1T—2 (3.3)
D Diagonalised factor of matrix M . . . . .. ... .. .. ML) (3.37)
dq Lumped parameter . ... ... ... ... .. ... .. (-] (3.145)
dy Lumped parameter . ... ... ... ... .. ... .. (-] (3.146)
ekl Symmetric strain tensor . . ... ... (-] (3.4)
F Stress tensor component (C13 when the symmetry axis
points in the x7 direction) . . . ... ... ... ... [ML~'T—2] (3.3)
g™ Coefficients of propagator matrix equation . . . . . . [—] (3.176)-(3.178)
H Coupling matrix in wave amplitude evolution equation [L7}] (3.63)
H* Random matrix . .. ... ... ... (-] (3.166)
h; Matrix coefficients in propagator matrix expansion . || (3.176)-(3.178)
JW)  Legendre function weighted moments = . . . . . . . (-] (3.291)

K™ (1) Product of Legendre function parameter (and moment

indices) . ... ... (-] (3.313)
L Infinitesimal generator . . ... .. ... ... ... . .. [—] (3.237)
J™ (1) Legendre function weighted moments . . . . . . . . . . (-] (3.291)
Ls Typical propagation distance in g . .. ... ... .. [L] (3.130)
Lioe Localization length . . . ... ... ... ... ... ... [L] (3.266)
l Mean layer size . . . ... ... ... L] (3.131)
M Stress-strain coupling matrix . . . . ... ... ... .. [M~1LT] (3.33)



m Fluctuations in the crystal orientation . . .. ... .. (-] (3.107)

N Stress tensor component (when the symmetry axis

points in the x; direction) . . . . ... ... ... .. .. [ML~='T—2] (3.3)
P Propagator matrix . ... ... ... ... ... ... .. -] (3.67)
P Propagator matrix . . ... ... ... ... . ... ... (-] (3.171)
Pféﬂ'u Legendre function of the first kind . . . . .. ... .. (-] (3.284)
P Probability density function of the power transmission

coefficient . . . ... ... (-] (3.289)
Q Factor of matrix M (first row) . ... ... ... .. .. ML) (3.36)
Q Factor of matrix M (second row) . ... ... ... .. M—IL=3T-1  (3.36)
0 Lumped parameter . .. ... .. ... ... . ... .. [ML—1T—2] (3.114)
R Power reflection coefficient . . ... ... .. ... .. (-] (3.315)
R, Reflection coefficient . . . ... ... ... ... ... .. (-] (3.245)
R Number of rays . . . ... ... ... -] (3.211)
74(1):,1 Boundary interface linking expressions . . . ... . .. [—] (3.90)
S Stress tensor component (Cyq4 when the symmetry axis

points in the x; direction) . . . . .. ... ... ... .. [ML—1T—2] (3.3)
s Symmetry axis vector . .. ... ... -] (3.2)
T, Transmission coefficient . . . . ... .. ... ... .. (-] (3.245)
t Time . ... ... [T] (3.1)
u Three dimensional wave displacement vector . . . . . [L] (3.6)
A\ Eigenvector (first entry) of matrix M . . . . . . . . .. [M—1L7Y] (3.35)
\% Eigenvector (second entry) of matrix M . . . . . . .. MTIL=3T-1]  (3.35)
v Transformed power reflection coefficient . . . . .. .. [—] (3.321)
Why(z3) Independent Brownian motion . .. ... ... ... .. (-] (3.203)



Z(x3)  Transformed power transmission coefficient . . . . .. [—] (3.255)
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3.2 Introduction

This Chapter aims to study length scale regimes where the received wave is complex,
exhibiting many fluctuations over a long time period caused by its convoluted jour-
ney through the heterogeneous medium. In this case the wave is so affected by its
interactions with the medium that a homogenisation approach is inappropriate. This
can occur when the propagation distance L is much larger than the wavelength (\3)
of propagation which in turn is much larger than the layer sizes [ (L > A3 > [) and
the fluctuations in the material are large (o ~ 1); the so called strongly heterogeneous
regime [26]. It can also occur in the regime where L3 > A3 ~ [ and o < 1, which is the
so called weakly heterogeneous regime and it is this latter case that will be examined

in this Chapter.

The decay of a coherent wave has been studied in the literature for general acoustic and
elastic systems. Articles [26], [25] and [66] consider acoustic systems in one dimension
and more recently [8] considered a three dimensional elastic medium. In each case,
stochastic differential equations (SDE’s) are used to model the random fluctuations
in the material properties [34]. Each of these studies examined a wave travelling in a
medium whose properties only varied in the direction of propagation, leading to a system
of stochastic differential equations with a propagator matrix with certain symmetry
properties. This Chapter uses a similar approach to consider a shear wave propagating
in an elastic medium with random fluctuations in the material microstructure. The
effect that the localisation length and the degree of anisotropy of the host material on

the attenuation of the transmitted wave, is studied.

3.3 Governing Equations

This Chapter focuses on studying waves in layered polycrystalline media [67] composed
of a single anisotropic material. The media is partitioned into a tessellation of grains
and the orientation of the material varies from one grain to the next. Since the material

is anisotropic, this variation in orientation affects the speed at which the incident wave
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travels through each grain and hence the wave experiences a spatially heterogeneous
medium. This local variation in wave speed can be described using a slowness curve
which can be derived analytically from the Christoffel equation [68], [69]. The governing

elastic wave equation can be written

OT:k )
W Z 8ajk =1,2,3, (3.1)

where the displacement vector is denoted u = (uq (¢, ), ua(t, ), us(t,x)) and p is the
density of the material (assumed to be constant) and 7j;, is the material stress tensor.
The elastic tensor for a transversely anisotropic medium has five independent stress
tensor components namely C11, Cs3, C13, Cgs, Caqa with s = (s1, s2, s3) as the symmetry

axis vector defined by

cos f(x3)
s = |sinf(x3) | ; (3.2)
0

then, in contrast to Chapter 2, the stress tensor can be written [36] as

Cijl =(A — 2N )86k + N (031651 + 0udjn)
+ (F — A+2N) (0ijSkS1 + 0k15iSj)
+ (S — N) (dirsjsi + 0itsjsk + djksis; + 0j15:Sk)
+ (A+ C —2F — 45)s;sj5151, (3.3)

where A = Cs3, C = Ci1, F = Ci13, N = Cy4, S = Cge when 6 = 0; when the stiffness

matrix [70] symmetry axis points in the z; direction.
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Figure 3.1: For each value of x3 the material is anisotropic in the (z1,z2) plane. The degree of
anisotropy is dictated by the material’s slowness surface and 6(z3) describes its rotation in the (1, z2)
plane. The direction of wave propagation is fixed and lies in the (z1,z3) plane. In each layer (shown
by the dashed lines) the material properties are constant.

This form assumes that the anisotropy is spatially varying only in the x3 direction as
in [26], so that s lies in the (z1,z2) plane, making an angle 6(x3) with the z; axis as
shown in Figure 1. The elastic tensor relates the symmetric strain and stress tensors

via Hooke’s law

3
Tij = Z Cijkl€kl, (3.4)

k=1

where the symmetric strain tensor is given by

o 1 8uk aul

3.3.1 Wave Parameterisation

Consider a horizontally polarised shear wave [9] with displacement vector
uj = (0,@62(1‘1,1‘3),0), (36)

whereby the medium vibrates in a direction perpendicular to the (z1,x3) plane. The
wave direction is then in the (x1,x3) plane. Using this parameterisation in equation

(3.5) it can be observed that the only non-vanishing strains are ejo, ea1, €23 and ess.
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The symmetric stress tensor can then be written as

(3.7)

Tij =

1 o 8u2+c Oug Le 8U2+CH Oug
2 1512 8x1 17217 ax Z]238 T3 1732 8%3

From equation (3.7), it is clear by inspection that the only non-vanishing stresses are

1 Ouo te Ouo Yo Oug Le Ous (3.8)
To] = T12 = c .
21 12 = 5| 2125 = B C1221 75— 92, C1223 75— 923 C1232 75— 923 )’
1 Ouo Ous Oug Ousy
_ 3.9
T32 5 <C3212 9 + 3201 77— 92, + C3203 55— 923 + C3232 8x3> ; (3.9)

and from equation (3.3)

C21921 = C1212 = 666(563) =S5+ (A +C —2F — 45) COS2 (9(563)) SiIl2 (9(1‘3)), (310)
3293 = C3232 = C44(:E3) =N + (S — N) Sin2 (0(1’3)), (3.11)

C1223 = C1232 = €46 = C64 = 0. (3.12)

The stresses in equations (3.8) and (3.9) simplify to (dropping the explicit 3 dependency

for now)
ou
Tol = 0667(%?, (3.13)
ou
T32 = 04478952’ (3.14)

and so the elastic wave equation can be rewritten as

82u 87’12 87‘32
Pom = 5ot
8t2 8:1:1 8%3

0 Oug 0 Oua
=~ (ce6=— | + = caa=— ). 1
a$1 <666 6$1) * 8.7}3 (644 a$3> (3 5)

The velocity in the xo direction is defined as

8712

£ = o et (3.16)
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and so the elastic wave equation (3.15) can then be written as
P&t = To1,1 + T32,3. (3.17)

Finally, taking partial derivatives with respect to time in equations (3.13) and (3.14)

gives

To1t = Co6& 1, (3.18)

T32,t = C44 3. (3.19)

3.3.2 Frequency Wavenumber Domain

Now take Fourier transforms in time and space (x1 direction with respect to a wavenum-
ber k1) of the governing stress and velocity equations which aids the analysis; in this
frequency-wavenumber domain the stress and velocity are denoted by 7 and é respec-

tively. Define the temporal Fourier transform of a function f(¢,x1,x3) by

f(w,%l,mg):/f(t,I1,$3)€thdt, (3.20)

where w is the angular frequency. Applying this transform to equations (3.17), (3.18)
and (3.19) gives

—piwf = 7‘2171 + ’7’3273, (3.21)
—iwfgl = 0665717 (3.22)
— W3y = C44£73. (3.23)

Define the spatial Fourier transform with respect to a wavenumber k1 in the x1 direction
by
f(w, k1, z3) = /f(w,xl,:cg)em”ld:cl. (3.24)
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Applying this transform to equations (3.21), (3.22) and (3.23) then gives

—piwé(w, k1, x3) = —ik17 (W, K1, T3) + 732.3(w, K1, 23),
—iwTar (W, K1, 23) = —ik1Ce6E (W, K1, 23),

—iWT3 (W, K1, 333) = C44£,3(w, K1, 963)-

Inserting equation (3.26) into equation (3.25) gives

2 2
A [ KiCe6 — pW™ \ 2
7323 =0 —— 55

w
and from equation (3.27)

A w
§3=——"T3.
Ca4

(3.25)
(3.26)

(3.27)

(3.28)

(3.29)

Equations (3.28) and (3.29) can be rewritten in matrix form (note that the subscripts are

dropped for notational convenience) to obtain a system of velocity and stress evolution

equations which read

i é(w, K1,T3) B 0 —iw/cqq é(w,m,xg)
O3 7(w, K1, x3) i(k3ces — pw?) /w 0 7(w, K1, 23)
0 —i« é(w,/il,wg)
_Zﬁ 0 72((.«), 51,1'3)
where
w
o= —,
C44
and
2 2
pwW” — K1Ce6
g=""=
w
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where it is assumed that S > 0. Now let

0 —ia
M = ) (3.33)
—i8 0
which has eigenvalues
AT = +iy/Ba, (3.34)
and the associated eigenvectors
VE = [£/Ba, 81T (3.35)
Letting
_Ja o _
_|TVeR Yarl = (3.36)
g g g B
and
AT 0 i¢ 0
D= = ) (3.37)
0 A~ 0 —iC
where

¢ =+ap, (3.39)

it follows that M = QDQ™!, and therefore equation (3.30) can be written as

A~

=QDQ™! 5. (3.39)

7’;

7825

2
(91'3

>

To tackle this system of equations, it is instructive to first consider a series of problems
where the materials involved are homogeneous so ( and 8 do not depend on z3. To

signify this, they will be denoted by ¢ and (. Examination of this simplified problem
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will then shape the treatment of the heterogeneous case. Temporarily assuming Q is

independent of x3 (so that the material is homogeneous), equation (3.39) can be written

0 [~ 1€\ afailé
%(Q . >_D(Q . ) (3.40)

Now introduce new variables G and b which are right and left-going wave modes respec-

tively, via the transformation

a(w, k1, x3) =<C1/261/2>Q1 §(w k1, 3) (3.41)

B(w, K1,%3) 7(w, K1, T3)

Equation (3.40) can then be written as

a(w, k1, i 0 a(w, k1, x
B R I (3.42)
O3 b(w, k1, 23) 0 —iC| |b(w,r1,3)
which can be solved to give
a(w, k1, r3) = a(w, /@1)ei6x3, (3.43)
b(w, k1, x3) = b(w, m)e_igx?’. (3.44)
By rearranging equation (3.41)
é(wvﬁ1’$3) I E/B V E/B &(Wa’ﬂ)x?») (3 45)

7(w, K1, 23) \/57 m I;(w, K1, Z3)

The stress and velocity equations can then be written as

é(w, K1,T3) = m(i)(u}, /-zl)e_i@3 — a(w, ml)eicmg’), (3.46)
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and
7A—((’")7 K1, 1'3) - 6/6 <I;(O), K1)67i613 + d(w7 H1)6i513> .

3.4 Wave Propagation in a Heterogeneous Layer

(3.47)

This Section examines a heterogeneous layer, using an ansatz guided by observations in

Section 3.3 for a homogeneous medium. For the generated right-moving modes a(w, x3)

and left-moving modes l;(w, x3), it is assumed that the wave mode functions now have

spatial dependence [60]

é(w’ K1, .ZE3) = \/% <8(w7 K1, $3)e_i§$3 - &(W, K1, $3)€i<$3> ,

7w, k1,73) =/ B/C (3(% f<d1,fl«“3)€7i<_3”3 + &(w,m,m)e’@%).

Combining these two equations gives

a(w, k1, 23) = ;<\/E/>P7A'(W, K1,3) — Mé(W,K1,$3)> 6—1’53:3,

and

b(w, k1, 23) = % (@%(w, K1,23) + \/ﬁé(% ﬁ1,x3)) eiCTs.

Taking the spatial derivative of equation (3.50) gives

8& 1 =, = 872 ST A > = ag e 71‘_903
%:2(\/05(%—%7')— 5/C<%—ZC§>>€ s,

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

From the spatially dependent linear system given in equation (3.30) this can be rewritten

as B
oa e s
—(W,K1,T3) =
D, (15 73) 5

<71($3)5(w7 K1, 23) + Y2 (23)7(w, K1, $3)>7
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where

Yi(x3) = B\/C/B +C\/B/C, (3.54)
Ya(z3) = an/B/C — 4/ (/B (3.55)

Inserting equations (3.48) and (3.49) into equation (3.53) gives

o0a

5 3(w LK1, @3) = a(w, k1, 23) A1 (23) + b(w, K1, 3) Ao (23), (3.56)

where

1(z3) ;(72\/7 ’Yl\/?>=< ——ﬁ—2C> (3.57)
Ao(zs) = 2( \/B»/C—k'yl\/j) Wszé( ?wé) s (358)

Repeating the same calculation for the left-going mode (by differentiating equation

(3.51)) gives

db(w, k1, x3) B ieiCTs
8333 N 2

(wg)é(w,m,xa) o) (e, mw:a)) (3.59)

Using equations (3.48) and (3.49), equation (3.59) can be rewritten as

Ob(w, k1, 3)

D23 = a(w, k1, 3) Ag(23) + b(w, K1, 23) Ag(z3), (3.60)

where
;( ¥2\/B/C —m7\/C/B ) e, (3.61)
Ay(x3) = ;( \/B/Cy2+ C/ﬁ%)- (3.62)
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Equations (3.56) and (3.60) can be combined to show that the complex mode amplitudes

a(w, k1, 23) and b(w, k1, z3) satisfy the linear system

i fl(w,llg) _ Al(ZL‘g) Ag(xg) &(w,l’g)
913 | h(w, z3) As(zs) Aglzs)| |blw,zs)
g M) (3.63)
b(w, z3)

where the wavenumber dependence k1 is dropped for brevity. Observe from equations
(3.57), (3.58), (3.61) and (3.62) that A; = Ay, Ay = Az (where the bar here denotes
the complex conjugate) and hence Tr(H) = 0.

3.4.1 Propagator Matrix Formulation

Suppose that

W, T W, T

xi(w, 73) and x2(w, 73) , (3.64)
X3(w, 73) Xa(w, 23)

form two linearly independent solutions of equation (3.63), then the general solution

with arbitrary constants ¢; and co is

which can be written as

a(w,z3) | xa(w zs) xe(w,zs)| |xi(w,0) x2(w,0) x1(w,0) x2(w,0)| |e1
b(w, z3) xs(w,z3) xa(w,23)| |x3(w,0) xa(w,0) x3(w,0) xa(w,0)] |c2
(3.66)

Defining the propagator matrix

P(w,23) = x1(w,23) xo(w,z3)| [x1(w,0) x2(w,0) ’ (3.67)

X3(W7$3) X4(w,l‘3) X3(W70) X4(w70)
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equation (3.66) can be rewritten as
= P(w,x3) . (3.68)

Now differentiating equation (3.68) with respect to 3 gives

0 |a(w,x3)|  OP(w,x3) |a(w,0)

— | R , (3.69)
975 | b(w, 23) 975 |b(w,0)
and so, from equation (3.63)
a(w,x a(w,0
H A( 3| _ 0P, 13) A( ) (3.70)
b(w, z3) 975 |b(w,0)
Substituting in equation (3.68), this can be rewritten
a(w, 0 a(w, 0
HP Cf(w )| Z 0P w.zs) Cf(w ) : (3.71)
b(w, 0) dr3 | j(w,0)
to finally give
P
IR 13) _ op (. ). (3.72)

0x3
From equation (3.68) it can also be deduced that P(w,0) = I, and so using equation
(3.67) it follows that
x1(w,z3)  x2(w,3)

P(w,z3) = : (3.73)
x3(w,3)  xa(w,3)

The propagator matrix in equation (3.72) mathematically describes the evolution of
energy (wave modes) through the medium embedded between two homogeneous half
spaces. This formulation into a boundary value problem allows us to relate the coeffi-
cients which describe the reflection and transmission of energy. Taking the determinant

of the propagator matrix given by equation (3.72) and applying Jacobi’s formula [61]
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gives
d(det{P})

= Tr(H) det{P} = 0, (3.74)
d:Eg

since Tr(H) = 0 and so det{P(w, z3)} is independent of x3. Given that P(w,0) = I
then det{P(w,0)} = 1, and hence

det{P(w,z3)} = 1. (3.75)

From equations (3.63) and (3.64) then

d
TXI = Ale + A2X3, (376)
T3
and
d
deB = Aszx1 + Asxs. (3.77)
x3

Suppose that (X3,X;)7 also satisfies equation (3.63) then it follows that

dx

= Aszxs + AsX 3.78
dzs 3X3 + A4X1, (3.78)
and
dxs . - _
T = Aq1xs + Agxa- (3.79)
T3
From equations (3.76) and (3.78) then
Arx1 + Agxs = Azxs + Auaxi, (3.80)

Asx1 + Agxs = A1xs + Aoy,

that is

Ay(x3) = Ag(3), (3.81)

Al(.%‘g) = A4({L‘3). (382)
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T
det{P(w,x3)} = I implies that the initial condition for the first eigensolution is [1, 0}

T T
and [0, 1] for the second eigensolution of equation (3.63). If |:X17 X3} is the first

eigensolution of (3.63) then

(f;;[Xl,XS}T: il 22 [Xl,X3]T7 (3.83)
2 Ay

T T
with x1(x3 = 0), x3(23 = ())} = [17 0} . Taking conjugates

o] =) L e o)
implies that
(;23 [Y&YJT = i; ij [Y&YJT =H [Y&Yl]Tv (3.85)

T T
SO [XB» 5(1} is the second eigensolution and it satisfies the initial condition [0, 1} SO

x3(0) = 0, x1(0) = 1. Both of these conditions hold and so the propagator matrix has
conjugate symmetries. To simplify the notation, set x; = x and x3 = s and hence

P(W,.I’g): X(W,$3> %(W,Jﬁg) 7 (386)

%(OJ, ZL‘3) Y(wv 133)

where the conservation of energy relation |y|* — [»|? = 1 holds.

3.5 Deriving Reflection and Transmission Coefficients

Now take the governing equations and consider the problem where a layer of hetero-
geneous material of length L is embedded between two homogeneous half spaces. Re-
flection and transmission coefficients are defined using the governing equations, which

quantify the energy of the wave as it passes through the material. First start with
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the governing equations for velocity é and stress 7 in the frequency domain given by
equations (3.48)-(3.49) and apply conditions of continuity of velocity and stress with
the left homogeneous half space and heterogeneous medium interface. Quantities in the
left homogeneous half space are denoted with a ’zero’ subscript and quantities inside

the heterogeneous medium by a ’one’ subscript, hence

~

So(w, K1,73) =& (w, k1, 23) ; (3.87)
x3=0 x3=0
720(0.),/{1,1‘3) = Al(w,lil,ﬁg) (388)
xr3=0 z3=0
Using equation (3.45) to write these two equations in terms of @ and b gives
6:11(00, k1,23 = 0) _ gy Cilo(wwl,xs =0) , (3.89)
b1 (w, k1,23 = 0) Ty 7“0+ bo(w, k1,23 = 0)

where

s _ 10 [HG /5051)
0 _2< EOBI:I: BoC1/) (3:90)

Similarly at the z3 = L interface, where the heterogeneous medium meets the right half

space
&1 (w, k1, 73) = &(w, k1, 73) ; (3.91)
xr3=L xr3=L
and
721(0.),%1,1'3) = 722((,0,!61,133) (3.92)
r3=L xr3=L
Again equation (3.45) is used to link the modes across the right interface
as(w, k1,13 = L) r rieUGHRIL) G (w, Ky, 23 = L) (3.93)
62(&], K1,T3 = L) ’I“l_ei(fﬁ‘@)l/ rf‘ Bl(w, K1,x3 = L) .
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where

s _L( [BG /5152>
" _2< &BQi heya (394

Note that is it assumed that the ¢ terms are real and positive and hence roﬂ(w) are real.
In the half space 23 < 0, the right-moving input wave is defined as do(w,0) = f(w) and
in the half space x3 > L, the left travelling wave mode does not exist, hence by (w,L) =0.

Hence, from equation (3.89)

riay = (rd)2f + vy ribo, (3.95)
robi = (rg)*f + g rd bo, (3.96)

which implies that
T‘a_dl — 1“5131 = ((T(')")Q — (7“6)2)]3 = f, (3.97)

since (rg)? — (ry)? = 1. Hence

. Ty 1 1 ;
a1 — —b = —f. 3.98
1 7"(—)’_ 1 T(_)i_f ( )

From Figure 3.2, identify Ty = 1/ rar as a transmission coefficient from region 0 to region

a, = f) a a
_— > —— -
b =
bo b, : =0
- B -
x, =0 x. =L

Figure 3.2: Schematic showing the directions of the partial waves a; and b; in the left hand half space
(¢ = 0), the single layer (i = 1), and the right hand half space (i = 2).

1, and Ry = —ry /r] as a reflection coefficient at the same interface. Equation (3.98)

then becomes a1 + Rolal =Ty f . The local transmission and reflection coefficients at an
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interface describe locally, the fraction of energy propagating through the heterogeneous
layer interface. The medium is not dissipative and so the energy in the system must
be conserved. This corresponds to the sum of reflection and transmission coefficients
equalling one. These definitions can be extended to the other interface to give

T;

1 Ty
=7 R; = -5 J= 0, 1. (3.99)
r; r;

Noting that (r;f)2 - (7";)2 =1, j=0,1, the conservation of energy relation reads

RI+T?=1, j=0,1, (3.100)

holds. By eliminating bo(w, 0) in equation (3.89) the boundary conditions for the forward

and backward modes in equation (3.63) are

a1(w,0) + Rob1(w,0) = T f(w), (3.101)

Ry (w, L)ei(fl-l—éz)L _ [;1(0), L)=0. (3.102)

3.5.1 Reflection and Transmission Equations

Consider the local reflection and transmission coefficients for a layer of heterogeneous
material occupying 0 < x3 < L, with a wave incident from a homogeneous half space
x3 < 0, defined by

Tya(w, L)

and T(w,x3) = a(.73)

(3.103)

The functions a(w, x3) and E(w, x3) are the wave modes given by equations (3.50) and
(3.51), which propagate inside the heterogeneous medium. The boundary condition

given by equationsw (3.102) and (3.103) at x3 = L can then be written

R(w,L) = Ri"C+@L Ty L) =Ty, (3.104)
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By differentiating equation (3.103) with respect to x3 and using equation (3.63), observe

that the local reflection coefficient satisfies the Ricatti equation for z3 € [0, L]

AR a(w, 23)00,b(w, w3) — b(w, 23)0ya(w, 3)
d.’IJg - d2(w,$3)
= R(A4(x3) — Ar(23)) — R2Ag(x3) + As(3). (3.105)
Similarly
ar  -Ta(w,L), .
dis = Waxg(a(wax?»))
= —T(w,x3)<A1($3)+A2(x3)f%(w,x3)>. (3.106)

3.6 Randomly Layered Anisotropic Medium

The stochastic model employed to describe the heterogeneities gives rise to fluctuations
which build up behind the wave, producing a distorted coda wave exiting the material.

As the angle 6 is varied in the (x1, x2) plane, the stress tensor components of the material

A

2

X3

Figure 3.3: Elastic shear wave with wavelength X incident on a randomly layered material with layer
size [ and slab length L. The small arrows indicate the local fibre orientation 0(x3) (the symmetry axis
vector and hence 6, lie in the (z1,z2) plane, as shown in Figure 3.1) of the anisotropic material in each
layer. Upon exiting the material the transmitted wave has very little energy in the coherent wave and
has a long coda wave.
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are given by equations (3.10) and (3.11). Assume that the angle 6(x3) varies randomly

over the interval z3 € [0, L] according to
O(x3) = 0+ om(xs/l), x3€0,L]. (3.107)

where @ ~ 1 is the mean angle, m(z3/l) is a stationary stochastic process (an ergodic
Markov process on a compact state space) with mean zero, [ is a typical layer size
inside the material and o is a dimensionless (no physical dimension) small parameter
(0 < 0 < 1) which controls the strength of the random process m(x3/l). Recall the
symmetry vector (3.2) lies in the vertical "in-layer" (z1, x2) plane. The stress tensor

components can be rewritten

ce6 = S+ (A+ C —2F — 4S) cos® (0 + om(z3/1)) sin? (0 + om(x3/1)),  (3.108)

cia = N + (S — N)sin? (0 + om(x3/1)). (3.109)

To assist in the analysis that follows, linearise this dependency of the material properties
with respect to the random process m(x3/l). As such the range of validity of the analysis
is restricted to the regime where equations (3.108) and (3.109) are approximately linear
with respect to m(x3/l); given the dependency on 6 in equations (3.108) and (3.109)

this will be around § = 7/8. Taking a Taylor series in o gives

sin? (0 + om(z3/1)) = sin? 0 + 20m(x3/1) cos O sin f + O(?),
(3.110)

cos® (0 + om(z3/1)) = cos® § — 20m(x3/1) cos O sinf + O(a?),
(3.111)

which gives

sin? (6 4+ om(z3/1)) cos? (6 4+ om(z3/1)) = cos® Osin? § + om(x3/1) cos 20 sin 20 + O(c2).
(3.112)
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Substituting equation (3.112) into equation (3.108) then gives

= (S 2fsin0)( 1 _
ce6 = (S + pcos” fsin )< + (5 + peos2 fsin? 0)

” osin (20) cos (20) m(:c;;/l)) + O(0?)

= Cg6 (1 + gpm(:@,/l)) , (3.113)
where
0=A+C —2F — 48, (3.114)
o6 = S + o cos® Osin 0, (3.115)
in (20 20
:Jgsm( 0) cos ( 9)' (3.116)

Co6

Similarly, substituting (3.110) into (3.109) gives
S — N)sin 20
SZXEnaa)) +0(0?)
<N—|— (S — N)sin? 9_>

Cyq = <N+(S—N)sin2§> <1+a

= Cy4 (1 —|—19m(:z3/l)>, (3.117)

where
¢ua = N + (S — N)sin? 6, (3.118)
9= oS = N)sin26 (3.119)

C44
Since § ~ 1 and 0 < 0 < 1 then 0 < |¢|, |9 < 1. Since it will appear in the following

analysis, then to order o

11— Om(as)l
1 _1o0m@s/l) o), (3.120)
C44 C44

Equation (3.31) is now

a= (1 - ﬁm(m;;/l)) +0(0?)

C44
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= a(l —Im(xsz/l)), (3.121)

where

a=—, (3.122)
Ca4
9= —oTy, (3.123)
- w (3.124)
“ C44
Equation (3.32) can then be written
5= Kices(1 + WL(HJS/Z)) -t 0(0?)
(Kices — pw®) K1Co0
— \FiCe6 TP (g PRICE6 l
w * (KTC66 — pr)m(xg/ )
= B(1 4 sm(x3/1)), (3.125)
where
2 2
p— e (3.126)
w
2
C66PRT
SR ) AL WR— 3.127
(’i%EGG _ pLOQ) B ( )
Iy — K3 osin (20) cos (20) (3.128)

(N%C% - PW2>

Inserting (3.121) and (3.125) into the stress-velocity evolution, given by equation (3.30)

can be written

o f(w, K1,T3) 0 —ia(l — Im(zs/l)) é(w, K1,T3)
)

03 | 3w, ky,w3) | B+ smlxs/l)) 0 #w, k1, T3

(3.129)
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3.6.1 The Dimensionless Elastic Wave Equations

To put the system of governing equations (3.129) in dimensionless form, choose the

dimensionless variables

w= y and I~€1 = H1L3, (3.130)

where L3 is a typical propagation distance in x3 and c3 is the mean wave speed in the
x3 direction. One can interpret T3 as a ratio of distances in the propagation direction,
w as a ratio of the propagation distance to the typical wavelength in the propagation
direction and K1 as a ratio of propagation distance per wavelength in the x; direction.
Two further dimensionless parameters € and w are defined in order to capture the length

scale differences in the problem, via

L 1
€K1, P —, and w =&, (3.131)
l g2
where ¢ (0 < ¢ < 1) and @ depend on the regime (strongly or weakly heterogeneous)

being investigated. These relations can be combined to give

s:,/LL, and w = —/ILs. (3.132)
3

C3
The non-dimensional velocity and stress fields take the form

i 1 -
&(w,K1,23) = §(W,H1L3,L3f3>7 7(W, K1, %3) = —57T <W7H1L37L3563)7

1
c3°\ L3 pc3 \ L3
(3.133)

where p is the (assumed to be constant in space) density of the material. From equation

(3.129) the non-dimensional stress and velocity equations read

ii 035(5)7 i%’17 ‘%3) o 0 _26[(1 - ﬁm(‘%?)/éj)) 035(@7 Rla j?})
L3 0% | p37 (@, 71, 83) | [iB(1+ em(Es/e?)) 0 PTG, R, F3) |
(3.134)
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which simplifies to

0 |&(@, Ry, i3) 0 —i(Lspes)a(l — Im(zs/e?)) | | €

T3 | 7(, &y, 73) i(Ls/(pes)B(1 + sm(is/<2)) 0 5
(3.135)

The amplitude terms in equation (3.135) can be put into non-dimensional form via

L 2 "
Lapesd — Lapes (W) _ (W) (P) _ v (3.136)
C44 c3 C44 C44

where
Cag = —5. (3.137)

Then

() ()
pwes L%

Lsw L pcgf%%éﬁgg pc§®2
c3 puw? L3 L3

KT .
. 1), (3.138)
where

Gop = 55 (3.139)
pCy
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and p and c3 are chosen to ensure that ¢44,¢g6 ~ 1. The dimensionless stress velocity

evolution equation (3.135) is then

o €] _ 0 —i(@/Eu) (1 = Im(@s/e?) | |
973 |7 io((#2)02)egs — 1)(1 + sm(F3/e2)) 0 7
(3.140)

3.6.2 Normalising Equation Amplitudes

The prefactors in the linear system (3.140) are related via v
fy = v, (3.141)

where

pof_ mbs R (3.142)
@w  (Lsw/c3) ks
is the ratio of wave numbers in the (z1, x3) directions. For a monochromatic wave
the ratio of wave-numbers is equal to the ratio of slowness (the inverse of the phase
velocity) values which in turn (for constant density materials) is the degree of anisotropy
of the medium as governed by the stiffness tensor (see equation (3.3)). As the crystal
orientation # changes, the phase velocities in the x; and x3 direction change and hence,
the wave-numbers in these directions change commensurately - see Figure 2.5 and the
discussion in Chapter 2.8.1. Hence equation (3.140) is
G 0 —i(0/a) (1 = Im(Z3/€%) | | €

~ i

O i@V — 1)(1 + cm(F3/e2)) 0 g

Rl

which can be written compactly as

0 |E@RuLas) | = 0 di(14 oTom(is/e?)) | |E(@, K1, 73)
T3 | 7(, 7, 73) € |dy(1 + 0T gm(73/<2)) 0 F(@, K1, 73)
(3.144)
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where

1
dy = ——, (3.145)
C44
dy = 1V2¢g6 — 1, (3.146)
and equations (3.128) and (3.142) give
20sin 26 cos 260
Py = SOOI (3.147)
VeCee — PC3

where dj, d2 are O(1). Now consider the deterministic case, where m = 0 to remove the

spatial variation in the material properties. Then from equation (3.144)

gjé = £3 <“:d1+) = ?;dldgé, (3.148)
so (with dydy > 0)
£ = aeerm/eVlids | jeo—iw/eV/dids (3.149)
where a¢ and b° are constants. Hence
o7 _ 1% gpf = =% <&Eem/€@f’f3 + éseiw/smm), (3.150)
Oxs3 € €
and so
A \/m<daem/sng _ gae—z‘w/am@) (3.151)

This suggests the following ansatz for the solution to equation (3.144) where a° and b

now depend on x3

g _ da(xs)eiw/a\/dldgxg + I;a(l,3)e—iw/a\/d1d2a:3, (3.152)
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and

7 =/dy/dy (as(xg)eiw/wdldm - z;f(xg,)eiw/wdldm). (3.153)

Now substitute equations (3.152) and (3.153) into equation (3.144) to give

06 oaF
6$3_81‘3

W iy dgbF i/ eV aids
e

_ =y, (1 ¥ UFam> (Fzg i (&aeiw/wdldm - ase—iw/fwldm>>. (3.154)
£

. . b .
ezw/sx/dldgxg Zz dvd &aezw/ex/thdgzg 7e—zw/€\/d1d2z3
+ - V didg + 923

That is

e e . . '
gz ezw/ax/dldgxg + gxe—zw/ax/dldga:;g _ &a( _ Zg \/@"‘ %\/@(1 + aI‘am)) ezw/ax/dldzxg
3 3

+ Z)E <m\/ d1d2 — w vV d1d2(1 + al“am)> €_iw/6 Vdidazs

9 9

- BE(ZE \/dldgaFam) eTi@/eVdidzzs (3 155)

Similarly
o7 odas it . b .
— do/dy | —— iw/ev/didaxs el /d dodGE iw/e\/didoxs  YY —iw/e/didaxs
8:63 2/ 1<a$36 * e 1d2ae 31'36
+ igw\/mgseiw/s\/dldgzg>
= <1 + arﬁm> <a€eiw/wd1d2w3 + Bfe—iw/avdldm) (3.156)
13

That is

~E 65 ) y ) .
g;ezw/s\/mn _ ;}ezw/Sst — & ( _ %\/@_}_ %\/@(1 + UPgTTL)) elw/E\/mms

+ bF <M: Vdida(1 4+ ol'gm) — “: \/@> e~ iw/eVdidaws
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=af (Z? \/@Ufﬁm) ¢i@/eVdidazs

+ b <“:\/d1d20rﬁm> eTiw/evdidzzs (3 157)

Adding (3.155) and (3.157) gives

ga = (l;ﬂ Vdidao(T'o + Fg)m) a® + (zi MU(FB - Fa)m> e 2iw/eVdidazs e
T3 g

(3.158)

Subtracting gives

ob° A .
= <iZ\/d1dga(Fa - rﬁ)m> Gee?iw/eVdidams | < - i%\/dldga(Fg n Fa)m> be.
3

(3.159)

This gives rise to the linear system

o |af 1o <x3> Vdida(Ty + Fﬂ) A /d1d2(rﬁ _ Fa)ef%% didaz3

[ —_— m —_—

8553 be 2e 52 \/m(ra o P5)622% didoxs o /dldQ(Fa + FIB)
(3.160)

Given the system of scaled dimensionless wave-mode evolution equations above, it is
appropriate now to proceed with solving this system via a diffusion approximation.
Scaling arguments will be imposed which will produce a problem with multiple length
scales. This provides an intuitive description of the wave-medium dynamics. This
formulation will prove useful in describing the statistics of the flow of energy through

the random slab embedded between two homogeneous half spaces.

3.7 Weakly Heterogeneous Regime

The weakly heterogeneous regime is a high frequency regime (wavelength A3 is small
relative to the slab length L3, but commensurate with the microscopic layer length 1)

where the amplitude of the fluctuations in the medium properties is weak. The strength
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of the random fluctuations in equation (3.107) is controlled by o where 0 < 0 < 1. The
propagation distance is relatively large so that significant multiple scattering builds up.

This regime corresponds to Lg > A3 ~ [, 0 < 0 < 1. From equation (3.131)

1<« 2= === (3.161)

and from equation (3.132)

l l L3 1
Lo W Wl W e W (3.162)
A3 2meg 2meg Ly 2mwe 27

Equation (3.162) implies (with 0 < ¢ < 1) that

~ =, 3.163
W~ - (3.163)

and so (3.161) holds. Since 0 < o0 < 1, then take 0 = €. Recall from equation (3.141)
that the random and dimensionless linear system has been normalised, allowing ap-
plication of a diffusion approximation theorem. In the weakly heterogeneous regime,
equations (3.130), (3.131), (3.141) and (3.163) imply that

1

W~ —.
e2

(3.164)
These parameter choices ensure that the material fluctuation amplitude o, is small, the
layer size [ is much smaller than the propagation distance L3, the system is in a high
frequency regime L3 > A3, and the propagation distance is large enough so the wave
experiences significant scattering L3 ~ Lj,.. This choice of parameter scaling transforms

the evolution equation (3.160) to read

d a® 1 T3 I3 €
L D R Y e 3.165
dxs | je 5 (52’m<52>> el ( )

jo )3

(o
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where

; 2 5 —pe 3
H€<x3 m<x3>> - Zm(:‘;/g ) ;MS 2 , (3.166)
526 €2 —51

01 =/ dldg(ra + Fﬁ), (3.167)
52 = \/d1da(Tu — Ts), (3.168)
¢ = 2v/d1ds. (3.169)

Assumptions that allow the use of limit theorems in stochastic calculus require that the
random fluctuations have the form m(xzs) = g(Y (x3)), where Y is a homogeneous in
x3 Markov process with values in a compact space [26]. Also assume that this process
is strongly ergodic and satisfies the Fredholm alternative [8], and the real bounded
function g satisfies the centering condition E[g(Y (0))] = 0. Equation (3.165) can be

recast into an initial value problem associated with a propagator equation. That is

at(v,x as(v,0
A( ) — PE(v, z3) A( ) : (3.170)
b® (v, x3) b%(v,0)

where the propagator matrix

X°(v,x3) 55 (v, x3)

P (v,x3) = , (3.171)

%E<V7 $3) F(Va x3)

is formed from eigensolutions of equation (3.165), where P¢(w,z3 = 0) = I, and there

is the conserved quantity | X*E\Q — |%E\2 =1.

3.7.1 Diffusion Approximation Theorem

To proceed, now apply the diffusion-approximation theorem in its linear form [26] to
obtain the asymptotic distribution of the propagator matrix P¢. Equation (3.170) is
written using the propagator formulation (used in equation (3.72)) to obtain the random

matrix equation

ape 1 x3 T3
TIB(V’ $3> = gHa (62,m<€2>>P6(V, .ZU3). (3172)
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Splitting this into its real and imaginary parts gives

dP* i [ .
s (v,x3) = 2Em(€2>51 o3P®(v, x3)

1 I3 . ¢$3
- 2€m<82>(52 sin < =2 )a’ng(y, r3)

1 x3 o3
+ 2€m<52)52 cos ( = >0'2P5(u, x3), (3.173)

where o1, 02, 03 are the Pauli spin matrices

g1 = , 09 = , O3 = . (3.174)

3
EZg(p)(m(T),T) h,P, 7= %”, (3.175)
13 13
p=1
where
h; = i%lag, gMm, ) =m (3.176)
1)
hy = _520-1, g(2) (m, ) = msin (¢7) (3.177)
hy = %202, 9@ (m, 7) = mcos(¢r). (3.178)

From equations (3.145), (3.146) and (3.169) ¢ does not depend on frequency, and is
a function of p,c3,0, v and the five independent stresses in equation (3.3). Equation
(3.173) is independent of frequency with the scaling requirement that w ~ £72. The
diffusion approximation Theorem [26] (Theorem 6.4) requires the correlation integral
matrix C = (Cpq)p,g=1,2,3- This can be computed using the covariance of the random

process m, hence

Zo 00
Cpg =2 lim / E [g(p) (m(0),7)g' D (m(xs), T + x3) | dasdr (3.179)

126



_ ¢/¢ /OOE[ (p) (m(0), 7) (Q)(m(x3),7+$3)] dxsdr (3.180)

/%/ { Y)g'? (m(x ),y+x3)} dsdy. (3.181)

Proceed by calculating each of the nine entries of C. Start with the diagonal elements

ot [ [ e

9 /O E[m(O)m( )} dzs = T(0), (3.182)
and
Coy = 71r /027r /Ooo E [ ) cos(y)m(z3) cos(y + (25.733):| dzsdy, (3.183)
71r/027r /OOOE[ } cos(y) cos(y + ¢a3)dzzdy
- /0 cos?()dy | mE[m(O)m(xsﬂ cos(¢r3)ds
=L [T costyysintyty [ E[mOman)| snas)ds
OOO E [m ] cos(¢s)dzs — %T(qs), (3.184)
and
cw=1 | " [ E|mmten | sing)singy + as)asaay

™

1L /O s )y | ME[mm)m(a:g)} cos( )
L /0 7 cos(y) sin(y)dy /O OOE[m(O)m(xs)] sin(gas)das

™

&0 1
= / E [m(O)m(mg)] cos(¢zs)drs = §T(¢) (3.185)
0
Now the off-diagonal elements are

2
Ci2 =Ci3 = / / [ ] cos(y + ¢x3)drsdy (3.186)
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/027r cos(y)dy /000 E [m(O)m(x3)] cos(¢x3)dzs
/027r sin(y)dy /000 E [m(O)m(xg)} sin(¢ws)das

Now the second row can be completed using the same approach to give

n=t [ [ (0 (a2)] costy + Bra)dsady =0,
o=t [" [T (0)m(aa)| sy costy + gapizady

—_ /0 E[m(O)m(mg)] sin(pas)drs = —%T(“‘S’(qb).

Now the third row

=2 ["] " |m(0)mas) | costy)azady =
=t " [T (0)m(a2)| costy) sinty + gapizady

:/0 E[m(())m(wg)] sin(¢ws)das = éT(AS)(sb)-

The correlation matrix C can be written

where

s
=
Il
)
0\8
=

m<0>m<x3>} cos(é3) das,

~
S
=
=
Il
o
0\8
=

m(O)m(mg)} sin(¢xs) dxs.
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The quantity Y(¢) is a non-negative real number, and is proportional to the power
spectral density of the stationary random process m (the Fourier cosine transform of
the autocorrelation function at frequency zero, and is consequently zero from Section
6.3.6 in [26]). The symmetric (S) and anti-symmetric (AS) elements can be assembled

in separate matrices as

T(O) 0 0 0 0 0
c=| o0 v o |, C¥=lo 0o  —irAS|. (3.19)
0 0 v 0 148 0

Now the diffusion approximation Theorem 6.4 in [26] can be used to show that P¢(v, z3)

converges in distribution to P (v, x3), that is

“(v,x3) »(v,x v,x3) (v, x
X (v, @3) 7( 3)| eso | X(vm3)  FE( 3)’ (3.196)

7 (v,x3) Xx°(v,x3) »(v,z3) X(v,x3)

is the solution of the Stratonovich stochastic differential equation

3
(v, 23) = Z (v, z3) 0 AW (x:3) Z Ci¥h, P (v, 3)dws, (3.197)
=1 pq 1

where (o) denotes the Stratonovich integral. Note here that
~ 3
by =) dphy, Gy = (Cj)"% (3.198)

and W(z3) are independent standard Brownian motions. Hence from (3.195)

- 514/T(0

By = G1hy — HQ()ag, (3.199)
- 82/ T

hy = Gpohy = ——¥ ==/ : ﬂ(gb) o1, (3.200)
. 82/ T

h3 = 5’33h3 = 27@5)0'2. (3.201)
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The drift term can be calculated to be

;5:1 C{9hh,Pdas = % (05455 hsh; + Cg5° h2h3> Pdas
— _idgT‘:((ﬁ) o3Pdzs. (3.202)
From equations (3.197) to (3.202)
dP(v,x3) = i512T(0)0'3P(1/, x3) o dW1q(z3)
— (hzfﬁ(gb)alP(y, x3) o dWo(x3)
+ WUQP(V, x3) o dWs(x3)
— Z,(S%'I”;S(qﬁ)o_gp(y’ x3)drs (3.203)

Equation (3.203) can be expanded in full to give

d!x(l/,mg) (v, x3) _iA,

#(v,z3) X(v,x3)

+ 1A o dW3(z3)

10 s (v,
. x(zs) v, 23) dzs, (3.204)
0 -1 %(Va$3) Y(V,CL‘?,)
where
A = 515(0), (3.205)
o2/ T ()
Ay = =Y 77 3.206
2 o ( )
2 AS
Az = 52T8 ) (3.207)



From the system (3.204) the two propagator SDEs read

dy = iA1x 0 AW — Agseo (dWy + idWs) — i Asydas, (3.208)

d» = —iA1sc 0 dWy + Agx o (idWs3 — dWs) + iAgsdxs, (3.209)

with initial conditions x(v,z3 = 0) = 1 and »(v,z3 = 0) = 0, together with the
conservation of energy relation

IX|? = |5* = 1. (3.210)

Note that this is automatically satisfied by equations (3.208)-(3.209).

3.7.2 Numerical Simulation of Correlation Integrals

Now, a material is simulated in order to show how to calculate the correlation inte-
grals (3.193) and (3.194). The symmetric correlation integral Y (¢) may be written in

discretised form as

N o ECE (i (mr)d ,
Tn(o) = 22 (Z Z W) cos (¢pxh) Axs, (3.211)

i=1 “r=1j=1

where (m?)7 is the orientation of the crystalline material in realisation j, along ray r and
at arc length position (z3)’. These orientations are drawn from a uniform distribution
over [—1,1]. From equations (3.145), (3.146) and (3.169), since €44, Cs ~ 1, then ¢ ~ 2.
The mean layer length [ = A3 is chosen accordingly to fall into the weakly heterogeneous

regime L3 > A3 ~ [. Assume that the layer sizes
(X1, Xo— X4, .., X — Xpq,y-0) (3.212)

generate a sequence of independent random variables that follow an exponential distri-

bution with intensity parameter [

P[X, — X, 1 <ax3)=1—e 13, (3.213)
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Figure 3.4: Visual representation of a single ray realisation traversing a layered material. Each
random variable (mj)’ represents the crystal orientation in the material at the point (z3)*. Azs is the
discretisation step size used to evaluate the integral (3.211), i represents the step number along the

discretised ray, and the length of the ray is L, = NAxs.

This ensures that the layer lengths are constructed from an exponential distribution
and therefore form a Markov process [26]. In this scaled non-dimensional framework,
the propagation distance is denoted by L and [ = 1. Typical values of the correlation
integrals for varying values of number of rays R and number of realisations K are shown
in Table (3.1). This concludes that the integrals are of order one. Note that Y(¢) is
a non-negative real number (which is expected) since it is proportional to the power

spectral density of the random process m [34].

Numerical Correlation Integral Values
BE [0 (6 [T(0)
(100, 10) 2.05 1.44 1.60
(200, 10) 1.53 0.95 2.31
(400, 10) 1.05 1.08 2.45
(800, 10) 1.06 0.90 2.45

Table 3.1: Numerical estimates for the values of the correlation integrals in equation (3.195). Material
values from Table 3.2 for Graphite Epoxy were used. The discretised integrals are calculated for different

combinations of R and K.
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3.7.3 Parameterising Solution On a Hyperbola

Now a substitution is used to obtain a reduced, closed system of SDEs. First parame-

terise the entries of the propagator matrix via

x(v,x3) = cosh <%(23;3)> eidv(@3), (3.214)

#(v, x3) = sinh <7V(2$3)>ei(¢”($3)+w”($3)), (3.215)

where v, (z3) € [0,00), ¢u(23), Yu(23) € R, and (x5 = 0) = ¢ (3 = 0) = (3 =

0) = 0. Using the standard chain rule for the derivatives in the Stratonovich regime

gives
_ Ox X
dy = 8%dm,+ a¢yd¢y, (3.216)
O O O
dw = —dvy, + —do, + ——d1),,. .
= gdv+ g dby + 5 dy (3.217)

Substituting equations (3.214) to (3.217) in equations (3.208) and (3.209) admits the
parameterised form
dvy, = —2A2<cos (1) o dWo —sin (¢,) o de), (3.218)

24
dipy = =241 0 AWy + - 2

m (COS (wy) e} de + sin (wy) o} dWQ) + 2143 d.’IJ3,

(3.219)

and

d¢, = Ay o dW; — Agtanh (v,/2) <sin (1) o dWa + cos (¢y,) o dW3> — Asduxs,

(3.220)
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which can be written in matrix form as

de, A; —Astanh (v,/2)sin (¢,) —Agtanh (v, /2) cos (1) dw
dipy | = | =241 2Agsin(yhy)/tanh ()  24zc0s (¢)/ tanh (v,) | © |dW2
dyy 0 —2A5 cos (V) 2Ag sin (1) dWs
A
+ |24, | das, (3.221)
0

which can be rewritten as

dr = o oW + bdzxs, (3.222)
where
T
T = |doy,dyy,dy,| (3.223)
A1 —Agtanh (v, /2)sin (¢,) —Agtanh (v,/2)cos (¢,)
o= |—-2A; 2Assin(¢,)/tanh(y,)  2Ascos(¢,)/tanh (v,) | > (3.224)
0 —2As cos (1) 2A9sin (1)
T
W = Wy, W, W3] (3.225)
and
T
b= |:—A3, 243, 0} : (3.226)

Equation (3.222) can be converted to It6 form by calculating the modified drift [34] via

3
1
0ip © AWy = 0ipdWp + - > oipoipjdrs, p=1,2,3. (3.227)
j=1
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Note that the only non-vanishing modified drift term is present in the 7, process, namely

1Q 243
5 > 0jposy, dus = mdm. (3.228)
j=1
Equation (3.222) can be rewritten in It6 form as
iy = 245 ( cos (1) AWV — sin (,)dWs ) + 222 g (3.229)
v = C v — SIn (Yy Y s .
g 2| cos 2—S 3 tanh (1) 3
2A
dip, = m <c0s (1, )dWs5 + sin (’l/]y)dWQ) —2A1dW + 2A3 dxs, (3.230)
and

dqby = —A2 tanh (’71,/2) (sin (Qﬁ,,)dWQ —+ cos (wy)dW?,) + AldW1 — A3 dl’g. (3.231)

This system can be reduced further by introducing two (auxiliary) random processes

via

W4 *3 | cos (wu) sin (¢V) W3
d , 3.232
i / (3.232)

sin () —cos (¢)| | W

so that the system (3.229) to (3.231) can be transformed to give

2A32
dyy = 242 dWs + ——2—duxs, 3.233
Y 2dWs + (7 4% ( )
245
d, = —2A1dWy + ————— dW, + 2A3 dxs, (3.234)
tanh ()
and
d¢y = AldWl — A2 tanh (’71,/2) dW4 — A3 dl‘g. (3.235)
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In matrix form (3.233) to (3.235) is given by

by Ay —Agtanh(y,/2) 0 dW1 —As
d w,, = —2A1 2A2/ tanh (’}/V) 0 dW4 + 2A3 dl’g. (3236)
Yy 0 0 245 | [dWs 2A3/ tanh (v,)

Now that the matrix equations are in Itd form, the infinitesimal generator [26] of the

Markov process (7., ¢,, ¥,) can be calculated as

3
1 5?2
L= 2 Z aij (v )83378% Z a E :aw = Oik0jk- (3.237)

i,7=1

The only non-zero entries in the a;; functions are

ay; = A? + Atanh? (v, /2), (3.238)
2A2 tanh (v, /2
aijp — ag] — —QA% - Qtanh (/(y’y)/ ), (3239)
4 A2
=4AT 4+ —2 3.240
22 U7 tanh? () ( )
azs = 443, (3.241)

and so the generator can be written as

82 1 0
— 2 —_— T 41 7/ N a
‘C’Yw(ﬁuﬂpu - 2A2 [873 tanh (71/) 8’YV:|
oL ot (o ) & ptanhi(00/2) 02 2 o
-+ A 2 tanh (’YV/2) a¢2 2 tanh ('yy> a(byawlj + tanh2 (IYV) 8¢g
L r 1 92 Ly o2 82
13962 ~ 206,00, T “003
oy 9
e B | 242
43 |%5y, %} e

The radial process 7, (so focusing on the amplitude in transformations (3.214) and

(3.215)) has infinitesimal generator

82 19 327 (¢) [ 97 19
— 2A2 - — 22 T . 24
£ Qmﬂmmm) 1 Qwhmmm> (3.243)
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3.7.4 Unit Monochromatic Wave Impinging From Left half space

@)

Rf(a)) (_Avﬁvﬁwi

Homogeneous Random Homogeneous
Medium 0 Medium L Medium

DGAVQVAVQU_) Tf(a ))

X3

Figure 3.5: Incident wave f(w) incoming from the left half space at x3 = 0. R and T are the reflection
and transmission coefficients respectively. These coefficients determine the amount of energy being
transmitted and reflected at the boundaries of the slab occupying z3 € [0, L].

Assume now that the random medium is embedded between two homogeneous half
spaces with a unit wave impinging at z3 = 0 (see Figure 3.5). The boundary conditions

for equation (3.170) are prescribed by

a(v,zs =0) =1, b(v,xz3=1L)=0, (3.244)

which translates into a unit wave travelling from the left and no left-going wave from

the right at x3 = L. The reflection and transmission coefficients are given by
R,(v,L) = b(v,0), T,=a(v,L). (3.245)

Using equation (3.170) with (3.245), gives the system

aw,L)|  |T(L)| o 1
) = =P(v,L) . (3.246)
b(v, L) 0 Ry(L)
That is
T,(L) = x + 7(L)R, (L), (3.247)
0 = »(L) + X(L)R,(L), (3.248)
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and so

R,(v,L) = 0 é), and T,(v,L) = 0D

(3.249)

Now define the power transmission coefficient and use equations (3.214) and (3.249) to

get

(L) = |T, (v, L)|* = cosh™2 (%é@) (3.250)

to describe the amplitude of the energy transmitted through the medium. Integrating

equation (3.235) gives

L L L L
/O d(;ﬁl,(xg) = A1/0 dWl((lig) — AQ/O tanh (’y,/($3)/2)dW4(563) — A3/(; dzxs,
(3.251)
with ¢, (0) =0, W1(0) = 0 and so
L
¢V(L) = A1W1(L) — AQ/O tanh (’yy(wg)/2)dW4(x3) — AsL, (3.252)

so that
L
exp{io, (L)} = exp{iAlwl(L) - iAg/O tanh (v, (z3)/2)dWy(x3) — iAgL}. (3.253)

Since d(cosh (v,/2)"!) = —1/2(tanh (v, /2)/ cosh (7,,/2)) o d,, then equation (3.233)

gives

d(cosh (v,/2)7") = -5 <M

2A3
2 ) o <2A2dW5 + 2d$3> . (3.254)

tanh ()

Multiplying both sides by cosh (7, /2), introducing Z(x3) for brevity and integrating

with respect to x3 (from 0 to L) gives

L
Z(L) = In(cosh (WV(L)/Q)%) = _A2/0 tanh (v, (z3)/2) o dW5(z3)
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42 L tanh (v, (z3)/2) .
4 ey

Since
tanh? (’YV/2) =1— cosh™? (’)/V/Q) —1l—7=1-— 62Z(m)’

then

L 27 (z3) % A% L 27 (z3)
Z(L):—A2 ) 1—e OdW5(l‘3)—7 ) 2—ce dl’3,

via the identity

m - %(1 + tanh (VV/Q)Z) = %(2 —7)= %(2 — 622(333)).

Now convert equation (3.257) into It6 form via

a = —Ag(l _ 622(903))%’ @ — A2(1 _ €2Z(3:3))—%€2Z(353)7
oz
which gives the correction term
ada A3 2z
207 2 ’

which is added to equation (3.257) to obtain
L 1
Z(L) = — A / (1 — €229)V3 AWy () — AL,
0

Taking exponentials of both sides gives

1

L
W = exp{Az/O tanh (v, (z3)/2)dWs5(x3) — A%L}.
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3.7.5 Localisation Length Definition

Since limy_,oo(tanh (x)) = 1, the power transmission coefficient in equation (3.250)

tends asymptotically as L — oo to

7(L) ~ exp{—242dW5(L) — 2A3L}. (3.263)
o = L
T ~ exp{ —2A2 ~ expy —= .
(L) p{ 2 2L} p{ -~ } (3.264)

where the non-dimensionalised localisation length is

~ loe = 1 _ Lloc
o 21‘1%[;3 L3

. (3.265)

Lie is a non-dimensional parameter which controls the rate of the decay of energy
through the random slab. From equation (3.206) the non-dimensionalised localisation
length is written as

i L 1 4 4
Lloc(Va Cijklapve(xfﬂ)) = <=

Ly 243Ls  83T(¢)  83(v,cijuir ) Y (v, cirt, py O(3))
(3.266)

where T(¢) = Y(¢)/Ls is the non-dimensional correlation integral. This non-dimensional

parameter L;,. controls the rate of the decay of energy through the random slab.

3.7.6 Martingale Representation of Power Transmission Coefficient

Using equations (3.253) and (3.262), the transmission coefficient (3.249) can be written

as

cosh (v,/2)

L
= exp{iAlWl(L) — A2L —iAsL — Ag/ tanh (v, (23)/2)[dW5(x3) + idW4(x3)]}
0

T,(v,L) =

= exp{iAd1Wi(L) — AL —iA3L}
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X exp{—Ag /OL tanh (v, (z3)/2)[dW5(x3) + idW4(x3)]}

=TM (v, L)M(v, L), (3.267)
where
T (v, L) = exp{iA1W1(L) — A3L —iA3L}, (3.268)
L
M(v,L) = exp{—Ag/O tanh (v, (z3)/2)[dW5(x3) + idW4(x3)]}. (3.269)

Since 7, is deterministic (with v, € [0,00)) then

/0 tanlh (Y (23))dWy ~ N(O, /0  anh? Y (x3) /2dx3), (3.270)

/0 tanlh (v (23))dW5 ~ N(O, /0 a2 v (x3) /2dx3). (3.271)

Since these two integrals are independent real valued random numbers with common

variance, M (v, L) has mean
E[M(v,L)] = 1. (3.272)

3.7.7 Fokker-Planck Equation for the Power Transmission Coefficient

From equation (3.250)

or
Oy

= —cosh (v,/2) *sinh (v,,/2) = — cosh (7,,/2) " * tanh (7, /2) = —7 tanh (v, /2)

=—7V1-—T. (3.273)

Hence, using equation (3.258)

o1 o9
tanh (7,) 0y, tanh(y,) 0y, O
tanh (v, /2) 0
et L el
tanh (vy,) O7
1

0
= —5(2 — T)TE. (3.274)
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Then from equation (3.273)

2 0 L9
a0

or o L9
- 0%(’%(_(1_7)276’7)

11 1 0 10 1 02
:—7(1—7)2(2(1—7)—2787_—(1—7’)287_—(1—T)27’8T2>
0” 3 5,0
_ 21 9 _ 92 29
=7 T)87'2+(T 2T)67
2 0 0 i
__?87+T(1_T)87'+(1_T)T = (8.275)

The infinitesimal generator, as given by equation (3.243), of the power transmission

coefficient, can now be written (dropping tildes)

J—— <72(1 — 7)8—2 — 728>. (3.276)

n= : (3.277)

which takes values in [1, 00). The infinitesimal generator is then given by

1 a(,, .0

A calculation via inner products can show that the operator £, is self adjoint. Taking

two test functions, say ¢(n) and ¢ (v), the adjoint L} is defined by
/¢£n¢dn = /QSEZ@Z) dv. (3.279)

Noting that

S (ST S B
“7 L <377 <(n 1)877)) " Liee <<” Vo +2”an>’ (3.280)
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SO

1
Lloc

/(¢(n2 - 1)¢m] + 277¢¢77) dn = Lll/ (1/}7777(772 -1)+ 277¢?7 + 2771% +2¢

— 29 — 277%) ¢dn

1
- Lioe / <(772 — 1)apyy + 277¢n>¢d77
1
B Lloc /Qﬁﬁzw d’l’]
1 2
" Lioe /(¢(n = Doy + 2nd¢pn) dn, - (3.281)

which shows that £, = £} is self-adjoint. Hence, the Fokker-Planck equation for the

probability density function of n(xs = L) is

—(L,n) = — —1)=—(L 1 .282

with initial condition p(L = 0,n) = §(n — 1), where ¢ denotes the Dirac delta function.
The Legendre function of the first kind P_1 ., (1), n > 1, p > 0, satisfies the Legendre
2

differential equation [71]

1
—_ — —_ = — 2 —_ .
dn('n l)an_%H#(n) (u +4>P_é+w(n), (3.283)

where

o0

cos (px)

0o +J/cosh(z)+mn

and initial condition P_ 1y (1) = 1. Equation (3.282) can be solved analytically by the

P..i . (n)= \f cosh (mu)

14 da. (3.284)

use of the Mehler-Fock transform |72] given by [26]

Flw) = /100 FP_1 5, () dn, (3.285)
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with inverse transform

fn) = /0 N Fpptanh (pm)P_y ., (n) dp. (3.286)

Applying the Mehler-Fock transform to equation (3.282) gives

op 1 [>0op
arm =1 | grmP g ) dn,

and integrating by parts

1 0p o0 > IP aP_%W
- Lioe ([(7’2 - 1)677(La 77)P5+w(77)] ) - /1 8717@’77)(772 - 1)87”(77) d77>

OP 1

o R (= T
- _Llloc (”2 " ) Amp(L’”)PéW(”) 1

o R L) (3.287)

N

W

with initial condition p(L = 0, u) = 1. This PDE can be seen to have, by inspection, a

solution

p(L,p) = exp{— <M2 + i) Lic } (3.288)

Now, apply the inverse Mehler-Fock transform (3.286) to obtain the probability density
function (PDF) of the process n(L) given by

&0 1\ L
p(L,n) = / ptanh (pm)P_1 ;. (n) exp{_ <M2 + ) } dp. (3.289)
0 2 4 ) Lioc
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Equipped with the probability density function for the power transmission coefficient,

the moments can be computed as follows

Br(L) = [ o Lyp(L ) di

o0 2 n

— =) p(L,n)d

[ (%) sz
[e%e] 2 n

_/1 (1+n)

x/oo tanh (p) P (1) exp? — A B O
o PPy expq =\ w0+ g Jp— p dudn.

By defining the family of functions

00 2 n
(n) - -
J”(m‘/l <1+n> Py ggm)dn, neN,

the moments can be written as

Bl (0] = [ e (o) ) exp{ - (44§ ) 7 b

For n = 1, using equation (3.284) gives

oo P 1,,(n)

g _2/ ﬂd
(1) . Trn W

_ Q*f cosh (1) /OOO cos (W)</loo ot ;Sh = dn> dz.

Now evaluate

/
T]

and let

vecoshz 4+ 1
Veoshr — 17

u =

n+ 1= (coshz —1)(u? — 1),
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so that

du 1 (coshz + 17)7%

— = , dn:2\/coshw—1\/coshx+ndu.
9 2 (coshx — 1)%

Hence
/OO dn /°° 2y/coshz — 1 J
= u
cosh —_— 2 —_
1 (14mn)y/coshz +n o e il (coshz — 1)(u? — 1)
2 [1 \/ﬁ]“
= n .
- 1 cosh
Vecoshz — 1 U+ 1] yeoiarr
Now
x —r _ 9 /2 _ o—x/2)2
cosh (z) — 1= \/64_62 = \/(e;) = /2sinh (2/2),
and
Veosha+1 _ ¢ .
1o | | Veosha—1 ") L, sinhz — coshx + 1
Veoshz+l | 2 |sinhz 4 coshz —1
Vcoshz—1
1 —2e "+ 2
S P Pt e
2 2e* — 2
1 —Z(eT _ 1]
=_In G ) =—z/2.
2 e? —1
Hence

& dn B T
/1 (1+mn)ycoshz +1  /2sinh (z/2)

° oo
J(l)(,u):icosh(w,u)/ wcoswdxzcoshw/ zeos (pz)

o sinh (z/2) ™ _oo Sinh (2/2)

Evaluating the last integral above gives

/oo x cos (ux) g — 9 [ sin(ux) dr — alm/oo eine "

oo sinh (z/2) " Op J_o sinh (z/2) o _ oo sinh (z/2)
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Figure 3.6: Contour region used to integrate J"(u) in the complex plane.

Using Cauchy’s residue theorem [73] gives

eiﬂxn

where the contour is shown in Figure 3.6. Note that this integral can be split into two

parts, using this contour, as

R
lim ¢ — Jim / + / . (3.304)
R—o0 R—o00 r R
Note however that
PRz ei,uRe“ y
li ——dzx = 1li — G Re™ dt
ey r, sinh (z/2) e r, sinh(Re’“f/Q)Z “

where x = Re, dx = iRe'dt. Hence

UL R(i it iR cost
) e . ie'le
lim ————dz = lim ( )

R—oo Jp, sinh (z/2) R—o0 Jp, eftlusint+cos (t/2))(ez‘Rsin (t/2) — g—Rcos (t/2)((iR/2) cost+isint)) dt

—0as R—o0

=0, (3.305)

147



hence, from equations (3.303) and (3.305)

R LUz

lim iz =2mi i Res ﬂ Ty = 2min (3.306)
R>oco J_psinh (x/2) " — sinh (z,/2) )7 " ‘ '

By multiplying the right-hand side by (z—x;,) and using L’Hopital’s rule [74] to evaluate

the limit as ¢ — x,, gives

0 62’;1,:5 o0 26—27T77,/,L
- dr=o0my =
/_oo sinh (x/2) e n21 cosh (7mni)
oo

=dmi Y (—1)"e >

n=1

= —4mi(e*™ + 1)L (3.307)
So, from the integral (3.302)

8/ Md 0 “Im <—4m) = 872(e™ + e ™) 72 = 272 sech? (mp).

Ou J_o sinh (2/2) ou e 4+ 1
(3.308)
From equations (3.301) and (3.302) then
JO) = — 2" (3.300)
cosh ()

Now consider J™ (u) for n > 2, so it holds that (via integration by parts and equation
(3.283)) from equation (3.291) that

T (1) = —(u2 + i)l /100 <1er77>”dcf7 [(n2 - 1)de;7+w(n)] dn

1 on 9 8P7l+lu :|OO /oo 2nn(772 ) 8P7;+Z‘u >
= — —1)—=— + d

u”i({(Hn)n(n ) on ) o Ji gt o ()

1 *©n2"(n—1 oP_ 14
2 1 < ) u(77) dn)

R (I+n)™  On
1 n2"(n — 1 OO

R ([ +w(77)]1
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/1OO " (1+ 77)" 1 :7_777_)7L1+)1>P§+w(77) dﬁ)

21 1 ( . i i _n22n(n_11)>P—1+i (ndn)
w2+ \Q+npr 1+n)n (1+n)” (1+n)nt 2T
1 > 1—n n22" 4+ n22"y — n22"n + n22n
- ), (i )
1 > 1—n) 2nHip?2
+% 1 <

’ g ’*(1-+n>n+l>f’%+“””)d”

7

n(1—n) /°°2P—§+m<77) " /oo L
N A A (R A

n(l —n) n?
—5 1"+
pE g pr g

JHD (). (3.310)
Rearranging equation (3.310) gives the recurrence relation

JOD () = I () (;ﬂ +(n? -1 /2)2>. (3.311)

n2

It is straight forward to see then that

1000 = e T+ 61127

21
- K(”) 312
cosh (n1) (), (3.312)
where
n—1 2
1 1
K (1) = j4M+Q—Q),KMm=L (3.313)

Inserting equation (3.312) into equation (3.292) gives the integral solution for the mo-

ments of the power transmission coefficient as

°° 27 sinh (,mr)

NQL
Lioew) KM (1)d . 3.314
cosh (jur) (p)dp ( )

__ L
B (L) = ¢ "o |
0
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3.7.8 Moments of the Power Reflection Coefficient

A similar calculation can be performed for the reflection coefficient (as defined in equa-

tion (3.249)). Using equations (3.214) and (3.215) then
R, (v, L) = —tanh (v, (L))/2)e' (L) 260 (L)) (3.315)
and the reflection power transmission coefficient, or reflected energy, is defined as
|R, (v, L)|* = tanh? (v, (L)/2) = R, (3.316)

say. Using the chain rule and equation (3.256) then

o OR 0 o)
=_—_ = »/2) sech? (v, /2) ==
9y, ~ v, OR tanh (7,,/2) sech® (v,/2) 5
o)
= 1—R)—. 31
VR(1 - R) o (3.317)

Furthermore, using equation (3.258)

0

h2 (~, /2)—
sec (7/)8R

1 0  tanh(v,/2)
tanh (v,) 0y,  tanh(vy,)

1 2 2 9
= 2(1 + tanh” (v,/2)) sech® (7,/2) 3R
1 0

= S0 R (3.318)

From equation (3.317)

e 8<\/T%(1—R) a)

02 O R
OR 0 )
= 871/%(\/5(13)%)
1-3R 0 0?
= \/E(I—R)<2\/E8R+\/§(1—R)8RQ>
1 5, 5 02
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Inserting equations (3.318) and (3.319) into equation (3.243), the infinitesimal generator

for the power reflection coefficient R reads

1 2
. rRO-R2-L +a-r2l|
loc

Lr= OR2 OR

To simplify the analysis, introduce the transformation

1+ R v—1
R .
1-R v+ 1

Since R(L = 0) = 0 and takes values in [0, 1], v takes values in [1,

rule

g  Oov o 2 0  (v+1)%? 9

OR ~ ORdw (1—R2d0v 2 v

Again, the chain rule gives

2 0 ((v+1)2 a)

OR2 ~ OR\ 2
_Ov 0
~ OR v
~ (v+1)? ( ) 0?
a 2 87} 4 v
Furthermore
0? 0 0?
R(1—-R) B)e 2(v 1)81) + (v 1)31)2’
and
(1- R)Qi P

The infinitesimal generator is them from equation (3.320)

19, 0
EU— Llocav|:('l) _1)81):|7
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which is self-adjoint by the same calculation in equation (3.281). The Fokker-Planck
equation for the probability density function of the power reflection coefficient p(L,v)

then reads

Op 1 0
ar LY =15

(v2_1)gp(va) ) U>17
v

with initial condition p(L = 0,v) = §(v — 1), where § denotes the Dirac delta function.
Note that this is the same form of Fokker-Planck equation as seen in equation (3.282) in
the analysis of the power transmission coefficient. Noting the solution for the probability
density function for the power transmission coefficient in equation (3.289), he solution

for the probability density function of the power reflection coefficient can be written as

p(L,v) = /OOO ptanh (um)P_1 ., (v )exp{— <u2 + i) Lf} dp. (3.327)

The moments of the power reflection coeflicient are thus given by

1
E[R"(L)] = /O R(L)p(L, R) dR

- /100 (Z " DnP(L’v) dv. (3.328)

Starting with the first moment (n = 1) gives

)= | (o
/100<1 > (L, v) dv
/100p(L v dv—/loo<1iv>p(L,v)dv
:1_/1 <1iv>p(L,v)dv. (3.329)

The second integral term in equation (3.329) is precisely the integral in equation (3.290)

(with n = 1) which was solved in the transmission case. Thus equation (3.314) gives

__L_ [ ysinh _u’L
BIR(L)] =1 - ¢ o [T LI E g,
o cosh” (um
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= 1-E[r(L)], (3.330)
where K™ (1) is defined by equation (3.313), and K=Y (1) = 1. Note that
E[r(L)] +E[R(L)] = 1, (3.331)

and so energy is conserved. Now moving to the second moment (n = 2)

E[R2(L)] = /loo <” - 1>2p(L,v) dv

v+1

:/loo <1_U_2|_1>2p(L,u)dv
:/loop(L,U)dv+/loo<1iv>2p(va)a dv?/1w<1iv>P(Lv”)d”

=1+ E[r%(L)] — 2E[r(L)]. (3.332)

Note that standard deviation of the reflected energy

Std[R(L)] = v/E[RX(L)] — E[R(L)]2

= V/1+E[r2(L)] - 2E[r(L)] - (1 — E[r(L)])

= E[r2(L)] — E[r(L)]? = Std[r(L)], (3.333)

is equal to the standard deviation of the transmitted energy.

3.8 Results: Material Study

Now the mean power transmission coefficient given by equation (3.314) is analysed as
a function of key parameters, including the propagation distance through the material
L and v (the ratio between the wave numbers in the z; and 3 directions) which is
the degree of anisotropy parameter. The directionality of the fibres in the random
medium is controlled by the angle 6(x3) in equation (3.107) which varies spatially. The
wavelength of the monochromatic shear wave is chosen to be commensurate with the

typical layer width (see Figure 3.3). Carbon fibre reinforced polymers (CFRP’s) are a
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common class of materials in the engineering world and have material properties that
align with the model; specifically the heterogeneous and locally anisotropic nature of

layered CFRP’s. The stiffness tensor components for a CFRP were given by IHI. For

this study, a frequency & ~ e~2 and a mean wave speed of c3 = 2000ms~! were used
together with the elastic constants in Table 3.2.
Elastic Material Constants (in GPa) (ML™TT~% x 10%)
Cn Cs3 Cya & Ciz
CFRP 146.53 12.25 2.55 4.00 6.67

Table 3.2: Table of material constants for a CFRP obtained from IHI with geometry [70] and density
p = 1500kgm 2.

The decrease in L, (see equation (3.266)) as the degree of anisotropy parameter v

increases is shown in Figure 3.7.

Lloc
1.0

0j35 0.40 0.45 0.50 055 Y

Figure 3.7: Non-dimensional localisation length Ljoc (given by equation (3.266)) as a function of the
material anisotropy parameter v (equation (3.142)). The material properties are given in Table 3.2.

This change in the localisation length (f/loc) affects the decay rate of the mean power
transmission coefficient E[r (L, v)] (equation (3.314)) as shown in Figure 3.8. An increase
in the ratio of wave numbers (degree of anisotropy) causes greater energy decay with

the depth of wave penetration into the material L.
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Elz(L,v)]
1.0

Figure 3.8: Plots of the mean of the power transmission coefficient (see equation (3.314)) as the non-
dimensionalised penetration depth L varies for different values of the material anisotropy parameter v
(equation (3.142)). The material properties are given in Table 3.2.

std[z(L, v)]
0.301

Figure 3.9: Plots of the standard deviation of the power transmission coefficient (equation 3.314))
as the non-dimensionalised wave propagation depth L varies for different values of material anisotropy
parameter v (equation (3.142)). The material properties are given in Table 3.2.

The effect of changing the anisotropy parameter (v) is also seen on the standard devi-
ation of the power transmission coefficient. Figure 3.9 shows the sharpening (variance
tending towards zero) of the peak of the standard deviation as v increases and the
self-averaging of the wave for large propagation distance L. Hence the materials with
a more marked anisotropy parameter (greater deviation from the isotropic case where

v = 1) require a larger propagation distance before any self-averaging occurs.
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Conclusion

A model of a monochromatic horizontally polarised shear wave propagating through
a layered random and heterogeneous medium, composed of a polycrystalline material
where the orientation varied from one layer to the next, has been constructed. A
suitable scaling regime was studied whereby the microstructure produced a transmitted
wave which had an attenuated, coherent wave front followed by an incoherent coda
wave. The random fluctuations present within the anisotropic material were modelled
via a local rotation of the corresponding slowness surface as a function of the wave
propagation direction x3. A system of stochastic differential equations were derived
which were subsequently solved in order to access the statistical properties of the energy

transmitted and reflected through this layered random medium.

A horizontally polarised shear wave parameterisation u = (0, ua(x1,x3),0) was chosen
and the transmitted energy (attenuation) of the amplitude of the coherent wave then
depended on the level of anisotropy present in the layered material. This variation
in the wave attenuation on the anisotropy of the material has relevance to the use
of ultrasonic arrays for medical imaging and nondestructive testing applications. An
expression for the localisation length was also derived, which depends on correlation
integrals which can be numerically evaluated for specific material microstructures. For
example, a 20% change in v could lead to a threefold reduction in the amplitude of the
transmitted coherent wave. The work presented here could be expanded to model a
pulse, which could be used by experimentalists to decide on an appropriate frequency
of ultrasonic wave to emit for a given material microstructure and required depth of

wave penetration.

There is a delicate balance between parameters in order to achieve the correct separation
of scales. It has been shown that the decay rate of energy in the medium L, depends on
the ratio of wave numbers v in the (21, 23) plane. This is important when dealing with
array applications in NDT since v can change, affecting how the energy is transmitted
in the medium. The analytical expressions predict the energy decay rate and how this

is affected by v.
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Chapter 4 takes the model presented in this Chapter, but considers the source as a
broadband pulse. This allows study of the autocorrelation function of the reflection
coefficient which is a key parameter in studying imaging schemes such as the Total
Focusing Method 3], [43]. The forthcoming Chapters will consider the incoherent part

of the wave, whereas previous Chapters have considered the coherent wave.
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Chapter 4

Multi-Frequency Elastic Wave
Propagation in a Randomly

Layered Media
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4.1 Nomenclature

Parameter Equation

! Lumped parameter . ... ... ... ... .. ... . .. [M—1LT?| (4.18)
o) Lumped parameter . . ... ... ... ... . ... .. [M~1LT?| (4.35)
g Lumped parameter . ... ... ... ... .. ... .. [ML~3] (4.19)
B Lumped parameter . . . . . ... .. ... ... ... [ML~3] (4.32)
A1) Lumped parameter . . ... ... ... ... ... . ... L7171 (4.80)
7@ Lumped parameter . . ... ... ... ... . ... .. LT~ (4.81)
7(3) Lumped parameter . .. ... .. ... ... . ... .. [L=1T—1 (4.82)
| S Lumped parameter . ... ... ... ... .. ... . .. (-] (4.36)
I's Lumped parameter . ... ... ... ... .. ... . .. (-] (4.33)
d Dirac delta function . .. ... ... ... .. ... .. (-] (4.3)
01 Lumped slowness parameter . .. ... ... ... . .. [TL—Y] (4.39)
02 Lumped slowness parameter . . .. ... ... ... .. [TL™1 (4.40)
€ Small dimensionless parameter . . . ... ... ... .. (-] (4.9)
0 Rotation angle of material slowness surface . ... .. (-] (4.24)
0 Mean slowness angle . . .. .. ... ... ... ... -] (4.23)
K1 Wavenumber in x; . .. ... L= (4.10)
A3 Wavelength in 3 direction . ... ... ... ... .. (L]
13 Velocity in zg direction . . ... .. ... ... ... .. LT (4.6)
¢ Velocity (frequency wave-number domain) in z3 direc-

tion . ... [L?] (4.13)
p Constant material density . . . . ... ... ... . ... [ML~3] (4.1)
0 Lumped stress parameter . . . . .. . .. ... .. ... [ML=1T—2 (4.30)
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o Symmetric correlation integral matrix . .. . .. ...
o Random process amplitude . . ... . . .. ... . ..
Tjk Material stress . . . .. . ...

T(21,23) Material stresses . . . ... ...

T(21,23) Material (frequency wave-number domain) stresses

T Power transmission coefficient . . . ... ... ... ..
T Non-dimensional time . . . . ... ... ... ... ...
YT(w)  Symmetric correlation integral . . . ... ... ... ..

149 (w) Anti-symmetric correlation integral . . . . . .. ..
%) Lumped parameter . . . . . ... .. ... ... ..
0} Slowness parameter . . . ... ... ... ... ... ...

X?LZ) Complex propagator function . . . . . ... .. .. ..

w Angular frequency .. .. ...
a Frequency wave-number wave-mode . . . . . . .. . ..
A Material stress . . . ... ...
A® Time domain wave-mode . . . . ... .. ... ... ..
Ay Lumped parameter . . . .. .. .. ... ... ... ..
Ao Lumped parameter . . .. . ... ... ... ... ..
As Lumped parameter . . . .. ... .. .. .. ... .. ..
b Frequency wave-number wave-mode . . . . . . .. . ..
Cijkl Material stress tensor . . . ... .. ...

cqq(x3) Material stress . . . ...
Ca4 Material stress . . . . ...

ce6(x3) Material stress . . .. ...
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[L'/?]

-]
[ML~1T-2]
[ML—1T—2]

IMT—

[TL~]

-]

T
[M!/2T=1/21 ]
[ML—'T~2|
[MT—3/21]
L2
[L=1/2)

L=
[M1/2T-1/21)
[ML-'T2|
[ML-'T~2|
[ML-1T-2]|

[ML-1T-2]



Material stress

Correlation integral matrix . . .. .. ... ... . ..

Symmetric strain tensor . . . ... ...

Source term .

Material stress

Transport function . . . . . ... ... ... ... ..

Random function . . ... .. ... ... ... ... ...

Random function . . ... . ... ... ... ... ...

Random function . . ... .. .. ... ... ... ...

Random function . . ... .. ... .. ... ... ...

Transport function . . .. ... ... .. ... ... ..

Random matrix
Identity matrix
Intensity . . . .

Material length

Localisation length . . . . .. ... ... ... . .. . ..

Differential operator . . .. ... ... ... ... .. ..

Markov process
Martingale . .

Material stress

Jump Markov process . ... ... ...

Propagator matrix . .. ... ... ... ...

Reflection coefficient . . . . . . .. ... ... ... ...

Material stress
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[ML~1T-2|
(L]

-]
[M1/2T-1/21)
[ML~1T-2|

LT

LT
L=

-]

[M2T 3L
L]

L]

(4.28)

(4.86)



s Rotation vector . . .. . . ... ... .
t Time . . . . ...
Te Transmission coefficient . . .. .. ... ... ... ..
T Time variable . . . .. ... ...
U Displacement vector . . . ... ... .. ... ... ...
U Solution of transport equation . . . . ... ... . ...
Upq Product of reflection coefficients . . . . ... ... ..
Via Fourier transform . . ... . ... .. .. ... ... ..
w Brownian motion . .. . ... ...
Wop Transport equation solution . . . . . . . .. ... . . .
)7\//;,’0 Non-dimensional limiting transport equation solution
12,3 Coordinate system . . . . ... ... . ... ... ...
T3 Non-dimensional =3 . . . . . . . ... . . ... ... ...
X SDE solution . . . . . ... ... ... ... ... ...
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4.2 Introduction

Modern engineering materials that are produced via additive manufacturing techniques
[5] are becoming increasingly complex and their structural integrity is critical in ensuring
they can be used in situ. Non-destructive evaluation (NDE) techniques are important
for evaluating the health and safety of such components. One NDE method which
will be studied in this Chapter, uses high frequency ultrasonic waves to probe the
material; analysis of the coda wave which emerges allows characterisation of the material
microstructure and identification and location of any flaws or defects. Current imaging
algorithms assume that the material of interest is isotropic and homogeneous [3], with
no consideration of inhomogeneities and anisotropies in the material. The existence
of inhomogeneities can cause multiple scattering to occur particularly when the length
scales of the material inhomogeneities are commensurate with the wavelength of the

incoming wave.

This Chapter studies the regime where the propagation distance is much larger than
the wavelength of the incoming pulse (Lg > A3), the mean layer size is commensurate
with the wavelength (A3 ~ [) and the change in elasticity from one region to another
(strength of random fluctuations) is small (0 < ¢ < 1); this regime is known as the
weakly heterogeneous regime [26]. This regime produces a received wave that is attenu-
ated and distorted as a result of its interaction with the internal material microstructure.
The work in this Chapter builds on probabilistic models for elastic wave propagation
inside randomly layered media for a monochromatic wave [26], [56], [8] to study a broad-
band, high frequency ultrasonic pulse via analytical and computational [52] means. By
studying a set of transport equations, it is possible to derive solutions for the frequency

autocorrelation function for the reflection coefficient.

Section 4.3 introduces the governing elastodynamic equation for a broadband, high
frequency ultrasonic pulse. Section 4.3.2 introduces the stochastic model to describe
the spatial changes in the slowness surface of the material. Section 4.3.3 introduces the
governing evolution equations for the stress and velocity, and derives a set of matrix

stochastic differential equations. Section 4.4 derives a Ricatti equation for the reflection
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coefficient which then leads to a system of transport equations. An analytical solution
to the transport equations for the frequency autocorrelation function is presented in
Section 4.4.1 and then a numerical solution is presented in Section 4.4.2. A discussion
of the main results of the Chapter (including validation between analytical and Monte

Carlo solutions for the frequency autocorrelation function) is presented in Section 4.5.

4.3 Multi-Frequency Formulation for Pulse

4.3.1 Scaling Governing Equations

The governing elastodynamic equation can be written
PUi it = Tk s (4.1)

where the displacement vector u; in the i'" direction is u(t,z1,z3), p is the density
of the material (assumed to be constant) and 7, is the material stress tensor. The
elastic tensor for a transversely anisotropic medium has five independent stress tensor
components (in Voigt notation) namely C11, Css, C13, Ces, Caqa with s = (s1, 82, 53) as

the symmetry axis vector defined by
s = (cos@(x3), sinf(xs), 0)T, (4.2)

where 6(x3) is the angle of anisotropy which is related to the slowness surface of the
material which varies in z3 (from layer to layer). The stress tensor can then be written

[36] as

Cijkl :(A — QN)(SZ]&M + N (6ik5jl + 6il5jk)
+ (F — A+ 2N) (055551 + Okisis;)
+(S—=N) (5ik5j51 + 5ilsjsk + 5jk5i51 + 5j181'$k)

+ (A +C —2F — 45)87;Sj8k81, (4.3)
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where A = Cs3, C = C11, F = Ci13, N = Cy4, S = Cgg when 6 = 0. The elastic tensor
relates the symmetric strain and stress tensors via Hooke’s law, where the symmetric

strain tensor is given by

er = (uny + upk)/2. (4.4)

Focusing on shear wave propagation in the (x1,x3) plane, the wave parameterisation

s = (0,us(w1,73), 0), (45)

produces the three governing elastic wave equations

p€i(t, x1,x3) = To11(t, 21, 23) + 132,3(t, 21, 23), (4.6)
To1,4(t, 21, 23) = ce6&,1(t, 1, 23), (4.7)
T304 (t, 1, 23) = caa€ 3(t, 21, 23), (4.8)

where the velocity &(t, z1,x3) = ug(t, 21, x3). Now assume that the coupling between
the random internal microstructure and probing wave is weak; the so called weakly
heterogeneous regime [75]. The wavelength (A3) in the 3 direction of the probing
wave is assumed to be commensurate with the layer size [ and much smaller than the
propagation distance L. To characterise this regime, a small parameter ¢ is introduced,
where the width of the input pulse is order £? [26]. Using a scaled temporal (with

frequency w) and spatial (with wavenumber k1) Fourier transform (0 < e < 1)

1 iwt
J(w,x1,x3) = 2 /g(t,a:l,:vg)e =2 dt, (4.9)

I ES

. [
g(wv’%hx:ﬂ) = ég/g(w7$1>$3)e 2 dxlv (410)

and their inverse transforms

]. ’LLAJ

g(t,x1,x3) = =5 J(w,x1,x3)e Qtdw (4.11)
1 M111

J(w, x1,T3) =5 g(w, k1, x3)e dr1, (4.12)
v
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equations (4.6), (4.7) and (4.8) read

PIW » 1K1

—?E(W, K1,T3) = —67?21(00, K1,23) + T32,3(w, K1, T3), (4.13)
iw ~ Z/{l ~

—§T21(w7ﬂ1,x3) = _?066(953)5(@7“17373)’ (4.14)
w A

—677'32(00,&1,.%‘3) = 644(.7}3)573((«},/?1,1'3). (4.15)

Inserting equation (4.14) into equation (4.13) gives

. iw [ K2eee(x3) — pw? 2
7'3273(w, Iﬂ,l’g) = 62< L 66( (32) p >§(w, Iﬂ,l’g). (4.16)
Equations (4.15) and (4.16) give the system
0 é(wvﬁlvx?)) . W 0 _1/644('1"3) g(wﬂ‘fl)xi’))
— | — )
Oz3 7(w, K1, x3) € _(li%c%(azg) — pw?) Jw? 0 7(w, K1, 23)
. E 0 —a(l‘g) é(w7 /4)1,1173) (4 17)
52 _/B(W)I€17p7 ‘T3) 0 72((“)7’{13583) 7
where
1
a(z3) = , 4.18
(@3) = (1.13)
and
2 .2
/B(w7/€17p7 :1:3) = w? (419)

w2

where it is assumed that § > 0. The stress and velocity equations can be written in

terms of the wave modes (a,b)

Ew.rr,z5) =/ 8/ <6<w,m>e‘“’?3 - a(w,me”é’?“), (4.20)
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and

_ ~ iwopx iwox
%(w,m,xg)—\/5/¢<b(w,m)e_ = 4 a(w, Ky e ‘°’> (4.21)

where

b =1/ap, (4.22)

and the bar denotes a quantity which is independent of x3. The input wave is at 3 =0
and travels to the left. The mode a travels in the direction of increasing x3 and b travels

in the direction of decreasing xs.

4.3.2 Randomly Layered Material

Consider an elastic shear wave with wavelength A incident on a randomly layered ma-
terial with layer size [ and slab length L. The slab is contained in z3 € [—L,0] sand-
wiched between two half-spaces (which are isotropic, homogeneous and have a shear
velocity equal to mean shear velocity in the random slab) where x3 € (—oo, —L) and
x3 € (0,00). The exiting transmitted wave has little energy in the coherent wave and
has a long coda wave. Assume that the angle (z3) in equation (4.3) (which relates to

the material slowness surface) varies randomly according to
0(x3) = 0 + om(xs/l), x3€[-L,0], (4.23)

where 6 ~ 1 is the mean angle, m(z3/l) is a stationary stochastic process (an ergodic
Markov process on a compact state space) with mean zero, [ is a typical layer size inside
the material and o is a dimensionless and small parameter (0 < o < 1) which controls

the strength of the random process m(z3/l). Taking series expansions in o gives

Cqq4 = 544(1 + 19m(:c3/l)) + 0(02), (4.24)
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where

1 = N+ (S — N)sin?9, (4.25)
— in (20
9 = o= N)sin(20) (4.26)
Ca4
Also
cos = Coo(1 + pm(z3/1)) + O(a®), (4.27)
where
o6 = S + o cos® Osin? 0, (4.28)
_ ,osin (2?) cos (26) ’ (4.29)
C66
o=A+C—2F — 48, (4.30)

noting that ¢4 is an effective material stiffness and A, C, F, N and S are the stiffness

tensor constants defined in equation (4.3). From equation (4.19)

B = B(1+ oT sm(ws/1)), (4.31)

where

2 2~
= pw* — K1Cep

B(w7/€17p7 666) - w2 5 (432)
_ k20sin(26) cos (20
Fﬁ(wv"£1797g) = ! 27( ) 2( ) (433)
K{Ce6 — pW
From equation (4.18)
a=a(l+olym(zs/l)), (4.34)
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where

1
a(Caa) = " (4.35)
_ N — 8)sin (26
T (Gaa,0) = ( i Zm( ). (4.36)
System (4.17) can then be written as

ﬂ é(w,m,xg) iw 0 —a(l+olgm(x3/l)) f(w,m,xg)

D3 T(w, K1, x3) &2 —B(l + ol gm(x3/1)) 0 T(w, K1, x3)
(4.37)

4.3.3 'Weakly Heterogenous Regime

In the weakly heterogeneous regime, equation (4.37) can be written in terms of the

~

forward (a°(w, k1, z3)) and backward (b°(w, k1, x3)) (equations (4.20) and (4.21)) wave-

modes (which now depend on w, 1 and z3) as

0 |6 (w,k1,23) iw 9 —Gae 20/ | GE (w, Ky, T3)
o= |5 = ?m($3/ ) . 5 .
310 (w, k1, x3) € §ope2iwdrs/e —61 b (w, K1, 3)
1 at(w, K1, T
= “H°(x3/e*, m(x3/e?)) | . (. %1,73) ) (4.38)
€ b*(w, k1, 73)
where
o = ¢(Fa + Fﬁ)? (4'39)
02 = ¢(I'a —Tp). (4.40)

Equation (4.38) can be recast into an initial value problem [56], [60] via a propagator

equation
af(w, k1, T af(w, k1, —L
K (w, 1, 23) =P (w,k1,23) | . (@, k1 ) , (4.41)
b*(w, K1, 3) b (w, k1, —L)
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where the propagator matrix is (which propagates the wave from left to right in the

domain z3 € [—L,0]) defined by

(w, k1, x S(w, k1, x
PE(w, k1, 73) = Xl m1,23) Xa(, 1, 23) . Pi(w, ks = L) =1 (4.42)

X%(W,Hl,ﬂf:;) Xi(w)ﬁlax?))

However, in Figure 4.1 the initial wave is coming from the right at x5 = 0 and travels
right to left. In this initial value problem, the initial condition is at x3 = —L even
though the input wave is at 3 = 0. The problem is setup in this way in order to derive

a Ricatti equation for the reflection coefficient. Furthermore, it is possible to write

apPe 1
E(wvﬁlvx?:) = gHa <S,m<§>>Pa(w,m,x3), P*(w,k1,23 = —L) =1, (4.43)

to which a diffusion approximation theorem [26] is applied (in the limit ¢ — 0) to give

the matrix stochastic differential equations

S(w, k1, 23) X5(w, K1, 23) 1 0 {(w, k1,2 X5(w, K1, 23)
g | i@ rvms) W snes)| L il G gy

X%(wv"ilvxi’)) X%(waﬁ'hxfﬂ) 0 -1 X%(w,m,xg) X‘i(wv"ilﬂx?))

0 1 (w, k1, T S(w, k1, x
A, Xi(w,k1,23)  X5(w, K1, 23) o dWWy(s)

10 X;(O‘)?"ilaxig) X‘i(wﬂilvx?))

0 -1 (w, k1, x S(w, k1, x
tidy Xi( 1,73)  X5( 1,73) o dWs(x3)

1 0 X;(O‘)?"ilaxig) X‘i(wv’%hxfﬂ)

1 0 5 W, K1,T3 5 W, K1,T3
Cids X1( ) X2( ) das,

0 —1| [x5(w,k1,23) X§(w,k1,23)

(4.44)

where A; = wd1/Y(0)/2, Ay = wds/T(w)/(2v/2) and Az = w?53TA49)(w)/8 and the

correlation integrals are defined as

T(w) =2 /0 “E [m(O)m(xg)} cos(2wes) dzs, (4.45)

TS () = 2/UOOIE [m(O)m(a:g)} sin(2wers) drs. (4.46)
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It can be shown that the power transmission coefficient can be written as [56]

7(L) ~ exp{—2A43L} ~ exp{— L }

where the localisation length is defined as

14 4
- 2A2

Lloc(w) - w25§T(w) - w2¢2(ra — F,B)Tr(w)'

4.4 Ricatti Formulation

1.
a@*(@,0) = — f(w)R®
£
b0, - L) Heterogeneous
i A 1.
Media b (@,0) = ~ f(w)
£
Cyq Co6 P Caq(x3) Ceex3) p Caq Co6 P
x3=—L x3=0

(4.47)

(4.48)

Figure 4.1: Boundary conditions for a multi-frequency wave (broadband pulse) impinging on the
random layered, heterogeneous medium from the right at 3 = 0. The random medium z3 € [—L, 0] is

sandwiched between two isotropic and homogeneous half spaces z3 € (—oo, —L) U (0, c0).

In the weakly heterogeneous regime, the input pulse f(¢) has a support which [26] is

of order 2. Its amplitude is scaled appropriately in order to ensure the input pulse has

energy of order one. It is given by

so that
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which is finite. The boundary conditions for the left-going wave entering the slab at

x3 = 0 is then (see Figure 4.1)

b*(w, £1,0) =

M| =

f(w), @& (w,k1,—L)=0. (4.51)
The transmitted and reflected fields can be written as

dg(w,m,O):éf(w)RE(w,m,O), b (w, k1, —L) = = f(w) T%(w, k1, —L).  (4.52)

™ |

Inserting these boundary conditions into equation (4.41) suggests the following rela-
tionship for the reflection R®(w, k1, 23) and transmission T°¢(w, k1, x3) coefficients at a
general z3 position
Rf(w, k1, x3 0
( ) = P%(w, k1, x3) . (4.53)
1 T¢(w, K1, x3)
The transmission and reflection coefficients can then be written in terms of the propa-

gator matrix (4.42) elements as

X5(w, k1, x3)

Xi(w, K1, 3)

1
Ta(w,ﬁl,.%'g) = E: (455)
Xi(w, k1, 23)

R (w,k1,23) = , (4.54)

The reflected field in the time domain (in the right-hand half-space) is defined via the

inverse Fourier transform

1 ) 1 . .
A%(t,0) = a° (2,0) = — /[f‘(w’())e—“*ﬂf/&2 dw = 7o f(w)Ra(w,O)e_ZWt/‘f? dw.
€

2 e

(4.56)

The intensity of the reflected wave is related to its frequency domain autocorrelation.

To calculate this, the reflected field intensity is determined at two close frequencies
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wh, w™ via

A%(t,0)% = A%(t,0)A(£,0)
1 ; /62 — A
= 47[.262</Ri;+f(w+)€lw t/e dw+> (/Ri_f(w)e“" t/e dw). (457)

Hence, the mean intensity of the reflected wave is

I() = E[A%(t, 0)?] / B[RS ) f(w) Flam)e® e quot dur. (4.58)

= Une?

Here it is natural to introduce a change of variables to remove the fast phase (w™ —

wh)t/e? via

w+:w—|—622h, w_:w—ih, (4.59)
which gives
I(t) = E[A%(t, 0)2 / / [RELRE_) f(w +2h/2) f(w — e2h/2)e™ ™ dwdh
~ o / / (R B[ fe)| e duodn, (4.60)

where f(w + 2h/2) ~ f(w — e2h/2). Taking derivatives of equations (4.54) and (4.55)

gives two Ricatti equations for the transmission and reflection coeflicients

dr® _ 1dx5 x5 dxg
drs  xjdxs (x§)? dx3’
dare 1 dx
drs — (x5)%dxs’

(4.61)

(4.62)

with initial conditions (recall equation (4.42)) R®(w,—L) = 0, T°(w,—L) = 1. Now,
equations (4.42) and (4.43) give

d iw _ 2iwgag

D Winta/e) (0 — 02 ) (4.63)
dXS w 2 2iw<§I3 £ €

dzs = 2—€m(:v3/s )| d2e 2 xT —01X5 |- (4.64)
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Inserting these in equation (4.61) gives

3 y —2iwoT 2iwox
i _  m(xs/e?) ([ —Gpe™ 2+ 2Ry — (RE)265e £ ). (4.65)
dzs 2e

As the above Ricatti equation is nonlinear, it is necessary to consider the complete
family of moments in order to get a closed system of equations to allow calculation of

the mean and variance of the reflection coefficient intensity. For p, ¢ € Z* let

U ,(w, hyag) = (RS, P(RE_). (4.66)

Taking derivatives

aUqu = pU: aRfﬁ‘ + qUE 8R‘i_.
Ox3 p—1gq Oz3 p,q—1 O3

(4.67)

Inserting equation (4.65) into (denoting 6% = §(w+¢e2h/2) and ¢* = ¢(w=+e2h/2) from
equations (4.39) to (4.22)) equation (4.67) gives

ou; iwtm(xs/e? —2iwt ¢t ag 2iwt ot ag
Tt = U5 B o T g o — (R0
W 2 2w ¢ _ 2w ¢ w
+qU;q_1wm2<:3/€>[52e T e T ]
(4.68)

Since wt ~ w™, then

ou; iwm(zz /e
Pq (63/ )51(]9 _ Q)U;’q

6333
iwdom(z3/€2) o 2 —idh ibh
+ 2¢ eiowrale qUp 416 whis — p 1§+1,q6w5 "
B0 g2 X , :
R (T ) N

with Uy  (w, h, 73 = —L) = 1o(p)10(q). Now let

‘/;q(wa T, 1'3) =

1 —th(T— x:
27r/e (T—é(p+q) 5)U1f7q(w,h,x3)dh
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1 o
=5 e T ihd(pta)zs Up.q(w, b, z3)dh,

where 7 is time. Taking a derivative of equation (4.70) in x3 gives

£

/ et [z‘h¢(p + q)etherraasye o cthopraes 3@?,(1] dh
3

OVpg _ L
8903 2w

1 : : 1 ) .
_ lh¢(p + Q) ( /e—thethS(p-‘rq)m U;,q dh> + % /e—zhﬂ'ezh¢>(p+q)w3

2

. 1 it _ihd(p+q)zs OUpa
:zh¢(p+q)Vp€,q+27r/e ethopra)zs 24 gp,

O3
=—(p+ Q)¢8;/§’q + % / eihTeih¢(p+q)zsaan;1 dh.
Since
- _ 10V
Pa ih or
then
% / e_ihTeih‘b(”q)’%aan: dh = ¢(p+ q)agfq + a(;z’zq.

Applying the transform (4.70) to equation (4.69) gives

vy oV, iwdsym(zz/e?)
Pa _ P)q Ve
N o(p+q) 5, T (r—a)V,,
iwégm($3/52) bW 2
+ 2e S qVqu—l -p p5+1,q
1wd2m(23/€2) g /e2
i Sl oo (Ve =V )

(4.70)

ou:
p,q h
8%‘3 d

(4.71)

(4.72)

(4.73)

(4.74)

with initial condition V7 (w, 7,73 = —L) = 6(7)10(p)10(q). Expanding equation (4.74)

gives (noting how the transform removes the phase terms)

ove oVS, iwdim(xs/e?)
P,q I p,q _ VE
s o(p+q) Iy + (P —a)Vyq
woom(xs g2 . 2¢W$3 € € € €
+ és = - < c2 PVprtg = WVpg—1 =PV +@Vp gt
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iwdam(xs/e? 20wz
# BIED co (2550) (Vg = 0Vn + Vi~ PV ) (T

2e g2
Define
g (m(ws/e?), 23/2%) = m(ws/e?), (4.76)
. [ 20wz
g (m(zs/e?), x5/?) = m(zs/e?) sin ( ¢€2 3), (4.77)
20wx
g®) (m(xs/e?), 25/%) = m(xs/e?) cos ( d)s? 3), (4.78)
ovy
and
YV(VE) = iwdi (p — )V, (4.80)
W62
7(2) (V;)E,q) = _T <q ps,qfl -p pEJrl,q - qvpiq+1 +p‘/p€1,q>7 (481)
€ ZUJ52 € 3] € €
7(3) (‘/;77(]) - 92 (qv;),q—l - p‘/p—&-l,q +q p,q+1 pr—l,q) . (482)
Equation (4.75) can then be written in the form
dV;q 1 € 2 2 3
oy = gF Vs (3),m(xs/e?),x3/e” | + G(Vy,(23)), (4.83)
where
3 . .
F(Vpgsmlws/e®),23/%) =3 4V (V)9 (mlas/e?), 23 /). (4.84)
j=1

The correlation integral matrix C = (Cz‘j)z‘,jzl,zg is computed using the covariance of

the random process m via

1 27 00 ) )
Cij = W/ / E[g(’) (m(0), )¢ (m(z3),y + x3) | dzsdy, (4.85)
0 0
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that is

—1rA9 )|, (4.86)

where the correlation integrals are given by equations (4.45) and (4.46). The symmetric

part of the correlation matrix is C*¥) = 1(C + C7) = &2, say where

T(0) 0 0
g=1| 0 T(w)/2 0 , (4.87)
0 0 T(w)/2
and define
o1(Vpg) = auyD (Vo). (4.88)

Now a limit theorem [26] (p140, p157) is applied (as e — 0) to equation (4.83) to give

the stochastic differential equation

NG, (m)(x
Zo'l ) dW(—1)(x3) + < Z ch WX VaX( )+G(Xi)> dxs,
J

km=1 j=1
(4.89)

where X = (Vp,q, Voa—1, Vptri,9o Vpg+is Vp_l,q). The focus is now on the SDE for V,, ,
and so ¢ = 1. Expanding the second expression on the right hand side term by term

then for k = m =1 gives

> (1)
% ; ()W (x;) 2 a)(c‘f’Q) - T;O) D (X7 )iwd (p — q)
2
=5 (w00 - 0)) Vi
_Y(0)w?dt(p —q)® V. (4.90)

2
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w (2) w w w
53y T - T (00 (— a2 ) #0552

2
+9%(Xy) (qu252> +%(X5) ( - pwgz»

Y (w)w?62
_ (1)62 (q(q ~DVpg-2 — apVpr1g-1 — 4(q — Vg

+pqVp—1,4g-1 — PqVp11,9-1 + PP + 1)Vpi24 + 0qVpt1,9+1
—p(p+1)Vpq—alqg+1)Vp g+ paVpi1,g+1 + q(q + 1)V g2

—pqVp—1,4+1 +PqVp-14-1 — (P — 1)Vpqg — PqVp-1,4+1

+p(p — 1)Vp_2,q>, (4.91)
k=m=3
1 TW) 3y, VB (V) YW ([ m iwdaq (3) —iwdap
2;2 1000 =g = = (10 (557 )+ (=
w0 —iwd
+7(3)(X4)<w22q) +'7(3)(X5)< = 2p>>
T (w)w?o3

=1 ( —4(q = DVog2+ Vo141 — (g = 1)Vpg

+apVp-14-1 +PqVpr1,0-1 — (P + 1)Vpr2,4 +2qVpi1,411
—p+DVog —a(q+ 1)Vpg + apVit1,0+1 — ¢(q + 1)Vp g2

+0qVp-1,g+1 +PqVp-14-1 —p(p — 1)Vp g +0qVp—1,4+1

—plp— 1)%_27q> : (4.92)

For k=3, m =2

5 (48) (2) (48)(, iy w
3T D0 T i (1) o (52)

2 e 2
1) —wd
+,Y(3)(X4)<w2ﬂ> +7(3)(X5)< w 2p>>

2
i (A9 (w)62w?
= 1(6)2 ( = (g = DVpg—2 + apVpr141
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—qlqg = 1)Vpg + aqpVp-1,4-1

+PaVpi1,g-1 — PP+ D)Vpr24 +PaVpi1,g+1
—p(P+ 1)V +a(qg+1)Vog — apVpt1,4+1
+q(q+ D) Vpg+2 — apVp—1,g+1 — P4Vp—1,4-1
+p(p = 1D)Vpg —PqVp-1,4+1 +p(p — 1)Vp_2,q> :

(4.93)

Fork=2,m=3

w0 —iwo
22Q> +7(2)(X5)< . 210))
w2
T <q(q — D)Vpg—2 = apVpi14-1

—a(qg = 1)Vpq + apVp-14-1

—PqVpi1,0-1 + 0@+ 1)Vpy2g +0qVpi1,411
—p(p+ D)Vpg+a(qg+1)Vhg — apVpt1,411

= q(q+ D)Vpg2 + apVp-1,4+1 — PqVp—1,4-1
+p® = D)Vpg +0qVp-1,4+1 — PP — 1)Vp2,q>,

(4.94)

SO

3 5
1 o™ (v,

k,m=1j=1 an
—Y(0)w252(p — q)2 T (w)w?62
_ —T(0) 21(p %) Vyu + ( 21 : (qp‘/}a—l,q—l +qpVpr1gt1 — P Vpg — q2Vm>
iTAS) (w)w262
=+ 51)2 <qV;J,q - Pv}z,q>
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T (w)w?2
= (312(1]7 (‘/p—‘rl,q—i—l + V})—L(]—l)

CL)2
+ 4‘/};,q< —2Y(0)67(p — 9)* — (P* + ¢*) L (w) o3 + iT A9 (w)d3(q — p)>

T (w)w?562
= (212‘117 (Vp+1,q+1 + Vp—1,4-1 — 2Vq,p>

U)2
2~ 2TOR - 0~ (- TR+ T - p)). (19)

Hence, equation (4.89) reads

oV, .
dVpq = —0(p+ Q)ﬁ dxg + /Y (0)iwd1(p — q)Vp,g dWo(z3)

a \/wa;wé? (qu,q_l = PVpr1q — Vgt +pV})_1,q> AWy (z3)
i’z(\;gw% <qu,q1 —PVpt1q+ qV}),quV}al,q) dWy(z3)

+ qu (V}a+1,q+1 + Vp1,9-1 — 2{/;)7(1) dxs

* ZV( =~ 20(0)33(p — 0)? — (p — )Y ()03 + T4 ()63 (g - p>) 3.

(4.96)

Taking expectations of the SDE (4.96) gives

w w? 2
bl g+ T, (E[ml,q+1] FEVy1g1] - mw)
(A)2
+ T EVpd < —27(0)83(p — q)* — (p — ¢)*T(w)d3 + 1Y) (w)d3(q — p)) :

(4.97)

To study the moments of the autocorrelation function V,, 4, consider the diagonal ele-

ments (p = ¢) and let

Wy 7. = iy B |5, 7. )|- (1.95)
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This satisfies the transport equation

0
MWy + 2¢p Wo = (ﬁwW)p, x3>—L, peN, 71eR, (4.99)
0x3 or

where, using equation (4.48)

2 (1 1
(LwW), = 7, §Wp+1 + §Wp71 -Wyp |, (4.100)
with initial condition
Wy(w, 7,23 = —L) = §(7)1o(p). (4.101)

The mean intensity given by equation (4.60) has an expectation in terms of the reflection

coefficient at x3 = 0 which is linked to the moments via equation (4.66) via
E| f5. (0,0 (,0]] = BIUF (7. = 0] (4.102)

From equation (4.70) (at 3 = 0) the Fourier transform from h to 7 is given by

™

1 )
Vii(w,7,0) = o~ / e MTUE (w, h, 0) dh, (4.103)

and the inverse Fourier transform from 7 to h by

1 .
Uii(w, h,0) = 271_/eZhTVﬁ((,u,T, 0) dr. (4.104)
Hence, from equation (4.98)
E|R . (w,o)Rg(w,O)] = / Wi (w,T,0)e™ dr. (4.105)

4.4.1 Analytical Transport Equation Solution for L. — oo

In the case for an infinite propagation distance (L — oo) the derivative OW,/0z3 = 0

(since the slab occupies the entire half space W, is insensitive to 3 [26]) so from equation
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(4.99)

oW P
o 20Le

™ <W;il + W2, — 2wg°> . (4.106)

Let the non-dimensional terms be defined as

. x3+L T VNV]?O (7,23)
(e I N R R Vi ¢ TSkt 4107
’ Lioe(w) ¢Lioe(w) b ¢ Lioe(w) ( )
The scaled, dimensionless transport equations (4.106) can then be written as
8WOO P (500 YA 700 YA 70O
with solution
— 2p7(P—1) ~
Hence, for p = 1 (as required in equation (4.105))
lim W (w, T, x3) = 20Lioc(w) 1(0,00) (7)- (4.110)
L—oo T (20 Lige(w) + 7)2 75

4.4.2 Probabilistic Framework for Transport Equations

Equation (4.99) is a forward Kolmogorov equation and in order to use the solution theory
[26] (p113), this equation needs to be transformed to a backward Kolmogorov equation.
The adjoint of the operator (2¢pd/071) is (—2¢pd/0T) so the backward Kolmogorov

equation is

oW, oW,
-2 P=(C 4.111
om0 = (L), (4.111)
subject to the terminal condition W,(x3 = —L) = 6(7)19(p). The left hand side of
equation (4.99) can be written as a total derivative via
aw, oW, Ot OW,
— = — 4.112
dzxs (w3, 7(3)) dxs3 + Oxs Ot~ ( )

182



and so 07/0x3 = —2¢p. Define the continuous time jump Markov process [75] as Ny,
equipped with a state space which is the integers N paired with the infinitesimal gener-

ator Lyy from equation (4.100). Define the second Markov process 7,,, then via (4.112)

0Tz,

= —2¢pN, 4.11
8133 ¢p T3 ( 3)
where the terminal condition is now 7, (z3 = —L) = 7. This implies that
xs3 T3
/—L dTey = _2¢p/—L Nxé dxg
z3 3
/
|:7;33:| . = —2¢p /;L Nzé dxsy, (4114)
and so
a3
Tog =T — 2<bp/L Ny, d’s. (4.115)

Equation (4.99) can be written OW, /0x3+L(W,) = 0 where L = —2¢pd/01 — (L),
subject to the terminal condition W, (z3 = 0) = U(p, 7) = 10(p)d(7) where the Markov
process Y (x3) = [Ny, Tazs] = [p, 7] at 3 = —L. Equation (4.99) then has solution [26]
(eqn. 6.11)

WP(Ta 2133) =K |:U(NIE37 7;63)

Nx3($3 = _L) =D 7;3(533 = _L) = T:|

3
E [U <Nx3,7' - 2(;5p/ Nxédxgl) ‘Nx3 (x3 =—L) = p} . (4.116)
—L

This solution can be justified by using the martingale representation ([26] Appendix
6.9)

M('T?)) = WP('TZ’H NI3($3)’7;63(‘T3)) - Wp(_Lv Nxs(_L)77;3(_L))

_ / <ai§, n L;)wp(s,zvxé (5), T (5)) ds. (4.117)

—L
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Then

M (23) = Wy(23, Nes (23), Tas (23)) — Wy(—L, Nuy(—L), Toy (— L)), (4.118)

as the integral is zero. So the martingale at x3 = 0 is

S
—~
=

[
I
=
=
5
S
=
o

5(0)) = Wy(—L, Npy(—L), Tgs (—L)). (4.119)
The martingale property

E[M (x5 + h)|Y (23), 25 < 23] = M(z3), h >0, (4.120)
implies that, by taking expectations, gives

]E[WP(Ov Nx3 (0)7 7;3 (0))|NJ»‘3 (xé)v 7;53 (xg)v ‘Té < 0] - Wp(_L7 Nx3(_L)v 7;33(_[/))
= Wp(0, N5 (0), T3 (0)) = Wp(—L, Ny (L), Tuy (—L)), (4.121)

Wi (0, Na (0), Ta5 (0)) = Et( N5 (0), Tag (0)) [ Nag (3), Tag (w3), 23 < 0. (4.122)

Using the terminal condition Wy (0, Ny, (0), Tz4(0)) = U(Nzy(0), T2,(0)) admits the so-

lution
Wp(ov NIES(O)v 7;63 (0)) = E[U(N:ch,a 7;03)|Nx3(_L) =D, Es(_L) = 7-]7 (4'123)

as shown in equation (4.116). Using the terminal condition U(p,T) = 1o(p)d(7) and

integrating equation (4.116) with respect to time 7 at x3 = 0, gives

1 1 0
/ Wy(w,7,0)dr = / E [U <Nw3 0), 7 — 2qz5p/ Ny, dxé) ‘Nzg(—L) = p} dr
T0 T —L

0

T1 0
= / E[lo(p)5(7' — 2¢p/L Ny, dxé) ‘Nx3(—L) :p] dr
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0
= }P(NIB(O) =0, 2¢p/ ng dxg S [7‘0,7‘1]
-L

Nay(—=L) = p>,

(4.124)

where the expectation of the indicator function has been exchanged for a probability.
Equation (4.124) can be used to calculate values for W, (w,7,0) using a Monte Carlo
technique. Using the Gillespie algorithm [52] at state p a random clock with exponential
distribution and intensity parameter 2p?/L;,. starts running. When the clock strikes,
the process jumps to state p + 1 or p — 1 with probability 1/2. The process counts
p = 0 as an absorbing state (the process stops), so Ny = 0. To compute this, a large
number of jump processes N, (trajectories) are generated (realisations) which are used

to compute the integral
0
20p / Nmé dxly,
-L

which has dimensions of time. This integral computes the lifetime of each jump process
before reaching the absorbing state. To compute a probability, the data is binned
into corresponding dr intervals. To compute the function W,(w,7,0) the values for
the probability are divided by the dr discretisation interval. = The limiting solution
(L — o0) provided by equation (4.110) is shown as the red line which is in good
agreement with the Monte Carlo solution (carried out using Python). Also note that
the Monte Carlo simulation is in agreement with this analytical result at 7 = 0. As the
frequency increases the localisation length equation (4.48) decreases so the solution for
Wi (w, 7 = 0,0) changes with the localisation length, and can be seen algebraically from
equation (4.110) which is in agreement with the Monte Carlo simulation. The drop off
in W) as 7T increases is expected as it is related to the recieved energy at the surface
from the incoherent wave and, can be seen from the form of the solution in equation
(4.124). Figure (4.3) shows the second moment Ws. Notice how for small values of 7
there is a peak in the signal, emphasising that a homogenisation approach here is not
valid and would not capture the physics of the multiple scattering interactions between

wave and medium. It is only for long times that the process starts to self average. The
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Figure 4.2: Plot of the frequency domain autocorrelation function of the reflection coefficient (which
is proportional to its mean intensity) Wi (w, 7, —L,0) (the Monte Carlo simulation is depicted by the
black dots, where each dot represents a realisation the of the solution Wi (w, 7, —L,0)) and the limit
case Wi°(w, 7,0) (red line) from equation (4.110) versus time 7 where ¢ = 1 and L, = 0.5.

Figure 4.3: Plot of the frequency domain autocorrelation function (second moment) of the reflection
coefficient Wha(w, 7, —L,0) (the Monte Carlo simulation is depicted by the black dots, where each dot
represents a realisation the of the solution Wa(w, 7, —L,0)) and the limit case W5°(w, 7,0) (red line)
from equation (4.110) versus time 7 where ¢ = 1 and Ljoc = 0.5.
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mean intensity of the reflected signal is then given by equations (4.60) and (4.105) to
be

I(t) = 4%2 / / / Wi (w, T, 0)‘ f(w)‘zeih(T_t) dwdh dr
! //Wl(w,T,O)ZW(S(T—t)‘f(w)‘dedT

s

= % /Wl(w,t, 0)‘f(w)’2 dw. (4.125)

4.5 Discussion

This Chapter presented a probabilistic description of a broadband ultrasound pulse
(multi-frequency) that has been reflected from a randomly layered and locally anisotropic,
solid material. Through the use of a diffusion approximation theorem, the moments of
the frequency autocorrelation function of the reflection coefficient were studied. The
reflected wave is key to understanding the scattered incoherent part of the elastic wave.
Formulation of the problem began in Chapter 3, where the SDE system for the prop-
agator equations presented a route to deriving a Ricatti equation for the reflection
coefficient. The analysis then considered the frequency autocorrelation function of two
nearby frequencies which produced a tractable system of SDE’s via the use of a dif-
fusion approximation theorem. The diagonal elements of the evolution equation for
the autocorrelation function were then studied analytically. The solution to this equa-
tion satisfied a transport equation, which was framed in a probabilistic setting and
was solved using a continuous time jump Markov process. Furthermore, the case for
an infinitely thick component (L — o) of medium was studied, and analytical solu-
tions for the autocorrelation function were presented. Comparison was made between
this analytical solution and the numerical simulation of the transport equations, via a
Monte Carlo technique. The numerical and analytical solution were in good agreement
with one another, which is shown in Figure 4.2. Figure 4.3 shows the second moment
Ws(w, T, —L,0). The variance rises to a peak for small time values and it then takes
time to gradually asymptote down to a low level. This is further evidence that a ho-

mogenisation approach is not appropriate for randomly layered media, as the variance
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in the signal due to interactions between the wave and the medium are significant.

The analysis presented here is relevant to NDT engineers who wish to study the perfor-
mance characteristics of imaging algorithms when using ultrasonic waves in randomly
layered elastic media, such as welds or additively manufactured metals. This work could
also be used in finite element codes where one wishes to estimate attenuation factors in
randomly layered media without the computational expense of explicitly including the
physics of the multiple scattering interactions between the layered geometry with the

input wave in the simulation.

The next Chapter follows on from the analysis here, studying a broadband pulse via an
extended line source along the xo axis. The reader will become aware of the importance
of studying the frequency autocorrelation function (and the transport equations) in
regard to obtaining analytical expressions for the reflected mean intensity in the coming

Chapter.
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Chapter 5

Moments of the Reflected Intensity

of a Line Source
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5.1 Nomenclature

Parameter Equation

! Lumped parameter . ... ... ... ... .. ... . .. [M—1LT?| (5.30)
o) Lumped parameter . . ... ... ... ... . ... .. [M~1LT?| (5.35)
g Lumped parameter . ... ... ... ... .. ... .. [ML~3] (5.31)
B Lumped parameter . . . . . ... .. ... ... ... [ML~3] (5.36)
0% Correlation integral . . ... .. ... ... ... .. ... [L] (5.99)
" Lumped parameter . . ... ... ... ... . ... .. [MY2T1/21,-2]  (5.41)
Yo Lumped parameter . . . ... ... ... ... ... ... [M~1/2T73/2) (5.42)
ry Lumped parameter . . ... ... ... ... ... .. .. [TL~1 (5.71)
Iy Lumped parameter . ... ... ... ... .. ... . .. [TL (5.73)
Ay Lumped parameter . ... ... ... ... .. ... .. [TL™ (5.44)
Ay Lumped parameter . .. ... .. ... ... . ... .. [TL1 (5.45)
0 Dirac delta function . . ... ... .. .. .. ... . .. (-] (5.3)

€ Small dimensionless parameter . . . ... ... ... .. (-] (5.16)
¢ Slowness function . . ... ... ... ... [TL (5.32)
0 Rotation angle of material slowness surface . ... .. (-] (5.2)
6, Propagator function . . ... ... .. .. ... ... .. (-] (5.106)
0 Mean slowness angle . . . ... ... ... .. ... .. -] (5.11)
K1 Slowness vector component in x; direction . . .. .. [TL™ (5.16)
13 Velocity in xg direction . ... ... ... ... ... .. LT (5.8)
¢ Velocity (frequency slowness domain) in zg direction [L?] (5.16)
p Constant material density . . . ... ... ... . .. . . [ML~3] (5.1)
o Matrix . ... ... [l (5.134)
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?;

X(1,2)

Cijkl
Chpq
C66
C44
Ce6

C44

Stress in x3 direction

Stress (frequency slowness domain) in z3 direction

Power transmission coefficient
Non-dimensional time
Propagator function

Complex propagator functions
Propagator function
Angular frequency

Frequency slowness wave-mode
Frequency slowness wave-mode

Non-dimensional paramater

Stress tensor

Correlation integral

Stress term

Stress term

Stress term

Stress term

Strain tensor

Forcing function

Input wave

Propagator function

Vector

Vector

Vector
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T~
[M1/2T-1/21)
[M'/2LT—1/2]
-]
[ML—'T2|

[

[ML-'T2|
[ML—'T~2|
[ML-'T2|

[ML~1T2]

(5.10)
(5.11)
(5.12)
(5.4)

(5.15)
(5.16)
(5.77)
(5.79)
(5.79)

(5.79)



3
Up,q
VP’(]

VE

p,q

Random matrix . . .. ... ... ... . ... . ... (]
Slowness value . . . . ... ... ... ... ... ... [TL—Y]
Localisation length . . . . ... ... .. .. ... .. .. (L]
Radial infinitesimal generator . .. . . ... .. ... . [—]
Propagator matrix . . ... ... ... .. ... .. ... [—]
Block propagator matrix . .. ... ... ... ... .. [—]
Reflection coefficient . .. ... ... ... .. ... . [—]
Symmetry axis vector . .. ... ... [—]
Transmission coefficient . . .. ... .. ... ... ... [—]
Time . . .. ... [T]
Product of reflection coefficients . . . . .. ... .. .. [—]
Displacement vector . . .. .. ... (L]
Limiting solution function . . . ... .. ... ... ... (]
Scaled Fourier transform . . ... ... . ... . .. .. []
Mean shear velocity . . ... . ... ... ... .. .. [LT-Y
Transport equation solution . . . . . . ... .. . .. [T~
Non-dimensional transport equation solution . . . . . [—]
Non-dimensional space . . ... ... .. ... .. ... . [—]
Slowness . . . .. ... [TL™Y
Frequency matrix . .. ... ... .. .. ... ... .. (]
Length . . . . ... ... .. .. ... [L]
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5.2 Introduction

This Chapter studies the regime where the propagation distance L is much larger than
the wavelength Az of propagation which in turn is much larger than the layer sizes [
(L > A3 > 1) and the fluctuations in the material properties are order one. This
regime is introduced in Section 5.3. Using the same approach as in Chapter 4 via a
set of transport equations, the focus is to study a broadband, high frequency ultrasonic
point source and derive an expression for the reflected intensity as a function of the

lateral direction z7.

Section 5.3 introduces the governing equations in the strongly heterogeneous regime for a
broadband pulse. Section 5.4 derives expressions for the broadband frequency pulse and
then derives an expression for the localisation length - a key parameter in characterising
the attenuation of the wave. Sections 5.5 and 5.6 derive transport equations which are
then used to obtain an expression for the reflected intensity of the wave as x; varies;
plots are then presented showing how changing x; affects the reflected intensity. An

overview of the results are then presented in Section 5.7.

5.3 Governing Elastic Wave Equations in the Strongly Het-

erogeneous Regime

The governing elastodynamic equation can be written
pui e = Tikk + F, (5.1)

where the displacement vector u; in the " direction is u(t, z1, x3) = u(t, x), the density
of the material is p (assumed to be constant), 7; is the material stress tensor and F is
the forcing function. The elastic tensor for a transversely anisotropic medium has five in-
dependent stress tensor components (in Voigt notation) namely Cy1, Cs3, Cy3, Cgg, Cuq

with s = (s1, 2, $3) as the symmetry axis vector defined by

s = (cosf(x3), sinf(x3), 0)T, (5.2)
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where 6(z3) is the angle of anisotropy which is related to the slowness surface of the
material which varies in z3 (from layer to layer). The stress tensor can then be written

[36] as

Cijkl :(A — QN)(SU(SM + N (6¢k5jl + 5il(5jk)
+ (F — A+2N) (0i5SkS1 + 0k15iS;)
+ (S = N) (dirsjsi + 6qsjsp + jusis + 6j15:5k)

+ (A+ C —2F — 45)s;s55151, (5.3)

where A = Cs3, C = C11, F = Ci3, N = Cy4, S = Cgs when 6 = 0. The elastic tensor
relates the symmetric strain and stress tensors via Hooke’s law, where the symmetric

strain tensor is given by

et = (uk + urk)/2. (5.4)

Focusing on shear wave propagation in the (x1,x3) plane, the wave parameterisation

Uj = (07u2($17$3)a0)7 (55)

gives the set of governing equations (with § = ug ;)

Tt = C66&,1, (5.6)

T32,t = C44§.3, (5.7)
and

P&t = To11 + Ta2,3 + Fo. (5.8)

Given the wave displacement parameterisation (5.5), the only non-zero stresses are

c2121 = c1212 = ce6(x3) = S+ (A+ C — 2F — 48) cos” (0(z3)) sin® (0(3)), (5.9)
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C3223 = (3232 = 644(1'3) =N+ (S — N) sin? ((9(1‘3)) (5.10)

Now consider the length scale regime where the received wave exhibits many fluctua-
tions over a long time period caused by its convoluted journey through the heterogeneous
medium. In this case the wave is so affected by its interactions with the medium that
a homogenisation approach is inappropriate. This can occur when the propagation dis-
tance L is much larger than the wavelength (\3) of propagation which in turn is much
larger than the layer sizes | (L > A3 > [) and the fluctuations in the material (the
percentage change in mechanical impedance from one layer to the next is significant) are
order one; the so called strongly heterogeneous regime [26]. In this regime a large prop-
agation distance is required to build up significant multiple scattering. From equations

(5.9) and (5.10), define the mean stress tensor components

ée6 =S+ (A+C —2F — 45) cos® (07)sin2 (9), (5.11)

¢ = N + (S — N)sin? (), (5.12)

where 0 ~ 1. Equation (5.7) suggests that the random variation in the c44 elastic tensor

component is expressed in terms of its reciprocal via

L _ ) ag(tmles/s?) if o3 € [~L,0], (5.13)
caa(s) 1 if 23 € (00, L) U (0, 00). |

Ca4

and from equation (5.6)

666(1+m(x3/52)) if x3 € [—L,O],
066(333) = (5.14)
Ce66 if x3 € (—OO, —L)U (0, 00),
where a matched medium sandwiches the random medium - that is, the random medium

x3 € [—L,0] is sandwiched between two half-spaces (see Figure 5.1) with mean elastic

properties ¢44, o6 and constant density p. The Markov process is denoted by m (the
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same form as in Section 2.8.1). The source term is written

Fe = <0,5qf C)é(i}) 5(x3),0>, (5.15)

which is a line source along the x5 axis. Applying e-scaled Fourier transforms of the

governing equations (5.7) and (5.8) via

€ (w, k1, x3) —/ /ei?@—ml)gf(t,xl,xg)dtdxl, (5.16)
751(w, K1, 23) / / R rs (4, xs) diday, (5.17)
Tao(w, K1, 23) / / R re (4, xs) diday, (5.18)

with inverse transforms

£ (t, 21, x3) / / e MBI (4 ko1 1y )w dwdy, (5.19)
w
751 (L, 21, 23) / / IR RmPO RS (W, Ky, 23)w dwdk, (5.20)
w
T5o(t, 1, T3) / / %(t_mxl)%gz(w,m,azg)w dwdrk . (5.21)
w
The governing equations become
iw w
——fy1 = —K1ce667, (5.22)
€ €
iw oEe
—— 75 = ) 5.23
- oo = 0446 3 ( )
o7s -
e 2 P (w)d(ws), (5.24)

where the unscaled Fourier transform is denoted by

flw) = / e f (u)du. (5.25)
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Eliminating 75; from equations (5.22) - (5.24) gives the reduced system

OF | iw . _
8.%'3 66447_32 -
o7& w - o
873; + (P — /’v%%‘e) £ = 12 f(w)é(ws3).

The continuity of stress and velocity at x5 = 0 produce the jumps defined by

[72;2]0 = A?fQ(wv K1, 0+) - 7:??2((")7 Klao_) = —Ef(OJ),

[€%]0 = éa(w’ K1, 0+) - éa(w, k1,07) = 0.

To simplify the algebra

1
caa(z3)’

a(rs) =

B(w3, k1) = p — Kicgs(w3),

((w3, k1) =/ B(w3)(x3),

are defined. Let

e = 5[ 7e 71@)513 e iwfz3
& (w, k1,m3) =/(/B| b (w, k1, 23)e” = —a°(w, k1, x3)e = |,
e = = e _iwfacg, ne iwf:c3
Tio(w, k1, w3) = 1/ B/C( b°(w, k1, 23)e” = +a°(w,Kk1,73)e = |,

where

QI

C44

)

_ .
B = p — K1Ces,

_:\/%’

Iy

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

are the effective material properties, with ¢44 and égg defined in equations (5.12), (5.11)

respectively. These expressions will be used in Section 5.6 to derive an expression for

the temporal /spatial distribution of the stress at the surface due to the reflected wave.
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The right and left-going waves are then

©(w, Kr, 73) <M732 \Fg) (5.38)
b (w, k1, 23) = <\/§/7ﬁ732+\/7 5€> (5.39)

Taking derivatives in 3 and using equations (5.26) and (5.27) gives

O T s P Y AT S AT e
:1< \/i@g \/>WT32> N MC(\/C%TM \/75)
(-G ) ()

(71(903)58(007 k1, 23) -+ 2(3) 5 (w0, R, x3>), (5.40)

W

2e

where

T (x3) = —\/¢/BB+ ¢y B/C, (5.41)
Ya(3) = ar/B/¢ — 4/ C/B. (5.42)

Using equations (5.33) and (5.34)

aAE iwlx iwlx
8@ = ;w (’Yl 23)1/C/B (bae_ S —ate 3)
T3
— —f A iwlx iwlx iwx
+ yo(z3) 5/c<bfe—e e 3))6_5 :

- ;‘;(( —71\/</>ﬁ+72\/ﬂ7c>a5 + (71\/07+72\/ﬂ>/g“>e2i“513 BE), (5.43)

where

M C/B+72y/B/C=(C/B)B — ¢+ a(B/C) = C = B\/a/B + ay/B/a—2\/aB = Ai(as),

(5.44)
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and

(/a3 + B/ )5 = (= 8018 + C - al3/0) — O )5

Then equation (5.43) can be written
a&a 1w 2iwgta:3 ~
A A = b ). 4
o = o (M1l + Aafan)e ) (5.40

Similarly, the backward mode evolution equation is obtained from equation (5.39) and

equations (5.26), (5.27), (5.33), (5.34)

aba 1< 3 3732 a&) ity iwG ( JCTB@ N \/“ §e>
—3(- \ﬁﬁsa e 3g+“<<\/§75%§2+\/67555)e
- 2 ((ev/Brc-sycis)é + (cy/rp - ay/aic) )
(’n 3)6° — (w3 732>
(
(

)

zw(mg

_ iwC iwlx —  —f A iwCx iwl iwlx
" /5(1}86_ = —dgesg> - B/C(bge_ o —i—daesC))esg

( 'Yl\/% 72 ﬁ/C)aerzs ( /B = B/f)ff)

2'Lw<zg

W
T2
Tw
T2
W
?

25 < Ag(xg) E — Al(fl,’g)b ) (5.47)

The continuity of stress and velocity at x5 = 0 produce the jumps defined by

[F5alo = 7a(w, k1, 07) = 75(w, 51,07) = —ef(w), (5.48)

(€0 = & (w, k1,07) = £ (w, 51,07) = 0. (5.49)
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a(w, — L) = 0 (Radiation condition) a(w,07) I;(w,0+) = 0 (Radiation condition)
_
b(w, - L) b(@,0) a(w,0)
- —e
N /§ource
/T\.
X3 = - L x3 = 0

Figure 5.1: Boundary conditions for the a°, b° wave modes in the random medium zs € [-L,0],
where the source is F at x3 = 21 = 0.

From equation (5.38) the jump at z3 = 0 in the right-going mode is

[0%)zg=0 = @°(w, k1,0") — a°(w, K1,07)

( B, (01) — \/>g€ 0") ) - <m732 \/>§€ )
\/>Tsz Jas=0 — B/f[fs]x?,:o- (5.50)

Using equations (5.48) and (5.49) then

SONGE]

5 (5.51)

(@40 =

Similarly, from equation (5.39), the jump in the left-going mode is

[05)2y—0 = b°(07) = b5(07) = 1(«/ /B175,)0 + 1/ B/C[€°] ) (5.52)
_Ef(w)vg//g' (5_53)

2

Hence, by imposing a radiation condition of b (w,0%) = 0 in the right-hand half-space

(see Figure 5.1)

b (07) = el @)VC/B VE/B. (5.54)

2
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Similarly, a radiation conition for the left-going waves in the left-hand half-space is

i (—L) = 0. (5.55)

From equations (5.46) and (5.47) one may write the wave-mode evolution system as

O @) | dw | A Ape PR 65w, )
0r3 135((,0, "ilaxS) 2¢e _AQeinEzg,/s . 8&(00, I€1,LL’3)
af(w, K1, T
=H(w, K1,23) |, (, 1, 23) : (5.56)

b®(w, k1, x3)

where Tr[H®] = 0. The propagator matrix takes the form

X5 (w, k1, 23)  X5(w, k1, 23)
P (w, k1, 23) = T, Pas=-L0)=1, |x5|-Ix5l=1,

X%(wﬂilvxi))) Xi(wv’ilvx?))

(5.57)
and
at(w, k1, T af(w, k1, —L
)| e o e 0] 59)
b%(w, K1, x3) b*(w, k1, —L)

Note that the propagator matrix takes the solution at x3 = —L to some x3 > —L. This
is the same as Section 4.3.3 and, as the source is not at x3 = —L but rather x3 = 0,
it models wave motion moving towards the source (see discussion in Section 2.7). In
the next section this framework will be used to study the multi-frequency version to
facilitate the study of the autocorrelation of the reflection coefficients that are in the

subsequent sections. From equations (5.54) and (5.55) then

a(07) | _ [xi0) x50 | o
S = ) : (5.59)
SRR g0 0] [F(-L)

201



In Section 5.5 this will be used to establish forms for the reflection and transmission

coeflicients. Hence

1y = f@VC/B
2xi(0)

R ONE.

5 oy (W, K1, T3), (5.60)

Be(wv K1, —

where the transmission coefficient is defined as

1

Xi(w, K1, 3)

T35 ey (W, k1, 23) =

and so equations (5.57) to (5.60) imply the mode energy conservation relation

SONGL .

Using equation (5.57) implies that

ef(@)VC/B

2

2
. (5.63)

(o) + -] =

From equations (5.33), (5.55) and (5.60) then the transmitted velocity at x3 = —L is

é(ﬁl)gf(w)e—iwé(nl)L/aTe (—L,0), (5.64)

w,K1
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and from equation (5.34) the transmitted stress is

R I 2\ it

75(w, k1, —L) = Sef(w)e” ™ IVETE (- L,0). (5.65)
Now taking inverse Fourier transforms in time and space using

1 ) n
§(t, w1, 23) = o) / / e~ WtmRPI/E 2 (4 ey w3)w dwdky, (5.66)

with t = ¢y + es, being a time window centered on g (¢g is the mean arrival time given
by to = L3/v where © is the mean shear velocity given by © = \/¢44/p) and on the scale

¢ of the source pulse, with s being the time variable, then

fa(tO‘i‘ES,l’l, 27r€ // —iw(to+es—Ki1T1— Q(m)L)/aTé 51( L,O)
K1

( - ;(2) c f(w))wdwdm

// (w, K1, 8)dwdk1, (5.67)
K1

noting that there is no xo dependency and hence, only a double integral appears. Also,

the prefactor is 1/(27¢)? and the integrand has a factor of w.

5.4 A Multifrequency Formulation for a Broadband Pulse

Source

This Section focuses on studying the multi-frequency stochastic equations governing
wave propagation through the random medium. Since the source will be a broadband
pulse, it is necessary to study a discrete set of wavelength and slowness components,
where each component has an associated propagator equation. This formulation is key
to studying the frequency autocorrelation function for the reflected energy. Equations

(5.11), (5.14), (5.31) and (5.36) give

B(xs, k1) = p — Kices(T3)
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= p — Kiceo(1 + m(z3/e?))
=p— /@%666 — /1%6667%(3:3/52)

= B — Kwiceem(x3/e?). (5.68)
Equations (5.12), (5.13), (5.30) and (5.35) give

ales) = 511(1 4 mes/e?))
— a(1+ m(xs/e)). (5.69)
Equations (5.35), (5.36) and (5.44) give
Aulaso ) = [/ (5 = wewam(aa/)) +\//aal1 + m(za/e%) ~ 2 /a
<5 - H%C%)m(mzﬁ/ﬁz)

I
S ﬁ ﬁ
~ ~
= =1 =i

(p — 2rk7cgs)m(zs/e”)

Il
=

m(z3/e?), (5.70)

~—

1(R1

where

Fl(lﬂ) =1/ C_t/,é(p — 25%566)7 (5.71)

which has dimensions of slowness. Equations (5.35), (5.36), (5.45), (5.68) and (5.69)

give

Ag(z3) = —+/a/B(B — Kiesem(x3/e?)) + 1/ B/aa(l + m(x3/e?))
— —\JaB +\/a/Bricaem(ws/e?) + /aB + \/aBm(wa /<)
= \/a/B(kices + B)m(zs/e?)

= Fg(m)m(acg/EQ), (5.72)
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where

To(k1) = py/&/B. (5.73)

In this multi-frequency problem, for each discrete frequency w; where j = 1,...,m
there is a corresponding set of discrete slowness values /i{’l where [ = 1,...,n. To
simplify the notation, introduce the set of indices i = (j,1) where 7 = 1,...,m and

l=1,....,n=1[(1,1),(2,1),...,(m,1),(1,2),(2,2),...,(1,n),(2,n),...,(m,n)] where
|i| = mn. Equation (5.56) can be written for each (w;, k%) frequency-slowness pair as

1=1,... as

9 &€($3,/‘€Z‘1,wi) iw; @/ 2) Fl(/‘@i) 1—\2(,{%)6—21%5(53):53/5
= —mi\xr3/&e
Ors I;E(CC Kl w,) 2e 3 -T ( i\, 2iw;{ (K )3 /e -T i
3, R1,W; 2 51)6 1(’%1)
&6(:153,/&%,%)
>< ~ .
b% (3, kY, w;)
_ 1 c T3 T3 &6(1‘37"52‘1#*%)
= EH(wiﬁi) <€,m<82>> - ; , (574)
b (z3, kY, w;i)

where

e (:cg (x3>> ['1(kY) Do (1 )e—2wi(r})ws/= -
gl —,m| —= = ' L . . .
(wiw1) \ g g2 _F2(Kﬁ)e2zw¢C(nl)x3/s _Fl(l‘ﬁ)

The propagator matrix P (w, k{, r3) in equation (5.57) satisfies equation (5.74), hence

0 o 1 x3 3 i

%Pa(wa%’%) =M <€,m<€2)>P€(wz7ﬁﬁ>fE3)
iwt |10 o

B 275m($3/52)111(’611) P (W', k1, 3)

w <2w’f(/£’i)a:3> 0 1

+ 2—€m(x3/52)F2(ﬁ§) sin
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2wt (Kt 0 -1 o
(/2T cos <°“’<(”1)x3) P (i ki, )
€ € 1 0

= 1G<P5(wi,mﬁ,xg),m(x3/52),x3/s>, (5.76)

3

where 7 = x3/¢, so

G<P5(wi,n§,x3),m(:p3/5 x3/5>= ZQZ < $3/€)$3/5>hpP€(wiv’ilL$3)»

(5.77)
where o 12 are the Pauli spin matrices
0 1 0 —1 1 0
o1 = , oy = , O3= , (5.78)
10 i 0 0 -1
where
103 mFl(nll)
b= | oy | 8" (m7) = [ mDy(sd)sin (2 C(k})T) | (5.79)
-0 mDg (k) cos (2wiC(KE)T)

where j=1,...,m;,l=1,...,nand M =", my. To deal with the multi-frequency

problem in full, a 2M x 2M multi-frequency, multi-slowness propagator matrix is intro-

duced via
_P (wl,/ﬁ%,xg) 0 0 |
. 0
Py (z3) =
0
i 0 .. 0 P(wy, kM, as) ]
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where

and

That is

2e

U = mI(k])wihoP5 + mIy(k]) sin (2w Cx3/e)wih P§

+ mIy (k1) cos (2w (x3/e)wiha Py,

V = ml (kM) wyhoP5 + mIy (k) sin (2w (g /e)wprhi Py

+ mIy (k1) COS(QwMgl'g/z’f)thgP?w.

mI (k})w I 0| |ho
0 0
i 0 0] 10
-ml“g(/i%) sin(%)wll 0
0 0
i 0
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P (23)

€
M

(5.80)

(5.81)

(5.82)

(5.83)

(z3)



_mFQ(H%)COS(%)wll 0 ... 0 _h2 0
N 1 0 o . /|0 o0
2¢e
I 0 o] [0
+ ..
0 o |Jo 0]
L1
2e 0 0 0 0
0 0 mli(ky)wil] |O 0 hy]
0 0 1 [o
L1
2¢e 0 0
0 0 mfg(ﬁ{v")sin(%”fx?’)wMI_ 0
0 0 1 [o
L1
2¢e 0 0
0 0 mfg(ﬂ{”)cos(%)wMI_ 0

which can be written succinctly as

A

where

diag(Ul, . ,UM) s

mF1 (ﬁ{)wjhopi

+ mfg(ﬁ{) sin (2w;C3/e)wihy Pj

+ sz(ﬁ{) cos (ijéxg/e)wjthj,
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2 (3)
0_
wu(w3)
.
w(3)
0 0
0 h
.
P (x3),
0O 0
0 hy
(5.84)
(5.85)
(5.86)



for j=1,..., M. That is

[(wiI 0 ... 0]
B 1|0 0 "
Goprm@) =gl (9(°)h‘°) + gV +9(2)h(2)> A (23)
0 ... ... 0
+... (5.87)
0 ... ... 0]
o | <g(3M)h(3M) 4 gBMADRGM+) +g(3M+2)h(3M+2))’
€ 0 O
0 0 wad]
where
0 ... ... 0]
. ' i ifm=n=2j+1,
W) =" =0 i ifm=n=2j+2 (5.88)
. hy O
0 otherwise,
0 0 0
0 ... ... 0
1 ifm=2j+1,n=2+2,
W)= | T = i m =242, n =2+ 1, (5.89)
Do, hy 0
0 otherwise,
0 0 0
0 ... ... 0
] . i ifm=2j+1,n=25+2,
h(3i+2) — [ S Y 27 +2,n=2j+1, (5.90)
Do, hy, 0
0 otherwise,
0 o o
and so
g(?’j)(m, T) = mFl(&{), (5.91)
g%+ (m, 7) = mDy(k]) sin (2w;C (k1) 7), (5.92)
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g%+ (1m, 7) = mTa () cos (2w, (w])7), (5.93)

where m,n=1,...,2M. Hence
P 1 3M+2
9 Pi(@8) = 50 > Qarg® (m, RIS, (), (5.94)
p=0
where
(wI 0 ... 0]
0 WQI
Qy = (5.95)
0
0 ... 0 wyl
The correlation matrix C = (C ¢)p.g=0.... 3Mm+2 is (from [26] pp. 157)
Zo
Cpg =2 Zl;r_r)lo Z / / [ ),7)g\D (m(x3), 'r)} dxsdr, (5.96)

which is diagonal given the orthogonality of cos (2w;{ (HJI)T) and sin (2w;¢ (m{)T) and

the periodicity of Zy. Now calculate the elements of the correlation matrix

Coo =2 lim — /0 OOE[m(O)rl(mg)) (g:g)rl(nl)} dasydr

AR
= 2r3() [ Bim(O)m(as)lda;
= T3 (s9), (5.97)
Cor =2 Jim_ Zlo / TE [m(())rl(,{g)m(xg)m(ﬁ}) sin (2w1§7')] dasdr,

—0, (5.98)
since Zy = 7/(wo(), and fOZO sin (277 /Zy)dT = 0. Next

C11 =2 lim Zi /OO E[m(O)Fg(m%) sin (2w1CT)m(x3)Ta (k1) sin (2w1g77)] dxsdr,
0—)00 0
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since fOZO sin? (277 /Zo)dT = Zo/2, then

C1y =T3(k}) /OOO E[m(0)m(x3)]drs = F%(g%)vy
where
y=2 [ Elm(O)m(e)ldzs (5.99)

In a similar way C17; = Cs, and in fact

L3 (k)Y

3o =T36D) [ Bim(O)m(aa)ldes = 22

Hence
5
Clpg = 274 (5.100)

From [26] (since C4° = 0) P, converges in distribution (as ¢ — 0) to

3M+2
dP5(x3) = > /Cppuh PPy o dIW,(3), (5.101)
p=0
SO
M M
. I . ___
dPM(:L‘g) = g Z FlﬂMh(?’])PM(ZL‘g) o de(.’L‘g) + 22\/\? Z QMh(?’J"Fl)PM(l‘g,) o de(l’3)
j=0 j=0
M
QbGP (23) 0 dW (23), (5.102)

where W;, Wj and de with (j =0,..., M) are 3M +1 independent standard Brownian
motions. The block structure of Py (z3) from (5.80) shows that for each (w7, Iijl) pair
J

the matrix P(w’, k7], x3) satisfies the stochastic differential equation

AP (W, K], x3) = \grl( NwihgP(w’, K, 23) 0 dWj(z3)
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+ £F2(K’1)wjhl (wja K{? 33‘3) © dW](l'g)

22
+£F (k) wihoP (W, K, )odw-(m )
2\/§ 2\hq )Wy 112 s vy, L3 7\L3)

where

: Xi(w, 5], 23)  X2(w, 7, 23)
P(wuﬁjlali?)): , j’ : j, ’ ’Xl‘_’X2‘21
X2(w”€17x3) Xl(W,/ﬁaxS)

Now parameterise the equations via

X1; = X1 (wj, Hji? x3) = cosh (6(wj, 5{7 x3)/2)€i¢(wj7’i{7x3)a

X25 = x2(wj, H{7x3) = sinh (6 (wj, ﬁ{,ws)/Q)e

Applying the chain rule gives two equations

ox1 ox1
dx1 = 89 ——db; + 8d> ——do;,

Ox2 Ox2 Oxe2
iy = gyl + A0y + Sy

That is
inh (6,/2 .
dy; = (Sm (;J/ )dej + i cosh (6, /2)d¢j>el%
h(6;/2 ,
dxs = (cos(jj/) + i sinh (6;/2) (dqﬁj + d¢j)> et (Witd;)

(¢(w] 7’%]1. 7$3)+¢(UJJ 7K‘{7x3)) .

(5.103)

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

From equations (5.78), (5.103) and (5.104) the stochastic differential equations for the

propagator matrix in Stratonovich form can be written as

_ I () _
g xe \f 1 /11 X2 o AW (z3)
X2 X1 X1
Iy 01 __
f 2 (] )w; X1 X2 o 1T (zs)
2\/5 L 0] |x2 Xt
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To(kw: |0 =1 Yo .
PRV Vi 22\(/’;1)“] MR o W ().
10 X2 X1

To simplify the algebra, introduce the constants

s (Vo
A=A = 7\ﬁ 12(Kl)w],
Lo (7 oo
) 2\/5
and simplify equation (5.111) to give
d X1 X2 — A, X1 X2 o AW (z3)
X2 X1 —X2 X1
X2 X1 o
+ AQ o o de({L‘g)
X1 X2
— iAg e o) dWJ(SCg)
X1 X2

Using equation (5.114) gives two coupled Stratonovich equations

Xm = iA1X1 o de (.%'3) + A2X2 o (dWJ (1‘3) + ide (1'3)),

dXQ = —iAl)(Q o de(%‘g) + A2X1 o (dW](xg) — ’LdWJ(.’Eg))

Using equations (5.105), (5.106), (5.109) and (5.115) gives

sinh (6;/2)e™% /2d0; + i cosh (6;/2)e'® de;

(5.111)

(5.112)

(5.113)

(5.114)

(5.115)

(5.116)

— iA; cosh (0,/2)€'® o dW;(z3) + Agsinh (8,/2)e %55 o (dW (x3) + idW (z3)).

Dividing by sinh (6;/2)e% /2 yields the equation

d0j + 2¢ coth (Hj/2)d¢j
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= 2’iA1 coth (%/2) 9] de (.%'3) + 2A2€iwj o (dWJ ($3) + ide (1‘3))
= 2iA; coth (0]/2> o de(xg) + 2A2(COS (ij) o de (1’3) — sin (1%) o de (1’3))

+ 2i Ay (sin (1;) 0 dW (23) + cos (v;) o AW, (x3)), (5.118)
and separating real and imaginary parts gives the equations

df; = 2A5(cos (1) o AW j(x3) — sin (1;) o dW;(x3)), (5.119)
dp; = Ay 0 dW;(z3) + Aa(sin (¢) o dW (z3) + cos (1) o de (x3)) tanh (6;/2).
(5.120)

Next, applying the chain rule gives

Oz gy +%dwj 822

dx2 = a6, o0,
= (; cosh (6;/2)df; + isinh (6;/2)dv; + isinh (6;/2)d¢; > (Wites)  (5.121)

do;

SO

df; + 2itanh (0, /2)(dv; + de;)

= (—iA; sinh (,/2)e’ (V5 +95) o dW,(x3) + Az cosh (0;/2)e'i o (dWj(z3) — idW; i(z3)))
2e_l(wj+¢J)

X o 6,7 (5.122)

which implies that

do; + 2itanh (0;/2)(dv; + do;)
— —2i A, tanh (0;/2) 0 dW;(x3) + 2Age™"5 o (AW j(x3) — idW;(x3))
= —2iA; tanh (0;/2) o dW;(x3) + 2A45(cos (¢;) — isin (¢;)) o (dW j(x3) — ide (x3))
= —2iA; tanh (9]/2) o de (333) + 249 ( CcOs (wj) o de (m'g) — sin (wj) o de (1‘3)
- i(sin (1)) o de($3) + cos (¢;) o de($3))>,

(5.123)
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hence

dy; + d;
=—As ( sin (¢;) o dW j(z3) + cos (1) o de(mg)) coth (0;/2) — A1 o dWj(x3).
(5.124)

Now, subtracting equation (5.120) and using the identity 2/ tanh (6;/2) = coth (6;/2) +

tanh (0;/2) gives the equation

dp;j = —2A1 o dWj(x3) — <sin (¢j) o dW ; + cos (0,/2) o de(m3)>. (5.125)

24,
tanh 0;

Combining equations (5.119), (5.120) and (5.125) into matrix format gives

b A; Apsin(¢)) tanh (6;/2)  Agcos(¢;) tanh (6;/2) Wi(z3)

d ;| = |—-241 2Assin(¢;)/tanh6; —2Ascos(¢p;)/tanh (0;)| od | W (z3)

0, 0 2 A, cos (1h;) —2Ay sin (1) W;(z3)
(5.126)

Now compute the modified drift to transform the equation from Stratonovich into Itd

form via
13
di = 5 z; O-jpo-ip,jdx& 1= 1, 2, 3, (5127)
j=
which gives
ds = 0, (5.129)
2A3
ds — 2 5.130
> tanh (6;) ( )

Introducing the auxiliary processes

AW (23) = sin (¢;)dW j(z3) + cos (;)dW;(z3), (5.131)
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AW™*(z3) = — cos (1;)dW ;(x3) + sin (¢;)dW; (x3), (5.132)

system (5.126) in It6 form can be written as

¢j Aq 0 As tanh (9]'/2) Wj (xg) 0
d ;| =|-241 0  —2Ay/tanh ()| d | Wi (xs)| + 0 da3.
0j 0 —2A2 0 W;(ﬂj‘g,) QA%/ tanh (QJ)

(5.133)

Now use system (5.133) to compute the infinitesimal generator for the processes (¢;,v;,0;),

where
Aq 0 Ay tanh ((9j/2) 0 (f)j
o= |-24; 0 —2Ay/tanh(9;)|. b= 0 s =
0 24 0 2A%/tanh (0;) 0;
(5.134)
via
3 3
1 0? 0 .
£(¢j,¢j,9j) = = ;1 Zja aCC] + ;bzaxz, aij = O’dejk, (5.135)
where

A2 4 AZtanh (0,/2) —242 — 2432 0)/2)

2 tanh (6;)
_ 2 2 tanh (0;/2) 2 442
a=|-2A7— 2A2W 4A7 + — (ej)Q 0 |. (5.136)
0 0 4A3

The infinitesimal generator can then be written as

1 0” d? 02 92 o
Lip;;,0;) = <a11 ¢2 + 2a128¢ﬂﬁ] + a3 ¢2 + as3 892) + bS%' (5.137)
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To study the transmission and reflection coefficients, the infinitesimal generator for 6 is

ass 32 0
=B
£ =5 a0 00,
0? 1 0
*\ 062 " tanh (6,) 09,
SRLE LIS Y (5.138)
4 89]2 tanh (93) 69] ’

which could then be used to give a Fokker-Planck equation to study the probability

distribution of the process 0;.

5.4.1 Deriving the Localisation Length

Now use equation (5.120) and integrate in x3 along the length of the random medium

L, to obtain
0 0 0
/ dé; = Ay / AW, + Ay / tanh (6;/2)dW?, (5.139)
-L -L -L
S0
0
65(0) = ALTV;(0) + Ao / tanh (6;/2)dW?. (5.140)
-L
Since
d 1 tanh (z)
— = — 141
dx <cosh (x)) cosh (z)’ (5.141)
then
1 _ tanh(0;/2) ‘
d(cosh (Hj/Z)) ~ 2cosh (6;/2) o b,

tanh (6;/2) —~ 2A2
= ——— —2A i —_— . 142
2cosh (0;/2) ° 2dW(rs) + tanh (Hj)dxg’ (5.142)
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Equation (5.142) is in the form
dy = ydzx, (5.143)
where

N 2
y =cosh™t(0;/2), z= —% tanh (6;/2) ( — 2A2dWj(x3) + 2A2da:3>, (5.144)

tanh (9])
and so
y=y-re’, bOj(xs=-L)=0, y_p=-cosh(b;(—L)/2) =1, (5.145)
SO
! expd A / " fanh (0,/2) o dW* — A2 / ? tanh (6,/2) ) (5.146)
cosh (6,(0)/2) P12 _L / J 2 J_, tanh (6;) s
Defining

0 = O tanh (0,
Z(0) = In (cosh (8;(0)/2) ") = Az/Ltanh (0j/2) 0 dW](x3) — A%/L deg

0 1 —~ A2 0

_r 2 J_g
(5.147)
convert this equation into Itd form via
27\ Oa 2Z\—1 27
a= Az(l —e*?)2, a—Z:—Ag(l—e ) 2e”, (5.148)
where the drift term is
a da A2e2%
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Now writing

NI

0 . 0 A2 0 A2 0
Z(0) = Ag/ (1—e2%)2 o dW(x3) — A%/ dxz + 2/ e*Zdxs — 2/ e* 2 duxs
I ! L 2 /1 2 )1

0
1
= AQ/ (1— €2Z)§ o dW}(x3) + AL, (5.150)
L

implies that

1 0 —
W = exp{Az /—L tanh (6;/2) o dW;(x3) — A%L}. (5.151)

The transmission coefficient is written (from equations (5.107) and (5.120)) as

1
! x1;(=L.0)
€%

cosh (6;/2)

0 0 .
= exp{iAle (0) + iAg/ tanh (9]-/2)de*(:B3)} exp{Ag/ tanh (0;/2)dW} — A%L}
L L

O —
= exp{iA;W;(0) — A5L} exp{Ag / tanh (6;/2) <dW; + idW;) }
L

=T, iy (“L,0)M, i (=L, 0), (5.153)

where
T(WMJ-)(—L, 0) = exp{iA;W;(0) — A3L}, (5.154)
My, oy (~L,0) = exp{A2 /_ OL tanh (6;/2) (dﬁ/j* + ide*) } (5.155)

Since

1 0 .
cosh (6;(—L)/2) :eXP{A2 /_Ltanh (6/2)dW; —AéL}, (5.156)

the power transmission coefficient is

cosh (;(0)/2)?
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= exp{—243L}, (5.157)

and since T ~ exp{—L/Lloc(wj, /@{)}, then

1

Lloc(wja ﬁjl) = @7

(5.158)

(which characterises the decay of energy in the coherent wave) so the infinitesimal

generator (equation (5.138)) can be written as

1 0?2 1 0

Ly =— =+ —7 |- 5.159
b3 Lloc(wjv K,]) <8«9J2 tanh (9j> 8(93> ( )

The tools required to describe the full multi-frequency problem have now been derived.
The multi-frequency propagator formulation will allow for a study into the statistics of

the reflected wave in the next section.

5.5 Statistics of the Reflected Wave

From equation (5.15) the forcing function is written

F© = (0, el f <z>5<?>5(m3), 0>

- (o,gﬁlf(z) §(z1)8(x3), 0). (5.160)

Setting ¢ = —1 means that the forcing function F¢ (5.160) reads

re = (0,72 ot 0).

= (O,f(u)d(a:l)é(mg),O), (5.161)
where u = t/e, so
/00 £2f2(u) du < . (5.162)
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From equation (5.51) the wave mode boundary conditions are
[a‘a(w? K1, x3)]$3:0 = da(w7 K1, 0+) - da(wa K1, 0_)7
which are related via equations (5.33) and (5.34)

ée(w,ﬁl,xg) = W( f(w, k1, 23)e —iwCz3fe _ ds(w,f€17$3)eiw5$3/s>7

75o(w, K1, 23) = B/E(I;E(w, K1, xg)e_iwgm/a + a° (w, K1, xg)eiw<x3/€>.

The jump at z3 = 0 can be written as

[a° (w, K1, 23)]|z5=0 = —5];(W) \/%7

which can be used to obtain the wave-mode equations

~ 1 ZUJiT

a(w, k1,x3) = B <\/C/ﬂ7’32 w, k1,23) — A/ B/CE (w, Ky, a3 > Cma/e,

7 1 [ 72 [ 21 7¢ iwle

bs(wv’i17x3) = 2< </57—3E2(w7l€17$3)+ 6/C§E(wa/€1)x3)>e ¢ 3/57
Similarly, the boundary condition for the backward modes gives

SN

2

[[;g(wa %1,$3)]x3=0 = -

From the boundary conditions (see Figure 5.1)

ga(w’%o—) EJEL VE/B

- 2

(5.163)

(5.164)

(5.165)

(5.166)

(5.167)

(5.168)

(5.169)

(5.170)

From the boundary value problem (5.59) together with the boundary conditions in

Figure 5.1, the wave-mode boundary conditions can be written as a system of equations

#as=0)] _[ a0 ] _ [0 wo[ o
s =07)| [V o) GO |-
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Solving the system gives

65(_[/) _ Ef(uL\/E//B

260
_ fWIVE/B (—L,0), (5.172)

2 wj, K]

and

_ f@)VC/B E/BRs ;(~L,0), (5.173)

where the transmission and reflection coefficients are defined as

T (—L,0)=

UJJ,Hl

(5.174)

—
(=)
~—

X
=M

—
(=)
~—

><
N ™

R ,(~L,0) =

U.)],Hl

(5.175)

—
(=)
~—

<
= (0

Note that

d5(0+) — &8(0—) _ 5f(w)2\/ C/ﬂ
DVEPR, 41O <fw) /E7B

2 2

— W(}ge i(=L,0) — 1), (5.176)

2 w5,k

At 3 = —L, P¢ = I, so the initial condition for R?w,m,f L= 0. Using equations

(w,k1)

(5.56) and (5.58) gives

i X (w7’€17$3) X%(wvﬁly'x:i)
(9.%'3 i

€
1
XE(UJ, K1, $3) X (wa K1, $3)
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w A1 A2672iwc_‘r3/s Xi (wv K1, .%'3) X% (wv K1, .%'3)

2e _A262iw§x3/a —A, G (w, k1, 3) m
- Hfﬁhw)P?w:m)’ (5.177)

where Tr [H‘EH1 w)] = 0. The conjugate pair evolution equations then read

IV ; - _
ai; _ 120: ( _ X§A2€2’LWCI3E _ X§A1>7 (5.178)
Xy _ w(— TEA, o 2iwCas/e

The derivative of the reflection coefficient (5.175) is

Wwy _Tdg x5 dG

dzs X5 dzs  (x5)%dxs’

(5.180)

Now, using equations (5.178) and (5.179) one can obtain a Ricatti equation which is

written as

AR, i . o
d(T’?)l) — % <2A1R?LU,/{1) + (waﬁl))QAQeZzthC:c:s/E 4 A2€ 2zw<x3/5> ) (5181)

The product of reflection coefficients (which is of interest in order to study the autocor-

relation function of the reflection coefficient) are defined as

p q
U;,q(wv K1, by A, .%'3) = (R?w+sh/2,n1+€)\/2)) <R?weh/2,nls)\/2)> ; p.geN. (5'182)

In order to study the frequency dependent autocorrelation function for the reflection
coefficient, consider two close frequencies (and slownesses) w &+ €h/2, k1 £ eA/2. From

equations (5.35), (5.36) and (5.37)

— - — K2z
Clony = /77 = [,

223



SO

Clry £ 2A/2) = \/ p = (K1 £ €A/ (5.183)
C44

Taking an expansion in small € gives

— K2 c
Clky £eN/2) = 4| L L1C66 o 5<W> +O(e2)

C44 214 /P*giéﬁe
_ G\
=<<m>¢s<fﬁ6’_“ )w(s?). (5.184)
2¢44C (k1)

This means that the exponential arguments in equation (5.181) become

Qi(w +€h/2)§(l€1 +€/\/2)$3 _ 2i$3(w +€h/2) <C(I€1) _ é;EGG_Fclh > n 0(52)

e € 2¢44( (k1)
—ehCger1 A ]’L(‘T(Hl) B CeglR1N ) 9
4(,05445(/11) 2w 25445(/11) * 0(6 )

= s | (M) Tt 4 o),
44 1

= U 2iw1:3<

(5.185)

and in a similar fashion for the opposite sign

2i(w — eh/2)( (k1 — eX/2)z3 _ 2iw((k1)3 —i—iwxg( CoohiN hCWl)) +O(e).
g S

c14C(k1)
(5.186)

Taking a derivative in 3 (where w™®) = w + h/2, Iﬁgi) = K1 £e)/2) gives

oUs . iwHpUs_ s s
8;;:1 - 729817 = <2A§+>RZ(+) K + (RZ<+) n§+>)QA;F)@ZW(HCH)“/g + Ag+)e_2,w<+><(+>x3/€>

iw(TIplre _ _
w (Y A(— (Y F(—
_ PYpq—1 <2 A g*)Rs o (Rs <7))2 A g*)ef%w( 1y /e A §*)6+21w( )¢l ):Jc3/5>

25‘ w(*)ﬂgl w(*)#{

iwHpUe _ _ _
W PPp-1g (+) pe € 2 A () 2iwC(k1)x3 /e ihC (k1) T3 —iwEss k1 AT3 /(Caal(k1))
25<2A1 By pin T ) o) Ry e nimmEe T mstua A e

+ A§+) G—iné(lﬂ )Ig/ee—ihé(lﬂ ):l?g +iwcee k1 A$3/(E44§(51 ))>
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io(—) _ _ _
- }2?5;7(1_1 <2A5)RZ<> o R )2A§7)6_2“"4(””1)z3/seih<(“1)””3_i“E‘"’G”l’\xS/(E‘*“C(”l))

vVl vl

4 A;_)621"’-’6(”1)5’33/5€*ih6(’€1)x3+iw'566“1 )\xg/(C44C(I{1))> , (5 187)

which can be simplified to

oU: wpU:e - oz o -
Pq P p—1,q <2F m(l‘3/€ )UIO + U2 0F277’L(£C3/8 ) 21w§(nl)3:3/sezhg(ﬁ1)x3—2w066ﬁ1)\m3/(044C(/41))

afbg N 2¢e
+ F2m<w3/€ )6 21w((n1 xg/s 'Lh((nl)x3+zw066n1)\:vg/(044C(n1)))
qu <2F1m 133/5 U() . + U(] 21—\2m(x3/8 ) 27:0.]5(}{1)xg/eeihf(lful):ngiw(_lﬁﬁlﬁl)\223/(5445(/‘61))
+ F2m<1‘3/€ )6210.){ K1)z3/e zh{(m)91:3+w.;c66f<1)\903/(0444(:‘-61))>7 (5.188)

which simplifies to

oUs iwl 2
pg _ W 1(k1)m(z3/e )(pUE

o €
aIg € qu,q)

: 2 _ _
i ZCUF2(Hl)m(-’E3/€ )62iwC(fi1)a}3/€ ( U€+1 ezh((lil)173—iwéesnl)\xg/(&mg(nl))

2e
U;q— z‘hE(m)a:3+iwé6em>\x3/(544f('ﬂ)))
+ iWFQ(Hl)m($3/52)e—QiUJC(Hl)Ig/E( U; q ZhEZEQ,-‘r’l:UJE(;@K/l)\13/(5446(/41))
2e -
QUS i1 h¢(k1)T3— wc(aﬁmmg/(cmc(m)))’
(5.189)
with initial condition Uy ,(w, k1, h, A, 73,23 = —L) = 19(p)1o(g). Now introduce the

Fourier transform (A is non-dimensional and will be defined later in equation (5.223))

V;fq 1 2// —ih(AT—(p+q)z3((x1)) efAw(x (P+Q)06651$3)/(644C(H1))Ue dhd).  (5.190)
’ 78

Taking derivatives

Vo

_ & —ih(AT—(p+q){(k1)z3) LiwA(x—(p+q)z3tssr1/(Caal(k1)) =
a=n [ [ ‘ ih(p+ )C(m)U
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_iAw(p + q)Ceek e

oUe
+ p"’) dhd\

(k1) P4 O
. ~ idw(p + q)566/<:1>
= | ih(p+ K1) — — Ve
( (p+ q)C(k1) E44C(f€1) P,q
+ Aw//eih(AT(p+q)C(f€1)x3)ei>\w(x(p+q)066mfﬁ3/(044c(m)))aU;vq dhd\
47T2 8%3 ’
(5.191)
and
ove ) .
ﬁ = —ihAV;,, (5.192)
ove
Pq _
Applying the Fourier transform (5.190) to equation (5.189) gives
Vg _ P+ a)C(k1) Vg (p+a)Cssk1 WVig
o3 A or E44<(/€1) 8X
iwly (k1)m(x3/e?
b ml@s/e) g, — gy,
iwly (k1 )m(xzs/e2 o (o1 Ve Je - .
( )25( / )62 (s (p p+1,q_qV}D,ql)
il 2 -
n w 2(&1)2:&(,1‘3/6 )e—szC(nl)/Qa (pv;:_lyq _ quq+1>’ (5194)

and expanding the complex exponentials gives

V5 _ 0+ a)C(r1) Vg (p+ @)ssr1 Vg

Ors A or 5446(/61) ox
iwly (k1)m(z3/e?) - Ve,
B iwla(k1)m(xs/e?)

2w (K1)T3
22 0s ( - (qul)g,q—l +q pa,q+1 -bp p€+17q _p‘/;—l,q)

wla(k1)m(zs/e?) . (2w((k1)ws
+ % sin - (q‘/;qfl —PVpi1g — WVogr —|—p‘/;,€,17q).

(5.195)
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Equation (5.195) can be written as

O LR (P(as)m(zy) + G (P (xs), m(a3))
d.%'g 9 ’ , ,
where
(p+9)C(s1) Vg (0 + )61 Vg
G(at (), Y (w3)) = — T et ’
(2%(23), Y (23)) A or (k1) Ox
Now define
g\ = m(xs/e?),
9(2) = m($3/62) sin (2wé(/€1)$3/5)7
9(3) = m(x3/€2) CoS (wf(m)ﬂﬁzz/é‘),
F§)(X) = iwT1 (k1) (p — @) Vyg,
wl'a (kK
Fp(,?q) (X) = 22( 2 (@Vpa1 = PVoi1g = Vpgr1 +PVi14),
1wl (kK
FIS?J(X) = _22(1)(‘1‘/196,(1—1 + 4V — PV —PVii1),
where

n=3
F(xaya Q) = ZF(p)(x)g(p)(y’ Q)a T = V}),qa Y= m(x3/€2), Q= 1‘3/52-
p=1

The correlation matrix is

and

)
)

Q
|
o
o v O
o
o

val
0
0

R O o
Q:
I

o
pok2

n=3
ou(z) =3 G, F (x).
p=1
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(5.197)

(5.204)

(5.205)

(5.206)



This gives the SDE

Z(Tzl ) dW;(x3) (; Z
k,m=

d (m)
OF,
> G () OF (@) | Gi(:c)>dx3.
s 175=1

Ox;

(5.207)
The only parts that contribute are k = m = 1, k = m = 2, k = m = 3 since the

anti-symmetric parts of the correlation matrix (5.205) are zero. For k =m =1

(5.208)
! zi: D) aﬁ}? = 2R ‘Z - (wrl(m)(p - q)VP,q>
= % <in1(f€1)(p - Q)Vp,q) <iwrl(“1)(P - q)>
_ _%;21“%(,{12)(;0 - Q)vam (5.209)
and for k =m =2
;i %Fj(g) 6(;1%) _ %u?lfj(m) (q(q — W2 — qpVr1.g-1 — q(q — DVpg + a0V 1,41
j=1

— pqVpt1,9-1 + P+ D)Vptoq +0qVpt1,941 — 0+ 1)V 4

—qg+ 1)V g+ apVpti,g+1 + q(q + 1)Vp g42 — qpVp—1,g41

+pqVp-1,4-1 =0 = )Vpq —PqVp-14+1 + (P — 1)Vp—2,q>-

(5.210)
Fork=m=3
d (3) 212
1 Y (3) OFp, ywI'5 (k1
N Ip T o 2(m) (L 0(q = VVpg-2 —a(a = 1)Vpg + @PVpt1,0-1 + apVp-1,4-1
2 = 2 81’j 16

—q(q+1)Vpq = q(q+ D)Vpgt2 + qpVpt1,g+1 + qPVp-1,4+1

+ pqVpi1,g-1 + 2qVpt1,941 — PP+ 1)Vpio g —p(p+ 1)Vp g
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+qVp-1,4-1 + PqVp-1,g41 = P(P — 1)Vpq — p(p — 1)Vp2,q> :

(5.211)

Adding equations (5.211), (5.210) and (5.211) gives

F(m)
9 Z ZCqu(p 8%(1:)(11‘3

km 1j=1
212
ywT'5(k1
- 42() <pq(V§ol,q1 + Vostgr1) — Vog@* +@*) — 2V, 0(p — q)2>dx37

and using the identity —p? — ¢*> = —(p — q)® — 2pq, gives

_ ’waFg(m)

1 <Pq(‘/}z—1,q—1 + Vorrgr1 = 2Vog) = 3Vha(p — Q)2>dl‘3- (5.212)

The resulting SDE in Stratonovich form is then

(p+ Q)CGG”ﬁ oV, L.

C44C(H,1) Ox
+ iw; Ty (k] )f — q)Vp,q dWo(x3)

s A VA
AVpg = ~(p + @) (n]) 520 doy

w; FQ( —~
+it = <qu7q_1 +qVpg+1 = PVpri1,q — pr—Lq> dW;(z3)
w I’g _
e ( —PVor1q = @Vpgt1 + PVp—Ltz) dW;(z3)
w FQ
e R ( -1+ Vortgi1 = 2Vpg) = 3Vpe(p — Q)2>d$3- (5.213)
Now set
E [V;:,q(w? T, X5 K1, .Ig)] E—_)—()) Vp,q(wv T, X> K1, 563), (5214)
to obtain

Vg _ (p+a)C(r1) Vg (p+ Q)EGGR{ ALY
O3 A ot cuaC(r)) X
1

L —I (PQ(Vpl,ql + V1,941 — QVp,q) — 3V, 4(p— q)2>7 (5.215)
Lioc(wj, 1)
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with initial condition V,, ,(w, T, x, k1,23 = —L) = 10(p)1o(g)d(7)d(x). For simplicity,
now focus on the symmetric problem where p = ¢, which satisfies the transport equation

an:p _ _2pC(’€1) an,p . 2]9566/%{ anm

O0x3 A or 5445(,{{) ox
2
4 Pij <Vp_1’,,_1 + Vpiigt1 — 2VM>, (5.216)
Lioe(wy, K1)

with initial condition V), p(w, 7, x, k1, 3 = —L) = 1o(p)d(7)d(x). The localisation length
(equation (5.159)) is

4

S (5.217)
VT3 (k)w?

Lloc (wj s /“3{ ) =

The probabilistic solution [26] to the transport equations is (see Chapter 4.4.2)

< 20 (K 3
Uyl 7~ o) = B[ 1a(Vey)a (= 208 [, a0

2
x6<x—c%ﬁl/ Ny dx3>‘N_L— ]
C44C “1

(5.218)

with initial condition V,(w;, /i{, 7,X, —L) = 19(p)o(7)d(x). The solution can be written

as

; ) DY
Vp(wj, 51,7, X, —L, x3) = Wy(wj, ], 7, —L, acg)é(x - M>, (5.219)
c1aC (K1)

where

26(“{) s /
Wp(wjaﬁl) ) —L 1173) E 10(Nx3)6 T — T . N$l3dx3 NfL =p|. (5220)
The inverse transform of equation (5.190) gives

US (s 1 o\, — Ly a5) = / / (AT —(p+a)zal(51)) g—ide (X —(p+a)asor123) /(€4 (1))

x Vi o(w, k1,7, x, =L, x3) drdx. (5.221)
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Taking the mean and applying the limit € — 0 gives

(w, 1, b, A,_ijg)] _ / / (AT (04 a)2sC (1)) X (X~ (p+a)Coamrms) /(43 (1)

3 €
Hm B Upg
0z
X Wp(w7 R1,T, _L7 $3)6<X - _06_6fﬂ> deX
C44( (K1)
(5.222)
Setting
A= (k)"0 (5.223)
where, from equation (5.37)
= — P K1Ce6
C(Kl) =\/aB=|—[(1-
C44 p
1 2c
== (1 - ”1666) (5.224)
v p
where
u (5.225)

the Dirac delta functions in the solution (5.218) to equation (5.216), are only activated

when

2
L _m (5.226)

so in equation (5.222), the Dirac delta function is only activated when

- —2
S (5.227)

Y

Ca4

so equation (5.222) can be simplified to read

lim E U;q(w, K1, h, A\, —L, $3):| = /exp{ih(AT —(p+ q)ng(m))}

e—0
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_ _9 _
X exp{—i)\w <C66K}17—U —(p+9q) 7,666,?@3 ) }
Caa c4aC (K1)

X Wy(w, k1, T,—L, x3) dr.

Hence

: € . = 9_9 )\WEﬁGHl’I_)Q
im B\ Uy (w, 51, h, A, =Ly z3) | = [ expqit| h((k1) 0" — ———— ) e Wp(w, k1,7, =L, x3) dT
e—0 ’ Ca4
X exp{%p:z:g <)\UJC66"ﬂ - hC(n1)> }, (5.228)
¢14( (k1)

in the case when p = ¢. The next section will focus on the case where p = ¢ = 1.
The solution in equation (5.228) will be used in conjunction with the expression for the
stress (equation (5.34)) to derive an expression for the reflected intensity as a function

of the lateral observation point x7.

5.6 Mean Reflected Stress Intensity from a Line Source

From equation (5.34) the stress is written as

7 (w, k1,07) = \/B/E(Ba(w, k1,0") + a°(w, /@1,0+)>
ef(w) (R ,(~L,0)—1)

[ W‘fij
= ﬁ/c&s(w7ﬁl70+) = = 12 )

(5.229)

using the boundary condition b°(w,0t) = 0 (see Figure 5.1). Considering the direct
emission from the point source (see [26]), now define the point of reception from the
reflection intensity as x = (x1,0,0) and use the Fourier transform (5.18) to express the

stress in the time domain

1 iw(t—r1x1) ERZ K/]’(_L7 O)f(CU)
Fen0) =g [ [T (S o dds,

1 iw(t—Kr1xy) ~
/ / e~ pe L0V Fw)w duwdny (5.230)
8m2¢e wj,kq
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Figure 5.2: Three-dimensional schematic of the wave propagation problem where a line source is on
the surface of the medium (at z3 = 0) with a reception point (z1,0,0) where the reflected intensity of
the stress field is measured.

The mean reflected intensity E[7°(¢, 21, 73)?] of the stress at the surface x3 = 0 is of
interest from a non-destructive testing scenario where engineers record the reflected
power in a sensor array to enable them to image and characterise flaws in safety critical
materials [76]. Consider the intensity at two close frequencies w,w’ and slownesses

k1, K}. This gives an integral representation for the mean intensity which reads

1 _it(wfw/) izq (wrq—w'Kkh)
E[Ta(t,xl,O)z]_W////e ) il el

X E(Ri ;(=L,0)R, (—L,O))f(w)f(w)ww’ dwdrydw'dr .

131
FELGt W;»(Kl)/

(5.231)

Studying the two close slownesses and frequencies suggests the change of variables

W' =w—ceh, (5.232)

Ky = K1 — €, (5.233)
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where
du'dk) = edhd)\, ww' =w?+ O(e?).

The exponential arguments become

—ie—t(w — (w —eh)) = —ith,

and

—0

1T . ~
(wk1 — (w —eh)(k1 — €N)) = iz1(—ehA +hri + w)

= iz1(hk1 + wA).
This reduces equation (5.231) to

E[7¢(t, z1,0)?] /exp{—iht +ix1(hk1 +wA)}

_ 1
 64nt

x E [Ri;,mm]

Equation (5.228) with z3 = 0 gives

lim E [Uf 1(w, k1, N, —L, :ch)]
e—0 ’

_ \wE 72
= /exp{h(h((m)%z — wcGﬁW}) }Wl(w,lil,T,—L,SUg) dr.

C44

N 2
f(w)‘ w2 dwdrydhd.

(5.234)

(5.235)

(5.236)

(5.237)

(5.238)

Taking the limit of equation (5.237) as ¢ — 0, and inserting equation (5.238) at z3 =0

gives

e—0

L2
X Wy (w, k1,7, —L,x3 = 0)‘f(w)‘ w? dwdkidhd\dr.
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1 _
lim E[7€(t, z1,0)%] = 61 /exp{ih(wlﬂl —t+ 7¢(K1)*0?) } exp{i)\ <a:1w -

2

TwWCggk1U

C44

(5.239)
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The Dirac delta function can be written in integral form [77]| as

0z —a)= ;T/ei(x_“)dt, a>0, (5.240)

SO
exp{ih(z1k1 — t + 7((r1)*0%) } exp{i)\ (mlw = 7'(,002511)2) } (5.241)
= 4725 (mlm —t+ 7'6(/{1)2172> ) (xlw - W) , (5.242)

which means equation (5.239) can be written as

X ) — =2
lim E[7°(t, 21,0)] = 1672 /5(901;@1 —i Tg(m)%z)é(xlw - mcii’:”)

A 2
X Wi (w, k1,7, —L,x3 =0) f(w)’ w?dwdrydr.  (5.243)

The first delta function gives

TWCek1 02 Tw566’l_)2 C44T1
| riw— ———— | =0 — Kl — —5—
C44 C44 VT Ce6

= 5(n1 - S > (5.244)
VeTWCq6 V°TCe6
which is centered around the values
= = =2
K1 = _0244%1 =K, 1= m. (5.245)
VT Ce6 C44
The second delta can be written (using equations (5.224) and (5.225))
T \2-2 K3Ce6  TCe6K1CA
5(.%1/%1—154—7'{(%1)17):(5 t—711— — — >
P Ca4pP
=4(t—71), (5.246)

so t = 7. This simplification of the delta functions reduces equation (5.243) to read

. +\21 C44 _ £ 2
l%E[TE(t7$1,O ) ] = 167‘(’2’[}_2t566/W1 (W,’C,t,L,.Ig == 0> X ‘f(W)‘ wdw. (5247)
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5.6.1 Solution For L. — o

From equation (5.216) (with p = ¢) that

W, 2p OW, P’
Ox3 ?_)2C_</<&1) or Lloc(wﬂil)

(Wp_1 + Wpy1 — 2wp>,

with initial condition W) (w, k1,23 = —L) = 1(p)d(7). For L — oo the spatial derivative

is set to zero (see Section 4.4.1) and the equation becomes

OV 5% ((k1)p
Ot 2Ljpe(w, K1)

<Wg°1 WS — 2wg°). (5.248)

Now introduce the non-dimensional parameters

52 I
xs_ﬂ s 7¢(k1)V so _ Lioc(w; 1) )00 (5.249)

B Lloc(ww'ﬁl)’ Lloc(wa’%l)’ P é(ﬂl)@2 P

Similar to the treatment of equation (4.106) then

((k1)v? t¢(k1)v?
Wy (w, t, k1,3 = 0) Tioe( i) 7 \ Lol i) ) (5.250)
where
N 2p7(P—1)

Assuming that ¢44 ~ g then, using equations (5.224), (5.225) and (5.245)

L Co6 [ Caaz1 )"
“’Q—Ml (o)

~ 1 P Ty
- v Caq t2
N A
v\l cu\ p 12
1
= =5 022 — 22, (5.252)
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so the limiting solution (L — oo) can be written as

« _ AR e (LK)
Wl (w,t,/C,O) - LZOC(W,IC)Pl <Lloc(w,/C)>

_ C(/C)T)Q 2
- _ 2
Lioe(w, K) <2 n 1 (K) 52 )

Lloc (UJ”C)

202022 — 27 1

T 2
'UQtLloc(wa IC) 02ty /022 — 22
T)QtLloc (w,IC)

2 Lo (w, K) /022 — 22 (5.253)

pr— — 2 .
t(2L1pc(w, K) 4+ /022 — 2%)

From equation (5.217) the localisation length is defined as

4

LOC 7’C :77
toc(w, K) YT3(K)w?

(5.254)

where equation (5.73) gives T'2(K) = p\/a/B, and from equations (5.35) and (5.36)

a =1/¢4y and B =p— H2544. Assuming that ¢4q ~ ¢gg then
p 1

p

Ve (p — Kicas)

\/7 L/
C44 +/ p— H%E44
= ¢ (5.255)

o(p — Kicu)’

FQ(Hl) ~

SO
1 P
L0 =3 " ax
P c2at2 02
Y
v Caai
242
1 292
=y (5.256)
v\l 202 — 23
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hence, using equations (5.254) and (5.256), the localisation length can be written

4252 — 2?)

Lipe(w,K) = 71202

(5.257)

The mean reflected intensity can then be written using equations (5.247), (5.252),
(5.253) and (5.257) as

fw)

‘ 2

3
2,2 2\3/2 w

. 21 v (0%t )
Q%E[Ts(tvl‘lao) ] - 2272

5 dw,
[8(@2152 — 22) + w2202t — :vﬂ

(5.258)
and with the non-dimensional scalings
- . w - T .0 . f(w) e T
T Lg ) w wo ) tO ’ v vo ) f(W) ,OUOL?; 3 T pw(g)Lg ) ( )
the non-dimensionalised intensity reads
2 i@)|
) o ~@2£2—_f23/2 w w‘ ~
IIII(I)E[(Ts(t,Zﬂl,O))Q] = il 5 2~21) - = 5 dw.
= ™ (8(9282 — &3) + Aw2t2,/ 9282 — &3)
(5.260)
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Figure 5.3: The non-dimensional mean intensity lim._,o E[(7°(£, #1,0))?] (equation (5.260)) as a func-

tion of time ¢ for different values of observation point 1. The mean wave speed is ¥ = 1, correlation

integral 5 = 10 and the input wave is f(@) = 2e=%"

Figure 5.3 shows how the received wave obeys the mean velocity v along the lateral x;
direction. This Figure could be used to produce coverage maps via the TFM algorithm
[3] or analytical assessment of TFM uncertainty quantification. Given the observation
point x1, the only waves which will contribute to the intensity in equation (5.258) will

have a slowness K = (¢4471)/(9%7¢66). This expression is valid (see Chapter 4.4.2) when

2L
t< ——r, 5.261
< o (5.261)
which can be simplified to condition
x2p
vty [1— 1= < 2L, (5.262)
t C66
if ¢44 = Cgg then the condition becomes
0 < /022 — 23 < 2L, (5.263)

which emphasises the importance of the incoherent part of the wave in the autocorre-

lation function as the wave has finite mean velocity © over time t.
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5.7 Concluding Remarks

A model of a horizontally polarised elastic shear wave propagating in a randomly layered
material has been constructed. The orientation of the internal material microstructure
varies from one layer to the next, modelled by a Markov process. The problem was
formulated in the strongly heterogeneous regime via a local rotation of the material’s

slowness surface as a function of the wave propagation direction xj.

In Section 5.3 a diffusion approximation was used to derive the solution to the wave
propagator equation (as € — 0) to obtain the moments of the transmission /reflection
coefficients. In Section 5.4.1 an expression for the localisation length of the random
medium was derived; the localisation length characterises the energy decay of the co-
herent wave due to interactions/multiple scattering inside the medium. In Section 5.5
a Ricatti equation for the reflection coefficient was derived, allowing a study into the
frequency autocorrelation function for the reflected wave. This formulation of the prob-
lem presented a set of transport equations, capturing the moments of the product of

reflection coefficients (see equation (5.182)).

A semi-analytical solution was obtained for the moments of the autocorrelation function
in terms of a jump Markov process. In Section 5.6 the intensity of the reflected wave
was studied. Using the solution to the transport equations in Section 5.5, an expression
was obtained for the reflected intensity of the wave at an observation point x; on the
surface (x3 = 0) of the material. Considering the limiting case (L — co) of the problem,
an analytical solution was derived. Plots of the reflected intensity for varying values of
x1 are shown in Figure 5.3. The limit expression for the reflected intensity derived here

could be used to create coverage maps, utilising the Total Focusing Method.
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Chapter 6

Conclusions

The focus of this thesis has been to study elastic wave propagation in layered ran-
dom media. The main motivation to study such problems in this area of mathematics
stems from the field of non-destructive testing, which has became ever more impor-
tant in recent years as the cost of in-situ testing has decreased and the complexity of
safety critical engineering materials has increased. The detailed microstructure present
in modern engineering materials create fine heterogeneities which will interact with a
probing mechanical wave. Since the exact variation in material geometry is not known
for a specific material sample, these variations are replaced with a random process
whose statistical properties align with that of the medium. The received wave will vary
from one sample to the next and so it makes sense to describe the wave properties as
a distribution and to use a probabilistic framework for modelling purposes. Only via
computationally prohibitive Monte Carlo simulations can deterministic models of wave
propagation provide a similar characterisation of wave propagation in such materials.
The governing stochastic differential equations capture the multiple scattering effects
caused by coupling between the wave and the medium, enabling an analytical approach

to be undertaken.

6.0.1 Results

Monochromatic elastic shear wave propagation in an austenitic steel weld was examined

in Chapter 2. A weak form of the Fokker-Planck equation was derived and subsequently
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solved via a finite element package. The numerical solution to the Fokker-Planck equa-
tion was used to compute statistical moments of the power transmission coeflicient.
This led to a parametric study on the effect of the degree of anisotropy (of an austenitic
steel weld sample) on the transmitted energy. Chapter 3 again considered monochro-
matic shear wave propagation, but in a different class of material. Using a different
form of stress tensor allowed for an extensive study into the moments of transmission
and reflection coefficients without the need for a finite element approach to solve the
probabilistic (Fokker-Planck) equation. A key parameter which emerged in the govern-
ing equations related the degree of anisotropy in the medium to the decay in the energy
of the coherent wave. It was shown that a change in this wave anisotropy parameter
(v) affected the standard deviation of the power transmission coefficient; an important

quantity when investigating NDT array imaging applications.

Chapter 4 extended the analysis in Chapter 3 by modelling a source with multiple
frequencies; a broadband pulse. This allowed a study of the moments of the auto-
correlation function of the reflection coefficient. The main result was the agreement
between the analytical and Monte-Carlo solution of the final transport equation for the
moments of the frequency autocorrelation function. This model also provides estimates
for attenuation factors in randomly layered media without the computational cost of
including such factors into a numerical method. The work presented in Chapter 5
studies multi-frequency horizontally polarised elastic shear waves in a randomly layered
medium. This model extended the work presented in previous chapters to account for
a line source. The equations which followed showed how the material slowness surface
affected the travel time through a two-dimensional medium. Using limit theorems to
solve the resulting stochastic differential equations, gave a solution for the intensity of
the reflected wave at different points in space along the surface of the medium. This
solution could be used to calculate coverage maps of a material by summing travel times

at different observation points.
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6.0.2 Future Work

The main aim is to take the model in Chapter 5 and produce coverage maps using the
derived expressions for the reflected energy. This is the first step in studying perfor-
mance characteristics of the Total Focusing Method [3]. The goal would then be to
perform an experimental study on a relevant material (such as austenitic steel [44]) to
compare the model derived in this thesis with experimental results. It would be inter-
esting to use the model to perform flaw detection in a highly heterogeneous randomly
layered medium. Furthermore, it would be interesting to use the models presented here
to study time reversal [78], [79], [80] with the aim of applying it to detection of flaws in
layered, solid media [81], [82], [51].
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