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Abstract

The work contained in this thesis is a mathematical analysis of discrete

coagulation-fragmentation equations. Initially semigroup techniques are used to

investigate the existence and uniqueness of a global, non-negative strong solution

to a mass-conserving model. Minimal restrictions are imposed on the fragmenta-

tion rate but it is required that the coagulation rate is uniformly bounded. It is

also shown how a technique described by Ziff and McGrady in [58] leads to an ex-

plicit solution for a particular pure fragmentation equation. The semigroup tech-

niques are then applied to a pure fragmentation model with discrete mass loss to

derive similar existence and uniqueness results. A multi-component model with

reformation terms is then investigated. Finally, the coagulation-fragmentation

equation with an added time-dependent source term is analysed. Existence and

uniqueness of a strong solution can also be proved in this case provided the source

term satisfies certain conditions.
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Chapter 1

Introduction and Literature

Review

Suppose that we have a system of particles in which each individual particle can

be characterised by a discrete quantity such as mass, size or age. (We shall call

this quantity size for the moment.) The evolution with time of the distribution of

each size class in such a system can be described by a population balance equation.

This type of equation models processes such as coagulation and fragmentation in

which the numbers in each size class either increase or decrease. In [17, Chapter

13] a population balance equation (PBE) is used by Belleni-Morante to describe

a population of bacteria in a culture. The author uses a method first employed by

Kato in [32] to determine when a solution to the PBE exists. Kato’s method has

since been extended by Voigt [55], Arlotti [6] and Banasiak [9] to give a general

perturbation result, often referred to as the Kato-Voigt perturbation theorem. We

shall use these more recent perturbation results to establish the well-posedness

of a number of coagulation-fragmentation equations.

1.1 The Coagulation-Fragmentation Equation

In this thesis we shall consider a system of clusters of particles which are initially

described by their mass. We shall later move on to the situation where a cluster

can be characterised by two variables, namely mass and diameter. We shall

describe different models in which we allow a mixture of processes to occur. On
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the one hand clusters can break up or fragment. On the other hand, two clusters

will also be allowed to join together or coagulate. We shall also introduce the

processes of surface recession and reformation.

We begin by describing the general discrete coagulation-fragmentation equa-

tion. Suppose a cluster of particles is characterised by its mass. We consider

each individual particle to have mass one and we call this a monomer. A cluster

of n monomers, or n-mer, will thus have mass n. Let un(t), n = 1, 2, . . . denote

the number concentration of clusters having mass n. The discrete coagulation-

fragmentation equation is given by

dun(t)

dt
= −anun(t) +

∞∑

j=n+1

ajbn,juj(t)

+
1

2

n−1∑

j=1

kn−j,jun−j(t)uj(t) −
∞∑

j=1

kn,jun(t)uj(t) (1.1)

where, for all n and j, an, bn,j and kn,j are non-negative constants. Note that the

last summation is to be defined as zero when n = 1. Here an is the fragmentation

rate of an n-mer, bn,j is a distribution which gives the average number of n-mers

produced after the break up of a j-mer where j > n and kn,j is the coagulation

rate of an n-mer with a j-mer.

We shall now give an interpretation of the terms in (1.1). The first term on

the right-hand side of (1.1) gives the loss of n-mers due to them fragmenting.

The second term gives the gain in n-mers due to larger clusters fragmenting. The

third term on the right-hand side of (1.1) represents the gain in n-mers due to

two smaller clusters coalescing. Note that the factor of 1
2

ensures that we do not

double count the process of an (n− j)-mer coalescing with a j-mer and the same

j-mer coalescing with the same (n−j)-mer. The last term gives the loss of n-mers

due to them coalescing with other clusters. If we set an = 0 for all n we have the

pure coagulation equation which was first looked at by Smoluchowski in [53] and

similarly if we set kn,j = 0 for all n, j we have the pure fragmentation equation.

Note that the system described above allows for multiple fragmentation to

occur, i.e. a fragmenting cluster can break into two or more pieces. In some
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of the previous studies of the coagulation-fragmentation equation, which will be

discussed below, only binary fragmentation has been considered. Naturally we

require our system to be mass-conserving (or density-conserving) unless we have

a built-in mass loss mechanism. This leads to the assumptions

j−1
∑

n=1

nbn,j = j, j = 2, 3, . . . , and a1 = 0. (1.2)

The total mass of the system is given by

M(t) =

∞∑

n=1

nun(t), t ≥ 0 (1.3)

and for mass to be conserved we require that

∞∑

n=1

nun(t) =

∞∑

n=1

nun(0), t > 0. (1.4)

As will be discussed later, we shall rewrite (1.1) as an Abstract Cauchy Problem

(ACP) in an appropriate Banach space. The norm on the Banach space is chosen

to correspond to the summation used to calculate M(t).

1.2 Previous Work: The Discrete Model

We shall now describe some of the work that has been carried out previously.

Many of the early engineering papers investigate exact solutions to the discrete

coagulation-fragmentation equation without any consideration of the criteria re-

quired for existence or uniqueness of solutions. In [52], Simha looks at the pure

fragmentation equation for polymers. He considers monomers to be joined in a

chain and Nj represents the number of molecules consisting of j monomers having

j − 1 links. He also places an upper bound n on the size of molecules so that

the system of equations is finite-dimensional. The author makes use of the rate

constant k
(j)
i to characterise breakage. Simha considers three different situations:

random breakage, surface recession and a fragmentation rate which depends on

the number of links in the chain. In the case of random breakage, k
(j)
i = k for all
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i, j and the fragmentation equation becomes

dNj

dt
= 2k

n∑

i=j+1

Ni − k(j − 1)Nj. (1.5)

Note that if we set k = 1 above then we have the same equation as is discussed

by Ziff and McGrady in [58]. We shall give details of how a general solution to

(1.5) can be obtained in Chapter 3. In [52], a solution is given for homogeneous

initial conditions. In the case of surface recession the equation becomes

dNj

dt
= 2k(j+1)Nj+1 − 2k(j)Nj, n ≥ j ≥ 2. (1.6)

We shall discuss the case where surface recession terms are combined with frag-

mentation terms with built-in mass loss in Chapter 4.

In [7] the fragmentation equation for polymers is again considered, this time

by Bak and Bak. The cases of bonds breaking with equal probability and of

molecules only splitting in the middle are considered. The generating function

G(x, t) =
∞∑

n=1

cn(t)x
n (1.7)

is used to solve the rate equations, where cn(t) denotes the concentration of

molecules with molecular weight nM , M constant. The uniqueness of density-

conserving mild solutions to the discrete coagulation-fragmentation equation is

considered in [8] by Ball and Carr. The authors work with a finite-dimensional

version of (1.1) with binary fragmentation and prove that this system has a

unique non-negative, density-conserving mild solution. Ball and Carr then go on

to show, by taking limits of solutions of the truncated system, that there exists a

mild solution to the infinite-dimensional coagulation-fragmentation equation for

a coagulation rate kn,j (in our notation) satisfying

kn,j ≤ K(n+ j), ∀n, j, K constant,

and this solution is density-conserving. They then go on to describe conditions

under which all solutions conserve density and show, by imposing growth condi-

tions on the coagulation and fragmentation rates, that there exists a unique mild
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solution to the infinite-dimensional coagulation-fragmentation equation. Finally

they prove that if the coagulation rate is uniformly bounded, i.e. kn,j ≤ K for

all n, j, then there exists a unique mild, density-conserving solution. In [40], the

existence and uniqueness of mild, density-conserving solutions for the discrete

coagulation-fragmentation equation with multiple fragmentation is investigated

by Laurençot in a similar manner to [8]. Note that we shall prove a similar result

in Chapter 3 for strong solutions to the full coagulation-fragmentation equation

with multiple fragmentation using semigroup theory. Our theory does not rely on

taking limits of truncated systems and establishes the existence and uniqueness

of a strong solution.

The coagulation-fragmentation equation with collisional breakage is studied in

[41] by Laurençot and Wrzosek. Collisional breakage refers to the fragmentation

of a cluster after collision with another cluster. The collisional breakage rate is

proportional to the number densities of the size classes of the two colliding clusters

and allows for mass transfer between two colliding clusters. The probability of

colliding clusters with mass i and mass j merging into one cluster is introduced

and the coagulation-fragmentation involves a collision rate, ai,j, for clusters. The

existence of mild solutions for general collision rates is shown by taking limits

of a truncated system. These solutions were not shown to be density-conserving

but it can be proved that density is non-increasing. The authors then show the

existence of density conserving solutions when the collision rate satisfies

ai,j ≤ A(i+ j), ∀i, j, A constant.

The large-time behaviour of the system is then studied for certain cases.

In [21] and [23] Carr and da Costa investigate the asymptotic behaviour of so-

lutions to the discrete coagulation-fragmentation with binary fragmentation with

certain assumptions made on the fragmentation rate. Again, solutions are taken

to be limits of mild solutions of the truncated coagulation-fragmentation equation.

The authors then study equilibrium solutions, i.e. time-independent solutions,

for these conditions. In [26] da Costa also studies the equilibrium solutions of a

finite-dimensional version of Smoluchowski’s pure coagulation equation.
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1.3 Previous Work: The Continuous Model

The coagulation-fragmentation equation can also be written in a continuous form.

We shall now discuss some of the previous studies of the continuous equation.

Semigroup theory has not been used much to analyse the discrete coagulation-

fragmentation equation but it has been applied to the continuous model. As

with the discrete case, many of the early engineering papers focused on finding

exact solutions for particular rate coefficients without worrying about existence

and uniqueness results. In [28], the multiple fragmentation equation with an

added continuous mass loss term is studied by Edwards, Cai and Han. Exact and

asymptotic solutions are found for certain rate coefficients. Note that this paper

also describes a discrete fragmentation equation with discrete mass loss, namely,

dun(t)

dt
= −nun(t) + 2

∞∑

j=n+1

uj(t) (1.8)

in our notation. We shall deduce the form of the unique strong solution to (1.8) in

Chapter 4 and show why the exact solution given in [28] is not a strong solution.

Aizenman and Bak [1] study the existence and uniqueness of solutions to

the full coagulation-fragmentation equation for rate coefficients of a specific type

using semigroup techniques and contraction mapping arguments. The authors

also show uniform convergence to equilibrium solutions for a general class of

initial data.

In [46], McLaughlin, Lamb and McBride consider a truncated multiple

fragmentation equation and show via semigroup theory the existence and unique-

ness of a strong mass-conserving solution for a locally bounded fragmentation

rate, i.e. a(x) ≤ Cn for all x ∈ (0, n], n > 0 where the sequence {Cn} may be un-

bounded. They then take limits of the truncated solutions and show that there is

a unique strong, mass-conserving solution to the infinite-dimensional system. The

results in [46] are then extended in [47] to show existence and uniqueness of a so-

lution to the full coagulation-fragmentation equation, with a uniformly bounded

coagulation rate, using a contraction mapping argument. McLaughlin et al. then

go on [48] to study a non-autonomous multiple fragmentation equation, i.e. the

fragmentation rate depends on time. The method of proving the existence of a

unique strong solution for the truncated system and then taking limits is again
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used. This time, solutions are given in the form of evolution families.

In more recent work, the Kato-Voigt perturbation theorem has been used to

prove the existence of unique strong solutions to the coagulation-fragmentation

equation. The application of this theorem removes the need to look at the trun-

cated system first. In [38], Lamb shows that the solution given by the application

of the Kato-Voigt perturbation theorem is indeed the same as the solution found

in the truncation/limit approach. In [12], Banasiak and Lamb use semigroup

techniques to show existence of a strong solution to the pure fragmentation equa-

tion with continuous and discrete mass loss. The results in [12] are then extended

in [13] to show the global existence and uniqueness of strong solutions to the full

coagulation-fragmentation equation with continuous and discrete mass loss. Ba-

nasiak and Lamb also use semigroup theory in [15] to investigate existence and

uniqueness results for the continuous coagulation-fragmentation model in a more

abstract setting. The same authors also analyse coagulation, fragmentation and

growth processes in a size-structured population in [14].

1.4 Previous Work: Numerical Techniques

It should be noted that some numerical techniques have been developed for

solving the coagulation-fragmentation equation. Although we shall not pursue

this, we shall briefly describe some of the literature. The non-linearity of the

coagulation-fragmentation equation makes it particularly difficult to write down

exact solutions. Over the years, numerical techniques for solving the coagulation-

fragmentation equation have been used to combat this problem and give an idea

as to how the system behaves under certain conditions. The main obstacle when

solving the coagulation-fragmentation equation numerically is verifying that the

numerical technique is providing you with the correct solution. Such verifica-

tions can be carried out by comparing numerical solutions to experimental data

or comparing them to the exact solutions known for particular cases. In [20], a

method of characteristics is developed to solve the partial differential equation

satisfied by the moment generating function

φ(x, t) =
∞∑

k=1

xkNk(t), |x| ≤ 1
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where Nk denotes the number density of clusters of k particles. The authors

consider a product coagulation rate, i.e. kn,j = Knj, K constant, and a con-

stant fragmentation rate. Kumar and Ramkrishna developed the Fixed Pivot

Technique for solving population balance models using discretisation in [37]. The

Cell Average Technique, which is shown to be more accurate than the Fixed

Pivot Technique for solving the pure coagulation equation, is described in [36].

Kostoglou extends the Cell Average Technique in [33] to create an even more

accurate method for solving the coagulation equation numerically. Kumar et al.

then develop the Cell Average Technique to solve multi-dimensional aggregation

equations in [35]. These methods split the cluster size range into a finite number

of intervals and assume that the clusters in each interval are of the same size.

These methods are known as internally consistent since the balance equations for

each interval are constructed in such a way as to ensure mass conservation (or

any other integral property of the system) is maintained.

1.5 The Shattering and Gelation Phenomena

In some particular cases of the pure coagulation and pure fragmentation equa-

tions, the system appears to lose mass even though no mass-loss has been built

into the model. These phenomena are known as gelation in the coagulation case

and shattering in the fragmentation case. Gelation can occur when clusters co-

agulate at a ‘fast’ rate to form an infinitely large cluster in finite time and it

appears that mass has been lost from the system. Shattering occurs essentially

from the opposite effect to gelation, i.e. clusters fragment into infinitely small

dust particles which are not detected. Note that setting a1 = 0 in the discrete

equation will eliminate shattering. Investigations into the conditions under which

these phenomena occur have been carried out in [20], [22], [26], [30], [42], [45],

[54] and [59].

In [22], Carr and da Costa obtain a condition for instantaneous gelation in

the discrete coagulation equation, namely, if the coagulation rate satisfies

nα + jα ≤ kn,j ≤ (nj)β for β > α > 1

(in our notation) then any non-zero size distribution has zero (instantaneous)
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gelation time. In [20], Brunelle, Owens and van Roessel consider the discrete

coagulation-fragmentation equation with a constant binary fragmentation rate,

b, and the bilinear coagulation rate

kn,j = (α + βn)(α+ βj) for α, β ∈ R.

Characteristic equations are used to help calculate the gelation time and post-

gelation mass when α = 0, β > 0 and b = 0 and when α = 0, β > 0 and b > 0. In

[26] the existence of an infinite family of gelling solutions of a truncated version

of the Smoluchowski coagulation equation is proved for a general coagulation rate

by da Costa. In [54], van Dongen proves that, for a homogeneous coagulation

rate k(i, j) satisfying, for j >> i,

k(ai, aj) = aλk(i, j) = aλk(j, i),

k(i, j) ∼ iµjν, j → ∞, i fixed, λ = µ+ ν,

instantaneous gelation occurs if and only if ν > 1.

The shattering effect in the continuous fragmentation equation is considered

by McGrady and Ziff in [45]. The fragmentation rate and distribution are given

by

a(y) = yβ+1

and

b(x|y) = f(y)xν

respectively, where

f(y) =
ν + 2

yν+1
, ν > −2

is a mass conservation condition. It is deduced that, for β < −1 and for all

admissible values of ν, the mass of the system is time-dependent. This reflects a

loss of mass due to the production of infinitely small particles.

In [30], Ernst and Pagonabarraga compare the shattering effect for collisional

and linear continuous fragmentation models for the fragmentation rate

a(x) = xα.
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It is shown that in the collisional breakage model, shattering always occurs at a

finite time, t 6= 0. In the linear fragmentation model, shattering occurs instanta-

neously, i.e. at t = 0, for α < 0. Banasiak applies semigroup theory to ascertain

conditions under which shattering occurs in the continuous pure fragmentation

model in [10].

We will not concern ourselves with the phenomena described above as we

shall be looking for solutions which exhibit the physical properties built into

the model. For example, if mass is to be conserved, we are interested in mass-

conserving solutions. If our system has built-in mass loss, then we require that

we can calculate the mass lost exactly.

1.6 Plan of Action

The main focus of this thesis is to investigate the existence of unique strong,

non-negative, conservative solutions to various forms of the coagulation-

fragmentation equation. We shall make use of the theory of semigroups of opera-

tors in a similar fashion to [12], [13], [14] and [15], to show under which conditions

these solutions exist. In Chapter 2 we begin by introducing some preliminary re-

sults from semigroup theory and we outline the procedure we shall follow to show

the existence of unique strong solutions. In Chapter 3 we analyse the coagulation-

fragmentation equation with mass-conservation. Initially we look at the linear

fragmentation terms before the semilinear coagulation terms are added in. We

shall prove that for general an and bn,j (satisfying the mass-conservation condi-

tion) and a uniformly bounded coagulation rate, i.e. kn,j ≤ k for all n, j, where

k is a constant, that there exists a unique globally defined, non-negative, mass-

conserving strong solution to the corresponding ACP. We also use a technique

described by Ziff and McGrady in [58] to determine the exact solution for the

pure fragmentation equation with an = n − 1 and bn,j = 2
j−1

. In Chapter 4 the

pure fragmentation equation with discrete mass loss in investigated. Again, we

can show that for general an and bn,j there exists a unique strong solution. More-

over, we can calculate the expected mass loss. We also look at the case where

there is an added surface recession process. In Chapter 5 we look at a multi-

component model with reformation terms introduced by Wattis in [56]. We make
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some modifications to the model and for each of the new models we can prove

the existence of unique strong solutions for a general fragmentation rate and a

uniformly bounded coagulation rate. Finally, in Chapter 6 we apply the theory

found in [49] to show that a strong solution to the coagulation-fragmentation with

a time-dependent source term exists provided that the source term is continuously

differentiable with respect to time.
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Chapter 2

Preliminary Results and

Definitions

We shall begin by introducing the basic theory that will be applied throughout

this thesis. As mentioned in the previous chapter, the main aim is to use the

theory of semigroups of operators to show that there exist unique, non-negative

solutions to a variety of coagulation-fragmentation equations. A C0-semigroup

(strongly continuous semigroup) is defined as follows.

Definition 2.1. A C0-semigroup of bounded linear operators on a Banach space

X is a family

{T (t)}t≥0 ⊆ B(X)

such that

(i) T (0) = I, the identity operator on X

(ii) T (s)T (t) = T (s+ t) for all s, t ≥ 0

(iii) for each fixed f ∈ X, T (t)f → f as t→ 0+.

We can find a growth bound for the norms of the operators {T (t)}t≥0.

Theorem 2.2. Let X be a complex Banach space and let {T (t)} ⊆ B(X) be a

C0-semigroup. Then there exist constants ω ∈ R and M ≥ 1 such that

‖T (t)‖ ≤Meωt (t ≥ 0). (2.1)

12



We write C0(M,ω) to denote the class of semigroups satisfying (2.1).

Proof: See [29, Proposition I.5.5].

�

It is now possible to prove the following.

Lemma 2.3. Let {T (t)} ⊆ B(X) be a C0-semigroup of class C0(M,ω) and, for

t ≥ 0, define S(t) ∈ B(X) by

S(t) = e−ωtT (t). (2.2)

Then the family {S(t)}t≥0 is a C0-semigroup of class C0(M, 0).

Proof: See [43, pp. 42-43].

�

Definition 2.4. Let {T (t)}t≥0 be a C0-semigroup of bounded linear operators on

a Banach space X. The family {T (t)}t≥0 is called

(i) a C0-semigroup of isometries if ‖T (t)f‖ = ‖f‖ for all t ≥ 0, f ∈ X

(ii) a C0-semigroup of contractions if ‖T (t)‖ ≤ 1 for all t ≥ 0.

The infinitesimal generator of a C0-semigroup is defined by

Definition 2.5. Let {T (t)}t≥0 ⊆ B(X) be a C0-semigroup of bounded linear

operators on a Banach space X and for each t > 0, let Qt ∈ B(X) be defined by

Qt =
T (t) − I

t
. (2.3)

The infinitesimal generator of {T (t)} is the operator Q : X ⊇ D(Q) → X

defined by

D(Q) = { f ∈ X : Qtf tends to a limit (in X) as t→ 0+}

Qf = lim
t→0+

Qtf. (2.4)

We shall need the following definition of the resolvent operator.
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Definition 2.6. Let X be a complex Banach space and let A : X ⊇ D(A) → X

be a linear operator.

(i) The resolvent set, ρ(A), of A is the set of complex numbers

ρ(A) =
{
λ ∈ C : (λI − A)−1 ∈ B(X)

}
. (2.5)

(ii) The spectrum, σ(A), of A is the complement of ρ(A),

σ(A) = C − ρ(A). (2.6)

(iii) For λ ∈ ρ(A), we write

R(λ,A) ≡ (λI − A)−1 ∈ B(X). (2.7)

We call R(λ,A) the resolvent operator of A (at λ).

The following theorem, developed by Hille and Yosida, gives us the conditions

under which Q is the infinitesimal generator of a C0-semigroup of contractions.

Theorem 2.7 (The Hille-Yosida Theorem). Let X be a complex Banach space

and let Q : X ⊇ D(Q) → X. Then Q is the infinitesimal generator of a C0-

semigroup of contractions on X if and only if

(i) Q is a closed linear operator and D(Q) is a dense linear subspace of X

and

(ii) ρ(Q) contains {λ ∈ R : λ > 0} and ‖R(λ,Q)‖ ≤ 1
λ
∀λ > 0

or

(ii)’ ρ(Q) contains {λ ∈ C : Re λ > 0} and ‖R(λ,Q)‖ ≤ 1
Re λ

for λ ∈ C

with Re λ > 0.

Proof: See [43, p. 65].

�

The Hille-Yosida theorem was then extended to give conditions under which

Q is the infinitesimal generator of a general C0-semigroup.
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Theorem 2.8 (The Hille-Yosida-Phillips-Miyadera-Feller Theorem). Let X be

a complex Banach space and let Q : X ⊇ D(Q) → X be a linear operator.

Then Q is the infinitesimal generator of a C0-semigroup of class C0(M,ω) on X,

M ≥ 1, ω ∈ R, if and only if

(i) Q is a closed linear operator and D(Q) is a dense linear subspace of X

and

(ii) ρ(Q) contains all real numbers λ such that λ > ω and

‖R(λ,Q)n‖ ≤ M

(λ− ω)n
λ > ω, n = 1, 2, . . . (2.8)

or

(ii)’ ρ(Q) contains all complex numbers λ with Reλ > ω and

‖R(λ,Q)n‖ ≤ M

(Reλ− ω)n
Re λ > ω, n = 1, 2, . . . . (2.9)

Proof: See [43, pp. 69-70].

�

Throughout the thesis we shall be studying abstract Cauchy problems (ACPs)

which often take the form

du

dt
= Au(t), t > 0,

u(0) = u0 ∈ X, (2.10)

where A : X ⊇ D(A) → X is a linear operator and X is a complex Banach space.

Let us define a solution to the ACP (2.10) by the following

Definition 2.9. Let X be a Banach space, A : X ⊇ D(A) → X be a linear

operator and let u0 ∈ X. A function u : [0,∞) → X is a solution of the ACP

(2.10) if

(i) u is continuous on [0,∞)

(ii) u is continuously differentiable on (0,∞)
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(iii) u(t) ∈ D(A) for t > 0

(iv) the equations in (2.10) are satisfied.

It is important to show that our ACPs are well-posed, i.e. a solution exists,

this solution is unique and it depends continuously on the initial data. The

following results give conditions under which such solutions exist.

Theorem 2.10. In the ACP (2.10) let A be the infinitesimal generator of a C0-

semigroup {T (t)}t≥0 ⊆ B(X) and let u0 ∈ D(A). Then the problem has a unique

solution u (in the sense of Definition 2.9) given by

u(t) = T (t)u0, t ≥ 0. (2.11)

Proof : See [43, p. 111].

�

Theorem 2.11. Let X be a Banach space, A be a linear operator and let {gn}∞n=1

be a sequence in D(A) converging to zero with respect to the norm on X . Let un

be the unique solution (in the sense of Definition 2.9) of the ACP

du

dt
= Au, t > 0,

u(0) = gn. (2.12)

Then {un}∞n=1 converges uniformly to zero on any interval of the form 0 ≤ t ≤ t0

with t0 > 0.

Proof :See [43, p. 114]

�

A non-homogeneous form for the ACP (2.10) would be

du(t)

dt
= Au(t) + f(t), t > 0,

u(0) = u0 (2.13)

where f : [0,∞) → X is a given vector-valued function.

A solution u : [0,∞) → X of the ACP (2.13) is as in Definition 2.9 (modified

appropriately). The form for the solution is given in the following theorem.
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Theorem 2.12. Let X be a Banach space and let A : X ⊇ D(A) → X be

the infinitesimal generator of a C0-semigroup {T (t)}t≥0 ⊆ B(X). If the function

f : [0,∞) → X is continuously differentiable and u0 ∈ D(A) then the ACP (2.13)

has a unique solution given by

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s)ds t ≥ 0. (2.14)

Proof : See [43, pp. 116-117].

�

We shall now give some results which are true when working in a Banach space

of the type Y = L1(Ω, µ) where (Ω, µ) is a measure space. Particular classes of

C0-semigroups can be defined as follows.

Definition 2.13. (See [11, p.159]) Let {T (t)}t≥0 be a C0-semigroup on Y =

L1(Ω, µ) with the usual norm, where (Ω, µ) is a measure space.

(i) {T (t)}t≥0 is a substochastic semigroup if, for each t ≥ 0 , T (t) ≥ 0 (i.e.

T (t)f ∈ Y + for all f ∈ Y +) and ‖T (t)‖ ≤ 1.

(ii) {T (t)}t≥0 is a stochastic semigroup if, in addition, ‖T (t)f‖ = ‖f‖ for all

t ≥ 0 and f ∈ Y +

where Y + is defined by

Y + := {f ∈ Y : f ≥ 0},

and similarly for other sets.

We shall also require the following result for multiplication semigroups.

Lemma 2.14 (Multiplication Semigroup). Let q : Ω → C be a measurable func-

tion such that −Re q is (essentially) bounded above and define

TQ(t)f := e−qtf, f ∈ Y, t ≥ 0,

where Y = L1(Ω, µ). Then {TQ(t)}t≥0 is a C0-semigroup on Y and has infinites-

imal generator, Q, given by the multiplication operator

Qf := −qf, D(Q) := {f ∈ Y : qf ∈ Y }.
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Proof: See [29, p.65].

�

Example 2.15. Suppose we define an operator A on Y by

Af := −af, D(A) := {f ∈ Y : af ∈ Y },

where a : Ω → R
+. Then A is now the infinitesimal generator of the substochastic

semigroup {TA(t)}t≥0 on Y given by

TA(t)f = e−atf, f ∈ Y, t ≥ 0.

Later on we shall apply this result for the specific case of sequences {an} and

a weighted l1 space.

We shall use the following decomposition for real-valued functions throughout

the thesis.

Notation 2.16. Let f be a real-valued function in Y = L1(Ω, µ). Then we may

express this as

f = f+ − f− (2.15)

where f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}.

Let u : [0,∞) → Y . Throughout this thesis we shall be studying the existence

and uniqueness of solutions to various forms of the Abstract Cauchy Problem

du(t)

dt
= Au(t) +Bu(t) +Ku(t) +N(t)

lim
t→0+

u(t) = f (2.16)

where A is the generator of a substochastic semigroup on some space Y , B is a

linear perturbation of A, K is a nonlinear operator on Y and N(t) is a continu-

ously differentiable function of t in Y . In each of the different variations of the

ACP (2.16) that we study we follow the same basic procedure to deduce that

there exists a unique strong solution to our ACP. This routine is outlined below.

Firstly we shall define what is meant by a mild and a strong solution of an

18



ACP of the form

du(t)

dt
= Gu(t) + F (t, u(t))

lim
t→0+

u(t) = f (2.17)

where G is the generator of a substochastic semigroup {TG(t)}t≥0 on Y and

F : [0,∞) × Y → Y .

Definition 2.17. A mild solution of (2.17) is a continuous solution u : [0,∞) →
Y of

u(t) = TG(t)f +

∫ t

0

TG(t− s)F (s, u(s))ds. (2.18)

Definition 2.18. A function u is a strong (strict) solution of (2.17) on [0,∞) if

u is continuous on [0,∞), continuously differentiable on (0,∞), u(t) ∈ D(G) for

t ∈ [0,∞) and (2.17) is satisfied on [0,∞).

In order to establish whether a unique strong solution of any version of (2.16)

exists we begin by studying the linear part, i.e.

du(t)

dt
= Au(t) +Bu(t), t > 0, (2.19)

lim
t→0+

u(t) = f ∈ D(A+B). (2.20)

The following theorem is used throughout the thesis to show that there exists a

smallest extension of A +B which generates a substochastic semigroup.

Theorem 2.19 (Kato-Voigt Perturbation Theorem). Let (A,D(A)), (B,D(B))

be two linear operators in the Banach space Y such that

(i) (A,D(A)) generates a substochastic semigroup {TA(t)}t≥0 on Y ,

(ii) D(B) ⊇ D(A) and Bf ≥ 0 for all f ∈ [D(B)]+,

(iii) for all f ∈ [D(A)]+,

∫

Ω

(Af +Bf)dµ =: −c(f) ≤ 0. (2.21)

Then there exists a smallest extension G of A+B which generates a substochastic

semigroup {TG(t)}t≥0 on Y .

Proof: See [11, Corollary 5.17].

�
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Note 2.20. The substochastic semigroup {TG(t)} is the smallest substochastic

semigroup generated by an extension of (A+B) in terms of an order relation on

X. If G′ is another extension of (A+ B) then

TG′(t)f − TG(t)f ≥ 0 for all f ∈ D(G)+.

We shall make use of the following theory found in [11, Section 6.3] to prove

that, in certain circumstances, G = A+B, the closure of the operator

(A+B,D(A)). Firstly we shall need some preliminary results involving extensions

of the operators in the model. As above, let Y = L1(Ω, µ) where (Ω, µ) is a

measure space.

Definition 2.21. The sets of functions E and Ef are defined by

E := L0(Ω, dµ) = the set of µ-measurable functions defined on Ω

and taking values in R̄, the set of extended

real numbers; (2.22)

Ef := the subspace of E consisting of functions that are finite

almost everywhere. (2.23)

It follows that Y ⊂ Ef ⊂ E.

Let A, B and L denote extensions of A, B and R(1, A) respectively. We

require these extensions to have domains and ranges in Ef . We also need B and

L to be positive operators on their domains. These extensions are obtained in

the following way.

Definition 2.22. Let F ⊂ E be defined by

F := {f ∈ E : for any non-negative and non-decreasing sequence (fn)

satisfying supn fn = |f | we have supnR(1, A)fn ∈ Y } . (2.24)

We now make the extra assumptions that f ∈ D(B) ⇔ f+ , f− ∈ D(B) and,
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for any two non-decreasing sequences (fn) , (gn) ∈ D(B)+

sup
n

fn = sup
n

gn =⇒ sup
n

Bfn = sup
n

Bgn.

These additional assumptions are satisfied in the cases where we apply these

extension techniques.

Definition 2.23. Let H ⊂ Y be defined by

H := {f ∈ Y : if (fn) is any non-negative, non-decreasing sequence of

elements of D(B) such that supn fn = |f | then supnBfn <∞ a.e.} .
(2.25)

It can be shown that D(A) ⊆ H ⊆ Y ⊆ F ⊆ E. We can now state the

following properties ([11, Lemma 6.17]):

(i) f ∈ F+ and 0 ≤ g ≤ f ⇒ g ∈ F+,

(ii) F ⊂ Ef ,

(iii) f ∈ F+ and f = sup fn = sup gn, where (fn) , (gn) ⊂ Y + are both non-

decreasing ⇒ supR(1, A)fn = supR(1, A)gn.

We shall now define appropriate extended mappings.

Definition 2.24. Let B, L be defined by

B : D(B)+ → E+
f ; D(B) = H;

Bf := sup
n

Bfn, f ∈ D(B)+,

L : F+ → Y +;

Lf := sup
n

R(1, A)fn, f ∈ F+,

where 0 ≤ fn ≤ fn+1 ∀n and supn fn = f . Note that B and L are well-defined

due to the assumption made on B and part (iii) above.

As explained in [11, Theorem 2.64], these mappings can be extended to pos-

itive linear operators on all of D(B) and F respectively. This follows from the
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fact that if Q : X+ → Y + is an additive operator, i.e. Q(f + g) = Qf +Qg for

all f, g ∈ X+, then Q extends uniquely to a positive linear operator from X → Y

by

Qf = Q(f+ − f−) := Qf+ −Qf−,

where f+ and f− are the positive and negative parts of f ∈ X respectively as in

(2.15).

It can be shown that L is invertible ([11, Lemma 6.18]) and this leads to the

following definition of the extended operator A.

Definition 2.25. The operator A is defined by A : D(A) → F ;

A := f − L
−1f, D(A) = LF ⊂ Y.

From [11, pp. 171-172] we have

(i) Af = Af ∀ f ∈ D(A),

(ii) Af ∈ Y ⇔ f ∈ D(A),

(iii) Bf = Bf ∀ f ∈ D(B),

(iv) Lf = R(1;A)f ∀ f ∈ Y .

The following result can now be proved.

Theorem 2.26. If for any g ∈ F+ such that −g + BLg ∈ Y and c(Lg), with c

as in (2.21), exists such that

∫

Ω

Lgdµ+

∫

Ω

(−g + BLg)dµ ≥ −c(Lg) (2.26)

then G = A+B.

Proof. [11, p. 176].

�

After analysing the linear part involving the operators A and B we shall then

move on to the nonlinear part F (t, u(t)), which is dealt with using theory found

in [49]. The main theorems and definition we shall require are given below. Note
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that we are now working in a general Banach space X and not just in an L1 space

of the form Y . We shall firstly define a local Lipschitz condition on F (t, u(t)).

Definition 2.27. [49, p.185] We say that F (t, u) is locally Lipschitz continuous

in u, uniformly in t on bounded intervals if, for every t′ ≥ 0 and constant r ≥ 0,

there is a constant L(r, t′) such that

‖F (t, u) − F (t, v)‖ ≤ L(r, t′)‖u− v‖ (2.27)

holds for all u, v ∈ X with ‖u‖ ≤ r, ‖v‖ ≤ r and t ∈ [0, t′].

The following theorem then gives conditions for a mild solution to the full

ACP (2.17).

Theorem 2.28. [49, Theorem 1.4, p.185.] Let F : [0,∞)×X → X be continuous

in t for t ≥ 0 and locally Lipschitz continuous in u, uniformly in t on bounded

intervals. If G is the infinitesimal generator of a C0-semigroup {TG(t)}t≥0 on X

then, for every f ∈ X, there is a tmax ≤ ∞ such that the initial value problem

(2.17) has a unique mild solution u on [0, tmax). Moreover, if tmax <∞ then

lim
t→tmax

‖u(t)‖ = ∞.

Proof: [49, p.186].

�

We shall state the following which gives a sufficient condition for the mild

solution to (2.17) to be a strong solution.

Theorem 2.29. [49, Theorem 1.5, p.187] Let G be the infinitesimal generator of

a C0-semigroup {TG(t)} on X. If F : [0,∞) ×X → X is continuously differen-

tiable from [0,∞) ×X into X then the mild solution of (2.17) with f ∈ D(G) is

a strong solution.

Proof: [49, pp.187-188].

�

We shall make use of the following definition of the total derivative of a function.
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Definition 2.30. [5, p.346] A function g : [0,∞)×X → X is said to be differen-

tiable at (t0, φ0) ∈ [0,∞)×X if there exists a linear operator S(t0 ,φ0) : [0,∞)×X →
X such that

g(t0 + t, φ0 + φ) = g(t0, φ0) + S(t0,φ0)(t, φ) + ‖(t, φ)‖[0,∞)×XE(t0 ,φ0)(t, φ),

where the error term E(t0,φ0)(t, φ) → 0 in X as (t, φ) → (0, 0) in [0,∞)×X. The

operator S(t0 ,φ0) is usually denoted by g′(t0, φ0). Note that

‖(t, φ)‖[0,∞)×X = |t| + ‖φ‖X .

In Chapters 3 - 5 we consider the case when N(t) ≡ 0 for all t ≥ 0, i.e. we

only need to deal with the operator K. We shall need the following specific form

of definition 2.30 in order to deduce some results for the reduced semilinear ACP.

Definition 2.31 (Fréchet Differentiable). Let X be a Banach space and let

K : D(K) ⊆ X → X. Suppose that D0(K) is an open subset of D(K) and

consider c, c + δ ∈ D0(K) for all sufficiently small δ. If a linear operator Kc ∈
B(X) exists such that

K(c+ δ) = K(c) +Kcδ +R(c, δ), (2.28)

where the remainder R satisfies

lim
‖δ‖→0

{‖R(c, δ)‖
‖δ‖

}

= 0, (2.29)

then we say that K is Fréchet differentiable at c ∈ D0(K) and Kc is the Fréchet

derivative of K at c. If the operator K is Fréchet differentiable at any c ∈ D0(K)

then K is said to be Fréchet differentiable on D0(K).

We shall use the following two theorems to deduce the existence of a strong

solution to the ACP (2.16) with N(t) ≡ 0.

Theorem 2.32. [19, Theorem 3.30] Let X be a Banach space and assume that

(i) G is the infinitesimal generator of a C0-semigroup on X,
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(ii) K : D(K) → X satisfies the local Lipschitz condition

‖K(c) −K(d)‖ ≤ C‖c− d‖ (2.30)

for all c, d ∈ B(f, r) ⊆ D(K), where C and r are positive constants (r

suitably small),

(iii) K is Fréchet differentiable at any c ∈ B(f, r) and the Fréchet derivative Kc

is such that ‖Kcd‖ ≤ C1‖d‖ for all c ∈ B(f, r) and d ∈ X, where C1 is a

positive constant,

(iv) the Fréchet derivative is continuous with respect to c ∈ B(f, r), i.e.

‖Kc1d−Kc2d‖ → 0 as ‖c1 − c2‖ → 0, c1, c2 ∈ B(f, r) (2.31)

for any given d ∈ X,

(v) f ∈ D(G).

Under these assumptions, the continuous solution on [0, t1] of (2.18) belongs to

D(G) for all t ∈ [0, t1] and is the strong solution of the semilinear ACP (2.16)

with N(t) ≡ 0.

Proof: This is described in [19, pp. 132-134].

�

Note 2.33. This is just a special case of Theorem 2.29.

The following inequality is used in Chapter 3.

Lemma 2.34 (Gronwall’s Inequality). Let φ0 be a non-negative constant and h(t)

be a continuous non-negative function defined over [t1, t2]. Then any continuous

non-negative function φ = φ(t) that satisfies the inequality

φ(t) ≤ φ0 +

∫ t

t1

h(s)φ(s)ds, t ∈ [t1, t2],

is such that

0 ≤ φ(t) ≤ ψ(t) ∀t ∈ [t1, t2]
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where ψ(t) is the unique continuous solution of the equation

ψ(t) = φ0 exp

(∫ t

t1

h(s)ds

)

.

Proof: See [17, Lemma 3.2].

�

Another result which we shall use to justify taking limits inside summations

is the following.

Theorem 2.35 (Dominated Convergence Theorem). Let (Ω, µ) be a measure

space and let {fn} be a sequence of integrable functions which converges almost

everywhere to a real-valued measurable function f . If there exists an integrable

function g such that |fn| ≤ g for all n, then f is integrable and

∫

Ω

fdµ = lim
n→∞

∫

Ω

fndµ. (2.32)

Proof: See [16, pp. 44-45].

�

Throughout the thesis we shall make use of the following theorem to justify

interchanging the order of summations.

Theorem 2.36 (Fubini’s Theorem). [51, p. 140] Let (Ω1,M1, µ1) and

(Ω2,M2, µ2) be σ-finite measure spaces and let f be a (M1 × M2)-measurable

function on Ω1 × Ω2 and

• for each x ∈ Ω1 we define fx(y) = f(x, y) on Ω2,

• for each y ∈ Ω2 we define f y(x) = f(x, y) on Ω1,

for a function f on Ω1 × Ω2.

(i) If 0 ≤ f ≤ ∞ and if

φ(x) =

∫

Ω2

fxdµ2, ψ(y) =

∫

Ω1

f ydµ1 (x ∈ Ω1, y ∈ Ω2)

then φ is M1-measurable and ψ is M2-measurable, and
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∫

Ω1

φdµ1 =

∫

Ω1×Ω2

fd(µ1 × µ2) =

∫

Ω2

ψdµ2. (2.33)

Note that the first and last integrals in (2.33) can also be written as

∫

Ω1

dµ1(x)

∫

Ω2

f(x, y)dµ2(y) =

∫

Ω2

dµ2(y)

∫

Ω1

f(x, y)dµ1(x). (2.34)

(ii) If f is (M1 ×M2)-measurable and if

∫

Ω1

dµ1(x)

∫

Ω2

|f(x, y)|dµ2(y) <∞ (2.35)

then the iterated integrals (2.34) are finite and equal.

In Chapter 5 we will require to change the order of four summations/integrals

and so we will need an extended version of Fubini’s Theorem. The following

shows how we can extend Theorem 2.36 to a product of three measures. We wish

to prove

Theorem 2.37. Let (Ω1,M1, µ1), (Ω2,M2, µ2) and (Ω3,M3, µ3) be σ-finite mea-

sure spaces and let f be a M1 ×M2 ×M3-measurable function on Ω1 × Ω2 × Ω3.

Then, if 0 ≤ f ≤ ∞, we have that

∫

Ω1×Ω2×Ω3

f(x, y, z)(dµ1 × dµ2 × dµ3)

=

∫

Ω1

∫

Ω2

∫

Ω3

f(x, y, z)dµ3dµ2dµ1 =

∫

Ω3

∫

Ω1

∫

Ω2

f(x, y, z)dµ2dµ1dµ3

=

∫

Ω2

∫

Ω3

∫

Ω1

f(x, y, z)dµ1dµ3dµ2 =

∫

Ω1

∫

Ω3

∫

Ω2

f(x, y, z)dµ2dµ3dµ1

=

∫

Ω3

∫

Ω2

∫

Ω1

f(x, y, z)dµ1dµ2dµ3 =

∫

Ω2

∫

Ω1

∫

Ω3

f(x, y, z)dµ3dµ1dµ2.

Also, we can prove a result analogous to (2.35) for three measures.

Proof: Let X = Ω1 × Ω2, Y = Ω1 × Ω3 and Z = Ω2 × Ω3. We have that

(X ,MX , νX ), (Y,MY , νY) and (Z,MZ , νZ) are σ-finite measure spaces with

MX = M1×M2, MY = M1×M3, MZ = M2×M3 and νX = µ1×µ2, νY = µ1×µ3,

νZ = µ2 × µ3. If 0 ≤ f ≤ ∞, let
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φ1(x) =

∫

Ω3

fxdµ3, x ∈ X ,

φ2(y) =

∫

Ω2

fydµ2, y ∈ Y,

φ3(z) =

∫

Ω1

fzdµ1, z ∈ Z,

where

• for each x = (x, y) ∈ X we define fx on Ω3 by fx(z) = f(x, y, z)

• for each y = (x, z) ∈ Y we define fy on Ω2 by fy(y) = f(x, y, z)

• for each z = (y, z) ∈ Z we define fz on Ω1 by fz(x) = f(x, y, z).

Then φ1 is MX -measurable, φ2 is MY -measurable and φ3 is MZ-measurable

and we can apply Theorem 2.36 to deduce that

∫

X

φ1dνX =

∫

Y

φ2dνY =

∫

Z

φ3dνZ =

∫

Ω1×Ω2×Ω3

f(x, y, z)d(µ1 × µ2 × µ3), (2.36)

where the first three integrals in (2.36) can be written as

∫

X

dνX (x, y)

∫

Ω3

f(x, y, z)dµ3(z)

=

∫

Y

dνY(x, z)

∫

Ω2

f(x, y, z)dµ2(y)

=

∫

Z

dνZ(y, z)

∫

Ω1

f(x, y, z)dµ1(x). (2.37)

We also have that if f is M1 ×M2 ×M3-measurable and if

∫

X

dνX (x, y)

∫

Ω3

|f(x, y, z)|dµ3(z) <∞

then the three iterated integrals in (2.37) are finite and equal. To get the required

result (2.36) for three measure spaces we need to apply Theorem 2.36 a second
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time. First we shall now look at the integral

∫

X

φ1(x)dνX =

∫

Ω1×Ω2

φ1(x, y)d(µ1 × µ2)

where

φ1(x, y) =

∫

Ω3

f(x,y)dµ3 ≥ 0

since µ3 is a positive measure. We can write

ψ1(x) =

∫

Ω2

(φ1)xdµ2, x ∈ X

ψ2(y) =

∫

Ω1

(φ1)ydµ1, y ∈ Y

where

• for each x ∈ Ω1 we define (φ1)x on Ω2 by (φ1)x(y) = φ1(x, y),

• for each y ∈ Ω2 we define (φ1)y on Ω1 by (φ1)y(x) = φ1(x, y).

Then ψ1 is M1-measurable, ψ2 is M2-measurable and

∫

Ω1

ψ1dµ1 =

∫

Ω1×Ω2

φ1d(µ1 × µ2) =

∫

Ω2

ψ2dµ2 (2.38)

by Theorem 2.36. Again the first and last integrals in (2.38) can be written as

the iterated integrals

∫

Ω1

dµ1(x)

∫

Ω2

φ1(x, y)dµ2(y) =

∫

Ω2

dµ2(y)

∫

Ω1

φ(x, y)dµ1(x). (2.39)

We can also apply the final result in Fubini’s Theorem to say that if φ(x, y) is

(M1 ×M2)-measurable and if

∫

Ω1

dµ1(x)

∫

Ω2

|φ(x, y)|dµ2(y) <∞

then the iterated integrals in (2.39) are finite and equal.
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Similar results can be obtained for

∫

Y

φ2(y)dνY =

∫

Ω1×Ω3

φ2(x, z)d(µ1 × µ3)

and ∫

Z

φ3(z)dνZ =

∫

Ω2×Ω3

φ3(y, z)d(µ2 × µ3).

We can now put all of our results together to get

∫

Ω1×Ω2×Ω3

f(x, y, z)d(µ1 × µ2 × µ3)

=

∫

Ω1×Ω2

∫

Ω3

f(x, y, z)dµ3(z)d(µ1 × µ2)(x, y)

=

∫

Ω2×Ω1

∫

Ω3

f(x, y, z)dµ3(z)d(µ2 × µ1)(y, x)

=

∫

Ω1

∫

Ω2

∫

Ω3

f(x, y, z)dµ3(z)dµ2(y)dµ1(x)

=

∫

Ω2

∫

Ω1

∫

Ω3

f(x, y, z)dµ3(z)dµ1(x)dµ2(y),

and

∫

Ω1×Ω2×Ω3

f(x, y, z)d(µ1 × µ2 × µ3)

=

∫

Ω1×Ω3

∫

Ω2

f(x, y, z)dµ2(y)d(µ1 × µ3)(x, z)

=

∫

Ω3×Ω1

∫

Ω2

f(x, y, z)dµ2(y)d(µ3 × µ1)(z, x)

=

∫

Ω1

∫

Ω3

∫

Ω2

f(x, y, z)dµ2(y)dµ3(z)dµ1(x)

=

∫

Ω3

∫

Ω1

∫

Ω2

f(x, y, z)dµ2(y)dµ1(x)dµ3(z)

and

∫

Ω1×Ω2×Ω3

f(x, y, z)d(µ1 × µ2 × µ3)

=

∫

Ω2×Ω3

∫

Ω1

f(x, y, z)dµ1(x)d(µ2 × µ3)(y, z)
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=

∫

Ω3×Ω2

∫

Ω1

f(x, y, z)dµ1(x)d(µ3 × µ2)(z, y)

=

∫

Ω2

∫

Ω3

∫

Ω1

f(x, y, z)dµ1(x)dµ3(z)dµ2(y)

=

∫

Ω3

∫

Ω2

∫

Ω1

f(x, y, z)dµ1(x)dµ2(y)dµ3(z).

We can also say that if f is (M1×M2×M3)-measurable and if one of the iterated

integrals is absolutely convergent, then all of the above iterated integrals are finite

and equal. �

It is possible to use techniques similar to those above to extend Fubini’s the-

orem to four measure spaces. This would result in 4! iterated integrals, all of

which are equal under appropriate conditions. We shall require the version for

four spaces for some of our calculations in Chapter 5.
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Chapter 3

The Discrete

Coagulation-Fragmentation

Equation with Mass Conservation

We shall begin by investigating the discrete coagulation-fragmentation (C-F)

equation with mass conservation. The basic form of the C-F equation that we

are concerned with is

d

dt
un(t) = −anun(t) +

∞∑

j=n+1

ajbn,juj(t)

+
1

2

n−1∑

j=1

kn−j,jun−j(t)uj(t) −
∞∑

j=1

kn,jun(t)uj(t) , (3.1)

un(0) = fn , (n = 1, 2, 3, ...) , (3.2)

where un(t) is the number concentration of n-mers at time t ≥ 0. Physical

conditions lead to the following assumptions:

(A1) a1 = 0

(A2) bn,j = 0 for j ≤ n.

We shall also assume that kn,j = kj,n. To ensure that we have mass conservation

we also assume that

(A3)
∑j−1

n=1 nbn,j = j , (j = 2, 3, . . .).
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Mass is clearly conserved since by a formal argument we have

d

dt
M(t) =

d

dt

(
∞∑

n=1

nun(t)

)

=
∞∑

n=1

n
d

dt
un(t), (3.3)

where M(t) =
∑∞

n=1 nun(t). Since

∞∑

n=1

n

(

−anun(t) +
∞∑

j=n+1

ajbn,juj(t)

)

= −
∞∑

n=1

nanun(t) +
∞∑

j=2

ajuj(t)

j−1
∑

n=1

nbn,j

= −
∞∑

n=1

nanun(t) +

∞∑

j=2

jajuj(t) by (A1)

= 0, (3.4)

and

∞∑

n=1

n

(

1

2

n−1∑

j=1

kn−j,jun−j(t)uj(t) −
∞∑

j=1

kn,jun(t)uj(t)

)

=
1

2

∞∑

j=1

∞∑

n=j+1

nkn−j,jun−j(t)uj(t) −
∞∑

n=1

∞∑

j=1

nkn,jun(t)uj(t)

=
1

2

∞∑

j=1

∞∑

l=1

(l + j)kl,jul(t)uj(t) −
∞∑

n=1

∞∑

j=1

nkn,jun(t)uj(t)

=
1

2

∞∑

j=1

∞∑

l=1

lkl,jul(t)uj(t) +
1

2

∞∑

l=1

∞∑

j=1

jkj,luj(t)ul(t)

−
∞∑

n=1

∞∑

j=1

nkn,jun(t)uj(t)

= 0, (3.5)

it follows that dM(t)
dt

= 0, i.e. M(t) = M(0) = M for all t ≥ 0.

Note that most of the following results have been published in [44]. We shall

present an extended version of [44] in this chapter. We shall begin by analysing

the pure fragmentation equation (i.e. kn,j = 0 for all n, j = 1, 2, . . .) for a general

33



sequence {an}∞n=1 of non-negative numbers. We shall then move on to the specific

cases when {an}∞n=1 is bounded and {an}∞n=1 is monotonic increasing. We choose

to look at the monotonic increasing case since it is feasible to assume that larger

clusters of particles will break up at a greater rate than smaller clusters.

3.1 Fragmentation: The General Case

When coagulation is removed, the pure fragmentation equation takes the follow-

ing form:

d

dt
un(t) = −anun(t) +

∞∑

j=n+1

ajbn,juj(t) (n = 1, 2, 3, ...). (3.6)

Since we are looking for a mass-conserving solution there is a natural Banach

space X in which to study the abstract Cauchy problem (ACP) corresponding to

(3.6).

Definition 3.1. Let X be the space of all real infinite sequences {fn}∞n=1 such

that

‖f‖ =

∞∑

n=1

n|fn| <∞ . (3.7)

The expression (3.7) defines a norm with respect to which X becomes a Ba-

nach space. Note that X is a weighted l1 space. Also, X is a particular case of

Y = L1(Ω, µ) used in Chapter 2 where Ω = N is the set of positive integers and,

for any subset M of N,

µ(M) =







∑

m∈M

m if M is finite

∞ if M is infinite.
(3.8)

We shall make use of the following operators defined in X.

Definition 3.2. Define operators A and B in X by

[Af ]n = −an fn; D(A) =

{

f ∈ X :
∞∑

n=1

nan|fn| <∞
}

, (3.9)
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[Bf ]n =
∞∑

j=n+1

ajbn,jfj; D(B) =

{

f ∈ X :
∞∑

n=1

n
∣
∣

∞∑

j=n+1

ajbn,jfj
∣
∣ <∞

}

. (3.10)

Lemma 3.3. As sets D(A) ⊆ D(B).

Proof: Let f ∈ D(A). Then

‖Bf‖ ≤
∞∑

n=1

n
∞∑

j=n+1

aj bn,j |fj| =
∞∑

j=2

aj |fj|
(
j−1
∑

n=1

n bn,j

)

=

∞∑

j=1

j aj |fj| = ‖Af‖ <∞ (by (A1) and (A3)) ,

so that f ∈ D(B) and D(A) ⊆ D(B). �

Notation 3.4. We shall denote the set D(A) simply by D.

When the pure fragmentation equation (3.6) is converted into an ACP we

obtain:

Problem 3.5. (ACP for (3.6).) Find a function u : [0,∞) → X such that

d

dt
u(t) = Au(t) +Bu(t) (t > 0) (3.11)

lim
t→0+

u(t) = f ∈ D . (3.12)

Later we shall show that a unique strict solution to (3.11) and (3.12) will

always exist when {an} is either bounded or monotonic increasing. However,

for more general sequences {an}, we have to modify Problem 3.5 slightly by

replacing the operator sum A + B that appears on the right-hand side of (3.11)

by an appropriate extension G (namely, the closure of (A + B,D)). In this case

the corresponding ACP has a unique strict solution for any f ∈ D(G).

Note that we also want a solution to be non-negative and mass-conserving.

Thus we require

f ∈ D+ ⇒ u(t) ∈ D+ for all t > 0 , (3.13)

‖u(t)‖ = ‖f‖ for all t > 0 . (3.14)
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One approach to dealing with the case of a general sequence {an} is to consider

the operator C in X defined by

[Cf ]n = [Af ]n + [Bf ]n ;

D(C) =

{

f ∈ X :

∞∑

n=1

n
∣
∣
∣[Cf ]n

∣
∣
∣ <∞

}

. (3.15)

We can think of D(C) as the maximal domain of existence of the right-hand

side of (3.11) while D is the minimal domain (in which Af and Bf separately

belong to X). If we replace (3.11) by

d

dt
u(t) = Cu(t) (3.16)

we obtain an ACP involving C. By a method similar to [17, Chapter 13], it

can be proved that a restriction of C exists that generates a strongly continuous

semigroup on X. Consequently, this ACP has a unique, strict solution which

can also be shown to be non-negative and mass-conserving for suitably restricted

initial data f . However, this solution does not necessarily satisfy (3.13). The

method in [17] uses results related to the Kato-Voigt perturbation theorem but

we choose to use this theorem directly.

Theorem 3.6. Let X,A,B be as in Definitions 3.1 and 3.2. Then there ex-

ists a smallest extension G of A + B which generates a substochastic semigroup

{TG(t)}t≥0 on X.

Proof: As stated earlier, X is the space L1(N, µ) with Ω = N and µ given by

(3.8). Consequently, we can apply the Kato-Voigt theorem (Theorem 2.19) to

the ACP (3.11) and (3.12). We must therefore check each of the conditions in

Theorem 2.19.

(i) From Lemma 2.14 it is clear that A generates the substochastic semigroup

{TA(t)}t≥0 on X, where

[TA(t)f ]n = e−antfn (n = 1, 2, ...). (3.17)

(ii) Certainly D(B) ⊇ D(A) by Lemma 3.3. Also it is immediate that Bf ≥ 0

for all f ∈ D(B)+.
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(iii) For f ∈ D(A)+,

∫

Ω

(Af +Bf)dµ =

∞∑

n=1

n

(

−anfn +

∞∑

j=n+1

ajbn,jfj

)

= 0 =: −c(f)

by the calculations in the proof of Lemma 3.3.

The result therefore follows from Theorem 2.19. �

We shall now obtain a precise characterisation of G namely, G = A+B. In

order to do this we need to show that we can apply the results involving extended

operators described in Chapter 2. In what follows we shall use the notation of

Definitions 2.21 - 2.25. As mentioned previously, the appropriate space to work

in is X = L1(N, µ). If we let l denote the space of all sequences, then l = Ef ⊂ E.

(The inclusion is strict because E can contain sequences with an arbitrary number

of infinite entries, whereas a sequence in Ef must contain no infinite entries, since

the only set with measure 0 is the empty set.) Also

F = {f ∈ l :

{
fn

1 + an

}∞

n=1

∈ X}

and therefore

f ∈ F+ ⇐⇒
∞∑

n=1

nfn
1 + an

<∞, fn ≥ 0.

Further we have

[Lf ]n =
fn

1 + an
, f ∈ F ;

[Af ]n = fn − (1 + an)fn = −anfn,

D(A) = LF = {f ∈ X : f =

{
gn

1 + an

}∞

n=1

, g ∈ F};

[Bf ]n =

∞∑

j=n+1

ajbn,jfj,

D(B) = H = {f ∈ X : for any non-negative, non-decreasing sequence {f n}
in D(B) such that sup

n

fn = |f |, i.e. sup
n

fnm = |fm| ∀m,

we have sup
n

Bfn <∞, i.e. sup
n

Bfnm <∞ ∀m
}

,
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Theorem 3.7. In the context of Theorem 3.6, G = A+B, the closure of the

operator (A +B,D).

Proof: We shall use Theorem 2.26 with c(f) := 0. We must verify that, for any

g ∈ F+ such that −g + BLg ∈ X, we have

∞∑

n=1

n(Lg)n +
∞∑

n=1

n (−gn + (BLg)n) ≥ 0. (3.18)

Let

fn = (Lg)n = (1 + an)
−1gn, n = 1, 2, . . . ,

so that f ∈ X+. Since

(Lg)n − gn = (1 + an)
−1gn − gn = −anfn, (3.19)

equation (3.18) holds if, for any f ∈ X+ such that Af + Bf ∈ X, we have

∞∑

n=1

n (−anfn + (Bf)n) ≥ 0. (3.20)

Now

∞∑

n=1

n (−anfn + (Bf)n)

= lim
N→∞

N∑

n=1

n

(

−anfn +

∞∑

j=n+1

ajbn,jfj

)

(3.21)

and we know that, for any finite N ∈ N,

N∑

n=1

nanfn <∞ and
N∑

n=1

n(Bf)n <∞,

the latter following from the fact that Bf ∈ l+. Therefore (3.21) can be written

as

lim
N→∞

(

−
N∑

n=1

nanfn +

N∑

n=1

∞∑

j=n+1

najbn,jfj

)

. (3.22)
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Now

N∑

n=1

∞∑

j=n+1

najbn,jfj

=
N∑

j=2

(
j−1
∑

n=1

nbn,j

)

ajfj +
∞∑

j=N+1

N∑

n=1

najbn,jfj

=
N∑

j=2

jajfj + SN

where

SN =

∞∑

j=N+1

N∑

n=1

najbn,jfj ≥ 0 ∀N.

Thus from (3.22) we have

lim
N→∞

(

−
N∑

n=1

nanfn +

N∑

n=1

∞∑

j=n+1

najbn,jfj

)

= lim
N→∞

(

−
N∑

n=1

nanfn +
N∑

n=1

nanfn + SN

)

= lim
N→∞

SN ≥ 0.

Hence we have satisfied the conditions of Theorem 2.26 and we can conclude that

G = A+B. �

From [11, p. 159], if G = A+B, then for u(t) ∈ D(G) there exists a sequence

(un(t))n∈N of elements of D(A) such that un(t) → u(t) and (A+B)un(t) → Gu(t)

as n→ ∞ in X. This leads to

∫

Ω

Gu(t)dµ = lim
n→∞

∫

Ω

(A+B)un(t)dµ = 0

If f ∈ D(G)+, then u(t) = TG(t)f ∈ D(G)+ for any t ≥ 0 and we have

d

dt
‖u(t)‖ =

∫

Ω

du(t)

dt
dµ =

∫

Ω

Gu(t)dµ = 0
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i.e. in our space X = L1(N, µ) we have

d

dt
‖u(t)‖ =

∞∑

n=1

n

[
du(t)

dt

]

n

=

∞∑

n=1

n[Gu(t)]n = 0.

It follows immediately from Theorem 3.7, in conjunction with the above dis-

cussion, that the ACP

d

dt
u(t) = Gu(t) (t > 0) (3.23)

lim
t→0+

u(t) = f , (3.24)

has a unique, strict, non-negative and mass-conserving solution u : [0,∞) →
D(G)+ for each f ∈ D(G)+ and hence for each f ∈ D(A)+. This solution is

given by u(t) = TG(t)f , with G = A +B. In the next section we shall show

that, under certain additional constraints on the sequence {an}, the set D(A)+

is invariant under TG(t).

3.2 Fragmentation: Particular Cases

Let X,A,B be as in Definitions 3.1 and 3.2 and let G = A+B, as in Theorem

3.7. Since D ≡ D(A) ⊆ D(G) we know that

f ∈ D+ ⇒ u(t) ∈ D(G)+ for all t > 0.

However we are not able to deduce in general that (3.13) holds. We shall now

look at two special cases where progress can be made.

Case 1: {an} bounded.

Suppose that |an| ≤ M (M a positive constant) for all n ≥ 1. Then

‖Af‖ =
∞∑

n=1

n an |fn| ≤M
∞∑

n=1

n|fn| = M‖f‖ <∞. (3.25)

In this case D(A) = X and A is a bounded linear operator on X. Also, by the
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calculations in the proof of Lemma 3.3, we obtain

‖Bf‖ ≤
∞∑

n=1

n
∞∑

j=n+1

ajbn,j|fj| = ‖Af‖ <∞ (3.26)

for any f ∈ X. Hence B is also a bounded linear operator on X (with D(B) =

D(A) = X).

It follows that G = A + B and {TG(t)}t≥0 = {et(A+B)}t≥0 is a uniformly

continuous (and hence strongly continuous) semigroup on X with D(G) = X.

Theorems 3.6 and 3.7, together with the comment thereafter, guarantee that

{TG(t)}t≥0 is stochastic. Since u(t) = TG(t)f is the unique solution of Problem

3.5 under the given conditions, we deduce that (3.13) holds.

We have therefore proved

Theorem 3.8. In the case when {an} is bounded, Problem 3.5 has a unique

strict, non-negative, mass-conserving solution for each f ∈ X, given by

u(t) = et(A+B)f (t ≥ 0).

Case 2: {an} monotonic increasing.

We shall adapt an argument used by Banasiak in [10, Example 6.4] for a

continuous fragmentation equation, with kernels

a(x) = xα, α > 0 and b(x, y) = (ν + 2)xν/yν+1, −2 < ν ≤ 0,

to prove the following result.

Theorem 3.9. Let X,A,B and G be as in Theorem 3.6 and, in addition to

assumptions (A1)-(A3), let {an} be a monotonic increasing sequence. Then

D (= D(A)) is invariant under the semigroup {TG(t)}t≥0 .

Proof: We proceed in a number of steps.
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Step 1 Let D be equipped with the graph norm

‖f‖A = ‖f‖ + ‖Af‖ (f ∈ D)

=

∞∑

n=1

(n + nan)|fn| ,

and define operators AD and BD on D by

(ADf)n = −an fn ; D(AD) = {f ∈ D : ADf ∈ D} , (3.27)

(BDf)n =

∞∑

j=n+1

aj bn,j fj ; D(BD) = {f ∈ D : BDf ∈ D} . (3.28)

Thus AD (respectively BD) is the part of A (respectively B) in D.

Then AD generates a substochastic semigroup {T (t)}t≥0 on the Banach space

(D, ‖ · ‖A) with

[T (t)f ]n = e−antfn for f ∈ D, t ≥ 0. (3.29)

Step 2 D(AD) ⊆ D(BD) and f ∈ [D(AD)]+ ⇒ BDf ∈ [D(AD)]+ .

For f ∈ D(AD), by calculations similar to those in the proof of Lemma 3.3,

‖BDf‖A = ‖BDf‖ + ‖A(BDf)‖

≤
∞∑

n=1

n

(
∞∑

j=n+1

ajbn,j|fj|
)

+

∞∑

n=1

nan

∞∑

j=n+1

ajbn,j|fj|

≤
∞∑

j=2

aj|fj|
(
j−1
∑

n=1

nbn,j

)

+
∞∑

j=2

a2
j |fj|

(
j−1
∑

n=1

nbn,j

)

(since{an}∞n=1 is monotonic increasing)

=

∞∑

j=2

aj|fj|j +

∞∑

j=2

a2
j |fj|j

= ‖ ADf ‖ + ‖ A(ADf) ‖=‖ ADf ‖A<∞ .

Hence D(AD) ⊆ D(BD). Positivity of BD is immediate from its definition.

Step 3 Verify that the appropriate version of (2.21) is satisfied.
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For f ∈ [D(AD)]+, the left-hand side of (2.21) becomes

∞∑

n=1

(n+ nan)[−anfn +

∞∑

j=n+1

ajbn,jfj]

= −
∞∑

n=1

(n+ nan)anfn +
∞∑

n=1

(n+ nan)
∞∑

j=n+1

ajbn,jfj

= −
∞∑

n=1

(n+ nan)anfn +

∞∑

j=2

ajfj

j−1
∑

n=1

(n + nan)bn,j

≤ −
∞∑

n=1

(n+ nan)anfn +
∞∑

j=2

(j + jaj)ajfj = 0

since a1 = 0 and, for n = 1, ..., j − 1 (where j ≥ 2)

j−1
∑

n=1

nbn,j +

j−1
∑

n=1

nanbn,j ≤ (1 + aj)

j−1
∑

n=1

nbn,j = j(1 + aj)

by (A3) and monotonicity.

Step 4 Apply Theorem 2.19.

Steps 1-3 show that the hypotheses of Theorem 2.19 are satisfied. Hence there

exists an extension GD, say, of (AD+BD, D(AD)) which generates a substochastic

semigroup {TGD
(t)}t≥0 on (D, ‖ · ‖A).

When f ∈ X has bounded support (so that fn = 0 for all sufficiently large

n), f ∈ D(AD) and TGD
(t)f = TG(t)f for all t ≥ 0, where {TG(t)}t≥0 is the

stochastic semigroup on X generated by G = A+B. By continuity and density,

TGD
(t)f = TG(t)f for all f ∈ (D, ‖ · ‖A) and t ≥ 0 .

Thus TGD
(t) is the restriction of TG(t) to (D, ‖ · ‖A) and hence D+ is invariant

under the semigroup {TG(t)}t≥0. �

Remark 3.10. Since

‖f‖ ≤ ‖f‖ + ‖Af‖ = ‖f‖A (f ∈ D)
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(D, ‖ · ‖A) is continuously imbedded in (X, ‖ · ‖). Hence GD is the part of G in

(D, ‖ · ‖A) so that

GDf = Gf ; D(GD) = {f ∈ D(G) ∩D : Gf ∈ D}
i.e. GDf = (A +B)f ; D(GD) = {f ∈ D : (A+B)f ∈ D} . (3.30)

Note this means that when {an}∞n=1 is a monotonic increasing sequence we

have that the solution to u̇ = Gu is also the solution to u̇ = (A + B)u for

f ∈ D(A). Hence we are actually solving the original problem.

Note 3.11. In Section 3.4 we shall analyse in detail a particular form of mono-

tonic increasing fragmentation rate, namely,

an = nα − 1, α > 0.

3.3 Uniformly Bounded Coagulation

We now study the full coagulation-fragmentation equation (3.1). By analogy with

Problem 3.5, the corresponding (nonlinear) ACP takes the form

d

dt
u(t) = Au(t) +Bu(t) +Ku(t) (3.31)

lim
t→0+

u(t) = f ∈ D (3.32)

where the coagulation operator K is given by

[Kf ]n =
1

2

n−1∑

j=1

kn−j,jfn−jfj −
∞∑

j=1

kn,jfnfj , f ∈ X . (3.33)

As mentioned previously we shall assume that the coagulation kernel is symmet-

ric. In addition to this we also assume kn,j is uniformly bounded, i.e. kn,j = kj,n

and there exists a constant k such that

(A4) kn,j ≤ k for all n, j = 1, 2, . . ..

Definition 3.12. Given the coagulation operator K in (3.33), define K̃ on X×X
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by

(K̃[c, d])n =
1

2

n−1∑

j=1

kn−j,jcn−jdj −
∞∑

j=1

kn,jcndj (3.34)

where c, d ∈ X.

Theorem 3.13. Under Assumption (A4), K̃ defines a bilinear, continuous form

mapping X ×X into X and ‖K̃[c, d]‖ ≤ 2k‖c‖‖d‖.

Proof: It is convenient to write

(K̃[c, d])n = (K̃1[c, d])n − (K̃2[c, d])n

where

(K̃1[c, d])n =
1

2

n−1∑

j=1

kn−j,jcn−jdj , (K̃2[c, d])n =

∞∑

j=1

kn,jcndj . (3.35)

We first prove that K̃ maps X ×X into X. Indeed

‖K̃1[c, d]‖ =

∞∑

n=1

n|(K̃1[c, d])n|

≤ k

2

∞∑

n=1

n

n−1∑

j=1

|cn−j| |dj| by (A4)

=
k

2

∞∑

j=1

∞∑

n=j+1

n|cn−j| |dj|

=
k

2

∞∑

j=1

∞∑

l=1

( l|cl| |dj| + j|cl| |dj| )

≤ k

2
‖c‖

∞∑

j=1

j|dj| +
k

2
‖d‖

∞∑

l=1

l|cl|

= k‖c‖ ‖d‖ <∞ . (3.36)

Similarly,

‖K̃2[c, d]‖ ≤ k‖c‖ ‖d‖. (3.37)
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From (3.36) and (3.37) it follows that

‖K̃[c, d]‖ ≤ 2k‖c‖ ‖d‖. (3.38)

This shows that K̃[c, d] ∈ X and that K̃[·, ·] is bounded, and hence continuous,

in each argument separately. It is a routine matter to show that K̃ is bilinear. �

We now use Theorem 3.13 to derive properties of K given by (3.33).

Theorem 3.14. Under Assumption (A4),

(i) K : X → X,

(ii) K is locally Lipschitz on X,

(iii) K is Fréchet differentiable on X.

Proof: The proof follows similar lines to that given in [39, Section 3] for a

continuous coagulation-fragmentation equation.

(i) By (3.38) ,

‖Kc‖ = ‖K̃[c, c]‖ ≤ 2k‖c‖2 <∞ ∀c ∈ X . (3.39)

(ii) For c, d ∈ X,

‖Kc−Kd‖ = ‖K̃[c− d, c] + K̃[d, c− d]‖ (by bilinearity)

≤ 2k‖c− d‖ ‖c‖ + 2k‖d‖ ‖c− d‖ (by (3.38))

= 2k‖c− d‖(‖c‖ + ‖d‖) . (3.40)

If we fix f ∈ X, then ∀c, d ∈ B̄(f, r) := {g ∈ X : ‖g − f‖ ≤ r},

‖Kc−Kd‖ ≤ C(f, r)‖c− d‖

where C(f, r) = 4k(‖f‖ + r) .

(iii) Let c, δ ∈ X. Then

K[c + δ] = Kc+ K̃[c, δ] + K̃[δ, c] +Kδ .
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For fixed c, K̃[c, ·] + K̃[·, c] is in B(X) by (3.38) and

‖K̃[c, δ] + K̃[δ, c]‖ ≤ ‖K̃[c, δ]‖ + ‖K̃[δ, c]‖ ≤ 4k‖c‖ ‖δ‖ ∀δ ∈ X.

Also, for δ 6= 0,
‖Kδ‖
‖δ‖ ≤ 2k‖δ‖ → 0 as ‖δ‖ → 0 .

Therefore K is Fréchet differentiable at each c ∈ X and the Fréchet deriva-

tive K[c] at c is given by

K[c]d = K̃[c, d] + K̃[d, c] ∀d ∈ X. (3.41)

�

Theorem 3.15. The Fréchet derivative K[c] is continuous with respect to c.

Proof: For c1, c2 ∈ X we have

‖K[c1]d−K[c2]d‖ ≤ ‖K̃[c1 − c2, d]‖ + ‖K̃[d, c1 − c2]‖
≤ 4k‖c1 − c2‖ ‖d‖ (by (3.38))

→ 0 as ‖c1 − c2‖ → 0.

�

Having established the behaviour of the coagulation operator K subject to

Assumption (A4), we now combine this with the results obtained earlier on the

fragmentation equation.

In the general case when the sequence {an} is constrained only by Assumption

(A1), we know that G = A+B generates a positive semigroup of isometries

denoted by {TG(t)}t≥0. In view of Theorems 3.14 and 3.15, we may deduce from

Theorem 2.32 that, for any f ∈ D(G), the semilinear ACP

d

dt
u(t) = Gu(t) +Ku(t) (3.42)

lim
t→0+

u(t) = f ∈ D(G) (3.43)
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has a uniquely defined strongly differentiable solution

u : [0, t0) → B(f, r) := {g ∈ X : ‖g − f‖ < r}

for suitably small positive constants t0 and r. Our aim is to show that this solution

exists globally in time. First we establish that u(t) ∈ D(G)+ whenever f ∈
D(G)+. To do this, we apply an elegant argument used, in a different context, by

Belleni-Morante in [18, Chapter 8]. This hinges on recognising that the solution

u of (3.42) and (3.43) is also the unique strongly differentiable solution of

d

dt
u(t) =

(

G[u(t)] − αu(t)
)

+
(

αu(t) +K[u(t)]
)

for any α ∈ R. Hence u is the unique solution of the integral equation

u(t) = e−αtTG(t)f +

∫ t

0

e−α(t−s)TG(t− s)Kα[u(s)]ds , 0 ≤ t ≤ t0,

where Kα := K + αI.

Lemma 3.16. Let f ∈ D(G)+ and let α ≥ k(‖f‖ + r). Then Kαc ∈ X+ for all

c ∈ B(f, r)+.

Proof: We have

(Kαc)n = αcn + (K̃1[c, c])n − (K̃2[c, c])n = αcn + (K1c)n − (K2c)n.

Now

(K1c)n =
1

2

n−1∑

j=1

kn−j,jcn−jcj ≥ 0 ∀c ∈ X+ .

Also, if c ∈ B(f, r)+ then

(K2c)n =

∞∑

j=1

kn,jcncj ≤ k‖c‖cn ≤ k(‖f‖ + r)cn.

Hence

αcn − (K2c)n ≥ αcn − k(‖f‖ + r)cn ≥ 0 if α ≥ k(‖f‖ + r)

48



and therefore Kαc ∈ X+ for all c ∈ B(f, r)+ if α ≥ k(‖f‖ + r).

�

Theorem 3.17. Let f ∈ D(G)+ and let u : [0, t0) → B(f, r) be the unique strict

solution of (3.42) and (3.43). Then there exists t1 ∈ [0, t0) such that u(t) ∈ X+

for all t ∈ [0, t1).

Proof: Let Y = C([0, t1], X) with norm ‖v‖Y := max{‖v(t)‖ : 0 ≤ t ≤ t1}, let

Σ := {v ∈ Y : v(t) ∈ B̄(f, r1)
+ ∀t ∈ [0, t1]} , where 0 < r1 < r ,

and define an operator Q on Σ by

(Qv)(t) := e−αtTG(t)f +

∫ t

0

e−α(t−s)TG(t− s)Kα[v(s)]ds , 0 ≤ t ≤ t1 ,

for α ≥ k(‖f‖ + r). Note that t1 is chosen later.

Firstly we shall show that Q(Σ) ⊂ Y . Let v ∈ Σ and t, t2 ∈ [0, t1]. Then

‖(Qv)(t) − (Qv)(t2)‖ ≤ ‖e−αtT (t)f − e−αt2T (t2)f‖

+
∥
∥
∥

∫ t

0

e−α(t−s)T (t− s)Kα[v(s)]ds

−
∫ t2

0

e−α(t2−s)T (t2 − s)Kα[v(s)]ds
∥
∥
∥.

The first term on the right-hand side gives

‖e−αtT (t)f − e−αt2T (t2)f‖
= ‖e−αtT (t)f − e−αt2T (t)f + e−αt2T (t)f − e−αt2T (t2)f‖

≤ ‖e−αtT (t)f − e−αt2T (t)f‖ + ‖e−αt2T (t)f − e−αt2T (t2)f‖
≤ |e−αt − e−αt2 |‖T (t)f‖ + e−αt2‖T (t)f − T (t2)f‖
≤ |e−αt − e−αt2 |‖f‖ + e−αt2‖T (t)f − T (t2)f‖

( since {T (t)}t≥0 is a substochastic semigroup)

→ 0 as t→ t2.
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The second term on the right-hand side gives

‖
∫ t

0

e−α(t−s)T (t− s)Kα[v(s)]ds−
∫ t2

0

e−α(t2−s)T (t2 − s)Kα[v(s)]ds‖

≤ ‖
∫ t

0

e−α(t−s)T (t− s)Kα[v(s)]ds−
∫ t

0

e−α(t2−s)T (t− s)Kα[v(s)]ds‖

+‖
∫ t

0

e−α(t2−s)T (t− s)Kα[v(s)]ds−
∫ t2

0

e−α(t2−s)T (t2 − s)Kα[v(s)]ds‖

= ‖
∫ t

0

(
e−α(t−s) − e−α(t2−s)

)
T (t− s)Kα[v(s)]ds‖

+‖e−αt2
∫ t

t2

eαs (T (t− s)[v(s)] − T (t2 − s)[v(s)]) ds‖

→ 0 as t→ t2.

Altogether we have

‖(Qv)(t) − (Qv)(t0)‖ → 0 as t→ t2.

Hence Q(Σ) ⊂ Y , as required.

It is also clear that (Qv)(t) ∈ X+ ∀t ∈ [0, t1] since TG(t) : X+ → X+ and

Kα[v(s)] ∈ X+ for all v(s) ∈ B̄(f, r1)
+. Now let v, w ∈ Σ. Then

‖(Qv)(t) − (Qw)(t)‖

≤
∫ t

0

e−α(t−s)‖TG(t− s)‖ ‖Kα[v(s)] −Kα[w(s)]‖ds

≤
∫ t

0

e−α(t−s)‖Kα[v(s)] −Kα[w(s)]‖ds

=

∫ t

0

e−α(t−s)‖α(v(s) − w(s)) +K[v(s)] −K[w(s)]‖ds

≤
∫ t

0

e−α(t−s)
{

α‖v(s) − w(s)‖ + 2k(‖v(s)‖ + ‖w(s)‖)‖v(s)− w(s)‖
}

ds

(by (3.40))

≤ [α + C(f, r)]

∫ t

0

e−α(t−s)‖v(s) − w(s)‖ds ,
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where C(f, r) = 4k(‖f‖ + r), as before. So

‖Qv −Qw‖Y ≤ [α + C(f, r)] ‖v − w‖Y t1 .

Also

‖(Qv)(t) − f ‖ ≤ ‖ e−αtTG(t)f − f‖ +

∫ t

0

e−α(t−s)‖TG(t− s)Kα[v(s)]‖ds

≤ ‖e−αtTG(t)f − f‖ +

∫ t

0

e−α(t−s)‖Kα[v(s)]‖ds ,

since {TG(t)}t≥0 is a substochastic semigroup. Now

‖Kα[v(s)]‖ = ‖Kα[v(s)] −Kαf +Kαf‖
≤ ‖Kα[v(s)] −Kαf‖ + ‖Kαf‖
≤ [α + C(f, r)]‖v(s) − f‖ + α‖f‖ + ‖Kf‖ by (3.40)

≤ [α + C(f, r)]r1 + α‖f‖ + ‖Kf‖ .

Therefore

‖(Qv)(t) − f‖ ≤ ‖e−αtTG(t)f − f‖ +
{

[α + C(f, r)]r1 + α‖f‖ + ‖Kf‖
}

t1 .

Let

q(t1) :=
1

r1
max

0≤t≤t1

{

‖ e−αtTG(t)f − f‖
}

+
1

r1

{

[α+C(f, r)]r1 + α‖f‖+ ‖Kf‖
}

t1 .

Then, for all v, w ∈ Σ,

‖(Qv)(t) − f‖ ≤ r1q(t1) and ‖Qv −Qw‖Y ≤ q(t1)‖v − w‖Y .

Now q(t1) → 0+ as t1 → 0+. Hence we can choose t1 so that 0 < q(t1) < 1 in

which case we have Q(Σ) ⊂ Σ and Q is a contraction. Hence there exists a unique

solution u ∈ Σ of u = Qu so that the integral equation has a unique solution

u ∈ C([0, t1], X
+) .

�

Theorem 3.18. Let the maximal interval of existence of the strict solution of
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(3.42) and (3.43) be [0, T̂ ). Then u(t) ∈ X+ for all t ∈ [0, T̂ ) whenever f ∈
D(G)+.

Proof: Let T0 ∈ (0, T̂ ) be arbitrarily fixed and define

τmax := sup{0 < τ < T0 : u(t) ∈ X+ ∀t ∈ [0, τ ]} .

Suppose τmax < T0 and consider the semilinear problem

d

dt
v(t) = Gv(t) +Kv(t) , t > 0 ; v(0) = u(τmax) .

By continuity, v(0) = u(τmax) ∈ X+, and so, arguing as before, we deduce that

there exists t0 ∈ (0, T0 − τmax) such that a unique (mild) non-negative solution of

this problem exists on [0, t0]. Since v(t) = u(t+ τmax), this means that u(t) ∈ X+

for all t ∈ [0, τmax+t0], which is a contradiction. Hence u(t) ∈ X+ for all t ∈ [0, T̂ )

whenever f ∈ X+ .

�

Theorem 3.19. The solution to the ACP (3.42) and (3.43) exists globally in

time.

Proof: From Theorem 2.28, all we need to show is that the unique, local solution

u does not blow up in finite time. Since u is strongly differentiable and non-

negative, we have

d

dt
‖u(t)‖ =

d

dt

∞∑

n=1

nun(t) =

∞∑

n=1

n[Gu(t)]n +

∞∑

n=1

n[Ku(t)]n .

By the discussion on pages 39-40 and by the same calculations as in (3.5) we have

that the derivative is equal to zero, and therefore

‖u(t)‖ = ‖u(0)‖ = ‖f‖, ∀t ∈ [0, T̂ ).

Hence the local solution cannot blow up in finite time so we have global existence

of a strict non-negative solution to our ACP (3.42) and (3.43).

�
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As was the case with the fragmentation equation for general {an}, it should

be noted that f ∈ D+ does not guarantee that the solution u(t) of (3.42) and

(3.43) is in D+ for all t > 0. In the following section we discuss a specific class of

fragmentation kernels for which it is possible to prove that u(t) remains in D+

for all t.

3.4 Power Law Fragmentation

We now consider the specific case of (3.31) and (3.32) when the fragmentation

rate an is defined by the power law

an = nα − 1 , α ∈ R .

Note that when α = 0, an = 0 for all n and we are dealing with pure coagulation.

Also, when α < 0 the sequence {an} is bounded and so we have the existence

and uniqueness of a non-negative strict solution to (3.31) and (3.32) for any

f ∈ D = X. Consequently, we shall restrict our attention to the case when α > 0.

If, initially, we consider only fragmentation, then since {an} is a monotonic

increasing sequence, D(A) is invariant under the semigroup {TG(t)}t≥0, where

G = (A+B,D) by Theorem 3.9. Moreover, the graph norm ‖ · ‖A now takes the

form

‖f‖A =

∞∑

n=1

{n + n(nα − 1)} |fn| =

∞∑

n=1

nα+1|fn| . (3.44)

It is therefore convenient to introduce the following spaces.

Definition 3.20. For α > 0, define the space (Xα, ‖ · ‖α) by

Xα :=

{

f = {fn}∞n=1 :

∞∑

n=1

nα|fn| <∞
}

(3.45)

‖f‖α :=

∞∑

n=1

nα|fn| , f ∈ Xα .

(Note that our original space X corresponds to α = 1.)

Lemma 3.21. For each α > 0, Xα+1 is compactly embedded in Xα. We shall

denote this by Xα+1 ↪→↪→ Xα.
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Proof: Define J : Xα+1 → Xα by Jf = f , f ∈ Xα+1 . It is clear that the

embedding J is a bounded, linear mapping from Xα+1 into Xα since an easy

calculation shows that ‖Jf‖α ≤ ‖f‖α+1 for all f ∈ Xα+1. To prove that J is

compact, we introduce operators {Jr}∞r=1 defined on Xα+1 by

(Jrf)n =

{

fn n = 1, ..., r

0 n ≥ r + 1.

Then, for f ∈ Xα+1,

‖Jrf‖α =

r∑

n=1

nα|fn| ≤
∞∑

n=1

nα+1|fn| = ‖f‖α+1

so that Jr ∈ B(Xα+1, Xα) for each r = 1, 2, .... Moreover, each Jr is a finite rank

operator with R(Jr) = span {e1, ..., er} (where en is the standard canonical basis

vector with zero entries in all positions except for the nth which is 1) and hence

compact. Finally, for f ∈ Xα+1 with f 6= 0,

‖Jf − Jrf‖α =

∞∑

n=r+1

nα|fn| =

∞∑

n=r+1

1

n
nα+1|fn|

≤ 1

r + 1

∞∑

n=r+1

nα+1|fn| ≤
1

r + 1
‖f‖α+1 .

Hence ‖J−Jr‖ ≤ 1
r+1

→ 0 as r → ∞, where ‖·‖ denotes the norm inB(Xα+1, Xα).

It is a standard theorem ([34, Theorem 8.1-5]) that the norm limit of a sequence

of compact operators is a compact operator. Thus J is compact.

�

From the derivation of (3.44), we see that (D, ‖ · ‖A) = (Xα+1, ‖ · ‖α+1) for the

case when

(Af)n = −(nα − 1)fn (α > 0) . (3.46)

Corollary 3.22. For the operator A in (3.46) and G = (A+B,D), Xα+1 is

invariant under {TG(t)}t≥0.

Proof: This follows from Theorem 3.9 and the preceding remarks.

�

Note also that the proof of Theorem 3.9 and equation (3.30) show that, for

54



{an}∞n=1 = {nα− 1}∞n=1 and t ≥ 0, the restrictions TGα+1
(t) of TG(t) to Xα+1 form

a substochastic semigroup on Xα+1 with generator Gα+1, where

Gα+1f := (A+B)f ; D(Gα+1) := {f ∈ Xα+1 : (A+B)f ∈ Xα+1} . (3.47)

Our aim now is to obtain a similar result for the semilinear ACP (3.42) and

(3.43), that is, to show that if f is a suitably restricted element in D = Xα+1,

then u(t) ∈ Xα+1 for all t > 0, where u is the uniquely defined strict solution of

(3.42) and (3.43). This will then imply that (3.31) and (3.32) has a unique strict

solution. To accomplish this, we shall study the ACP

d

dt
v(t) = Gα+1v(t) +Kv(t) , t > 0 ; lim

t→0+
v(t) = f, (3.48)

in the space Xα+1 where Gα+1 is given by (3.47) and f ∈ D(Gα+1).

First we note that, for any β > 0,

∞∑

n=1

nβ(Kf)n =
1

2

∞∑

n=1

nβ
n−1∑

j=1

kn−j,jfn−jfj −
∞∑

n=1

nβ
∞∑

j=1

kn,jfnfj

=
1

2

∞∑

j=1

∞∑

n=j+1

nβkn−j,jfn−jfj −
∞∑

n=1

nβfn

∞∑

j=1

kn,jfj

=
1

2

∞∑

j=1

∞∑

l=1

(l + j)βkl,jflfj −
∞∑

n=1

nβfn

∞∑

j=1

kn,jfj

=
1

2

∞∑

j=1

∞∑

n=1

(n+ j)βkn,jfnfj −
1

2

∞∑

n=1

nβfn

∞∑

j=1

kn,jfj

−1

2

∞∑

j=1

jβfj

∞∑

n=1

kj,nfn

=
1

2

∞∑

j=1

∞∑

n=1

{

(n+ j)β − nβ − jβ
}

kn,jfnfj

(since kn,j is symmetric).

We shall also make use of the inequality

(n+ j)β ≤ 2β(nβ + jβ), β > 0 and n, j = 1, 2, ... . (3.49)
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Inequality (3.49) follows easily from the fact that

n ≥ j =⇒ (n+ j)β ≤ 2βnβ < 2β(nβ + jβ)

and similarly for j ≥ n. This then leads to

∞∑

n=1

nβ(Kf)n ≤ 1

2

∞∑

j=1

∞∑

n=1

(2β − 1)(nβ + jβ)kn,jfnfj

and, in particular,

∞∑

n=1

nα+1(Kf)n ≤ 1

2

∞∑

j=1

∞∑

n=1

(2α+1 − 1)(nα+1 + jα+1)kn,jfnfj . (3.50)

We now consider properties of the restriction Kα+1 of K to the Banach space

Xα+1 ↪→↪→ X. Corresponding bilinear forms K̃α+1, K̃
(1)
α+1 and K̃

(2)
α+1 are defined

by analogy with (3.35). In particular

(

K̃α+1[c, d]
)

n
=
(

K̃
(1)
α+1[c, d]

)

n
−
(

K̃
(2)
α+1[c, d]

)

n
.

Lemma 3.23. Let Cα = 2α+1k and Dα = Cα+k where k is the constant in (A4).

Then ∀c, d ∈ Xα+1,

‖K̃(1)
α+1[c, d]‖α+1 ≤ Cα‖c‖α+1‖d‖α+1, (3.51)

‖K̃(2)
α+1[c, d]‖α+1 ≤ k‖c‖α+1‖d‖α+1, (3.52)

‖K̃α+1[c, d]‖α+1 ≤ Dα‖c‖α+1‖d‖α+1. (3.53)

Proof: For (3.51), we have

‖K̃(1)
α+1[c, d]‖α+1 ≤ k

2

∞∑

n=1

nα+1
n−1∑

j=1

|cn−j||dj|

=
k

2

∞∑

j=1

∞∑

n=j+1

nα+1|cn−j||dj|

=
k

2

∞∑

j=1

∞∑

l=1

(l + j)α+1|cl||dj|
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≤ 2αk
∞∑

j=1

∞∑

l=1

[lα+1|cl||dj| + jα+1|cl||dj|] by (3.49)

= 2αk

[
∞∑

j=1

|dj|‖c‖α+1 +

∞∑

l=1

|cl|‖d‖α+1

]

≤ Cα‖c‖α+1‖d‖α+1.

The proof of inequality (3.52) is similar and (3.53) then follows immediately. �

Theorem 3.24. Let Kα+1 denote the restriction of K to Xα+1. Then

(i) Kα+1 : Xα+1 → Xα+1,

(ii) Kα+1 is locally Lipschitz on Xα+1,

(iii) Kα+1 is Fréchet differentiable on Xα+1 .

Proof. The proof is very similar to that given in Theorem 3.14 for the case

α = 0.

(i) It follows directly from (3.53) that, for c ∈ Xα+1,

‖Kα+1c‖α+1 ≤ Dα‖c‖2
α+1 .

(ii) On using the bilinearity of K̃α+1 together with (3.53), we obtain

‖Kα+1c−Kα+1d‖α+1 ≤ Dα‖c− d‖α+1(‖c‖α+1 + ‖d‖α+1)

for all c, d ∈ Xα+1. Consequently, if we fix f ∈ Xα+1 then

‖Kα+1c−Kα+1d‖α+1 ≤ C(f, r)‖c− d‖α+1 ∀c, d ∈ B̄(f, r)

where

B̄(f, r) = {g ∈ Xα+1 : ‖g − f‖α+1 ≤ r}

and

C(f, r) = 2Dα(r + ‖f‖α+1) .
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(iii) Arguing as in the proof of Theorem 3.14(iii), we find that the Fréchet deriva-

tive of Kα+1 at any given c ∈ Xα+1 is given by

(Kα+1)[c]d = K̃α+1[c, d] + K̃α+1[d, c] ∀d ∈ Xα+1 .

Note also that (Kα+1)[c] is continuous with respect to c.

�

As before, we can now use Theorem 2.32 to deduce that the ACP (3.48) has

a uniquely defined strict solution

v : [0, t0) → B(v0, r) := {g ∈ Xα+1 : ‖g − v0‖α+1 < r}

for suitably small t0 and r. Moreover, analogues of Lemma 3.16 and Theorems

3.17 and 3.18, with X,K, ‖f‖ replaced by Xα+1, Kα+1 and ‖f‖α+1 can be proved

by identical arguments. Consequently, if [0, T̂ ) denotes the maximal interval of

existence of the strict solution v of (3.48), then v(t) ∈ X+
α+1 for t ∈ [0, T̂ ) whenever

f ∈ X+
α+1.

Since Xα+1 is compactly imbedded in X = X1, and Gα+1 and Kα+1 are

restrictions of G and K respectively, it follows that v also satisfies the integral

equation

v(t) = TG(t)f +

∫ t

0

TG(t− s)K[v(s)]ds in X .

Also, if f is in D(Gα+1)
+ then f is also in D(A)+ ⊆ D(G)+ and so we deduce

that v agrees on [0, T̂ ) with the unique (globally defined) strict solution u of the

ACP (3.42) and (3.43) posed in the space X. Hence, if f ∈ D(Gα+1)
+ then

u(t) ∈ D(A)+ for all t ∈ [0, T̂ ) . It remains to show that T̂ = ∞.

Theorem 3.25. The solution v of (3.48) is global in time.

Proof: For each n = 1, 2, 3, . . . , we have

vn(t) = fn +

∫ t

0

[(

Gα+1[v(s)]
)

n
+
(

Kα+1[v(s)]
)

n

]

ds

= fn +

∫ t

0

[(

A[v(s)]
)

n
+
(

B[v(s)]
)

n
+
(

K[v(s)]
)

n

]

ds ,
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since, on Xα+1 , Gα+1 = A+B and Kα+1 = K . Consequently,

‖v(t)‖α+1 ≤ ‖f‖α+1

+
∞∑

n=1

nα+1

∫ t

0

{
∞∑

j=n+1

bn,j(j
α − 1)vj(s) − (nα − 1)vn(s)

}

ds

+

∞∑

n=1

nα+1

∫ t

0

(

K[v(s)]
)

n
ds

≤ ‖f‖α+1

+

∫ t

0

{
∞∑

n=1

∞∑

j=n+1

nα+1bn,j(j
α − 1)vj(s)

−
∞∑

n=1

nα+1(nα − 1)vn(s)

}

ds

+

∫ t

0

(

k

2

∞∑

j=1

∞∑

n=1

(

2α+1 − 1
)(

nα+1 + jα+1
)

vn(s)vj(s)

)

ds

by (3.50). If we take the second term on the right-hand side and change the order

of summation we obtain

∫ t

0

{
∞∑

n=1

∞∑

j=n+1

nα+1bn,j(j
α − 1)vj(s) −

∞∑

n=1

nα+1(nα − 1)vn(s)

}

ds

=

∫ t

0

{
∞∑

j=1

j−1
∑

n=1

nα+1bn,j(j
α − 1)vj(s) −

∞∑

n=1

nα+1(nα − 1)vn(s)

}

ds

≤
∫ t

0

{
∞∑

j=1

jα+1(jα − 1)vj(s) −
∞∑

n=1

nα+1(nα − 1)vn(s)ds

}

= 0 ,

where we have used (A3). So overall we get

‖v(t)‖α+1 ≤ ‖f‖α+1 +

∫ t

0

{

k

2
(2α+1 − 1)

( ∞∑

j=1

‖v(s)‖α+1vj(s)

+
∞∑

n=1

‖v(s)‖α+1vn(s)
)

ds
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= ‖f‖α+1 +

∫ t

0

k(2α+1 − 1)
∞∑

n=1

vn(s)‖v(s)‖α+1ds

≤ ‖f‖α+1 +

∫ t

0

k(2α+1 − 1)‖v(s)‖α+1

∞∑

n=1

nvn(s)ds

= ‖f‖α+1 +

∫ t

0

k(2α+1 − 1)‖v(s)‖α+1‖f‖ds (by mass conservation)

‖v(t)‖α+1 ≤ ‖f‖α+1 exp
(∫ t

0

k(2α+1 − 1)‖f‖ds
)

∀t ∈ [0, T̂ )

(by Gronwall’s inequality, see Lemma 2.34)

= ‖f‖α+1 exp
(

k(2α+1 − 1)‖f‖t
)

<∞ for all t <∞ .

Hence ‖v(t)‖α+1 cannot blow up in finite time and therefore v is defined

globally in time.

�

As an immediate consequence, we deduce that, when an = nα−1, the solution

u(t) of (3.42) and (3.43) remains in D(A)+ = X+
α+1 for all t > 0 whenever

f ∈ D(Gα+1)
+.

3.5 Closed Form Solutions

We shall now show that the explicit solution to a specific version of the discrete

pure fragmentation problem given by Ziff and McGrady in their paper [58] is the

same as the unique strict solution that has been shown to exist by our semigroup

analysis in Section 3.1. The specific equation we consider is obtained from (3.6)

by setting an = n− 1 and bn,j = 2
j−1

. This leads to

dun(t)

dt
= −(n− 1)un(t) + 2

∞∑

j=n+1

uj(t). (3.54)

Note that this represents a binary fragmentation process since

j−1
∑

n=1

bn,j = 2 for j ≥ 2.
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In [58], Ziff and McGrady describe a technique for obtaining a solution to (3.54).

We shall provide full details here of how their solution was obtained. The first

step is to consider the case of monodisperse initial conditions i.e.

un(0) = δnk =







1, n = k

0, n 6= k,
(3.55)

where k ∈ N is fixed. Note that un(t) = 0 for n > k since our initial condition

means we are starting with only clusters of size k and, as fragmentation is the

only process that occurs, larger particles will never be created. So uk(t) satisfies

the initial-value problem

duk(t)

dt
= −(k − 1)uk(t), uk(0) = 1,

from which it follows immediately that

uk(t) = e−(k−1)t. (3.56)

Similarly uk−1 satisfies

duk−1(t)

dt
= −(k − 2)uk−1(t) + 2uk(t), uk−1(0) = 0, (3.57)

i.e.
duk−1(t)

dt
+ (k − 2)uk−1(t) = 2e−(k−1)t, uk−1(0) = 0,

and therefore

uk−1(t) = −2e−(k−1)t + 2e−(k−2)t. (3.58)

Continuing with this procedure, we obtain

duk−2(t)

dt
= −(k − 3)uk−2(t) + 2uk−1(t) + 2uk(t), uk−2(0) = 0 (3.59)

which leads to

uk−2(t) = e−(k−1)t − 4e−(k−2)t + 3e−(k−3)t (3.60)

and, similarly

uk−3(t) = 2e−(k−2)t − 6e−(k−3)t + 4e−(k−4)t. (3.61)
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On obtaining corresponding expressions for uk−4(t), uk−5(t), a noticeable pattern

emerges which indicates that

un(t) =







e−(k−1)t, n = k

(1 − n+ k)e−(n−1)t + 2(n− k)e−nt + (k − n− 1)e−(n+1)t, n < k.

(3.62)

We shall now go on to prove by induction that this form for the solution is correct.

We have shown that the form for the cases n = k, k − 1, k − 2, k − 3 in (3.62) is

correct. Now assume this form is true for n = k, k − 1, k − 2, . . . , k − i, where

i ≤ k − 2. For n = k − i− 1 we have

duk−i−1(t)

dt
= −(k − i− 2)uk−i−1(t) + 2

n∑

j=k−i

uj(t), uk−i−1(0) = 0. (3.63)

By assumption, the right-hand side can be written as

−(k − i− 2)uk−i−1(t) + 2
(
(1 + i)e−(k−i−1)t − 2ie−(k−i)t

+(i− 1)e−(k−i+1)t + ie−(k−i)t − 2(i− 1)e−(k−i+1)t

+(i− 2)e−(k−i+2)t + ... + 2e−(k−2)t − 2e−(k−1)t + e−(k−1)t
)
.

This is a telescoping sum which reduces to

−(k − i− 2)uk−i−1(t) + 2(1 + i)e−(k−i−1)t − 2ie−(k−i)t.

Consequently, uk−i−1 satisfies

duk−i−1(t)

dt
= −(k − i− 2)uk−i−1(t) + 2(1 + i)e−(k−i−1)t − 2ie−(k−i)t,

uk−i−1(0) = 0,

and on solving this first order linear ODE, we obtain

uk−i−1(t) = −2(1 + i)e−(k−i−1)t + ie−(k−i)t + (2 + i)e−(k−i−2)t, (3.64)
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which agrees with (3.62) when n is replaced by k− i− 1. Hence by induction the

formula holds for all n = 0, 1, 2, . . . , k.

From the linearity of the problem, a likely candidate for the corresponding

solution in the case of general initial conditions un(0) = fn, n = 1, 2, 3, . . . ,

can then be obtained by superposition as is described by Ziff and McGrady in

[58]. To create a particular solution for general initial conditions we take a linear

combination of the above solutions for the monodisperse initial conditions. Hence

un(t) = fne
−(n−1)t +

∞∑

k=n+1

fk{e−(n−1)t − e−(n+1)t

+(k − n)[e−(n−1)t − 2e−nt + e−(n+1)t]}

= fne
−(n−1)t +

∞∑

k=n+1

fke
−(n−1)t{1 − e−2t + (k − n)(1 − e−t)2}.

(3.65)

Our general theory establishes that the ACP associated with this choice of

an, bn,j has a strongly differentiable solution u(t) = SG(t)f with f ∈ D(G) where

{SG(t)}t≥0 is the stochastic semigroup generated by G = A+B. Since {an}∞n=1

is a monotonic increasing sequence we have further that SG(t)f ∈ D(A) ∀t ≥ 0

whenever f ∈ D(A). We shall now show that SG(t)f is given explicitly by the

formula (3.65) found by Ziff and McGrady.

Firstly, we shall show that (3.65) is indeed a solution of (3.54). We note that

on rearranging (3.65) we have

un(t) = fne
−(n−1)t + e−(n−1)t

(
1 − e−2t − n(1 − e−t)2

)
∞∑

k=n+1

fk

+e−(n−1)t(1 − e−t)2

∞∑

k=n+1

kfk. (3.66)

Since f ∈ X, each of the infinite series appearing in (3.66) is absolutely conver-
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gent. We obtain

u′n(t) = −(n− 1)fne
−(n−1)t

+[−(n− 1)e−(n−1)t]
(
1 − e−2t − n(1 − e−t)2

)
∞∑

k=n+1

fk

+e−(n−1)t
(
2e−2t − 2n(1 − e−t)e−t

)
∞∑

k=n+1

fk

−(n− 1)e−(n−1)t(1 − e−t)2
∞∑

k=n+1

kfk

+2e−(n−1)t(1 − e−t)e−t
∞∑

k=n+1

kfk

= −(n− 1)fne
−(n−1)t

+
[
−(n− 1)e−(n−1)t + (n− 1)e−(n+1)t

]
∞∑

k=n+1

fk

+n(n− 1)
(
e−(n−1)t − 2e−nt + e−(n+1)t

)
∞∑

k=n+1

fk

+
[
2e−(n+1)t − 2n(e−nt − e−(n+1)t)

]
∞∑

k=n+1

fk

−(n− 1)
(
e−(n−1)t − 2e−nt + e−(n+1)t

)
∞∑

k=n+1

kfk

+
(
2e−nt − 2e−(n+1)t

)
∞∑

k=n+1

kfk

= −(n− 1)fne
−(n−1)t

+
[
(n− 1)2e−(n−1)t − 2n2e−nt + (n + 1)2e−(n+1)t

]
∞∑

k=n+1

fk

+
[
−(n− 1)e−(n−1)t + 2ne−nt − (n+ 1)e−(n+1)t

]
∞∑

k=n+1

kfk.

(3.67)

Now we shall substitute (3.65) into the right-hand side of (3.54). We have
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−(n− 1)fne
−(n−1)t (3.68)

−(n− 1)

∞∑

k=n+1

e−(n−1)t
{
1 − e−2t + (k − n)(1 − e−t)2

}
fk (3.69)

+2

∞∑

j=n+1

[
fje

−(j−1)t

+
∞∑

k=j+1

e−(j−1)t
{
1 − e−2t + (k − j)(1 − e−t)2

}
fk

]

. (3.70)

We can rearrange the expression in (3.69) to get

−(n− 1)
[
e−(n−1)t − e−(n+1)t − n(e−(n−1)t − 2e−nt + e−(n+1)t)

]
∞∑

k=n+1

fk

−(n− 1)
[
e−(n−1)t − 2e−nt + e−(n+1)t

]
∞∑

k=n+1

kfk

=
[
(n− 1)2e−(n−1)t − 2n(n− 1)e−nt + (n2 − 1)e−(n+1)t

]
∞∑

k=n+1

fk

+
[
−(n− 1)e−(n−1)t + 2(n− 1)e−nt − (n− 1)e−(n+1)t

]
∞∑

k=n+1

kfk. (3.71)

Interchanging the order of summation in (3.70) produces

2
∞∑

j=n+1

e−(j−1)tfj

+2(1 − e−2t)

∞∑

k=n+2

k−1∑

j=n+1

e−(j−1)tfk

+2(1 − e−t)2
∞∑

k=n+1

k∑

j=n+1

e−(j−1)t(k − j)fk.

Using the substitution r = (k − j) we get
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(1 − e−2t)
∞∑

k=n+2

e−(k−1)tfk

k−n−1∑

r=1

ert

+(1 − e−t)2
∞∑

k=n+1

e−(k−1)tfk

k−n−1∑

r=0

rert

= (1 − e−2t)
∞∑

k=n+2

e−(k−1)tfk

(
et(1 − e(k−n−1)t)

1 − et

)

+(1 − e−t)2

∞∑

k=n+1

e−(k−1)tfk
d

dt

(
1 − e(k−n)t

1 − et

)

=

(
et(1 − e−2t)

1 − et

) ∞∑

k=n+2

fk
(
e−(k−1)t − e−nt

)

+

(
(1 − e−t)2

(1 − et)2

) ∞∑

k=n+1

fke
−(k−1)t

(
−(k − n)e(k−n)t

+(k − n− 1)e(k−n+1)t + et
)

= −(1 + e−t)

(
∞∑

k=n+2

e−(k−1)tfk − e−nt
∞∑

k=n+2

fk

)

+e−2t

∞∑

k=n+1

fk
[
(k − n)(et − 1)e−(n−1)t − e−(n−2)t + e−(k−2)t

]

= −(1 + e−t)

(
∞∑

k=n+2

e−(k−1)tfk − e−nt
∞∑

k=n+2

fk

)

+e−(n+1)t(et − 1)

∞∑

k=n+1

(k − n)fk − e−nt
∞∑

k=n+1

fk

+e−t
∞∑

k=n+1

e−(k−1)tfk

= −(1 + e−t)

(
∞∑

k=n+1

e−(k−1)tfk − e−nt
∞∑

k=n+1

fk − e−ntfn+1 + e−ntfn+1

)

+e−(n+1)t(et − 1)
∞∑

k=n+1

(k − n)fk − e−nt
∞∑

k=n+1

fk

+e−t
∞∑

k=n+1

e−(k−1)tfk.
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After further manipulation we see that (3.70) simplifies to

2
(
(n + 1)e−(n+1)t − ne−nt

)
∞∑

k=n+1

fk

+2
(
e−nt − e−(n+1)t

)
∞∑

k=n+1

kfk. (3.72)

Combining (3.68), (3.71) and (3.72) we get

−(n− 1)e−(n−1)tfn

+
[
(n− 1)2e−(n−1)t − 2n(n− 1)e−nt + (n2 − 1)e−(n+1)t

]
∞∑

k=n+1

fk

+2
(
(n+ 1)e−(n+1)t − ne−nt

)
∞∑

k=n+1

fk

+
[
−(n− 1)e−(n−1)t + 2(n− 1)e−nt − (n− 1)e−(n+1)t

]
∞∑

k=n+1

kfk

+2
(
e−nt − e−(n+1)t

)
∞∑

k=n+1

kfk

= −(n− 1)e−(n−1)tfn

+
[
(n− 1)2e−(n−1)t − 2n2e−nt + (n+ 1)2e−(n+1)t

]
∞∑

k=n+1

fk

+
[
−(n− 1)e−(n−1)t + 2ne−nt − (n+ 1)e−(n+1)t

]
∞∑

k=n+1

kfk (3.73)

which agrees with (3.67).

We shall use formula (3.65) to define a family of operators {S(t)}t≥0 on X by

[S(t)f ]n = e−(n−1)tfn

+e−(n−1)t

∞∑

j=n+1

[1 − e−2t + (1 − 2e−t + e−2t)(j − n)]fj
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= e−(n−1)tfn

+e−(n−1)t
∞∑

j=n+1

[2(1 − e−t) + (1 − e−t)2(j − n− 1)]fj

f ∈ X, t ≥ 0. (3.74)

The next step is to show that S(t) ∈ B(X) for all t ≥ 0 and that S(t)f is strongly

continuous with respect to t on [0,∞) for each f ∈ X. It is easy to see that when

t = 0, [S(0)f ]n = fn, n = 1, 2, . . ., and so S(0) = I, the identity operator on X.

For t > 0 and f ∈ X,

‖S(t)f‖ =
∞∑

n=1

n
∣
∣
∣(S(t)f)n

∣
∣
∣

≤
∞∑

n=1

ne−(n−1)t|fn| + 2(1 − e−t)

∞∑

n=1

∞∑

j=n+1

ne−(n−1)t|fj|

+(1 − e−t)2
∞∑

n=1

∞∑

j=n+1

ne−(n−1)t(j − n− 1)|fj|. (3.75)

We shall now look at each of the three terms on the right-hand side of (3.75).

The first term gives us

∞∑

n=1

ne−(n−1)t|fn| ≤
∞∑

n=1

n|fn| = ‖f‖

since e−(n−1)t ≤ 1 for n = 1, 2, . . . . The second term gives us

2(1 − e−t)

∞∑

n=1

∞∑

j=n+1

ne−(n−1)t|fj| ≤ 2(1 − e−t)et
∞∑

n=1

ne−nt
∞∑

j=1

j|fj|

=
2

(1 − e−t)
‖f‖

since

∞∑

n=1

ne−nt = − d

dt

(
∞∑

n=0

e−nt

)

= − d

dt

(
1

1 − e−t

)

=
e−t

(1 − e−t)2
. (3.76)
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The third term on the right-hand side of (3.75) gives us

(1 − e−t)2
∞∑

n=1

∞∑

j=n+1

ne−(n−1)t(j − n− 1)|fj|

= et(1 − e−t)2
∞∑

n=1

ne−nt
∞∑

j=n+1

(j − n− 1)|fj|

= et(1 − e−t)2
∞∑

n=1

ne−nt
∞∑

j=0

j|fj+n+1|

≤ et(1 − e−t)2
∞∑

n=1

ne−nt
∞∑

j=0

(j + n + 1)|fj+n+1|

≤ ‖f‖ by (3.76).

Hence S(t) ∈ B(X) ∀t ≥ 0, with

‖S(t)f‖ ≤
(

2 +
2

1 − e−t

)

‖f‖. (3.77)

If we take f ∈ X+ then we can obtain a sharper result than inequality (3.77). In

this case we have that

‖S(t)f‖ = et

(
∞∑

n=1

ne−ntfn + 2(1 − e−t)
∞∑

n=1

∞∑

j=n+1

ne−ntfj

+(1 − e−t)2

∞∑

n=1

∞∑

j=n+1

e−ntn(j − n− 1)fj

)

= et

(
∞∑

n=1

ne−ntfn + 2(1 − e−t)

∞∑

j=2

(
j−1
∑

n=1

ne−nt

)

fj

+(1 − e−t)2
∞∑

j=2

j−1
∑

n=1

(jne−nt − n2e−nt − ne−nt)fj

)

= et

(
∞∑

n=1

ne−ntfn −
∞∑

j=2

2(1 − e−t)
d

dt

(
1 − e−jt

1 − e−t

)

fj

−(1 − e−t)2

∞∑

j=2

j
d

dt

(
1 − e−jt

1 − e−t

)

fj
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−(1 − e−t)2
∞∑

j=2

d2

dt2

(
1 − e−jt

1 − e−t

)

fj

+(1 − e−t)2

∞∑

j=2

d

dt

(
1 − e−jt

1 − e−t

)

fj

)

(3.78)

since
j−1
∑

n=1

ne−nt = − d

dt

(
j−1
∑

n=0

(e−t)n

)

= − d

dt

(
1 − e−jt

1 − e−t

)

and
j−1
∑

n=1

n2e−nt =
d2

dt2

(
1 − e−jt

1 − e−t

)

.

Expanding these terms and cancelling we get

et

(
∞∑

k=1

ke−ktfk + e−t
∞∑

k=2

kfk −
∞∑

k=2

ke−ktfk

)

= et

(

e−tf1 + e−t
∞∑

k=2

kfk

)

=
∞∑

k=1

kfk = ‖f‖. (3.79)

Thus we have shown that ‖S(t)f‖ = ‖f‖ for all f ∈ X+. It is also clear that

S(t)f ∈ X+ ∀f ∈ X+. Using the decomposition (2.15) we can now deduce that

‖S(t)f‖ =

∞∑

n=1

n
∣
∣[S(t)f ]n

∣
∣ =

∞∑

n=1

n
∣
∣S(t)(f+)n − S(t)(f−)n

∣
∣

=
∞∑

n=1

nS(t)(f+)n +
∞∑

n=1

nS(t)(f−)n = ‖f+‖ + ‖f−‖

= ‖f‖ (3.80)

so ‖S(t)f‖ = ‖f‖ ∀f ∈ X. Finally we need to show that S(t) is strongly contin-

uous on [0,∞), i.e.

‖S(t)f − S(s)f‖ → 0 as t→ s. (3.81)
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Let

vn(t) = e−(n−1)tfn (3.82)

wn(t) = 2g(t)e−(n−1)t

∞∑

j=n+1

fj (3.83)

zn(t) = (g(t))2e−(n−1)t
∞∑

j=n+1

(j − n− 1)fj (3.84)

where g(t) = 1 − e−t.

We shall first establish continuity on (0,∞). Let s > 0 be fixed and consider

(3.82). Then

‖v(t) − v(s)‖ ≤
∞∑

n=1

n|e−(n−1)t − e−(n−1)s||fn|

≤ ‖f‖
∞∑

n=1

|e−(n−1)t − e−(n−1)s|

≤ ‖f‖
(

∞∑

n=1

e−(n−1)t +
∞∑

n=1

e−(n−1)s

)

≤ 2‖f‖
∞∑

n=1

e−(n−1)ε for s, t ∈ [ε, T ].

It can be shown that this summation is convergent by the ratio test and thus we

can now apply the dominated convergence theorem (see Theorem 2.35) to justify

taking the limit as t→ s inside the summation. It follows that v(t) → v(s) in X

as t→ s.

Next we shall look at (3.83) where

‖w(t) − w(s)‖ ≤ 2
∞∑

n=1

n|g(t)e−(n−1)t − g(s)e−(n−1)s|
∞∑

j=n+1

|fj|

≤ 2‖f‖
∞∑

n=1

n|g(t)e−(n−1)t − g(s)e−(n−1)s|

≤ 4‖f‖
∞∑

n=1

ne−(n−1)ε for s, t ∈ [ε, T ],
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since |g(t)| ≤ 1 and |g(s)| ≤ 1. The ratio test can again be used to show that the

summation is convergent and we can apply the dominated convergence theoreom

to deduce that w(t) → w(s) as t→ s.

Similarly for (3.84) we have

‖z(t) − z(s)‖ ≤
∞∑

n=1

n|(g(t))2e−(n−1)t − (g(s))2e−(n−1)s|
∞∑

j=n+1

(j − n− 1)|fj|

≤
∞∑

n=1

n|(g(t))2e−(n−1)t − (g(s))2e−(n−1)s|
∞∑

j=1

j|fj|

≤ 2‖f‖
∞∑

n=1

ne−(n−1)ε for s, t ∈ [ε, T ],

since |g(t)| ≤ 1 and |g(s)| ≤ 1. Thus z(t) → z(s) as t → s upon using Theorem

2.35. Putting these results together we have that S(t)f → S(s)f as t → s for

s > 0.

To establish one-sided continuity at 0, we consider

‖S(t)f − f‖ ≤
∞∑

n=1

n|e−(n−1)t − 1||fn| + 2

∞∑

n=1

n(g(t)e−(n−1)t − g(0))

∞∑

j=n+1

|fj|

+
∞∑

n=1

n((g(t))2e−(n−1)t − (g(0))2)
∞∑

j=n+1

(j − n− 1)|fj|

=

∞∑

n=1

n|e−(n−1)t − 1||fn| + 2

∞∑

n=1

n(1 − e−t)e−(n−1)t
∞∑

j=n+1

|fj|

+
∞∑

n=1

n(1 − e−t)2e−(n−1)t
∞∑

j=n+1

(j − n− 1)|fj|. (3.85)

Changing the order of summation gives us
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∞∑

n=1

n|e−(n−1)t − 1||fn| + 2
∞∑

j=2

j−1
∑

n=1

n(1 − e−t)e−(n−1)t|fj|

+

∞∑

j=2

j−1
∑

n=1

n(1 − e−t)2e−(n−1)t(j − n− 1)|fj|

≤
∞∑

n=1

n(1 − e−(n−1)t)|fn| + 2(1 − e−t)
∞∑

j=2

j|fj|

+(1 − e−t)2

∞∑

j=2

j2|fj|

since e−(n−1)t ≤ 1 for all t ≥ 0 and n < j. Hence we have that ‖S(t)f−f‖ → 0 as

t → 0+ for each f ∈ D(A). Since D(A) is dense in X, it follows that S(t)f → f

in X as t→ 0+ for each f ∈ X.

We have now shown that u(t) = S(t)f satisfies the system of ODEs (3.54)

pointwise for each f ∈ X. Moreover S(t)f ∈ X+ whenever f ∈ X+, ‖S(t)f‖ =

‖f‖ for all t ≥ 0, showing that mass is conserved, and the family of operators

{S(t)}t≥0 is strongly continuous in t on [0,∞). The last step is to show that

S(t) = SG(t) on X. We shall make use of the family of operators {PN}∞N=1 where

for f ∈ X, PNf = {f1, f2, . . . , fN , 0, . . .}. Clearly PN ∈ B(X) for each N , with

‖PN‖ ≤ 1 and PNf → f in X as N → ∞.

Moreover, a strong solution of the ACP

duN(t)

dt
= GuN(t), t > 0, lim

t→0+
uN(t) = PNf

is given by

uN(t) = S(t)PNf.

By uniqueness of solutions,

SG(t)PNf = S(t)PNf (3.86)

and, letting N → ∞, we obtain the required result
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SG(t)f = S(t)f, ∀f ∈ X. (3.87)

Thus we conclude that an explicit formula for the stochastic semigroup associated

with the system of ODEs (3.54) is given by the solution obtained by Ziff and

McGrady in [58].
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Chapter 4

The Discrete Fragmentation

Equation with Mass Loss

We shall now consider the case where mass can be lost during a fragmentation

event. In our model we have chains of monomers, e.g. n-mers. During a frag-

mentation event a monomer can be annihilated either at the surface or in the

interior of these n-mers, which results in the loss of mass.

4.1 The General Mass Loss Case with Bond An-

nihilation

The fragmentation equation (3.6) still models the mass loss case but now a1 need

not be 0 so we discard (A1). We will still need assumption (A2) but this time we

have mass loss so we require the condition

(A3)∗
∑j−1

n=1 nbn,j = (1 − λj)j for j ≥ 2

where 0 ≤ λj ≤ 1 is the discrete mass loss fraction. With no coagulation occur-

ring, the calculation which produced (3.4) now leads to

Ṁ(t) = −a1u1(t) −
∞∑

j=2

jλjajuj(t). (4.1)

This collapses to Ṁ = 0 when a1 = 0 and λj = 0 for j ≥ 2.
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Again, the natural Banach space X in which to study the problem is the

weighted l1 space defined in Definition 3.1. In analogy with Problem 3.5 we wish

to solve

Problem 4.1. Find a function u : [0,∞) → X such that

du(t)

dt
= Au(t) +Bu(t) t > 0 (4.2)

lim
t→0+

u(t) = f ∈ D(A),

where A and B are defined as in Definition 3.2.

We have already shown that D(A) ⊆ D(B) in Lemma 3.3 for the case when

λj = 0. Similarly, for f ∈ D(A) and λj 6= 0 we have

‖Bf‖ ≤
∞∑

n=1

n

∞∑

j=n+1

aj bn,j |fj| =

∞∑

j=2

aj |fj|
(
j−1
∑

n=1

n bn,j

)

=
∞∑

j=1

(1 − λj)j aj |fj| ≤
∞∑

j=1

jaj|fj| = ‖Af‖ <∞, (4.3)

i.e. D(A) ⊆ D(B). Again, we require our solution to be non-negative so we need

f ∈ D(A)+ =⇒ u(t) ∈ D(A)+.

First we shall look at the case of a general sequence {an}. We can prove the

following for our operators A and B

Theorem 4.2. Let X, A and B be as in (3.1), (3.9) and (3.10). Then there

exists a smallest extension G of A+B which generates a substochastic semigroup

{TG(t)}t≥0 on X.

Proof: This is more or less the same as the proof for Theorem 3.6 apart from

part (iii) where now we have

∫

Ω

(Af +Bf)dµ = −a1f1 −
∞∑

j=2

jλjajfj =: −c(f) ≤ 0 (4.4)

for f ∈ D(A)+. �

Theorem 4.3. In the context of Theorem 4.2, G = A+B, the closure of the

operator (A +B,D(A)).
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Proof: Along similar lines to the proof of Theorem 3.7, we wish to apply

Theorem 2.26 but this time with

c(f) := a1f1 +
∞∑

j=2

jλjajfj.

Let all spaces and operators be defined as in the proof of Theorem 3.7. We wish

to show that for any g ∈ F+ such that −g + BLg ∈ X we have

∞∑

n=1

n(Lg)n +
∞∑

n=1

n (−gn + (BLg)n) ≥ −a1f1 −
∞∑

j=2

jλjajfj. (4.5)

We follow the same procedure as in the proof of Theorem 3.7 to reach the point

∞∑

n=1

n (−anfn + (Bf)n)

= lim
N→∞

(

−
N∑

n=1

nanfn +

N∑

n=1

∞∑

j=n+1

najbn,jfj

)

, (4.6)

i.e. (3.21) and (3.22). We can now write

N∑

n=1

∞∑

j=n+1

najbn,jfj

=

N∑

j=2

ajfj

j−1
∑

n=1

nbn,j +

∞∑

j=N+1

N∑

n=1

najbn,jfj

=

N∑

j=2

j(1 − λj)ajfj + SN

=

N∑

j=1

jajfj − a1f1 −
N∑

j=2

jλjajfj + SN

where SN is the same as in the proof of Theorem 3.7. Substituting into (4.6) we

end up with

lim
N→∞

(

−a1f1 −
N∑

j=2

jλjajfj + SN

)

. (4.7)
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As shown in the proof of Theorem 3.7, limN→∞ SN is non-negative. Putting

everything together we have

∞∑

n=1

n(Lg)n +
∞∑

n=1

n (−gn + (BLg)n)

= −a1f1 −
∞∑

j=2

jλjajfj + lim
N→∞

SN

≥ −a1f1 −
∞∑

j=2

jλjajfj

and thus we have shown that G = A+B. �

Along similar lines to the comments after Theorem 3.7, we can deduce that

the ACP

d

dt
u(t) = Gu(t) (t > 0) (4.8)

lim
t→0+

u(t) = f , (4.9)

has a unique strict, non-negative solution u : [0,∞) → D(G)+ for each f ∈
D(G)+ and hence for each f ∈ D(A)+. This solution is given by u(t) = TG(t)f ,

with G = A +B.

From the discussion on pages 39-40 we can show that the C0-semigroup

{TG(t)}t≥0 is substochastic and the solution is not mass-conserving (unless λj = 0

∀j and a1 = 0) since

d

dt
‖u(t)‖ =

∞∑

k=1

ku̇k(t) (since u(t) ∈ X+)

= −
∞∑

k=1

kakuk(t) +

∞∑

k=1

k

∞∑

j=k+1

ajbk,juj(t)

= −
∞∑

k=1

kakuk(t) +

∞∑

j=2

ajuj(t)

j−1
∑

k=1

kbk,j

︸ ︷︷ ︸

=(1−λj )j
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= −
∞∑

k=1

kakuk(t) +

∞∑

j=2

(1 − λj)jajuj(t)

= −a1u1(t) −
∞∑

j=2

λjjajuj(t)

≤ 0. (4.10)

Note that the calculations leading to (4.10) show rigorously that the mass loss is

exactly that predicted by the formal calculation (4.1).

4.2 Particular Cases

Now we shall look at how the additional mass loss condition affects the results

for the particular cases discussed in Section 3.2.

Case 1: {an} bounded.

First, consider the case where the sequence {an}∞n=1 is bounded i.e. an ≤ M

for n = 1, 2, 3, . . .. We have already shown in (3.25) that ∀f ∈ D(A) = X,

‖Af‖ ≤M‖f‖ <∞.

Also for f ∈ X we have

‖Bf‖ ≤
∞∑

j=1

jaj|fj|

= ‖Af‖ ≤ M‖f‖ <∞,

by similar calculations to those in (3.26). Hence we have D(B) = D(A) = X. By

arguments similar to those preceding Theorem 3.8 we can prove the following.

Theorem 4.4. In the case when {an} is bounded, Problem 4.1 has a unique

strict, non-negative solution for each f ∈ X, given by

u(t) = et(A+B)f (t ≥ 0).
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Case 2: {an} monotonic increasing.

Now we shall look again at the case when {an} is a monotonic increasing

sequence, but not necessarily bounded.

Theorem 4.5. Let X,A,B and G be as in Theorem 4.2 and, in addition to

assumptions (A2) and (A4), let {an} be a monotonic increasing sequence. Then

D(A) is invariant under the semigroup {TG(t)}t≥0 .

Proof: The details are very similar to those in the proof of Theorem 3.9 and

thus we shall only highlight the minor differences.

Step 1 This is exactly as in Theorem 3.9.

Step 2 For f ∈ D(AD)

‖BDf‖A ≤
∞∑

j=2

(1 − λj)jaj|fj| +
∞∑

j=2

(1 − λj)ja
2
j |fj|

≤
∞∑

j=2

jaj|fj| +
∞∑

j=2

ja2
j |fj|

≤ ‖AD‖ + ‖A(ADf)‖
= ‖ADf‖A <∞.

Step 3 For f ∈ D(AD)+

∞∑

n=1

(n+ nan)[−anfn +

∞∑

j=n+1

ajbn,jfj]

≤ −
∞∑

n=1

(n+ nan)anfn +
∞∑

j=2

(1 − λj)j(1 + aj)ajfj

= −(1 + a1)a1f1 −
∞∑

j=2

λjj(1 + aj)ajfj

≤ 0.

Step 4 This is the same as in Theorem 3.9. Note that the discussion following

Step 4 in Theorem 3.9 also applies here. �

Note 4.6. We can now add in coagulation terms as we did in Section 3.3. The
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analysis of these terms will be identical to that shown previously so we have omit-

ted the details.

4.3 The Specific Case of Cai, Edwards and Han

In [28] Cai, Edwards and Han look at the specific case when an = n and bn,j = 2
j

so that we have
dun(t)

dt
= −nun(t) + 2

∞∑

j=n+1

uj(t). (4.11)

Note that in the specific case studied in Chapter 3 for the mass conservation

model we looked at an = n− 1 and bn,j = 2
j−1

. If instead we substitute the value

bn,j = 2
j

into (A3)∗ we see that

j−1
∑

n=1

nbn,j =

j−1
∑

n=1

2n

j
=

2

j

j−1
∑

n=0

n

=
2

j

(j − 1)j

2
= j − 1. (4.12)

We know that (1 − λj)j = (j − 1) and thus λj = 1
j
. Substituting an = n and

bn,j = 2
j

into (4.1) we see that the mass loss in this case is

Ṁ(t) = −a1u1(t) −
∞∑

j=2

λjjajuj(t) = −u1(t) −
∞∑

j=2

juj(t)

=

∞∑

j=1

juj(t) = −M(t). (4.13)

If we now solve the ODE (4.13) we get

M(t) = M(0)e−t, t ≥ 0. (4.14)
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Notice that we can write

dun(t)

dt
= −nun(t) + 2

∞∑

j=n+1

uj(t)

= −(n− 1)un(t) − un(t) + 2
∞∑

j=n+1

uj(t) (4.15)

so that
dun(t)

dt
+ un(t) = −(n− 1)un(t) + 2

∞∑

j=n+1

uj(t)

i.e.
d

dt
(etun(t)) = −(n− 1)etun(t) + 2

∞∑

j=n+1

etuj(t).

If we substitute vn(t) = etun(t) we get

dvn(t)

dt
= −(n− 1)vn(t) + 2

∞∑

j=n+1

vj(t) (4.16)

which is in fact the same form as equation (3.54) which was discussed in Section

3.5. Since the solution vn to (4.16) is given by (3.65), it follows that un is given

by

un(t) = un(0)e−nt +
∞∑

j=n+1

uj(0)e−nt{1 − e−2t + (j − n)(1 − e−t)2}. (4.17)

The ACP associated with (4.15) is now

du(t)

dt
= (A+B)u(t) − u(t) = (A+B − I)u(t)

lim
t→0+

u(t) = f (4.18)

where I is the identity operator on X and

[Af ]n := −(n− 1)fn (4.19)
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and

[Bf ]n := 2
∞∑

j=n+1

fj (4.20)

are defined on appropriate domains. From the work carried out in Section 3.5

we know that G = (A +B,D(A)) is the generator of a stochastic semigroup

{TG(t)}t≥0 on X. Also, from the general theory in Section 4.1 we know that G1 =

(A+B − I,D(A)) is also the generator of a substochastic semigroup {TG1
(t)}t≥0

on X. We wish to show that

TG1
(t) = e−tTG(t) ∀t ≥ 0. (4.21)

Notice that

‖TG1
(t)f‖ = ‖e−tTG(t)f‖ = e−t‖TG(t)f‖ = e−t‖f‖ for f ∈ D(G) (4.22)

which agrees with (4.14). To show that (4.21) holds we need to show that {TG1
(t)}

and {e−tTG(t)} have the same infinitesimal generator. In order to do this we need

to prove the following

Lemma 4.7. Let A and B be as in (4.19) and (4.20). Then

A +B − I = A+B − I.

Proof: Let f ∈ D(A+B) = D(G). Then, there exists a sequence {f n} ⊂ D(A)

such that

fn → f in X

and

(A +B)fn → g = (A+B)f in X.

It follows that

(A +B − I)fn → (A+B)f − f = g − f in X

and hence f ∈ D(A+B − I), with

(A+B − I)f = (A+B)f − f = (A+B − I)f.
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Therefore

(A+B − I)f = (A +B − I)f ∀f ∈ D(A+B).

Now let f ∈ D(A+B − I). Then, there exists a sequence {f n} ⊂ D(A) such

that

fn → f in X

and

(A+B − I)fn → g = (A+B − I)f in X.

It follows that

(A+B)fn = (A +B − I)fn + fn → (A+B − I)f + f = g + f in X

and hence f ∈ D(A+B) with

(A+B)f = (A +B − I)f + f = g + f.

Therefore

(A+B − I)f = (A+B − I)f ∀f ∈ D(A+B − I).

We have thus shown that A+B − I = A+B − I. �

Note 4.8. For the remainder of this section we shall define the operators A,

B and G to be those associated with the ACP resulting from the ODE (4.11).

Therefore

[Af ]n = −nfn, D(A) = {f ∈ X :

∞∑

n=1

n2|fn| <∞} (4.23)

and

[Bf ]n = 2

∞∑

j=n+1

fj, D(B) = {f ∈ X :

∞∑

n=1

n
∣
∣

∞∑

j=n+1

fj
∣
∣ <∞} (4.24)

and G = A +B with A and B defined as in (4.23) and (4.24).
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Our rigorous analysis shows that the only strong solution of the ACP

du(t)

dt
= Au(t) +Bu(t), t > 0 (4.25)

lim
t→0+

u(t) = 0

is u(t) ≡ 0. However, in [28] Cai et. al introduce the alternative solution

vk(t) = (1 − e−t)2e−kt, k = 1, 2, . . . . (4.26)

Clearly v(0) = 0. Also

∞∑

k=1

k2|vk(t)| =
∞∑

k=1

k2|(1 − e−t)2e−kt|

=
∞∑

k=1

k2(1 − e−t)2e−kt

= (1 − e−t)2

∞∑

k=1

k2e−kt

= (1 − e−t)2 d
2

dt2

(
∞∑

k=0

e−kt

)

= (1 − e−t)2 d
2

dt2

(
1

1 − e−t

)

= e−t +
2e−2t

1 − e−t
<∞ ∀t > 0,

showing that v(t) ∈ D(A) for all t > 0. Note that, for each k ∈ N and t > 0,

[Av(t) +Bv(t)]k = −kvk(t) + 2
∞∑

j=k+1

vj(t)

= −ke−kt(1 − e−t)2 + 2
∞∑

j=k+1

e−jt(1 − e−t)2

= −ke−kt(1 − e−t)2 + 2(1 − e−t)2 e
−(k+1)t

1 − e−t

= −ke−kt(1 − e−t)2 + 2e−(k+1)t(1 − e−t)

= v̇k(t) (4.27)
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so that (4.11) is satisfied pointwise. Furthermore, for t > 0,

lim
h→0

∞∑

k=1

∣
∣
∣
vk(t+ h) − vk(t)

h
− [Av(t)]k − [Bv(t)]k

∣
∣
∣

= lim
h→0

∞∑

k=1

∣
∣
∣v̇k(θk(h)) − v̇k(t)

∣
∣
∣, t ≤ θk(h) ≤ t + h

= 0 (4.28)

using arguments similar to those in Chapter 3. However, we can show that

‖vk(t)‖ =
∞∑

k=1

k(1 − e−t)2e−kt

= (1 − e−t)2
∞∑

k=1

ke−kt

= (− d

dt

∞∑

k=0

e−kt)(1 − e−t)2

= − d

dt
(

1

1 − e−t
)(1 − e−t)2

= e−t

6→ 0 as t→ 0+,

i.e. (4.26) is not strongly continuous at t = 0 in X and hence it is not a strong

solution of (4.25).

4.4 The General Mass Loss Case with Surface

Recession

We shall now go on to look at the general discrete fragmentation equation with

mass loss as above but with added surface recession terms. We shall now con-

sider the case where not only is mass lost during fragmentation but clusters also

experience recession of particles at their surface. This type of equation could be

used to model processes such as evaporation. We shall investigate the case where

monomers are lost at the surface of clusters at a specific rate. The equation we

wish to analyse is
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dun(t)

dt
= −anun(t) +

∞∑

j=n+2

ajbn,juj(t) + cn+1un+1(t) − cnun(t) (4.29)

where un(t), an and bn,j have their usual meanings and cn is non-negative and

represents the surface recession rate of an n-mer. Note that the summation now

starts at j = n+2 instead of j = n+1 as in the previous case. This is due to the

fact that if a cluster of mass n+ 1 was to break up to produce a cluster of mass

n and a monomer then this would be equivalent to a surface recession event.

We can rewrite (4.29) as

dun(t)

dt
= −(an + cn)un(t) +

∞∑

j=n+1

βn,juj(t)

= −αnun(t) +
∞∑

j=n+1

βn,juj(t). (4.30)

where

αn = an + cn

and

βn,j =







cn+1, j = n + 1,

ajbn,j, j = n + 2, n+ 3, . . . .

We shall apply the mass loss condition (A3)∗ here but, as a consequence of the

above discussion, the summation will run from n = 1 to j−2. Note that equation

(4.30) is in the form of our usual discrete fragmentation equation but with an

replaced by αn and ajbn,j replaced by βn,j. In analogy to Problems 3.5 and 4.1

we wish to solve

Problem 4.9. Find a function u : [0,∞) → X, where X is as in Definition 3.1,

such that

du(t)

dt
= Au(t) +Bu(t) t > 0 (4.31)

lim
t→0+

u(t) = f ∈ D(A),
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where

[Af ]k = −αkfk; D(A) =

{

f ∈ X :
∞∑

k=1

kαk|fk| <∞
}

(4.32)

and

[Bf ]k =

∞∑

j=k+1

βn,jfj; D(B) =

{

f ∈ X :

∞∑

k=1

k

∣
∣
∣
∣
∣

∞∑

j=k+1

βn,jfj

∣
∣
∣
∣
∣
<∞

}

. (4.33)

Similarly to Lemma 3.3 we can prove the following

Lemma 4.10. D(B) ⊇ D(A).

Proof: Let f ∈ D(A). Then

‖Bf‖ ≤
∞∑

n=1

n

∞∑

j=n+1

βj|fj|

=
∞∑

n=1

n
∞∑

j=n+2

ajbn,j|fj| +
∞∑

n=1

ncn+1|fn+1|

≤
∞∑

j=3

j−2
∑

n=1

najbn,j|fj| +
∞∑

n=1

ncn|fn|

=
∞∑

j=3

aj|fj|(1 − λj)j +
∞∑

n=1

ncn|fn|

≤
∞∑

j=1

jaj|fj| +
∞∑

j=1

jcj|fj|

=
∞∑

j=1

j(aj + cj)|fj|

= ‖Af‖.

Hence we have D(B) ⊇ D(A).

�

We are now in a position to prove

Theorem 4.11. Let X, A and B be as in (3.1), (4.32) and (4.33). Then there

exists a smallest extension G of A+B which generates a substochastic semigroup
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{TG(t)}t≥0 on X.

Proof: Again we wish to apply Theorem 2.19 and the details are very similar to

those in the proof of Theorem 3.6 so we will only highlight the differences here.

(i) The semigroup {TA(t)}t≥0 generated by A is now given by

[TA(t)f ]n = e−αntfn (n = 1, 2, ...). (4.34)

(ii) We proved that D(B) ⊇ D(A) in Lemma 4.10. It is also clear that Bf ≥ 0

for all f ∈ [D(B)]+.

(iii) For f ∈ D(A)+ we have

∫

Ω

(Af +Bf)dµ

=
∞∑

n=1

n

(

−αnun(t) +
∞∑

j=n+1

βn,juj(t)

)

= −
∞∑

n=1

nαnfn +

∞∑

n=1

n

∞∑

j=n+2

ajbn,jfj

︸ ︷︷ ︸

=
P

∞

j=3

Pj−2

n=1
najbn,jfj

+

∞∑

n=1

ncn+1fn+1

= −
∞∑

n=1

nanfn −
∞∑

n=1

ncnfn +

∞∑

j=3

(1 − λj)jajfj +

∞∑

n=1

ncn+1fn+1

= −a1f1 − 2a2f2 −
∞∑

n=3

nλnanfn +
∞∑

n=1

n (cn+1fn+1 − cnfn) =: −c(f)

≤ 0

since

∞∑

n=1

n (cn+1fn+1 − cnfn)

≤
∞∑

n=1

((n + 1)cn+1fn+1 − ncnfn)

= −c1f1

≤ 0.
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Theorem 4.12. In the context of Theorem 4.11, G = A+B, the closure of the

operator (A +B,D).

Proof: This is very similar to the proofs of Theorems 3.7 and 4.3. We wish to

apply Theorem 2.26 but this time with

c(f) := a1f1 + 2a2f2 +

∞∑

n=3

nλnanfn −
∞∑

n=1

n (cn+1fn+1 − cnfn) .

Let all spaces and operators be defined as in the proof of Theorem 3.7 but with

an replaced by αn and ajbn,j replaced by βn,j . We wish to show that for any

g ∈ F+ such that −g + BLg ∈ X we have

∞∑

n=1

n(Lg)n +

∞∑

n=1

n (−gn + (BLg)n)

≥ −a1f1 − 2a2f2 −
∞∑

n=3

nλnanfn +
∞∑

n=1

n (cn+1fn+1 − cnfn) . (4.35)

We follow the same procedure found in the proof of Theorems 3.7 and 4.3 to

reach the point

∞∑

n=1

n (−αnfn + (Bf)n)

= lim
N→∞

(

−
N∑

n=1

nαnfn +
N∑

n=1

∞∑

j=n+1

nβn,jfj

)

. (4.36)

We can now write

N∑

n=1

∞∑

j=n+1

nβn,jfj

=

N∑

n=1

N∑

j=n+1

nβn,jfj +

N∑

n=1

∞∑

j=N+1

nβn,jfj

=

N∑

n=1

ncn+1fn+1 +

N∑

n=1

N∑

j=n+2

najbn,jfj + SN
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=

N∑

n=1

ncn+1fn+1 +

N∑

j=3

ajfj

j−2
∑

n=1

nbn,j + SN

=

N∑

n=1

ncn+1fn+1 +

N∑

n=3

(1 − λn)nanfn + SN

where SN =
∑N

n=1

∑∞
j=N+1 nβn,jfj ≥ 0 ∀N. Substituting into (4.36) we have

lim
N→∞

(

−
N∑

n=1

nαnfn +

N∑

n=1

ncn+1fn+1 +

N∑

n=3

(1 − λn)nanfn + SN

)

= lim
N→∞

(

−a1f1 − 2a2f2 −
N∑

n=3

nλnanfn

+
N∑

n=1

n (cn+1fn+1 − cnfn) + SN

)

(4.37)

by the calculations in part (iii) of the proof of Theorem 4.11. Note that since

SN is again non-negative, limN→∞ SN is also non-negative. Putting everything

together we have that

∞∑

n=1

n(Lg)n +

∞∑

n=1

n (−gn + (BLg)n)

= −a1f1 − 2a2f2 −
∞∑

n=3

nλnanfn +
∞∑

n=1

n (cn+1fn+1 − cnfn) + lim
N→∞

SN

≥ −a1f1 − 2a2f2 −
∞∑

n=3

nλnanfn +
∞∑

n=1

n (cn+1fn+1 − cnfn)

as required. �

We have shown that there exists a unique strong solution to the pure fragmen-

tation equation with mass-loss through bond annihilation and surface recession

for a general fragmentation rate. We can also add in our usual coagulation terms

and, under assumption (A4), can show that there exists a unique strong, non-

negative solution to the full C-F equation.
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Chapter 5

A Multi-Component

Coagulation-Fragmentation

Equation with Reformation

Terms

In the previous chapters we have considered a system of particles with evolving

size and we have obtained existence and uniqueness results for strong solutions.

Now we shall investigate a system in which not only the cluster size can change

but also the shape profile, namely the diameter of a cluster of particles, can evolve.

We shall analyse the model described by Wattis in [56] to obtain existence and

uniqueness results. This model builds in coagulation and reformation events

which we shall later modify to include also fragmentation and a greater range

of reformation events. In the model discussed in [56], Wattis considers a system

where the particles have been scaled so that a monomer of mass one has diameter

one. The clusters are grouped by their mass and diameter and so we represent

the number concentration of clusters of mass n and diameter j by un,j. In one

version of the model in [56] a cluster with mass n is considered to have diameter j

where 1 ≤ j ≤ n. In our investigations we shall consider particles to join together

in a lattice formation. We shall take the diameter of a particular formation to be

the maximal extension in a direction of an axis. For example,

92



in diagram (a) the diameter would be 4, in diagram (b) the diameter would be 3

and in diagram (c) the diameter would be 4.

In this situation the minimum physically possible diameter is always going to

be

dmin2D(n) = d
√
ne

where dxe represents the smallest integer ≥ x . This is the case if we are in a 2D

system. If we consider 3D, the minimum diameter will be given by

dmin3D(n) = d3
√
ne.

The following diagrams illustrate why this is true for the 2D case:

(c) n = 1 so dmin2D(1) = d
√

1e = 1. (d) n = 2 so dmin2D(2) = d
√

2e = 2.

(e) n = 3 so dmin2D(3) = d
√

3e = 2. (f) n = 4 so dmin2D(4) = d
√

4e = 2.

(g) n = 5 so dmin2D(5) = d
√

5e = 3.

It is a case of building squares as the mass increases since a square is the most

compact configuration that particles in a lattice can take. Similar considerations

apply in 3D but we are working with cubes instead of squares.

In [56] mass and diameter are considered to be additive in a coagulation event,

i.e.

un,j + ur,s → un+r,j+s. (5.1)
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Let dmin(n) represent the minimum possible cluster in either 2D or 3D. Then,

the general model is given by

dun,n
dt

= Fn,n − Ln,n − γn,nun,n,

dun,j
dt

= Fn,j − Ln,j + γn,j+1un,j+1 − γn,jun,j, dmin(n) + 1 ≤ j < n

dun,j
dt

= Fn,j − Ln,j + γn,j+1un,j+1, j = dmin(n) < n (5.2)

where n = 1, 2, . . . , and

Fn,j =
1

2

n−1∑

r=1

j−1
∑

s=1

kn−r,r,j−s,sun−r,j−sur,s (5.3)

is the gain in clusters of mass n, diameter j due to the coagulation of clusters ur,s

and un−r,j−s. Note that Fn,j = 0 for n = 1 or j = 1 since there cannot be a gain

in clusters of mass one or diameter one due to a coagulation event. Similarly

Ln,j =

∞∑

r=1

∞∑

s=1

kn,r,j,sun,jur,s (5.4)

is the loss of clusters of mass n, diameter j due to the coagulation of clusters un,j

and ur,s. The coefficient kr,n,s,j represents the rate of coagulation of clusters ur,s

and un,j. The reformation coefficient γn,j gives the rate at which a cluster un,j

will reshape to create a cluster with smaller diameter, un,j−1. Clearly, since the

maximum diameter of a cluster of mass n is n, we have un,j = 0 for j > n.

5.1 Wattis’ Model

We shall begin by looking at the case that is studied in [56]. Here the coagulation

kernel kr,n,s,j is considered to be constant, k, say. Also the reformation coefficient

γn,j is independent of n and is given by γ(j − 1) with γ constant. We shall first

consider the case dmin(n) = 1, as in [56]. If we put these assumptions into model
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(5.2) we get

dun,j(t)

dt
=

1

2

n−1∑

r=1

j−1
∑

s=1

kur,s(t)un−r,j−s(t) −
∞∑

r=1

∞∑

s=1

kur,s(t)un,j(t)

+γjun,j+1(t) − γ(j − 1)un,j(t) (5.5)

for j ≤ n. Note that if n = j > 1 the third term will disappear, since un,n+1 = 0,

which coincides with the first equation in (5.2). Observe that if n = j = 1 then

(5.5) will reduce to u̇1,1 = −L1,1 which still agrees with the first equation in (5.2).

If j = dmin(n) = 1 the fourth term disappears, thus matching the third equation

in (5.2) (notice the first term also disappears since Fn,1 = 0). For 2 ≤ j ≤ n the

equation (5.5) is the same as the second equation in (5.2). Therefore (5.5) covers

all cases in (5.2) so that we study (5.5) instead.

The total mass and total diameter of the system are given respectively by

∞∑

n=1

∞∑

j=1

nun,j(t) =

∞∑

n=1

n∑

j=1

nun,j(t), since un,j(t) = 0 for j > n, (5.6)

and
∞∑

n=1

∞∑

j=1

jun,j(t) =
∞∑

n=1

n∑

j=1

jun,j(t). (5.7)

In the case where no mass loss occurs, we require

∞∑

n=1

∞∑

j=1

nun,j(t) =
∞∑

n=1

∞∑

j=1

nun,j(0), ∀t > 0. (5.8)

As both total mass and diameter should be finite quantities, the natural space to

work in is the Banach space Y = L1(Ω, µ) given by the following

Definition 5.1. Let Y be the Banach space of all real doubly-infinite sequences

{fn,j}∞n,j=1, with norm

‖f‖ =

∞∑

n=1

∞∑

j=1

n|fn,j| <∞. (5.9)
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Here Ω = N × N and µ = µ1 × µ2 where

µ1(M1) =







∑

n∈M1

n if M1 ⊆ N is finite

∞ if M1 is infinite

and

µ2(M2) =







∑

j∈M2

1 if M2 ⊆ N is finite

∞ if M2 is infinite

so that

µ(M) =







∑

(n,j)∈M

n if M ⊆ N × N is finite

∞ if M is infinite.

(5.10)

Since we wish to impose the condition un,j = 0 for j > n we shall work in the

subspace X of Y defined by

X := {f ∈ Y : fn,j = 0 for j > n}, (5.11)

i.e. the space of doubly-infinite lower triangular matrices. It is possible to prove

the following

Lemma 5.2. The space X given by (5.11) is a closed subspace of Y and hence

is also a Banach space.

Proof: Let {f k} be a sequence in X such that for each k, f kn,j = 0 when j > n.

Suppose that

fk → f in Y.

Then,

‖f k − f‖ =

∞∑

n=1

n

∞∑

j=1

|fkn,j − fn,j| → 0 as k → ∞

which implies that

|fkn,j − fn,j| → 0 ∀n, j.

Hence we must have

|0 − fn,j| = 0 ∀j > n,

i.e. fn,j = 0 for j > n and so f ∈ X. The result now follows.
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Note that
∞∑

n=1

n∑

j=1

n|fn,j| ≥
∞∑

n=1

n∑

j=1

j|fn,j| since j ≤ n. (5.12)

At first we shall look at the reformation part of (5.5) given by

dun,j(t)

dt
= −γ(j − 1)un,j(t) + γjun,j+1(t). (5.13)

In analogy with Problems 3.5, 4.1 and 4.9 we can transform (5.13) into the fol-

lowing ACP:

Problem 5.3. Find a function u : [0,∞) → X, where X is as in (5.11), such

that

du(t)

dt
= Au(t) +Bu(t) t > 0 (5.14)

lim
t→0+

u(t) = f ∈ D(A),

where the operators A and B are defined by

[Af ]n,j = −γ(j − 1)fn,j, [Bf ]n,j = γjfn,j+1, (5.15)

with

D(A) = {f ∈ X :
∞∑

n=1

n∑

j=1

n(j − 1)|fn,j| <∞}, (5.16)

D(B) = {f ∈ X :

∞∑

n=1

n∑

j=1

nj|fn,j+1| <∞}. (5.17)

It is clear that A maps D(A) into X and likewise B maps D(B) into X.

Notice that by a simple change of variable in the domain given by (5.16) we have

D(A) = {f ∈ X :
∞∑

n=1

n−1∑

j=1

nj|fn,j+1| <∞}.
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We can also write

D(B) = {f ∈ X :

∞∑

n=1

n−1∑

j=1

nj|fn,j+1| <∞} (5.18)

since fn,n+1 = 0 for f ∈ X. It follows that D(A) = D(B).

We are now in a position to prove

Theorem 5.4. Let X, A and B be as in (5.11), (5.15), (5.16) and (5.17). Then

there exists a smallest extension G of A + B which generates a substochastic

semigroup {TG(t)}t≥0 on X.

Proof: Again we wish to apply Theorem 2.19.

(i) A is the generator of the substochastic semigroup {TA(t)}t≥0 on X given by

[TA(t)f ]n,j = e−γ(j−1)tfn,j ∀n, j. (5.19)

(ii) We have shown that D(B) = D(A). It is also clear that

[Bf ]n,j = γjfn,j+1 ≥ 0 ∀f ∈ D(B)+.

(iii) As discussed previously, X is a closed subspace of Y = L1(N × N, µ) with

µ defined as in (5.10). For f ∈ D(A)+ we have

∫

Ω

(Af +Bf)dµ =

∞∑

n=1

∞∑

j=1

n [−γ(j − 1)fn,j + γjfn,j+1]

= −
∞∑

n=1

∞∑

j=1

nγ(j − 1)fn,j +
∞∑

n=1

∞∑

j=1

nγjfn,j+1

= −γ
∞∑

n=1

∞∑

j=1

n(j − 1)fn,j + γ

∞∑

n=1

∞∑

l=1

n(l − 1)fn,l

= 0 =: −c(f). (5.20)

Thus all of the conditions of Theorem 2.19 are satisfied. �

Along similar lines to Theorem 3.7 we wish to apply Theorem 2.26 with

c(f) := 0 to show that G = A+B. As mentioned previously, the appropriate

98



space to now work in is X defined by (5.11). If we let l denote the space of all

double sequences (0 when j > n), then l = Ef ⊂ E. ( This is a strict inclusion

because E can contain sequences with an arbitrary number of infinite entries,

whereas a sequence in Ef must contain no infinite entries, since the only set with

measure 0 is the empty set.) Also

F = {f ∈ l :

(
f

1 + γ(j − 1)

)

n,j

∈ X}

and

[Lf ]n,j =
fn,j

1 + γ(j − 1)
, f ∈ F ;

[Af ]n,j = fn,j − (1 + γ(j − 1))fn,j = −γ(j − 1)fn,j,

D(A) = LF = {f ∈ X : fn,j =
gn,j

1 + γ(j − 1)
, g ∈ F};

[Bf ]n,j = γjfn,j+1,

D(B) = H = {f ∈ X : for any non-negative, non-decreasing sequence {f n}
in D(B) such that sup

n

fn = |f |, i.e. sup
n

fnm,j = |fm,j| ∀m, j,

we have sup
n

Bfn <∞, i.e. sup
n

Bfnm,j <∞ ∀m, j
}

.

We can now prove the following.

Theorem 5.5. In the context of Theorem 5.4, G = A+B, the closure of the

operator (A +B,D(A)).

Proof: We must verify that for any g ∈ F+ such that −g + BLg ∈ X we have

∞∑

n=1

∞∑

j=1

n(Lg)n,j +

∞∑

n=1

∞∑

j=1

n (−gn,j + (BLg)n,j) ≥ 0. (5.21)

Let

fn,j = (Lg)n,j = (1 + γ(j − 1))−1gn,j

so that f ∈ X+. Then equation (5.21) holds if, for any f ∈ X+ such that
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Af + Bf ∈ X, we have

∞∑

n=1

∞∑

j=1

n (−γ(j − 1)fn,j + (Bf)n,j) ≥ 0 (5.22)

since

(Lg)n,j − gn,j = (1 + γ(j − 1))−1gn,j − gn,j

= − γ(j − 1)

1 + γ(j − 1)
gn,j

= −γ(j − 1)fn,j.

Now (5.22) can be written as

lim
N→∞

N∑

n=1

n∑

j=1

n (−γ(j − 1)fn,j + γjfn,j+1)

= lim
N→∞

(

−
N∑

n=1

n∑

j=1

nγ(j − 1)fn,j +

N∑

n=1

n∑

j=1

nγjfn,j+1

)

. (5.23)

Also,
N∑

n=1

n∑

j=1

nγjfn,j+1 =

N∑

n=1

n∑

l=1

nγ(l − 1)fn,l

on using the change of variable j + 1 → l. Thus from (5.23) we have

lim
N→∞

(

−
N∑

n=1

n∑

j=1

nγ(j − 1)fn,j +

N∑

n=1

n∑

j=1

nγ(j − 1)fn,j

)

= 0. (5.24)

Hence we have satisfied the conditions of Theorem 2.26 and we can conclude that

G = A+B.

�

Note 5.6. Following Theorem 5.5 and the discussion on pages 39-40 we can say

that the semigroup {TG(t)}t≥0 generated by G is stochastic since c(f) := 0.
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We can now deduce that the ACP

d

dt
u(t) = Gu(t) (t > 0) (5.25)

lim
t→0+

u(t) = f , (5.26)

has a unique strict, non-negative and mass-conserving solution u : [0,∞) →
D(G)+ for each f ∈ D(G)+ and hence for each f ∈ D(A)+. This solution is

given by u(t) = TG(t)f , with G = A+B.

Note 5.7. Since the coagulation terms will remain the same for each variation

of the model described in this section we shall analyse them at the end to avoid

repetition.

5.2 The Modified Model

We shall now modify the above model so that we have a general reformation rate

γn,j. We shall still consider the case where dmin(n) = 1 for all n and un,j = 0 if

j > n. For the model to make physical sense we will need

γn,1 = 0 for n = 1, 2, . . . . (5.27)

We shall begin again by considering the reformation terms only

dun,j(t)

dt
= −γn,jun,j(t) + γn,j+1un,j+1(t). (5.28)

We are now looking to solve

Problem 5.8. Find a function u : [0,∞) → X such that

d

dt
u(t) = Au(t) +Bu(t) (t > 0) (5.29)

lim
t→0+

u(t) = f ∈ D(A) ,

where

[Af ]n,j = −γn,jfn,j, [Bf ]n,j = γn,j+1fn,j+1, (5.30)
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with

D(A) = {f ∈ X :

∞∑

n=1

n∑

j=1

nγn,j|fn,j| <∞},

D(B) = {f ∈ X :
∞∑

n=1

n∑

j=1

nγn,j+1|fn,j+1| <∞}. (5.31)

We can again prove that D(A) = D(B) by a simple change of variable.

We now wish to prove

Theorem 5.9. Let X, A and B be as in (5.11), (5.30) and (5.31). Then there

exists a smallest extension G of A+B which generates a substochastic semigroup

{TG(t)}t≥0 on X.

Proof: Again we need to check that the conditions of Theorem 2.19 are satisfied.

Since the details are very similar to those in the proof of Theorem 3.6 we shall

only highlight the differences here. The substochastic semigroup {TA(t)}t≥0 on

X generated by A is given by

[TA(t)f ]n,j = e−γn,j tfn,j ∀n, j. (5.32)

We know that D(B) = D(A) and it is clear that [Bf ]n,j ≥ 0 ∀f ∈ D(B)+. Also

for f ∈ D(A)+

∫

Ω

(Af +Bf)dµ =

∞∑

n=1

∞∑

j=1

n[−γn,jfn,j + γn,j+1fn,j+1]

= −
∞∑

n=1

n∑

j=1

nγn,jfn,j +
∞∑

n=1

n∑

l=1

nγn,lfn,l

= 0 =: −c(f)

by (5.27) and since fn,n+1 = 0.

�

We can now go on to prove the following

Theorem 5.10. In the context of Theorem 5.9, G = A+B, the closure of the

operator (A +B,D(A)).
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Proof: This is essentially the same as the proof of Theorem 5.5 with γ(j−1)fn,j

replaced with γn,jfn,j and γjfn,j+1 replaced with γn,j+1fn,j+1 and so the details

are omitted. �

We now make a further extension to the model by examining the case where

any cluster with diameter greater than j can reform to produce a cluster with

diameter j. For this we will need to replace the third term, γn,j+1un,j+1, in (5.28)

by
n∑

s=j+1

γn,spn,j,sun,s (5.33)

where γn,s is the reformation rate of a cluster with mass n, diameter s and pn,j,s

is the probability that a cluster with mass n, diameter s will reform to produce a

cluster with mass n, diameter j. Note that again we have un,j = 0 for j > n and

dmin(n) = 1. Naturally, since pn,j,s is a probability, we require

s−1∑

j=1

pn,j,s = 1, 0 ≤ pn,j,s ≤ 1. (5.34)

Note that pn,j,j = 0 since we assume that a reformation event always changes the

diameter of a cluster. Also, for physical reasons we require pn,j,s = 0 if j > n or

s > n. For each n = 1, 2, . . . and j ≤ n the evolution of clusters of mass n and

diameter j due to reformation is then described by

dun,j(t)

dt
=

∞∑

s=j+1

γn,spn,j,sun,s(t) −
j−1
∑

l=1

γn,jpn,l,jun,j(t). (5.35)

This time we wish to solve

Problem 5.11. Find a function u : [0,∞) → X such that

d

dt
u(t) = Au(t) +Bu(t) (t > 0) (5.36)

lim
t→0+

u(t) = f ∈ D(A)
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where

[Af ]n,j = −
j−1
∑

l=1

γn,jpn,l,jfn,j = −γn,jfn,j, [Bf ]n,j =
∞∑

s=j+1

γn,spn,j,sfn,s, (5.37)

with

D(A) = {f ∈ X :
∞∑

n=1

n∑

j=1

nγn,j|fn,j| <∞};

D(B) = {f ∈ X :

∞∑

n=1

n∑

j=1

n
∣
∣
∣

∞∑

s=j+1

γn,spn,j,sfn,s

∣
∣
∣ <∞}. (5.38)

We follow the same procedure as before and hence we start by proving the

following

Lemma 5.12. As sets D(A) ⊆ D(B).

Proof: For f ∈ D(A)

‖Bf‖ ≤
∞∑

n=1

∞∑

j=1

n
∞∑

s=j+1

γn,spn,j,s|fn,s|

=
∞∑

n=1

∞∑

s=2

s−1∑

j=1

nγn,spn,j,s|fn,s|

=

∞∑

n=1

∞∑

s=2

nγn,s|fn,s| on using (5.34)

= ‖Af‖ on using (5.27)

< ∞.

Hence D(A) ⊆ D(B).

�

We are now in a position to prove

Theorem 5.13. Let X, A and B be as in (5.11), (5.37) and (5.38). Then there

exists a smallest extension G of A+B which generates a substochastic semigroup

{TG(t)}t≥0 on X.
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Proof: Again the details are similar to those in the proof of Theorem 5.9 and

so we shall only point out the differences here.

(i) This is exactly the same.

(ii) D(B) ⊇ D(A) was shown in Lemma 5.12 and it is clear that

[Bf ]n,j ≥ 0 ∀f ∈ D(B)+.

(iii) From the calculations in the proof of Lemma 5.12 we have
∫

Ω
(Af +Bf)dµ = 0.

�

Next we shall prove

Theorem 5.14. In the context of Theorem 5.13, G = A+B, the closure of the

operator (A +B,D(A)).

Proof: Again the details are essentially the same as those given in the proof

of Theorem 5.5 with γ(j − 1)fn,j replaced with γn,jfn,j and γjfn,j+1 replaced by
∑∞

s=j+1 γn,spn,j,sfn,s. We follow the same procedure to reach the point

∞∑

n=1

∞∑

j=1

n (−γn,jfn,j + (Bf)n,j)

= lim
N→∞

N∑

n=1

n∑

j=1

n

(

−γn,jfn,j +

∞∑

s=j+1

γn,spn,j,sfn,s

)

. (5.39)

We know that

N∑

n=1

n∑

j=1

n

∞∑

s=j+1

γn,spn,j,sfn,s

=

N∑

n=1

∞∑

s=2

s−1∑

j=1

nγn,spn,j,sfn,s

=
N∑

n=1

n∑

s=1

nγn,sfn,s

on using (5.34) and (5.27) and since fn,s = 0 for s > n. Thus we can deduce that

the limit in (5.39) is 0 and hence we have proved the required result. �
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As a final extension, suppose we look at the model (5.28) with general ref-

ormation rate and added fragmentation terms. For n = 1, 2, . . . , and j ≤ n the

evolution of clusters of mass n and diameter j due to reformation and fragmen-

tation is described by

dun,j(t)

dt
= −an,jun,j(t) +

∞∑

r=n+1

∞∑

s=j

ar,sbn,j,r,sur,s(t)

+γn,j+1un,j+1(t) − γn,jun,j(t)

= −(an,j + γn,j)un,j(t) +

∞∑

r=n+1

∞∑

s=j

ar,sbn,j,r,sur,s(t) + γn,j+1un,j+1(t)

= −αn,jun,j(t) +

∞∑

r=n

∞∑

s=j

βr,sur,s(t) (5.40)

where

αn,j = an,j + γn,j (5.41)

βr,s =







γn,j+1 when r = n, s = j + 1

0 when r = n, s = j, j + 2, j + 3 . . .

ar,sbn,j,r,s otherwise.

(5.42)

Here an,j is the general fragmentation rate of a cluster with mass n, diameter j

and bn,j,r,s is the number of clusters of mass n, diameter j produced due to the

break-up of a cluster of mass r, diameter s. Again γn,j is the general reformation

rate of a cluster with mass n and diameter j. Notice that equation (5.40) is

very similar to equation (4.30) which represented a system of fragmenting clus-

ters incorporating mass loss and surface recession, except this time we have a

multicomponent equation. For physical reasons we require

a1,1 = 0, (5.43)

bn,j,r,s = 0 for j > n (5.44)

and
r−1∑

n=1

s∑

j=1

nbn,j,r,s = r. (5.45)
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The latter relates to conservation of mass in the system.

The problem we wish to solve this time is

Problem 5.15. Find a function u : [0,∞) → X such that

d

dt
u(t) = Au(t) +Bu(t) (t > 0) (5.46)

lim
t→0+

u(t) = f ∈ D(A) .

where

[Af ]n,j = −αn,jfn,j, [Bf ]n,j =

∞∑

r=n

r∑

s=j

βr,sfr,s, (5.47)

with

D(A) = {f ∈ X :
∞∑

n=1

n∑

j=1

nαn,j|fn,j| <∞},

D(B) = {f ∈ X :

∞∑

n=1

n∑

j=1

∣
∣

∞∑

r=n

∞∑

s=j

nβr,sfr,s
∣
∣ <∞}. (5.48)

Note that in all previous cases it has been clear that A maps D(A) into X and B

maps D(B) into X. Now we are working with more complicated operators and

so we shall prove

Lemma 5.16. Let X be as in (5.11) and (A,D(A)) and (B,D(B)) be defined as

in (5.47) and (5.48). Then A maps D(A) into X and B maps D(B) into X.

Proof: It is clear that A maps D(A) into X since, for f ∈ D(A),

[Af ]n,j = −αn,jfn,j = −an,jfn,j + γn,jfn,j = 0 for n < j.

For f ∈ D(B)

[Bf ]n,j =

∞∑

r=n

∞∑

s=j

βr,sfr,s

= γn,j+1fn,j+1
︸ ︷︷ ︸

=0 for n<j

+
∞∑

r=n+1

∞∑

s=j

ar,s bn,j,r,s
︸ ︷︷ ︸

=0 for n<j

fr,s

= 0 for n < j.
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Thus B maps D(B) into X. �

Following the same strategy as before we can now prove

Lemma 5.17. As sets D(B) ⊇ D(A).

Proof: For f ∈ D(A)

‖Bf‖ ≤
∞∑

n=1

∞∑

j=1

∞∑

r=n

∞∑

s=j

nβr,s|fr,s|

=
∞∑

n=1

∞∑

j=1

∞∑

r=n+1

∞∑

s=j

nar,sbn,j,r,s|fr,s| +
∞∑

n=1

∞∑

j=1

nγn,j+1|fn,j+1|

=
∞∑

r=2

∞∑

s=1

r−1∑

n=1

s∑

j=1

nar,sbn,j,r,s|fr,s| +
∞∑

n=1

∞∑

j=1

nγn,j+1|fn,j+1|

=

∞∑

r=2

∞∑

s=1

rar,s|fr,s| +
∞∑

n=1

∞∑

l=2

nγn,l|fn,l|

=
∞∑

r=1

∞∑

s=1

rar,s|fr,s| +
∞∑

n=1

∞∑

l=1

nγn,l|fn,l|

= ‖Af‖

on using (5.27), (5.43) and (5.45). �

We are now in a position to prove

Theorem 5.18. Let X, A and B be as in (5.11), (5.47) and (5.48). Then there

exists a smallest extension G of A+B which generates a substochastic semigroup

{TG(t)}t≥0 on X.

Proof: Again this is very similar to previous cases and so only brief details are

given. We wish to show that our operators satisfy the conditions of Theorem 2.19

(i) The semigroup generated by A on X is

[TA(t)f ]n,j = e−αn,j tfn,j ∀j, n. (5.49)

(ii) D(B) ⊇ D(A) was shown in Lemma 5.17 and it is clear that

[Bf ]n,j ≥ 0 ∀f ∈ D(B)+.
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(iii) For f ∈ D(A)+,
∫

Ω
(Af + Bf)dµ = 0 from the calculations in the proof of

Lemma 5.17.

Thus all of the conditions of Theorem 2.19 are satisfied. �

We can finally prove

Theorem 5.19. In the context of Theorem 5.18, G = A+B, the closure of the

operator (A +B,D(A)).

Proof: The details are essentially the same as those found in all previous cases

and thus have been omitted.

�

Note 5.20. For each of the above cases we have shown that the corresponding

ACP of the form

du(t)

dt
= Gu(t), t > 0,

lim
t→0+

u(t) = f

has a unique strict, non-negative and mass-conserving solution u : [0,∞) →
D(G)+ for each f ∈ D(G)+ and hence for each f ∈ D(A)+. This solution is

given by u(t) = TG(t)f , with G = A+B.

As mentioned previously the coagulation terms that will be added to each of

the above cases will be the same and so we only need to analyse them once. We

shall adopt the same technique used in Section 3.3 for the regular one-component

coagulation terms to analyse the multicomponent coagulation terms. The non-

linear ACP which we wish to solve for each A and B above takes the form

d

dt
u(t) = Au(t) +Bu(t) +Ku(t) (5.50)

lim
t→0+

u(t) = f ∈ D(A) (5.51)

where the coagulation operator K is given by

[Kf ]n,j =
1

2

n−1∑

r=1

j−1
∑

s=1

kn−r,r,j−s,sfn−r,j−sfr,s −
∞∑

r=1

∞∑

s=1

kn,r,j,sfn,jfr,s. (5.52)
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Note that we can show that

∞∑

n=1

∞∑

j=1

n[Kf ]n,j = 0

by calculations similar to those leading to (3.5). We will place similar restrictions

on kn,r,j,s as we did in Section 3.3, namely kn,r,j,s = kr,n,s,j and there exists a

constant k such that

(A4)∗ kn,r,j,s ≤ k for all n, r = 1, 2, . . . and j ≤ n, s ≤ r .

Definition 5.21. We define K̃ on X ×X by

(

K̃[f, g]
)

n,j
=

1

2

n−1∑

r=1

j−1
∑

s=1

kn−r,r,j−s,sfn−r,j−sgr,s −
∞∑

r=1

∞∑

s=1

kn,r,j,sfn,jgr,s (5.53)

with f, g ∈ X.

In analogy with Theorem 3.13 we can prove

Theorem 5.22. Under Assumption (A4)∗, K̃ defined in (5.53) is a bilinear,

continuous form mapping X ×X into X.

Proof: Again, it is convenient to write

(

K̃[f, g]
)

n,j
=
(

K̃1[f, g]
)

n,j
−
(

K̃2[f, g]
)

n,j

where

(

K̃1[f, g]
)

n,j
=

1

2

n−1∑

r=1

j−1
∑

s=1

kn−r,r,j−s,sfn−r,j−sgr,s,

(

K̃2[f, g]
)

n,j
=

∞∑

r=1

∞∑

s=1

kn,r,j,sfn,jgr,s.

Note that (K̃1[f, g])n,j = 0 if either n = 1 or j = 1.

We can show that
(

K̃1[f, g]
)

n,j
= 0 for j > n, f, g ∈ X. Indeed if s > r then

gr,s = 0 while if s ≤ r then j − s > n − r so that fn−r,j−s = 0. Thus all terms
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in the sum defining
(

K̃1[f, g]
)

n,j
are zero when j > n. Clearly

(

K̃2[f, g]
)

n,j
=

∑∞
r=1

∑∞
s=1 kn,r,j,sfn,jgr,s = 0 for j > n since fn,j = 0 for j > n.

Also, for f, g ∈ X we have

‖K̃1[f, g]‖ =

∞∑

n=2

∞∑

j=2

n|
(

K̃1[f, g]
)

n,j
|

≤ k

2

∞∑

n=2

∞∑

j=2

n−1∑

r=1

j−1
∑

s=1

n|fr,s||gn−r,j−s|

=
k

2

∞∑

n=2

n−1∑

r=1

∞∑

j=2

j−1
∑

s=1

n|fr,s||gn−r,j−s|

=
k

2

∞∑

r=1

∞∑

n=r+1

∞∑

s=1

∞∑

j=s+1

n|fr,s||gn−r,j−s|

=
k

2

∞∑

r=1

∞∑

l=1

∞∑

s=1

∞∑

m=1

(l + r)|fr,s||gl,m|

( on putting l = n− r, m = j − s)

=
k

2

∞∑

r=1

∞∑

l=1

∞∑

s=1

∞∑

m=1

(l|fr,s||gl,m| + r|fr,s||gl,m|)

=
k

2

∞∑

r=1

∞∑

s=1

|fr,s|‖g‖ +
k

2

∞∑

l=1

∞∑

m=1

|gl,m|‖f‖

≤ k‖f‖‖g‖. (5.54)

Similarly we have

‖K̃2[f, g]‖ ≤ k‖f‖‖g‖.

So we have K : X × X → X. Also, we have that K̃[·, ·] is bounded, and hence

continuous, in each argument separately. It is easily checked through calculations

similar to those found in the proof of Theorem 3.13 that K̃ is bilinear. �

Notice that the bounds on K̃1 and K̃2 found in the proof above are identical

to those found in Section 3.3. This means that all that the results following

Theorem 3.13 can be reproduced identically here and thus we omit the details.

We can now state the following
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Theorem 5.23. There exists a global, strong, non-negative, mass-conserving so-

lution to the ACP

d

dt
u(t) = Gu(t) +Ku(t) (5.55)

lim
t→0+

u(t) = f ∈ D(G) (5.56)

where G is any of the generators from this chapter.

Proof: This follows from the results analogous to those in Section 3.3. �

5.3 Restrictions

We now consider the case discussed in the introduction to this chapter where in

2D

dmin2D(n) = d
√
ne

and in 3D

dmin3D(n) = d3
√
n.e

As before, let dmin(n) represent the minimum possible diameter of a cluster in

either 2D or 3D. For all the models described in Sections 5.1 and 5.2 (and the orig-

inal Wattis model) to make physical sense we shall require the further restriction

that

un,j = 0 if j < dmin(n).

Also, we must be careful when considering the reformation coefficients. We have

to make sure that our coefficients do not allow for the formation of an ‘illegally-

sized’ particle. For example, in the original Wattis model where we have

γn,j = γ(j − 1) with γ a constant

we need to specify that

γn,j =







γ(j − 1) if dmin(n) ≤ j − 1 ≤ n,

0 if j − 1 < dmin(n).
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In our first modified model with general γn,j we would need to have

γn,j = 0 if j − 1 < dmin(n).

In the second modified case it is not so simple. Here a particle of size n with any

diameter s larger than j can reform to produce a particle of size n, diameter j.

The added restriction here would be

pn,j,s = 0 if j < dmin(n) or s < dmin(n).

Adding in these extra restrictions will not affect the above existence/uniqueness

results.

5.4 Non-Additive Diameter

Now we shall consider the case where the resulting diameter after a coagulation

event is not necessarily additive, but can in fact take on a range of values. Con-

sequently, after the coagulation of a cluster with mass n and diameter j with a

cluster with mass r and diameter s the resulting diameter l, say, could take any

value in the range min{j, s} ≤ l ≤ j + s. Note that we would still have the

restrictions j ≤ n and s ≤ r.

Previously the coagulation part of the evolution equation took the form

dun,j(t)

dt
=

1

2

n−1∑

r=1

j−1
∑

s=1

kn−r,r,j−s,sun−r,j−s(t)ur,s(t) −
∞∑

r=1

∞∑

s=1

kn,r,j,sun,j(t)ur,s(t).

(5.57)

If we are now assuming that the diameter is no longer additive the first term in

(5.57) will change. We will now have a gain in clusters un,j due to the coagulation

of clusters ur,l and un−r,m where l < r and m < n− r. Consider the probability

function, 0 ≤ p′n,r,j,l,m ≤ 1, which gives the probability that a cluster of diameter j

will be produced by the coagulation of a cluster with mass n and diameter l with

a cluster with mass r and diameter m. Note that p′n,r,j,l,m = 0 if j < min{l, m}
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or j > l +m. Also

∞∑

j=1

p′n,r,j,l,m = 1 for each n, r, l,m (5.58)

and p′n,r,j,l,m = p′r,n,j,m,l for all j. The term

1

2

n−1∑

r=1

∞∑

l=1

∞∑

m=1

kn−r,r,l,mp
′
n−r,r,j,l,mun−r,lur,m (5.59)

will replace the first term in (5.57). Note that the second term will not change

since the loss of clusters un,j due to the coagulation of a cluster un,j with another

cluster will always result in a cluster with mass greater than n since mass is

additive. The new evolution equation for coagulation is thus

dun,j(t)

dt
=

1

2

n−1∑

r=1

∞∑

l=1

∞∑

m=1

kn−r,r,l,mp
′
n−r,r,j,l,mun−r,l(t)ur,m(t)

−
∞∑

r=1

∞∑

s=1

kn,r,j,sun,j(t)ur,s(t), (5.60)

where we still have dmin(n) = 1 for all n. Again, we can show that

∞∑

n=1

∞∑

j=1

n[Kf ]n,j = 0.

We will analyse these coagulation terms using the same strategy as in the previous

section. Again, we shall assume that kn,r,j,s is symmetric in the sense that kn,r,j,s =

kr,n,s,j and is uniformly bounded by a constant k.

Let

[Kf ]n,j =
1

2

n−1∑

r=1

∞∑

l=1

∞∑

m=1

kn−r,r,l,mp
′
n−r,r,j,l,mfn−r,lfr,m

−
∞∑

r=1

∞∑

s=1

kn,r,j,sfn,jfr,s (5.61)
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and define K̃ on X ×X by

(

K̃[f, g]
)

n,j
=

1

2

n−1∑

r=1

∞∑

l=1

∞∑

m=1

kn−r,r,l,mp
′
n−r,r,j,l,mfn−r,lgr,m −

∞∑

r=1

∞∑

s=1

kn,r,j,sfn,jgr,s

(5.62)

with f, g ∈ X. Similarly to Definition 5.21 we have

Definition 5.24. We define K̃ on X ×X by

(

K̃[f, g]
)

n,j
=
(

K̃1[f, g]
)

n,j
−
(

K̃2[f, g]
)

n,j
(5.63)

with
(

K̃1[f, g]
)

n,j
=

1

2

n−1∑

r=1

∞∑

l=1

∞∑

m=1

kn−r,r,l,mp
′
n−r,r,j,l,mfn−r,lgr,m (5.64)

and
(

K̃2[f, g]
)

n,j
=

∞∑

r=1

∞∑

s=1

kn,r,j,sfn,jgr,s. (5.65)

Note that
(

K̃1[f, g]
)

n,j
= 0 for n = 1. We can now prove

Theorem 5.25. Under Assumption (A4)∗, K̃ defined in (5.63) is a bilinear,

bicontinuous form mapping X ×X into X.

Proof: We can show that
(

K̃1[f, g]
)

n,j
= 0 for j > n. We have min{l, m} ≤

j ≤ l+m so that n < j ≤ l+m which implies that n− l < m. If we have m > r

then gr,m = 0. On the other hand if r ≥ m then n − l < r i.e. n − r < l, thus

fn−r,l = 0. It is easily shown that
(

K̃2[f, g]
)

n,j
= 0 for j > n since fn,j = 0 for

j > n.

For f, g ∈ X we have

‖K̃1[f, g]‖ =
∞∑

n=2

∞∑

j=1

n|(K̃1[f, g])n,j|

=

∞∑

n=2

∞∑

j=1

n|1
2

n−1∑

r=1

∞∑

l=1

∞∑

m=1

kn−r,r,l,mp
′
n−r,r,j,l,mfn−r,lgr,m|

≤ k

2

∞∑

n=2

∞∑

j=1

n−1∑

r=1

∞∑

l=1

∞∑

m=1

np′n−r,r,j,l,m|fn−r,l||gr,m|
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=
k

2

∞∑

n=2

n−1∑

r=1

∞∑

j=1

∞∑

l=1

∞∑

m=1

np′n−r,r,j,l,m|fn−r,l||gr,m|

=
k

2

∞∑

r=1

∞∑

n=r+1

∞∑

j=1

∞∑

l=1

∞∑

m=1

np′n−r,r,j,l,m|fn−r,l||gr,m|

=
k

2

∞∑

r=1

∞∑

s=1

∞∑

j=1

∞∑

l=1

∞∑

m=1

(s+ r)p′s,r,j,l,m|fs,l||gr,m|

(on putting s = n− r)

=
k

2

∞∑

r=1

∞∑

s=1

∞∑

j=1

∞∑

l=1

∞∑

m=1

(
sp′s,r,j,l,m|fs,l||gr,m| + rp′s,r,j,l,m|fs,l||gr,m|

)

=
k

2

∞∑

r=1

∞∑

s=1

∞∑

l=1

∞∑

m=1

(s|fs,l||gr,m| + r|fs,l||gr,m|) by (5.58)

=
k

2

(
∞∑

s=1

∞∑

l=1

|fs,l|‖g‖ +
∞∑

r=1

∞∑

m=1

‖f‖|gr,m|
)

≤ k‖f‖‖g‖.

Similarly we have

‖K̃2[f, g]‖ ≤ k‖f‖‖g‖.

This shows that K̃ : X×X → X and that K̃[·, ·] is bounded, and hence continu-

ous, in each argument separately. It is easily shown through calculations similar

to those found in the proof of Theorem 3.13 that K̃ is bilinear. �

Notice that the bounds on K̃1 and K̃2 found in the proof above are again

identical to those found in Section 3.3. This leads to the following result.

Theorem 5.26. There exists a global, strong, non-negative, mass-conserving so-

lution to the ACP

d

dt
u(t) = Gu(t) +Ku(t) (5.66)

lim
t→0+

u(t) = f ∈ D(G) (5.67)

where G is any of the generators from this chapter.

We now consider the minimum diameter dmin(n) of a cluster with mass n
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and diameter j to be given by either dmin2D(n) or dmin3D(n), depending on how

many dimensions we are working in, so that un,j = 0 for 1 < j < dmin(n). Thus

we would be working in the Banach space X as in (5.11) but with the added

restriction fn,j = 0 for 1 < j < dmin(n). We need to check that the above

calculations still follow through. Our evolution equation would now be

dun,j(t)

dt
=

1

2

n−1∑

r=1

∞∑

l=dmin(n−r)

∞∑

m=dmin(r)

kp′n−r,r,j,l,mun−r,l(t)ur,m(t)

−
∞∑

r=1

∞∑

s=dmin(r)

kun,j(t)ur,s(t). (5.68)

This time

(

K̃1[f, g]
)

n,j
=

1

2

n−1∑

r=1

∞∑

l=dmin(n−r)

∞∑

m=dmin(r)

kp′n−r,r,j,l,mfn−r,lgr,m (5.69)

and
(

K̃2[f, g]
)

n,j
=

∞∑

r=1

∞∑

s=dmin(r)

kfn,jgs,r. (5.70)

For f, g ∈ X we have

‖K̃1[f, g]‖ =

∞∑

n=2

∞∑

j=1

n|(K̃1[f, g])n,j|

=

∞∑

n=2

∞∑

j=1

n|1
2

n−1∑

r=1

∞∑

l=dmin(r)

∞∑

m=dmin(n−r)

kp′n−r,r,j,l,mfr,lgn−r,m|

≤ k

2

∞∑

n=2

∞∑

j=1

n−1∑

r=1

∞∑

l=dmin(r)

∞∑

m=dmin(n−r)

p′n−r,r,j,l,m|fr,l||gn−r,m|

≤ k‖f‖‖g‖

since
∞∑

l=1

∞∑

m=1

fn−r,lgr,m =
∞∑

l=dmin(n−r)

∞∑

m=dmin(r)

fn−r,lgr,m.

Similarly

‖K̃2[f, g]‖ ≤ k‖f‖‖g‖.
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Thus we have the same bounds on our K̃1 and K̃2 as we have throughout this

chapter and thus our Theorem 5.26 still holds.

5.5 Discrete Mass and Continuous Diameter

In the previous sections we have looked at a multi-component C-F model in

which a cluster of particles is identified by both its mass and diameter, each of

which is assumed to take only positive integer values. Now we examine the case

where we have a cluster described by a discrete mass variable but a continuous

diameter variable. We let un(y) represent the concentration of clusters with mass

n = 1, 2, . . . and diameter y ∈ R+. We shall consider the situation where the

mass and diameter of a monomer have been scaled so that a particle of mass

one has diameter one. Thus the largest diameter we can have in a cluster of n

particles will be when the particles are joined in a single straight line and thus

un(y) = 0 for y > n. We shall consider the coagulation equation for discrete mass

and continuous diameter, which is given by

∂un(y, t)

∂t
=

1

2

n−1∑

j=1

∫ y

z=0

kn−j,j(y − z, z)un−j(y − z, t)uj(z, t)dz

−
∞∑

j=1

∫ ∞

z=0

kn,j(y, z)un(y, t)uj(z, t)dz (5.71)

where kn,j(y, z) is the coagulation rate for a cluster with mass n and diameter

y ≤ n with a cluster with mass j and diameter z ≤ j. Note that the first term is

zero when n = 1 due to the empty sum and we have that

kn,j(y, z) = kj,n(z, y) ≤ k for all n, j = 1, 2, . . . and y ≤ n, z ≤ r.

The total mass and total diameter of the system are given respectively by

∞∑

n=1

∫ ∞

0

nun(y)dy =
∞∑

n=1

∫ n

0

nun(y)dy (5.72)
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and
∞∑

n=1

∫ ∞

0

yun(y)dy =
∞∑

n=1

∫ n

0

yun(y)dy. (5.73)

The natural space to work in is the Banach space X of all infinite sequences of

real functions {fn(y)}∞n=1, y ∈ R+ such that fn(y) = 0 for y > n with norm

‖f‖ =
∞∑

n=1

∫ ∞

0

n|fn(y)|dy =
∞∑

n=1

∫ n

0

n|fn(y)|dy <∞.

If we wish to prove a theorem analogous to Theorem 5.22, then we are required

to show, for example, that

‖1

2

n−1∑

j=1

∫ y

z=0

kn−j,j(y − z, z)fn−j(y − z)fj(z)dz‖ <∞

or

‖
∞∑

j=1

∫ ∞

z=0

kn,j(y, z)fn(y)fj(z)dz‖ <∞.

In order to prove these results we will need to be able to interchange the order of

the summation and the integral. For example

∥
∥
∥

1

2

n−1∑

j=1

∫ y

z=0

kn−j,j(y − z, z)fn−j(y − z)fj(z)dz
∥
∥
∥

≤ 1

2

∞∑

n=1

∫ n

y=0

n−1∑

j=1

∫ y

z=0

kn|fn−j(y − z)||fj(z)|dzdy

=
k

2

∞∑

n=1

n−1∑

j=1

∫ n

y=0

∫ y

z=0

n|fn−j(y − z)||fj(z)|dzdy

=
k

2

∞∑

j=1

∞∑

n=j+1

∫ n

z=0

∫ n

y=z

n|fn−j(y − z)||fj(z)|dydz

=
k

2

∞∑

j=1

∞∑

l=1

∫ n

z=0

∫ n−z

x=0

(j + l)|fj(z)||fl(x)|dxdz

on putting l = n− j and x = y − z
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≤ k

2

∞∑

j=1

∫ n

z=0

∞∑

l=1

∫ n

x=0

(j + l)|fj(z)||fl(x)|dxdz

=
k

2

∞∑

l=1

∫ n

x=0

‖f‖|fl(x)|dx+
k

2

∞∑

j=1

∫ n

z=0

‖f‖|fj(z)|dz

≤ k‖f‖2 <∞ since f ∈ X. (5.74)

As mentioned in Chapter 2, we must apply Fubini’s Theorem extended to

a product of four measures to enable us to carry out this change in order of

summation/integration . Let Ω1 = Ω3 = N, Ω2 = Ω4 = R+, let µ2 = µ4 be the

usual Lebesgue measure, let µ3 be the usual counting measure on N and define

µ1 on N by

µ1(M) =
∑

m∈M

m, M ⊂ N.

Then we can write

k

2

∞∑

n=1

∫ n

y=0

n−1∑

j=1

∫ y

z=0

n|fn−j(y − z)||fj(z)|dzdy

as

k

2

∫

Ω1

∫

Ω2

∫

Ω3

∫

Ω4

XF (y)XG(j)XH(z)|fn−j(y − z)||fj(z)|dµ4(z)dµ3(j)dµ2(y)dµ1(n)

where XF , XG and XH are the characteristic functions of the sets F = [0, n],

G = {1, 2, 3, . . . , n− 1} and H = [0, y] respectively.

We can now apply the four-space version of Fubini’s Theorem. By a simple

change of variable we can write fn−j(y − z)fj(z) as gn,j(y, z) = fj(z)fn(y) and

this is (Ω1 × Ω2 × Ω3 × Ω4)-measurable. Also, since one of the iterated integrals,

namely,
k

2

∞∑

j=1

∫ ∞

z=0

∞∑

l=1

∫ ∞

x=0

(j + l)|fj(z)||fl(x)|dxdz

can be shown to be finite then all of the iterated integrals are finite and equal.

Hence, we can justify changing the order of summations/integrals and carry out

all of the required analysis to show that the operator K defined by
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[Kf ]n(y) =
1

2

n−1∑

j=1

∫ y

z=0

kn−j,j(y − z, z)un−j(y − z, t)uj(z, t)dz

−
∞∑

j=1

∫ ∞

z=0

kn,j(y, z)un(y, t)uj(z, t)dz (5.75)

satisfies the conditions of Theorem 2.32. It is possible to show upon pairing these

coagulation terms with any of the reformation terms described previously in this

chapter, but within the discrete/continuous setting, that there exists a unique

non-negative solution to the appropriate ACP.

We have shown that there exists a unique strong, non-negative solution to

various versions of the discrete multi-component coagulation equation with ref-

ormation terms. We also have a strong solution when the equation is extended

to include fragmentation terms. We were then able to verify that if we wished

to have diameter as a continuous variable and mass as a discrete variable, we

would still be able to carry out our usual semigroup analysis to deduce the ex-

istence of a strong solution. In the final chapter we shall return to our regular

one-component C-F equation. We shall investigate what restrictions are required

on a source term N(t) in order for there to be a unique strong solution to the full

equation.
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Chapter 6

The Coagulation-Fragmentation

Equation with a

Time-Dependent Source Term

Thin films are increasingly being used in physical applications such as optical

coatings and semiconductor devices. There have been many studies into the way

in which thin films grow. Submonolayer growth is an important stage in the

development of thin films and is studied in the form of coagulation and fragmen-

tation equations with monomer input in, for example, [2], [3], [4], [31] and [50].

In these studies there is a ‘capture zone’ around particle clusters and correlations

between size of clusters and the corresponding capture zones are taken into ac-

count when looking at the long-term behaviour of cluster-size distributions. An

investigation into similarity solutions for the Becker-Döring system with a time-

dependent input of monomers of power-like type is carried out in [24] and [57].

In [25] the Becker-Döring system is again studied but this time with a constant

input of monomers. The long-term behaviour of the Smoluchowski equations

is investigated in [27] where the concentration of monomers is to be kept at a

constant level by an input source.

In our regular one-component C-F equation we can consider what would hap-

pen if we added in a source term (dependent on time) which introduced new

particle clusters. If we wished to include a source for each cluster size our C-F

122



equation would now look like

dun(t)

dt
= −anun(t) +

∞∑

j=n+1

ajbn,juj(t)

+
1

2

n−1∑

j=1

kn−j,jun−j(t)uj(t) −
∞∑

j=1

kn,jun(t)uj(t)

+[N(t)]n , (6.1)

un(0) = fn , (n = 1, 2, 3, ...)

where un(t), an, bn,j and kn,j have their usual meanings and [N(t)]n is non-

negative for each n and represents the concentration of n-mers added to the

system from some source. We shall assume that our system without the source

term is mass-conserving and we shall again impose conditions (A1)− (A4). Note

that if we only had a source of monomers we would have

[N(t)]n =







g(t) for n = 1

0 otherwise.

If we transform (6.1) into an ACP in the usual way we have

du(t)

dt
= Au(t) +Bu(t) +Ku(t) +N(t), (6.2)

u(0) = f

where A, B and K are as in Definition 3.2 and (3.33) defined in the Banach space

X of Definition 3.1. We also require that N(t) ∈ X ∀t ≥ 0.

From our analysis in Chapter 3 of the ACP

du(t)

dt
= Au(t) +Bu(t), (6.3)

u(0) = f

we know that G = A+B is the generator of a C0-semigroup, {TG(t)}t≥0, on X.

So now we can look at the ACP
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du(t)

dt
= Gu(t) +Ku(t) +N(t), (6.4)

u(0) = f.

For convenience we shall rewrite this as

du(t)

dt
= Gu(t) + F (t, u(t)) (6.5)

u(0) = f

where F (t, u(t)) = Ku(t) +N(t).

We shall now apply the theory described in Chapter 2 to determine when a

solution of (6.5) is a strong solution.

Theorem 6.1. Let N : [0,∞) → X be continuous and non-negative. Then the

ACP (6.5) has a unique mild solution u : [0, t0) → X for every f ∈ X.

Proof: We show that the function F : [0,∞) ×X → X defined by

F (t, u) = Ku+N(t), (6.6)

satisfies the conditions of Theorem 2.28. For u ∈ X and t1, t2 ≥ 0

‖F (t1, u) − F (t2, u)‖ = ‖Ku+N(t1) −Ku−N(t2)‖
= ‖N(t1) −N(t2)‖
→ 0 as t1 → t2

since N is continuous on [0,∞).

Also, from the proof of Theorem 3.14 we have, for u, v ∈ X,

‖F (t, u) − F (t, v)‖ = ‖Ku+N(t) −Kv −N(t)‖
= ‖Ku−Kv‖
≤ 2k‖u− v‖(‖u‖ + ‖v‖).
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Hence,

‖F (t, u) − F (t, v)‖ ≤ L(r, t′)‖u− v‖, ∀u, v ∈ B̄(f, r),

where

L(r, t′) = C(f, r) = 4k(‖f‖ + r)

as in Chapter 3. The result now follows from Theorem 2.28. �

The next aim is to establish a similar result for a strong solution. This will

require imposing a further restriction on N to ensure that the conditions of The-

orem 2.29 are satisfied, i.e. that F (t, u(t)) is continuously differentiable from

[0,∞) ×X into X. We can now go on to prove the following

Theorem 6.2. Let N : [0,∞) → X be continuously differentiable and non-

negative. Then the ACP (6.5) has a unique strong solution u : [0, t0) → B(f, r)

for each f ∈ D(G).

Proof: The assumption that N is differentiable allows us to write

F (t0 + t, φ0 + φ) = K(φ0 + φ) +N(t0 + t)

= Kφ0 + K̃[φ0, φ] + K̃[φ, φ0] +Kφ

+N(t0) +N ′(t0)t + tEt0(t)
︸ ︷︷ ︸

from [5, p. 346]

(6.7)

= Kφ0 + Kφ0
(φ)

︸ ︷︷ ︸

Fréchet Derivative

+Kφ

+N(t0) +N ′(t0)t+ tEt0(t)

= Kφ0 +N(t0) +Kφ0
(φ) +N ′(t0)t+Kφ+ tEt0(t)

= F (t0, φ0) + S(t0 ,φ0)(t, φ) +Kφ+ tEt0(t),

where K̃ is as in the proof of Theorem 3.13 and S(t0,φ0)(t, φ) = Kφ0
(φ) +N ′(t0)t.

It is easily checked that S(t0 ,φ0)(t, φ) is bilinear in t and φ. From its definition

N ′(t0)t is a linear function of t. We also have that Kφ0
(φ) is linear in φ by

Definition 2.31.
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We now need to check the conditions on the error term. From Definition 2.30

we have that

‖(t, φ)‖[0,∞)×XE(t0 ,φ0)(t, φ) = Kφ+ tE(t0)(t).

Thus

E(t0,φ0)(t, φ) =
Kφ+ tE(t0)(t)

‖(t, φ)‖ =
Kφ+ Jt0(t)

‖(t, φ)‖ .

where Jt0(t) = tE(t0)(t). From its definition Jt0(t) = o(|t|) i.e.

‖Jt0(t)‖
|t| → 0 as |t| → 0.

Hence, given ε
2
> 0 there exists δ > 0 such that

‖Jt0(t)‖ <
ε

2
|t| for 0 < |t| < δ.

If ‖(t, φ)‖ < δ, then |t| < δ and ‖φ‖ < δ and

‖Kφ+ Jt0(t)‖ ≤ ‖Kφ‖ + ‖Jt0(t)‖
≤ 2k‖φ‖2 +

ε

2
|t|

≤ (2k‖φ‖ +
ε

2
)(‖φ‖ + |t|)

by (3.39). Therefore, for (t, φ) 6= (0, 0),

‖Kφ+ Jt0(t)‖
|t| + ‖φ‖ ≤ 2k‖φ‖ +

ε

2
≤ 2kδ +

ε

2
.

If we choose δ < ε
4k

, then

‖Kφ+ Jt0(t)‖
|t| + ‖φ‖ < ε,

i.e.
‖Kφ+ Jt0(t)‖

|t| + ‖φ‖ → 0 as (t, φ) → (0, 0)

as required.

Since we now know the total derivative S(t0,φ0) of F (t0, φ0) we can check
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whether this is continuous. If we take t0, t1 ≥ 0 and φ0, φ1 ∈ X then

‖S(t0 ,φ0)(t, φ) − S(t1,φ1)(t, φ)‖[0,∞)×X

≤ ‖(N ′(t0) −N ′(t1))t‖X + ‖Kφ0
(φ) −Kφ1

(φ)‖X
≤ |t|‖N ′(t0) −N ′(t1)‖X + ‖Kφ0

(φ) −Kφ1
(φ)‖X

→ 0 as (t1, φ1) → (t0, φ0) (6.8)

since N ′ is continuous on [0,∞) and the Fréchet derivative Kψ is continuous with

respect to ψ ∈ X. �

Theorem 6.3. The unique strong solution u : [0, t0) → B(f, r) of ACP (6.5) is

non-negative for all f ∈ D(G)+.

Proof: The arguments are similar to those found in the proof of Theorem 3.17.

�

Finally, to show that this solution exists globally in time we need to show

that it does not blow up in finite time. Since we know that the unique solution

is strong we have that

d

dt
‖u(t)‖ =

∞∑

n=1

n[Gu(t)]n +

∞∑

n=1

n[Ku(t)]n

︸ ︷︷ ︸

=0

+

∞∑

n=1

n[N(t)]n

= ‖N(t)‖, t ≥ 0, (6.9)

i.e.

‖u(t)‖ =

∫ t

0

‖N(s)‖ ds

≤ Mt

∫ t

0

1 ds

= Mtt, (6.10)

since ‖N(s)‖ ≤ MT ∀s ∈ [0, T ] for some T ≥ 0 by continuity where Mt,MT

are constants. Thus we do not have finite-time blow-up and our unique strong,

non-negative solution exists globally in time.

Note 6.4. In the specific case of monomer input discussed at the beginning of
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this chapter we have that

N(t) = (g(t), 0, 0, . . .).

It can be shown that if N(t) has a finite number of non-zero components and

each of these components is continuously differentiable, then N(t) is continuously

differentiable. Thus, in order for the solution to the corresponding solution to be

strong we require that g(t) is continuously differentiable.

We have shown that our regular mass-conserving C-F equation with assump-

tions (A1) - (A4) and an added time-dependent source-term has a unique, non-

negative solution provided that N is continuously differentiable. A possible fur-

ther extension would be to consider a multi-component system, similar to that in

Chapter 5, with an added source-term. It is easy to see that we would require the

same condition of continuous differentiability for the source-term in order for a

unique strong solution to exist. We would also expect similar results if we allowed

mass to be lost during fragmentation events.
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Chapter 7

Conclusion

In this thesis, semigroup-based techniques for showing existence and uniqueness

of strong solutions to the continuous coagulation-fragmentation equation have

been extended to the discrete coagulation-fragmentation equation. In Chapters

3-5 the Kato-Voigt theorem has been used along with perturbation results to show

that unique, non-negative strong solutions exist for various versions of the equa-

tion. In Chapter 3 the system was mass-conserving, in Chapter 4 the system had

discrete mass loss built into it and in Chapter 5 we considered a multi-component

version of the equation. In Chapter 6 conditions under which a unique strong so-

lution to the coagulation-fragmentation equation with an added time-dependent

source term exists have been established. In all cases we imposed minimal re-

strictions on the fragmentation rate but we required the coagulation rate to be

uniformly bounded. The work in Chapters 3 and 4 extends existing results for

the continuous model to the discrete model. Explicit solutions to particular cases

of the pure fragmentation equation were also investigated. Although we have

made some progress in applying semigroup techniques to a variety of coagulation-

fragmentation models, there are still possibilities to extend our work futher. In

particular, to the best of our knowledge, the semigroup approach has not previ-

ously been applied to a continuous version of the multi-component model. An-

other possible extension, as mentioned previously, would be to add a source term

to the multi-component model.
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