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Abstract

The study of quantum transport in one dimension is of great interest in many areas

of condensed matter physics. This thesis is motivated by conductance measurements

in modulated LAO/STO nanowires, where a strong conductance baseline of 2e2/h is

observed when a Kronig-Penney potential is applied, which survives up to external

magnetic fields > 18 T. This is also observed when the nanowire is helically modu-

lated, but an additional feature is the appearance of conductance oscillations above

the 2e2/h baseline which occur at lower energies than the 4e2/h peak.

In order to model this, we begin by constructing an electron waveguide model

for the nanowire formed at the LAO/STO interface. We then include the effect of

periodic modulations and associated spin-orbit coupling resulting from these, and

analyse the resulting band structure and conductance, finding that a single electron

model is not sufficient to explain the 2e2/h baseline. This was found in previous

work, and the solution is to include electron-electron interactions.

To include the effects of these, we begin with a standard BCS-like mean-field

model. To study first the effect coming from a periodic modulation of the potential

in the waveguide (vertical modulation), we introduce only the associated spin-orbit

coupling to this model. We find that this leads to enhanced pairing, and could

potentially explain the strong baseline of 2e2/h. Additionally, we look only at the

effect of a periodic modulation in the centre of the nanowire (lateral modulation),



which we find introduces triplet pairing in the waveguide region.

Combining these two modulations together, we extend the mean-field model again

to include the form of the modulation potential alongside associated spin-orbit cou-

plings to study the helical waveguide. We observe enhanced pairing and triplet

pairing simultaneously. To study the oscillations in conductance, we introduce a

phenomenological pair scattering model where triplet pairs incedent on the interface

between helical and unmodulated regions can backscatter. We find that this model

can indeed produce oscillations above the 2e2/h baseline.
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Chapter 1

Introduction

As computers become smaller, a point is eventually reached where the physical

properties of wires and transistors are no longer well described by classical and

semi-classical models used for designing these modern devices. In these regimes, the

quantum behaviour of electrons plays a significant role [1]. Thus, the study of quan-

tum transport of electrons in nanowires using quasi-1D models will be necessary for

the continuation of the miniaturization of computing.

The field of quantum transport deals with the quantum-mechanical motion of

particles in non-equilibrium systems. This is most readily observed in low dimen-

sions (0,1, and 2D). The most prominent example of this is in solid state systems,

where devices such as semiconductors and transistors rely on quantum transport

phenomena to function.

Quantum transport is not just limited to solid state physics – another area where

this is of interest is the study of ultracold atoms [2]. In cold-atomic systems, atoms

(which can be either bosonic or fermionic) are contained in a magneto-optical trap

within a vacuum chamber. The atoms can then move by hopping between sites on

the lattice generated by the trap. Transport in ultra-cold atoms is generally much



more controllable than in the solid state as the underlying physics of the system

is cleaner. However, it comes with its own challenges. For example, generating a

potential gradient is more difficult, dissipation of photons can prevent the systems

from reaching their desired state, and to study magnetic effects we must engineer

artificial gauge fields. Despite this, hallmark quantum transport features such as

the quantum Hall effect [3] and conductance quantization [4] can be experimentally

measured.

Beyond computing, quantum transport offers a platform to study non-equilibrium

quantum physics [5]. It can aid in understanding the physics that underpins new

technologies such as quantum batteries [6] and optoelectronic devices [7]. It is even

useful in quantum computing [8].

The complex metal-oxide heterointerface Lanthanum Aluminiate-Strontium Ti-

tanate (which for the remainder of the thesis will be referred to as LAO/STO or

LaAlO3/SrTiO3) is one of many exciting new materials being created in solid state

labs [9]. The physical properties of the two-dimensional electron gas (2DEG) formed

at the interface between the two materials making it up are highly tunable, and wires

can be written onto these devices [10], making them an extremely attractive option

for mass production. This material also hosts a variety of interesting phenomena,

including gate-tunable conductance [11], ferromagnetism [12], and even superconduc-

tivity [13]. LAO/STO has been gaining ground as an exciting platform for studying

quantum transport in various 2D and 1D geometries. This material will be discussed

in more detail in Sec. 1.2.

One potential use of a system with highly controllable features is quantum simu-

lation [14]. Side gates can be used to tune electron density [11], and even the strength

and nature of electron-electron interactions [15]. This means that Hamiltonians of

interest could potentially be programmable in LAO/STO devices. However, much is
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still unknown about how they work. While the strength of the interaction was shown

to be tunable [15], the origin and even behaviour (short versus long range, and the

sign of the interaction) are still largely a mystery. So, in order to fully utilise this

platform to its potential, a much deeper understanding of the underlying physics

must be achieved.

This is where one-dimensional channels are extremely useful. The waveguide

model captures well the underlying physics of these devices despite its relative sim-

plicity [16], and it gives a clean platform to build more complicated models on. The

goal of this work is to study the effects of perturbing the simple waveguide model

through the addition of external periodic modulations. Not only does this give an

extra degree of control over the electronic behaviour in these systems, it also leads

to a number of novel features, which can perhaps be used to shed some light on the

nature of electron-electron interactions in these nanostructures.

We will now discuss quantum transport and LAO/STO in more detail. Following

this, an overview the results of the thesis will be given.

1.1 Introduction To Quantum Transport

One of the hallmark features of quantum mechanics is wave-particle duality. Essen-

tially, this means that every particle has some wavelength known as the de Broglie

wavelength. As electronic systems become smaller, the length scales of the wires be-

come similar to the de Broglie wavelength of the electrons, and so wave-based effects

become important, meaning electrons can no longer be described by a “billiard ball”

type particle model [16]. Instead, they should be treated as interfering waves inside

the channel. The billiard ball model can still be broadly useful as an illustration of

the different types of quantum transport though, as in Fig. 1.1, by thinking of the
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illustrated paths as semi-classical trajectories.

The transport behaviour in nano-scale systems is very dependent on length scales.

The quantum transport behaviour can be characterised by the mean free path l of

the electrons: the distance an electron travels, on average, before scattering in a

channel [17]. If l is small compared to the length of the channel L, then the electron

is scattered many times on its journey from source to drain (Fig. 1.1a). In this case,

the coherence of the wave is gradually lost, and this kind of electron transport is

known as diffusive.

However, if the mean free path is long compared to the length of the channel,

then electrons are unlikely to be scattered (Fig. 1.1b). This means that the coherence

properties are maintained during the transport processes, meaning the quantum

behaviour is strongly preserved. This is known as ballistic transport. It is this

regime of electron transport that will be the focus of the work presented here.

Figure 1.1: The difference between diffusive and ballistic transport. (a) Diffusive transport for
l < L, showing the electron being scattered in the channel. (b) Ballistic transport for l > L,
showing no scattering in the channel, only coherent confinement in 1D. This figure is adapted with
reference to Fig. 7 of [16].

The mean-free path can be used to define another important quantity in trans-

port, the electron mobility. This is essentially a measure of how strongly electrons
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feel an applied electric field. We define this as

µe =
e

mevF
l, (1.1)

where vF = ~kF
me

is the Fermi velocity, me is the electron mass, and e is the electronic

charge. The importance of this number is that the effective electronic velocity in

an applied field is given by ~ve = µe ~E. We define and motivate this now, as it

leads to the appearance of interesting physics when discussing the materials in the

next section. Thus, when a voltage is applied, the conductivity is expected to be

proportional to this mobility. So one can imagine that a higher mobility would lead

to regimes where quantisation of transport is more easily observed, whereas low

electron mobilities would obscure this and lead to more subtle properties.

1.2 Conductance Quantization

The main feature of quantum mechanical transport which underpins this thesis is

the quantization of conductance (the name given to the inverse of resistance). This

feature is special to one dimensional systems due to the absence of a Fermi surface

– instead we have a finite number isolated Fermi points at the Fermi energy which

can be populated [18]. This is discussed in more detail in Ch. 2.

Quantised conductance was first observed in quantum point contacts in 1988 by

van Wees et al. [19], but had previously been argued for by Landauer [20], whose

name now adorns the formula used to calculate conductance in quantum systems.

Since then, it has been observed in numerous places such as in GaAs based hetero-

junctions [21], and indeed in LAO/STO [22].
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This is not solely a single particle phenomenon either. Meir and Wingreen derived

an interacting equivalent to the Landauer formula [23], and Maslov and Stone used

Luttinger liquid theory to show that conductance through an interacting system is

determined by the leads [24], and so quantization of conductance is preserved when

the leads are non-interacting.

1.3 Quantum Transport Gallery

While this thesis is motivated by experiments in LAO/STO nanowires, the field

of low dimensional quantum transport is much wider. To make an exhaustive list

would take far too long, but I present here a few topics related to other systems

in quantum transport that I find interesting to highlight the place of my research

within the wider field.

1.3.1 0D transport

While one dimension already seems low dimensional, it is possible to go even lower

to 0D transport. This occurs when the channel confinement is such that only a

few states exist and there are no continuous degrees of freedom. Examples include

quantum dots [25] (which in their simplest form are a single site which can host up

to two electrons in total), quantum point contacts [26] (which can be 0D or 1D, and

interestingly were recently realised in 1D in SrTiO3[27]), and molecular junctions

[28]. The lack of continuous degrees of freedom in these systems naturally leads to

quantum features, such as the quantization of current [29].
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1.3.2 Graphene - Nanotubes And Nanoribbons

One of the most promising topics in condensed matter physics is the applications of

graphene. Putting aside the higher dimensional physics of twisted bilayer, even in

quasi 1D there is plenty of rich physics to explore. Quantized conductance has been

observed in carbon nanotubes (CNTs) [30], and in graphene nanoribbons (GNRs)

it has been shown that heterojunctions between different surface configurations can

be formed locally [31] allowing for the study of novel features like oscillations in

conductance [32] predicted to occur in these systems. Their conductivity can also

be controlled by doping with nanoparticles [33, 34].

1.3.3 Disordered Systems

In LAO/STO, ballistic transport can be observed, which suggests the electronic

environment is clean. This is not the case in every system however. When disorder

is introduced into the potential landscape, states become localised which means

transport through the entire system becomes impossible [35, 36]. This is known as

Anderson localisation and occurs for dimensions as high as two [37]. While this is well

studied in non-interacting systems, the analogous many body localisation (MBL) is

one of the most active topics of research in quantum many-body physics [35, 38, 39].

1.3.4 Exciton Transport

Excitons offer an entirely new perspective on electronic transport in nanostructures.

These form when electrons in the valence band are excited by light into the conduc-

tion band, forming a bound state between the electron and the hole. This has some

finite lifetime, before the light is re-emitted. Through this, transport in nanostruc-

tures can be studied from an optics perspective, rather than measuring currents and
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voltages. Transport in these systems tends to be diffusive (see [40]), but ballistic

exciton transport is possible in optical microcavities when a polariton is formed [41].

This is an extremely rich field, but is far beyond the scope of my research, thus the

brevity of this section.

1.4 LAO/STO

In this section, we will describe briefly the physics of the material, and summarise

the process used in fabricating the electronic devices that this thesis seeks to model.

Both of the metal-oxides LAO and STO on their own are insulators. However,

SrTiO3 has been shown to support bulk superconductivity in the presence of a dopant

[42]. The interesting electronic effects occur at the interface between the two metal-

oxides, where under correct conditions a two-dimensional electron gas (2DEG) can

form. This is a 2D conductive layer with properties similar to that of a metal,

but comparatively has a much lower electron density [16]. The exact reason for

this occurring in LAO/STO is still an active topic of research, but there are several

proposals about the energetic nature of this region which could support a conducting

interface [9, 43–46]. However, what is known about the formation of the 2DEG in

LAO/STO, is that there is a critical thickness of four unit cells of LaAlO3 for this

to occur. [11].

While this 2DEG alone is extremely interesting for the variety of phases attain-

able, the electron mobility is quite low. Thus, in two dimensions, it is difficult to

observe ballistic quantum transport. It was discovered that in 1D channels at the

interface, these devices can lead to clean ballistic transport [22]. The number of

electronic channels available for transport in these highly quantum regimes can es-

sentially be counted based on transport measurements (this will be described in more

9
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detail in Ch. 2).

To make the one dimensional nanowires, the bulk layer of SrTiO3 is supplied with

only three layers of LaAlO3, keeping the interface in an insulating state. However,

by using a conductive Atomic Force Microscope (c-AFM), the surface of the LaAlO3

can be protonated to locally tune the interface from insulating to conducting [10] (see

Fig. 1.2). This is known as c-AFM lithography. By using this technique, nanowires

can be “written” onto the LaAlO3/SrTiO3 interface cleanly.

STO

LAO

Interface

cAFM

VSG

Figure 1.2: Schematic of the setup of the LAO/STO interface. The upper surface of the LAO
(pictured in red) is grown on top of the STO bulk (in blue). This is then protonated in a narrow
channel (green) by the cAFM tip to tune the LAO/STO interface (purple) from insulating to
conducting. The side gate voltage VSG controls the chemical potential in the waveguide region.

One thing to note is the geometry of the nanowire devices, which is illustrated in

Fig. 1.3. The two leads are written on either side of the device, each with two termi-

nals for four terminal measurements. The reasoning behind having a separate set of

terminals for current and voltage measurements is that it means that the resistance

of the leads does not contribute to the measured resistance (source: wikipedia). In

order to observe clean conductance features, it is required that each of the leads is

separated from the nanowire region by a transparent tunnelling barrier. The reason

for this is not fully understood, but the barrier geometry was fully investigated in the

10
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ℓB ℓB

VSG

TV TV

TI TI

Figure 1.3: Sketch of the geometry of the LAO/STO devices created for the experiments that
inspired this thesis. The waveguide region has four terminals, two to control voltage (TV ) and two
to measure current (TI). These are connected to the leads which are separated from the nanowire
by a tunnelling barrier of length lB . The voltage VSG is the side gate which controls the chemical
potential in the nanowire.

supplemental material of [22] finding that two barriers led to much cleaner quantised

conductance measurements than only one or zero barriers.

It should be mentioned that when referring to results in LAO/STO nanowires,

the word conductance refers specifically to conductance at zero-bias. These measure-

ments are taken by making small variations in the voltage around zero and measuring

the resulting current in order to calculate the derivative of the voltage with respect to

current at V = 0. This will be reiterated in Ch. 2, but all calculations of conductance

in the thesis unless specifically mentioned otherwise refer to zero-bias conductance.

Additionally, there is the inclusion of a side gate. This is an independent conduc-

tive region which generates an electric field in the waveguide region when a voltage

VSG is applied. This effectively tunes carrier density in the conducting region, and

thus is used to control the chemical potential in the nanowire [22]. By tuning the

chemical potential, a large degree of control is possible over the conductive properties

of the one-dimensional channels.
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1.5 Overview Of This Thesis

In this thesis, the goal is to develop a theoretical understanding of how interact-

ing transport features are affected by periodic modulations. This is connected to

LAO/STO through an engineered spin-orbit coupling that results from the modu-

lations, which is also included in the formalism developed. The motivation for this

thesis is a series of experiments from the group of Prof. Jeremy Levy at University

of Pittsburgh ([47], [48], [49]) on periodically modulated nanowires in LAO/STO, in

which unusual transport phenomena were observed. This includes electron pairing

up to extremely high magnetic fields (> 18T ), and conductance oscillations. This

thesis lays the groundwork for understanding these effects, showing that a potential

modulation along with its spin-orbit coupling in LAO/STO leads to enhanced pair-

ing. Additionally, we propose that the scattering of triplets at the interface between

helical and unmodulated regions in helically-modulated nanowires is responsible for

the oscillations in conductance.

In Ch. 1, the thesis is outlined, and we review the literature. While the mod-

els used within this thesis are general enough to be applied outside of the specific

material, the work was performed in close collaboration with experiments on these

structures performed by the group of Prof. Jeremy Levy at the University of Pitts-

burgh.

In Ch. 2, we begin with the details of the quantum transport models used in the

thesis. A derivation of the Landauer current and conductance formulae is shown. We

then discuss the physics of Rashba spin-orbit coupling, an effect which occurs when

there is the lack of inversion symmetry, like at the LAO/STO interface. We then

discuss how to treat periodic potentials analytically, presenting the case of a cosine

potential included in the Hamiltonian. This section concludes with an introduction to

12
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the mean-field theory used to treat interactions, making reference to the BCS theory

of superconductivity, finishing with a brief description of the iterative procedure we

use to solve and analyse the model.

Ch. 3 is dedicated to the physics of straight waveguides. We first include the

effects on the kinetic energy as a result of an external magnetic field perpendicular to

the conducting region, and show how this leads to a suppression of the kinetic energy

term along with an increase in the confinement frequency and how these effects

change the band structure. The single particle conductance and transconductance

features of an unmodulated LAO/STO waveguide are then detailed. In the final

part of the section, the mean-field techniques covered in the previous chapters are

used construct phase diagrams of the interactions between various bands to identify

where the single particle Landauer formula should be used to calculate conductance,

and where one must resort to the Maslov-Stone theorem.

In Ch. 4, the work produced for the papers One dimensional Kronig-Penney

nanowires at the LaAlO3/SrT iO3 interface [47] and Spin-orbit assisted pairing in

modulated electron waveguides [50] is detailed. The Kronig-Penney modulation is

included in the waveguide model via scattering arguments, and this leads to very

similar features in the band-structure as a cosine wave. We then discuss how the

modulations lead to an engineered spin-orbit coupling. Following this, the spin-orbit

coupling is introduced into the Kronig-Penney model in order to write down the

full single electron model for the waveguide. Neglecting the form of the potential to

focus on the effects of the spin-orbit couplings, we study individually their effects.

Additionally, the same features are studied for the inclusion of a lateral modulation

in the waveguide centre, and we analyse the difference in physics between the lateral

and vertical modulations.

In Ch. 5, we discuss quantum transport in a helical waveguide. Two approaches
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are taken. First, the periodic modulations are included in the mean-field model to

systematically study the effects this has on correlation functions and phase diagrams.

Secondly, we introduce a phenomenological pair-scattering model which suggests that

the stable pair-singlet phase could be complemented by an oscillating pair-triplet

phase.

This thesis concludes in Ch. 6 by summarising the material of the thesis and

giving an outlook.

During my PhD, I have had two papers published in high quality journals. These

are One dimensional Kronig-Penney nanowires at the LaAlO3/SrT iO3 interface [47]

and Spin-orbit assisted pairing in modulated electron waveguides [50]. Another, En-

gineered chirality of one-dimensional nanowires [51], has been submitted for publica-

tion, and a follow-up paper is in preparation on the remaining unpublished material

in Ch. 5. Additionally, I gave the oral presentation Quantum transport in periodically

modulated electron waveguides at the APS March Meeting 2021. Finally, I presented

the following posters: Quantum Transport in Modulated Electron Waveguides (PQI

2019); Effects of Kronig-Penney Potential on Quantum Transport (PQI 2020); Con-

trolling Quantum Transport in Electron Waveguides by Periodic Modulation (PQI

Quantum2020); Controlling Quantum Transport in Modulated Electron Waveguides

(PQI 2021); Electron Pair Transport in Periodically Modulated Waveguides (DES-

OEQ/QSUM 2022).
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Chapter 2

Background

This chapter gives an overview on the background material that will be used in the

thesis. We introduce the important electronic transport properties that are studied

in the thesis, namely the current, conductance and transconductance, and include

a derivation of how the conductance is obtained from the current. We will discuss

how to obtain the conductance from single particle band structures. Following this,

we will cover two important single-particle features: the effect of periodic poten-

tials on the transport channel, and the effects of Rashba spin-orbit coupling on the

band structure and conductance signatures. Finally, we include electron-electron

interactions at the mean-field level and summarise the techniques used for deter-

mining the excitation spectra and quantum phases of interacting systems under this

approximation.

2.1 Transport Properties

To describe clearly the transport properties of interest, it is useful to consider the

system introduced in Fig. 2.1, of two leads (often called the source and drain for the



Transport Properties

ChannelμL

Source Drain

μR

μL>μR

Figure 2.1: Sketch of the simplest model able to capture the essential physics of the transport
properties of interest througout the thesis. The source (left lead, higher chemical potential µL)
is connected to the drain (right lead, lower chemical potential µR) via a channel that allows the
transport of electrons.

high chemical potential and low chemical potential leads, respectively) connected

by a channel. This channel could in principle be any type of system that allows

the transport of electrons from source to drain. However, to illustrate the main

tools that allow for the study of electron transport, the simplest model is a one

dimensional ballistic channel with spin-degeneracy, with a voltage difference V =

µ∆/e ≡ (µL − µR)/e for µL > µR, where µL and µR are the chemical potentials in

the left and right leads, and e is the charge of an electron. In the channel, the energy

is that of a free particle in one dimension, with energy given by

E(k) =
~2k2

2me

, (2.1)

with me the mass of an electron and k wavenumber corresponding to the momentum

eigenvalue ~k.

2.1.1 Current

The following derivation is adapted from [52]. The current can be written as I = env,

where e is the charge of an electron, n is the carrier density and v is the group velocity.
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Transport Properties

However, this is the case where all of the carriers have the same velocity, or if we can

work with one average velocity. For different velocity carriers, this equation must be

integrated over all momenta, giving

I =
e

π

∫ ∞

−∞
dkv(k)nF (E(k)− µ), (2.2)

where nF (E(k) − µ) = 1/(1 + exp((E(k) − µ)/(kBT )) is the Fermi distribution

describing the probability of occupancy of the electronic state at energy E(k) and

chemical potential µ at temperature T , where kB is Boltzmann’s constant. The

velocity here is the group velocity, defined as

v(k) =
1

~
dE

dk
. (2.3)

In the system depicted in Fig. 2.1, the total current is written as I = IR− IL, where

IR and IL are the right- and left-moving currents. The right moving current is the

current moving out of the left lead, and vice versa, so this becomes

I =
e

π

∫ ∞

−∞
dkv(k) [nF (E(k)− µL)− nF (E(k)− µR)] , (2.4)

which upon inserting the group velocity becomes

I =
2e

~

∫ ∞

−∞
dE [nF (E − µL)− nF (E − µR)]

=
2e

~
[µL − µR] .

(2.5)

2.1.2 Landauer Formula For Conductance

The current can be related to another property known as the conductance, which is

the inverse of resistance. This is given by the derivative of the current with respect
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to the voltage:

G =
dI

dV
, (2.6)

where the voltage is related to the chemical potential bias by eV = µ∆ ≡ µL − µR.

Therefore, using Eq. (2.6) and Eq. (2.5), the conductance through a single channel

is

G = e
dI

dµ∆

=
2e2

h
. (2.7)

This value is known as the quantum of conductance, G0. One important point is

that this value is obtained for degenerate spins. In the presence of a magnetic field,

this channel is split into two channels, one for each spin, and Eq. (2.2) becomes

Iσ =
e

2π

∫ ∞

−∞
dkvσ(k)nf (Eσ(k)− µ∆), (2.8)

where σ = {↑, ↓} designates the two spin channels. The conductance obtained for

each of these channels is e2/h. Despite this, a standard quantum of conductance is

still generally referred to as G0 = 2e2/h.

If there are many channels, the conductance is the sum over the available channels

[52]. For N perfectly conducting channels available with degenerate spin states, the

conductance is

G = N
2e2

h
. (2.9)

However, real systems are not always perfectly ballistic [1]. Electrons can backscat-

ter in the channel as a result of impurities, causing some electrons originating from

the source to be reflected back to the source. This leads to two parameters modelling

the probabilities of each case: the transmission probability T is the probability the

electron (if measured) is found in the channel, and R is the probability that instead

the electron is found to have been reflected. A finite reflection probability means a

18



Transport Properties

reduced transmission.

These effects are accounted for by ascribing to each channel some transmission

probability 0 ≤ Tj ≤ 1, which accounts for both scattering phenomena in the channel

and thermal effects, the determination of which is system-dependent. In this case,

the equation becomes

G =
∑

j

Tj
2e2

h
, (2.10)

which is known as the Landauer formula [53, 54], and is the general formula for

conductance in any ballistic channel. As above, this assumes degenerate spins. In

the presence of a magnetic field, this is modified to read

G =
∑

jσ

Tjσ
e2

h
, (2.11)

where again σ labels the spin-dependency of the channels. It is this equation we are

going to use throughout to determine the conductance of single-electron transport.

In the case where transmission is perfect, there is a straight-forward way to determine

the number of available channels for transport based on the band structure. At zero

temperature and at zero-bias, electrons fill up the available channels up to the Fermi

energy (see Fig. 2.2). This means that the only states available for transport are

those at the Fermi energy as all the lower energy states are already filled, and there

are no energy excitations to populate higher energy states.

This property is why conductance measurements in the experiments relevant to

this work are performed at zero-bias. It offers the cleanest way to study the band

structure of the nanowires. As mentioned in Ch. 1, the current is measured at

small (such that eV � E, where E is the energy spacing of the bands) values of

positive and negative bias voltage in order to calculate the derivative of the voltage
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Figure 2.2: The Fermi distribution at µSG = 0 displayed at various temperatures, showing
how states are completely filled until the energy approaches the Fermi energy, above which the
occupation drops to zero. The temperature smooths out the step, meaning that a transport channel
is available for a range of energies as the width of the curve. The experiments this work is based
on take place at much lower temperatures than the orange line (25 mK instead of 200 mK), and so
the zero temperature approximation is suitable for the purpose of this work [22].

at zero-bias

To illustrate this, we take a simple 2D case where electrons are confined in a

harmonic trap along the direction transverse to propagation. In this system, the

energy is

Eny ,k =
~2k2

2me

+ ~ω
(
ny +

1

2

)
, (2.12)

where ω is the trapping frequency and ny labels the energy levels of the trap. ω is

determined from the effective mass and nanowire width in the confinement direction

as ω = ~/(myl
2
y). In the LAO/STO nanostructures of interest, typical values of

these are ly = 26 nm and my = 1.9me [22], so I utilise these values in the following

illustrative figures.

Fig. 2.3 provides a clear way to illustrate the physics. Consider starting at µSG =

0 and scanning up the Fermi energy on Fig. 2.3a. For µSG < 0.03 meV, the chemical
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potential is below the band, so there are no bands available for transport and G = 0.

Then, as this reaches the bottom of the lowest band, in blue at Ek = 0.03 meV, two

transport channels (spin-up and spin-down for the lowest band) become available

at the Fermi energy, and so assuming perfect transmission there is a step up to

G = 2e2/h, as is seen in 2.3b at the same value of energy. As µSG is increased

further, more bands become available for transport, and each band contributes 2e2/h.

From this, the total conductance is 2e2/h × (the number of occupied bands). In

simple terms, the conductance can essentially be counted from the band structure

by counting the number of times the Fermi energy crosses a line representing an

energy band. This will be useful throughout this thesis.

Figure 2.3: The quantization of conductance illustrated: (a) Shows the energy spectrum of such
a system for a given frequency ω = ~/(myl

2
y) for my = 1.9me (me is the mass of an electron)

and ly = 26nm, with the colours representing different values of n. (b) The zero temperature
conductance associated with this spectrum, assuming perfect transmission. The different colours
correspond to the highest energy partially-filled band, which is the band responsible for the step in
conductance.

In LAO/STO, there are three dimensions. The convention we use is displayed in

Fig. 2.4. To summarise, x is the direction of transport, y is the in-plane dimension

of the interface (lateral), and z is the out-of-plane dimension with respect to the
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Figure 2.4: A diagram of the LAO/STO interface showing the convention taken within this thesis
to the labelling of the position dimensions (x, y, z). I refers to the direction of current flow, and
µSG the chemical potential as tuned by the side gate.

interface (vertical). Modelling both trapping dimensions as harmonic traps, we find

there are now two different indices labelling the bands in the band structure, ny and

nz.

2.2 Rashba Spin-Orbit Coupling

Since the motivation of this thesis is the modelling of transport experiments in

LAO/STO nanowires, it is necessary to introduce a very important concept, that

of Rashba spin-orbit coupling. This effect occurs when there is an inversion asym-

metry around the crystal surface, which in this case is the heterointerface between

LAO and STO [55, 56]. The breaking of the inversion symmetry leads to a finite

electric field, which interacts with the electron spins. Spin-orbit coupling has var-

ious potential applications. For example, the Datta-Das transistor uses spin-orbit

coupled regions and spin-polarized leads to build a spin transistor [57]. Addition-
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ally, spin-orbit coupling in quantum wires could potentially result in a realization

of Majorana fermions [58]. As shall be seen later, the interplay between spin-orbit

coupling and electron pairing is also a feature of great interest in one dimensional

systems as it can lead to an enhancement of the pairing strength [47, 50].

Due to relativistic effects, electrons (charged particles) moving in an electric field

feel a magnetic field, ~B ∝ ~p× ~E. In our crystal, this means that higher momentum

states generate a larger magnetic field. This magnetic field then interacts with the

spin of the electrons, resulting in an overall Hamiltonian given by

HR =
λ

~

(
~p× ~E

)
· ~σ, (2.13)

where λ is a coupling constant dependent on the properties of the material, and ~σ

is the 3-dimensional vector of Pauli matrices. This equation is known as the Rashba

spin-orbit coupling [59]. The reason that this effect is important in LAO/STO wires

is that the LAO/STO interface exhibits a strong Rashba spin-orbit coupling due to

the broken surface inversion symmetry. The two metal-oxides have different surface

properties which leads to a potential gradient, generating an electric field along the

z direction. The Hamiltonian can be rewritten by evaluating the cross product to

obtain

HR =
α

~
(pxσy − pyσx), (2.14)

where α = λEz is called the Rashba spin-orbit coupling strength [59].

When working with one dimensional waveguides, there is a strong 1D confinement

on the electrons. As a result of this, 〈py〉 ≈ 0 (and additionally 〈pz〉 ≈ 0) and so

the contribution of py to the energy is neglected to simplify the spin-orbit coupling

calculations. This results in the form used throughout the thesis for the Rashba
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term, which is

HR =
α

~
pxσy. (2.15)

The full Hamiltonian is then written as

H =
p2
x

2m
I +

α

~
pxσy, (2.16)

where I is the 2×2 identity matrix in the spin degree of freedom. Then, since [H, px] =

0, px is conserved and we can identify simultaneous eigenstates of momentum and

energy, and replace px by its eigenvalue ~k with eigenfunction eikx, obtaining

H =
~2k2

2m
I + αkσy. (2.17)

The energy eigenvalues of this are

E =
~2k2

2mx

± αk =
~2

2mx

(
k ± m

~2
α
)2

− α2m

2~
. (2.18)

Thus, aside from the shift down in energy proportional to α2, the effect of the spin-

orbit coupling is to split the parabola into two, one for each eigenstate (which are

now superpositions of ↑ and ↓), with minima at kc = ±m
~2α, which is displayed in

Fig. 2.5a-b.

Using the Landauer formula shows that the conductance is not strongly affected

by the presence of the spin-orbit coupling alone, other than by the energy shift

bringing down in energy the plateau of 2e2/h. This is due to the fact that there are

still two electronic channels available, but rather than being spin-up and spin-down,

each channel is a superposition of the two. If the system could, for any reason, only

inject spin-up electrons and receive spin-up electrons in the drain, then there would
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Figure 2.5: The effect of introducing spin-orbit coupling to the band structure. d↑ refers to
the (1, 0)T component of the eigenvector corresponding to the eigenvalue Ek, and d↓ to the (0, 1)T

component. Thus, the line colour shows the spin-texture of each eigenvalue. (a) The band structure
before any spin-orbit coupling is included. The dashed line indicates the spin-degeneracy in this
instance. (b) The minimum at k = 0 without spin-orbit coupling is split in two at ±kc with the

spin-orbit coupling, as well as a shift in the energy of the minimum to −α2m
2~ . The spin-orbit

coupling results in an equal superposition of the spins except directly at k = 0 where the energy of
the Rashba term is zero. (c) The effect of including the Zeeman splitting along z on the dispersion
relation keeps the positions of the minima at around k = 0.03nm−1, but a gap between the two
energy bands opens up at k = 0. The magnetic field results in a preference for aligning the spins
with the magnetic field at low momentum, before the Rashba energy dominates the spin-texture
at higher energies. Throughout, m = me.

be a reduction in the transmission of spin-up in the spin-orbit case compared to

without. This reduction could be calculated from the eigenvectors of Eq. (2.17).

However, the features become more interesting when an additional Zeeman split-

ting is included. With the inclusion of this term, the Hamiltonian becomes

H =
p2
x

2m
I +

α

~
pxσy −

gµB
2
Bσz, (2.19)

where g is the Lande g-factor and µB is the Bohr magneton, with eigenvalues

E =
~2k2

2m
±
√
α2k2 +

(gµB
2
B
)2

. (2.20)
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By setting k = 0, the non-spin-orbit case with a Zeeman shift is recovered, which

means there is no spin-degeneracy. This effect of this is illustrated in Fig. 2.5c. where

at k = 0, a finite gap is observed between the two different energies, with magnitude

proportional to B.

This effect manifests strongly in the conductance, as displayed in Fig. 2.6. First,

as the Fermi energy reaches the minima of the band structure, the conductance

reaches 2e2/h due to the contributions of both spins. Then, as the Fermi energy lies

in the magnetic field induced gap between Ek = ±g µB
2
B, the conductance is reduced

to only e2/h, before increasing once more to 2e2/h for Ek > g µB
2
B.

Figure 2.6: Conductance of a 1D system with m = me including both Rashba spin-orbit coupling
(σy) and an external magnetic field (σz), displayed in red. The decrease from 2e2/h to e2/h
corresponds to where the Fermi energy lies in the gap induced between the energy bands due to the
magnetic field. Alongside this on the right hand y-axis is displayed the band structure (in blue) to
demonstrate the relationship between the conductance and the band structure.

2.3 Electrons In Periodic Potentials

The motivation for this thesis is recent experiments on LAO/STO waveguides with

periodic potentials applied in the waveguide region. Thus, the study of periodic
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potentials is central to this thesis, and so an introduction to the physics of these is

important to remain as self-contained as possible.

In a periodic potential, the solution to the Schrödinger equation changes from

being a plane wave to being of the form

ψnk(x) = unk(x)eikx, (2.21)

where unk(x) is a function with the same periodicity as the potential, k is the

wavenumber, n indexes all remaining quantum numbers. This is known as Bloch’s

theorem, and the functions unk(x) which form the basis as the Bloch functions.

This form of the solution leads to an interesting observation in reciprocal space.

Translating by the reciprocal lattice vector of the potential Q, it can be seen that

ψnk(x) = ψnk+Q(x). This means that only momenta in the range k ∈ [−Q/2, Q/2)

are unique. This range of values is known as a Brillouin zone (abbreviated B.Z.).

Since the Bloch functions are periodic, they can be Fourier transformed allowing

the Schrödinger equation to be solved in momentum space.

2.3.1 Continuous Potential

A powerful example is the case where a cosine wave potential is applied to the

channel, for which the Hamiltonian is

H =
p2
x

2mx

+ V cosQx, (2.22)

where Q is the wavenumber and V is the amplitude of the of the periodic po-

tential V (x) = V cosQx. The eigenvalues of this are then determined by ex-

panding the wavefunction in the Fourier basis ψk(x) =
∑

G u
G
k e

i(k+G)x where G ∈
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{set of all reciprocal lattice vectors}, to obtain

−
∑

G

uGk
~2∂2

x

2mx

ei(k+G)x + V
∑

G

uGk cosQxei(k+G)x = E
∑

G

uGk e
i(k+G)x. (2.23)

The cosine is expanded as the sum of exponentials, and this is multiplied by a single

exponential e−iRx, before integrating with respect to x (exploiting orthogonality

conditions) to obtain a series of equations for each k in the first Brillouin zone

uGk

(
E − ~2(k +G)2

2mx

)
− V

2
(uG−Qk + uG+Q

k ) = 0, (2.24)

which can then be written as a matrix with the block structure




E − tG+2Q
k −V

2
0 0 0

−V
2

E − tG+Q
k

−V
2

0 0

0 −V
2

E − tGk −V
2

0

0 0 −V
2

E − tG−Qk −V
2

0 0 0 −V
2

E − tG−2Q
k







uG+2Q
k

uG+Q
k

uGk

uG−Qk

uG−2Q
k




= 0, (2.25)

where tGk = ~2(k+G)2/(2mx). This can be solved for the energy at individual values

of quasimomentum k to generate the band structure in E, with the eigenvectors which

make up the Bloch eigenfunctions. This derivation is presented more generally in

[60], but here we study the specific case of a cosine potential for illustrative purposes

- even with this simple case, the physics manifests strongly when the band structure

is displayed.

Illustrated in Fig 2.7a is the effect of this periodic modulation on the band struc-

ture. The effect on the features far from the edge of the Brillouin zone is small.

However, as the quasimomentum approaches the Brillouin zone edge at k = ±Q/2,
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Figure 2.7: a) The effect of the periodic potential with V = 1.0 meV and λ = 10 nm on the
band structure. Compared to the case with no potential (green dashed line), there is a gap opening
at the edge of the Brillouin zone edge. b) Conductance corresponding to the band structure in
(a). The gap in the band structure manifests as a gap in the conductance, which would result in a
negative transconductance. m = 1.9me in both (a) and (b).

the energy band flattens out until it reaches the B.Z. edge, where a band gap occurs.

This feature of band gaps is present in all periodic systems. This will be illustrated

for the Kronig-Penney model [61] in the next section, which is a minimal model of a

periodic system which also includes a band gap at the Brillouin zone edge.

The question now becomes one of how the gaps in the band structure affect the

transport. Using the method presented earlier, the conductance can be determined

by determining the number of partially filled bands. When the Fermi energy lies

inside a band, this is partially filled and contributes 2e2/h to the transport. However,

when the Fermi energy lies in the band gap formed by the potential, the conductance

is zero due to the fact that there are no available states around the Fermi energy to

populate - the band below is completely filled. This is displayed in Fig. 2.7b.
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2.3.2 The Kronig-Penney Model

The Kronig-Penney model is a textbook example used to study the energetic proper-

ties of electrons in crystals. It is simple to understand and visualise, yet the physics

manifests clearly and dramatically, capturing the introduction of band gaps into the

spectrum. It was first presented in 1939 as an approximation to a lattice potential,

and has become one of the most notable models in solid-state physics [61].

The Kronig-Penney model is essentially a series of square potential barriers with

energy V0, width d, and period λ, as presented in Fig. 2.8. This can describe a lat-

tice potential in a crystal where the atomic nuclei form an infinite series of potential

wells, which are approximated as rectangular. It is known what happens to electrons

incident on a single square barrier (to recap, see Griffiths [62]). Here, we will see

what changes when there are an infinite series of these. This derivation is adapted

from Kittel [60].

We begin by dividing this into two regions: region I inside the barrier, and region

II outside. The Hamiltonian is

HI =
p2
x

2m
+ V (x), (2.26)

with energy eigenvalue

E =
~2k2

I

2m
+ V0 (2.27)

in region I, and

E =
~2k2

II

2m
(2.28)

in region II. We use a plane wave ansatz for the wavefunction in each region, which
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Figure 2.8: Kronig-Penney potential with x scaled by λ and V (x) scaled by V0, and barrier width
d. Here, λ = 2d has been chosen for illustrative purposes, but this is not a requirement.

is useful in one dimension as it allows the wavefunction to be split into left- and

right-moving parts. These read

ψI(x) = AeikIx +Be−ikIx (2.29)

in region I, and

ψII(x) = CeikIIx +De−ikIIx (2.30)

in region II. The wavefunction and its derivative must be continuous at every point

in space, and so these constraints give two equations at x = 0:

A+B = C +D, (2.31)
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and

kI(A−B) = kII(C −D). (2.32)

However, there are four unknowns, and so far only two equations, so more constraints

must be used to solve this model. Since the model describes an infinite periodic

array of barriers, Bloch’s theorem [63] can be applied to include the necessary extra

constraints. Recall that Bloch’s theorem states that a periodic potential ensures that

the wavefunction is periodic with the same period as the potential. So, using the

property

ψ(x+ λ) = ψ(x)eikλ, (2.33)

where k is the quasimomentum which will define the band structure, two more equa-

tions can be obtained (as this should also hold for the derivative): by looking at

points −d and λ− d, it holds that

Ae−ikId +BeikId =
[
CeikII(λ−d) +De−ikII(λ−d)

]
eikλ, (2.34)

and

kI(Ae
−ikId −BeikId) = kII

[
CeikII(λ−d) −De−ikII(λ−d)

]
eikλ. (2.35)

Since there are four equations, the system can be solved. To do this, it is expressed

as




1 1 −1 −1

kI −kI −kII kII

e−ikId eikId −eikII(λ−d)eikλ −e−ikII(λ−d)eikλ

kIe
−ikId −kIeikId −kIIeikII(λ−d)eikλ kIIe

−ikII(λ−d)eikλ







A

B

C

D




= 0. (2.36)
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This can be solved analytically, resulting in

cos kλ = cos kI(λ− d) cos kIId−
k2
I + k2

II

2kIkII
sin kI(λ− d) sin kIId, (2.37)

where kI and kII are determined for a given energy by Eq. (2.27) and Eq. (2.29)

respectively.

From this, a band structure can be derived by solving Eq. (2.37) for a given

energy to determine the allowed k values. These can be real or complex, with real

k values constituting allowable k values for electronic energy bands. The complex

values of k are where no electronic states are available for transport, and correspond

to band gaps.

Using the free electron mass, and parameters λ = 20nm, d = λ/2, and V0 =

0.5meV (chosen such that they are in the same regime as experimental parameters

while most clearly highlighting the relevant physics), we analyse a band structure for

the Kronig-Penney model in Fig. 2.9. First of all, this is the same physics as was seen

in the previous section for a simple cosine wave potential. There is a slight shift in

the energy, but the main feature is the band gap occuring at the Brillouin zone edge

k/Q = 0.5, at around Ek =1meV. In a scattering model, the parameters of interest

for transport are the transmission coefficients, which feed directly into the Landauer

formula Eq. (2.10). The transmission coefficients go to zero in the band gap region

(total reflection) due to interference between right- and left-moving waves.
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Figure 2.9: Band structure of the Kronig-Penney model for λ = 20nm, d = λ/2, and V0 = 0.5meV
(blue), compared to the band structure of a free electron (black-dashed). The gap around q = 0
arises from the difficulty of sampling the infinite density of states around this point rather than
being indicative of any physics.
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2.4 Mean-Field Treatment Of Electron-Electron

Interactions

As discussed in Sec. 1.2, there is strong evidence of electron-electron interactions in

LAO/STO interfaces. As such, to model the behaviour of electrons in waveguides

in these systems, an approach must be taken to include interactions in the waveg-

uide Hamiltonian. To do this, the Hamiltonian is written in second quantization,

introducing field operators

Ψ(x) =


Ψ↑(x)

Ψ↓(x)


 =

1√
L

∑

k

eikx


ck↑
ck↓


 , (2.38)

where c†kσ is an operator that creates an electron with wavenumber k and spin σ.

These operators have the anticommutation relations
{
ck,σ, c

†
q,τ

}
= δστδ(k − q) and

{ck,σ, cq,τ} =
{
c†k,σ, c

†
q,τ

}
= 0. To determine the interacting behaviour of the system,

it is necessary to include every electronic state available. This is done by integrating

over all of the available electron states, which leads to the many-body Hamiltonian

H =

∫
dxΨ†(x)HΨ(x), (2.39)

for the single electron Hamiltonian H.

Inserting Eq. (2.38) into this for a Hamiltonian with no spin-orbit coupling results

in

H =
∑

k

εkσc
†
kσckσ =

∑

k

(
c†k↑ c†k↓

)
Hk


ck↑
ck↓


 , (2.40)
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where the εkσ are the eigenvalues of the Hamiltonian corresponding to a state with

momentum k and spin σ, and

Hk =


εk↑ 0

0 εk↓


 . (2.41)

There are various ways to treat interactions using these tools. One method for

illustrative purposes is the contact interaction between electrons of different spins.

In practice, a contact interaction is most commonly used when dealing with cold

atoms, and electron-electron interactions in materials are often more complicated

than this, and depend on the material. However, since the nature of the interaction

in LAO/STO is still an active topic of research, we take a contact interaction as a

first model. This is written as [64]

HI = U

∫
dxΨ†↑(x)Ψ†↓(x)Ψ↓(x)Ψ↑(x). (2.42)

Since Eq. (2.42) is quartic in the field operators, it cannot be diagonalised exactly.

Thus, the interactions are treated using a technique called mean field theory. This

approach supposes that operators have some mean value, and they do not vary much

from this value. Mathematically, this can be stated as Â = 〈Â〉+δÂ, where 〈Â〉 is the

expectation value of the operator, and δÂ describes small fluctuations around this

expectation value. The problem is made tractable by studying pairs of operators,

resulting in

ÂB̂ ≈ (〈Â〉+ δÂ)(〈B̂〉+ δB̂) = 〈Â〉〈B̂〉+ δÂ〈B̂〉+ δB̂〈Â〉+ δÂδB̂.
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Since δÂ and δB̂ are small, the product of these is extremely small, so this is ne-

glected. Rearranging the mean-field expansion for the fluctuations to δÂ = Â− 〈Â〉
and reinserting this obtains

ÂB̂ ≈ Â〈B̂〉+ B̂〈Â〉 − 〈Â〉〈B̂〉.

The third term here is a number, and corresponds to an energy shift in the Hamil-

tonian but has no effect on the physics, so this is neglected for now, giving

ÂB̂ ≈ Â〈B̂〉+ B̂〈Â〉. (2.43)

Eq. (2.43) describes the mean-field decomposition of pairs of operators. Applying

this to Eq. (2.42), if operators are grouped into pairs and applied to this formalism,

the contact interaction can be made quadratic by enclosing two of the four operators

in each term in an expectation value and turning them into a number.

Mean-field theory works best for weak interactions and high dimensions d ≥
2. However, even in one-dimension, provided the interaction energy is kept low

compared to the other energy scales of the system, it can be used to determine

the nature of electronic interactions. However, the fluctuations around these mean

values tend to be quite large in one-dimension, meaning it is not as useful in making

quantitative predictions.

Performing a mean-field decomposition over all pairs of operators leads to

Ψ†↑Ψ
†
↓Ψ↓Ψ↑ ≈Ψ†↑Ψ

†
↓〈Ψ↓Ψ↑〉+ Ψ↓Ψ↑〈Ψ†↑Ψ†↓〉

−Ψ†↑Ψ↓〈Ψ†↓Ψ↑〉 −Ψ†↓Ψ↑〈Ψ†↑Ψ↓〉

+Ψ†↑Ψ↑〈Ψ†↓Ψ↓〉+ Ψ†↓Ψ↓〈Ψ†↑Ψ↑〉,

(2.44)
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where 〈·〉〈·〉 terms are neglected as they just contribute a shift in the zero of energy.

The above expression contains three types of terms

1. Terms like 〈Ψ†↑Ψ↑〉. These are known as the Hartree terms, and shift the zero

of energy of the spectrum.

2. Terms like 〈Ψ†↑Ψ↓〉. These are known as the Fock terms, and are responsible

for spin-exchange interactions. These are zero without a term to mediate this

process.

3. Terms like 〈Ψ†↑Ψ†↓〉. These are the Bogoliubov terms, and are responsible for

electron pairing. They correspond to the expectation values of creating (or

annihilating) an electron pair. In higher dimensions, this would be associated

with superconductivity, but in 1D this association cannot be made.

It is these three types of terms that give the name to the method of solving the

system used: the Hartree-Fock-Bogoliubov self-consistent mean-field approach.

The Hartree terms are denoted by Σσ = U〈Ψ†−σΨ−σ〉, Fock by χ = U〈Ψ†↓Ψ↑〉 and

Bogoliubov by ∆ = U〈Ψ↓Ψ↑〉 to write Eq. 2.42 using Eq. (2.44) and Eq. (2.38) as

HI =
∑

k

Σ↑c
†
k↑ck↑ + Σ↓c

†
k↓ck↓ − χc†k↑ck↓ − χ∗c†k↓ck↑ + ∆c†k↑c

†
−k↓ + ∆∗ck↓c−k↑. (2.45)

For illustrative purposes, the effects of the Hartree and Fock terms can be neglected to

focus solely on the pairing term (though in Ch. 3 and Ch. 4, these will be reintroduced

as they become relevant to the physics), which is assumed to be real. Additionally,

looking at the zero spin-orbit and magnetic field case, εkσ = ~2k2

2m
− µSG ≡ ξk, the
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total Hamiltonian is

H =
∑

k

∑

σ

ξkc
†
kσckσ + ∆(c†k↑c

†
−k↓ − ck↑c−k↓). (2.46)

Throughout the text, we solve these models in two ways: the first, for Hamiltoni-

ans that can be written as 2×2 matrices in some basis, an analytical treatment can

be performed. However, this becomes much harder to do in moving to larger bases,

and so numerical methods must be used. This shall be introduced at the end of the

section.

For both analytical and numerical methods, a Bogoliubov transformation is used

[65] to write the Hamiltonian as

H =
∑

k

(
c†k↑ c−k↓

)

ξk ∆

∆ −ξ−k




 ck↑

c†−k↓


 =

∑

k

~ck
†Hk ~ck, (2.47)

where the basis vector is ~ck = (ck↑, c
†
−k↓). This is diagonalised by inserting copies of

UkU
†
k = I as

H =
∑

k

~ck
†UkU

†
kHkUkU

†
k ~ck =

∑

k

~ck
†UkEkU

†
k ~ck, (2.48)

where Ek is a diagonal matrix containing the eigenvalues of Hk. From this, the

Bogoliubov transformation is defined as ~γk = U †k ~ck and the Hamiltonian becomes

H =
∑

kσ

Ekσγ
†
kσγkσ. (2.49)
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The Hamiltonian can be diagonalised to obtain the energies Ekσ =
√
ξ2
k + ∆2, which

is minimal at Ekσ = |∆|, which is why ∆ is given the name “pairing gap” - even

at the Fermi energy the excitation spectrum has non-zero energy gap for finite ∆.

Physically, this is the energy associated to breaking an electron pair, meaning that

the ground state of the system in this configuration is a paired state.

However, ∆ = U〈Ψ↓Ψ↑〉 = U
∑

kk′ e
i(k+k′)x〈ck′↓ck↑〉, and for a homogeneous sys-

tem, this should be constant as a function of x, reducing to

∆ = U
∑

k

〈c−k↓ck↑〉. (2.50)

To calculate this, the Bogoliubov transformation is inverted to obtain


 ck↑

c†−k↓


 = Uk


 γk↑

γ†−k↓


 . (2.51)

For this system, the properties of the SU(2) group can be exploited to write this as

ck↑ = u∗kγk↑ + vkγ
†
−k↓ (2.52)

and

c†−k↓ = −v∗kγk↑ + ukγ
†
−k↓, (2.53)
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allowing the Hamiltonian to be rewritten as

H =
∑

k

[
ξk(|uk|2 − |vk|2])−∆(ukv

∗
k + u∗kvk)

]
(γ†k↑γk↑ + γ†↓−kγ↓−k)

+
∑

k

[
(2ξkukvk + ∆(u2

k − v2
k)
]
γ†k↑γ

†
−k↓

+
∑

k

[
(2ξku

∗
kv
∗
k + ∆(u∗k

2 − v∗k2)
]
γ−k↓γk↑.

(2.54)

In order for this to be diagonalised, the terms proportional to γ†k↑γ
†
−k↓ and γ−k↓γk↑

must vanish resulting in the polynomial 2ξkukvk + ∆(u2
k − v2

k) = 0, which is solved

for the ratio vk/uk as

2ξkukvk + ∆(u2
k − v2

k) = 0 =⇒ vk
uk

=
ξk ±

√
ξ2
k + ∆2

∆
. (2.55)

Taking the negative root to minimize the absolute value, using |uk|2 and |vk|2 and

the normalization |uk|2 + |vk|2 = 1, |uk|2 and |vk|2 can be determined as

|uk|2 =
|uk|2

|uk|2 + |vk|2
=

1

1 +
∣∣∣ vkuk
∣∣∣
2 =

1

2

(
1 +

ξk√
ξ2
k + ∆2

)
(2.56)

and

|vk|2 =
1

2

(
1− ξk√

ξ2
k + ∆2

)
. (2.57)

The quasiparticles follow a thermal distribution, meaning that 〈γ†kjγkj′〉 = nf (Ek)δjj′ ,

〈γkjγkj′〉 = 〈γ†kjγ†kj′〉 = 0. The gap equation Eq. (2.50) then becomes

∆ = −U
∑

k

u∗kvk(nf (Ek↑) + nf (Ek↓)− 1), (2.58)
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which can be rewritten as

1 = −U
2

∑

k

2nf (Ek)− 1√
ξ2
k + ∆2

. (2.59)

This form shows that ∆ depends on the spectrum of the system, but the spectrum

is in turn proportional to ∆. While more could be done by converting to an integral

and assuming zero temperature, this is most easily solved numerically through a

self-consistent approach.

The idea is as follows:

1. Begin with an initial trial value of ∆, call it ∆0.

2. Diagonalize the Hamiltonian in Eq. (2.47) to find the eigenvalues and eigen-

vectors with ∆ = ∆0.

3. Determine the value of ∆ that is given by Eq. (2.59) (or Eq. (2.50) in a more

general case where a simplified gap equation is less easy to obtain), call it ∆1.

4. Calculate the difference |∆1 −∆0|. If this is less than some specified precision

ε, then the numerical simulation has converged and ∆ = ∆1 is the final gap.

5. If |∆1−∆0| > ε, then repeat 1-4 until convergence, with ∆1 becoming the new

∆0.

This scheme is how the strength of pairing is determined in the systems of interest.

In practice, the precision ε is on the order of the energy of thermal fluctuations. At

the minimum temperature of 25 mK, this is around 0.001 meV. This method shall be

presented in the following chapter, and utilised in all of the interacting calculations

performed in the later chapters of the thesis.
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2.5 Summary

This chapter began with a general overview on quantum transport and introducing

conductance. Following this, two single-electron effects on the conductance were in-

troduced - Rashba spin-orbit coupling, and periodic modulations - and their effects

on the conductance were explained. Finally, a treatment of electron-electron inter-

actions was discussed. All of these will be utilised in Ch. 4 and Ch. 5 where we will

study in detail the conductance of interacting periodically modulated waveguides.

43



Chapter 3

Electron Waveguides Without

Modulation

Before presenting the material on modulated electron waveguides that forms the

main body of the thesis, it is helpful to show the unmodulated effects. This is both

to clearly show the techniques used and how they translate into results, but also for a

foundation as to what can be expected from the conductance and transconductance

behaviour in these systems, to study how they change when including the effects of

modulation. To that end, this short chapter discusses the straight waveguide. This is

mostly based on recalculating the results of previous work [22], with some additional

insights from further study of these systems.

3.1 Single Electron Physics

In this section, we will derive the basic energy spectrum for an electron in a non-

interacting waveguide, based on [16]. The standard waveguide model involves elec-

trons propagating “nearly free” along the waveguide direction (x in this work) and
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harmonically confined along the transverse directions y and z.

By introducing a magnetic field ~B = (0, 0, B) into the waveguide, the physical

momentum of the electrons in the system is shifted by the Lorentz force according to

~p→ ~Π = ~p+ e ~A where ~Π is the physical momentum, ~p is the canonical momentum,

and ~A is the vector potential. There exists a gauge freedom, as ~B = ~∇ × ~A. To

solve the 1D waveguide model, the simplest choice is ~A = (−By, 0, 0). Thus, the

Hamiltonian of the waveguide becomes

H =
(px − eBy)2

2mx

+
p2
y

2my

+
p2
z

2mz

+
my

2
ω2
yy

2 +
mz

2
ω2
zz

2 − gµB
2
Bσz. (3.1)

Since [H, px] = 0, we can again work with simultaneous eigenstates of H and px and

replace px its eigenvalue ~k. Introducing the cyclotron frequency ωc = eB/
√
mxmy

and centre of motion y0 = eB/~k, the Hamiltonian becomes

H =

(
1− ω2

c

Ω2

)
~2k2

2mx

+
p2
y

2my

+
my

2
Ω2 (y − ȳ0)2 +

p2
z

2mz

+
mz

2
ω2
zz

2 − gµB
2
Bσz, (3.2)

where ȳ0 = (ωc/Ω)2y0 and Ω =
√
ω2
c + ω2

y. Now, recognising the harmonic confine-

ments along y and z, the eigenenergies can be calculated as

E(k, ny, nz, σ) =

(
1− ω2

c

Ω2

)
~2k2

2mx

+ ~Ω

(
ny +

1

2

)
+ ~ωz

(
nz +

1

2

)
− gµB

2
Bσ, (3.3)

which correspond to separable eigenfunctions of the form

ψ(k, ny, nz, σ) = 〈x, y, z|k, nx, ny, σ〉 = eikxφny(y − ȳ0)φnz(z) |σ〉 .

The inclusion of the magnetic field into the basic waveguide model makes three

changes to the energies: Firstly, it lifts the spin-degeneracy via the Zeeman term -
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this causes spin-up to become more energetically favourable. Secondly, it increases

the y-confinement frequency Ω, which shifts apart the energy levels along y. Finally,

it flattens out the kinetic term by decreasing the prefactor 1− ω2
c

Ω2 .

In LAO/STO interfaces, the z-trapping is best modelled by a half-harmonic os-

cillator rather than a harmonic oscillator as used above. A half-harmonic oscillator

is characterised by a potential

V (x) =





mz
2
ω2
zz

2 z > 0

∞ z < 0.

This is due to the fact that the potential is infinite on one half of the well due to

the inability of electrons to penetrate into the material (since the LAO layer is three

layers thick, this amounts to only ∼1nm, far less than the relevant widths, and so

the electron wavefunction must end before this). The effect of this is to only allow

odd harmonic modes, as the presence of nodes at z = 0 allows the wavefunction to

be continuous.

Throughout the thesis, ωy � ωz. However, magnetic fields can be tuned as high

as 16T in the experiment, at which point the increase in confinement energy is larger

than the increase in Zeeman energy. In the large field limit, the energy of both spins

increases, but more rapidly for spin-up. So in these quasi 1D waveguides, the spin-

splitting is not a straight-forward linear relationship of the spin-dependent energies

as a function of magnetic field. This is displayed in Fig. 3.1 a.

Additionally at high fields, the lowest energy excited state is |k, 0, 1, σ〉, as shown

in Fig. 3.1 b where |k, 1, 0, ↑〉 and |k, 0, 1 ↑〉 cross between B = 5 T and B = 6 T. At

these magnetic fields, the kinetic term is also heavily suppressed, with the prefactor(
1− ω2

c

Ω2

)
∼ 10−3.
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Figure 3.1: (a) Plots of the k = 0 energy of each band as a function of magnetic field with both the
magnetic field dependence on the trapping frequency Ω and the Zeeman shift, showing the deviation
of the spectrum from simply the Zeeman split case and the case with only the effect on the trapping,
with σ taking the place of a spin labelling here due to the spin-degeneracy of the Lorentz force. This
corresponds to the minimum energy as a function of k of the band. The subscripts on the kets refer
to the terms included, with Ω denoting lines with the effect of the confinement increase included,
and Z denoting terms with the Zeeman shift included. (b) The minimum energies of various bands
as a function of magnetic field, displayed to show the crossing of two bands at finite magnetic
fields. The labeling of the bands is in the form |ny, nz, σ〉. Parameters used are mx = my = 1.9me,
mz = 6.5me, ly = 26 nm, lz = 8.1 nm, and g = 0.6.

3.2 Conductance spectrum Of Unmodulated Waveg-

uides

All of the information presented above culminates in non-interacting conductance

and transconductance spectra. The waveguide model describes quantised conduc-

tance in units of e2/h, with each eigenstate |ny, nz, σ〉 contributing an additional

transport channel and thus e2/h conductance. The spectrum can then be tempera-

ture broadened according to [1] via

G(µSG) =

∫
dEGT=0(µSG)FT (E − µSG), (3.4)
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where

FT (E) =
∂nf (E)

∂E
=

1

4kBT
sech2

(
E

2kBT

)

is the thermal broadening function.

To compare to experimental results, we introduce a new quantity called the

transconductance F . This is defined as the derivative of the conductance with respect

to the chemical potential µSG in the system, or

F =
dG

dµSG
. (3.5)

Intuitively, this quantity can be used to show the positions of the bands in the system

in a similar way to the conductance calculations presented in Fig. 3.1. However, this

quantity is routinely measured in experiment, making it an excellent way to visualise

the spectrum of these waveguides.

In Fig. 3.2, the conductance spectrum in the (B, µSG) parameter space is dis-

played before (a) and after (b) broadening with the Fermi distribution at kBT =

50mK. The quantized conductance steps can be cleanly seen in both cases, while in

the broadened case the steps are smoothed. This is additionally displayed in Fig. 3.3,

where we show line cuts of these conductance plots at various magnetic fields, at both

T = 0 mK and T = 50 mK. This illustrates well the smoothing effect that a finite

temperature has on the conductance features of the system. In Fig. 3.2c, we then

show transconductance of the broadened spectrum in Fig. 3.2b. In transconductance

plots, a step up in conductance is represented as a strong peak at the given (B,µSG)

configuration. As discussed in Ch. 1, the LAO/STO devices that inspired the work

offer the ability to tune the chemical potential in the waveguides using a side gate,

making this prospect possible to physically realise.

In [22], it is shown that clean 1D transport features can be observed in experi-
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Figure 3.2: Conductances and transconductances for the straight waveguide as a function of B and
µSG. (a) Unbroadened conductance spectrum of the straight waveguide as described by the above
set of parameters. (b) Same conductance spectrum broadened by a 50mK Fermi distribution which
accounts for thermal effects. (c) Transconductance spectrum obtained by taking the derivative
with respect to µSG of (b). Parameters used are mx = my = 1.9me, mz = 6.5me, ly = 26 nm,
lz = 8.1 nm, and g = 0.6.

ment and are described well by this model. Their results are displayed in Fig. 3.4.

They compare transconductance measured for one of these devices as a function of

magnetic field B and chemical potential µSG with the model as described in the

previous section with those same parameters. A 65µeV Lorentzian has been used to

broaden the peaks in the theoretical model to match with the widths obtained by

those in the experiment. In regions with large separation between the bands, the

waveguide model provides an excellent description of the transport physics.

Cleanly shown is the subband structure of the waveguide. Each peak in the

transconductance spectrum can be associated to a transverse mode and spin by

comparing to the waveguide model. For example, the lowest two bands are the

|0, 0, ↑〉 and |0, 0, ↓〉. The parameters utilised here are fitted using the experimentally-

49



Conductance spectrum Of Unmodulated Waveguides

Figure 3.3: Line cuts of the conductance corresponding to (a) and (b) of Fig. 3.2 respectively,
showing cleanly the conductance plateaux. Parameters used are mx = my = 1.9me, mz = 6.5me,
ly = 26 nm, lz = 8.1 nm, and g = 0.6.

obtained conductance features at both zero-bias and finite bias, which is demon-

strated in the supplementary material of [22].

In regions where the bands are close together, this model appears to break down.

This is due to the strong interactions which are known to be present in LAO/STO

[9]. These will be discussed in the following section. For now, we will focus on

the regions where the single electron model provides an excellent description of the

physics.

One complicating factor is that this model has a large number of free parameters

which drastically affect the physics and depend on the details of the material proper-

ties which are not well-known ab-initio. These are the effective masses mx, my, and

mz, the trapping widths ly and lz, and the Lande g-factor g. Thus, before proceed-

ing, it may be useful to map out the effects of these at this stage before introducing

more complicating factors. For clarity, only the two lowest energy trapping states of

each mode are plotted.

Firstly, in the top row of Fig. 3.5 we vary the effective mass along the propagation

direction mx. Since the energy bands appear at k = 0, the kinetic energy term is
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Figure 3.4: Plots of the transconductance of a straight waveguide, as published in [22]. a)
Experimental transconductance measurements broadened by a 65meV Lorentzian from one of their
devices. b) Theoretical transconductance calculations with the above parameters fitted to closely
match the spectrum. Adapted with permission from Anil Annadi, Guanglei Cheng, Hyungwoo
Lee, Jung-Woo Lee, Shicheng Lu, Anthony Tylan-Tyler, Megan Briggeman, Michelle Tomczyk,
Mengchen Huang, David Pekker, Chang-Beom Eom, Patrick Irvin, and Jeremy Levy: Quantized
Ballistic Transport of Electrons and Electron Pairs in LaAlO3/SrT iO3 Nanowires ,Nano Letters
2018 18 (7), 4473-4481. Copyright 2022 American Chemical Society.

unchanged by the change in effective mass. However, what is changed is the cyclotron

frequency ωc = eB/
√
mxmy. As such, increasing this flattens out the spectrum by

decreasing the effective confinement frequency as a function of magnetic field B.

In the middle row of Fig 3.5 we now vary the effective mass along the in-plane

lateral direction. Since the surface properties of LAO/STO are the same along x and

y, it would be expected that these two have similar effective masses, but the effect

of this can be studied numerically without the constraint. Similarly to the top row

of Fig. 3.5, the effective confinement frequency is modified by ωc. However, since

the B = 0 confinement frequency is given by ωy = ~/(myl
2
y), increasing the effective

mass also decreases the B = 0 confinement frequency, bringing the y-bands closer

together as can be seen in the figure.

Finally, in the bottom row of Fig. 3.5 we vary mz, the out-of-plane effective mass

of the electrons. This only enters into the Hamiltonian in the term ωz = ~/(mzl
2
z)

and so the effect of this term is to lower the energy of the z-bands, since ωz is
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Figure 3.5: Transconductance as a function of magnetic field B and chemical potential µSG at
T = 50mK for various values of mx (top row), my (middle row) and mz (bottom row). Default
values are mx = 1.9me, my = 1.9me, and mz = 6.5me. Other parameters used are ly = 26 nm,
lz = 8.1 nm, and g = 0.6.

inversely proportional to mz.

In the top row of Fig. 3.6, we vary the trapping length along y, denoted ly. This

shares the closening and lowering of the y band energies with the effects of my, but

since ly only appears in the term ωy = ~/(myl
2
y), it does not affect higher magnetic

fields differently. Additionally, the bottom row of Fig. 3.6 which displays the effect of

increasing the z trapping length lz shows similar behaviour to the effect of increasing

mz, since they only appear in the same term.
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Figure 3.6: Transconductance as a function of magnetic field B and chemical potential µSG at
T = 50 mK for various values of ly (top row) and lz (bottom row). Default values are ly = 26 nm
and lz = 8.1 nm. Other parameters used are mx = my = 1.9me, mz = 6.5me, and g = 0.6.

Finally, we study the effect of changing the Lande g-factor, g, which is displayed

in Fig. 3.7. This enters the Hamiltonian through the Zeeman term gµB/2Bσz. As

expected, increasing the strength of this term leads to an increase in the splitting

between the spin-subbands and thus the gradient of the transconductance peaks as

a function of B.

3.3 Pairing Effects In Unmodulated waveguides

However, the above analysis does not tell the whole story. In regions where multiple

bands would cross, bands with opposite spins are drawn closer together, and bands

with same spins repel each other, which can be seen in Fig. 3.4. This is not described

by single particle physics, a fact which is unsurprising given that it occurs only when
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Figure 3.7: Transconductance as a function of magnetic field B and chemical potential µSG at
T = 50 mK for various values of g. Other parameters used are mx = my = 1.9me, mz = 6.5me,
ly = 26 nm, and lz = 8.1 nm.

two electrons have similar energies. It suggests the presence of electron-electron

interactions.

Electron-electron interactions are well known to be present in LAO/STO [9].

While the origin is not known in detail, and the exact form is not known ab-initio

(although there are some interesting hypotheses, such as the theory of ferroelastic

domain walls mediating pairing [66]), there are numerous studies of the resulting

behaviour, including tuneable interactions (even between attractive and repulsive

phases) [15], and multi-electron bound states [67].

In order to treat these interactions, the same approach is taken as in [22], and

the mean-field Bogoliubov-Degennes Hamiltonian in the presence of a magnetic field

is calculated, which reads

H =
∑

k

~c†k




ξ↑k 0 0 ∆

0 −ξ↑−k −∆ 0

0 −∆ ξ↓k 0

∆ 0 0 −ξ↓−k



~ck, (3.6)
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where ξσ,k = E0(k, ny, nz, σ) + Σσ, for

Σσ =
U

2π

∫
dk〈c†kσ̄ckσ̄〉

and

∆ =
U

2π

∫
dk〈c−k↓ck↑〉,

with interaction strength U . In this case, there is no process to mediate the spin-flip

operation corresponding to the Fock terms, so these have been neglected.

In order to calculate these mean-fields, it is necessary to perform the Bogoliubov

transformation ~γk = U †k~ck. This is difficult to solve analytically, but some progress

can still be made by noting the eigenvalue ordering structure (E↓,k, E↑k,−E↑−k,−E↓−k),
so the eigenvectors are ~γk = (γ↓k, γ↑k, γ−↑k, γ−↓k), and so in principle the Bogoliubov

transformation can be constructed like this.

Generally, however, these are determined numerically. Using these methods, the

behaviour of electrons in the straight waveguide can be determined. However, when

calculating the conductance in the paired phase, the gap in the conductance spectrum

leads to a case where we have no crossings of the Fermi energy, which would suggest

no conductance. The reason for this is that the eigenenergies form the excitation

spectrum of quasiparticles. That is, these are the energies of excited quasi-particle

states on top of the zero energy ground state. In the gapped region, there are no

possible transport channels for the quasi-particles, and it is known that the ground

state is made up of pairs [65]. As a result, it is not possible to use the standard

Landauer formula to calculate conductance in the presence of pairing interaction.

Another formalism can shed light on this quandary. Due to the Maslov-Stone

theorem [24], it can be deduced that the conductance in this paired phase is equal

to 2e2/h. This is because the conductance of interacting systems is determined by
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their dissipation into the leads. Since the leads are generally non-interacting, pairing

is unsupported in the leads, and so electrons moving into the leads return to being

unpaired giving a conductance of e2/h per electron.

The proof of this theorem uses Luttinger-Liquid theory, which is beyond the scope

of this work. However, using these concepts, they calculate the current, and then the

conductance from this, showing that the conductance only depends on the Luttinger

parameter K (where K < 1 for attractive and K > 1 for repulsive interactions)

in the leads. Since the leads are non-interacting, this is 1, and so e2/h per spin is

obtained for the conductance of an electron pair.

Using the interacting method, the conductance with non-interacting leads can be

determined purely from information contained by the phase diagrams. In this thesis,

these are defined as plots which show the state of transport electrons as a function

of magnetic field B and chemical potential µSG. Thus, when purely studying the

interacting features, we will generally study phase diagrams and describe how they

lead to the conductance features as observed in experiment.

For the single particle parameters in the following plots, the same parameters are

used as in [22], with mx = my = 1.9me, mz = 6.5me, ly = 26nm, lz = 8.1nm, and

g = 0.6 which were either measured or calculated to be the best experimental match

for a single-electron model. For the interacting case, we choose interaction strengths

which are low enough to be well described by a mean-field model, but large enough

to easily see the features that are induced.

The phase diagram is constructed as follows, with respect to the thermal cutoff

ε: any region with ∆ > ε is a paired phase - the ground state of the wavefunction

is composed entirely of pairs. A non-zero ∆ does not necessarily imply supercon-

ductivity in one dimension, unlike in higher dimensions. Outside of this region,

the populations of the single particle bands can be seen from the Hartree terms: if
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Figure 3.8: Mean fields and phase diagrams for the interaction with strength U = −4.5 meV·nm
between a) |0, 0, ↑〉 and |0, 0, ↓〉, b) |1, 0, ↑〉 and |0, 1, ↓〉, and c) |0, 1, ↑〉 and |1, 0, ↓〉. Parameters
used are mx = my = 1.9me, mz = 6.5me, ly = 26 nm, lz = 8.1 nm, and g = 0.6. The first three
columns describe the mean-fields Σ↑, Σ↓, and ∆ for the relevant bands labelled by the rows. The
final column illustrates the phase diagrams, labelled by the colour scheme on the far right of the
grid, constructed from the non-zero areas of the mean-fields in the first three columns.

Σσ > ε, then the band corresponding to σ̄ is available for transport. This latter fact

only holds if the bands are continuous (i.e. no band gaps), which they are in the

straight waveguide.

In Fig. 3.8, we study these for the interaction between three different types of

bands. Firstly, for the interaction between |0, 0, ↑〉 and |0, 0, ↓〉, the pairing appears

at around B = 0 T. This is where the two bands, in the single particle case, are

closest in energy. As B is increased to around 2 T, the pairing eventually breaks,
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leading to single particle phases.

In the non-interacting case, the bands |1, 0, ↑〉 and |0, 1, ↓〉 cross each other at a

finite magnetic field. This can be seen in the interacting case where a large paired

phase occurs at a finite value of magnetic field. This type of pairing is known as

re-entrant pairing as it occurs at magnetic fields B > 0 T.

In contrast, |0, 1, ↑〉 and |1, 0, ↓〉 do not cross in the single particle case, at least

in the range of B ∈ [0, 8] T. This is reflected in the phase diagram, as there are no

regions in this parameter space where pairing occurs.

3.4 Conclusion

In this section, we have seen that relatively straight-forward models can well describe

the conductance features displayed in the straight waveguide, both in single particle

and interacting regimes. In the following chapters, this analysis will form the basis

of the extension of these techniques to modulated waveguides as in Ch. 4 we include

spin-orbit coupling into these models, and in Ch. 5 the modulation potentials will

also be included in the interacting calculations.
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Chapter 4

Modulated Electron Waveguides

In this chapter of the thesis, we discuss the work undertaken for the papers One di-

mensional Kronig-Penney nanowires at the LaAlO3/SrT iO3 interface [47] and Spin-

orbit assisted pairing in modulated electron waveguides [50]. This is split into two

sections: the Kronig-Penney waveguide, and the laterally-modulated waveguide. The

Hartree-Fock-Bogoliubov model is extended to include spin-orbit couplings which re-

sult from these two separate modulations. Through this, it is found that a vertical

(coming from a Kronig-Penney modulation) σy spin-orbit coupling leads to an in-

crease in the pairing of the lowest two energy bands. The lateral spin-orbit coupling

(coming from the sinusoidal modulation of the position of the waveguide centre)

along σz instead results in triplet pairing.

4.1 Kronig-Penney Waveguides

This section on the Kronig-Penney modulation in electron waveguides begins with

a presentation of the experimental method used to introduce a Kronig-Penney po-

tential into the LAO/STO waveguides. We add spin-orbit coupling to the Kronig-



Kronig-Penney Waveguides

STO

LAO
Potential MinimumInterface

Figure 4.1: Graphic depicting the effect of positive charges on the potential minimum in the
interfacial region.

Penney model and derive from it a band structure using a scattering method. Fol-

lowing this, an extension to the mean-field model is presented, neglecting the form

of the potential to focus solely on the interplay between interactions and the spin-

orbit coupling. Finally, we will see the enhancement of pairing as a result of the

spin-orbit coupling, and compare this with experimentally-obtained conductances in

LaAlO3/SrTiO3 nanowires [47].

4.1.1 Kronig-Penney Model In LAO/STO

Before continuing to describe the physics in these nanowires, a description of the

experimental setup is provided. The basic devices are grown and written as described

in Ch. 1.4. Following this, the waveguide is rewritten with an AC voltage VAFM

applied to the AFM tip [47]. The effect of this is to protonate (VAFM > 0) and

deprotonate (VAFM < 0) the surface of the LAO, with the protonated regions being

highly conductive and the deprotonated regions acting as barriers (see Fig. 4.1).

In the waveguide model, the exact barrier height introduced by the protonation
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and deprotonation of the LAO surface is unknown. The magnitude of the gap mea-

sured in experiment suggests that this is on the order of V = 0.01−0.1meV [47], and

so values are selected in the full quasi-1D regime to be on this order of magnitude.

The wavelength of the modulation is exceptionally well controlled in experiment,

with λ = 10nm the most common [47, 48]. As such, we will restrict analyses to

wavelengths of this order.

4.1.2 Vertical-Modulation-Induced Spin-Orbit Coupling

While the potential engineered along the nanowire by this modulation is proportional

to x, physically there is also an effect along z, the direction perpendicular to the

interface. Consider taking a slice at a constant value of x in Fig. 4.2. The electrostatic

potential in this slice varies as a function of x depending on how far away from the

(de)protonated LAO surface the nanowire centre is, and thus there is an induced

electric field along z. While the exact first-principles physics to calculate the resulting

spin-orbit coupling from this is beyond the scope of this thesis, the argument for

why we would expect a spin-orbit coupling is similar to that presented in Sec. 2.3.

The potential gradient results in an electric field, which interacts with the moving

electronic spins through a magnetic field in the electron’s frame of reference. This

results in an effective spin-orbit coupling introduced by this, which is written as

HvSOC =
αv
~
pxσy, (4.1)

where αv is the unknown spin-orbit coupling strength engineered by the vertical

modulation. The form of this is the same form as the Rashba spin-orbit coupling

discussed in Sec. 2.3, and so the physics displayed should be similar. However, it

must be emphasised that this spin-orbit coupling considered here arises from the
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Figure 4.2: Diagrammatic representation of the vertical-modulation-induced spin-orbit coupling.
The electrical potential gradient along z as a result of the modulation couples to the momentum of
the spins along x, resulting in a spin-orbit coupling along y.

periodic potential and not from the native spin-orbit coupling in the interface. In

fact, when confining electrons such that they effectively move along one dimension as

in this thesis, the native spin-orbit coupling of the interface is dramatically reduced

[50]. This means that being able to re-engineer this in these systems is an extremely

interesting prospect for realising many of the one-dimensional applications of spin-

orbit coupling such as the Datta-Das spin transistor [57] and Majorana fermions

[58].

4.1.3 Kronig-Penney Model With Spin-Orbit Coupling

First, we will calculate the band structure of the Kronig-Penney model with spin-

orbit coupling without magnetic field to illustrate the procedure for a single spin-

dependent term for which everything remains completely one-dimensional. Following

this, the changes resulting from the full quasi-1D case of interest, including the full

effects of the magnetic field, shall be summarised.
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We begin with the wavefunction eigenvalue equations in each region, where ad-

dition of the spin orbit coupling turns these into matrix equations in the spin degree

of freedom {[
p2
x

2mx

+ V [x]

]
I +

α

~
pxσy

}
ψ(x) = Eψ(x), (4.2)

where ψ(x) is now a vector. Since the Hamiltonian is now expressed as a 2×2 matrix,

there are two eigenvalues and eigenvectors. While these can still be split into left-

moving and right-moving terms, it is useful to introduce an alternate formalism for

obtaining the solutions, as in more complicated cases the k values are not nicely

separated into pairs as ±k. This formalism is found in Ref. [68] among others. To

do this, we first write Eq. (4.2) in terms of kJ (where J denotes the region, either I

or II) by making a plane wave ansatz ψJ =
∑

β,σ d
βσ
J e

ikJx |σ〉, where |σ〉 is the spin

eigenstate and dβσJ are the coefficients of the eigenvectors, giving

[
~2kβJ

2

2mx

+ VJ − E
]
dβσJ − iσαkβJdβσ̄J = 0, (4.3)

where σ̄ is the opposite spin (i.e. ↑̄ =↓ and ↓̄ =↑). Essentially, this is a rewriting of

the usual plane wave in each region but taking into account the spin-mixing which

occurs due to the spin-orbit coupling by weighting according to eigenvectors dβJ .

To solve this, we introduce auxiliary coefficients fβσJ = kβJd
βσ
J and write Eq. (4.3)

as an eigenvalue equation in kβJ :


 0 I

Sβ T β




d

β
J

fβJ


 = kβJ


d

β
J

fβJ


 , (4.4)
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where

SJ =
2mx

~2
(E − VJ)I, (4.5)

and

TJ = −2mx

~2
ασy. (4.6)

From Eq. 4.4, the eigenvalues (kβJ ) and eigenvectors (dβσJ ) can thus be fully deter-

mined for a given energy in each region. These are then split into two groups: L

for left-moving (negative) and diverging (negative imaginary part) values of kβJ and

R for right-moving (positive) and decaying (positive imaginary part) values of kβJ .

Now terms are relabeled such that β counts only within these groups, and we write

kβJM and dβσJM , where M ∈ {L,R} labels left- and right- moving groups. However,

now right-moving and left-moving are not determined from the sign of k but from

the corresponding velocity. This complicates both this procedure and the boundary

conditions, which must also be calculated based on the velocity.

The velocity operator can be obtained from the Heisenberg equation as v̂x =

i
~ [H, x]. This is the same in both regions as the potential in each region commutes

with x, and reads

v̂x =
px
m
I +

α

~
σy. (4.7)

The wavefunction can be separated into left and right moving terms and is rewritten

as

ψJ(x) =
∑

β,σ,M

aβJ,Md
βσ
J e

ikβJx |σ〉 , (4.8)

where aβJ,M denotes the coefficients of the M -moving part of the wavefunction.

This information is then used in writing down the scattering equations. If there is

no spin-orbit coupling, the scattering model describes two uncoupled equations, one
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for each spin. When the spin-orbit coupling is turned on, it essentially couples these

two equations, and the strength of the coupling is determines the eigenvectors. There

are now eight unknowns and eight equations, as all of the couplings can be determined

using the above method. As such, the scattering model now has the spin dependent

continuity condition ψσI (0) = ψσII(0), and the velocity operator forming the second

boundary condition vxψ
σ
I (0) = vxψ

σ
II(0) giving the two boundary conditions as

∑

β

aβLId
βσ
LI |σ〉+ aβRId

βσ
RI |σ〉 =

∑

β

aβLIId
βσ
LII |σ〉+ aβRIId

βσ
RII |σ〉 , (4.9)

and

∑

β

aβLId
βσ
LI

(
~kβLI
m
|σ〉+ iσ

α

~
|σ̄〉
)

+ aβRId
βσ
RI

(
~kβRI
m
|σ〉+ iσ

α

~
|σ̄〉
)

=
∑

β

aβLIId
βσ
LII

(
~kβLII
m
|σ〉+ iσ

α

~
|σ̄〉
)

+ aβRIId
βσ
RII

(
~kβRII
m
|σ〉+ iσ

α

~
|σ̄〉
)
,

(4.10)

where σ̄ denotes the opposite spin (i.e. ↑̄ = ↓ and ↓̄ = ↑). As without spin orbit

coupling, Bloch’s theorem is used to generate two more conditions:

∑

β

aβILd
βσ
IL |σ〉 e−ikILd + aβIRd

βσ
IR |σ〉 e−ikIRd

=eikλ
∑

β

aβIILd
βσ
IIL |σ〉 eikIIL(λ−d) + aβIRd

βσ
IR |σ〉 eikIIR(λ−d),

(4.11)
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and

∑

β

aβLId
βσ
LI

(
~kβLI
m
|σ〉+ iσ

α

~
|σ̄〉
)
e−ikILd + aβRId

βσ
RI

(
~kβRI
m
|σ〉+ iσ

α

~
|σ̄〉
)
e−ikIRd

=eikλ
∑

β

aβLIId
β
LII

(
~kβLII
m
|σ〉+ iσ

α

~
|σ̄〉
)
eikIIL(λ−d)

+eikλ
∑

β

aβRIId
β
RII

(
~kβRII
m
|σ〉+ iσ

α

~
|σ̄〉
)
eikIIR(λ−d),

(4.12)

which also hold. This can then be written as a matrix equation in the same way

as before, using a basis of the scattering coefficients aβJM and solved for the Bloch

quasimomenta k:




dβσRI dβσLI −dβσRII −dβσLII
fβσRI fβσLI −fβσRII −fβσLII
pβσRI pβσLI −qβσRIIeikλ −qβσLIIeikλ

rβσRI rβσLI −sβσRIIeikλ −sβσLIIeikλ







aβRI

aβLI

aβRII

aβLII




= 0, (4.13)

where fβσMJ = dβσMJ
~kβMJ

m
+ iσα~d

βσ̄
MJ , pβσMJ = dβσMJe

−ikβMJd, qβσMJ = dβσMJe
ikβMJ (λ−d), rβσMJ =(

dβσMJ
~kβMJ

m
+ iσα~d

βσ̄
MJ

)
e−ik

β
MJd and sβσMJ =

(
dβσMJ

~kβMJ

m
+ iσα~d

βσ̄
MJ

)
eik

β
MJ (λ−d). By re-

quiring a determinant of zero for the system, an equation in k can be obtained, and

the band structure determined.

In Fig. 4.3, the effect of adding the Kronig-Penney potential to a spin-orbit

coupled system is displayed. Firstly, the features far from the band gap are ex-

tremely similar, displaying the familiar double minimum expected from a system

with spin-orbit coupling, albeit shifted in energy by the potential. However, rather

than appearing directly at the Brillouin zone edge, the band gap is opened inside

66



Kronig-Penney Waveguides

Figure 4.3: Band Structure of the Kronig-Penney model with spin-orbit coupling α = 1.0meVnm
(blue) compared to the band structure without Kronig-Penney modulation (black) folded back into
a λ = 20nm Brillouin zone, for d = λ/2 and V0 = 0.1meV.

the Brillouin zone. This occurs due to the splitting of the dispersion relation into

two centred around ±kmin. Then, as the band structure is folded back into the first

Brillouin zone, the band gaps occur inside rather than at the edge. This is illustrated

more cleanly in Fig. 4.4.

When moving to a full quasi 1D picture with magnetic field included, the matrices

in each region become

SJ =
2mxΩ

2

~2ω2
y

[
(E − VJ − Vy,z) I +Mσz

]
, (4.14)

and TJ unchanged, where Vy,z = ~Ω (ny + 1/2) + ~ωz(2nz + 3/2) and M = gµBB/2.

Terms O(α2) have been neglected for now as α is assumed to be small due to the

modulation amplitude being less than the trapping energy (α ≤ 0.1meV vs α ≥
0.6meV). The velocity operator becomes

v̂x =
ω2
y

Ω2

[px
m
I +

α

~
σy

]
, (4.15)
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Figure 4.4: Illustration of the effect of spin-orbit coupling on the Kronig-Penney band structure.
At α = 0 (blue), the band gap lies at the edge of the Brillouin zone. When increasing α (red), the
entire band structure is translated left for one energy state (red) and right for the other (not shown
for clarity). This causes the lowest band to fold back in to the Brillouin zone and pushes the band
gap away from the B.Z. edge.

which means, due to the factor ω2
y/Ω

2 being a prefactor on both sides of the boundary

conditions in Eq. (4.22) and Eq. (4.24), leaving them unchanged. The only difference

comes from the modified form of SJ when calculating the momenta in each region.

The resulting band structures are displayed in Fig. 4.5, where we see the inclusion

of the magnetic field shifts the Kronig-Penney gap in energy, and also introduces a

spin-orbit gap at k = 0.

When calculating the transconductance spectrum for this model, we obtain Fig. 4.6.

With V = 0meV, we obtain the standard quantised conductance peaks as displayed

in Ch. 3. However, when including V = 0.075meV, this introduces a fracturing of

these transconductance peaks. This introduces regions of negative transconductance

(decreasing conductance with increasing chemical potential), which are displayed in

white. This can be directly compared to experiment in Fig. 4.7, where a region of

negative transconductance is observed in the blue box, along with a fracturing of the
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Figure 4.5: Band structures for ny = 0, nz = 0 in the quasi 1D waveguide model including
spin-orbit coupling αv = 1.0meVnm and Kronig-Penney modulation V0 = 0.1meV for a) B = 0T
and b) B = 1T. Parameters read mx = my = 1.9me, mz = 6.5me, ly = 26nm, lz=8.1nm, and
g = 0.6, with λ = 20nm and d = λ/2.

lowest transconductance peak.

4.1.4 Enhanced Pairing In Kronig-Penney Waveguides

To study the interplay between the engineered spin-orbit coupling and electron-

electron interactions, the effect of the potential on the band structure is temporarily

neglected (this will be reintroduced in the next chapter). Thus, the only effect con-

sidered in this section resulting from the potential is the vertical-modulation-induced

spin-orbit coupling.

Eq. (4.1) describes this effect at a single particle level. To include it in the mean-

field model developed in the previous chapter for studying interactions in electron

waveguides, it must be written in second quantization. Using the same definition of
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a b

Figure 4.6: Theoretical transconductance calculations of the (a) straight waveguide, and (b)
Kronig-Penney Waveguide with V = 0.075meV, for mx = my = 1.9me, mz = 6.5me, g = 0.62,
ly = 26nm, and lz = 8.1nm. The regions in white denote negative transconductance. Figure
adapted from One-dimensional Kronig-Penney superlattices at the LaAlO3/SrT iO3 interface, Na-
ture Physics volume 17, pages 782–787 (2021) [47]. Permission obtained from Springer Nature and
the authors.

the mode operators as Eq. (2.38) results in the form

HvSOC = −iαv
∑

kσ

σkc†kσckσ̄. (4.16)

This has the same form as the Fock terms described in Eq. (2.45), which are

HF =
∑

k

χc†k↓ck↑ + χ∗c†k↑ck↓. (4.17)

Since these Fock processes are now mediated by the spin-orbit term, they can no

longer be neglected. We are still most interested in the pairing, which is given by

∆ =
U

2π

∫
dk〈c−k↓ck↑〉. (4.18)

In Sec. 3.3, it was specified that this is a real quantity. This is unchanged by the
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Figure 4.7: Experimental (a) transconductance and (b) conductance plots of the Kronig-Penney
waveguide. In the blue boxed region, we observe a strong conductance baseline of 2e2/h which is a
signature of electron pairing at such high fields. Additionally, there is a fracturing of this plateau,
which we suggest comes from the Kronig-Penney gap in the band structure. Again, the regions in
white denote transconductance. The yellow and red boxed regions denote effects which are beyond
the scope of this thesis. Figure adapted from One-dimensional Kronig-Penney superlattices at
the LaAlO3/SrT iO3 interface, Nature Physics volume 17, pages 782–787 (2021) [47]. Permission
obtained from Springer Nature and the authors.
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Figure 4.8: Correlation functions for the vertically-modulated waveguide at various different spin-
orbit coupling strengths and magnetic fields. The blue and orange lines are the 〈c†k↑ck↑〉 and 〈c†k↓ck↓〉
respectively (Hartree correlations), the green is the

∣∣∣Im
(
〈c†k↓ck↑〉

)∣∣∣ (Fock correlation), and the red

is the 〈c−k↓ck↑〉 (pairing correlation). These have been performed with g = 0.6, mx = my = 1.9me,
mz = 6.5me, ly = 26nm, lz = 8.1nm, and U = −4.0meVnm.

presence of the Fock terms, and thus should still correspond to the appearance of a

gap in the excitation spectrum.

To study in more detail how the interactions are affected by the spin-orbit cou-

pling, we analyse the correlation functions 〈c†kσckσ〉, 〈c†k↓ck↑〉, and 〈c−k↓ck↑〉 as a func-

tion of k. In Fig. 4.8 , these are presented for various values of the spin-orbit coupling

strength and two different magnetic fields. First, a general trend is that increasing

the spin-orbit coupling strength α splits the peaks in the pairing correlation 〈c−k↓ck↑〉
(in red). At finite magnetic fields, the height of the peak is also enhanced by this

(the height of the peaks in the red curve when going from Fig. 4.8d to Fig. 4.8e),

suggesting an enhanced pairing strength occurring as a result of the engineered spin-

orbit coupling. Additionally, the inclusion of the spin-orbit coupling leads to two
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separate plateaux in the Hartree correlations (blue and orange) at approximately

half-filling. This is consistent with the spin-mixing effect expected when this kind

of spin-orbit coupling is introduced, and occurs alongside the inclusion of the Fock

correlations (green). Essentially, the spin-orbit coupling leads to a reduction in the

population in the up state to partially populate the down.

Now in order to determine the overall effect of these changes to the correlation

functions, we take the integral over k at each point in the (B,µSG) parameter space,

and generate phase diagrams for various values of spin-orbit coupling strength. We

generate the mean-fields which describe the interacting effects in the Hamiltonian

and allows for the characterisation of the electronic state in each region. Recall

from Sec. 3.3 that a finite ∆ implies a paired electron ground state, and ∆ = 0 but

Σσ̄ > 0 implies the single electron state σ is occupied. The result of this procedure

is displayed in Fig. 4.9. The main feature that can be seen from these plots is

a significant enhancement in the area at which electrons pair when increasing the

spin-orbit coupling. Additionally, the Zeeman splitting of the two unpaired bands

appears to reduce at higher spin-orbit coupling strengths, as the area of the single-

electron phase is reduced (light blue). This does not appear at low fields as the

magnetic field is not strong enough to break pairs in the ground state. Both of these

observations suggest that the electron-electron interactions are being enhanced by

the spin-orbit coupling. At high chemical potentials, pairs are broken to form single

electron states. This is due to the fact that pairing is proportional to density of

states, and this peaks at the bottom of the single-electron bands and decays as 1/k

in one dimension.

These results are consistent with experimental transconductance measurements,

which are displayed in Fig. 4.7. As is shown in the transconductance plot in Fig. 4.7a,

the transconductance forms a (mostly) stable first peak, which the conductance plots
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Figure 4.9: Phase diagrams showing the effect of increasing the vertical-modulation-induced spin-
orbit coupling strength. Simulations performed with g = 0.6, mx = my = 1.9me, mz = 6.5me,
ly = 26nm, lz = 8.1nm, and U = −4.0meVnm.

in Fig. 4.7b show attains a conductance of 2e2/h up to B = 16T. This is significantly

enhanced compared to the straight waveguide, where conductances peaks of only e2/h

are observed above B ∼ 2T (see Fig. 3.4).

4.2 Laterally-Modulated Waveguides

The second section of this chapter is dedicated to the laterally-modulated waveguide

model. We discuss the effects of the sinusoidal modulation of the position of the

nanowire in-plane (i.e. along the two-dimensional LAO/STO interface) as a mod-

ulation in the centre of the harmonic trap, as visualised in as in Fig. 4.10. Then,

focusing on the engineered spin-orbit coupling once more, we see that this gives rise

to triplet pairing of electrons in the channel.
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4.2.1 Serpentine Modulation

This lateral “serpentine” modulation has the 2D Hamiltonian

H =
p2
x

2mx

+
p2
y

2my

+
my

2
ω2
y(y − Ay sinQx)2. (4.19)

This is difficult to solve analytically, so the wavefunction is approximated as a har-

monic oscillator with a modulated centre of motion. This approximation neglects

the coupling between x and y induced by the modulation, and requires Ay be smaller

than the width of the nanowire (Ay = 10nm is common, versus ly = 26nm).

The main effect of interest appearing from this modulation is an engineered spin-

orbit coupling. Following the logic in Sec. 4.2.3, a y-dependent electric field leads to

a lateral-modulation-induced spin-orbit coupling given by

HlSOC = −αl
~
pxσz, (4.20)

which resembles the Zeeman shift introduced previously but is proportional to px.

This is shown in Fig. 4.10 where the effective magnetic field the electron feels from

the engineered electric field along y is indeed parallel to the out-of-plane applied

external magnetic field.

We study the physics of this lateral-modulation-induced spin-orbit coupling in

the same order as the vertical-modulation-induced spin-orbit coupling. First, we

will detail the effect of this on the band structure, and then show the interplay

between it and the Zeeman field. This is displayed in Fig. 4.11. When introducing

the lateral-modulation-induced spin-orbit coupling in the absence of magnetic field,

the minimum of the energy band is split into two at k0 = ±αlmx/~2, which increases

linearly with increasing αl. However, when introducing the magnetic field B, the
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Figure 4.10: Graphical depiction of the engineering of the lateral-modulation-induced spin-orbit
coupling. The modulation creates an electrical potential gradient along y, which couples to the
motion along x resulting in a spin-orbit coupling along z.

interplay between αl and B leads to an asymmetry in the energies, which can be seen

by inserting k0 (which is unchanged by the magnetic field) back into the Hamiltonian

giving minimal eigenvalues

Emin
k = −

(
1− ω2

c

Ω2

)
α2
lmx

2~2
± gµB

2
B.

This introduced asymmetry in the band structure is important as it breaks a crucial

symmetry in the interacting case, allowing for the formation of triplet pairs.

4.2.2 Triplet Pairing In Serpentine Waveguides

In the mean-field theory used so far, triplet pairing does not appear, and only singlet

pairing occurs. This is due to the symmetry that Ep(k) = −Eh(k), where p and h

refer to the particle and hole sectors respectively. It should be noted that this is not
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Figure 4.11: Band structures showing the interplay between magnetic field B and lateral-
modulation-induced spin-orbit coupling strength αl. The red lines are spin-up, and the blue lines
spin-down. For all of these, g = 0.6, mx = my = 1.9me, mz = 6.5me, ly = 26nm, lz = 8.1nm, and
λ = 10nm.
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the same as particle-hole symmetry, which is Ep(k) = −Eh(−k). This symmetry

holds whenever the band structure is symmetric around k = 0.

The influence of this property can be seen by defining the singlet and triplet

operators as

2ŝk = c−k↓ck↑ − c−k↑ck↓, (4.21)

and

2t̂k = c−k↓ck↑ + c−k↑ck↓. (4.22)

By performing the Bogoliubov transformation as in Sec. 2.4, it can be shown that

for a symmetric band structure, c−k↑ck↓ = −c−k↓ck↑. This means that ŝk = c−k↓ck↑,

which is the correlation function which appears in the mean-field energy throughout

the thesis. However, if the band structure is asymmetric, c−k↑ck↓ 6= −c−k↓ck↑. Thus,

the lateral-modulation-induced spin-orbit coupling as described in the previous sec-

tion could stabilise triplet pairing in these systems.

In the interacting formalism as previously introduced, the lateral-modulation-

induced spin-orbit coupling reads

HlSOC = αl
∑

k

c†k↓ck↓ − c†k↑ck↑. (4.23)

Upon introducing this to the interacting model, the correlation functions can be

studied as in the above section on the vertical modulation. However, in this case the

Fock terms are zero since there is no spin-mixing effect, and instead of looking at the

pairing correlation function, we include the singlet and triplet correlation functions

instead. These are displayed in Fig. 4.12. Firstly, when αl = 0.0meVnm, there are

no triplet correlations (in red) and a strong contribution of the singlet correlation
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Figure 4.12: Correlation functions for the lateral-modulated waveguide at various different spin-
orbit coupling strengths and magnetic fields. The blue and orange lines are the 〈c†k↑ck↑〉 and 〈c†k↓ck↓〉
respectively (Hartree correlations), the green is the |〈sk〉| singlet correlation, and the red is the |〈tk〉|
triplet correlation. These have been performed with g = 0.6, mx = my = 1.9me, mz = 6.5me,
ly = 26nm, lz = 8.1nm, and U = −4.0meVnm.

(green), as expected. However, when αl > 0, the pairing correlation is split into two

branches corresponding to singlet and triplet pairing correlators, which peak at the

momenta where the occupations (which are the Hartree terms in blue and orange)

drop significantly. This effect is also stable to the inclusion of the magnetic field.

Absolute values are plotted to keep the axes the same, as the triplet correlation is

an odd function as shown in Fig. 4.13.

One property of note for the triplet pairing is that there is no specific mean-field

pertaining to it. As is shown in Fig. 4.13, the triplet correlation function is odd in k,

and thus has an integral of zero. To construct phase diagrams including the triplet
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Figure 4.13: Triplet correlation function from Fig. 4.12f plotted in full to show that it is odd.
This is important as this means the integral of this correlation function alone is zero, making it
necessary to be more careful when defining a triplet energy.

pairing, we define the integrals

ns =
1

2π

∫
dk|〈ŝk〉| and nt =

1

2π

∫
dk|〈t̂k〉|. (4.24)

which are related to the density of singlet and triplet pairs respectively. Through

these, we define the energies

∆s = Uns and ∆t = Unt, (4.25)

which are now the parameters which will be used to determine the different regions

of the phase diagram, in analogy with Fig. 3.8. These have been defined to be consis-

tent with previous calculations in respect to the threshold energy for the numerical

calculations.

In Fig. 4.14, the phase diagrams showing the effect of a non-zero lateral spin-orbit
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Figure 4.14: Phase diagrams showing the effect of increasing the lateral-modulation-induced spin-
orbit coupling strength. Simulations performed with g = 0.6, mx = my = 1.9me, mz = 6.5me,
ly = 26nm, lz = 8.1nm, and U = −4.0meVnm.

coupling are displayed. Fig. 4.14a with zero lateral spin-orbit coupling displays only

singlet pairing. However, when the lateral spin-orbit coupling is non-zero, this results

in triplet pairing in the same region of parameter space where the singlet pairing is

non-zero, giving rise to a combination of the two in the waveguide region. This occurs

due to the lateral-modulation-induced spin-orbit coupling producing an asymmetry

in the excitation spectrum as a function of k, leading to a non-zero odd part of the

wavefunction. Unlike in the case with vertical spin-orbit coupling, the area of the

region in parameter space where electron pairing occurs is not significantly affected.

The numerical deviations here are likely numerical and may be reduced by increasing

the precision of the simulation.

4.3 Conclusion

In this chapter, we have seen that the vertical modulation leads to a significant

enhancement in the singlet pairing strength and area when looking solely at the
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engineered spin-orbit coupling resulting from this. This is in contrast to the lateral

modulation, which does not strongly affect the region in the parameter space and the

amplitude of ∆S but instead generates a contribution from the triplet pairing. My

hypothesis is that the pairing energy is lowered due to the fact that the triplet energy

is zero, and so splitting the total pairing into the two different pieces naturally lowers

the energy. These two spin-orbit couplings will be at the forefront of the physics of

the helical waveguide in the next chapter.
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Chapter 5

Helical Waveguide

One aspect of the applicability of LAO/STO to quantum simulation is the high

degree of control over the electrons in the nanowires. In this chapter, I analyse a

specific case of this - the helical waveguide. In this system, the minimum of the

electronic potential follows a helix along the waveguide.

Chirality is an important property in chemistry. For example, some drugs such as

Citalopram are chiral, but only one of its enantiomers is responsible for its medicinal

effect [69]. Another is Penicillamine, which is a drug for rheumatoid arthritis in

one form, but a potent toxin in another [70]. A more familiar example of a chiral

molecule is DNA, where the double-helix structure is right-handed [71].

Electron transport in chiral systems is exciting for many reasons, but one such

is the study of quantum effects in DNA. The idea of chiral-induced spin-selectivity

(CISS) [72] has long been known to play a role in charge transfer in DNA, but this

is extremely difficult to control in the molecules themselves. However, if quantum

transport can be simulated in a highly controllable and measurable platform such as

LAO/STO nanowires, they would be an attractive prospect for studying CISS via

analogue quantum simulation of DNA.



CISS is not only of interest for its role in the function of DNA, but also may

underpin new spin-based technologies. For example, one group at National Renew-

able Energy Laboratory (NREL) created a spin-polarised LED using the effect [73]

without the need for magnetic fields. Additionally, CISS can also be used in the

separation of the two different enantiomers of drugs in a process known as enan-

tioseparation [74].

When chiral nanowires are made in LAO/STO (with geometry as displayed in

Fig. 5.1), compared to the singly-modulated waveguides discussed in the previous

chapter, there are both new features and quantitatively more pronounced effects. The

experimental transconductance measurements show extremely strong pairing, up to

above 18T, which can be seen in Fig. 5.2a,b. This contrasts strongly to the straight

(control) waveguide in Fig. 5.2c,d, where the pairing breaks at around B = 10T.

However, there is no longer the presence of a fracturing of the first transconductance

peak (see Fig. 4.7a) - rather, there is a stable plateau of G = 2e2/h. Another main

point of interest is the oscillations that take place before the second conductance

plateau of 4e2/h, which appear to take place on top of a 2e2/h baseline.

It is this effect that the final chapter of my thesis focuses on. We construct a

mean-field model which works even in the presence of a periodic potential to study

the effect of electron-electron interactions. This provides the numerical data to study

in detail the effect of every parameter on the correlation functions obtained from the

model. Finally, we develop a phenomenological pair-scattering model, and show that

a baseline of 2e2/h with oscillations up to 4e2/h on top of this is consistent with a

selective back-scattering of triplet pairs incident on the junction between helical and

unmodulated regions.
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Figure 5.1: Graphical depiction of the geometry of the helical devices of interest to this thesis.
The combination of the lateral and vertical modulations results in a helical potential minimum,
displayed here by the green line.

5.1 Single Particle Physics

5.1.1 No Spin-Orbit Coupling

We begin with the Hamiltonian for the full straight waveguide

H =

[
(px − eBy)2

2mx

+
p2
y

2my

+
p2
z

2mz

+
my

2
ω2
yy

2 +
mz

2
ω2
zz

2 − µSG
]
Iσ−

gµB
2
Bσz. (5.1)

The model for the helical waveguide includes both of the modulations discussed

in Ch. 4. The vertical modulation, which is modelled by a Kronig-Penney-type

potential, reads

Hver = Az cosQxIσ, (5.2)

for Q = 2π/λ, where λ is the wavelength of the modulation. Here Az is the amplitude

of the modulation, with units of energy, and Iσ is the identity matrix on the spin

degree of freedom. The lateral (serpentine) modulation takes the form of an x
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Figure 5.2: Experimental transconductance measurements showing the enhanced pairing and
conductance oscillations above 2e2/h in the helical waveguide compared to the control waveguide.
Figure adapted from the Doctoral Thesis Experimental Solid State Quantum Simulation Using
1D Superlattice Structures by Megan Briggeman [49]. (A) and (C) are measurements of the con-
ductance as a function of magnetic field, with each line representing a different magnetic field.
These “waterfall plots” nicely show the plateaus in conductance appearing. (B) and (D) show the
respective transconductances in the (B,µSG) parameter space.
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dependent change in the centre of motion of the y trapping potential, reading

Hlat =
my

2
ω2
y(y − Ay sinQx)2Iσ, (5.3)

where Az is the amplitude of the lateral modulation, with units of position.

H0 +Hver +Hlat is diagonalised similarly to the procedure in Ch. 2.3. The wave-

function is written as a product of harmonic oscillator states and Bloch functions,

which forms a convenient basis for this problem

ψ ≡ ψk,ny ,nz ,σ(x, y, z) =
∑

G

uGkσe
i(k+G)xφny(y − ỹ0)φnz(z)|σ〉, (5.4)

where φny(y−ỹ0) is in principle x dependent (at this stage, ỹ0 is unknown). However,

since the modulation amplitude (10nm) is small compared to the width of the waveg-

uide (ly = 26nm), deviations from an x-independent harmonic oscillator are expected

to be small, and so this contribution is neglected. Combining the approach to solving

for the band structure in Sec. 2.3 with the approach to the straight waveguide shown

in Sec. 3.1 leads to the matrix equation




TG+2Q
k,ny ,nz

AG+2Q
− Y 0 0

AG+Q
+ TG+Q

k,ny ,nz
AG+Q
− Y 0

Y AG+ TGk,ny ,nz AG− Y

0 Y AG−Q+ TG−Qk,ny ,nz
AG−Q−

0 0 Y AG−2Q
+ TG−2Q

k,ny ,nz







UG+2Q
k

UG+Q
k

UG
k

UG−Q
k

UG−2Q
k




= E




UG+2Q
k

UG+Q
k

UG
k

UG−Q
k

UG−2Q
k




, (5.5)

where UR
k = (uRk↑, u

R
k↓)

T for indexR denoting the Brillouin zone, TRk,ny ,nz = diag(tRk,ny ,nz ,↑, t
R
k,ny ,nz ,↓)
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for

tRk,ny ,nz ,σ =

(
1− ω2

c

Ω2

)
~2(k +R)2

2mx

+ ~Ω

(
ny +

1

2

)
+ ~ωz

(
2nz +

3

2

)

−µSG +

(
1− ω2

y

Ω2

)
my

4
ω2
yA

2
y − g

µB
2
Bσ,

AR± =
(
∓iω

2
cω

2
y

Ω2

~myAy
eB

(
k +

(
R± Q

2

))
+ Az

2

)
I, and Y =

(
1− ω2

y

Ω2

)
my
8
ω2
yA

2
yI. The y

eigenfunction in Eq. (5.4) is, under the approximations previously discussed, found

to be

φny(y − ỹ0) ≈
(
myΩ

π~

) 1
4 1√

2nyny!
e−

myΩ

2~ (y−ỹ0)2

Hny

(√
myΩ

~
(y − ỹ0)

)
, (5.6)

where Hn(β) denotes the nth Hermite polynomial in β, ỹ0 = ω2
c

Ω2y0 +
ω2
y

Ω2Ay sinQx,

with ωc, Ω, and y0 retaining their definitions from Sec. 3.1. This is important to

detail as it will be used in the following section when we discuss spin-orbit coupling.
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Figure 5.3: Band structures for the helical waveguide (Ay = 10nm, Az = 0.1meV for zero spin-
orbit coupling (a) without and (b) with magnetic field B = 1T. The blue and orange-dashed lines
are the spin-down and spin-up respectively. Other parameters are mx = my = 1.9me, mz = 6.5me,
ly = 26nm, lz = 8.1nm, λ = 10nm, and g = 0.6.

The band structures are generated by solving Eq. (5.5) for k ∈ [−Q/2, Q/2).

Results of this are displayed in Fig. 5.3. The Az modulation behaves exactly as
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expected, opening up a gap on the order of Az at the Brillouin zone edges k/Q =

±0.5. Secondly, the magnetic field flattens out the band structure as reported in

Sec. 3.1, which has the effect of bringing down the band gap in energy. However,

there is no effect from the Ay modulation, which would be expected to introduce

band gaps in the centre of the Brillouin zone due to the Q/2 shift in momentum

appearing in AR±. However, this term is exactly 0 at B = 0, and at B = 1T is

∼ 0.1meV for Ay = 10nm, but is stronger at higher k values. Since we restrict to

only low energies and thus low k in this thesis, the Ay modulation does not strongly

affect the transport features of interest.

5.1.2 Adding Spin-Orbit Coupling

Fully including both the spin-orbit couplings as discussed in Ch. 4 results in the

addition of

HSOC =
(αvσy − αlσz)

~
(px − eBy) (5.7)

to the Hamiltonian. The same treatment is now performed, but explicitly using

Eq. (5.4) as the y basis functions, giving

ESOC =
∑

q′

aq′,σ′(αv 〈σ|σy |σ′〉 − αl 〈σ|σz |σ′〉)

×
(
q′δq,q′ −

eB

~

(∫
dxei(q

′−q)xỹ0 +

∫
dβφn(β)βφn′(β)

))
,

(5.8)

where β = y− ỹ0 has been defined for convenience. The last term in this equation is

an inter-band coupling which is introduced by the spin-orbit coupling. We neglect

this term due to the approximation of the wavefunction as being separable into a

harmonic oscillator along y and Bloch waves along x. Relaxing this approximation

would lead to a similar effect with coupling between other modes, and since this
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is assumed to be small due to the modulation (since the amplitude 10nm is small

compared to the width 26nm) then the inter-band effects from the associated spin-

orbit coupling are expected to also be small. Evaluating the rest of the expression

gives

ESOC =iσαv

[
i
eB

2~
ω2
y

Ω2
Ay (aq+Q,σ̄ − aq−Q,σ̄)−

(
1− ω2

c

Ω2

)
qaq,σ̄

]

+αlσ

[
i
eB

2~
ω2
y

Ω2
Ay (aq+Q,σ − aq−Q,σ)−

(
1− ω2

c

Ω2

)
qaq,σ

]
,

(5.9)

where ↑̄ =↓ and ↓̄ =↑. This term can then be included in the matrix representation

in Eq. (5.5).

Fig. 5.4 shows the effect that including spin-orbit coupling has on the band

structure at B = 1T. The columns denote two different vertical spin-orbit coupling

strengths αv = [0.0, 2.0]meVnm and the rows denote two different lateral spin-orbit

coupling strengths αl = [0.0, 2.0]meVnm. In both cases, the spin-orbit coupling

essentially splits the single Brillouin-zone into two centered away from k = 0, shift-

ing where the band gap occurs in the spectrum. This is the same behaviour as was

seen in the Kronig-Penney model when adding spin-orbit coupling. Additionally, the

lateral-modulation-induced spin-orbit coupling induces an asymmetry in the band

structure as was noted in Ch. 4. The Ay contribution is too small to have a large

effect on the band structure in the energy range considered, as discussed also for

Fig. 5.3. The amplitude of the modulation could be increased, but this would cause

the approximation of small Ay compared to the waveguide width to break down.

5.2 Interacting Helical Waveguide

To include the effects of the periodic modulations and interactions at the same time,

we take a different approach to the construction of a mean-field theory than the one
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Figure 5.4: Band structures for the helical waveguide as in Fig. 5.3 with the addition of spin-
orbit coupling. The left column is for αv = 0.0meVnm and the right for αv = 2.0meVnm. The
top row is for αl = 0.0meVnm and the bottom for αl = 2.0meVnm. The other parameters read
mx = my = 1.9me, mz = 6.5me, ly = 26nm, lz = 8.1nm, λ = 10nm, and g = 0.6. Throughout,
B = 1T.

taken in the previous chapters. Recalling Bloch’s theorem [63] which reads

ψk(x) =
∑

G

uGk e
i(k+G)x,

the goal is to define an operator such that Ψ(x) |0〉 = ψ(x), where |0〉 is the vacuum

state. A natural choice of this definition is

Ψk(x) =
∑

G

cGk e
i(k+G)x, (5.10)
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where cGk is an operator that creates an electron from the vacuum state at quasimo-

mentum k in Brillouin zone G with weighting uGk . In essence, the field operator has

been expanded in a basis of Bloch operators rather than plane waves. Including the

other quantum numbers of interest (neglecting z direction in the notation as it will

not be varied here), the field operator reads

Ψk,ny(x, y) =


Ψk,ny ,↑(x, y)

Ψk,ny ,↓(x, y)


 =

∑

G

ei(k+G)xφ(y)


c

G
k,ny ,↑

cGk,ny ,↓


 , (5.11)

and the total many-body Hamiltonian with contact interactions becomes

H =
∑

k,G

∑

σ

(
tGk,ny ,σ + Σny ,σ̄ − σAGk,l

)
cG†k,ny ,σc

G
k,ny ,σ − (χ∗ny − iAGk,v)c

G†
k,ny ,↓c

G
k,ny ,↑

−(χny + iAGk,v)c
G†
k,ny ,↑c

G
k,ny ,↓ + ∆ny

(
cG†k,ny ,↑c

−G†
−k,ny ,↓ − cGk,ny ,↑c

−G
−k,ny ,↓

)

−
∑

σ

Y cG†k,ny ,σ

(
cG−2Q
k,nyσ

+ cG+2Q
k,nyσ

)
+
∑

σ,τ

AGk,σ,τc
G†
k,ny ,σ

cG+τQ
k,ny ,σ

−
∑

σ,τ

στDvc
G†
k,ny ,σ

cG−τQk,ny ,σ′ ,

(5.12)

where σ̄ denotes the opposite spin to σ. New notations have been defined to keep

the equations concise. AGk,η = Jcαη(k +G) is the spin-orbit coupling with η = {v, l}
denoting the direction, and Jκ = 1 − ω2

κ/Ω
2 where κ = {c, y} denotes whether this

refers to the cylotron frequency ωc or the bare y trapping frequency ωy. Additionally,

we utilise τ = ±1 (is not a physical quantity and is used to keep the correct signs) to

write ARk,σ,τ = ARτ − iσDl. t
G
k,ny ,σ

, ARτ and Y are kept as defined in the single particle

case, Dη = eB
~
ω2
y

Ω2

Ay
2
αη. The mean fields now read

Σny ,σ =
U

2π

∑

G

∫
dk〈cG†k,ny ,σ̄cGk,ny ,σ̄〉, (5.13)

92



Interacting Helical Waveguide

χny =
U

2π

∑

G

∫
dk〈cG†k,ny ,↓cGk,ny ,↑〉, (5.14)

and

∆ny =
U

2π

∑

G

∫
dk〈c−G−k,ny ,↓cGk,ny ,↑〉. (5.15)

Eq. (5.12) is quadratic and can thus be diagonalised, and the self-consistent approach

outlined in previous chapters can be used. Throughout, T = 25mK is used.

First, in order to understand the changes when a periodic potential is introduced

into the interacting calculation, we study solely the interplay between a Kronig-

Penney type potential (Az > 0) and electron-electron interactions. Fig. 5.5 displays

the correlation functions which make up the mean fields as a function of quasimo-

mentum k around the Brillouin zone edge, with the band structure in each regime

displayed below.
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Figure 5.5: Correlation functions and excitation spectra as a function of q around the left edge
of the Brillouin zone at µSG = 0.56, µSG = 0.59meV, and µSG = 0.62meV for vertical modulation
only. Waveguide parameters are mx = my = 1.9me, mz = 6.5me, ly = 26nm, lz = 8.1nm, B = 0T,
λ = 10nm, and U = −2.0meVnm.
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In Fig. 5.5a, far from the Kronig-Penney gap (µSG = 0.56meV) but also far from

the bottom of the energy band, the pairing (orange) is small, even at its peak at

q/Q = −0.45. Also seen are effects from the periodic structure appearing in the

occupation (blue), as there is a contribution from a Fermi point on the other side of

the Brillouin zone edge at q/Q = −0.56. As the chemical potential is increased to just

below the gap in Fig. 5.5c (µSG = 0.59meV), a pairing peak appears around the B.Z.

edge (q/Q = −0.5), which also appears to have a double peak structure coming from

contributions either side of the B.Z. edge at roughly q/Q = −0.48 and q/Q = −0.52.

Finally in Fig. 5.5e, as the chemical potential enters the band gap (µSG = 0.62meV),

the pairing completely vanishes and the occupation smooths out over the Brillouin

zone edge q/Q = −0.5. This can be related to the the band structures corresponding

to each correlation plot. The two Fermi points in Fig. 5.5b occur at the same

values of momentum as the edges seen in the occupation correlations in Fig. 5.5a, at

approximately q/Q = −0.56 and q/Q = −0.44. In Fig. 5.5d, a gap centred around

the B.Z. edge q/Q = −0.5 forms, which is consistent with Fig. 5.5c having a non-zero

pairing correlation. Finally in Fig. 5.5f, there is a large gap in the band structure at

the B.Z. edge q/Q = −0.5. This is the Kronig-Penney gap and is the reason behind

the disappearance of the pairing in Fig. 5.5e.

This gives a strong foundation for looking at the correlations for the helical

waveguide. While these are more complicated, the basic features are the same,

with additional features which were discussed in Sec. 4.3. These are displayed in

Fig. 5.6. First, at both values of the chemical potential, a depletion of the occupations

is observed, at q/Q = ±0.2 and q/Q = ±0.4 in Fig. 5.6c and at q/Q = ±0.38

q/Q = ±0.59 in Fig. 5.6d . In the case without spin-orbit coupling and interactions,

these would be the Fermi edges at which the occupations would drop down to zero,

but due to the spin-orbit coupling mixing the spins, they become associated with a
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superposition of both spins. This was also reported in [50], and is marked by the

appearance of Fock terms.

Secondly, the appearance of triplet pairing (in green), which has been shown to

arise from the σz spin-orbit coupling, is observed in Fig. 5.6e and Fig. 5.6f. This

peaks at the Fermi points, around q/Q = ±0.2 and q/Q = ±0.41 in Fig. 5.6e, and

around q/Q = ±0.38 and q/Q = ±0.59 in Fig. 5.6f. These can be associated to the

Fermi points by looking at the Fermi energy in the band structures in Fig. 5.6a and

Fig. 5.6b, respectively. This appearance of triplet pairing is due to the asymmetry in-

troduced into the spectrum by the interplay between the lateral-modulation-induced

spin-orbit coupling and the magnetic field, which breaks the symmetry Ek = −Ek
(note that we still have particle hole symmetry Ek = −E−k). As in the previous

section, when the Fermi energy is far from the Brillouin zone edges, we do not see

strong changes to the expected correlation spectrum in Fig. 5.6c and Fig. 5.6e. How-

ever, when we approach the band gap we begin to see contributions from both sides

of the Brillouin zone edge Fig. 5.6d and Fig. 5.6f, seeing peaks at k/Q = ±0.42 and

k/Q = ±0.62. All of these features can be matched to the interacting equivalent of

Fermi points in the excitation spectra in Fig. 5.6a, marking closest approaches of the

bands to the Fermi energy.

Notable also is the splitting of the pairing peaks into two in Fig. 5.6f. This also

occurs due to the asymmetry - the offset of the bands results in a double-crossing

of the Fermi energy centred around the aforementioned points, as each gap point no

longer occurs at the Fermi energy but rather is slightly offset from the Fermi energy.

Now that the correlation functions have been understood in detail, the overall

mean fields can be studied. We display these in the full (B, µSG) parameter space in

Fig. 5.7. First, turning on just the spin-orbit couplings leads to a slight enhancement

of the pairing area and pairing field, but this is not extremely large due to the splitting

95



Interacting Helical Waveguide

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

E
q

(m
eV

)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

H
ar

tr
ee

C
or

re
la

ti
on

s (c)

10−3

10−2

10−1

P
ai

ri
n

g
C

or
re

la
ti

on
s (e)

−0.8 −0.6 −0.4 −0.2 0.0
q/Q

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

E
q

(m
eV

)

(b)

−0.8 −0.6 −0.4 −0.2 0.0
q/Q

0.0

0.2

0.4

0.6

0.8

1.0

H
ar

tr
ee

C
or

re
la

ti
on

s (d)

〈c†↑qc↑q〉
〈c†↓qc↓q〉

−0.8 −0.6 −0.4 −0.2 0.0
q/Q

10−3

10−2

10−1

P
ai

ri
n

g
C

or
re

la
ti

on
s (f) |〈sq〉|

|〈tq〉|

Figure 5.6: Excitation spectra and band structures for the helical waveguide with U =
−4.0meVnm, αl = αv =2.0meVnm, Ay = 10nm, and Az = 0.2meV, as a function of the mo-
mentum q in an extended zone scheme, focusing on one side of the Fermi surface. a) Excitation
spectrum at µSG = 0.45meV. b) Excitation spectrum at µSG = 0.85meV. c) Hartree correlations at
µSG = 0.45meV. d) Hartree correlations at µ = 0.85meV. e) Pairing correlations on a log scale at
µSG = 0.45meV. f) Pairing correlations on a log scale at µSG = 0.85meV. In orange and blue, we
display the occupations of spin-up and spin-down respectively, and in red and green the absolute
value of the expectation of the singlet and triplet pair operators defined as sq = c−q↓cq↑ − c−q↑cq↓
and tq = c−q↓cq↑+c−q↑cq↓. Waveguide parameters are mx = my = 1.9me, mz = 6.5me, ly = 26nm,
lz = 8.1nm, λ = 10nm, and g = 0.6.

into the singlet and triplet components, with the triplet energy contributing zero

due to it averaging out in the integration [50]. This can be seen by looking at the

furthest extension of the pairing as a function of magnetic field between Fig. 5.7a

and Fig. 5.7b. However, when the associated modulations are introduced together

with this in Fig. 5.7c, a very significant enhancement of the pairing area up to over

6T is observed, which is consistent with experiment [47]. Additionally, the effect of

the Kronig-Penney gap on the pairing is strongly seen as it produces a curve in the

phase boundary from around (B =1.6T, µSG = 0.8meV) to approximately (B = 4T,

µSG = 0.4meV) where the pairing drops, in some regions to zero. The value of this

trough seems to be related to the value of the pairing around it since the regions
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where the original pairing is lower are where we obtain precisely zero pairing in the

gapped region (compare the region around (B =1.8T, µSG = 0.8meV) to the region

around (B = 2T, µSG = 0.5meV). This is likely due to a competition between the

Kronig-Penney gap, which suppresses the transport, and the pairing gap which leads

to transport of pairs.
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Figure 5.7: Singlet pairing as a function of magnetic field B (x axis) and chemical potential µSG
(y-axis) at U = −5.0meVnm for (a) straight waveguide, (b) Spin-orbit coupled waveguide with
αv = αl = 2.0meVnm, and (c) helical waveguide with Ay = 10nm and Az = 0.2meV (including
spin-orbit couplings in (b). (d) is the triplet pairing corresponding to singlet pairing (a), (e) is the
triplet pairing corresponding to singlet pairing in (b), and (f) is the triplet pairing corresponding to
the singlet pairing in (c). Waveguide parameters are mx = my = 1.9me, mz = 6.5me, ly = 26nm,
lz = 8.1nm, λ = 10nm, and g = 0.6.

Additionally, the same effects are analysed for the triplet pairing. This does

not appear when spin-orbit coupling is not present, as in Fig. 5.7d, and appears in

the region of pairing in Fig. 5.7e and Fig. 5.7f. A gap occurs in Fig. 5.7f in the

same position in parameter space as Fig. 5.7e. Thus, in this model for the helical
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waveguide, there is a significant conversion of singlet pairs into triplet pairs as a

result of the σz spin-orbit coupling, which is stable up to high magnetic fields and

sensitive to the Kronig-Penney gap.

While the distinction between singlet and triplet pairing cannot be seen in ex-

periment by looking at the conductance baseline, these plots show that the potential

modulation does significantly enhance the pairing in the waveguide region. In order

to show that triplet pairs do indeed occur experimentally, a more complicated theo-

retical model is required. This is the goal of the next section, where we will see that

triplet pairing could be the cause of the conductance oscillations.

5.3 Scattering Calculations

The goal of this section is to model the oscillations in conductance seen in experiment.

These take place on a baseline of 2e2/h up to 4e2/h in a region that appears to be

strongly paired, so a natural assumption is that these oscillations are due to the

effects of electron-electron interactions. This is made more convincing by the fact

that these oscillations do not appear in straight waveguides. However, due to the

mean-field approximation, it is not straight-forward to write down a first-principles

time dependent model for these features. In order to build on the mean-field theory

discussed in the rest of the chapter, a phenomenological model for these conductance

oscillations is introduced.

Oscillations in transport phenomena are often the result of scattering. In order

to study the oscillations in the conductance, we utilise a scattering model based

on [75]. However, unlike in Ref. [75], which considers single particle scattering, the

waveguide electrons are paired. Thus, some changes must be made to the model in

order to make sure this is used correctly.
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The phenomenological scattering model considers mean-field theory as determin-

ing which pairing channels are available. If ∆ is above the thermal threshold, then

this allows the singlet pair channel to support transport. Additionally, if triplet

pairing is supported by the waveguide in a parameter regime, this too is considered

available. Each electron, however, can only contribute a maximum of e2/h to the

conductance. Using these rules, a properly normalized input state for right-moving

channels is produced (the left-moving input state is assumed to be zero). Then, it

evolves under a single scattering “event”, which is described by the scattering matrix

S = eia, (5.16)

where the coefficients of the off diagonal blocks of the matrix a are given by

aJm,n = −mx

~2

1√
kJmk

J
n

∫
dxψJ†m (x)V (x)ψJn(x). (5.17)

There are three points to address here. The first is the nature of the scattering event,

which will be discussed in 5.3.1. The second is the definition of kJm in the case where

the scattered particles are electron pairs, and is the subject of 5.3.2. The third and

final is the definition of ψJm(x), which will be provided in 5.3.3.

5.3.1 Physical Model – Triplet Scattering

Regarding the scattering that occurs in the waveguide, we refer back to the experi-

mental setup. As discussed in Sec. 1.3, the waveguide region is attached to two leads.

In the helical waveguide experimental setup, the helical region is only a portion of

the full waveguide, with the rest being unmodulated.
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Only the helical region supports triplet pairing, with the unmodulated regions on

either side only having singlet channels available. Thus, the proposed model is that

triplet pairs in the helical region are scattered upon contact with the interface be-

tween helical and unmodulated regions. Triplet pairs can be backscattered, reducing

the conductance. As such, in order to obtain conductances of up to 4e2/h, the lowest

two energy bands ny = 0 and ny = 1 must be included. This idea is illustrated in

Fig. 5.8.

Unmodulated Helical Unmodulated

Singlet SingletTripletSinglet +

x

y

Figure 5.8: Diagram of the scattering setup considered in the phenomenological model described
in this section. Triplet pairs incident on the boundary between helical (allowed) and unmodulated
(disallowed) regions can be backscattered by an effective potential at the boundary. The broken
sections in the left and right unmodulated regions denote the transparent tunnelling barriers re-
quired in experiment to observe clean quantised conductance features, but are not relevant to the
calculations performed within this work.

Using this setup, the scattering model is expected to give conductance oscillations

between 0 and 4 in units of e2/h, with the singlets giving a stable total of 2e2/h. So

in principle, the experimental features we aim to describe could be reproduced by

this model.
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5.3.2 Scattering Momentum

The goal of the current section is to determine a suitable momentum for the scattering

calculations. In the singlet case, it is clear that this should be proportional to ∆.

But the ∆ for triplet pairing is zero. This must be generalised. Here, we propose

that

k∆ =
1

2π

∫ ∞

−∞
dk |〈c−k↓ck↑〉| (5.18)

is a suitable momentum to use within this scattering model.

To justify this, we begin with a standard BCS theory [65] with the chemical

potential rescaled by the Hartree shifts. The Hamiltonian takes the form

H =
∑

k

εkc
†
σkcσk + ∆(c†k↑c

†
−k↓ + ck↓c−k↑), (5.19)

which in matrix form is

H =


εk ∆

∆ −εk


 , (5.20)

where εk = εk − µ̃, εk is the usual kinetic energy term, µ̃ is the rescaled chemical

potential including the Hartree shifts, and ∆ is the pairing gap, obeying the self-

consistent equation

∆ =
U

2π

∫
dk〈c−k↓ck↑〉. (5.21)

First, the coherence length, roughly the “size” of a Cooper pair, is defined as [65]

ξ =
~vF
π∆

=
~2kF
mπ∆

, (5.22)

where vF and kF are the Fermi velocity and momentum respectively. This is much
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more complicated to determine outside of BCS theory, where there are multiple

Fermi velocities, and non-zero values of ∆ for triplet pairs. However, this allows an

effective momentum for pairs to be defined as

kξ = 1/ξ =
mπ∆

~2kF
. (5.23)

The results of this are displayed in Fig 5.9. The inverse of the coherence length

behaves very similarly to the integral of the absolute value of the pairing correlation.
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Figure 5.9: Plots of possible quantities that could work as momenta for the scattering calculations,
as a function of chemical potential µSG. The original idea of using the pair density (blue), has the
same trend as the inverse of coherence length (green), but is quite far away in magnitude. However,
the same integral but without the square (red) is much closer. This simulation uses m = me and
U = −2.0meVnm.
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To integrate this, the standard BCS Bogoliubov transformation is performed,

turning the integral into

k∆ =
|∆|
2π

∫ ∞

0

dk√
ε2
k + ∆2

. (5.24)

We make a change in variables using the density of states ρ(εk) = dk
dεk

= m
~2k

. Inserting

this and imposing a high frequency cutoff at the Debye frequency gives

k∆ =
|∆|mπ
~2kF

1

2π2

∫ ~ωD

0

dεk√
ε2
k + ∆2

=
kξ

2π2

∫ ~ωD

0

dεk√
ε2
k + ∆2

. (5.25)

Performing the integral gives

k∆ =
kξ

2π2
tanh−1

(
~ωD√

~2ω2
D + ∆2

)
. (5.26)

This can vary a lot depending on the Debye frequency and ∆. However, the zero

pairing cutoff is defined as ∆ = 10−3meV as this is the order of the thermal fluctu-

ations in the experimental parameter regimes. In bulk STO, the value of the Debye

energy is 34.5meV [76]. Using these parameters gives

1

2π2
tanh−1

(
~ωD√

~2ω2
D + ∆2

)
. 1.77.

This shows that k∆ and kξ are approximately proportional to each other, and of the

same order of magnitude, making k∆ a suitable momentum which can be generalised

to the case beyond BCS theory.

As such, we define

kJm =
1

2π

∫
dk |〈c↓−kmc↑km〉+ sgn(J)〈c↑−kmc↓km〉| , (5.27)
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where J denotes singlet versus triplet, with sgn(singlet) = −1 and sgn(triplet) = 1,

to be our scattering momentum.

5.3.3 Overlap

In order to solve the scattering model, a pair wavefunction must be defined. The

wavefunction of interest can be written as

ψm,J(x) = Ψ†m,J(x) |0〉 =
∑

q

eiqxJ†m,q |0〉 , (5.28)

where Ψ†m,J(x) creates a pair with character J = {s, t} (singlet or triplet) in mode

m at position x, and J†m,q creates a pair with character J at momentum q in mode

m. The form of this operator is

Jm,q =
c−q,m,↓cq,m,↑ + sgn(J)c−q,m,↑cq,m,↓

2
.

The overlap integral is

I =

∫
dxψ†m,J(x)V (x)ψn,J(x). (5.29)

The proposed model concerns the scattering of triplets at the boundary between

helical and unmodulated regions. Thus, the potential is V (x) = V0δ(x − L) for

triplets and V (x) = 0 for singlets. Then, Eq. 5.29 becomes

I = V0ψ
†
m,t(L)ψn,t(L) (5.30)

= V0

∑

q,k

ei(q−k)L〈tk,mt†q,n〉.
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This is expanded using the same mean-field techniques as above to express this in

terms of the correlation functions obtained from the Hartree-Bogoliubov model

I =
V0

2

∑

q

{∑

k

2ei(q−k)L〈tk,m〉〈t†q,n〉

+(1− cos 2qL)
[
〈cq,m,↓c†q,n,↑〉〈c−q,m,↑c†−q,n↓〉+ 〈cq,m,↓c†q,n,↓〉〈c−q,m,↑c†−q,n,↑〉

]}
.

(5.31)

5.3.4 Conductance From Scattering

The Scattering Matrix SLR has the following action


AR

BL


 = SLR


AL

BR


 , (5.32)

where AL is the input from the left lead, BR is the input from the right lead, AR is

the output from the right lead, and BL is the output from the left lead. Of interest

is the right-moving transport - what comes out at the right lead when electrons

are injected (or in this case, pairs of electrons) at the left lead. As such, BR = 0,

and we want to calculate AR. This is a vector of transmission coefficients - if this

was a single particle model, the components of this vector would be fed into the

Landauer-Buttiker model as transmission coefficients, which would read

G =
e2

h

∑

n

|aRn |2, (5.33)

where aRn is the nth element of AR with n labelling different spin-channels and

transverse modes, in this model. The input vector is not a normalized wavefunction.
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In the case where an electron is input into every scattering channel available, AL = 1

As such, 0 ≤ |aRn |2 ≤ 1 is required for these to be transmission coefficients. If the

same treatment is performed for the scattering model of pairs, pairs are expected to

give 2e2/h conductance [24], and so the conductance becomes

G =
2e2

h

∑

n

|aRn |2, (5.34)

where 0 ≤ |aRn |2 ≤ 1.

This works well if each pair channel is independent. However, when there are

singlet and triplet pairs in the same mode, this is no longer the case. Extending the

notation, and for now only looking at the case where both pairing electrons are in

the same mode for each pair, the desired condition is

|aLn,s|2 + |aLn,t|2 = 1,

where s and t denote the singlet and triplet modes, and n the y harmonic oscillator

state (with z being neglected as nz = 0 throughout). If there are only singlet

pairs (vertical waveguide) then this reduces to the same conductances as obtained

in Ch 3.3. The components could be weighted by their densities, but to make this

simpler a 50/50 split of singlet and triplet conductance (this most easily gives a

2e2/h baseline with oscillations on top) is taken. So, in this case, aLn,s = aLn,t = 1√
2
.

In the end, this means that |aRn,s|2 = 1/2 and 0 ≤ |aRn,t|2 ≤ 1/2, so for two modes

this gives

G = 2
e2

h
+ 2

e2

h

(
|aR0,t|2 + |aR1,t|2

)
,

where 0 ≤ |aR0,t|2 + |aR1,t|2 ≤ 1. Thus from this, stable singlets in the first two bands

plus oscillating triplets from the first two bands could result in oscillations above a
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conductance baseline of 2e2/h.

5.3.5 Conductance Oscillations

All of this culminates in producing conductance plots using the scattering model,

which is build on a multi-band version of the mean-field model. Since the scattering

model only deals with pairs, in regions where there is no pairing, zero conductance

is obtained. Thus, we are showing only the pairing contribution to the conductance

in these plots, but in principle it should be possible to include the single-electron

contributions via the Landauer formula.

This are presented in Fig. 5.10 in both linecut form at select magnetic fields and

in the whole (B, µSG) parameter space with and without the triplet-inducing lateral

modulation. In Fig. 5.10a, which shows the conductance as a function of µSG at

various magnetic fields for the vertical modulation only, an stable plateau of 4e2/h is

observed. The decay of the plateau at high energies is not due to an actual decrease

in conductance, but a result of pair breaking in these regimes. When the lateral

modulation is included in Fig. 5.10b, the plateau consists of oscillations between

2e2/h and 4e2/h. This effect is displayed across the (B, µSG) parameter space in

Figs. 5.11a,b, where the oscillations in the helical waveguide disappear at high fields

as pairs are broken. This is consistent with experimental observations.

5.3.6 Outlook

This model provides a zero-th order method of studying the oscillations in conduc-

tance observed in experiment. However, one potential issue is that of the interface

between the left lead and the helical region - in principle, the backscattered part of

the wavefunction should also scatter at this barrier, leading to a question of what

107



Scattering Calculations

0.20.30.40.50.60.7
(meV)

0
1
2
3
4

G
(e2 h

)

Vertical

0.20.30.40.50.60.7
(meV)

Helical

B =  0.0T
B =  0.5T
B =  1.0T

Figure 5.10: Linecuts of the conductance as a function of µSG from the scattering model for the
vertical (Az = 0.1meV, αv = 2.0meVnm) and helical (Ay = 10nm, αl = 3.0meVnm) waveguides
for effective triplet scattering potential V0 = 0.03meV and interaction strength U = −4.0meVnm.
Waveguide parameters are mx = my = 1.9me, mz = 6.5me, ly = 26nm, lz = 8.1nm, λ = 10nm,
and g = 0.6.
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Figure 5.11: Conductance from the scattering model for the vertical (Az = 0.1meV, αv =
2.0meVnm) and helical (Ay = 10nm, αl = 3.0meVnm) waveguides for effective triplet scattering
potential V0 = 0.03meV and interaction strength U = −4.0meVnm. Waveguide parameters are
mx = my = 1.9me, mz = 6.5me, ly = 26nm, lz = 8.1nm, λ = 10nm, and g = 0.6.
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happens to the wavefunction of the triplet trapped in the waveguide. This can be re-

solved by noting that in the actual system, rather than having a single superposition

of singlet and triplet pieces, the wavefunction should actually undergo oscillations

between these two states [77]. In this model, the scattering would become a bound-

ary matching problem with the transported particles being bosonic electron pairs,

and is analagous to the transport of spinful fermions between spin polarized wires.

This treatment is performed in detail in a recently submitted paper, allowing for the

estimation of the spin-orbit coupling strength engineered by the modulation [51].

5.4 Conclusion

In this chapter, we expanded the usual mean-field model in a Bloch basis instead of

the usual plane wave expansion, allowing us to treat the effects of periodic modula-

tions on electron-electron interactions. This allowed us to study the effect of helical

modulations on electron transport, and we find that this leads to both significantly

enhanced electron pairing and the introduction of triplet pairing into the waveguide

region. The enhanced pairing is observed in experimental transconductance features

via a strong initial peak of 2e2/h which is stable up to B = 18T.

Additionally, we utilised a phenomenological pair scattering model to study

the conductance oscillations. Proposing that this is a result of pair scattering at

the helical-unmodulated interface, we were able to obtain conductance oscillations

between 2e2/h and 4e2/h, which is observed in experiment in helical LAO/STO

nanowires [51].
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Chapter 6

Conclusion

This thesis has presented my work on using mean-field theory to study electron-

electron interactions in one-dimensional electron waveguides. I extended the usual

Hartree-Fock-Bogoliubov formalism to include spin-orbit coupling and the effect of

periodic modulations. Using these techniques, I showed that a significant enhance-

ment of the pairing strength is introduced by Kronig-Penney modulation through

both the form of the potential and the engineered spin-orbit interaction. This allows

for the prospect of engineering paired electron phases in these systems. Addition-

ally, triplet pairing has been observed when this formalism is applied to laterally-

modulated waveguides. This could be useful in the study of the physical processes

behind high Tc superconductivity as some unconventional superconductors display

triplet pairing [78, 79], so being able to control it is an exciting prospect. Finally, I

have used a phenomenological scattering model to offer an explanation as to the os-

cillations in the conductance observed in helically-modulated LAO/STO nanowires.

The approximation of the wavefunction being separated into Bloch waves along

x and a harmonic oscillator along y, which allows for the treatment of the Ay mod-



ulation, can be relaxed. By expanding the y wavefunction in a basis of unperturbed

harmonic oscillators, it is possible to well describe the lowest energy states of the

modulated waveguide. However, this requires a large number of states, and given

that a large number of coefficients are already required for expansion in x, the less

numerically-consuming method has been used. The next step is to utilise this exact

method, which would allow for the angular momentum of the states to be calculated

to draw parallels with chiral-induced spin-selectivity and also with optical waveg-

uides for which this has been done [80]. Optical waveguides form a large field with

rich physics, and having a platform to perform similar experiments with electrons as

photons could lead to novel technological applications.

The Hartree-Fock-Bogoliubov model used does not allow for the direct calcula-

tion of the conductance, and requires interaction to be weak. The first of these could

be overcome by using dynamical mean-field theory (DMFT) or a Green’s function

approach to interacting transport. The latter, however, would need Luttinger liquid

or density matrix renormalization group (DMRG) analysis. While all of these could

in principle be performed, the approach taken in this thesis provides a solid first

model for the systems considered. Rather than searching for a quantitative agree-

ment with the experiments, I sought to understand whether the qualitative physical

features of the experiments could be modelled using these techniques. I would say

that I have been successful in this regard.

The model of triplet scattering at the helical-unmodulated interface is a potential

explanation for the presence of conductance oscillations seen in experiments in helical

LAO/STO nanowires. This could be probed in more detail by increasing the length of

the unmodulated regions. Because the unmodulated region does not support triplet
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pairing, the triplet pairs would be expected to decay as a function of the length, and

so the observed conductance oscillations would be reduced for longer unmodulated

regions.
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[54] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, “Generalized many-channel

conductance formula with application to small rings,” Phys. Rev. B, vol. 31,

pp. 6207–6215, May 1985.

[55] A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J.-M.

Triscone, “Tunable rashba spin-orbit interaction at oxide interfaces,” Phys. Rev.

Lett., vol. 104, p. 126803, Mar 2010.
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[63] F. Bloch, “Über die quantenmechanik der elektronen in kristallgittern,”

Zeitschrift für Physik, vol. 52, pp. 555–600, Jul 1929.

[64] A. Leggett, Quantum Liquids: Bose condensation and Cooper pairing in

condensed-matter systems. United Kingdom: Oxford University Press, Jan.

2008. Publisher Copyright: © Oxford University Press, 2014.

[65] M. Tinkham, Introduction to Superconductivity. Dover Publications, 2 ed., June

2004.

[66] D. Pekker, C. S. Hellberg, and J. Levy, “Theory of superconductivity at the

laalo3/srtio3 heterointerface: Electron pairing mediated by deformation of fer-

roelastic domain walls,” 2020.

[67] M. Briggeman, M. Tomczyk, B. Tian, H. Lee, J.-W. Lee, Y. He, A. Tylan-Tyler,

M. Huang, C.-B. Eom, D. Pekker, R. S. K. Mong, P. Irvin, and J. Levy, “Pas-

cal conductance series in ballistic one-dimensional LaAlO3/SrTiO3 channels,”

Science, vol. 367, no. 6479, pp. 769–772, 2020.

121



BIBLIOGRAPHY

[68] L. Zhang, P. Brusheim, and H. Q. Xu, “Multimode electron transport through

quantum waveguides with spin-orbit interaction modulation: Applications of

the scattering matrix formalism,” Phys. Rev. B, vol. 72, p. 045347, Jul 2005.

[69] J. Hyttel, K. P. Bøgesø, J. Perregaard, and C. Sánchez, “The pharmacologi-

cal effect of citalopram resides in the (s)-(+)-enantiomer,” Journal of Neural

Transmission / General Section JNT, vol. 88, pp. 157–160, Jun 1992.

[70] I. A. Jaffe, K. Altman, and P. Merryman, “The antipyridoxine effect of penicil-

lamine in man,” The Journal of Clinical Investigation, vol. 43, pp. 1869–1873,

10 1964.

[71] D. Winogradoff, P.-Y. Li, H. Joshi, L. Quednau, C. Maffeo, and A. Aksimentiev,

“Chiral systems made from DNA,” Advanced Science, vol. 8, no. 5, p. 2003113,

2021.

[72] K. Ray, S. P. Ananthavel, D. H. Waldeck, and R. Naaman, “Asymmetric scat-

tering of polarized electrons by organized organic films of chiral molecules,”

Science, vol. 283, no. 5403, pp. 814–816, 1999.

[73] Y.-H. Kim, Y. Zhai, H. Lu, X. Pan, C. Xiao, E. A. Gaulding, S. P. Harvey,

J. J. Berry, Z. V. Vardeny, J. M. Luther, and M. C. Beard, “Chiral-induced

spin selectivity enables a room-temperature spin light-emitting diode,” Science,

vol. 371, no. 6534, pp. 1129–1133, 2021.

[74] K. Banerjee-Ghosh, O. B. Dor, F. Tassinari, E. Capua, S. Yochelis, A. Capua,

S.-H. Yang, S. S. P. Parkin, S. Sarkar, L. Kronik, L. T. Baczewski, R. Naaman,

and Y. Paltiel, “Separation of enantiomers by their enantiospecific interaction

with achiral magnetic substrates,” Science, vol. 360, no. 6395, pp. 1331–1334,

2018.

122



BIBLIOGRAPHY

[75] M. Cahay, M. McLennan, and S. Datta, “Conductance of an array of elastic

scatterers: A scattering-matrix approach,” Phys. Rev. B, vol. 37, pp. 10125–

10136, Jun 1988.

[76] E. Maniv, M. B. Shalom, A. Ron, M. Mograbi, A. Palevski, M. Goldstein,

and Y. Dagan, “Strong correlations elucidate the electronic structure and phase

diagram of LaAlO3/SrTiO3 interface,” Nature Communications, vol. 6, 9 2015.

[77] R. I. Shekhter, O. Entin-Wohlman, M. Jonson, and A. Aharony, “Rashba split-

ting of cooper pairs,” Phys. Rev. Lett., vol. 116, p. 217001, May 2016.
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