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Abstract

This dissertation presents a global method to solve multi-objective hybrid optimal

control problems. The method is applicable to general problems but the emphasis

here is on space systems and missions. This holistic framework combines three main

building blocks: a memetic multi-objective optimisation algorithm, a transcription

method to solve general optimal control problems, and the treatment of mixed integer

problems. The framework is able to automatically produce a well spread set of Pareto

optimal solutions, each of which can consist of an optimal open loop guidance law and

system design parameters, which can include the set and order of targets or operations

that compose the structure of a mission. The framework was employed to perform the

multi-objective trajectory and system design of reusable launch vehicles, including the

sizing the engines, structural masses, fuel tanks and wings, and to design a multiple

target debris removal space mission in which the trajectory of the spacecraft and the

sequence in which the targets are visited had to be simultaneously optimised.
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Chapter 1

Introduction

Aut inveniet viam, aut faciet

I shall either find a way or make

one

Seneca

The demand for more reliable, efficient, economical and higher performance products

or services is constantly growing. In order to achieve these goals it is necessary to

optimise the design of the product, or how it is manufactured and distributed, or

how it is operated. Postponing a more rigorous definition, the term optimisation can

be intuitively explained as the process of finding the set of parameters or decisions

that lead to the best possible outcome for a given problem or situation. The field

of mathematical optimisation has grown leaps and bounds, both from the theoretical

point of view since the work of Euler and Lagrange in the 1750s, and from the applied

point of view since the early World War II approaches of Operational Research [1].

The exponential growth of the computational capabilities of computers, as shown

by Moore’s law [2], and the advent of parallel computing have further contributed to

the growth of the field of applied optimisation and of simulations. Unsurprisingly,

in parallel with the development of the design tools, also the approach to the design

process itself evolved.

2



Chapter 1. Introduction

Historically, design was approached as a sequential and compartimentalised process

that started from an initial point dictated by experience and requirements. Each

discipline expert received input from the previous expert and produced output for the

next one until the full product was designed. In case that some requirements were not

satisfied or the performances were deemed insufficient, the whole process was iterated,

with the hope of eventually converging to a satisfactory design. An example of this

is the so called waterfall method [3, 4], one of the very first approaches to software

design.

For very complex projects, composed of many interconnected functions and subsys-

tems, it was realised that the system’s performance as a whole might not meet the

specifications despite all the components meeting their individual requirements and

operating correctly. As a consequence a new interdisciplinary and integrated approach

called Systems Engineering emerged around the 1940s and 1950s [5]. Instead of con-

sidering the system as a sum of parts, this approach treats it as a holistic entity and

attempts to design it as such, at least in the preliminary design phases. The conver-

gence of Systems Engineering and applied optimisation gave birth in the 1970s to an

optimisation based approach to the design called Multidisciplinary Design Optimisa-

tion [6].

In the spirit of including all subsystems, if the system has some kind of at least

partially controllable dynamics, it should be very useful to consider in the design

process the way the system is controlled and steered. Since its dynamical evolution

depends both on how the system is operated and how it is designed, the formulation

of the relevant optimisation problem should include all the design parameters that

indirectly affect the dynamics of the system, and all the mutual constraints that the

dynamics imposes on the subsystem (and vice versa). An optimal solution of that

problem would thus consist of the design choices describing the various subsystems

and a control policy dictating how the system should be steered or operated.
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Mathematically, the problem of how to steer a general dynamical system from one

initial state to a desired final state in some optimal sense can be approached by for-

mulating and solving an optimal control problem. Very interesting historical surveys

on the birth of this discipline are given by Bryson [7], Pesch et al. [8] and Sussmann

and Willems [9]. The optimal control problem formulation can also include the design

parameters that indirectly affect the dynamics of the system, thus the solution of the

problem will return both time laws for the states of the systems and its control param-

eters, and all the other so called static parameters such as the size of the wings of an

airplane. However, as explained in the historical surveys, unless the problem is so sim-

ple to have only an academic relevance, the only possibility of solving optimal control

problems governed by nonlinear dynamics is by employing numerical techniques. As

explained by Bryson [7], the most commonly employed methods to solve these prob-

lems are gradient based, requiring the differentiability of all the functions involved in

the optimisation. These optimisation methods are very powerful, converge quickly to

a locally optimal solution (provided that a good initial guess was given) and also very

importantly have a proof of convergence towards the local minimum [10].

However, if the dynamics, the constraints or the objectives of this optimisation

problem are non-convex, there may exist multiple locally optimal solutions. In some

cases it might be important to look for the globally optimal solution, or at least the

best solution possible in a given time. In order to achieve this it is necessary to employ

global optimisation techniques, that perform an exploration of the whole search space

in order not to be trapped by the first seemingly good solution. Another reason to

employ these methods is that sometimes it may be difficult even for an expert to

generate a good initial guess. This is especially true if the problem is so new that no

expert can actually provide good initial guesses. Global methods can then be used

to algorithmically find good initial guess, potentially saving a lot of man hours and

sometimes finding solutions no expert thought of [11]. Finally, many if not most of the

global optimisation methods are derivative free, thus do not require any of the involved

functions to be differentiable. On the flip side, global methods usually converge slower
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than local methods [12] and many of those that have proofs of convergence [13] have

no natural stopping criterion.

Another important aspect to consider is that most optimisation problems, and nor-

mally all optimal control problems, are formulated as having only one objective, mean-

ing that there is only one performance criterion that needs to be optimised [7, 14]. This

is in stark contrast with real world design needs, where there may be multiple and often

conflicting performance or cost criteria that should be optimised, the most common

one being the ”economic cost vs performance” trade-off. The simplest method to deal

with this problem is to embed all performance metrics into a single synthetic perfor-

mance criterion and optimise that. This in turn requires to assign a weight to each

performance criteria, indicating the designer’s opinion about the relative importance of

the various goals. Albeit this approach is simple and intuitive, more powerful methods

have been developed in the field of multi-objective optimisation [15].

When performing multi-objective optimisation, the interest is in finding not one

optimal solution, but a set of best-compromise trade-off solutions. This approach has

the advantage that by returning multiple solutions, each with a different balance of the

objectives spanning all the trade-off space, the decision maker has a much better idea

of the mutual influence of the various objectives and can thus make a more informed

decision. Multi-objective approaches can also be employed when it seems difficult to

satisfy some constraint: in those cases, it is possible to relax the constraint and turn it

into an additional objective [16]. The resulting trade-off curve will tell which level of

performances are compatible for each level of constraint satisfaction, without having

to specify the constraint level a priori.

A final important issue considered in this work is whether the parameters to be

optimised are continuous or integer. The field of optimisation is extremely vast and

several approaches are possible for problems that are described only by continuous

or only by discrete variables. However, problems with the simultaneous presence of

integer and continuous variables, also known as mixed-integer or hybrid problems,
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are abundant in practice. Mixed-integer problems are significantly more difficult to

treat than purely continuous or purely discrete problems, and specific techniques are

required in order to approach them [17, 18].

Motivation and objectives

The considerations just exposed suggest the need for a general methodology with the

following characteristics:

� general, i.e. not restricted to a particular industrial sector or dynamic model

� holistic, i.e. consider all the relevant subsystems and their interactions

� automatic, i.e. not require constant supervision or input from the designers

� able to perform a global exploration of the design space

� able to generate several different designs in one run, each striking a different

balance between the high level goals

� able to return optimised designs, possibly giving some kind of guarantee that no

further improvement is possible in the neighbourhood of the current solution

The aim of this work is to create an organic framework answering to all the aforemen-

tioned points. A few attempts have been proposed in the past to deal with some com-

bination of the above mentioned aspects, like approaches to perform multi-objective

optimal control, mixed integer nonlinear optimisation, hybrid optimal control or even

multi-objective hybrid optimal control. These attempts, their limitations and differ-

ences with the one proposed here will be highlighted in the next subsections.

Instead of selecting a handful of existing algorithms and wrapping them together in

some (often problem specific) fashion, the problem will be first analysed in its funda-

mental aspects: optimal control, global multi-objective optimisation and treatment of

mixed integer problem. Each of these aspects, and their interactions, will be analysed
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from a theoretical point of view and some new theoretical results will be presented.

Algorithmic approaches will be proposed for each of those aspects, with particular

emphasis on how they will interface to each other. Each algorithm will be tested on

known benchmark problems to ensure it is behaving as expected. Finally, the overall

method will be demonstrated on some more realistic test cases.

The method developed in this thesis is applicable not only to any engineering sector,

but also to the financial sector and basically any field for which mathematical models

are available. However, the space and aerospace engineering sectors deserve a special

mention here. In aerospace vehicles and missions the interactions between the various

subsystems and components can be particularly complex. For instance, the choice

of a thermal protection system influences the trajectory that a re-entry vehicle can

follow both directly, excluding the ones that produce unsustainable heat loads, and

indirectly by changing the mass of the vehicle. The minimisation of the cost or mass of

the Thermal Protection System might require trajectories that are impossible to follow

given the aerodynamic configuration of the vehicle, or, in better circumstances, difficult

to ensure given the limited effectiveness of the control surfaces at high altitudes. On the

opposite end of the spectrum, a high performance Thermal Protection System could

be very expensive or very heavy, thus limiting the economical viability of the project or

influencing the steering capabilities of the vehicle. The final choice obviously requires

a careful trade-off study that considers both the dynamics and control of the vehicle

and the mass, type and cost of the thermal protection system. This trade off study can

be conducted by solving a Multi-Objective Hybrid Optimal Control problem. Several

of the applications and examples presented in this dissertation will thus be for space

and aerospace problems.

Optimal Control

Optimal control problems appear almost everywhere in modern engineering: not

only in aeronautical and space vehicle trajectory optimisation, but also in chemical

reactions engineering, drug dosage delivery and robotics, just to name a few. Even if
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the theory of optimal control is very mature, obtaining a solution for these problems

is still challenging, especially for highly non-linear problems where the only possibility

is to employ numerical techniques.

It is customary to classify numerical methods for the solution of open loop optimal

control problems in indirect and direct methods. Indirect methods analytically derive

the necessary conditions for local optimality [19] and produce a Two Points Boundary

Value (TPBV) problem, a coupled set of Differential-Algebraic Equations (DAE) for

the states and co-states of the system. The conditions for optimality have to be derived

through analytic manipulations, and every time the objective function, the boundary

conditions or the dynamics of the system change, this operation has to be repeated

from scratch.

The main advantage of indirect methods are their high accuracy and the fact that,

for simple enough problems, it is possible to derive closed form analytic solutions.

More often, numerical methods have to be employed and an initial guess must be

provided. A good initial guess for the states is usually not particularly difficult to

provide, but the same does not hold for the co-states, whose physical interpretation

might not be obvious. Moreover the switching structure must be provided as part of

the guess, and sometimes this information is the most difficult to provide. This also

means that the imposition of inequality path constraints can be challenging, since it

is necessary to explicitly guess where the constraints are active or not. Finally, the

optimality conditions are only first order local conditions. For these reasons, indirect

methods were not considered for this work.

Direct methods for the solution of optimal control problems transcribe the original

infinite dimensional problem into a finite dimensional problem, and directly solve the

resulting Non Linear Programming (NLP) problem. These methods do not need any

co-state and thus do not need to supply any guess for them. The switching struc-

ture of the solution emerges automatically from the solution itself. Furthermore, the

transcription process is automatic, thus a change in the objective function, boundary
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conditions or dynamic models simply requires the user to re-run the transcription al-

gorithm without any manual intervention. Finally the imposition of path constraints

is straightforward, and several high quality open-source and commercial NLP solvers

are available.

Among the many different direct methods, the most famous and commonly employed

are the single or multiple shooting method and the orthogonal or pseudospectral col-

location method. The transcription process generally makes use of an appropriate set

of polynomials to represent states, controls or both.

Shooting methods [14] usually only approximate the controls, and integrate them

through an explicit integrator like the various Runge-Kutta methods. For this reason,

they tend to have a reduced number of variables and result in small but dense problems.

The accuracy of the integration depends on the order of the integration method and

on the size of the time step. Since, once chosen, the same integrator is employed for all

shooting segments, a highly refined solution is usually produced by using very small

time steps or with the careful use of adaptive step size methods instead of changing

the integrator to a higher order one.

These methods can have some difficulties if there are equality path constraints, or in

the equivalent case where the dynamics are described as DAEs, since the values of the

intermediate stages between the initial and final condition of each shooting segment

are not explicitly represented and are thus invisible to the NLP solver.

Collocation methods [20] can approximate both the states and the controls as high

order polynomials. This results in a comparably larger number of variables than shoot-

ing methods, but the resulting problem has higher sparsity. Since all the nodal values

for the states (and eventually the controls) are explicitly represented, the NLP solver

can directly satisfy the path constraints without any need to reformulate the original

problem. If the solution is smooth, pseudospectral methods have the very important

property of converging exponentially fast to it, making them extremely efficient in
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this sense. However, if the solution contains very sharp changes, for instance due to

bang-bang controls, this property no longer works because collocation methods rely

on polynomial interpolation, which is known to produce spurious oscillations in those

cases (Gibbs phenomenon). To obtain a better solution when bang-bang controls are

present it is necessary to reformulate the problem as a multi-phase problem and opti-

mise the switching times between one phase and the next, using the previous solution

as a first guess.

In this thesis, the Direct Finite Elements in Time (DFET) transcription method

will be employed, which will be described in detail in Chapter 2. The basic idea is to

discretise the time domain in several elements, and represent on each element both the

states and controls as polynomials. However, the differential equations are not directly

satisfied on the nodes like in the various collocation methods. Instead, they are first

recast in weak form. This important step ensures that the resulting formulation is

mathematically correct even in the presence of discontinuities for the dynamics within

an element.

DFET can enjoy the high accuracy due to high order polynomials but, as will be

shown, it is also very flexible and allows to independently choose the order for each

state and control polynomial on each element. Moreover, and more importantly, it

will be shown that the choice of a polynomial basis different from the usual Lagrange

interpolation on Gauss-Legendre or Gauss-Lobatto nodes will allow to have a smooth

and monotonic approximation for the controls even in case of a bang-bang control.

This fact culminates in a a Theorem, which is one of the main contributions of this

thesis, dictating that with the DFET method using the proposed basis and under

mild hypotheses on the inequality constraints, the trajectory will satisfy the inequality

constraints at every instant of time even if it is computed only on a discrete set of

points.

It is important to remark that the overall framework developed in this work does

not need the DFET transcription for optimal control: in principle, any direct method
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should be applicable without any major alteration to the rest of the framework. How-

ever, the robustness and flexibility of the DFET transcription are very useful charac-

teristics in the context of this work.

Multi-objective Optimisation

The need to evaluate several different solutions and compare their relative perfor-

mances leads to the formulation of multi-objective optimisation problems. Along with

all the complexities associated with single objective optimisation, like the presence

of non-linear objective functions and constraints, points of non differentiability and

existence of multiple local solutions, multi-objective optimisation problems are char-

acterised by the fact that their solution is a set, potentially composed by an infinite

number of elements. Since only a finite number of design alternatives can be evalu-

ated, methods to solve multi-objective optimisation problems try to find a good finite

approximation of the Pareto set.

There are fundamentally three different approaches to solve multi-objective opti-

misation problems: scalarisation based approaches, dominance based approaches and

indicator based approaches. The first are conceptually very simple: they reduce the

initial multi-objective problem into a series of single objective problems through a

scalarisation function and a set of weights, which express the relative importance given

to each objective. The second try to solve directly the multi-objective optimisation

problem using the dominance criterion, which will be described in Chapter 3. The

third try to maximise some metric of the approximated Pareto front.

Scalarisation based approaches only return one solution for each particular choice of

the weight vector. A limitation of this approach is that it is difficult to know, a priori,

how to change the weight vectors to obtain a good spreading of the solutions on the

Pareto front: a uniform spread of the weights might not result in a uniform spread

of solutions, and some particular weight vectors might point towards areas where no

solution is to be found. A lot of research is currently being performed on how to
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automatically adapt the weight vectors to overcome this limitation [21, 22, 23].

One advantage of scalarisation based approaches is that they enforce the search along

a particular direction, and are thus more efficient than dominance based methods for

many objective problems. Another advantage of these methods is that, for smooth

enough problems, the standard NLP algorithms can be employed and local optimality

can be guaranteed. This is the approach followed, for example, by the Normal Bound-

ary Intersection method [24] and by the the Normalized Normal Constraints Method

[25].

Dominance based methods like NSGA-II [26], MOPSO [27] and multiMADS [28]

have the advantage that their performance is not negatively influenced by a poor

choice of weight vectors, since they do not use any. Since the dominance relation is not

differentiable and requires the knowledge of all the other points composing the Pareto

front, dominance based methods are usually not employed in association with an NLP

solver.

Indicator based approaches have an intermediate behaviour between the scalarisation

and the dominance based methods, since they don’t require any definition of weight

vectors but they internally try to optimise a scalar quantity: the chosen metric of the

Pareto front. However, most metrics require a reference Pareto set, which is unknown

for non academic problems. The only Pareto compliant indicator that does not require

knowledge of the Pareto front is the hypervolume indicator.

While very interesting methods have been proposed using the hypervolume, like

SMS-EMOEA [29] and HypE [30], it was later found that the metric directly in-

fluences the distribution of points found by those methods, favouring the central or

convex regions[31]. The other drawback of the hypervolume indicator is that it is quite

expensive to compute, and in addition its computation is subject to the curse of dimen-

sionality, which means that the cost to compute it grows very quickly as the number

of objectives grow. There is significant research focused on methods to approximate

12



Chapter 1. Introduction

the hypervolume or speed up its computation [32].

This thesis will employ Multi Agent Collaborative Search (MACS), a population

based memetic multi-objective optimisation algorithm which will be thoroughly de-

scribed in Chapter 3. This algorithm has already been succesfully employed for the

solution of complex space related multi-objective optimisation problems [33, 34, 35, 36].

One important aspect of this algorithm is that MACS employs both the dominance

criterion and a scalarisation method. In addition, it is a memetic, or hybrid algorithm:

new heuristics can be introduced in the algorithm without altering its overall structure.

These two aspects will be synergistically exploited in Chapter 4 to introduce a gradient

based refinement phase that occurs at a given frequency during the optimisation phase.

Thanks to this gradient based refinement it is possible to guarantee the local optimality

of the solutions. Finally, thanks to a newly developed archiving strategy which will

be described in Chapter 3, MACS returns a very well spread set of solutions on the

Pareto front.

Multi-objective Optimal Control

The presence of trade-offs in the design of a system does not depend only on the

choice of the subsystems and the static parameters that describe them, like their mass,

but also on how the vehicle is steered. The same system can operate in different ways,

one for example promoting lower energy consumption and another taking less time to

perform the same task.

The simplest approach to deal with multiple objectives in optimal control is to

perform a weighted sum of all of them. The Bolza problem, which is the classic

optimal control problem that sums a function depending on the boundary states with

the integral of another function along the trajectory, is a clear example of weighted

sum approach.
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In multi-objective optimisation, however, it is well known that this kind of approach

has several limitations, the most important of which is that weighted sum approaches

cannot converge to non convex areas of the Pareto front [37]. Moreover, it is not a

priori clear how a slight change of the weights influences the position of the solution

along the Pareto front, especially if the objectives have significantly different scales.

For these reasons, in this work the optimal control problems will be formulated as true

multi-objective problems.

While conditions of optimality and related theoretical aspects of multi-objective

optimal control problems have been studied in a number of papers, see [38, 39, 40, 41,

42] and references therein, less research has been dedicated to the solution of multi-

objective optimal control problems.

Ober-Blöbaum et al. [43] coupled a direct transcription approach with an approach

that scalarised the multi-objective vector along directions pointing at predefined un-

reachable points in the criteria space. Each scalar problem was then solved with a

standard NLP solver. This approach was employed to solve an interplanetary trajec-

tory optimisation problem. Kaya and Maurer [37] proposed a similar approach but

used the Pascoletti-Serafini scalarisation [44] to transform the multi-objective optimi-

sation problem in a set of single-objective optimisation problems, and employed the

resulting approach to solve chemical reaction engineering and drug dosage problems.

Similarly, Logist et al. [45] combined direct transcription methods with other scalar-

isation techniques, like the Normalized Normal Constraint method and the Normal

Boundary Intersection method.

Pagano and Mooij [46] optimised the mass of the payload for a launch vehicle and

minimised the violation of the constraints as a second objective, Bairstow et al. [47]

performed a multi-objective optimisation of a two stage launcher minimising cost and

maximising the payload and Roshanian et al. [48] performed robust design optimisation

of a two stage launch vehicle by means of multi-objective optimisation, minimising both

the mean and the variance of the gross take-off mass when several design and operative
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parameters where subject to uncertainty. In these last three works the control laws had

a simple parametric shape. The parameters describing those shapes were optimisation

variables, and stochastic multi-objective optimisation algorithms were employed to find

the set of Pareto optimal solutions.

Coverstone-Carroll et al. [49] combined Genetic Algorithms and optimal control the-

ory in a dual loop algorithm. In the outer loop, a Multi-Objective Genetic Algorithm

(MOGA) was generating vectors of co-states and times of flight. For each set, the

inner loop was solving a single objective optimal control problem with given time of

flight, minimising the propellant consumption. Englander et al. [50] proposed a dual

loop algorithm in which the outer loop solved a multi-objective problem handling a set

of categorical variables through a multi-objective genetic algorithm and the inner loop

solved a set of single objective constrained optimal control problems using Monotonic

Basin Hopping [51].

The method proposed in this work is based on the DFET transcription and the

solution of the resulting Multi-Objective Nonlinear Programming (MONLP) problem

with a modified version of MACS called MACSoc.

The MONLP problem is reformulated as two different non-linear problems: a bi-level

and a single level formulation. The bi-level formulation is used to globally explore the

search space and generate a well spread set of non-dominated decision vectors while the

single level formulation is used to locally converge to Pareto efficient solutions. Within

the bi-level formulation, the outer level selects trial decision vectors that satisfy an

improvement condition based on the Tchebycheff weighted norm, while the inner level

restores the feasibility of the trial vectors generated by the outer level. The single level

refinement implements a Pascoletti-Serafini scalarisation of the MONLP problem to

optimise the objectives while satisfying the constraints.

The proposed method differentiates from Ober-Blöbaum et al. [43], Kaya and Maurer

[37] and Logist et al. [45] in that it combines global exploration and local convergence
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with a smooth transition between Chebyshev and Pascoletti-Serafini scalarisation [44]

and incorporates an automatic and unsupervised procedure to generate feasible first

guesses. It also differentiates from [49, 47, 46, 48, 50] in that it does not use a generic

MOGA but proposes a more efficient memetic approach and implements a more general

direct transcription method.

Mixed integer non-linear optimisation and optimal control

The design of a system may require several discrete choices, like the type of engine

for a space vehicle or which beam profile shape to use for a metallic structure. In such

cases, the resulting optimisation problem becomes a mixed integer problem, which is

significantly harder to solve than a purely discrete or a purely continuous problems.

Even more complex problems arise if the discrete parameters decide the number of

phases of an optimal control problem, because it results in a variable size problem.

This is typical of multi-gravity-assist interplanetary transfers, where the number of

phases depends directly on the number of gravity-assist manoeuvres. Although very

important in space mission design, variable size problems will be excluded from the

present work and left as a future development.

There is a vast amount of literature on the solution of mixed integer problems[17, 18],

but essentially there are two main approaches to solve them. The first class, called

relaxation methods, treat discrete variables as if they were continuous and then employ

some technique to restore the integer nature of the variables that were relaxed. The

other class instead does not relax the discrete variables, thus usually resulting in a

separate treatment of the continuous and discrete variables.

Among the deterministic approaches, the most common method of the first class is

the Branch and Bound algorithm, introduced by Land et al. in [52], while for the second

kind there are the Outer Approximation method [53, 54], the Generalised Benders

Decomposition [55], or the use of deterministic discrete optimisation algorithms like

the Mesh Adaptive Descent Method (MADS) [56, 57]. Stochastic approaches can either
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be natively developed for discrete variables or be adapted to treat them by modifying

the heuristics they employ, thus do not need any relaxation.

For mixed integer optimal control with general nonlinear dynamics and objetives, in

the past have been proposed approaches coupling the Branch and Bound method with

standard NLP solvers, like in [58, 59], or coupling stochastic algorithms and standard

NLP solvers like in [50, 60].

In the Branch and Bound based methods, the problem is initially relaxed and solved

as purely continuous. This solution is used as the lower bound for the optimal solution

of the problem, while a feasible solution for the non relaxed problem is used as an

upper bound. In case all the relaxed variables assumed integer values, the optimal

solution would have been found. However, this will not happen in most of the cases,

so one discrete variable will be branched, meaning that two different problems will

be solved by imposing its value to be either 0 or 1, and leaving the other variables

relaxed. Two new NLPs will be solved, which will update the lower bound and the

upper bound for the solution. In case the lower bound of one branch is higher than

the upper bound for the other, that branch cannot contain the optimal solution and

is thus not further investigated.

This way, a finite, albeit potentially very large number of steps is produced that

converges to the optimal solution. However, as shown in [58], it must be highlighted

that for non convex problems it can happen that for the same values of the discrete

variables there exist multiple locally optimal solutions with different values for the

objective function. This can introduce the possibility that the branching procedure

erroneously discards promising areas of the search space.

In the already described method proposed by Englander [50] the discrete variables

remained discrete and were handled at an outer level by NSGA-II, an evolutionary

based multi-objective optimiser. The discrete variables were passed as constants to the

inner level NLP solver, which tried to produce feasible and locally optimal solutions.
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The resulting optimal control problem was optimising only one objective (the mass

of the vehicle), thus the local optimality with respect to the other objectives was

not guaranteed. In addition, while a global search was performed for the discrete

parameters, the continuous parameters were treated only locally by the NLP solver.

As for the Branch and Bound based approaches, this can result in multiple local

solutions for a given choice of the discrete parameters. This problem was partially

addressed by using a Monotonic Basin Hopping method (MBH) in order to overcome

this limitation.

The method proposed by Schlueter [60] instead was based on MIDACO, a single

objective Ant Colony Optimisation algorithm, coupled with an NLP solver. The MI-

DACO solver was treating both discrete and continuous variables without any relax-

ation, and the constraints were treated with a new penalisation scheme. However, the

satisfaction of the constraints was not required to be strict in this global exploration

phase. The MIDACO solver was allowed to run for a fixed maximum runtime, and the

best solution found was then refined by an NLP algorithm. Although the approach

produced good results in the tests, there is no guarantee that the best weakly feasi-

ble solution found by MIDACO will not be significantly worsened by the NLP solver,

which has to strictly enforce the constraints. Moreover, since the NLP can only work

on continuous variables, the discrete variables were kept fixed during the solution of

the NLP. Thus, since there is no guarantee that for a given choice of the discrete vari-

ables a fully feasible solution exists, the NLP solver might be doomed to fail regardless

of the choice of the continuous variables.

To deal with mixed integer variables with the approach proposed in this work, the

heuristics implemented in MACS will be modified in order to treat discrete variables.

Thus, at the outer level, discrete variables will remain discrete. Similarly to the ap-

proach proposed by Schlueter, all variables will be handled simultaneously by the

outer level global optimiser. However, the inner level will try to strictly satisfy the

constraints. In order to allow the maximum flexibility to the inner level NLP, the

discrete variables will be relaxed within the inner level. This gives the NLP the pos-
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sibility of modifying even the discrete variables. This is particularly helpful, since

it could be impossible for the NLP to satisfy some constraints for a fixed choice of

the discrete variables, but this impossibility might require a large number of function

evaluations before the NLP solver surrenders. Once the NLP converges to a relaxed

feasible solution, a special set of constraints is added to enforce the relaxed variables to

assume only discrete values, and the inner level NLP is solved again starting from the

relaxed solution. This approach should allow to strictly satisfy complex mixed integer

constraints and return fully feasible solutions at the outer level. When the single level

gradient based refinement is invoked, it will start from a fully feasible solution and

thus should have a good chance of improving the guess it received.

Contributions

The key contribution of this thesis are:

� for MACS

– a modification of the heuristics, leading to improved performance on most

benchmark problems tested [61]

– the introduction of a new physics inspired archiving strategy, leading to an

improved spreading of the solutions in the archive [61]

– the introduction of a new way to generate the set of weight vectors, ensuring

it is uniformly spread

� for the DFET transcription

– the use of Bernstein bases, which guarantees non oscillating and converging

control profiles even for bang-bang solutions [62]

– the proof of a theorem guaranteeing that with Bernstein basis and the DFET

transcription, if the feasible set of the inequality path constraints is convex,

the inequality path constraints are satisfied for all times [62]

– a demonstration that the use of Bernstein basis is beneficial also from the

numerical point of view [62]
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� for Multi objective optimal control

– the introduction of a new approach to solve multi objective optimal control

problems employing a general transcription method and seamlessly adopting

two complementary formulations [63]

– the reformulation of the problem as a bi-level problem, which allows for

global exploration of the search space, tight satisfaction of the constraints

and the generation of well spread set of points [64, 65]

– the employment of a gradient based refinement strategy exploiting the

Pascoletti-Serafini scalarisation, guaranteeing local optimality of the solu-

tions and valid for multi objective problems [66, 63]

– the introduction of an automatic and robust generation of the initial guesses

[63]

� for Multi Objective Hybrid optimal control

– the introduction of a solution approach based on an extension of the heuris-

tics of MACS and the use of a relaxation approach to tackle the NLPs

[67]

– the introduction of a systematic approach to ensure that the relaxed vari-

ables assume integer values at the end of the relaxation process [67]

– the introduction of a new set of constraints to handle combinatorial prob-

lems [67]

– a proof of the usefulness of a unified treatment of discrete and continuous

variables coupled with a global search and a local refinement [67]

� the testing of all methods against problems with known solution [64, 66, 68, 61,

63, 62, 67]

� the application of the proposed framework to tackle new and challenging space

vehicle and mission design problems [63, 62, 67]
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Part of the contents of this dissertations were published in different journal papers,

book chapters, or presented at conferences. The list of those publications is listed

hereafter.

Journal publications

1. L. A. Ricciardi, C. Maddock and M. Vasile. Direct Solution of Multi-Objective

Optimal Control Problems Applied to Spaceplane Mission Design. Journal of

Guidance, Control, and Dynamics, Vol. 42, No. 1 (2019), pp. 30-46.

2. L. A. Ricciardi and M. Vasile. Direct Transcriprion of Optimal Control Prob-

lems with Finite Elements on Bernstein Basis. Journal of Guidance, Control,

and Dynamics, Vol. 42, No. 2 (2019), pp. 229-243.

3. C. Ortega Absil, L. A. Ricciardi, M. Di Carlo, C. Greco, R. Serra, M. Polnik,

A. Vroom, A. Riccardi, E. Minisci, and M. Vasile. GTOC 9: Results from

University of Strathclyde. Acta Futura, 9 January 2018, Vol. 11, p. 57-70.

Book chapters

M. Vasile and L. A. Ricciardi. Multi Agent Collaborative Search. NEO 2015:

Results of the Numerical and Evolutionary Optimization Workshop NEO 2015 held at

September 23-25 2015 in Tijuana, Mexico. Springer, 2017.

Peer-reviewed conference papers and presentations

1. M. Vasile and L. A. Ricciardi. A direct memetic approach to the solution

of multi-objective optimal control problems. 2016 IEEE Symposium Series on

Computational Intelligence, SSCI 2016. 13 Feb 2017.

2. L. A. Ricciardi, M. Vasile and C. A. Maddock, Global solution of multi-

objective optimal control problems with multi agent collaborative search and

direct finite elements transcription, 2016 IEEE Congress on Evolutionary Com-

putation (CEC), Vancouver, BC, 2016, pp. 869-876.
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3. L. A. Ricciardi, M. Vasile, Improved Archiving and Search Strategies for Multi

Agent Collaborative Search. Advances in Evolutionary and Deterministic Meth-

ods for Design, Optimization and Control in Engineering and Sciences. Springer,

2019.

Conference papers and presentations

1. L. A. Ricciardi, M. Vasile, A Relaxation Approach for Hybrid Multi-Objective

Optimal Control: Application to Multiple Debris Removal Missions (AAS 19-

406). 29th AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, Hawaii,

United States, 11-17 Jan 2019.

2. L. A. Ricciardi, M. Vasile, MODHOC - Multi Objective Direct Hybrid Optimal

Control. 7th International Conference on Astrodynamics Tools and Techniques

(ICATT). Oberpfaffenhofen (DLR), Germany. 6-9 Nov 2018

3. L. A. Ricciardi, C. A. Maddock and M. Vasile. Multi-objective optimal control

of re-entry and abort scenarios. AIAA SciTech 2018 - Gaylord Palms, Kissimmee,

United States. 8-12 Jan 2018.

4. C. Ortega Absil, L. A. Ricciardi, M. Di Carlo, C. Greco, R. Serra, M. Pol-

nik, A. Vroom, A. Riccardi, E. Minisci and M. Vasile. GTOC9: Methods and

results from the University of Strathclyde. On the generation and evolution of

multiple debris removal missions. 26th International Symposium on Space Flight

Dynamics (ISSFD), Matsuyama, Japan, 3-9 June 2017.

5. L. A. Ricciardi, M. Vasile, F. Toso, C. A. Maddock, Multi-Objective Opti-

mal Control of the Ascent Trajectories of Launch Vehicles (AIAA 2016-5669). ,

AIAA/AAS Astrodynamics Specialist Conference, AIAA SPACE Forum,

6. M. Di Carlo, L. A. Ricciardi, M. Vasile, Multi-objective optimisation of con-

stellation deployment using low-thrust propulsion. AIAA/AAS Astrodynamics

Specialist Conference 2016, Long Beach, California, 13-16 Sept 2016.
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7. S. McIntyre, T. Fawcett, T. Dickinson, M. West, C. A. Maddock, A. Mogavero,

L. A. Ricciardi, F. Toso, K. Kontis, K. Hing Lo, S. Rengarajan, D. Evans,

A. Milne, S. Feast. A commercially driven design approach to UK future small

payload launch systems. 14th Reinventing Space Conference - Royal Society,

London, United Kingdom, 24-27 Oct 2016.

8. S. McIntyre, T. Fawcett, T. Dickinson, C. A. Maddock, A. Mogavero, L. A.

Ricciardi, F. Toso, M. West, K. Kontis, K. Hing Lo, S. Rengarajan, D. Evans,

A. Milne, S. Feast. How to launch small payloads? Evaluation of current and

future small payload launch systems. 14th Reinventing Space Conference - Royal

Society, London, United Kingdom, 24-27 Oct 2016.

Structure of the thesis

This thesis is divided in two parts. Part I focuses on the theoretical and methodolog-

ical development. Algorithms are described and tested against problems with known

analytic solutions, or against problems for which only a numerical solution is available

but is well documented in the literature. Part II presents advanced applications on

problems involving the design and optimisation of space systems and missions.

In part I, Chapter 2 presents DFET, a numerical method to solve general optimal

control problems and introduces the use of a new basis constructed on the Bernstein

polynomials. With this addition, the method gains interesting capabilities in terms of

suppressing spurious oscillations in case the controls change abruptly. In addition a

new theorem is proved, showing that if the inequality path constraints have a convex

feasible set, the DFET method with Bernstein basis returns a solution that satisfies

those path constraints for all times.

Chapter 3 presents the general multi-objective optimisation problem and MACS,

a memetic algorithm to solve that class of problems. The chapter also shows some

modifications of the heuristics that proved to be beneficial in the test cases. Finally,

a new archiving strategy is described, based on the phyisical concept of energy. It
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is shown that this archiving strategy significantly improves the spreading of the solu-

tions obtained not only by MACS, but also by another multi-objective optimisation

algorithm.

Chapter 4 extends the standard optimal control problem to its multi-objective ver-

sion, and provides an algorithm to solve nonlinear multi-objective optimal control

problems. Two complementary formulations are employed: a bi-level formulation,

which allows for the global exploration of the search space, and a single level formu-

lation, which allows to guarantee the local optimality of the solution. In addition, a

strategy to automatically generate initial guesses is described.

Chapter 5 extends the multi-objective optimal control problem to its mixed integer

version, and presents an algorithm to handle those kinds of problems. The algorithm

is a further evolution of the method described in Chapter 4, where the heuristics of

MACS have been modified in order to deal with integer variables. In addition it is

shown how to handle the discrete variables in both levels of the bi-level approach.

Each chapter of Part II can be seen as the application of the theory and methods

described in Part I to space vehicle and mission design problems. In particular, Chap-

ter 6 presents a three objective design and optimal control problem for a new launch

vehicle, and the multi-objective design and optimal control for the launch, reentry and

abort trajectory of a spaceplane. Chapter 7 presents the solution of a multi-objective

time dependant motorised travelling salesmen problem, and the multi-objective opti-

mal control of a multi-target space mission, where the trajectory of the spacecraft is

to be optimised together with the choice of the sequence of targets to visit. Finally,

Chapter 8 closes with the conclusions.
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Direct transcription of Optimal

Control problems
1

Felix qui potuit rerum cognoscere

causas

Fortunate who was able to know

the causes of things

Virgil

This chapter introduces the general optimal control problem, and describes the Di-

rect Finite Elements in Time transcription, a method to convert the initial infinite

dimensional problem into a finite dimensional problem. The properties of the tran-

scription method are analysed, especially in terms of the flexibility it provides. This

flexibility is then exploited by changing the basis for the functions representing the

states and the controls of the problem. The properties of the DFET transcription

with the new basis are analysed, first theoretically, and then numerically. A simple

test case, with analytic solution, is used to compare the newly proposed basis with

the basis typically employed with DFET. The comparison involves the qualitative and

quantitative behaviour of the resulting solution, the convergence rate to the known

1The contents of this chapter were published in: L. A. Ricciardi and M. Vasile. Direct Transcriprion
of Optimal Control Problems with Finite Elements on Bernstein Basis. Journal of Guidance, Control,
and Dynamics, Vol. 42, No. 2 (2019), pp. 229-243.
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optimal solution and the number of iterations required by the NLP solvers to achieve

a feasible and an optimal solution. A further analysis is performed by changing the

NLP algorithm, showing some interesting synergies between the choice of the basis

functions and the NLP algorithm.

2.1 The optimal control problem

A generic, single-objective, optimal control problem can be formulated as [19, 69, 70]:

min
u∈U

J = min
u∈U

φ (x(t0),x(tf ), t0, tf ) +

∫ tf

t0

L (x(t),u(t), t) dt

s.t.

ẋ = F (x(t),u(t), t)

g (x(t),u(t), t) ≤ 0

ψ (x(t0),x(tf ),u(t0),u(tf ), t0, tf ) ≤ 0

t ∈ [t0, tf ]

(2.1)

where the scalar t is time, the functions x(t) : [t0, tf ] → Rnx are the state vector, the

functions u(t) : [t0, tf ] → Rnu are the control vector and J is the sum of a boundary

state cost function φ : R2nx+2 → R and of the integral of a running cost function

L : Rnx × Rnu × [t0, tf ] → R. The functions x(t) belong to the Sobolev space W 1,∞

while the functions u(t) belong to L∞. The state and control vectors are subject to a set

of dynamic constraints ẋ = F (x(t),u(t), t), algebraic constraints g (x(t),u(t), t) ≤ 0

and boundary conditions ψ (x(t0),x(tf ),u(t0),u(tf ), t0, tf ) ≤ 0, where F (x(t),u(t), t),

g (x(t),u(t), t) and ψ (x(t0),x(tf ),u(t0),u(tf ), t0, tf ) are vector fields.

After introducing the Hamiltonian function

H(x,u,λ,µ, t) = L (x(t),u(t), t) + λT (t)F (x(t),u(t), t) + µT (t)g (x(t),u(t), t) (2.2)

which includes the Lagrange multipliers λ(t) (also known as co-states) and µ(t), the

conditions for optimality of this problem can be derived by applying Pontryagin’s
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maximum principle, resulting in:

ẋ = F (x(t),u(t), t)

λ̇
T

= −∇xH (x(t),u(t),λ(t),µ(t), t)

u = arg min
u∈U
H (x(t),u(t),λ(t),µ(t), t)

g (x(t),u(t), t) ≤ 0

ψ (x(t0),x(tf ),u(t0),u(tf ), t0, tf ) ≤ 0

λT (tf ) =
[
∇xφ+ νT∇xψ

]
t=tf[

φt + νTψt +H
]
t=tf

= 0

(2.3)

where ν are additional Lagrange multipliers associated to the boundary conditions

ψ = 0, and the last equation is needed only if the final time tf is free.

More details about this derivation are given in Appendix A.

2.2 Direct Transcription with Finite Elements in Time

Direct Finite Elements in Time (DFET) is a direct transcription method to solve

optimal control problems and was initially proposed by Vasile and Finzi [71] in 2000.

Finite Elements in Time (FET) for the indirect solution of optimal control problems

were initially proposed by Hodges and Bless [72], and during the late 1990s evolved

to the discontinuous version. As pointed out by Borri and Bottasso [73], several pos-

sible formulations of FET are possible, the most promising ones being those deriving

from the semi-discontinuous and bi-discontinuous formulation of the mixed field equa-

tions, which result in an unconditionally stable symplectic integration scheme for the

bi-discontinuous version, or in an unconditionally stable scheme with the asimptotic an-

nihilation property, resulting in very useful schemes for the integration of stiff systems.

Moreover, Bottasso and Ragazzi [74] showed that FET for the forward integration of

ordinary differential equations are equivalent to some classes of implicit Runge-Kutta

integration schemes. Finally, FET can be extended to arbitrary high-order and Vasile

[70] showed how a direct transcription method based on FET is very robust and al-
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lows for a solution refinement technique called h-p adaptivity, which will be shortly

described later on.

In the past decade, direct transcription with FET on spectral bases has been suc-

cessfully used to solve a range of difficult problems: from the design of low-thrust

multi-gravity assist trajectories to Mercury [75] and the Sun [76], to the design of

weak stability boundary transfers to the Moon, low-thrust transfers in the restricted

three body problem and optimal landing trajectories to the Moon [71]. More recently

they have been used to perform multi-objective optimal control of spacecraft [64, 66],

ascent trajectories of launchers [65], or abort trajectories of reusable launch vehicles

[68].

2.2.1 Problem Transcription with DFET

In this section we briefly recall how the transcription method based on Finite Ele-

ments in Time works. Following the general approach to DFET transcription proposed

by Vasile and Finzi [71], the differential constraints can be recast in weak form and

integrated by parts leading to,

∫ tf

t0

(
ẇ(t)Tx(t) + w(t)TF (x(t),u(t), t)

)
dt−wT

f xbf + wT
0 xb0 = 0 (2.4)

where w(t) are the generalised weight functions that must assume a value of 0 on either

bound and xb are the boundary values of the states, that may be either imposed or

free. Note that, in this bi-discontinuous formulation, the value of x(t) at the boundaries

does not coincide with either with xbf or xb0. As remarked by Bottasso in [77], the weak

form of the ODEs expressed in (2.4) is a mathematically correct formulation even when

F (x(t),u(t), t) is not continuous or differentiable.

Let the time domain D be decomposed into N finite elements such that

D =
N⋃
j=1

Dj(tj−1, tj) (2.5)
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and parametrise, over each Dj , the states, controls and weight functions as

xj(t) =

lx∑
s=0

fsj(t) xsj (2.6a)

uj(t) =

lu∑
s=0

gsj(t) usj (2.6b)

wj(t) =

lx+1∑
s=0

hsj(t) wsj (2.6c)

where the functions xj ,uj ,wj are defined over each finite element Dj , the functions

fsj(t), gsj(t) and hsj(t) are chosen among the space of polynomials of degree lx, lu and

lx + 1 respectively, and the vectors xsj ,usj ,wsj are weights given to each polynomial

in each element. The polynomials hsj have to assume a value of 0 on either the left or

the right bound of the element.

It is practical to define each Dj over the normalised interval [−1, 1] through the

transformation,

τ = 2
t− tj−tj−1

2

tj − tj−1
(2.7)

This way the domain of the basis function is constant and irrespective of the size

of the element and also overlaps with the interval of the Gauss nodes that will be

employed for the integration of the dynamics.

Substituting the definitions of the polynomials into the objective functions and in-

tegrating with Gauss quadrature formulas with q nodes leads to

J̃ = φ(xb0,x
b
f , t0, tf ) +

N∑
j=1

q∑
k=1

σkL(xj(τk),uj(τk), τk)
∆t

2
(2.8)

and for the variational constraints leads for every element j to the system

q∑
k=1

σk

[
ẇj(τk)

Txj(τk) + wj(τk)
TFj(τk)

∆t

2

]
−wj(1)Txbj + wj(−1)Txbj−1 = 0 (2.9)
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where τk and σk are the Gauss nodes and weights, Fj(τk) is the shorthand notation

for F (xj(τk),uj(τk), τk), and xbj and xbj−1 denote the boundary values of element j at

t = tj and t = tj−1 respectively. Algebraic constraints are usually evaluated at the

Gauss integration nodes, but as it will be shown this is not the only choice.

It was shown in Vasile [70] that in the limit where the number of integration points

σk tends to infinity, the DFET transcription schemes satisfies a set of necessary op-

timality conditions that converges to the necessary optimality conditions (2.3). For

completeness, that derivation is reported in Appendix A.

The DFET transcription is thus not only equipped with a convergence theory, but

it is also very flexible, since it allows to parameterise both states and controls choosing

any basis, and these bases could also be different for every variable and element.

Similarly it is possible to employ several choices for the type of quadrature nodes

or their number q. This flexibility was not exploited in any previous work. In the

following a new scheme with unique characteristics will be generated by adopting a

new set of basis functions. Although the derived scheme is different than the one

proposed by [70], the convergence results demonstrated for the DFET transcription

are still applicable because the proof does not require any particular choice for the

basis functions.

2.2.2 Choice of Basis Functions

In the DFET literature, the basis is typically generated through a Lagrange interpo-

lation on the quadrature nodes, usually either Gauss-Legendre or Gauss-Lobatto:

fsj(τ) =

lx∏
k=0,k 6=s

τ − τk
τs − τk

, gsj(τ) =

lu∏
k=0,k 6=s

τ − τk
τs − τk

, hsj(τ) =

lx+1∏
k=0,k 6=s

τ − τk
τs − τk

(2.10)

Since the test functions w must assume a value of 0 on either bound, the nodes for the

construction of test functions with Lagrange interpolation must be of Lobatto type.
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Since the basis has to be evaluated only at the quadrature nodes, constructing

the bases as Lagrange interpolations ensures that fsj(τk) 6= 0 only if s = k. This

should generally result in a good sparsity pattern for the Jacobian of the constraints.

However a proper implementation of DFET already ensures a highly sparse block

diagonal Jacobian of the constraints regardless of the choice of the basis. Thus the

further improvement due to this particular choice is expected to be modest because

it can only act on the individual block. Moreover, even if a sparse Jacobian generally

means that the NLP solver will have an easier time to converge to the final solution,

this does not mean that a slightly sparser Jacobian will result in a quicker convergence.

In other words, this basis seems to provide marginal benefits overall. Other poly-

nomial bases could instead provide different and maybe more significant benefits, but

to the authors’ knowledge the only polynomial bases used for DFET are Lagrange

interpolation on either the Gauss-Legendre or the Gauss-Lobatto quadrature nodes.

Although DFET was proven to be a valid technique to solve difficult optimal control

problems, when the solution presents very sharp variations in states and controls,

like bang-bang control profiles, the polynomial representation of states and controls

can display undesired oscillations exceeding the bounds, even if the nodal solution is

correct. This is known in the literature as Gibbs phenomenon. Vasile [70] proposed

h-p adaptivity strategies to improve the accuracy of the solutions found with the

DFET transcription. Although those strategies can be used to mitigate the problem,

oscillations can remain regardless of the choice of the position of the nodes. This is

undesirable in a number of cases:

� Even if the polynomial representation of states and controls is generally evaluated

at the collocation points only, the associated polynomial cannot be practically

used as interpolant of the nodal solution at any other instant of time. Thus it

cannot be used as guidance law.

� If different polynomial orders or collocation points are used for states and con-

trols, one could end up evaluating the polynomials at points affected by the Gibbs

31



Chapter 2. Direct transcription of Optimal Control problems

phenomenon.

� In a post-processing phase, one might want to evaluate some derived quantities

at arbitrary points along the solution. Values coming from those spurious os-

cillations that are outside the boundaries of states and controls could lead to

numerical exceptions.

� A regular behaviour in between two collocation nodes allows for a better re-

integrability of the control law.

� H-p adaptive techniques are iterative procedures which take a given solution,

re-evaluate it on a more refined grid and re-optimise it on this new grid. The

re-evaluation on the more refined grid requires the evaluation of the solution at

time instants that are different from the nodal values. Thus, the resulting initial

solution defined over the new grid could be out of bounds, with resulting numer-

ical difficulties or need for ad hoc procedures. All these problems could be solved

with a linear interpolation of the nodal solution for the controls, but a linear

interpolation would be inconsistent if a higher order polynomial representation

was used to obtain the solution.

This section proposes the use of Bernstein polynomials, for the DFET transcription

method, instead of the commonly used Lagrange interpolation on spectral bases. As

will be proved, the use of Bernstein polynomials guarantees that the representation of

states and controls remains within the feasible set over the whole time domain and

not only at the collocation nodes and avoids the Gibbs phenomenon at points of jump

discontinuity [78] or sharp slope variations.

In addition, a quantification of the computational cost for comparable accuracy of

both Lagrange and Bernstein bases will be provided . Two metrics will be used: the

sparsity pattern of the Jacobian of the constraints of the resulting NLP problem and

the number of iterations required to converge to the desired feasibility and optimality

of the NLP solution. The computational cost will be measured for an increasing order

of the polynomials (p-refinement), at constant number of finite elements, and for an
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increasing number of elements (h-refinement), at constant order of the polynomials.

Two cases will be considered: one with no path constraints but a sharp change in the

control profile and one with a path constraint on one state variable.

Linear combinations of Bernstein polynomials generate the so called Bezier curves.

The use of Bezier curves to solve optimal control problems can be found in the work

of Rogalsky [79] who solved optimal control problems with a linear dynamics, using

Differential Evolution and Bezier curves to represent the control profile. He noted

that the resulting curves always lie in the convex hull of the control points and never

present undesirable oscillations away from its defining control points. Thus, Bézier

curves could be used to parameterize smooth, non-oscillatory functions, with minimal

epistasis, using only a few parameters.

In [80, 81], Gomanjani et al. used Bezier curves in the analytical solution of some

optimal control problems, with linear dynamics, because they led to a simpler symbolic

manipulations. Darehmiraki et al. [82] proposed the use of Bernstein polynomials with

a weighted residual methods to solve distributed optimal control problems. Similarly

Mirkov and Rasuo in [83] proposed the use of Bernstein polynomials to solve Elliptic

Boundary value problems in a collocation method, while Bhatti and Bracken [84] pro-

posed the use of Bernstein polynomials in a Galerkin method to solve ODEs. Mirkov

and Rasuo showed that on linear problems with continuous solutions, collocation meth-

ods based on Bernstein polynomials had an exponential convergence rate though slower

than pseudo-spectral and Chebyshev collocation schemes. Finally Farouki and Rajan

[85] showed that the numerical conditioning of polynomials using Bernstein form is

particularly stable under finite precision arithmetic.

It is interesting to note that only a few researchers exploited the convex hull and

variation diminishing properties of Bezier curves for optimal control problems. These

properties are instead the main reason behind the choice of the use of Bernstein poly-

nomials: here we show that by choosing Bernstein polynomials as a basis for the

parameterisation of states and controls, one can generate solutions that display the
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aforementioned properties. Moreover, differently from previous works, Bernstein poly-

nomials are here used to solve general nonlinear optimal control problems.

This chapter also includes a theorem that provides some necessary conditions for

the satisfaction of general path constraints, provided that the feasible region is convex

and states and controls are described by Bezier curves. Finally, the main contribution

of this chapter is to show the benefit of using Bernstein basis, within the DFET

transcription framework, when the solution has sharp variations in the control law or

simple path constraints.

2.2.3 Bernstein Basis

A Bernstein basis of order n is defined as

Bν,n(t) =

(
n

ν

)
tν(1− t)n−ν 0 ≤ ν ≤ n, 0 ≤ t ≤ 1 (2.11)

As shown in Fig. 2.1a Bernstein polynomials either assume a value of 0 on both

boundaries or a value of 1 on one boundary and of 0 on the other, so can be used as test

functions w. Since the resulting curves will be integrated through Gauss quadrature,

whose nodes are defined on [−1, 1], Bernstein polynomials must also be redefined on

the interval [−1, 1]:

B̃ν,n(τ) = Bν,n(t) τ = 2t− 1 (2.12)

In the following, for clarity of notation, the subscript n to denote the order of the

Bernstein polynomials will be dropped. That degree will equal l, m or l+ 1 depending

on whether the polynomials will be used to describe respectively the states, controls
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or test functions. Substituting (2.12) into (2.6) we obtain

xj(t) =

lx∑
s=0

B̃sj(τ) xsj = Bj(τ) (2.13a)

uj(t) =

lu∑
s=0

B̃sj(τ) usj = Cj(τ) (2.13b)

wj(t) =

lx+1∑
s=0

B̃sj(τ) wsj = Dj(τ) (2.13c)

Thus, if the basis is made of Bernstein polynomials the resulting state curves Bj(τ),

control curves Cj(τ) and test curves Dj(τ) are by definition Bezier curves. Bezier

curves are a class of curves commonly employed in computer graphics and computer

aided design because they enjoy several interesting properties, among which we employ

the following:

1. a Bezier curve of degree n can be equivalently described by a vector of n+1 nodes

or weights, equally spaced in time as shown in Fig. 2.1b. In this work, the vector

of nodes is
(

2s
n − 1,xsj

)
, 0 ≤ s ≤ lx for the states and

(
2s
m − 1,usj

)
, 0 ≤ s ≤ lu for

the controls. It is important to note that these nodes are equispaced in time, and

thus never completely coincide with the Gauss integration nodes τk. Moreover,

weights xsj and usj , in the case of Legendre interpolation can coincide with the

integration nodes τk, thus the weights can be seen as the nodal solution on τk

because, by construction, fsj(τk) = 1 if k = s. If the Bernstein basis is used,

instead, the weights xsj and usj cannot be interpreted as the nodal solution on

either the nodes τs or τk. However, they can be interpreted as the vertices of the

polygonal chain that the Bezier curve will approximately follow.

2. Bezier curves are completely contained in the convex hull of the polygonal chain

connecting the nodes that define them, as shown again in Fig. 2.1b. This is

a property that can be often found mentioned in the literature [79, 80, 81, 82].

Here we propose a formal demonstration of this property.
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Lemma 1 Bezier curves are contained in the convex hull defined by their nodes.

Proof 1 A generic Bezier curve Q(t) is defined as

Q(t) =
n∑
ν=0

Bν,n(t)xν (2.14)

where Bν,n(t) are Bernstein polynomials of degree n and xν are called weights or

nodes. By definition, Bernstein polynomials satisfy the positivity condition

Bν,n(t) =

(
n

ν

)
tν(1− t)n−ν ≥ 0, 0 ≤ t ≤ 1, 0 ≤ ν ≤ n ∈ N (2.15)

and the partition of unity condition:

n∑
ν=0

Bν,n(t) = (1− t+ t)n = 1 0 ≤ t ≤ 1, 0 ≤ ν ≤ n ∈ N (2.16)

where the central equality derives from the binomial theorem. The vertices xν

can be enclosed in a convex hull, which is defined as :

Conv(xν) :=

{
n∑
ν=0

λνxν

∣∣∣∣(∀ν : λν ≥ 0) ∧
n∑
ν=0

λν = 1

}
(2.17)

Since each Bν,n(t) satisfies the requirements to be a λν for every t, it follows

that Bezier curves are contained in the convex hull enclosing the nodes xν which

define them.�

3. Bezier curves have the variation diminishing property (for the proof see Ait-

Haddou et al. [86]): the number of times a straight line intersects the curve

is always less or equal to the number of intersection the same line has with

the polygonal chain. Intuitively, this means that the Bezier curve oscillates

less than the polygonal chain defining it, see again Fig. 2.1b. This property

guarantees that if the polygonal chain connecting the nodal values of the controls

is monotonic, the resulting Bezier curve will be monotonic too. Thus, when an

optimal control problem has a bang-bang solution and the discretisation is not
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(a) Bernstein basis of order 8 (b) A Bezier curve of order 8

Figure 2.1: A Bernstein basis and a Bezier curve. Circles: Bezier nodes. Dashed line:
polygonal chain. Shaded area: convex hull.

perfectly capturing the discontinuity, the resulting representation with Bezier

curves will be a smooth and monotonic curve completely within the prescribed

bounds.

When Bezier curves are used to parameterise states and controls we can prove the

following theorem:

Theorem 1 If the feasible region for the path constraints is convex, the states and

controls are represented as Bezier curves and the nodes of the Bezier curves satisfy

the path constraints, then the Bezier curves for the states and controls are inside the

feasible region for all t ∈ [t0, tf ].

Informally, the proof directly descends from Lemma 1, the hypothesis that the fea-

sible region for path constraints is convex and the hypothesis that the nodes of the

Bezier curve are feasible. Since the Bezier curves for states and controls are included

in the convex hull (which includes some or all the nodes of the polygonal chain) and

the convex hull is included in the feasible region, it follows that the Bezier curves are

included in the feasible region, and thus are feasible for all t ∈ [t0, tf ]. More formally

we can prove that the whole Bezier curves that approximate the time history of states
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and controls are contained in the feasible set.

Proof 2 The feasible set F of the path constraints g (x(t),u(t), t) ≤ 0 is defined as

F :=

{
l(t)

∣∣∣∣g (l(t)) ≤ 0

}
(2.18)

with l(t) = (x(t),u(t), t). If F is convex, then any linear convex combination of a

generic number L of its elements ls(t) also belongs to the set, thus satisfies

g

(
L∑
s=1

λsls(t)

)
≤ 0, ∀s : 0 ≤ λs ≤ 1,

L∑
s=1

λs = 1 (2.19)

If ls(t) are the corners of the convex hull:

H = Conv (ls(t)) :=

{
L∑
s=1

λsls(t)

∣∣∣∣(∀s : λs ≥ 0) ∧
L∑
s=1

λs = 1

}
(2.20)

then all points belonging to the convex hull H are also feasible:

H ⊆ F (2.21)

Now let the time domain [t0, tf ] be partitioned into finite elements and states x(t)

and controls u(t), within every finite element Dj = [tj , tj+1], be represented as Bezier

curves with nodes ls(t). From Lemma 1 it follows that the state-control vector l(t) is

contained in the convex hull H for every time element. �

Remark 1 If the conditions of Theorem 1 are applicable then path constraints are

satisfied for all t ∈ [t0, tf ]. This is a unique feature of the direct transcription method

proposed in this work. From an algorithmic point of view, this translates into imposing

constraint conditions on the weights xs,j and us,j such that g (xs,j ,us,j , tj) ≤ 0 is

satisfied because, see property 1 here above, these weights are equivalent to a set of nodes

in the space of the states and controls, equispaced in time. Thus if g satisfies convexity

condition (2.19) then g (xs,j ,us,j , tj) ≤ 0 satisfies the conditions of the theorem.

Remark 2 Since the convex hull is a subset of the feasible set, some regions of the

feasible set might be left out. This means that if the optimal solution lies in the left
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out region, this method can only return the fully feasible solution closest to the optimal

one. However, if the number of corners of the convex hull is increased, for example by

increasing the number of DFET elements or the order of Bezier curves, those left out

regions will asymptotically vanish, and the method can converge to the true optimal

solution. A practical example of this behaviour will be shown in the following section.

Remark 3 As reported in the literature, Bernstein polynomials for function approx-

imation display a lower convergence rate than Chebychev polynomials, or Lagrange

interpolation schemes in a number of cases [78, 87, 88]. However, in [83] it was

shown that the convergence rate of collocation schemes, based on Bernstein polynomi-

als, for the solution of elliptic boundary value problems was exponential albeit worse

than pseudo-spectral or Chebychev collocation schemes. A thorough theoretical assess-

ment of the convergence rate of the DFET transcription with Bernstein polynomials

will require a dedicated study and is left for future work. In the following examples,

however, we will show that the value of the objective function, computed with Bernstein

basis, converges slower than the one computed with Lagrange polynomials on spectral

basis.

Remark 4 A result on the guaranteed feasibility of the optimal control solution for

all t ∈ [t0, tf ] can be found also in Loock et al. [89] for differentially flat systems

parameterised with B-splines, and more recently in Cichella et al. [90] for differentially

flat systems parameterised with Bernstein polynomials. Differentially flat systems are

such that a change of variables exists that allows writing states and controls as explicit

functions of the new variables without integration. However, as stated by the authors,

there is no systematic way to assess if a nonlinear problem is differentially flat and to

find an associated variable trasformation. The approach proposed in this work, instead,

does not require any change of variables and simply requires to verify the convexity

of the feasible set defined by the path constraints. To be noted that for non-convex

constraints one can still apply the theory and method proposed in this work after using

the existing convexification techniques [91, 92, 93].
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2.3 Benchmark Cases

The following examples demonstrate the effect of these properties on the solution of

a simple optimal control problem. As a simple but representative test case, we consider

the minimum time transfer to rectilinear path problem, initially proposed in [19]. This

problem deals with the ascent of a point mass, subject only to a constant gravitational

acceleration in an inertial frame and to a control acceleration with constant magnitude.

The direction of the thrust vector depends on the control angle u, and the dynamics

of the point mass is defined by the following set of differential equations:

ẋ =vx

v̇x =a cosu

ẏ =vy

v̇y =− g + a sinu

(2.22)

where x and y are the horizontal and vertical position coordinates of the point mass,

vx and vy are its horizontal and vertical velocity components, g is the magnitude of

gravitational acceleration and a is the modulus of the control acceleration. The point

mass is initially at rest, and it has to reach a specified altitude with zero vertical

velocity, in minimum time. The terminal conditions are:
y(tf ) = h

vy(tf ) = 0
(2.23)

This problem was previously solved in [70] with DFET to demonstrate an h-p adap-

tivity strategy, and a multi-objective version of the same problem was solved in [64, 66]

with DFET and multi-objective memetic algorithms. For consistency with the afore-

mentioned references we will use the following values g = 1.6 ·10−3, a = 4 ·10−3, h = 10

and u ∈ [−π
2 ,

π
2 ]. Two different instances of the problem will be solved: 1) minimum

ascent time to a given altitude and no terminal constraint on the horizontal velocity

and 2) minimum ascent time to a given altitude with no terminal constraint on the
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horizontal velocity but a path constraint on the vertical velocity.

All the cases were initialised in the same way, and a feasible solution was first sought

using the Interior Point method of the NLP solver fmincon from the MATLAB®

Optimization Toolbox. After a fully feasible solution was found, it was used as starting

point to be optimised. Solutions of all test cases converged below the relative tolerance

of 10−6 both in feasibility and optimality.

2.3.1 Problem Instance 1 - Minimum Ascent Time with no Terminal

Constraint on the Horizontal Velocity

In the first instance of the problem the horizontal velocity has no prescribed terminal

value. The associated optimal control law is:

u(t) =


π
2 0 ≤ t ≤

√
h(a+g)
a(a−g)

−π
2

√
h(a+g)
a(a−g) < t ≤

√
h(a+g)
a(a−g) +

√
h(a−g)
a(a+g)

(2.24)

which is the asymptotic limit of the bilinear tangent law when the final horizontal

velocity is zero. For the values of a, h and g used, this corresponds to a switching time

ts = 76.3763 and a final time of tf = 109.1089, which is also the optimal value of the

objective function.

Solution (2.24) can be derived by observing that x and vx have no final state con-

straints, no path constraints and the objective does not depend explicitly on them,

thus the time evolution of the x coordinate is only dependent on the initial conditions

and one can concentrate only on the dynamics along the y axis. This means that u

has to be either π
2 or −π

2 for 0 ≤ t ≤ tf . Moreover, since thrust has to contrast gravity

at t0, u must initially points upwards and switch to point downwards at a time ts in

order to satisfy the terminal constraints y(tf ) = h and vt(tf ) = 0. Thus we have

u(t) =

 π
2 0 ≤ t ≤ ts

−π
2 ts ≤ t ≤ tf

(2.25)
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which corresponds to the following time law for the vertical velocity

vy(t) =

 (g − a)t 0 ≤ t ≤ ts

(g − a)ts − (g + a)(t− ts) ts ≤ t ≤ tf
(2.26)

and the following time law for the vertical position

y(t) =

 1
2(g − a)t2 0 ≤ t ≤ ts
1
2(g − a)t2s + (g − a)tst− 1

2(g + a)(t− ts)2 ts ≤ t ≤ tf
(2.27)

Imposing the boundary conditions for tf , we get

 (g − a)ts − (g + a)(tf − ts) = 0

1
2(g − a)t2s + (g − a)tstf − 1

2(g + a)(tf − ts)2 = h
(2.28)

which is a system with one linear equation and one second order equation. This system

can be solved analytically to get the aforementioned values for ts and tf .

For this first instance, three different test cases are presented. In the first case,

Problem 2.22 was solved with an increasing order of the polynomials for both states

and controls, in the second case only the order of the polynomials of the controls was

increased, while in the third the order of the polynomials was fixed but number of

elements was increased.

Problem Instance 1, Test case 1

In the first test case, the order of the polynomials of both states and controls were

varied simultaneously from 2 to 14 and were represented using either the Lagrange

interpolation basis constructed on Legendre nodes, or the Bernstein basis. Integration

was performed using Gauss-Legendre quadrature rules with q = lx + 1. This resulted,

for the Lagrange interpolation basis, in a matching of the integration and collocation

nodes, which is the most common choice for both DFET and pseudo-spectral methods.
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Figure 2.2 shows, for test case 1, the control profiles for the two bases (continuous

line) using different orders and their comparison with the analytical solution (dashed

line). It can be seen that Lagrange bases display significant oscillations near the dis-

continuity even if the collocation nodes (asterisk marker) correctly follow the analytical

bang-bang profile. The circles correspond, in control space, to the boundary values

of each finite element. The use of solid lines for the polynomial interpolation, dashed

line for analytical solution, asterisk marker for nodal solution and circle for boundary

values will be consistent for all plots of this work.

With progressively higher order the nodal solutions and the polynomial interpola-

tions become sharper, but the oscillating behaviour does not disappear or decrease

significantly. On the other hand, the solutions computed using Bernstein polynomials

display no oscillation and the control solutions are completely within the feasible set.

As the order increases, the nodal values converge more slowly to the analytical solu-

tion but remain feasible without oscillations. This also means that if one propagates

Bernstein solution with a generic forward marching integrator, the resulting trajectory

is expected to be close to the one computed with DFET.

Table 2.1 shows the number of iterations required by fmincon to reach feasibility,

the sparsity (number of non-zero elements) of the Jacobian of the constraints of the

NLP problem, the number of iterations to reach optimality and the final objective

value. From Table 2.1 one can see that the sparsity of the Jacobian is identical for

both Lagrange and Bernstein bases. The choice of the basis does not significantly

influence the number of iterations needed to reach a feasible solution.

On the other hand the number of iterations required to converge to optimality is

lower for Bernstein bases. For this problem the transcription with Bernstein basis

takes on average 25% less iterations than the transcription with Lagrange basis. The

convergence to the exact optimal cost function is instead slightly slower, with a rela-

tive difference which is always less than 0.4%. To be noted that although Lagrange

basis always returns slightly lower objective values, these values oscillate around the
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(a) Lagrange basis: order 2 (b) Bernstein basis: order 2

(c) Lagrange basis: order 6 (d) Bernstein basis: order 6

(e) Lagrange basis: order 12 (f) Bernstein basis: order 12

Figure 2.2: Problem Instance 1, Test case 1: Time-history of the controls.
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Table 2.1: Results for Problem Instance 1, Test case 1

Order Jacobian Non zero elements of Jacobian Feas iter Opt iter Objective value
States Control size La Bb La Bb La Bb La Bb

2 2 63x52 438 (13.4%) 438 (13.4%) 17 19 40 27 109.19 109.62
4 4 103x84 1046 (12.1%) 1046 (12.1%) 17 14 37 29 109.25 109.35
6 6 143x116 1910 (11.5%) 1910 (11.5%) 11 10 36 28 109.08 109.30
8 8 183x148 3030 (11.2%) 3030 (11.2%) 11 10 35 32 109.15 109.23
10 10 223x180 4406 (11.0%) 4406 (11.0%) 11 11 35 21 109.12 109.22
12 12 263x212 6038 (10.8%) 6038 (10.8%) 11 11 42 26 109.12 109.20
14 14 303x244 7926 (10.7%) 7926 (10.7%) 11 12 37 28 109.12 109.18

a Lagrange basis. b Bernstein basis.

exact one, while Bernstein basis monotonically converges to the exact solution. This

monotonic improvement of the final objective value with Bernstein basis is a practical

example of what was stated in Remark 2: the convex hull of the nodes for the controls

is leaving out small portions of the real feasible set. As the order of the Bernstein basis

increases, the number of nodes of the associated Bezier curves also increases and the

convex hull of the nodes also captures greater regions of the feasible set.

Problem Instance 1, Test case 2

DFET is a flexible scheme that allows one to choose different polynomial orders for

states and controls. Thus the second test case explores the behaviour of DFET in the

case in which the order of the polynomials representing the controls is different (lower

or higher) than the one of the polynomials representing the states.

In this test case the number of elements was kept fixed to 4 and the order of the

states was kept constant to 6, but the order of the controls was varied from 1 to 24. The

quadrature order was chosen in such a way that it could always integrate the highest

order polynomials, thus q = 7 when the order of the polynomials for the control is lower

than that of the states, and q = lu+ 1 for the other cases. For the Lagrange basis, this

Test case also induces a mismatch between the nodes on which the polynomials of the

states or of the controls are constructed, and the quadrature nodes. In particular, the

quadrature nodes match with the nodes on which the states are defined until control

order reaches 6, and match with the nodes on which the controls are defined from

control order 6 onwards.
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Table 2.2: Results for Problem Instance 1, Test case 2

Order Jacobian Non zero elements of Jacobian Feas iter Opt iter Objective value
States Control size La Bb La Bb La Bb La Bb

6 1 123x116 1590 (11.1%) 1590 (11.1%) 11 10 33 22 109.93 110.18
6 2 127x116 1654 (11.2%) 1654 (11.2%) 11 10 33 31 109.35 109.65
6 3 131x116 1718 (11.3%) 1718 (11.3%) 11 11 33 28 109.25 109.41
6 6 143x116 1910 (11.5%) 1910 (11.5%) 11 10 36 28 109.08 109.30
6 8 151x116 2038 (11.5%) 2038 (11.6%) 11 10 37 27 109.15 109.23
6 10 159x116 2166 (11.7%) 2166 (11.7%) 10 13 31 26 109.12 109.22
6 12 167x116 2294 (11.8%) 2294 (11.8%) 10 13 35 28 109.12 109.20
6 16 183x116 2550 (12.0%) 2550 (12.0%) 12 12 37 29 109.11 109.18
6 20 199x116 2806 (12.1%) 2806 (12.1%) 11 21 34 25 109.11 109.16
6 24 215x116 3062 (12.2%) 3062 (12.2%) 12 12 38 32 109.11 109.15

a Lagrange basis. b Bernstein basis.

Figure 2.3 shows that, as in test case 1, Lagrange basis display oscillations that

do not disappear with the increasing order of the polynomials while Bernstein basis

present a smoother and gradual approach to the exact solution. At the same time the

nodal values, in the case of Bernstein basis, converge slower to the exact solution.

Table 2.2 shows sparsity of the Jacobian of the constraints, the number number of

iterations to reach feasibility and optimality, and the final value of the cost function.

The sparsity of the Jacobian of the constraints is identical for both bases, the number

of iterations to converge to a feasible solution is not significantly affected by the choice

of the basis, while the number of iterations required to converge to an optimal solution

is. In particular, with Bernstein basis less iterations are needed to converge to the

required optimality of the NLP solution and a monotonic convergence towards the

analytical value as the order of the polynomials increases.
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(a) Lagrange basis: states order 6, controls order 6 (b) Bernstein basis: states order 6, controls order 6

(c) Lagrange basis: states order 6, controls order 12(d) Bernstein basis: states order 6, controls order 12

(e) Legendre basis: states order 6, controls order 24(f) Bernstein basis: states order 6, controls order 24

Figure 2.3: Problem Instance 1, Test case 2: Time-history of the controls.
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Problem Instance 1, test case 3

Test case 3 shows the effect of increasing the number of elements while keeping the

orders of states and controls constant: the order of the polynomials was kept fixed to

6, while the number of elements was increased from 4 to 20. Integration was performed

with Gauss-Legendre quadrature with q = lx + 1.

Figure 2.4 shows the controls profiles for three different refinements. In both cases,

increasing the number of elements leads to capturing the discontinuity more accurately.

With Lagrange basis, however, the oscillations increase at 12 elements and are still

present, though moderate, at 20 elements, while Bernstein presents, once again, no

oscillations.

Table 2.3 shows the sparsity of the Jacobians, the number of iterations required to

converge to a feasible solution, the number of iterations required to converge to an

optimal solution and the final objective value. As in previous cases, the sparsity is

identical between the two bases. More interestingly, even with a fivefold increase of

the number of elements, the number of iterations required to converge to a feasible

solution is practically constant. Both bases converge monotonically to the correct final

objective value, though Bernstein basis converges slightly slower.

Table 2.3: Results for Problem Instance 1, Test case 3

Number of Elements
Jacobian Non zero elements of Jacobian Feas iter Opt iter Objective value

size La Bb La Bb La Bb La Bb

4 143x116 1910 (11.5%) 1910 (11.5%) 11 10 36 28 109.08 109.30
8 283x228 3814 (5.9%) 3814 (5.9%) 13 10 33 28 109.10 109.17
12 423x340 5718 (4.0%) 5718 (4.0%) 11 11 37 35 109.10 109.14
16 563x452 7622 (3.0%) 7622 (3.0%) 14 11 46 34 109.11 109.12
20 703x564 9526 (2.4%) 9526 (2.4%) 14 11 40 45 109.11 109.11

a Lagrange basis. b Bernstein basis.
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(a) Legendre 4 elements of order 6 (b) Bernstein 4 elements of order 6

(c) Legendre 12 elements of order 6 (d) Bernstein 12 elements of order 6

(e) Legendre 20 elements of order 6 (f) Bernstein 20 elements of order 6

Figure 2.4: Problem Instance 1, Test case 3: Time-history of the controls.
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2.3.2 Problem Instance 2 - Minimum Ascent Time with Constrained

Vertical Velocity

This instance of the problem includes the following path constraint on the vertical

velocity:

vy(t) ≤ 0.1 ∀0 ≤ t ≤ tf (2.29)

The inclusion of this path constraint changes the profile of the vertical velocity from

a triangular into a trapezoidal shape. Intuitively, the minimum time solution will start

with a maximum vertical acceleration until switch time ts1 when the maximum allowed

vertical velocity is reached. At that point, the controls will assume a constant value

for which the vertical acceleration is zero. At time ts2, a deceleration phase starts

that brings the vertical velocity to 0 at time tf . As a result of the constraint on the

maximum vertical velocity, the objective function value is higher than for the previous

instance of this problem. Moreover, a double discontinuity in the control profile is

present.

The analytical control solution in this case is:

u(t) =


π
2 , 0 ≤ t ≤ Vmax

(a−g)

arcsin
( g
a

)
, Vmax

(a−g) ≤ t ≤
h(a+g)(a−g)−V 2

maxg
Vmax(a+g)(a−g)

−π
2 , h− h(a+g)(a−g)−V 2

maxg
Vmax(a+g)(a−g) < t ≤ h(a+g)(a−g)−V 2

maxa
Vmax(a+g)(a−g)

(2.30)

For the values of a, h, Vmax and g used in this paper, the first switching time is ts1 =

41.667, the second switching time is ts2 = 111.9048 and the final time is tf = 129.7619.

This solution can be obtained in the same way as the analytic solution of the previous

instance, by imposing continuity conditions across the switching points and solving for

the switching times.

For the second instance, two tests sets are presented: in the first set the order of

the polynomials of both states and controls are increased, while in the second set the
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order is constant but the number of elements is increased.

Problem Instance 2, test case 1

For test case 1 the time domain was discretised with 4 finite elements, and the order

of the polynomials for both states and controls was varied from 2 to 14.

Table 2.4 shows that the number of iterations to reach a feasibility is very marginally

lower for Bernstein, while the number of iterations to reach optimality is lower in

the case of Bernstein basis except for order 14. As in the previous cases, Lagrange

basis converge faster to the exact value of the cost function, while the Bernstein basis

converges slower but monotonically. The sparsity of the Jacobian is not shown because

identical to the previous instance of the problem.

Figure 2.5 shows the time history of u for both bases and different orders of the

polynomials. While the control laws obtained with the Legendre basis are very oscilla-

tory, especially when the path constraint is active, the variation diminishing property

of Bernstein polynomials is here fundamental, because the resulting polynomial solu-

tion will oscillate less than the nodal solutions. In fact, while there are some small

oscillations with Bernstein basis of order 2 and 6, which are due to a slightly oscillat-

ing nodal solution obtained by the NLP solver, the solution computed using Bernstein

basis presents no oscillations at order 12.

Generally, oscillations in the control profile are to be expected when path constraints

are imposed on states and no higher order derivatives of the path constraint are pro-

vided to the NLP solvers. This is fundamentally due to an indeterminacy of the control

profile that satisfies the path constraint. It is important to note that even if the value

of the objective function converges faster for the Lagrange basis than for the Bernstein

basis, as the order increases, the control law in Bernstein basis is very close to the

analytic solution while the one in Lagrange basis is significantly different.
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Table 2.4: Results for Problem Instance 2, Test case 1

Order Feas iter Opt iter Objective value
States Control La Bb La Bb La Bb

2 2 14 13 28 22 130.68 133.33
4 4 16 13 36 24 129.87 131.43
6 6 15 12 25 24 129.96 130.98
8 8 15 12 31 27 129.85 130.67
10 10 18 12 37 28 129.83 130.53
12 12 16 12 42 27 129.79 130.40
14 14 17 12 40 88 129.78 130.33

a Lagrange basis. b Bernstein basis.

Figure 2.6 shows the time history of vy. The solutions of order 2 present discontinu-

ities in the states. These discontinuities are the sign that a polynomial solution of order

2 is inadequate to capture the dynamics. As the order of the polynomials increases, the

profile of vy converges to the analytical one (dashed line). With the Lagrange basis,

although the nodal values converge faster than Bernstein, some infeasible oscillations

in the states are present, while Bernstein basis remains feasible for all 0 ≤ t ≤ tf .
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(a) Lagrange basis: 4 elements of order 2 (b) Bernstein basis: 4 elements of order 2

(c) Lagrange basis: 4 elements of order 6 (d) Bernstein basis: 4 elements of order 6

(e) Lagrange basis: 4 elements of order 12 (f) Bernstein basis: 4 elements of order 12

Figure 2.5: Problem Instance 2, Test case 1: Time-history of the controls.
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(a) Lagrange basis: 4 elements of order 2 (b) Bernstein basis: 4 elements of order 2

(c) Lagrange basis: 4 elements of order 6 (d) Bernstein basis: 4 elements of order 6

(e) Lagrange basis: 4 elements of order 12 (f) Bernstein basis: 4 elements of order 12

Figure 2.6: Problem Instance 2, Test case 1: Time-history of vy.
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Problem Instance 2, test case 2

For test case 2, similarly to test case 3 of Instance 1, problem (2.22) with path con-

straint (2.29) is solved with an increasing number of finite elements but keeping their

order constant.

Table 2.5 shows that the choice of the basis impacts the number of iterations to

achieve feasibility and optimality. In this case, Bernstein basis is cheaper in most of

the cases, up to a factor of 2.5, but becomes more expensive, by a factor of almost

2, for high number of elements and converges slower to the exact value of the cost

function. This will be further investigated in the next subsection.

Figure 2.7 shows the time histories of u as the number of elements is increased.

For both bases, an increase in the number of elements leads to the formation of high

frequency oscillations in the nodal solutions when the path constraint is active. The

magnitude of these oscillations is however contained in the case of Bernstein and very

high in the case of Lagrange. Similarly to the previous case, even if the value of the

objective function converges faster for the Lagrange basis than for the Bernstein basis

as the order is increased, the representation of the control law differs substantially: with

the Bernstein basis it’s very close to the analytic solution while with the Legendre case

is very difficult to notice any resemblance, even if one looks only at the nodal values.

The time history of vy is shown in figure 2.8. Both bases converge quickly to the

exact solution though Lagrange presents some infeasible oscillations at low number of

elements while Bernstein always remains within the feasible region for all 0 ≤ t ≤ tf .
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(a) Lagrange basis: 4 elements of order 6 (b) Bernstein basis: 4 elements of order 6

(c) Lagrange basis: 12 elements of order 6 (d) Bernstein basis: 12 elements of order 6

(e) Lagrange basis: 20 elements of order 6 (f) Bernstein basis: 20 elements of order 6

Figure 2.7: Problem Instance 2, Test case 1: Time-history of the controls.
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(a) Lagrange basis: 4 elements of order 6 (b) Bernstein basis: 4 elements of order 6

(c) Lagrange basis: 12 elements of order 6 (d) Bernstein basis: 12 elements of order 6

(e) Lagrange basis: 20 elements of order 6 (f) Bernstein basis: 20 elements of order 6

Figure 2.8: Problem Instance 2, Test case 2: Time-history of vy.
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Table 2.5: Results for Problem Instance 2, Test case 2

Number of Elements
Feas iter Opt iter Objective value
La Bb La Bb La Bb

4 15 12 25 24 129.96 130.98
8 17 12 43 26 129.78 129.98
12 16 11 65 27 129.77 129.86
16 16 12 38 63 129.77 129.82
20 16 12 46 59 129.77 129.80

a Lagrange basis. b Bernstein basis.

2.3.3 Effect of the NLP algorithm

All test cases were solved again with the SQP algorithm to check if a different NLP

algorithm would give different results in terms of convergence speed or value of the

objective function, and to check and whether there are synergies between the use of a

particular choice of basis functions and an NLP algorithm.

Tables 2.6 to 2.10 show the number of iterations to reach optimality and the final

value of the objective function for both bases and NLP algorithms. In most cases the

number of iterations remains fairly constant with respect to the size of the problem.

For the Lagrange basis, the number of iterations required by the SQP algorithm is

approximately 50% more than the Interior point algorithm, while for the Bernstein

basis the SQP algorithm requires approximately 50% less iterations than the Interior

point algorithm. Moreover, with a single exception using the Interior point algorithm

in Test Instance 2 Case 1 and two in Test Instance 2 Case 2, the number of iterations

required to converge to optimality is lower for Bernstein basis than for Lagrange basis,

most of the times by a significant amount.

This shows an important interplay between the basis employed to represent the

polynomials and the NLP algorithm. This interplay is due to the different way the

problem is represented in the numerical approximation, and the lower number of iter-

ations required by the Bernstein basis is very likely related to their superior numerical

robustness as explained in [85].
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Table 2.6: Performance comparison of the NLP algorithms for Problem Instance 1,
Test case 1

Order IP iterations IP Objective value SQP iterations SQP Objective value
States Control La Bb La Bb La Bb La Bb

2 2 40 27 109.19 109.62 51 8 109.19 109.62
4 4 37 29 109.25 109.35 54 16 109.25 109.35
6 6 36 28 109.08 109.30 50 21 109.08 109.30
8 8 35 32 109.15 109.23 71 10 109.15 109.23
10 10 35 21 109.12 109.22 41 9 109.19 109.22
12 12 42 26 109.12 109.20 32 11 109.12 109.20
14 14 37 28 109.12 109.18 37 12 109.12 109.18

Average 37.28 27.57 48.00 12.43

a Lagrange basis. b Bernstein basis.

Table 2.7: Performance comparison of the NLP algorithms for Problem Instance 1,
Test case 2

Order IP iterations IP Objective value SQP iterations SQP Objective value
States Control La Bb La Bb La Bb La Bb

6 1 33 22 109.93 110.10 13 10 113.77 110.18
6 2 33 31 109.35 109.65 21 10 111.80 109.65
6 3 33 28 109.25 109.41 31 9 109.25 109.41
6 6 36 28 109.08 109.30 50 21 109.08 109.30
6 8 37 27 109.15 109.23 108 9 109.15 109.23
6 10 31 26 109.12 109.22 52 14 109.12 109.22
6 12 35 28 109.12 109.20 46 14 109.12 109.20
6 16 37 29 109.11 109.18 50 15 109.11 109.18
6 20 34 25 109.11 109.16 37 15 109.11 109.16
6 24 38 32 109.11 109.15 55 17 109.11 109.15

Average 37.40 27.60 46.30 13.40

a Lagrange basis. b Bernstein basis.

Table 2.8: Performance comparison of the NLP algorithms for Problem Instance 1,
Test case 3

Number of Elements IP iterations IP Objective value SQP iterations SQP Objective value
La Bb La Bb La Bb La Bb

4 36 28 109.08 109.30 50 21 109.08 109.30
8 33 28 109.10 109.17 54 15 109.10 109.17
12 37 35 109.10 109.14 62 15 109.10 109.14
16 46 34 109.11 109.12 54 18 109.11 109.12
20 40 45 109.11 109.11 64 23 109.11 109.11

Average 38.40 34.00 56.80 18.40

a Lagrange basis. b Bernstein basis.

59



Chapter 2. Direct transcription of Optimal Control problems

Table 2.9: Performance comparison of the NLP algorithms for Problem Instance 2,
Test case 1

Order IP iterations IP Objective value SQP iterations SQP Objective value
States Control La Bb La Bb La Bb La Bb

2 2 28 22 130.68 133.33 19 10 130.68 133.33
4 4 36 24 129.87 131.43 12 10 130.70 131.43
6 6 25 24 129.96 130.98 66 11 129.96 130.98
8 8 31 27 129.85 130.67 62 14 129.85 130.67
10 10 37 28 129.83 130.53 40 16 129.83 130.53
12 12 42 27 129.79 130.40 66 20 129.79 130.40
14 14 40 88 129.78 130.33 154 21 130.00 130.33

Average 34.14 34.29 59.86 14.57

a Lagrange basis. b Bernstein basis.

Table 2.10: Performance comparison of the NLP algorithms for Problem Instance 2,
Test case 2

Number of Elements IP iterations IP Objective value SQP iterations SQP Objective value
La Bb La Bb La Bb La Bb

4 25 24 129.96 130.98 25 24 129.96 130.98
8 43 26 129.78 129.98 58 8 129.78 129.98
12 65 27 129.77 129.86 30 14 129.77 129.86
16 38 63 129.77 129.82 112 32 129.77 129.81
20 46 59 129.77 129.80 62 23 129.77 129.79

Average 46.17 39.83 62.00 19.50
a Lagrange basis. b Bernstein basis.
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2.3.4 Sparsity and NLP solvers

The sparsity of the Jacobian is an important factor affecting the computational cost

required to solve an NLP problem. The reason for this is that if a Jacobian is sparse, it

does not need to be stored explicitly as a full array and it is possible to employ sparse

linear algebra tools. Not needing to store the full matrix means that it is possible to

solve larger problems for a given memory budget. Additionally, a smaller Jacobian

could allow the problem to fit in the cache memory instead of the ordinary RAM,

allowing for significant speedups. Sparse linear algebra tools also allow to efficiently

perform matrix operations, skipping many multiplications and sums of null terms.

The sparsity of the Jacobian however is not the only important factor, since the same

sparsity level can be obtained with different patterns. The implementation of DFET

here described was carefully studied in order to maintain as much as possible a block

diagonal arrangement with narrow band. This is an important characteristic because,

for example, the inverse of a block diagonal matrix is itself a block diagonal matrix

where each new block is the inverse of an original block, thus preserving the sparsity

structure of the problem and speeding up the computation of the inverse. Even if

no matrix inversion is actually performed by the NLP algorithm, high quality linear

algebra software, with specialised factorisation and matrix multiplication routines,

exploits several of those properties.

Different NLP algorithms also exploit sparsity differently: in the documentation of

fmincon it can be found that the interior point algorithm is considered a large scale

algorithm while the SQP is considered a medium scale algorithm [94]. This classifi-

cation stems from the fact that the interior point algorithm implemented in Matlab

can have a user supplied Hessian, and if this Hessian is sparse, sparse linear algebra

routines will be employed. If the Hessian is not supplied, a BFGS approximation is

used instead. The SQP algorithm on the other hand is not classified as large scale

because it does not accept a Hessian, which is instead internally computed from the

gradients and Jacobians using a Quasi-Newton approximation, and it always employs
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dense linear algebra routines. This is a particular choice of the implementation of

SQP adopted in fmincon: for example, the NLP solver WORHP [95, 96] is a large

scale sparse implementation of the SQP algorithm.

Summarising, the same NLP algorithm can be implemented in different ways, par-

ticularly regarding the use of sparse linear algebra routines. A sparse implementation

allows to solve larger problems for the same memory budget, and should also perform

faster since many operations are not executed. This seems to contradict the results

discussed in the previous section. The implementation of the NLP algorithm thus

probably plays a major role on these interactions. It is reasonable to assume that

the observed faster convergence obtained by using SQP in conjunction with the Bern-

stein basis will persist even when using a sparse SQP implementation like the one of

WORHP, since the sparsity patterns of the two bases are identical, the only difference

between them being in the actual values of the Jacobian.

2.4 Chapter summary

This chapter presented the DFET transcription for the solution of optimal control

problems. It was shown that with the use of Bernstein basis, states and controls are

represented by Bezier curves, from which they inherit the convex hull and variation

diminishing properties.

A Theorem was proved, stating that, under some general convexity conditions about

the feasible region, this transcription scheme can guarantee that path constraints will

be satisfied everywhere in the time domain and not only at the quadrature nodes.

These properties allow one to have an everywhere feasible representation of the controls

even in the case of a bang-bang or bang-zero-bang switching structure. This fact was

experimentally demonstrated with two different instances of a known optimal control

problem.
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It was also shown that the sparsity of the Jacobian of the constraint of the result-

ing NLP problem is comparable to the one of DFET transcription schemes based on

Lagrange polynomials on spectral basis. For this problem the convergence of the NLP

solver was faster than in the case of Lagrangian basis, however the convergence rate

towards the exact value of the cost function was slower. Furthermore, a slower conver-

gence of the nodal values to the exact solution was registered, as expected, given the

slower convergence of Bernstein polynomials.

This slower convergence rate is expected to be present also in the case of continuous

solutions, as demonstrated by other authors, but in the case of jump discontinuities

the convergence rate is comparable because of the unwanted oscillations of Lagrange

bases, in the neighbourhood of the discontinuity, for times different from the nodal

values, that reduces the convergence rate to O(1).

On the the other hand, when path constraints on the states were imposed, the use of

Bernstein bases yielded solutions that displayed little or no oscillations of the controls

along the path constraint even if no higher order derivatives were provided to the NLP

solver. In this case, the nodal solutions were also closer to the analytical solution than

the nodal solutions obtained with the Lagrange basis.

The smooth behaviour of Bernstein polynomials is retained when different orders are

used for states and controls. This property allows for flexible h/p adaptivity schemes

which independently adapt the order of states and controls in each element and avoid

infeasible oscillations when the solution is interpolated on a new set of nodes.

Finally, an interesting interplay between the polynomial basis and the NLP algorithm

was shown. In most cases, the use of Bernstein basis required less iterations to converge

to an optimal solution than the Lagrange basis. Depending on the NLP algorithm and

size of the problem, this difference was more or less significant, reaching a maximum

of one order of magnitude. This improved convergence rate of the NLP solver could

be related to the superior numerical robustness of Bernstein polynomials, previously
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demonstrated by other authors. A theoretical quantification of the convergence rate

of the proposed method is left for future work, and could help explain the observed

behaviour.
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Multi-objective optimisation
1

Omnis ars naturae imitatio est

All art is an imitation of nature

Seneca

This chapter introduces multi-objective optimisation and presents the Multi Agent

Collaborative Search algorithm (MACS), a global memetic multi-objective optimisa-

tion algorithm which will be extensively used in the rest of this thesis. Several variants

and iterations of MACS exist in the literature [33, 34, 35, 36]. A new variant of MACS

is here introduced, with modified heuristics and a new solution archiving strategy. The

modified heuristics are here presented and tested against benchmark problems, show-

ing some performance improvement over the previous version of MACS [35]. A new

archiving strategy is also introduced, and it is shown how its adoption results in better

spread Pareto fronts for both MACS and another algorithm commonly employed for

multi-objective optimisation.

1The contents of this chapter were published in: L. A. Ricciardi, M. Vasile, Improved Archiving and
Search Strategies for Multi Agent Collaborative Search. Advances in Evolutionary and Deterministic
Methods for Design, Optimization and Control in Engineering and Sciences. Springer, 2019.
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3.1 The multi-objective optimisation problem

Mathematically, a multi-objective optimisation problem can be formulated as:

min
x∈D

f(x) (3.1)

where D is a hyperrectangle defined as D = {xj |xj ∈ [blj b
u
j ] ⊆ R, j = 1, ..., n} and f

is the vector function:

f : D → Rm, f(x) = [f1(x), f2(x), ..., fm(x)]T (3.2)

The optimality of a particular solution is defined through the concept of dominance:

with reference to problem (3.1), a vector y ∈ D is dominated by a vector x ∈ D if

fl(x) ≤ fl(y) for all l = 1, ...,m and there exists k so that fk(x) 6= fk(y). The relation

x ≺ y states that x dominates y. A decision vector in D that is not dominated by any

other vector in D is said to be Pareto optimal. All non-dominated decision vectors in

D form the Pareto set DP and the corresponding image in criteria space is the Pareto

front.

Starting from the concept of dominance, it is possible to associate, to each solution

in a finite set of solutions, the scalar dominance index:

Id(xi) = |{i∗ | i, i∗ ∈ Np ∧ xi∗ ≺ xi}| (3.3)

where the symbol |.| is used to denote the cardinality of a set and Np is the set of

the indices of all the solutions. All non-dominated and feasible solutions xi ∈ D with

i ∈ Np form the set:

X = {xi ∈ D | Id(xi) = 0} (3.4)

The set X is a subset of DP , therefore, the solution of problem (3.1) translates into

finding the elements of X. If DP is made of a collection of compact sets of finite

measure in Rn, then once an element of X is identified it makes sense to explore
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its neighbourhood to look for other elements of X. On the other hand, the set of

non-dominated solutions can be disconnected and its elements can form islands in D.

Hence, multiple parallel exploration can increase the collection of elements of X.

3.1.1 Tchebycheff Scalarisation

Another approach for the solution of problem (3.1), known as Tchebyceff Scalarisa-

tion, is to solve a number of scalar optimization problems in the form:

min
x∈D

g(f(x),ω, z) = min
x∈D

max
l=1,...,m

{ωl|fl(x)− zl|} (3.5)

where z = [z1, ..., zm]T is the reference objective vector whose components are zl =

minx∈D fl(x), for l = 1, ...,m, and ωl is the l-th component of a weight vector ω.

By solving a number of problems (3.5), with different weight vectors, one can ob-

tain different Pareto optimal solutions. Although the final goal is always to find the

set X, using the solution of problem (3.5) or index (3.3) has substantially different

consequences on the way samples are generated and selected.

In [33, 34, 35, 36] a version of MACS, called MACS2, was introduced, combining

Pareto dominance and Tchebycheff scalarisation to select potential improvements to-

wards the Pareto front. The effectiveness of this approach was tested on different

benchmark and challenging real problems: since MACS2 was successfully used for

the design of space missions for the removal of space debris by means of low-thrust,

many revolutions orbits, and for the design of the initial, low-thrust rising phase for the

technology demonstrator mission DESTINY. Both are real engineering multi-objective

optimisation problems for which no previous solution was known, and involved the

concurrent minimisation of fuel consumption, mission time, and, for the DESTINY

mission, radiation exposition time.
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3.2 Multi Agent Collaborative Search

The key idea underneath MACS is to combine local and global search in a coordi-

nated way such that local convergence is improved while global exploration is retained

[97]. This combination of local and global search is achieved by endowing a set of

agents with a repertoire of actions producing either the sampling of the whole search

space or the exploration of a neighbourhood of each agent. In this section, the key

heuristics underneath MACS will be described in detail.

3.2.1 Algorithm Description

In MACS, a population of virtual agents is deployed at random locations in the

search space. Each agent locally explores its neighbourhood performing a set of local

search actions, also named individual actions. Then the population as a whole performs

a set of social actions, to concurrently advance towards the front. An external archive

is used to store the current best representation of the Pareto set. Individual actions,

social actions and archive update are repeated until a stopping criterion is met.

With reference to Algorithm 1, MACS2.1 starts by initialising a population of npop

agents at random locations within the search domain D with a Latin Hypercube Sam-

pling. Non-dominated agents are copied in the archive A to form the first approxima-

tion of the Pareto set. The archive A has specified maximum size maxarch.

A set of nω m-dimensional unit vectors ωk (defining m directions in criteria space)

is then generated.The first m ωk vectors form a base in <m, so that the solution

vectors that best optimise each individual objective function are always in the final

approximation of the Pareto set. A user-defined fraction psocial of agents is specified,

and each social agent is then associated to the scalarised sub-problem it solves best,

and to the corresponding weight vector ωk (see Line 9).

After initialising the velocity Vi of each agent (Line 10) the main loop starts (Line

12). Until a maximum number of function evaluations is reached, the agents first
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perform local search actions, described in the next section and Algorithm 2, to move

towards the Pareto set. A local action is considered successful when it generates a

dominating solution or a solution that satisfies the Tchebycheff scalarisation criterion

corresponding to the particular sub-problem associated to the agent.

After all local actions have been completed, the archive A is updated with all non-

dominated solutions. A total of nsocial agents then perform the social actions described

in Section 3.2.1 and Algorithm 3. The archive A is updated again with all non-

dominated solutions.

Algorithm 1 MACS2.1

1: Set nfeval,max, maxarch, npop, psocial, F , CR, ρini, ρcontr, ρmax,contr
2: Set nsocial = npoppsocial
3: Set iteration counter h = 0
4: Initialise population Ph, nfeval = 0
5: Initialise neighbourhood size ρi = ρini ∀i ∈ {1, .., npop}
6: Insert the non-dominated elements of P0 in the archive A
7: Initialise nω vectors ωk for k ∈ {1, .., nω} such that ||ωk|| = 1
8: Initialise the vector of agents’ velocities Vi = 0 ∀i ∈ {1, .., npop}
9: while nfeval < nfeval,max do

10: h=h+1
11: update number of directions to scan in pattern search
12: Perform local actions through Algorithm 2
13: Update archive A with non-dominated elements through Algorithm 4
14: Perform social actions through Algorithm 3
15: Update archive A with non-dominated elements through Algorithm 4
16: end while

Individualistic actions

In the following the individualistic search actions are described. These individualistic

actions are specific of this version of MACS. Each agent has a repertoire of three

different actions, namely: inertia, pattern search and differential evolution. Each agent

performs each action sequentially until an improvement is registered (i.e. the algorithm

generates either a dominant solution or a solution that satisfies Tchebycheff criterion,

if the agent is associated to a ωk). The pseudo-code is given in Algorithm 2.
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Inertia If the previous moves defined a search direction Vi in parameter space,

inertia generates a new sample in the same direction (lines 3-8). The trial position for

the i− th agent, xtrial is, defined as:

xtrial = xi + αVi (3.6)

where α is a random number between 0 and 1. In MACS2.1, if xtrial is outside the

admissible domain D, α is contracted with a simple backtracking procedure so that

xtrial falls on the boundary of D. In the case a number of components of xi lower than

n is already equal to either their lower or upper limit and xi +αVi is outside D, then

the corresponding components of Vi are set to zero before the backtracking procedure

is applied. This correction was introduced to improve the exploration of the boundary

of the search space, since without it the backtracking would in this case impose α = 0.

Figure 3.1 shows for examples of this strategy: in one case inertia is applied without

modifications, in one case α is reduced in order to avoid sampling outside the allowed

region, in a third case one component of V is removed because the initial position is

already on the boundary, and in the fourth case one component of V is removed and

α is also reduced in order not to sample outside of the bounds.

Pattern Search If inertia gave no improvement or was not performed (Vi = 0),

a simple pattern search strategy is implemented. This heuristic changes only one

randomly chosen component j of xi at a time (lines 14-20). The trial position xtrial is

thus equal to xi, except for the j − th component, which is:

xtrial,j = xij + α∆jρi (3.7)

where this time α is a random number between -1 and 1, ∆j is the difference between

the upper and lower boundaries for variable j and ρi defines the size of a hyper-

rectangle centred in xi. If direction α∆jρi is not successful, the opposite direction

−sign(α)β∆jρi is attempted with β a random number between 0 and 1. If also this

move fails, a new random direction (different from the previous ones) is chosen.
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Figure 3.1: Inertia move with reduction of α. Black dots and black arrows indicate
initial positions and V, blue dot indicate final positions, blue arrow indicate modified
V

This strategy is repeated until either an improvement is found (i.e. a dominant solu-

tion is generated or Tchebycheff criterion is satisfied), or a specified maximum number

of directions has been explored. In MACS2.1, the maximum number of directions is

dynamically adjusted as

max dirs = round

(
n− (n− 1)

curr arch size

max arch size

)
(3.8)

where max dirs is the maximum number of dimensions to scan, n is the number of

coordinates, curr arch size is the current size of the archive and max arch size is the

specified maximum size of the archive (lines 11-21). If a good sample is found, it is

used to compute vector Vi.

Differential Evolution If pattern search did not lead to an improvement, a differ-

ential evolution step is taken, by combining vector xi with 3 randomly chosen agents

xi1 ,xi2 and xi3 (lines 24-28). The displacement vector is then given by:

dxi = αe ((xi − xi1) + F (xi2 − xi3)) (3.9)
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where α is a random number between 0 and 1, F is a user specified constant and e is

a mask vector whose elements are either 0 or 1 as follows:

ej =


1, if α2 < CR

0, otherwise

(3.10)

where α2 is a random number between 0 and 1, and CR is another user specified

constant. The trial position for the differential evolution move finally reads:

xtrial = xi + dxi (3.11)

To ensure this new position is inside the domain, in MACS2.1 the same strategy as

for the inertia case is employed: eventually suppressing some components of dxi and

reducing α.

Local neighbourhood size management If all local actions have failed, the local

neighbourhood size ρi is reduced by a user defined factor ρcontr. After a user defined

maximum number of contractions ρmax,contr, ρi is reset to ρini. Conversely, if one

action is successful, in MACS2.1 ρi is increased by a factor ρcontr, up to the maximum

value ρini (lines 30-37).

Social actions

Social actions are implemented following the same principle as in Zuiani and Vasile

[35]: a fraction psocial of the total population of the agents implements a DE type

of heuristic by picking agents either from the population or from the archive (lines 4

or 6). The probability of picking agents from the archive or from the population is

determined by:

parch vs pop = 1− e−
current size archive

num agents (3.12)

In MACS2, with Social Actions, each social agent was immediately moved to the

trial position if the trial position satisfied the Tchebycheff criterion. In MACS2.1,

instead, the archive is first updated with all trial vectors that are non-dominated by
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Algorithm 2 Individualistic actions

1: for i = 1 : npop do
2: Set improved=FALSE
3: if ||Vi|| 6= 0 then
4: Perform Inertia move
5: if successful then
6: set improved=TRUE
7: end if
8: end if
9: if not improved then

10: counter=0
11: while counter≤ max pat search dirs & not improved do
12: counter=counter+1
13: Pick random direction
14: Perform Pattern Search
15: if successful then
16: set improved=TRUE
17: set Vi = xi,old − xi
18: end if
19: end while
20: end if
21: if not improved then
22: Perform Differential Evolution
23: if successful then
24: set improved=TRUE
25: end if
26: end if
27: if not improved then
28: Contract ρi
29: if ρi has contracted more than ρmax,contr times then
30: ρi = ρini
31: end if
32: else
33: Expand ρi unless this would cause ρi to be greater than ρini
34: end if
35: end for
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any other element of the archive. After the archive is updated, each agent performing

social actions is then moved to the location of the element of the archive that best

improves the corresponding Tchebycheff sub-problem, unless that location is already

occupied by another agent (lines 15-22).

This new heuristic better exploits the information in the archive and at the same

time does not exclude non-dominated trial vectors that do not satisfy the Tchebycheff

condition before checking the content of the archive. The pseudo-code for social actions

is given in Algorithm 3.

Algorithm 3 Social actions

1: choose random number r between 0 and 1
2: compute p = 1− e−

curr arch size
num agents

3: if r ≤ p then
4: perform DE between social agents and random points from archive
5: else
6: perform DE between social agents and random points from current population
7: end if
8: add candidate solutions in archive through Algorithm 4
9: if there are at least as many agents in the archive as objective functions then

10: if there’s exactly as many agents in the archive as objective functions then
11: nmove = num objective functions
12: else
13: nmove = min(num agents in archive, num agents performing social actions)
14: end if
15: create pool of nmove agents to be moved. Agents following exclusively one of the

objectives are always chosen
16: move the nmove agents to the positions in the archive better solving each agent’s

sub-problem
17: end if

3.2.2 A New Archiving Strategy

The archiving process is a fundamental part of the optimisation process. The archive

not only stores an approximation of the Pareto set, but it also constitutes a source

of information for the social actions. A well distributed archive is thus not just a

desirable property, but can also improve exploration by increasing the diversity of the

population in criteria space.
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A thorough analysis of the behaviour of the algorithm revealed that the archiving

procedure implemented in the previous versions of MACS was suboptimal as it was

not retaining some isolated non-dominated solutions and was instead keeping solutions

in densely populated regions of the Pareto front. The final archive was therefore not

giving the most even representation possible of the Pareto front.

In order to address this issue, a new archiving strategy is here proposed. The

new strategy, which from now on will be called Energy Based Archiving (EBA), is

physically based on the simple idea of minimising the energy of a cloud of points which

exert repulsion on each other. It draws inspiration from the fact that a set of equally

charged particles in a sphere will move towards its surface and spread uniformly.

In this case, however, the particles are not free to move, but can only occupy spec-

ified positions. The algorithm described in the following attempts to generate the

most evenly distributed Pareto front possible with the available set of solutions. This

archiving strategy is not specific to MACS, but can be applied to any multi-objective

optimisation algorithm, and, as will be shown, can improve the results obtained by

other algorithms.

EBA algorithm implementation

Suppose that at iteration k the archive is full and is composed of r elements. Let yi

and yj be the position of element i and j in objective space, then one can define the

generalised energy of the archive as:

E =
r∑
i=1

r∑
j=i+1

1

(yi − yj)
T (yi − yj)

(3.13)

This energy is simply the sum of the reciprocal of the squared distances of the

points of the archive in the criteria space. To avoid problems when the objectives

have significantly different scales, the solution vectors are first normalised so that the

maximum distance along each coordinate is 1.
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Suppose now that there are q non-dominated candidate solutions which also do not

dominate any of the elements in the archive. The problem of choosing which candidate

substitutes which element of the archive is reformulated as finding the subset of r

elements from the set of r + q elements that minimises the energy E.

A direct update of the archive using E is not feasible if r and q are large, or even

moderate, because the total number of possible combinations is
(
r+q
r

)
. As an alterna-

tive, the following procedure is proposed, for which pseudo-code is given in Algorithm

4 and a flow diagram in 3.2.

Let the archive A be not full. If there is enough space in A to add all the candidates,

the archive is simply updated adding those elements (lines 1-2). A symmetric matrix

M , containing the reciprocals of the squared distances of all the elements in the archive,

is updated (line 4). From M , the total energy of the archive E and a helper vector E2,

are computed (lines 6-7). E2 is needed to simplify and speed up some computations,

as will be explained later. If the archive is full, instead, the following procedure is

applied.

Given the elements in the archive A and a set of candidate elements C, for each

element in A the energy E is recalculated assuming that that element was replaced by

an element in C (line 23). If the lowest variation of E is negative, the element of C

that gives that variation and the element in the archive are swapped. If there has been

at least one replacement, the whole process is repeated until no more improvements

can be detected or a maximum specified number of iterations is exceeded (lines 19-29).

In case the archive is not full but there is not enough space to add all the candidates,

the above mentioned algorithm adds, sequentially, the candidates which give the least

increase of the total energy of the archive (lines 8-12). No swapping between candidates

and agents in the archive is performed in this case, only addition of candidates until

the archive is full, and the corresponding update of M and E2 (lines 13-14).
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Algorithm 4 Energy Based Archiving

1: if there’s room for all candidates in archive then
2: Add them to the archive
3: for all candidates do
4: Update the symmetric matrix M containing the reciprocal of the squared

distance of each pair of elements
5: end for
6: Update the total energy E of the archive
7: Update the vector E2

8: else
9: if only some candidates can be added then

10: while archive is not full do
11: Choose the candidate which gives the least possible addition of energy to

the archive and add it
12: Update M , E and E2

13: end while
14: else if the archive is full then
15: Set improved=TRUE
16: iterations=0
17: while improved and iterations < maxit do
18: improved=FALSE
19: iterations=iterations+1
20: Create a matrix containing the energy that the archive would have if each

element of the archive were substituted with each candidate
21: Locate the minimum entry Enew of this matrix
22: if Enew < E then
23: Enew is at position (i∗, j∗)
24: Swap candidate j∗ with element i∗

25: Set improved=TRUE
26: Update E, M and E2

27: end if
28: end while
29: end if
30: end if

77



Chapter 3. Multi-objective optimisation

New
candidate
solutions

Space to
add all?

Add all
to archive

Archive
full?

Update
M , E, E2

End

Choose
candidate

adding
least to E

Update
M , E, E2

Archive
full?

End

Iter=0

Iter≤Max

Compute
matrix

Enew sub-
stituting
element i
with can-
didate j

Pick min
of Enew

and record
position
(i∗, j∗)

Enew < EEnd

Swap
element i∗
with can-
didate j∗

Update
M , E, E2

Iter=Iter+1

yes
no

no

yes

no

yes

yes

no

yes

no

Figure 3.2: Diagram for the Energy based archiving strategy
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Table 3.1: IGD of the different archiving strategies

MACS 2.1 MACS2 NSGA-II
archiver archiver archiver

10 points 3.68e-2 3.90e-2 9.44e-2
25 points 1.52e-2 1.55e-2 2.44e-2

The actual Matlab implementation stores in a symmetric matrix the inverse of all

pairwise squared distances between the elements currently in the archive. Deletion,

addition and substitution of elements are performed as block matrix operations to save

time. In the i-th entry of the E2 vector is stored the energy the archive would have if

element i were removed. This way, the computation of the energy with a substitution

of one element is linear in the number of candidates, because the baseline value (i.e the

energy of the archive without replacement) is already stored, and only the contribution

of the new candidate needs to be computed. The overall algorithm is called Energy

Based Archiving (EBA).

As an example of the results provided by this archiving strategy, we considered a

hypothetical Pareto front with 100 elements and tried to extract the q elements with

the EBA algorithm, with the archiving algorithm employed in Zuiani and Vasile [35]

and the one implemented in NSGA-II [26].

The hypothetical Pareto front is composed of a set of random samples taken from the

Pareto front of the function ZDT4, a common benchmark function in multi-objective

optimisation [98]. Figure 3.3 shows the results provided by the three archiving strate-

gies for q = 10 and q = 25. The EBA strategy gives a good spreading of the extracted

elements, slightly better than the one obtained with the strategy in MACS2 and much

better than that obtained by the strategy implemented in NSGA-II. All the algo-

rithms extract the same number of elements from this set. To quantify the effect of

the algorithm, the Inverse Generational Distance metric (IGD), a measure of spreading

commonly employed multi-objective optimisation, see [99], is shown in table 3.1.
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Figure 3.3: Outcomes of different archiving strategies from the same initial archive.
The fronts have been shifted to enhance the comparison

3.2.3 Generation of the weight vectors

The weight vectors for are generated as follows: first, a simplex in objective space is

generated through simplex lattice design [100]. Then, the points of this simplex lattice

are projected on the unit sphere by dividing their position vectors by their distance to

the origin. This gives a fairly uniform distribution of weight vectors (and thus descent

directions) in any Nw dimensional space.

In order to generate a more uniform distribution, however, these weight vectors are

used as an initial guess for the following optimisation problem:

min E(ω1, . . . ,ωNw)

s.t.

ωTi ωi = 1

(3.14)

where E(ω1, · · · ,ωNw) is calculated using Eq. (3.13).

This optimisation problem can be quickly solved with a standard NLP solver. As a

reference, from the initial lattice to the final optimised distribution the generation of

106 uniformly spread weight vectors for a three objective problem takes 22 iterations
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(a) Projection of symplex (b) After optimisation

Figure 3.4: Distribution of 106 Weight vectors

of the NLP solver with an SQP algorithm, which translates into approximately half a

second in Matlab on an i7 laptop.

Figure 3.4 and 3.5 show the comparison between the distribution of weight vectors

generated with the projection on the unit sphere of the simplex lattice design, and

after the optimisation procedure, for the generation of 106 and 465 weight vectors. As

it is evident, without the optimisation the points tend to be more clustered towards

the vertices of the spherical triangle, while after the optimisation the points are evenly

spread. Thus the optimisation of the weight vectors returns a better distribution at

a negligible computational cost. While this approach is valid for general m-objective

problems, for two objective problems it is simpler to directly generate uniformly an-

gularly spaced weight vectors.
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(a) Projection of symplex (b) After optimisation

Figure 3.5: Distribution of 465 Weight vectors

3.3 Benchmark Cases

MACS2.1 was tested on a set of benchmark functions: a mix of the first seven UF

functions proposed in the CEC2009 competition [101] on multi-objective optimisation

and the function ZDT4 proposed by Zitzler et al. [98].

3.3.1 CEC 2009 UF functions

The UF functions have a complex Pareto set and are a good benchmark to test

the archiving procedure. MACS2.1 was tested and compared against the version of

MOEA/D that won the CEC2009 competition [102] and against a previous version of

MACS, called MACS2 [35].

On the UF test set, each algorithm was run 200 times for each of the functions

UF1-7 on a Linux workstation with 8 GB of RAM and an Intel i7-4790 cpu. The

settings for MACS2.1 are reported in Table 3.2 while for MOEA/D the parameters

suggested by its authors in [102] were used. The algorithms are compared against the

Inverse Generational Distance (IGD) metric, which was used to rank the solutions in
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Table 3.2: Settings for MACS, CEC problems

nfeval,max npop ρini F CR psocial ρcontr ρmax,contr
300000 150 1 0.9 0.9 0.2 0.5 5

Table 3.3: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MACS2.1 and MOEA/D, CEC2009 problems. Also reported the unsigned Wilcoxon
test results

Problem MACS2.1 MOEA/D Wilcoxon MACS2.1 MOEA/D Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.09e-3 4.41e-3 3.70e-59 1.65e-2 1.12e-1 3.14e-11
(9.58e-9) (1.69e-8) (5.53e-5) (6.16e-2)

UF2 4.43e-3 6.24e-3 3.70e-59 2.09e-2 7.48e-2 4.52e-53
(1.23e-7) (1.57e-6) (4.41e-5) (9.46e-3)

UF3 1.84e-2 7.16e-3 3.70e-59 1.46e-1 6.38e-2 5.08e-34
(1.09e-5) (2.47e-5) (2.61e-2) (1.83e-2)

UF4 2.93e-2 6.14e-2 3.70e-59 4.99e-2 1.11e-1 4.83e-67
(7.50e-7) (2.50e-5) (2.74e-5) (3.17e-4)

UF5 5.80e-2 2.98e-1 3.70e-59 1.32e-1 7.96e-1 4.83e-67
(5.58e-5) (7.45e-3) (9.56e-4) (2.20e-1)

UF6 2.74e-2 2.68e-1 3.70e-59 8.86e-2 6.27e-1 7.03e-67
(6.10e-5) (4.34e-2) (2.06e-3) (1.14e-1)

UF7 4.15e-3 4.77e-3 1.46e-34 2.96e-2 1.67e-1 1.26e-08
(5.61e-8) (3.17e-6) (9.40e-4) (6.83e-2)

the CEC2009 competition, and against the Averaged Hausdorff distance. Both metrics

are described and extensively analysed in [103].

As pointed out by Schütze et al. [103], the IGD metric is sensistive to the number of

elements in the reference Pareto front and in the computed one. Hence the inclusion

of the Averaged Hausdorff distance in this comparison. Mean and variance of the IGD

and Averaged Hausdorff distance for each problem and algorithm are reported in Table

3.3, together with result of the Wilcoxon hypothesis test. In 6 of the 7 cases analysed in

this paper, the results obtained by MACS2.1 have lower mean IGD and mean Averaged

Hausdorff distance, and the variances of those metrics are 1 to 3 orders of magnitude

lower for MACS2.1, meaning that the results or MACS2.1 are much more repeatable.

The low values of the Wilcoxon test confirm that the underlying distributions of the

metrics are indeed different.
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Effect of the Energy Based Archiver

To better appreciate the effect of the archiver, MACS2.1 was then run with the same

settings but with the archiving strategy employed by MACS2 (denoted as MACS2.1

NO EBA), while the final results of MOEA/D were filtered with the EBA algorithm

instead of using the filter employed by MOEA/D (denoted as MOEA/D+EBA). Tables

3.4 and 3.5 summarise the results of this test.

The EBA strategy improved the quality of the Pareto front found by MOEA/D

in 4 cases without worsening the others, and improved the results of MACS2.1 in 3

cases with no significant variation in the other cases. The amount of the improvement

depends on the quality and size of the the archive: a closer examination of the UF5

and UF6 cases showed that none of the 200 archives had 100 non-dominated elements,

hence EBA simply gave the same result as the strategy implemented in MACS2.

For UF4 the high IGDs are caused by a relatively high distance between the com-

puted front and the true one, more than by a poor distribution of the points, while for

UF3 there is a relative lack of points in the upper left region of the Pareto front. For

this comparison, the Averaged Hausdorff distance does not show any relevant improve-

ment. This is due to the fact the Averaged Hausdorff distance penalizes the outliers

(as clearly stated in [103]), and as such is a worst case measure. The EBA algorithm

was conceived to maximise the spreading of the overall solution, but cannot guarantee

the worst case distance from each point of the reference front to each point on the

computed one, so the observed metrics are not surprising.

Effect of the heuristics and comparison with the previous version

MACS2.1 was then compared against MACS2 [35]. As it can be seen from Table 3.6,

MACS2.1 improves over MACS2 in 5 out of 7 cases for the IGD, although it produces

worse results on UF4 and UF5. The Averaged Hausdorff distance for this case favours

MACS 2.1 only in 3 over 7 cases.
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Table 3.4: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MACS2.1 with EBA archiving vs MACS2.1 without EBA archiving on the CEC2009
problems. Also reported the Wilcoxon test result

Problem MACS2.1 MACS2.1 NO EBA Wilcoxon MACS2.1 MACS2.1 NO EBA Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.09e-3 4.32e-3 1.88e-54 1.65e-2 1.61e-2 9.88e-1
(9.58e-9) (1.04e-8) (5.53e-5) (1.49e-5)

UF2 4.43e-3 4.70e-3 3.84e-25 2.09e-2 2.09e-2 8.49e-1
(1.23e-7) (6.56e-8) (4.41e-5) (4.13e-5)

UF3 1.84e-2 1.85e-2 6.56e-01 1.46e-1 1.41e-1 6.45e-1
(1.09e-5) (9.72e-6) (2.61e-2) (2.25e-2)

UF4 2.93e-2 2.92e-2 5.29e-01 4.99e-2 5.04e-2 2.46e-1
(7.50e-7) (1.03e-6) (2.74e-5) (3.13e-5)

UF5 5.80e-2 5.84e-2 7.84e-01 1.32e-1 1.35e-1 2.19e-1
(5.58e-5) (5.63e-5) (9.56e-4) (9.28e-4)

UF6 2.74e-2 2.66e-2 2.58e-01 8.86e-2 9.61e-2 8.12e-2
(6.10e-5) (3.71e-5) (2.06e-3) (2.64e-3)

UF7 4.15e-3 4.49e-3 1.40e-35 2.96e-2 2.79e-2 1.52e-1
(5.61e-8) (6.01e-8) (9.40e-4) (5.80e-5)

Table 3.5: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MOEA/D with EBA archiving and standard MOEA/D, CEC2009 problems. Also
reported the Wilcoxon test result

Problem MOEA/D+EBA MOEA/D Wilcoxon MOEA/D+EBA MOEA/D Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.11e-3 4.41e-3 8.16e-54 1.11e-1 1.12e-1 3.67e-1
(1.71e-8) (1.69e-8) (6.16e-2) (6.16e-2)

UF2 6.00e-3 6.24e-3 2.53e-04 7.48e-2 7.48e-2 9.94e-1
(1.58e-6) (1.57e-6) (9.46e-3) (9.46e-3)

UF3 6.88e-3 7.16e-3 2.54e-07 6.30e-2 6.38e-2 1.19e-1
(2.54e-5) (2.47e-5) (1.83e-2) (1.83e-2)

UF4 6.13e-2 6.14e-2 7.92e-01 1.11e-1 1.11-e1 8.45e-1
(2.49e-5) (2.50e-5) (3.12e-4) (3.17e-4)

UF5 2.98e-1 2.98e-1 9.97e-01 7.96e-1 7.96e-1 9.98e-1
(7.45e-3) (7.45e-3) (2.20e-1) (2.20e-1)

UF6 2.68e-1 2.68e-1 9.95e-01 6.27e-1 6.27e-1 9.96e-1
(4.34e-2) (4.34e-2) (1.14e-1) (1.14e-1)

UF7 4.48e-3 4.77e-3 1.24e-32 1.67e-1 1.67e-1 9.08e-1
( 3.19e-6) (3.17e-6) (6.83e-2) (6.83e-2)
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To better understand which heuristic is contributing to give the different results of

MACS2.1 with respect to MACS2, the results obtained by MACS2.1 with dynamic

adjustment of the maximum number of directions in the pattern search was compaired

against MACS2.1 with a fixed maximum number of direction equal to 2n. This is

because in MACS2 the number of directions scanned by pattern search is fixed and

equal to 2n.

Results in Table 3.7 show that in all cases except for UF4 and UF5, the dynamic

adjustment of the maximum number of directions scanned by pattern search has a

positive effect on the IGD. The comparison of the Averaged Hausdorff distance shows

a substantial parity between the two approaches, meaning that the dynamic strategy

does not improve the position of the outliers.

It can be also be appreciated that in the static case, both the IGD and the Averaged

Hausdorff distance associated to the UF1 to UF5 cases are close to the values obtained

by MACS2. This is not surprising since in MACS2.1 DE is performed after pattern

search, so if pattern search scans all possible coordinates it will most probably find an

improvement and thus DE will not be performed. This also means that in the UF6

and UF7 cases some other heuristic of MACS2.1 is instead contributing.

With the same rationale as the previous analysis, MACS2.1 with the new implemen-

tation of social moves was tested against MACS2.1 with the old implementation of the

social moves. Table 3.8 shows that the IGD of the new version is better than the old

version in 4 over 7 cases, statistically the same in 1 case and worse in 2 cases, while the

Averaged Hausdorff distance of the new social moves is better in 3 cases, statistically

the same in 1 case and worse in 3 cases.

Thus, this modification does not seem to give a clear contribution. However, the

simple comparison with mean and variance of the metrics is not giving a full picture

of the behaviour of the algorithms, since what is important in practice is that the

algorithm is able to consistently find a good approximation of the Pareto front in a

86



Chapter 3. Multi-objective optimisation

given computational budget.

For this reason, as a final rigorous performance test for the CEC cases, the success

rate of each algorithm were computed for each of the UF functions. The success rate

is defined as the number of runs in which the IGD falls below a given threshold over

the total number of runs. Thresholds were chosen to differentiate the results as much

as possible but using rather simple values.

Table 3.9 summarises the results. As it is evident, MACS2.1 has overall good per-

formance, outperforming MOEA/D in all cases except for UF3. The introduction of

EBA in MOEA/D can improve its results by 10-30% on some problems. MACS2.1 is

also generally better than MACS2: although for UF2, UF4 and UF5 the latter has a

success rate 20% higher than the former, MACS2.1 is more than 20% better in the

other problems, up to 90% better for UF7.

In MACS2.1, an overall 5 to 30% improvement is given by the EBA archiving strat-

egy, while the dynamic setting of the maximum number of coordinates can improve

results up to 90% or worsen them up to 15%. Similarly, the new implementation of

the social moves can improve results up to 50% or worsen them up to 20%. Overall,

the proposed version of MACS2.1 seems to have more consistent results on the entire

set of problems, never falling behind by more than 25% over any other algorithm on

any problem.
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Table 3.6: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MACS2.1 vs. MACS2 on the CEC2009 problems. Also reported the Wilcoxon test
result

Problem MACS2.1 MACS2 Wilcoxon MACS2.1 MACS2 Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.09e-3 4.39e-3 1.50e-59 1.65e-2 2.80e-2 9.26e-35
(9.58e-9) (2.48e-8) (5.53e-5) (3.14e-4)

UF2 4.43e-3 4.49e-3 6.33e-09 2.09e-2 1.57e-2 5.08e-24
(1.23e-7) (1.32e-8) (4.41e-5) (7.61e-6)

UF3 1.84e-2 2.41e-2 8.25e-50 1.46e-1 6.75e-2 1.07e-29
(1.09e-5) (4.98e-6) (2.61e-2) (3.60e-4)

UF4 2.93e-2 2.63e-2 2.15e-66 4.99e-2 4.43e-2 1.21e-26
(7.50e-7) (2.96e-7) (2.74e-5) (2.01e-5)

UF5 5.80e-2 5.29e-2 2.81e-11 1.32e-1 1.22e-1 2.09e-05
(5.58e-5) (4.81e-5) (9.56e-4) (1.09e-3)

UF6 2.74e-2 3.41e-2 7.30e-17 8.86e-2 1.02e-1 2.03e-04
(6.10e-5) (1.06e-4) (2.06e-3) (2.60e-3)

UF7 4.15e-3 6.54e-3 3.84e-66 2.96e-2 4.93e-2 5.68e-39
(5.61e-8) (4.96e-6) (9.40e-4) (4.37e-4)

Table 3.7: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MACS2.1 with EBA archiving and dynamic setting of maximum number of co-
ordinates for pattern search vs MACS2.1 with EBA archiving and static setting of
maximum number of coordinates for pattern search on the CEC 2009 problems. Also
reported the Wilcoxon test result

Problem MACS2.1 MACS2.1 static Wilcoxon MACS2.1 MACS2.1 static Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.09e-3 4.40e-3 5.46e-61 1.65e-2 2.54e-2 4.74e-39
(9.58e-9) (1.98e-8) (5.53e-5) (1.29e-4)

UF2 4.43e-3 4.47e-3 2.48e-06 2.09e-2 1.60e-2 2.64e-21
(1.23e-7) (2.14e-8) (4.41e-5) (1.24e-5)

UF3 1.84e-2 2.51e-2 4.05e-09 1.46e-1 1.36e-1 4.67e-01
(1.09e-5) (1.09e-5) (2.61e-2) (1.43e-2)

UF4 2.93e-2 2.66e-2 2.20e-65 4.99e-2 4.54e-2 2.70e-20
(7.50e-7) (3.42e-7) (2.74e-5) (2.26e-5)

UF5 5.80e-2 5.47e-2 9.51e-06 1.32e-1 1.24e-1 1.21e-03
(5.58e-5) (4.98e-5) (9.56e-4) (7.51e-4)

UF6 2.74e-2 3.04e-2 1.27e-05 8.86e-2 9.78e-2 3.48e-03
(6.10e-5) (7.43e-5) (2.06e-3) (2.13e-3)

UF7 4.15e-3 5.08e-3 9.58e-66 2.96e-2 4.76e-2 9.84e-48
(5.61e-8) (1.59e-6) (9.40e-4) (2.33e-4)
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Table 3.8: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MACS2.1 vs MACS2.1 with old social moves on the CEC2009 problems. Also
reported the Wilcoxon test result

Problem MACS2.1 MACS2.1 old social Wilcoxon MACS2.1 MACS2.1 old social Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.09e-3 4.14e-3 1.96e-04 1.65e-2 2.53e-2 2.71e-06
(9.58e-9) (2.63-e8) (5.53e-5) (1.54e-3)

UF2 4.43e-3 4.11e-3 8.44e-36 2.09e-2 1.54e-2 2.36e-27
(1.23e-7) (1.83e-8) (4.41e-5) (9.18e-6)

UF3 1.84e-2 1.95e-2 2.95e-04 1.46e-1 8.41e-2 5.16e-31
(1.09e-5) (4.03e-6) (2.61e-2) (1.24e-2)

UF4 2.93e-2 2.76e-2 5.87e-48 4.99e-2 4.64e-2 2.22e-15
(7.50e-7) (7.04e-7) (2.74e-5) (2.39e-5)

UF5 5.80e-2 5.75e-2 5.33e-01 1.32e-1 1.30e-1 4.49e-01
(5.58e-5) (5.01e-5) (9.56e-4) (8.26e-4)

UF6 2.74e-2 3.05e-2 2.47e-05 8.86e-2 1.01e-1 5.35e-05
(6.10e-5) (6.63e-5) (2.06e-3) (2.67e-3)

UF7 4.15e-3 4.60e-3 4.13e-39 2.96e-2 3.31e-2 3.39e-13
(5.61e-7) (1.14e-7) (9.40e-4) (7.54e-5)

Table 3.9: Success rates for the IGD of the CEC2009 functions for all the tested
algorithms and their variants

%IGD < MACS2.1 MACS2.1 MOEA/D MOEA/D MACS2.1 MACS2.1 MACS2
τ NO EBA + EBA static pat old social

UF1 100 94.5 85.0 98.0 76.0 99.0 79.5
(τ=4.5e-3)

UF2 93.5 88.5 0.5 13.0 99.5 100 100
(τ=5.0e-3)

UF3 68.5 67.5 95.0 95.0 9.0 61.0 3.5
(τ=2.0e-2)

UF4 78.5 78.5 0 0 100 100 100
(τ=3.0e-2)

UF5 16.0 12.0 0 0 25.0 15.0 36.5
(τ=5.0e-2)

UF6 70.0 74.5 0 0 56.0 53.5 36.5
(τ=3.0e-2)

UF7 92.0 60.0 64.5 92.0 1.5 40.5 1.5
(τ=4.5e-3)
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3.3.2 ZDT4 and 3 impulse problem

To further test the capabilities of MACS2.1 it was run 200 times on the ZDT4 test

function and on a real space trajectory optimisation problem. In the space trajec-

tory design problem the goal is to optimise three impulsive manoeuvres to transfer a

spacecraft from a circular Low Earth Orbit, with a radius of 7000km, to a circular

Geostationary orbit, with a radius of 42000km (for further details on the problem the

interested reader can refer to [33]).

The motivation behind the choice of the ZDT4 and the 3 impulse test case is that

both of them are characterised by many local Pareto fronts. The settings for MACS2.1

are reported in table 3.10, 200 solutions per run were maintained in the archive. The

performance of MACS2.1 was compared against the perfomance of MACS2, whose

settings were specified as in [35].

Note that, for the 3 impulse case the true Pareto front is unknown, thus for self

consistence a global Pareto front was extracted from all the 400 runs and used as a

reference Pareto front for the calculation of all the metrics. Tables 3.11 and 3.12 report

the metrics computed for both the ZDT4 and 3 impulse problem and the corresponding

success rates. On the ZDT4 case MACS2.1 outperforms MACS2.

The 3 impulse case gives less clear results instead. Although many interesting areas

of the global Pareto front are due to MACS2.1, the mean IGD associated to its solutions

is higher than the mean IGD of the solutions computed by MACS2. This is due to the

fact (see Figure 3.6) that MACS2 is contributing to the global Pareto front with twice

as many points than MACS2.1, and all those points are concentrated in a central area,

while the contribution from MACS2.1 is as expected more widespread and surprisingly

a bit scarce in the central area.

Thus, the typical run of MACS2 will generate many points close to the over repre-

sented region, while the typical run of MACS2.1 will generate less points in that area

but more widely spread points, and this results in the averaged IGD of MACS2.1 to be
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Table 3.10: Settings of MACS2.1 on the 3 impulse and ZDT4 problems (in brackets)

nfeval,max npop ρini F CR psocial ρcontr ρmax,contr
30000 10 1 0.9 0.9 1 0.5 5

(15000) (10) (1) (0.9) (0.9) (1) (0.5) 5

Table 3.11: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MACS2.1 vs MACS2 on zdt4 and triple impulse problems. Also reported the
Wilcoxon test result

Problem MACS2.1 MACS2 Wilcoxon MACS2.1 MACS2 Wilcoxon
IGD IGD test Hausdorff Hausdorff test

zdt4 7.6e4-3 8.01e-1 3.00e-64 2.52e-2 2.62e+0 1.20e-62
(1.05e-4) (2.48e-1) (7.59e-4) (3.60e+0)

3 imp 2.78e-1 1.17e-2 1.32e-43 2.89e+2 3.45e+2 7.41e-31
(2.81e-2) (1.07e-3) (7.11e+3) (6.05e+3)

higher than that of MACS2. The Averaged Hausdorff distance instead does not suffer

from this kind of bias, thus the lower value of this metric is associated to the fronts

computed by MACS2.1.

91



Chapter 3. Multi-objective optimisation

Table 3.12: ZDT4 and triple impulse success rates for MACS2 and MACS2.1 and the
various metrics

% IGD <τ MACS2 MACS2.1 % Hausdorff <τ MACS2 MACS2.1
zdt4(τ=1e-2) 1.5 83.5 zdt4(τ=5e-2) 3.0 97.5
3imp(τ=1e-1) 29.5 3.0 3imp(τ=3e+2) 5.0 82.5
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Figure 3.6: Contribution of the different algorithms to the global Pareto front
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3.4 Chapter summary

This chapter presented the multi-objective optimisation problem, the MACS2.1 al-

gorithm, a new archiving strategy and some modified search heuristics for MACS2.

The results computed by the new algorithm, are overall better than those computed

by MOEA/D on the UF test set. MACS2.1 also outperformed the previous version in 5

over 7 of the UF functions and on the ZDT4 test case. In the 3 impulse case, MACS2.1

contributed with a wide spread of points to the Pareto front not concentrated in the

central area, which was instead densely covered by the previous version.

The newly proposed archiving strategy also improved the results generated by MOEA/D,

indicating both that is effective and that a higher quality of the solutions stored in

the Pareto front can positively influence the search capabilities of an evolutionary

algorithm.

Overall, the tests confirmed the high reliability of MACS2.1 as a global multi-

objective optimisation algorithm. Its flexibility, inherited by the fact that it can employ

different search heuristics of both global and local nature, will be employed in the next

chapter in order to tackle the solution of multi-objective optimal control problems. For

simplicity, in the following it will be simply referred to as MACS.
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Multi-objective Optimal Control
1

Faber est suae quisque fortunae

Each man is the maker of his

own fortune

Sallustius

This chapter combines the previous two chapters, proposing a novel approach to the

solution of multi-objective optimal control problems. In addition, we here consider a

problem which can have multiple phases either in series or in parallel. For example, a

multi-stage vehicle can have one phase per vehicle stage with all phases connected in

series for the ascent, and/or branching parallel phases for the upper stage ascent and

first stage descent and return.

1The contents of this chapter were published in: L. A. Ricciardi, C. Maddock and M. Vasile. Direct
Solution of Multi-Objective Optimal Control Prolem Applied to Spaceplane Mission Design. Journal
of Guidance, Control, and Dynamics, Vol. 42, No. 1 (2019), pp. 30-46.
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Multi-, or more generally many, objective optimal control problems can be formu-

lated as follows:

min
u∈U,b∈B

J

s.t.

ẋ = F(x,u,b, t)

g(x,u,b, t) ≤ 0

ψ(x(t0),x(tf ),u(t0),u(tf ),b, t0, tf ) ≤ 0

t ∈ [t0, tf ]

(4.1)

where J = [J1, J2, ..., Ji..., Jm]T is, in general, a vector of objectives Ji that are functions

of the state vector x : [t0, tf ] → Rnx , control variables u ∈ L∞(U ⊆ Rnu), static

parameters b ∈ B ⊆ Rnb and time t. The functions x(t) belong to the Sobolev space

W1,∞ while the objective functions are Ji : R3nx×Rnu×Rnb×R2 −→ R. The objective

vector is subject to a set of dynamic constraints with F : Rnx×Rnu×Rnb× [t0, tf ] −→

Rnx , algebraic constraints g : Rnx × Rnu × Rnb × [t0, tf ] −→ Rng , and boundary

conditions ψ : R2nx × R2nu × Rnb × R2 −→ Rnψ , where F(x,u,b, t), g(x,u,b, t) and

ψ(x(t0),x(tf ),u(t0),u(tf ),b, t0, tf ) are vector fields.

When Np phases are present, dynamic constraints, path and boundary constraints,

and objective functions are defined on each timeline. In order to connect different

timelines, a set of Nip inter-phase constraints are introduced:

ψsp

(
x0,Isp ,xf,Isp ,u0,Isp ,uf,Isp ,bIsp , t0,Isp , tf,Isp

)
≤ 0 sp = 1, ..., Nip (4.2)

where the index vector Isp collects all the indexes of the phases that are connected by

constraint ψsp . Note that the number of phases is fixed, but their temporal order is

actually defined by the inter-phase constraints (4.2).

If boundary states and times, x0,xf , t0, tf are free decision variables, they can be

included in the static parameter vector b and the union of controls and static param-

eters is called a decision vector. Thus, without loss of generality, one can say that

the solution of problem (4.1) is a subset of U × B that satisfies the constraints and
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contains Pareto efficient decision vectors. This leads to the following definition.

Definition 2 Given the subset ΩU ⊂ U × B of feasible decision vectors, a decision

vector [u∗,b∗] ∈ ΩU is said to be Pareto efficient if [u∗,b∗] � [u,b], ∀[u,b] ∈ ΩU .

One way to obtain necessary conditions for optimality for multi-objective optimal

control problem is by employing the Pascoletti-Serafini scalarisation [44], thus trans-

forming problem (4.1) in:

minsf≥0 sf

s.t.

ωi(Ji − zi)− sf ≤ 0

ẋ = F(x,u,b, t)

g(x,u,b, t) ≤ 0

ψ(x(t0),x(tf ),u(t0),u(tf ),b, t0, tf ) ≤ 0

t ∈ [t0, tf ]

(4.3)

where sf is a slack variable, ω is a weight vector associated to the objectives, and z

is a target point in criteria space. This scalarisation is constraining the solution of

the multi-objective optimal control problem to lie on the diagonal of a rectangle, in

criteria space, with ratios of the edges given by ωi(Ji − zi). sf can be interpreted as

being the final condition of an additional pseudo-state ṡ = 0, thus transforming the

problem into a Mayer problem.

By adopting this scalarisation technique, it is possible to state the following

Theorem 3 Consider the function H = λTF (x(t),u(t), t) + µTg (x(t),u(t), t). If

u(t)∗ is a locally optimal solution for problem (4.3), with associated state vector x(t)∗,

and H is Frechet differentiable at u(t)∗ and a regular point of the algebraic constraints,
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then there exist vectors η ∈ Rm,λ ∈ Rn and µ ∈ Rq such that:

u∗ = argminu∈U λ
TF (x(t)∗,u(t), t) + µTg (x(t)∗,u(t), t)

λT∇xF (x(t)∗,u(t), t) + µT∇xg (x(t)∗,u(t), t) = 0

λ̇s = 0

λ ≥ 0;µ ≥ 0

(4.4)

with transversality conditions:

1−
∑m

j=1 ηj = λs(tf )

ηTΩ∇xJ + νT∇xψ(x(t0),x(tf ),u(t0),u(tf ),b, t0, tf ) = λx(tf )

η ≥ 0;ν ≥ 0

(4.5)

the proof is given in [104] and is reported for completeness in Appendix A.

4.1 Solution of the Transcribed Problem

The problem is initially discretised following the procedure for DFET transcrip-

tion illustrated in Chapter 2. The resulting Multi Objective Nonlinear Programming

(MNLP) problem coming from the transcription of problem (4.1), with the inclusion

of interphase constraints (4.2), can be written, in vector form, as:

min
y∈Y,p∈Π

J̃

s.t.

C(y,p) ≤ 0

(4.6)

where y = [x0,1, ..,xs,j , ...,xlx,N ]T , Y is a box in RnY with nY = n(lx + 1)N , p =

[u0,1, ..,us,j , ...,ulu,N ,b
∗]T collects all the static and discretised dynamic control vari-

ables, b∗ = [b,xb0,x
b
f , t0, tf ]T , Π ⊆ Rns × Rn∗

b , with ns = nu(lu + 1)N (assuming that

each element has the same number of control parameters) and n∗b = nb + 2n+ 2, and

C collects all constraints, including boundary and interphase ones.
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Similar to problem (4.1), the solution of problem (4.6) is a subset of ΩΠ ⊂ Π that

satisfies the constraints and contains vectors p that are Pareto efficient. For continuous

functions, the subset ΩΠ is a manifold in Rns+n∗
b with dimension ≤ (m − 1) [105]. In

the following, the goal will be to identify a pre-defined countable number of Pareto

efficient solutions contained in ΩΠ.

Problem (4.6) is solved with an adaptation of MACS called MACSoc, that combines

the stochastic agent-based global search of MACS with a gradient-based treatment of

the constraints, and refinement of the solutions exploiting Theorem 4. The overall

solution process implemented in MACSoc is summarised in Algorithm 5.

Algorithm 5 MACS optimal control (MACSoc) framework

1: Initialise population P0 and global archive A0, k = 0, ρB = 1
2: Initialise weight vectors ω
3: while n fun eval < max fun eval do
4: Run individualistic heuristics on Pk using bi-level formulation
5: Pk → P+

k

6: Update archive Ak with potential field filter
7: Run social heuristics combining P+

k and Ak using bilevel formulation
8: Update archive Ak with potential field filter
9: P+

k → P
†
k

10: if local search triggered then
11: Run gradient based refinement using single level formulation
12: P†k → P

∗
k

13: Update archive Ak with potential field filter
14: P∗k → Pk+1

15: else
16: P†k → Pk+1

17: end if
18: k = k + 1
19: Update ρB
20: end while

At the start of MACSoc, Na candidate solutions are generated with a Latin Hyper-

cube sampling, associated to a population P0 of Na agents, and an attempt is made

to make each candidate solution feasible before the optimisation process starts (line 1

in Algorithm 5).
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Both the global search and local refinement strategies implemented in MACSoc re-

quire the definition of a set of descent directions in criteria space, thus, after initialising

the agents, the algorithm generates Nw uniformly spread weight vectors ω (line 2 in

Algorithm 5) that define the components of Nw descent vectors; this is explained fur-

ther in Subsection 4.1.4. Each agent will be associated to a different weight vector,

allowing each agent to converge to a different part of the Pareto front.

The global search generates candidate solutions, for the decision vector, using a com-

bination of social and individualistic actions (lines 4 and 7 in Algorithm 5). Each action

generates a candidate decision vector, starting from the current solution allocated to

a given agent j, and submits it to a bi-level optimisation problem.

Within the bi-level optimisation, the inner level makes the candidate decision vector

feasible with respect to differential, path, and boundary constraints, while the outer

level assesses whether the solution of the inner level represents an improvement with

respect to the current solution allocated to agent j. All feasible and non-dominated

solutions update the current population Pk and are saved in an archive Ak (lines 5, 6,

8, 9 and 13 in Algorithm 5).

After every user specified number of iterations, and as a last step before the algorithm

ends, the local refinement is triggered, and the archive and population are updated

with the refined solutions (lines 10 to 17 in Algorithm 5). The local refinement solves

a single level scalarised version of problem (4.6).

The process proceeds alternating social and individualistic actions, with periodic

local refinement, until a maximum number of calls to the objective vector max fun eval

is reached. The overall algorithmic complexity is dominated by the NLP solver used

in the bi-level problem and for the local refinement.

In the following both the bi-level and single level problems are explained in more

detail together with the heuristics used to generate new candidate solutions. The com-

bined use of the bi-level formulation for global exploration and single level formulation
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for local convergence within MACSoc is one of the distinctive features of the proposed

approach compared to previous works such as [49], [45], [43], [37] and [50].

4.1.1 Bi-level Global Optimisation Problem

The global search part of the algorithm solves the following two-level problem:

min
p∗

J̃(y∗,p∗)

s.t.

(y∗,p∗) = argmin(y,p) {δp(y,p) |C(y,p) ≤ 0}

(4.7)

Problem (4.7) defines two different optimisation sub-problems at two different levels.

The outer level handles the objective vector J̃ and generates tentative decision vectors

p. Tentative solutions are then submitted to the inner level, whose goal is to find the

state and control vectors y∗ and p∗ that satisfy constraints C and minimise an inner

cost function δp = ‖p∗ − p‖. Thus, the inner level will look for the closest feasible

solution to the tentative one generated by the outer level. The outer level then receives

the solution (y∗,p∗) and proceeds by evaluating the objective functions associated to

p∗. The inner level problem is solved with a generic NLP solver (Matlab fmincon in

this case).

In order to reduce the number of iterations required by the inner level to converge,

the outer level stores the feasible states y∗ at iteration k to be used as a warm start

for the inner level at iteration k + 1. As illustrated in Fig. 4.1, the feasible states y∗k

are preserved from iteration k to iteration (k + 1) and the outer level only generates

a new tentative vector pk+1. The inner level at iteration (k + 1) will thus use y∗k and

pk+1 as initial guesses for states and controls. Because of the way pk+1 is generated,

even if y∗k is associated to p∗k, it works well as an initial guess also when associated to

pk+1.

When individualistic actions are applied, each agent generates one or more tenta-

tive vectors through three mechanisms that are triggered one after the other in this
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Figure 4.1: Schematic representation of the bilevel approach acting on a single solution.

order: Inertia → Pattern Search → Differential Evolution. If any of these mechanisms

produces an improved solution, the following ones are not triggered and the process

proceeds by updating the population and archive (line 5 and 6 of Algorithm 1).

Note that, if the inner level does not converge to the required tolerance, the objective

functions of the outer level are recalculated to be the infinity norm of the constraint

violation plus the maximum values of each objective functions in the archive and

population. This creates an adaptive rejection mechanism: if none of the agents are

feasible, the one that best satisfies the feasibility is temporarily entered in the archive

with the next iterations trying to further improve feasibility.

Once an agent finds a feasible solution, it will explore the search space through

the global bi-level approach, generating several feasible and non-dominated solutions.

These solutions will enter in the archive because they will dominate many of the

existing non-feasible ones, and thanks to the social actions some agents will be directly

moved onto those solutions, allowing the whole population to converge to feasible

solutions in a handful of iterations.
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4.1.2 Single Level Local Search

The local refinement solves the following scalarised problem for each agent j:

min
ε≥0

ε

s.t.

ωi,j ϑi,j(y,p) ≤ ε for i = 1, . . . ,m

C(y,p) ≤ 0

(4.8)

where ωi,j is the ith component the vector of weights ωj , ϑi,j is the ith component of

the rescaled objective vector of the jth agent, and ε is a slack variable. As it is evident,

this problem is the discretised version of (4.3).

This reformulation of the problem is constraining the agent’s movement, in criteria

space, within the descent cone defined by the point (εdj + ζj) along the direction

dj = (1/ω1,j , . . . , 1/ωi,j , . . . , 1/ωm,j).

The rescaled objective vector is defined as:

ϑj(y,p) =
J̃i,j(y,p)− z̃i
z∗i,j − z̃i

for i = 1, . . . ,m (4.9)

where z∗j is equal to J̃j(y,p), (y,p) being the initial guess for the solution of (4.8),

z̃ = z − zA with zA the nadir of the archive, or point whose components are the

maximum values of all the components of the objective vectors in the archive.

From the normalisation one can derive the components of the vector ζj :

ζi,j =
zi

z∗i,j − z̃i
for i = 1, . . . ,m (4.10)

This allows the components of ϑj(y,p) to have values of 1 at the beginning of

the local search, and value 0 if the agent converges to the target point z̃. With this

normalisation the single level approach avoids biases when the objectives have signifi-

cantly different scales. The construction of the descent directions will be explained in
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Subsection 4.1.4.

It is important to remark that Problem (3.5) and (4.8) are equivalent and lead to

the same optimal solution if the target point for the Pascoletti-Serafini scalarisation

coincides with the utopia point and the weight vectors are the same. As such, the

following theorem holds true [15]:

Theorem 4 A point (ε,y,p) ∈ R×Y ×Π is a minimal solution of (4.8) with z ∈ Rm,

zj < miny∈Y,p∈Π Jj(y,p), j = 1, . . . ,m, and ω ∈ int(Rm+ ) if and only if y and p are a

solution of (3.5).

While equivalent, the two formulations have different numerical implications: the

Tchebychev scalarisation is unconstrained but not continuous, making it unsuitable

to treat with a gradient based approach. The Pascoletti-Serafini scalarisation instead

is smooth but constrained, and the tight satisfaction of those constraints might be

difficult to obtain with an evolutionary algorithm. By employing (3.5) in the global

search phase with (4.8) in the refinement phase, the algorithm employs the type of

scalarisation most suitable for each case and realises a smooth transition from global

exploration of the Pareto set to local convergence.

4.1.3 Generation of the Initial Feasible Population

Before the optimisation starts, MACSoc generates an initial population of agents P0

(see line 1 of Algorithm 1) with the following four-step automatic and unsupervised

procedure:

1. A first guess for the decision vectors is generated with a Latin Hypercube sam-

pling within the prescribed boundaries. State variables for each phase are ini-

tialised with a simple linear interpolation between initial and final conditions.

2. For each phase, each integral equation (2.9) is made feasible by solving only the

inner level subproblem of problem (4.7) with an NLP solver.
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3. Starting from the solution at step 2, for each phase, all constraints related to that

phase are then included and the resulting problem is satisfied again applying the

same NLP solver to the subproblem in (4.7).

4. All phases are connected together and the inter-phase constraints are satisfied

applying again the same NLP solver to the subproblem in (4.7).

If, at the end of the initialisation phase, an agent is associated to a solution that is

not feasible within the prescribed tolerance, that solution is still included in the initial

population P0 and submitted to the subsequent optimisation cycle.

In the following, the feasibility level required to the initial population is the same

required for the rest of the algorithm, which by default is 10−6, so if the NLP converges,

the solution generated by this approach is a fully feasible solution. By default, the

NLP solver is allowed to use a maximum number of calls to the constraint function

that is equal to 10(n∗b + ns + nY ). For this procedure of automatic guess generation,

an Interior Point NLP algorithm was used because it delivered a more robust and

consistent convergence to feasible solutions.

4.1.4 Definition of the descent directions and target points

The weight vectors for the bi-level global search are generated as described in Sec-

tion 3.2.3. For the single level approach, the weight vectors ωj = [
√

2, . . . ,
√

2]T are

allocated to all agents except to those m agents that minimise each individual objec-

tive function. For these m agents the weight vectors are ωj = [0, . . . , j, . . . , 0]T with

j = 1, ...,m. These weights are called orthogonal because correspond to the m orthog-

onal directions in criteria space. If agent j associated to weight ωj does not generate

any improvement after two iterations, a new random orthogonal weight is associated

to j and problem (4.8) is solved with the added constraints:

J̃i ≤ zi ∀i 6= j (4.11)
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The reason for the different choice of weight vectors between the bi-level and the

single level formulation can be explained as follows: the bi-level formulation explores

globally the search space with a population of agents, thus there is the need to maximise

the spreading of the solutions. On the contrary, the single-level is used to improve the

local convergence of each agent in a normalised criteria space. Thus the goal of the

single level is to return dominating solutions without altering too much their spreading

in criteria space.

4.2 Benchmark Cases

In this section the proposed approach is tested on the solution of two simple test

cases: the first test case is a minimum transfer to rectilinear path and the second is the

maximum energy orbit rise problem. For the former an analytical solution is available

for a single objective optimisation problem (described in Chapter 2). For the latter

the exact control law is known but an analytical expression for the Pareto front is not

available.

4.2.1 Minimum transfers to rectilinear path

This problem is a multi-objective extension of the problem solved in Section 2.3:

min
tf ,u

(J1, J2)T = (tf ,−vx(tf )) (4.12)

subject to the dynamic constraints:

ẋ =vx

v̇x =a cosu

ẏ =vy

v̇y =− g + a sinu

(4.13)

where g is the gravity acceleration, a the thrust acceleration, x and y are the compo-

nents of the position vector, vx and vy the components of the velocity vector and u
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the control. The dynamics is integrated from time t = 0 to time t = tf . The boundary

conditions are: 
x(0) = 0; vx(0) = 0

y(0) = 0; vy(0) = 0

y(tf ) = h; vy(tf ) = 0

(4.14)

The parameters g, a and h were respectively set to 1.6 · 10−3, 4 · 10−3 and 10. The

DFET method was applied splitting the time domain into 4 elements, with polynomials

of order 6 for each control and state variable. Bounds on the states and control variables

are reported in Table 4.1. This gives a total of 29 optimisation variables for the outer

level, and 143 variables for the inner level and the refinement problem.

Table 4.1: Lower and upper bounds for the state, control and final time variables of
the Minimum transfers to rectilinear path

Variable Lower bound Upper bound

x −1 200
y −10 10
vx −1 11
vy −10 10
u −π

2
π
2

tf 0 250

Table 4.2 summarises the settings of the optimiser: max fun eval the maximum

number of objective functions evaluation, pop size the number of agents performing

the search, ρ ini the initial radius of the local neighbourhood, F and CR the standard

parameters for the Differential Evolution social actions, p social the ratio between

agents performing only social actions and the total number of agents, max arch the

number of solutions to be stored in Ag, contr ratio contraction rate of the neigh-

bourhood radius, and max contr ratio the maximum number of times ρj can contract

before it is reset.

Settings reported in Table 4.3 instead refer to the parameters of fmincon: max con eval

is the maximum number of constraints evaluation (for each call to the objective func-

106



Chapter 4. Multi-objective Optimal Control

Table 4.2: MACSoc settings

max fun eval 10000
pop size 10
ρ ini 1
F 0.9
CR 0.9

p social 1
max arch 10

max contr ratio 5

Table 4.3: fmincon settings

max eval 100
tol con 1e-6

tions) and tol con is the threshold under which the solution is considered to be feasible.

All other fmincon settings were left at default values.

Algorithm 1 was run 30 times to collect some statistics on its convergence behaviour

(see Table 4.4). Each run took approximately 10 minutes on an i7 laptop. The Gener-

ational Distance (GD) and Inverse Generational Distance (IGD) were used as accuracy

metrics and were computed on a rescaled front in the interval [0, 1]. GD and IGD were

computed using the analytical solution of the minimum time problem for different

maximum vx.

Figure 4.2a shows the Pareto front for one single run, figure 4.2b shows the trajecto-

ries of all solutions of the same run, while Figures 4.2c and 4.2d show the corresponding

control laws and the vertical velocities. As it is evident, the algorithm found a well

spread set of solutions on the Pareto front, which compose a family of trajectories and

control laws. The minimum time solution was already obtained in Chapter 2, where

it was shown that the DFET method is able to return solutions approaching to the

analytical one even in the presence of discontinuities. Here, Figures 4.3a to 4.4d report

the comparison between the solution computed with the proposed approach and the

analytical solution with the same mission time. These comparison are very favourable,

as for most part the solutions the control laws are indistinguishable, although it is
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Table 4.4: Convergence and spreading statistics for the two problems

Problem mean GD mean IGD
(variance) (variance)

Goddard 2.833e-2 2.9449e-2
(1.4232e-5) (1.5498e-5)

Orbit 5.9444e-2 4.387e-2
(1.96243e-4) (1.6173e-4)

possible to see some imperfections in the control where the NLP solver stopped before

reaching full optimality. It is expected that the quality of the solutions and the values

of the objectives will improve slightly with the use of a more refined mesh.

(a) Pareto front (b) Trajectories

(c) Controls (d) Vertical velocities

Figure 4.2: Pareto Front, trajectories, controls and vertical component of velocities for
a single run of the minimum transfers to rectilinear path problem
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4.2.2 Maximum Energy Orbit Rise

The original maximum energy orbit rise formulation and some solution strategies can

be found in [106] and [70]. In this case, a spacecraft is orbiting around a celestial body,

and it is required to increase its total energy by changing its altitude and velocity.

The only control variable is the thrusting angle, and the only other force affecting the

spacecraft is gravity.

The multi-objective extension, proposed here, maximises the final energy and min-

imises the manoeuvre time:

min
tf ,u

(
J1 = tf , J2 = −

(
v2
r (tf ) + v2

t (tf )
)

2
+

1

r(tf )

)
(4.15)

subject to the dynamic constraints:

ṙ =vr

v̇r =
v2
t

r
− 1

r2
+ a cosu

θ̇ =
vt
r

v̇t =− vtvr
r

+ a sinu

(4.16)

where r and θ are the polar coordinates of the spacecraft, vr and vt are the radial and

transversal velocities, and a is the magnitude of the control acceleration. In this work,

a = 1e− 2.

The boundary conditions are:


r(0) = 1.1; vr(0) = 0

θ(0) = 0; vt(0) =
1√
1.1

(4.17)

Following [70], the time domain was subdivided into 30 elements of order 1 for each

state and control variable. Lower and upper bounds for the state and control variables

are reported in Table 4.5. In total there are 61 optimisation variables for the outer
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level and 305 variables for the inner level and refinement problem. The transcribed

problem was then optimised with MACSoc, with the same settings as in the previous

case.

Table 4.5: Lower and upper bounds for the state, control and final time variables of
the Maximum Energy Orbit Rise problem

Variable Lower bound Upper bound

r 0.1 20
θ −π 10π
vr −1 1
vt −1 1
u −π

2
π
2

tf 0 80

The GD and IGD of the combined 30 runs are reported in Table 4.4. Runtime for

this case was similar to the previous case. Figure 4.5a shows the Pareto front for

one of those runs, Figure 4.5b shows the corresponding trajectories, Figure 4.5c the

control laws and Figure 4.5d the radial velocities. Also in this case, the algorithm

automatically produced a well spread set of solutions.

In order to assess the correctness of the computed solution, the problem was solved

again in its single objective version, looking for the solution maximising the terminal

energy with a transfer time equal to each of the solutions computed by the multi-

objective case. Figures 4.6a to 4.7d show this comparison, where very good agreement

can be found in most of the time laws. Also in this case, the imperfections are produced

by an incomplete convergence of the NLP solver.
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(a) Solution 1 (b) Solution 2

(c) Solution 3 (d) Solution 4

(e) Solution 5 (f) Solution 6

Figure 4.3: Comparison between solutions of the multi-objective problem vs the single
objective problem
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(a) Solution 7 (b) Solution 8

(c) Solution 9 (d) Solution 10

Figure 4.4: Comparison between the controls obtained with the present approach vs
the analytic solution

112



Chapter 4. Multi-objective Optimal Control

20 30 40 50 60 70 80

time

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

-E
n
e
rg
y

1

2

3

4

5

6

7

8

9

10

(a) Pareto front (b) Trajectories

(c) Controls

0 10 20 30 40 50 60 70 80

time

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ra
d

ia
l 

v
e
lo

c
it

y

Solution 1

Solution 2

Solution 3

Solution 4

Solution 5

Solution 6

Solution 7

Solution 8

Solution 9

Solution 10

(d) Radial velocity

Figure 4.5: Pareto front, trajectories, controls and radial velocities for one single run
of the orbit rise problem
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(a) Solution 1 (b) Solution 2

(c) Solution 3 (d) Solution 4

(e) Solution 5 (f) Solution 6

Figure 4.6: Comparison between controls of the multi-objective problem vs the single
objective problem
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(a) Solution 7 (b) Solution 8

(c) Solution 9 (d) Solution 10

Figure 4.7: Comparison between solutions of the multi-objective problem vs the single
objective problem
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4.3 Chapter summary

This chapter presented some theoretical results for multi-objective optimal control

and introduced MACSoc, a framework to solve Multi-objective Optimal Control prob-

lems exploiting some of those theoretical results. It is based on the coupling of DFET

transcription described in Chapter 2 and the multi-objective optimisation algorithm

MACS described in Chapter 3. DFET transcribes the multi-objective optimal con-

trol problem into a finite dimensional MNLP problem, which is then solved through

MACSoc.

Two complementary strategies are employed to solve the MNLP problem: a bi-

level approach, which allows for a global exploration of the search space and returns

a well spread set of solutions, and a single level approach, which performs a gradient

based refinement returning solutions with guaranteed local optimality. MACSoc is

able to transition smoothly between the two approaches, thanks to the joint use of

the Tchebychev and Pascoletti-Serafini scalarisation. In addition, MACSoc does not

require any user specified guess.

As shown in the two numerical examples of this Chapter, MACSoc is able to return

well spread set of solutions to simple problems. The solutions found match with

either the analytical solution or with known and documented numerical solutions.

Significantly more advanced applications of MACSoc will be described in Part II.
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Multi Objective Hybrid optimal

control
1

Flectere si nequeo superos,

Acheronta movebo

If I cannot bend the heavens

above, I will move Hell

Virgil

This chapter further extends the algorithm developed in Chapter 4 to introduce dis-

crete decision variables, resulting in mixed-integer, or hybrid, optimal control problems.

The simultaneous presence of discrete and continuous optimistion variables produces

a significant increase in complexity of the problems to be solved: even for linear prob-

lems, the worst case scenario requires to evaluate a number of solutions which grows

exponentially with the number of discrete variables. Moreover Leyffer [107] showed

that even though a convex NLP has only one globally optimal solution, the same is

not true for a strictly convex mixed integer NLP. These issues culminate in a Theorem,

proven by Jeroslow [108], which states that the general mixed integer NLP problem

can be undecidable or not computable. Despite this very discouraging result, solutions

1The contents of this chapter were published in: L. A. Ricciardi, M. Vasile, A Relaxation Approach
for Hybrid Multi-Objective Optimal Control: Application to Multiple Debris Removal Missions. 29th
AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, HI, Jan 2019, AAS 19-406.
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of practical interest can often be obtained by the use of heuristic methods combining

optimal control and global search methods.

5.1 The mixed integer optimal control problem

Problem 4.1, introduced in Chapter 4, can be extended to include the presence of

integer variables as:

min
u∈U,σ∈σ,b∈B,µ∈M

J

s.t.

ẋ = F(x,u,σ,b,µ, t)

g(x,u,σ,b,µ, t) ≤ 0

ψ(x(t0),x(tf ),u(t0),u(tf ),σ(t0),σ(tf ),b,µ, t0, tf ) ≤ 0

t ∈ [t0, tf ]

(5.1)

where J = [J1, J2, ..., Ji..., Jm]T is, in general, a vector of objectives Ji that are functions

of the state vector x : [t0, tf ] → Rnx , continuous control variables u ∈ L∞(U ⊆ Rnu),

discrete control variables σ ∈ σ ⊆ Znσ , continuous static parameters b ∈ B ⊆ Rnb ,

discrete static parameters µ ∈ M ⊆ Znz and time t. The functions x(t) belong to

the Sobolev space W1,∞ while the objective functions are Ji : R3nx × Rnu × Znσ ×

Rnb × Znµ × [t0, tf ]2 −→ R. The objective vector is subject to a set of dynamic

constraints with F : Rnx×Rnu×Znσ×Rnb×Znµ×[t0, tf ] −→ Rnx , algebraic constraints

g : Rnx×Rnu×Znσ×Rnb×Znµ× [t0, tf ] −→ Rng , and boundary conditions ψ : R2nx×

R2nu ×Z2nσ ×Rnb ×Znµ × [t0, tf ]2 −→ Rnψ , where F(x,u,σ,b,µ, t), g(x,u,σ,b,µ, t)

and ψ(x(t0),x(tf ),u(t0),u(tf ),b,µ, t0, tf ) are vector fields.

As for the previous Chapter, when Np phases are present, dynamic constraints, path

and boundary constraints, and objective functions are defined on each timeline. In

order to connect different timelines, a set of Nip inter-phase constraints are introduced:

ψsp

(
x0,Isp ,xf,Isp ,u0,Isp ,uf,Isp ,σ0,Isp , σf,Isp ,bIsp ,µIsp

, t0,Isp , tf,Isp

)
≤ 0 sp = 1, ..., Nip

(5.2)
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where the index vector Isp collects all the indexes of the phases that are connected by

constraint ψsp . Note that the number of phases is fixed, but their temporal order is

actually defined by the inter-phase constraints (5.2).

The problem can be discretised following the procedure for DFET transcription il-

lustrated in the previous chapters. This results in a Multi Objective Mixed Integer

Nonlinear Programming (MOMINLP) problem coming from the transcription of prob-

lem (5.1), with the inclusion of interphase constraints (5.2). In vector form it can be

written as:

min
y∈Y,p∈Π,d∈D

J̃

s.t.

C(y,p,d) ≤ 0

(5.3)

where y collects all the discretised state variables, p collects all the static and discre-

tised dynamic control variables, d collects all the integer valued control variables and

static parameters, and C collects all constraints, including boundary and interphase

conditions.

5.2 Solution of the mixed integer optimal control problem

Problem 5.3 is solved by extending the bi-level and single level approaches defined

in the previous chapter. In particular, for the outer layer of the bi-level approach,

the heuristics of MACSoc will be extended to return integer values when operating

on discrete parameters. For the inner level and single level approaches however this

extension is not as straightforward since they operate with an NLP solver, which are

generally not able to handle discrete parameters directly.

In the context of NLP solvers there are two possible strategies to deal with mixed

integer problems. The first one is to remove the discrete variables from the solution

vector and reintroduce them in the problem as constants. This has the undesirable

consequence that the solution vector has to be manipulated very often to exclude and

re-include the discrete variables. In addition, since the discrete variables would be
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kept constant, it might be impossible for the NLP solver to satisfy some constraints

involving them.

The second strategy, adopted here, is to relax the discrete variables. This means

that, within the inner level of the bi-level approach and the single level refinement, the

discrete variables are treated as continuous variables with the same bounds as their

discrete counterpart. This removes the need to exclude and re-include repeatedly those

variables from the solution vector. Moreover, the NLP solver has more possibilities

to satisfy the constraints because it can act upon the relaxed variables. However,

the NLP solver will likely converge to a solution where the relaxed variables do not

assume integer values. For this reason, the solution of the relaxed problem will be

used as an initial guess for the solution of a new problem which will include additional

constraints. These constraints are imposed to enforce the NLP solver to converge to a

solution where the relaxed variables assume only integer values. The following sections

will explain in detail the modifications applied to MACSoc in order to deal with mixed

integer problems and the additional constraints imposed on the NLP solver.

5.2.1 Modification of the Heuristics of MACS

In order to preserve the behaviour and performances of the algorithm, the heuristics

of MACS have been modified in the simplest, least invasive way possible. This means

that no additional heuristic was introduced to deal with the discrete variables.

Inertia

The idea of this heuristic is to proceed searching along the same promising direction

found at the previous iteration. The behaviour of this heuristic is thus strongly de-

pendant on the heuristic which found the promising search direction at the previous

iteration, i.e. either the Pattern Search or the Differential Evolution. However, since

inertia produces a sample with a random step length along the chosen direction, it

could result in the generation of non integer values for the discrete variables. For this

reason, the inertia move is applied normally, but the components of the displacement

120



Chapter 5. Multi Objective Hybrid optimal control

vector corresponding to the discrete variables are rounded towards the closest integer.

In case the rounding towards the closest integer would result in a zero displacement

vector, a rounding towards the next larger integer is performed.

Pattern Search

This heuristic simply changes one component of the solution vector at a time, by a

random amount:

xtrial,j = xij + α∆jρi (5.4)

where the component j of the solution vector xi is perturbed by a random amount α

scaled by the size of the interval for variable j ∆j , and by a contraction factor ρi, which

is decreased or increased at each iteration depending on whether a better solution is

found or not.

In case it is currently operating on a discrete variable, the modification consists in

rounding the perturbation α∆jρi to the closest integer. Similarly to the Inertia case, if

this rounding would result in a zero length move, a rounding towards the next integer

is performed instead.

Differential Evolution

This heuristic simultaneously changes all the components of the solution vector by

combining it with other three solution vectors.

xtrial = xi + αe ((xi − xi1) + F (xi2 − xi3)) (5.5)

where solution vector xi is perturbed by a random amount α scaled by a displacement

vector generated by three randomly chosen solution vectors x1, x2 and x3, which must

all be different, and multiplied by a mask vector e which randomly assumes component

values of 0 or 1.

In order to ensure that the discrete variables remain discrete, the same procedure

for the Inertia case is adopted: the components of the displacement vector associated
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to the discrete variables are rounded towards the closest integer. In case this rounding

would result in a zero displacement, a rounding by excess would be performed instead.

5.2.2 Relaxation and Integrality constraints

As previously mentioned, within the inner level and the single level refinement the

discrete variables are relaxed and treated as continuous. This will likely generate a

solution where the relaxed variables do not assume integer values. In order to force the

NLP solver to converge to solutions where the relaxed variables assume integer values,

the following constraint is imposed

sin(πσ̃j) = 0 (5.6)

where σ̃j is a relaxed variable.

This simple and smooth constraint is satisfied only for integer values of the relaxed

variable σj . However, since this constraint has many possible solutions, it can introduce

several local optima. For this reason it is enforced only after a solution to the relaxed

problem is found. This delayed imposition of the constraint should allow the NLP

solver to avoid the local minima introduced by this constraint.

5.3 Benchmark Cases

This section presents a test case for mixed integer optimal control problems, with

two variants. The problem is a multi-objective extension of the one described by

Von Stryk and Glocker [109]: a vehicle starts from the origin of the plane and has to

visit three target positions before returning to the initial position. The order in which

the targets are visited is not specified. Thus the problem can be considered as an

extended Travelling Salesman Problem which includes the dynamics of the car of the

Salesman. As will be evident, albeit this problem is extremely simple both in terms

of combinatorial complexity and in terms of the dynamical model of the vehicle, the

coupling of the two aspects results in a surprisingly rich and interesting problem. In

122



Chapter 5. Multi Objective Hybrid optimal control

the second version of the test case, the targets do not have a fixed position in space

but follow a predefined trajectory. This makes the problem even more challenging and

rich.

The objectives are the minimisation of the total time for the tour, and the minimi-

sation of the energy required:

min
tf ,u,µ

(J1, J2)T =

(
tf ,

∫ tf

t0

u2
1dt

)T
(5.7)

The dynamics of the vehicle are the following:

ẋ =v cos(α)

ẏ =v sin(α)

v̇ =u1

α̇ =u2

(5.8)

where x and y denote the position of the vehicle on the plane, v the magnitude of its

velocity and α the direction of the velocity vector. The vehicle is controlled by the

magnitude of the acceleration u1 and by the steering rate u2, both of which are limited:

u2
1 ≤ 1, u2

2 ≤ 1

The vehicle starts at the origin at rest, and has to pass on 3 targets, whose locations

are 
P1 = (1, 2)

P2 = (2, 2)

P3 = (2, 1)

(5.9)

The order in which the targets need to be visited is not specified, and no restriction

is imposed on the velocity of the vehicle when visiting the targets. At the end of

the journey, the vehicle has to return at the origin with 0 velocity. The problem

can be formulated as a 4 phase problem: the first phase starts from the origin and

has unknown target, the second and third phases start from the destination of the
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previous phase with the same velocity and direction and have unknown target, and

the last phase has to return to the origin with 0 final velocity.

The following final conditions are imposed for the first three phases:

x(tf ; i) = µ1,iP1 + µ2P2,x + µ3,iP3 (5.10)

where x(tf ; i) indicate the positions at the final time of the phase i, and µ1,i, µ2,i and

µ3,i are three static optimisation variables for phase i which can only assume a value

of 0 or 1. In total, there are thus 9 such optimisation variables, three for each phase.

Those variables can be considered as a choice on the target for each phase. In fact, if

µ1,i = 1 while µ2,i = 0 and µ3,i = 0, the constraint will impose phase i to terminate at

the position of target P1. However, the problem requires to visit each target exactly

once. To achieve that, a set of constraints needs to be imposed. The next section will

discuss these constraints in detail.

This formulation of the final conditions was given by [109], and for positive and real

values of µi,j between 0 and 1 can be seen as a convex linear combination of the final

states. This strategy can be applied in general when the problem involves functions of

discrete parameters that cannot be relaxed. This could happen for example when one

function is an external simulation or compiled code s(x, u, t, d) = 0 that can only take

discrete inputs or specific keywords and flags d. In those cases, it is still possible to

employ a relaxation approach and to express the final function as a linear combination,

or superposition, of all possible function calls each with a different discrete input [59].

The disadvantage of this approach is that all possible combinations of discrete inputs

have to be called each time, even if most terms of the linear combination will then be

multiplied by a µi = 0. This could become prohibitive if the number of combinations

of discrete parameters is very large, but is not a major issue otherwise.
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Treatment of the constraints on the targets

Von Stryk and Glocker [109] proposed to arrange the discrete variables µi,j in a

matrix, relax the variables µi,j into µ̃i,j and impose the following set of constraints


∑
i

µ̃i,j = 1 ∀j

∑
j

µ̃i,j = 1 ∀i
(5.11)

where µ̃i,j is the relaxed ith binary choice for phase j. For an n targets problem, this

results in a total of 2n constraints. The idea behind this set of constraints is to ensure

that, if the variables assume a value of 0 or 1, only one element per row and column

can be 1, thus resulting in a unique choice of target per each phase.

In the work of Von Stryk and Glocker, these constraints were employed to obtain a

relaxed solution which constituted the upper bound for a branch and bound method:

one relaxed variable was then split into a branch where it had a fixed value of 0 and

a value of 1 in the other. The branch and bound method progressed until all relaxed

variables were given a value of either 0 or 1, progressively discarding regions of the

search space which were considered unpromising.

This method has the advantage of not requiring any further special treatment for

the discrete variables, which are treated separately to the continuous ones. However,

it has two main disadvantages: the first is that in order to obtain a solution to the full

non-relaxed problem it has to solve many NLPs, in the best case equal to twice the

number of binary variables and in the worst case equal to performing a full enumeration

of the 2n possible combinations.

The second, less obvious disadvantage, is that the method relies on the NLP to

provide the upper and lower bounds for the solution. If the problem has multiple local

solutions, the bounds computed by the NLP might be incorrect and the method might

discard the region of the search space where the true optimal solution lays. This will
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Figure 5.1: Graphic representation of constraints 5.6

be further discussed in the results section.

Unfortunately, the set of constraints (5.11) has two major problems when applied in

the current framework: the first one is that it is composed by 2n equality constraints.

When adding constraints (5.6) to enforce each µ̃i,j to assume a value of 0 or 1, the

problem becomes overdetermined for the µ̃i,j , given that constraints (5.6) already im-

pose an equality constraint per relaxed variable. Even if the constraints are redundant

at the solution points, the NLP solver might have serious difficulties in handling this

situation.

A second less obvious problem is shown in Figure 5.1: one should guarantee that

the µ̃i,j involved in each of constraints (5.11) are not all greater, or all less, of 0.5. The

reason for this is that, in order to satisfy the constraints, the NLP solver performs a

linearisation of the constraints. Thus, it will try to satisfy the constraints by pushing

all the µ̃i,j towards either 0 or 1 depending on which side of the constraint the current

solution happens to be. However, if all µ̃i,j are on the same side of the constraint, the

fact that the NLP will try to bring them all to 0 or 1 conflicts with the constraints∑
i µ̃i,j = 1. In other words, with a poor guess it might be impossible for the NLP to

find a feasible solution to an otherwise simple problem.
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In order to overcome all these obstacles, another approach is proposed. First, equal-

ity constraints (5.11) are rewritten as inequality constraints



∑
i

µ̃i,j ≤ 1 + ε ∀j

∑
i

µ̃i,j ≥ 1− ε ∀j

∑
j

µ̃i,j ≤ 1 + ε ∀i

∑
j

µ̃i,j ≤ 1− ε ∀i

(5.12)

where ε is a fixed positive parameter lower than 1. This set of linear inequality con-

straints solves the issue of overdetermination of the system, because the only equality

constraints remaining are from Eq. (5.6). Moreover it creates a feasible region of

thickness 2ε around the hyperplane defined by the constraints (5.11), which should be

easier to satisfy than a strict equality constraint.

However, it is still possible that all elements µ̃i,j of a row or column are on the same

side of the constraint (5.6), i.e. they are all lower or greater than 0.5. In order to solve

this issue, an additional set of constraints is imposed:
∑
i

(
µ̃2
i,j −

1

2

)
≥ r2 ∀j

∑
j

(
µ̃2
i,j −

1

2

)
≥ r2 ∀i

(5.13)

where r is a parameter that can be chosen between rmin = 1
2 and rmax =

√
n

2 and

n is the number of targets. For each row and column equality of Eq. (5.11) this

additional set of constraints is creating a keep out sphere of radius r centred around

the point
(

1
2 , · · · ,

1
2

)
. As shown in Figure 5.2 for the n = 2 case, this combination of

constraints (5.12) and (5.13) has a feasible region of finite size around the vertices of

a unit hypercube that also lie along the hyperplane parallel to the vector (1, 1, · · · , 1).

Thus, when the integrality constraints (5.6) are imposed, the NLP solver has a good
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Figure 5.2: Feasible region of constraints 5.12 and 5.13

initial guess and can converge more easily towards a fully feasible solution.

It is important to remark that the feasible region of constraints (5.12) and (5.13) is

disconnected and has a number of islands equal to the number of possible sequences.

Thus, many different feasible and locally optimal solutions are possible and a global

exploration approach is necessary.

Results

The problem was discretised using 3 DFET elements of order 7 for both states and

controls and each phase, resulting in a problem with 638 variables. Bounds for the

optimisation variables are reported in Table 5.1.

MACSoc was run with 10 agents for a total of 40000 function evaluations with

standard settings, and the single level gradient based refinement every 10 iterations.

10 solutions were archived. Figure 5.3 shows the Pareto front and the trajectories

computed. Lower time solutions require more energy, as expected. Moreover, the order

in which the target locations are visited is the same for all the trajectories, starting

from P3 and proceeding to P2 and P1. Rather unexpectedly, lower time solutions have

longer trajectories with a marked cusp, while longer time solutions have shorter quasi
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Table 5.1: Lower and upper bounds for the state, control and final time variables of
the motorised Travelling Salesman Problem

Variable Lower bound Upper bound

x (m) −5 5
y (m) −5 5
v (m s−1) −10 10
α (rad) −π π
u1 (m/s2) −1 1
u2 (rad s−1) −1 1
tf (s) 0 15

rectilinear trajectories.

(a) Pareto front (b) Trajectories

Figure 5.3: Pareto front and Trajectories for the dynamic Travelling Salesman Problem

To explain this unintuitive result it is useful to look at Figure 5.4, which shows

the time histories of the magnitude of the velocity and the corresponding control, the

acceleration. As expected, the minimum time trajectories are the result of a bang-

bang control profile for the accelerations. In this case, the bang-bang switch happens

twice: a full acceleration is followed by a full deceleration until velocity reaches zero.

After that, the acceleration is still kept negative, meaning that the vehicle will proceed

backwards, until a full acceleration will stop the vehicle again when it reaches the

origin. The reason behind this unintuitive backwards arc is due to the limitations in

the steering rate: the maximum steering rate is not sufficient to allow the vehicle to

129



Chapter 5. Multi Objective Hybrid optimal control

smoothly turn and visit all three targets while also accelerating. Thus, in order to

reduce time, the optimiser found a solution which is overcoming this limitation.

Low energy solutions instead have a smooth double linear profile, corresponding to

a milder acceleration/deceleration profile. Also for these solutions the vehicle proceeds

backwards after the second target. In particular, the vehicle stops at that point even

if it was not necessary to do so. Since the velocities are much lower for these solutions,

a smaller curvature radius is achievable, resulting in rectilinear trajectories for most

of the interval connecting two targets.

(a) Time history of the velocity (b) Time history of the acceleration

Figure 5.4: Time histories of velocity and acceleration for the Travelling Salesman
Problem. + marks when a target is visited

Solution 10 can be compared with the solution found in the reference [109], which

was solving the minimum time problem. Table 5.2 reports a comparison of the times

when each solution visits each target and the total mission time. The difference in total

mission time is below 0.3% and can be attributed to the fact that the DFET tran-

scription with Bernstein polynomials smooths the sharp discontinuities of bang-bang

profiles, resulting in a slight penalisation of the objective function. This is also evident

from Figure 5.5, which compares the reference solution with the solution obtained with

the proposed method and shows a very good agreement.
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Table 5.2: Comparison of intermediate and final times between the reference solution
and solution 10 on the Pareto front

Solution T1 T2 T3 Tf
Reference 2.286 3.1390 5.3830 7.6166

MACSoc 10 2.296 3.1475 5.3958 7.639

(a) Time histories of the velocity (b) Time histories of the acceleration

Figure 5.5: Comparison of the time histories between the reference solution and the
minimum time solution computed by MACS. + marks when a target is visited
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An important fact is mentioned in the reference: multiple local solutions exist even

for a given order in which the targets are visited. It was not specified how the different

solutions were generated, but the authors mentioned that different initial guesses had

to be provided to the NLP solver in order to obtain different solutions. Since the

approach proposed in this work is global and treats simultaneously both the discrete

and the continuous variables, this kind of exploration is performed automatically, and,

as shown, is able to return the best solution reported in the literature without requiring

the user to generate different initial guesses for the NLP problem. Moreover, since the

approach proposed in the reference was based on a deterministic branch and bound, it

requires to compute all the solutions at the leaf level of the tree associated to the branch

and bound. If the number of targets increases, this number can potentially become

exceedingly large, resulting in intractable problems. With the approach proposed

here, the maximum number of trials is specified a priori. Thus, even if larger problems

become more and more difficult, the approach here proposed should be able to return

a solution with a bounded number of function evaluations and computational time.

5.3.1 A time dependent motorised Travelling Salesman Problem

The problem described in the previous section was solved again, but this time the

position of the targets was time dependent:
P1(t) = (0.5 + 0.5 cos(t), 1.5 + 0.5 sin(t))

P2(t) = (2 + cos(2t), 2− cos(2t))

P3(t) = (1.5 + 0.5 cos(3t), 1)

(5.14)

The time dependence of the position of the targets makes the problem particularly

challenging, since the choice of the sequence in which the targets are to be visited

cannot be decoupled from time. The time laws for the position of the targets were

chosen in order to have periodic motions with different amplitudes and frequencies.

The trajectories of the targets are shown in Figure 5.6.
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P1

P3

P2

Figure 5.6: Trajectories of the targets for the time dependent motorised Travelling
Salesmen Problem. Hollow circles indicate the position of the targets at t = 0

The problem was solved with the same settings as the previous case, except that

the number of agents was increased to 20, 20 solutions were kept in the archive, and a

total of 100000 function evaluations was allowed.

(a) Pareto front (b) Trajectories

Figure 5.7: Pareto front and Trajectories for the time dependent motorised Travelling
Salesman Problem

Figure 5.7 shows the Pareto front and the trajectories computed. As it is evident,

there is still a trade-off between time and energy, but it appears to be composed of

different branches. Solutions 1−5 and 7−15 visit the targets in the order (P3 → P2 →

P1), while solutions 6 and 16− 20 visit the targets in the order (P1 → P2 → P3).

133



Chapter 5. Multi Objective Hybrid optimal control

Table 5.3: Comparison of minimum time and minimum energy solution features be-
tween fixed and time dependent motorised Travelling Salesman Problem

Targets Solution T (P1) T (P2) T (P3) Tf Energy

Fixed Min Tf 5.3958 (s) 3.1475 (s) 2.296 (s) 7.639 (s) 7.040
Moving Min Tf 2.0546 (s) 4.1399 (s) 5.5458 (s) 7.324 (s) 7.055
Fixed Min E 10.623 (s) 7.4999 (s) 4.7023 (s) 15 (s) 0.616

Moving Min E 11.389 (s) 7.1031 (s) 3.3213 (s) 15 (s) 0.487

Interestingly, the minimum time solution takes less time to visit all targets than the

minimum time solution of the previous case, indicating that the algorithm was able to

exploit the relative motions of the targets to find a favourable timing for the various

encounters, whose sequence is also different from the equivalent case of the previous

problem. In order to do so, the solution also requires slightly more energy than the

equivalent fixed targets case. Similarly, the minimum energy solution takes a sligthtly

lower amount of energy than the fixed target minimum energy solution, while both

trajectories take the same time to complete, equal to the upper bound. Table 5.3

summarises these findings.

The trajectories followed by the various solutions are also more complex than in the

previous case, although they still retain a similar overall shape. In order to convey

a sense of the motion of the targets and of the vehicle, Figure 5.8 shows different

snapshots of all trajectories. The snapshots were taken at the instants when the fastest

solution (solution 20) reaches each target and finally when it returns to the origin.

Figure 5.9 shows the time histories of the velocity and of the acceleration. The

profiles are similar to the previous case, although it is possible to see some differences.

In particular, solutions 1− 5, 7− 15 and 16− 20 seem to belong to different families,

with solution 6 making a class of its own. The same applies for the controls, where it

is also possible to detect some defects where the NLP did not manage to converge to

a locally optimal solution but stopped for small step size. Again, it would be possible

to improve the quality and the resolution of these solutions by a mesh refinement

procedure, but the overall trade-off and the main characteristics of the solutions were
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(a) t = 2.0546 (b) t = 4.1399

(c) t = 5.5458 (d) t = 7.3237

Figure 5.8: Different snapshots of the trajectories for the time dependent motorised
Travelling Salesman Problem
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already captured at this stage.
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(b) Time history of the acceleration

Figure 5.9: Time histories of velocity and acceleration for the time dependent Travel-
ling Salesman Problem. + marks when a target is visited
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5.4 Chapter summary

This chapter extended the algorithm presented in the previous chapter to include

the treatment of discrete parameters. This results in mixed-integer, or hybrid, optimal

control problems, which are extremely difficult to solve. In order to tackle the solution

of those problems, both the multi-objective optimisation algorithm and the single and

bi-level approaches were extended.

First, the heuristics of MACS were modified to deal with integer variables. The logic

of the extension was to perform the minimum modifications possible, in order to retain

the behaviour of the heuristics when operating on the continuous variables but ensure

that their result was always integer when operating on the discrete variables.

The bi-level and single level approaches were also modified. The discrete variables

were first relaxed, allowing to operate normally with the NLP solver without excluding

any variable. After the relaxed problem is solved, an additional set of smooth con-

straints was imposed in order to enforce the relaxed variables to assume only integer

values. The introduction of these constraints is delayed in order to allow the NLP

solver more freedom and avoid getting trapped in local minima or in regions where no

feasible solution exists.

Finally, a new set of constraints was introduced to tackle problems where the dis-

crete variables have special exclusivity constraints, resulting in a combinatorial kind

of complexity. These constraints are typical of problems like the Travelling Salesman

problem, where the choice of targets is constrained by the fact that each target can be

visited only once. The proposed approach, together with the new constraints, was able

to solve a multi-objective extension of a Dynamic Travelling Salesman Problem with

three cities, and even a more complex time-dependent version of the same problem.
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Chapter 6

Transatmospheric Vehicle and

Mission Design
1

Ipsa scientia potestas est

Knowledge itself is power

Francis Bacon

The approach to the solution of multi-objective optimal control problems described

in Chapter 4 is applied to three problems of increasing complexity: the multi-objective

extension of a known atmospheric re-entry problem, a 2 phase ascent problem with 3

objectives, and a 3 phase branched ascent and abort problem with 2 objectives.

The code and all the test cases were implemented in Matlab 2017b and run on a

laptop with an i7 processor under Windows 10. The gradient based refinement was

run every 10 iterations in all cases, and the NLP solver used in both the bi-level and

single level formulations employed an SQP algorithm. The maximum number of calls

to the constraint function for the NLP solver in the bi-level formulation was set equal

to the number of optimisation variables for the inner level NLP, while for the single

level refinement it was increased to 10 times the number of the variables.

1The contents of this chapter were published in: L. A. Ricciardi, C. Maddock and M. Vasile. Direct
Solution of Multi-Objective Optimal Control Prolem Applied to Spaceplane Mission Design. Journal
of Guidance, Control, and Dynamics, Vol. 42, No. 1 (2019), pp. 30-46.
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6.1 Physical models

Before presenting the test cases, the physical models that are common to all three

problems are here described.

6.1.1 Dynamical model

The vehicle dynamics are modelled as a 3DOF point mass moving in an Earth

Centred Inertial reference frame (adapted from [69]),

ṙ = ḣ = v sin γ (6.1a)

θ̇ =
v

r
cos γ cosχ (6.1b)

λ̇ =
v

r cos θ
cos γ sinχ (6.1c)

v̇ =
T (δT ) cosα−D

m
− g sin γ (6.1d)

γ̇ =
T (δT ) sinα+ L

mv
cosσ +

(v
r
− g

v

)
cos γ (6.1e)

χ̇ =
T (δT ) sinα+ L

mv cos γ
sinσ +

v

r cos θ
cos γ sinχ sin θ (6.1f)

ṁ = −ṁp(δT ) (6.1g)

where r = ‖r‖ is the modulus of the position vector r, h = r−RE is the altitude, λ and

θ are longitude and Geocentric latitude, v = ‖v‖ is the magnitude of velocity vector,

γ and χ are the flight path and heading angles, m is the mass of the vehicle, L and D

are the aerodynamic lift and drag forces, g = µE/r
2 is the gravitational acceleration,

T is the thrust produced by the engine and ṁp is the propellant mass flow rate. The

control variables are the angle of attack α, bank angle σ, and the throttling δT of the

engine.

6.1.2 Atmospheric and aerodynamic models

The International Standard Atmosphere model was used to model the atmospheric

temperature, pressure pa, and density ρa as a function of the radius r assuming a

spherical Earth model with a radius RE = 6371 km and constant angular rotational
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velocity ωE = 7.292 118× 10−5 rad s−1.

The atmosphere is assumed to rotate with the same angular velocity as the Earth,

so the aerodynamic forces were computed using the velocity of the vehicle relative to

the air with no wind (or other disturbances),

L =
CLρaSrefv

2
rel

2
(6.2)

D =
CDρaSrefv

2
rel

2
(6.3)

where vrel = v−ωEr and given the aerodynamic coefficients for lift CL and drag CD,

and the reference area of the vehicle Sref .

6.1.3 Propulsion model

The thrust vector is assumed to be always aligned with the longitudinal body axis

of the vehicle, proportional to the vacuum thrust Tvac of the engine and modulated by

the throttle control δT ∈ [0, 1]. An additional term is added to account for the losses

due to the difference between the nozzle’s exit pressure and the external atmospheric

pressure pa. The resulting model is,

T = δT (Tvac −Aepa) (6.4)

where Ae is the nozzle exit area. The mass flow rate of the propellant ṁp is given by

ṁp =
δTTvac
Ispg0

(6.5)

where Isp is the specific impulse of the engine and g0 is the Earth gravitational accel-

eration at sea level.
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Table 6.1: Lower bounds, upper bounds and boundary conditions for the Optimal
Descent Trajectory case

Variable [units] Lower bound Upper Bound Initial value Final value

Radius r [kft] 20900 21300 21163 20983
Latitude θ [rad N] −π/2 π/2 0 ≥ 0.2618
Longitude λ [rad E] −π π 0 Free
Velocity v [ft s−1] 1 30000 25600 2500
Flight path angle γ [rad] −π/2 π/2 -0.0175 -0.0873
Heading angle χ [rad] −π π π/2 Free
Angle of attack α [rad] −π/2 π/2 Free Free
Bank angle σ [rad] −π/2 0 Free Free

6.2 Optimal Descent Trajectory

The first test case is based on a problem proposed by Betts [69] who analysed the

unpowered re-entry of a Space Shuttle-like vehicle controlled by changing the angle

of attack α and bank angle σ. To be consistent with the reference, the throttle was

set to δT = 0 for all t, ωE = 0 and units are in the Imperial system. Furthermore,

the following models and reference values were taken from Betts [69]: the exponential

model for the atmosphere, the linear model for CL, the parabolic model for CD, the

aerodynamic reference area of Sref = 2690 ft2 (249.9 m2) and the vehicle mass of 6309

sl (92 t). Bounds on the rate of change of the flight path and heading angles were

imposed: |γ̇| ≤ 0.035 rad s−1 and |χ̇| ≤ 0.035 rad s−1s. A semi-empirical correlation for

the heat flux at the nose was given as

qflux =
(
c0 + c1α+ c2α

2 + c3α
3
)
c4
√
ρa (c5v)c6 ≤ 70 btu ft-2 s-1 (6.6)

with the coefficients c0, c1, c2, c3, c4, c5, c6 as reported in [69]. Boundary conditions,

lower bounds and upper bounds for the optimisation variables are listed in Table 6.1.

Objectives

In [69] two different single objective problems were proposed: a maximum cross-range

(equivalent to maximising the final latitude θf since θ0 = 0) and a minimum peak

heat flux max qflux problem. Here, we propose, instead, the following multi-objective
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optimisation problem:

min
tf ,u

[J1, J2]T = [−θf , qu]T

s.t (6.7)

qflux ≤ qu

Numerical settings

The problem was formulated as a single time phase, with boundary conditions defined

in Table 6.1, discretised using 6 finite elements and order 9 Bernstein polynomials for

both states and controls, resulting in 121 optimisation variables for the outer level

(120 for the control variables, and 1 for the free final time), and 484 total variables

for the single level and inner level NLP. A limit of 20000 calls to the objective vector

was given to MACSoc, a population of 10 agents was deployed in the search space

and the size of the archive A was limited to 10 elements. The choice of these values

for the parameters of the solver requires some experience and knowledge about the

problem to be solved: since this is a two objective problem, a 10 points approximation

of the Pareto front was deemed sufficient to get a good idea of the shape of the Pareto

front. Moreover, since the problem was not expected to be particularly challenging

from a global optimisation point of view, the number of agents was taken equal to the

number of desired solutions on the Pareto front. For the same reason it was expected

that the global exploration heuristics would have been able to take the agents close to

an optimal solution with few function evaluations. The NLP solver would then have

a good starting guess and would converge quite easily to the locally optimal solution.

With 20000 function evaluations and 10 agents, each agent would have a budget of

2000 function evaluations, more than 4 times higher than the number of optimisation

variables for the single level and inner level NLP, and more than 10 times the number of

optimisation variables seen by the outer level. These values were considered sufficient

without being excessive.
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The initialisation of the population required approximately 1 second for 8 of the 10

agents, while for 2 agents it took approximately 3 minutes because the NLP solver did

not converge to a feasible solution in the maximum number of iterations. However, as

soon as the optimisation loop started, all solutions immediately became feasible thanks

to the bi-level approach. The total runtime was approximately 1 hr.

Figure 6.1: Optimal descent trajectory: Pareto optimal solutions stored in the archive
A at the end of the optimisation process and the two published single objective solu-
tions from Betts [69].

(a) (b)

Figure 6.2: Optimal descent trajectory: time-history of a) the altitude and b) the
velocity for each of the 10 solutions in the Pareto front in Fig. 6.1 plus the two published
single objective solutions from Betts [69].
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(a) (b)

Figure 6.3: Optimal descent trajectory: time-history of a) the lift to drag ratio and b)
the heat flux for each of the 10 solutions in the Pareto front in Fig. 6.1.

(a) (b)

Figure 6.4: Optimal descent trajectory: time-history of a) the angle of attack and b)
the bank angle for each of the 10 solutions in the Pareto front in Fig. 6.1 plus the two
published single objective solutions from Betts [69].

6.2.1 Results

Figure 6.1 shows the 10 Pareto optimal solutions in the archive A at the end of the

optimisation process, while Figs. 6.2–6.5 show altitude, velocity, lift-to-drag ratio L/D,

heat flux, angle of attack, bank angle and angular velocities for the flight path and

heading angles for each of the 10 solutions in A.

Figure 6.1 shows that the method is able to find an even spread of elements belonging

to the Pareto front including the two single objective solutions given in [69], here
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(a) (b)

Figure 6.5: Optimal descent trajectory: time-history of a) the rate of change of the
flight path angle γ̇ and b) the heading angle χ̇ for each of the 10 solutions in the Pareto
front in Fig. 6.1.

labelled as Betts A and Betts B, corresponding to Solutions 1 and 10, without any

externally supplied guesses. Solution 1 has objective values (−0.2618, 28.0016) and

Solution 10 has objective values (−0.5345, 69.9997), while the corresponding solutions

from the reference are (−0.2618, 27.9982) and (−0.5345, 70) respectively.

The relative difference in the second objectives is below 10−4 and can be attributed

to the different NLP solvers and settings employed, and the presence of an iterative

mesh refinement procedure in the reference solutions. In Figs. 6.2 and 6.4 the circles

and squares represent the solutions from [69] for the two individual objective functions.

The figures show a very good match between the result generated with MACSoc.

A clear trend emerges from the solutions of the multi-objective problem: the mini-

mum peak heat flux solution is also the shortest in time with longer re-entries imposing

higher peak heat fluxes. This is due to the initial altitude skip in the trajectory (see

Fig. 6.2a in the first 200 s), which is more pronounced for the shorter time re-entries

and causes the velocity to decrease faster but at the price of having less energy and time

to maximise the cross-range. Since the initial conditions are fixed, the corresponding

heat flux is also fixed. Thus it is not possible to further reduce the peak heat flux.
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All the trajectories present a similar control profile: an initial peak heat flux contain-

ment phase, with high bank and angle of attack, followed by a maximum aerodynamic

efficiency phase to maximise the cross-range when heat flux is no longer a concern.

The angle of attack during the initial descent is limited by the objective to minimise

the heat flux, which is a function of the velocity, altitude and angle of attack, while

a high bank angle is used to maximise the cross-range with no penalty to the heat

flux. Angular rates for the flight path and heading angles are well below the imposed

constraints along all the trajectories.
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6.3 Three-objective Ascent Problem

This test case is the multi-objective, multidisciplinary design of a rocket-powered, two-

stage launch vehicle optimised for the ascent to orbit. The vehicle is air dropped from

a carrier aeroplane flying at 200 m s−1 at an altitude of 10 km eastbound along the

equator, with an initial flight path angle of 10°. It has to deliver a 500 kg payload to

a 650 km altitude circular equatorial orbit.

The aim of this test case is to minimise the initial gross mass of the vehicle, examining

the trade-off between the engine sizing and dry masses of each of the two stages. The

vacuum thrust ratings of the two rocket engines are set as optimisation variables,

which through the mass model directly affect the dry masses of the two vehicle stages.

Similarly, the mass of propellant used in each stage also affects the dry mass of each

stage by altering the mass of the tanks.

As the focus here is on the vehicle design of the mass and propulsion systems, a

simple aerodynamic model was used for both stages: for the first CL = 0, CD = 0.1

and Sref = 73.73 m2, while for the second CL = 0, CD = 0.01 and Sref =1 m2.

The ascent trajectory was divided into two phases: Phase 1 is the ascent of the

integrated vehicle (combined first and second stage vehicles), and Phase 2 is the ascent

of only the second stage vehicle. The initial and final conditions and bounds for

optimisation variables are listed in Table 6.2.
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Table 6.2: Lower bounds, upper bounds and boundary conditions for the Three Ob-
jective Ascent case

Variable [units] Lower bound Upper Bound Initial value Final value
(All phases) (All phases) (Phase 1) (Phase 2)

Radius r [km] 6371 7171 6381 7021
Latitude θ [rad E] −π/2 π/2 0 Free
Longitude λ [rad N] 0 π 0 Free
Velocity v [m s−1] 465 10000 665 7535
Flight path angle γ [rad] −π/2 π/2 0.1745 0
Heading angle χ [rad] 0 π π/2 π/2
Vehicle mass m [t] 0 100 Free Free
Angle of attack α [rad] 0 0.3491 Free Free
Bank angle σ [rad] −0.1745 0.1745 Free Free
Throttle δT 0 1 Free Free
Tvac,1 [MN] 0 2 N.A. N.A.
Tvac,2 [kN] 0 200 N.A. N.A.
mp,1 [t] 0 100 N.A. N.A.
mp,2 [t] 0 1 N.A. N.A.

6.3.1 Structural mass models

For the first stage, the dry mass is a function of the engine mass meng,1 and propellant

mass required for the first phase mp,1,

mdry,1 = −l3m̃3
p,1 + l2m̃

2
p,1 + l1m̃p,1 + l0 +meng,1 (6.8)

m̃p,1 =
mp,1 − l4

l5
(6.9)

For the second stage vehicle, the dry mass was assumed to be

mdry,2 =
0.1

0.9
mp,2 +meng,2 (6.10)

The gross vehicle masses for each phase are then given by,

m0,1 = mdry,1 +mp,1 +mdry,2 +mp,2 (6.11)

m0,2 = mdry,2 +mp,2 (6.12)
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The vacuum thrust of the engines was used to estimate their structural mass based

on an empirical linear relationship of existing commercial engines,

meng = l6Tvac + l7 (6.13)

where l6, l7 are constants. The mass model was developed in parallel for an industrial

vehicle and the coefficients l0 to l7 cannot be released publicly [110]. However, for

other applications those coefficients could be estimated by employing historical data

for the masses of similar vehicles and engines.

For the first stage engine, 0 ≤ Tvac ≤ 2 MN and Isp = 332 s, while for the second

stage engine 0 ≤ Tvac ≤ 200 kN and Isp = 352 s. Propellant masses were limited to

100 t for the first stage and 20 t for the second.

Matching conditions between the phases were imposed on all state variables except

for the mass, for which the following instantaneous drop was imposed at the stage

separation:

m0,2 = mf,1 −mdry,1 (6.14)

6.3.2 Objectives

The aim of the optimisation is to study the trade off between propellant efficient

designs and designs that require relatively small engines. The objective functions were

to minimise the gross vehicle mass m0,1 and the two ratios between the vacuum thrust

of the stage engine, and the gross weight at the beginning of each phase.

The thrust-to-weight metric also gives an indication of the vehicle loads or induced

accelerations the vehicle experiences during flight. The higher the ratio between thrust

and mass, the higher the loads imposed on the vehicle, thus one option is to minimise

loading by minimising the thrust to weight ratio. Reducing the vacuum thrust reduces

the engine performance however, which requires often longer duration trajectories and
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more propellant, which in turn increase the vehicle mass.

min
tf ,u,Tvac,1,Tvac,2,mp,1,mp,2

[J1, J2, J3]T =

[
m0,1,

Tvac,1

g0m0,1
,
Tvac,2

g0m0,2

]T
(6.15)

6.3.3 Numerical settings

The problem was discretised using 4 DFET elements of order 7 for both states and

controls, and both phases, resulting in a total of 207 optimisation variables for the

outer level and 666 optimisation variables for the single level and inner level NLP. A

limit of 80000 calls to the objective vector was given to the optimiser, 106 agents were

deployed in the search space and the same maximum number of solutions were kept

in the Archive. The considerations that lead to the choice of these parameters for the

solver were similar to the ones taken for the previous case. Since for problems with

more than two objectives the number of weight vectors is given by the simplex lattice

design algorithm (3.2.3), it was decided than 13 subdivisions per objective for a three

objective problem would have been sufficient but not excessive, resulting in 106 points

in the Archive. Since the problem was expected to be relatively simple from the global

optimisation point of view, one agent per point in the Archive was deemed sufficient.

For the same reason, 80000 function evaluations were considered sufficient for a first

try. The initialisation of the population required on average 5 seconds, but for some

agents it took 5 minutes as the randomly generated guess was poor and the NLP did

not manage to find a feasible solution. At the next iteration, all solutions were feasible

and the Archive quickly filled up. The runtime of the problem was approximately 30h.

Results

Figure 6.6 shows the 106 Pareto optimal solutions in the archive at the last iteration,

with an additional colorbar indicating gross take-off mass. The shape of this 3D Pareto

front resembles a smooth half cup. The figure shows the 3D surface in the middle, and

the three orthogonal projections. As can be seen, the algorithm found a very good

spread set of solutions, all of which are feasible and locally Pareto optimal up to the

requested 10−6 threshold.
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Figure 6.6: Three-Objective Ascent: set of Pareto-optimal solutions, colorbar indicates
gross mass of the vehicle. The 3D Pareto front is in the middle, with orthographic
projections shown on each coordinate plane.

Figures 6.7 and 6.8 show the altitude and velocity profiles plus the flight path angle

and throttle time histories of the three extreme solutions of the Pareto front. The

altitude, velocity and throttle profiles of the minimum gross mass and minimum first

stage (Tvac,1/m0,1g0) solutions are similar, while their flight path angles differ sub-

stantially during the initial ascent: in both cases the first stage engine is working at

full throttle and for a comparable time, but given the relatively lower thrust engine

of the minimum (Tvac,1/m0,1g0) case, the resulting flight path angle dips and becomes

negative causing the vehicle to briefly lose altitude.

The minimum second stage (Tvac,2/m0,2g0) solution is instead quite different: the

first stage engine has to compensate for the relatively small second stage engine by

pushing the vehicle to a higher altitude, velocity and flight path angle at the separation

point. The second stage engine has to operate at maximum throttle for a comparatively

longer length of time after the separation, and has a higher throttle setting during the

final circularisation burn in order to compensate for its lower thrust, as shown in Fig.
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6.8b. The total flight duration is also slightly longer than the other two.

Table 6.3: Design parameters for the three extreme cases of the Three-Objective Ascent
case

Solution Stage
Vacuum Thrust ∆v

thrust [kN] weight ratio [km s−1]

min(m0,1)
1 1682.611 3.432 2.836
2 126.100 1.467 5.664

min(Tvac,1/m0,1g0)
1 1930.137 1.968 4.115
2 200.000 1.730 6.003

min(Tvac,2/m0,2g0)
1 2000.000 2.571 4.565
2 15.124 0.351 4.606

Table 6.4: Mass breakdown for the three extreme cases of the Three-Objective Ascent
case

Solution Stage
Initial Propellant Dry

mass [t] mass [t] mass [t]

min(m0,1)
1 49.995 29.632 (59.27%) 20.363 (40.73%)
2 8.765 7.063 (80.59%) 1.699 (19.38%)

min(Tvac,1/m0,1g0)
1 100.000 72.830 (72.83%) 27.170 (27.17%)
2 11.789 9.717 (82.42%) 2.071 (17.57%)

min(Tvac,2/m0,2g0)
1 79.318 60.629 (76.44%) 18.689 (23.56%)
2 4.390 3.234 (73.66%) 1.156 (26.34%)

Tables 6.3 and 6.4 report the design parameters for the Pareto extrema (i.e., the

solutions that minimise each objective individually) and a breakdown of the vehicle

masses with the relative percentage values with respect to the stage’s initial mass,

engine vacuum thrust, thrust to weight ratio, and resulting ∆v contribution.

The solution with minimum initial mass requires high ratios of vacuum thrust to

initial weight, though the vacuum thrust of the engines does not reach the maximum

allowed values. Propellant mass is approximately 60% of the total mass of the first

stage and approximately 80% of the total of the second stage. Total ∆v is of 8.5 km s−1,

with the first stage contributing approximately for 2.8 km s−1 or 33% of the total, and

the rest coming from the second stage. The ratio between the payload and gross vehicle

mass is approximately 1%.
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The solution corresponding to the minimum thrust to weight ratio of the first stage

requires a larger vehicle with a substantially higher amount of propellant: its initial

mass reaches the maximum allowed value for the mass of the vehicle (see Table 6.2),

and is double the value of the previous case. Of this gross mass, approximately 70%

is propellant for the first stage. The ratio between the payload mass and the initial

mass is 0.5%. The total required ∆v is 10.1 km s−1, with 6 km s−1 coming from the

second stage. The second stage engine also has the maximum possible vacuum thrust

and consumes more propellant than the previous case leading to a high (Tvac,2/m0,2g0)

at the cost of a minimised first stage (Tvac,1/m0,1g0).

The solution corresponding to the minimum thrust to weight ratio of the second

stage requires an intermediate initial mass, approximately 60% more than the minimum

initial mass case. The ratio between the payload mass and the initial mass is 0.63%, and

the required ∆v totals 9.1 km s−1, evenly spread between the two stages. This is true

also for the propellant mass, representing approximately 75% of the total of each stage

and totalling twice as much as the minimum gross take-off mass case. The first stage

engine has to compensate by taking the maximum allowed value of vacuum thrust, with

the resulting thrust to weight ratio being higher than in the previous case, leading to

higher induced accelerations. However, the second stage is significantly lighter than

the other solutions both in terms of dry mass and propellant mass, and its engine has

a vacuum thrust one order of magnitude smaller than the previous solutions.
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(a) (b)

Figure 6.7: Three-Objective Ascent: time-history of a) the altitude and b) the velocity
for the three extreme solutions of the Pareto front in Fig. 6.6. The + indicates the
stage separation point.

(a) (b)

Figure 6.8: Three-Objective Ascent: time-history of a) the flight path angle and b) the
throttle for the three extreme solutions of the Pareto front in Fig. 6.6. The + indicates
the stage separation point.
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6.4 Optimal Ascent and Abort Scenarios

The third test case is the multidisciplinary design of a spaceplane accounting for

abort scenarios. Other studies [111] have looked at optimising the abort descent for an

independently determined optimal ascent trajectory. Here, the design of the vehicle

and trajectory is formulated as a multi-objective optimisation to account for the vehicle

design and performance during the ascent to orbit under nominal conditions and the

descent under abort conditions, for different abort scenarios.

The vehicle is a single stage to orbit spaceplane designed to be air-dropped from a

carrier aircraft, similar in design to the X-34. As in the three-objective ascent case,

the drop point from the carrier aircraft is set at 10 km altitude and 200 m/s. The

mission is to reach a 100 km altitude, circular equatorial parking orbit. The propulsion

system is rocket-based with Tvac = 1340 kN and Isp = 450 s. An abort is designed to

occur after complete engine failure at a specific time tfail. To study the worst case, no

propellant dumping was allowed.

The optimisation problem is configured to find the optimal control for the trajecto-

ries, and the optimal sizing of the wing area, which affects the downrange performance

during the abort and the dry mass of the vehicle. The initial flight path angle is also

set as an optimisable design parameter.

The timeline was divided into three phases: Phase 1 considers the normal ascent

trajectory before the failure occurs, from t0 to tfail. At tfail, the timeline branches into

two parallel phases: in Phase 2 the engine is assumed to be working normally and the

spaceplane ascends to its target orbit, while instead in Phase 3 the engine has failed

and the spaceplane attempts an emergency landing. The boundary conditions for the

states and controls are given in Table 6.5. Inter-phase constraints were introduced at

the branching point to impose the continuity of states and controls between Phase 1
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and Phase 2 and continuity of the states only between Phases 1 and 3. The throttle

in Phase 3 was imposed to be zero.

Table 6.5: Lower bounds, upper bounds and boundary conditions for the Optimal
Ascent and Abort Scenarios case

Lower Upper Initial value Final value
Variable [units] bound Bound Phase 1 Phase 2 Phase 3

Radius r [km] 6371 6496 6381 6471 6373
Latitude θ [rad N] −π/2 π/2 0 0 0
Longitude λ [rad E] 0 π 0 Free Free
Velocity v [m s−1] 465 10000 665 7848 Free
Flight path angle γ [rad] −π/2 π/2 |γ0,1| ≤ 0.1745 0 γf,3 ≥ 0.1745
Heading angle χ [rad] 0 π π/2 π/2 Free
Vehicle mass m [t] 0 100 Free Free Free
Angle of attack α [rad] 0 0.6109 Free Free Free
Bank angle σ [rad] −0.1745 0.1745 Free Free Free
Throttle δT 0 1 Free Free N.A.
Sref [m2] 20 400 N.A. N.A. N.A.

Aerodynamic model

Polynomial models of the lift and drag coefficients, as functions of angle of attack

α and Mach number M , were built with a non-linear least square best fit of the

aerodynamic data of the X-34 vehicle [112, 113]. The polynomial models are in the

form:

CL(α,M) = P2,1(α) + P2,2(α)W1(M) + P2,3(α)W2(M)

CD(α,M) = P3,1(α) + P3,2(α)W3(M) + P3,3(α)W3(M)
(6.16)

where Pi,j is the jth polynomial of degree i of α with monomial coefficients (aj,0, · · · , aj,i+1)

and Wi are Weibull distributions over Mach with parameters (ςj , κj) shifted by %j , i.e.,

Wi =
κi
ςi

(
M − %i
ςi

)κi−1

e
−
(
M−%i
ςi

)κi
(6.17)

The upper and lower limits on the coefficient of the Weibull functions were chosen so

that they had a maximum at around M = 1, went to zero for M = 0 and for M →∞

went to zero with first derivative equal to zero. Coefficients for this aerodynamic model

are given in Table C.1 in Appendix C. Figure 6.9 shows the overall agreement between
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the model and the data points. The R2 value of the non-linear fit is over 0.99 for

both models. As no data was provided in the rectangular area defined by α ≥ 20° and

M ≤ 3, the smooth constraint

(
α− 35

15

)8

+

(
M − 30

27

)8

− 1 ≤ 0 (6.18)

was imposed to exclude that area.

The additional path constraint M ≥ 0.3 was imposed on all trajectories to exclude

Mach numbers for which the models extrapolated poorly. As the vehicle is not expected

to fly in either of these conditions, these constraints should not affect the optimality

of the results.

(a) (b)

Figure 6.9: Data points, black dots, and non-linear fit surfaces of the aerodynamic
coefficients: a) CL as a function of M and α and b) CD as a function of M and α.
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Wing mass model

In order to account for the change in mass due to a change of wing surface, the

following mass relationship from Rohrschneider [114] was used:

mwing =

Nzmland
1

1 + η
Sbody
Sexp

0.386(
Sexp
troot

)0.572 (
Kwingb

0.572
str +Kctb

0.572
body

)
(6.19)

where Nz is the ultimate load factor, mland is the landed mass, Sbody is the surface

of the fuselage, Sexp is the surface of the exposed part of the wing, troot is the wing

thickness at the root, bstr is the structural wing span at half chord line, bbody is the

fuselage width and η, Kwing, Kct are constants depending on the wing structure.

The landed mass mland was set equal to the unknown initial mass of the vehicle

m0,1, while the final mass was set equal to mf,2 = mwing + mstr, where mstr is the

structural mass of the vehicle plus the payload, without the wings, and was imposed

to be a fixed value of 10 t.

Given the options available in [114], the following values of the constants in Eq.

(6.19) were used: Nz = 4.5 corresponding to a maximum loading of 3 multiplied by

the safety factor of 1.5 for the ultimate load, η = 0.15 corresponding to a control

configured vehicle, Kwing = 0.214 for organic composite honeycomb wing without

TPS, and Kct = 0.0267 for integral dry carry-through of the wing beam, the lightest

option available.

The geometric parameters were derived from the geometry of the X-34 [112, 113]:

Sexp = 0.7283Sref , Sbody = 0.6970Sref , bstr = 1.486
√
Sref , bbody = 0.2785

√
Sref ,

troot = 0.087
√
Sref , where Sref is a static optimisation variable.
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Loading Constraints

As an optimisation of the gross initial mass could result in a reduction of the wing

area, the following constraint on the wing loading was imposed:

m0,1

Sref
≤ 700 kg/m2 (6.20)

together with the limit on the dynamic pressure experienced by the vehicle in all three

phases:
1

2
ρav

2
rel ≤ 60 kPa (6.21)

In order to limit the maximum static structural stresses, the total acceleration in all

three phases was constrained to be:

v̇2 + v2
(
γ̇2 + θ̇2

)
≤ (3g0)2 (6.22)

The final flight path angle for the abort phase was required to be greater than −10°,

and the final velocity of the abort phase had to be such that M = 0.4.

Objectives

The optimisation criteria are the minimisation of the spaceplane initial mass and

the maximisation of the downrange in case of an abort. As the vehicle is flying along

the equator, the downrange can be measured in terms of the angular difference in

longitude. The problem can thus be formulated as

min
tf ,u,Sref ,γ0

[J1, J2]T = [m0,1, −(λf,3 − λ0,3)]T (6.23)

where m0,1 indicates the mass of the vehicle at the beginning of phase 1, while λ0,3

and λf,3 indicate the longitude of the vehicle at the beginning and end of phase 3

respectively.
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This coupled multi-objective, multi-phase formulation allows for a robust optimi-

sation of the ascent trajectory because the abort scenario is included in the sizing

process and the expected result is an optimal trade-off between ascent and landing

performance in the case of a failure.

Numerical settings

The first analysis performed was for tfail = 0 s. This is the worst case scenario

in which the engine does not start. In this case there are only two phases as phase

1 has 0 length. The problem was discretised with 6 elements in the first phase and

3 in the second, using polynomials of order 7 for all states and controls. MACSoc

was run for 20000 calls to the objective vector, 10 agents and a maximum archive size

of 10. These values were chosen following the guideline mentioned in the previous

sections. The initialisation took between 10 seconds and 40 seconds for each agent, all

of which managed to find a feasible solution directly at the initialisation stage. The

whole process ran for approximately 2h.

Results

The set of Pareto-optimal solutions is shown in Fig. 6.10a. The solutions are well

spread and problems (4.8) are solved down to an accuracy of 10−6 in both optimality

and feasibility. The associated wing loading and downrange for all the 10 Pareto-

optimal solutions are shown in Fig. 6.10b.

As the ascent and abort trajectories start concurrently, the main trade-off is on the

vehicle design and aerodynamic performance. The wing loading varies inversely to the

downrange, as expected. This has an effect on the flight path angle and the throttle,

which in turn affect the heat flux and the total acceleration. The result is that all

solutions reach the maximum possible initial flight path angle.

High downrange solutions favour larger wing areas, which translates into a higher

initial mass, due to the increased drag and higher mass of the wings themselves. How-

ever the increase in wing area is such that the wing loading actually decreases. Thus,
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(a) (b)

Figure 6.10: Abort at 0 seconds: a) Pareto front and b) wing loading vs downrange.

(a) (b)

Figure 6.11: Abort at 0 seconds: a) altitude vs time and b) altitude vs downrange for
ascent (solid lines) and descent (dashed lines).

solutions with larger wings have a lower wing loading and are able to generate longer

downrange abort trajectories.

Figure 6.11 shows the ascent and abort trajectory profiles over time and downrange.

Figure 6.12a shows the time history of the total acceleration experienced by the vehicle.

All ascent phases are characterised by a maximum acceleration region in approximately

the same time interval. The throttle profile, shown in Fig. 6.12b, differs from minimum

mass solutions to maximum downrange solutions. For minimum mass solutions (small

wing area) the throttle starts at maximum and remains there for a period of time,

then progressively reduces down to zero, to comply with the limits on the accelerations,
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(a) (b)

Figure 6.12: Abort at 0 seconds: time histories for a) total acceleration and b) engine
throttling for ascent (solid lines) and descent (dashed lines).

(a) (b)

Figure 6.13: Abort at 0 seconds: time histories of a) flight path angle and b) heat flux
for ascent (solid lines) and descent (dashed lines).

before finally increasing again to inject the spaceplane into orbit. Maximum downrange

solutions, instead, favour a more gradual increase of the thrust and a better use of the

aerodynamics.

The same analysis was then repeated for abort points at 5, 10, 15, 20, 25, 30, 35 and

40 seconds, changing the discretisation to 3 elements for each of the 3 phases. Figure

6.14a shows the corresponding approximations of the Pareto fronts. Interestingly, the

different abort cases generate Pareto fronts which progressively converge to a single

point at tfail = 30 s. For tfail between 30 s and 40 s, only one design solution exists for
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increasing values of the downrange. The increase of downrange is due to the increase of

velocity and altitude while the size of the wings remains unchanged to keep the initial

mass to the minimum. Thus, if the vehicle operates properly for at least 30 seconds, it

gains so much velocity and altitude that, in the case of an abort, the downrange does

not benefit from large wings. The same conclusion can be drawn from Fig. 6.14b that

shows the wing loading of all solutions for all abort points.

The collapse of the Pareto front to a single point implies that there exists a single

design solution that minimises the mass and simultaneously maximises the downrange.

This design solution is both the most reliable and the most mass efficient if the abort

happens between 30 s and 40 s from the drop point.

(a) (b)

Figure 6.14: Comparison of Pareto optimal solutions for different abort times: a)
downrange versus initial mass, b) wing loading for each solution ID.
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6.5 Chapter summary

This chapter applied the approach presented in Chapter 4 to the optimisation of

the ascent, re-entry and abort scenarios for different hypothetical vehicles. The ap-

proach was first validated on a known case from the literature confirming the ability

to accurately identify the optimal values for each individual objective function and to

reconstruct a well spread set of locally Pareto optimal solutions.

The application to the three objective case demonstrated the ability of the algorithm

to generate a well spread Pareto front even in the case of more than two objectives.

Furthermore, the solutions in the Pareto set give a unique insight on the impact of

system design choices and an optimal trade-off between system sizing and control law,

allowing the decision maker to make entirely different strategic choices depending on

what is considered more important.

The abort scenario case provided an unexpected result that could not be derived

from a single objective optimal control formulation of the problem: the trade-off on the

wing loading affects the ascent trajectory as the aerodynamics of the vehicle changes

due to the need to improve flight performance during descent, however this is true

up to a limit abort time of about 30 s. Beyond that point there appears to be no

trade-off and only one optimal configuration exists. The reason for this is that a high

wing surface solution is also heavier, and the increase in gliding capabilities does not

compensate for the increase of mass and thus the lower starting velocity and altitude

of the abort phase.

165



Chapter 7

Multiple Debris Removal

Mission
1

Satius est supervacua scire quam

nihil

It is better, of course, to know

useless things than to know

nothing

Seneca

Over the last 60 years, almost 9000 spacecraft had been launched using disposable

launch vehicles. Many spent upper stages are still orbiting the Earth in LEO. In

addition to those spent upper stages, around 3000 satellites are no longer operative

due to obsolescence or failure. Given the relative orbital velocities, if two of these

unresponsive objects collide, they will produce a large number of fragments, or debris.

This creates a risk of a cascading failure mode, known as Kessler syndrome [115], which

could cause complete loss of access to space. Mitigation strategies and guidelines have

thus been considered to avoid this problem. On orbit servicing and active debris

removal have thus become important areas of research.

1The contents of this chapter were published in: L. A. Ricciardi, M. Vasile, A Relaxation Approach
for Hybrid Multi-Objective Optimal Control: Application to Multiple Debris Removal Missions. 29th
AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, HI, Jan 2019, AAS 19-406.
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Tadini et al. [116] estimated that the total mass in LEO, excluding the ISS, is

approximately 2650 t, 97% of which is concentrated in spacecraft and rocket bodies.

The authors also estimated that removing around 0.2-0.5% of these objects every

year would be sufficient, provided that the highest priority targets were removed first.

Following this principle two strategic targets were chosen and a spacecraft was designed

specifically to remove those targets, albeit the design philosophy was to have a common

design that could be reused many times for similar missions. The trajectory analysis

part of that work considered a simple Hohmann transfer and did not include particular

consideration for the order in which the targets would have been visited, given the small

number.

Jing et al. [117] instead considered the problem of visiting a larger number of space-

craft in GEO employing multiple spacecraft. The problem was formulated as a multi-

objective Travelling Salesman Problem minimising ∆V and total mission time, and

was solved using MOPSO [27], a Particle Swarm optimisation approach. Also in this

case, the cost of the transfers in term of ∆V was computed using simple analytical

formulas.

As a final example of application, the framework proposed in this thesis is here ap-

plied to design a space mission to remove three defunct satellites on the Geostationary

orbit by applying a de-orbiting kit to each of them. Differently from the previously

mentioned works, no simple analytical models are employed for the trajectories, com-

putation of propellant mass or time of flight. A multi-objective hybrid optimal control

problem is solved instead, as illustrated in Chapter 5. Operative time constraints

are included for the rendez-vous and docking operations, and the application of the

de-orbiting kits.

7.1 Problem formulation

The spacecraft is assumed to start from an equatorial orbit. Thus it is convenient

to express its dynamics using the full nonlinear equations of relative motion in Hill’s
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frame[118], restricted to a planar motion:



ẋ = vx

ẏ = vy

v̇x = 2ḟ

(
vy − y

ṙc
rc

)
+ xḟ2 +

µ

r2
c

− µ(rc + x)

r3
d

+
uT cos(α)

m

v̇y = −2ḟ

(
vx − x

ṙc
rc

)
+ yḟ2 − µy

r3
d

+
uT sin(α)

m

ṁ =
−uT
g0Isp

(7.1)

where x and y are the positions of the spacecraft relative to a reference point on the

Geostationary orbit, vx and vy are the relative velocities, ḟ is the rate of change of true

anomaly of the Geostationary orbit, rc is the radius of the Geostationary orbit, rd is

the distance of the current position to the centre of the Earth and and m is the mass of

the spacecraft, which is controlled by an engine with maximum thrust T and a specific

impulse Isp. The thrust vector is expressed in terms of throttling u and direction α.

g0 is the gravitational acceleration at sea level, while µ is the gravitational parameter

of Earth.

The spacecraft has an initial mass of 1000 kg, a minimum mass of 100 kg and is

equipped with 3 de-orbiting kits, each with a mass of 30 kg. The propulsion system is

able to generate up to 10 N of thrust with a specific impulse of 300 s.

The spacecraft starts from an equatorial circular orbit with radius of 42 000 km,

which is at a safe distance from the target orbit. This corresponds in the selected

Hill’s frame to the following initial conditions:



x(0) = −164 km

y(0) = 0 km

vx(0) = 0 m s−1

vy(0) = 5.9971 m s−1

(7.2)
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Figure 7.1: Positions of the targets and initial position of the spacecraft. Starting
position lays inside the circle.

Since the reference frame is collocated on a point on the Geostationary orbit, the

targets have a fixed position in time. This significantly simplifies the treatment of the

boundary conditions, which no longer have a periodic time dependency over time. In

this reference frame, they are assumed to be uniformly spread, forming an angle with

the reference point on the Geostationary orbit of 60 deg, 180 deg and 300 deg. Since in

this reference frame their positions are constant, their velocities are 0 m s−1. Figure 7.1

shows position of the targets and the initial position of the spacecraft in the relative

frame.

The spacecraft has to rendez-vous and dock with all targets in order to apply the

de-orbit kits, the application of each is assumed to take 5 h. The order in which

targets are to be visited is not specified a priori. The objectives are the minimisation

of the total mission time, and the maximisation of the final mass, corresponding to the

minimisation of propellant consumption:

min
tf ,u,µ

(J1, J2)T = (tf ,−mf ) (7.3)
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7.2 Results

The problem was formulated as a 3 phase problem, each phase was discretised with

3 DFET elements of order 7, resulting in a problem with 551 variables. The upper and

lower bounds for state and control variables are reported in Table 7.1. The algorithm

was run for 100000 function evaluations with standard settings, 10 agents storing 10

points on the Pareto front. These values for the number of points on the Pareto front

and number of agents follow from the consideration that the problem has only two ob-

jectives and thus 10 points should provide a good approximation of the Pareto front.

However, since this is a mixed integer problem, multiple local solutions are expected,

thus a larger budget of function evaluations per agents was considered necessary: with

100000 function evaluations and 10 agents, each would have on average 10000 function

evaluations, equivalent to 18 times the number of variables. The algorithm ran for

approximately 2 days on a normal workstation. Part of this significant computational

time is due to the implementation of the SQP solver in fmincon: the solution of the

quadratic subproblem step can take very different amounts of time between two con-

secutive iterations of SQP, sometimes several minutes against an average of a fraction

of a second for the entire run of fmincon.

Table 7.1: Lower and upper bounds for the state and control variables of the multi
debris removal mission

Variable Lower bound Upper bound

x (km) −126492 42164
y (km) −84328 84328
vx (km s−1) −20 20
vy (km s−1) −20 20
m (kg) 100 1000
u 0 1
α (rad) −π π
tf (d) 0 40

Figure 7.2 shows the Pareto front and the trajectories of the spacecraft in the relative

frame. A tradeoff between mission time and final mass is present, as expected. Faster

trajectories tend to be closer to the centre of the circle, meaning that in order to reduce
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(a) Pareto front (b) Trajectories

Figure 7.2: Pareto front and Trajectories for the multiple debris removal mission

mission time the optimiser exploited the relative rotation rate between the two orbits.

All targets are visited in the same order. The epicycloidal shape of the trajectories in

the relative frame means that the trajectories are more eccentric, while more circular

shaped arcs mean that the corresponding trajectory is closer to circular.

Figure 7.3 shows the time histories of the mass of the vehicle and the throttling of

the engine. The minimum time solution requires approximately 10 days and reached

the lower bound of the final mass, meaning that it employed all available propellant.

Interestingly, the minimum time solution does not have enough propellant to proceed

at full throttle all the time, thus the optimiser had to save propellant and increase the

mission time in order to reach all targets.

In general, all solutions have a bang-zero-bang structure, as expected, where shorter

mission times solutions have comparatively longer burns. The throttle and mass pro-

files are not very sharp, meaning that the solutions would benefit from mesh refinement

and that some improvements in the values of the objective functions are expected.

However, the overall trend and trade-off between the solutions is well captured.

Starting from the existing solutions, the problem was solved again doubling the

number of elements per phase. The same maximum number of function evaluations
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(a) Time history of the mass (b) Time history of the throttle

Figure 7.3: Time histories of velocity and acceleration for the time dependent Travel-
ling Salesman Problem

was kept the same as in the previous run, since the initial solutions were considered

good guesses but the number of variables doubled. Figure 7.4a shows the Pareto front

for this refined run. The shape of the Pareto front is similar to the previous case,

but its extension is longer, since now long mission time solutions have a much longer

duration than from the previous case, and this in turn allows to save more propellant.

This behaviour is not surprising: a more refined mesh allows not only to have sharper

control profiles, but also to describe more accurately the trajectories of the spacecraft.

Figure 7.4b shows the trajectories for this refined case. As it is possible to see, with

more elements the are more points to represent the states and thus the trajectories

can now describe narrower epicyloids. Physically, this means that the trajectory is

performing more revolutions than in the previous case. The longer time missions are

thus made possible by the higher resolution of the mesh, which can now describe more

revolutions. Figure 7.5 shows the mass as a function of time, which has now sharper

profiles than in the previous case.
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(a) Pareto front (b) Trajectories

Figure 7.4: Pareto front and Trajectories for the multiple debris removal mission,
refined mesh

Figure 7.5: Time history of the mass with refined mesh
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7.3 Chapter summary

This chapter applied the approach presented in Chapter 5 to the design of a multi-

target debris removal space mission, in which the order of the targets was not specified

a priori. The proposed approach was able to find feasible mission schedules and trajec-

tories and construct a uniformly spread Pareto front, composed of solutions minimising

mission time and propellant consumption.

The problem was solved again using a higher number of elements for the transcrip-

tion. Unsurprisingly, a higher number of elements allows not only to describe sharper

control profiles, but also to describe more complex trajectories in the Hill rotating

reference frames. In an inertial frame these shapes are trajectories with multiple revo-

lutions around the Earth. A higher number of elements allows thus enough flexibility

to integrate longer term dynamics and represent correctly solutions that were not pos-

sible to describe with less elements. It seems then necessary to have a good idea of

the number of revolutions or in order to choose and adequate number of elements.

This is in common with other direct methods and is indeed one of the main difficulties

of many revolutions trajectory optimisation, especially when low thrust propulsion is

employed. Automatic mesh refinement procedures would alleviate this problem. The

topic of automatic mesh refinement in the current framework is thus considered to be

a challenging but important development. Alternatively, with the knowledge of the

problem just gained, it could be possible to reformulate it by adding some intermedi-

ate phases describing the long coasting arcs. Those long coasting arcs could then be

more efficiently integrated by expressing the dynamics with keplerian or equinoctial

elements, or even by using simple analytical formulas.

Whereas in the test cases of the previous Chapter the difficulty lied in the presence

of many constraints and of a system design aspect, the difficulty of the test case

treated in this Chapter lies purely on the trajectory aspect. In fact, in terms of
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combinatorial complexity it is equivalent to the motorised TSP problem solved in

Chapter 5. The main difference is the presence of sensitive nonlinear dynamics that

need to be integrated for long times, resulting in trajectories with many revolutions.

Albeit the problem was posed more as a conceptual investigation and test of the

algorithm than a real life mission design problem, it should be evident that this ap-

proach to the automated solution of mission design problems would bring useful insight

on the solution structure and characteristics of the problem. Comparing it to other

approaches in the literature it is more expensive to run but it does not require any sim-

plification of the dynamical model. By changing the values for the specific impulse and

for the thrust accordingly, the same set up could be used to plan low thrust missions,

provided that an adequate number of elements is provided.

The main limitation of the formulation here adopted lies in its computational cost.

Solving problems with several dozens of targets, like for the 9th edition of the GTOC

competition [119], would require to set up the same number of phases as there are

targets, and the number of elements would also increase accordingly. The computa-

tional cost of solving those NLPs would thus be exceptional, although the use of large

scale solvers, an implementation using a compiled language and distributed comput-

ing could perhaps allow to tackle those kinds of problems in reasonable times. The

practical applications described in the literature however seem to indicate that at the

moment there is more interest in designing debris removal missions for a small number

of strategic targets, than in designing a mission de-orbiting a very large number of

generic targets.
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Conclusion

Per Aspera Sic Itur Ad Astra

Through hardships to the stars

Seneca

This dissertation treated the problem of the design optimisation of complex sys-

tems, when their dynamics and control is included in the process, multiple conflicting

objectives are considered and some optimisation variables are continuous while others

are integer. This results in the formulation of multi-objective hybrid optimal control

problems, which are very complex problems requiring specific theoretical and numeri-

cal tools in order to be tackled. The goal was to create a unified approach applicable

to general problems, validate it against known problems and finally test it on more

complex space related problems.

Part I of the dissertation was focused on the theoretical and algorithmic develop-

ments necessary to obtain a working framework with provable characteristics. Each

chapter in this part dealt with one major building block of the framework. New the-

oretical results were given, the algorithms were described with particular emphasis on

their interactions, and each contribution was tested against known benchmark prob-

lems in order to validate it.
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Chapter 2 treated the optimal control aspect of the problem, which was solved by

a direct transcription method based on finite elements. With the adoption of a new

class of polynomials for the basis functions, it was shown that the DFET method is

able to generate smooth monotonic approximations to bang-bang control laws, which

appear very often in practical problems. These approximations can improve arbitrarily

in accuracy as the order of the polynomials increases. The drawback of the method

is mainly its slower convergence rate to the asymptotic value of the objective function

with respect to the typically used bases. Despite this fact, the approximation of the

control laws can be significantly closer to the analytical ones if discontinuities are

present. In addition, a theoretical result was given in form of a Theorem, stating that

the proposed scheme is able to guarantee the satisfaction of inequality path constraints

for all times even for a finite approximation, provided the feasible set is convex. Finally,

it was shown that the number of iterations required by the NLP solver to converge to an

optimal solution can be significantly lower than with the traditional bases, indicating

a more favourable numerical conditioning.

Chapter 3 treated the general multi-objective optimisation aspect of the problem,

which was solved by the Multi Agent Collaborative Search, a population based global

memetic algorithm. The chapter described some modifications of the existing heuris-

tics, in most of the cases outperforming both its previous version and MOEA/D, one

of the leading multi-objective optimisation algorithms. A new archiving strategy was

introduced in order to improve the spreading of the solutions in criteria space. The

archiving strategy is based on the physical concept of the minimisation of the potential

energy of a system of electrically repelling particles. This concept was also used to

improve the distribution of the search directions in criteria space.

Chapter 4 treated the solution of multi-phase multi-objective optimal control prob-

lems. Through the DFET transcription, the problem was transformed into a multi-

objective NLP. The resulting problem was then reformulated in two complementary

approaches: one bi-level and the other single level. With the bi-level approach, the

outer level is handled by MACS, which employs its heuristics to generate tentative
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control laws and static optimisation parameters. The tentative solution vector is then

passed to the inner level, which tries to satisfy the constraints by solving a NLP.

Once a feasible solution is found, it is passed back to the outer level, which evalu-

ates the objectives and decides if the current solution is to be added to the archive of

non-dominated solutions. This approach is able to perform a global search and still

guarantees tight satisfaction of the constraints. The single level approach instead em-

ploys the Pascoletti-Serafini scalarisation, resulting in a single objective problem along

a particular direction in criteria space. This approach is employed as a refinement

method, since it can be directly tackled by an NLP solver, thus giving guarantees

about the local optimality of the solution. To corroborate this aspect, necessary con-

ditions for optimality were derived for a Pascoletti-Serafini scalarised multi-objective

optimal control problem. A remarkable aspect of the two approaches is that it was

shown that it is possible to smoothly transition from one to the other. An addi-

tional aspect described in this chapter is an approach to automatically generate initial

guesses. Finally, the method was tested against two problems with known solution,

where it was shown its ability to automatically generate a uniform spread of Pareto

optimal solutions agreeing with the known solutions.

Chapter 4 treated the solution of multi-phase multi-objective optimal control prob-

lems. Through the DFET transcription, the problem was transformed into a multi-

objective NLP. The resulting problem was then reformulated in two complementary

approaches: one bi-level and the other single level. With the bi-level approach, the

outer level is handled by MACS, which employs its heuristics to generate tentative

control laws and static optimisation parameters. The tentative solution vector is then

passed to the inner level, which tries to satisfy the constraints by solving a NLP.

Once a feasible solution is found, it is passed back to the outer level, which evalu-

ates the objectives and decides if the current solution is to be added to the archive of

non-dominated solutions. This approach is able to perform a global search and still

guarantees tight satisfaction of the constraints. The single level approach instead em-

ploys the Pascoletti-Serafini scalarisation, resulting in a single objective problem along
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a particular direction in criteria space. This approach is employed as a refinement

method, since it can be directly tackled by an NLP solver, thus giving guarantees

about the local optimality of the solution. To corroborate this aspect, necessary con-

ditions for optimality were derived for a Pascoletti-Serafini scalarised multi-objective

optimal control problem. A remarkable aspect of the two approaches is that it was

shown that it is possible to smoothly transition from one to the other. An addi-

tional aspect described in this chapter is an approach to automatically generate initial

guesses. Finally, the method was tested against two problems with known solution,

where it was shown its ability to automatically generate a uniform spread of Pareto

optimal solutions agreeing with the known solutions.

Chapter 5 extended the approach of the previous chapter in order to treat mixed-

integer problems. As these problems are exceptionally complex and it is known that

they can be unsolvable in the general case, the approach adopted is mostly heuristic.

The heuristics of MACS were modified in order to treat transparently discrete and

continuous variables, while a relaxation approach was employed when solving NLP

problems within the inner level or the single level approach. This allows the NLP

the flexibility to change the value of the relaxed discrete variables, thus giving it more

chances of solving problems with complex mixed-integer constraints. In order to ensure

that the relaxed variables assume only the allowed integer values, a simple additional

constraint is added, but it is enforced only after a relaxed solution is found. This

way, integrality constraints are imposed systematically while minimising the additional

complexity to be handled by the NLP. A special set of constraints was also introduced

to treat optimal control problems where the final target is not assigned but has to

be chosen among a discrete set of possibilities. The method was tested against a

known problem: the Motorised Travelling Salesman problem, which showcases all the

difficulties encountered in this chapter. It was shown that the proposed approach is

able to automatically return the best solution known. In addition, a more complex

variant of the problem was solved, where the targets visited by the salesman are not

fixed but move along a prescribed trajectory.
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Part II of the dissertation is focused on the application of the framework described in

Part I to challenging system, mission and trajectory design problems in the aerospace

sector. These problems are characterised by having highly non-linear dynamics, multi-

ple controls, the presence of static design variables that can significantly interact with

the trajectory of the vehicle, and multiple objectives. Each of these applications can

be seen both as an original result and an example on how the possibility to evaluate

optimal trade-offs can allow the designers to take more informed decisions.

Chapter 6 shows the application of the proposed approach to the optimisation of

the trajectory of three transatmospheric vehicles. The first case was a multi-objective

extension of a known case, the re-entry trajectory of a Space Shuttle like vehicle. The

objectives to be optimised were the crossrange and the peak heat flux. This example

showed how it is possible to reduce the peak heat fluxes by sacrificing some steering

capabilities, and demonstrated that the approach can return solutions with an excellent

agreement with known solutions even for more complex problems. The second case

was an integrated vehicle and trajectory design of a two stage launch vehicle. The

objectives to optimise were the propellant mass and the thrust to weight ratios of

each stage, in order to find designs with relatively cheap and small engines and reduce

the accelerations experienced by each stage. This case showed the usefulness of the

proposed approach, since it generated a trade-off surface of entirely different design

strategies, allowing the decision maker to gain a much better understanding of the

possibilities. The final test case involved the ascent and abort trajectories of an air

dropped single stage vehicle in case its engine stopped working. In this case, the

problem was to find designs which were mass efficient but also guaranteed a certain

inherent safety in case of main engine failure. The safety was measured by the length

of the downrange of the eventual abort trajectory. The method allowed to generate

families of trajectories, trading off mass efficiency for downrange distance, for a given

assumed main engine failure time. By repeating this analysis with increasing spans

of correct functioning for the main engine, it was discovered that a high wing size

contributes to the downrange of the vehicle only until a certain critical point, after
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which the added mass and drag penalise the downrange instead of increasing it.

Chapter 7 dealt with an integrated mission design and trajectory optimisation to

design a hypothetical space mission, whose task was to apply de-orbiting kits to mul-

tiple defunct satellites in Geostationary Orbit. Since the order of the targets is not

important and can be freely optimised, the problem resembles a dynamic Travelling

Salesman Problem, albeit with a much more complex dynamics. The objectives to

optimise were the mass of the propellant and the mission time. The algorithm found

sensible mission plans and trajectories that exploited the natural dynamics of the prob-

lem. For this problem, assuming the spacecraft is already located close to the GEO

orbit, this study indicates it is possible to visit three equally spaced targets in less

than 10 days by consuming all available propellant, or saving substantial amount of

propellant while still visiting all targets in less than one month. Given the increasing

economic interest in placing, maintaining and disposing satellites in GEO orbit, the

usefulness of this test case should be evident.

Despite having achieved all the desired goals, there is ample room for improvements

to this work. One first aspect that should be mentioned is that the quality of the tra-

jectories and control laws obtained via the DFET transcription depends on the number

of elements and the order of the polynomials employed. This is especially true for many

revolutions trajectory optimisation, or if the solutions contain bang-bang profiles, for

which the proposed Bernstein basis returns a smooth and monotonic approximation

that uniformly, but slowly, approaches to the true solution. In order to improve the

accuracy of those solutions, an h-p adaptive mesh strategy should be employed. The

technique has already been developed and demonstrated for the DFET method, and

additional work is already ongoing exploiting the properties of the Bezier curves orig-

inating by the choice of adopting the Bernstein basis. The main difficulty with mesh

refinement in a multi-objective context is that each Pareto optimal solution will prob-

ably require a different refinement pattern. Albeit it would be certainly possible to

refine each solution individually after having found the Pareto front, it would also be

interesting to investigate the benefits of performing the mesh refinement within the
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multi-objective optimisation loop. This approach shares a difficulty in common with

a class of problems that was purposefully omitted from this work: the treatment of

problems with variable size. Future work will probably have to deal with this charac-

teristic, both because it allows to treat an even wider class of problems, and because

it could allow the desired functionality of online mesh refinement.

Another interesting future work direction is the dynamic adaptation of the search

directions in criteria space for MACS, especially for problems with more than three

objectives. Since it has been amply demonstrated that for many objective problems

the dominance criterion becomes progressively ineffective, scalarisation methods have

gained increasing popularity. However, one major research topic in that field is how

to adapt those search directions depending on the current shape of the approximated

of the Pareto front. As it stands, MACS has a way to generate a well spread set of

search directions, but those directions are kept constant. Previous versions of MACS

generated a high number of random directions and periodically changed the association

between agent and search direction, but the results of that approach were mixed. New

research is already ongoing on how to dynamically adapt the search directions in

criteria space in a more systematic fashion.

Finally, the treatment of the uncertainties was almost completely omitted from this

work. Robust design and resilience engineering are new major trends, since they try to

design a system with reliable performances even when some of its design parameters,

or the environment in which it operates, turn out to be different than expected. It

would be interesting to see whether the proposed framework could benefit the field of

robust design by allowing the treatment of multiple criteria and including the optimal

control aspect in a unified fashion. Several possibilities exist on how to introduce

those important considerations within the proposed framework, both at the level of

the control laws and at the level of the system components. Some research ideas in

this direction are already being considered.
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Although the above mentioned aspects are of great importance, this work has proven

the usefulness of a unified and consistent framework able to treat complex systems in

a holistic fashion and considering multiple conflicting objectives. Its applicability is

not restricted to a specific domain, like aerospace, and it is built on strong theoretical

foundations. As such, it is hoped that it will be used as a backbone on which the above

mentioned aspects are built upon.

183



Appendix A

Necessary conditions for

optimality

This appendix includes the derivation of the necessary conditions for optimality em-

ployed in the thesis. In particular, it includes the necessary conditions for optimality

for the ordinary single objective optimal control problem, the necessary conditions for

optimality for the Pascoletti-Serafini scalarised multi-objective optimal control prob-

lem, and the necessary conditions for optimality for the discretised optimal control

problem originating from the application of the DFET transcription. By following

these three derivations, it is possible to prove the convergence of the method employed

in this thesis.
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A.1 Optimal control of time-continuous systems

The Bolza form of optimal control problems reads:

minu J = φ (x(t0),x(tf ), t0, tf ) +

∫ tf

t0

L (x(t),u(t), t) dt

s.t

ẋ = F(x(t),u(t), t)

g(x(t),u(t), t) ≤ 0

ψ(x(t0),x(tf ), t0, tf ) ≤ 0

t ∈ [t0, tf ]

(Bolza)

One standard procedure when dealing with constrained optimisation is to transform

the problem into an unconstrained one by augmenting the objective function with the

constraints:

min
x,u,λ,ν

J† = φ+ νTψ +

∫ tf

t0

(
L+ µT (t)g + λT (t)(F− ẋ)

)
dt (A.1)

where ν, µ(t) and λ(t) are Lagrange multipliers, ν ≥ 0,µ(t) ≥ 0, and all other

functional dependencies have been dropped to improve readability.

Computing the first variation of J† gives:

δJ† =δφ+ δνTψ + νT δψ+∫ tf

t0

(
δL+ δµ(t)Tg + µ(t)T δg + δλT (t)(F− ẋ) + λT (t)(δF− δẋ)

)
dt

(A.2)

It is useful to integrate by parts the term λT (t)δẋ

∫ tf

t0

−λT (t)δẋ = −
[
λT (t)δx

]tf
t0

+

∫ tf

t0

λ̇
T
δxdt (A.3)
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this way, the first order variation J† becomes

δJ† =δφ+ δνTψ + νT δψ − λT (tf )δx(tf ) + λT (t0)δx(t0)+∫ tf

t0

(
δL+ δµ(t)Tg + µ(t)T δg + δλT (t)(F− ẋ) + λT (t)δF + λ̇

T
δx
)
dt

(A.4)

At this point, by assuming the differentiability of φ,L,ψ,F and g

δJ† =∇xφδx(t0) +∇xφδx(tf ) +
∂φ

∂t
δt0 +

∂φ

∂t
δtf+

δνTψ + νT∇xψδx(t0) + νT∇xψδx(tf ) + νT
∂ψ

∂t
δt0 + νT

∂ψ

∂t
δtf−

λT (tf )δx(tf ) + λT (t0)δx(t0)+∫ tf

t0

(
∇xLδx +∇uLδu + δµT (t)g + µT (t)∇xgδx + µT (t)∇ugδu+

δλT (t)(F− ẋ) + λT (t)∇xFδx + λT (t)∇uFδu + λ̇
T
δx
)
dt+[

L+ µT (t)g + λT (t)F
]
tf
δtf −

[
L+ µT (t)g + λT (t)F

]
t0
δt0

(A.5)

Now, by collecting the terms with the same variation

δJ† =
(
∇xφ+ νT∇xψ + λT (t0)

)
δx(t0) +

(
∇xφ+ νT∇xψ − λT (tf )

)
δx(tf ) + δνTψ+(

∂φ

∂t
+ νT

∂ψ

∂t
− L− µT (t)g − λT (t)F

)
δt0+(

∂φ

∂t
+ νT

∂ψ

∂t
+ L+ µT (t)g + λT (t)F

)
δtf+∫ tf

t0

((
∇xL+ µT (t)∇xg + λT (t)∇xF + λ̇

T
)
δx+(

∇uL+ µT (t)∇ug + λT (t)∇uF
)
δu+

δµT (t)g + δλT (t) (F− ẋ))

)
dt

(A.6)

Finally, by requiring the total variation δJ† to be 0 for all admissible variations, it
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is possible to derive the necessary first order conditions for local optimality:

λT (t0) = −
(
∇xφ+ νT∇xψ

)
t=t0

λT (tf ) =
(
∇xφ+ νT∇xψ

)
t=tf(

∂φ

∂t
+ νT

∂ψ

∂t
− L− µT (t)g − λT (t)F

)
t0

= 0(
∂φ

∂t
+ νT

∂ψ

∂t
+ L+ µT (t)g + λT (t)F

)
tf

= 0

ψi ≤ 0; νi = 0 where ψi < 0

λ̇
T

= −
(
∇xL+ µT (t)∇xg + λT (t)∇xF

)
ẋ = F(
∇uL+ µT (t)∇ug + λT (t)∇uF

)
= 0

gi ≤ 0; µi = 0 where gi < 0

(A.7)

The first four equations, also known as transversality constraints, are required only

for the free initial and final states and times, while they are not required for fixed

initial and final states and times (because the allowed variation would be zero). The

fifth equation is again the boundary conditions, the sixth equation is also called the

adjoint equation, the seventh equation is the equation for the dynamics of the system,

the eighth equation is the controls equation, and the last equation is again the path

constraints inequality. It must be stressed that all the multipliers ν,µ must be positive

when the constraints are active and zero when the constraints are inactive.
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A.2 Pascoletti-Serafini Scalarised MOCP

If function J in (Bolza) was replaced by the vector function J = [J1, ..., Jj , ...Jm]T

one could use the Pascoletti-Serafini scalarisation approach to obtain:

minsf≥0 sf

s.t.

ωj(Jj(xf , tf )− zj)− sf ≤ 0 ∀j = 1, ...,m

ẋ = F(x,u, t)

g(x,u, t) ≤ 0

ψ(x0,xf , t0, tf ) ≤ 0

t ∈ [t0, tf ]

(PSOCP)

If s is a slack variable with final condition sf and zero time variation ṡ = 0, then

problem (PSOCP) presents itself in a form similar to Mayer’s problem, which is a

Bolza problem where the running cost function L is zero. The major difference is the

mixed boundary constraint on xf , tf and sf for every j = 1, ...,m. It is now possible

to prove the following:

Theorem 5 Consider the function H = λTF(x,u, t) + µTg(x,u, t). If u∗ is a lo-

cally optimal solution for problem (PSOCP), with associated state vector x∗, and H is

Frechet differentiable at u∗ and a regular point of the algebraic constraints, then there

exist vectors η ∈ Rm, λ ∈ Rn and µ ∈ Rq such that:

u∗ = argminu∈U λ
TF(x∗,u, t) + µTg(x∗,u, t)

λT∇xF(x∗,u∗, t) + µT∇xg(x∗,u∗, t) + λ̇
T

= 0

λ̇s = 0

µ ≥ 0

(A.8)
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with transversality conditions:

1−
∑m

j ηj + λsf (tf ) = 0

ηTΩ∇xfJ + νT∇xfψ + λx(tf )T = 0

η > 0;ν ≥ 0

(A.9)

and
∂H

∂tf
− ηTΩ

∂J

∂tf
− νT ∂ψ

∂tf
= 0 (A.10)

where Ω is a diagonal matrix with the components ωi, i = 1, ...,m along the diagonal

and U is the space of admissible controls that satisfy respectively the algebraic and

differential constraints g(x,u, t) ≤ 0 and ẋ− F(x,u, t) = 0.

Proof 3 A possible proof comes from the direct application of Pontryagin’s maximum

principle to problem (PSOCP). Alternatively, at the solution, one can take the first

variation of the functional:

L = sf + ηT (Ω(J− z)− sf1) + νTψ +

∫ tf

t0

[λT (F− ẋ) + λsṡ+ µTg]dt (A.11)

with 1 a vector of ones and Ω a diagonal matrix with elements ωi, which gives:

δL = δsf + δηT (Ω(J− z)− sf1) + ηTΩδJ + ηT δ(sf1) + δνTψ + νT δψ+∫ tf

t0

[δλT (F− ẋ) + λT (δF− δẋ) + δλsṡ+ λsδṡ+ δµTg + µT δg]dt = 0.
(A.12)

We can now collect terms with equal variation δ:

δL = δsf (1− ηT1) + δηT (Ω(J− z)− sf1) + δνTψ + (ηTΩ∇xfJ + νT∇xfψ)δxtf+∫ tf

t0

[δλT (F− ẋ)− λT δẋ + (λT∇xF + µT∇xg)δx + (λT∇uF + µT∇ug)δu+

δλsṡ+ λsδṡ+ δµTg]dt+ [λTF + µTg]tf δtf + ν ∂ψ∂tf δtf + ηTΩ ∂J
∂tf
δtf = 0

(A.13)
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and after integrating by parts the terms λT δẋ and λsδṡ we get:

δL = δsf (1− ηT1) + δηT (Ω(J− z)− sf1)+

δνTψ + (ηTΩ∇xfJ + νT∇xfψ)δxtf − λ(tf )T δxtf + λsf (tf )δsf∫ tf

t0

[δλT (F− ẋ) + λ̇
T
δx + (λT∇xF + µT∇xg)δx + (λT∇uF + µT∇ug)δu+

δλsṡ− λ̇sδs+ δµTg]dt+ [λTF + µTg]tf δtf + ν ∂ψ∂tf δtf + ηTΩ ∂J
∂tf
δtf = 0

(A.14)

Now in order for the variation to be zero for every value of the δ and d quantities the

following equations must be satisfied:

ẋ− F = 0

λT∇uF(x∗,u∗, t) + µT∇ug(x∗,u∗, t) = 0

λT∇xF(x∗,u∗, t) + µT∇xg(x∗,u∗, t) + λ̇
T

= 0

g(x∗,u∗, t) ≤ 0

λ̇s = 0

µ ≥ 0

1−
∑m

j ηj + λsf (tf ) = 0

ηTΩ∇xfJ + νT∇xfψ − λ(tf )T = 0

Ω(J− z)− sf1 ≤ 0

ψ ≤ 0

η ≥ 0;ν ≥ 0

(A.15)

and

[λTF + µTg]tf + ηTΩ
∂J

∂tf
+ νT

∂ψ

∂tf
= 0 (A.16)

If now one introduces the function H = λTF(x,u, t)+µTg(x,u, t), Eqs. (A.15) reduce
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to:

Ω(J− z)− sf1 ≤ 0

ẋ = ∂H
∂λ

λ̇
T

= −∂H
∂x

∂H
∂u = 0

∂H
∂µ ≤ 0

λ̇s = −∂H
∂s

ψ ≤ 0

µ ≥ 0

sf ≥ 0

(A.17)

with transversality conditions:

∂H
∂tf

+ ηTΩ ∂J
∂tf

+ νT ψ
∂tf

= 0

1−
∑m

j ηj + λsf (tf ) = 0

ηTΩ∇xfJ + νT∇xfψ − λ(tf )T = 0

η ≥ 0;ν ≥ 0

(A.18)

Remark 1. At the solution (x∗,u∗) all constraints are assumed to be active, which

means that ψ = 0 and g(x∗,u∗) = 0. Furthermore, it is assumed that also the

constraints on the objective functions are active, which means that at the solution

Ω(J− z)− sf1 = 0.

Remark 2. If initial conditions and time were not given but had to satisfy some con-

straint functions, one would need to add other three transversality conditions similar

to (A.18) but at the initial time t0.

A.2.1 Convergence of the Transcribed Problem

It is now possible to prove that the transcribed problem converges asymptotically

to the necessary conditions for local optimality (4.4) and (4.5).

Theorem 6 If c is Frechet differentiable at u∗ and both x, F and are g integrable

functions, then the necessary conditions for local optimality of problem (4.8) converge

asymptotically to (4.4) and (4.5) for k →∞ and s→∞.
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Proof 4 We start from the augmented Lagrangian of the related NLP problem:

L = sf + ηT (Ω(J− z)− sf1) + λ̂
T
cd + µ̂Tg + λsf sf (A.19)

where cd is the part of the constraint vector c = [cd,g] that does not contain path

constraints. If one differentiates the Lagrangian, the result is the necessary conditions

for local optimality:

∂L

∂sf
= 1−

m∑
j=1

ηj + λsf = 0 (A.20)

∂L

∂u
= λ̂

T∇ucd + µ̂T∇ug = 0 (A.21)

∂L

∂x
= λ̂

T∇xcd + µ̂T∇xg = 0 (A.22)

∂L

∂xf
= ηTΩ∇xfJ + λ̂

T

f∇xf cd = 0 (A.23)

∂L

∂tf
= ηTΩ

∂J

∂tf
+ λ̂

T

f

∂cd
∂tf

+ µ̂Tf
∂g

∂tf
= 0 (A.24)

where the first equation corresponds to the transversality conditions on λsf , the fourth

equation corresponds to the transversality conditions on λ that were derived in (4.5)

and the firth equation is the transversality condition (A.16). We used the symbol λ̂
T

f

to indicate the Lagrange multipliers that correspond to the boundary constraints and to

the dynamic constraints at the boundaries. In fact, one of the constraint equations c is

ψ ≤ 0, which defines the boundary conditions on x0 and xf , and other two correspond

to the first and last finite element (see Eq. (2.9)), which contain again the vectors x0

and xf . If we call ν the λ̂f that corresponds to ψ and expand the last three equations,

we get:

∂L

∂us,j
=

l+1∑
k=1

σk

[
λ̂
T
hs,j∇us,jF + µ̂T∇us,jg

]
= 0 (A.25)

∂L

∂xs,j
=

l+1∑
k=1

σk

[
λ̂
T
ḣs,jfs,j + hs,j∇xs,jF + µ̂T∇xs,jg

]
= 0 (A.26)

∂L

∂xf
= ηTΩ∇xfJ + νT∇xfψ − λ̂

T
f = 0 (A.27)
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The third equation is the transversality condition on the terminal states in (4.5). The

second equation becomes:

∑l+1
k=1 σk

[
λ̂
T
ḣs,jfs,j + hs,j∇xF ∂x

∂xs,j
+ µ̂T∇xg ∂x

∂xs,j

]
=∑l+1

k=1 σk

[
λ̂
T
ḣs,jfs,j + hs,j∇xFfs,j + µ̂T∇xgfs,j

]
= 0

(A.28)

Here we made use of the fact that g(xs,j ,us,j , ts) ≤ 0 ⇒
∑l+1

k=1 σkg(xs,j ,us,j , ts) ≤ 0.

If one now takes the limit for an infinite number of integration points the sums become

continuous integrals:

∫ [∑
s

λ̂s,jhs,j∇uF + µ̂T∇ug
]
dt = 0 (A.29)∫ [∑

s

λ̂s,j ḣs,j +
∑
s

λ̂s,jhs,j∇xF + µ̂T∇xg
]
dt = 0 (A.30)

(A.31)

Now if we make use of the fact that λ is approximated by the polynomial λ '
∑
λ̂s,jhs,j,

for an infinite number of collocation points, which would correspond to an infinite

number of integration points, we have:

∫ [
λT∇uF + µT∇ug

]
dt = 0 (A.32)∫ [

λ̇
T

+ λT∇xF + µT∇xg
]
dt = 0 (A.33)

(A.34)

which are satisfied if the quantities in brackets are identically zero. These equations

correspond to the optimality condition and to the differential equations on λ in (4.4).

Remark 5 This suggests that the test functions w(t) employed in the DFET transcrip-

tion can also be interpreted as a polynomial approximation of the Lagrange multipliers

λ(t). Moreover, this means that from the Lagrange multipliers λ̂ of the NLP problem

transcribed with the DFET method can be employed to recover an approximated time

history for the Lagrange multipliers of the original non discretised problem. This is a
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DFET equivalent of the covector mapping principle [120].
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Computational complexity of the

Energy Based Archiving

Algorithm

The EBA strategy requires two sets of operations corresponding to two steps: the

fill-in of the archive and computation of the energy E, and its minimisation. The two

steps never occur at the same time when the archive is updated.

The computation of each reciprocal of squared distance, in (3.13), for an m di-

mensional space, requires 3m operations: m differences of homologous coordinates, m

squares of differences, m − 1 sums of squares and 1 reciprocal of sums. If the recip-

rocal of pairwise squared distances of the r elements of the archive is stored in an r

by r symmetric matrix M with zero diagonal elements, the number of reciprocal of

squared distances to be computed is r(r−1)
2 , for a total of 3mr(r−1)

2 operations. With

this matrix, the computation of the total energy E of the archive requires the sum of

the elements of the upper (or lower) triangular part of the matrix, for a total of r(r−1)
2

sums.

Starting from the energy E and matrix M the already mentioned r components

vector E2 is computed. E2 contains in its i-th entry the energy the archive would have
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if element i were excluded from the archive. The computation of the elements of this

vector is conveniently performed by subtracting the sum of all elements of the i-th row

of M from the energy E. Thus, a total of r2 operations is required: 1 subtraction and

r − 1 sums for each component of E2. This completes the fill-in step of the archive,

for a total of 3mr(r−1)
2 + r(r−1)

2 + r2 ∼ O(mr2) operations. Note that during a run of

MACS the archive grows gradually, so the construction of the matrix M , energy E

and vector E2 is performed incrementally, rather than all at once.

The energy minimisation step requires the computation of the reciprocal of square

distances from each element of A to each candidate in C, for a total of rq combinations

or 3mrq operations. At this point, the energy the archive would have if element i

were substituted with the candidate j is computed: this is conveniently performed

by summing E2(i) to the reciprocal of the square distances from the j-th candidate

to each other element in the archive, for a total of r2 operations: r sums for each of

element of the archive.

Now, the minimum energy over all possible combinations of candidates Enew is

compared against the energy of the archive E. Suppose all the tentative energies are

stored in an r by q matrix and its lower value entry Enew is located in the position

(i∗, j∗). If Enew is lower than E, then a new minimum is found, and the candidate in

position j∗ substitutes the element in position i∗.

At this point, it is required to update all elements of the i-th row (or column) of the

matrix M with the new reciprocal squared distances. This requires again 3m(r − 1)

operations, but can be avoided with proper bookkeeping (i.e if the matrix contain-

ing the reciprocal of square distances from each candidate to each element of the

archive is stored). Finally, the update of the vector E2 is performed exactly as before.

If the energy minimisation step is performed nit times, the total number of opera-

tions is 3mrq + nit
(
r2 + r2

)
. Thus, the total cost of the EBA archiving algorithm

is O
(
3mr2/2

)
for the fill-in step, and O(nitr

2) for the minimisation step (assuming

q ≤ r).
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Figure B.1: Statistical evaluation of the number of iterations nit as a function of the
number of candidates q

In order to verify the computational complexity of the EBA strategy, a statistical

analysis was performed on the dependence of nit on q by sampling the Pareto front of

the ZDT4 benchmark function with 100 points plus an increasing number of additional

candidates. 200 independent runs were made for each number of additional candidates,

and an O(q
1
2 ) relation was discovered (see Figure B.1). Thus, the average cost of the

minimisation step was found to be O(r2q
1
2 ). It is also important to note that the

computational complexity is linear in the number of dimensions of the Pareto front,

making EBA a promising method for many-objective optimisation problems.
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Aerodynamic model for Chapter

6

Table C.1 reports the coefficients used for the aerodynamic model for the Optimal

Ascent and Abort Scenarios case of Chapter 6.

Table C.1: Coefficients for the aerodynamic model

Coeff. Value Coeff. Value Coeff. Value
a1,0 -6.378335936032101e-02 ς1 1.344774373794846e+00 a5,3 -1.683702441539749e-04
a1,1 1.976923220591986e-02 ς2 1.542614382500486e+00 a6,0 8.869412111210242e+00
a1,2 2.973963976446931e-04 %1 -3.100574615791786e+01 a6,1 7.482402265848023e-01
a2,0 -3.349264465313049e+05 %2 -9.123166455265215e-02 a6,2 2.604898066115986e-02
a2,1 6.001178833841350e+05 a4,0 4.941304084167961e-02 a6,3 2.689898581212407e-04
a2,2 -2.862064269172794e+04 a4,1 -2.771101541363621e-03 κ3 1.348770573128532e+00
a3,0 4.398289382706495e-01 a4,2 4.195518696508440e-04 κ4 1.376496163657956e+00
a3,1 6.555024080116524e-02 a4,3 6.144719928912810e-06 ς3 1.004292397340135e+00
a3,2 -4.816546419307238e-04 a5,0 -8.408713897701869e+00 ς4 1.053245533842992e+00
κ1 1.088199979257513e+00 a5,1 -6.942588805953275e-01 %3 -2.715562764314760e-01
κ2 1.523372394108941e+00 a5,2 -2.602381527566895e-02 %4 -3.464086848960685e-01
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[79] T. Rogalsky, “Bézier parameterization for optimal control by differential evolu-

tion,” in Proceedings of the International Conference on Genetic and Evolution-

ary Methods (GEM). Citeseer, 2011, p. 1.

207

https://doi.org/10.2514/3.20616
https://doi.org/10.2514/2.4595
https://doi.org/10.1016/s0168-9274(97)00072-x
https://doi.org/10.1016/s0168-9274(97)00072-x


Bibliography

[80] F. Ghomanjani, M. Farahi, and M. Gachpazan, “Bézier control points method
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[106] A. L. Herman and B. A. Conway, “Direct optimization using collocation based

on high-order gauss-lobatto quadrature rules,” Journal of Guidance, Control,

and Dynamics, vol. 19, no. 3, pp. 592–599, 1996.

[107] S. Leyffer, “Deterministic methods for mixed integer nonlinear programming,”

Ph.D. dissertation, Citeseer, 1993.

[108] R. C. Jeroslow, “There cannot be any algorithm for integer programming with

quadratic constraints,” Operations Research, vol. 21, no. 1, pp. 221–224, feb

1973. [Online]. Available: https://doi.org/10.1287/opre.21.1.221

[109] O. Von Stryk and M. Glocker, “Numerical mixed-integer optimal control and

motorized traveling salesmen problems. commande numerique optimale a entiers

mixtes et problemes de voyageur de commerce motorise,” Journal Européen des
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