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A Comprehensive Optimum Integrated Water Resources 

Management Approach at a River Basin Level: Application at 

Diyala River Basin in Iraq 

Jafar Y. Al-Jawad 

ABSTRACT 

Integrated Water Resources Management (IWRM) was broadly adopted, 

however nature’s complexity, multidisciplinary stakeholders’ demands, legislation 

policy, etc. restrained the success of holistic integration. Recently, Multi-Objectives 

Evolutionary Algorithms (MOEAs) were presented as a powerful decision making 

tool to generate a trade-off (or Pareto-front) for complex problems. Even so, 

problematics may develop in MOEAs for high-dimension problems. Thus, a new 

MOEA is developed and employed with a novel optimum comprehensive IWRM 

(OP-IWRM) approach to assemble: water demands, water resources and water 

control infrastructures for decision making trade-off production. To evaluate the 

approach pragmatically, Diyala River basin is selected, which has an area about 

17000 km2 in central Iraq and two multipurpose dams: Derbendikhan in the north, 

and Himren in the middle part of the basin.  

A new methodology of “Epsilon-Dominance-Driven Self-Adaptive 

Evolutionary Algorithm for Many-Objective Optimization” (-DSEA) to address 

MOEAs’ dilemmas is first presented.  Three operational management targets are 

modelled for Derbendikhan dam for initial algorithm’s performance assessment in 

comparison with the state-of-the-art optimization algorithm Borg MOEA. 

Competitive results achieved by -DSEA for the considered problem. Then, long-

term groundwater exploitation in the middle part of the basin is modelled by three 

operational management targets with two alternatives of irrigation system, open 



iii 

 

furrows and drip. The results show sustainable management could be achieved when 

farms’ water demands are reduced by at least 45%. Further, -DSEA outperforms 

Borg MOEA an almost all proposed alternatives. 

A novel socio-environmental management approach is then developed to 

improve Himren downstream river environment. Nine multi-sectors’ operational 

targets subjected to two inflows alternatives are formulated. An improvement is 

evident in downstream river environment, however dam’s upstream shed needs to be 

integrated with the model, including groundwater. The -DSEA competitive 

performance is also endorsed.  

Finally, a holistic approach including seventeen management targets 

combining surface and groundwater basin system with more than 1500 decision 

variables is developed to assess future climate’s change, and water monopolizing in 

upstream region impacts at the river basin environment. The results demonstrate 

significant crises of upstream development projects on all river basin sectors and 

environment, even with the use of both surface and groundwater resources. Thus, the 

government needs to adopt future policy: to set an international agreement for water 

sharing with Iran for the current River basin, to adopt new irrigation techniques for 

the existing farms, and to rehabilitate the current water conveyance infrastructures to 

reduce water losses. 

This approach could be a gateway to develop a comprehensive sustainable 

development plan at a country-scale to improve the 17th goals announced by the 

United Nations, since only limited approaches were developed previously.  
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NOVELTY OF THE RESEARCH 

This thesis has many global and local novel approaches developed during the 

research project. These are: 

1- Global Novelty: 

 Evolutionary algorithm (-DSEA) based on  novel self-adaptive approach of 

recombination operators’ parameters control in evolutionary optimization 

algorithm.  

 Socio-environmental flow regime approach of reservoir operation strategy 

using many-objectives optimization algorithm. 

 Auto-adaptive penalty factor methodology to overcome computational 

complexity problems in evolutionary algorithm. 

 Comprehensive optimum integrated water resources management approach at 

a river-basin level using many-objectives evolutionary optimization 

algorithm. 

 

2- Local Novelty: 

 Regional 3D groundwater model using MODFLOW-2005 for the middle part 

of Diyala River Basin 

 Groundwater management optimization approach for the middle part of 

Diyala River Basin using evolutionary algorithm. 

 Reservoir management optimization approach for Himren reservoir using 

evolutionary algorithm. 

 Reservoirs management optimization approach for Himren and Derbendikhan 

dam in Diyala River Basin using evolutionary algorithm. 

 Surface-groundwater optimization approach for the entire Diyala River Basin 

using evolutionary algorithm.  



ix 

 

LIST OF CONTENT 

DECLARATION  i 

ABSTRACT  ii 

DEDICATION   v 

ACKNOWLEDGEMENT  vi 

PREFACE  vii 

NOVELTY OF THE RESEARCH  viii  

Chapter -1 INTRODUCTION  

 1.1 Introduction 1-1 

 1.2 Research’s aim  1-2 

 1.3 Research’s Objectives 1-2 

 1.4 Thesis Structure 1-5 

Chapter - 2 GENERAL LITERATURE REVIEWS  

 2.1 Introduction 2-1 

 2.2 Integrated Water Resources Management (IWRM) 2-1 

 2.2.1 Background 2-1 

 2.2.2 Challenges of IWRM implementation 2-4 

 2.3 IWRM and Sustainable Development Goals (SDGs) 2-6 

 2.4 Optimization Techniques in Water Resources management 2-7 

 2.4.1 Background 2-7 

 2.4.2 MOEAs’ Challenges in Water Resources 

Management Problems 

2-10 

 2.4.3 The Decision Makers and MOEAs 2-12 

 2.5 Case Study 2-15 

 2.5.1 Background 2-15 

 2.5.2 Diyala River Basin Identification 2-16 

 2.5.3 Hydrological Regime of Diyala River Basin 2-17 

 2.5.4 Diyala River Morphology 2-18 

 2.5.5 Hydrogeological Assessment of Diyala River Basin 2-19 

 2.5.6 Reservoir Operation Management of Diyala River 

Basin 

2-21 

 2.5.7 Current and Expansion of Water Demands 2-22 

 2.5.8 River Basin Problems and Challenges 2-23 

 2.6 Summary 2-25 

Chapter - 3 MATERIALS AND METHODS   

 3.1 Introduction 3-1 

 3.2 Research Materials 3-1 

 3.2.1 Surface and Groundwater Source Data  3-1 



x 

 

 3.2.2 Software and Codes 3-2 

 3.3 Research Methods 3-3 

 3.3.1 Comprehensive IWRM approach 3-3 

 3.3.2 Multi-Objectives Optimization Problems Identification 3-4 

 3.3.3 MOEA Problem’s Pillars identification 3-9 

 3.3.4 Groundwater Numerical Model 3-15 

 3.3.5 MOEA’s Problematics Addressing 3-15 

 3.3.5.1 Borg MOEA Identification 3-16 

 3.3.5.2 Borg MOEA Assessment 3-19 

 3.3.5.3 New MOEA’s Algorithm Development 3-21 

 3.3.5.4 MOEA’s Convergence Booster 3-22 

 3.3.6 IWRM Approach’s Mathematical Expressions 

Identification 

3-22 

 3.4 Summary 3-23 

Chapter – 4 ASSESSMENT OF EVOLUTIONARY OPTIMIZATION 

ALGORITHM  

 

 4.1 Introduction  4-1 

 4.2 Paper 1: Assessment of Evolutionary Algorithm for 

Reservoir Operation 

4-2 

 1. Introduction 4-3 

 2. Reservoir Optimization Model  4-6 

 3. Results And Discussions 4-9 

 4. Conclusions 4-12 

 4.3 Paper 2: Optimizing Reservoir Operation Using Robust 

Evolutionary Algorithm 

4-18 

 1. Introduction 4-19 

 2. Overview Of The Optimization Approach 4-21 

 3. Reservoir Optimization Model 4-25 

 3.1 Reservoir Storage Constraints 4-26 

 3.2 Reservoir Releases Constraints 4-26 

 3.3 Constraint on Annual Reservoir Drawdown 4-27 

 3.4 Low Reservoir Inflow Condition 4-27 

 3.5 Fitness Function 4-28 

 4. Illustrative Example 4-31 

 5. Results And Discussion 4-33 

 5.1 Reservoir Storage and Release 4-33 

 5.2 Decision Variable Values Achieved 4-34 

 5.3 Fitness Function Values 4-36 



xi 

 

 5.4 Observations on the Optimization Algorithm 4-39 

 5.5 Influence of the Reservoir Storage Sustainability 

Constraint 

4-43 

 6. Conclusions 4-44 

 4.6 Further Discussion 4-55 

 4.7 Conclusions 4-56 

Chapter – 5 EVOLUTIONARY OPTIMIZATION ALGORITHM’S 

ENHANCEMENT 

 

 5.1 Introduction 5-1 

 5.2 Paper: Epsilon-Dominance-Driven Self-Adaptive 

Evolutionary Algorithm for Many-Objective Optimization 

(-DSEA) 

5-2 

 1. Introduction 5-3 

 2. Adopted Multi-Objective Optimization Approach 5-7 

 2.1 Details of the Algorithm Developed (-DSEA) 5-8 

 2.1.1 Recombination Operators 5-9 

 2.1.2 Diversity Expansion 5-9 

 2.1.3 -dominance Archive 5-10 

 2.1.4 Dynamic Selection of Recombination Operators 5-11 

 2.1.5 Self-Adaptive Mechanism and Formulae 5-12 

 2.1.6 Exploration Extension Mechanism 5-14 

 2.1.7 Virtual Dominance Archive 5-15 

 2.1.8 Population Injection 5-16 

 2.1.9 The -DSEA Methodology 5-17 

 2.2 Comparative Paradigms 5-18 

 3. Identification Of Experimental Test Problems 5-18 

 3.1 Unconstraint Test Problems 5-18 

 3.2 Constraint Test Problem 5-20 

 3.2.1 Objectives Functions Formulae 5-21 

 3.2.2 Reservoir System Constraints 5-22 

 3.3 Computational Implementation 5-23 

 4. Results And Discussion 5-25 

 4.1 Unconstraint Test Problems 5-25 

 4.1.1 The Effectiveness and Reliability of the 

Solutions Found 

5-25 

 4.1.2 Algorithms’ Robustness 5-27 

 4.1.3 Algorithms’ Computational Efficiency 5-30 

 4.2 Constraint Test Problem 5-31 



xii 

 

 5. Conclusions 5-35 

 5.3 Supplementary Data 5-48 

 5.4 Further Discussion 5-63 

 5.5 Conclusions 5-64 

Chapter – 6 GROUNDWATER MANAGEMENT ASSESSMENT  

 6.1 Introduction 6-1 

 6.2 Paper: Comprehensive Evolutionary Algorithms 

Performance Assessment Using a Multi-Objectives Water 

Resources Management Problem 

6-2 

 1. Introduction 6-5 

 2. Benchmark Regional Identification 6-8 

 3. Regional Problem Formulae 6-12 

 3.1 Natural Recharge Identification 6-12 

 3.2 Regional Management Model Identification 6-13 

 4. MOEA Method Identification 6-17 

 4.1 -DSEA 6-18 

 4.2 Borg MOEA 6-19 

 4.3 Model Computational Implementation 6-21 

 5. Results And Discussion 6-21 

 5.1 Evolutionary Algorithms Performance Assessment 6-21 

 5.1.1 Reliability and effectiveness 6-21 

 5.1.2 Robustness 6-23 

 5.1.3 Efficiency 6-27 

 5.2 Groundwater Optimum Management 6-29 

 6. Conclusions And Recommendations 6-33 

 6.3 Supplementary Data 6-43 

 6.4 Further Discussion 6-56 

 6.5 Conclusions 6-57 

Chapter – 7 RESERVOIR OPERATION IMPROVEMENT 

APPROACH 

 

 7.1 Introduction 7-1 

 7.2 Paper: Optimum Socio-Environmental Flows Approach for 

Reservoir Operation Strategy Using Many-Objectives 

Evolutionary Optimization Algorithm 

7-3 

 1. Introduction 7-4 

 2. Methods And Tools 7-8 

 2.1 Identification of OSEF-AAC Approach 7-8 

 2.2 Identification of Many-Objectives Optimization Algorithms 7-10 



xiii 

 

 3. Case Study Description 7-11 

 3.1 Regional Identification 7-11 

 3.2 Identification of Reservoir Management Objectives (OSEF-

AAC approach) 

7-12 

 3.2.1 Social Sector Objectives 7-13 

 3.2.2 Environmental Sector Objectives 7-15 

 3.2.3 Model Violation Objective 7-18 

 3.3 Computational Model Implementation 7-20 

 4. Results And Discussion 7-21 

 4.1 Optimum Trade-off Achievement 7-21 

 4.2 AAC approach Achievement 7-25 

 4.3 Reservoir Operation Strategy 7-26 

 5. Conclusions 7-31 

 7.3 Supplementary Data 7-45 

 7.4 Further Discussion 7-62 

 7.5 Conclusions 7-63 

 7.6 Recommendations 7-65 

Chapter – 8 COMPREHENSIVE INTEGRATED WATER 

RESOURCES MANAGEMENT APPROACH 

 

 8.1 Introduction 8-1 

 8.2 Paper: Comprehensive Optimum Integrated Water 

Resources Management Approach for Multidisciplinary 

Water Resources Management Problems 

8-3 

 1. Introduction  8-5 

 2. Identification of OP-IWRM Approach 8-9 

 3. The Diyala River Basin 8-11 

 3.1 Regional Groundwater Identification 8-13 

 3.2 Identification of challenging river basin 

Management problem 

8-14 

 3.3 Objectives Functions 8-17 

 3.4 Decision Variables 8-18 

 3.5 River Basin System Limitations 8-19 

 3.6 Predicted Future Water Resources Scenarios 8-20 

 3.7 Computational Model Utilization 8-22 

 4. Results And Discussion 8-24 

 4.1 Simple and Comprehensive Models Achievement 8-24 

 4.2 River Basin Management Strategy 8-26 

 4.3 Impact of OP-IWRM Implementation 8-30 



xiv 

 

 4.4 Impact of Upstream River Basin Future 

Development 

8-32 

 5. Conclusions and Recommendations 8-33 

 5.1 Conclusions 8-33 

 5.2 Case Study Specific Recommendations 8-35 

 8.3 Supplementary Data 8-49 

 8.4 Further Discussion 8-59 

 8.5 Conclusions 8-61 

 8.6 Recommendations 8-63 

Chapter – 9 CONCLUSIONS AND RECOMMENDATIONS  

 9.1 Restatement of Research’s aim and Objectives 9-1 

 9.1 Conclusions and Recommendations 9-2 

Appendix-1 REFERENCES  

Appendix-2 JOURNAL PUBLISHED PAPERS’ VERSION  



xv 

 

LIST OF TABLES 

CHAPTER – 2  

Table 1 Summary of literatures used evolutionary algorithms to 

optimize multi-objective reservoir operation strategy 

2-11 

CHAPTER – 3  

Table 1 Illustrates the adopted decision variables and objectives of 

Diyala River basin based on decision makers’ decisions 

(Alsaffar, 2017) 

3-10 

Table 2 Diyala River basin possible major risks and their priority 

(according to the risk assessment matrix in Figure 6) 

3-11 

Table 3 Comprehensive IWRM approach of Diyala river basin showing 

adoptive objectives and their description 

3-14 

CHAPTER – 4  

 Paper 1   

Table 1 Default parameter values used in Borg MOEA 4-10 

 Paper 2  

Table 1 Default values of the parameters used in Borg MOEA 4-24 

Table 2 Reservoir inflows and water demands 4-32 

Table 3 Reservoir operation based on ten optimization runs 4-35 

Table 4 Sensitivity of the fitness function to the parameters of the 

penalty function 

4-38 

Table 5 Reservoir operation results without the storage sustainability 

constraint 

4-43 

CHAPTER – 5  

Table 1 Parameters control formulae in -DSEA 5-14 

Table 2 Properties of the test problems used to investigate the 

algorithms 

5-24 

Table 3 Parameter values used in the optimization algorithms 5-24 

Table 4 Convergence errors (δPF) for DTLZ1 and DTLZ2 based on 10 

optimization runs 

5-25 

Table 5 Convergence errors (δPF) for DTLZ3, DTLZ4 and DTLZ7 

based on 10 optimization runs  

5-27 

Table A1 Recombination operators in common evolutionary algorithms 5-48 

Table A2 Details of the optimization test functions (Deb et al., 2001) 5-55 

Table A3 Average number of restart per optimization run (Borg MOEA) 5-57 

Table A4 Average number of improvement per optimization run (Borg 

MOEA and -DSEA) 

5-57 



xvi 

 

Table A5a -DSEA values of control parameters of evolutionary operators 

on DTLZ1 

5-58 

Table A5b -DSEA values of control parameters of evolutionary operators 

on DTLZ2 

5-59 

Table A5c -DSEA values of control parameters of evolutionary operators 

on DTLZ3 

5-60 

Table A5d -DSEA values of control parameters of evolutionary operators 

on DTLZ4 

5-61 

Table A5e -DSEA values of control parameters of evolutionary operators 

on DTLZ7 

5-62 

CHAPTER – 6  

Table 1 Average monthly meteorological data from 1981-2010 within 

the central part of Diayal river basin (mm) 

6-11 

Table 2 Alternative irrigation methods and operation periods 6-13 

Table 3 Groundwater management constraints in the central part of 

Diyala river basin 

6-16 

Table 4 Parameter values used in the optimisation algorithms 6-20 

Table 5 Median summary’s best achievement for both algorithms under 

two irrigation alternative scenarios. The superior results in Bold 

style (smallest values for minimum and largest values for 

maximum). 

6-22 

Table 6 Median evolve operators’ parameters achieved by -DSEA for 

the median solutions for all alternatives 

6-25 

Table 7 Gross performance parameters for both algorithms under two 

alternatives irrigation scenarios 

6-26 

Table 8 Summary of pumping discharges and aquifer recharges for the 

optimum solution achieved by each objective function over 

considered periods using open furrows and drip irrigation 

system (m3/month×106). 

6-31 

Table A1 Results summary of open furrows system for 10 optimisation 

runs 

6-47 

Table A2 performance parameters properties for Borg MOEA achieved in 

open furrows system 

6-48 

Table A3 performance parameters properties for -DSEA achieved in 

open furrows system 

6-49 

Table A4 Summary of -DSEA evolve parameters achieved in open 

furrows system 

6-50 

Table A5 Results summary of drip system for 10 optimisation runs 6-51 



xvii 

 

Table A6 performance parameters properties for Borg MOEA achieved in 

drip system 

6-52 

Table A7 performance parameters properties for -DSEA achieved in drip 

system 

6-53 

Table A8 Summary of -DSEA evolve parameters achieved in drip 

system 

6-54 

CHAPTER – 7  

Table 1 Summary of optimum parameters achieved for Himren dam 

system using -DSEA for both scenarios  

7-6 

Table 2 Summary results for the reservoir system parameters achieved 

using average optimum reservoir releases for the two adopted 

scenarios. 

7-20 

Table 3 Summary results for the reservoir system parameters achieved 

using average optimum reservoir releases for the two adopted 

scenarios 

7-28 

Table A1 characteristics of Himren dam system 7-45 

Table A2 Average monthly meteorological data and water demands in the 

dam region 

7-46 

Table A3 Parameter values used in the optimisation algorithms 7-55 

Table A4 Results summary for scenario-1 and scenario-2 for 20 

optimization runs. The best achievements are shaded with grey 

7-56 

Table A5 The summary of computational results of scenario-1 and 

scenario-2 for both algorithms using 20 runs. All results are in 

minutes and the best achievement are shaded with grey 

7-57 

Table 4 The mean and median operators’ parameters adopted by -

DSEA for both scenarios 

7-62 

CHAPTER – 8  

Table 1 Main characteristics of Diyala river basin water control 

structures (SGI et al., 2014) 

8-12 

Table 2 Downstream monthly irrigation water demands for the two 

dams, Derbendikhan and Himren  (m3×106) 

(Soyuzgiprovodkhoz, 1982; SGI et al., 2014) 

8-13 

Table 3 Comprehensive mathematical model for Diyala river basin 8-18 

Table 4 Physical and environmental constraints for Diyala river basin 

system (SGI et al., 2014) 

8-20 

Table 5 Parameter values used in the optimisation algorithm (-DSEA) 

(Al-Jawad and Tanyimboh, 2018) 

8-23 

Table 6 General computational analysis comparison for simple and 8-26 



xviii 

 

comprehensive models 

Table 7 Showing the average, median, and gross sum of selected 

optimum solutions with minimum model violations for the 

entire Diyala river basin system. The design required water 

demands are in italic grey shade, while the deficit in bold grey 

shade. 

8-29 

Table A1 Formulae used for Derbendikhan dam operation management 8-49 

Table A2 Formulae parameter definitions used in Table A1 8-50 

Table A3 Middle part region objectives functions and water balance 

equations 

8-51 

Table A4 Formulae parameter definitions used in Table A3 8-52 

Table A5 Table A5 Formulae used for Himren dam operation 

management (Al-Jawad et al., 2018b) 

8-54 

Table A6 Parameter definitions for Himren dam system approach 8-55 

Table A7 Optimization model parameters for the Diyala River basin 

system (SGI et al., 2014) 

8-58 

Table A8 Summary of optimum solutions for the Diyala river basin 

system for the adopted alternatives. The scenarios refer to the 

river basin inflows alternatives, while case 1 and case 2 refers to 

the surface water and surface-groundwater models, respectively. 

8-59 

 



xix 

 

LIST OF FIGURES 

CHAPTER – 1  

Figure 1 Research’s methodology schematic diagram 1-7 

CHAPTER – 2  

Figure 1 Schematic diagram for multi-sectors interrelation in IWRM 

(adapted from Grigg, (2016)) 

2-2 

Figure 2 IWRM process and impact factors (adapted from Muste and 

Mocanu, (2016)) 

2-3 

Figure 3 The 17th Sustainable Development Goals (SDGs) (UN, 2018) 2-7 

Figure 4 Search techniques taxonomy (adapted from Simon (2013)) 2-8 

Figure 5 Iraqis’ Tigris and Euphrates River basins catchment areas and its 

water resources supply quantities  (adapted from (GRID-Geneva, 

2000; Adamo et al., 2018)) 

2-16 

Figure 6 Location map of Diyala River Basin in Iraq 2-17 

Figure 7 Groundwater suitability use for agriculture in unconfined 

aquifers (SGI et al., 2014) 

2-21 

Figure 8 Future prediction of available fresh water and water demands in 

Iraq (adapted from SGI et al., (2014)) 

2-23 

CHAPTER – 3  

Figure 1 Comprehensive IWRM approach schematic diagram at a river 

basin level 

3-4 

Figure 2 Evolutionary algorithms main evolve components 3-5 

Figure 3 EA’s flowchart for generating new solutions 3-6 

Figure 4 Evolution process to produce new generations (solutions) in 

evolutionary algorithms (adapted from Deb, (2001); Simon, 

(2013)) 

3-7 

Figure 5 Illustration of Pareto-optimality. X is the solution space and  Z is 

the objective functions space (adapted from Deb, (2001)). 

3-9 

Figure 6 Simple (3×3) risk assessment matrix showing the impact - 

likelihood relationship to demonstrate risk priority 

3-11 

Figure 7 The Comprehensive IWRM objective’s approach of Diyala 

River basin 

3-14 

Figure 8 Overview of Borg MOEA flowcharts. k1 and k2 are the number 

of parents selected from the main population and dominance 

archive, respectively, while k is the total number of parents 

needed by adopted operator. NFE is the number of function 

evaluations with maximum value = NFEmax (adapted from Hadka 

and Reed (2013)) 

3-20 



xx 

 

Figure 9 Auto-Adaptive Constraints (ACC) methodology to boost 

MOEAs’ convergence  

3-22 

CHAPTER – 4  

 Paper 1  

Figure 1 Reservoir operation results (a) Chenari et al. (2014 ) (b) Present 

approach 

4-11 

Figure 2 Figure 2. Convergence characteristics of the fitness function 

using Borg MOEA 

4-11 

 Paper 2  

Figure 1 Graphical representation of ϵ-progress concept in a minimization 

problem with two objectives. Solutions (1) and (2) are new 

solutions in unoccupied boxes and thus represent improvements. 

Solution (3) is not considered as an improvement because it 

resides in a previously occupied box. The shaded boxes were 

previously occupied while unshaded boxes were not previously 

occupied 

4-22 

Figure 2 Reservoir releases and storage (a) Chenari et al. (2014) (b) 

Present formulation with sustainability constraint (c)  Present 

formulation without sustainability constraint 

4-34 

Figure 3 Properties of the fitness function. (a) Convergence 

characteristics (b) Accuracy and consistency. The lines in (b) are 

to aide visualisation. The value of the exponent in Equation 8 is 

2 

4-39 

Figure 4 Evolution of the decision variables. (a) Water release (b) 

Reservoir storage. The irregular patterns at the far ends, at zero 

function evaluations, depict the initial random seeds. 

4-40 

Figure 5 Relative contributions of the recombination operators (a) 

Calculated operator selection probabilities (b) Actual operator 

selection frequencies achieved 

4-41 

Figure 6 Selection probabilities for the recombination operators 4-42 

CHAPTER – 5  

Figure 1 Illustrates operators’ parents selection from the entire population 

candidates after the initial random seeding at the begining of the 

evaluation process 

5-10 

Figure 2 Illustration of -dominance concept 5-11 

Figure 3 Illustrates the Self-adaptive mechanism (a) and exploration 

extension (b) used by -DSEA  

5-15 

Figure 4 Overview of -DSEA flowcharts. NOP1 and NOP2 are the 5-17 



xxi 

 

number of parents selected from the main population and 

dominance archive, respectively, while NOP is the total number 

of parents needed by adopted operator. NFE is the number of 

function evaluations with maximum value = NFEmax. Er is the 

reset interval, and Ir is the number of function evaluations where 

the resetting occurs. 

Figure 5 Catchment area of the transboundary Diyala river basin in Iraq 5-20 

Figure 6 Selection probabilities of the recombination operators for both 

algorithms with 8 objectives and 100,000 function evaluations 

5-29 

Figure 7 Values of control parameters of recombination operators in -

DSEA with 100,000 function evaluations on  all alternatives test 

problems 

5-30 

Figure 8 Decision variables convergence based on the best results for the 

8-objective problems for DTLZ1 to DTLZ4 and DTLZ7 

5-31 

Figure 9 Pareto-fronts for twenty random runs achieved by both 

algorithms 

5-33 

Figure 10 Parameters self-adaptation of the most effective operators for the 

best solution achieved (a), and algorithm convergence (b) to 

generate dominance solutions during the evaluation process. 

5-34 

Figure A1 Spatial distributions of offspring from different recombination 

operators. The blue points indicate the parents while black dots 

refer to offspring 

5-48 

CHAPTER – 6  

Figure 1 Location and topography of Diyala River Basin in Iraq (UTM 

coordinate system) 

6-8 

Figure 2 Geological and average aquifers discharge maps of the study 

area. (a) is the geological map (GEOSURV 1993), while (b) is 

the average aquifers discharges map extracted from the historical 

wells logs dataset and ArcGIS spatial analysis  (UTM coordinate 

system) 

 

6-10 

Figure 3 Overview of Borg MOEA and -DSEA flowcharts. k1 and k2 are 

the number of parents selected from the main population and 

dominance archive, respectively, while k is the total number of 

parents needed by adopted operator. NFE is the number of 

function evaluations with maximum value = NFEmax. Er is the 

reset interval, and Ir is the number of function evaluations where 

the resetting occurs. The details are available in Hadka and Reed 

6-20 



xxii 

 

(2013) and Al-Jawad and Tanyimboh (2018).  

Figure 4 Optimum solution Pareto-front for both irrigation alternative 

scenarios using Borg MOEA and -DSEA algorithms. 𝑓𝐷𝑒𝑙−𝐺𝑊 , 

𝑓𝑊𝐿, and 𝑓𝑚𝑖𝑛𝑖𝑛𝑔 refer to groundwater delivery, water losses, and 

mining objectives functions, respectively 

6-23 

Figure 5 Operators’ selection probability comparison between both 

algorithms for four adopted operating periods under selected 

irrigation alternatives scenarios. All x-axis represents number of 

function evaluation, and all y-axis are operator’s selection 

probability 

6-24 

Figure 6 Decision variables development comparison between both 

algorithms for four adopted operating periods under selected 

irrigation alternatives scenarios. All x-axis represents number of 

function evaluation, and all y-axis are the decision variables’ 

vectors (𝑋𝑑𝑣). 

6-28 

Figure 7 Number of wells and deficit in water demands achieved for both 

scenarios for discrete periods using optimization model.  

𝑓𝐷𝑒𝑙−𝐺𝑊 , 𝑓𝑊𝐿, and 𝑓𝑚𝑖𝑛𝑖𝑛𝑔 refer to groundwater delivery, water 

losses, and storage mining objective functions, respectively 

6-30 

Figure 8 Final groundwater storage achieved by optimization model for 

open furrows and drip irrigation system over the adopted discrete 

periods 

6-30 

Figure 9 Illustrates the sustainable groundwater management periods 

achieved for 50 years for both irrigation systems using -DSEA 

6-33 

Figure A1 illustrates MODFLOW conceptual model development from 3D 

fence, 3D sold, 3D cell, and 3D boundary conditions models 

using GMS software. 

6-44 

Figure A2 Generated parameters from MODFLOW model implementation 

in compare with the database parameters for the aquifer 

permeability in meters/day and groundwater level in meters 

(above sea level), respectively. 

6-45 

Figure A3 Groundwater depth (m) in the study area based on SGI et al. 

(2014) database 

 

Figure A4 Details of groundwater storage achieved for both scenarios using 

-DSEA 

6-55 

CHAPTER – 7  

Figure 1 schematic diagram of the developed OSEF-AAC diagram in the 

current research. OSEF refer to Optimum Socio-Environmental 

7-10 



xxiii 

 

Flows, and AAC to Auto-Adapted Constraints approaches. 

Figure 2 Diyala river basin and Himren dam location in Iraq 7-12 

Figure 3 Pareto-front (trade-off) for the nine objective functions using 

Borg MOEA and -DSEA algorithms for Himren dam future 

management strategy scenarios 

7-22 

Figure 4 Illustrates objectives convergence speed over evaluation process 

for Borg MOEA and -DSEA with two inflows scenarios 

7-23 

Figure 5 AAC approach for environmental constraints factors (Ai) and 

their corresponding penalty function values (Ci) over the 

evaluation process for the secondary priorities objectives for 

Himren dam operation policy. The magnified graphs show the 

region when Ci = 0. 

7-26 

Figure 6 Optimum individual and average reservoir releases achieved by 

optimization model for the two scenarios. Where (a) and (b) are 

the releases achieved by each objective function optimum 

solution for scenario 1 and 2, respectively, while (c) and (d) 

represent the average releases for the nine objective functions 

optimum solutions 

7-27 

Figure A1 Himren dam physical model shows all the feature of the problem 

and the nine objective functions adopted in the model 

7-49 

Figure A2 Himren reservoir inflows smoothing and scenarios, where (a) 

shows the smoothing options using Fast Fourier Transformation 

(FFT) for thirty-three years (1981-2013), and (b) shows the 

model scenarios for Himren dam and Tigris river for future 

projection for thirty-three years  

7-52 

Figure A3 Reservoir system features achieved for scenario-1 using the 

average optimum reservoir releases.  

7-58 

Figure A4 Reservoir system features achieved for scenario-2 using the 

average optimum reservoir releases.  

7-59 

CHAPTER – 8  

Figure 1 Illustration of Optimum Integrated Water Resources 

Management (OP-IWRM) approach for a comprehensive river 

basin management strategy. The Auto-Adaptive Constraints 

(AAC) approach details were also identified (Al-Jawad et al., 

2018b). 

8-10 

Figure 2 OP-IWRM approach evaluation steps 8-11 

Figure 3 Catchment area of the transboundary Diyala river basin in Iraq 

and Iran 

8-12 



xxiv 

 

Figure 4 Proposed Diyala river basin management objectives’ models 8-19 

Figure 5 Illustrates the adopted scenarios from the historical dataset from 

1981 to 2013 for Derbendikhan dam and Tigris river. Scenario-1 

conceptualizes the climate change impact, and scenario-2 for out 

border damming process effects on reservoir inflows for 

Derbendikhan dam. The Tigris river discharge was 

conceptualized as in scenario-1 (Al-Jawad et al., 2018b). 

8-21 

Figure 6 Differences between simple and comprehensive model (∆𝑭) for 

Denbendikhan dam system (upper part of Diyala river basin) for 

all alternatives 

8-25 

Figure 7 Differences between simple and comprehensive model (∆𝑭) for 

Himren dam system (lower part of Diyala river basin) for all 

alternatives 

8-25 

Figure 8 8 Pareto-front optimum solutions of Diyala river basin 

optimization model for case 1 using scenario1 and 2 for inflows. 

Letters D and H refer to Derbendikhan and Himren n dams, 

respectively. Solution with minimum model violation is marked 

in red colour. 

8-27 

Figure 9 Pareto-front optimum solutions of Diyala river basin 

optimization model for case 2 using scenario1 and 2 for inflows. 

Letter D and H refer to Derbendikhan and Himren dams, 

respectively. Solution with minimum model violation is marked 

in red colour. 

8-28 

Figure 10 Cases gross differences for river basin system features based on 

Table 7 for both scenarios 

8-31 

Figure 11 Scenarios gross differences for river basin system features based 

on Table 7 for both cases.   

8-33 

 

  



xxv 

 

NOTATION 

Symbol Description 

IWRM Integrated Water Resources Management 

MOEA Multi-Objectives Evolutionary Algorithm 

EA Evolutionary Algorithm 

GA Genetic Algorithm 

ES Evolutionary Strategies 

EP Evolutionary Programming 

X Decision variables space 

x Decision variables vector 

xL Decision variables lower limit 

xU Decision variables upper limit 

Z Objective space feasible region 

M Number of objective functions 

𝑔𝑖(𝑥) The ith of 𝑛𝑔 inequality constraints functions 

ℎ𝑗(𝑥) The jth for 𝑛ℎ equality constraints functions 

𝑛𝑔 Number of inequality constraints 

𝑛ℎ Number of equality constraints 

PS Pareto-optimum set 

PF Pareto Front 

𝑆𝑡 Reservoir storage at time t 

𝑆𝑚𝑖𝑛 Reservoir minimum storage (dead storage) 

𝑆𝑚𝑎𝑥 Reservoir maximum storage 

𝑅𝑡 Reservoir releases at time t 

𝑅𝑚𝑖𝑛 Reservoir minimum storage 

𝑅𝑚𝑎𝑥 Reservoir maximum storage 

𝑆1 Reservoir storage at time t = 1 (initial storage) 

𝑆13 reservoir storage in the first month of the next year 

𝐼𝑡 Reduced reservoir inflow at time t 

𝐼𝑡
′ Original reservoir inflow at time t 

𝑆𝐷𝑡 , 𝜎𝑡 Reservoir inflows’ standard deviation at time t 

𝑓 Objective function 

𝐷𝑡 Downstream water demand at time t 

𝑆𝑡+1 Reservoir storage at time t+1 

𝐸𝑡 Reservoir evaporation losses at time t 

C Violation penalty factor  

NC Number of constraints 



xxvi 

 

 Dimension of hyper-boxes in the objective space (or objective space 

resolution) 

L Number of decision variables 

SBX Simulated binary crossover recombination operators 

DE Differential evolution recombination operators 

PCX Parent-centric crossover recombination operators 

UNDX Unimodal normal distribution crossover recombination operators 

SPX Simplex crossover recombination operators 

UM Uniform mutation recombination operators 

PM Polynomial mutation recombination operators 

CR Probability of crossover for DE operator 

F Step size for DE operator 

𝜆 expansion rate for SPX operator 

𝜎𝜂, 𝜎𝜉 , 𝜎𝜁 Variance parameters for the PCX and UNDX operators 

e Any integer number larger than zero 

𝐴 Constraint function’s coefficient  

NOP Number of parents 

P Population size 

𝒫𝑖
𝑁𝐷𝑆 probability of ith recombination operator 

NDS Number of dominance solutions in the dominance archive  

NDSi Number of solutions in the archive contributed by the ith 

recombination operator 

NRO Number of recombination operators 

Nr random integer ∈ ℕ+ 

NFEmax Maximum number of function evaluation 

Er reset interval  

ADS Archive dominance solutions 

NDSSBX Sum of No. of dominance solutions generated by SBX operator 

NDSDE Sum of No. of dominance solutions generated by DE operator 

NDSSPX Sum of No. of dominance solutions generated by SPX operator 

NDSUNDX Sum of No. of dominance solutions generated by UNDX operator 

NDSPCX Sum of No. of dominance solutions generated by PCX operator 

NFE Number of function evaluation 

NOP1 Number of parents selected from the main population 

NOP2 Number of parents selected from the dominance archive 

Ir Number of function evaluations where the resetting occurs 

PF Convergence error 

𝐱𝑀 Decision variables vector for DTLZ test functions 



xxvii 

 

𝐠(𝐱𝑀) Function of 𝐱𝑀 

𝐱𝑀
∗  Decision variables Pareto-front vector for DTLZ test functions 

𝑆𝑡+1
𝐷  Reservoir storage for Derbendikhan dam at time t+1 

𝑆𝑡
𝐷 Reservoir storage for Derbendikhan dam at time t 

𝐼𝑡
𝐷 Reservoir inflows for Derbendikhan dam at time t 

𝑅𝑡
𝐷 Reservoir releases for Derbendikhan dam at time t 

𝐸𝑡
𝐷 Reservoir evaporation losses for Derbendikhan dam at time t 

𝑃𝑡
𝐷 Direct precipitation on Derbendikhan dam reservoir at time t 

𝑆𝐸𝑡
𝐷 Seepage losses from Derbendikhan dam reservoir at time t 

𝐺𝑅𝑡
𝐷 Groundwater recharges to the Derbendikhan dam reservoir at time t 

T Total time 

𝑭𝐷 Objective vector function for Derbendikhan dam operation strategy 

𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐷 Winter storage function for Derbendikhan dam 

𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐷 Summer storage function for Derbendikhan dam 

𝑓𝑝𝑜𝑤𝑒𝑟𝐷 Hydropower generation function for Derbendikhan dam 

𝑆𝑚𝑎𝑥
𝐷  Maximum reservoir storage for Derbendikhan dam 

𝐶𝑃 Penalty factor includes all the violations of the model 
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𝑚𝑎𝑥𝑆𝑀 Maximum soil moisture content 

𝑃𝑡 Precipitation at time t 

𝐼𝑅𝑡 Irrigation water at time t 

𝐸𝑇𝑡 Evapotranspiration at time t 

𝑅𝑂𝑡 Surface runoff at time t 

𝐷𝑃𝑡 Deep percolation at time t  

𝑆𝑠𝑡 Static groundwater storage 

𝑆𝑎𝑞,𝑡 Aquifer storage at time t 

𝑆𝑎𝑞,𝑡+1 Aquifer storage at time t+1 

𝑇𝑅𝑡 Total aquifers water recharges at time t 
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𝐸𝑡
𝐻 Reservoir evaporation losses for Himren dam at time t 

𝑃𝑡
𝐻 Direct precipitation on Himren dam reservoir at time t 

𝑆𝐸𝑡
𝐻 Seepage losses from Himren dam reservoir at time t 

𝐺𝑅𝑡
𝐻 Groundwater recharges to the Himren dam reservoir at time t 

𝑃𝑤𝑚𝑎𝑥
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𝑃𝑤𝑡
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𝜂𝑒
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𝑄𝑡
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𝐻𝑡
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𝑄𝑡
𝑟 Diyala river discharge at time t  
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𝑄𝑚𝑎𝑥
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𝑄𝑡
𝑟1 Diyala river discharge before the WWTP at time t 

𝑄𝑡
𝑟2 Diyala river discharge after the WWTP at time t 

𝑄𝑡
𝑟3 Tigris river discharge at time t 

𝑄𝑡
𝑃𝑆 Wastewater treatment plant discharge at time t 
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𝑇𝐷𝑆𝑡
𝑟1 Total dissolved solids for Diyala river before the WWTP at time t 

𝑇𝐷𝑆𝑡
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𝑇𝐷𝑆𝑡
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𝑇𝐷𝑆𝑡
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𝑇𝐷𝑆𝑡
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∆𝐵𝐿𝑚𝑎𝑥 Maximum allowable river bed changes 

𝐵𝐿𝑖,𝑡, 𝐵𝐿𝑖,𝑡+1 Bed river level at section i at time t and t+1, respectively 

𝐵𝐷𝑖,𝑡, 𝐵𝐷𝑖+1,𝑡, 

𝐵𝐷𝑖−1,𝑡 

Bed river sediment discharge at time t for section i, i+1 and i-1, respectively 

∆𝑇𝑡 Time interval 

𝛾𝑚 Density of water-solid mixture 

𝑊𝑖 River bed width at section i 

𝐿𝑢,𝑡, 𝐿𝑑,𝑡 Length of river section between the current section and the upstream and 

downstream sections, respectively 

𝑞𝑖,𝑡
𝑟  River discharge per unit width 

𝑞𝑖,𝑡
𝑐  Critical discharge per unit width 

𝐻𝐺𝑖,𝑡 River hydraulic gradient at section i and time t 

𝑑𝑠 Diameter size of bed river 
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𝑛 Manning coefficient 

𝐴𝑖,𝑡 Wet cross-section area of the river at section i and time t 

𝐻𝑅𝑖,𝑡 Wet hydraulic radius for the river at section i and time t 

NS Number of river cross sections 

𝐷𝑈𝑡
𝑀 Domestic use water requirement at time t 

𝑅𝑂𝐹𝑡
𝑀 Runoff rate at time t 

𝑄𝑆𝑇𝑡
𝑀 Seasonal stream discharge at time t 

𝐴𝑟𝑡
𝐻, 𝐴𝑟𝑡

𝐷 Himren and Derbendikhan reservoir surface area, respectively 

𝑓𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝐻 Water demands function for Himren dam 

𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐻 Winter storage function for Himren dam 

𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐻 Summer storage function for Himren dam 

𝑓𝑝𝑜𝑤𝑒𝑟𝐻 Hydropower generation function for Himren dam  

𝑓𝑟𝑖𝑣𝑒𝑟𝐵 Diyala river discharge function after the Barrage 

𝑓𝑇𝐷𝑆−𝐷𝑌 TDS concentration function for Diyala river 

𝑓𝐷𝑌−𝐵𝐶𝐻 Bedriver changes function for Diyala river 

𝑓𝑇𝐷𝑆−𝑇𝑅 TDS concentration function for Tigris river 

𝑓𝐷𝑒𝑙−𝑆𝑊−𝐺𝑊 Surface + groundwater deliver function 

𝑓𝑝ℎ𝑦−𝑀 Physical model violation function for Himren dam 

𝑓𝑀𝐷 Total model violation function 

𝐶𝐷−𝐻−𝑃ℎ Physical model penalty function for Himren dam 

DSSs Decision Support Systems 

OP-IWRM Optimum integrated water resources management 

𝑭𝑐𝑜𝑚𝑝. Vector for comprehensive model functions 

𝑭𝑠𝑖𝑚𝑝𝑙𝑒 Vector for simple model functions 

∆𝑭 Differences between the comprehensive and simple models 

∆𝐶2−𝐶1 Gross differences between case 1 and case 2 

∆𝑆2−𝑆1 Gross difference between scenario-1 and scenario-2 

  

SBX operator detail symbols 

𝛽 Spread factor  

𝑐1, 𝑐2 Offspring decision variable 

𝑝1, 𝑝2 Corresponding parents for 𝑐1, 𝑐2 

𝛽′ Factor 

r Random number from the uniform distribution in the interval [0,1] 

𝒫(𝛽) Probability to generate new offspring 

DE operator detail symbols 

NP Population size 

G Maximum number of generations 
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j Number of parameters 

𝑥𝑗,𝑖,𝐺 Random vector 

𝑏𝑗.𝑈 upper bounds 

  𝑏𝑗,𝐿 lower bounds 

𝑣𝑖,𝐺+1 Mutant vector  

𝑟1, 𝑟2, 𝑟3 random integer indices ∈ {1, 2, 3, … , 𝑁𝑃} 

𝐮𝑖,𝐺 Trial vector 

𝑟𝑎𝑛𝑑𝑗 Random number ∈ [0, 1] 

D Dimension of the decision variable vector 

UNDX operator detail symbols 

 Number of parents 

𝓟 Mean vector 

𝒅𝑖 Difference vector for the ith parent 

𝒆𝑖 Direction cosines vector for the ith parent 

D length between the two vectors which is orthogonal to all  𝒆𝑖 

𝒙𝑐 New offspring 

𝒆𝑗 Orthonormal basis vector of the subspace, which is orthogonal to the 

subspace spanned by all  𝒆𝑖. (j = , …, n, where n is the size of the 

decision variable vector 𝒙) 

𝜔𝑖, 𝜈𝑗 Random variables which follow a normal distribution having zero 

mean 

SPX operator detail symbols 

n Number of parameters in the search space 

𝛸𝑘 Vector of parameters 

O Centre of mass of selected vectors 

𝑣𝑘 Factor 

u Uniform random number 𝑢 ∈ [0, 1] 

𝑌𝑘 Expansion vector 

𝐶𝑘 Factor 

𝑌𝑛 expansion vector at k = n 

𝐶𝑛 Factor at k = n 

PCX operator detail symbols 

𝒙𝑝 Parent for mean vector 𝓟 

𝒅𝑝 Direction vector 

𝐷𝑖 Perpendicular distance for the ith parent 

�̅� Average distance 

𝒚 New offspring 
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UM operator detail symbols 

𝒙 Parent 

𝒙′ New offspring 

𝑥𝑘 Random element 

L Lower bounds of the element 

U Upper bounds of the element 

PM operator detail symbols 

c New solution 

𝑥 Parent 

𝑥𝐿 , 𝑥𝑈 lower and upper bounds, respectively 

𝑢 Random number ∈ [0,1] 

𝛿𝑞 Factor 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

The worldwide development in different sectors like agriculture, municipality 

and industry has increase the exploitation of fresh water. However, the impact of 

climate change, water pollutant, dispute on water sharing between riparian countries, 

etc. is restraining the availability of fresh water resources, especially in arid and 

semi-arid environments. To fulfil stakeholders’ demands in multidisciplinary sectors 

(social, environmental, economic), decision makers are facing high challenges to set 

sustainable water resources management strategies. Many literatures (details are in 

the next chapters) developed variant management approaches to help the decision 

makers in their strategies using different decision support tools like optimization 

techniques, and system dynamic model. However, the common developed 

approaches were formulated to enhance specific objective or a few objectives in a 

river basin system, while other objectives remain embedded as system constraints or 

unconsidered. For example, improving hydropower generation and agriculture 

revenues were the main concern in broad literature.  

Integrated Water Resources Management (IWRM) is another approach adopted 

to improve regional environment and economy by developing a collaborating 

relationship between all the stakeholders and the available resources within a 

sustainable framework.   Even so, literature that implemented IWRM approach 

(details are in the next chapter) shows that only selected objectives from different 
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disciplinary and resources were integrated. Examples of different proposed 

integration are: surface and groundwater, water quality and quantity, agriculture and 

industry, domestic and navigation, etc. 

The above argument demonstrates the absence of a holistic water resources 

management approach, which is capable to conceptualize and combine all the 

objectives in a river system. The holistic approach will help decision makers to set 

long-term water resources management strategies under a sustainable development 

framework. 

In order to develop and evaluate the proposed approach, a challenging case 

study in Iraq was selected. Iraq has an arid environment with mean annual rainfall 

less than 150 mm (IPCC, 2007), and has two big rivers, Tigris and Euphrates, which 

originated from neighbour countries: Turkey, Syria, and Iran. Diyala River is a major 

Tigris River tributary originated from high mountains in Northwest of Iran. The river 

extends 445 km towards its confluence with the main river at south of Baghdad City, 

the capital of Iraq. Two big dams were constructed on the river for multipurpose 

services, Derbendikhan in the north, and Himren in the central part of the basin. 

River watershed covers an area of about 32,600 km2, of which 46% is inside Iraq and 

54% in Iran. According to the literature (details are in the next chapter), the River 

basin is facing different multidisciplinary challenges in social, environmental and 

economic sectors, which are mainly due to: unset water sharing agreement with Iran, 

land use development expansion, population evolution, and expected impact of 

climate change. 
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1.2 Research’s Aim 

The aim of the research is to develop a holistic or comprehensive water 

resources management approach for a river system. Optimization techniques and 

IWRM principles will be employed to generate long-term flow regime strategy under 

sustainable development framework. Hence, the approach integrates all the common 

sectors (e.g.: society, environment and economy) with the available water resources 

(e.g.; surface water, groundwater and reused water) over water-control systems (e.g., 

dams, barrages, pipes, and pumps). The proposed approach will support decision 

makers’ agenda for future sustainable development plans. 

1.3 Research’s Objectives 

In order to achieve the research aim, the following objectives are adopted in this 

research: 

- To carry out a review of the state-of-the-art multi-objectives optimization 

algorithms used recently to solve complex water resources management 

problems, as well as their potential drawbacks, to select a competitive 

algorithm. 

- To utilize performance assessment to evaluate the nominated algorithm’s 

achievement under different problems environments using reservoir operation 

problem from the literature, five test benchmark functions, and reservoir 

operation problem from the current case study (Derbendikhan dam).  

Modification or development of a new methodology may be employed to 

improve algorithm’s achievement. 
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- To carry out a review of existing literature, database, maps, and models 

achieved for the study area to demonstrate problems identification and target 

objectives to be formulated in the proposed approach. 

- To develop a groundwater management model for the middle region in the 

basin to evaluate sustainable use of aquifer storage by: creating a 3D 

MODFLOW model to estimate aquifer boundary recharges based on the 

historical database, and developing an optimization management model for 

long-term pumping for agriculture use. 

- To develop optimum flow regime management strategy for the middle 

reservoir (Himren dam) considering social and environmental objectives, to 

enhance downstream region environment under different inflows scenarios. 

- To develop the comprehensive approach for multidisciplinary water resource 

management problem using IWRM principles coupled with optimization 

algorithm to improve river basin environment and revenues. Implement 

different alternatives and scenarios to represent different possible potential 

risks like climate change, political and legislation impacts. 

1.4 Thesis Structure 

This thesis describes the development of a holistic management approach at a river 

basin level with application on Diyala River basin in Iraq. This was done by 

employing many-objectives optimization algorithm to achieve IWRM principles. 

Following the current chapter, eight chapters are developed as follow: 

- Chapter 2 presents a historical background on IWRM definition, its 

implementation and challenges, and the relation to sustainable development 

goals. Reviews of recent optimization algorithms used in water resources 
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management are also carried out, as well as some potential problematics in 

solving complex problems. The review also demonstrates the potential problems 

in a real-world river basin management, which was adopted to evaluate the 

proposed approach. 

- Chapter 3 demonstrates research methods to address the knowledge gaps. The 

key elements of the holistic approach are presented, as well as the multi-

objectives optimization algorithm. All target decision variables, objectives, and 

constraints are identified, which cover the current and unforeseen events 

management strategy. Optimization algorithms’ difficulties are also discussed 

and addressed.   

- Chapter 4 presents performance assessment for Borg MOEA using real-world 

reservoir operation problem from the literature. Detailed behaviour of Borg 

MOEA during objective function evaluation was presented and discussed. 

- Chapter 5 demonstrates a detailed description of new evolutionary optimization 

algorithm entitled “Epsilon-Dominance-Driven Self-Adaptive Evolutionary 

Algorithm for Many-Objective Optimization (-DSEA)”. A brief comparative 

assessment with Borg MOEA was achieved using five test benchmark functions 

for up to 8 objectives functions, and a real-world reservoir operation 

management problem (Derbendikhan dam). 

- Chapter 6 illustrates long-term pumping impact on aquifer storage in the middle 

part of the basin. A 3D static groundwater flow model was achieved using 

MODFLOW-2005 software to estimate aquifer recharge. The aquifer recharge 

was employed with long-term groundwater optimization management model to 

assess the sustainability use of aquifer storage for farms irrigation. Open furrows 
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and drip irrigation systems were utilized as alternatives for farms’ water 

delivery. Comprehensive algorithms’ performance assessment for -DSEA and 

Borg MOEA was presented and discussed. 

- Chapter 7 presents a novel Optimum Socio-Environmental Flows approach 

(OSEF) for reservoir management strategy. The approach ensemble all common 

river basin social and environmental objectives using many-objectives 

optimization algorithm. Further, a novel Auto-Adaptive Constraints approach 

(AAC) was developed to boost optimization algorithm convergence. The OSEF-

AAC approach was implemented on Himren dam project to evaluate its 

robustness in improving downstream region environment and revenues under 

two inflows scenarios. Further -DSEA assessment results were presented and 

discussed, in comparison with Borg MOEA. 

- Chapter 8 presents a novel comprehensive optimum integrated water resources 

management approach (OP-IWRM). The approach combines and employs all 

river basin common social, environmental, and economic objectives, and all 

available water resources, respectively, using many-objectives optimization 

algorithm. The entire Diyala River basin system was employed to evaluate the 

approach’s effectiveness and robustness under different challenges including 

climate change and political impacts. Detailed results were presented and 

discussed for the proposed alternatives. 

- Chapter 9 demonstrates research outputs and recommendations for future 

policies and works.  

The above structure was conceptualized in a schematic diagram presented in Figure 

1, which shows the adopted research methodology to achieve the research aim. 
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Figure 1. Research methodology schematic diagram 
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CHAPTER TWO 

GENERAL LITERATURE 

REVIEW 
 

2.1 Introduction 

The current chapter presents general literature relevant to the research’s aim, as 

the knowledge gap is demonstrated. After defining integrated water resources 

management (IWRM) term, challenges facing its implementation are reviewed. The 

consistent relation of IWRM with sustainable development goals (SDGs) is 

demonstrated. The optimization techniques are introduced and their utilization in water 

resources management are cited. Examples of some problematics in optimizing real-

world complex problems are highlighted. Finally, a real-word case study challenges 

and problems are demonstrated, as a complex example to be solve. 

 

2.2 Integrated Water Resources Management (IWRM) 

2.2.1 Background 

Different definitions of IWRM were presented by many worldwide 

organizations (Cardwell et al., 2006), however the most common one produced by the 

Global Water Partnership (GWP) as, “IWRM is a process which promotes the co-

ordinated development and management of water, land and related resources, in order 

to maximize the resultant economic and social welfare in an equitable manner without 

compromising the sustainability of vital ecosystems” (GWP, 2000). A consistent 

definition of IWRM was adopted by the American Water Resources Association 
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(AWRA), as “coordinated planning, development, protection and management of 

water, land and related resources in a manner that fosters sustainable economic 

activity, improves or sustains environmental quality, ensures public health and safety, 

and provides for the sustainability of communities and ecosystems” (AWRA, 2011).  

In other words, IWRM is a holistic approach for sharing water with all sectors 

and avoids using isolated approaches to improve a specific sector, or sectors (Giordano 

and Shah, 2014). Accordingly, the IWRM is a correlation process between water 

supply and water demand subjected to different situations and purposes, as shown in 

Figure 1 (Grigg, 2016).  

 

 

Figure 1. Schematic diagram for multi-sectors interrelation in IWRM (adapted from 

Grigg, (2016)) 

The Figure illustrates the demand process nexus (economy, society, and 

environment) with water systems and managers over many situations and purposes. 

The development process toward IWRM follows three steps (or levels) (Grigg, 2016): 
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- Technical level: the use of different infrastructures and equipment to carriage 

water, which is called “water resources engineering” 

- Management level; water allocation by the decision makers using water 

infrastructure, which is called “water resources management”  

- Integrative level: linking between the decision makers and the related water 

sectors, which is called “Integrated Water Resources management” 

Hence, in order to achieve effective IWRM the manager should carry out; efficient 

water infrastructure systems and management programs, and secure their reliability to 

fulfil water-sectors’ demands (Grigg, 2016). 

Insight view of IWRM process and impact factors at a river basin level is 

presented in Figure 2, which demonstrates the collaborative interconnection between: 

the resources, the demands, and the external impacts. 

 

Figure 2. IWRM process and impact factors (adapted from Muste and Mocanu, (2016)) 
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2.2.2 Challenges of IWRM implementation 

Developing a plan for IWRM implementation on the river basin system scale 

has many challenges, which needs robust methods to tackle the complexity of water 

system management from one side (due to its nonlinearity, dynamic properties, 

conflict objectives, and constraints  (Haimes and Hall, 1977; Yeh, 1985; Maier et al., 

2014)), and the stakeholders’ demands, governmental legislation, and environmental 

aspects (and others), on the other side (Grigg, 2016).  The conflicts and 

interrelationship problems between the multidisciplinary sectors for IWRM 

implementation for larger-scale regions were observed by Biswas (2008), Hering and 

Ingold (2012), and Mohtar and Lawford (2016). Authors and institutes adopt different 

water management concepts due to the generalization in IWRM definition (Biswas, 

2008). The latter author demonstrated 41 variant possible explanations for the term 

“integrated”. Some examples are: water supply and water demands: surface water and 

groundwater, water quantity and water quality, urban and rural water issues, 

government and NGOs (nongovernmental organization). Moreover, “... But by now we 

all know how complex water resources management is and that ideally it should be 

managed holistically, considering efficiency, equity and the environment. But we 

should also know by now that holistic management is costly and politically difficult, 

or impossible” (Giordano and Shah, 2014). The latter authors reviewed examples of 

using simple alternatives to solve water resources problems for transboundary river 

basins, rather than implementing a complex IWRM approach. 

Many recent studies investigate the impact of IWRM implementation on 

different river basins to improve its environmental and economic benefits using several 

tools and methods. Among these tools, System Dynamics Simulation (SDS) was used 
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widely as a Decision Support Tool (DST) in the field of IWRM implementation. 

System Dynamics is a method to simplify the correlations’ identification that joins 

variant interdependent subsystems, which controls system’s behaviour (Sterman, 

2000; Mirchi et al., 2012). However, the SD model is capable to solve a specific goal 

(or objective) of a certain problem (Sharawat et al., 2014), and they have spatial data 

inertia processing (Nikolic and Simonovic, 2015). Other studies adopt different tools 

for IWRM implementation. Weng et al., (2010) present an integrated scenario-based 

multi-criteria decision support system (SMC-DSS) for water resources planning and 

management in a Haihe river basin in China. The tool combines a multi-objective 

optimization algorithm, multi-criteria analysis and decision support system to assess 

the impact of multi policy management on the socio-economic and environmental 

sectors. The evidence shows that different results can be obtained when using different 

policies. Coelho et al., (2012) present and assess a multiple criteria decision support 

system as a tool for supporting IWRM in Tocantins-Araguaia river basin in Brazil. The 

authors combined GIS processing, fuzzy set theory, and dynamic programing 

algorithm to obtain optimum solution depending on user criteria selections. Nikolic, 

(2015) presents Agent-Based simulation coupled with system dynamic simulation to 

achieved IWRM in Upper Thames River basin in Canada. The results demonstrate the 

interaction between different regional resources and activities. Moreover, Klinger et 

al., (2015) produced IWRM tools for the Lower Jordan Rift Valley. The authors used 

multi-objective optimization algorithm to improve three sectors in the region. Safavi 

et al., (2016) present Expert knowledge based modelling for IWRM in Zayandehrud 

River Basin in Iran using WEAP software. The results show that the river basin 

management policy needs to be improved to avoid future water crises in the basin.  
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Bullet-1 

To this extent, none of these studies (and others) achieved a holistic IWRM approach 

capable to integrate all water-supply and demands processes.   

 

2.3 IWRM and Sustainable Development Goals (SDGs)  

Sustainable development means “development that meets the needs of the 

present without compromising the ability of future generations to meet their own 

needs”, defined by the World Commission on Environment and Development report 

(WCED) and published by United Nations (UN, 1987). The report’s sustainability 

fundamentals are based on: economic growth, environmental protection, and social 

equality, thus it is an integral of these fundamentals. Clearly, these fundamentals are 

consistent with IWRM principles, in fact, IWRM is one of the supportive tools of 

sustainable development (Tejada-Guibert et al., 2015). 

In 2015, the United Nations announced the 17 goals of 2030 agenda for 

sustainable development with 169 targets (UN, 2015), as in Figure 3. These goals set 

for countries’ agenda toward national sustainable development. However, 

governments may face difficulties to select and achieve pragmatic targets due to 

SDGs’ universal extent. Likewise, decision makers should be able to evaluate the long-

term integral impacts of economy, society, environment strategies (Allen et al., 2016).  

Recent literatures demonstrate the gap toward holistic SDGs’ achievement. Allen et 

al., (2016) analysed 80 models achieved to implement SDGs at national development 

planning scale, as only one model address all 17 goals (named “International Futures” 

produced by Frederick S. Pardee Center for International Futures, University of 

Denver). However, this model experienced limited variables for many goals.  
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Statement-1 

Thus, the need to develop a holistic approach to achieved all SDGs goals and targets 

is evidenced (Allen et al., 2016). The current research focuses on developing a 

holistic IWRM approach, as it is a pathway towards the holistic SDGs approach. 

 

 

Figure 3. The 17 Sustainable Development Goals (SDGs) (UN, 2018)  

 

2.4 Optimization Techniques in Water Resources management 

2.4.1 Background 

Recent studies demonstrate the robustness of optimization algorithms as a 

decision support tool in water resources management problems (Maier et al., 2014; 

Horne et al., 2016; Horne et al., 2017; Barbour et al., 2016). The early paradigms of 

optimization algorithms to solve different types of problems are: linear programming, 

non-linear programming and dynamic programming (Horne et al., 2016; Tayfur, 
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2017). However, the aforementioned methods in general are incapable to solve 

complex problems that water resources management have (Haimes and Hall, 1977). 

Recently, Evolutionary Algorithms (EAs) were widely used to solve complex 

problems in different fields of engineering and science (Coello Coello et al., 2007; 

Chiong et al., 2012), which were inspired from evolution process of genes (Nicklow 

et al., 2010; Back et al., 2000). Early computational paradigms of EA’s are: genetic 

algorithm (GA) (Holland, 1975), evolutionary strategies (ES) (Schwefel, 1981), 

evolutionary programming (EP) (Fogel et al., 1966), and genetic programming (GP) 

(Koza, 1992). Figure 4 shows the EAs paradigms in the optimization search techniques 

taxonomy (Simon, 2013). These Algorithms can solve multiple objective problems 

simultaneously to generate a set of non-dominated solutions front (Pareto-front) in a 

single run (Deb, 2001; Coello et al., 2007).  

  

 

Figure 4. Search techniques taxonomy (adapted from Simon (2013)) 

 

Examples of MOEAs’ implementation in water resources management include: 

Javadi et al. (2015) used non-dominated sorting genetic algorithm (NSGA-II) to 

optimize seawater intrusion in a coastal aquifer; Sidiropoulos et al. (2016) used 
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simulation-optimization for groundwater management; Oxley and Mays (2016) 

applied a genetic algorithm (GA) for long-term planning and sustainable water 

resources management; Tigkas et al. (2016) investigated the efficiency of EAs for the 

calibration of a conceptual hydrologic model; Sreekanth et al. (2016) implemented the 

NSGA-II algorithm to maximize aquifer water injection and to minimize the variance 

in aquifer water levels; and Sadeghi-Tabas et al. (2017) coupled a multi-algorithm, 

genetically adaptive, multi-objective (AMALGAM) optimization algorithm and 

simulation model to minimize the deficit in water demands, shortage index, and 

drawdown in the water table. More MOEAs’ types and application in water resources 

may be found in Tayfur (2017). However, the growing need to solve even more 

complex engineering problems, having four objectives or more, gives the motivation 

to improve further the capabilities of MOEAs. Deb and Jain (2013) upgraded NSGA-

II to NSGA-III, while Seada and Deb (2015) proposed a new version of NSGA-III 

named U-NSGA-III. Hadka and Reed (2013) developed Borg MOEA with auto-

adaptive recombination operators, while Roy et al., (2015) introduced an evolutionary 

path control strategy (EPCS). Zhang et al., (2015) produced Knee Point-Driven 

Evolutionary Algorithm, and Li et al., (2015) proposed MOEA/DD, for many-

objective problems. Recently, Yuan et al., (2016) proposed an evolutionary algorithm 

for many objective optimization (θ-DEA) based on a new dominance relation. A brief 

list of many-objectives optimization algorithms can be found in B. Li et al. (2015) and 

Bechikh et al. (2017).  

Statement-2 

Based on competitive results achieved on benchmark test functions and real-

word problems (Hadka and Reed, 2012; Hadka et al., 2012; Hadka and Reed, 2013; 
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Woodruff et al., 2015; Salazar et al., 2016), Borg MOEA met or outperform recent 

common state-of-the-art evolutionary optimization algorithms. It has many novel 

techniques to generate optimum solutions and avoid local optima stagnation.  

 

2.4.2 MOEAs’ Challenges in Water Resources Management Problems 

Although real-world water resources problems have many conflicting 

objectives, recent studies have utilized up to three objectives to avoid the 

computational efficiency,  high-dimension challenges and water resources system 

complexity for more than three objectives (Maier et al., 2014). Notably from Table 1, 

only three of nineteen studies consider more than five objectives in reservoir operation 

strategy (multiple publications used in the same case study are considered as one 

study). Moreover, some studies merge objectives to simplify the multiple dam system 

problems, and hydropower generation and water supply (for domestic and irrigation) 

were the dominant objectives adopted in these studies.  While, few recent studies 

adopted many-objectives (more than three objectives) optimization water resources 

management problems.  

Environmental objectives are seldom adopted in reservoir management, in a 

recent review of studies between 1980 and 2015, by Horne et al. (2016) found only 42 

studies adopt environmental releases in reservoir management as decision variables. 

Recently, Horne et al. (2017) presented Conditional Probability Networks (CPNs) 

approaches combined with Mixed Integer Programing (MIP) optimizer for 

environmental flow regimes. Poff et al. (2016) proposed a framework approach for 

eco-engineering decision scaling using performance indices, and  Acreman et al. 
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(2014) show that environmental flows need a “designer” approach for considering 

ecosystem objectives in water control infrastructure, rather than a “natural” approach.  

Bullet-2 

Consequently, these studies (and others) rarely adopted combined multidisciplinary 

problem for river basin management (e.g. Social, Environmental, and Economic) 

(Horne et al., 2016; Horne et al.,2017; Poff et al., 2016). 

 

Table 1. Summary of literatures that used evolutionary algorithms to optimize multi-

objective reservoir operation strategy 

Author Method Objective 

No. 

Subject No. of 

dams 

Kim et al., (2008) NSGA-II 2 Water shortage index + 

hydropower  
1 

Chang and Chang, 

(2009) 

NSGA-II 2 Water shortage index for two 
dams 

2 

Dittmann et al., (2009) MOES 5 Inundation + overtopping for 
three dams + releases 

3 

Reddy and Kumar, 

(2009) 

MOPSO 2 hydropower + irrigation 1 

Regulwar, (2009) MOGA 2 hydropower + irrigation 5 

Hakimi-Asiabar et al., 

(2010) 

SLGA 3 hydropower + water supply + 
water quality 

3 

Wang et al., (2011) MIGA 2 long term operation for water 
demand and storage 

1 

Malekmohammadi et al., 

(2011) 

NSGA-II 2 Flood + water demands 2 

Schardong et al., (2013) MODE 3 Water demands + water 

quality + pumping cost 
5 

Kasprzyk et al., (2013) -NSGA-II 6 Two cost + Three reliability 

+ Market use 
1 

Giacomoni et al., (2013), 

Giuliani et al., (2014a) 

Fitted Q-
iteration 

5 Two Recreation + 
sedimentation + water deficit 

+ Temperature differences 

1 

Giuliani et al., (2014b), 

Giuliani et al., (2016), 

Zatarain Salazar et al., 

(2016) Zatarain Salazar 

et al., (2017) 

Borg 

MOEA 
6 Three water supply + 

hydropower + recreation + 
environment 

1 

Ahmadianfar et al., 

(2015) 

MOEA/D 2 Flow demands + agriculture 

demands 
3 

Li and Qiu, (2015) NSGA-II 2 Hydropower + firm power 1 

Crookston and Tullis, 

(2016) 

NSGA-II 2 Water quality + water 

temperature 
1 
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Hurford et al., (2014) -NSGA-II 10 Four agriculture water deficit 

+ water losses + Hydropower 

+ Land availability + Two 
Flow alteration 

3 

Qi et al., (2016) MOEA/D 2 Water level + releases 1 

Chen et al., (2016) NSGA-II 5 Water supply + hydropower 
+ flow alternation in two 

rivers + water quality 

1 

Dai et al., (2017) NSGA-II 2 Hydropower + water 
alternation 

2 

2.4.3 The Decision Makers and MOEAs 

Generally, water resources management models provide information to the 

decision makers, rather than the decision itself (Loucks, 2012). There are pre- and 

post-optimization implementation approaches for incorporating decision-maker 

criteria within a multi-aspects problems (Maier et al., 2014; Coello et al., 2007). One 

of the pre-criteria approach drawbacks is the dissatisfaction (or lack of trust) of 

decision makers toward model results that emerged depending on their criteria set, and 

they may change these criteria to generate new results (Loucks, 2012). Hence the 

model needs to be re-executed until they get satisfaction. The second approach is 

computationally challenging and has potential difficulties to find the Pareto-front for 

optimum solutions set, which recently tackles by using multi-objective (or many-

objective for more than three objectives) optimization algorithms (Maier et al., 2014). 

However, MOEAs’ optimum achievement varies over different problems 

(Ishibuchi et al. 2015; Ishibuchi et al. 2017). For example, Reed et al. (2013) assess 

the performance of ten MOEAs to solve four benchmark problems and show the 

outperformance of Borg MOEA over other algorithms. Conversely, Borg MOEA 

exhibited a lower performance on a standard water distribution system benchmark 

problem and failed to approach the true Pareto-front (Qi et al. 2015; Zheng et al. 2016). 
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Salazar et al. (2016), however demonstrated consistent performance with other 

MOEAs on a real-world reservoir operation management problem.  

Bullet-3 

Hence, multiple algorithms may be required when solving real-world problems to 

achieve robust results and effective underpinning of decision making (Maier et al., 

2014).  

 

The MOEAs use many parameters such as population size, mutation and 

crossover rate, which have direct impact on their performance. Hence, these 

parameters (especially mutation and crossover rates) should be carefully selected and 

tested within the defined problem environment (Maier et al. 2014; Karafotias et al. 

2015). The optimal performance of MOEAs is evaluated on benchmark test functions 

(e.g. DTLZ series, ZDT series, etc.),  which consider easy and forward problems 

recognising that real-word problems have more complexity and challenges (Maier et 

al., 2014). The MOEAs’ effectiveness is commonly measured using metrics like the 

hypervolume metric (Zitzler, 1999), which evaluates the non-dominated solutions’ 

hypervolume, and generational distance metric (Van Veldhuizen and Lamont, 1998), 

which measures the average distance between the dominance solutions and the closer 

Pareto-front set. However, these metrics (and others) may provide misguiding results 

and most of their design principles depends on the true Pareto-front, which is unknown 

in real-world water resources management problems (Maier et al., 2014). Details of 

relevant parameters’ (and other) problematics in MOEAs are presented in chapter 5 of 

the current research. 
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Bullet-4 

Accordingly, performance and achievement of MOEAs require further assessment, 

especially when solving real-world problems (Maier et al., 2014). 

 

Further, developing a penalty functions formula is a type of constraints approach 

paradigm (Coello Coello, 2002; Simon, 2013) to represent decision makers’ policy or 

criteria (Maier et al., 2014) and to exaggerate the unfeasible solution to guide 

algorithm exploration towards feasible solutions. However, these functions should be 

carefully developed and tested for each problem to avoid premature or delay of 

algorithm convergence towards optimum solutions (Deb and Datta, 2013).   

The initial random seeding of decision variables’ population generates feasible 

and unfeasible candidates in the decision variables design space. Then these candidates 

subjected to mutation and crossover evolving process to produce new generations until 

evaluation process ends (Deb, 2001; Abraham et al., 2005), which is sensitive to 

objective achievement to produce non-dominated solutions. Therefore, the initial 

evaluation stages produce large penalized values due to numerous decision variables 

violations, which restrains the convergence process, or may cause stagnation in local 

optima (Deb and Datta, 2013). 

Bullet-5 

As a result, dynamic penalty function sensitive to model violation is evident to boost 

algorithm convergence. 
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2.5 Case Study 

2.5.1 Background 

Iraq may be considered a fortunate country in water resources compared to 

other countries of the arid and semiarid Middle East. Two important rivers, the Tigris 

and the Euphrates, though they originate in the heights of neighbouring Turkey and 

Iran, flow ultimately through its territory before joining and discharging in the Gulf. 

Moreover, Iraq possesses groundwater resources of some potential, which are not yet 

totally accounted. Nevertheless, Iraq may face a shortage in usable water resources in 

the near future because of: the steadily increase of water demands in the region, the 

unsettled dispute among the riparian countries on the sharing of the resources of the 

two rivers, and the on-going traditional methods of water resources management. 

Hence, agreements with neighbour’s countries need to settle the share of water 

resources, and advanced methods of water resources management need to be adopted 

for optimum and sustainable exploitation of these resources. 

Figure 5 shows the Tigris and Euphrates River catchment areas and the relevant 

water resources supply percentage. About 91% of the resources are from neighbours’ 

country, and only 9% from internal catchment areas (GRID-Geneva, 2000; Adamo et 

al., 2018). 

Priority of Iraqi water resources management may be forwarded to the Tigris 

River basin, which virtually aliments the northern and the eastern part of the country, 

including the capital Baghdad. Tigris is joined inside Iraq by five main tributaries, one 

of which is the Diyala River (Sub-basin No. 8 in Figure 5). 
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Figure 5. Iraqis’ Tigris and Euphrates River catchment areas and its water resources 

supply quantities  (adapted from (GRID-Geneva, 2000; Adamo et al., 2018)) 

 

2.5.2 Diyala River Basin Identification 

The Diyala River originates in the Iranian heights, passes just south of the 

provisional town of Sulaymania in Kurdstan, and joins Tigris just south of Baghdad 

(Figure 6).  The total area of the Diyala river basin inside Iraq is nearly 17000 km2. It 

can be divided into three zones; upper, middle, and lower. The river flow is controlled 

at present by two dams:  the Derbendi-khan dam located at the boundary between the 

upper and the middle zones, and the Hemrin dam located at the boundary between the 
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middle and the lower zones.  

The middle zone of the Diyala River basin has potential groundwater resources 

that can play an important role in water management. Several cities and towns benefit 

of the river water resources as well as several agricultural projects that cover an area 

of 693103 hectares particularly in the middle and lower zones (SGI et al., 2014). 

 

 

Figure 6. Location map of Diyala River Basin in Iraq 

2.5.3 Hydrological regime of Diyala River Basin 

The natural flow regime of Diyala River before the construction of Derbndi-

khan dam appears in the feasibility study of the dam carried out by Harza and Binnie 

(1963). The Iraqi national water resources master plan prepared by the Russians 

(Soyuzgiprovodkhoz, 1982) contains a conclusion of hydrological background 

information and analysis of all Iraqi rivers. Other hydrological studies on the Diyala 
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River catchments (including its upper part inside Iran) was fully exposed by Al-Jibory 

(1991). The study concentrated on water quality and sediment transport in the river 

system. Further, Al-Sunawai (1985) exposed detailed water quality analysis of the 

lower Diyala region. Recently, Mohamad, (2010) diagnosed possible water crisis 

problems in Diyala province, among these: river flow scarcity, traditional irrigation 

system, water system infrastructures’ maintenance limitation.  Al-Ansari (2013) and 

Al-Ansari et al. (2014) present an assessment for the water resources in the country 

and future prediction for these resources. The studies refer to future water scarcity in 

the water resources in Iraq due to climate impact change and unsettled dispute in water 

sharing, including the Diyala River basin, which were endorsed by Al-Faraj and 

Scholz, (2014, 2015). A reduction of about 50% in mean monthly river flow was 

observed from 2004 to 2013 in summer season due to upstream projects development 

plans. The Iraqi Ministry of Water Resources has recently accomplished the “Strategy 

for Water & Land Resources in Iraq” study,  prepared by SGI et al., (2014), which also 

altered future water resource scarcity at national scale.  

Bullet-6 

Thus, evidences of Diyala River basin water resources scarcity are endorsed. 

 

2.5.4 Diyala River Morphology 

The early study covering sediments discharge in Diyala River was achieved by 

Assad, (1978) (as in Ezz-Aldeen et al., (2018)), which was before Himren dam 

project’s construction in 1981. Then a study was achieved by Al-Ansari et al., (1983), 

which concentrated on deposition in Himren dam reservoir. Another study observed 

sediment transport in Diyala River was accomplished by Al-Jibory, (1991). A recent 



Chapter Two   General Literature Review 

2-19 

 

study focus on river bed deposits in the middle part of Diyala River was prepared by 

Al-khaldy and Al-askari (2015).  

Bullet-7 

From the above, studies and models of Diyal River sediment transport were rarely 

developed and achieved. 

 

2.5.5 Hydrogeological Assessment of Diyala River Basin 

The first general groundwater resources assessment of Iraq was accomplished 

by Parsons (1957) (Engineering Company). Aquifer identification was based on the 

geological setting, some bore holing, and water point inventory. Due to lack of local 

basic data for renewable groundwater resources assessment, a rough estimate was 

made by relating the local water balance components to the components of an area 

elsewhere similar in physiographic features where data is available. This study as well 

as the General Scheme of Water Resources and Land Development in Iraq 

accomplished by Soyuzgiprovodkhoz (1982) did not refer to Diyala river basin as one 

unit. In the later study, moreover different reaches of the river fall within the different 

so called hydrogeological modulus that represent specific aquifer productivity and 

water quality. Studies that contain additional local field data were produced separately 

by several authors on parts of the basin. Part of the lower basin zone to the east and 

south of Hamrin reservoir was the focus of a study carried out by Khalil and Ridha 

(1993). Potential groundwater utilization for agriculture and the influence of Hamrin 

reservoir on the local groundwater regime was assessed. The upper zone around the 

lake of Derbendi-khan is included in a study prepared by FAO (2004) on the 

hydrogeology of the northern states published in 2004. Moreover, the middle part and 
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the most promising zone as far as groundwater resources are concerned were 

thoroughly investigated by Ahmed et al., (2005). Furthermore, Al-Tamimi (2007) 

present an assessment for the Diyala River Basin with focusing on the middle part of 

the basin. 

Groundwater abstraction from the different zones of the basin is not developed to 

the point where an interfering measure has become necessary. The present total 

abstraction from the middle zone was estimated by Ahmed et al. (2005) to be in the 

order of 13% of the zone renewable resources. 

The water quality suitability in upper aquifer for agriculture uses for the middle 

part of the basin is within the permissible zone according to SGI et al. (2014) 

depending on four parameters: Electrical Conductivity (EC, μmohs/cm), Sodium (Na 

%), Chloride (Cl, ppm ), Sulphate (SO4, epm), Soil Adsorption Rate (SAR, unit less), 

as shown in Figure 7.  

Bullet-8  

On the other hand, references do not indicate that there was an attempt to simulate 

numerically or analytically the effect of abstraction on groundwater or the river 

regimes. This could become the focus of the present or future studies if water 

management should set a more important role to groundwater in the water resources 

exploitation scheme of the river basin (Al-Tamimi, 2007; SGI et al., 2014) 
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Figure 7. Groundwater suitability use for agriculture in unconfined aquifers (SGI et 

al., 2014) 

 

2.5.6 Reservoirs Operation Management of Diyala River Basin 

Reservoir operation has been the interest of many investigators of the Diyala 

River basin with emphasis on optimization techniques. Hameed (1986) and Naji 

(1989) used Discrete Differential Dynamic Programming or (DDDP) to optimize 

Derbndi-khan and Hamrin dams system. The first author found that the system is safe 

against flood, but it is inadequate during drought period. While Naji (1989) found that 

to improve Diyala River water quality by maintaining a fix monthly release discharge 

ends with a reduction in water supplies during the next period.  Additionally, Al-

Delewy (1995) developed a DDDP model for the Diyala River reservoirs in order to 

solve the monthly operation problem of multi-reservoirs system for multi-purpose 

operation. The objective was flood and pollution control while maintaining irrigation 
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and electric power generation requirements. Moreover, Muhsun (2002) applied the 

DDDP model in order to reach to the optimum operation policy of all Tigris reservoirs, 

including those under construction (Bekhma and Mkhool). The optimum operation 

rule curve driven from the result of the optimization solution was used to develop a 

monthly simulation model in order to determine the real time monthly operation plan 

for the system with and without the dams under construction. 

Bullet-9 

References did not highlight any recent attempt to upgrade reservoirs operation rules 

using advance optimization techniques (Alsaffar, 2017a).  

 

2.5.7 Current and Expansion of Water Demands  

Water demands normally fall in three categories: agricultural or irrigation 

requirement, public or municipal needs, and industrial water demands. Presently these 

three components of water demands have sharp rising trends with time in a country 

like Iraq which is still in the path of development. The most important water user in 

Iraq is agriculture which consumes nearly 85% of the water resources of the country. 

Growing population and urbanization are boosting the municipal water needs as well. 

Water requirements and water demand were part of the General Scheme of water 

Resources and Land Development in Iraq prepared by Soyuzgiprovodkhoz, (1982). 

The scheme which evaluated the national water demands in year 1982 presented a 

projection till the year 2000. A recent estimation of the demands to the year 2035 was 

made by (SGI et al., 2014). Accordingly, the expected national demands in year 2035 

from both Tigris and Euphrates will reach the figure of 70.8 billion cubic meters (109 

m3), and the total fresh water available will be 56.52 billion cubic meters in end of the 
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next three decades due to Turkish, Syrian, and Iranian projects, and the climate 

changes impacts. This will create a water deficit of about 15 billion cubic meters in 

year 2035 (SGI et al., 2014), as shown in Figure 8.  

Bullet-10 

As a result, future deficit is expected in Diyala River basin’s water resources due to 

land use developing and expansion plans. 

 

 

Figure 8. Future prediction of available fresh water and water demands in Iraq (adapted 

from SGI et al. (2014)) 

 

2.5.8 River Basin Problems and Challenges 

Based on previous studies, the basic Diyala River basin management problems 

and challenges are: 
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1- Climate changes impact: the mean temperature may increase approximately 3 

degrees Celsius and the annual rainfall may deplete by 21% for the next half-

century (Abbas et al., 2016; Lelieveld et al., 2016) 

2- Political impact: Iran built four dams on the river’s source streams and a big water 

conveyance tunnel under construction were observed by Abdulrahman, (2017); 

Al-Faraj and Scholz, (2014) which divert water from catchment area. 

3- Pollutant impact: the impact of Al-Rustamiya wastewater treatment plant 

discharges (470,000 m3/day, with 5000 mg/l of TDS) to the Diyala river, observed 

by many studies (Kubba et al., 2014; Aenab and Singh, 2014; Evan et al., 2012; 

WCC, 2006; CEB, 2011). This plant is located just before river confluence with 

the Tigris River, in the south of Baghdad city which has large density of 

population approaching seven million peoples and this is one of the primary 

treatment works for the city.  

4- Leeching drains impact: two leeching drains from agriculture projects are 

discharging to the Diyala river, which increases the deterioration of the river 

environment (Soyuzgiprovodkhoz, 1982; SGI et al., 2014).  

5- Water allocation losses impact: the use and impacts of traditional irrigation 

techniques by large agriculture projects in the downstream basin were observed 

by SGI et al., (2014), Al-Ansari, (2013), and Al-Ansari et al., (2014).  

6- Future development plan impact: additional quantities of water will be needed for 

a number of planned but undeveloped agriculture projects the government 

intended for future investment in the basin (SGI et al., 2014).  

7- Management impact: the absence of regional groundwater flow and management 

model (Al-Tamimi, 2007), and the current classical surface water management 
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strategy (Alsaffar, 2017b) are evident, which may cause misleading results in river 

basin water resources management strategy. 

8- Bank slide impact: to avoid the hazard of the right dam bank sliding of 

Derbendikhan dam, the operation control rule should maintain reservoir water 

level above 455 m.a.s.l (World Bank, 2006).  

2.6 Summary 

This chapter demonstrates the principles of Integrated Water Resources 

Management (IWRM) implementation and the collaborative interconnections of 

supply and demands processes, based on literature. Economy, society, and 

environment are the main pillars governing IWRM development process. Literatures 

show potential gap in holistically IWRM implementation, which carried out on 

different river basins, while others highlight the end of IWRM implementation.     

Also, the reviews carried out on Multi-Objectives Evolutionary Algorithms 

(MOEAs), since they widely used in water resources management problems as a 

powerful decision support tool. Even though, problematics observed in MOEAs’ 

achievement as: number of objectives increase to more than three, and algorithms’ 

adaptation with variant problems’ environments.  

Reviews the common studies on Diayla River basin, as a case study, was also 

presented. The transboundary river basin facing multidisciplinary crises including: 

water quantity and quality, operation management, possible future climate change 

impact, and upstream developing projects plans. Further, decision makers did not 

employ regional groundwater exploitation in their management strategy, as it has key 

values in river basin’s water cycle. Based on the aforementioned potential problems, 

Diyala River basin is adopted as a complex example that need a holistic management 

approach to improve its environment. 
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CHAPTER THREE 
 

MATERIALS AND METHODS 
 

 

3.1 Introduction 

In the previous chapter, the knowledge gaps in IWRM and MOEAs 

implementation are highlighted over five bullet points (1 to 5).  In general, the real-

world system complexity and computational problematics restrain comprehensive 

IWRM implementation. Thus, developing a comprehensive approach capable to tackle 

these problems is the main focus of the current research.  

To evaluate and assess such approach, a real-word case study in Iraq, the 

Diyala River basin, is selected. Review relevant to Diyala River basin was carried out, 

and potential problems are underlined (bullet points 6 to 10). Based on potential and 

external impacts, multidisciplinary dilemma is evident, including water scarcity crisis.  

In this chapter, after identification of research materials, a research method is 

presented. A generous explanation of evolutionary algorithm is deployed, as well as 

the general expression of multi-objectives optimization algorithm.   

 

3.2 Research Materials 

3.2.1 Surface and Groundwater Data Source 

All relevant information of Diyala river basin was provided by the Iraqi 

Ministry of Water Resources (IMWR), as they are the key stakeholders of research 

results. These are: 
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- Derbendikhan and Himren reservoirs monthly inflows and releases from 1981 

to 2012. 

- Topographic maps, scale 1:100,000; 

- Geological maps, scale 1:100,000; 

- Drilled wells database covering years from 1981 to 2012 which includes: 

discharge rates, water table level, permeability, transmissivity, and chemical 

analysis;  

- Meteorological monthly database from 1981 to 2012, which includes: rainfall, 

evapotranspiration, and temperatures; 

- Diyala riverbed cross sections for the Lower part of the basin; and 

- Hydropower turbines graphs (head-discharge relationship). 

 

3.2.2 Software and Codes 

- GMS software v.9.2 (Groundwater Modelling Software) license to IMWR, 

produced by Aquaveo company (https://www.aquaveo.com), for groundwater 

flow modelling. The software has many powerful tools like: borehole log, fence 

diagram, 3D solid diagram, 3D analysis and visualization of groundwater flow 

model, etc. 

- ArcGIS 10.2.2 license to University of Strathclyde, produced by ESRI 

company (https://www.esri.com/en-us/home) for: mapping, spatial analysis, 

vector and raster processing, etc. 

- ArcSWAT v2012.10_2 license ESRI company (free download) is an ArcGIS-

ArcView extension and graphical user input interface for SWAT (Soil and 

Water Assessment Tool) model. The SWAT Model is a public domain model 

https://www.esri.com/en-us/home
https://www.aquaveo.com/
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developed by a group of scientists from the USDA-Agricultural Research 

Service; USDA-Natural Resources Conservation Service, and Texas A&M 

University. It is “a sophisticated basin-scale computer model that predicts 

impacts of weather, soils, land use and land management on water supplies 

and pollution as well as soil erosion, fertility and crop production” (Scopel, 

2012). 

- Borg MOEA source code in C language licensed to Pennsylvania State 

University, USA (Hadka and Reed, 2013) (http://borgmoea.org) . Borg MOEA 

is an optimization algorithm for multi and many-objectives optimization 

problems.  

3.3 Research Methods 

3.3.1 Comprehensive IWRM approach  

Based on IWRM definition, principles, and challenges described in section 2.2 

in Chapter two, a comprehensive approach combines all water supply and demands 

processes is proposed using multi-objectives evolutionary optimization algorithm.  

Briefly, the nexus of water demands (social, environmental, economic), water 

system infrastructure (dams, barrages), water cycle (surface water, groundwater, 

reused water), and nature complexity (physical and environmental barriers) are 

developed using MOEA. Figure 1 illustrates the comprehensive IWRM model’s 

schematic diagram proposed at a river basin level. Hence, this approach address bullet 

points 1 and 2 in Chapter two. As MOEA driving the nexus between approach features, 

a generous descriptive is deployed to identify its model key pillars.   

 

http://borgmoea.org/
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Figure 1. Comprehensive IWRM approach schematic diagram at a river basin level 

 

3.3.2 Multi-Objectives Optimization Problems Identification 

The main components of the evolved process in EAs are population, 

chromosome, and gene, as illustrated in Figure 2. The process of generating new gens 

(solutions) in evolutionary algorithms depends on the following characteristics 

(Simon, 2013): 

1- Representation: refer how define the individual, which could be binary or real-

value. 
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Figure 2. Evolutionary algorithms main evolve components 

 

2- Selection:  refer to the techniques to use parents in the next generation. Some of 

these are Truncation selection, Roulette wheel selection, Tournament selection, 

and Neighborhood selection. 

3- Recombination: refer to the method to combines gens of the selected parents, 

which depend on the type of the representation (bits or value of gene). 

4-  Mutation: refer to the method of the change on a single gene of the parent. It has 

two types: switching bits, or updating the value of the gene, which depend on the 

type of representation. 

5- Fitness function: refer to the intuition about the quality of the individual 

6- Survivor decision: refer to the survival of the best individuals, which is about 

Elitism process. 

Figure 3 shows the general flowchart for generating new solutions by EA, 

which represents the aforementioned six steps. While Figure 4 illustrates detail of 

crossover and mutation mechanism in EA to produce new solutions. Literature 

deployed many types of mutation and crossover operators used in EA (Geetha and 

Kumaran, 2013). Detail of a brief list is out of the scope of the current research, as the 

focus will be on those used by the candidate EA in chapter 5.  
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Figure 3. EA’s flowchart for generating new solutions 

 

The evolution mechanism needs many parameters to set, which differ from one 

type to another, however the main parameters are (Deb, 2001; Simon, 2013): 

1- Population size (number of chromosome) 

2- Maximum number of generation 

3- Elitism factor 

4- Mutation rate 

5- Cross-over rate 

More details of evolutionary algorithms types, characteristics, and parameters 

can be found in Simon (2013).  
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Figure 4. Evolution process to produce new generations (solutions) in evolutionary 

algorithms (adapted from Deb, (2001); Simon, (2013)) 

 

Commonly, real-word optimization problems have multiple objectives. A brief 

explanation of some of the key concepts associated with multi-objective optimization 

problem may be described as follows. 

Minimize: F(x) = [f1(x),  . . .,   fM(x)]T  (1) 

Subject to: 𝑔𝑖(𝑥) ≥ 0, ∀𝑖 ∈ 𝑛𝑔 

                   ℎ𝑗(𝑥) = 0, ∀𝑗 ∈ 𝑛ℎ 

                   x ∈ X 

  

X  Rn is the decision space, i.e., X = [xL, xU] where x = [x1, x2, …, xn]T is the decision 

variable vector of dimension n; and xL and xU are the vectors of the lower and upper 

bounds on x, respectively.  F(x) consists of M objective functions fi : X →Z  RM, 

where i = 1, …, M, and Z is the objective space feasible region containing all decision 

variables in X that satisfy all constraints. The 𝑔𝑖(𝑥) and ℎ𝑗(𝑥) represents the ith of 𝑛𝑔 
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and jth for 𝑛ℎ inequality and equality constraints, respectively. For unconstraint 

problems, 𝑛𝑔 = 𝑛ℎ = ∅, and Z = X. 

 In multi-objective optimization problems, there is more than one optimum 

solution hence a consistent approach is required to determine the solutions that are 

superior, and the concept of Pareto-optimal dominance is used widely (Stadler 1979, 

Miettinen 1999, Deb 2001). Superior solutions are said to dominate inferior solutions, 

and briefly: 

1- In a minimization problem, a vector u = (u1,  . . . , uM)T  is said to dominate 

another vector v = (v1, . . . , vM)T  if ui ≤ vi  for  i = 1,  . . . , M and u ≠ v. This 

property may be denoted as u ≺ v. 

2- A feasible solution x∈ X is called a Pareto-optimal solution, if there is no 

alternative solution y∈ X such that F(y) ≺ F(x). 

3- The Pareto-optimal set, PS, is the union of all Pareto-optimal solutions, and 

may be defined as PS = {x ∈ X :∄y ∈ X, F(y) ≺ F(x)}.  

4- The Pareto-optimal front, PF, is the set comprising the Pareto-optimal 

solutions in the objective space in a multi-objective optimization problem. It 

may be expressed as PF = {F(x)|x ∈ PS}. 

Figure 5 illustrates the solution space (X), objective space (Z), Pareto-optimal set (PS) 

and Pareto-optimal front (PF).  
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Figure 5. Illustration of Pareto-optimality. X is the solution space and  Z is the 

objective functions space (adapted from Deb, (2001)). 

 

The same above principles are applicable for many-objectives optimization 

problems, as the number of objectives is larger than 3 (M  3) (Maier et al., 2014; Li 

et al., 2015). The above argument demonstrates three MOEA problem’s key pillars; 

objective function, decision variables, and constraints (for constraint problem). 

  

3.3.3 MOEA Problem’s Pillars identification 

The MOEA problem’s model development requires identification of relevant 

decision variables, objectives functions, and constraints that essentially depends on 

decision makers’ decision and system barriers (Maier et al., 2014). Thus, based on the 

adopted case study, adopted objectives and decision variables are shown in Table 1. 

In addition to the above, water resources management has many potential 

uncertainties, which leads to different risk severity, including climate change, political, 

social, economic, future water demands, and urbanization development components 

(Kong et al., 2017; Maier et al., 2014). 
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Table 1. illustrates the adopted decision variables and objectives of Diyala River basin 

based on decision makers’ decisions (Alsaffar, 2017) 

System 

infrastructure 

Source 

of water 

Demand type Decision 

variable 

Not.* Objective Not.* 

Derbendikhan 

dam 

Surface - Hydropower Reservoir 

releases 

x1 - Hydropower 

- Releases  

𝑓𝑝𝑜𝑤𝑒𝑟𝐷 

𝑓𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝐷 

Wells Ground - Agriculture 

- Sustainable 

use 

No. of 

pumping 

wells 

x3 - Water deficit 

- Water losses 

- Storage 

mining 

𝑓𝐷𝑒𝑙−𝑆𝑊−𝐺𝑊 

𝑓𝑊𝐿 

𝑓𝑚𝑖𝑛𝑖𝑛𝑔 

Himren dam Surface - Water supply 

- Agriculture 

- Hydropower 

Reservoir 

releases 

x2 - Water deficit 

- Hydropower 

𝑓𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝐻 

𝑓𝑝𝑜𝑤𝑒𝑟𝐻 

Diyala Barrage Surface - Agriculture -  - Regulation 𝑓𝑟𝑖𝑣𝑒𝑟𝐵 

* Notation 

 

In order to evaluate risk priority, a risk assessment matrix has been proposed 

widely in literature, which illustrates the relationship between the activity frequency 

(or likelihood) and its impact, as in Figure 6.  The “Risk”, or the “Risk priority”, is 

equal to the product of the Likelihood by the Impact level (Risk = Likelihood × Impact) 

(Anthony Cox, 2008). 

For Diyala River basin management strategy, Table 2 illustrates the possible 

major risks that may develop in the basin with its likelihood, impacts, degree, and 

proposed methods for addressing these risks (Alsaffar, 2017; Horne et al., 2016; Maier 

et al., 2014).  

The possible future climate change risk (or impact) in Diyala River basin was 

investigated by Abbas et al. (2016) using Three General Circulation Model (GCM) 

A2, A1B and B1. The study shows moderate impact may occur for the next half 

century. This impact is directly affecting River basin water resources, which can be 

addressed using predicted reservoir inflows or sometimes called scenarios inflows 

(Maier et al., 2014; Maier et al., 2016; Alsaffar, 2017). 
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Figure 6. Simple (3×3) risk assessment matrix showing the impact - likelihood 

relationship to demonstrate risk priority 

 

Table 2. Diyala River basin possible major risks and their priority (according to the 

risk assessment matrix in Figure 6) 

Risk type Likelihood Reason Risk 

Impact 

Risk 

degree 

Risk 

address 

Climate change Moderate According to GCMs 

models1 

Moderate1 Medium Inflows 

prediction 

Political  Moderate dispute water sharing2 Major4 High Inflows 

prediction 

Flood Minor Arid and semi-arid 

environment3+ two 

multipurpose dams4 

Major4 Medium Objective 

Unauthorized 

water use 

Moderate Regional-scale + 

legislation4 

Moderate4 Medium Decision 

variables 

Water pollutant Moderate Wastewater treatment 

plant4 

Major5 High Objective 

River 

Morphology 

Minor Controlled River flow4 Moderate4 Low Objective 

1 (Abbas et al., 2016); 2 (Abdulrahman, 2017); 3 (IPCC, 2007); 4 (Alsaffar, 2017); 5 (Kubba 

et al., 2014; Aenab and Singh, 2014)   

 

Consistency, projects development plan in out boarder upstream (in Iran) was 

alter as a major impact (Alsaffar, 2017) due to unsettled agreements for water sharing 
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between the two countries (Abdulrahman, 2017). This impact can also be 

conceptualized as predicted inflows (Maier et al., 2016).  

The flood probability in Diyala River is minor due to low rate of precipitation 

(arid environment (IPCC, 2007)) and the presence of two large multipurpose dams, 

which flood protection is one of its operation objectives (Alsaffar, 2017). However, its 

impact is high on communities in downstream regions. 

Another major risk facing Diyala river basin is the pollutant source from the 

large wastewater treatment plant (Al-Rustumiya), which discharges heavily polluted 

water to the river just before its confluence with Tigris River (Kubba et al., 2014; 

Aenab and Singh, 2014). However, pollutant levels are likely changed (or moderate) 

due to: seasonal time-scale and treatment performance of Al-Rustumiya plant (Aenab 

and Singh, 2014).    

Further, the risk of riverbed changes (degradation and aggregation) is minor 

since the river discharge is controlled by two dams (Alsaffar, 2017), which mitigate 

sever or dramatic changes in riverbed due to large discharge in flood time. However, 

moderate impact could be assigned for sediment aggregation in the river, which may 

reduce river flow capacity and cause navigation problems (Alsaffar, 2017).  

According to the previous studies, the last three risks: flood, water pollutant, and 

river morphology can be addressed as objectives in an optimization management 

model (Horne et al., 2016).  

Unauthorized water consumption for irrigation process is another risk observed 

recently in the river basin due legislations changes and political issues. However, 

moderate likelihood and impact is assigned for the current risk since new legislations 

may be approved to restrict unauthorized consumption; and it occurs in certain regions 
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(regional-scale) in the river basin (Alsaffar, 2017).  Since water consumption for 

irrigation is a time-scale during the year and there is no information about its quantity, 

this can be conceptualized as decision variables (x4) (as water delivery) in the 

optimization management model (Maier et al., 2016). 

The real-world water resources management systems are restrained by physical 

and environmental barriers (or constraints) (Horne et al., 2016). Physical constraints 

are relevant to water control infrastructures like dams and barrages, as they have 

limited storage, power generation, and discharges. Other issues like ecosystem life, 

water quality, and river morphology are relevant to environmental constrains, as they 

are a decision making dependent (Maier et al., 2014; Horne et al., 2016). Accordingly, 

two objectives are proposed to handle system constraints: 𝑓𝑝ℎ𝑦−𝑀 for physical 

constrains, 𝑓𝑀𝐷 for combination of both constraints.  

As a result, the 17 Objectives are proposed to represent the comprehensive 

IWRM approach of Diyala River basin, as illustrated in Table 3 with their description.  

Figure 7 demonstrates the comprehensive IWRM approach objectives of Diyala River 

basin, based on Table 3. The right side illustrates the actual system of Diyala River 

basin, while the left side illustrates the relevant conceptual physical model features 

with their target objectives.  

In addition to the mentions objectives, two inflows scenarios are presented to 

represent the impacts of climate change and politics, as proposed in Table 2. The 

historical dataset is analysed, reformed, and projected for the next decades to 

conceptualized uncertainties of future events. The details are in Chapters seven and 

Eight, as they address bullet point 6 in Chapter two. 
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Table 3. Comprehensive IWRM approach of Diyala river basin showing adoptive 

objectives and their description 

No. Objective  Description 

1 𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐷 Maximize Derbindikhan reservoir storage in winter 

2 𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐷 Minimize Derbindikhan reservoir storage in summer 

3 𝑓𝑝𝑜𝑤𝑒𝑟𝐷 Maximize Derbindikhan power generation 

4 𝑓𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝐷 Maximize Derbindikhan releases 

5 𝑓𝐷𝑒𝑙−𝑆𝑊−𝐺𝑊 Minimize water deficit after Derbindikhan dam (surface + 

groundwater) 

6 𝑓𝑊𝐿 Minimize infiltration water losses  

7 𝑓𝑚𝑖𝑛𝑖𝑛𝑔 Minimizing groundwater storage mining 

8 𝑓𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝐻 Minimize water deficit after Himren dam 

9 𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐻 Maximize Himren reservoir storage in winter 

10 𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐻 Minimize Himren reservoir storage in summer 

11 𝑓𝑝𝑜𝑤𝑒𝑟𝐻 Maximize Himren power generation 

12 𝑓𝑟𝑖𝑣𝑒𝑟𝐵 Minimize discharge fluctuation after Diyala Barrage  

13 𝑓𝑇𝐷𝑆−𝐷𝑌 Minimize pollutant in Diyala river  

14 𝑓𝑇𝐷𝑆−𝑇𝑅 Minimizing pollutant in Tigris river 

15 𝑓𝐷𝑌−𝐵𝐶𝐻 Minimizing riverbed changes in Diyala river 

16 𝑓𝑝ℎ𝑦−𝑀 Minimizing physical model violation 

17 𝑓𝑀𝐷 Minimizing total model violation 

 

 

Figure 7. The Comprehensive IWRM objective’s approach of Diyala River basin 
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To mitigate river basin water scarcity, agriculture water exploitation reduction 

is a key factor. Hence, replacing the traditional open furrows water delivery system 

with drip system (as an alternative) is assessed in the middle part of the river basin. 

The current option address bullet point10 in Chapter two. The details are presented in 

Chapter five. 

 

3.3.4 Groundwater Numerical Model 

Although three objectives are adopted to conceptualize groundwater 

management model, a numerical model is evident for boundary recharge estimation, 

as highlighted in bullet point 8 in Chapter two. Thus, 3D groundwater flow is modelled 

using MODFLOW-2005 in GMS v9.2 software (Groundwater Modelling Software). 

A complete model details are presented in Chapter five.  

Statement-2 

To this extend, the proposed comprehensive IWRM approach and their objectives 

address the bullet points 1, 2, 6 to 10, with reference to Chapter two. 

 

3.3.5 MOEA’s Problematics Addressing 

The literature describes performance and parameterize problematics in MOEA, 

as highlighted in bullet points 3, 4 and 5 in Chapter two. Thus, based on Statement-2 

in Chapter two, Borg MOEA’s achievement and methodology will be analysed and 

assess. First of all, a brief description is presented to identify Borg MOEA potentially 

novel techniques. 
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3.3.5.1 Borg MOEA Identification 

Hadka and Reed (2013) introduced Borg MOEA for many-objective optimization 

problems, with many features to overcome the weaknesses of other algorithms such as 

the following: 

- Preservation of the best solutions found and diversity to overcome the deterioration 

phenomenon that MOEA suffers in many-objective optimization problems (Hanne 

1999). This phenomenon occurs when one or more solutions found by the MOEA 

at time t2 are dominated by solutions found at an earlier time t1, where t1 < t2. This 

occurs because the number of non-dominated solutions increases with increasing 

number of objectives and the difficulties of comparison in the high-dimensional 

space (Wang et al., 2015). 

- Assessment of stagnation and search progress to avoid  premature convergence to 

local optima (Hadka and Reed 2013). 

- Restart feature with adaptive population size to preserve search variety on highly 

multimodal problems (Tang et al., 2006). 

- Improved search progress and efficiency using six recombination operators 

combined with auto-adaptive operator selection aimed at deploying the most 

appropriate combination of operators when solving real-world problems (Vrugt et 

al., 2009). 

These features are described briefly in the following paragraphs. 

1- Non-domination and Algorithm Progress: Borg MOEA uses an active population 

of solutions and an external archive that stores dominant solutions, and the 

population size is proportional to the archive size. Initially, the archive is empty; 
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hence an initial population size is required. Subsequently, the population size 

changes as follows (Hadka and Reed, 2013): 

𝑅𝑎𝑡𝑖𝑜𝑃𝐴 =
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒

𝐴𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑖𝑧𝑒
 𝑟𝑎𝑡𝑖𝑜𝑃𝐴 ≥ 1 (2) 

Where 𝑅𝑎𝑡𝑖𝑜𝑃𝐴 is the ratio of the population size to the archive size. Hadka and 

Reed (2013) suggested 𝑅𝑎𝑡𝑖𝑜𝑃𝐴 = 4.  

 The objective space in Borg MOEA is divided into hyper-boxes whose 

dimensions are equal to  (Laumanns et al., 2002). The concept of the -box index 

vector is used to assess the dominance of alternative solutions instead of the 

objective function values. The algorithm calculates this index by dividing the values 

of the objective functions by  and setting the result as the next integer. If two or 

more solutions are in the same -box, the dominant solution among these is the one 

which is nearest to the lower left corner of the 𝜖-box in the case of a minimization 

problem. Usually, the  value is predefined by the user, depending on the problem 

complexity and on the required accuracy of the results.  

 The concept of -progress is employed also, to measures the improvements 

while searching for new solutions. If the algorithm finds new dominant solutions in 

a new unoccupied -box, in other words, if the new dominant solutions have 

different -box indices, it means that there is improvement. On the other hand, if 

the new dominant solutions are located at previously occupied hyper-boxes, i.e. if 

they have the same -box indices for a certain number of evaluations, a revival 

process will occur to escape from any local optima.  

 A restart procedure is used to revive the algorithm, to escape from any local 

optima. The restart involves emptying the population and re-populating based on 
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the population to archive ratio (Equation 2). The population is refilled using all 

solutions in the archive. Any remaining empty slots in the population are filled with 

solutions created by uniform mutation of solutions that are selected randomly from 

the archive. The trigger for the revival process depends on any of the following 

three conditions: 

- If there is no change in the archive size for a certain number of evaluations;  

- If there is no improvement indicated by the 𝜖-progress indicator;  and 

- If the current population to archive ratio exceeds 1.25×𝑅𝑎𝑡𝑖𝑜𝑃𝐴.  

 

2- Recombination Operators: The recombination process or crossover depends on 

chromosomes taken from parents to generate new chromosomes. Geetha and 

Kumaran (2013) reviewed several types of crossover operators used in evolutionary 

algorithms; but, only the operators used in Borg MOEA are considered here. In 

Borg, six recombination operators are used, as follows: 

a. Simulated binary crossover (SBX) (Deb and Agrawal 1994) 

b. Differential evolution (DE) (Storn and Price 1997) 

c. Parent-centric crossover (PCX) (Deb et al., 2002) 

d. Unimodal normal distribution crossover (UNDX) (Kita et al., 1999) 

e. Simplex crossover (SPX) (Tsutsui et al., 1999) 

f. Uniform mutation (UM) (Michalewicz et al., 1994) 

Furthermore, the polynomial mutation (PM) (Deb and Agrawal 1999) is applied to 

the offspring produced by all operators except for the UM. An overview of the 

above-mentioned operators is provided in the supplementary data in Chapter five. 
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3- Self-adaptive Operator Selection: Borg-MOEA employs a framework in which the 

deployment of recombination operators depends on the search environment, stage 

of the optimization process and relative success of each operator.  The mechanism 

for selecting the operators is as follows. The algorithm calculates the probability 

𝒫𝑖
𝑁𝐷𝑆 for each operator based on the number of dominance solutions 𝑁𝐷𝑆𝑖 

produced by that operator in the archive.  

𝒫𝑖
𝑁𝐷𝑆 =

𝑁𝐷𝑆𝑖 + 𝜏

∑ (𝑁𝐷𝑆𝑗 + 𝜏)𝑁𝑅𝑂
𝑗=1

 
𝑖, 𝑗 = 1,2, … 𝑁𝑅𝑂 (3) 

where 𝑁𝑅𝑂 is the number of recombination operators and  = 1.0 is a constant used 

to avoid zero probabilities. The algorithm updates the probabilities periodically 

using Equation 3.  

After the initial random seeding, the algorithm selects one operator at random 

at the start of the algorithm when all 𝑁𝐷𝑆𝑖 are zero and selects one parent randomly 

from the archive.  If the number of parents required is k, the remaining (k-1) parents 

are selected from the population using tournament selection to generate a new 

offspring, as shown in Figure 8. Hadka et al. (2012) observed that after certain 

number of function evaluations, the algorithm tends to use one recombination 

operator until the end of the optimization partly due to Equation 3. More details are 

available in Hadka and Reed (2013). 

 

3.3.5.2 Borg MOEA Assessment 

A real-world reservoir management problem is selected from Chenari et al. 

(2014) to assess algorithm’s achievement and behaviour, since MOEA achievement 

may vary with different problems environments, as highlighted in Chapter two. The 
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assessment details are presented in Chapter four, as two published papers. Borg MOEA 

show compete results in compare with Genetic Algorithm (GA), however problematics 

in operators’ auto-adaptive techniques are observed (Equation 3).  

 

 

Figure 8. Overview of Borg MOEA flowcharts. k1 and k2 are the number of parents 

selected from the main population and dominance archive, respectively, while k is the 

total number of parents needed by adopted operator. NFE is the number of function 

evaluations with maximum value = NFEmax (adapted from Hadka and Reed (2013)) 

 

Further, based on insight experimental investigation on benchmark functions 

(DTLZ series), insufficient behaviour of key techniques is observed. For example, 
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restart technique may lead exploration toward local optima pitfall and/or restrain 

algorithm convergence, as it recycles archive’s dominance solutions periodically. 

Accordingly, failure to achieve global or near global optimum may occur. In the same 

context, the algorithm follows random sequence to select candidates from the 

population to produce new generations (solutions) (Figure 8). Hence, not all 

population members are employed which reduce exploitation and exploration of 

design search space at initial stage. This may tend delay in algorithm convergence or 

loss optimality achievement (Zecchin et al., 2012, Zheng et al., 2016). Thus, 

modification and/or advance methodology is evident. 

 

3.3.5.3 New MOEA’s Algorithm Development 

New Evolutionary algorithm is developed entitle “Epsilon-Dominance-Driven 

Self-adaptive Evolutionary Algorithm” (-DSEA) to address Borg MOEA and other 

MOEA weakness techniques that highlighted in bullet-4 in chapter two. The -DSEA 

approach comprises many novel features including: (i) Diversity expansion; (ii) Self-

adaptation of the control parameters of recombination operators; (iii) Exploration 

extension; and (iv) Virtual dominance archive. The algorithm’s details and 

performance achievement are demonstrated in chapter five. Accordingly, the 

algorithm is adopted to implement the comprehensive IWRM approach. Comparative 

analyses of -DSEA with Borg MOEA are carried out from Chapters five to seven to 

address bullet point 3 in Chapter two. 
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3.3.5.4 MOEA’s Convergence Booster 

Based on bullet point 5 in Chapter two, a convergence booster is developed 

named “Auto-Adaptive Constraints” (AAC). The AAC methodology is based on 

combining the penalty formula and model violations with dynamic nexus, which 

releases the chain of constraints gradually when large values of violation observed, 

then reinforces these chains at small values when decision variable values approaching 

feasible region, as shown in Figure 9. Details of AAC formula is presented in Chapter 

seven. 

 

Figure 9. Auto-Adaptive Constraints (ACC) methodology to boost MOEAs’ 

convergence  

 

Statement-3 

As a result, the adopted methods succeed to achieve all the 10 bullet points 

highlighted in Chapter two. 

 

3.3.6 IWRM Approach’s Mathematical Expressions Identification 

The mathematical expressions are developed in sequence starting from 

Derbendikhan dam in the north, towards river confluence with Tigris River in the south 
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of Diyala River basin. Detailed objectives and constraints’ expressions are delivered 

in the next chapters as papers submitted for publishing in well-known, high Impact 

Factor journals, as follows: 

- Derbendikhan dam management model: Chapter five 

- Groundwater   management model: Chapter six 

- Himren dam management model: Chapter seven 

- Entire Diyala River basin management model: Chapter eight 

A C language code is developed to conceptualize all mathematical expressions 

of Diyala River basin management models. 

 

3.4 Summary  

Research’s materials and methods are presented in this Chapter to address the 

10 bullet points highlighted in Chapter two. Sources of all database and maps used are 

described, as well as the software.  Research methods are presented based on 

comprehensive IWRM approach layout. The approach interconnects; social, 

environmental, and economic demands with water control infrastructures using multi-

objective evolutionary algorithm (MOEA). Thus, MOEA formulation was presented, 

and their main pillars are demonstrated as: decision variables, objectives, and 

constraints, on which mainly decision makers’ depend. A brief identification of current 

Diyala River basin pillars is achieved based on decision makers’ expertise. Additional 

pillars are proposed to address possible uncertainties and risks derived from the 

literature and the decision makers. Consistency, a 3D groundwater flow model is 

developed to address management bullet. In order to address MOEA’s dilemmas, the 

nominated optimization algorithm Borg MOEA novel techniques is identify, as well 
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as its achievement in solving real-wold reservoir management problem. Potential 

weakness is observed, hence new MOEA is developed (-DSEA) to tackle these issues. 

A novel methodology to reduce the convergence time of MOEAs is proposed to tackle 

the pitfall of penalization in constraints handling. To this extent, all 10 bullet points 

are addressed to underpin the path to a comprehensive IWRM approach, as their 

pillars’ mathematical expressions are illustrated in the next chapters.     
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CHAPTER FOUR 
 

ASSESSMENT OF 

EVOLUTIONARY OPTIMIZATION 

ALGORITHM 
 

4.1 Introduction 

The previous chapter illustrates research’s materials and methods. One of the 

methods’ key element is the assessment of the nominated optimization algorithm Borg 

MOEA. References show that drawbacks may occur in algorithms’ results over 

different problem environments, as well as high-dimension computational complexity 

problems.   

In order to assess Borg MOEA achievement in water resources management 

problems, an illustrative example of a real-world reservoir management problem was 

selected from the literature, as its operation rule was developed using Genetic 

Algorithm (GA). The reservoir is location in Iran, the western neighbor of Iraq, having 

consistent regional weather conditions. The assessment was accomplished as two 

papers published in peer review journals. The first paper (conference version) was 

published in Water Utility journal, and the second paper published in Journal of 

Environmental Management, as follows: 

- Al-Jawad, J.Y., Tanyimboh, T.T., 2017a. Assessment of evolutionary algorithm for 

reservoir operation. Water Util. J. 15, 45–51. 

- Al-Jawad, J.Y., Tanyimboh, T.T., 2017b. Reservoir operation using a robust 

evolutionary optimization algorithm. J. Environ. Manage. 197, 275–286. 

https://doi.org/10.1016/j.jenvman.2017.03.081.  



Chapter Four  Assessment of Evolutionary Optimization Algorithm  

4-2 
 

 

“The following work represents my efforts, such as:  theoretical formalism 

development, analytic calculations and numerical simulations, writing the manuscript. 

Dr. Tanyimboh, T.T., was the project supervisors, and provided assistance and support 

when required” 
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4.2 Paper 1 

Al-Jawad, J.Y., Tanyimboh, T.T., 2017a. Assessment of evolutionary algorithm 

for reservoir operation. Water Util. J. 15, 45–51.1 

 

Assessment of Evolutionary Algorithm for Reservoir Operation 

Jafar Y. Al-Jawad1, Tiku T. Tanyimboh2 

1,2 Department of Civil and Environmental Engineering, University of Strathclyde Glasgow, 

75 Montrose St, Glasgow G1 1XJ 
1 jafar.al-jawad@strath.ac.uk, 2 tikutanyimboh@hotmail.co.uk 

 

Abstract 

The complexity of water resources management problems, especially for multipurpose 

reservoirs, increases the motivation to find a robust method to overcome this challenge. 

Evolutionary optimization algorithms are used widely to handle reservoir management 

problems. In this research, one of the competitive methods of optimization named Borg 

MOEA was used to achieve reservoir operation control. A case study from the 

literature was used to test the algorithm’s performance on this type of problems. The 

objective was to reduce the difference between reservoir releases and water demands 

and also to maintain a suitable amount of storage in the reservoir. The adopted method 

produced competitive solutions by improving the objective function value 

significantly when compared with the result in the literature. In addition, the quantity 

of water stored in the reservoir was increased.  

 

Keywords: Evolutionary optimization algorithm, Borg MOEA, reservoir operation, 

multipurpose reservoir system. 
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mailto:tiku.tanyimboh@strath.ac.uk
mailto:jafar.al-jawad@strath.ac.uk


Chapter Four  Assessment of Evolutionary Optimization Algorithm  

4-4 
 

1. INTRODUCTION 

In recent decades, significant demands on water exploitation were observed. 

This raises the difficulties to manage and allocate water in a sustainable way. 

Reservoirs are essential  for water resources management in a river basin which needs 

a powerful method for optimum operation strategies (Jothiprakash and Shanthi 2006).   

Multipurpose reservoirs are widely used to serve many demands for domestic, 

industrial, irrigation, environment, hydropower production and flood control to satisfy 

the mentioned demands and maximize the economic benefits. These types of problems 

are complex because of nonlinear storage-inflow relationship, conflicting objectives, 

dynamic properties, constraints, etc. (Haimes and Hall 1977). Many methods for 

optimization were found to solve complex problem such as linear programming, non-

linear programming, and dynamic programming. But these methods are generally not 

suitable for multipurpose reservoirs  as  Yeh (1985) observed. 

To solve these types of problems, a new approach has been found based on 

evolutionary algorithms (EAs). EAs   use  a set of solutions as population, rather than 

one solution in every iteration (Deb, 2001). Many researchers adopted EAs to solve 

complex problems in different fields of science and engineering (Coello et al. 2007). 

In the field of water management, Javadi et al. (2015) used non-dominated sorting 

genetic algorithm (NSGA-II) to optimize seawater intrusion in coastal aquifer. 

Seyoum et al. (2016) used a penalty-free approach in water distribution network 

design. Sidiropoulos et al. (2016) used simulation-optimization for groundwater 

management. Additionally, Oxley and Mays (2016) applied a genetic algorithm (GA) 

for long-term planning and sustainable water resources management. Tigkas et al. 

(2016) investigated the efficiency of evolutionary algorithms for the calibration of a 
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conceptual hydrologic model. In the area of integrated urban wastewater management, 

Rathnayake and Tanyimboh (2015) developed a methodology to control combined 

sewer overflows that combined a multi-objective algorithm and the storm water 

management model (SWMM 5.0) (US Environmental Protection Agency) (Rossman, 

2009). 

For reservoir operation and management, Ahmad et al. (2014) reviewed 

common optimization algorithms used in this field. In addition, Choong and El-Shafie 

(2015) compared different optimization algorithms used in reservoir management. 

Noori et al. (2013) used a GA to solve a multi-reservoir problem to maximize both 

hydropower production and flood protection. Chenari et al. (2014) also used a GA to 

assess the operation of a reservoir. Pianosi et al. (2011) combined an artificial neural 

network and a multi-objective GA (MOGA) for reservoir management. Zou and Wu 

(2012) applied MOGA to maximize both power generation and irrigation benefits. 

Scola et al. (2014) used NSGA-II, Hosseini-Moghari et al. (2015) applied two 

optimization algorithms, and Tayebiyan et al. (2016) applied a GA to optimize 

hydropower generation. Azizipour et al. (2016), implemented a weed optimization 

algorithm for hydropower production. Furthermore, Qi et al. (2016) proposed a multi-

objective immune optimization algorithm for flood control. Chen et al. (2016) 

proposed a parallel strategy for NSGA-II to optimize reservoir operation.  

In this study, a recently introduced algorithm, Borg MOEA, was selected to 

solve a reservoir operation problem. The aim of the current study was to test the 

performance of the above-mentioned algorithm on a real-word reservoir operation 

problem, based on a case study from the literature.   
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 Hadka and Reed (2013) introduced Borg MOEA for many-objective and 

multimodal optimization problems. Some of the features in Borg MOEA include (a) 

diversity preservation; (b) tracking of the optimization progress and stagnation; and 

(c) restart to move away from any local optima. The algorithm uses six recombination 

operators to improve the search process. 

To preserve diversity, the objective space is divided into hyper-boxes whose 

dimensions are equal to 𝜖; the value of 𝜖 is specified by the user. The 𝜖-index vector 

is used for dominance evaluation instead of the objective function values. The 

algorithm calculates this index by dividing the objective function value by 𝜖, and the 

result is taken as the next integer number. If two or more solutions are in the same 𝜖-

box, the dominant solution among these is the one which is nearest to the lower-left 

corner of the 𝜖-box in the case of a minimization problem. 

To detect stagnation, Hadka and Reed (2013)  employed 𝜖-progress, which 

measures  progress while searching for new solutions. If the algorithm finds new 

solutions in a new previously unoccupied 𝜖-box, it means that there is progress and the 

algorithm is allowed to continue. On the other hand, if there is no improvement found 

based on 𝜖-progress for a certain number of function evaluations, a revive procedure 

occurs, to search for additional solutions and  escape from the local optima. The details 

of the revive procedure are available in Hadka and Reed (2013).   

Finally, the algorithm depends on six recombination operators to produce 

offspring. In fact, in Borg MOEA, the selection of the recombination operators is 

competitive, and evolves depending on the environment of the problem. These 

operators are: Simulated Binary Crossover (SBX) (Deb and Agrawal 1994), 

Differential Evolution (DE) (Storn and Price 1997), Parent-Centric Crossover (PCX) 
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(Deb et al. 2002), Unimodal Normal Distribution Crossover (UNDX) (Kita et al. 

1999), Simplex Crossover (SPX) (Tsutsui et al. 1999) and Uniform Mutation (UM) 

(Michalewicz et al. 1994). Furthermore, the Polynomial Mutation (PM) operator (Deb 

and Agrawal 1999)  is applied  to the offspring  produced by all operators except for 

UM.  

2. RESERVOIR OPTIMIZATION MODEL  

Usually, multipurpose reservoirs serve many goals, like hydropower 

generation, domestic water supply, agricultural water supply, flood protection and 

other environmental management issues. In this study, the reservoir system consists of 

a single multipurpose dam constructed to control water discharge in the river for 

irrigation, domestic water supply, flood control and hydropower generation purposes. 

This type of dams has many economic benefits.  

In the proposed model, three types of constraints were adopted for the 

operation and control of the reservoir system as follows.  

The volume of storage in the reservoir is limited between the dead storage and 

the maximum capacity of the reservoir and can be expressed as 

   𝑆𝑚𝑖𝑛 ≤ 𝑆𝑡 ≤ 𝑆𝑚𝑎𝑥 ; t = 1, …, 12                   (1) 

where St is the initial storage at the beginning of month t, t = 1 . . .12; Smin is the dead 

storage of the reservoir; and Smax is the maximum storage of the reservoir. 

The releases from the reservoir should be between the minimum and maximum 

values, i.e. 

     𝑅𝑚𝑖𝑛 ≤ 𝑅𝑡 ≤ 𝑅𝑚𝑎𝑥; t = 1, …, 12                   (2) 

where Rt is the mean monthly water release for the month t; Rmax is the maximum 

release of the reservoir; and Rmin is the minimum releases of the reservoir. 
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To ensure reservoir storage sustainability, another constraint was adopted in 

this study, which ensures that the amount of storage in the first month of the next year 

will be equal to or greater than the initial storage. This constraint can be expressed as 

   𝑆13 ≥ 𝑆1                      (3)  

where 𝑆1 is the initial storage at the start of the first month and 𝑆13 is the reservoir 

storage in the first month of the next year. 

A drought condition was considered, to test the algorithm’s ability to find near-

optimal solutions in such critical conditions. To simulate this condition, 50% of the 

standard deviation of the monthly average inflow for many years was subtracted from 

the origin inflow as follows. 

 

   𝐼𝑡 = 𝐼𝑡
′ −

𝑆𝐷𝑡

2
;   t = 1, …, 12                                       (4) 

where, for month t, 𝐼𝑡   is the reduced reservoir inflow; 𝐼𝑡
′  is the original reservoir 

inflow; and 𝑆𝐷𝑡 is the standard deviation of the reservoir inflow for month t. 

The fitness function, that is to be minimized, for the reservoir operation can be 

expressed as 

   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 = [∑(𝑅𝑡 − 𝐷𝑡)2 + ∑(𝑆𝑡 + 𝐼𝑡 − 𝑆𝑡+1 − 𝑅𝑡 − 𝐸𝑡)2

12

𝑡=1

12

𝑡=1

] (1 + 𝐶)        (5) 

 

Dt is the mean monthly downstream water demand for the month t. St is the initial 

storage, i.e. the storage at the beginning of month t, where t = 1, …, 12, while St+1 is 

the final storage at the end of month t. Et is the mean monthly evaporation from the 

reservoir during the month t and C is a penalty for constraint violations. The first term 

in the (square) brackets in Equation 5 represents the sum of the squares of the 
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differences between the reservoir releases and the demands. The second term in the 

(square) brackets represents the sum of the squares of the errors in the flow continuity 

equation; this term should be zero, to satisfy the principle of conservation of mass. 

The penalty function used is 

    𝐶 = ∑ ∑ 𝑔𝑡𝑗(𝑆𝑡)                                                                                                            (6)

𝑁𝐶

𝑗=1

12

𝑡=1

 

where NC = 4  is the number of constraint functions. The function gtj, with j = 1 to 4 

and t = 1 to 12, is defined for the various reservoir conditions as follows.   

    𝑔𝑡1(𝑆𝑡) = (𝑆𝑚𝑖𝑛 − 𝑆𝑡) × 100, for 𝑆𝑡 < 𝑆𝑚𝑖𝑛 ; t = 1, …, 12                         (7) 

    𝑔𝑡2(𝑆𝑡) = (𝑆𝑡 − 𝑆𝑚𝑎𝑥  ) × 100, for 𝑆𝑡 > 𝑆𝑚𝑎𝑥 ; t = 1, …, 12              (8) 

    𝑔𝑡3(𝑆𝑡) = (𝑆1 − 𝑆13 ) × 100, for 𝑆13 < 𝑆1                 (9) 

    𝑔𝑡4(𝑆𝑡) = 0 , for 𝑆𝑚𝑖𝑛 ≤ 𝑆𝑡 ≤ 𝑆𝑚𝑎𝑥; t = 1, …, 12               (10) 

 

The penalty function method has some disadvantages regarding the 

convergence of evolutionary algorithms. The convergence rate is directly affected by 

the penalty function values. In general, the user specifies the penalty function after 

performing some trials. In addition, the performance of the penalty function may differ 

from a problem to another. Therefore, this function must be chosen carefully for each 

problem (Siew and Tanyimboh 2010).   

The mathematical model developed has some limitations. For example, very briefly, 

the period of operation considered is one year and seepage from the reservoir and other 

operational losses are neglected, as in Chenari et al. (2014). 
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3. RESULTS AND DISCUSSIONS 

A case study based on a real-world reservoir system in the literature (Chenari 

et al. 2014) was considered. Chenari et al. (2014) employed a Genetic Algorithm (GA) 

to optimize the reservoir operation for Mahabad dam in Iran. The aim was to minimize 

the deficits in the monthly water releases. The dam is located in the northwest of Iran 

and has an approximate watershed area of 807 km2. It is a cold semi-arid area with 

average annual rainfall of 542.58 mm. There is rainfall during the three months from 

February to April. The live storage and dead storage are 180 million m3 and 40 million 

m3 respectively. The minimum release was taken as zero, while the maximum release 

was 51.48 million m3 per month for the first six months of the year and 53.57 million 

m3 per month for the second six months of the year. Data for 32 years, from 1975 to 

2006, were used in Chenari et al. (2014) to obtain the average monthly inflows to the 

reservoir. More details  about the study area and the data can be found in Chenari et 

al. (2014). 

We wrote a computer program in the C language to solve the optimization 

problem in Equations 1 through 10. The algorithm has many coefficients and 

parameters as summarised in Table 1 (Hadka and Reed 2013).   

The algorithm was executed 10 times with 200,000 function evaluations in 

each run. Figure 1a shows the monthly reservoir releases and storage achieved by the 

GA in Chenari et al. (2014) while Figure 1b shows the results achieved by Borg 

MOEA. The value of the fitness function, Equation 5, using the GA was 185.3106 m3 

(Chenari et al. 2014) and for Borg MOEA it was 23.0135106 m3. 
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Table 1. Default parameter values used in Borg MOEA 

Parameter Value  Parameter Value 

Initial population size 100  SPX parents 10 

Tournament selection 

size 
2  SPX offspring 2 

Epsilon, 𝝐 0.01  SPX epsilon 2.0 

SBX crossover rate 1.0  UNDX parents 10 

SBX distribution index 15.0  UNDX offspring 2 

DE crossover rate 1.0  UNDX 𝜎𝜉
 0.5 

DE step size 3.0  UNDX 𝜎𝜂
 

0.35/√𝐿 

PCX parents 10  UM mutation rate 1/L 

PCX offspring 2  PM mutation rate 1/L 

PCX 𝝈𝜼
 0.1  PM distribution index 20 

PCX 𝝈𝜻
 0.1    

𝝐 is the dimension of the hyper-boxes in the objective space; 𝝈𝜼, 𝝈𝜻 𝒂𝒏𝒅 𝝈𝝃  are 

parameters of variance; and L is the number of decision variables. 
 

There were some deficits in the monthly releases, especially in the first two 

months (September and October). Also, the effect of the sustainability constraint on 

the releases is observed especially in the last five months from April to August, which 

causes some deficits in the releases in order to satisfy the requirement. 

For the algorithm itself, Figure 2 shows the convergence characteristics. It can 

be seen that the algorithm began to converge around 25,000 function evaluations. At 

25,000 function evaluations, the value of fitness function was about 65106 m3, i.e. 

less than the best value found using the GA in Chenari et al. (2014). Then, after 40,000 

function evaluations, the algorithm approached the best solution with a stable trend. 

The number of function evaluations for the GA (Chenari et al. 2014) was 525,000.  

Figure 2 also illustrates the effects of the penalty on the fitness function. It can 

be seen that the initial values were far away from the final solution. This observation 

seems to reflect the algorithm’s ability to converge early in the environment provided 

by the dynamic penalty function in Equation 6. 
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Figure 1. Reservoir operation results (a) Chenari et al. (2014 ) (b) Present approach 

 
Figure 2. Convergence characteristics of the fitness function using Borg MOEA 
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The execution of the algorithm took only a few seconds, i.e. fast outputs could 

be achieved repeatedly. The research outcomes could help the relevant planning 

authorities and decision makers to improve the economic benefits of reservoir projects. 

Furthermore, the results strengthen the motivation for future work to solve more 

complex water management problems in the real-world. 

4. CONCLUSIONS 

An evolutionary optimization algorithm was used in this study to solve a real-

world scenario reservoir operation and management problem. The state-of-the-art 

Borg MOEA optimization algorithm was selected to solve a multipurpose reservoir 

operation problem. A case study based on a reservoir system in the literature was 

selected to test the algorithm’s performance and reliability. The early results are 

encouraging. The fitness function was improved by 87.6%, from 185.3106 m3 to 

23.0135106 m3. The convergence was relatively quick. Furthermore, the results 

strengthen the motivation for future work to solve more complex water management 

problems in the real-world. 
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Abstract  

In this research, a significant improvement in reservoir operation was achieved using 

a state-of-the-art evolutionary algorithm named Borg MOEA. A real-world 

multipurpose dam was used to test the algorithm’s performance, and the target of the 

reservoir operation policy was to fulfil downstream water demands in drought 

condition while maintaining a sustainable quantity of water in the reservoir for the next 

year. The reservoir’s performance was improved by increasing the maximum reservoir 

storage by 14.83 million m3. Furthermore, sustainable water storage in the reservoir 

was achieved for the next year, for the simulated low flow condition considered, while 

the total annual imbalance between the monthly reservoir releases and water demands 

was reduced by 64.7%. The algorithm converged quickly and reliably, and consistently 

good results were obtained. The methodology and results will be useful to decision 

makers and water managers for setting the policy to manage the reservoir efficiently 

and sustainably.  

Keywords: Evolutionary optimization algorithm, reservoir operation policy, 

multipurpose reservoir system, reservoir drawdown limits, self-adaptive 

recombination, environmental water management 
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1. INTRODUCTION 

Multipurpose reservoirs are widely used to serve multiple demands for domestic, 

industrial, irrigation, environment, hydropower production and flood control, to 

maximize the economic benefits. These types of systems are complex because of the 

nonlinear storage-inflow relationship, conflicting objectives, dynamic properties, 

nonlinear constraints, etc. (Haimes and Hall 1977). In the field of water resources 

management, significant demands on water exploitation were observed in recent 

decades. This raises the challenge to manage and allocate water in a sustainable way, 

and reservoirs are essential  for water resources management in a river basin  

(Jothiprakash and Shanthi 2006, Horne et al. 2016) . 

 Many methods for optimization were found to solve different types of 

problems such as linear programming, non-linear programming and dynamic 

programming, etc. (Horne et al. 2016). However, the classical optimization methods 

are generally not suitable for such complex problems for a number of reasons. For 

example, typically, they provide a single local optimum solution.  Evolutionary 

algorithms on the other hand,  use  a population of solutions rather than one solution 

in every iteration (Deb 2001). In recent decades, evolutionary optimization algorithms 

were widely used in different fields of engineering and science to solve real-world 

problems (Coello et al. 2007). 

 Regarding engineering applications, Formiga et al. (2003) used the Non-

dominated Sorting Genetic Algorithm (NSGA II) to solve water distribution network 

problems. Régnier et al. (2005) applied NSGA II in electromechanical system design. 

In structural design, Tract (1997) used a genetic algorithm (GA) with Pareto ranking 

in truss design. Deb and Tiwari (2005) used NSGA II for design in the field of 
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mechanical engineering. In the field of civil engineering, Feng et al. (1999)  used a 

GA with Pareto ranking to optimize building construction planning.  

 To achieve effective operational management policies for water resources 

management problems, many researchers used different optimization approaches 

(Horne et al. 2016). Sharif and Wardlaw (2000) used a GA to maximize the 

hydropower production while allowing deficits to occur in irrigation supplies. Chenari 

et al. ( 2014) also used a GA to determine the releases from a reservoir. Furthermore, 

Tilmant et al. (2002) used fuzzy stochastic dynamic program to optimize the control 

rules for a multipurpose reservoir.  Kim and Heo (2006) used MOGA (multi-objective 

genetic algorithm) to solve a multi-reservoir multi-objective problem. Wu and Zou 

(2012) applied MOGA to maximize both power generation and irrigation benefits. 

Scola et al. (2014) applied NSGA II to maximize power generation. Cancelliere et al. 

(2003) used a multi-objective optimization method to reduce the deficit in the releases 

for irrigation and improve municipal volumetric reliability. 

 Borg MOEA is a recent optimization algorithm that was introduced by Hadka 

and Reed (2013). In this research, Borg MOEA was used to solve a reservoir operation 

problem. These types of problems need a powerful algorithm to handle the complexity 

of the inflow-storage relationship. The Borg MOEA algorithm has six operators that 

compete to create offspring in each generation. The effectiveness of the algorithm is 

maintained throughout the optimization by deploying the most suitable combination 

of operators for crossover. In addition, Borg MOEA is able to detect stagnation and 

escape from local optima by reviving the search process.  

 The aim of the current study was to investigate the robustness and performance 

of the algorithm on a reservoir operation problem. A drought condition and an 
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additional reservoir drawdown constraint were considered in order to test the 

algorithm’s ability to find good solutions consistently in such critical conditions. In 

reservoir management, it is difficult to control the releases over the entire year in order 

to fulfil the downstream demands and to maintain the same or higher initial water 

storage in the reservoir for the next year in drought conditions. Hence, the influence 

of the extra drawdown constraint imposed was investigated. 

2. OVERVIEW OF THE OPTIMIZATION APPROACH 

Hadka and Reed (2013) introduced Borg MOEA for many-objective optimization 

problems. Some of the features in Borg MOEA include (a) diversity preservation; (b) 

measurement of search progress and stagnation; (c) restart to move away from local 

optima; (d) multiple recombination operators that compete to produce offspring; and 

(e) use of a dominance archive. The algorithm uses six operators in the recombination 

process to improve the search progress and a dominance archive to store all the non-

dominated solutions.  

 To preserve diversity, the objective space is divided into hyper-boxes whose 

dimensions are all equal to 𝜖, as in Figure 1. Thus the 𝜖-box index vector is used to 

find the dominant solutions instead of the objective function values. The algorithm 

calculates this index by dividing the objective function value by 𝜖, and then sets the 

result as the succeeding integer value. If two or more solutions are in the same 𝜖-box, 

the dominant solution is the one which is nearest to the lower-left corner of the 𝜖-box, 

in the case of a minimization problem.  
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Figure 1. Graphical representation of -progress concept in a minimization problem 

with two objectives. Solutions (1) and (2) are new solutions in unoccupied boxes and 

thus represent improvements. Solution (3) is not considered as an improvement 

because it resides in a previously occupied box. The shaded boxes were previously 

occupied while unshaded boxes were not previously occupied (Hadka and Reed 2013). 

 For stagnation measurement, 𝜖-progress was introduced, which measures the 

improvement while searching for new solutions. If the algorithm finds new solutions 

in a new unoccupied 𝜖-box, it means that there is progress and the algorithm is allowed 

to continue. This can be observed more clearly in Figure 1. On the other hand, if there 

is no improvement based on 𝜖-progress for a certain number of evaluations, a revival 

process is triggered, to escape from any local optima. The details of the restart 

procedure are available in Hadka and Reed (2013). The algorithm maintains the 

population size as a certain ratio of the archive size during the optimization process. 

This feature was adopted from 𝜖-NSGA II (Kollat and Reed 2006) and is called the 

injection rate. 

 The algorithm employs multiple recombination operators to produce offspring. 

In fact, Borg MOEA provides a framework in which the selection of the recombination 

operators adjusts depending on the dynamic properties of the objective and solution 
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spaces of the optimization problem, including the make-up and diversity of the 

candidate solutions, and the landscape of the objectives. The recombination operators 

in Borg MOEA are:  

(a) simulated binary crossover (SBX) (Deb and Agrawal 1994);  

(b) differential evolution (DE) (Storn and Price 1997);  

(c) parent-centric crossover (PCX) (Deb et al. 2002);  

(d) unimodal normal distribution crossover (UNDX) Kita et al. (2000);  

(e) simplex crossover (SPX) (Tsutsui et al. 1999); and  

(f) uniform mutation (UM) (Michalewicz et al. 1994).  

Also, the polynomial mutation (PM) (Deb and Agrawal 1994) is applied to the 

offspring  produced by all the operators except for UM.  

 The probability of choosing a particular recombination operator to produce 

offspring depends on its ability to contribute nondominated solutions in the dominance 

archive, compared to the other operators; hence the operator selection probabilities are 

proportional to their effectiveness and respective contributions. 

 The values of the decision variables in the offspring generated lie within the 

upper and lower bounds of the decision variables. The algorithm has many coefficients 

and parameters as summarised in Table 1 (Hadka and Reed 2013) in which L 

represents the number of decision variables, 𝜖 is the dimension of the hyper-box in the 

objective space, and  𝜎𝜂, 𝜎𝜉  and 𝜎𝜁  represent the variance parameters that control the 

spatial distribution of the resulting offspring for the PCX and UNDX operators.  

 The values of the paramters shown in Table 1 are the recommended empirical 

values from the literature, based on extensive testing that included complex real-world 

problems (Hadka et al. 2012, Reed et al. 2013). The values have been used widely in 
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subsequent studies also (Zheng et al. 2016). Further improvement through fine tuning 

on a case-specific basis may be possible; however this issue is complex (Lobo et al. 

2007) and is not the main focus of the present research. 

 Hadka and Reed (2012) presented comparisons of eight state-of-the-art 

evolutionary algorithms based on their performance on eight test functions. 

Furthermore, Reed et al. (2013) compared the performance of Borg MOEA on real-

world water resources problems with ten competitive algorithms. Both studies 

concluded that Borg MOEA outperformed the other algorithms on the problems 

considered. 

 Table 1. Default values of the parameters used in Borg MOEA 

Parameter Value  Parameter Value 

Initial population size 100  SPX parents 10 

Tournament selection size 2  SPX offspring 2 

Epsilon, 𝝐 0.01  SPX epsilon 2.0 

SBX rate 1.0  UNDX parents 10 

SBX distribution index 15.0  UNDX offspring 2 

DE crossover rate 1.0  UNDX 𝜎𝜉
 0.5 

DE step size 3.0  UNDX 𝜎𝜂
 

0.35/√𝐿 

PCX parents 10  UM rate 1/L 

PCX offspring 2  PM rate 1/L 

PCX 𝝈𝜼
 0.1  PM distribution index 20 

PCX 𝝈𝜻
 0.1    

ϵ is the dimension of hyper-boxes in objective space; L is the number of decision 

variables; and the various σ symbols are variance parameters. 

 

The criteria used in the comparisons included the hypervolume, generational 

distance and additive 𝜖-indicator metrics (Knowles and Corne 2002). For a set of 

nondominated solutions, the hypervolume represents the fraction of the objective 

space that the solutions dominate. It increases as: the solutions approach the Pareto-

optimal front; their range increases; and their distribution becomes more even. The 

generational distance calculates the average distance between the resulting 
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nondominated front and the Pareto-front. The additive ϵ-indicator measures the 

smallest factor by which the resulting approximation set achieved must be translated 

in the objective space in order weakly to dominate the reference set. Based on these 

criteria, the main conclusion was that Borg MOEA showed significant advantages over 

the other algorithms. 

 The algorithms considered by Hadka and Reed (2013) in their comparative 

study are listed below, with additional details in Deb et al. (2003), Zhang et al. (2009), 

Sierra and Coello Coello (2005),  Kollat and Reed (2006), etc. 

a. 𝜖-MOEA  

b. MOEA/D (multi-objective evolutionary algorithm based on decomposition) ) 

c. GBE3 (generalized differential evolution, version 3) 

d. OMOPSO (multi-objective particle swarm optimization)  

e. IBEA (indicator-based evolutionary algorithm)  

f. 𝜖-NSGA II  

 In another study, in addition to the previous algorithms,  Reed et al. (2013) 

compared  Borg MOEA based on four test problems with NSGA II (Deb et al. 2002), 

SPEA2 (Zitzler et al. 2002) and AMALGAM (Vrugt and Robinson 2007). The authors 

concluded that Borg MOEA was the best among the nine algorithms, including a. to f. 

in the preceding list. 

3. RESERVOIR OPTIMIZATION MODEL  

Usually, multipurpose reservoirs serve many goals like hydropower generation, 

domestic water supply, agricultural water supply, flood protection, and other 

environmental goals. In this study, the reservoir system consists of a single 

multipurpose dam constructed to control water discharge in the river for irrigation and 
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domestic use, flood control and hydropower generation. This type of dam has many 

economic benefits. In this model, three types of constraints were considered. A drought 

condition was considered in order to test the algorithm’s ability to find an optimum 

solution in such critical conditions without violating the reservoir drawdown 

limit imposed.  

3.1 Reservoir Storage Constraints 

The volume of storage in the reservoir is limited between the dead storage and the 

maximum capacity of the reservoir. The dead storage constraint, which is the minimum 

allowable storage in the reservoir, is 

   𝐶1(𝑡) = 𝑆𝑡 − 𝑆𝑚𝑖𝑛 ≥ 0; ∀𝑡        (1) 

where 𝑆𝑡 ≥ 0 is the initial storage at the beginning of the month t, t = 1,  . . ., 12; Smin 

is the dead storage of the reservoir. The maximum storage constraint, which is the 

maximum storage capacity of the reservoir, is 

𝐶2(𝑡) = 𝑆𝑚𝑎𝑥 − 𝑆𝑡 ≥ 0; ∀𝑡        (2) 

where Smax  is the maximum normal storage in the reservoir. 

3.2 Reservoir Release Constraints 

The releases from the reservoir should be bounded between the minimum and 

maximum releases. The minimum release constraint, for the minimum amount of 

water to be released from the reservoir, is 

𝐶3(𝑡) = 𝑅𝑡 − 𝑅𝑚𝑖𝑛 ≥ 0; ∀𝑡        (3) 

where 𝑅𝑡 ≥ 0  is the mean monthly water release for month t. 𝑅𝑚𝑖𝑛 is the minimum 

allowable water releases from the reservoir. The maximum allowable amount of water 
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released from the reservoir should not exceed e.g. the spillway or downstream channel 

capacity.  Thus 

𝐶4(𝑡) = 𝑅𝑚𝑎𝑥 − 𝑅𝑡 ≥ 0; ∀𝑡        (4) 

where Rmax is the maximum allowable release from the reservoir. 

3.3 Constraint on Annual Reservoir Drawdown 

To ensure reservoir storage sustainability, an extra constraint was introduced in this 

study so that the amount of storage in the first month of the next year will equal or 

exceed the initial storage of the first month. This constraint can be expressed as 

   𝐶5(13) = 𝑆13 − 𝑆1 ≥ 0                         

(5)  

where 𝑆1  is the initial storage in the first month and 𝑆13  is the reservoir storage at the 

start of the first month of the next year. 

3.4 Low Reservoir Inflow Condition 

A drought condition was considered in order to test the algorithm’s ability to find good 

solutions quickly and consistently in such critical conditions. To calculate this 

condition, 50% of the standard deviation of the monthly average inflow for many years 

was subtracted from the original inflow (Reddy and Kumar 2006). 

   𝐼𝑡 = 𝐼𝑡
′ − 0.5𝜎𝑡                               

(6) 

where 𝐼𝑡   is the reduced reservoir inflow for month t; 𝐼𝑡
′  is the original reservoir 

inflow for month t; and 𝜎𝑡    is the standard deviation of the reservoir inflow for 

month t. 
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3.5. Fitness Function 

The monthly flow continuity equation is 

𝑆𝑡 + 𝐼𝑡 − 𝑆𝑡+1 − 𝑅𝑡 − 𝐸𝑡 = 0  (7) 

where St+1 is the final storage at the end of month t and Et is the mean monthly 

evaporation from the reservoir during the month t.  

 The fitness function for reservoir operation that should be minimized can be 

expressed as 

   𝑓 = [∑(𝑅𝑡 − 𝐷𝑡)2 + ∑(𝑆𝑡 − 𝑆𝑡+1 + 𝐼𝑡 − 𝑅𝑡 − 𝐸𝑡)2

12

𝑡=1

12

𝑡=1

] (1 + 𝐶)𝑒                          (8) 

where Dt is the mean monthly downstream water demand for the month t; C is a 

penalty for constraint violations; and the value of the exponent, e, is 2.  The first 

part of Equation 8 aims to minimize the differences between the monthly reservoir 

releases and the demands, subject to the flow continuity equation in Eq. 7. The second 

part is a quadratic penalty function to address constraint violations. At the solution, the 

continuity equation in Eq. 7 is equal to zero. Also, the constraint violation penalty C 

is zero for feasible solutions.  

 Thus the fitness function, Eq. 8, aims to minimize the total annual imbalance 

between the monthly reservoir releases and water demands, including deficits and 

surpluses. Self-evidently a deficit implies a shortfall in the supply, while a surplus is 

to be avoided if possible, as a water conservation measure during periods with low 

reservoir inflows. 

 In general, the convergence rate and optimality of the solutions achieved are 

influenced by the penalty function employed, and the effects differ from a problem to 

another. Therefore, this function should be chosen carefully for each problem (Dridi 
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et al. 2008, Siew and Tanyimboh 2012, Deb and Datta 2013, Siew et al. 2014, Saleh 

and Tanyimboh 2013,  2014,  2016). The problem of formulating and calibrating 

penalty functions is complex (Coello Coello 2002, Chang et al. 2010, Deb and Datta 

2013). A review of  constraint handling in evolutionary algorithms is available in 

Coello Coello (2002). 

 The constraint violation penalty adopted here is 

𝐶 = 𝐴(𝑔1 + 𝑔2 + 𝑔3)         (9) 

where A is a coefficient that was taken as 100, and 𝑔1, 𝑔2, and 𝑔3 represent the 

penalties for the minimum, maximum, and sustainable storage constraints, 

respectively.  

 The values of the penalty factor A and exponent e were determined empirically, 

to apply an appropriate amount of selection pressure that would not render all the 

infeasible solutions including those with relatively small constraint violations totally 

uncompetitive (Yang and Soh 1997, Dridi et al. 2008, Tanyimboh and Seyoum 2016). 

Indeed, evolutionary algorithms that include nondominated or competitive infeasible 

solutions in the optimization process generally achieve better results than those that 

fail to exploit any infeasible solutions generated (Yang and Soh 1997, Woldesenbet et 

al. 2009, Eskandar et al. 2012, Barlow and Tanyimboh 2014, Siew et al. 2016).  

 On the other hand, an algorithm’s convergence rate may be too slow if the 

selection pressure is insufficient. For example, Siew and Tanyimboh (2012) compared 

two versions of a performance function that represents the fitness. They adopted the 

version with more selection pressure and significantly faster convergence. 

 The penalties for violating the minimum, maximum, and sustainable storage 

constraints, respectively, are as follows.   
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𝑔1 = ∑ 𝑀𝑎𝑥[0, (𝑆𝑚𝑖𝑛 − 𝑆𝑡)]12
𝑡=1                   (10) 

𝑔2 = ∑ 𝑀𝑎𝑥[0, (𝑆𝑡 − 𝑆𝑚𝑎𝑥  )]12
𝑡=1                    (11) 

𝑔3 = 𝑀𝑎𝑥[0, (𝑆1 − 𝑆13 )]                 (12) 

 The form of fitness function adopted in Eq. 8 has the advantages that it allows 

simultaneous minimization of both the objective and penalty functions. The penalty 

function is dynamic and reflects the degree of constraint violation. This allows 

promising infeasible solutions to contribute essential genetic material to the gene pool. 

The quadratic form of the penalty function adjusts the selection pressure on the 

infeasible solutions gradually as the optimization progresses (Yang and Soh 1997), 

thus shifting the emphasis of the search progressively away from more exploration at 

the start to more exploitation at the end.  

 The formulation of the penalty function aims to exploit all the solutions 

generated fully, including virtually feasible solutions that promote exploration and 

exploitation around the active constraint boundaries. In this way, the whole solution 

space is searched effectively. The infeasible solutions enhance diversity, promote 

active boundary search, help avoid a purely interior search and premature 

convergence, and improve the overall effectiveness of the algorithm (Yang and Soh 

1997, Siew and Tanyimboh 2012).  

 The total number of decision variables is 25, i.e. 12 for the monthly releases 

and 13 for the storages as shown in Figure 2b and 2c, in which the 13 month represents 

the first month of the following year. We wrote a computer program in C++ language 

to solve the optimization problem in Equations 1 through 12 using Borg MOEA. The 

algorithm was executed ten times with 200,000 function evaluations allowed in each 

run, with an initial population of 100, for each scenario of the optimization problem. 
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 The period of operation considered was one year. For long-term planning, the 

number of decision variables and dimensionality of the problem may increase and/or 

longer time steps may be used. Monthly rather weekly values were considered in the 

model as the focus of the research is to assist with the development of an efficient 

seasonal operating policy, rather than daily operational control (Horne et al. 2016). 

Environmental water management decisions may relate to a range of spatial and 

temporal scales, from sub-daily to multi-year and a single location to the river basin, 

respectively. Horne et al. (2016) mentioned the importance of the relationships 

between the various scales and provided examples of the strategies used such as nested 

and hierarchical models, and stochastic programming.  

 In addition, seepage from the reservoir and other operational losses were 

neglected, based on the problem specification in Chenari et al. (2014). These issues 

are not the main focus of the present investigation; a simulation model that provides 

the relevant properties of the system (i.e. inflow, evaporation, etc.) could be used 

instead if necessary. Hence the losses may be incorporated, with additional case-

specific data. 

4. ILLUSTRATIVE EXAMPLE 

A real-world case study from the literature was adapted in this study. Chenari et al. 

(2014) employed a GA to optimize the reservoir operation for Mahabad dam in Iran. 

The aim was to minimize the deficit in water demands. The dam, located in the 

northwest of Iran, has an approximate watershed area of 807 km2. It is in a cold semi-

arid area with average annual rainfall of 542.58 mm. There is rainfall during the three 

months from February to April. The live storage and dead storage are 180 million m3 

and 40 million m3, respectively. The minimum release was taken as zero and the 



Chapter Four  Assessment of Evolutionary Optimization Algorithm  

4-33 
 

maximum release was taken as 51.48 million m3 per month for the first six months of 

the year and 53.57 million m3 per month for the second six months of the year. Data 

for 32 years, from 1975 to 2006, were used by Chenari et al. (2014) to obtain the 

average monthly inflows to the reservoir. Table 2 presents the values of inflows and 

water demands in the case study area.  

 Table 2 Reservoir inflows and water demands (Chenari et al. 2014) 

Month 

Average 

inflow  

(106 m3) 

Standard 

deviation 

(106 m3) 

Drought 

season inflow  

(106 m3) 

Water  

demand 

 (106 m3) 

Maximum 

release 

(106 m3) 

September 1.340 1.450 0.615 20.67 51.84 

October 7.850 11.86 1.920 9.110 51.84 

November 11.03 11.33 5.365 1.530 51.84 

December 16.28 15.30 8.630 1.430 51.84 

January 20.98 14.36 13.80 1.400 51.84 

February 54.00 33.26 37.37 1.440 51.84 

March 97.13 43.28 75.49 6.290 53.57 

April 55.88 37.70 37.03 27.04 53.57 

May 10.90 10.80 5.500 33.01 53.57 

June 2.470 1.870 1.535 29.64 53.57 

July 1.140 0.940 0.670 30.74 53.57 

August 0.900 0.920 0.440 26.80 53.57 
 

 More details and data can be found in Chenari et al. (2014) that used a 

population size of 350 and 1500 generations, i.e. 525,000 function evaluations. The 

final value of the objective function in Chenari et al. (2014) was 185.3×106 m3. The 

minimum and maximum storage in the reservoir were 49.99 million and 165.17 million 

m3, respectively. 
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5. RESULTS AND DISCUSSION  

5.1 Reservoir Storage and Release 

Figure 2a illustrates the monthly reservoir releases and storage reported by Chenari et 

al. (2014) while Figure 2b and 2c show the corresponding results achieved in this 

study. The initial storage in the reservoir was insufficient; hence some deficits occurred 

especially in the first two months (September and October). Also, the effect of the 

water sustainability constraint on the releases is observed especially in the last five 

months (April to August), which causes some deficits in the releases due to this 

constraint (Figure 2b).  

 The sustainability constraint was not considered in the original formulation of 

the problem in Chenari et al. (2014), and Figure 2c shows the results achieved in this 

study for the original problem specifications in Chenari et al. (2014). In Figure 2a, the 

first six months (September to February) show a good match between the releases and 

demands. However, these results do not match the reservoir storage shown in the 

storage graph.  

 Moreover, Figure 2a shows that the initial storage in September is about 60 

million m3, and the releases from the reservoir in the same month is about 20 million 

m3, and inflow is 0.615×106 m3  (Table 2). It means that in the next month the water 

storage in the reservoir will be approximately equal to the dead storage, i.e. 40 million 

m3. Then, the release in the next month is 9.11 million m3 and the inflow is 1.92 million 

m3 (Table 2). This means that the storage in the reservoir will be less than the dead 

storage.  Consequently, there should be deficits in the releases for the first two months 

to maintain the water storage limits in the reservoir as observed in Figure 2b and 2c. 
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Figure 2. Reservoir releases and storage (a) Chenari et al. (2014) (b) Present 

formulation with sustainability constraint (c)  Present formulation without 

sustainability constraint 

 

5.2. Decision Variable Values Achieved 

Table 3 summarises the reservoir release, deficit and storage for each month based on 

ten runs of the optimization algorithm. The maximum standard deviation of the 

releases was 0.151 million m3 in November and the minimum was 0.004 million m3 in 

September. There were deficits in all months except for March. The deficits arose 

because the amount of water in the reservoir and the inflows could not fulfil the water 
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demands and evaporation losses.  

 The deficit over the entire year occurs because of the sustainability constraint 

adopted in this research. This constraint ensures the storage in the beginning of the 

next year will be equal or larger than the initial storage in the current year. For planning 

and operational purposes, more sophistication of the reservoir depletion constraint may 

be required to optimise the benefits further as, in practice, short-term drawdown of the 

reservoir would likely be acceptable. For example, Kim and Heo (2006) used smaller 

ranges of upper and lower storage limits than the original limits for the next year. 

Chang et al. (2010) allowed depletion between the initial and next year’s storage of 

10%. The effect of the sustainability constraint is examined further in Subsection 5.5 

based on the original problem specifications in Chenari et al. (2014).  

Table 3 Reservoir operation based on ten optimization runs 

Month 
Release (m3×106) Deficit (m3×106) Storage (m3×106) 

Minimum Mean Std.  Minimum Mean Minimum Mean Std. 

September 18.431 18.439 0.004 2.224 2.231 60.000 60.000 0.000 

October 6.839 6.875 0.013 2.215 2.235 43.184 43.202 0.011 

November 1.132 1.270 0.151 0.007 0.260 40.000 40.000 0.000 

December 1.040 1.164 0.131 0.076 0.266 43.874 44.363 0.288 

January 1.031 1.115 0.095 0.117 0.285 51.258 52.102 0.538 

February 1.092 1.129 0.040 0.251 0.311 63.89 65.078 0.719 

March 6.548 6.582 0.023 (0.325) (0.292) 100.29 101.63 0.806 

April 26.575 26.671 0.056 0.307 0.368 168.96 170.23 0.801 

May 32.451 32.538 0.041 0.427 0.472 178.22 179.45 0.693 

June 28.996 29.131 0.082 0.430 0.509 149.08 150.13 0.625 

July 29.985 30.203 0.111 0.442 0.537 118.97 119.82 0.480 

August 26.019 26.246 0.135 0.429 0.554 87.258 87.678 0.266 

September - - - - - 60.000 60.000 0.000 

Std. denotes the standard deviation. The initial storage is a set value. Surpluses are in bold in 

parentheses.  

  

The minimum storage was 40 million m3 in November, and the maximum 

storage occurred in May. Comparing these results with Chenari et al. (2014), the 
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maximum water storage was increased by about 14.83 million m3 and the minimum 

storage decreased by 9.99 million m3. The average standard deviation (i.e. the ratio of 

the standard deviation to the mean) of the storage for the year (excluding the set or 

constrained values in September and November) was 0.006, which suggests a very 

high degree consistency in the results achieved. The sustainability constraint 

succeeded to guide the algorithm to find solutions that store enough water over the 

entire year to maintain the required initial storage for the next year. This is observed 

clearly in the first and 13th month (September). 

5.3 Fitness Function Values 

The best fitness function value was 23.01×106 m3. At the solution, the value of the 

constraint violation penalty C was zero. The fitness function value of 23.01×106 m3 is 

a significant improvement (87.6%) relative to the previous value of 185.3×106 m3 in 

Chenari et al. (2014). In other words, based on these results, the total annual imbalance 

between the releases and demands has been reduced by 64.7%, from 2/1f  13.61×106 

m3 to 2/1f  4.80×106 m3. The average number of restarts to escape stagnation of the 

algorithm and/or improve the results of the search (as explained in Section 2) per 

optimization run was 320.  

 Each run of the optimization algorithm took a few seconds on a personal 

computer (Linux, Dell OptiPlex 780, Core Duo 2, E8400 @ 2  3.0 GHz, 8.0 GB 

RAM). Figure 3a illustrates the convergence of the fitness function. It can be seen that 

the fitness function converged within 25,000 function evaluations approximately. The 

algorithm’s convergence is fast, which is beneficial for rapid updating of the policy of 

reservoir operation. The convergence point in Chenari et al. (2014) was 525,000 

function evaluations.   
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 As stated previously, the values of the penalty factor, A = 100, and exponent, 

e = 2, were determined empirically. The best alternative fitness function value was 

achieved with a penalty factor A of 1,000 i.e. 23.01×106 m3, based on 10 optimization 

runs, with e = 2. A safe value of 100 was therefore selected for the penalty factor A, to 

strike a balance that reduces the risk of premature convergence due to selection 

pressure; ultimately, A = 100 and A = 1,000 gave essentially the same solution, with 

an exponent value of e = 2.  

 Other combinations of the penalty factor, A, and exponent, including e = 1 and 

e = 4, gave slightly larger values of the fitness function. However, due to the 

effectiveness of methodology employed, consistently good results were achieved. The 

mean value of the fitness function, based on 10 optimization runs, ranged from 

23.2×106 m3 to 23.7×106 m3 while the minimum ranged from 23.01×106 m3 to 

23.04×106 m3.  

 Table 4 and Figure 3b provide a summary of the results of the sensitivity 

analysis. These results demonstrate that the formulation used is effective, stable, 

robust, and not overly sensitive to the values of the parameters A and e of the penalty 

function. It can be seen also that the parameter-free version of the penalty function, 

with both A and e set to unity, i.e. A = e = 1, is also satisfactory, albeit with a slightly 

lower consistency based on the standard deviation of 0.905×106 m3. Indeed, it is 

interesting to note that the median and minimum values of the fitness function were 

effectively virtually identical.  
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Table 4 Sensitivity of the fitness function to the parameters of the penalty function 

A  100 101 102 103 104 102 100 

e 2 2 2 2 2 4 1 

 Fitness function (m3×106) 

Min. 23.020 23.014 23.013 23.013 23.023 23.012 23.016 

Median 23.037 23.038 23.024 23.039 23.041 23.042 23.037 

Mean 23.383 23.725 23.381 23.186 23.558 23.451 23.454 

Max. 25.333 27.368 24.319 23.978 27.884 26.943 26.281 

Std.  0.682 1.368 0.475 0.309 1.522 1.166 0.905 

The constraint violation C at the solution was zero; Std. denotes the standard 

deviation. 

  

 Overall, the parameter combination (A, e) = (100, 2) and (1000, 2) gave the 

best results in terms of accuracy and consistency, as can be seen in Figure 3b, with the 

smallest standard deviations of 0.475×106 m3 and 0.309×106 m3, respectively, in Table 

4. These results (Figure 3b and Table 4) suggest that A is efficient between 100 and 

1000. The present fitness function values may be compared to 185.3×106 m3 in Chenari 

et al. (2014). The results achieved here are thus a significant improvement. 
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Figure 3. Properties of the fitness function. (a) Convergence characteristics (b) 

Accuracy and consistency. The lines in (b) are to aide visualization. The value of the 

exponent in Equation 8 is 2. 

5.4 Observations on the Optimization Algorithm 

Figure 4 illustrates the typical development of the decision variables of releases 

and storages toward the best solution during the optimization. Starting with an initial 

random population, it can be seen that rapid convergence was achieved within 25,000 

function evaluations approximately, and the values remained stable thereafter.  
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Figure 4. Evolution of the decision variables. (a) Water release (b) Reservoir storage. 

The irregular patterns at the far ends, at zero function evaluations, depict the initial 

random seeds. 
 

Figure 5a shows the calculated percentages of the solutions in the archive, based on 

the respective selection probabilities of the recombination operators. PCX and UNDX 

were, apparently, the most successful operators, with averages of 28% and 29%, 

respectively. SPX and SBX had averages of 21% and 18%, respectively. The DE 

operator had an average of 8%. The UM operator rarely succeeded to generate 

dominant solutions for the archive, with an average of 0.16%.  

 On the other hand, Figure 5b shows the actual contributions of the various 

operators. All the percentages ranged between 14% and 19%. UM was the least 

successful operator while the most successful were PCX and UNDX followed by SPX. 

It can be seen that the contributions of the six recombination operators were roughly 

comparable. 

To investigate further the relative merits of the recombination operators, Figure 

6 shows heat maps of their selection probabilities for the entire optimization run. PCX 

generated dominant offspring in all the runs, with more solutions generated after 
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80,000 function evaluations. UNDX performed well in the early stages, especially 

before 80,000 evaluations. Then its ability to generate dominant solutions decreased 

slowly until the end. 

 
Figure 5. Relative contributions of the recombination operators (a) Calculated operator 

selection probabilities (b) Actual operator selection frequencies achieved 

 

 The difference between the calculated and actual operator selection 

probabilities may be due to the operator selection mechanism used in Borg MOEA 

(Hadka and Reed, 2013), i.e.  

𝑄𝑖 =
𝐶𝑖 + 𝛼

∑ (𝐶𝑖 + 𝛼)𝐾
𝑖=1

 ; 𝑖 = 1, … , 𝐾 (13) 

 

where K is the number of operators; 𝑄𝑖 is the probability of selecting operator i; 𝐶𝑖  is 

the number of solutions produced by the ith operator in the archive; and  𝛼 = 1  is a 

constant used to avoid probability values of zero. 

The algorithm initially sets a uniform probability of 1/K for all the operators. 

Then, the probability is updated periodically throughout the optimization. In the case 

of a single-objective optimization problem, the probability 𝑄𝑖 may remain in a limited 

range with no operator dominating the others because there is only one dominant 

solution in the archive. Therefore, the algorithm almost randomly selects the operators. 
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On the other hand, for multi-objective problems, the algorithm generates a population 

of solutions in the dominance archive, and the value of 𝑄𝑖 changes according to 

Equation 13. 

Figure 6. Selection probabilities for the recombination operators 
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5.5 Influence of the Reservoir Storage Sustainability Constraint 

To understand the effects of the sustainability constraint, the optimization problem was 

also solved without the constraint on the annual reservoir drawdown, as specified 

originally in Chenari et al. (2014). The objective function value obtained was 

19.97×106 m3, with mean, median and standard deviation of 20.60×106 m3, 20.63×106 

m3 and 0.53×106 m3, based on 10 optimization runs. The convergence, for the best run, 

was achieved at 30,000 function evaluations approximately, with 399 restarts to escape 

from local minima and/or improve the results, subject to the total number of function 

evaluations allocated. The improvement achieved by reducing the value of the 

objective function was thus 89.2%, while the improvement achieved with the 

sustainability constraint in force was 87.6% (Subsection 5.3).  

The results achieved are summarised in Table 5. 

Table 5 Reservoir operation results without the storage sustainability constraint 

 Reservoir Release (106 m3) Storage (106 m3) 

Month Min. Mean Std. Min. Mean Std. 

September 18.437 18.443 0.007 60.000 60.000 0.000 

October 6.863 6.876 0.009 43.184 43.203 0.010 

November 1.140 1.463 0.266 40.000 40.000 0.000 

December 1.035 1.374 0.255 43.070 43.965 0.529 

January 1.031 1.351 0.240 49.503 51.278 1.035 

February 1.104 1.401 0.211 61.190 63.775 1.507 

March 6.631 6.884 0.196 96.490 99.779 1.927 

April 26.797 27.014 0.160 163.94 167.83 2.306 

May 32.813 33.000 0.129 171.91 176.30 2.617 

June 29.465 29.628 0.096 141.22 146.07 2.875 

July 30.633 30.733 0.058 109.65 114.78 3.063 

August 26.754 26.798 0.022 76.282 81.575 3.174 

September - - - 47.458 52.797 3.215 

Std. denotes the standard deviation. 

The total annual imbalance between the releases and demands was reduced by 

67.2%, from 2/1f  13.61×106 m3 to 2/1f  4.47×106 m3, compared to 64.7% with the 
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sustainability constraint. Table 5 shows the reservoir operation results, without the 

annual reservoir storage sustainability constraint. The maximum standard deviation of 

the releases was 0.266×106 m3 in November, while the smallest was 0.007×106 m3. The 

average coefficient of variation of the storage for the year (excluding September and 

November with set or constrained values) was 0.023 that demonstrates a high level of 

consistency in the results achieved. 

6. CONCLUSIONS 

A state-of-the-art evolutionary optimization algorithm (Borg MOEA) was investigated 

and used to solve a reservoir operation problem. The objectives of the optimization 

were to manage the reservoir drawdown and water releases to satisfy the requirements 

downstream.  

 The algorithm converged rapidly and reliably. For the reservoir system 

considered, convergence was achieved within approximately 25,000 function 

evaluations compared to 525,000 for a previous genetic algorithm in the literature 

(Chenari et al. 2014). The quantity of water stored in the reservoir was improved by 

increasing the maximum storage by 14.83 million m3. This has the potential to increase 

the economic and environmental benefits of the reservoir. The total annual imbalance 

between the monthly reservoir releases and water demands was reduced by 64.7%, 

from 13.61×106 m3 to 4.80×106 m3.  

 Moreover, the reservoir drawdown constraint was satisfied strictly. In other 

words, the required amount of water was retained in the reservoir for the next year. On 

the other hand, when the storage sustainability constraint was removed to conform to 

the original specifications of the problem considered in Chenari et al. (2014), the 

annual imbalance between the demands and releases was reduced further from 
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13.61×106 m3 to 4.47×106 m3 (i.e. 67.2%). 

 Borg MOEA deploys multiple recombination operators self-adaptively, which 

contributes to its effectiveness, versatility and robustness. The algorithm’s 

performance was reliable and stable, and good results were achieved consistently and 

quickly, which shows, also, that the optimization model used was effective. However, 

for the problem considered in this study, the algorithm seemingly did not adapt the 

selection of the recombination operators based on the solutions achieved by each 

operator. It seems the algorithm randomly selected operators to generate solutions. 

Additional investigation on this is thus indicated. 

 This research is in progress and the results achieved provide encouragement to 

solve even more complex real-world reservoir management problems in the future. 

This research could assist water managers and decision makers, and help to maximize 

the potential environmental and economic benefits of reservoir systems (Horne et al. 

2016). It is vitally 

important to maximize the socio-economic and environmental benefits of long-term 

capital-intensive infrastructure such as reservoirs, at all stages including planning, 

design, operation, management, rehabilitation and/or upgrading. Optimization based 

studies can help to achieve this objective. The study provides an indicative example of 

the improvements that could be gained potentially by optimizing complex systems, 

and helps to enhance the knowledge and understanding of the dynamic properties of 

the system under consideration. 
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4.6 Further Discussion 

Insight investigation of Borg MOEA code was carried out to diagnose the 

disorder operations’ selection behavior. The accumulated sum of operator’s selection 

probabilities (𝑄𝑖) was compared with a random real number between [0,1]. This can 

be expressed by the following code: 

Code 1 Mechanism of selection operator in Borg MOEA 

rand = real number random [0,1] 

for i = 1 to K (where K is the Number of operators) 

sum = ∑ 𝑄𝑖
𝐾
𝑖=1  

If sum > rand  

return i 

else next i 

  

Hence, in case of a single objective problem, Equation 13 delivers misleading 

operators’ achievement as long as only one dominance solution kept in the archive 

over the evaluation process. As a result, 𝑄𝑖 will have a unique value of (1/K) for all 

operators. Thus, this pitfall is dominated in the early stage of feasible space exploration 

in a constraint multi-objectives optimization problems. Briefly, constraints handling 

reduces feasible region in the design search space, hence while in infeasible region, 

there is only one solution periodically refreshed in the archive, as its technique 

designed to eliminate any dominated solutions from the archive. 

As a result, more investigation is needed to address this drawback to accelerate 

convergence process.  
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4.7 Conclusions 

This chapter demonstrates Borg MOEA assessment using real-word reservoir 

operation problem, in comparison with GA. Two papers were developed and published 

in peer-reviewed journals. The outperformance of Borg MOEA is evident in 

generating better sustainable reservoir management. However, one of the algorithm 

key element techniques show misleading behavior, as it follows random sequence of 

operators’ selection, rather than adapting the most optimum productive operator. This 

drawback will also restrain early convergence of a constraint multi-objectives 

optimization problem. Hence, further assessment and insight investigation are needed 

to enhance and /or develop an advance MOEA’s methodology to address any potential 

drawbacks, which is achieved in the next chapter. 
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CHAPTER FIVE 

EVOLUTIONARY OPTIMIZATION 

ALGORITHM’S ENHANCEMENT 

 

5.1 Introduction 

In the previous chapter, Borg MOEA was assessed using an illustrative example 

in water resources management problems. The operation reservoir rule curve achieved 

by Borg MOEA has better sustainable management, in comparison with Genetic 

Algorithm (GA). Conversely, irregular algorithm’s behaviour in recombination 

operators’ auto-adaptive technique was observed during the evaluation process, which 

may cause convergence problematics in advance complex problems. Hence, solving 

this problem will accelerate algorithm convergence and reduce execution time. 

Further, adapting with problem environment may enhance exploration and 

exploitation processes, which improve optimality achievement. 

As a result, the potential MOEAs’ drawback enhancement is beneficial to 

improve algorithm’s diversity, convergence, and adaptation, as these will improve 

algorithm’s performance.  

Accordingly, new methodologies are proposed to address the aforementioned 

and other MOEAs’ drawbacks (bullet point 4 in Chapter two), after intensive diagnosis 

and assessment using benchmark test functions and a real-world water resources 

problem. A paper is developed and submitted to Swarm and Evolutionary 

Computation journal, as: 

- Al-Jawad, J.Y., Tanyimboh, T.T., 2018. Epsilon-Dominance-Driven Self-Adaptive 

Evolutionary Algorithm For Many-Objective Optimization. Swarm Evol. Comput. 

In review. 
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“The following work represents my efforts, such as:  theoretical formalism 

development, analytic calculations and numerical simulations, writing the manuscript. 

Dr. Tanyimboh, T.T., was the project supervisors, and provided assistance and support 

when required” 
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5.2 Paper: 

Al-Jawad, J.Y., Tanyimboh, T.T., 2018. Epsilon-Dominance-Driven Self-

Adaptive Evolutionary Algorithm For Many-Objective Optimization. Swarm 

Evol. Comput. In review.1 

 

EPSILON-DOMINANCE-DRIVEN SELF-ADAPTIVE EVOLUTIONARY 

ALGORITHM FOR MANY-OBJECTIVE OPTIMIZATION 

Jafar Y. Al-Jawad1*, Tiku T. Tanyimboh2 
1,2 Department of Civil and Environmental Engineering University of Strathclyde 

Glasgow, 75 Montrose St, Glasgow G1 1XJ 
1 jafar.al-jawad@strath.ac.uk, 2 tikutanyimboh@hotmail.co.uk 

 

Abstract 

Self-adaptation of the values of control parameters and selection of candidate 

recombination operators in evolutionary algorithms was investigated in this research, 

considering diversity in the initial population and revival following stagnation or 

premature convergence. The algorithm developed is called -DSEA (-dominance-

driven self-adaptive evolutionary algorithm). The methodology was demonstrated and 

assessed by an extensive comparison with Borg MOEA, a recent state-of-the-art 

evolutionary algorithm for many-objective optimization, based on a suite of test 

functions with a range of objectives selected from the literature, and a real-word case 

study. The early results are very encouraging, and they demonstrate that the 

methodology proposed is highly competitive. Consistently good results were obtained, 

based on the reliability, robustness, effectiveness and efficiency of the solutions 

achieved. The -DSEA  highly adaptive with different problems environments towards 

                                            
1 This paper was firstly submitted on 15/04/2017, a decision has been made on 30/03/2018 asking for 

manuscript revision. Resubmitted after revision on 04/05/2018. 
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optimum solutions. The effect of parameters tuning during evaluation process were 

observed on the optimality achievement for the considered test problems. The values 

of these parameters varied, depending on the number of objectives, the stage of the 

optimization and the properties of the optimization problem. The methodology 

proposed therefore lends itself to further research on the calibration and self-adaptation 

of control parameters and solution of real-world optimization problems with many 

objectives.  

Keywords: Parameter tuning and adaptation, Many-objective hybrid evolutionary 

optimization algorithm, Borg MOEA, Adaptive operator selection, Epsilon 

dominance, Recombination operators  

1 INTRODUCTION  

Inspired by evolution and natural selection, evolutionary algorithms (EAs) are 

used widely to solve real-word optimization problems (Holland 1975, Schaffer 1985). 

Many EAs have been proposed by researchers, for example, the Non-dominated 

Sorting Genetic Algorithm (NSGA II) (Deb et al. 2002), Multi-objective Evolutionary 

Algorithm based on Decomposition (MOEA/D) (Zhang and Li 2007), Indicator-Based 

Evolutionary Algorithm (IBEA) (Zitzler and Simon 2004) and Differential Evolution 

(DE) (Storn and Price 1997). Furthermore, approaches based on swarm intelligence 

include Particle Swarm Optimization (PSO) (Eberhart and Kennedy 1995) and Ant 

Colony Optimization (ACO) (Dorigo and Stützle 2004) while the annealing process in 

metallurgy inspired Simulated Annealing (SA) (Scott et al. 1983). A review of EAs 

and other metaheuristic algorithms and their applications can be found in Zhou et al. 

(2011). These algorithms are widely used in different fields of science and engineering 

(Coello et al. 2007).  
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However, the growing need to solve even more complex engineering problems 

having four objectives or more gives the motivation to improve further the capabilities 

of MOEAs. Deb and Jain (2013) upgraded NSGA-II to NSGA-III, while Seada and 

Deb (2015) proposed a new version of NSGA-III named U-NSGA-III. Hadka and 

Reed (2013) developed Borg MOEA with auto-adaptive recombination operators, 

while Roy et al. (2015) introduced an evolutionary path control strategy (EPCS). 

Zhang et al. (2015) produced Knee Point-Driven Evolutionary Algorithm, and Li et 

al. (2015) proposed MOEA/DD, for many-objective problems. Recently, Yuan et al. 

(2016) proposed an evolutionary algorithm for many objective optimization (θ-DEA) 

based on a new dominance relation. 

 The algorithms often have many parameters that require calibration (Goldberg 

1989, De Jong 2007). Karafotias et al. (2015) presented a review of the approaches for 

the calibration and control of the parameters. There are two types of EA parameter 

setting problems that may be categorised as (a) parameter tuning and (b) parameter 

control. The first problem called parameter tuning relates to the initial values of some 

parameters that should be set before executing the algorithm. The second problem that 

is called parameter control involves adjusting some of the values during the run time, 

in situations in which some parameter values may need to be adjusted to generate better 

results (Eiben et al. 1999).  

 The first problem of parameter tuning that relates to parameters such as the 

population size, mutation and crossover rate, etc., has been discussed widely in the 

literature and recommended values have been proposed (Karafotias et al. 2015). 

However, some of the parameters can vary widely and generally need extensive trials 

to find suitable values for a particular problem. For example, the distribution index for 
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the Simulated Binary Crossover (SBX ) operator may vary between 0 and 500 (Deb 

and Agrawal 1994). Similarly, Reynoso-Meza et al. (2011) concluded from 

experimental studies on multi-objective optimization problems that the value of the 

step size for the Differential Evolution (DE) operator is case sensitive. Consequently, 

it is extremely difficult to set default values for all problems.  

 With regard to the performance of algorithms, Stephens et al. (1998) stated that 

parameter control is more important than parameter tuning in genetic algorithms. 

Eiben et al. (1999) classified parameter control problems into three categories 

depending on the way the parameter variation is accomplished: (a) deterministic, (b) 

adaptive, and (c) self-adaptive. Deterministic control is based on rules that are 

specified a priori (Hesser and Männer 1991, Aleti 2012). In self-adaptive control, the 

parameters may be encoded to evolve in the genotype such that, for example, mutation 

and recombination are applied to the parameter also (Deb and Beyer 2001, Farmani 

and Wright 2003). The approach extends the search space to cover the parameter 

values, which consumes more time during the optimization processes (Eiben et al. 

1999). The adaptive method of parameter control depends on feedback from the 

optimization process that is used to adjust the parameter values as the optimization 

progresses (Eiben et al. 1999, Giger et al. 2007), and is considered more effective in 

solving complex problems.  

 There have been many attempts to develop and incorporate adaptive parameter 

control mechanisms in evolutionary algorithms. For example, Hadka and Reed (2013) 

used an adaptive population size that was proportional to the archive size. Kaveh and 

Shahrouzi (2008) used an adaptive approach for selection. Vafaee and Nelson (2010) 

suggested an adaptive mutation mechanism. Vrugt and Robinson (2007) and Vrugt et 
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al. (2009) introduced an adaptive multi-operator approach to help deploy the most 

effective operators. 

  Karafotias et al. (2015) showed that the recombination parameters have 

received the most attention while other parameters have received less consideration in 

the literature. They identified a gap in the area of parameter control where more 

research is required. Also, in addition to an extensive literature review of parameter 

setting in EAs, Aleti (2012) presented an adaptive approach for parameter control that 

used a feedback loop to adjust the values of the parameters. Additional reviews are 

available in Eiben and Smit (2011) and Smit (2012).  

 The above challenges provide the motivation for the present research focused 

on adaptive parameter control in many-objective evolutionary algorithms. The aim of 

the research was to develop and demonstrate the effectiveness of parameter control’s 

self-adaptive methodology in many-objective evolutionary algorithms. In this article, 

a novel approach named -DSEA (Epsilon-Dominance-driven Self-adaptive 

Evolutionary Algorithm) is proposed. Additionally, the importance of active fine 

tuning of the control parameters during the optimization process is demonstrated. 

The -DSEA approach comprises many novel features including: (i) Diversity 

expansion; (ii) Self-adaptation of the control parameters of recombination operators; 

(iii) Exploration extension; and (iv) Virtual dominance archive. The algorithm’s 

performance was investigated extensively using unconstrained test problems from the 

literature and a constrained real-world regional water management problem. A 

comparative analysis of -DSEA and Borg MOEA was carried out based on the DTLZ 

test functions (1 to 4 and 7) and a multi-objectives reservoir management in the Middle 
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East. Borg MOEA is a state-of-the-art evolutionary algorithm that has many key 

computational and evolutionary properties. Hadka and Reed (2012) presented 

performance comparisons of Borg MOEA with eight state-of the-art algorithms based 

on 8 test functions in the literature while Reed et al. (2013) compared Borg MOEA 

with ten competitive algorithms on real-world water resources problems. The authors 

concluded that Borg MOEA performed better than the other algorithms considered. 

The performance assessment in this article addressed the following properties: 

(i) Reliability, which refers to the replication and consistency of the best solutions 

achieved (Marchi et al., 2014) (ii); Robustness, which relates the algorithms 

dependable performance in different problem environments (Maier et al., 2014); (iii) 

Computational efficiency, i.e. the algorithm’s speed of convergence to the non-

dominated solutions (Silver, 2004); and (iv) Effectiveness, which  refers to the 

closeness of the solutions achieved to the true Pareto-front and their distribution; and 

dominance front extension in objective space (Zitzler et al., 2000). 

2 ADOPTED MULTI-OBJECTIVE OPTIMIZATION 

APPROACH 

Commonly, real-word optimization problems have multiple objectives. A brief 

explanation of some of the key concepts associated with multi-objective optimization 

is provided here. An constrained multi-objective optimization problem may be 

described briefly as follows (Deb, 2001) 

Minimize: F(x) = [f1(x),  . . .,   fM(x)]T  (1) 

Subject to: 𝑔𝑖(𝑥) ≥ 0, ∀𝑖 ∈ 𝑛𝑔 

                   ℎ𝑗(𝑥) = 0, ∀𝑗 ∈ 𝑛ℎ 

                   x ∈ X 

  



Chapter Five   Evolutionary Optimization Algorithm’s Enhancement 

5-9 

 

X  Rn is the decision space, i.e. X = [xL, xU] where x = [x1, x2, …, xn]
T is the decision 

variable vector of dimension n; and xL and xU are the vectors of the lower and upper 

bounds on x, respectively.  F(x) consists of M objective functions fi : X →Z  RM, 

where i = 1, …, M, and Z is the objective space feasible region containing all decision 

variables in X that satisfy all constraints. The 𝑔𝑖(𝑥) and ℎ𝑗(𝑥) represents the ith of 𝑛𝑔 

and jth for 𝑛ℎ inequality and equality constraints, respectively. For unconstraint 

problems, 𝑛𝑔 = 𝑛ℎ = ∅, and Z = X. 

    The concept of Pareto-dominance (Stadler 1979, Miettinen 1999, Deb 2001) is 

used widely to characterise the solutions of multi-objective optimization problems, and 

superior solutions are said to dominate inferior solutions. Thus: 

1- In a minimization problem, a vector u = (u1,  . . . , uM)T  is said to dominate 

another vector v = (v1, . . . , vM)T  if ui ≤ vi  for  i = 1,  . . . , M and u ≠ v. This 

property may be denoted as u ≺ v. 

2- A feasible solution x∈ X is called a Pareto-optimal solution, if there is no 

alternative solution y∈ X such that F(y) ≺ F(x). 

3- The Pareto-optimal set, PS, is the union of all Pareto-optimal solutions, and 

may be defined as PS = {x ∈ X :∄y ∈ X, F(y) ≺ F(x)}.  

4- The Pareto-optimal front, PF, is the set comprising the Pareto-optimal 

solutions in the objective space. It may be expressed as PF = {F(x)|x ∈ PS}. 

 

2.1 Details of the Algorithm Developed (-DSEA) 

The algorithm developed is based on the main principles of multi-objective 

evolutionary algorithms (MOEAs) e.g. recombination, mutation and dominance 
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sorting. However, many novel techniques are included to enhance the algorithm’s 

ability to handle the complexities of different problem environments. These techniques 

are: 

1- Diversity expansion to increase decision variables search space exploitation  

2- Self-adaptive operators’ parameters for parameters in process tuning 

3- Exploration extension for algorithm revival and stagnation coping 

4- Virtual dominance archive to improve diversity and convergence. 

The details of the algorithm’s key features are presented in the following sections.  

2.1.1 Recombination Operators 

The recombination process or crossover depends on chromosomes taken from 

parents to generate new chromosomes. The algorithm employs a combination of six 

recombination operators having different evolving techniques, namely: Simulated 

binary crossover (SBX) (Deb and Agrawal 1994); Differential evolution (DE) (Storn 

and Price 1997); Parent-centric crossover (PCX) (Deb et al. 2002); Unimodal normal 

distribution crossover (UNDX) (Kita et al. 1999); Simplex crossover (SPX) (Tsutsui 

et al. 1999); Uniform mutation (UM) (Michalewicz et al. 1994). Furthermore, the 

polynomial mutation (PM) (Deb and Agrawal 1999) is applied to the offspring 

produced by all operators except for the UM. An overview of the above-mentioned 

operators is provided in the supplementary data while Geetha and Kumaran (2013) 

reviewed several types of crossover operators used in evolutionary algorithms. 

2.1.2 Diversity Expansion 

The search procedure in an optimization algorithm has two main components, 

namely, exploration and exploitation. Evidence in the literature indicates the best 

results are achieved if exploration and exploitation are deployed preferentially in the 
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early and latter stages of the search, respectively (Zecchin et al. 2012, Zheng et al. 

2016). Accordingly, a procedure that safeguards diversity in the population at the start 

is incorporated in the proposed algorithm. 

A procedure is proposed to increase the diversity of the initial population using all the 

available recombination operators. After the initial random seeding, the algorithm uses 

each recombination operator to generate new offspring, selecting parents from the 

entire population. If more parents are needed (e.g. in case of odd number of parents), 

they are selected from the population using a binary tournament selection. Figure 1 

illustrates the procedure by which the parents are selected. 

 

Figure 1. Illustrates operators’ parents selection from the entire population candidates 

after the initial random seeding at the begining of the evaluation process 

 

2.1.3 -dominance Archive  

The objective space is divided into hyper-boxes whose dimensions are equal to  

(Laumanns et al. 2002). The concept of the ε-box index vector was used to assess the 
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dominance of alternative solutions in the objective space instead of the objective 

function values. The algorithm calculates this index by dividing the values of the 

objective functions by 𝜖 and setting the result as the next integer (Hadka and Reed, 

2013). Figure 2 illustrates the -dominance concept. The concept of -dominance 

archive was used in -MOEA (Deb et al., 2003) and -NSGA-II (Kollat and Reed, 

2007). The archive is used to elitism and store non-dominated solutions during the 

evaluation process. Usually, the  value is predefined by the user, depending on the 

problem complexity and on the required accuracy of the results. More details are 

presented in the aforementioned references. 

 

Figure 2. Illustration of -dominance concept 

 

2.1.4 Dynamic Selection of Recombination Operators  

In each generation, the recombination operators are selected on a competitive basis, 

according to the proportion of dominance solutions in the archive (NDS) contributed 
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by each operator. Thus, the selection probabilities for the recombination operators are 

obtained as follows (Vrugt and Robinson, 2007; Hadka and Reed, 2013). 

𝒫𝑖
𝑁𝐷𝑆 =

𝑁𝐷𝑆𝑖 + 1

∑ (𝑁𝐷𝑆𝑗 + 1)𝑁𝑅𝑂
𝑗=1

 
𝑖, 𝑗 = 1,2, … 𝑁𝑅𝑂 (2) 

where 𝒫𝑖
𝑁𝐷𝑆 is the probability of ith recombination operator, NDSi is the number of 

solutions in the archive contributed by the ith recombination operator NRO is the 

number of recombination operators; . The constant 1.0 is used to avoid probability 

values of zero.   

2.1.5 Self-Adaptive Mechanism and Formulae 

The success of any operator depends on the chosen values of the parameters that 

directly affect its performance. Any operator may lead an algorithm to suboptimal 

solutions because of unsatisfactory parameter calibration. However, parameter 

calibration is extremely challenging. This difficulty provided the motivation for 

establishing a dynamic relationship between the values of the control parameters of 

the recombination operators and their relative effectiveness, to obviate the need for 

fine tuning. The efficiency of the optimization algorithm is thus improved by 

continuously seeking to improve the collective effectiveness of the recombination 

operators. In other words, the formulation developed herein allows the values of the 

control parameters of each recombination operator to improve adaptively based on the 

success of the recombination operator compared to the rest of the recombination 

operators. 

 Table 1 shows the lower and upper bounds of the operator control parameters. 

If an operator’s ability to contribute offspring to the dominance archive is decreased, 

its selection probability 𝒫𝑖
𝑁𝐷𝑆 will decrease according to Equation 2. In turn, the values 
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of the relevant control parameter decrease and, consequently, the recombination 

operator’s ability to contribute new offspring to the archive will improve. 

 It is worth noting that, initially, all the recombination operators have an equal 

selection probability (𝒫𝑖
𝑁𝐷𝑆) of 1/NRO. During the evaluation process the 𝒫𝑖

𝑁𝐷𝑆 value 

for any recombination operator changed along with its control parameters, according 

to its contribution in the dominance archive. If any recombination operator is relatively 

unsuccessful, its selection probability (𝒫𝑖
𝑁𝐷𝑆) and parameters controls will decrease. 

If, subsequently, the effectiveness of another recombination operator decreases, then 

the selection probabilities of some or all the other recombination operators will 

increase along with the values of their control parameters. In this way a dynamic 

equilibrium is maintained among the operators’ selection probabilities, which in turn 

regulates the operator control parameters.  

 The initial values of the control parameters were set to the default or 

recommended values in the literature. After experimentation, the proposed ranges for 

the control parameters were set as follows. Distribution index 𝜂 for SBX: [0,100];  

probability of crossover CR for DE: [0.1,1.0]; step size F for DE: [0.5, 1.0] (Storn and 

Price 1997); expansion rate 𝜆 for SPX: [2.5, 3.5]; standard deviations 𝜎𝜂 and 𝜎𝜁 for 

PCX: [0.1, 0.3]; and variation factors 𝜎𝜁 and 𝜎𝜂, respectively, for UNDX: [0.4, 0.6] 

and [0.1/√𝐿, 0.35/√𝐿], where L is the number of decision variables. The functions used 

to adjust the values of the control parameters are summarised in Table 1. 

Figure 3a illustrates the relationships between operators’ dominance 

attainment and their control parameters values. It shows how operators’ parameters 

auto-tuned according to the operator successful to produce non-dominated solutions in 

the dominance archive.  
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Table 1. Parameters control formulae in -DSEA 

Operator Parameters Adaptation Functions Comments 

SBX 𝜂 ⌊𝒫𝑖
𝑁𝐷𝑆 × 100⌋ Distribution index 

DE CR 

F 
𝑀𝑎𝑥 (0.1, 𝒫𝑖

𝑁𝐷𝑆
𝑖
 ) 

0.5 + (𝒫𝑖
𝑁𝐷𝑆/2) 

Crossover probability 

Step size 

SPX 𝜆 2.5 + 𝒫𝑖
𝑁𝐷𝑆  Expansion rate 

PCX 𝜎𝜂 

𝜎𝜁 

0.1 + (𝒫𝑖
𝑁𝐷𝑆/5) 

0.1 + (𝒫𝑖
𝑁𝐷𝑆/5) 

These parameters (standard 

deviations) control the spatial 

distribution of the offspring 

for PCX and UNDX  

UNDX 𝜎𝜁 

𝜎𝜂 

0.4 + (𝒫𝑖
𝑁𝐷𝑆/5) 

[0.1 + (𝒫𝑖
𝑁𝐷𝑆/3)]/√𝐿  

 

2.1.6 Exploration Extension Mechanism 

This mechanism based on initializing (resetting) all operators’ selection probabilities 

𝒫𝑖
𝑁𝐷𝑆 uniformly to1/NRO. This aims to provide an equal opportunity for all the 

operators, by assessing the performance best on the most recent results. Otherwise, the 

previously successful operators with more solutions in the archive would continue to 

dominate based on past performance as dictated by Equation 2.  

 The number of resets depends on a random integer Nr such that  𝑁𝑟 ∈ ℕ+ ∈ [1, 

3]. When the algorithm starts, an Nr value is selected at random and the maximum 

permissible number of function evaluations NFEmax is divided by 𝑁𝑟 + 1 to determine 

the reset interval Er. For example, if NFEmax = 300,000 and Nr = 2, the reset occurs at 

every Er = 100,000 function evaluations. Hence, in this case, two resets occur during 

the entire optimization. Formally, 

𝐸𝑟 =
𝑁𝐹𝐸𝑚𝑎𝑥

𝑁𝑟 + 1
;   𝑁𝑟 ∈ ℕ+ ∈ [1,3] 

 
(3) 

where Er is the reset interval. 

Figure 3b shows an example of the resetting process and its relation with self-adaptive 

mechanism to extend algorithm explorations and escaping from possible local optima. 
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Figure 3. Illustrates the Self-adaptive mechanism (a) and exploration extension (b) 

used by -DSEA 

 

2.1.7 Virtual Dominance Archive 

In early stages of evaluation process for constraints problems with enormous 

decision variables, the -dominance archive techniques (section 2.1.3) tend to maintain 

only the non-dominated solutions in the dominance archive. Experimental tests on 

such problems show only one non-dominated solution maintain in the archive while 



Chapter Five   Evolutionary Optimization Algorithm’s Enhancement 

5-17 

 

exploring the design space for feasible solutions. Hence, the operators’ parameters will 

be on its minimum values during this stage in the evaluation process using the 

proposed self-adaptive mechanism. To overcome this issue, a virtual dominance 

archive was developed by randomly generate virtual number of the dominance 

solutions for the selected operator to preserve diversity and early convergence 

exploration for feasible solutions using the entire parameter’s domain.  

2.1.8 Population Injection 

The base work of injection is presented by Goldberg (1989b) and Srivastava 

(2002) and developed by Kollat and Reed (2006) and Hadka and Reed (2013). The 

early version frequently refilling the population with new random seeding solutions 

after emptying the population while holding the best solutions for the next generation. 

The second version refilling the population from dominance archive, instead of new 

random solutions. If archive members less than population slots, random solutions 

used to fill these slots. The recent version of injection depends on emptying the 

population and refilled using all solutions in the archive. Any remaining empty slots 

in the population are filled with solutions created by uniform mutation of solutions that 

are selected randomly from the archive. 

The last version was adopted for -DSEA, however the injection trigger is only 

implement after two process, the diversity expansion and exploration extension, which 

is differ from other aforementioned literatures mechanism, which periodically employ 

injection during the evaluation process which is computation time consuming and my 

cause regenerating local optima solutions rather than advance exploration for possible 

global optima (Zheng et al., 2016).   
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2.1.9 The -DSEA Methodology 

The previous sections explore the main algorithm’s mechanisms and 

techniques used to enhance exploration and exploitation. A flowchart for -DSEA is 

presented in Figure 4. 

 

Figure 4. Overview of -DSEA flowcharts. NOP1 and NOP2 are the number of parents 

selected from the main population and dominance archive, respectively, while NOP is 

the total number of parents needed by adopted operator. NFE is the number of function 

evaluations with maximum value = NFEmax. Er is the reset interval, and Ir is the number 

of function evaluations where the resetting occurs.  
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2.2 Comparative Paradigms  

There are many types of MOEAs’ paradigms introduced in the literatures (Zhou 

et al., 2011). Many recent algorithms are basically based on previous design principles 

like; -MOEA (Deb et al., 2003) and -NSGA-II (Kollat and Reed, 2006) which 

employ the -dominance sorting  proposed by Laumanns et al., 2002, on the original 

version of MOEA (Goldberg, 1989a) and NSGA-II (Deb et al., 2002b); MOEA/D 

(Zhang and Li, 2007) also employ decomposition on the origin MOEA. Here, Borg 

MOEA (Hadka and Reed, 2013) was adopted in this research for comparative purposes 

for many reasons. The algorithm employ also many MOEAs design principles adopted 

from previous works like; recombination, mutation, and dominance sorting. But the 

authors present many novel techniques including: -progress indicator for stagnation 

and improvement exploring, population expansion to preserve diversity exploration, 

and multiple recombination operators for search variations. Additionally, a 

competitive assessment for Borg MOEA in compare with other state-of-the-art 

evolutionary algorithms (-MOEA, -NSGA-II, MOEA/D, GBE3, OMOPSO, IBEA, 

NSGA-II, AMALGAM) was utilized using multi-objectives problems, through which 

it outperforms or met these algorithms (Hadka and Reed, 2012; Hadka et al., 2012; 

Hadka and Reed, 2013; Woodruff et al., 2015; Zatarain Salazar et al., 2016). More 

details on Borg MOEA are presented in the aforementioned literatures. 

 3 IDENTIFICATION OF EXPERIMENTAL TEST PROBLEMS 

3.1 Unconstraint Test Problems 

Five well-known test functions, namely DTLZ1, DTLZ2, DTLZ3, DTLZ4, and 

DTLZ7 (Deb et al. 2001) were chosen from the literature. They have special 
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challenging properties and have been investigated extensively in the literature (Zhu et 

al. 2016). Additional details on the functions are presented in Table A2 in the 

supplementary data. The algorithms were evaluated and compared extensively herein, 

based on the effectiveness, efficiency, reliability, and robustness.  

The accuracy of the optimization results was assessed in terms of the difference 

between the solution achieved and the known Pareto-optimal front (Tagawa and 

Imamura 2013). Accordingly, the convergence errors were evaluated as follows.  

 For DTLZ1:     PF  = ∑ 𝑓𝑖 − 0.5𝑀
𝑖=1     (4) 

 For DTLZ2, DTLZ3 and DTLZ4: PF = ∑ 𝑓𝑖
2 − 1𝑀

𝑖=1     (5) 

 For DTLZ7:    PF = 𝐠(𝐱𝑀) − 1    (6) 

δPF is the convergence error, M is the number of objective functions and  𝑓𝑖 is the value 

of the ith objective function. Briefly, the vector 𝐱𝑀 comprises the decision variables 

that do not belong to the union of the independent decision variables of (f1, f2, …, fM)T. 

𝐠(𝐱𝑀) is a function of 𝐱𝑀 only. The supplementary data has more information while 

Deb et al. (2001) has the details. 

  DTLZ1 has a linear Pareto-optimal front with ∑ 𝑓𝑖
∗ − 0.5 = 0𝑀

𝑖=1  and 𝐱𝑀
∗ =

0.5. DTLZ2, DTLZ3 and DTLZ4 have non-linear Pareto-optimal fronts with 

∑ (𝑓𝑖
∗)2 − 1 = 0𝑀

𝑖=1  and 𝐱𝑀
∗ = 0.5. For DTLZ7, 𝐱𝑀

∗ = 0.5 and 𝑔(𝐱𝑀
∗ ) = 0 (Deb et al. 

2001). 𝐱𝑀
∗  and fi

* represent the optimal values. At the solution, δPF is zero for DTLZ1, 

DTLZ2, DTLZ3, DTLZ4 and DTLZ7. Herein, δPF was used to assess the effectiveness 

and reliability of the solutions.  
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3.2 Constraint Test Problem 

A case study in Iraq’s Diyala river basin was adopted for a real-world constraints 

problem which has more complexity than previous test functions (Maier et al., 2014). 

The Iraqi government construct two multipurpose dams on the river, Derbendikhan 

just at the international border in Sulaymaniya governorate, and Himren in the middle 

part of the basin inside the country in Diyala governorate (Figure 5). Here, the 

Derbendikhan dam operation management is adopted using a historical monthly 

inflows data from 1981 to 2012 (thirty-three years) to generate future operation 

strategy. Hence, reservoir releases are representing the decision variables for the next 

396 months.  

 

Figure 5. Catchment area of the transboundary Diyala river basin in Iraq 
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3.2.1 Objectives Functions Formulae 

The reservoir water budget is governing by the water balance equation, as: 

𝑆𝑡+1
𝐷 = 𝑆𝑡

𝐷 + 𝐼𝑡
𝐷 − 𝑅𝑡

𝐷 − 𝐸𝑡
𝐷 + 𝑃𝑡

𝐷 − 𝑆𝐸𝑡
𝐷 + 𝐺𝑅𝑡

𝐷  , t =1, 2,.. T (7) 

where 𝑆𝑡
𝐷 and 𝑆𝑡+1

𝐷  are the reservoir storage at time t and t+1, 𝐼𝑡
𝐷 and 𝑅𝑡

𝐷  are reservoir 

inflows and releases, respectively. 𝐸𝑡
𝐷 is the evaporation losses from reservoir surface, 

𝑃𝑡
𝐷  is the direct rainfall on the reservoir. While, 𝑆𝐸𝑡

𝐷  and 𝐺𝑅𝑡
𝐷 are seepage losses and 

groundwater recharges from the reservoir, respectively.  

The reservoir operation strategy (𝑭𝐷) is represented by the following formula: 

𝑚𝑖𝑛 𝑭𝐷 = ( 𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐷 , 𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐷 , 𝑓𝑝𝑜𝑤𝑒𝑟𝐷)  (8) 

where  

𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐷  is for maximizing winter storage to fulfil summer demands 

 𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐷  is for minimizing summer storage to absorb expected flood wave in the next 

season 

𝑓𝑝𝑜𝑤𝑒𝑟𝐷  is for maximizing hydropower generation 

The details of the three objectives functions are as follows: 

𝑚𝑖𝑛 𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐷 = ∑ (
𝑆𝑚𝑎𝑥

𝐷 − 𝑆𝑡
𝐷

𝑆𝑚𝑎𝑥
𝐷

)

2

  

𝑇𝑤

𝑡=1

+ 𝐶𝑃 , t =1, 2,.. TW (9) 

𝑚𝑖𝑛 𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐷 = ∑ (
𝑆𝑡

𝐷 − 𝑆𝑚𝑖𝑛𝑝
𝐷

𝑆𝑚𝑎𝑥
𝐷

)

2

+ 𝐶𝑃  

𝑇𝑠

𝑡=1

 , t =1, 2, .. TS (10) 

𝑚𝑖𝑛 𝑓𝑝𝑜𝑤𝑒𝑟𝐷 = ∑ (
𝑃𝑤𝑚𝑎𝑥

𝐷 − 𝑃𝑤𝑡
𝐷

𝑃𝑤𝑚𝑎𝑥
𝐷

)

2𝑇

𝑡=1

+ 𝐶𝑃 , t =1, 2,..T (11) 
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𝐶𝑃 = 𝐴. ∑ 𝑔𝑖

𝑁𝐶

𝑖=1

;   𝐴 ≥ 1 , i =1, 2, . . NC (12) 

Where: 

𝑆𝑚𝑎𝑥
𝐷  = maximum allowable reservoir storage 

 𝑆𝑚𝑖𝑛𝑝
𝐷 = minimum allowable reservoir storage for hydropower generation 

TW, TS and T = winter, summer and total operation periods, respectively. 

𝑃𝑤𝑡
𝐷= hydropower generation at time t 

𝑃𝑤𝑚𝑎𝑥
𝐷 = maximum hydropower generation 

CP = penalty factor includes all the violations of the model  

NC = number of constraints  

𝑔𝑖  = penalty function for the (ith) constraint 

A = a positive real number 

The hydropower generation can be expressed as: 

𝑃𝑤𝑡
𝐷 = 𝜂𝑒

𝐷 . 𝛾𝑤 . 𝑄𝑡
𝑡𝑢𝐷 . 𝐻𝑡

𝑛𝐷   (13) 

Where (𝑄𝑡
𝑡𝑢𝐷) is the turbine discharge, (𝐻𝑡

𝑛𝐷) is the net head between reservoir level 

and the tail water after the power plant, (𝜂𝑒
𝐷) is the efficiency of power plant, and (𝛾𝑤) 

is the water density. 

3.2.2 Reservoir System Constraints 

The reservoir storage is limited between the minimum and maximum allowable 

storage, 283.48 ≤ 𝑆𝑡
𝐷 ≤ 2572.0 (million cubic meters), the water level head (𝐻𝑡

𝐷) 

should be ≥ 434.0 m.a.s.l, the power generation must be less than 249000 KW and 

greater than 16000 KW, and the release between 51.84 ≤ 𝑅𝑡
𝐷 ≤ 878.6  MCM. Hence, 

the penalty functions (𝑔𝑖) can be expressed as: 
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𝑔1 = ∑ 𝑀𝑎𝑥[0, (𝑆𝑡
𝐷 − 283.48)]

𝑇

𝑡=1

  (14) 

 

𝑔2 = ∑ 𝑀𝑎𝑥[0, (2572.0 − 𝑆𝑡
𝐷)]

𝑇

𝑡=1

  (15) 

 

𝑔3 = ∑ 𝑀𝑎𝑥[0, (𝐻𝑡
𝐷 − 434.0)]

𝑇

𝑡=1

  (16) 

 

𝑔4 = ∑ 𝑀𝑎𝑥[0, (𝑃𝑤𝑡
𝐷 − 16000)]

𝑇

𝑡=1

  (17) 

 

𝑔5 = ∑ 𝑀𝑎𝑥[0, (249000 − 𝑃𝑤𝑡
𝐷)]

𝑇

𝑡=1

  (18) 

 

𝑔6 = ∑ 𝑀𝑎𝑥[0, (𝑅𝑡
𝐷 − 51.84)]

𝑇

𝑡=1

  (19) 

 

𝑔7 = ∑ 𝑀𝑎𝑥[0, (878.6 − 𝑅𝑡
𝐷)]

𝑇

𝑡=1

  (20) 

 

3.3 Computational Implementation 

The properties of the unconstrained test problems are summarised in Table 2 

using computational budgets of 50,000 and 100,000 function evaluations. For the case 

study problem, 2.0×106 function evaluation and  = 0.1 were used for both algorithms. 

For each DTLZ test and case study problem, 10 and 20 optimization runs were carried 

out, respectively. The minimum population size was 100 while the maximum was 

1000. A Dell OptiPlex 780 computer was used (Core Duo 2 E8400, 2  3.0 GHz, 8.0 

GB RAM, Ubuntu 16.04 operating system). Table 3 shows the parameter values used 
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for both algorithms. A program in C language was developed to implement all test 

problems. 

Table 2. Properties of the test problems used to investigate the algorithms 

Problem  
Number of 

objectives (M) 

Number of 

decision 

variables 

Features of 

optimization problems  

 values for the 
respective values of 

M 

DTLZ1 2, 4, 6 and 8 M+4 
Multimodal and 

separable 

0.01, 0.02, 0.02 and 

0.03 

DTLZ2 2, 4, 6 and 8 M+9 Concave and separable 
0.01, 0.05, 0.1 and 

0.15 

DTLZ3 2, 4, 6 and 8 M+9 
Multimodal, concave 

and separable 

0.01, 0.05, 0.1 and 

0.35 

DTLZ4 2, 4, 6 and 8 M+9 Concave and separable 
0.01, 0.05, 0.1 and 

0.35 

DTLZ7 2, 4, 6 and 8 M+19 
Discontinuous and 

separable 

0.01, 0.05, 0.1 and 

0.35 

 

Table 3. Parameter values used in the optimization algorithms 

Parameters Borg -DSEAa Parameters Borg -DSEA 

Initial population size 100 100 SPX parents 10 3 

Tournament selection 
size 

2 2 SPX offspring 2 2 

SBX crossover rate 1.0 1.0 SPX expansion rate λ 3 [2.5, 3.5]  

SBX distribution index 

 

15.0  [0, 100] UNDX parents 10 10 

DE crossover rate CR 0.1 [0.1, 1.0]  UNDX offspring 2 2 
DE step size F 0.5 [0.5, 1.0]  UNDX  0.5  [0.4, 0.6]  

PCX parents 10 10 UNDX  0.35/√𝐿 [0.1, 

0.35]/√𝐿  
PCX offspring 2 2 UM mutation rate 1/L 1/L 

PCX 
 0.1 [0.1, 0.3] PM mutation rate 1/L 1/L 

PCX 
 0.1 [0.1, 0.3] PM distribution index 

m 

20 20 

L is the number of decision variables. The permissible range for dynamic parameters 

is shown in brackets. The parameters  and  are defined in Section 2.1.5. aThe 

initial values of dynamic parameters used in -DSEA are as shown for Borg MOEA.   
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4 RESULTS AND DISCUSSION 

4.1 Unconstraint Test Problems 

4.1.1 The Effectiveness and Reliability of the Solutions Found 

 Table 4 shows the values of the error δPF for DTLZ1and DTLZ2. For DTLZ1, 

Borg MOEA has better results in the case of two objectives with 50,000 and 100,000 

function evaluations. However, -DSEA has better performance than Borg MOEA in 

all the other cases, especially on 8 objectives. For DTLZ2, the results suggest that -

DSEA is competitive, especially in terms of the maximum and standard deviation 

values in all cases, thus indicating that the -DSEA results are more consistent.  

Table 4. Convergence errors (δPF) for DTLZ1 and DTLZ2 based on 10 optimization 

runs  

 Borg MOEA -DSEA 

Obj. Min. Max. Mean Median Std. Min. Max. Mean Median Std. 
DTLZ1 50,000 function evaluation 

2D 1.022E-08 1.760E-06 1.393E-07 9.661E-08 2.693E-07 1.743E-06 2.600E-06 2.059E-06 1.955E-06 2.475E-07 

4D 7.571E-04 4.375E-02 9.609E-03 8.602E-03 5.238E-03 2.521E-04 1.984E-02 3.307E-03 2.886E-03 2.055E-03 

6D 2.340E-01 2.592E+00 8.326E-01 8.141E-01 2.698E-01 9.630E-04 1.422E-01 3.333E-02 2.991E-02 1.876E-02 

8D 4.004E+00 3.149E+02 3.842E+01 2.916E+01 3.127E+01 1.907E+00 5.266E+01 9.598E+00 9.152E+00 3.633E+00 

 100,000 function evaluation 
2D 2.421E-09 2.757E-09 2.496E-09 2.481E-09 7.060E-11 5.987E-06 6.020E-06 6.011E-06 6.012E-06 5.344E-09 

4D 2.482E-04 2.007E-02 2.893E-03 2.453E-03 1.839E-03 9.170E-05 1.148E-02 1.704E-03 1.455E-03 1.235E-03 

6D 7.782E-04 1.402E-01 2.660E-02 2.329E-02 1.609E-02 2.512E-04 8.318E-02 1.665E-02 1.489E-02 9.763E-03 

8D 1.067E+00 1.342E+02 1.008E+01 7.409E+00 1.014E+01 1.271E-03 1.634E-01 3.736E-02 3.324E-02 2.182E-02 

DTLZ2 50,000 function evaluation 

2D 4.220E-07 1.820E-05 1.840E-06 1.380E-06 2.520E-06 7.615E-08 1.410E-06 2.650E-07 2.170E-07 2.100E-07 

4D 1.076E-03 2.169E-01 1.211E-02 9.923E-03 1.128E-02 1.392E-03 4.797E-02 1.164E-02 1.044E-02 6.060E-03 

6D 3.443E-03 7.492E-01 5.014E-02 4.157E-02 3.783E-02 4.817E-03 2.164E-01 5.510E-02 5.033E-02 2.742E-02 

8D 6.080E-03 1.157E+00 7.974E-02 6.974E-02 5.147E-02 8.635E-03 4.180E-01 9.594E-02 8.839E-02 4.647E-02 

 100,000 function evaluation 

2D 1.980E-09 5.120E-07 1.650E-08 5.890E-09 6.990E-08 2.600E-10 1.830E-08 1.100E-09 7.240E-10 2.420E-09 

4D 6.630E-04 3.131E-02 6.226E-03 5.487E-03 3.510E-03 5.160E-04 2.725E-02 4.955E-03 4.276E-03 2.973E-03 

6D 2.402E-03 3.853E-01 2.940E-02 2.593E-02 1.829E-02 2.845E-03 1.158E-01 2.949E-02 2.676E-02 1.484E-02 

8D 4.184E-03 2.495E-01 4.809E-02 4.310E-02 2.589E-02 4.965E-03 1.966E-01 5.160E-02 4.732E-02 2.518E-02 
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In the case of DTLZ3, DTLZ4 and DTLZ7, the -DSEA performance is better 

than Borg MOEA in almost all cases and scenarios as shown in Table 5. Taken 

together, these results indicate that on average -DSEA outperforms Borg MOEA on 

these problems. In the comparison tables that follow, the preferred values are 

highlighted in grey and bold.  

Furthermore, Table A3 in the supplementary data shows the number of restarts 

(population injection) for Borg MOEA. An interesting observation is that, except for 

DTLZ4, the number of restarts in Borg MOEA decreased on average as the number of 

objectives increased, with significantly more restarts for two and four objectives. Also, 

there are more restarts for 100,000 function evaluations than for 50,000.  Therefore, 

these results suggest that, effectively, Borg MOEA solved the problem repeatedly, to 

exhaust the available computations budget. For example, Borg MOEA’s overall 

performance on two objectives is superior; it can be seen also, that the two-objective 

instances had the largest number of restarts overall. Furthermore, by comparison, given 

the limited restarts employed in -DSEA (Figure 3), these results lend support to the 

idea that new -DSEA framework proposed is highly effective and competitive. 

Table A4 in the supplementary data shows the number of -progress 

improvements for both algorithms, for all test functions. While the values are generally 

comparable, collectively, the values for -DSEA are slightly higher (by almost 5% 

approximately). Given the very considerable extent of the investigations carried out, 

these results indicate that, on average, -DSEA outperforms Borg MOEA on the 

problems considered. Although the -DSEA does not employ any stagnation indicators 

such as the -progress indicator used in Borg MOEA, the comparison in table A4 was 

included here for completeness. 
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Table 5. Convergence errors (δPF) for DTLZ3, DTLZ4 and DTLZ7 based on 10 

optimization runs  

 Borg MOEA -DSEA 
Obj. Min. Max. Mean Median Std. Min. Max. Mean Median Std. 

DTLZ3 50,000 function evaluation 
2D 1.412E+00 1.423E+00 1.415E+00 1.415E+00 1.926E-03 2.030E-04 3.780E-04 2.490E-04 2.420E-04 3.130E-05 

4D 1.973E+00 8.214E+00 4.873E+00 4.930E+00 8.469E-01 2.523E-02 4.749E-01 3.601E-01 3.628E-01 5.804E-02 

6D 1.735E+03 9.154E+04 1.283E+04 1.017E+04 1.018E+04 1.576E+02 9.555E+02 4.295E+02 4.238E+02 1.152E+02 

8D 1.224E+04 8.817E+05 1.204E+05 9.558E+04 8.923E+04 2.303E+02 2.965E+04 1.164E+03 8.273E+02 1.727E+03 

 100,000 function evaluation 
2D 7.990E-05 1.400E-04 9.570E-05 9.550E-05 1.100E-05 2.970E-05 3.120E-05 3.050E-05 3.050E-05 2.800E-07 

4D 9.167E-02 8.685E-01 6.905E-01 6.870E-01 3.055E-02 4.222E-03 5.670E-02 1.880E-02 1.768E-02 7.248E-03 

6D 6.835E+00 6.790E+01 1.908E+01 1.825E+01 6.520E+00 1.167E-02 2.085E-01 6.813E-02 6.477E-02 2.496E-02 

8D 3.865E+03 4.256E+05 4.370E+04 3.401E+04 3.685E+04 2.588E+03 2.047E+04 8.557E+03 8.397E+03 1.895E+03 

DTLZ4 50,000 function evaluation 
2D 2.034E-07 1.510E-05 1.130E-06 7.670E-07 2.070E-06 7.252E-08 1.900E-06 3.540E-07 2.990E-07 2.900E-07 

4D 1.162E-03 4.229E-02 9.616E-03 8.526E-03 5.328E-03 1.808E-04 4.311E-03 4.700E-04 3.900E-04 2.910E-04 

6D 3.295E-03 1.271E-01 3.017E-02 2.720E-02 1.509E-02 2.908E-03 1.127E-01 2.618E-02 2.340E-02 1.384E-02 

8D 7.919E-07 6.850E-04 3.890E-05 4.610E-06 1.250E-04 1.988E-06 2.820E-04 2.850E-05 1.120E-05 5.410E-05 

 100,000 function evaluation 

2D 3.130E-09 1.270E-07 1.000E-08 7.590E-09 1.650E-08 1.800E-10 4.580E-09 5.640E-10 4.610E-10 6.350E-10 

4D 4.650E-04 2.588E-02 4.966E-03 4.282E-03 2.919E-03 1.050E-04 6.787E-03 7.660E-04 6.670E-04 4.650E-04 

6D 2.128E-03 9.860E-02 2.123E-02 1.904E-02 1.112E-02 2.075E-03 8.888E-02 1.859E-02 1.651E-02 1.006E-02 

8D 7.560E-09 1.500E-04 4.870E-06 2.670E-08 2.520E-05 1.570E-08 3.610E-04 1.140E-05 1.150E-07 5.950E-05 

DTLZ7 50,000 function evaluation 
2D 1.097E-07 2.760E-06 2.600E-07 1.960E-07 4.060E-07 1.140E-09 4.190E-09 2.350E-09 2.300E-09 6.290E-10 

4D 6.591E-03 4.174E-02 1.763E-02 1.687E-02 5.147E-03 1.104E-03 1.906E-02 3.697E-03 3.321E-03 1.768E-03 

6D 2.601E-02 1.598E-01 7.113E-02 6.939E-02 1.836E-02 3.315E-03 8.679E-02 2.097E-02 1.906E-02 1.020E-02 

8D 1.181E-02 8.047E-02 3.239E-02 3.113E-02 9.188E-03 1.809E-03 4.723E-02 8.119E-03 7.091E-03 4.472E-03 

 100,000 function evaluation 

2D 1.400E-10 3.420E-06 7.480E-08 4.060E-10 4.990E-07 1.380E-11 3.900E-10 1.020E-10 8.050E-11 7.950E-11 

4D 2.824E-03 2.215E-02 7.559E-03 7.212E-03 2.292E-03 2.810E-04 6.724E-03 9.950E-04 9.030E-04 5.460E-04 

6D 1.627E-02 1.128E-01 4.728E-02 4.590E-02 1.250E-02 2.439E-03 5.248E-02 1.166E-02 1.051E-02 5.570E-03 

8D 5.802E-03 5.152E-02 1.708E-02 1.628E-02 5.238E-03 1.082E-03 2.811E-02 4.102E-03 3.628E-03 2.343E-03 

 

4.1.2 Algorithms’ Robustness 

Figure 6 shows the operator selection probabilities for 100,000 function 

evaluations. The graphs are based on the best results for each algorithm as shown in 

Tables 4, for 8 objectives. The selection probabilities had similar trends for both 

algorithms with mostly the SBX operator being employed, followed by SPX and DE. 

Also, in -DSEA, the effects of resetting the probabilities as proposed here can be 
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observed clearly. In DTLZ1, DTLZ2 and DTLZ3 in particular, the last resetting event 

enabled other operators to take part in the search process  

Generally, many evolutionary algorithms use fixed values of the control 

parameters of the evolutionary operators. In general, the values are set a priori by 

experimentation or trial and error. The procedures involved are generally time 

consuming and extremely challenging. The default values of the control parameters 

used are shown in Table 3. Figure 7 shows adaptation of the control parameter values 

in -DSEA, thus helping to achieve the optimal and near-optimal solutions without 

undue reliance on the restarts. At the reset point, both the operator selection 

probabilities and their respective control parameters are re-initialized. The 

effectiveness of the proposed methodology can be seen clearly in the graphs. 

 In general, the parameters make steady progress towards the best values (within 

the given range) and different ‘best’ values often apply in different phases of the 

optimization. Indeed, these results may be used to aid calibration efforts in the future, 

and to adjust the ranges and/or initial values used if necessary. As stated previously, 

the reset feature adjusts the trajectory of the population make-up and, rather like 

mutation, improves convergence by helping the algorithm to escape from local optima. 

Table A5 in the supplementary data shows the values of the control parameters. 

There is some variation in the values for the test problem considered, especially SBX. 

On the other hand, some of the parameters are quite stable (DE, PCX, SPX and 

UNDX). The UNDX parameters changed only slightly because of its low selection 

probability, due to the dominance of the other operators. In general, the respective 

modal values of the control parameters, i.e. those that occurred most frequently, tended 

to be different from the default values in Borg MOEA (Table 3). It is hoped that these 
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results and self-adaptive capability will provide additional insights on the control 

parameters in the future.   

 

 

Figure 6. Selection probabilities of the recombination operators for both algorithms 

with 8 objectives and 100,000 function evaluations 
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Figure 7. Values of control parameters of recombination operators in -DSEA with 

100,000 function evaluations on  all alternatives test problems 

   

4.1.3 Algorithms’ Computational Efficiency 

Figure 8 illustrates the progress of decision variables for both algorithms. It 

can be seen clearly that -DSEA converged significantly faster than Borg MOEA on 

DTLZ1, DTLZ3, and DTLZ7. For DTLZ2 and  DTLZ4, the -DSEA results is very 

competitive to those of Borg MOEA. This reflects the adaptive robustness of -DSEA 

with different problems environments. 
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Figure 8. Decision variables convergence based on the best results for the 8-objective 

problems for DTLZ1 to DTLZ4 and DTLZ7. 

 

4.2 Constraint Test Problem 

Figure 9 illustrates the Pareto-front for 20 replicated random runs for the case 

study benchmark problem for both algorithms. The -DSEA reliability is obvious by 

approaching the possible optimum solutions in all trials. Conversely, Borg MOEA fails 
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in four trials to converge and to generate a Pareto-front, and in two trials in 

approaching to the optimum front. This is because Borg MOEA tend to adapt with one 

operator after finding possible feasible solutions. Here, the SBX operator was adopted 

in the early stage of evaluation process, then PCX operator adopted to the end. Zheng 

et al. (2016) observed that, for two-objective problems, Borg MOEA tended to 

converge prematurely and population diversity decreased relatively rapidly. This 

arises because Borg MOEA does not maintain a separate transient sub-population of 

offspring as in NSGA-II for example. Instead, any offspring that dominates any of its 

parents immediately replaces one of the parents; the choice of the parent that is 

replaced is random. As new fitter solutions are introduced, the selection pressure on 

less competitive solutions increases, due to the binary tournament selection used for 

crossover. Fitter solutions have a higher probability of selection for crossover, leading 

to more exploitation and less exploration and thus less diversity. Secondly, the 

injection trigger which depends mainly on -progress indicators, did not always 

succeed to reflect stagnation occurrences during the evaluation process. Thirdly, PCX 

operator produces offspring in the vicinity of the parents. If the PCX operator creates 

solutions around the best solutions found, the PCX-generated solutions quickly 

dominate the archive, leading to more exploitation, less exploration and consequently 

relatively rapid loss of diversity. As stated previously the recombination operators are 

deployed in proportion to the number of offspring they contributed in the archive. 
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Figure 9. Pareto-fronts for twenty random runs achieved by both algorithms 

In -DSEA, operators’ adaptation and their parameters are connected by the non-

dominated attainments in the archive. Figure 10a illustrates the self-adaptive 

operators’ parameter tuning behaviour of -DSEA during the evaluation process. The 

most effective operators adopted to generate dominance solutions for the best trial are 

SBX, PCX, and SPX. Initially the virtual dominance archive mechanism tuned 

operator’s parameters when only one solution is kept in the dominance archive. Then 

SBX operator adopted until the first resetting trigger at 5.0×105 function evaluation. 

The PCX operator then involve by increasing the variation parameters (𝜎𝜂 and 𝜎𝜁) to 

about 0.15. The SPX operator is also involving in the same time when its parameter 

() changed to about 2.7. Both PCX and SPX operators compete to explore dominance 

solutions until the third resetting trigger, after that SPX operator start to generate more 

dominance solutions in the dominance archive. Increasing PCX and SPX parameters 

will generate new offspring farther away from their original parents, which will 

increase algorithm exploration in the design search space.  

In Borg MOEA the operators that produce more successful (i.e. non-dominated) 
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offspring will be deployed more frequently. However, as the search progresses and the 

balance between exploration and exploitation shifts gradually, it is desirable that the 

operators be deployed based on the current status of the search rather than their 

previous performances or cumulative successes. In other words, the selection of the 

operators should recognize the current performance also. Hence, the proposed 

performance assessment of the operators relies on the results from the current phase of 

the search rather than the cumulative performance to date. 

Hence, the proposed mechanism provides advance diversity and balancing 

between exploration and exploitation process toward possible Pareto-front set. 

 

Figure 10. Parameters self-adaptation of the most effective operators for the best 

solution achieved (a), and algorithm convergence (b) to generate dominance solutions 

during the evaluation process. 

 

The algorithms convergence (efficiency) was also investigated using the 

decision variables vector (𝑋𝑑𝑣) development in the dominance archive during the 

evaluation process. The 𝑋𝑑𝑣  is equal to √𝑥1
2 + 𝑥2

2 + 𝑥3
2 + ⋯ + 𝑥𝑛

2 , where x1 to xn are 

the decision variables. Figure 10b shows early convergence of -DSEA in compare 
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with Borg MOEA for the best solution achieved. Hence, the -DSEA is more efficient 

than Borg MOEA for the proposed test problem. 

 

5 CONCLUSIONS 

Self-adaptation of the values of control parameters and selection of candidate 

recombination operators in evolutionary algorithms were investigated in this research, 

considering the diversity of the initial population and revival of the algorithm 

following stagnation or premature convergence. The methodology developed was 

demonstrated and assessed by an extensive comparison with Borg MOEA, a state-of-

the-art evolutionary algorithm introduced recently for many-objective optimization. 

The basis of the comparison was a suite of five test functions selected from the 

literature, with a range of objectives from two to eight and two computational budgets. 

A constrained real-world case study with three objectives and 396 decision variables 

was investigated also.  

 The selected test problems in the literature with various properties were 

considered to assess the proposed algorithm. The results are very encouraging. They 

revealed that the methodology proposed is highly competitive. Consistently good 

results were achieved, based on the computational efficiency and quality of the 

solutions found. On the problems considered, the SBX (simulated binary crossover) 

operator was used the most, followed by SPX (simplex crossover) and DE (differential 

evolution). Also, the values of some of the control parameters varied/deviated from 

the recommended default values, depending on the number of objectives, the stage of 

the optimization and the particular test problem under consideration. The methodology 
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proposed therefore lends itself to parameter calibration, which may be an interesting 

area for further research in the future.  

Furthermore, the results on a benchmark real-world case study with constraints 

clearly demonstrated the reliability and robustness of the proposed methodology by 

consistently yielding near-optimal solutions in all random trials, and outperforming 

Borg MOEA significantly. The adaptive operators sequence changing during the 

evaluation stages, starting by SBX operator and ending with PCX and SPX operators 

in parallel.  New range of operators’ parameters was present to consider for consistent 

real-word problems. The research is in progress and, in addition to trials involving 

other more complex real-world problems that may be computationally expensive, 

more verification would be likely yield additional insights.  
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5.3 Supplementary Data 

1. Recombination Operators 

Figure A1 shows the essential properties of the operators. The algorithms in Table A1 

are widely used in different fields of science and engineering (Zhou et al. 2011) and 

their respective recombination operators are indicated also. 

 

Figure A1. Spatial distributions of offspring from different recombination operators. 

The blue points indicate the parents while black dots refer to offspring (Hadka and 

Reed 2013). 

Table A1. Recombination operators in common evolutionary algorithms (Reed et al.  

2013) 

Recombination Operators Evolutionary Algorithms 

Simulated Binary Crossover 

(SBX) 

Borg, AMALGAM1, IBEA2, -MOEA3, -

NSGA-II4, SPEA25, NSGA-II6 

Differential Evolution (DE) Borg, AMALGAM, IBEA, GDE37, MOEA/D8 

Unimodal normal distribution 

crossover (UNDX) 

Borg 

Simplex crossover (SPX) Borg 

Parent-centric Crossover (PCX) Borg 

Uniform Mutation (UM) Borg 

Polynomial Mutation (PM) Borg, AMALGAM, IBEA, -MOEA, -NSGA-

II, SPEA2, NSGA-II, MOEA/D 
1(Vrugt and Robinson 2007), 2 (Zitzler and Simon 2004), 3(Laumanns et al. 2002), 
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4(Kollat and Reed 2006), 5(Zitzler et al. 2002), 6(Deb et al. 2002), 7(Kukkonen and 

Lampinen 2005), 8(Zhang et al. 2009). 

 

1.1 Simulated Binary Crossover (SBX) 

This operator uses two parents to generate two offspring by applying a single-point 

crossover.  It generates offspring evenly distributed near the parents as follows (Deb 

and Agrawal 1994). 

a. Calculate the factor 𝛽.  

 𝛽 = {
(2𝑟)

1

(𝜂+1)         𝑖𝑓 𝑟 ≤ 0.5

(
1

2(1−𝑟)
)

1

(𝜂+1)
  𝑖𝑓 𝑟 > 0.5

                         (A1) 

where r is a random number from the uniform distribution in the interval [0,1], 

and 𝜂 is the distribution index, a nonnegative real number. A small value of 𝜂 

produces a high probability to generate offspring far away from the parents, 

through which diversity in the search process will increase while large values 

yield offspring near the parents. In other words, small values promote diversity 

and greater exploration while large values intensify the search, which leads to 

greater exploitation. 

b. Calculate the 𝛽′ based on the probability to generate new offspring, 𝒫(𝛽). 

𝛽′ ≈ 𝒫(𝛽) = {
0.5(𝜂 + 1)𝛽𝜂        𝑖𝑓 𝛽 ≤ 1

0.5(𝜂 + 1)
1

𝛽𝜂+2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                 (A2) 

c. Calculate the new offspring values (c1, c2) from parents (p1, p2) as follows. 

𝑐1 =  0.5[(1 + 𝛽′)𝑝1 + (1 − 𝛽′)𝑝2]                        (A3) 
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𝑐2 =  0.5[(1 − 𝛽′)𝑝1 + (1 + 𝛽′)𝑝2]                        (A4) 

1.2 Differential Evolution (DE) 

Differential Evolution is a global optimization approach for real-coded optimization 

algorithms. This operator uses the weighted difference direction vector for two parents 

along with a third parent to generate new offspring. The general procedure for DE is 

as follows (Storn and Price 1997, Price et al. 2005), where NP ≥ 4 is the population 

size, G is the maximum number of generations, and j is the number of parameters. 

a. Generate a random vector 𝑥𝑗,𝑖,𝐺  using the following formula. 

𝑥𝑗,𝑖,𝐺 = 𝑟𝑎𝑛𝑑(0,1)𝑗. (𝑏𝑗.𝑈 − 𝑏𝑗,𝐿) + 𝑏𝑗,𝐿                                   (A5) 

0 ≤ 𝑟𝑎𝑛𝑑(0,1)𝑗 < 1; 𝑏𝑗.𝑈  𝑎𝑛𝑑  𝑏𝑗,𝐿 are the upper and lower bounds 

respectively.  

b. Generate a mutant vector 𝑣𝑖,𝐺+1 for each 𝑥𝑖,𝐺 . 

𝐯𝑖,𝐺+1 = 𝐱𝑟1,𝐺 + 𝐹. (𝐱𝑟2,𝐺 − 𝐱𝑟3,𝐺)                        (A6) 

where 𝑟1, 𝑟2, 𝑟3 ∈ {1, 2, 3, … , 𝑁𝑃} are random integer indices and the factor F 

∈ [0, 2] is a real number called step size.  

c. A trial vector 𝐮𝑖,𝐺 = (𝑢𝑗,𝑖,𝐺 ,  𝑢𝑗,𝑖,𝐺 , … . , 𝑢𝐷,𝑖,𝐺) is formed using the crossover 

process to increase the diversity according to the following relation 

𝑢𝑗,𝑖,𝐺 = {
𝑣𝑗,𝑖,𝐺      𝑖𝑓 (𝑟𝑎𝑛𝑑𝑗  ≤ 𝐶𝑅) 𝑜𝑟 (𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑥𝑗,𝑖,𝐺              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                
                      (A7) 

where 𝑟𝑎𝑛𝑑𝑗 ∈ [0, 1] is a random number, CR ∈ [0,1]  is the crossover rate 

defined by the user,  𝑗𝑟𝑎𝑛𝑑  ∈ [1, 𝐷] is a random integer and D is the dimension 

of the decision variable vector, i.e. the number of decision variables. 
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d. To preserve a constant population size, a selection between vectors for the next 

generation (G + 1) is utilized to decide the surviving vector as follows. 

𝐱𝑖,𝐺+1 = {
𝐮𝑖,𝐺   𝑖𝑓 𝑓(𝐮𝑖,𝐺) ≤  𝑓(𝐱𝑖,𝐺)

𝐱𝑖,𝐺     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                
                        (A8) 

where 𝑓(𝐱) is the minimizing objective function. The authors suggested that 

an initial value of F = 0.5 would be suitable, and if the algorithm converges 

early, this values should be increased while values of F less than 0.4 or greater 

than 1.0 are rarely used. For CR, for the initial trials, 0.9 or 1.0 may be used to 

achieve rapid the convergence. Subsequently the value may be reduced to 0.1.  

1.3 Unimodal Normal Distribution Crossover (UNDX) 

This operator generates offspring around the centre of mass of three or more parents, 

known as mean-centric recombination approach, as follows (Kita et al. 1999). 

a. Randomly select ( -1) parents (𝒙1, … , 𝒙𝜇−1) from the population, where  is 

the number of parents. 

b. Calculate the mean vector 𝓟 for these parents. 

c. Calculate  𝒅𝑖, i.e. the difference vector between 𝒙𝑖 and 𝓟: 𝒅𝑖 = 𝒙𝑖 − 𝓟,  i = 1, 

…, . 

d. Find the direction cosines vector:   𝒆𝑖 =
𝒅𝑖

|𝒅𝑖|
 ; i = 1, …, . 

e. Randomly select parent  𝒙𝜇 and calculate the length, D, between the two 

vectors 𝒙𝜇 and  𝓟 which is orthogonal to all  𝒆𝑖. 

f. The new offspring 𝒙𝑐 is generated as follows. 

𝒙𝑐 =  𝓟 + ∑ 𝜔𝑖 . |𝒅𝑖|.
𝝁−𝟏
𝒊=𝟏 𝒆𝑖 + ∑ 𝜈𝑗 . 𝐷. 𝒆𝑗𝑛

𝑗=𝜇                         (A9) 
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where 𝒆𝑗 (j = , …, n, where n is the size of the decision variable vector 𝒙) is the 

orthonormal basis vector of the subspace, which is orthogonal to the subspace spanned 

by all  𝒆𝑖. 𝜔𝑖 and 𝜈𝑗 are random variables which follow a normal distribution having 

zero mean, with variances 𝜎𝜁
2 and 𝜎𝜂

2 respectively. The authors suggested 𝜎𝜁 =

1/√𝜇 − 2 and 𝜎𝜂 = 0.35/√𝑛 − 𝜇 − 2 .  

1.4 Simplex Crossover (SPX) 

This is a multi-parent operator that uses the mean-centric recombination approach. It 

restricts the generation of the new offspring in a region called simplex around the 

parents’ centre of mass using the uniform distribution. The operator uses three parents 

or more to generate offspring. Let n represent the number of parameters in the search 

space with vectors 𝛸𝑘 , k = 0, 1, …, n. The offspring is obtained as follows (Tsutsui et 

al. 1999). 

a. Select (n+1) parental vectors 𝛸𝑘  randomly and calculate their centre of mass O 

using 

𝛰 =
1

𝑛+1
∑ 𝛸𝑘

𝑛
𝑘=0              (A10) 

b. Calculate vk, i.e. 

 𝑣𝑘 = 𝑢(
1

𝑘+1
)
, 𝑢 ∈ [0, 1]              (A11) 

where u is a uniform random number.  

c. Calculate the expansion vector 𝑌𝑘 = 𝑂 + 𝜆(𝑋𝑘 − 𝑂), where 𝜆 is the expansion 

rate that is a control parameter. 

d. Calculate the factor 𝐶𝑘 = {
0                                             𝑖𝑓 𝑘 = 0

𝑣𝑘−1(𝑌𝑘−1 − 𝑌𝑘 + 𝐶𝑘−1)     𝑖𝑓 𝑘 > 0
         (A12) 
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e. Generate the new offspring at 𝐶 = 𝑌𝑛 + 𝐶𝑛, where 𝑌𝑛 and 𝐶𝑛 are the expansion 

vector and factor at k = n, respectively. 

The authors suggested a value of   λ = √𝜇 + 2 , where 𝜇 is the number of parents.  

1.5 Parent Centric Crossover (PCX) 

This operator is derived from the UNDX operator with some modifications. In this 

operator, the mean vector 𝓟 is generated for 𝜇 parents rather than (𝜇 − 1) as in the 

UNDX. Then one parent 𝒙𝑝 is chosen with equal probability, and the direction vector 

𝒅𝑝 = 𝒙𝑝 − 𝓟 is calculated. The perpendicular distance 𝐷𝑖, (𝑖 = 1, … , 𝜇 − 1) to the 

line 𝒅𝑝 is calculated for the other (𝜇 − 1) parents, and their average distance �̅� is used 

to generate the new offspring as follows (Deb et al. 2002). 

𝒚 =  𝒙𝑝 + 𝜔𝜁 . |𝒅𝑝| + ∑ 𝑣𝜂 . �̅�. 𝒆𝑖𝜇
𝑖=1,𝑖≠𝑝                                (A13) 

where the 𝒆𝑖 represent the (𝜇 − 1) orthonormal bases spanning the subspace 

perpendicular to 𝒅𝑝, while 𝜔𝜁 and 𝑣𝜂  have the same definition as 𝜔𝑖 and 𝑣𝑗 in UNDX 

with variance 𝜎𝜁
2 and 𝜎𝜂

2 respectively. The authors proposed values for 𝜎𝜁 and 𝜎𝜂 of 

0.1. The operator has similar properties to UNDX and SPX except that the new 

offspring is not generated around the centre mass of the parents. Instead, the new 

offspring are generated around the parents. 

1.6 Uniform Mutation (UM) 

This operator generates single offspring 𝒙′ from single parent 𝒙. A random element 𝑥𝑘 

is selected from the vector 𝒙 = (𝑥1, … , 𝑥𝑘, . . , 𝑥𝑛), where 𝑘 ∈ {1, … , 𝑛} to generate the 

new vector  𝒙′ = (𝑥1, … , 𝑥𝑘
′ , . . , 𝑥𝑛), where 𝑥𝑘

′ ∈ [𝑥𝑘
𝐿, 𝑥𝑘

𝑈] and L and U refer to the upper 

and lower bounds of the element. This operator is allowed to search freely in the search 



Chapter Five   Evolutionary Optimization Algorithm’s Enhancement 

5-55 

 

space which is useful in the early stages of  the EA (Michalewicz et al. 1994). 

1.7 Polynomial Mutation (PM) 

This operator uses a polynomial distribution to generate a new offspring near the 

parent, and is widely used in the recent evolutionary algorithms (Reed et al. 2013). 

The procedure to generate the new solution c from a solution 𝑥 ∈ [𝑥𝐿, 𝑥𝑈] where 𝑥𝐿 

and 𝑥𝑈 denote the lower and upper bounds, respectively, is as follows (Deb and 

Agrawal 1999). 

a. Generate a random number  𝑢 ∈ [0,1]. 

b. Calculate the factor 𝛿𝑞 using the following equation 

𝛿𝑞 = {
[2𝑢 + (1 − 2𝑢)(1 − 𝛿)𝜂𝑚+1]

1

𝜂𝑚+1 − 1                     𝑖𝑓 𝑢 ≤ 0.5

1 − [2(1 − 𝑢) + 2(𝑢 − 0.5)(1 − 𝛿)𝜂𝑚+1]
1

𝜂𝑚+1     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (A14) 

where 𝜂𝑚 is the distribution index for mutation that may take any non-negative value 

and  𝛿 = min[(𝑥 − 𝑥𝐿), (𝑥𝑈 − 𝑥)] /(𝑥𝑈 − 𝑥𝐿). 

c. Generate the new solution:  𝑐 = 𝑥 + 𝛿𝑞(𝑥𝑈 − 𝑥𝐿). 
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2. Details of Test Functions Used For Comparative Analyses 

Table A2.  Details of the optimization test functions (Deb et al. 2001) 

Test functions Details 

DTLZ1 Minimize: 

𝑓1(𝐱) = 0.5𝑥1𝑥2 … 𝑥𝑀−1(1 + 𝑔(𝐱𝑀)) 

𝑓2(𝐱) = 0.5𝑥1𝑥2 … (1 − 𝑥𝑀−1)(1 + 𝑔(𝐱𝑀)) 

⋮                       ⋮ 
𝑓𝑀−1(𝐱) = 0.5𝑥1(1 − 𝑥2)(1 + 𝑔(𝐱𝑀)) 

𝑓𝑀(𝐱) = 0.5(1 − 𝑥1)(1 + 𝑔(𝐱𝑀)) 

Subjected to  0 ≤ 𝑥𝑖 ≤ 1  ∀𝑖 = 1,2, … , 𝐿 (L is the number of 

variables) 

Where 𝑔(𝐱𝑀) = 100[|𝐱𝑀| + ∑ (𝑥𝑖 − 0.5)2 − cos (20𝜋(𝑥𝑖 −𝑥𝑖∈𝐱𝑀

0.5))] 

DTLZ2 Minimize: 

𝑓1(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1𝜋/2)cos (𝑥2𝜋/2) … cos  (𝑥𝑀−2𝜋

/2)cos (𝑥𝑀−1𝜋/2) 

𝑓2(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1𝜋/2)cos (𝑥2𝜋/2) … cos  (𝑥𝑀−2𝜋

/2)sin (𝑥𝑀−1𝜋/2) 

𝑓3(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1𝜋/2)cos (𝑥2𝜋/2) … sin  (𝑥𝑀−2𝜋/2) 

⋮                       ⋮ 

𝑓𝑀−1(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1𝜋/2)sin (𝑥2𝜋/2) 

𝑓𝑀(𝐱) = (1 + 𝑔(𝐱𝑀)) sin( 𝑥1𝜋/2) 

Subjected to:  0 ≤ 𝑥𝑖 ≤ 1;  ∀𝑖 = 1,2, … , 𝐿 (L is the number of 

variables) 

Where 𝑔(𝐱𝑀) = ∑ (𝑥𝑖 − 0.5)2
𝑥𝑖∈𝐱𝑀

 

DTLZ3 Minimize: 

𝑓1(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1𝜋/2)cos (𝑥2𝜋/2) … cos  (𝑥𝑀−2𝜋

/2)cos (𝑥𝑀−1𝜋/2) 

𝑓2(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1𝜋/2)cos (𝑥2𝜋/2) … cos  (𝑥𝑀−2𝜋
/2)sin (𝑥𝑀−1𝜋/2) 

𝑓3(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1𝜋/2)cos (𝑥2𝜋/2) … sin  (𝑥𝑀−2𝜋/2) 

⋮                       ⋮ 
𝑓𝑀−1(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1𝜋/2)sin (𝑥2𝜋/2) 

𝑓𝑀(𝐱) = (1 + 𝑔(𝐱𝑀)) sin( 𝑥1𝜋/2) 

Subjected to:  0 ≤ 𝑥𝑖 ≤ 1;  ∀𝑖 = 1,2, … , 𝐿 (L is the number of 

variables) 

Where 𝑔(𝐱𝑀) = 100[|𝐱𝑀| + ∑ (𝑥𝑖 − 0.5)2 − cos (20𝜋(𝑥𝑖 −𝑥𝑖∈𝐱𝑀

0.5))] 

DTLZ4 Minimize: 

𝑓1(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1
𝛼𝜋/2)cos (𝑥2

𝛼𝜋/2) … cos  (𝑥𝑀−2
𝛼 𝜋

/2)cos (𝑥𝑀−1
𝛼 𝜋/2) 
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𝑓2(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1
𝛼𝜋/2)cos (𝑥2

𝛼𝜋/2) … cos  (𝑥𝑀−2
𝛼 𝜋

/2)sin (𝑥𝑀−1
𝛼 𝜋/2) 

𝑓3(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1
𝛼𝜋/2)cos (𝑥2

𝛼𝜋/2) … sin  (𝑥𝑀−2
𝛼 𝜋/2) 

⋮                       ⋮ 

𝑓𝑀−1(𝐱) = (1 + 𝑔(𝐱𝑀)) cos( 𝑥1
𝛼𝜋/2)sin (𝑥2

𝛼𝜋/2) 

𝑓𝑀(𝐱) = (1 + 𝑔(𝐱𝑀)) sin( 𝑥1
𝛼𝜋/2) 

Subjected to:  0 ≤ 𝑥𝑖 ≤ 1;  ∀𝑖 = 1,2, … , 𝐿 (L is the number of 

variables) 

Where 𝑔(𝐱𝑀) = ∑ (𝑥𝑖 − 0.5)2
𝑥𝑖∈𝐱𝑀

; 𝛼 = 100 

DTLZ7 Minimize: 

𝑓1(𝐱) = 𝑥1 

𝑓2(𝐱) = 𝑥2 

⋮                       ⋮ 
𝑓𝑀−1(𝐱) = 𝑥𝑀−1 

𝑓𝑀(𝐱) = (1 + 𝑔(𝐱𝑀))ℎ(𝑓1, 𝑓2, … . , 𝑓𝑀−1, 𝑔) 

Subjected to:  0 ≤ 𝑥𝑖 ≤ 1;  ∀𝑖 = 1,2, … , 𝐿 (L is the number of 

variables) 

Where 𝑔(𝐱𝑀) = 1 +
9

|𝐱𝑀|
∑ 𝑥𝑖𝑥𝑖∈𝐱𝑀

 

ℎ(𝑓1, 𝑓2, … . , 𝑓𝑀−1, 𝑔) = 𝑀 − ∑ [
𝑓𝑖

1+𝑔
(1 + sin (3𝜋𝑓𝑖 ))]𝑀−1

𝑖=1   

 

  



Chapter Five   Evolutionary Optimization Algorithm’s Enhancement 

5-58 

 

3.  Comparison Of Restarts And -Index Improvements 

Table A3. Average number of restart per optimization run (Borg MOEA) 

Objectives DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7 

 50,000 function evaluations 

2D 110 113 33 113 111 

4D 16 6 22 7 9 

6D 7 5 7 7 11 

8D 6 6 6 141 11 

 100,000 function evaluations 

2D 260 247 149 246 258 

4D 20 13 31 20 13 

6D 9 7 18 9 13 

8D 7 7 8 304 14 

-DSEA employs no more than three restarts (population injection). 

 

Table A4. Average number of improvement per optimization run (Borg MOEA and 

-DSEA) 

 Borg MOEA  -DSEA  

Function 2D 4D 6D 8D Totals 2D 4D 6D 8D Totals 

 50,000 function evaluations 
DTLZ1 756 7104 8846 12258 28964 734 6139 14454 16871 38198 

DTLZ2 439 6662 13030 13518 33649 457 6187 12237 13995 32876 

DTLZ3 2397 6593 5601 9891 24482 1836 6701 9720 11480 29737 

DTLZ4 303 3893 5652 99 9947 318 3954 6149 112 10533 
DTLZ7 779 7148 14684 5128 27739 645 5409 13166 4647 23867 

Totals  124781     135211 

  100,000 function evaluations  
DTLZ1 633 9349 24512 21178 55672 676 8516 28985 33045 71222 

DTLZ2 424 7657 17995 19618 45694 456 7028 16380 18519 42383 

DTLZ3 2570 12238 12840 15908 43556 1850 10136 15286 16617 43889 

DTLZ4 280 4509 7911 99 12799 291 4070 8321 107 12789 
DTLZ7 755 8532 23336 6270 38893 619 5562 19773 5296 31250 

Totals     196614     201533 

Grand Total    321395     336744 
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4. Control Parameters of Evolutionary Operators In -DSEA 

 

Table A5a. -DSEA values of control parameters of evolutionary operators on 

DTLZ1 

Parameters Objectives Mean Std. Minimum Median Maximum 

 
(SBX) 

2D 79.650 15.953 16.000 89.000 91.000 

4D 92.103 11.579 14.000 95.000 99.000 

6D 86.295 12.296 16.000 86.000 99.000 

8D 87.349 14.816 16.000 95.000 99.000 

CR, F  

(DE) 
CR-2D 0.102 0.013 0.100 0.100 0.267 

F-2D 0.510 0.016 0.500 0.503 0.633 

CR-4D 0.102 0.013 0.100 0.100 0.267 

F-4D 0.510 0.016 0.500 0.503 0.633 

CR-6D 0.101 0.008 0.100 0.100 0.188 

F-6D 0.510 0.012 0.500 0.507 0.594 

CR-8D 0.104 0.022 0.100 0.100 0.333 

F-8D 0.514 0.021 0.500 0.507 0.667 

𝜎𝜂, 𝜎𝜁  

(PCX) 

2D 0.106 0.006 0.104 0.104 0.140 

4D 0.101 0.003 0.100 0.100 0.133 

6D 0.101 0.003 0.100 0.100 0.133 

8D 0.101 0.004 0.100 0.100 0.133 

  

(SPX) 

2D 2.533 0.034 2.518 2.518 2.700 

4D 2.537 0.050 2.502 2.525 2.858 

6D 2.596 0.084 2.503 2.620 2.823 

8D 2.571 0.093 2.502 2.519 2.831 

𝜎𝜂, 𝜎𝜁   

(UNDX) 

𝜎𝜁  -2D 0.405 0.004 0.404 0.404 0.433 

𝜎𝜂 -2D 0.109 0.007 0.106 0.106 0.156 

𝜎𝜁 -4D 0.401 0.003 0.400 0.400 0.433 

𝜎𝜂 -4D 0.102 0.005 0.100 0.100 0.156 

𝜎𝜁 -6D 0.401 0.003 0.400 0.400 0.433 

𝜎𝜂 -6D 0.101 0.006 0.100 0.100 0.156 

𝜎𝜁 -8D 0.401 0.004 0.400 0.400 0.433 

𝜎𝜂 -8D 0.102 0.006 0.100 0.100 0.156 
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Table A5b. -DSEA values of control parameters of evolutionary operators on 

DTLZ2 

Parameters Objectives Mean Std. Minimum Median Maximum 

  

(SBX) 

2D 84.844 18.500 1.000 91.000 92.000 

4D 77.901 18.893 5.000 84.000 97.000 

6D 77.344 15.180 16.000 79.000 95.000 

8D 80.233 15.060 16.000 82.000 96.000 

CR, F 

(DE) 

CR-2D 0.101 0.009 0.100 0.100 0.238 

F-2D 0.514 0.013 0.507 0.508 0.619 

CR-4D 0.109 0.030 0.100 0.100 0.321 

F-4D 0.519 0.028 0.501 0.508 0.661 

CR-6D 0.101 0.012 0.100 0.100 0.300 

F-6D 0.513 0.015 0.501 0.509 0.650 

CR-8D 0.101 0.005 0.100 0.100 0.167 

F-8D 0.507 0.010 0.501 0.504 0.583 

𝜎𝜂, 𝜎𝜁 

(PCX) 

2D 0.107 0.013 0.103 0.103 0.206 

4D 0.114 0.012 0.102 0.110 0.159 

6D 0.116 0.013 0.101 0.114 0.168 

8D 0.114 0.009 0.103 0.113 0.143 

 

 (SPX) 

2D 2.545 0.094 2.515 2.515 3.026 

4D 2.594 0.086 2.507 2.564 3.024 

6D 2.602 0.071 2.520 2.622 2.783 

8D 2.595 0.077 2.503 2.607 2.838 

𝜎𝜂, 𝜎𝜁  

(UNDX) 

𝜎𝜁  -2D 0.404 0.003 0.403 0.403 0.433 

𝜎𝜂 -2D 0.106 0.005 0.105 0.105 0.156 

𝜎𝜁 -4D 0.401 0.004 0.400 0.400 0.437 

𝜎𝜂 -4D 0.102 0.007 0.100 0.100 0.162 

𝜎𝜁 -6D 0.401 0.003 0.400 0.400 0.433 

𝜎𝜂 -6D 0.102 0.006 0.100 0.100 0.156 

𝜎𝜁 -8D 0.401 0.004 0.400 0.400 0.433 

𝜎𝜂 -8D 0.102 0.006 0.100 0.100 0.156 
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Table A5c. -DSEA values of control parameters of evolutionary operators on 

DTLZ3 

Parameters Objectives Mean Std. Minimum Median Maximum 

  

(SBX) 

2D 74.598 21.430 11.000 87.000 92.000 

4D 86.904 13.419 16.000 91.000 98.000 

6D 64.035 38.118 0.000 77.000 98.000 

8D 87.378 14.274 16.000 91.000 99.000 

CR, F 

(DE) 

CR-2D 0.111 0.041 0.100 0.100 0.438 

F-2D 0.526 0.031 0.507 0.515 0.719 

CR-4D 0.104 0.020 0.100 0.100 0.308 

F-4D 0.513 0.020 0.501 0.507 0.654 

CR-6D 0.134 0.059 0.100 0.100 0.285 

F-6D 0.537 0.048 0.501 0.508 0.643 

CR-8D 0.103 0.018 0.100 0.100 0.333 

F-8D 0.513 0.019 0.500 0.506 0.667 

𝜎𝜂, 𝜎𝜁 

(PCX) 

2D 0.109 0.015 0.103 0.103 0.207 

4D 0.102 0.003 0.100 0.101 0.133 

6D 0.102 0.004 0.100 0.101 0.133 

8D 0.103 0.004 0.100 0.102 0.133 

  

(SPX) 

2D 2.599 0.133 2.515 2.531 3.056 

4D 2.573 0.087 2.508 2.527 2.900 

6D 2.616 0.151 2.502 2.527 3.155 

8D 2.534 0.056 2.501 2.521 2.828 

𝜎𝜂, 𝜎𝜁  

(UNDX) 

𝜎𝜁  -2D 0.405 0.005 0.403 0.403 0.433 

𝜎𝜂 -2D 0.108 0.008 0.105 0.105 0.156 

𝜎𝜁 -4D 0.401 0.003 0.400 0.400 0.433 

𝜎𝜂 -4D 0.102 0.005 0.100 0.101 0.156 

𝜎𝜁 -6D 0.402 0.005 0.400 0.401 0.452 

𝜎𝜂 -6D 0.103 0.008 0.100 0.101 0.187 

𝜎𝜁 -8D 0.403 0.006 0.400 0.401 0.462 

𝜎𝜂 -8D 0.106 0.010 0.100 0.102 0.203 
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Table A5d. -DSEA values of control parameters of evolutionary operators on 

DTLZ4 

Parameters Objectives Mean Std. Minimum Median Maximum 

  

(SBX) 

2D 87.965 9.973 16.000 92.000 92.000 

4D 93.183 10.509 16.000 97.000 98.000 

6D 93.001 10.893 16.000 96.000 99.000 

8D 79.712 16.659 12.000 85.000 88.000 

CR, F 

(DE) 

CR-2D 0.102 0.013 0.100 0.100 0.250 

F-2D 0.514 0.015 0.507 0.508 0.625 

CR-4D 0.103 0.015 0.100 0.100 0.278 

F-4D 0.513 0.018 0.500 0.508 0.639 

CR-6D 0.103 0.018 0.100 0.100 0.333 

F-6D 0.515 0.018 0.500 0.512 0.667 

CR-8D 0.109 0.031 0.100 0.100 0.300 

F-8D 0.525 0.026 0.512 0.512 0.650 

𝜎𝜂, 𝜎𝜁 

(PCX) 

2D 0.105 0.006 0.103 0.103 0.149 

4D 0.102 0.005 0.100 0.101 0.144 

6D 0.102 0.004 0.100 0.101 0.133 

8D 0.107 0.005 0.105 0.105 0.133 

 

 (SPX) 

2D 2.525 0.033 2.515 2.515 2.786 

4D 2.515 0.025 2.502 2.508 2.714 

6D 2.512 0.026 2.501 2.505 2.778 

8D 2.534 0.027 2.524 2.524 2.700 

𝜎𝜂, 𝜎𝜁  

(UNDX) 

𝜎𝜁  -2D 0.404 0.003 0.403 0.403 0.433 

𝜎𝜂 -2D 0.106 0.005 0.105 0.105 0.156 

𝜎𝜁 -4D 0.401 0.003 0.400 0.400 0.433 

𝜎𝜂 -4D 0.102 0.006 0.100 0.101 0.156 

𝜎𝜁 -6D 0.401 0.004 0.400 0.400 0.433 

𝜎𝜂 -6D 0.101 0.006 0.100 0.100 0.156 

𝜎𝜁 -8D 0.407 0.005 0.405 0.405 0.446 

𝜎𝜂 -8D 0.111 0.008 0.108 0.108 0.177 
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Table A5e. -DSEA values of control parameters of evolutionary operators on 

DTLZ7 

Parameter

s 

Objective

s 
Mean Std. 

Minimu

m 
Median 

Maximu

m 

  

(SBX) 

2D 82.469 12.917 7.000 86.000 90.000 

4D 94.137 12.317 13.000 98.000 99.000 

6D 96.288 9.627 16.000 99.000 99.000 

8D 95.045 10.940 16.000 98.000 99.000 

CR, F 

(DE) 

CR-2D 0.112 0.032 0.100 0.100 0.355 

F-2D 0.533 0.028 0.510 0.520 0.677 

CR-4D 0.103 0.021 0.100 0.100 0.368 

F-4D 0.511 0.020 0.501 0.505 0.684 

CR-6D 0.101 0.011 0.100 0.100 0.273 

F-6D 0.505 0.012 0.500 0.502 0.636 

CR-8D 0.101 0.013 0.100 0.100 0.250 

F-8D 0.508 0.014 0.501 0.503 0.625 

𝜎𝜂, 𝜎𝜁 

(PCX) 

2D 0.105 0.005 0.104 0.104 0.136 

4D 0.102 0.006 0.100 0.100 0.157 

6D 0.101 0.004 0.100 0.100 0.146 

8D 0.101 0.003 0.100 0.100 0.133 

  

(SPX) 

2D 2.532 0.048 2.519 2.519 2.890 

4D 2.510 0.035 2.501 2.502 2.857 

6D 2.508 0.039 2.500 2.501 2.897 

8D 2.510 0.043 2.501 2.501 2.974 

𝜎𝜂, 𝜎𝜁  

(UNDX) 

𝜎𝜁  -2D 0.405 0.003 0.404 0.404 0.433 

𝜎𝜂 -2D 0.108 0.006 0.106 0.106 0.156 

𝜎𝜁 -4D 0.401 0.004 0.400 0.400 0.433 

𝜎𝜂 -4D 0.102 0.006 0.100 0.101 0.156 

𝜎𝜁 -6D 0.401 0.002 0.400 0.400 0.433 

𝜎𝜂 -6D 0.101 0.004 0.100 0.100 0.156 

𝜎𝜁 -8D 0.401 0.003 0.400 0.400 0.433 

𝜎𝜂 -8D 0.102 0.005 0.100 0.100 0.156 
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5.4 Further Discussion  

Regarding real-world benchmark problem, the total number of optimum 

solutions generated by -DSEA over the 20 runs was 6935, while it was 4848 for Borg 

MOEA, which reflects algorithm’s diversity robustness to exploit and explore the 

decision variables design space. Hence, more reservoir operation management will 

deliver to the decision makes as alternatives. 

The average and median gross reservoir releases, storage, and power generation 

achieved by -DSEA for the best solution were: 133.7×109 m3; 133.6×109 m3; 

641.8×109 m3; 650.4×109 m3; 36.8 GW; 37 GW, respectively.  For Borg MOEA, they 

were: 133.9×109 m3; 133.9×109 m3; 612.2×109 m3; 619.7×109 m3; 36.7 GW; 37 GW, 

respectively. Hydropower generation achieved by both algorithms are consistent, 

however better storage sustainable management is achieved by -DSEA over reducing 

the releases. Thus, quality of optimum solutions achieved by -DSEA is endorsed, not 

only the quantity. This is a key benefit in arid and semi-arid environment since it has 

limited water resources to store in winter for summer season demands.   
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5.5 Conclusions 

In this chapter, a new evolutionary algorithm is presented entitled “Epsilon-

Driven Self-Adaptive Evolutionary Algorithm” (-DSEA), which has many novel 

methodologies to improve the diversity, convergence and adaptation of optimization 

algorithm. Initial diversity exploration achieved by multiple recombination operators 

(for crossover evolve process) uses all population candidates to produce new 

generations. New recombination operators’ parameters tuning technique is developed 

for dynamic adaptation with operator’s optimality achievement. Moreover, random 

operators’ parameters resetting is also developed to escape from local optima pitfall.  

The -DSEA is assessed intensively in comparison with the state-of-the-art Borg 

MOEA using a set of commonly implemented benchmark test function with two 

computational budgets, and a real-word reservoir management problem. The results 

are very encouraging. They revealed that the methodology proposed is highly 

competitive. Consistently good results were achieved, based on the computational 

efficiency and quality of the solutions found. On the problems considered, the SBX 

(simulated binary crossover) operator was used the most, followed by SPX (simplex 

crossover) and DE (differential evolution). Also, the values of some of the control 

parameters varied/deviated from the recommended default values, depending on the 

number of objectives, the stage of the optimization and the particular test problem 

under consideration. The methodology proposed therefore lends itself to parameter 

calibration, which may be an interesting area for further research in the future.  

Furthermore, the results on a benchmark real-world case study with constraints 

clearly demonstrated the reliability and robustness of the proposed methodology by 

consistently yielding near-optimal solutions in all random trials, and outperforming 
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Borg MOEA significantly. The adaptive operators sequence changing during the 

evaluation stages, starting by SBX operator and ending with PCX and SPX operators 

in parallel.  New range of operators’ parameters was present to consider for consistent 

real-word problems. The research is in progress and, in addition to trials involving 

other more complex real-world problems that may be computationally expensive, 

more verification would be likely yield additional insights. 

Hence, in the next chapter, a long-term groundwater pumping management 

problem is used to assess MOEAs’ performance based on reliability, robustness, 

efficiency, and effectiveness indices, as it has different types of decision variables, 

objectives, and constraints.   
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CHAPTER SIX 

GROUNDWATER MANAGEMENT 

ASSESSMENT 
 

 

6.1 Introduction 
 

The proposed self-adaptive methodology was investigated in the previous 

chapter using benchmark test functions and a real-world reservoir management 

strategy. The primary results show encouraging results with -DSEA in comparison 

with Borg MOEA in almost all considered test problems. However, further assessment 

was recommended using a different problems environment, as in bullet point 4 in 

Chapter two. Thus, the -DSEA is subjected to solve different problem environment, 

which has different types of variables, targets, and barriers. Borg MOEA is also 

implemented for confidence and robustness of results, as highlighted in bullet point 3 

in Chapter two (applying more than one algorithm).  

The potential groundwater storage in the middle part of Diyala river basin, 

which highlighted by bullet point 8 in Chapter two, can participate in fulfilling water 

consumption use in this part. Hence sustainable management strategy assessment is 

needed for long-term water exploitation, since only simple water balance models were 

previously implemented. This problem is adopted as a case study to evaluate 

algorithms’ performance, and to demonstrate the aquifers’ productivity in this region. 

A paper is developed and submitted at Water Resources Management journal 

(2018) as: 
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- Al-Jawad, J.Y., Al-Jawad, S.B., Tanyimboh, T.T., Kalin, R.M., 2018a. 

Comprehensive Evolutionary Algorithms Performance Assessment Using a Multi-

Objectives Water Resources Management Problem. Water Resour. Manag. Under 

review. 

 

“The following work represents my efforts, such as:  theoretical formalism 

development, analytic calculations and numerical simulations, writing the manuscript. 

Dr. Tanyimboh, T.T. and Dr. Kalin, R.M., were the project supervisors, and provided 

assistance and support when required. Al-Jawad, S.B. was a governmental key 

stackeholder, provided assistance and support when required”  



Chapter Six    Groundwater Management Assessment 

 

6-3 

 

6.2 Paper: 

Al-Jawad, J.Y., Al-Jawad, S.B., Tanyimboh, T.T., Kalin, R.M., 2018a. 

Comprehensive Evolutionary Algorithms Performance Assessment Using a Multi-

Objectives Water Resources Management Problem. Water Resour. Manag. Under 

review.1 
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COMPREHENSIVE EVOLUTIONARY ALGORITHMS 

PERFORMANCE ASSESSMENT USING A MULTI-OBJECTIVES 

WATER RESOURCES MANAGEMENT PROBLEM 

Abstract 

Multi-Objectives Evolutionary Algorithms’ (MOEAs) ability to attain optimal 

solutions is directly affected by a consistency of evolutionary parameters within the 

problem environment, and stagnation sensitivity that fails to produce dominant 

solutions. Competitive MOEAs were here subjected to a comprehensive performance 

assessment using Iraq’s Diyala River basin as case study to evaluate optimization 

potential. The Borg MOEA and -DSEA were applied to optimize a three-objective 

groundwater management problem involving farms irrigation covering a half-century 

over five discrete periods contrasting open furrows and drip irrigation systems. The 

results show superiority of -DSEA in all categories (reliability, robustness, efficiency 

and effectiveness) with new evolve parameters;  the potential of -DSEA techniques 

are hence endorsed. The Diyala case results demonstrate unsustainable groundwater 

use for either delivery system due to recharge scarcity. Predictive simulations indicate 

future policy should reduce water consumption by 45%, or consider conjunctive 

surface water use to augment long-term sustainable aquifer resource management.  

 

 

 

Keywords: Evolutionary Algorithms, Multi-Objectives Optimization, Borg MOEA, 

-DSEA,  Performance Assessment, groundwater management 
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1 INTRODUCTION 

Ever increasing pressures of population growth, food production and energy 

needs require that decision makers adopt robust water resources management 

strategies to fulfil demands (Yang et al. 2001; Maier et al. 2014; Horne et al. 2016). 

Optimization algorithms represent a key management tool in solving a variety of water 

resources management and planning challenges (Coello et al. 2007; Nicklow et al. 

2010). The continual development of optimization methods has generated many 

different approaches based on  linear, non-linear and dynamic programming (Horne et 

al. 2016). The evolutionary algorithm (EA) approach of Holland (1975) inspired from 

natural evolution has been widely used to solve real-word multi-objectives problems 

(Schaffer 1985). Such algorithms generate population of solutions rather than a single 

solution in a single run (Deb 2001) with many types of EAs now available (Zhou et 

al., 2011).  

Multi-Objectives Evolutionary Algorithms (MOEAs) have been widely used 

to overcome the conflicts, non-linearity and dynamic characteristics typically present 

in water resources systems management (Maier et al., 2014). Examples of MOEAs’ 

implementation include: Javadi et al. (2015) used non-dominated sorting genetic 

algorithm (NSGA-II) to optimize seawater intrusion in a coastal aquifer. Sidiropoulos 

et al. (2016) used simulation-optimization for groundwater management. Oxley and 

Mays (2016) applied a genetic algorithm (GA) for long-term planning and sustainable 

water resources management. Tigkas et al. (2016) investigated the efficiency of EAs 

for the calibration of a conceptual hydrologic model. Sreekanth et al. (2016) 

implemented the NSGA-II algorithm to maximize aquifer water injection and to 

minimize the variance in aquifer water levels. Sadeghi-Tabas et al. (2017) coupled a 
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multi-algorithm, genetically adaptive, multi-objective (AMALGAM) optimization 

algorithm and simulation model to minimize the deficit in water demands, shortage 

index, and drawdown in the water table. More MOEAs’ types and application in water 

resources may be found in Tayfur (2017). 

However, MOEAs’ optimum achievement varies over different problems 

(Ishibuchi et al. 2015; Ishibuchi et al. 2017). For example, Reed et al. (2013) assess 

the performance of ten MOEAs to solve four benchmark problems and show the 

outperformance of Borg MOEA over other algorithms. Conversely, Borg MOEA 

exhibited a lower performance on a standard water distribution system benchmark 

problem and failed to approach the true Pareto-front (Qi et al. 2015; Zheng et al. 2016). 

Salazar et al. (2016), however it demonstrated consistent performance with other 

MOEAs on a real-world reservoir operation management problem. Hence, multiple 

algorithms may be required  when solving real-world problems to achieve robust 

results and effective underpinning of decision making (Maier et al., 2014).  

The MOEAs use many parameters such as population size, mutation and 

crossover rate, which have direct impact on their performance. Hence, these 

parameters (especially mutation and crossover rates) should be carefully selected and 

tested within the defined problem environment (Maier et al. 2014; Karafotias et al. 

2015). The optimal performance of MOEAs is evaluated on benchmark test functions 

(e.g. DTLZ series, ZDT series, etc.)  which consider easy and forward problems 

recognising real-word problems have more complexity and challenges (Maier et al., 

2014). The MOEAs’ effectiveness is commonly measured using metrics like the 

hypervolume metric (Zitzler, 1999) which evaluate the non-dominated solutions’ 

hypervolume, and generational distance metric (Van Veldhuizen and Lamont, 1998) 
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which measure the average distance between the dominance solutions and the closer 

Pareto-front set. However, these metrics (and others) may provide misguiding results 

and most of their design principles depends on the true Pareto-front, which is unknown 

in real-world water resources management problems (Maier et al., 2014). Accordingly,  

behaviours and performance of MOEAs and methodologies require further assessment 

of their performance, especially when solving real-world problems (Maier et al., 

2014).  

The above challenges motivated our research to assess the performance of two 

competitive MOEAs. The state-of-the-art auto-adaptive Borg MOEA (Hadka and 

Reed, 2013) and the resent new Epsilon-Dominance-Driven Self-Adaptive 

Evolutionary Algorithm (-DSEA) (Al-Jawad and Tanyimboh, manuscript submitted 

2018) were used. They both employ common EA operators, but use different solution 

methodologies. The assessment covers (i) reliability, which refers to the replication of 

the best solutions finding (Marchi et al., 2014) (ii) robustness, which indicates the 

evolve parameters’ consistency with different problems environment (Maier et al., 

2014) (iii) efficiency, which reflects algorithm’s optimality convergence speed (Silver, 

2004) and (iv) effectiveness, which  refers to: how far the generated optimum solutions 

from the true Pareto-front; diversity; and dominance front rang in objective space 

(Zitzler et al., 2000).  

The analysis focused on solving a challenging real-world groundwater 

resources management problem that involved long-term multi-objectives groundwater 

management using many alternatives. The large scale Diyala River basin in Iraq is 

suffering from climate change influence and trans-boundary water resource demands 

irrigation projects in both Iraq and Iran (Abbas et al. 2016; Al-Faraj and Scholz 2014; 
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Abdulrahman 2017). The existing potential groundwater storage in the basin may play 

an important role for regional land use future investment and water crisis mitigation. 

A previous regional water resources management model had no obvious solutions 

when using a simple water balance model (Al-Tamimi 2007; SGI et al. 2014).    

2 BENCHMARK REGIONAL IDENTIFICATION 

The case study area is located between longitude E 44o 30’ – 45o 48’, and 

Latitude N 33o 57’ – 34o 58’ in northeast of Iraq (Figure 1). It comprises the central 

part of the Dyiala river basin within Iraq. It is bounded by two multipurpose dams; 

Derbindikhan located in the north, and Himren in the south, and covers an area of 

about 7360 km2. The land surface elevation ranges between 1809 and 88 m.a.s.l.  The 

average annual rainfall and mean temperature (Tmean) are 285 mm and 24oC, 

respectively (SGI et al., 2014).  

 

Figure 1. Location and topography of Diyala River Basin in Iraq 

 (UTM coordinate system) 
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The area is located on a low-angle folded zone, which extends from the 

northeast foothill areas of Iraq (Jassim and Goff, 2006). The Tertiary sediments present 

range between middle-late Eocene, represented by Gercus formation, to late Pliocene 

represented by Bai-Hassan formation. The Quaternary sediments are of late Pliocene-

Pleistocene age manifested by Bammu Conglomerate, and ending with Valley fill 

deposit of the Holocene. The stratification is illustrated in Figure 2a.    

Groundwater generally flows from the north to the south of the basin, following 

the topographic surface elevation decline (Figure 1). The main units of 

hydrogeological significance with aquifer resource potential are the Mukdadiya, Bai-

Hassan, and Quaternary deposits. The Quaternary deposits cover a wide portion of the 

study area with a thickness from 5 to 25 m. It is composed mainly of gravel, sand, and 

rock fragment. The Bai-Hassan and Mukdadiya formations are considered to be the 

two major aquifer of this region. The Bai-Hassan formation outcrops at different 

locations in the study area, while Mukdadiya appears at other parts of the area (Figure 

2a). The Mukdadiya formation is composed of fining upward cycles of gravely 

sandstone, sandstone and mudstone, while Bai-Hassan is composed of conglomerates 

with beds of mudstone, siltstone and sandstone. Their thickness range from 500 to 

1000 m (Jassim and Goff, 2006). These layers overlay Injana formation, which is 

composed mainly of sandstone, and claystone. The average hydraulic conductivity for 

both upper aquifers is 4.88 m/day (SGI et al., 2014). Groundwater quality as 

characterized by salinity varies; the total dissolved salts (TDS) ranged between 182 

and 5500 mg/l for the upper aquifer (with c. 1000 mg/l being the brackish taste 

threshold. The estimated aquifer water storage is about 9×109 m3, with storage 

coefficient for the upper and lower aquifer estimated at 3.5% and 0.14 %, respectively 
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(Al-Tamimi, 2007). The central part of Diyala river basin has many cities, villages, 

and farms. Since 1980s, about 1800 wells were drilled (SGI et al., 2014) in the area 

due to urban and rural development and associated regional water exploitation 

increase. Moreover, the government intends to develop and invest in six irrigation 

projects covering a total area of 647.4×106 m2 (Soyuzgiprovodkhoz 1982, SGI et al. 

2014). The average aquifer pumping discharge (𝑄𝐴𝑣) within projects areas is about 778 

m3/day, which is calculated using spatial analysis in ArcGIS 10.2 depending on wells’ 

discharges available in the historical database (SGI et al., 2014) (Figure 2b). 

 

Figure 2. Geological and average aquifers discharge maps of the study area. (a) is the 

geological map (GEOSURV, 1993), while (b) is the average aquifers discharges map 

extracted from the historical wells logs dataset and ArcGIS spatial analysis  (UTM 

coordinate system) 

 

The annual design crop plan pattern exploits 100% of the arable land for winter 

crops, and 20% for summer crops. The project’s water demands are based upon open 

furrow with an irrigation efficiency equal to 65%, hence 35% loss of the delivered 

water consisting of conveyance, evaporation, on farm allocation and infiltration losses. 

Sprinklers techniques have consistently high evaporative water losses due to the semi-
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arid environment (Soyuzgiprovodkhoz, 1982). Hence, drip irrigation was proposed in 

this study as an alternative technique to reduce water allocation losses. This has normal 

irrigation efficiency of about 90%, an efficiency of 85% was modelled as a 

conservative option. The total agricultural project’s annual water demand is 567×106 

m3 (Soyuzgiprovodkhoz 1982; SGI et al. 2014). This is set within the context of thirty 

years’ average meteorological data (precipitation and evapotranspiration) from 1981-

2010 presented in Table 1 (SGI et al., 2014). The maximum field capacity according 

to SOGREAH (1983) in Al-Tamimi (2007), is equal to 115 mm, with the surface 

runoff being equal to 7% of the direct rainfall (Ahmad et al. 2005). The expected future 

gross total benefit is about 160 million USD per year. Hence, the decision makers will 

require a robust water resources management strategy to enable basin economic 

benefits to be realised without jeopardising the sustainability of the water resource. 

 

Table 1. Average monthly meteorological data from 1981-2010 within the central 

part of Diayal river basin (mm) (SGI et al., 2014) 

 

Month Rainfall 

Pr 

Surface runoff 

RO 

Reference Evapo-

transpiration ETo 

Total water balance 

Pr - RO - ET0  

October 14 0.98 131 -117.98 

November 37 2.59 67 -32.59 

December 46 3.22 38 4.78 

January 61 4.27 36 20.73 

February 44 3.08 48 -7.08 

March 41.5 2.905 84 -45.41 

April 33 2.31 122 -91.31 

May 8 0.56 183 -175.56 

June 0.5 0.035 229 -228.54 

July 0 0 253 -253 

August 0 0 234 -234 

September 0 0 176 -176 

Annual 285 19.95 1600 -1334.95 
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3 REGIONAL PROBLEM FORMULAE 

3.1 Natural Recharge Identification 

Generally, regional groundwater resources are from; the local rainfall recharge, 

and from the boundaries of the system: exchange with neighbouring aquifers and water 

bodies like river, lake, or even sea. The aquifer boundary recharges can be calculated 

using Darcy’s law, as follows: 

𝑇𝑅0 = 𝐾. 𝐼. 𝐴𝑆𝑒𝑐  (1) 

 

where 𝑇𝑅0 is the groundwater recharge across a boundary section area 𝐴𝑆𝑒𝑐, the 

aquifer permeability is K is the aquifer hydraulic conductivity, and I is the hydraulic 

(groundwater) gradient where 𝐼 = ∆ℎ ∆𝑙⁄ , with ∆ℎ being the difference between the 

water table head at the recharge and discharge zones of the specified aquifer, and ∆𝑙 is 

the separation distance. These parameters can be calculated using MODFLOW-2005 

and GIS techniques. A regional groundwater model had not previously been developed 

and hence a complete regional 3D MODFLOW-2005 model was built for recharge 

estimation, the details of which are presented in the supplementary data S1. The initial 

boundary head levels and wells parameters were extracted from wells log database and 

maps archive available in the Iraq’s Ministry of Water Resources and SGI et al. (2014). 

The regional water balance in Table 1 shows scarcity in water recharges from the 

rainfall due to high evapotranspiration rates (ETo > Pr), hence zero recharge from 

rainfall was considered for the simulation model (Jalut et al., 2018). Although minor 

recharges achieved in December and January (Table 1), zero recharge condition is 

dominated since these values less than soil maximum field capacity (115 mm). The 

simulation model achieved for static flow for parameter calibration. The model 

consists of four layers, the first two layers; Bai-Hassan and Mukdadiya formation since 
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the two formations are composed of course sediments and are hydraulically connected. 

The last two layers represent the Injana aquifer system, which composed of alternation 

of clay and sand beds. The average thickness of the two system is 2000 m. The 

calibrated K value is about 2.67 m/day and 0.01 m/day for the upper and lower 

aquifers, respectively, while the upper aquifer boundary recharge (𝑇𝑅0) is about 

4.88×106 m3/month. 

 

3.2 Regional Management Model Identification 

The regional water management strategy aims to fulfil the projects’ water 

demands with sustainable groundwater exploitation, hence aquifer storage mining and 

infiltration losses should be also considered. Accordingly, decision variables, 

objectives, and constraints are developed for the optimization approach. Here, the 

decision variables (𝑁𝑤𝑡) for the conceptual model are the numbers of monthly 

pumping wells to fulfil projects’ monthly water demands over the operation period.  

Table 2 shows the adopted scenarios and operation periods (the number of decision 

variables) for the model. 

 

Table 2. Alternative irrigation methods and operation periods 

Methods of irrigation Operation periods (months) = 𝑵𝒘𝒕 

Open furrows irrigation (scenario-1) 12 60 120 300 600 

Drip irrigation (scenario- 2) 12 60 120 300 600 

 

To evaluate management strategies for competing groundwater demands in the 

study area, the first objective is minimizing water deficit between projects’ water 

demands (𝑃𝐷𝑡) and the total groundwater withdrawal (𝐺𝑡) at time t with respect to 



Chapter Six    Groundwater Management Assessment 

 

6-14 

 

maximum projects’ demands (𝑃𝐷𝑚𝑎𝑥) over the entire considered period (T), which can 

be expressed by the following formula:   

𝑚𝑖𝑛 𝑓𝐷𝑒𝑙−𝐺𝑊 = ∑ (
𝑃𝐷𝑡 − 𝐺𝑡

𝑃𝐷𝑚𝑎𝑥
)

2𝑇

𝑡=1

+ 𝐶2 

 
(2) 

 

𝐺𝑡 = 𝑁𝑤𝑡 × 𝑄𝑎𝑣 , 𝑁𝑤𝑡 = 1, 2, . . 𝑁𝑤𝑚𝑎𝑥 , 𝑁𝑤𝑡 ∈ ℕ+ (3) 

 

where 𝑁𝑤𝑚𝑎𝑥 is the design maximum wells’ number, and C is a penalty factor that 

includes all models violations, which can be formulated as (Chang et al. 2010; Al-

Jawad and Tanyimboh 2017): 

𝐶 = 𝐴. ∑ 𝑔𝑖

𝑁𝐶

𝑖=1

;   𝐴 ≥ 1  (4) 

 

where A is a coefficient, NC is the number of constraint violation functions, 

and 𝑔𝑖 represents constraint violations functions and their formulas’ details are 

presented in Equations 12 to 15.   

Usually A is found empirically, which depends on several replications of trials 

and error (Chang et al. 2010, Al-Jawad and Tanyimboh 2017). This value should be 

selected carefully to preserve suitable selection pressure to accelerate the algorithm 

convergence to the near-optimum solutions (Deb and Datta, 2013). Here, a value of A 

= 104 was selected to exploit all feasible solutions and avoid rendering infeasible 

solutions at the constraints threshold, especially those with small violation values.  

The groundwater recharges at any time t (DPt) occurs due to water infiltration 

from rainfall (Pt) or irrigation (IRt), when soil moisture (SMt) and the crop 

evapotranspiration (ETt) requirements are fully satisfied. The general soil-water 



Chapter Six    Groundwater Management Assessment 

 

6-15 

 

balance equation to calculate the infiltrating amount of water to groundwater in the 

time period t+1 can be expressed as: 

 

𝑆𝑀𝑡+1 = 𝑆𝑀𝑡 + 𝑃𝑡 + 𝐼𝑅𝑡 − 𝐸𝑇𝑡 − 𝑅𝑂𝑡 − 𝐷𝑃𝑡  (5) 

 

where 𝑆𝑀𝑡+1 is the soil moisture content at time t+1; and 𝑅𝑂𝑡 is the surface runoff at 

time t.  

Regional future projection for rainfall was achieved by Abbas et al. (2016) using 

SWAT model (Soil and Water Associated Tool) and GCM (General Circulation 

Model) to predict climate change impacts for a half-century for the entire basin. The 

average annual rainfall reduction at the end of the half-century was about 21%, hence 

the monthly reduction will be 0.035%. The monthly aquifer rainfall at time t (𝑃𝑡) can 

be estimated as:  

𝑃𝑡 = 𝑃𝑟 × (1 − (0.035%) × 𝑡) , 𝑡 = 1, 2, . . 𝑇 (6) 

When soil moisture content exceeds the maximum soil field capacity (maxSM), deep 

percolation occurs (Allen et al., 1998), hence the deep percolation, in case of  𝑆𝑀𝑡+1 >

𝑚𝑎𝑥𝑆𝑀, can be found as follows: 

𝐷𝑃𝑡 = 𝑆𝑀𝑡+1 − 𝑚𝑎𝑥𝑆𝑀  (7) 

The second objective is minimizing infiltration losses due to water allocation 

at time t (𝐷𝑃𝑡) with respect to maximum soil field capacity (𝑚𝑎𝑥𝑆𝑀) over the 

considered period of time (T), which can be expressed as: 

𝑚𝑖𝑛 𝑓𝑊𝐿 = ∑ (
𝐷𝑃𝑡

𝑚𝑎𝑥𝑆𝑀
)

2

+ 𝐶2

𝑇

𝑡=1

 

 
(8) 

Finally, minimizing the mining from static groundwater storage (Sst) in the 

aquifers during the extracting process at time t can be expressed as: 
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𝑚𝑖𝑛 𝑓𝑚𝑖𝑛𝑖𝑛𝑔 = ∑ (
𝑆𝑠𝑡

𝑆𝑎𝑞,𝑡
)

2

+ 𝐶2

𝑇

𝑡=1

 

 
(9) 

where Saq is the aquifer storage calculated from the water balance equation as: 

𝑆𝑎𝑞,𝑡+1 = 𝑆𝑎𝑞,𝑡 + 𝑇𝑅𝑡 − 𝐺𝑡  (10) 

where 𝑇𝑅𝑡 is the total water recharges to the aquifers at time t 

 Abbas et al. (2016) also estimates the average annual groundwater recharge 

depletion after a half-century for the entire basin about 35%, hence the monthly 

recharge reduction will be 0.058%. The monthly aquifer boundary recharge at time t 

(𝑇𝑅𝑡) can be estimated as: 

 𝑇𝑅𝑡 = 𝑇𝑅0 × (1 − (0.058%) × 𝑡) , 𝑡 = 1, 2, . . 𝑇 (11) 

The groundwater management model has multiple operational and 

environmental constraints, which were illustrated in Table 3. The monthly 

groundwater pumping discharge (𝐺𝑡) is equal or less than maximum projects’ water 

demands. While, the monthly number of operated wells (𝑁𝑤𝑡) should not exceed the 

maximum design number (𝑁𝑤𝑚𝑎𝑥). Also, the monthly soil moisture content (𝑆𝑀𝑡) 

should be greater than 50% of maximum soil moisture content (𝑚𝑎𝑥𝑆𝑀) to avoid 

reaching wilting point, in which the plant will die, nor the value of (𝑚𝑎𝑥𝑆𝑀) to avoid 

water deep percolation.    

Table 3. Groundwater management constraints in the central part of Diyala river basin 

Parameter Limitations 

Pumping discharge (m3/month ×106) 0 < 𝐺𝑡 ≤ 74.27 (open furrow) 

0 < 𝐺𝑡 ≤ 56.79 (Drip) 

Number of wells (per month) 1 ≤ 𝑁𝑤𝑡 ≤ 3183.0 

Soil moisture content (mm/month) 57.5 ≤ 𝑆𝑀𝑡 ≤ 115.0 

 

From the above, the constraints functions 𝑔𝑖 can be expressed as: 
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𝑔1 = ∑ 𝑀𝑎𝑥[0, (𝐷𝑡 − 𝐺𝑡)]

𝑇

𝑡=1

  (12) 

 

𝑔2 = ∑ 𝑀𝑎𝑥[0, (𝑁𝑤𝑚𝑎𝑥 − 𝑁𝑤𝑡)]

𝑇

𝑡=1

  (13) 

 

𝑔3 = ∑ 𝑀𝑎𝑥[0, (𝑆𝑀𝑡 − 0.5 × 𝑚𝑎𝑥𝑆𝑀)]

𝑇

𝑡=1

  (14) 

 

𝑔4 = ∑ 𝑀𝑎𝑥[0, (𝑚𝑎𝑥𝑆𝑀 − 𝑆𝑀𝑡)]

𝑇

𝑡=1

  (15) 

 

4 MOEA METHOD IDENTIFICATION 

The Multi-Objectives Evolutionary Algorithm (MOEA) was used to solve the 

optimization problem to minimize F(x) = (f1(x), . . .,   fm(x))T ; subjected to:  x ∈ Ω, Ω 

is the decision space and x ∈ Ω is a decision vector. F(x) consists of m objective 

functions fi : Ω →Rm, i = 1, . . . ,m, where Rm is the objective space.    

 The multi-objective optimisation problem needs a strategy to compare and 

select solutions, because there is more than one optimum solution in the decision 

variables space that dominates other solutions. Stadler (1979) define the Pareto-

optimal dominance relation concepts, which is widely used to describe the dominance 

solutions (Miettinen 1999, Deb 2001). In a minimisation problem, a vector u = (u1,  . 

. . , um)T  is said to dominate another vector v = (v1, . . . , vm)T  if ui ≤ vi  for  i = 1,  . . . 

, m and u ≠ v. This can be defined as u ≺ v. Also, a feasible solution x∈ Ω is called a 

Pareto-optimal solution, if there is no alternative solution y∈ Ω such that F(y) ≺ F(x). 

Then, the Pareto-optimal set, PS, is the union of all Pareto-optimal solutions, and may 
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be defined as: PS = {x ∈ Ω :∄y ∈ Ω, F(y) ≺ F(x)}. The Pareto-optimal front (PF) is 

the set comprising the Pareto-optimal solutions in the objective space in a multi-

objective optimisation problem, and is expressed as: PF = {F(x)|x ∈ PS}. 

 

4.1 -DSEA 

Recently, Al-Jawad and Tanyimboh (2018) presented the “Epsilon-Dominance-

Driven Self-adaptive Evolutionary Algorithm” (-DSEA), with auto-adaptive 

recombination operators, -box resolution search space, and dominance archive to 

maintain Pareto-front set. The algorithm has novel methodology to improve the 

diversity and the convergence to an optimal solution. The diversity enhanced by 

implementing multiple operators produces new offspring after an initial random 

seeding of population. These operators are: simulated binary crossover (SBX) (Deb 

and Agrawal 1994), differential evolution (DE) (Storn and Price 1997), parent-centric 

crossover (PCX) (Deb et al. 2002), unimodal normal distribution crossover (UNDX) 

(Kita et al., 2000), simplex crossover (SPX) (Tsutsui et al. 1999), and uniform 

mutation (UM) (Michalewicz et al. 1994). Also, the polynomial mutation (PM) (Deb 

and Agrawal 1994) is applied to the offspring  produced by all the operators except for 

UM. 

Moreover, it has novel methodology to control parameters tuning over the 

evaluation process for the operators, through which operators’ parameters connected 

with its performances to produce dominance solutions in the dominance archive. These 

parameters adjust dynamically within specified ranged depending on the number of 

dominance solutions produced by each operator.  
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4.2 Borg MOEA 

Hadka and Reed (2013) presents Borg MOEA for many-objectives optimization 

problems which  has many novel concepts to produce optimum solutions and 

overcome high-dimension complexity. It has dominance archive to maintain the non-

dominated solutions to preserve diversity and convergence. Also, the search space is 

divided into hyper-boxes, which has dimensions equal to  and represent the search 

resolution. Moreover, the algorithm has an improvement indicator for stagnation 

monitoring (-progress), which monitors the solutions in the dominance archive 

periodically to check stagnation on local optima. Hence, the algorithm adopts a restart 

mechanism to revive the search. Furthermore, it has multi recombination operators to 

generate new solutions, and adapt with the one who generates non-dominated solutions 

in the dominance archive. More details could be found in (Hadka and Reed 2013).   

A competitive assessment for Borg MOEA in compare with other state-of-the-

art evolutionary algorithms was utilized using multi-objectives problems, through 

which it outperforms or met these algorithms (Hadka and Reed 2012; Hadka et al. 

2012; Hadka and Reed 2013; Woodruff et al. 2015; Zatarain Salazar et al. 2016).  

The parameters and flowcharts used for both algorithms are illustrated in Table 

4 and Figure 3, respectively. The red lines and boxes in -DSEA flowchart refer to the 

new methodology for diversity and parameter initializing during the evaluation 

process, and the reviving trigger in Borg MOEA. 
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Table 4. Parameter values used in the optimisation algorithms 

Parameters Borg -DSEAa Parameters Borg -DSEA 

Initial population size 100 100 SPX parents 10 3 

Tournament selection 

size 

2 2 SPX offspring 2 2 

SBX crossover rate 1.0 1.0 SPX expansion rate λ 3 [2.5, 3.5]  

SBX distribution index  15.0  [0, 100] UNDX parents 10 10 

DE crossover rate CR 0.1 [0.1, 1.0]  UNDX offspring 2 2 

DE step size F 0.5 [0.5, 1.0]  UNDX  0.5  [0.4, 0.6]  

PCX parents 10 10 UNDX  0.35/√𝐿 [0.1, 

0.35]/√𝐿  

PCX offspring 2 2 UM mutation rate 1/L 1/L 

PCX  0.1 [0.1, 0.3] PM mutation rate 1/L 1/L 

PCX  0.1 [0.1, 0.3] PM distribution index m 20 20 

L is the number of decision variables. The permissible range for dynamic parameters is 

shown in brackets. The parameters  and  are defined in Section 2. aThe initial values of 

dynamic parameters used in -DSEA are as shown for Borg MOEA.   

 

 

 

 

Figure 3. Overview of Borg MOEA and -DSEA flowcharts. k1 and k2 are the number 

of parents selected from the main population and dominance archive, respectively, 

while k is the total number of parents needed by adopted operator. NFE is the number 

of function evaluations with maximum value = NFEmax. Er is the reset interval, and Ir 

is the number of function evaluations where the resetting occurs. The details are 

available in Hadka and Reed (2013) and Al-Jawad and Tanyimboh (2018).  
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4.3 Model Computational Implementation 

 A program was written in C language to represents Equations 2 to 15. Ten runs 

were executed for each case, using each of the two scenarios, hence the total runs were 

200 for the entire scenarios and periods using a desktop PC with Ubuntu 16.04 OS 

(Core i7-6700 CPU @ 3.4 GHz, 16 GB RAM). The  values, which is the hyper-box 

dimension, which  represent the resolution of the objective function search space,  

ranged between 0.001 and 0.5 for Equations 1, 0.01 to 0.5 for Equation 2, and from 

0.001 to 0.1 for Equation 3. While, the number of function evaluations ranged between 

0.5×106 to 1.2×106 in both scenarios.  

 

5 RESULTS AND DISCUSSION 

5.1 Evolutionary Algorithms Performance Assessment 

5.1.1 Reliability and effectiveness   

Both optimization algorithms were utilized to generate optimum solutions for 

the groundwater regional management. The algorithms objectives functions’ best 

median achievement summary for all alternatives are presented in Table 5. The best 

achievement are highlighted in bold, which clearly shows the  -DSEA out performs 

the Borg MOEA in most alternatives (as a result of  -DSEA reliability to generate 

optimum solutions over execution replication). Both results show excessive 

groundwater mining of the estimated aquifer storage (9.0×109 m3) after forty years, 

hence the fifty years’ alternative (600 months) is not presented. Detail results are 

available in the supplementary data Table A1 and A5.  
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Table 5. Median summary’s best achievement for both algorithms under two irrigation 

alternative scenarios. The superior results in Bold style (smallest values for minimum 

and largest values for maximum).  

  Borg MOEA -DSEA 

Months  12 60 120 300 12 60 120 300 

Min. fDel-GW 

S
ce

n
a
ri

o
-1

 

0.005 0.916 2.952 10.183 0.006 1.057 2.490 7.988 

Max. fDel-GW 1.192 5.362 7.599 15.988 1.244 6.248 9.371 18.922 

Min. fWL 0.274 2.05 6.387 19.934 0.161 1.476 4.329 12.839 

Max. fWL 7.547 11.606 18.121 34.877 7.426 10.758 18.420 37.521 

Min. fmining 12.145 65.077 143.648 544.399 12.142 65.05 143.169 528.478 

Max. fmining 12.257 67.656 153.438 649.679 12.256 67.973 158.254 765.451 

Min. fDel-GW 

S
ce

n
a
ri

o
-2

 

0.002 0.348 0.889 3.241 0.003 0.436 0.729 2.453 

Max. fDel-GW 0.528 3.668 3.997 6.837 0.531 3.159 4.040 8.063 

Min. fWL 0.149 1.067 3.758 12.311 0.146 1.074 3.430 9.864 

Max. fWL 2.066 4.481 8.079 16.522 2.149 4.006 8.053 17.027 

Min. fmining 12.121 64.599 141.408 516.02 12.120 64.607 141.288 506.564 

Max. fmining 12.200 66.233 148.191 571.196 12.200 66.730 149.655 601.931 

 

The median range solutions were selected and presented in Figure 4 to illustrate 

the Pareto-front optimality achieved for two irrigation scenarios using both 

optimization algorithms. The -DSEA outperforms the Borg MOEA in almost all 

cases. 

The Pareto-fronts achieved by -DSEA are wider than those for Borg MOEA 

especially when decision variables evolve (e.g. 120 and 300 for ten the twenty five 

years alternatives, respectively) for both scenarios.  This reflects algorithm’s 

effectiveness to generate wider Pareto-front in the objective search space.   
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Figure 4. Optimum solution Pareto-front for both irrigation alternative scenarios using 

Borg MOEA and -DSEA algorithms. 𝑓𝐷𝑒𝑙−𝐺𝑊 , 𝑓𝑊𝐿 , and 𝑓𝑚𝑖𝑛𝑖𝑛𝑔  refer to groundwater 

delivery, water losses, and mining objectives functions, respectively 

 

5.1.2 Robustness 

Figure 5 illustrates the auto-adapted and the self-adaptive mechanism for Borg 

MOEA and -DSEA in all alternatives. Borg MOEA adapted with PCX recombination 

operator in all periods in both scenarios. Hadka et al. (2012) observed the behaviour 

and mechanism of Borg MOEA to adapt with one operator after certain evaluation 

process. This phenomena was also observed and discussed by Zheng et al. (2016).  

When Borg MOEA adapted with PCX operator, the new offspring generated in the 

vicinity and around the selected parents, which may cause the stagnation of the 

algorithm. 

Conversely, -DSEA is adapted with both PCX and SPX operators in parallel 

to generate optimum solutions. The resetting methodology in -DSEA succeeds in 

changing the operators’ adaptation to escape from local optima which remains clear in 

all operation periods. In scenario-1, the -DSEA was initially adapted with SBX 
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operator during the first year of operation, then adapted with PCX and SPX operators 

after the first resetting triggered.  

The same behaviour was observed for the other cases, but with involvement of 

the PCX operator with the SPX. For scenario-2, -DSEA adapted with SBX operators 

for one and five years, and with PCX and SPX operators for ten and twenty-five years. 

This shows the robustness of the -DSEA methodologies to adapt rapidly with 

different environment problems and escape from local optima. 

 

 

Figure 5. Operators’ selection probability comparison between both algorithms for 

four adopted operating periods under selected irrigation alternatives scenarios. All x-

axis represents number of function evaluation, and all y-axis are operator’s selection 

probability. 
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The robustness of the parameters self-adaptive methodology of -DSEA is 

apparent in Table 6, which illustrates the median evolve operators’ parameters 

achieved for the median optimum solutions for all alternatives. Almost all parameters 

adopt different values than their initial setting, to adapt with problem environment; 

this fails to be the case for the Borg MOEA. Hence -DSEA eliminates parameter 

tuning exploration time in finding suitable values applicable to the problem 

environment and produce best optimum solutions (Maier et al., 2014). Details 

summary for parameters achievement for all alternatives are presented in the 

supplementary data Table A4 and A8. 

 

Table 6. Median evolve operators’ parameters achieved by -DSEA for the median 

solutions for all alternatives 

 
Operator Parameter 

Initial 

value 

Operation periods (years) 

 1 5 10 25 

O
p
en

 f
u
rr

o
w

s 
sy

st
em

 SBX  15.0 69 75 65 82 

DE CR 0.1 0.1 0.1 0.222 0.125 

 F 0.5 0.503 0.507 0.611 0.563 

PCX 𝜎𝜂, 𝜎𝜁 0.1 0.218 0.202 0.192 0.189 

SPX  3.0 2.867 2.979 3.076 3.066 

UNDX 𝜎𝜁 0.5 0.401 0.408 0.432 0.557 

 𝜎𝜂 0.35 0.101 0.113 0.153 0.361 

D
ri

p
 s

y
st

em
 

SBX  15.0 67 88 65 87 

DE CR 0.1 0.1 0.1 0.1 0.444 

 F 0.5 0.529 0.523 0.507 0.722 

PCX 𝜎𝜂, 𝜎𝜁 0.1 0.165 0.122 0.228 0.193 

SPX  3.0 2.58 2.567 2.834 3.003 

UNDX 𝜎𝜁 0.5 0.402 0.402 0.413 0.55 

 𝜎𝜂 0.35 0.103 0.103 0.121 0.35 

 

Table 7 shows the gross parameter performance to generate optimum solutions. 

The results shows that -DSEA generates more optimum solutions in the archive with 
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2.45105, in comparison with 1.94105 for the Borg MOEA. Conversely, the number 

of improvements (which refers to the number of new dominance solutions generated 

in new hyper-box) registered in the Borg MOEA is larger than for the -DSEA in both 

scenarios. The total number of improvement is equal to 2.79106 and 1.38×106 using 

2202 and 9427 restart triggers compared to 2.48106 and 1.02×106 in -DSEA with 

only 120 and 116 trigger for restart respectively, which is randomly trigged. However, 

-DSEA generates more, and better, optimality solutions in all cases depending on the 

methodology for parameter tuning and diversity employed.  

As a result, the Borg MOEA improvement index did not reflect the real 

algorithm’s performance to generate new dominance solution toward possible 

optimum front. This may be due to the large number of restarts in the Borg MOEA, 

with essentially the same solutions being counted repeatedly. However, the total 

computational time (CPU time) needed for function evaluations used in -DSEA is 

less than Borg MOEA. The total CPU time in -DSEA is about 2.1 and 1.8 hours 

compared to  3.1 and 3.0 hours in Borg MOEA. Hence the computational methodology 

of -DSEA is more efficient. Detail performance parameters achievement are 

presented in the supplementary data Tables A2, A3, A6, and A7. 

  

Table 7. Gross performance parameters for both algorithms under two alternatives 

irrigation scenarios 

 Borg MOEA -DSEA 

 Scenario-1 Scenario-2 Scenario-1 Scenario-2 

Archive size 1.94×105 0.68×105 2.45×105 0.8×105 

Improvement 2.79×106 1.38×106 2.48×106 1.02×106 

Restart 2202 9427 120 116 

CPU time (hr) 3.1 3.0 2.1 1.8 
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5.1.3 Efficiency 

The decision variables vector (𝑋𝑑𝑣) development occurring during the 

evaluation process is presented in Figure 6 for all alternatives. The 𝑋𝑑𝑣  is equal to 

√𝑥1
2 + 𝑥2

2 + 𝑥3
2 + ⋯ + 𝑥𝑛

2 , where x1 to xn are the decision variables. A smoothed 

averaged vector of 𝑋𝑑𝑣  for each generation (100 function evaluation) was also 

generated to ascertain decision variables convergence and development during the 

evaluation process. Early stage convergence for both algorithms is observed with 

outperform of -DSEA on Borg MOEA in ten and twenty-five years operation time 

for both scenarios. The -DSEA self-adaptive mechanism effectiveness can be 

observed during the evaluation process to generate dominance solutions by changing 

the 𝑋𝑑𝑣  values when resetting process activated, (e.g., at  ten and twenty-five years 

operation time in scenario-2).  
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Figure 6. Decision variables development comparison between both algorithms for 

four adopted operating periods under selected irrigation alternatives scenarios. All x-

axis represents number of function evaluation, and all y-axis are the decision variables’ 

vectors (𝑋𝑑𝑣). 

 

In ten years, the 𝑋𝑑𝑣  value  trend changed twice during the function evaluation 

process by the resetting trigger (at 35×104 and 70×104 of function evaluation, Figure 

5), which also occurs for twenty-five years at 50×104 function evaluation. This emerge 

the powerful of adapting two recombination operators in parallel to generate 

dominance solutions, in compare with Borg MOEA mechanism which adapt with only 

one operator. 
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5.2 Groundwater Optimum Management  

The evolutionary algorithms performance assessment shows more robust 

performance of the -DSEA when compared to the  Borg MOEA in nearly all 

alternatives.  Its results are hence adopted to evaluate likely groundwater management 

options. Figure 7 presents a monthly summary of operating wells (the decision 

variables) and the deficit in water farms delivery for both scenarios. The average 

optimum number of wells used in open furrow system ranged from 1100 to 2000 for 

one year of pumping compared to 1300 to 1600 for other pumping periods. However, 

the drip system achievements were 1000 to 1500 for one year pumping and 1000 to 

1300 for other pumping periods. Furthermore, the median values were about 1400 in 

drip system for all periods, while the range was from 1500 to 1850 in the open furrows 

system. Generally, the drip system results show less deficit in water delivery to the 

farms. The average value for the drip system was 15×106 m3/month, and it ranged from 

15×106 to 20×106 m3/month for open furrows system.  

The effect of water exploitation on groundwater storage is illustrated in Figure 

8, which shows the final lowest storage achieved for different pumping periods for 

both water delivery alternatives. Groundwater storage depletion is obvious for medium 

and long-term pumping, while drip system mitigates the impact on aquifer storage. For 

one year pumping, the depletion was 4%, while for five and ten years pumping was 

about 12%, and 25% respectively, for both irrigation system alternatives. Details are 

illustrated in the supplementary data Figure A4. 
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Figure 7. Number of wells and deficit in water demands achieved for both scenarios 

for discrete periods using optimization model.  𝑓𝐷𝑒𝑙−𝐺𝑊 , 𝑓𝑊𝐿 , and 𝑓𝑚𝑖𝑛𝑖𝑛𝑔  refer to 

groundwater delivery, water losses, and storage mining objective functions, 

respectively  

 

 

Figure 8. Final groundwater storage achieved by optimization model for open furrows 

and drip irrigation system over the adopted discrete periods 
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The final storage depletions were 61% and 55% for open furrows and drip 

system for twenty-five years pumping, respectively. All alternatives show 

unsustainability in groundwater storage management due to scarcity in aquifers’ water 

recharges as shown in Table 8, which illustrates the pumping discharge and aquifer 

recharge summary for the best objectives functions’ achievement.  

The results show significant differences between the groundwater exploitation 

and the aquifer recharges over the adopted pumping scenarios. The depletion in the 

recharges ranged between 50% to 80% for mean values, and between 60% to 100% 

for the median values, in comparison with the pumping discharges.    

Table 8. Summery of pumping discharges and aquifer recharges for the optimum 

solution achieved by each objective function over considered periods using open 

furrows and drip irrigation system (m3/month×106).  

 Operating periods 

(years) 
 

𝒇𝑫𝒆𝒍−𝑮𝑾 𝒇𝑾𝑳 𝒇𝒎𝒊𝒏𝒊𝒏𝒈 𝒇𝑫𝒆𝒍−𝑮𝑾 𝒇𝑾𝑳 𝒇𝒎𝒊𝒏𝒊𝒏𝒈 

 Mean  Median  

O
p

en
 f

u
rr

o
w

s 
sy

st
em

 One  

P
u
m

p
in

g
 

d
is

ch
ar

g
e
 45.95 27.48 27.56 51.67 37.78 37.96 

Five  39.81 26.93 30.24 44.00 35.44 42.00 

Ten  38.97 29.75 31.94 43.51 36.87 41.15 

Twenty five  37.43 31.44 33.06 42.22 35.99 41.32 

One  

g
ro

u
n
d
w

at
er

 

re
ch

ar
g

e
 18.31 3.34 3.99 16.46 0.00 0.00 

Five  18.20 5.42 11.62 8.08 0.00 2.11 

Ten  17.91 7.60 13.26 7.78 0.00 2.46 

Twenty five  16.15 8.79 14.06 7.79 1.17 3.88 

D
ri

p
 s

y
st

em
 

One  

P
u
m

p
in

g
 

d
is

ch
ar

g
e
 35.12 24.24 24.20 38.45 33.73 33.95 

Five  30.94 24.46 24.28 34.02 32.89 33.40 

Ten  31.49 25.56 27.39 33.88 30.79 33.46 

Twenty five  30.61 27.11 27.26 33.63 32.23 33.24 

One  

g
ro

u
n

d
w

at
er

 

re
ch

ar
g

e
 11.63 3.14 3.32 6.80 0.00 0.00 

Five  11.36 4.21 6.79 5.02 0.00 0.00 

Ten  11.91 5.85 9.80 5.11 0.00 1.23 

Twenty five  10.88 7.81 9.24 5.04 0.99 1.43 

𝑓𝐷𝑒𝑙−𝐺𝑊 , 𝑓𝑊𝐿 , and 𝑓𝑚𝑖𝑛𝑖𝑛𝑔  refer to groundwater delivery, water losses, and storage mining 

objective functions, respectively 
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The results show unsustainable regional groundwater resource for all 

alternatives due to the projects’ high water demands and aquifers’ recharge scarcity in 

the semi-arid environment. Hence, other alternatives may seek to reduce water 

demands by either reducing the areas irrigated or changing to less water demanding 

crop types. 

A sustainable groundwater management resource budget is forward modelled 

for the next half-century considering these. Sustainability is may achieved when the 

projects’ water demands are reduced by 45% as a minimum for both irrigation 

alternatives (Figure 9). The use of an open furrows system maintains aquifer storage 

for about twenty-five years compared to the drip system of about thirty-three years. 

The average final storage depletions in both alternatives is about 22% and 16%, 

respectively. Hence, using drip irrigation system in this region is beneficial for longer 

and may represent a more sustainable groundwater management.  

Based on the results of this modelling, the decision makers (the Iraqi’s 

government) should consider a future policy to reduce projects’ water demands in this 

region. In addition, other alternatives are required including; conjunctive use with 

surface water, aquifer storage and recovery (ASR) initiatives, as well as the 

rehabilitation of leaky water conveyance infrastructure.   

 The results provide a prediction of future groundwater management 

alternatives for decision makers to consider within future policies for strategic 

sustainable water resources management for the investigated study area with potential 

for wider implementation in other regions with comparable scenarios.  
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Figure 9. Illustrates the sustainable groundwater management periods achieved for 

50 years for both irrigation systems using -DSEA 

 

6 CONCLUSIONS AND RECOMMENDATIONS 

Multi-Objectives Evolutionary Algorithms (MOEAs) behaviour and 

performance may vary according to problem formulation and environment and 

evolutionary parameters needs to be tuned to adapt to the problem at hand.  A 

performance assessment (reliability, robustness, efficiency, effectiveness) comparing 

MOEAs attainment application with respect to a real-world problem was successfully. 

The auto-adaptive Borg MOEA (Hadka and Reed, 2013) and the self-adaptive -DSEA 

(Epsilon-Dominance-Driven Self-Adaptive Evolutionary Algorithm) (Al-Jawad and 

Tanyimboh 2018) were intensively evaluated using many parameters within the 

context of a rigorous evaluation of a potentially pressing regional groundwater 

sustainable management problem in the Middle East. The optimization problem was 



Chapter Six    Groundwater Management Assessment 

 

6-34 

 

formulated for long-term farm irrigation with three objective function for five discrete 

periods with up to 600 decision variables using two water delivery alternatives. The 

study utilized a developed and calibrated groundwater simulation model built in 

MODFLOW-2005 GMS software (Groundwater Modelling System). Both algorithms 

were executed ten random seeding for each alternative leading to the following 

conclusions: 

 Evolutionary algorithms performance assessment: the -DSEA provided more 

robust results when compared to the Borg MOEA for almost all alternatives. The -

DSEA approaches’ main advantage over the Borg MOEA is reliability, it repeatedly 

produced optimum solutions over computational budget replication. The Pareto-front 

extent wider and has better optimality in the objective search space, which emerge the 

effectiveness of -DSEA. Its robustness is evident, adapting with different problem 

environment using dynamic evolve parameters during the evaluation process. New 

parameters domain was produced for the commonly used recombination operators, 

which can be beneficial for comparative water resources problems. Other parameters 

like number of optimum solutions, restart replication, and CPU time also show the 

superiority of -DSEA on Borg MOEA in all alternatives. The decision variables 

convergence and development was competitive and superior especially for long-term 

operation, which emerge -DSEA efficiency outperformance. The mechanism of auto-

adaptive in Borg MOEA may cause stagnation in local optima and injection repetition 

may regenerate solutions nearby local optima.  Although -DSEA outperformance 

Borg MOEA in almost all alternates, further analysis and assessment may consider for 

other real-word problems with higher complexity.  
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 Groundwater Management achievement: Although both algorithms results 

demonstrate unsustainability in groundwater resource management for both irrigation 

systems, the computational results illustrate results from the -DSEA were more 

robust. Hence, the -DSEA results should be used to consider groundwater resource 

management for the case study area. The storage depletion was 25% for ten years’ 

water exploitation, which increase to about 60% for twenty-five years. The aquifer 

storage was completely exhausted after forty years in both alternatives due to low 

aquifer recharge, which caused by low rainfall and high evapotranspiration rates (semi-

arid zone). The introduction of drip irrigation mitigates the impact on the aquifer 

storage over the discrete periods, especially for long-term water exploitation. The 

probability of sustainable groundwater resource management was scenario modelled 

for the next half-century by reducing water delivery demands. The results show 

possible sustainable storage budget using open furrows system can be achieved for the 

next twenty-five years, and thirty-three years for drip system with 45% demand’s yield 

for both. Hence, the decision makers (the Iraqi government) should consider future 

policy to reduce water demands by either changing crops types, or reducing farms 

areas. Also, the use of drip system for water allocation should be considered in the 

policy since it has less impacts on groundwater yields. However, crop yield and 

productivity should consider over the alternatives. Conjunctive use with surface water 

and water harvesting may consider also to mitigate groundwater depletion and 

maintain its sustainability.  
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6.3 Supplementary Data 
 

1. GROUNDWATER MODEL OVERVIEW 

1.1. Identification of Groundwater Flow Model 

The three-dimensional groundwater flow through an aquifer can be expressed 

by the following finite-difference equation as in Harbaugh and McDonald (1996) 

𝜕

𝜕𝑥
(𝐾𝑥𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦𝑦

𝜕ℎ

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑧𝑧

𝜕ℎ

𝜕𝑧
) ± 𝑊 = 𝑆𝑆

𝜕ℎ

𝜕𝑡
  (A1) 

where 𝐾𝑥𝑥, 𝐾𝑦𝑦 , and 𝐾𝑧𝑧 are the hydraulic conductivities of the media in x, y, and z 

direction respectively. W is a source or sink of water, Ss is the specific storage of the 

aquifer, h and t represent the groundwater level and time, respectively. Harbaugh and 

McDonald (1996) present MODFLOW-96 package as a groundwater model solver for 

steady and unsteady flow. An updated version for MODFLOW-2005 was presented 

by Harbaugh (2005). 

 

1.2. Aquifer Parameters and Recharges 

A three dimensional solid model was created and converted to a MODFLOW 

finite difference model using Groundwater Model System (GMS) v.9.2, as shown in 

Figure A1. The model consists of four layers, the first two layers; Bai-Hassan and 

Mukdadiya formation since the two formations are composed of course sediments and 

are hydraulically connected. The last two layers represent the Injana aquifer system, 

which composed of alternation of clay and sand beds. The average thickness of the 

two system is 2000 m. Since the presence of two dams located in the north and south 

of the basin, a changing head boundary condition was assigned to these boundaries. 

River boundary conditions were assigned to the Diyala River across the basin.  
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Figure A1. illustrates MODFLOW conceptual model development from 3D fence, 3D 

sold, 3D cell, and 3D boundary conditions models using GMS software. 

To calculate aquifer groundwater recharge, a calibration for aquifer parameter 

K was achieved using parameter estimation procedures using MODFLOW-2005. The 

K value for Bai-Hassan and Mukdadiya formation ranges between 1.5 and 8.0 m/day 

with an average about 2.67 m/day, while for the Injana formation is about 0.01 m/day, 

as shown in Figure A2. These results were consistence to the range of field tests 

available in the database (Figure A2), hence they adopted to calculate the aquifer 

groundwater recharges.   
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Figure A2. Generated parameters from MODFLOW model implementation in 

compare with the database parameters for the aquifer permeability in meters/day and 

groundwater level in meters (above sea level), respectively.  

It is obvious from Figure A2 that Diyala River drains groundwater from the 

northern part of the basin, with that condition reversing gradually to the south. The 

relation between the groundwater and surface water depends on the riverbed sediments 

and the water level. In the upper part of the basin, the river bounded between high-

level lands (Figure 1) with coarse bed sediment. This condition change gradually 

toward the lower part of the basin, in which the riverbed is higher than the groundwater 

level with finer bed sediment (Al-khaldy and Al-askari, 2015).  

Moreover, Figure A2 show clustering in database parameters’ values, which is 

according to irregular locations and clustering of wells in the basin, which cause 



Chapter Six    Groundwater Management Assessment 

 

6-47 

 

divergence values of K and water levels. Additionally, these datasets represent wells 

and aquifer parameters’ distribution were drilled during the last 25 years, hence it 

adopted as a general guide for these parameters. Figure A3 illustrates regional 

groundwater depth based on SGI et al. (2014) database.  

The calibrated K value used to calculate the monthly groundwater recharge 

using Equation 1 (Darcy’s law), as follows: 

A = width  depth = 34904.65 m ×(350 + 532)/2 m (calculated from the MODFLOW 

model, and DEM map using GIS) 

∆ℎ = 500 – 80 = 420 m (calculated from the MODFLOW model, water level) 

∆𝑙 = 103264.48 m (calculated from the DEM map using GIS) 

K = 2.67 m/day (calculated from MODFLOW model) 

 𝑇𝑅0 = 4.88×106 m3/month 

 

 

Figure A3. Groundwater depth (m) in the study area based on SGI et al. (2014) 

database  
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2. ALGORITHMS PERFORMANCE ASSESSMENT 

2.1. Open Furrows Irrigation System 

Tables A1 to A4 illustrate the summary of fitness functions, performance 

parameter properties, and evolve parameters achieved by both algorithms, for 10 runs 

each for open furrows system. -DSEA performance is clearly better than Borg MOEA 

in almost all cases.      

Table A1. Results summary of open furrows system for 10 optimisation runs  

 Borg MOEA  -DSEA 

  Best Mean Median Std.  Best Mean Median Std. 

12 months (one year) 

Min. fDel-GW 0.002 0.006 0.005 0.006 

 

0.003 0.007 0.006 0.003 

Max. fDel-GW 1.275 1.184 1.192 0.071 1.335 1.258 1.244 0.054 

Min. fWL 0.168 0.248 0.274 0.057 0.147 0.176 0.161 0.032 

Max. fWL 7.870 7.430 7.547 0.456 7.814 7.446 7.426 0.244 

Min. fmining 12.141 12.145 12.145 0.003 12.138 12.141 12.142 0.002 

Max. fmining 12.258 12.256 12.257 0.002 12.257 12.256 12.256 0.001 

60 months (5 years) 

Min. fDel-GW 0.795 0.952 0.916 0.145  0.884 1.057 1.057 0.094 

Max. fDel-GW 6.746 5.366 5.362 0.614  7.238 6.242 6.248 0.425 

Min. fWL 1.627 2.085 2.050 0.314  1.142 1.433 1.476 0.117 

Max. fWL 13.278 11.512 11.606 1.356  13.253 11.125 10.758 1.153 

Min. fmining 65.034 65.083 65.077 0.038  65.021 65.055 65.050 0.023 

Max. fmining 68.173 67.671 67.656 0.282  68.288 67.998 67.973 0.199 

120 months (10 years) 

Min. fDel-GW 2.479 3.052 2.952 0.566  2.157 2.492 2.490 0.237 

Max. fDel-GW 8.760 7.553 7.599 0.628  10.504 9.410 9.371 0.539 

Min. fWL 5.973 6.690 6.387 0.811  4.071 4.341 4.329 0.222 

Max. fWL 21.836 17.949 18.121 2.609  20.579 18.483 18.420 1.391 

Min. fmining 143.075 143.640 143.648 0.486  142.701 143.186 143.169 0.240 

Max. fmining 155.345 153.585 153.438 1.231  159.340 158.315 158.254 0.591 

300 months (25 years) 

Min. fDel-GW 8.895 10.167 10.183 0.796  7.094 8.032 7.988 0.560 

Max. fDel-GW 18.724 16.263 15.988 1.009  21.303 19.354 18.922 0.982 

Min. fWL 18.884 20.358 19.934 1.218  11.699 12.854 12.839 0.783 

Max. fWL 37.172 34.345 34.877 2.011  42.627 37.768 37.521 2.385 

Min. fmining 532.802 545.671 544.399 8.624  523.548 529.385 528.478 4.084 

Max. fmining 675.967 649.098 649.679 13.436  798.476 766.563 765.451 15.453 
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Table A2. parameters performance properties for Borg MOEA achieved in 

open furrows system  

  1 year 5 years 10 years 25 years Total 

Sum. 

A
rc

h
iv

e 
si

ze
 66963 37556 54725 34797 194041 

Min. 6320 3038 3885 2371  

Max. 7032 4317 7080 4648  

Mean 6696 3756 5473 3480  

Median 6701 3780 5478 3343  

Std. 204.141 361.439 971.917 795.836  

Sum. 

Im
p

ro
v

em
en

t 371101 585729 978840 859199 2794869 

Min. 30944 51872 78789 65581  

Max. 43826 66420 118202 105095  

Mean 37110 58573 97884 85920  

Median 37342 58382 98057 84265  

Std. 3557.913 4908.233 10043.333 13661.385  

Sum. 

R
es

ta
rt

 

310 591 581 720 2202 

Min. 29 55 55 68  

Max. 33 67 65 77  

Mean 31 59 58 72  

Median 31 59 58 72  

Std. 1.183 3.807 2.587 2.408  

Sum. 

C
P

U
 t

im
e 

(s
ec

) 568.265 877.378 1469.572 8209.707 11124.922 

Min. 53.377 79.134 126.409 734.016  

Max. 59.240 93.327 167.043 871.391  

Mean 56.826 87.738 146.957 820.971  

Median 57.180 88.593 149.110 830.377  

Std. 2.148 4.532 16.263 46.260  

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Six    Groundwater Management Assessment 

 

6-50 

 

 

 

 

 

Table A3. parameters performance properties for -DSEA achieved in open 

furrows system  

  1 year 5 years 10 years 25 years Total 

Sum. 
A

rc
h

iv
e 

si
ze

 53169 36567 79807 76095 245638 

Min. 5158 3283 7152 6848  

Max. 5429 4267 8461 8547  

Mean 5317 3657 7981 7610  

Median 5370 3684 8013 7495  

Std. 108.093 284.286 372.909 456.591  

Sum. 

Im
p

ro
v

em
en

t 

234578 352912 768156 1125810 2481456 

Min. 22447 31548 71432 101135  

Max. 24532 38994 81593 122042  

Mean 23458 35291 76816 112581  

Median 23343 35422 76689 114350  

Std. 696.266 2105.599 3061.316 6723.207  

Sum. 

R
es

ta
rt

 

30 29 29 32 120 

Min. 2 2 2 2  

Max. 4 4 4 4  

Mean 3 3 3 3  

Median 3 3 3 4  

Std. 0.775 0.831 0.700 0.872  

Sum. 

C
P

U
 t

im
e 

(s
ec

) 288.528 617.214 1167.547 5642.663 7715.952 

Min. 27.041 54.741 107.833 497.632  

Max. 31.604 71.502 124.593 662.459  

Mean 28.853 61.721 116.755 564.266  

Median 28.672 62.169 116.255 562.720  

Std. 1.318 5.026 5.070 51.423  
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Table A4. Summary of -DSEA evolved parameters achieved in open furrows system 

Parameters No. of years Minimum Maximum Mean Median Std. 

  

(SBX) 

1 0 70.000 63.931 69.000 17.400 

5 0 96.000 71.591 75.000 19.025 

10 0 98.000 60.574 65.000 28.033 

25 0 98.000 68.359 82.000 30.824 

CR, F 

(DE) 

CR-1 0.100 0.167 0.105 0.100 0.015 

F-1 0.500 0.583 0.515 0.503 0.023 

CR-5 0.100 0.737 0.117 0.100 0.098 

F-5 0.500 0.868 0.521 0.507 0.057 

CR-10 0.100 0.907 0.440 0.222 0.362 

F-10 0.500 0.954 0.704 0.611 0.196 

CR-25 0.100 0.904 0.465 0.125 0.378 

F-25 0.500 0.952 0.718 0.563 0.204 

𝜎𝜂, 𝜎𝜁  

(PCX) 

1 0.100 0.268 0.215 0.218 0.028 

5 0.100 0.274 0.203 0.202 0.014 

10 0.100 0.278 0.186 0.192 0.025 

25 0.100 0.282 0.181 0.189 0.021 

  

(SPX) 

1 2.532 3.406 2.871 2.867 0.103 

5 2.505 3.115 2.952 2.979 0.082 

10 2.502 3.398 3.087 3.076 0.119 

25 2.503 3.412 3.086 3.066 0.089 

𝜎𝜂, 𝜎𝜁   

(UNDX) 

𝜎𝜁  -1 0.400 0.500 0.406 0.401 0.010 

𝜎𝜂 -1 0.100 0.350 0.110 0.101 0.018 

𝜎𝜁  -5 0.400 0.582 0.455 0.408 0.077 

𝜎𝜂 -5 0.100 0.404 0.192 0.113 0.129 

𝜎𝜁  -10 0.400 0.581 0.479 0.432 0.076 

𝜎𝜂 -10 0.100 0.402 0.231 0.153 0.126 

𝜎𝜁  -25 0.400 0.581 0.505 0.557 0.078 

𝜎𝜂 -25 0.100 0.402 0.274 0.361 0.129 
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2.2. Drip Irrigation System 

The results summary of drip irrigation system was presented in Tables A5 to 

A8. -DSEA performance is superior to Borg MOEA in almost all cases except for 

five years. However, the results are very close in that case. Hence, in general, -DSEA 

is outperform in this alternative and its results will be adopted.  

 

Table A5. Results summary of the drip system for 10 optimisation runs 

 Borg MOEA  -DSEA 

  Best Mean Median Std.  Best Mean Median Std. 

12 months (one year) 

Min. fDel-GW 0.001 0.002 0.002 0.001 

 

0.002 0.003 0.003 0.001 

Max. fDel-GW 0.547 0.521 0.528 0.022 0.543 0.531 0.531 0.006 

Min. fWL 0.145 0.152 0.149 0.007 0.144 0.146 0.146 0.001 

Max. fWL 2.308 2.063 2.066 0.104 2.276 2.119 2.149 0.108 

Min. fmining 12.119 12.121 12.121 0.002 12.119 12.120 12.120 0.001 

Max. fmining 12.201 12.200 12.200 0.001 12.201 12.200 12.200 0.001 

60 months (5 years) 

Min. fDel-GW 0.242 0.337 0.348 0.047  0.293 0.436 0.436 0.099 

Max. fDel-GW 3.948 3.615 3.668 0.270  3.458 3.197 3.159 0.148 

Min. fWL 0.923 1.092 1.067 0.124  0.885 1.041 1.074 0.098 

Max. fWL 5.532 4.541 4.481 0.427  4.600 4.102 4.006 0.343 

Min. fmining 64.567 64.599 64.599 0.025  64.590 64.608 64.607 0.013 

Max. fmining 66.559 66.306 66.233 0.151  66.879 66.717 66.730 0.128 

120 months (10 years) 

Min. fDel-GW 0.739 0.872 0.889 0.095  0.645 0.772 0.729 0.154 

Max. fDel-GW 5.419 4.146 3.997 0.594  4.892 4.109 4.040 0.337 

Min. fWL 3.182 3.780 3.758 0.440  3.337 3.471 3.430 0.127 

Max. fWL 9.020 8.157 8.079 0.442  8.616 8.006 8.053 0.530 

Min. fmining 141.124 141.404 141.408 0.242  141.154 141.305 141.288 0.107 

Max. fmining 149.547 148.070 148.191 0.906  151.313 149.825 149.655 0.877 

300 months (25 years) 

Min. fDel-GW 2.731 3.213 3.241 0.267  2.272 2.663 2.453 0.525 

Max. fDel-GW 7.596 6.742 6.837 0.640  8.594 8.096 8.063 0.335 

Min. fWL 11.098 12.139 12.311 0.418  9.129 9.794 9.864 0.529 

Max. fWL 17.906 16.705 16.522 0.596  17.824 16.637 17.027 1.439 

Min. fmining 513.838 516.958 516.020 3.258  499.751 506.268 506.564 3.363 

Max. fmining 587.806 571.068 571.196 8.700  632.234 602.036 601.931 13.128 
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Table A6. parameters performance properties for Borg MOEA achieved in drip system  

  1 year 5 years 10 years 25 years Total 

Sum. 

A
rc

h
iv

e 
si

ze
 15211 12097 17679 22972 67959 

Min. 1444 1082 1236 1739  

Max. 1579 1307 2726 2689  

Mean 1521 1210 1768 2297  

Median 1520 1236 1723 2274  

Std. 33.351 64.5136 391.814 279.050  

Sum. 

Im
p

ro
v

em
en

t 

113768 205090 349198 708199 1376255 

Min. 9874 17998 30301 49690  

Max. 12793 23570 43664 82248  

Mean 11377 20509 34920 70820  

Median 11347 20128 33900 73724  

Std. 860.136 1761.311 4117.949 9549.918  

Sum. 

R
es

ta
rt

 

3795 3709 1142 781 9427 

Min. 302 181 74 71  

Max. 439 499 199 108  

Mean 380 371 114 78  

Median 383 397 101 75  

Std. 44.996 85.098 39.296 10.492  

Sum. 

C
P

U
 t

im
e(

se
c)

 244.098 527.987 894.324 9097.121 10763.53 

Min. 21.474 52.163 85.762 845.439  

Max. 25.688 53.770 94.312 975.618  

Mean 24.410 52.799 89.432 909.712  

Median 24.663 52.716 88.414 920.013  

Std. 1.386 0.586 2.647 43.935  
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Table A7. parameters performance properties for -DSEA achieved in drip system 

  1 year 5 years 10 years 25 years Total 

Sum. 

A
rc

h
iv

e 
si

ze
 14911 11098 16776 36925 79710 

Min. 1473 1038 1430 2325  

Max. 1508 1238 1933 4897  

Mean 1491 1110 1678 3693  

Median 1495 1101 1670 3631  

Std. 9.741 56.377 150.899 722.759  

Sum. 

Im
p

ro
v

em
en

t 

86238 122893 220909 585776 1015816 

Min. 7421 10960 19336 47654  

Max. 9139 13755 23949 67526  

Mean 8624 12289 22091 58578  

Median 8684 12461 22192 58848  

Std. 455.375 901.671 1350.611 5671.934  

Sum. 

R
es

ta
rt

 

31 31 28 26 116 

Min. 2 2 2 2  

Max. 4 4 4 4  

Mean 3 3 3 3  

Median 4 4 3 2  

Std. 0.943 0.943 0.600 0.800  

Sum. 

C
P

U
 t

im
e(

se
c)

 161.632 385.008 657.451 5301.796 6505.887 

Min. 15.138 35.791 57.993 480.954  

Max. 16.958 41.926 68.909 629.137  

Mean 16.163 38.501 65.745 530.180  

Median 16.282 39.127 67.506 508.391  

Std. 0.608 2.136 3.643 50.410  
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Table A8. Summary of -DSEA evolved parameters achieved in drip system 

Parameters No. of years Minimum Maximum Mean Median Std. 

  

(SBX) 

1 4.000 88.000 63.874 67.000 13.199 

5 1.000 98.000 85.929 88.000 10.950 

10 1.000 94.000 60.417 65.000 25.064 

25 0 98.000 84.232 87.000 18.433 

CR, F 

(DE) 
CR-1 0.100 0.300 0.104 0.100 0.019 

F-1 0.500 0.650 0.531 0.529 0.021 

CR-5 0.100 0.891 0.122 0.100 0.105 

F-5 0.500 0.946 0.537 0.523 0.059 

CR-10 0.100 0.912 0.203 0.100 0.250 

F-10 0.500 0.956 0.570 0.507 0.139 

CR-25 0.100 0.911 0.459 0.444 0.361 

F-25 0.500 0.955 0.714 0.722 0.197 

𝜎𝜂, 𝜎𝜁  

(PCX) 

1 0.100 0.214 0.165 0.165 0.022 

5 0.100 0.264 0.130 0.122 0.023 

10 0.100 0.282 0.226 0.228 0.028 

25 0.100 0.282 0.192 0.193 0.015 

  

(SPX) 

1 2.521 3.000 2.609 2.580 0.079 

5 2.506 3.409 2.576 2.567 0.102 

10 2.508 3.407 2.832 2.834 0.089 

25 2.502 3.409 2.940 3.003 0.149 

𝜎𝜂, 𝜎𝜁   

(UNDX) 

𝜎𝜁  -1 0.400 0.544 0.408 0.402 0.017 

𝜎𝜂 -1 0.100 0.350 0.114 0.103 0.029 

𝜎𝜁  -5 0.400 0.581 0.434 0.402 0.062 

𝜎𝜂 -5 0.100 0.401 0.157 0.103 0.104 

𝜎𝜁  -10 0.400 0.580 0.470 0.413 0.082 

𝜎𝜂 -10 0.100 0.401 0.217 0.121 0.137 

𝜎𝜁  -25 0.400 0.582 0.501 0.550 0.080 

𝜎𝜂 -25 0.100 0.404 0.269 0.350 0.133 
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2. GROUNDWATER STORAGE 

Figure A3 illustrates the monthly groundwater storage achieved for different 

operating periods using -DSEA with both delivery system scenarios. The colour lines 

represent all optimum solutions achieved. These graphs show continues storage yields 

due to recharges’ scarcity and high water demands in the region.   

 

 

Figure A4. Details of groundwater storage achieved for both scenarios using -DSEA  
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6.4 Further Discussion 

The average and median number of wells for the best sustainable management 

solution for drip and open furrow systems were 619 and 776; 748 and 939, 

respectively, as 45% of farms’ water demands are reduced. Hence, economic revenues 

could be improved about 45% by reducing wells’ infrastructure construction cost, as 

well as the relevant power consumption of pumps.  

In the same context, the corresponding values of aquifers recharge of open 

furrows system are also reduced by 45% to about 10.0×106 and 3.0×106 m3/month. 

However, minor reduction is observed for drip system since its’ irrigation efficiency 

is higher. Thus, percolation from irrigation water (surface water) is the main source of 

aquifers’ recharge in this region, which evident the scarcity of aquifers recharge from 

the boundary regions.  

Furthermore, the average water deficit was reduced by 64% for drip system, 

and 53% for open system, hence crop production industries’ revenues could also be 

improved, which reinforce the regional water-food-energy nexus.  
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6.5 Conclusion 

  The performance of -DSEA was assessed using real-world groundwater 

management problem, in comparison with Borg MOEA. The developed model 

minimizes: delivery water deficit, aquifer storage mining, and infiltration water losses. 

The management strategy mapped for five discrete periods up to half-century using 

open furrows and drip irrigation system alternatives. The -DSEA provided more 

robust results when compared to the Borg MOEA for almost every alternatives. The 

-DSEA approaches’ main advantage over the Borg MOEA is reliability; it repeatedly 

produced optimum solutions over computational budget replication. The Pareto-front 

extends wider and has better optimality in the objective search space, which 

demonstrates the effectiveness of -DSEA. Its robustness is evident, adapting to 

different problem environments using dynamically evolved parameters during the 

evaluation process. New parameters domain was produced for the commonly used 

recombination operators, which can be beneficial for comparing water resources 

problems. Other parameters like number of optimum solutions, restart replication, and 

CPU time also show the superiority of -DSEA over Borg MOEA in all alternatives. 

The decision variables convergence and development was competitive and superior 

especially for long-term operation, which emerge -DSEA efficiency outperformance. 

The mechanism of auto-adaptive in Borg MOEA may cause stagnation in local optima, 

and injection repetition may regenerate solutions nearby local optima.  Although -

DSEA outperforms Borg MOEA in almost every cases, further analysis and 

assessment may consider for other real-world problems with higher complexity.  

Although both algorithms’ results demonstrate unsustainability in groundwater 

resource management for both irrigation systems, the computational evidence 
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illustrate that results from the -DSEA were more robust. Hence, the -DSEA results 

should be used to consider groundwater resource management for the case study area. 

The storage depletion was 25% for ten years’ water exploitation, which increase to 

about 60% for twenty-five years. The aquifer storage was completely exhausted after 

forty years in both alternatives due to low aquifer recharge, which is caused by low 

rainfall and high evapotranspiration rates (semi-arid zone). The introduction of drip 

irrigation mitigates the impact on the aquifer storage over the discrete periods, 

especially for long-term water exploitation. The probability of sustainable 

groundwater resource management was scenario modelled for the next half-century by 

reducing water delivery demands. The results show possible sustainable storage 

budget using open furrows system can be achieved for the next twenty-five years, and 

thirty-three years for drip system with 45% demand’s yield for both. Hence, decision 

makers (the Iraqi government) should consider future policy to reduce water demands 

by either changing crops types, or reducing farms areas. Also, the use of drip system 

for water allocation should be considered in the policy since it has less impacts on 

groundwater yields. However, crop yield and productivity should consider over the 

alternatives. Conjunctive use with surface water and water harvesting may consider 

also to mitigate groundwater depletion and maintain its sustainability. 

In the next chapter, a complex reservoir operation management scenario is 

selected with Many-objectives problem (more than three objectives). Both algorithms 

will be implemented to evaluate their performance. 
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CHAPTER SEVEN 
 

RESERVOIR OPERATION 

IMPROVEMENT APPROACH 
 

7.1 Introduction 

A performance assessment for -DSEA and Borg MOEA algorithms was 

implemented in the preceding chapter using groundwater management problem 

located in the middle part of Diyala river basin. The -DSEA outperformance was 

evident over almost all alternatives, which reflect algorithm’s robustness to adapt with 

different problem environment, as its performance was also evident in previous 

problems. Hence its’ management results were adopted. These results demonstrate 

future policy should be considered by the decision makers (The Iraqi government) to 

reduce water consumption by about 45% to achieve sustainable management for the 

next twenty-five and thirty-three years using open furrows and drip system, 

respectively. 

However, problematics in MOEAs performance may develop while solving a 

high-dimension problem (more than three objectives), as highlighted in bullet point 2 

in Chapter two. 

In the current chapter, Himren dam, located in the middle part of Diyala river 

basin, is selected as a complex reservoir management problem having social and 

environmental objectives to be optimized to improve its operation strategy. Both 

algorithms are implemented for further performance assessment and results’ 

endorsement.  
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A paper is developed and submitted to the Science of the Total Environment journal 

(2018) as: 

- Al-Jawad, J.Y., Alsaffar, H.M., Bertram, D., Kalin, R.M., 2018b. Optimum Socio-

Environmental Flows Approach for Reservoir Operation Strategy Using Many-

Objectives Evolutionary Optimization Algorithm. Sci. Total Environ. under review. 

 

 

“The following work represents my efforts, such as:  theoretical formalism 

development, analytic calculations and numerical simulations, writing the manuscript. 

Dr. Kalin, R.M., was the project supervisors, and provided assistance and support 

when required. Alsaffar, H.M., was a governmental key stackeholder and provided 

assistance and support when required. Dr. Bertram, D., provided technical support and 

assistance”.  
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7.2 Paper: 

Al-Jawad, J.Y., Alsaffar, H.M., Bertram, D., Kalin, R.M., 2018b. Optimum 

Socio-Environmental Flows Approach for Reservoir Operation Strategy Using 

Many-Objectives Evolutionary Optimization Algorithm. Sci. Total Environ. 

Under review.1 

 

OPTIMUM SOCIO-ENVIRONMENTAL FLOWS APPROACH FOR 

RESERVOIR OPERATION STRATEGY USING MANY-OBJECTIVES 

EVOLUTIONARY OPTIMIZATION ALGORITHM 
 

Jafar Y. Al-Jawada*, Hassan M. Alsaffarb, Douglas Bertramc, Robert M. Kalind 
a,c,dDepartment of Civil and Environmental Engineering, University of Strathclyde Glasgow 

 75 Montrose St, Glasgow G1 1XJ 
bNational Center for Water Resources Management, Ministry of Water Resources, Baghdad, 

Iraq 
a jafar.al-jawad@strath.ac.uk; b waterdata13@yahoo.com; c douglas.bertram@strath.ac.uk; 

 d robert.kalin@strath.ac.uk 

* corresponding author 

alternative e-mail: jafar_y2001@yahoo.com 

 

Abstract 

Water resource system complexity, high-dimension modelling dilemma and 

computational efficiency challenges often limit decision makers’ strategies to combine 

environmental flow objectives (e.g. water quality, ecosystem) with social flow 

objectives (e.g. hydropower, water supply and agriculture). Hence, a novel Optimum 

Social-Environmental Flows (OSEF) with Auto-Adaptive Constraints (AAC) 

approach is introduced as a river basin management decision support tool which 

integrates Socio-Environmental (SE) objectives with convergence booster support to 

mitigate any computational challenges. The OSEF-AAC effectiveness was evaluated 

using Iraq’s Diyala river basin. Nine SE objectives and 396 decision variables were 

modelled under two inflows scenarios. The results show there are decision support 

                                                            
1 The manuscript submitted at 18th of June 2018. Revision ask at 19th July 2018. Revision manuscript 
resubmitted at 26th July 2018 
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options that could improve river basin SE sectors revenues including hydropower, 

flood risk, agriculture, water quality and quantity, enhancing river basin economic 

benefits. However, advanced land use and water exploitation policy would need 

adoption to secure the basin’s SE sectors.   

Keywords: Environmental flows regime, Water resources management, Borg MOEA, 

-DSEA, auto-adaptive constraints, Diyala River basin 

 

1 INTRODUCTION 

The limitations of water resources often lead to the construction of dams in 

arid-environments to fulfil social and environmental demands such as flood wave 

absorption, water supply, agriculture projects, generating hydropower, tourist 

attraction, and other recreational purposes. These structures and their catchments need 

a robust management plan to handle their complexity in terms of: non-linearity, 

dynamic characteristics, conflicting objectives, multimodal, etc. (Haimes and Hall, 

1977 in Reed et al., 2013).  

In the last few decades optimization algorithms were developed and 

implemented in different scientific and engineering fields to solve complex problems 

(Coello et al., 2007); these problems include water resources management (Maier et 

al., 2014). Multiple optimization methods were used in reservoir system operation 

including linear and non-linear programing, dynamic programing and evolutionary 

algorithms (Ahmad et al., 2014; Rani and Moreira, 2010). Evolutionary algorithms 

(EA) are widely employed to tackle the intricacies of reservoir systems, inspired from 

evolutionary process of genes (Nicklow et al., 2010; Back et al., 2000). Studies 

involving multi-objective reservoir operation optimization using evolutionary 
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algorithm are summarized in Table 1.  Only three of nineteen studies consider more 

than five objectives in reservoir operation strategy (multiple publications used in the 

same case study are considered as one study). Moreover, some studies merge 

objectives to simplify the multiple dam system problems, and hydropower generation 

and water supply (for domestic and irrigation) were the dominant objectives adopted 

in these studies.   

Environmental objectives are seldom adopted in reservoir management, in a 

recent review of studies between 1980 and 2015 by Horne et al., (2016) found only 42 

studies adopt environmental releases in reservoir management as decision variables. 

Recently Horne et al., (2017) presented conditional probability networks 

(CPNs) approaches combined with Mixed Integer Programing (MIP) optimizer for 

environmental flow regimes. Poff et al., (2016) propose a framework approach for eco-

engineering decision scaling using performance indices, and  Acreman et al., (2014) 

show that environmental flows need a “designer” approach for considering ecosystem 

objectives in water control infrastructure, rather than a “natural” approach.  

Older studies do consider social objectives (hydropower, water supply, and 

flood protection) in their optimization models for reservoir operation strategy, and 

more recent studies consider environmental flow regimes.  We propose to adopt a more 

holistic approach, where environmental flows from reservoir are combined with the 

social water needs to improve economic revenues reliant on the river basin system. 
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Table 1. Summary of literatures used evolutionary algorithms to optimize multi-

objective reservoir operation strategy 

Author Method Objective 

No. 

Subject No. of 

dams 

Kim et al., (2008) NSGA-II 2 Water shortage index + 

hydropower  

1 

Chang and Chang, (2009) NSGA-II 2 Water shortage index for two 

dams 

2 

Dittmann et al., (2009) MOES 5 Inundation + overtopping for 

three dams + releases 

3 

Reddy and Kumar, (2009) MOPSO 2 hydropower + irrigation 1 

Regulwar, (2009) MOGA 2 hydropower + irrigation 5 

Hakimi-Asiabar et al., 

(2010) 

SLGA 3 hydropower + water supply 

+ water quality 

3 

Wang et al., (2011) MIGA 2 long term operation for 

water demand and storage 

1 

Malekmohammadi et al., 

(2011) 

NSGA-II 2 Flood + water demands 2 

Schardong et al., (2013) MODE 3 Water demands + water 

quality + pumping cost 

5 

Kasprzyk et al., (2013) -NSGA-

II 

6 Two cost + Three reliability 

+ Market use 

1 

Giacomoni et al., (2013), 

Giuliani et al., (2014a) 

Fitted Q-

iteration 

5 Two Recreation + 

sedimentation + water deficit 

+ Temperature differences 

1 

Giuliani et al., (2014b), 

Giuliani et al., (2016), 

Zatarain Salazar et al., 

(2016) Zatarain Salazar et 

al., (2017) 

Borg 

MOEA 

6 Three water supply + 

hydropower + recreation + 

environment 

1 

Ahmadianfar et al., (2015) MOEA/D 2 Flow demands + agriculture 

demands 

3 

Li and Qiu, (2015) NSGA-II 2 Hydropower + firm power 1 

Crookston and Tullis, (2016) NSGA-II 2 Water quality + water 

temperature 

1 

Hurford et al., (2014) -NSGA-

II 

10 Four agriculture water 

deficit + water losses + 

Hydropower + Land 

availability + Two Flow 

alteration 

3 

Qi et al., (2016) MOEA/D 2 Water level + releases 1 

Chen et al., (2016) NSGA-II 5 Water supply + hydropower 

+ flow alternation in two 

rivers + water quality 

1 

Dai et al., (2017) NSGA-II 2 Hydropower + water 

alternation 

2 
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Generally water resources management models provide information to the 

decision makers, rather than the decision itself (Loucks, 2012). There are pre- and 

post-optimization implementation approaches for incorporating decision maker 

criteria within a multi-aspects problems (Maier et al., 2014; Coello et al., 2007). One 

of the pre-criteria approach drawbacks is the dissatisfaction (or lack of trust) of 

decision makers toward model results that emerged depending on their criteria set, and 

they may change these criteria to generate new results (Loucks, 2012). Hence the 

model needs to be re-executed until they get satisfaction. The second approach is 

computationally challenging and has potential difficulties to find the Pareto-front for 

optimum solutions set, which recently tackles by using multi-objective (or many-

objective for more than three objectives) optimization algorithms (Maier et al., 2014). 

These holistic challenges motivate development of a novel approach to 

generate optimum river basin management strategies that combines both social and 

environmental objectives. Many-objective evolutionary optimization algorithm was 

adopted to conceptualise and analyse the multi-sector problem. Additionally, an auto-

adaptive constraints approach was used to overcome system complexity and boost 

algorithm convergence. The approach effectiveness was evaluated using challenging 

water resources problem in a semi-arid region in Middle East. The approach 

achievement and robustness was supported by two evolutionary algorithms (Maier et 

al., 2014): the state-of-the-art Borg MOEA (Hadka and Reed, 2013) and the new -

DSEA (Al-Jawad et al., 2018b). The findings are expected to improve the river basin 

system potential social and environmental sectors economic revenues. Also, the 

optimum water management strategy “trade-off” will provide the decision makers with 
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a flexible flow regime management consistent with different time-scales for real-world 

IWRM. 

 

2 METHODS AND TOOLS 

2.1 Identification of OSEF-AAC Approach 

This study presents the Optimum Socio-Environmental Flows (OSEF) approach which 

combines all social and environmental sectors (or objectives) together in one model 

using a many-objectives optimization algorithm approach.   

Many-objectives model can solve more than three objectives problems (Maier 

et al., 2014; Li et al., 2015); however, the complexity increases exponentially when 

involving more objectives, which leads to challenges in computational efficiency 

(Lokman and Köksalan, 2013; Maier et al., 2014). Nevertheless, involving more 

objectives has minor or similar impact on the computational complexity of MOEAs’ 

algorithms, since it’s a function of; population size, number of objectives and number 

of generations (Curry and Dagli, 2014). The later study concluded that involving more 

objectives to an optimization problem will have minor or similar computational 

complexity impact. This was based on comparing two versions of MOEAs for multi 

and many-objectives optimization algorithms; NSGA-II (Deb et al., 2002) and NSGA-

III (Deb and Jain, 2013); SPEA (Zitzler et al., 2002) and FD-SPEA2 (He et al., 2014). 

Also, they refer to the length of chromosome (number of decision variables) as a key-

factor affecting on the computational complexity. Maier et al., (2014) explore 

computational efficiency challenges in water resources management models and the 

available methods to handle them, over the use of surrogate model (SM) or parallel 

computing. The SM approaches are used to reduce the difficulties (or the dimensions) 
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and the authors reviewed several studies implementing the SM model, noting  “SMs 

are only an approximation and therefore subject to errors” (Maier et al., 2014). While 

the parallel computing is not commonly available and highly expensive, another 

challenging aspect are the barriers (or constraints) that real-world water resources 

management problems have which limit the model feasible solutions region. For 

examples dam releases are restricted to the spillway gates’ maximum discharge 

capacity, and power generation is limited to the maximum power plant turbine flows. 

Hence, to approach the actual conditions constraints should be assigned for 

unconstrained optimization algorithms like evolutionary algorithms (Deb, 2001; 

Abraham et al., 2005).  

Developing a penalty functions formula is a type of constraints approach 

paradigm (Coello Coello, 2002; Simon, 2013) to represent decision makers policy or 

criteria (Maier et al., 2014) and to exaggerate the unfeasible solution to guide 

algorithm exploration towards feasible solutions. However these functions should be 

carefully developed and tested for each problem to avoid premature or delay of 

algorithm convergence towards optimum solutions (Deb and Datta, 2013).  Hence, the 

new Auto-Adaptive Constraints (AAC) methodology was developed to overcome such 

challenges.  The AAC was developed after intensive practical diagnosis and 

assessment of evolutionary algorithm behaviour on real-world many-objectives 

problem with large number of decision variables. The initial decision variables 

population random seeding generates feasible and unfeasible candidates in the 

decision variables design space. Then these candidates subjected to mutation and 

crossover evolving process to produce new generations until evaluation process ends 

(Deb, 2001; Abraham et al., 2005), which is sensitive to objective achievement to 
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produce non-dominated solutions. Therefore, the initial evaluation stages produce 

large penalized values due to numerous decision variables violations which restrains 

the convergence process or may cause stagnation in local optima (Deb and Datta, 

2013). To overcome this problem, the AAC methodology combined the penalty 

formula and model violations with dynamic nexus, which release the chain of 

constraints gradually when large values of violation observed, then reinforce these 

chains at small values when decision variable values approaching feasible region. 

Figures 1 illustrates the diagram of OSEF-AAC and AAC details approaches.   

 

 

Figure 1. Schematic diagram of the developed OSEF-AAC diagram in the current 

research. OSEF refer to Optimum Socio-Environmental Flows, and AAC to Auto-

Adapted Constraints approaches.  

 

2.2 Identification of Many-Objectives Optimization Algorithms 

 Hadka and Reed (2013) present the state-of-the-art Borg MOEA for many-

objectives optimization problem with auto-adaptive six recombination operators, -

box techniques for dominance sorting, injection mechanism (Kollat and Reed, 2006) 
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to avoid stagnation, and an archive for dominance solutions sorting. Comparative 

assessment studies of Borg MOEA achieved by Hadka and Reed (2012), Hadka et al. 

(2012), Reed et al., (2013), Woodruff et al. (2015), and  Zatarain Salazar et al., (2016) 

on various problems with competitive evolutionary algorithms (like NSGA-II, 

AMALGAM, -MOEA, SPEA2, .. etc.) shows outperformance of Borg MOEA. 

Recently, Al-jawad and Tanyimboh (2017) assessed Borg MOEA to solve real-world 

reservoir operation; results show that Borg MOEA enhances the solution significantly. 

New methodologies were proposed by in developing -DSEA to increase the 

diversity and enhance model convergence. -DSEA has self-adaptive operators’ 

parameters control technique for auto-parameter-tuning, and random parameters 

resetting to avoid stagnation. The -DSEA were intensively tested on five benchmarks 

functions with up to 8-objectives, three objectives real-world reservoir operation 

problem, and a real-world groundwater long-term management (Al-Jawad and 

Tanyimboh, 2018; Al-Jawad et al., 2018). The results showed that -DSEA 

outperformed Borg MOEA in almost all adopted cases. 

 

3 CASE STUDY DESCRIPTION  

3.1 Regional Identification 

The Himren dam system in Iraq was selected as a challenging water resources 

problem, located in the semi-arid region in the Middle East, which has many social 

and environmental management dilemmas. It is a rock fill multipurpose dam located 

in the Diyala governorate of Iraq at 34o 06’ 45” N – 44o 58’ 11” E, 120 km in the 

northeast from Baghdad city (Figure 2).  
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Figure 2. Diyala river basin and Himren dam location in Iraq  

(adapted from (SGI et al., 2014)) 

The dam was built for hydropower production, flood control, agriculture and 

re-regulates river flows for downstream water exploitation. Table A2 and A3 in the 

supplementary data presents Himren dam characteristics details, and the average 

monthly meteorological data, precipitation, evaporation, river losses, and irrigation 

projects demands for the dam system, respectively. The Diyala river basin is facing 

crisis and deterioration in the sustainability of its water resources and environments. 

Details identification of the problem are illustrated in section 3 in the supplementary 

data. 

3.2 Identification of Reservoir Management Objectives (OSEF-AAC approach) 

In general, each river basin has its own operation objectives and constraints, 

hence mathematical models are developed for the adopted case study for OSEF-AAC 

approach implementation. Water resources management decisions may relate to a 

range of spatial and temporal scales, from sub-daily to multi-year and a single location 
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to the river basin, respectively. However monthly rather weekly values were 

considered in the model as the focus of the research is to assist with the development 

of an efficient seasonal operating policy, rather than daily operational control (Horne 

et al., 2016). In order to clarify the model structure and the proposed objective 

functions for the reservoir operation management, Figure A1 in the supplementary 

data shows the physical model features together with the nine objective functions for 

Himren dam. The river basin management system was categorized in to two main 

groups, social and environmental. 

 

3.2.1 Social Sector Objectives 

This sector includes objectives addressing water demands, storage support, 

flood risk management, and power generation. To fulfil downstream water demands 

for domestic, industrial, and irrigation projects at time t (𝐷𝐷𝑡
𝐻), the corresponding 

reservoir releases (𝑅𝑡
𝐻) should be managed to follow these demands over the time 

operation T, which can be formulated as: 

𝑚𝑖𝑛 𝑓𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝐻 = ∑ (
𝑅𝑡

𝐻 − 𝐷𝐷𝑡
𝐻

𝐷𝐷𝑚𝑎𝑥
𝐻

)

2𝑇

𝑡=1

+ 𝐶𝑃 , t =1, 2,..T 
(1) 

 

where 𝐷𝐷𝑚𝑎𝑥
𝐻  is the maximum water demands, and CP is the penalty value includes all 

the violations of the model, which could be expressed as: 

𝐶𝑃 = ∑ 𝐶𝑖
𝑒

𝑃𝑁

𝑖=1

 , i =1, 2,..PN 
(2) 

 

where PN is the number of penalty functions, Ci is the penalty value for the (ith) penalty 

function, and e is any positive integer number. More details of Ci are presented in 

equations 19 and 20 below. 
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In arid environments one of the main reasons for a dam is to support reservoir 

storage during rainy seasons (TW), usually in winter, to fulfil water demands in hotter 

/ dryer seasons. Hence the reservoir storage at time t (𝑆𝑡
𝐻) should be increased to the 

maximum reservoir storage (𝑆𝑚𝑎𝑥
𝐻 ).  Therefore, the second social objective can be 

expressed as: 

𝑚𝑖𝑛 𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐻 = ∑ (
𝑆𝑚𝑎𝑥

𝐻 − 𝑆𝑡
𝐻

𝑆𝑚𝑎𝑥
𝐻

)

2

  

𝑇𝑤

𝑡=1

+ 𝐶𝑃 , t =1, 2,.. TW (3) 

 

The reservoir water storage budget is affected by the quantity of reservoir 

inflows (𝐼𝑡
𝐻), the reservoir releases (𝑅𝑡

𝐻), reservoir lake evaporation (𝐸𝑡
𝐻), direct 

rainfall (𝑃𝑡
𝐻), reservoir seepage losses (𝑆𝐸𝑡

𝐻), and reservoir groundwater recharge 

(𝐺𝑅𝑡
𝐻). Hence, reservoir storage at time t+1 (𝑆𝑡+1

𝐻 ) could be expressed as: 

𝑆𝑡+1
𝐻 = 𝑆𝑡

𝐻 + 𝐼𝑡
𝐻 − 𝑅𝑡

𝐻 − 𝐸𝑡
𝐻 + 𝑃𝑡

𝐻 − 𝑆𝐸𝑡
𝐻 + 𝐺𝑅𝑡

𝐻 , t =1, 2,.. T (4) 

 

Reservoir area-storage and head-storage relationships are presented in the section 5 in 

the supplementary data. Flood risk management strategy should be considered in the 

operation policy to reduce inundation hazards, and can be managed by reducing 

reservoir storage during the summer season (TS) before the next rainy season. While 

the minimum generating power (𝑆𝑚𝑖𝑛𝑝
𝐻 ) need to be maintained during this period. 

Hence the third social objective can be formulated as:  

𝑚𝑖𝑛 𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐻 = ∑ (
𝑆𝑡

𝐻 − 𝑆𝑚𝑖𝑛𝑝
𝐻

𝑆𝑚𝑎𝑥
𝐻

)

2

+ 𝐶𝑃 

𝑇𝑠

𝑡=1

 , t =1, 2, .. TS (5) 

 

Generating power is one of the main economic purposes considered in dam 

operational design. Therefore, the fourth social objective is to maximize the power 
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generation at time t (𝑃𝑤𝑡
𝐻) towards the maximum power plant capacity (𝑃𝑤𝑚𝑎𝑥

𝐻 ) over 

the operation time T to improve project revenues using the following formula: 

𝑚𝑖𝑛 𝑓𝑝𝑜𝑤𝑒𝑟𝐻 = ∑ (
𝑃𝑤𝑚𝑎𝑥

𝐻 − 𝑃𝑤𝑡
𝐻

𝑃𝑤𝑚𝑎𝑥
𝐻

)

2𝑇

𝑡=1

+ 𝐶𝑃 , t =1, 2,..T (6) 

 

The general hydropower generation formula is as follows: 

𝑃𝑤𝑡
𝐻 = 𝜂𝑒

𝐻 . 𝛾𝑤. 𝑄𝑡
𝑡𝑢𝐻. 𝐻𝑡

𝑛𝐻   (7) 

where 𝜂𝑒
𝐻 is power plant efficiency,  𝛾𝑤 is water specific weight, 𝑄𝑡

𝑡𝑢𝐻 is the turbine 

discharge, and 𝐻𝑡
𝑛𝐻 is the net head in the reservoir measured between reservoir water 

surface level and the tail water level after the dam structure (after the hydropower 

turbine structure).  

3.2.2 Environmental Sector Objectives 

The objectives of this sector can be expressed as: controlling river discharges, 

river water quality, downstream water quality, and river morphology. The harmony in 

river flows is important for controlling river morphology, navigation and tourism in 

the region. Since the discharges are controlled by the Diyala barrage downstream of 

the dam, additional control considerations should be combined within the management 

model. A new Barrage operation policy is proposed to enhance river environment, 

which its details are in section 6 in the supplementary data. Hence the second 

environmental objective is to minimize the river discharge differences at time t (𝑄𝑡
𝑟) 

and t+1 (𝑄𝑡+1
𝑟 ) with respect to the maximum river discharge (𝑄𝑚𝑎𝑥

𝑟 ) for the entire 

periods time T. The following formula was proposed:  

𝑚𝑖𝑛 𝑓𝑟𝑖𝑣𝑒𝑟𝐵 = ∑ (
𝑄𝑡

𝑟 − 𝑄𝑡+1
𝑟

𝑄𝑚𝑎𝑥
𝑟

)

2𝑇

𝑡=1

+ 𝐶𝑃 , t =1, 2,..T (8) 
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The river water quality is important for ecosystem and anthropogenic needs; 

therefore, reservoir releases management should consider this issue. Where a pollutant 

source discharges to the river, the final concentration of total dissolved solids after the 

source point at time t (𝑇𝐷𝑆𝑡
𝑟2) depend on the mixed concentrations of pollutant source 

and the river (𝑇𝐷𝑆𝑡
𝑃𝑆, 𝑇𝐷𝑆𝑡

𝑟1) coupled with their discharges (𝑄𝑡
𝑃𝑆, 𝑄𝑡

𝑟1), respectively. 

Hence, the final concentration can be calculated using mass solute balance equation: 

𝑇𝐷𝑆𝑡
𝑟2 =

𝑇𝐷𝑆𝑡
𝑟1 × 𝑄𝑡

𝑟1 + 𝑇𝐷𝑆𝑡
𝑃𝑆 × 𝑄𝑡

𝑃𝑆

𝑄𝑡
𝑟1 + 𝑄𝑡

𝑃𝑆  , t =1, 2,..T (9) 

 

From the above, the second environmental objective is to minimize river pollutant after 

the pollutant source over the operation time T, which can be expressed as:  

𝑚𝑖𝑛 𝑓𝑇𝐷𝑆−𝐷𝑌 = ∑ (
𝑇𝐷𝑆𝑡

𝑟2

𝑇𝐷𝑆𝑡
𝑃𝑆)

2𝑇

𝑡=1

+ 𝐶𝑃 , t =1, 2,..T (10) 

 

Consistency, since the Diyala river is merging with Tigris river downstream, 

the mixing water should also be monitored. So, the mix concentration after the 

confluence (𝑇𝐷𝑆𝑡
𝑅) depends on both rivers quality and quantity 𝑇𝐷𝑆𝑡

𝑟2, 𝑄𝑡
𝑟2, 

𝑇𝐷𝑆𝑡
𝑟3, 𝑄𝑡

𝑟3, respectively, which could be expressed as: 

𝑇𝐷𝑆𝑡
𝑅 =

𝑇𝐷𝑆𝑡
𝑟2 × 𝑄𝑡

𝑟2 + 𝑇𝐷𝑆𝑡
𝑟3 × 𝑄𝑡

𝑟3

𝑄𝑡
𝑟2 + 𝑄𝑡

𝑟3  , t =1, 2,..T (11) 

The third environmental objective is to minimize the final mixed concentration in 

Tigris river after the confluence With Diyala river with respect to the maximum 

allowable concentration of (𝑇𝐷𝑆𝑚𝑎𝑥) over the operation period T, which can be 

formulated as: 
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𝑚𝑖𝑛 𝑓𝑇𝐷𝑆−𝑇𝑅 = ∑ (
𝑇𝐷𝑆𝑡

𝑅

𝑇𝐷𝑆𝑚𝑎𝑥
)

2𝑇

𝑡=1

+ 𝐶𝑃 , t =1, 2,..T (12) 

 

River morphology is another environmental aspect considered through 

degradation and aggregation in the riverbed at section i and time t according to the 

Schoklisch formula (1934) (Yang 1996 in Ali 2016) and it depends on river discharge 

per unit width (𝑞𝑖,𝑡
𝑟 ), critical discharge per unit width (𝑞𝑖,𝑡

𝑐 ), energy gradient of water 

(𝐻𝐺𝑖,𝑡), and soil particle diameter (𝑑𝑠). Hence, the riverbed sediment load discharge 

(𝐵𝐷𝑖,𝑡) per unit width is: 

𝐵𝐷𝑖,𝑡 =
7000 𝐻𝐺𝑖,𝑡

3 2⁄

√𝑑𝑠

. (𝑞𝑖,𝑡
𝑟

− 𝑞𝑖,𝑡
𝑐 ) 

, t =1, 2,..T, i = 1, 2, .. NS (13) 

where NS is the number of considered sections along the river 

𝑞𝑖,𝑡
𝑐 =

1.944 × 10−5. 𝑑𝑠

𝐻𝐺𝑖,𝑡
4 3⁄

  (14) 

 

The energy gradient at section i and time t could be calculated using Manning’s 

formula, which depends on Manning’s roughness coefficient (n), river discharge (𝑄𝑡
𝑟), 

effective flow area (𝐴𝑖,𝑡), and hydraulic radius (𝐻𝑅𝑖,𝑡) of the river section 

𝐻𝐺𝑖,𝑡 =
𝑛2(𝑄𝑡

𝑟)2

𝐴𝑖,𝑡
2 𝐻𝑅𝑖,𝑡

4 3⁄
 , t =1, 2,..T, i = 1, 2, .. NS (15) 

 

 Carriaga and Mays (1995) and Nicklow and Mays (2001) proposed sediment 

routing formula in the river to calculate the bed level change at section i and time t 

(𝐵𝐿𝑖,𝑡), and time t+1 (𝐵𝐿𝑖,𝑡+1), respectively. Their formula depends on the difference 

between bed load discharge at section i-1 and i+1 (𝐵𝐷𝑖−1,𝑡, 𝐵𝐷𝑖+1,𝑡), specific density 

of water-soil mixture (𝛾𝑚), river bed width (𝑊𝑖), and the length between the considered 
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section and the upstream section (𝐿𝑢,𝑡) and downstream section (𝐿𝑑,𝑡). Hence, the 

aggregation and degradation at i section in any time difference ∆𝑇 along riverbed could 

be calculated as follows: 

𝐵𝐿𝑖,𝑡+1 = 𝐵𝐿𝑖,𝑡 −
∆𝑇𝑡

0.5𝛾𝑚𝑊𝑖
 
(𝐵𝐷𝑖−1,𝑡 − 𝐵𝐷𝑖+1,𝑡)

(𝐿𝑢,𝑡 + 𝐿𝑑,𝑡)
 , t =1, 2,..T, i = 1, 2, .. NS (16) 

 

In order to minimize the changes in river bed levels over the operation time T, the 

following formula proposed: 

𝑚𝑖𝑛 𝑓𝐷𝑌−𝐵𝐶𝐻 = ∑ (
𝐵𝐿𝑖,𝑡=0 − 𝐵𝐿𝑖,𝑡=𝑇

∆𝐵𝐿𝑚𝑎𝑥
)

2𝑁𝑆

𝑖=1

+ 𝐶𝑃 , t =1, 2,..T (17) 

 

where ∆𝐵𝐿𝑚𝑎𝑥 is the maximum allowable river bed level changes 

 

3.2.3 Model Violation Objective 

The final objective function is to minimize the penalty function value (𝐶𝑃) to 

force the optimization algorithm to search in the feasible space of the problem, as 

follows: 

𝑚𝑖𝑛 𝑓𝑀𝐷 = 𝐶𝑃  (18) 

 

When model system boundaries are violated over the evaluation process, the 

following formula was proposed for the entire model violation (Chang et al., 2010; Al-

jawad and Tanyimboh, 2017): 

𝐶𝑖 = 𝐴𝑖 . ∑ 𝑔𝑗

𝑇

𝑗=1

;   𝐴𝑖 ≥ 1  (19) 
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where, (𝑔𝑗) is the penalty function of (jth) constraint. In this research, the AAC 

approach was adopted for the factor (Ai) for the environmental constraints. In reservoir 

releases management, these constraints are concerned with the ecosystem requirement 

such as river flow, river water quality, sediment transport, navigation …etc. The factor 

(Ai) was first set for an initial value, then these values were dynamically adapted with 

the corresponding penalty function (Ci) using the following formula during the 

evaluation process, which was developed by empirical practice: 

𝐴𝑖 = {
𝐴𝑖 − (

1

√𝐶𝑖

)            𝑖𝑓 𝐶𝑖 ≥ 1.0

𝐴𝑖 + 1.0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} , 𝐴𝑖 ≥ 1.0  (20) 

 

Two scenarios were adopted using a historical data from 1981 to 2012. Scenario-

1 represents the projection of the historical data for the next future inflows. Scenario-

2 reflects the predicted climate changes impacts on reservoir inflows for the next 

thirty-three years. Details of proposed scenarios are presented in section 7 in the 

supplementary data.  

The reservoir system operational, environmental parameters, and constraints 

are shown in Table 2. The operational parameters include the physical limits of 

reservoir storage, releases, turbine and river discharges, while the environmental 

parameters include water quality limits, river morphology, and storage sustainability. 

Details of constraints formulae (𝑔𝑗) for the reservoir operation management are 

presented in the supplementary data in section 7   
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Table 2. Reservoir system operation parameters and constraints (SGI et al. 2014; 

Alsaffar, 2017)  

Parameter Value Unit  Parameter Value Unit 

𝑆𝑚𝑖𝑛
𝐻  20×106 m3  𝑄𝑚𝑎𝑥

𝑟  1000 m3/s 

𝑆𝑚𝑎𝑥
𝐻  2400×106 m3  𝑇𝐷𝑆𝑡

𝑟1 at 

𝑄𝑚𝑖𝑛
𝑟  

22201  mg/l 

𝑆𝑚𝑖𝑛𝑝
𝐻  102 ×106 m3  𝑇𝐷𝑆𝑡

𝑃𝑆 50001 mg/l 

𝑅𝑚𝑖𝑛
𝐻  20 m3/s  𝑇𝐷𝑆𝑈 5003 mg/l 

𝑅𝑚𝑎𝑥
𝐻  447 m3/s  𝑄𝑡

𝑃𝑆 151 m3/s 

𝑃𝑤𝑚𝑖𝑛
𝐻  50 MW  𝛾𝑚 14862 kg/m3 

𝑃𝑤𝑚𝑎𝑥
𝐻  7.5 MW  𝑊𝑖 (mean) 80.0 m 

𝜂𝑒
𝐻 88 %  ∆𝐵𝐿𝑚𝑎𝑥 2.0 m 

𝛾𝑤 1000 KN/m3  𝑑𝑠 20.0 - 0.177 mm 

𝑄𝑚𝑖𝑛
𝑡𝑢𝐻 38 m3/s  NS 41 - 

𝑄𝑚𝑎𝑥
𝑡𝑢𝐻  98.5 m3/s  TW October – 

March 

Month 

𝐻𝑡,𝑚𝑖𝑛
𝑛𝐻  15.9 m  TS April - 

September 

Month 

𝐻𝑡,𝑚𝑎𝑥
𝑛𝐻  30.8 m  ∆𝑇𝑡  1 Month 

𝑄𝑚𝑖𝑛
𝑟  10 m3/s  𝑆𝑇+1

𝐻
 0.9 × 𝑆𝑡=0

𝐻   
1 Kubba et al. (2014), 2 Nicklow and Mays (2001), 3 Saleh (2013) 

 

3.3 Computational Model Implementation 

Using in the programming language C, a model was developed to 

conceptualize all the objective functions and the corresponding constraints.  For 

completeness, both the Borg MOEA and the -DSEA algorithms were replicated 20 

times for each scenario, with the number of function evaluations equal to 500,000 and 

epsilon () ( is the resolution of the objective search space) equal to 0.5 for the nine 

objectives for both scenarios. The number of decision variables, 396, equals the 

number of monthly releases over the thirty-three years’ data period. Additionally, other 

reservoir parameters system including storage, surface area, water level, and power 

generating were calculated by the model; hence the model solved 3564 variables in 

each run. The overall function evaluation total is 40 million, with total processing time 

about 80 hours CPU time. The optimization running process was made using PC 
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desktop (Core i7-6700 CPU @ 3.4 GHz, 16 GB RAM) with Ubuntu 16.04 OS. The 

parameters used for both algorithms are shown in Table A1 in the supplementary data. 

In the current study, a value of A = 104 was selected for the dam physical model 

constraints to exploit all feasible solutions and avoid rendering infeasible solutions at 

the constraints threshold, especially those with small violation values. While Ai = 102 

(Al-Jawad and Tanyimboh, 2017) was selected as starting value for the environmental 

constraints, as described in section 3.3. 

 

4 RESULTS AND DISCUSSION 

4.1 Optimum Trade-off Achievement 

The MOEAs’ effectiveness is commonly measured using metrics like the 

hypervolume metric (Zitzler, 1999) which evaluate the non-dominated solutions’ 

hypervolume, and generational distance metric (Van Veldhuizen and Lamont, 1998) 

which measure the average distance between the dominance solutions and the closer 

Pareto-front set. However, these metrics (and others) may provide misguiding results 

and most of their design principles depends on the true Pareto-front, which is unknown 

in real-world water resources management problems (Maier et al., 2014). Accordingly, 

qualitative and quantitative parameters were adopted for achievement assessment. The 

optimization results are shown in Figure 3, here the -DSEA outperforms Borg MOEA 

in both scenarios for the near median Pareto-front values achieved from the 20 runs 

for each scenario, since the range of objectives functions values achieved by -DSEA 

are lower than those in Borg MOEA. 

The mean numbers of dominance solutions achieved by -DSEA and Borg 

MOEA in both scenarios were about 721, 406; 771, 368; and the median were 372, 
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286; 815, 273, respectively. While, the gross number of dominance solutions achieved 

by both algorithms for the adopted scenarios were 14410, 8118; 15415, 7363, 

respectively, hence the -DSEA has advance diversity than Borg MOEA. Convergence 

speed is another parameter chosen for performance assessment, which represents 

algorithm’s efficiency. Figure 4 illustrates convergence development process for 

model objectives functions over the evaluation process for both algorithms and 

scenarios. It is clearly that -DSEA converge faster than Borg MOEA in both 

scenarios. Hence the -DSEA solutions were adopted for interpretation of the reservoir 

operation management. Detail competitive analysis results for both algorithms are 

presented in section 8 in the supplementary data. 

 

Figure 3. Pareto-front (trade-off) for the nine objective functions using Borg MOEA 

and -DSEA algorithms for Himren dam future management strategy scenarios.  

 

The conflicts relationship between model objectives is obvious in both 

scenarios (Figure 3), except for 𝑓𝑇𝐷𝑆−𝑇𝑅 and 𝑓𝐷𝑌−𝐵𝐶𝐻, but in fact there are slight 

conflicts for many solutions. The Diyala river bed changes are directly affected by the 
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river discharge, and the concentration of TDS in the Tigris river is affected by both 

discharges and quality of Diyala river. Hence the relation between the two function is 

indirect, with lower level of conflicts than other objectives functions. Further, the 

degree of mutual influence between power generation objective (𝑓𝑝𝑜𝑤𝑒𝑟) and river flow 

regulation objective (𝑓𝑟𝑖𝑣𝑒𝑟𝐵) by Diyala Barrage is medium because the Barrage divert 

most of reservoir releases to the agriculture projects. The multi-objectives evolutionary 

algorithm’s capability to solve conflicts objectives simultaneously by generating a set 

of optimum solutions (Deb, 2001) (trade-off) has a major advantage, through which 

decision makers can adopt a solution (or solutions) that consistent with their criteria.   

 

 
Figure 4. Illustrates objectives convergence speed over evaluation process for Borg 

MOEA and -DSEA with two inflows scenarios 

 

 

Figure 3 also shows that the total model violation function is greater than one 

(𝑓𝑀𝐷 > 1.0) in all cases, which refers to unfeasible solutions achievement in the 

objective search space. However, these solutions are located in both the feasible and 
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unfeasible regions in the decision variables search space. Table 2 illustrates the 

summary of Himren dam system parameters achieved by -DSEA for both scenarios. 

The reservoir releases, storage, water level, surface area and hydropower generation 

did not violate its barriers, hence their objectives attainment were emerged from 

feasible decision variables. Also, the Diyala River discharges did not exceed river 

maximum capacity because they are controlled by the Himren dam and the Diyala 

Barrage. However, partial violations were observed in the Diyala river morphology 

and in the Tigris River water quality about their preferable limits (river bed changes  

2.0, TDS  600 mg/l), which are specified requirements from the NCWRM (the 

decision makers). This refers to the reservoir releases inertia to satisfy these limits over 

the operation periods, hence some decision variables located in the unfeasible region 

of the decision variables space.  

Table 2. Summary of optimum parameters achieved for Himren dam system using -

DSEA for both scenarios  

System parameter 
Scenario-1 Scenario-2 

Min. Max. Min. Max. 

Reservoir releases (MCM) 98.51 1158.62 98.52 1158.62 

Reservoir storage (MCM) 101.55 2398.48 92.78 2399.97 

Reservoir water level (m.a.s.l) 89.20 105.36 89.00 105.37 

Reservoir Surface area (Km2) 38.77 321.74 37.42 321.89 

Hydropower generation (MW) 7.50 50.00 7.50 50.00 

Diyala river discharge (MCM) 30.85 1108.84 30.85 1084.10 

Absolute Diyala bed river changes (m) 0.00 4.62 0.00 3.00 

Diyala river TDS before WWTP (mg/l) 540.21 2220.00 541.12 2220.00 

Diyala river TDS after WWTP (mg/l) 599.73 3590.60 601.98 3590.58 

Tigris river TDS (mg/l) 520.38 613.84 528.89 613.79 

MCM=Million cubic meters/month; TDS=Total dissolved solids; WWTP=Wastewater 

treatment plant 

 

Usually operation management priorities were set depending on stakeholders’ 

demands. Here the operating priority is to satisfy domestic demands downstream 
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Himren dam, and other objectives considered within the secondary priorities. 

Although the potential violation in Tigris River quality for downstream regions, the 

model succeeds to maintain its quality  620 mg/l in both scenarios over the entire 

period of operation, in compare with the range of 600 to 1200 mg/l in the previous 

recent records. However, the government needs to adopt advance remediation policy 

for the wastewater quality discharged from Al-Rustumiya plant to mitigate the impact 

of pollution in the downstream. 

The above argument shows the importance of understanding reservoir 

management priorities in developing system objectives functions and constraints to 

represent these priorities. Furthermore, partial violated solutions in secondary 

priorities could be adopted for reservoir operation strategy.  

 

4.2 AAC approach Achievement 

The new AAC approach succeed to guide the optimization algorithm towards 

possible optimum solutions. Figure 5 shows the values of penalty factors (Ai) with the 

corresponding penalty function value (Ci) over the evaluation process for both 

scenarios. This Figure illustrates how Ai’s values dynamically changed with the 

corresponding penalty function value (Ci) when Ci ≥ 1.0. However, the riverbed 

changes penalty factor A4 remains at minimum value (A4 = 1.0) in both scenarios, since 

its penalty value C4 is greater than one over the entire evaluation process. The riverbed 

changes, which includes aggregation and degradation, are mainly effected by water 

flow velocity and riverbed sediment grain size. The flow velocity is directly proportion 

with reservoir releases, hence inconsistent releases may cause changes in riverbed 

morphology, depending on bed sediment grain sizes. Here, because of lack data, the 
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adopted riverbed changes mathematical model was simplified by averaging river bed 

width, and assuming water energy gradient equal to the river bed slop. Therefore, detail 

cross sections, bed sediment grain size, and other parameters are required to improve 

the control of river morphology changes.   

 

 

Figure 5. AAC approach for environmental constraints factors (Ai) and their 

corresponding penalty function values (Ci) over the evaluation process for the 

secondary priorities objectives for Himren dam operation policy. The magnified 

graphs show the region when Ci = 0. 

 

4.3 Reservoir Operation Strategy 

Although the decision of adopting any optimum solution depends on the decision 

makers’ decision, we will propose a solution emerged from the best achievement of 

each objective, which could be beneficial for the decision makers to consider.  The 

corresponding reservoir releases for optimum solutions are presented in Figure 6, (a) 

and (b) for both scenarios respectively. It clearly that these results are consistent, hence 

an average values for reservoir releases was generated, as shown in Figure 6 (c) and 
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(d) for both scenarios, respectively. The details of other corresponding variables of the 

system like: reservoir storage, surface area, hydropower generation, etc., for both 

scenarios were presented in section 9 in the supplementary data.   

 

Figure 6. Optimum individual and average reservoir releases achieved by optimization 

model for the two scenarios. Where (a) and (b) are the releases achieved by each 

objective function optimum solution for scenario 1 and 2, respectively, while (c) and 

(d) represent the average releases for the nine objective functions optimum solutions.  

 

The summary of the outcomes is illustrated in Tables 3; from this data there 

emerges an optimum socio-environmental flows regime for long-term reservoir system 

management strategy that could be adopted by the decision makers. Furthermore, 

improvements were achieved in different sectors in the river basin (e.g. hydropower 

generation, crop production, water industry, etc.). The mean hydropower generated in 

scenario-1 was about 26 MW over three decades with standard deviation about 14 

MW, while in scenario-2, is about 21 MW and 12 MW, respectively. The mean 

agriculture water delivery for both scenarios were maintained between about 157 

MCM and 137 MCM, respectively. However, these values show deficit in water 
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delivery when compared with the actual design demands.  Hence, the government 

should adopt future policy to assess other alternatives to reduce the water deficit, such 

as reducing crop patterns, changing crops types, using groundwater, changing 

irrigation method (e.g. sprinkles, drips), developing water conveyance infrastructure, 

etc.  

 

Table 3. Summary results for the reservoir system parameters achieved using average 

optimum reservoir releases for the two adopted scenarios.  

Parameter 
 Min. Max. Mean Median Std. 

 Scenario-1 

Releases (MCM)* 

D
am

 s
y
st

em
 

98.97 1158.47 343.46 280.047 249.60 

Storage (MCM) 326.85 2276.07 1332.75 1348.664 394.69 

Surface area (km2) 72.58 309.496 204.08 207.795 47.78 

Water level (m.a.s.l) 93.08 104.662 100.00 100.237 2.13 

Hydropower (MW) 7.85 50.00 26.03 23.951 13.66 

River discharge (MCM) 

D
o
w

n
st

re
am

 r
iv

er
 s

y
st

em
 

30.87 1105.95 186.73 102.43 216.53 

TDS** before WWTP*** (mg/l) 540.31 2220.00 1243.36 1071.61 564.61 

TDS after WWTP (mg/l) 599.99 3589.43 1885.29 1705.26 912.91 

Initial riverbed level (m.a.s.l) 25.16 60.90 35.92 31.10 9.55 

Final riverbed level (m.a.s.l) 25.26 55.64 35.25 30.95 8.33 

TDS in Tigris River (mg/l) 520.39 612.89 565.87 563.16 21.31 

Original farms water demands (MCM) 30.46 313.34 191.00 200.13 87.45 

Achieved farms water delivery (MCM) 30.46 313.34 156.73 138.56 88.08 

  Scenario-2 

Releases (MCM) 

D
am

 s
y
st

em
 

98.69 1153.73 254.21 186.59 195.47 

Storage (MCM) 365.97 2327.52 1354.36 1371.04 431.26 

Surface area (km2) 78.29 314.67 206.33 210.46 51.88 

Water level (m.a.s.l) 93.56 104.95 100.09 100.35 2.307 

Hydropower (MW) 7.82 50.00 20.63 16.48 12.44 

River discharge (MCM) 

D
o

w
n

st
re

am
 r

iv
er

 s
y
st

em
 

30.86 1012.03 116.96 55.94 158.05 

TDS before WWTP (mg/l) 544.05 2220.00 1474.89 1528.18 550.77 

TDS after WWTP (mg/l) 609.13 3585.63 2263.96 2420.52 868.08 

Initial riverbed level (m.a.s.l) 25.16 60.90 35.92 31.10 9.55 

Final riverbed level (m.a.s.l) 25.25 57.25 35.36 31.42 8.46 

TDS in Tigris River (mg/l) 529.31 612.99 573.27 575.45 20.30 

Original farms water demands (MCM) 30.46 313.34 191.00 200.13 87.45 

Achieved farms water delivery (MCM) 30.46 313.34 137.26 130.01 81.29 

* is refer to million cubic meters per month. 

** is refer to Total Dissolved Solids 

*** is refer to wastewater treatment plant 
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Furthermore, the reservoir storage was also maintained with its limits with a 

mean value about 1.3×109 m3/month for both scenarios.  This provides suitable space 

when compared with the normal storage of 2.4×109 m3/month, to absorb flood waves 

and reduce the possible flood risk impact on the community downstream the river. 

However, future government led policies should also consider flood alarm systems for 

advance flood control. Additionally, reservoir seepage losess and advanced data 

collection systems should be included in their policy for comprehensive water 

resources management. 

With consistency, the proposed operation policy for the Diyala barrage 

maintains a minimum discharge about 30.8 MCM in both scenarios, which is 

equivalent to about 12 m3/s; this is more than the minimum river discharge of 10 m3/s. 

Also, the model predicts maintenance of the mean and median changes in river 

morphology less than one meter in both scenarios over the entire period, which 

mitigates the impact of load sediment transport on downstream projects. Sediment 

movement impacts navigation, water supply projects, and for river hydraulic 

infrastructures in the downstream, which raise maintenance costs to overcome these 

problems.  

The impact of Diyala river environment improvement was also observed by 

maintaining Tigris water quality (TDS) less than 613 mg/l in both scenarios over the 

entire periods, predicted management would have a positive economic impact on the 

water supply projects, farming, and the industry in downstream cities and villages. 

However, river quality should be monitored in case of shortage in Tigris water 

resources to avoid any deterioration due to high TDS concentration in Diyala river 

discharges. 
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The model reliability was compared with the actual operating management 

criteria in which the median reservoir releases in scenario-2 show robust consistency, 

according to the (Alsaffar, 2017b).The proposed methodology in scenario-2 could be 

adopted to represent the impact of climate changes in other part of this region. 

Furthermore, the proposed approach succeeds to provide future prediction picture for 

the decision makers about the interaction between all considered features, including 

social and environmental objectives in the river basin. However, other inflows 

alternatives (scenarios), like out boarder upstream development projects impacts on 

downstream river basin system, could be implemented for further insight approach 

assessment. 

The study outcomes also illustrate how the system is sensitive to the reservoir 

inflows, which are affected generally by the releases from the upstream reservoir 

(Derbindikhan dam reservoir), out-border tributaries, and upstream direct runoff and 

water exploitation. Hence, the government should consider future policies to restrict 

unauthorized water use in upstream region. Also they should consider developing 

water sharing agreement with Iran to avoid future water crisis in the basin. Therefore, 

the river basin needs further future management development to involve the above 

mentioned features (and others) for fully river basin management, which is known as 

integrated water resources management (IWRM). Finally, this study’s novel approach 

implementation illustrates how environmental features could be improved when they 

are considered in the reservoir operation management, and how they will promote the 

potential economic benefits for the entire system.  

The current study presents an approach which its principle could be 

implemented for any reservoir operation problem (combining social with 
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environmental objectives using many-objective optimization algorithm). While the 

proposed mathematical optimization model is correlated with current case study and 

/or similar problems, and can be modified for other region in the world. 

However, the current model’s temporal (regional extension) and special scale 

(No. of decision variables) is correlated to the adopted case study, which can be 

extended for other problems for future works. 

 

5 CONCLUSIONS 

In this research a novel Optimum Social-Environmental Flows approach with 

Auto-Adaptive Constraints (OSEF-AAC) was developed to improve the river basin 

management strategy which combines all social and environmental objectives in the 

river basin. The research used a many-objectives evolutionary optimization algorithm 

to generate a trade-off to the decision makers. This approach was developed to fill the 

gap of combined environmental flow regimes in the reservoir operation strategy 

(Horne et al., 2016; Horne et al., 2017), and to overcome the complexity and 

computational challenges of such models (Maier et al., 2014).  

The OSEF-AAC was evaluated and assessed using a challenging case study in 

the Middle East. The Diyala river basin was modelled with nine social and 

environmental objectives using the state-of-the-art Borg MOEA and the new -DSEA 

optimization algorithms with 396 decision variables under two inflows scenarios to 

promote the operation strategy for Himren reservoir system. The algorithms 

computational analysis results show the -DSEA outperformed the Borg MOEA in 

almost all cases, hence the -DSEA results were adopted. Moreover, the AAC 

approach succeed to overcome the complexity of the problem, boosting algorithm 
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convergence toward possible optimum solutions and avoiding algorithm stagnation in 

local optima.   

The reservoir releases optimum trade-off emerged from the OSEF-AAC 

approach integrate all adopted social and environmental sectors in the river basin 

including hydropower generation, flood risk management, river quality, river sediment 

transport, reservoir storage control, agriculture water delivery, discharge regulation, 

and downstream water quality. More objectives could be embedded to the approach 

for comprehensive flows regime (e.g. fisheries, navigation and tourism). The decision 

makers can adjust the trade-offs and adopt those that fit their criteria. 

However, to fully develop the potential achievement of the OSEF-AAC 

approach, an average optimum solution was generated using optimum solution 

achieved by each objective. The results show improvement in reservoir system 

environments in all sectors, as follows: 

 Environmental Sectors: The Diyala river water quality (TDS) was improved after a 

pollutant source from about 2600 mg/l to about 2400 mg/l, which leads to improve 

the downstream water quality mean value of TDS from about 750 mg/l to 570 mg/l 

for both scenarios. This will decrease water remediation cost in downstream region. 

Additionally, the mean and median river morphology changes were maintained 

within one meters for both scenarios over the considered period. Hence, positive 

impacts on the maintenance cost for water supply and hydraulic structures in the 

river were achieved.  

 Social Sector: The power revenues were improved over continues hydropower 

generating for the next three decades under two scenarios. Future investment 

opportunities plans could be set from the mean values 26 MW and 21 MW obtained 
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for both scenarios, respectively. Moreover, the storage control objectives were 

succeeded to preserve free mean reservoir storage about 1.0×109 m3 for flood wave 

absorption, which mitigate the possible flood risk and reduce the cost of inundated 

indemnity for lands and properties. For crop production, the mean and median 

agriculture water deficit for both scenarios were maintained within the range of 18-

28% and 30-35%, respectively, which robust crop investment revenues.  

The adopted mathematical optimization model for the current case study 

considers only the common management objectives based on the available database. 

However, other issues like; water influent and affluent of Reservoir Lake, ecosystem 

and navigation objectives, etc. could be implemented for future works.     

Finally, the OSEF-AAC approach can be adopted to solve any river basin 

management problems to generate optimum socio-environmental flows regime. These 

provide decision makers a trade-off for developing robust management strategy 

towards achieving better economic revenues for the water-energy-food nexus 

objectives of a river basin. 

Recommendations for the decision makers to improve the lower Diyala river basin 

environment are presented in section 10 in the supplementary data. 
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7.3 Supplementary Data 

1. Reservoir Description  

The Himren dam system features in the Diyala river basin in Iraq were 

presented in the following paragraphs. Table A1 present the characteristics of the dam 

structure and its physical boundary limitations.  While Table A2 illustrate average 

monthly meteorological data, precipitation, evaporation, river losses, and irrigation 

projects demands for the dam system 

Table A1. Characteristics of Himren dam system 

Item Value Unit 

Height 40 m 

Length at crest 3360 m 

Crest width at elevation 109.5 m.a.s.l 8 m 

Normal operation elevation 104 m.a.s.l 

Reservoir storage capacity at normal operation 2.4×109 m3 

Area of reservoir at normal operation 340 Km2 

Minimum dead storage level 84.1 m.a.s.l 

Reservoir dead storage capacity 20×106 m3 

Max flood elevation 107.5 m.a.s.l 

Reservoir flood storage capacity 3.56×109 m3 

Area of reservoir at flood elevation 450 Km2 

Minimum hydropower level 89 m.a.s.l 

 

The spillway structure consists of five gates, each 10.6×12.5m with a 

maximum capacity discharge for each gate is 1360 m3/s at flood elevation 107.5 

m.a.s.l. There are two main flow tunnels in the dam, each 6.6 m in diameter. Each 

tunnel divides into three smaller tunnels, one is 5.0 m in diameter which connects to 

the hydroelectric power station and the other two tunnels are of diameter 3.0 m and 

connect to the irrigation outlet. There are two generator units in the hydroelectric 
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power station with capacity of 25 MW for each.  

The Diyala Barrage is a flow control dam located on the Diyala River 90 km northeast 

of Baghdad city and about 10 km downstream of the Himren dam. The main purpose 

of the barrage is to divert the outflow on the Diyala River to the Khalis and Sadr Al-

Mushtarak canals for irrigation. The length of the barrage is about 400 m and it has 23 

gates, each 12m×2m. The design discharge is 1200 m3/s, while the operation discharge 

is 25 m3/s.  

 

Table A2. Average monthly meteorological data and water demands in the dam region 

(SGI et al. 2014; Alsaffar, 2017a) 

 

Tmin 

(Co) 

Tmax
 

(Co) 

Tmean 

(Co) 

P1  

(mm) 

E2 

(mm) 

River losses3 

(%) 

ID4 

(m3×106) 

October 18 34 27 13 166 10 193.54 

November 11 24 18 42 86 5 130.45 

December 6 18 12 48 51 0 30.46 

January 5 16 10 56 49 0 49.39 

February 6 18 12 45 70 5 138.56 

March 10 22 16 50 123 20 232.00 

April 15 29 23 29 185 30 297.82 

May 21 37 30 5 272 35 206.71 

June 25 42 35 0 328 50 276.76 

July 27 45 37 0 363 50 313.34 

August 27 45 36 0 336 35 250.33 

September 22 40 33 0 238 20 172.69 
1 precipitation , 2 Evaporation from reservoir lake, 3 the losses between upstream 

and downstream of the river in the investigated area, 4 Irrigation water demands  

 

 

2. Identification of River Basin Challenges and Current Management Strategy 

According to the IPCC (IPCC, 2007) Iraq has an arid environment with less 

than 150mm annual rainfall. Iraq has two main rivers, Tigris and Euphrates, which 

originate from Turkey and Iran in the north and flow south east to the Arab Gulf. 

Hence, its sustainability depends mainly on upstream water resources. Originating in 
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Iran, the Diyala River is one of the main tributaries of the Tigris River. It is over 445 

km long, draining an area about 32,600 km2, of which 46% is inside Iraq and 54% in 

Iran (Soyuzgiprovodkhoz, 1982).The current challenges include: 

1- Climate changes impact: the mean temperature may increase approximately 3 

degrees Celsius and the annual rainfall may deplete by 21% for the next half-

century (Abbas et al., 2016; Lelieveld et al., 2016) 

2- Political impact: Iran built four dams on the river’s source streams and a big water 

conveyance tunnel under construction, was observed by Abdulrahman, (2017); 

Al-Faraj and Scholz, (2014) which divert water from catchment area. 

3- Pollutant impact: the impact of Al-Rustamiya wastewater treatment plant 

discharges (470,000 m3/day, with 5000 mg/l of TDS) to the Diyala river, observed 

by many studies (Kubba et al., 2014; Aenab and Singh, 2014; Evan et al., 2012; 

WCC, 2006; CEB, 2011). This plant is located just before river confluence with 

the Tigris River, in the south of Baghdad city which has large density of 

population approaching seven million people, and this is one of the primary 

treatment works for the city.  

4- Leaching drains impact: two leaching drains from agriculture projects are 

discharging to the Diyala river, which increases the deterioration of the river 

environment (Soyuzgiprovodkhoz, 1982; SGI et al., 2014).  

5- Water allocation losses impact: the use and impacts of traditional irrigation 

techniques by large agriculture projects in the downstream basin were observed 

by SGI et al., (2014), Al-Ansari, (2013), and Al-Ansari et al., (2014).  
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6- Future development plan impact: additional quantities of water will be needed for 

a number of planned, but undeveloped, agriculture projects the government 

intended for future investment in the basin (SGI et al., 2014).  

Currently, releases from the dam system are drained through power penstocks 

to generate electric power. In flood events, all dam outlets including power, spillway 

and bottom outlets would be opened to drain excess water to avoid hazard damages to 

the dam structure. However, in the arid environments, the flashing flood wave usually 

last a matter of hours or a maximum few days and its effects dissipated when 

considering average monthly inflows dataset. Hence, any spillway operation was not 

considered in this study’s model. The Diyala Barrage’s current operational policy 

focuses on delivering water to the irrigation projects rather than enhancing river 

environment, and is included.  

In water resources decision making, the scarcity of domestic demands is a 

priority, while other requirements like agriculture and hydropower generating will 

often be reduced or masked. Hence, this aspect of river basin management needs more 

attention from the decision makers (the Government of Iraq) to improve its 

environmental and economic benefits by employing innovate strategies.  
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3. Himren Dam Objectives Functions 

 

Figure A1. Himren dam physical model shows all the feature of the problem and the 

nine objective functions adopted in the model 

 

4. Area-Storage and Head-Storage Relationships of Himren Dam 

Polynomial equations (Equation A4 and A5) for the area-storage and head-

storage relation were constructed depending on the design data available in the 

NCWRM. For Himren dam, the evaporation losses from the reservoir surface area at 

time t (𝐴𝑟𝑡
𝐻) in meter square, which can be expressed as follows, where the storage 

(𝑆𝑡
𝐻) in million cubic meters (MCM): 

𝐴𝑟𝑡
𝐻 = 2.3 × 107 + 156915.48 × 𝑆𝑡

𝐻 − 16.369 × (𝑆𝑡
𝐻)2

+ 0.0012 × (𝑆𝑡
𝐻)3 

 (A1) 
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Equation A2 is used to calculate the water head in the reservoir for hydropower 

generation, where (𝐻𝑡
𝐻) is Himren water level in meters (m) and (𝑆𝑡) is reservoir 

storage in MCM:  

𝐻𝑡
𝐻 = 86.51 + 0.031 × 𝑆𝑡

𝐻 − 4.3710−5 × (𝑆𝑡
𝐻)2 + 4.3310−8 × (𝑆𝑡

𝐻)3

−  2.5510−11 × (𝑆𝑡
𝐻)4 + 8.6310−15 × (𝑆𝑡

𝐻)5

− 1.5410−18 × (𝑆𝑡
𝐻)6 + 1.1310−22 × (𝑆𝑡

𝐻)7 

(A2) 

 

Equations A1 and A2 is valid at 𝑆𝑚𝑖𝑛
𝐻 ≤ 𝑆𝑡

𝐻 ≤ 𝑆𝑚𝑎𝑥
𝐻  

 

5. Promotion of Diyala Barrage Operation Policy  

In order to enhance the river environment, a new operating policy was 

proposed for Diyala barrage. It provides priority to the river rather than irrigation 

projects. When the reservoir releases (𝑅𝑡) is less than the half of the total demands 

(𝑅𝑡 < 0.5 × 𝐷𝐷𝑡), which include the irrigation demands (𝐼𝐷𝑡) and water supply 

demands (𝑄𝑚𝑖𝑛
𝑟 ), the releases from the barrage will be  

𝑄𝑡
𝑟 = 𝑄𝑚𝑖𝑛

𝑟 + (5% × 𝑅𝑡)  (A3) 

For example, if the release from the reservoir is 100 m3/sec, and the total 

demands was 250 m3/sec, then the river discharge will equal to 10+(0.05100) = 15 

m3/sec, and the remaining discharge (85 m3/sec) will delivered to the irrigation 

projects. In this case when the reservoir releases are between the half and total demands 

(0.5 × 𝐷𝐷𝑡 ≤ 𝑅𝑡 ≤ 𝐷𝐷𝑡), the river discharge will be as follows, and the remaining 

will delivered to the irrigation projects 

𝑄𝑡
𝑟 = 𝑄𝑚𝑖𝑛

𝑟 + (10% × 𝑅𝑡)  (A4) 

 

Otherwise (𝑅𝑡 > 𝐷𝐷𝑡), the river discharge will be 
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𝑄𝑡
𝑟 = {

𝑅𝑡 − 𝐼𝐷𝑡      𝑖𝑓 𝑅𝑡 − 𝐼𝐷𝑡 > 𝑄𝑚𝑖𝑛
𝑟 + (10% × 𝑅𝑡)

𝑄𝑚𝑖𝑛
𝑟 + (10% × 𝑅𝑡)                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  (A5) 

 

 

6. Reservoir System Predicted Future Resources  

A historical thirty-three year dataset from 1981 to 2013, provided by the Iraqi 

Ministry of Water Resources/National Centre for Water Resources Management 

(NCWRM) (Alsaffar, 2017a), was used to model reservoir inflows. These data were 

smoothed using Fast Fourier Transformation (FFT) to reduce any potential errors 

observed by NCWRM (Alsaffar, 2017a) such as reservoir seepage losses, 

unauthorized direct pumping from reservoir lake, recharges from neighbouring farms 

located on reservoir boundaries, etc., and smoothing out any flooding waves which 

directly affects the average monthly records. Figure A2a illustrates four smoothing 

options in which the 6-points cycle smoothing showing consistent behaviour with the 

original data, hence it is adopted for the model. The same smoothing option was also 

adopted for the Tigris river historical discharge (Alsaffar, 2017a).  
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Figure A2. Himren reservoir inflows smoothing and scenarios, where (a) shows the 

smoothing options using Fast Fourier Transformation (FFT) for thirty-three years 

(1981-2013), and (b) shows the model scenarios for Himren dam and Tigris river for 

future projection for thirty-three years  

 

Figure A2a also illustrates two hydrological periods, wet and dry. The wet 

period is from 1981 to 2000, and the dry is from 2000 to 2013 (from 0 to 240 and from 

241 to 396 in Figure 4a, respectively). Hence the first scenario (scenario-1) is the 

projection of these cycles for the next thirty-three years to investigate the model 

performance and reliability. A second scenario (scenario-2) was adopted to adapt with 

possible future climate changes in the region (Abbas et al., 2016) by swapping the first 

eleven wet years by dry years. The same methodology was adopted for the Tigris river 

discharge. Figure A2b shows the two proposed model scenarios (Alsaffar, 2017; 

Zhang et al., 2017).  
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7. Reservoir System Constraints Formulae 

The following equations are the details of the penalty functions (𝑔𝑗) for the (jth) 

model constraints for Himren dam system: 

𝑔1 = ∑ 𝑀𝑎𝑥[0, (𝑆𝑡 − 𝑆𝑚𝑖𝑛)]

𝑇

𝑡=1

  (A6) 

 

𝑔2 = ∑ 𝑀𝑎𝑥[0, (𝑆𝑚𝑎𝑥 − 𝑆𝑡)]

𝑇

𝑡=1

  (A7) 

 

𝑔3 = ∑ 𝑀𝑎𝑥[0, 𝜇1(𝑆𝑡)]

𝑇

𝑡=1

  (A8) 

 

𝜇1(𝑆𝑡) = {

0

0.5 × (1 − 𝑐𝑜𝑠 (
(𝑆𝑡 − 𝑆𝑚𝑖𝑛𝑝)

(0.9 × 𝑆𝑇+1 − 𝑆𝑚𝑖𝑛𝑝)
)

1.0

|

𝑆𝑡 ≥ 0.9 × 𝑆𝑇+1

𝑆𝑚𝑖𝑛𝑝 < 𝑆𝑡 < 0.9 × 𝑆𝑇+1

𝑆𝑡 < 𝑆𝑚𝑖𝑛𝑝

} (A9) 

 

𝑔4 = ∑ {𝑀𝑎𝑥[0, 1]|
𝑃𝑤𝑡 < 𝑃𝑤𝑚𝑖𝑛

𝑃𝑤𝑡 > 𝑃𝑤𝑚𝑎𝑥
}

𝑇

𝑡=1

  (A10) 

 

𝑔5 = ∑ 𝑀𝑎𝑥[0, (𝑄𝑡
𝑡𝑢 − 𝑄𝑚𝑖𝑛

𝑡𝑢 )]

𝑇

𝑡=1

  (A11) 

 

𝑔6 = ∑ 𝑀𝑎𝑥[0, (𝑄𝑚𝑎𝑥
𝑡𝑢 − 𝑄𝑡

𝑡𝑢)]

𝑇

𝑡=1

  (A12) 

 

𝑔7 = ∑ 𝑀𝑎𝑥[0, (𝑅𝑡 − 𝑅𝑚𝑖𝑛)]

𝑇

𝑡=1

  (A13) 

 

𝑔8 = ∑ 𝑀𝑎𝑥[0, (𝑅𝑚𝑎𝑥 − 𝑅𝑡)]

𝑇

𝑡=1

  (A14) 

 

𝑔9 = ∑ 𝑀𝑎𝑥[0, (𝑄𝑡
𝑟 − 𝑄𝑚𝑖𝑛

𝑟 )]

𝑇

𝑡=1

  (A15) 
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𝑔10 = ∑ 𝑀𝑎𝑥[0, (𝑄𝑚𝑎𝑥
𝑟 − 𝑄𝑡

𝑟)]

𝑇

𝑡=1

  (A16) 

 

𝑔11 = ∑ 𝑀𝑎𝑥[0, 𝜇2(𝑇𝐷𝑆𝑡
𝑅)]

𝑇

𝑡=1

  (A17) 

 

𝜇2(𝑇𝐷𝑆𝑡
𝑅) = {

0

0.5 × (1 − 𝑐𝑜𝑠 (
(𝑇𝐷𝑆𝑡

𝑟3 − 𝑇𝐷𝑆𝑚𝑎𝑥1)
(𝑇𝐷𝑆𝑚𝑎𝑥2 − 𝑇𝐷𝑆𝑚𝑎𝑥1)

)

1.0

|

𝑇𝐷𝑆𝑡
𝑅 ≤ 𝑇𝐷𝑆𝑚𝑎𝑥1

𝑇𝐷𝑆𝑚𝑎𝑥1 < 𝑇𝐷𝑆𝑡
𝑅 < 𝑇𝐷𝑆𝑚𝑎𝑥2

𝑇𝐷𝑆𝑡
𝑅 ≥ 𝑇𝐷𝑆𝑚𝑎𝑥2

} (A18) 

 

𝑔12 = ∑ 𝑀𝑎𝑥[0, 𝜇3(∆𝐵𝐿𝑖)]

𝑇

𝑡=1

  (A19) 

 

𝜇3(∆𝐵𝐿𝑖)

= {

0

0.5 × (1 − 𝑐𝑜𝑠 (
(∆𝐵𝐿𝑖 − 𝐵𝐿𝑚𝑎𝑥1)

(𝐵𝐿𝑚𝑎𝑥2 − 𝐵𝐿𝑚𝑎𝑥1)
)

1.0

|

∆𝐵𝐿𝑖 ≤ 𝐵𝐿𝑚𝑎𝑥1

𝐵𝐿𝑚𝑎𝑥1 < ∆𝐵𝐿𝑖 < 𝐵𝐿𝑚𝑎𝑥2

∆𝐵𝐿𝑖 ≥ 𝐵𝐿𝑚𝑎𝑥2

} 
(A20) 

 

∆𝐵𝐿𝑖 = |𝐵𝐿𝑖,𝑡=1 − 𝐵𝐿𝑖,𝑡=𝑇|  (A21) 

 

 

8. Optimization Parameters and Comparative Results 

Table A3 illustrates the algorithm parameters used to solve the many-objective 

problem. The -DSEA algorithm has an auto-adapt parameter mechanism, through 

which the operators parameters tuned dynamically to adapt with performance of the 

operator that generates dominance solutions. Hence, the operators’ parameter is tuned 

over the evaluation process. More details about Borg MOEA and -DSEA algorithms 

could be found in (Hadka and Reed, 2013) and (Al-Jawad et al., 2018b), respectively.   
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Table A3. Parameter values used in the optimisation algorithms 

Parameters Borg -DSEAa Parameters Borg -DSEA 

Initial population size 100 100 SPX parents 10 3 

Tournament selection 

size 

2 2 SPX offspring 2 2 

SBX crossover rate 1.0 1.0 SPX expansion rate λ 3 [2.5, 3.5]  

SBX distribution 

index  

15.0  [0, 100] UNDX parents 10 10 

DE crossover rate CR 0.1 [0.1, 1.0]  UNDX offspring 2 2 

DE step size F 0.5 [0.5, 1.0]  UNDX  0.5  [0.4, 0.6]  

PCX parents 10 10 UNDX  0.35/√𝐿 [0.1, 

0.35]/√𝐿  

PCX offspring 2 2 UM mutation rate 1/L 1/L 

PCX 
 0.1 [0.1, 0.3] PM mutation rate 1/L 1/L 

PCX 
 0.1 [0.1, 0.3] PM distribution index m 20 20 

L is the number of decision variables. The permissible range for dynamic parameters 

is shown in brackets. The parameters  and  are defined in Section 2.1.5. aThe 

initial values of dynamic parameters used in -DSEA are as shown for Borg MOEA.   

 

Table A4 illustrates the summary of the results for 20 random-seeding 

optimization runs for both algorithms and for both scenarios. It can be seen that the -

DSEA outperforms Borg MOEA in almost all results for Scenario-1 and Scenario-2. 

Hence, its results were adopted for the river basin management.  
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Table A4. Results summary for Scenario-1 and Scenario-2 for 20 optimization runs. 

The best achievements are shaded with grey 

 Scenario-1 

 Borg MOEA  -DSEA 

 Best Mean Median Std Best Mean Median Std 

minfdemandsH 31.483 45.532 43.555 13.723 30.799 38.779 32.446 16.362 

maxfdemandsH 35.028 48.205 46.198 13.131 33.305 41.740 35.382 16.137 

minfwinterH 39.237 59.837 62.126 16.956 38.996 48.065 41.455 16.783 

maxfwinterH 74.582 87.206 85.561 9.811 71.422 82.576 77.842 13.989 

minfsummerH 37.779 55.811 55.415 15.181 31.467 44.755 39.302 15.138 

maxfsummerH 75.787 87.217 85.098 8.184 74.230 83.614 81.602 10.389 

minfpowerH 125.131 146.963 143.848 20.257 127.656 139.384 130.290 22.529 

maxfpowerH 138.206 157.092 154.250 17.092 140.850 153.159 144.683 21.148 

minfriverB 14.433 23.786 20.156 10.558 14.424 19.873 15.221 11.432 

maxfriverB 15.881 24.850 21.375 10.329 15.863 21.299 16.784 11.539 

minfTDS-DY 77.339 94.193 91.999 14.506 78.840 87.517 80.841 15.654 

maxfTDS-DY 82.034 97.840 94.596 13.457 82.740 92.507 86.808 14.829 

minfTDS-TR 139.827 147.364 143.712 9.722 139.781 143.919 140.024 10.095 

maxfTDS-TR 140.668 148.008 144.583 9.629 140.561 144.808 140.858 10.308 

minfDY-BCH 35.883 46.806 44.042 11.497 35.730 41.640 36.756 12.502 

maxfDY-BCH 40.058 49.948 47.518 10.861 39.419 45.493 40.782 12.314 

minfMD 12.823 20.521 16.934 9.806 12.747 16.970 13.019 10.239 

maxfMD 13.812 21.245 17.889 9.696 13.608 17.934 13.905 10.441 

 Scenario-2 

minfdemandsH 35.883 63.251 69.580 24.169 34.427 42.533 35.712 28.531 

maxfdemandsH 40.202 66.526 72.369 23.345 38.557 46.855 40.594 27.836 

minfwinterH 37.596 69.865 77.860 26.836 34.571 45.621 38.851 28.756 

maxfwinterH 70.836 95.529 93.795 21.432 65.572 78.562 74.404 23.762 

minfsummerH 32.222 60.365 65.644 22.458 31.173 40.292 33.581 25.883 

maxfsummerH 68.834 89.888 91.707 15.502 68.696 78.652 73.888 19.724 

minfpowerH 161.468 194.588 202.797 29.139 163.025 173.334 165.069 35.040 

maxfpowerH 174.369 204.068 210.633 27.399 174.001 185.377 178.131 33.059 

minfriverB 6.517 27.512 31.036 19.765 6.481 12.217 7.034 22.822 

maxfriverB 8.226 29.155 32.747 19.549 8.036 14.062 9.002 22.731 

minfTDS-DY 94.843 120.500 126.509 22.155 94.688 103.030 97.155 26.189 

maxfTDS-DY 99.422 123.679 129.047 21.350 98.643 107.835 102.250 25.378 

minfTDS-TR 135.976 155.721 158.387 18.986 135.732 140.843 135.954 21.657 

maxfTDS-TR 137.157 157.026 159.932 18.945 136.963 142.154 137.246 21.637 

minfDY-BCH 14.929 36.614 40.731 20.245 14.500 20.254 14.885 23.309 

maxfDY-BCH 18.062 39.423 43.187 19.802 17.392 23.374 18.187 22.993 

minfMD 5.712 25.651 28.443 19.125 5.437 10.586 5.658 21.809 

maxfMD 7.028 27.049 30.030 19.046 6.763 12.006 7.054 21.773 
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Table A5 presents the computational summary (CPU time) of the results for 

both algorithms and for both scenarios used to solve the optimization problem. -

DSEA is clearly superior Borg MOEA in almost all cases.  

Table A5. The summary of computational results of Scenario-1 and Scenario-2 for 

both algorithms using 20 runs. All results are in minutes and the best achievement are 

shaded with grey 

 Scenario-1 Scenario-2 

 Borg MOEA -DSEA Borg MOEA -DSEA 

Min. 39.88 40.37 46.00 31.51 

Max. 85.16 57.61 87.98 124.01 

Mean 55.65 47.91 59.25 45.50 

Median 54.15 46.62 57.05 42.45 

Std.  11.24 5.70 9.75 19.76 

 

The above results shows that -DSEA has better diversity and faster 

convergence than Borg MOEA, which refer to the stability and reliability of the 

algorithm to generate optimum solutions in fewer random seeding runs. Hence, -

DSEA is computationally more economic than Borg MOEA.    
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9. Reservoir Optimization Model 

Figures A3 and A4 illustrate the results from the average optimum reservoir 

releases utilization for both scenarios. It shows the impact of dry weather on the river 

basin model, which represented by Scenario-2. On the other hand, the sensitivity of 

system component was observed toward any changing in the system inflows. 

 

 

Figure A3. Reservoir system features achieved for Scenario-1 using the average 

optimum reservoir releases. 
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Figure A4. Reservoir system features achieved for Scenario-2 using the average 

optimum reservoir releases. 
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10. Recommendations 

In order to improve the lower Diyala river basin environment, the following 

suggested policy changes should be considered for different sectors: 

 Environmental Sectors: A monitoring and mitigation strategies must be developed 

to solve the high pollutant concentration from Al-Rustumiya wastewater treatment 

plan outflows, which increases both pollutant level in Diyala and Tigris Rivers 

water and remediation costs to downstream water supply projects. Moreover, detail 

hydrological study and field survey are needed to explore and control sediment 

transport in the river. 

 Social Sector: Adopt developed irrigation techniques (e.g. sprinkles, drips) to 

reduce losses due to crop water allocations, evaporation and infiltration. Also, 

change summer crop types or reduce crop pattern to reduce water exploitation in 

summer for this part of the river basin. Further, rehabilitate water conveyance 

infrastructure (e.g. main channels, outlets, gates, etc.) and restrict water exploitation 

in the middle part of the river basin (upstream region of Himren dam) to mitigate 

water delivery losses and to robust water resource sustainability for the lower part 

of the basin. Other actions include to remove any unauthorized water exploitation 

pumps and develop a comprehensive seepage model from the Himren reservoir to 

improve accuracy of the actual water budget. 

  Additional to above, a policy for adopting advanced daily monitoring system 

for data collections and flood alarm system should be consider to improve water 

resources management and forecasts in the basin. 

 However, the middle part of the basin has significant effect on the considered 

reservoir system, which includes a multipurpose dam and potential groundwater 
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storage.  These could be integrated with the river basin model management by using 

integrated water resources management principles to improve understanding of the 

system. Finally, an International agreement with Iran should be sought for the Diyala 

River and its tributaries to maintain the long-term sustainability of river water 

resources. 
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7.4 Further Discussion 
 

The parameters of recombination operators adopted by -DSEA for the two scenarios 

were consistent for all operators, in comparison with its initial values, except for the 

SBX operator. The average and median values are presented in Table 3. The optimum 

solutions were generated using  > 70 in both scenarios, which is higher than its 

commonly used value ( = 15). The larger value of  generate new offspring closer to 

their parents, and the smaller   is vice versa. Since the SBX operator is widely used 

in many evolutionary algorithms like: AMALGAM, IBEA, -MOEA, -NSGA-II, 

SPEA2, and NSGA-II, the current outcomes will be very beneficial in implementation 

of these algorithms to solve consistent real-world problems. 

In the previous chapter, we notice how -DSEA adapted with different values 

of  in solving groundwater management problem, which ranged from 65 to 88 (in 

addition to other operators’ parameters), hence the robustness of the proposed 

methodologies in -DSEA to adapt with different problem environment is endorsed. 

Table 4. The mean and median parameters’ values of recombination operators adopted 

by -DSEA for both scenarios 

Operator Parameter 
Initial 

value 

Scenario-1 Scenario-2 

Mean Median Mean Median 

SBX  15.0 79.893 79.000 71.606 75.000 

DE CR 0.1 0.291 0.107 0.308 0.105 

 F 0.5 0.633 0.554 0.640 0.553 

PCX 𝜎𝜂, 𝜎𝜁 0.1 0.149 0.123 0.154 0.122 

SPX  3.0 2.797 2.611 2.799 2.625 

UNDX 𝜎𝜁 0.5 0.461 0.417 0.455 0.415 

 𝜎𝜂 0.35 0.202 0.128 0.192 0.126 
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7.5 Conclusions 

Improvement to reservoir operation strategy was presented in this chapter 

using optimization model. The competitive algorithms, -DSEA and Borg MOEA 

were implemented to explore trade-off solutions using nine socio-environmental 

objectives for the next thirty-three years under two inflows scenarios. The algorithms’ 

computational analyses show that -DSEA outperformed the Borg MOEA in almost 

all cases, hence the -DSEA results were adopted. Moreover, the AAC approach 

succeed to overcome the complexity of the problem, boosting algorithm convergence 

toward possible optimum solutions and avoiding algorithm stagnation in local optima.   

The optimum trade-off for reservoir releases emerged from the OSEF-AAC 

approach, integrate all adopted social and environmental sectors in the river basin 

including hydropower generation, flood risk management, river quality, river sediment 

transport, reservoir storage control, agriculture water delivery, discharge regulation, 

and downstream water quality. More objectives could be embedded to the approach 

for comprehensive flows regime (e.g., fisheries, navigation and tourism). Decision 

makers can adjust the trade-offs and adopt those that fit their criteria. However, to fully 

develop the potential achievement of the OSEF-AAC approach, an average optimum 

solution was generated using optimum solution achieved by each objective. The results 

show improvement in reservoir system environments in all sectors, as follows: 

 Environmental Sectors: The Diyala river water quality (TDS) was improved after a 

pollutant source from about 2600 mg/l to about 2400 mg/l, which improves the 

downstream water quality mean value of TDS from about 750 mg/l to 570 mg/l for 

both scenarios. This will decrease water-remediation costs in downstream region. 

Additionally, the mean and median river morphology changes were maintained 
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within one meter for both scenarios over the considered period. Hence, positive 

impacts on the maintenance cost for water supply and hydraulic structures in the 

river were achieved.  

 Social Sector: The power revenues were improved over continues hydropower 

generating for the next three decades under two scenarios. Future investment plans 

could be set from the mean values 26 MW and 21 MW obtained for both scenarios, 

respectively. Moreover, the storage control objectives were succeeded to preserve 

free mean reservoir storage about 1.0×109 m3 for flood wave absorption, which 

mitigate the possible flood risk and reduce the cost of inundated indemnity for lands 

and properties. For crop production, the mean and median agriculture water deficit 

for both scenarios were maintained within the range of 18-28% and 30-35%, 

respectively, which strengthen crop-investment revenues.  

The adopted mathematical optimization model for the current case study 

considers only the common management objectives based on the available database. 

However, other issues like water influent and effluent of reservoir lake, ecosystem and 

navigation objectives, etc. could be implemented for future work.     

Finally, the OSEF-AAC approach can be adopted to solve any river basin 

management problems to generate optimum socio-environmental flows regime. These 

provide decision makers a trade-off for developing robust management strategies 

towards achieving better economic revenues for the water-energy-food nexus 

objectives of a river basin. 
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7.6 Recommendations 

In order to improve the lower Diyala river basin environment, the following 

suggested policy changes should be considered for different sectors: 

 Environmental Sectors: A monitoring and mitigation strategies must be developed 

to solve the high pollutant concentration from Al-Rustumiya wastewater treatment 

plan outflows, which increases both pollutant level in Diyala and Tigris Rivers 

water and remediation costs to downstream water supply projects. Moreover, detail 

hydrological study and field survey are needed to explore and control sediment 

transport in the river. 

 Social Sector: Adopt developed irrigation techniques (e.g. sprinkles, drips) to 

reduce losses due to crop water allocations, evaporation and infiltration. Also, 

change summer crop types or reduce crop pattern to reduce water exploitation in 

summer for this part of the river basin. Further, rehabilitate water conveyance 

infrastructure (e.g. main channels, outlets, gates, etc.) and restrict water exploitation 

in the middle part of the river basin (upstream region of Himren dam) to mitigate 

water delivery losses and to robust water resource sustainability for the lower part 

of the basin. Other actions include to remove any unauthorized water exploitation 

pumps and develop a comprehensive seepage model from the Himren reservoir to 

improve accuracy of the actual water budget. 

  Additional to above, a policy for adopting advanced daily monitoring system 

for data collections and flood alarm system should be considered to improve water 

resources management and forecasts in the basin. However, the middle part of the 

basin has significant effect on the considered reservoir system, which includes a 

multipurpose dam and potential groundwater storage.  These could be integrated with 
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the river basin model management by using integrated water resources management 

principles to improve understanding of the system. Finally, an International agreement 

with Iran should be sought for the Diyala River and its tributaries to maintain the long-

term sustainability of river water resources. 
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CHAPTER EIGHT 
 

COMPREHENSIVE 

INTEGRATED WATER 

RESOURCES MANAGEMENT 

APPROACH 
 

 

8.1 Introduction 

Starting from Chapter four, the preceding chapters demonstrate fragment 

management models of Diyala River basin; Derbendikhan dam, middle region, and 

Himren dam. Although independent models’ results are promising, they do not reflect 

the reality of the river basin’s natural interaction. Thus, they will not extract the actual 

potential economic benefits and revenues of the entire river basin. Furthermore, the 

interaction nexuses that joining river basin system variables are difficult to formulate, 

since they are non-linear, dynamic and multimodal; in fact, they are complex multi-

variable multi-objective problems (Maier et al., 2014).  

As highlighted in Chapter two, section 2.2.2, in order to avoid system 

complexity, literature tend to join independent models’ results by decision support 

tools for decision making, as in System Dynamics Models (SDMs), while others used 

multi-criteria analysis tools.  
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In the same context, although multi-system reservoirs management were 

achieved in many literature to improve specific targets, like maximizing power 

generation as noted in Table 1 in chapter seven, these models masked other targets in 

the river basin, as highlighted in bullet point 2 in Chapter two. 

Based on previous chapters’ findings, the dependency of fragment models of 

Diyala River basin is evident. Himren dam system environment is directly affected by 

water exploitation in the intermediate region between the two dams, and by the amount 

of Derbendikhan dam releases. While, the amount of groundwater participation in 

irrigation process in the intermediate region will reduce surface water dependency in 

this region, which will provide more water to Himren dam system. Furthermore, 

Derbendikhan dam releases has direct impact on the whole downstream system, as it 

depends on upstream shed water resources at Iran. Thus, integration and management 

of all models simultaneously is significant to demonstrates a holistic social, 

environmental and economic improvement and revenues of a river basin system, which 

is a pathway towards a holistic sustainable development goals’ plan at a country-scale, 

as in Statement-1 Chapter two.  

Accordingly, this chapter presents a comprehensive optimum IWRM approach 

using many-objectives evolutionary optimization algorithm at a river basin level. The 

holistic approach’s benefits will be demonstrated by a comparison with a simple 

approach. The previous fragment models of Diyala River basin are ensemble in a 

single model using the proposed approach. The -DSEA robustness are endorsed over 

different problems environments (from chapters four to seven), in comparison with 

Borg MOEA, which reinforce its methodology to generate better optimum qualitative 
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and quantitative management solutions. Hence, the  -DSEA is adopted for the current 

approach. 

A paper was developed and submitted at Journal of Environmental Management, as: 

- Al-Jawad, J.Y., Alsaffar, H.M., Bertram, D., Kalin, R.M., 2018c. A 

Comprehensive Optimum Integrated Water Resources Management Approach for 

Multidisciplinary Water Resources Management Problems. J. Environ. Manage.  

Under revi. 

 

 

“The following work represents my efforts, such as:  theoretical formalism 

development, analytic calculations and numerical simulations, writing the manuscript. 

Dr. Kalin, R.M., was the project supervisors, and provided assistance and support 

when required. Alsaffar, H.M., was a governmental key stackeholder and provided 

assistance and support when required. Dr. Bertram, D., provided technical support and 

assistance”.
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Al-Jawad, J.Y., Alsaffar, H.M., Bertram, D., Kalin, R.M., 2018c. A 

Comprehensive Optimum Integrated Water Resources Management 

Approach for Multidisciplinary Water Resources Management Problems. J. 

Environ. Manage. Under revi.1 
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Abstract 

A novel, comprehensive Optimum Integrated Water Resources Management (OP-

IWRM) approach which combines common river basin multidisciplinary sectors using a 

many-objectives optimization algorithm is presented here. Two approaches having seventeen 

and five objectives respectively, were developed using the -DSEA optimization algorithm 

using more than 1500 decision variables. The large-scale Diyala river basin, Iraq, was 

evaluated using this approach. Results conclude that climate change and upstream 

development impacts are possible multidisciplinary crises in the basin, even with enhanced 

groundwater use.  This holistic approach provides decision making confidence for complex 

integrated water resources management of large-scale regions.  

 

Keywords: Integrated Water Resources Management (IWRM), -DSEA, holistic approach, 

Many-Objectives Optimization, Diyala River Basin 
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1. INTRODUCTION 

Climate changes, populations evolve, crop industries increase water demands 

and water industry development all increase integrated water resources management 

(IWRM) challenges. GWP, (2000) (Global Water Partnership) defines the IWRM as 

“IWRM is a process which promotes the co-ordinated development and management 

of water, land and related resources, in order to maximize the resultant economic and 

social welfare in an equitable manner without compromising the sustainability of vital 

ecosystems”. More definitions were presented by Cardwell et al., (2009).  

However, IWRM implementation on the river basin system scale has many 

challenges.  These need robust methods to tackle the complexity of water system 

management (due to its nonlinearity, dynamic properties, conflict objectives, and 

constraints  (Haimes and Hall, 1977; Yeh, 1985; Maier et al., 2014)), and the 

stakeholders’ demands, governmental legislation, and environmental aspects (and 

others) (Grigg, 2016).  The conflicts and interrelationship problems between the 

multidisciplinary sectors for IWRM implementation for larger-scale regions were 

observed by Biswas (2008), Hering and Ingold (2012), and Mohtar and Lawford 

(2016). Authors and institutes adopt different water management concepts due to the 

generalization in IWRM definition (Biswas, 2008). The later author demonstrates 41 

variant possible explanations for the term “integrated”. Some examples are: water 

supply and water demands; surface water and groundwater; water quantity and water 

quality; urban and rural water issues; government and NGOs (nongovernmental 

organization). Moreover, “... But by now we all know how complex water resources 

management is and that ideally it should be managed holistically, considering 

efficiency, equity and the environment. But we should also know by now that holistic 
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management is costly and politically difficult, or impossible” (Giordano and Shah, 

2014). The later authors review examples of using simple alternatives to solve water 

resources problems for transboundary river basins, rather than implementing a 

complex IWRM approach. 

Many recent studies investigate the impact of IWRM implementation on 

different river basins to improve its environmental and economic benefits using several 

tools and methods. Among these tools, System Dynamic Simulation (SDS) was used 

widely as a Decision Support Tool (DST) in the field of IWRM implementation, 

however they have spatial data inertia processing (Nikolic and Simonovic, 2015). 

Weng et al., (2010) present an integrated scenario-based multi-criteria decision 

support system (SMC-DSS) for water resources planning and management in a Haihe 

river basin in China. The tool combines a multi-objective optimization algorithm, 

multi-criteria analysis and decision support system to assess the impact of multi policy 

management on the socio-economic and environmental sectors. The evidence shows 

that different results can be obtained when using different policies. Coelho et al., 

(2012) present and assess a multiple criteria decision support system as a tool for 

supporting IWRM in Tocantins-Araguaia river basin in Brazil. The authors combine 

GIS processing, fuzzy set theory, and dynamic programing algorithm to obtain 

optimum solution depending on user criteria selections. Nikolic, (2015) presents 

Agent-Based simulation coupled with system dynamic simulation to achieved IWRM 

in Upper Thames River basin in Canada. The results demonstrate the interaction 

between different regional resources and activities. Moreover, Klinger et al., (2015) 

produced IWRM tools for the Lower Jordan Rift Valley. The authors used multi-

objective optimization algorithm to improve three sectors in the region. Safavi et al., 



Chapter Eight   Comprehensive Integrated Water Resources Management Approach 

 

8-8 

 

(2016) present Expert knowledge based modelling for IWRM in Zayandehrud River 

Basin in Iran using WEEP software. The results show that the river basin management 

policy needs to be improved to avoid future water crises in the basin. None of these 

examples (and others) adopt a holistic IWRM approach.   

The process of using robust computational tools to solve complex problems 

have developed in recent decades. The multi-objectives optimization algorithms were 

presented recently  as a tool to solve complex problems in variant engineering and 

sciences fields, including water resources management (Coello et al., 2007; Maier et 

al., 2014). Evolutionary Algorithms (EAs) are a meta-heuristics paradigm, which 

inspire from gene evolution (Nicklow et al., 2010; Back et al., 2000), were widely 

utilized to solve multiple conflict objectives optimization problems, through which a 

set of optimum solutions obtain in a single run (Deb et al., 2002). Recent studies have 

utilized up to three objectives to solve water resources management problems (Kim et 

al., 2008; Chang and Chang, 2009; Reddy and Kumar, 2009; Regulwar, 2009; Hakimi-

Asiabar et al., 2010; Wang et al., 2011; Malekmohammadi et al., 2011; Schardong et 

al., 2013; Ahmadianfar et al., 2015; Li and Qiu, 2015; Crookston and Tullis, 2016; Qi 

et al., 2016; Dai et al., 2017) to avoid the computational efficiency, high-dimension 

challenges and water resources system complexity for more than three objectives 

(Maier et al., 2014). A few recent studies adopt many-objectives (more than three 

objectives) optimization water resources management problems (Dittmann et al., 

2009; Kasprzyk et al., 2013; Giacomoni et al., 2013; Giuliani et al., 2014a; Giuliani et 

al., 2014b, Giuliani et al., 2016; Zatarain Salazar et al., 2016; Zatarain Salazar et al., 

2017; Chen et al., 2016). However, these studies rarely adopted multidisciplinary 
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problem combinations for river basin management (e.g. Social, Environmental, and 

Economic) (Horne et al., 2016; Horne et al.,2017; Poff et al., 2016). 

Hence, there is a need to develop a holistic Optimum IWRM approach (OP-

IWRM) which combine stakeholders’ demands (e.g. Social, Environmental, and 

Economic) and river basin infrastructures, to generate optimum water resources 

management strategy by using many-objectives optimization algorithm.  This OP-

IWRM would then generate Socio-Enviro-Economic decision variable that provide a 

sustainable strategy for river basin management.  

Iraqi’s Diyala River basin with its semi-arid environment was adopted as a case 

study to evaluate the proposed approach. The basin has multidisciplinary problems 

including political, environmental, economic, and social. The sub-disciplinary sectors 

allow formulation of up to seventeen objective functions using the new -DSEA 

optimization algorithm (Al-Jawad and Tanyimboh, 2018) including; flood risk 

management, hydropower generation, crop production, water quality, river discharges, 

river morphology, groundwater sustainability, groundwater storage mining, and water 

losses due to infiltration process. The outcomes will support the possibility of 

implementing a holistic IWRM approach for large scale river basins, which can be 

developed for the entire country. Moreover, it can be used to help in setting 

international agreements between riparian countries. 

 

2. IDENTIFICATION OF OP-IWRM APPROACH 

Multi-objectives optimization models are one of the Decision Support Systems 

(DSSs) tools used in Integrated Water Resources Management (IWRM) 

implementation (Molina et al., 2010) which consider multidisciplinary sectors in the 
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river basin. Hence, this study presents a novel Optimum IWRM (OP-IWRM) approach 

as a DSSs tool using many-objectives evolutionary optimization algorithm. The OP-

IWRM approach combines all available river basin water resources (groundwater and 

surface water), and all stakeholder’s demands (social, environmental, economic, and 

others). In order to overcome high-dimension computational challenges of many-

objectives problems (Maier et al., 2014), the OP-IWRM approach employ the new 

Auto-Adaptive Constraints (AAC) approach proposed by Al-Jawad et al., (2018b). 

The ACC methodology depends on releasing constraints chains in the initial evaluation 

process stages and reinforced it when feasible solutions are achieved. Figure 1 

illustrates the OP-IWRM approach details for comprehensive river basin water 

resources management strategy. 
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Figure 1. Illustration of Optimum Integrated Water Resources Management (OP-

IWRM) approach for a comprehensive river basin management strategy. The Auto-

Adaptive Constraints (AAC) approach details were also identified (Al-Jawad et al., 

2018b). 

 

In order to demonstrate the approach’s advantages, the following steps are 

considered, as in Figure 2, below: 

1- Comprehensive models (𝑭𝑐𝑜𝑚𝑝.) are compared with simple models (𝑭𝑠𝑖𝑚𝑝𝑙𝑒 ) 

using four alternatives to demonstrate the advantages and disadvantages of both 

models in water resources management problems. 
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2-   The outperforming model results will be adopted for the water resources 

management strategy in the river basin. 

3- Comparison between alternatives for the selected model.  

4- The most sustainable management strategy will be adopted for the investigated 

problem. 

 

Figure 2. OP-IWRM approach evaluation steps 

 

3. THE DIYALA RIVER BASIN  

The Diyala River basin is a transboundary basin located the northeast of Iraq 

between 33.216 and 35.833N, and 44.500 and 46.833E, and originated from 

Zagrose Mountains in Iran, as shown in Figure 3. It is over 445 km long, draining an 

area about 32,600 km2, in which 46% inside Iraq and 54% in Iran 

(Soyuzgiprovodkhoz, 1982). The Iraqi government constructed two multipurpose 
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dams on the river, Derbendikhan just at the international border in Sulaymaniya 

governorate, and Himren in the middle part of the basin inside the Diyala governorate 

(Figure 3). Additionally, a barrage (the Diyala Barrage) was constructed about 10 km 

downstream Himren dam for water distribution control to downstream irrigation 

projects. The characteristics of these structures are illustrated in Table 1, while in Table 2, the 

monthly water demands for irrigation projects downstream the two dams were presented.  

 

Figure 3. Catchment area of the transboundary Diyala river basin in Iraq and Iran 

Table 1. Main characteristics of Diyala river basin water control structures (SGI et al., 2014) 

Parameter Derbendikhan Himren Unit 

Height 128.0 40.0 m 

Normal operation elevation 485.0 104.0 m.a.s.l 

Reservoir storage capacity at normal operation 2.57×109 2.4×109 m3 

Area of reservoir at normal operation 114.0 340 Km2 

Minimum dead storage level 410.0 84.1 m.a.s.l 

Reservoir dead storage capacity 500×106 20×106 m3 

Max flood elevation 493.5 107.5 m.a.s.l 

Reservoir flood storage capacity 4.02×109 3.56×109 m3 
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Area of reservoir at flood elevation 200.0 450 Km2 

Minimum hydropower level 434.0 89.0 m.a.s.l 

 Diyala Barrage  

Length of barrage 400.0 m 

No. of gates 23.0 - 

Gate dimension 12.0×2.0 m 

Maximum discharge 1200.0 m3/s 

Normal discharge 25.0 m3/s 

 

Table 2. Downstream monthly irrigation water demands for the two dams, 

Derbendikhan and Himren  (m3×106) (Soyuzgiprovodkhoz, 1982; SGI et al., 2014) 

 Oct. Nov. Dec. Jan. Feb. Mar. Ap. May June July Aug. Sep. 

Dam1 69.36 45.80 1.56 1.21 21.97 44.42 73.47 58.75 74.27 72.84 59.16 43.81 

Dam2 193.54 130.45 30.46 49.39 138.56 232.00 297.82 206.71 276.76 313.34 250.33 172.69 

Dam1 and Dam2 refer to Derbendikhan and Himren dams, respectively 

 

3.1 Regional Groundwater Identification 

The main groundwater storage region is located between the two dams, in the 

upper part of the river basin. The lower basin groundwater storage is inadequate for 

irrigation purposes because of its high salinity concentration (Al-Tamimi, 2007; SGI 

et al., 2014). The hydrogeological units consist of three aquifers, Mukdadiya, Bai-

Hassan, and Quaternary deposits. The Quaternary deposits thickness ranged from 5 to 

25m and cover a wide portion of the study area, which composed mainly of gravel, 

sand, and rock fragment. The Bai-Hassan and Mukdadiya formations are considered 

to be the two major aquifer of this area. The Bai-Hassan formation outcrops at different 

locations in the study area, while Mukdadiya appears at other parts of the area. The 

Mukdadiya formation is described to be composed of fining upward cycles of gravely 

sandstone, sandstone and mudstone, while Bai-Hassan is composed of conglomerates 

with beds of mudstone, siltstone and sandstone. Their thickness range from 500 to 

1000 m (Jassim and Goff, 2006). These layers overlay Injana formation, which is 
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composed mainly of sandstone, and claystone. The average hydraulic conductivity for 

both upper aquifers is 2.67 m/day (Al-Jawad et al., 2018a), and the range of total 

dissolved solids (TDS) is between 182 and 5500 mg/l for the upper aquifer. 

Furthermore, the estimated aquifer water storage is about 9×109 m3, with storage 

coefficient for the upper and lower aquifer equal to 3.5% and 0.14%, respectively (Al-

Tamimi, 2007). The average aquifer pumping discharge for is about 778 m3/day (Al-

Jawad et al., 2018a). More details can be found in Al-Jawad et.al. (2018). 

 

3.2 Identification of challenging river basin Management problem  

Iraq is located in an arid zone (IPCC, 2007) and has three transboundary basins 

shared with Turkey, Syria and Iran. Although the country has two big rivers, the Tigris 

and Euphrates, it has recently suffered from water crisis due to; the impact of climate 

changes coupled with highly water demands, and water monopolizing from the 

upstream transboundary countries (Issa and Al-Ansari, 2014; Abdulrahman, 2017). 

Many dams were constructed on rivers up streams without considering the 

transboundary downstream water demands.  This causes water resources’ scarcity in 

these rivers. Although the presence of international agreement regarding sharing water 

resources of Euphrates river with Turkey and Syria, partial commitments are noticed 

recently. For Tigris river, international agreement is absence with Iran regarding its 

tributaries (Abdulrahman, 2017). In order to overcome the first problem, the decision 

makers or the water managers needs to develop methods and techniques in water 

resources management to set robust strategies for long-term management. The second 

problem is a political issue and the government needs to adopt future policy to set 
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international agreements with the riparian countries. (Al-Ansari, 2013, Al-Ansari et 

al., 2014).  

Diyala River basin is one of the main tributaries of Tigris River, which suffers 

from both problems detailed above (Abbas et al., 2016; Lelieveld et al., 2016; Al-Faraj 

and Scholz, 2014; Abdulrahman, 2017). The river originates from high mountains in 

Iran and more than 50% of its catchment area is located in Iran (Soyuzgiprovodkhoz, 

1982; SGI et al., 2014). The river crosses the Iraqi border at Al-Sulaymaniya 

governorate and continues its way to the confluence with Tigris River, south of 

Baghdad.  The river basin has potential economic benefits with two multipurpose 

hydropower dams giving maximum power generation equal to 500 MW, and many 

irrigation projects distributed along the river shore. These projects exhaust significant 

amounts of water for crop production. In addition, many cities and villages are located 

along the river, which increase the pressure on river water resources.  

Although the presence of suitable groundwater for crop farming in some parts 

of the basin (Al-Tamimi, 2007; SGI et al., 2014), people depends mainly on surface 

water from the river because it is easier, cheaper, and copiously than groundwater 

exploitation. Many recent studies explore different crisis in the country, including 

Diyala river basin. Al-Ansari, (2013), Al-Ansari et al., (2014), and Al-Faraj and 

Scholz, (2014) investigates water quantities and qualities crisis due to global climate 

changes and the impact of transboundary projects. They observe possible future 

scarcity in water resources, hence more developed methods in water management are 

needed and active cooperative with the transboundary countries should be adopted. 

Abbas et al., (2016) explore the impact of climate changes in the Diyala river basin 

using SWAT (The Soil and Water Assessment Tool) model for a century in advance. 
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The results show a scarcity in the precipitation and groundwater recharges in the basin. 

Moreover, Lelieveld et al., (2016) used Coupled Model Intercomparison Project Phase 

5 (CMIP5) with two greenhouse gas emission model, RCP4.5 and RCP8.5 

(Representative Concentration Pathways),  to predict future temperature projection in 

MENA region, which include the current investigated region. The study shows 

increases in summer temperature for the next mid and end century to about four 

degrees, which increase the water demands and the evaporation losses from water 

bodies in the region. Furthermore, deterioration over the last decade in Tigris river 

water quality after the confluence with Diyala river was observed by Evan et al., 

(2012), WCC, (2006), and  CEB, (2011). The total dissolved solids (TDS) 

concentration ranged between 600 to 1200 mg/l, compared with about 500 mg/l before 

the confluence. 

In the same context, the Iraqi government intended to develop more lands in 

the basin for future investment (SGI et al., 2014). This has significant impacts on 

communities, the economy, crop production and industry. Recently, Al-Jawad et al., 

(2018a) assessed the storage sustainability of groundwater exploitation in the middle 

part of the basin for future regional development using optimization approach to 

minimize water deficit, water losses, and storage mining. The assessment covers a 

period of half-century using two irrigation methods, open furrows and drip methods. 

The results show that the aquifer storage will significantly exhausted after 40 years of 

water exploitation using both irrigation methods. However sustainable management 

could be achieved for 25 and 33 years using both irrigation alternatives by reducing 

45% of water delivery, respectively. Hence a combined use of groundwater with 

surface water was one of the alternatives that was suggested to mitigate water deficit.  
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Furthermore, Al-Jawad et al., (2018b) used optimization model to promote the 

operation of Himren dam, located in the middle part of the basin, to remediate the river 

environments for the lower part of the basin before the confluence with Tigris river. 

The model succeeded to promote reservoir operation management to remediate river 

environment. Also, the results show sensitivity of the system to the inflows from the 

upper part of the basin, which dictate the quantity of releases from the upper dam 

(Derbindikhan), runoff from catchment area, and water exploitation in the middle part 

of the basin. Hence, river basin water resources management strategies should consider 

all basin features to overcome water and environment crisis challenges. 

 

3.3 Objectives Functions  

The operation strategy for the two multipurpose dams is to fulfil community, 

environment, and energy water requirements. Hence, the following formulas were 

proposed to represents these requirements (Al-Jawad and Tanyimboh, 2018; Al-Jawad 

et al., 2018a; Al-Jawad et al., 2018b). Table 4 illustrate the comprehensive 

mathematical formulae for the entire river basin. However, a simple model is also 

presented to demonstrate the significance of the OP-IWRM approach’s 

implementation in river basin management strategy. Both models can be expressed as, 

with function reference to Table 3: 

𝑭𝑐𝑜𝑚𝑝.(𝒙) = (𝑓1, … … … , 𝑓18) ∀ 𝒙 ∈  𝜴  (1) 

 

𝑭𝑠𝑖𝑚𝑝𝑙𝑒(𝒙) = (𝑓3, 𝑓5, 𝑓6, 𝑓9, 𝑓17, 𝑓18) ∀ 𝒙 ∈  𝜴 (2) 
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where 𝑭𝑐𝑜𝑚𝑝. refer to the comprehensive model and 𝑭𝑠𝑖𝑚𝑝𝑙𝑒  for the simple model, x is 

the decision variables’ vector, and 𝛀 is the decision variables feasible search space. 

Details of both models are in Figure 4. 

Here, two cases were adopted to investigate the system behaviour, Case 1 

represents only two dams’ optimization management model, and Case 2 combine 

groundwater management model with Case 1 to fully integrated water resources 

management problem. Hence, 𝑓5 and 𝑓6 are involve according to the above Cases. 

Details of objectives functions and its parameters are presented in the supplementary 

data, Tables A1 to A6. 

Table 3. Comprehensive mathematical model for Diyala river basin 

No. Objective function Description 

1 𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐷  Maximize Derbindikhan reservoir storage in winter 

2 𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐷  Minimize Derbindikhan reservoir storage in summer 

3 𝑓𝑝𝑜𝑤𝑒𝑟𝐷  Maximize Derbindikhan power generation 

4 𝑓𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝐷  Maximize Derbindikhan releases 

5 𝑓𝐷𝑒𝑙−𝑆𝑊 Minimize water deficit after Derbindikhan dam (surface 

water) 

6 𝑓𝐷𝑒𝑙−𝑆𝑊−𝐺𝑊  Minimize water deficit after Derbindikhan dam 

(surface+groundwater) 

7 𝑓𝑊𝐿  Minimize infiltration water losses  

8 𝑓𝑚𝑖𝑛𝑖𝑛𝑔  Minimizing groundwater storage 

9 𝑓𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝐻  Minimize water deficit after Himren dam 

10 𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐻  Maximize Himren reservoir storage in winter 

11 𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐻  Minimize Himren reservoir storage in summer 

12 𝑓𝑝𝑜𝑤𝑒𝑟𝐻  Maximize Himren power generation 

13 𝑓𝑟𝑖𝑣𝑒𝑟𝐵  Minimize discharge fluctuation after Diyala Barrage  

14 𝑓𝑇𝐷𝑆−𝐷𝑌 Minimize pollutant in Diyala river  

15 𝑓𝑇𝐷𝑆−𝑇𝑅 Minimizing pollutant in Tigris river 

16 𝑓𝐷𝑌−𝐵𝐶𝐻 Minimizing riverbed changes in Diyala river 

17 𝑓𝑝ℎ𝑦−𝑀 Minimizing physical model violation 

18 𝑓𝑀𝐷  Minimizing total model violation 
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3.4 Decision Variables 

The decision variables are divided in three sets for Case 1 and four sets for 

Case 2 to represent monthly base management strategy, these are: 

1- Derbendikhan dam releases represented by set-1 (x1). 

2- Himren dam releases are represented by set-2 (x2). 

3- Groundwater exploitation management (number of wells) in the middle part are 

represented by set-3 (x3). 

4- The uncertainty of water exploitation in the middle part of the basin are 

represented by set-4 (x4).  

Each set of decision variables has its own upper and lower limits, depending on the 

corresponding problem boundaries. 

 

Figure 4. Proposed Diyala river basin management objectives’ models.  
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3.5 River Basin System Limitations 

The evolutionary algorithm is designed to solve unconstrained problems. 

However in real-world problems, constraints should be considered in the optimization 

model (Maier et al., 2014). The river basin system has many physical and 

environmental constraints. The physical constraints control the reservoirs physical 

barrier for storage, releases, and hydropower generation, while the environmental 

constraints are considered for storage sustainability, water quality, and river 

environment. Table 4 presents the river basin system constraints. Further model 

parameters are presented in the supplementary data, Table 7. 

 

Table 4. Physical and environmental constraints for Diyala river basin system (SGI et 

al., 2014) 

Parameter Physical Constraints Environmental Constraints 

Derbindikhan dam 

Storage (𝑆𝑡
𝐷) (MCM)1 283.48 ≤ 𝑆𝑡

𝐷 ≤ 2572.0 𝑆𝑡=𝑛𝑒𝑥𝑡 𝑦𝑒𝑎𝑟
𝐷 ≤ 0.9 × 𝑆𝑡=0

𝐷  

Head (𝐻𝑡
𝐷) (m.a.s.l) - 𝐻𝑡

𝐷 ≥ 434.0 

Power (𝑃𝑤𝑡
𝐷) (KW) 𝑃𝑤𝑡

𝐷 ≤ 249000 𝑃𝑤𝑡
𝐷 ≥ 16000 

Releases (𝑅𝑡
𝐷) (MCM) 51.84 ≤ 𝑅𝑡

𝐷 ≤ 878.6  

Between two dams (Middle part) 

Total Delivered water (𝐷𝑒𝑙𝑡
𝑀) (MCM) 𝐷𝑒𝑙𝑡

𝑀 ≤ 74.27 - 

Aquifer storage (𝑆𝑎𝑞,𝑡) (MCM) - 𝑆𝑎𝑞,𝑡 ≥ 85%𝑆𝑠𝑡 

Soil moisture content (𝑆𝑀𝑡) (mm) 𝑆𝑀𝑡 ≤ 115.0 - 

Himren dam 

Storage (𝑆𝑡
𝐻) (MCM) 102.0 ≤ 𝑆𝑡

𝐻 ≤ 2400.0 𝑆𝑡=𝑛𝑒𝑥𝑡 𝑦𝑒𝑎𝑟
𝐻 ≤ 0.9 × 𝑆𝑡=0

𝐻  

Head (𝐻𝑡
𝐻) (m) - 𝐻𝑡

𝐻 ≥ 89.0 

Power (𝑃𝑤𝑡
𝐻) (KW) 𝑃𝑤𝑡

𝐻 ≤ 50000 𝑃𝑤𝑡
𝐻 ≥ 7500 

Releases (𝑅𝑡
𝐻) (MCM) 51.84 ≤ 𝑅𝑡

𝐻 ≤ 510.6  

Diyala river after Himren dam (Lower part) 

River discharge (MCM) 25.92 ≤ 𝑄𝑚𝑖𝑛
𝑟 ≤ 2592 - 

River bed changes (∆𝐵𝐿𝑚𝑎𝑥) (m) - 1.0 ≤ ∆𝐵𝐿𝑚𝑎𝑥 ≤ 2.02 

Tigris River quality (𝑇𝐷𝑆𝑡
𝑅) (mg/l) - 500.0 ≤ 𝑇𝐷𝑆𝑡

𝑅 ≤ 600.0 
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1MCM = million cubic meters per month; 2(Alsaffar, 2017) 

 

3.6 Predicted Future Water Resources Scenarios 

In this research, a dataset of thirty-three years (from 1981 to 2013) was utilized 

in the proposed model for the Derbendikhan dam. The National Center of Water 

Resources management (NCWRM)/Ministry of water resources in Iraq adopted a 6-

month smoothing in order to reduce the data noise and potential registrations errors.  

The dataset was projected for future management using two scenarios to overcome the 

uncertainty of inflows. Scenario1 was adopted to reflect the climate impact changes 

on the reservoir inflows by recycling the last eleven-years (dry years) to the beginning 

of the selected dataset (Alsaffar, 2017). The same methodology was adopted by Al-

Jawad et al., (2018b) for Himren dam operation management. While scenario-2 

reflects the out border influences on the inflows (damming the river streams in Iran) 

by recycling the drying periods for the entire dataset. Accordingly, the four alternatives 

proposed in section 2 will be:  

- Alternative-1 = Scenario-1/Case 1 

- Alternative-2 = Scenario-1/Case 2 

- Alternative-3 = Scenario-2/Case 1 

- Alternative-4 = Scenario-2/Case 2 
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Figure 5. Illustrates the adopted scenarios from the historical dataset from 1981 to 

2013 for Derbendikhan dam and Tigris river. Scenario-1 conceptualizes the climate 

change impact, and scenario-2 for out border damming process effects on reservoir 

inflows for Derbendikhan dam. The Tigris river discharge was conceptualized as in 

scenario-1 (Al-Jawad et al., 2018b).  

The same data projection as in scenario-1 was adopted for the Tigris historical 

discharge (Alsaffar, 2017; Al-Jawad et al., 2018b). Figure 5 illustrates the adopted 

scenarios that extracted from the historical dataset for Derbendikhan dam and Tigris 

river, respectively. 

 

3.7 Computational Model Utilization 

In this research the self-adapted -DSEA optimization algorithm presented by 

Al-Jawad and Tanyimboh, (2018) was adopted. The algorithm has multi operators and 

auto-parameter tuning adapted with the quality of dominance solutions during the 

evaluation process. The -DSEA was assessed against the state-of-the-art Borg MOEA 

(Hadka and Reed, 2013) using multiple test functions and two real-world water 
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resources management problems. The algorithm out competed the Borg MOEA in 

almost all adopted problems (Al-Jawad and Tanyimboh, 2018; Al-Jawad et al., 2018a; 

Al-Jawad et al., 2018b). Previously Borg was assessed against other state-of-the-art 

evolutionary algorithms using challenging multi-objectives problems, through which 

it outperforms or met these algorithms (Hadka and Reed, 2012; Hadka et al., 2012; 

Hadka and Reed, 2013; Woodruff et al., 2015; Zatarain Salazar et al., 2016). The -

DSEA parameters are presented in Table 5. 

In order to conceptualize the optimization river basin system model, a program 

in C language was created. The adopted optimization algorithm was executed 10 times 

for each scenario using 2.0106 functions evaluations in each run; hence the gross 

function evaluation was 1.6108. The total number of decision variables for Case 1 is 

1188, and 1584 for Case 2. 

 

Table 5. Parameter values used in the optimisation algorithm (-DSEA) (Al-Jawad and 

Tanyimboh, 2018) 

Parameters Values  Parameters Value 

Initial population size 100 SPX parents 3 

Tournament selection 
size 

2 SPX offspring 2 

SBX crossover rate 1.0 SPX expansion rate λ [2.5, 3.5]  

SBX distribution index 

 

 [0, 100] UNDX parents 10 

DE crossover rate CR [0.1, 1.0]  UNDX offspring 2 
DE step size F [0.5, 1.0]  UNDX   [0.4, 0.6]  

PCX parents 10 UNDX  [0.1, 0.35]/√𝐿  

PCX offspring 2 UM mutation rate 1/L 

PCX 
 [0.1, 0.3] PM mutation rate 1/L 

PCX 
 [0.1, 0.3] PM distribution index 

m 

20 

L is the number of decision variables. The permissible range for dynamic parameters is 

shown in brackets. The parameters  and  are the decision variables’ variation.  
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The resolution of objective function search space () for all objective functions 

was set to 0.5 for the comprehensive model, and 0.1 for the simple model. 

Furthermore, the adopted model calculates other parameters for the system like: 

surface area, storage, water level, power generating for the reservoirs. While for the 

other parts, it calculates: groundwater storage, river discharge, riverbed level changes, 

and river quality before and after the confluence with the Tigris river. Totally, in each 

execution process, the number of calculated variables is 6732 for Case 1, and 7920 for 

Case 2. The execution process was implemented using PC desktop (Core i7-6700 CPU 

@ 3.4 GHz, 16 GB RAM) with Ubuntu 16.04 OS.  

 

4. RESULTS AND DISCUSSION 

4.1 Simple and Comprehensive Models Achievement 

The best median solutions for 𝑓𝑝𝑜𝑤𝑒𝑟𝐷  (𝑓1) and 𝑓𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝐻  (𝑓2) achieved by 

both models (𝑭𝑠𝑖𝑚𝑝𝑙𝑒 , 𝑭𝑐𝑜𝑚𝑝.) are selected for comparative assessment since they 

represent the main objectives management in the simple model. Figure 6 illustrates the 

differences between both models (∆𝑭 = 𝑭𝑠𝑖𝑚𝑝𝑙𝑒 − 𝑭𝑐𝑜𝑚𝑝.) for Derbendikhan dam 

system using all alternatives. Deficits in several alternatives are observed, except for 

water delivery from groundwater to the farms in dam downstream (Figure 6e). 

However, this leads to large depletion (about 60×109 m3 in scenario-1 Case 1 and 2) 

in groundwater storage for the considered operation time (Figure 6f).  

Figure 6 shows models’ differences (∆𝑭) for Himren dam system for all alternatives. 

Similar results in the upper part system are notable except for reservoir releases (Figure 

7d) and water delivery to the farms in dam downstream (Figure 7e). However, the 
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achievement in water deliver cause depletions in river discharges (Figure 7f) may 

increase pollutant concentration in river downstream region. 

For the whole system, the 𝑭𝑐𝑜𝑚𝑝. model is better than the 𝑭𝑠𝑖𝑚𝑝𝑙𝑒  model in all 

sectors, as it produces more power, larger water surface storage, lower impact on 

groundwater storage, and more water flows in the upper and lower parts of the river.  

The computational analysis results are presented in Table 6. The interesting findings 

are in CPU time, which is almost the same in both models. Usually, combining more 

objectives to a problem formulation will increase its computational complexity, 

including the execution time (Maier et al., 2014). 

 

Figure 6. Differences between simple and comprehensive model (∆𝑭) for 

Denbendikhan dam system (upper part of Diyala river basin) for all alternatives 
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Figure 7. Differences between simple and comprehensive model (∆𝑭) for Himren dam 

system (lower part of Diyala river basin) for all alternatives 

 

However, here using five or seventeen objectives has almost the same impact 

on problem’s implementation time. The complexity of enormous decision variables 

(more than 1000) with different boundaries (here, three and four different boundaries 

adopted in Case 1 and 2, respectively) dominate objectives complexity.  

Producing more dominance solutions is another advantage aspect of using 

comprehensive models. More than ten times solutions are generated using larger 

objectives search space resolutions (). Increasing decision search space using many 

objectives will involve additional search regions which may include possible global 

optimum solutions, conversely simple models may exclude these regions (Maier et al., 

2014).    
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Table 6. General computational analysis comparison for simple and comprehensive models 

Parameter 𝑭𝑠𝑖𝑚𝑝𝑙𝑒  𝑭𝑐𝑜𝑚𝑝. 

Number of objectives functions 5 17 

Objective search apace resolution () 0.1 0.5 

No. of dominance solutions ≤ 100 ≥ 1000 

CPU time 1.38 hrs 1.38 hrs 
 

According to the results above, the comprehensive model implementation is 

more beneficial than simple model, hence the comprehensive model will be adopted 

for river basin management strategy.  

 

4.2 River Basin Management Strategy 

The optimum solutions were analysed for all alternatives, and solutions close to 

the median values were selected for each alternative. Figure 8 and 9 illustrates the 

Pareto-front for scenario-1 and 2 in Case1 and 2, respectively. The impact of the 

comprehensive model using OP-IWRM approach is emerged on the delivered water 

to the farms after the Derbendikhan dam. The range of objective function (𝑓𝐷𝑒𝑙−𝑆𝑊) is 

reduced about 85%, from 82-102.68 in Case1, to 10.87 - 12.85 in Case2 (𝑓𝐷𝑒𝑙−𝑆𝑊−𝐺𝑊). 

Other objectives were effected slightly toward higher or lower values. All physical 

model penalties are zero (𝑓𝑝ℎ𝑦−𝑀), except in scenario-2 Case 2. For zero values, the 

total violation model (𝑓𝑀𝐷) will equal to the sum of environmental model constraints 

over the total time period, while for non-zero value, 𝑓𝑀𝐷  will represents both physical 

and environmental model violation. However, the overall 𝑓𝑀𝐷  values for all 

alternatives ranged between 3.0 to 8.38.  
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Figure 8. Pareto-front optimum solutions of Diyala river basin optimization model for 

case 1 using scenario1 and 2 for inflows. Letters D and H refer to Derbendikhan and 

Himren n dams, respectively. Solution with minimum model violation is marked in 

red colour. 

 

Some of the optimum solutions in Figure 7 scenario-2 are located in the border 

region of feasible space by having non-zero values of 𝑓𝑝ℎ𝑦−𝑀 function. The reduction 

in the reservoir inflows proposed in scenario- 2, and include more objectives and 

constraints to the model for Case 2 alternative, boost the problem complexity. 

However, the -DSEA succeed to overcome this challenge and produce optimum 

solutions for the problem. However, solutions violations are very small and can be 

neglected in compare with river basin water budget. Hence, these optimum solutions 

can also be adopted for river basin management strategy. 
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Figure 9. Pareto-front optimum solutions of Diyala river basin optimization model for 

case 2 using scenario1 and 2 for inflows. Letter D and H refer to Derbendikhan and 

Himren dams, respectively. Solution with minimum model violation is marked in red 

colour. 

 

Notably Figures 8 and 9 show objectives conflicts for the entire system, except 

for 𝑓𝑇𝐷𝑆−𝑇𝑅  and 𝑓𝐷𝑌−𝐵𝐶𝐻 , but in fact there are slight conflicts for many solutions. The 

Diyala river bed changes are directly affected by the river discharge, and the 

concentration of TDS in the Tigris river is affected by both discharges and quality of 

Diyala river. Hence the relation between the two function is indirect, with lower level 

of conflicts than other objectives functions. 

Generally the water resources models provide information rather than the 

decisions itself (Loucks, 2012). Hence, the selection of a solution from the Pareto-

front should be set by the decision makers. Here, solutions have minimum model 

violation (𝑓𝑀𝐷) were selected for the river basin management strategy, since they have 

the lowest impacts on river basin environments (red lines in Figures 8 and 9). Summary 

of the selected solutions for all alternatives are presented in Table 7. Details are 
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available in the supplementary data, Table A8. The table shows the average, median 

and the gross sum of Diyala river basin system.  

Table 7. Showing the average, median, and gross sum of selected optimum solutions 

with minimum model violations for the entire Diyala river basin system. The design 

required water demands are in italic grey shade, while the deficit in bold grey shade. 

  Scenario-1 Scenario-2 

  Case 1  Case 2  Case 1 Case 2 

  Av.a Med.a Grossb Av. Med. Gross Av. Med. Gross Av. Med. Gross 

  Upper dam system (Debendikhan dam) 
Area 59.75 52.04 - 57.20 47.87 - 54.61 43.71 - 58.90 52.37 - 
Head 467.62 469.41 - 466.51 467.12 - 464.88 464.50 - 466.86 469.58 - 
Power 68.60 45.23 27.16 68.06 44.80 26.95 54.32 41.00 21.51 55.45 42.07 21.96 
Storage 1.421 1.338 562.66 1.368 1.242 541.53 1.308 1.141 517.99 1.397 1.345 553.23 
Releases 259.72 164.74 102.85 260.07 173.28 102.99 212.64 148.58 84.20 211.95 156.29 83.93 

Middle part (intermediate region)  
FQ-DES 47.22 52.28 18.70 47.22 52.28 18.70 47.22 52.28 18.70 47.22 52.28 18.70 
Q-SUR 27.82 24.26 11.02 26.36 21.80 10.44 23.28 20.00 9.22 26.32 20.97 10.42 

Q-GW - - - 17.68 7.76 7.00 - - - 18.29 4.80 7.24 

N-wells - - - 757.67 332.50 - - - - 783.54 205.50 - 
TWD 27.82 24.26 11.02 44.05 45.64 17.44 23.28 20.00 9.22 44.61 45.73 17.67 
Deficit 19.40 28.02 7.68 3.17 6.64 1.26 23.94 32.28 9.48 2.61 6.55 1.03 
ST-GW - - - 8.780 8.867 - - - - 8.564 8.487 - 

Middle dam system (Himren dam) 
Inflows 217.88 134.89 86.28 219.69 141.17 87.00 175.34 118.15 69.43 171.61 125.18 67.96 

Area 185.98 184.14 - 192.83 199.58 - 160.64 150.34 - 175.95 171.45 - 
Head 99.10 99.22 - 99.34 99.89 - 97.96 97.71 - 98.71 98.66 - 
Power 15.74 11.47 6.23 15.70 11.19 6.22 11.80 10.54 4.67 11.58 10.04 4.59 
Storage 1.195 1.154 473.36 1.256 1.280 497.36 0.987 0.888 390.86 1.107 1.053 438.54 

Releases 183.30 138.14 72.59 183.85 133.10 72.81 145.95 131.66 57.80 139.21 121.10 55.13 

Lower part (downstream Himren dam) 
Q-river 70.66 42.14 27.98 77.02 41.01 30.50 51.25 39.16 20.29 50.25 37.64 19.90 

FQ-DES 191.00 200.13 75.60 191.00 200.13 75.60 191.00 200.13 75.60 191.00 200.13 75.60 

Q-SUR 112.64 96.38 44.60 106.83 86.17 42.31 94.70 90.18 37.50 88.96 80.28 35.23 

Deficit 78.36 103.75 31.00 84.17 113.96 33.29 96.30 109.95 38.10 102.04 119.85 40.37 

TDS-B 1.670 1.770 - 1.680 1.801 - 1.808 1.907 - 1.821 1.976 - 

TDS-A 2.569 2.737 - 2.573 2.780 - 2.774 2.901 - 2.800 2.979 - 

TDS-T 0.574 0.575 - 0.573 0.575 - 0.574 0.575 - 0.573 0.575 - 

|Bed-C| 0.30 0.22 - 0.33 0.24 - 0.22 0.16 - 0.22 0.16 - 
a Discharges values are in (m3/month ×106), storages are in (m3/month ×109), power in (MW), areas are in (km2), 
water head in (m.a.s.l), TDS concentrations in (g/l),  bed river changes in (m); b Gross sum over the entire periods 

(33 years), discharges are in (m3×109), storages in (m3×109), power in (GW); FQ-DES: Design water delivery; Q-

SUR: surface water discharges to the farms; N-wells: No. of wells;  Q-GW: groundwater discharge; ST-GW: 

groundwater storage;  TWD: Total water delivery to the farms; Q-river: river discharge;  TDS-B: TDS concentration 

before WWTP;  TDS-A: TDS concentration after WWTP;  TDS-T: TDS concentration in Tigris river; |Bed-C|: 

absolute river bed changes. 
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4.3 Impact of OP-IWRM Implementation 

The optimum integrated water resources management implementation has a 

generally positive impact on the whole river basin system, and particularly on the 

middle part of the basin. Figure 10 illustrates the gross differences between Case 2 and 

Case 1 (∆𝐶2−𝐶1) for river basin features for both scenarios, based on Table 7.  The 

positive impact is evident in scenario-1 for the middle and lower part of the basin. In 

scenario-2, the impact on reservoir storages are obvious coupled with the intermediate 

basin region.  The proposed model succeeds to maintain reservoir storages in water 

crisis condition. Hence, combining groundwater management with surface water 

management leads to sustainable water resources management for the river basin. The 

deficits are reduced about 84% and 89% for the average and gross values, and about 

76% and 79% for the median value, in both scenarios, respectively (Table 7). The 

optimum conjunctive use significantly improved farms’ water delivery, which increase 

the economic benefits and society food security in this region. Policy for future 

investment opportunities may consider in energy and food sectors. However, the 

regional uncertainty management produced gross deficit in delivered surface water 

about 50% in all alternatives, which represents the barriers maintaining system 

stability.  If extra water is consumed in this part, the system may lose management 

optimality is some sectors, such as hydropower generation.  Hence, the government 

should consider future policy for controlling and managing the deep uncertainty in 

water consumption in this region. Moreover, the impacts of upstream river system on 

downstream farms’ water delivery are observed with deficits around 45% to 50% in 

both adopted alternatives. Therefore, other alternatives may be considered in the policy 

like drip system, crops types changing, reducing summer crops patterns. Although the 
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potential regional groundwater having a high salinity concentration and not suitable 

for agriculture process (SGI et al., 2014), further study may also consider for using 

advance treatment technologies or mixing with freshwater (Kulkarni, 2011). As a 

result, the OP-IWRM implementation produces more sustainable water resources 

management strategy for the river basin system by improving the entire system 

environments and sectors. 

 

 

Figure 10. Cases gross differences for river basin system features based on Table 7 

for both scenarios. 

 

4.4 Impact of Upstream River Basin Future Development  

The out of border future development impact on the Diyala river basin water 

resources were represented by scenario-2. Table 7 (Gross column) shows that the total 

Derbendikhan dam releases will reduced and its power production about 19×109 m3 



Chapter Eight   Comprehensive Integrated Water Resources Management Approach 

 

8-34 

 

and 5.0 GW (about 18% for each), respectively. For the Himren dam, the inflows will 

be reduced about 18×109 m3 (about 20%), and its releases about 17.0×109 m3 (about 

23%), while the power generation will be reduced about 1.4 GW (about 23%), in 

compare with scenario-1 for both dams. Moreover, Diyala river discharges in the lower 

part of the river basin were extremely effected by the reduction in the water resources. 

The total water volumes reduced about 10.0×109 m3 (about 66%) in compare with 

scenario-1. The total water delivery also affected in this part by a deficit about 7.0×109 

m3 (about 16%), in compare with scenario-1. Figure 11 illustrates the impact of river 

water resources on the system. The scenarios gross differences (∆𝑆2−𝑆1) shows overall 

reductions in all sectors in both cases, even with IWRM implementation, water scarcity 

is still exist in the river basin.  Hence, the government needs to consider a policy to set 

an international agreement with Iran to avoid future expected deterioration in river 

basin water resources, since there is no such agreement till now (Abdulrahman, 2017). 

 

Figure 11. Scenarios gross differences for river basin system features based on Table 

7 for both cases.   
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5. CONCLUSIONS AND RECOMMENDATIONS  

5.1 Conclusions 

In this research a comprehensive optimum integrated water resources 

management (OP-IWRM) approach is proposed for river basin management strategy. 

This novel approach combines all common environmental, social, and economic 

objectives, coupled with all available water resources, to generate optimum trade-off 

solutions for the decision makers. The approach is evaluated by comparative 

assessment with simple model using many alternatives. A challenging case study using 

the transboundary Diyala river basin in Iraq was adopted for the comparative analysis. 

Future climate change and upstream development plan impacts alternatives are 

formulated and considered. The system has two large multipurpose dams, named 

Derbendikhan and Himren, which located in the upper and middle part of the basin, 

respectively. Also it has a potential groundwater storage in the middle part of the basin. 

The -DSEA optimization algorithm (Al-Jawad and Tanyimboh, 2018) was utilized to 

combine up to 17 objective functions with 1584 decision variables for the next three 

decades. 

The comprehensive approach provides decision variables for sustainable 

management for the entire river basin resources for the considered alternatives 

including power generation, storages, and river discharges.  Execution time (computer) 

is not a limitation for the model, and was not greatly affected by complexity.   

Accordingly, the implementation of a comprehensive approach is evident in water 

resources management strategy. Consistency, combining groundwater exploitation 
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with the OP-IWRM approach succeed to suggest that improvements water delivery 

fulfilment might be increased from 50% to more than 85% in the middle part of the 

river basin with minor impact on groundwater storage. Furthermore, the OP-IWRM 

succeed to address water exploitation uncertainty in the middle part of the river basin 

and presents water consumption barriers for the decision makers to be considered for 

future management policy.    

This approach demonstrates the significant impact of transboundary water 

development plans on the river basin system. The gross Derbendikhan dam releases 

and power generation are reduced from about 102.8 to 84.0×109 m3 and from about 

27.0 to 21.8 GW, respectively. For Himren dam system, the inflows, releases and 

power generating are also depleted from about 86.5 to 68.0×109 m3, 73.0 to 56.0×109 

m3, and 6.2 to 4.6 GW, respectively. While the river discharge in the lower part of the 

river basin was extremely affected from 30.0 to 20.0×109 m3, hence the correlated 

water delivery was drop from about 43.0 to 36.0×109 m3. The deficit in delivered water 

in this part is about more than 50% for all adopted alternatives.  

The value of this OP-IWRM approach is evident, it produced optimum 

sustainable management strategies using; the common Social, Environmental, and 

Economic objectives; and the existing surface and groundwater resources for a river 

basin system under different scenarios. It is possible to add more objectives for 

additional sectors like; governmental legislation; human resources development; 

economic revenues. Hence, the proposed methodology reactivates the implementation 

of the IWRM principles. 
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5.2 Case Study Specific Recommendations  

The middle basin exploitation has significant impact on the water resources of 

the lower basin, hence a policy should be considered to reduce water requirements to 

mitigate the impact on the lower part of the basin. Also, similar policy may be 

considered for the lower basin farming practice.  

- Replace the traditional irrigation method with new recent techniques, if 

applicable, to reduce allocated and infiltrated water losses. 

- Replace high water demands summer crops with lower water demands to 

reduce water demands in hot season. 

- Reduce crop pattern summer plan to reduce water demands in hot season. 

- Rehabilitate water conveyance infrastructure to reduce water losses over water 

delivery process. 

New government policy may include restriction in water exploitation in the 

middle part of the basin for farms and remove any unauthorized outlets on the river 

and Himren reservoir lake. The lower basin water demands could be improved by 

using the existing saline groundwater after specific treatment or mixing with fresh 

surface water. Regarding development plans in Iran, the government should consider 

a policy to set water sharing agreements to mitigate water monopolizing from Iran, 

which may cause severe drought of Diyala river basin water resources inside Iraq. The 

current research results could be adopted in the negotiation process for this agreement. 
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8.3 Supplementary Data 
 

1. OBJECTIVES FUNCTIONS DETAILS 

1.1. Derbendikhan Dam 

Reservoir water balance equation and other objectives functions are presented in Table 

A1. Parameters definitions are illustrated in Table A2.  

Table A1. Formulae used for Derbendikhan dam operation management 

Functions  No. 

𝑆𝑡+1
𝐷 = 𝑆𝑡

𝐷 + 𝐼𝑡
𝐷 − 𝑅𝑡

𝐷 − 𝐸𝑡
𝐷 + 𝑃𝑡

𝐷 − 𝑆𝐸𝑡
𝐷 + 𝐺𝑅𝑡

𝐷  ∀𝑡 = 1, … 𝑇 (A1) 

𝑚𝑖𝑛 𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐷 = ∑ (
𝑆𝑚𝑎𝑥

𝐷 − 𝑆𝑡
𝐷

𝑆𝑚𝑎𝑥
𝐷

)

2

  

𝑇𝑤

𝑡=1

+ 𝐶𝑃 ∀𝑡 = 1, … 𝑇𝑤 (A2) 

𝑚𝑖𝑛 𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐷 = ∑ (
𝑆𝑡

𝐷 − 𝑆𝑚𝑖𝑛𝑝
𝐷

𝑆𝑚𝑎𝑥
𝐷

)

2

+ 𝐶𝑃  

𝑇𝑠

𝑡=1

 ∀𝑡 = 1, … 𝑇𝑠 (A3) 

𝑚𝑖𝑛 𝑓𝑝𝑜𝑤𝑒𝑟𝐷 = ∑ (
𝑃𝑤𝑚𝑎𝑥

𝐷 − 𝑃𝑤𝑡
𝐷

𝑃𝑤𝑚𝑎𝑥
𝐷

)

2𝑇

𝑡=1

+ 𝐶𝑃 ∀𝑡 = 1, … 𝑇 (A4) 

𝑚𝑖𝑛 𝑓𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝐷 = ∑ (
𝑅𝑡

𝐷 − 𝑅𝑚𝑎𝑥
𝐷

𝑅𝑚𝑎𝑥
𝐷

)

2𝑇

𝑡=1

+ 𝐶𝑃 ∀𝑡 = 1, … 𝑇 (A5) 

𝐶𝑃 = ∑ 𝐶𝑖
𝑒

𝑃𝑁

𝑖=1

 ∀𝑖 = 1, … 𝑃𝑁 (A6) 

𝑃𝑤𝑡
𝐷 = 𝜂𝑒

𝐷 . 𝛾𝑤 . 𝑄𝑡
𝑡𝑢𝐷 . 𝐻𝑡

𝑛𝐷  ∀𝑡 = 1, … 𝑇 (A7) 
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Table A2. Formulae parameter definitions used in Table A1 

Symbol Definition Symbol Definition 

𝑆𝑡
𝐷, 𝑆𝑡+1

𝐷  Reservoir water storage at 

time t and t+1 

𝑃𝑤𝑚𝑎𝑥
𝐷  Maximum hydropower 

generation 

𝑆𝑚𝑎𝑥
𝐷  Maximum reservoir storage 𝐶𝑃 Total penalty factor 

𝑆𝑚𝑖𝑛𝑝
𝐷  Minimum water storage for 

hydropower generation 

𝐶𝑖
𝑒 Penalty factor for the ith 

penalty function 

𝐼𝑡
𝐷 Reservoir inflows at time t e Any positive integer 

𝑅𝑡
𝐷  Reservoir releases at time t 𝑃𝑁 Number of penalty functions 

𝑅𝑚𝑎𝑥
𝐷  Maximum reservoir releases 𝜂𝑒

𝐷  Hydropower plant efficiency 

𝐸𝑡
𝐷 Reservoir Evaporation rate at 

time t 

𝛾𝑤 Water specific weight  

𝑃𝑡
𝐷  Direct rainfall on reservoir 

lake at time t 

𝑄𝑡
𝑡𝑢𝐷  Turbine discharge at time t 

𝑆𝐸𝑡
𝐷  Reservoir seepage losses at 

time t 

𝐻𝑡
𝑛𝐷  Reservoir water net head at 

time t 

𝐺𝑅𝑡
𝐷 Reservoir recharges from 

groundwater at time t 

𝑇, 𝑇𝑤 , 𝑇𝑠 Total, winter, and summer 

time 

𝑃𝑤𝑡
𝐷 Hydropower generation at 

time t 
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1.2. Between Two Dams (Middle Part) 

The management formulae in the middle mart of the river basin after Derbendikhan 

dam are presented in Table A3, while its definitions are shown in Table A4 

 

Table A3. Middle part region objectives functions and water balance equations 

Functions  No. 

𝑚𝑖𝑛 𝑓𝐷𝑒𝑙−𝑆𝑊 = ∑ (
𝑃𝐷𝑡 − 𝐷𝑒𝑙𝑡

𝑀

𝑃𝐷𝑚𝑎𝑥
)

2𝑇

𝑡=1

+ 𝐶𝑃 
∀𝑡 = 1, … 𝑇 (A8) 

𝑚𝑖𝑛 𝑓𝐷𝑒𝑙−𝑆𝑊−𝐺𝑊 = ∑ (
𝑃𝐷𝑡 − (𝐷𝑒𝑙𝑡

𝑀 + 𝐺𝑡
𝑀)

𝑃𝐷𝑚𝑎𝑥
)

2𝑇

𝑡=1

+ 𝐶𝑃 
∀𝑡 = 1, … 𝑇 (A9) 

𝑚𝑖𝑛 𝑓𝑊𝐿 = ∑ (
𝐷𝑃𝑡

𝑚𝑎𝑥𝑆𝑀
)

2

+ 𝐶𝑃

𝑇

𝑡=1

 
∀𝑡 = 1, … 𝑇 (A10) 

𝑚𝑖𝑛 𝑓𝑚𝑖𝑛𝑖𝑛𝑔 = ∑ (
𝑆𝑠𝑡

𝑆𝑎𝑞,𝑡
)

2

+ 𝐶𝑃

𝑇

𝑡=1

 
∀𝑡 = 1, … 𝑇 (A11) 

𝐺𝑡
𝑀 = ∑ 𝑄𝑤,𝑗

𝑁𝑡

𝑗=1

 

∀𝑡 = 1, … 𝑇 

∀𝑗 = 1, … 𝑁𝑡 

(A12) 

𝑆𝑀𝑡+1 = 𝑆𝑀𝑡 + 𝑃𝑡 + 𝐼𝑅𝑡 − 𝐸𝑇𝑡 − 𝑅𝑂𝑡 − 𝐷𝑃𝑡 ∀𝑡 = 1, … 𝑇 (A13) 

𝐷𝑃𝑡 = 𝑆𝑀𝑡+1 − 𝑚𝑎𝑥𝑆𝑀 at 𝑆𝑀𝑡+1 > 𝑚𝑎𝑥𝑆𝑀 ∀𝑡 = 1, … 𝑇 (A14) 

𝑆𝑎𝑞,𝑡+1 = 𝑆𝑎𝑞,𝑡 + 𝑇𝑅𝑡 − 𝐺𝑡 ∀𝑡 = 1, … 𝑇 (A15) 
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Table A4. Formulae parameter definitions used in Table A3 

Symbol Definition Symbol Definition 

𝑃𝐷𝑡 Projects water demands at 

time t 

𝑁𝑡 number of operated wells at 

time t 

𝑃𝐷𝑚𝑎𝑥 Maximum projects water 

demands 

𝑆𝑀𝑡, 

𝑆𝑀𝑡+1 

Soil moisture content at time t 

and t+1 

𝐷𝑒𝑙𝑡
𝑀 Water delivery discharge at 

time t 

𝑚𝑎𝑥𝑆𝑀 Maximum soil moisture 

content 

𝐺𝑡
𝑀 Groundwater pumping 

discharge at time t 

𝑃𝑡 Rainfall rate at time t 

𝐷𝑃𝑡 Water deep percolation at 

time t 

𝐼𝑅𝑡 Irrigation water rate at time t 

𝑆𝑠𝑡 Groundwater storage at time 

t 
𝐸𝑇𝑡 Evapotranspiration rate at time 

t 

𝑆𝑎𝑞,𝑡 aquifer storage at time t 𝑅𝑂𝑡 Runoff rate at time t 

𝑄𝑤,𝑗 pumping discharge for the jth 

well 

𝑇𝑅𝑡 Aquifer recharge at time t 
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1.3. Himren Dam: 

The operation objectives and equations for Himren dam are presented in Table 

A5. Parameters definitions are illustrated in Table A6.  

Table A5. Formulae used for Himren dam operation management (Al-Jawad et al., 

2018b) 

Functions  No. 

𝐼𝑡
𝐻 = 𝑅𝑡

𝐷 + 𝑅𝑂𝐹𝑡
𝑀 + 𝑄𝑆𝑇𝑡

𝑀 −  𝐷𝑈𝑡
𝑀 − 𝐷𝑒𝑙𝑡

𝑀 ∀𝑡 = 1, … 𝑇 (A16) 

𝑆𝑡+1
𝐻 = 𝑆𝑡

𝐻 + 𝐼𝑡
𝐻 − 𝑅𝑡

𝐻 − 𝐸𝑡
𝐻 + 𝑃𝑡

𝐻 − 𝑆𝐸𝑡
𝐻 + 𝐺𝑅𝑡

𝐻 ∀𝑡 = 1, … 𝑇 (A17) 

𝑚𝑖𝑛 𝑓𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝐻 = ∑ (
𝑅𝑡

𝐻 − 𝐷𝐷𝑡
𝐻

𝐷𝐷𝑚𝑎𝑥
𝐻

)

2𝑇

𝑡=1

+ 𝐶𝑃 ∀𝑡 = 1, … 𝑇 (A18) 

𝑚𝑖𝑛 𝑓𝑤𝑖𝑛𝑡𝑒𝑟𝐻 = ∑ (
𝑆𝑚𝑎𝑥

𝐻 − 𝑆𝑡
𝐻

𝑆𝑚𝑎𝑥
𝐻

)

2

  

𝑇𝑤

𝑡=1

+ 𝐶𝑃 ∀𝑡 = 1, … 𝑇𝑤  (A19) 

𝑚𝑖𝑛 𝑓𝑠𝑢𝑚𝑚𝑒𝑟𝐻 = ∑ (
𝑆𝑡

𝐻 − 𝑆𝑚𝑖𝑛𝑝
𝐻

𝑆𝑚𝑎𝑥
𝐻

)

2

+ 𝐶𝑃  

𝑇𝑠

𝑡=1

 ∀𝑡 = 1, … 𝑇𝑠  (A20) 

𝑚𝑖𝑛 𝑓𝑝𝑜𝑤𝑒𝑟𝐻 = ∑ (
𝑃𝑤𝑚𝑎𝑥

𝐻 − 𝑃𝑤𝑡
𝐻

𝑃𝑤𝑚𝑎𝑥
𝐻

)

2𝑇

𝑡=1

+ 𝐶𝑃 ∀𝑡 = 1, … 𝑇 (A21) 

𝑚𝑖𝑛 𝑓𝑟𝑖𝑣𝑒𝑟𝐵 = ∑ (
𝑄𝑡

𝑟 − 𝑄𝑡+1
𝑟

𝑄𝑚𝑎𝑥
𝑟

)

2𝑇

𝑡=1

+ 𝐶𝑃 ∀𝑡 = 1, … 𝑇 (A22) 

𝑚𝑖𝑛 𝑓𝑇𝐷𝑆−𝐷𝑌 = ∑ (
𝑇𝐷𝑆𝑡

𝑟2

𝑇𝐷𝑆𝑡
𝑃𝑆)

2𝑇

𝑡=1

+ 𝐶𝑃 ∀𝑡 = 1, … 𝑇 (A23) 

𝑚𝑖𝑛 𝑓𝐷𝑌−𝐵𝐶𝐻 = ∑ (
𝐵𝐿𝑖,𝑡=0 − 𝐵𝐿𝑖,𝑡=𝑇

∆𝐵𝐿𝑚𝑎𝑥
)

2𝑁𝑆

𝑖=1

+ 𝐶𝑃 ∀𝑡 = 1, … 𝑇 (A24) 

𝑚𝑖𝑛 𝑓𝑇𝐷𝑆−𝑇𝑅 = ∑ (
𝑇𝐷𝑆𝑡

𝑅

𝑇𝐷𝑆𝑚𝑎𝑥
)

2𝑇

𝑡=1

+ 𝐶𝑃 ∀𝑡 = 1, … 𝑇 (A25) 

𝑇𝐷𝑆𝑡
𝑟2 =

𝑇𝐷𝑆𝑡
𝑟1 × 𝑄𝑡

𝑟1 + 𝑇𝐷𝑆𝑡
𝑃𝑆 × 𝑄𝑡

𝑃𝑆

𝑄𝑡
𝑟1 + 𝑄𝑡

𝑃𝑆  ∀𝑡 = 1, … 𝑇 (A26) 

𝑃𝑤𝑡
𝐻 = 𝜂𝑒

𝐻 . 𝛾𝑤 . 𝑄𝑡
𝑡𝑢𝐻 . 𝐻𝑡

𝑛𝐻 ∀𝑡 = 1, … 𝑇 (A27) 
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𝑇𝐷𝑆𝑡
𝑅 =

𝑇𝐷𝑆𝑡
𝑟2 × 𝑄𝑡

𝑟2 + 𝑇𝐷𝑆𝑡
𝑟3 × 𝑄𝑡

𝑟3

𝑄𝑡
𝑟2 + 𝑄𝑡

𝑟3  ∀𝑡 = 1, … 𝑇 (A28) 

𝐵𝐿𝑖,𝑡+1 = 𝐵𝐿𝑖,𝑡 −
∆𝑇𝑡

0.5𝛾𝑚𝑊𝑖
 
(𝐵𝐷𝑖−1,𝑡 − 𝐵𝐷𝑖+1,𝑡)

(𝐿𝑢,𝑡 + 𝐿𝑑,𝑡)
 

∀𝑡 = 1, … 𝑇 

∀𝑖 = 1, … 𝑁𝑆 
(A29) 

𝐵𝐷𝑖,𝑡 =
7000 𝐻𝐺𝑖,𝑡

3 2⁄

√𝑑𝑠

. (𝑞𝑖,𝑡
𝑟 − 𝑞𝑖,𝑡

𝑐 ) 
∀𝑡 = 1, … 𝑇 

∀𝑖 = 1, … 𝑁𝑆 
(A30) 

𝑞𝑖,𝑡
𝑐 =

1.944 × 10−5. 𝑑𝑠

𝐻𝐺𝑖,𝑡
4 3⁄

 
∀𝑡 = 1, … 𝑇 

∀𝑖 = 1, … 𝑁𝑆 
(A31) 

𝐻𝐺𝑖,𝑡 =
𝑛2(𝑄𝑡

𝑟)2

𝐴𝑖,𝑡
2 𝐻𝑅𝑖,𝑡

4 3⁄
 

∀𝑡 = 1, … 𝑇 

∀𝑖 = 1, … 𝑁𝑆 
(A32) 

1 Carriaga and Mays (1995),  Nicklow and Mays (2001) 
2 Schoklisch formula (1934) (Yang 1996 in Ali 2016) 

 

Table A6. Parameter definitions for Himren dam system approach 

Symbol Definition Symbol Definition 

𝐼𝑡
𝐻 Reservoir inflows at time t 𝑇𝐷𝑆𝑡

𝑟3 Total dissolved solids for 

Tigris river before the 

confluence at time t 

𝐷𝑈𝑡
𝑀 Domestic use water 

requirement at time t 
𝑇𝐷𝑆𝑡

𝑃𝑆 Total dissolved solids for 

WWTP at time t 

𝑅𝑂𝐹𝑡
𝑀 Runoff rate at time t 𝑇𝐷𝑆𝑡

𝑅 Total dissolved solids for 

Tigris river after the 

confluence at time t 

𝑄𝑆𝑇𝑡
𝑀 Seasonal stream discharge at 

time t 
𝑇𝐷𝑆𝑚𝑎𝑥 Maximum total dissolved 

solids for Tigris river 

𝑅𝑡
𝐻  Reservoir releases at time t 𝐵𝐿𝑖,𝑡=0 Initial bed river level 

𝐸𝑡
𝐻 Reservoir Evaporation rate at 

time t 

𝐵𝐿𝑖,𝑡=𝑇  Final Bed river level 

𝑃𝑡
𝐻 Direct rainfall on reservoir 

lake at time t 

∆𝐵𝐿𝑚𝑎𝑥 Maximum allowable river 

bed changes 

𝑆𝐸𝑡
𝐻 Reservoir seepage losses at 

time t 

𝐵𝐿𝑖,𝑡, 

𝐵𝐿𝑖,𝑡+1 

Bed river level at section i at 

time t and t+1, respectively 

𝐺𝑅𝑡
𝐻 Reservoir recharges from 

groundwater at time t 

𝐵𝐷𝑖,𝑡, 

𝐵𝐷𝑖+1,𝑡, 

𝐵𝐷𝑖−1,𝑡 

Bed river sediment discharge 

at time t for section i, i+1 

and i-1, respectively 
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𝐷𝐷𝑡
𝐻 Downstream water demands 

at time t 

∆𝑇𝑡 Time interval 

𝐷𝐷𝑚𝑎𝑥
𝐻  Maximum downstream water 

demands 

𝛾𝑚 Density of water-solid 

mixture 

𝑆𝑡
𝐻  Reservoir water storage at 

time t 

𝑊𝑖  River bed width at section i 

𝑆𝑚𝑎𝑥
𝐻  Maximum reservoir water 

storage 

𝐿𝑢,𝑡, 

𝐿𝑑,𝑡 

Length of river section 

between the current section 

and the upstream and 

downstream sections, 

respectively 

𝑆𝑚𝑖𝑛𝑝
𝐻  Minimum water storage for 

hydropower generation 

𝑞𝑖,𝑡
𝑟  River discharge per unit 

width 

𝑃𝑤𝑡
𝐻 Power generation at time t 𝑞𝑖,𝑡

𝑐  Critical discharge per unit 

width 

𝑃𝑤𝑚𝑎𝑥
𝐻  Maximum hydropower 

generation 

𝐻𝐺𝑖,𝑡 River hydraulic gradient at 

section i and time t 

𝑄𝑡
𝑟, 

𝑄𝑡+1
𝑟  

Diyala river discharge at time 

t and t+1, respectively 

𝑑𝑠 Diameter size of bed river 

𝑄𝑚𝑎𝑥
𝑟  Maximum Diyala river 

discharge 

𝑛 Manning coefficient 

𝑄𝑡
𝑟1, 

𝑄𝑡
𝑟2 

Diyala river discharge before 

and after the WWTP at time t, 

respectively 

𝐴𝑖,𝑡 Wet cross-section area of the 

river at section i and time t 

𝑄𝑡
𝑟3 Tigris river discharge at time t 𝐻𝑅𝑖,𝑡 Wet hydraulic radius for the 

river at section i and time t 

𝑄𝑡
𝑃𝑆 Wastewater treatment plant 

discharge at time t 

T, Tw, 

Ts 

Total, winter and summer 

time 

𝑇𝐷𝑆𝑡
𝑟1 Total dissolved solids for 

Diyala river before the 

WWTP at time t 

NS Number of river cross 

sections 

𝑇𝐷𝑆𝑡
𝑟2 Total dissolved solids for 

Diyala river after the WWTP 

at time t 

  

 

Additionally, two objectives functions for Derbendikhan and Himren dams 

were adopted to minimize the physical (𝐶𝐷−𝐻−𝑃ℎ) violations, which can be expressed 

as follows, respectively: 
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𝑚𝑖𝑛 𝑓𝑝ℎ𝑦−𝑀 = 𝐶𝐷−𝐻−𝑃ℎ  (A33) 

While the final objective function was to minimize the total system violation (𝐶𝑝): 

𝑚𝑖𝑛 𝑓𝑀𝐷 = 𝐶𝑝  (A34) 

 

Additional parameters used in the optimization model are presented in Table 

A7 below. 

Table A7. Optimization model parameters for the Diyala River basin system (SGI et 

al., 2014) 

Parameter Value Unit  Parameter Value Unit 

𝜂𝑒
𝐷  78 %  𝑄𝑡

𝑃𝑆 151 m3/s 

𝜂𝑒
𝐻 88 %  𝑊𝑖  (mean) 80.0 m 

𝛾𝑤 1000 KN/m3  𝑑𝑠 20.0 - 0.177 mm 

𝛾𝑚 14862 kg/m3  NS 41 - 

𝑇𝐷𝑆𝑡
𝑟1 at 

𝑄𝑚𝑖𝑛
𝑟  

22201  mg/l  TW October – 

March 

Month 

𝑇𝐷𝑆𝑡
𝑃𝑆 50001 mg/l  TS April - 

September 

Month 

𝑇𝐷𝑆𝑈 5003 mg/l  ∆𝑇𝑡  1 Month 
1 Kubba et al. (2014), 2 Nicklow and Mays (2001), 3 Saleh (2013) 

 

 

2. AREA-STORAGE AND HEAD-STORAGE RELATIONSHIPS OF 

RESERVOIRS 

Polynomial equations (Equation A35 and A36) for the area-storage and head-

storage relation were constructed depending on the design data available in the 

NCWRM. For Himren dam, the evaporation losses from the reservoir surface area at 

time t (𝐴𝑟𝑡
𝐻) in meter square, which can be expressed as follows, where the storage 

(𝑆𝑡
𝐻) in million cubic meters (MCM): 

𝐴𝑟𝑡
𝐻 = 2.3 × 107 + 156915.48 × 𝑆𝑡

𝐻 − 16.369 × (𝑆𝑡
𝐻)2

+ 0.0012 × (𝑆𝑡
𝐻)3 

 (A35) 
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Equation A36 is used to calculate the water head in the reservoir for 

hydropower generation, where (𝐻𝑡
𝐻) is Himren water level in meters (m) and (St

H) is 

reservoir storage in MCM:  

𝐻𝑡
𝐻 = 86.51 + 0.031 × 𝑆𝑡

𝐻 − 4.3710−5 × (𝑆𝑡
𝐻)2 + 4.3310−8 × (𝑆𝑡

𝐻)3

−  2.5510−11 × (𝑆𝑡
𝐻)4 + 8.6310−15 × (𝑆𝑡

𝐻)5

− 1.5410−18 × (𝑆𝑡
𝐻)6 + 1.1310−22 × (𝑆𝑡

𝐻)7 

(A36) 

where 

𝑆𝑡
𝐻 ∈ [𝑆𝑚𝑖𝑛

𝐻 , 𝑆𝑚𝑎𝑥
𝐻 ] for Equations A35 and A36 

 

Consistency, Derbendikhan dam formulae are as follows: 

𝐴𝑟𝑡
𝐷 = 5.26 × 106 + 34458.8 × 𝑆𝑡

𝐷 − 9.065 × (𝑆𝑡
𝐷)2 + 0.00903

× (𝑆𝑡
𝐷)3 − 1.47061 × 10−6 × (𝑆𝑡

𝐷)4 
 (A37) 

 

𝐻𝑡
𝐷 =

492.91869

(1 + 𝑒(−0.00102×(𝑆𝑡
𝐷+1597.48638))

 
 (A38) 

where 

𝑆𝑡
𝐷 ∈ [𝑆𝑚𝑖𝑛

𝐷 , 𝑆𝑚𝑎𝑥
𝐷 ] for Equations A37 and A38 

 

 

2. OPTIMUM RIVER BASIN MANAGEMENT RESULTS 

Detail summary of the adopted river basin optimum management solutions 

for all alternatives are presented in Table A8. 
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Table A8. Summary of optimum solutions for the Diyala river basin system for the adopted alternatives. The scenarios refer to the river basin inflows 

alternatives, while case 1 and case 2 refers to the surface water and surface-groundwater models, respectively. 

  Scenario-1 Scenario-2 

  Case 1  Case 2  Case 1 Case 2 

  Min. Max. Av. Med. Std. Min. Max. Av. Med. Std. Min. Max. Av. Med. Std. Min. Max. Av. Med. Std. 
Area 

U
p

p
er

 D
am

 16.92 121.34 59.75 52.04 29.22 15.72 123.18 57.20 47.87 29.09 17.04 118.58 54.61 43.71 28.63 16.92 121.94 58.90 52.37 30.18 

Head 434.07 485.81 467.62 469.41 13.77 432.01 486.01 466.51 467.12 13.54 434.27 485.51 464.88 464.50 14.40 434.06 485.88 466.86 469.58 14.13 

Power 20.93 249.00 68.60 45.23 52.30 22.36 249.00 68.06 44.80 54.10 21.52 247.44 54.32 41.00 42.40 21.72 249.00 55.45 42.07 40.98 

Storage 361.12 2544.07 1420.85 1337.63 605.98 322.74 2571.65 1367.51 1241.77 600.10 365.01 2502.67 1308.05 1141.41 607.36 361.02 2553.12 1397.06 1345.18 625.61 

Releases 130.31 877.40 259.72 164.74 185.63 129.63 878.60 260.07 173.28 189.80 129.68 821.41 212.64 148.58 148.36 129.67 872.90 211.95 156.29 139.61 

FQ-DES  1.21 74.27 47.22 52.28 25.34 1.21 74.27 47.22 52.28 25.34 1.21 74.27 47.22 52.28 25.34 1.21 74.27 47.22 52.28 25.34 

Q-SUR 

M
id

d
le

 p
ar

t 0.00 74.27 27.82 24.26 19.27 0.00 74.17 26.36 21.80 21.53 0.26 73.56 23.28 20.00 17.92 0.00 74.23 26.32 20.97 23.53 

Q-GW - - - - - 0.02 71.75 17.68 7.76 20.72 - - - - - 0.02 74.27 18.29 4.80 22.79 

N-wells - - - - - 1.00 3074.00 757.67 332.50 887.91 - - - - - 1.00 3182.00 783.54 205.50 976.48 

TWD 0.00 74.27 27.82 24.26 19.27 0.03 74.27 44.05 45.64 26.11 0.26 73.56 23.28 20.00 17.92 0.02 74.27 44.61 45.73 26.10 

ST-GW - - - - - 7695.25 9332.04 8779.67 8867.25 367.03 - - - - - 7673.74 9254.06 8563.98 8486.75 412.46 

Inflows 

M
id

d
le

 d
am

 38.85 872.48 217.88 134.89 182.68 37.27 873.49 219.69 141.17 192.42 37.63 763.47 175.34 118.15 149.03 30.28 886.28 171.61 125.18 144.94 

Area 40.64 319.69 185.98 184.14 64.08 39.17 315.87 192.83 199.58 69.53 38.93 287.07 160.64 150.34 55.65 50.17 302.07 175.95 171.45 54.84 

Head 89.48 105.24 99.10 99.22 3.02 89.26 105.02 99.34 99.89 3.39 89.23 103.55 97.96 97.71 2.70 90.75 104.27 98.71 98.66 2.55 

Power 7.60 48.17 15.74 11.47 9.74 7.51 47.96 15.70 11.19 9.91 7.50 33.60 11.80 10.54 4.07 7.51 47.73 11.58 10.04 4.74 

Storage 113.76 2377.74 1195.35 1154.14 520.65 104.17 2339.48 1255.96 1280.23 564.95 102.59 2058.08 987.03 888.49 440.76 176.35 2203.06 1107.42 1052.71 439.87 

Releases 98.80 508.13 183.30 138.14 101.17 98.86 509.39 183.85 133.10 109.35 99.75 441.43 145.95 131.66 45.37 98.57 507.12 139.21 121.10 51.44 

Q-river 

L
o
w

er
 p

ar
t 

30.86 464.75 70.66 42.14 69.30 30.86 478.41 77.02 41.01 83.13 30.91 304.63 51.25 39.16 34.25 30.85 250.49 50.25 37.64 34.20 
FQ-DES 30.46 313.34 191.00 200.13 87.45 30.46 313.34 191.00 200.13 87.45 30.86 464.75 70.66 42.14 69.30 30.46 313.34 191.00 200.13 87.45 

Q-SUR 30.46 313.34 112.64 96.38 63.28 30.46 313.34 106.83 86.17 61.32 30.46 268.43 94.70 90.18 39.45 30.46 297.82 88.96 80.28 40.43 

TDS-B 595.93 2220.00 1670.13 1769.70 518.35 593.19 2220.00 1679.59 1805.49 546.03 646.35 2220.00 1807.81 1906.81 458.21 695.51 2220.00 1821.41 1975.78 460.27 

TDS-A 733.63 3585.25 2569.44 2736.61 801.79 727.16 3590.29 2572.61 2780.42 851.02 850.66 3588.24 2773.77 2900.55 691.18 961.20 3589.53 2799.88 2979.19 699.39 

TDS-T 530.88 613.67 573.54 574.77 19.94 530.83 613.39 573.30 575.42 20.07 531.24 613.45 573.65 574.76 19.81 527.96 613.33 573.36 574.63 19.79 

|Bed-C| 0.00 1.09 0.30 0.22 0.28 0.00 1.20 0.33 0.24 0.31 0.00 0.79 0.22 0.16 0.20 0.00 0.77 0.22 0.16 0.20 

Upper dam = Derbendikhan dam; Middle part = between two dams; Middle dam = Himren dam; Lower part = downstream river after the Himren dam; FQ-DES: Design water delivery (m3/month 

×106); Q-SUR: surface water discharges to the farms (m3/month ×106);  N-wells: No. of wells;  Q-GW: groundwater discharge (m3/month×106);  ST-GW: groundwater storage (m3/month ×106);  

TWD: Total water delivery to the farms (m3/month ×106); Q-river: river discharge (m3/month ×106);  TDS-B: TDS concentration before WWTP(mg/l);  TDS-A: TDS concentration after 

WWTP(mg/l);  TDS-T: TDS concentration in Tigris river (mg/l); |Bed-C|: absolute river bed changes (m). The reservoir releases, storage and inflows are in m3/month ×106 units. The reservoir 

surface areas are in km2. The hydropower generation are in Mw. The reservoir water head is in m.a.s.l. 
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8.4 Further Discussion 

The results also demonstrate a minor impact on river morphology achieved in 

all considered alternatives. The absolute riverbed changes (average and median) did 

not exceed 0.5 m, while the maximums were less than or equal 1.2 m in all cases. River 

morphology is directly proportion to river velocity, which was related to reservoir 

releases in a managed river basin. Since future water scarcity is mapped due to 

upstream development projects, reservoir releases are reduced to maintain other 

multidisciplinary sectors demands, which mitigate sediment degradation and/or 

aggregation process in the river. Here, due to lack in river morphology detail database 

for the river lower part zone (e.g. recent river cross sections survey, bed grain size 

distribution analysis, etc.), a simple sediment-load transport mathematical model was 

adopted, since only grain size and river bed width are required. However, this formula 

shows promising results at Tigris River (Ali et al., 2012), as it has consistent geological 

formation (flood plain deposits; Gravel, sand, silt, and clay) (GEOSURV, 1993). The 

key point is to observe the effectiveness of river morphology management model as 

an objective on reservoir management model, and its degree of conflicts with other 

major objectives like hydropower generation, agriculture projects’ demands, flood risk 

and river quality management.     

The pollutant source, represented by Al-Rustumiya wastewater treatment plant, 

has severe impact on Diyala River water quality. The average and median values of 

river TDS concentration exceeded 2500 mg/l for all alternatives. Since the mixed 

pollutant concentration depends on the quantity and quality of the mixed sources, the 

government should consider future policy to enhance the plant’s remediation 

performance to mitigate its impact on river environment. Although the average and 
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median water quality in Tigris River did not exceed the preferable value (600 mg/l of 

TDS) in all cases, quality deterioration may occur in downstream region in case of 

water scarcity in Tigris River, accordingly Himren releases should be reduced. 

According to the final findings, it can be concluded that the proposed approach 

can be used to diagnose the sustainability of the embedded objectives and resources of 

the regional-scale system under consideration, which fulfils the research’s aim.   
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8.5 Conclusions 

In this chapter, a comprehensive approach was proposed, which combines 

common social-environmental-economic objectives and available water resources at a 

river basin level. The approach is implemented for the entire Diyala River basin using 

-DSEA optimization algorithm to improve its environment its potential economic 

revenues in different sectors. Two scenarios were implemented to assess the impacts 

of future climate changes and upstream development projects in Iran on the River basin 

environment. The comprehensive approach provides decision variables for sustainable 

management for the entire river basin resources for considerations including power 

generation, storages, and river discharges.  Execution time (by the computer) is not a 

limitation for the model, and it was not greatly affected by complexity.   Accordingly, 

the implementation of a comprehensive approach is evident in water resources 

management strategy. Combining groundwater exploitation with the OP-IWRM 

approach succeeds to suggest that improvements water delivery fulfilment might be 

increased from 50% to more than 85% in the middle part of the river basin with minor 

impact on groundwater storage. Furthermore, the OP-IWRM succeed to address water 

exploitation uncertainty in the middle part of the river basin and presents water 

consumption barriers for the decision makers consider for future management policy.    

This approach demonstrates the significant impact of transboundary water 

development plans on the river basin system. The gross Derbendikhan dam releases 

and power generation are reduced from about 102.8 to 84.0×109 m3 and from about 

27.0 to 21.8 GW, respectively. For Himren dam system, the inflows, releases and 

power generating are also depleted from about 86.5 to 68.0×109 m3, 73.0 to 56.0×109 

m3, and 6.2 to 4.6 GW, respectively. While the river discharge in the lower part of the 



Chapter Eight   Comprehensive Integrated Water Resources Management Approach 

 

8-64 

 

river basin was reduced from 30.0 to 20.0×109 m3, hence the correlated water delivery 

declined from about 43.0 to 36.0×109 m3. The deficit in delivered water in this part is 

about more than 50% for all adopted alternatives.  

The value of this OP-IWRM approach is evident; it produced optimum 

sustainable management strategies using the common Social, Environmental, and 

Economic objectives; and the existing surface and groundwater resources for a river 

basin system under different scenarios. It is possible to add more objectives for 

additional sectors like: governmental legislation, human resources development, 

economic revenues. Hence, the proposed methodology reactivates the implementation 

of the IWRM principles. 
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8.6 Recommendations 

Exploitation of the middle basin has significant impact on the water resources of 

the lower basin, hence a policy should be considered to reduce water requirements to 

mitigate the impact on the lower part of the basin. Also, similar policy may be 

considered for the lower basin farming practice.  

- Replace the traditional irrigation method with new recent techniques such as drip 

irrigation system, if applicable, to reduce allocated and infiltrated water losses. 

- Replace summer crops with higher water demands with those with lower water 

demands to reduce water demands in hot season. 

- Reduce crop pattern’s summer plan to reduce water demands in the hot season. 

- Rehabilitate water conveyance infrastructure to reduce water losses over water 

delivery process. 

New government policy should include restrictions in water exploitation in the 

middle part of the basin for farms and remove any unauthorized outlets on the river 

and Himren reservoir lake. The lower basin’s water demands could be improved by 

using the existing saline groundwater after specific treatment or mixing with fresh 

surface water. Regarding development plans in upstream river basin, the government 

should consider a policy to set water sharing agreements to mitigate water 

monopolizing, which may cause severe drought within Diyala river basin and water 

resources inside Iraq. The current research results could be adopted in the negotiation 

process for this agreement. 
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CHAPTER NINE 
 

CONCLUSIONS AND 

RECOMMENDATIONS 
 

9.1 Restatement of Research Aim and Objectives 

The aim of the research was to develop a holistic, or comprehensive water 

resources management approach for a river system. Optimization techniques and 

IWRM principles are employed to generate long-term flow regime strategy under 

sustainable development framework. Hence, the approach integrates all the common 

sectors (e.g., society, environment, and economy) with the available water resources 

(e.g., surface water, groundwater and reused water) over water control systems (e.g., 

dams, barrages, pipes, and pumps). The following steps were achieved to address the 

research’s aim in a concise form: 

- a review of optimization techniques and their potential drawbacks; 

- performance assessment is achieved for the nominated algorithm under different 

problem environments, including Derbendikhan dam; 

- a new methodology of optimization algorithm is developed to tackle previous 

algorithms’ drawbacks; 

- Diyala River basin is selected as a real-world case study, having multidisciplinary 

problems to develop and evaluate the approach; 

- groundwater flow and management models are developed for the middle region in 

the basin to evaluate sustainable use of aquifer storage; 
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- optimum flow-regime management strategy for Himren dam system is achieved to 

consider social and environmental objectives, under different inflows scenarios; 

and 

- finally, developed the comprehensive approach of Diyala River basin using IWRM 

principles coupled with optimization algorithm to improve river basin environment 

and economic revenues under different scenarios. 

 

9.2 Conclusions and Recommendations 

1- From Chapter four, it was concluded that one of the Borg MOEA key element 

techniques show misleading behaviour, based on algorithm’s assessment using 

real-word reservoir operation problem, compare with GA. Thus, further 

assessment and insight investigation are recommended to enhance and /or 

develop an advance MOEA’s methodology to address any potential 

drawbacks. 

2- From Chapter five, previous recommendation from Chapter four refer to 

enhancement and development is needed for MOEAs. Thus, it was concluded 

that the methodology proposed in new algorithm (-DSEA) is highly 

competitive. Good results were achieved, based on the computational 

efficiency and quality of the solutions found, based on intensive assessed in 

comparison with the state-of-the-art Borg MOEA using a set of commonly 

implemented benchmark test function, and a real-word reservoir management 

problem.  It is recommended to involve other more complex real-world 

problems that may be computationally expensive for future works.  
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3- From Chapter six, based on previous recommendation from Chapter five, it 

was concluded that, the -DSEA provided more robust results when compared 

to the Borg MOEA for almost all caese. The -DSEA approaches’ main 

advantage over the Borg MOEA is reliability, it repeatedly produced optimum 

solutions over computational budget replication. This was based on solving 

groundwater management problem. Although both algorithms results 

demonstrate unsustainability in groundwater resource management for both 

irrigation systems, the computational results illustrate results from the -DSEA 

were more robust. The storage depletion was 25% for ten years’ water 

exploitation, which increase to about 60% for twenty-five years. The aquifer 

storage was completely exhausted after forty years in both alternatives due to 

low aquifer recharge, which caused by low rainfall and high evapotranspiration 

rates (semi-arid zone). The probability of sustainable groundwater resource 

management was modelled for the next half-century by reducing water delivery 

demands. The results show possible sustainable storage budget using open 

furrows system can be achieved for the next twenty-five years, and thirty-three 

years for drip system with 45% demand’s yield for both. Hence, decision 

makers (the Iraqi government) should consider future policy to reduce water 

demands by either changing crops types, or reducing farms areas. Also, the use 

of drip system for water allocation should be considered in the policy since it 

has less impacts on groundwater yields. However, crop yield and productivity 

should consider over the alternatives. Conjunctive use with surface water and 

water harvesting may consider also to mitigate groundwater depletion and 

maintain its sustainability. 



Chapter Nine       Conclusions and Recommendations 

 

9-4 
 

4- From Chapter seven, as recommended in Chapter six, it was concluded that 

The algorithms computational analysis results show the -DSEA outperformed 

the Borg MOEA in almost all cases, hence the -DSEA results were adopted. 

Moreover, the AAC approach succeed to overcome the complexity of the 

problem, boosting algorithm convergence toward possible optimum solutions 

and avoiding algorithm stagnation in local optima. This was based on solving 

reservoir management problem, as a case study. The results show improvement 

in reservoir system environments in all sectors considered. The adopted model 

for the current case study considers only the common management objectives 

based on the available database. However, other issues like water influent and 

affluent of reservoir lake, ecosystem and navigation objectives, etc. could be 

implemented for future works. Finally, the OSEF-AAC approach can be 

adopted to solve river basin management problems to generate optimum socio-

environmental flows regime. These provide decision makers a trade-off for 

developing a robust management strategy towards achieving better economic 

revenues for the water-energy-food nexus of a river basin. 

In order to improve the lower Diyala river basin environment, the following 

recommended policy changes should be considered for different sectors: 

 Environmental Sectors: Monitoring and mitigation strategies must be 

developed to solve the high pollutant concentrations from Al-Rustumiya 

wastewater treatment plan outflows, which increases pollutant levels in Diyala 

and Tigris Rivers waters and the remediation costs of downstream water supply 

projects. Moreover, detail hydrological studies and field surveys are needed to 

explore and control sediment transport in the river. 
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 Social Sector: Adopt developed irrigation techniques (e.g. sprinkles, drips) to 

reduce losses due to crop water allocations, evaporation and infiltration. Also, 

change summer crop types or reduce crop patterns to reduce water exploitation 

in the summer for this part of the river basin. Further, rehabilitate water 

conveyance infrastructure (e.g. main channels, outlets, gates, etc.) and restrict 

water exploitation in the middle part of the river basin (upstream region of 

Himren dam) to mitigate water delivery losses and to improve water resource 

sustainability for the lower part of the basin. Other actions are to remove any 

unauthorized water exploitation pumps and develop a comprehensive seepage 

model from the Himren reservoir to improve accuracy of the actual water 

budget. 

In additional to above, a policy for adopting advanced daily monitoring system 

for data collections and flood alarm system should be consider to improve 

water resources management and forecasts in the basin. 

 However, the middle part of the basin has significant effect on the considered 

reservoir system, which includes a multipurpose dam and potential 

groundwater storage.  These could be integrated with the river basin model 

management by using integrated water resources management principles to 

improve understanding of the system. Finally, an International agreement with 

neighbour’s country should be sought for the Diyala River and its tributaries to 

maintain the long-term sustainability of river water resources. 

5- From Chapter eight, as previous recommendations referred, it is concluded that 

the comprehensive approach provides decision variables for sustainable 

management for the entire river basin resources for the considered alternatives 

including power generation, storages, and river discharges. Combining 

groundwater exploitation with the OP-IWRM approach succeeds to suggest 

that improvements water delivery fulfilment might increase from 50% to more 
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than 85% in the middle part of the river basin with minor impact on 

groundwater storage. Furthermore, the OP-IWRM succeed to address water 

exploitation uncertainty in the middle part of the river basin and presents water 

consumption barriers for the decision makers to be considered for future 

management policy. The approach demonstrates the significant impact of 

transboundary water development plans on the river basin system. The gross 

Derbendikhan dam releases and power generation were reduced from about 

102.8 to 84.0×109 m3 and from about 27.0 to 21.8 GW, respectively. For 

Himren dam system, the inflows, releases and power generating are also 

depleted from about 86.5 to 68.0×109 m3, 73.0 to 56.0×109 m3, and 6.2 to 4.6 

GW, respectively. While the river discharge in the lower part of the river basin 

was extremely affected from 30.0 to 20.0×109 m3, hence the correlated water 

delivery was drop from about 43.0 to 36.0×109 m3. The deficit in delivered 

water in this part is about more than 50% for all adopted alternatives.  

The value of this OP-IWRM approach is evident, it produced optimum 

sustainable management strategies using; the common Social, Environmental, 

and Economic objectives; and the existing surface and groundwater resources 

for a river basin system under different scenarios. It is possible to add more 

objectives for additional sectors like; governmental legislation; human 

resources development; economic revenues. Hence, the proposed methodology 

reactivates the implementation of the IWRM principles. 

However, the middle basin exploitation has significant impact on the 

water resources of the lower basin, hence it is recommended that a policy 

should be considered (as previously stated) to reduce water requirements to 
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mitigate the impact on the lower part of the basin. Also, similar policy may be 

considered for the lower basin farming practice. In addition, increase 

stakeholders’ knowledge (the farmers) of implementing and using recent 

irrigation techniques, such as sprinkler and drip system, is also recommended 

to optimize agriculture revenues.  

Although the operational water level restriction of the Right Bank 

sliding hazard of Derbendikhan dam did not include in the model (as an 

objective or as a constraint), the mean and median head maintained above 455 

m.a.s.l over all cases, however it is recommended to consider this issue for 

future research.  

Sedimentation in Derbendikhan and Hirmen dams’ reservoirs should 

also investigate and monitor in detail, since it has negative impact on reservoir 

storage capacity. Hence, it is recommended to consider these issues for future 

operation strategies. 

New government policy may include restriction in water exploitation 

in the middle part of the basin for farms and remove any unauthorized outlets 

on the river and Himren reservoir lake. The lower basin water demands could 

be improved by using the existing saline groundwater after specific treatment 

or mixing with fresh surface water. Regarding development plans in out-

boarder upstream region, the government should consider a policy to set water 

sharing agreements to restrict water monopolizing, which may cause severe 

drought of Diyala river basin water resources inside Iraq. The current research 

results could be adopted in the negotiation process for this agreement. 
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