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Abstract 

Accepted analogies between matter waves and electromagnetic waves are ex­

tended in order to show that matter waves should have mechanical properties. 

A semiclassical description of the continuity equations describing these me­

chanical properties is presented and a general expression for their flux density 

is obtained. 

A semiclassical detection theory for matter waves is developed, drawing 

upon the theory of photoelectron detection and the conservation equations 

from fluid mechanics. It is the intrinsically dispersive nature of matter waves 

which is important in deriving such a theory. It is shown that the detection 

rate can be related to the flux of particles through the detector surface. 

A fully quantum matter wave detection theory is also presented, begin­

ning from a microscopic description of detection. Both the short-time ap­

proximation to the detection rate and its long-time correction are developed. 

Again it is shown that the detection rate can be related to the flux through 

the detector surface. 

The relative phase fluctuations of two one-dimensional condensates cou­

pled along their whole length with a local single-atom interaction is examined. 

The thermal equilibrium is defined by the competition between independent 

longitudinal thermally excited phase fluctuations and the coupling between 

the condensates which locally favours identical phase. The relative phase 

fluctuations and their correlation length are computed as a function of the 

temperature and the strength of the coupling. 

Finally, the future potential of the work contained herein is examined. 
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Chapter 1 

Introduction 

1.1 Historical background 

Although the wave theory of light has origins as far back as Robert Hooke in 

1665, it was not until significantly after James Clerk Maxwell [1] proposed his 

theory of electromagnetic waves that this became a widely accepted truth. 

Indeed, Maxwell himself did not live to see the direct experimental verifica­

tion of his theory performed by Heinrich Hertz in 1888. There are, however, 

many phenomena which could not at that time be explained by a wave the­

ory of light. The archetypal example of such a phenomenon is that of the 

photoelectric effect, which involves incident light ionising a metal. In actual 

fact the semiclassical theory of light is sufficient to explain the photoelectric 

effect [2]. Arguably the crowning achievement of physics in the 20th century 

was the realisation of, among others, Max Planck, Niels Bohr and Albert Ein­

stein, that energy is imparted to the electromagnetic field in discrete packets 

rather than continuously. These packets were dubbed "quanta" and quan­

tum theory was born. This allowed the photoelectric effect to be suitably 

explained, as the energy of the ionised electrons depends not on the intensity 

of the light, as a wave theory would require, but on its frequency [3] via the 

equation E = hv. Here v is the frequency of the light and h = 6.626 X 10-34 

J·s is Planck's constant. The existence of seemingly contradicting phenom­

ena such as the photoelectric effect and observation of properties such as 
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CHAPTER 1. INTRODUCTION 2 

interference which exemplifies the wave nature of light led to the concept of 

wave-particle duality. 

In 1925, Louis de Broglie proposed that wave-particle duality is not a 

concept confined to light, but is a property of all matter. This means that, 

given the right conditions, matter will exhibit interference and diffraction 

as if it was a wave. The diffraction of electrons was indeed demonstrated 

shortly afterwards by Davisson and Germer [4] and George Thompson. The 

wave nature of matter can be quantified in the simple equation 

h 
>. = -, 

p 
(1.1) 

where p is the momentum of the particle in question and>' is the wavelength 

of the corresponding matter wave. Again we see that Planck's constant is 

the key. If x is some characteristic length scale of the measurement, then we 

do not see the wave nature of matter if 

that is 

>. -« 1, 
x 

h -« l. 
xp 

(1.2) 

(1.3) 

Thus if xp is much larger than Planck's constant we do not observe the wave 

nature of the system. This is satisfied in macroscopic bodies and classical 

mechanics is applicable in these situations. 

At around the same time as de Broglie formulated the wave theory of 

matter, Satyendra Bose developed a new way of deriving Planck's law of 

radiation from a black body, treating photons as a gas of indistinguishable 

particles. His paper [5] was rejected by a journal referee, but later published 

with support from Einstein. Upon reading Bose's work, Einstein realised 

that the statistical approach used in the derivation could be extended from 

photons to massive particles. He published two papers soon after [6, 7] 

which formulated what would later be known as Bose-Einstein statistics. 
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This detailed a purely statistically derived condensation of particles into 

the ground state in the absence of interactions, which was later dubbed 

Bose-Einstein condensation. The first experimental evidence for this curious 

state of matter came from Fritz London whilst analysing liquid helium in 

its superfluid state. This evidence was difficult to verify due to the strong 

interactions between helium atoms, which leads to a low fraction of the atoms 

being condensed. It would be 70 years before Einstein's prediction would 

be fully experimentally verified in dilute gases of weakly interacting atoms 

[8,9,10]. 

1.2 Overview 

This thesis will cover two disconnected topics in the field of matter waves 

and Bose-Einstein condensates (BECs). These are matter wave detection, 

in which we neglect interactions between atoms, and phase fluctuations in 

coupled BECs, in which interactions play an essential role. 

In chapter 2 we show how particles are mathematically represented in 

both semiclassical and quantum theories. We also introduce Bose-Einstein 

condensates and explore some of their properties. Chapter 3 is concerned 

with physical conservation laws and their quantification in the form of conti­

nuity equations. We explore these laws in the context of both fluid mechanics 

and electromagnetism. In chapter 4 we introduce the concept of conservation 

of mechanical properties of matter waves, drawing analogy with the electro­

magnetic theory from the previous chapter. In chapter 5 we will derive a 

theory of matter wave detection in the semiclassical regime, based on the 

theory of photoelectric detection. The problem of linking the theory thus 

derived to the microscopic detection process will be dealt with in chapter 

6 when we extend the detection theory into the quantum regime, starting 

from a microscopic model of detection. In chapter 7 we turn our attention 

to the BEes themselves. We will examine condensates which are sufficiently 

elongated as to be described as one-dimensional. Such objects are not pure 

condensates, but are known as quasi-condensates (QCs). We consider two 

QCs connected via a local coupling and predict what will happen to the 
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fluctuations of their relative phase. 



Chapter 2 

Particles 

2.1 Wave mechanics 

In quantum mechanics the state of a system at time t is represented by a 

vector 1'ljJ(t)) and measurable quantities are represented by linear operators 

called observables. The possible outcomes of a measurement of an observable 

A are given by its eigenvalues .AA. The eigenvalues define the eigenstates 1'ljJ~) 
of the system such that 

(2.1) 

The basic mathematical formalism and manipulation of these objects is de­

scribed in [11] and knowledge of this is assumed for this thesis. 

2.1.1 The position representation 

In classical mechanics the dynamics of any system can be described in terms 

of the canonical position and momentum, denoted q and p respectively. In 

particular, the dynamics of any two variables u and v are related by the 

Poisson bracket 

{auBv au8V} 
[u, v]p = 8q 8p - 8p 8q . (2.2) 

5 



CHAPTER 2. PARTICLES 6 

Dirac [11] showed that any two observables u and v in quantum mechanics 

could be related via the commutator - the quantum version of the Poisson 

bracket. This "quantum Poisson bracket" is related to the classical version 

via 

[u, v] = uv - vu = iii [u, v]p , (2.3) 

where Ii is Planck's constant. The simplest case is that where u and v cor­

respond to the canonical position and momentum variables. In this case the 

Poisson bracket is equal to unity, and so the commutator is 

[q, p] = iii. (2.4) 

By comparing this with the commutator of q and 8j8q, Dirac showed that 

there exists a representation (a way of expressing states as a function of 

eigenvalues of an observable) called the position representation, in which 

~ .Ii 8 
p = -2 8q. (2.5) 

In the following we will define the properties of the position representation. 

We will turn our attention to the case of a single particle in one-dimensional 

space. In this case the canonical position and momentum reduce to the spa­

tial position and momentum observables x and p. In the position represen­

tation, the state space is spanned by the eigenvectors Ix'} of the position 

operator. This means that any state can be written as a linear combination 

of the eigenvectors. The eigenvectors of x are delta function normalised, 

meaning that 

(xix') = 8(x - x') (2.6) 

where 8(x - x') is the Dirac delta function. The basis vectors obey the 

completeness relation, which states that 

I: dx'lx') (x'i = i, (2.7) 
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where i is the identity operator. We can use this to show how to write an 

arbitrary state in terms of the eigenvectors via the equation 

I'I/J(t)) = i: dx'lx') (x'I'I/J(t)). (2.8) 

The quantity (x'I'I/J(t)) is an important quantity in the position representation 

of quantum mechanics. It is a complex valued function which we call the 

wavefunction. We denote it by 

'I/J(x, t) = (xl'I/J(t)) (2.9) 

and it is interpreted as a measure of the probability density of finding the 

particle at position x at time t. In fact, as 'I/J can be complex valued, it cannot 

be a probability. It is the function I'I/J{x, t)1 2dx which is the probability of 

finding the particle not at the distinct position x, but in an infinitesimal 

region x ~ x + dx. The probability of finding the particle in some portion 

of space is the integral of 1'l/J12 over the region in question. Naturally, if 

we consider all space we must find the particle. We quantify this with the 

normalisation condition 

100 2 
-00 dx I'I/J(x, t)1 = 1. (2.10) 

This is equivalent to the normalisation of the state vectors themselves: 

(1j;(x, t)I1j;(x, t)) = 1. (2.11) 

We can show this by inserting the completeness relation (2.7) in between the 

vectors, giving 

i: dx' (1j;(t)\x') (x'I1j;{t)), 

which is equivalent to (2.10). 
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2.1.2 Expectation values 

The probabilistic nature of quantum mechanics leads us to define the average 

value of an observable A for a particular state. We call this the expectation 

value and denote it by 

(A) __ (~(t)IAI~(t)). (2.12) 

To translate this into the position representation we insert completeness re­

lations on the left and right of the operator 

(A) -- i: dx' i: dx"(~(t)lx')(x'IAlx")(x"I~(t)) i: dx' i: dx"~*(x', t)(x'IAlx")~(X", t). (2.13) 

In the case where A is a function of x alone, say f(x), the quantity (x'IAlx") 
is given by 

(x'lf(x)lx") = f(x")8(x' -- x"). (2.14) 

When A is simply p, we use the position representation of p (2.5) to show 

that 

(x'lplx") = --iha
a 

8(x' -- x"). 
x" 

(2.15) 

Just as the delta function is defined as the limiting value of a Gaussian 

function, its derivative is defined as the limiting value of the derivative of a 

Gaussian function. Its definition only has meaning when used to manipulate 

integrals. 

As a result of equation (2.15), if A is any function f{p) then we can write 

(x'lf(P)Ix") = f (-iii. a':,,,) 6(x' - x"). (2.16) 

We can use these results to calculate the expectation values of these particular 



CHAPTER 2. PARTICLES 9 

functions, with A = f(x) giving 

(J(x)) = i: dx'1jJ*(x', t)f(x')1jJ(x', t). (2.17) 

In the case of A = f(fJ) we can show that 

(J(fJ)} = i: dx' i: dx"1jJ*(x', t)f (-iii a~") c5(x' - x")1jJ(x", t) 

- L: dx",p'(x", t)f ( -iTt a~') ,p(x", t), (2.18) 

where we have used integration by parts to obtain the last line. 

2.1.3 Particle dynamics 

Any quantum system represented by the state 11jJ(t)) undergoes dynamics 

according to the Schrodinger equation 

a A 

iii at 11jJ(t)) = HI1jJ(t)). (2.19) 

We have introduced here the observable II which represents the total energy 

of the system in analogy with the Hamiltonian H in classical mechanics. For 

example, a particle of mass m in one-dimensional free space has a classical 

Hamiltonian given by 

p2 
H=-

2m' 
(2.20) 

where p is the momentum of the particle. The Hamiltonian operator in 

quantum mechanics for the same system is given by 

(2.21) 

In the position representation we use the definition (2.5) to write (2.21) 88 

(2.22) 
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and thus the Schr6dinger equation (2.19) becomes 

(2.23) 

In general a particle will be under the influence of a potential V (x) and so 

(2.22) becomes 

~ -11? 82 

H = 2m 8x2 + V(x). (2.24) 

We can calculate the average total energy of the system by finding the ex­

pectation value of the Hamiltonian operator 

/

00 [ ;,,2 82 
] (if) = -00 dx'ljJ*(x, t) ;m 8x2 + V(x) 'ljJ(x, t). (2.25) 

Upon using integration by parts and the fact that the wavefunction vanishes 

as x --+ ±oo, we can rewrite the average energy as 

100 [~8 2 1 (if) = -00 dx ;m 8x 'ljJ(x, t) + V(x) 1'ljJ(x, t)12 . (2.26) 

The formal solution to the Schr6dinger equation (2.19), in the case where 

the Hamiltonian is not explicitly time-dependent, is given by 

I",(t)) = exp [ -itt ~ to)H]I"'(to)). (2.27) 

Thus the average value of an operator A is given by 

Instead of the states evolving in time and the operators staying constant, 

we may move to a picture in which the operators evolve and the states stay 

constant. The former is called the Schr6dinger picture and the latter the 

Heisenberg picture. In the Heisenberg picture we define the states to be the 
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initial Schrodinger picture states 1'ljJ(to)). In order to maintain the average 

value of the operators, we must define the Heisenberg picture operators to 

be 

AA (t) _ [i(t - to)Hj AA [-i(t - to)Hj 
H - exp n sexp n ' (2.29) 

where As is the Schrodinger picture operator. By taking the time derivative 

of (2.29) we obtain the Heisenberg equation of motion 

(2.30) 

where we have defined the operator 

BAH _ [i(t - to)H] BAs [-i(t - to)H] 
at - exp n 7it exp n (2.31) 

We see immediately that the Hamiltonian itself does not evolve. 

2.1.4 More general systems 

In the previous subsections we have shown the important features of repre­

senting a single particle system in wave mechanics. These features generalise 

to systems of N particles. The only change is that if we search the entire 

space we will find N particles, which changes the normalisation condition 

(2.10) to 

100 2 
-00 dx 1'ljJ(x, t)1 = N. (2.32) 

We may also generalise the system to represent particles in three-dimensional 

space. This is done by changing the spatial integrals from one-dimensional 

to three-dimensional 

dx ~ d3r. 100 fa 
-00 all space 
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The position representation of the momentum operator also becomes three­

dimensional with 

p = -ih\1, 

where the vector \1 is defined by 

The Hamiltonian is then written as 

~ _h2 

H = _\12 + V{r). 
2m 

2.2 Second quantised formalism 

(2.33) 

(2.34) 

(2.35) 

In the semiclassical formalism, which we have used in the previous section, 

we treat the field in question as a complex number. In doing this we fix 

the number of particles being considered. The second quantised formalism 

takes into account the quantum nature of a field, introducing operators which 

annihilate and create particles and thereby allowing for situations in which 

the number of particles changes. 

2.2.1 Bosons and fermions 

The Heisenberg uncertainty principle implies that we cannot know, with 

arbitrary precision, both the position and momentum of a particle simul­

taneously. As a result of this we cannot in principle individually mark a 

number of identical particles, follow their dynamics and identify them at a 

later point. This is the principle of indistinguishability of identical particles. 

A direct consequence of this principle is that there are only two types of sys­

tems allowed. These are ones where the system wavefunction is unchanged 

when two constituent particles are interchanged, and those where the sys­

tem wavefunction changes sign under this interchange. The former of these 
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has a "symmetric" wavefunction and its particles are called bosons, whereas 

the latter has an "antisymmetric" wavefunction and the particles are called 

fermions. As a direct result of this no two fermions can occupy the same 

quantum state. This restriction is known as Pauli's exclusion principle. No 

such principle applies to bosons, so in principle any number of bosons may 

occupy the same quantum state. These distinct groups are also related to 

the spin of the particles, with bosons having integer spin and fermions having 

half-integer spin. Examples of bosons include photons and phonons, and of 

fermions include electrons and protons. We can also see that any particle 

made up of an even number of fermions is a boson, whereas a particle com­

posed of an odd number of fermions is itself a fermion. This thesis is only 

concerned with bosons. 

2.2.2 Occupation number representation 

We consider here a system of N bosons which may be in any of the (ap­

propriately normalised) single-particle states I'l/Jl), 1'l/J2) , .... The state of the 

system may be labelled in two different ways. We may use the N single­

particle states, obtaining a state of the form 

(2.36) 

where the superscript is the particle number and some of the i, j, ... ,k may 

be equal. One can immediately see a problem with this, in that such labelling 

implies particle distinguishability. 

Instead, we write the state of the system in terms of the occupation 

number Ni of each of the states I'l/Ji). This may be expressed in terms of a 

symmetric sum of all permutations of the i, j, ... ,k in (2.36). The occupation 

number states are thus given by 

IN 1\T . 1\T ) _ l·H2· ... HI··· . ~ l"I.P»)I"I.~2)} 1,,1.(N»){237) (N '1\T , 1\7, )1/2 
l, H2, ... , lVI, . .. - N! L...J 0/, 0/) .• 'o/k • 

where the sum is over all possible permutations of i, j, ... , k which preserve 
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the occupation numbers. 

We introduce the annihilation operator ai which decreases the number of 

particles in state i by one and multiplies the state by N i , the initial number of 

particles in state i. Its Hermitian conjugate operator is the creation operator 

a!, which increases the number of particles in state i by one and multiplies 

the state by Ni + 1, the final number of particles in state i. We quantify this 

via the equations 

ailNl, N2, . .. ,Ni, ... ) - [ii;INl , N2, ... , Ni - 1, ... ) (2.38) 

a!INl , N2 ,···, Ni , ... ) - J Ni + 11Nl , N2,···, Ni + 1, ... ). (2.39) 

The factor ..;N; in (2.38) acts to ensure that the annihilation operator cannot 

reduce the occupation number of a state to less than zero. 

We see that acting the annihilation operator followed by the creation 

operator leaves the total number of particles unchanged and multiplies the 

state by the number of particles initially in the state i: 

(2.40) 

This combination of operators is known as the number operator and is given 

the notation Ni . The total number operator is the sum of all of the individual 

number operators: 

00 

N='LNi' (2.41) 
i=l 

We note that the annihilation and creation operators do not commute, since 

reversing the action involved in the number operator gives 

(2.42) 

Also we can see that creation and annihilation operators which act on differ­

ent states will always commute, and so we may write the general commutation 
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relation in the form 

(2.43) 

where ISij is the Kronecker delta which is unity if i = j and zero otherwise. 

It may be shown that any operator A, which only acts on one particle at 

a time, can be written in terms of the annihilation and creation operators, 

via 

(2.44) 

This can be generalised to operators which act on more than one particle 

at a time, so long as the operator is symmetrical with respect to all of the 

particles. For example a symmetrical two-particle operator may be expressed 

as 

A2 = ~ L ('l/Jd('l/JjIAI'l/Jk)I'l/JI)a!a}akal' 
i,j,k,l 

(2.45) 

2.2.3 Field operators 

Another way of expressing the second quantised formalism is via bosonic field 

operators which are expressed as functions of spatial position. We define 

these via 

00 

~(r) - L(rl'I/Ji)ai 
i=l 
00 

~t(r) - L(rl'I/Ji)a!. (2.46) 
i=l 

These field operators do not depend on the particular basis which was chosen 

to represent the one-particle states. Their commutators can easily be found 

by 

00 

[~(r),~t(r')] - L(rl'I/Ji}('l/Jjlr') [ai, a}] 
i,j 
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00 

= ~]rl1Pi) (1Pi Ir') 
i=l 

- (rlr') 

- o(r - r'), (2.47) 

where, in going from the second to the third line, we used the completeness 

relation for discrete states 

00 

L l1Pi} (1Pil = 1. (2.48) 
i=l 

We may express the total number operator (2.41) in terms of the field oper­

ators via the equation 

(2.49) 

which gives the interpretation of -¢t(r)-¢(r) as the number density operator. 

The interpretation of the field operator may be shown by considering its 

action on the zero particle state 10}. After the field operator acts on the zero 

particle state, we can show that the action of the total number operator on 

the resulting state produced gives 

N-¢t(r)IO) - i: d3r'-¢t (r')-¢ (r')-¢t (r)lO) 

-i: d3r'-¢t(r') {-¢t(r)-¢(r') + c5(r - r')} 10) 

- -¢t (r) 10), (2.50) 

which shows that -¢t (r) 10) is a one-particle state. We consider the probability 

amplitude for finding the particle in the state -¢t(r)IO) at the position r', 
which is given by 

00 

(r'l.,j,t(r) 10) - L(r'l¢i)(¢il-¢t(r) 10) 
i=l 
00 

- L(r'l¢i) (Olai-¢t(r) 10) 
i=l 



CHAPTER 2. PARTICLES 

(Ol~{ r')~t (r) 10) 

= 8{r - r'). 
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(2.51) 

This shows that the particle in the single-particle state -0 t ( r ) 10) is localised 

at r. Thus the action of -0t (r) is to create a single particle which is localised 

at r. 

The representation of operators in terms of the field operators is calcu­

lated by assuming knowledge of the position representation of the operator 

A and calculating 

(2.52) 

The result for an operator which is a sum of single-particle operators 

N 

A = L:}{ri) (2.53) 
i=l 

is given by 

(2.54) 

In general, as in the case of the Hamiltonian, } may depend on the momen­

tum of the particle as well, in which case the position representation of the 

momentum operator (2.5) is used. 

The Hamiltonian is an example of an operator which is a sum of single­

particle operators. For a many particle system, the Hamiltonian in the case 

of a system under the influence of a potential V{x) is given by 

(2.55) 

The occupation number representation of this Hamiltonian may thus be ex-
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pressed, using (2.54), as 

(2.56) 

If we integrate by parts and use the fact that the field operator vanishes as 

r -+ ±oo, we obtain the equivalent form 

(2.57) 

In general the potential V may contain nonlinearities. 

2.3 Bose-Einstein condensates 

Since bosons are not restricted in the number of particles which can occupy a 

single quantum state, it is conceivable that in a gas of bosons a macroscopic 

number of particles could occupy a single state. This is well known in the 

case of photons; it occurs in laser light where below threshold many modes 

are occupied, but above threshold a single mode is occupied. By analogy 

a similar situation must occur with massive bosons. This phenomenon is 

known as Bose-Einstein condensation. 

To achieve Bose-Einstein condensation with a dilute gas of weakly inter­

acting atomic bosons requires extremely low temperatures, such that the de 

Broglie wavelength of the particles become larger than their mean spacing. 

These extreme conditions make it very difficult to create a Bose-Einstein 

condensate (BEC) and it was not until very recently that BEC was experi­

mentally realised in these systems [8, 9, 10] using bosonic isotopes of Rb, Na 

and Li. A BEC is created by cooling the atoms using optical and magnetic 

forces, and then cooling them again using one of a number of techniques. 

The BEC is then held in a magnetic trap, which is switched off after a period 

of time in order that the atoms may be detected. There are several tech­

.niques for detection, including shadow imaging, which is used to calculate 

the density of the BEC, and micro channel plate detection, which analyses 



CHAPTER 2. PARTICLES 19 

the time-of-flight of the condensate atoms. 

In order to model a BEC we must take account of the interactions between 

the particles in the system. Due to the diluteness of the gas involved in 

creating a BEC the only interactions which have an appreciable effect on the 

system are two body ones. Scattering theory tells us that the strength of the 

interaction between two low energy particles of mass m is given by 

(2.58) 

Here a is the s-wave scattering length of the particles, which in the scattering 

theory of collisions gives the amplitude of the scattered wavefunction in the 

limit of low energy, spherically symmetric collisions [12]. In the position 

representation the interaction potential between two particles positioned at 

rand r' is therefore given by 

U(r,r') = Uod(r - r'). (2.59) 

2.3.1 Mean-field theory 

In mean-field theory we consider a fully condensed system, that is one in 

which all of the bosons are in the same single particle state. We write this 

single particle state using the wavefunction 1/Jo(r), which is normalised to 

unity. The full system wavefunction is then the product of all of the single 

particle states. Thus if there are N bosons, the wavefunction is 

N 

1/J(rl, r2,"" rN) = II 1/JO(ri) , (2.60) 
i=1 

where ri are the positions variables of the i-th single particle system. The 

generalisation of the average value of an operator ..4 = /("1, "2, ... , rN) in 

the position representation to a system of N identical particles is given by 

(..4) = f d3rl ! d3r2' .. f d3rN 

1/J*(rl' r2,· .. ,rN )/(rll r2,·· . ,rN )1/J(rl, r2, ... ,rN)' (2.61) 
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A similar generalisation occurs for A = f(Pl,P2'··· ,PN). 
When the interaction potential given by (2.59) is included in the formal­

ism, the position representation Hamiltonian is given by 

(2.62) 

We may therefore write the average total energy of the system as 

(H) = 

(2.63) 

Upon using the fact that the 'l/Jo form an orthonormal set of functions, that 

is 

(2.64) 

we obtain the result 

E = (if) - N J d3
r [:~ IV1/J.(r)I' + Vir) 11/Io(r)I' 

+ N ; 1 Vo I'l/Jo(r) 14] . (2.65) 

We introduce the condensed state wavefunction 

'I/J(r) = VN'l/Jo(r) (2.66) 

which differs from the system wavefunction 'I/J( rl, r2, ... , r N) in that it is 

an N-particle wavefunction rather than a product of single-particle wave­

functions. In a system consisting of a large number of bosons, so that 



CHAPTER 2. PARTICLES 21 

N{N - 1) ~ N 2
, the average energy of the system (2.65) may be approxi­

mated to be 

E", J d3
r [:~ 1V'",(r)I' + V(r) 1",(r)I' + ~o I"'(T)I']' (2.67) 

In order to find the form of 'I/J which minimises the energy, we use the action 

principle of classical mechanics 

(2.68) 

where L is the Lagrangian. In a general system with canonical position vari­

ables qi and corresponding canonical momenta Pi, the Lagrangian is related 

to the Hamiltonian via the equation 

(2.69) 

where q = 8q/ at. In our case the Hamiltonian is given by (2.67) and thus 
the Lagrangian is 

f 3 in [* 0 0 * ] L= dr"2 'I/J (r,t)at'I/J{r,t)-'l/J(r,t)at'I/J (r,t) -E. (2.70) 

In general, if a function J has an integral representation in the form 

J = f dtf{q, ti, t), (2.71) 

then J is minimised if the Euler-Lagrange equation 

of _ ~ (8f ) = 0 
oq dt 8q 

(2.72) 

holds. In our case f = L, which is a functional of'I/J and 'l/J*. Thus instead of 

partial derivatives in the Euler-Lagrange equation we need to use functional 
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derivatives. Our Euler-Lagrange equation therefore becomes 

6L 8 (6L) _ 0 
61jJ* - fJt 6~* - . 

The functional derivative is defined as 

6F[J(x)] = lim F[f(x) + €6(x - y)] - F[J(x)] 
6f(y) f-+O € 
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(2.73) 

(2.74) 

and if we substitute (2.70) into (2.73) using this definition, we obtain the 

time-dependent Gross-Pitaevskii equation 

iii &.p~' t) = [;~ \7' + V(r) + Uo I"'(r, t)I'] ",(r, t). (2.75) 

In the case of a stationary wavefunction, where the number of particles takes 

a constant value 

(2.76) 

the quantity we seek to minimise is the grand canonical energy, given by 

E' = E - J.tN. (2.77) 

Here J.t is the chemical potential, the energy required to add a particle to 

the condensate. We do this by setting the functional derivative of equation 

(2.77) with respect to the condensate wavefunction to be zero, so 

6E' 
61jJ* = O. (2.78) 

This results in the time independent Gross-Pitaevskii equation 

p."'(r) = [;~ \7' + V(r) + Uo I",(r, t)I'] ",(r, t). (2.79) 

The two types of Gross-Pitaevskii equation can also be obtained by consid­

ering the second quantised operator representing the field to consist of small 
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fluctuations about the mean field value. The lowest order expansion in the 

fluctuations gives the time-dependent Gross-Pitaevskii as we will show in the 

next subsection. 

2.3.2 Second quantised theory 

In section 2.2 we showed that a single particle operator may be written in 

the second quantised form (2.54). We may also show that an operator which 

is a sum of symmetric two-particle operators 

(2.80) 

may be written as 

The interparticle interactions in a BEC are described in the position rep­

resentation via equations (2.58) and (2.59). This two-particle potential is 

clearly symmetric with respect to the particles involved. The Hamiltonian 

for the system then becomes 

H = i: d3r [;~ ,pt(r)'V',p(r) +,pt(r)V(r),p(r) 

+~Uo~t(r)~t(r)~(r)~(r)] (2.82) 

We may express the Heisenberg equation of motion for the field operator ~ 

as 

art -n A A A A [2 
iii "'~' ) = 2m 'V' + V(r) + Uo",t(r, t)",(r, t)l ",(r, t). (2.83) 

We consider here a system in which almost all of the particles are in the 

same (condensed) state. Thus we write the field annihilation operator as 

the sum of the condensate waveflinction and an annihilation operator for the 
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fluctuations about this state: 

;j;(r, t) = 'I/J(r, t) + 8;j;(r, t) (2.84) 

If we assume these fluctuations to be negligible, then we arrive at the time 

dependent Gross-Pitaevskii equation 

iii a.p~' t) = [;~ '\7' + V(r) + Uo It/J(r, t)I'] t/J(r, t). (2.85) 

If instead of assuming the fluctuations to be negligible we assume them to 

be finite but small, then we obtain the spectrum of elementary excitations 

of the BEC. 

2.3.3 Elementary excitations 

This calculation was first performed by Bogoliubov [13] and we will outline 

it in this subsection. To simplify matters we consider the condensate to be 

confined to a box of volume V. From the theory of waves we know that the 

allowable wavenumbers for the wavefunction will be 

n7r 
k = Vl/3' (2.86) 

where n is any integer. We can treat each of these wavenumbers as a mode 

of the matter wave field and can therefore expand the field operators in 

terms of creation and annihilation operators for these modes. This yields the 

expressions 

.(/J(r, t) -
00 1 L /iTak(t)exp(ik. r) 

k=-oo V V 

f :Ua1(t) exp( -ik· r), 
k=-oo vV 

where ak and 0,1 obey the equal time bosonic commutation relations 

(2.87) 

(2.88) 
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The assumption that we make is that the interactions are weak. If there was 

no interaction, all of the particles would be in the zero momentum state and 

the total number of particles N = ~k atak would be equal to the number 

of particles in the ground state No = abao. Thus we write the condensate 

wavefunction as the zero momentum state in the sums (2.87). This will mean 

that we treat the mode operator ao as a classical field ao with laol2 = No· 

The condensate wavefunction is written 

1/J{r, t) = a~ (2.89) 

and the field operators are 

A 1 [ A] 1/J(r, t) = v'V ao(t) + e{r, t) , (2.90) 

where 

00 

O(r, t) = L ak{t) exp(ik . r) = v'V 6~(r, t). (2.91) 
k""Ojk=-oo 

The assumption of weak interactions is thus equivalent to treating 0 as a small 

quantity. We expand the evolution equation (2.83) to first order, assuming 

that there is no external potential. Upon inserting the expansion (2.90) into 

the evolution equation (2.83), we obtain 

(2.92) 

where we have neglected terms of greater than first order in O. The time 

dependent Gross-Pitaevskii equation (2.75) for the condensate wavefunction 

(2.89) in the absence of an external potential is simply 

."Bao _ NoUo 
'tf& at - V ao· (2.93) 

This means that to the lowest order in this calculation the condensate wave­

function rotates at frequency NoUo/ (Vn). We transform to a new frame 
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rotating at this frequency by defining 

(
-iNoUot) 

ao{t) = bexp Vii . (2.94) 

In this new frame the evolution equation (2.92) becomes 

,jn ~ abk ( 'k ) • ~ aexp 1, ·r -
k#O;k=-oo t 

(2.95) 

The last term in the sum may be written in an equivalent form by taking 

k ~ -k, and so we can remove the sum and the common phase factor and 

obtain 

(2.96) 

A similar equation can be derived for the complex conjugate by taking the 

conjugate of (2.83). The resulting relation is 

(2.97) 

which together with the previous equation form a pair of coupled evolution 

equations for the mode operators. If we calculate the Hamiltonian to second 

order, which is the same approximation used in the above calculation, we 

obtain 

The existence of the double annihilation and double creation terms in the 

Hamiltonian is due to the interaction between bosons. In order to find the 

elementary excitations we would like to remove the coupling terms from the 
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Hamiltonian. This is done by performing a transformation 

(2.99) 

to new operators tk and t~k' where the Uk and Vk depend only on the mag­

nitude of k. The inverse transformation is given by 

(2.100) 

and we use this to calculate the commutation relations between tk and its 

conjugate. This is given by 

(2.101) 

and if we restrict the transformation to IUkl2 -IVkI2 = 1 then the operator tk 
is a bosonic annihilation operator. We may write the transformation in the 

equivalent form (aside from a phase factor) 

(2.102) 

where 

(2.103) 

The tk give the elementary excitations of the system. We call these operators 

"quasi-particle" operators, as their spectrum is the same as that for a system 

of non-interacting particles as we will now show. 

In order to decouple the evolution equations (2.96) and (2.97) we simply 

find the value for Lk which removes the coupling terms. Upon substituting 

(2.102) into the coupled evolution equations we obtain 
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-in a~_k + Lk a~k 
[ 

~t ~ 1 
at at 

(2.104) 

Next we multiply the second equation by Lk and add the equations so 

iliiJ~. (1 -IL.12
) _ €. {[IL,12 + 1] [1i:!2 + N~o 1 + ~ [b2L' +b12L.]} 

+ €~. { 2L. [~!2 + N~o 1 + ~ [b2 + bl2 L~] } . (2.105) 

If we are to decouple the evolution equations for ~k and ~~k then the term 

proportional to ~~k in (2.105) must vanish, i.e. 

(2.106) 

which is achieved by setting 

(2.107) 

Here we have defined 

(2.108) 

The decoupled equations are thus written 

iha~k - E(k)~k at 
At 

_ihaLk At 
- E(k)~_k' at (2.109) 
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Upon substituting the value for Lk (2.107) into (2.98) we obtain 

iI = Ho + L E(k)~Uk' (2.110) 
k#O 

where 

UoN
2 

1 [ 1i
2
k

2 
No 1 Ho=--+-L E(k)----Uo . 

2V 2 k#O 2m V 
(2.111 ) 

Thus the transformation (2.102) acts to diagonalise the Hamiltonian. This 

shows that in this approximation, the total energy is the ground state energy 

Ho plus the individual energies of each of the quasi-particles, whose annihi­

lation operators are simply ~k' The fact that this is diagonal in ~Uk shows 

that these quasi-particles do not interact to this level of approximation. One 

can extend the approximation to the next level and show weak interaction 

between the quasi-particles [13], but this is not considered further here. 

In chapter 7 we will show how the Bogoliubov theory considered here may 

be modified to describe elementary excitations in a one-dimensional quasi­

condensate, where there is no single macroscopically occupied ground state. 

A quasi-condensate is a gas of bosons which experiences macroscopic phase 

fluctuations but only very small density fluctuations. 



Chapter 3 

Conservation laws and 

continuity equations 

3.1 Fluid mechanics 

Conserved quantities are of great interest in physics. They allow us to dis­

tinguish between processes which are physical and those which are not. For 

example, consider the total amount of matter in the universe. This must 

remain constant. A global conservation law like this is incomplete since it is 

possible to satisfy it with a particle disappearing at a point A and instanta­

neously reappearing at a point B, a macroscopic distance away. This is not a 

physical process and we thus require a local version of this law. Qualitatively 

we say that in any volume V a decrease in mass must be compensated for 

by a flow of mass out of the volume. We quantify this by writing [14] 

~ { pdV = { dV 8p = - 1 pv. dS, 
at Jv Jv at fA 

(3.1) 

where p is the density, v is the flow velocity, A is the surface of V and dS is 

a unit vector normal to A. Figure 3.1 gives a pictorial representation of the 

situation. Gauss' theorem for a vector q is given by 

(3.2) 

30 
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p 
v v 

Figure 3.1: A pictorial representation of matter with density p and velocity 
v flowing through a volume V. 

and upon using this in the local conservation equation we obtain 

{ dV
8p 

= - { dVV· (pv). 
]v at iv 

(3.3) 

This must hold for any volume V and so we can remove the integrals, giving 

the differential form of the continuity equation 

8p 
at + V . (pv) = o. (3.4) 

We say that pv describes the mass flux density of particles. Conserved den­

sities other than the mass density satisfy equations similar to (3.4). Such 

quantities include the energy, momentum and angular momentum. The en­

ergy density is given by 

pv2 
w=T+P€, (3.5) 

where € is the internal energy density of the fluid. This quantity satisfies a 

continuity equation given by 

(3.6) 
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where p is the pressure. In both of the cases mentioned the density is a scalar 

quantity and the flux density is a vector. We shall consider the case of the 

momentum of the fluid, which is a vector quantity, having a density given by 

P=pv. (3.7) 

We introduce the component notation for vectors, wherein Vi is the i-th com­

ponent of the vector v and the index i takes the values 1 to 3, corresponding 

to the x, y and z directions respectively. With this in mind, we introduce 

the summation convention [15] which will be assumed for the remainder of 

the thesis. In the summation convention, a repeated index is assumed to be 

summed over. Thus for example 

3 

aibi = I:aibi = a· b. 
i=l 

(3.8) 

In order to find the continuity equation satisfied by the momentum density, 

we take the time derivative of the momentum density which is given by 

(3.9) 

We use the mass continuity equation (3.4) and the fluid equation of motion 

known as Euler's equation [14], which is obtained from the force acting on a 

volume element due to its pressure. Euler's equation is 

(3.10) 

where p is the pressure, and only holds for ideal fluids - ones where thermal 

conductivity and viscosity are negligible - in the absence of gravity. Thus we 

can write the momentum density in the form of a continuity equation. This 

is written as 

- -viVj(pvj) - PVkVkVi - ViP 

- -Vj(PViVj + aijp). (3.11) 
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Thus the continuity equation which the momentum density satisfies is 

(3.12) 

where Ilij is the momentum flux density which is the rank 2 tensor quantity 

(3.13) 

This specifies the flux in the k direction of the i component of the momentum. 

In general if the density is a rank n tensor the flux density is a rank n + 1 

tensor. 

3.2 Electromagnetic theory 

We have seen that certain properties of fluids are conserved and thus obey 

continuity equations. Similarly we may write continuity equations for the 

charge, energy, momentum and angular momentum of electromagnetic waves. 

As these quantities are traditionally associated with solid bodies in mechan­

ics, we will call them the mechanical properties. In order to find the conti­

nuity equations for the mechanical properties of electromagnetic waves, we 

use the Maxwell equations for the electromagnetic field in the presence of a 

continuous charge and current distribution, given by p and J respectively. 

The Maxwell equations are 

'ViEi P -
fO 

'ViBi - 0 
1 aEi 

/-LoJi f'·k'V·Bk --- -'3 3 c2 at 
aBo 

(3.14) f"k'V ,Ek +-' - 0, 
13 3 at 

where E and B are the electric and magnetic field vectors respectively, fO is 

the permittivity of free space and J.lo is the permeability of free space. Here 

we have introduced the permutation symbol [15] fijk which takes the value 1 
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if ij k is a cyclic permutation of 123, -1 if ij k is a cyclic permutation of 321 

and zero otherwise. Thus 

(3.15) 

By taking the time derivative of the first equation in (3.14) 

(3.16) 

the divergence of the third 

(3.17) 

and using the cyclic property of €ijk, we obtain the well known charge con­

servation equation [16] 

ap - + ,\/.J. = 0 at 1 1 
(3.18) 

As well as the charge, we may consider continuity equations for each of energy, 

momentum and angular momentum. The electromagnetic energy density is 

given by 

(3.19) 

Upon using the Maxwell equations we may calculate the time derivative of 

the energy density and obtain 

au 1 - + -~·€"kE·Bk = -E-J. !:U v, lJ J , ,. 
u" /-Lo 

(3.20) 

This has the form of a continuity equation, except that the term on the right 

hand side is non-zero. Equation (3.20) represents the generalisation of the 

continuity equation to situations in which there is a sink or source of the 
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quantity. In this case the fields do a total rate of work given by 

which is why EiJi appears as the source term in (3.20). 

One can extend the same type of calculation to the momentum of the 

electromagnetic field. The momentum density is given by 

(3.21) 

and the continuity equation is 

(3.22) 

Here we have defined the electromagnetic momentum flux density tensor 

(3.23) 

where 6ij is the Kronecker delta function. The source term in (3.22) is simply 

the negative of the force per unit volume imparted by the electromagnetic 

field on a charged particle. A similar calculation is possible for the conser­

vation of angular momentum [16, 17], but we will not discuss this further 

here. 

It is worth noting that in this chapter we have defined the flux by finding 

an equation of the general form 

(3.24) 

where a is the density of interest. We then define b as the flux density of the 

given quantity and c as its source density. This definition of the flux density 

is not unique, however, since the divergence of the curl of any vector is zero. 

Thus the same equation may be satisfied by a quantity 

(3.25) 
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where d is any vector field. For the energy density equation one may show 

from relativistic considerations that the Poynting vector 

(3.26) 

satisfies (3.20) uniquely [16]. This is done by equating the derivative of the 

electromagnetic symmetric stress tensor 8 0 /3 to zero, so that 

(3.27) 

Here the Greek indices take the values 0, ... ,3. The components of the tensor 

8 o!3 are given by 

8 00 - ~ ('oEkEd ~o BkBk) (3.28) 

80i 1 
(3.29) - -fijkEjBk 

/-Lo 

eij 1 
- 2<5ij (/-Lo l 

BkBk + f.oEkEk) - foEiEj - J.Lo l BiBj, (3.30) 

where the components i, j and k each take the values 1,2,3. Thus calcu­

lating (3.27) with {3 = 0 gives the Poynting vector uniquely as the electro­

magnetic flux density. Similarly, setting {3 = i gives expression (3.23) as 

the unique electromagnetic momentum density tensor. It seems likely that 

this uniqueness extends to other quantities, or at least that the addition of 

a divergenceless term has no physical consequences. 



Chapter 4 

Mechanical properties of 

matter waves 

4.1 Introduction 

We have seen in the previous chapter that electromagnetic waves have prop­

erties analogous to fluids in that we can define flux densities for their me­

chanical properties. As experiments in matter waves are performed with ever 

more control and precision, with a view to the applications of matter waves, 

it will be important to calculate important mechanical properties such as 

energy, momentum and angular momentum at a local level. In this chap­

ter we present the beginnings of a theory of the mechanical properties of 

matter waves. This will allow the calculation of such quantities. The work 

presented herein represents an original contribution to the literature and has 

been published in ref. [18]. 

4.2 Formalism 

We turn our attention to the semiclassical description of matter waves. Con­

sider an observable A having a corresponding Hermitian operator.A. If A is 
an observable which corresponds to a mechanical property and thus obeys 

a continuity equation of the form (3.24), then the operator representing its 

37 
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density A( R} at a point R will obey the generalised local continuity equation 

(4.1) 

where Xi are the components of R, ~(A) is the flux density operator for the 

observable A and S(A) is the source density operator. The particle density, for 

example, is described by the Dirac delta function operator 8(r - R). We can 

see this if we consider the position representation, in which its expectation 

value will be 

(8(r - R)) - i: d3r1/J*(r, t)8(r - R)1/J(r, t) 

- 11/J{R, t)12 , (4.2) 

which is the particle density at R. Expanding on this, we expect that A(R), 

which represents the density of a quantity A, to be proportional to product 

of the operator for A and the delta function operator: 

A(R} ex ..18(r - R). (4.3) 

The product written above is not Hermitian, however, and so instead we 

define A(R) to be 

A(R) - ~ [..18(r - R) + (..18(r - R))t] 

1 [ A A] - "2 A8(r - R) +c5(r - R)A , (4.4) 

since both A and 8{r - R) are themselves Hermitian. We write this in the 

more compact form 

A 1 { A } A(R) ="2 A,c5(r - R) , (4.5) 

where {, } denotes the anticommutator which is defined by 

(4.6) 
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From the Heisenberg equation of motion we can show that the density will 

evolve according to 

!A(R) - ~ [if,A(R)] 

- 2
i
h ({[H,A],O(f - R)} + {Ji, [H,o(f - R)l}) (4.7) 

If A is a conserved quantity, then its time derivative must vanish. From the 

Heisenberg equation this means that it will commute with the Hamiltonian. 

We see that the first term on the right hand side will vanish if A is conserved. 

It is therefore reasonable to associate this term with the source term in 

(4.1) and the last term with the flux density. In order to proceed with the 

calculation we move to the position representation and use the standard 

Hamiltonian (2.35) for a particle in a potential V(r). Note that this simple 

Hamiltonian does not describe systems where particles are lost or gained. 

On evaluating the last term in (4.7) we find that the commutator can be 

calculated to be 

[
A] _",2 
H,o(r - R) = 2m [ViVi,o(r - R)] + [V(r),o(r - R)]. (4.8) 

The commutator of o(r - R) with V(r) vanishes and we find that 

(4.9) 

Thus the last term of (4.7) becomes 

We use a property of the Dirac delta function 

a a 
-8(x - y) = --8(x - y), ax 8y 

(4.1O) 
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which comes about from the definition of the delta function as the limit of a 

Gaussian. Since A is independent of R, this allows us to write 

where 

in { , } V R,i 4m A, {Vi, 8(r - R)} , 

() 
VR,i = (}X

i
· (4.11) 

We now return from the position representation by identifying Pi = -in V i 

and so the last term in (4.7) can be written as 

1 { , {po }} -VR,i4 A, ~,8(f - R) . 

Thus we can rewrite (4.7) as 

~! {.-t, o(r - R)} + ~v~. { .. 1.{:,o(r - R)}} 
1 {() A } - 2 at A, 8(f - R) , (4.12) 

which takes the form of a conservation equation (4.1). This allows us to 

identify the flux density operator 

(4.13) 

We can associate the operator {Pi/m, 8(f - R)} with the velocity density 

and hence see that 1i(A) (R) is a suitably symmetrised product of the velocity 

density and the observable. This operator is the flow of the density of the 

observable, that is its flux density. The forms of the flux density and source 

density for the observable A will come from the expectation value of (4.12). 

In the Heisenberg picture and the position representation, the matter wave 

will be described by a wavefunction 'I/J( r) at all times. The expectation value 
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of the conservation equation for this state is 

(4.14) 

which is the continuity equation for the expectation values of the relevant 

operators. Here we have introduced the notation A(R) = (A(R)). The flux 

density expectation value is 

7;(A)(R) - J d3r'IjJ*(r)1;(A\R)'IjJ(r) 

in [ • • 
- 4m 'ljJV'i(A'IjJ)* - (A'IjJ)*V'i'IjJ 

+A'IjJ(V'i1/J*) - 'IjJ*V'i(A'IjJ)]lr=R (4.15) 

and the source density expectation value is 

S(A)(R) = 2in {- ([iI, A] 'IjJ r 1/J + 'IjJ* ([iI, A] 'IjJ) }lr=R' (4.16) 

In the next section we will consider several quantities which may be con­

served, specifically the particle number, energy, momentum and angular mo­
mentuIIl. 

4.3 Conserved Quantities 

4.3.1 Particle Number 

Following Landau [19], the operator corresponding to particle density in a 

semiclassical theory is represented by the Dirac delta function, so in (4.5) we 

put the operator A equal to the identity operator 1. From (4.15) the flux 

density of particles at position r can be calculated as 

~(p) (R) - 1! (1/JV'i'I/J* - 'IjJ*V'i'l/J + 1/JV'i1/J* -1/1*V'i1/1)lr=R 

- ;! ('l/JV'i'I/J* - 'I/J*V'i'I/J)lr=R 

- ! 1m {'I/J*V'i'I/J}lr=R , (4.17) 
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where 1m indicates the imaginary part. This is the form of the well-known 

quantum mechanical probability flux Ji [20]. The source term vanishes as 

the identity operator commutes with the Hamiltonian. This is a reasonable 

result as there is no particle source present in the system. 

4.3.2 Energy 

Energy in quantum mechanics is represented by the Hamiltonian operator, 

so we can calculate the energy flux density from (4.15) to be 

7;(E)(R) = :~ {1/J'Vi (iI1/J*) -1/J*'Vi (H1/J) 

+ (H1/J) 'V i1/J* - (H1/J*) 'V i1/J }lr=R' (4.18) 

Upon using the Hamiltonian from (2.35), and performing the product deriva­

tives, the expression given above can be simplified considerably to give 

h3 

4m2 1m {1/J'V2'Vi 1/J* + ('Vi 1/J*) 'V2'I/J }lr=R 
+V(R)7;(p) (R). (4.19) 

The source term for energy clearly vanishes as the Hamiltonian commutes 

with itself. This is reasonable as energy is conserved in this system. 

4.3.3 Momentum 

Momentum is represented by the spatial derivative operator Pi = -ih'Vi , 

and we can calculate the momentum flux density from (4.15). Thus the j 

component of flux of the i component of momentum is 

7;1)(R) = :: {-1/J'Vj 'Vi'I/J*-1/J*'Vj 'V i 'I/J 

+ ('Vi'I/J) (Vj1/J*) + (Vi'I/J*) (Vj'I/J)}lr=R 

- :: Re{(Vi'I/J)(Vj'I/J*) - 'l/JViVj1j1*}lr=R' (4.20) 
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The source term for momentum will not necessarily vanish as the potential 

term may contain a momentum source (such as gravity), which from (4.16) 

is given by 

By expanding the commutator and evaluating product derivatives, we arrive 

at the expression for momentum source 

(4.22) 

This is equivalent to a force term suitably weighted by the probability den­

sity. This is the form of a source density of momentum that we might have 

expected on the basis of Newton's second law of motion. 

4.3.4 Angular Momentum 

Angular momentum is represented by the cross product of position and mo­
mentum: 

(4.23) 

Thus from (4.14), substituting 'Pi for A, we obtain 

( 4.24) 

To determine the flux and source terms for angular momentum density in 

terms of the momentum density, we simply take the time derivative of the 

angular momentum density 

a 
- fijkXj at 'Pk(R) 

- fijkXj"VR,I1kr>(R) + fijkXjSf!'> (R). ( 4.25) 
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Thus we expect that 

VR,I7;~L)(R) - €ijkXjV'R,I7kr)(R) 

Si(L) (R) - €ijkXjS;:) (R) 

44 

( 4.26) 

(4.27) 

which, from (4.22) implies that the source will be a torque, suitably weighted 

with the probability density. This is as expected for the source of angular 

momentum. 

Inserting (4.23) into (4.15), the l component of flux of the i component 

of angular momentum can be calculated as 

Upon evaluating the product derivatives in the first line, we can show that 

the angular momentum flux density is given by 

,,(L) (R) _ (P) 1i2 
2 

.lil - €ijkX j7kl (R) - 4m €ilk V R,k I'I/J(R) I . ( 4.29) 

It can be easily verified using the antisymmetric properties of the €ijk that 

this is consistent with (4.26). The source will not necessarily vanish, so from 

(4.16) 

Upon expanding the commutators and performing the product derivatives 

we arrive at the expression for the angular momentum source 

(4.31) 

which is a torque density, and exactly that anticipated in (4.27). 
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4.4 Conclusion 

In this chapter, we have derived general flux density and source density 

operators for conserved quantities in matter waves within the semiclassical 

description. This theory will be important when considering the deposition 

of these quantities during interactions of matter waves with other objects. An 

example of this is the detection of matter waves themselves, which requires 

one to consider the particle flux density [21] as we will see in the following 

chapters. 

One problem is that, just as described in chapter 3, the flux density op­

erator (4.13) might contain an arbitrary divergenceless operator in addition 

to the terms present. The angular momentum flux density shows this most 

clearly. The method used above involved taking the time derivative of the op­

erator representing the density of the observable, identifying the flux-density 

operator and then taking expectation values. If instead we took the expec­

tation values first and then the time derivative, the flux density we obtain 

for the angular momentum case is given by 

h2 

7;}L) (R) = 4m fijkXj {-'l/J\l/ \l k'I/J* - 'I/J*\l, \l k'i/J 

+ (\lk'I/J) ('VI'I/J*) + ('Vk'I/J*) ('V,'I/J)}lr=R 

- fijkXPk'r) (R). 

(4.32) 

( 4.33) 

This is just the flux density given in (4.28) and (4.29), without the diver­

genceless quantity 

As these methods are both equivalent and correct we deduce that this diver­

genceless quantity has no physical significance. It seems likely that this will 

be the case for all mechanical properties. 



Chapter 5 

Semiclassical theory of matter 

wave detection 

5 .1 Introduction 

In a recent experiment, Robert et al [22] created a BEC of metastable triplet 

Helium atoms (He"') and highlighted the ability to count single atoms falling 

from the trap after it was turned off (see figure 5.1 for a schematic repre­

sentation of the experiment). This allows for the exciting possibility of more 

detailed investigation of the quantum statistical properties of matter waves. 

As a first step into this field, we model the detection of matter waves 

falling under gravity. We will use a simplistic model, not including the effects 

of interactions which exist between atoms [23, 24]. This will allow the features 

specific to detection to be more readily illustrated. As we are considering 

matter waves, we can draw a direct analogy with the well known theory of 

the detection of light waves, or photo-detection [25], which will be outlined 

here. The work presented in this chapter is an original contribution and is 

published in ref. [21]. 

46 
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Figure 5.1: Schematic representation of the experiment which is being mod­
elled here. 
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5.2 Semiclassical theory of photo-detection 

The semiclassical theory of photo-detection is based on the assumption that 

the probability of an ionisation event occurring in the photo-detector in a 

time period dt is proportional to the cycle-averaged intensity l(t) of the 

incoming light: 

p(t)dt = €l(t)dt, (5.1) 

where € is a constant of proportionality which represents the efficiency of the 

detector, including geometric factors such as its area, and dt is sufficiently 

small that the probability of more than one detection event occurring is neg­

ligible. For monochromatic light whose statistical properties are independent 

of time (stationary), the cycle-averaged intensity is taken to be 

- 1 2 
J(t) = 2€QcIE(t)\ = cW(t), (5.2) 

pointing in the direction of beam propagation, where W (t) is the energy 

density. Under assumption (5.1), if we take a time interval from t to t + T, 
then the probability of m detection events occurring is 

(5.3) 

where 

rt+T 
n = € it dt'l(t') (5.4) 

and the angled brackets indicate a statistical average. From (5.3) we can 

evaluate the mean number of detection events to be 

00 

(m) = L mPm(T) 
m=O 
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00 (-m-l ) " n -= ~ n e-n 

m=l (m - I)! 
(5.5) 

and since we can take the sum inside the statistical average, we can write 

(m) = (n) . (5.6) 

5.3 Matter waves 

We wish to construct a semiclassical theory of matter wave detection by 

analogy with the theory of photo-detection presented above. A natural way 

to proceed is to replace the electric field E ( r , t) with the particle wavefunction 

7/J(r, t). Thus the matter wave analogy to the expression for l(t) in (5.2) will 

be 17/J(r,t)12 v, where we have included a characteristic velocity v. This is 

in direct analogy with the velocity of light c in the photo-detection theory 

and is of vectorial nature to allow for matter waves which are not travelling 

perpendicular to the detector. It is also required so that the equations have 

the correct dimensionality. In the analysis that follows, v will be associated 

with the mean velocity of the wavepacket. The probability of detection over 

a time interval from t to t + T would again be given by (5.3) and the average 

number of counts (m) by (5.6) where instead of (5.4), we have 

It+T [ 
n = ~ t dt'iA 1'I/J(r, t')1 2 v . dS. (5.7) 

We have now explicitly included the area of the detector A, and dS is the 

infinitesimal area element normal to the surface of the detector. If we assume 

that the particle wavefunction is normalised so that it contains on average 

N particles, then for all times t 

(5.8) 

If the detector is of perfect efficiency then we would expect that for a wave­

packet falling under gravity, a sufficiently long detection window and large 

detection area would produce a mean of N detection events. This means 
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that from (5.7) we might expect that as T ~ 00 and t ~ -00, 

~ 100 

dt' 111/J(r, t')1 2 v . dS = N, 
-00 A 

(5.9) 

for the value of ~ corresponding to a perfectly efficient detector. 

By drawing analogy with photo-detection of light waves, we have derived 

(5.7) which includes the characteristic velocity v. As a first approximation 

we might expect that this will be the mean velocity of the wavepacket. This 

is not an approximation for light in free space because free space is not 

dispersive; at all frequencies light travels at c. For matter waves, however, 

free space is dispersive. 

In order to take into account matter wave dispersion we ought to base our 

theory of detection on the flux-density of particles - the mean rate at which 

particles cross a unit area of the detector. As particle number is a conserved 

quantity its density p must satisfy an equation of continuity [19, 26] 

a 2 at 11/J(r, t)1 + \l . J(r, t) = 0, (5.10) 

where J is the particle flux-density. This equation is of the same form as 

the one for local charge conservation in electromagnetic theory or, more 

relevantly for our purpose, relating particle density p and particle flux-density 

J = pv in fluid mechanics [14]. The particle flux density is the same as that 

calculated in chapter 4, and is given by 

1i 
J(r, t) = -1m {1/J*(r, t)\l1/J(r, t)} . 

m 
(5.11) 

As this is analogous to the particle flux-density J = pv from fluid mechanics, 

it seems reasonable that (5.7) should become 

r+T 1 n = ~ it dt' A J(r, t') . dS. (5.12) 

As we have seen in chapter 3, the energy density is related to the energy 

flux-density (the Poynting vector) [16, 27] by a continuity equation similar to 

(5.10). In a general situation, outwith the conditions which make (5.2) valid 
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(for example inside a dispersive and/or lossy dielectric), the cycle-averaged 

intensity in (5.2) must be replaced by the magnitude of the Poynting vector. 

5.4 Single atom example 

In order to illustrate fully the difference between the theories given by (5.7) 

and (5.12), it is instructive to evaluate both expressions in the case of the 

detection of a wave packet falling in the - z direction under gravity onto a 

fiat, large-area detector aligned parallel to the x-y plane. Such a system 

closely models the He* experiment in [22], and it is one in which we would 

expect all particles to fall onto the detector, which will allow us to check the 

expression for (m). 
In evaluating the probability of detection for a wavepacket falling under 

gravity we will need to calculate the form of the matter wavefunction. We 

consider a model BEC, released at time t = 0, described by a Gaussian 

wavefunction centred at ro with width parameter w, 

(5.13) 

The Hamiltonian for this system will be given by the standard position rep­

resentation Hamiltonian (2.35) for particles in a potential V(r), with the 

potential being the gravitational potential 

V(r) = mgz. (5.14) 

With this potential the Hamiltonian is written in the position representation 

as 

(5.15) 

where we have taken the zero of gravitational potential energy to be at z = 0, 
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the plane of our detector. The Schrodinger equation is thus written 

(5.16) 

We simplify this by transforming to a frame rotating at frequency mgz/h 

and writing 

(
-imgzt) 1/J(r, t) = exp h </J(r, t). (5.17) 

Under this transformation the time derivative becomes 

8 8 imgz 
---+----at at h 

(5.18) 

and the spatial derivative is 

8 8 imgt 
---+----
8z 8z h' 

(5.19) 

The evolution equation for </J(r, t) is thus written 

. 8 _h
2 [82 82 ( 8 imgt) 2] 

zh at </J(r, t) = 2m 8x2 + 8y2 + 8z - -h- </J(r, t). (5.20) 

If we introduce the Fourier transform ¢(q, t) of <I>(r, t) via the relation 

( 
1 )3/2 _ 

</J(r,t)= 211" jd3q exP(iq.r)</J(q,t), (5.21) 

then we may take the Fourier transform of the evolution equation (5.20). 

This gives 

(5.22) 

We then formally solve this equation for ¢(q, t), invert the Fourier transform 
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and return to the lab frame to give the wavefunction at any time t: 

1/J(r, t) = 
( )

3/2 
N 1/ 2rr-3/ 4 w 

w2 + i lit 
m 

{ 
Ir - R(t)12 itmg ( 1 2)} exp - - -- z + - gt . 
2(W2+i~) h 6 

(5.23) 

Here we have defined the average "classical" position of the particle R( t) = 
(r(t)) = ro - ~gt2k, where k is the unit vector in the z direction. This 

gives the position of the centre of the wavepacket. As the wavepacket is 

accelerating from rest under gravity, the spatial integral in (5.7) will be given 

by 

L 11/J(r, t)\2 it· dS = gt 11 \1/J(r, t)\2 dxdy. (5.24) 

It can be seen that the expression in (5.24) depends on exp{ -(z - zo)2} and 

thus depends on the height that the wavepacket starts above the detection 

screen. With this taken into account, one can see that the integral of (5.24) 

over all time cannot give a constant value of N, and so the expression for N in 

(5.9) cannot hold for any e which is solely dependent on detector properties. 

This result can be verified numerically. 

If we now use (5.11) to calculate the ft.ux-density of particles for this 

system, we obtain an expression for the integral in (5.12) 

1 [ z - zo + 9t2/2] { ( 2 
A J(r, t) . dS = gt - t + w4m2/(h2t) 11 I'I/J(r, t)\ dxdy. (5.25) 

Upon performing the integral in this expression, we may rewrite equation 

(5.25) as 

L J(r,t)· dS 

(5.26) 
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If we define the quantity u to be 

w(z - zo + gt2/2) 
u = ----.:.-;========::::.:-

JW4 + n.2t2/m2 ' 

(5.27) 

then we can simplify (5.26) to give 

(5.28) 

The average number of detections n is given by (5.12), and if we take a very 

long detection window such that t ~ -00 and t + T ~ 00 then this gives 

n - ~N7r-l/2 Joo e-u2 du dt 
-00 dt 

- JOO 2 ~N7r-l/2 -00 e-u du 

- ~N (5.29) 

Thus we can see that the constant of proportionality ~ is in fact the efficiency 

of the detector which takes values between 0 and 1. 

It is clea.r to see that the expression obtained in (5.25) is that from (5.24) 

plus an additional correction, which is a height-dependent velocity term. 

This additional velocity term is a direct consequence of the dispersive na­

ture of free space for matter waves. From (5.23) it is clear that the wave 

undergoes dispersion as it falls under gravity. The detection theory based 

on (5.24) assumes that this dispersed wavepacket propagates through the 

detection plane at the mean packet velocity. The detection formula in (5.25) 

based on particle flux does not make this assumption and the factor 'hIm 

which quantifies the dispersion of the wave in (5.23) also appears in the de­

tection formula. If this factor is taken to zero either by taking 1i ~ 0 or 

m ~ 00, then the dispersion in (5.23) disappears, as does the additional 

velocity term in (5.25). The time variation of the integrals given by the two 

different theories are plotted in figure 5.2. For ease of calculation we have 

used the dimensionless variables Q = wr and T = 'htl(mw2
), and we have 

used units such that the dimensionless quantity gm2w3 In? = 1. The plot 
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shows the dimensionless rate mw2 In J J . dS for the correct theory and the 

corresponding quantity mw2/n J \w(r, t)\2 v . dS for the incorrect theory. It 

can be seen that the differences in the expressions are quite pronounced: in a 

detection theory which takes account of dispersion the majority of particles 

will arrive earlier than they would in a detection theory in which dispersion 

is not correctly accounted for. In order to see this we consider the case of a 

wavepacket in the absence of gravity. The average velocity of the wavepacket 

(v in (5.24)) would remain zero at all times. Because the incorrect theory 

predicts a detection rate proportional to v, we would have a zero detection 

rate at all times. Due to dispersion, however, the bosons would pass the 

detection plane at some time and so the detection rate would be non-zero. 

We would expect in this case that a perfect detector with an infinite time 

window would detect half of the particles. Clearly the incorrect theory does 

not predict this result. Thus we conclude that the atoms would arrive earlier 

in a theory in which dispersion is correctly accounted for. 

From (5.23) we can see that if the factor ntl(mw2) is greater than unity, 

the wavepacket becomes significantly wider (due to dispersion), and this 

dispersion ought to be taken account of in detection theory. As an example 

of how important dispersion is in the system under consideration, we take 

values from the He· experiment presented in [22]. The time of flight of atoms 

here is 0.1s and the mass of a He· atom is 6.68 x 10-27 kg. We thus find that 

the dispersion factor will be important for any wavepacket with an initial 

width of less than 0.1mm. The size of the He· condensate in the z direction 

is 6J.Lm and so dispersion will indeed be important in this situation. 

5.5 Conclusion 

We have described in this chapter the construction of a semiclassical theory of 

matter wave detection, drawing on the well known theory of photoelectron 

detection. It is the intrinsically dispersive nature of matter waves which 

prevents the direct analogy from working. We must instead consider the 

flux-density of particles, which gives an additional velocity term. Indeed if 

light passes through and is detected in a dispersive medium, the magnitude 
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Figure 5.2: Comparison of detection rate for the correct and incorrect de­
tection theories, as a function of time. The plots are taken at the detector 
surface Q z = 0 and we have chosen the initial centre of the wavepacket to be 
at Qz = 3. The solid line shows the correct theory {5.25} and the dotted line 
shows the incorrect theory {5.24}. 
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of the Poynting vector, which represents the flux-density of energy, must be 

used in place of (5.2). 

In the next chapter we derive the link between the detection rate and the 

flux density through the detector from microscopic considerations. In order 

to do this we quantise the matter wave field and start from the fact that the 

detector responds to the field density, not its flux. 



Chapter 6 

Quantum theory of matter 

wave detection 

6 .1 Introduction 

In the previous chapter, we saw that the detection probability was explicitly 

related to the flux through the detector surface. Here we derive a quantum 

theory of matter wave detection, starting from a microscopic description of 

detection and progressing to the description of a bulk detector of finite extent. 

We calculate the detection rate using perturbation theory, which does not 

take account of the back-action of detection on the atomic wavefunction. We 

then modify this using a Langevin-type description to give an exact result. 

In order to illustrate the difference between the methods, we present an ex­

ample involving a single atom falling under gravity onto a flat detector. This 

chapter represents an original contribution and is currently in preparation 

for publication. 

6.2 Formalism 

The He· experiment of Robert, et al [22] uses a micro channel plate (MCP) 

placed below the trap to detect the falling atoms. MCPs can detect either 

UV photons or charged particles. As there are no charged particles present in 
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the system, we conclude that the electric field of the detector atoms disturbs 

the symmetry of the He* wavefunction. This causes the atom to decay to 

its ground state and release a UV photon which induces the creation of an 

ion-electron pair in the detector. 

In this chapter we will use second quantised operators to describe the 

matter wave field. As we have seen in chapter 2, the field is represented by 

the operator J,t(r), which creates a condensate atom at position r, and its 

hermitian conjugate J,(r), which annihilates an atom. We will work in the 

interaction picture in section 6.3 and the Heisenberg picture in section 6.4. 

Both of these involve time varying operators, and the equal time commuta­

tion relation between the field creation operator and its conjugate is given 

by 

[J,(r, t), J,t(r', t)] = 8(r - r'), (6.1) 

where 8( r - r') is the Dirac delta function. In general the matter wave field 

operator should be a spinor field, which includes a spin quantum number, 

rather than a scalar one. In the case of He*, however, the condensate is a spin 

polarised gas of atoms, so that a scalar field contains sufficient information. 

We can construct a model for the process described above in which the 

Hamiltonian has terms describing the matter wave field, the detector and the 

interactions between them. For a matter wave field in a (possibly nonlinear) 

potential V ( r) and with internal electronic energy Ee , the Hamiltonian is 

given by 

BMW = i: d'r {:~ [V,ftt(r)j. [V,ft(r)j + ,ftt(r) (V(r) + E,] ,ft(r)} . (6.2) 

Because the field is second quantised we must also introduce a second quan­

tised description of the detector. The detection process involves the creation 

of an ion-electron pair inside the detector. We therefore introduce the opera­

tor fJt(r, E) which creates such a pair with total energy E at position r. The 

position considered here is in fact an element of a set of discrete positions, 

due to the construction of the detector. In the situation of interest however, 
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the distance between detector atoms will be very small compared with the 

width of the matter wave packet and the associated de Broglie wavelength. 

Thus we treat r as a continuum of possible points in space. Any single de­

tector atom will never be doubly excited and hence we are free to choose the 

detection event creation operator to be either bosonic or fermionic in nature. 

For ease of calculation, however, we choose it to be bosonic and thus obey 

equal-time commutation relations given by 

[a-(r, E, t), a-t(r', E', t)] = l5(r - r')I5(E - E'). (6.3) 

When the detector creation operator acts on the ground state of the detector 

10) D, we obtain the continuum detector states 

(6.4) 

which obey the normalisation condition 

(r', E'lr, E) = l5(r - r')t5(E - E'). (6.5) 

With this in mind, the detector Hamiltonian is constructed to be 

HD = 100 

d3r roo dEED(r)ut(r, E)u(r, E), 
-00 10 (6.6) 

where D(r) is a function which is unity for values of r which are inside the 

detector and zero for those which are outside. 

The interaction between the detector and the matter wave is described 

by the interaction Hamiltonian 

Here we have introduced the function ~(r - r', E) which describes the sep­

aration of the boson and the detector atom and also contains the detector 

response as a function of energy and H.C. represents the Hermitian conjugate 

of the first term. 
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The total Hamiltonian for the system of matter wave and detector may 

be written as 

H = H MW + HD + V. (6.8) 

In the following sections we calculate the matter wave detection rate using 

this formalism. 

6.3 Perturbation theoretic approach 

In this section we use perturbation theory to first order to calculate the 

short-time detection rate. Given an initial state Ii} and a final state If} in 

the Schrodinger picture the probability of transition within a time window 

to -+ t is given by 

1 {t, [i (t' - t) A ] A [it' A ] • 2 
Pji(to, t) = 1i2 lto dt UI exp 1i Ho Vexp -r;Ho Iz} (6.9) 

In the case where Ii) and If} are eigenstates of Ho, (6.9) gives 

1 r [it'(E/ - E-)] A 2 
p/i(O, t) = 1i2 10 dt' exp 1i l UIVli} , (6.10) 

where we have replaced to with O. If V is independent of time, we may take 

it outside the integral and write 

(6.11) 
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This is a sharply peaked function of (Ef - Ei ), with a peak width of 27l" It. 
If the Hamiltonian fIo has a continuum of states with a number density per 

unit energy of p(E), then the transition probability will be given by 

As the sinc function is sharply peaked at E f = Ei , we can take the slowly 

varying functions of E f out of the integral. This leaves us with 

'P Ii - {ptE I) I (fiVli)I'L/~EJ dEl (EI ~ E;)' sint' (EI2; Ei) ] 

{p(Ef ) \UIVli)\2} E/=Ei 2~t. (6.13) 

The transition rate is given by the time rate of change of the transition 

probability, which is 

(6.14) 

This expression is known as Fermi's Golden Rule. 

For the case of matter wave detection, we define the initial and final states 

to be 

Ii) - II)MW ® IO)D 
If) - IF)Mw ® Iro, EO)D. 

(6.15) 

(6.16) 

The operator expression in equation (6.9) may be written in the expanded 

form 

[it' BMW] [it' flD] V~ [-it' flD] [-it' BMW] exp Ii exp -li- exp Ii exp Ii ' 

where we have omitted the term proportional to t. The middle three terms 
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of this expression become, upon substituting expression (6.7) for V 

i: d3
r i: d3

r' 10
00 

dED(r') 

1, D , A , A -'Zt D 

[ 
·t'HA ] [ . 'H

A 
] 

exp -h- [e(r - r ,E)at(r ,E)1P(r) + H.C.] exp Ii . 

We will concentrate only on the term 

( ') [it' HD] A t(') [-it' HD] I = D r exp -li- a r, E exp Ii . 

In order to simplify this we will calculate the commutator 

Upon substituting expression (6.6) for HD we obtain 

C - [I: d3rl 10
00 

dEIEID(rl)i1t(rl' Edi1(rl' E1), i1t (r', E)] 

- i: d3rl 10
00 

dEIEID(rdi1t(rl' Ed [i1(rl' E1), i1t (r', E)] 

(6.17) 

- D(r')Eat(r', E). (6.18) 

If we expand the left exponential in (6.17) then we obtain 

00 1 (ot,)n [ ·t'H] 1= D(r') ]; n! 'Zh R~i1t(r', E) exp -1, Ii D , (6.19) 

and by using the expression for C above, we can simplify this to 

I = 00 1 (·t,)n [ ·t'R] D(r') ]; n! 't
li 

i1t (r', E) [RD + D(r')Er exp -1, Ii D 

[
·t' E] - D(r')ut(r', E) exp T . (6.20) 
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Therefore we can write detector part of the expectation value in (6.9) as 

(ro, Eolut(r', E)IO) exp [ -itt ~ t')E] 

- 5(ro - r')5(Eo - E) exp [ -itt ~ t')E]. (6.21) 

In order to calculate the remainder of the transition probability, we assume 

that the detector material is dense enough that the UV photon travels a 

distance much smaller than the size of the matter wavepacket. We quantify 

this by writing 

~(r - r', E) ~ x(E)t5(r - r'), (6.22) 

where X(E) now represents the detector response as a function of energy. 

The internal energy of a He'" atom is about 20 eV, which greatly exceeds 

its motional energy and it is the internal energy that will determine the 

energy of the excited ion-electron pair. For this reason it is convenient to 

split the matter wave Hamiltonian if MW into its electronic part 

(6.23) 

and its motional part HM = HMW - He. We may then consider the calcula­

tion in terms of the field operator evolved under H M alone, which we define 

as 

~ [itHM] ~ [-itHM] 'l/Jo(r, t) = exp -h- 'I/J(r) exp h . (6.24) 

After substituting all of the above into (6.9) we obtain 

p •. dto,t)d'rdE = ~ ;, £ dt'D(r)exp [it'(E,;- Eo)] X(E) 

~ 2 

[
-itHMW] " 3 (FI exp h 'l/Jo(r, t')II) d rdE, (6.25) 
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where Pr,E,i{to, t) is the probability per unit detector volume per unit ion­

electron pair energy of a detection taking place between to and t. If we 

assume that (FI exp [-itHo/h] .,'/Jo(r, t')I!) varies much more slowly with t' 

than exp[it'(E - Ee)/h] then we can take this matrix element outside the 

time integral and evaluate that integral explicitly. 

After the detection event, the electron which is released causes an av­

alanche process similar to that occurring in photoelectron detection. This 

means that the detector does not resolve the energy imparted to it during 

detection. For this reason we integrate (6.25) over all possible ion-electron 

pair energies. We also integrate over a volume (~r? with one corner at r, 

giving the total probability of detection over the volume r ---+ r + fl.r within 

a time window t ---+ t + ilt as 

P(t,ilt;r,~r) _ 1000 

dEo [r+t::.r d3r'Pr',Eo,i(t,t+~t) 

_ 4 [r+t::.r d3r'D(r')(~6(r', t)~o{r', t)) 

100 dE,lx(E' + Ee)12 . 2 [ilt E'] 
-E. E,2 sm 2h ' (6.26) 

where we have used the completeness relation for the states IF). It is interest­

ing to note that the normal ordering of the field operators in this expression 

has appeared naturally from the derivation. This ensures that detection does 

not occur when there are no matter waves present. The function E-2 sin2(aE) 

is sharply peaked at E = 0 with a central peak of width 11'/ a. We assume that 

IX(E' + Ee)12 is slowly varying near E' = 0 so that it can be taken out of the 

energy integral and replaced with its value at E' = O. If Ee » 21Th/ ilt, we 

may extend the lower limit of the energy integral to infinity without changing 

the result. The total probability may therefore be written in the form 

l
r+t::.r At A 

P{t, ilt; r, ilr) = 2rfl.t r d3r'D{r')('¢o{r', t)'¢o{r', t)), (6.27) 

where we have defined the rate constant 

(6.28) 
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Equation (6.27) is the small-time-window approximation to the probability 

of detection in a region r -t r + D.r in a time window t -t t + D.t, and is 

linear in the time-window size. It is also proportional to the mean number 

of condensate atoms in the detection volume during the detection time. The 

detection rate is the change in probability with time and in this case will be 

given by 

R(t, r, D.r) 
8 

- 8D.t P( t, D.tj r, D.r) 

l
r+~r 3 ~t ~ 

- 2r r d r'D(r'){1/Jo(r', t)1/Jo(r', t)). (6.29) 

This is the instantaneous rate of particle detection at time t in a volume 

r -t r + D.r. We can relate the number of atoms present now to the number 

which were present earlier by writing 

(6.30) 

If there were initially no atoms present (as would normally be the case in an 

experiment), then (6.29) may be rewritten as 

lr+~r 3 it 8 ~t A 

R(t, r, D.r) = 2r r d r'D(r') -00 dt' Ot' (1/Jo(r', t')1/Jo(r', t')). (6.31) 

As we have seen in chapter 4, we may relate this to the flux density of matter 

waves. We will show this here using Heisenberg's equation of motion to write 

the time derivative in the above as 

(6.32) 

The commutator in (6.32) may be evaluated using the form of HM and the 

delta function property 

i: d3r'f(r')[V'8(r - r')~ - - i: d3r' [V'f(r')] 8(r - r') 
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= -\1f(r), (6.33) 

which holds so long as f(r) vanishes at Irl = ±oo. The result of this calcu­

lation is 

Thus we may write the time derivative in (6.31) as 

- - \1 . 2~m {~6 (r, t H \1 ~o (r, t) ] 

- [\1 ~6 ( r, t)] ~o ( r, t) } , (6.35) 

which has the form of a continuity equation with a flux density operator 

given by 

A Ii {At [A ] [At ] A } Jo(r, t) = 2im 'l/Jo(r, t) \1'I/Jo(r, t) - \1'I/Jo(r, t) 'l/Jo(r, t) . (6.36) 

We may therefore write equation (6.35) in the more compact form 

(6.37) 

Analogy may be drawn with the continuity equations from fluid mechanics 

[14]. By using Gauss' Theorem 

(6.38) 

we can write the detection rate as 

n(t,r, L\r) = -2f !~oo dt' (L, Jo(r', t')· dS), (6.39) 

where A' is the surface of that part of the volume r -+ r + 6.r which is inside 

the detector and dS is an infinitesimal area element normal to A'. Equation 

(6.39) gives the small-time-window approximation to the detection rate for 

bosons, which depends on the boson probability flux-density through the sur-
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face of the detector. If the integral in 1(, includes the entire detector volume 

then we find that the total detection rate depends on the time-integrated flux 

of atoms across the surface of the detector. The obvious limitation of this is 

that it takes no account of the fact that the bosons are absorbed within the 

detector. They simply pass into the detector, and out of it, and the rate is 

proportional to the number within it at anyone time. In the next section we 

will remedy this by providing a correction to (6.39) which accounts for the 

removal of atoms from the condensate. 

6.4 Langevin type approach 

As the wave travels through the detector, we expect that the detection rate 

should drop due to the finite probability of detection already having occurred. 

This is not included in (6.39) as only the free space field operator appears 

in that expression. In order to quantify this decay we use a Langevin type 

calculation. The atom and electron-ion pair annihilation operators in the 

Heisenberg picture 

~(r, t) (itiI) A (-itiI) - exp Ii 1jJ{r) exp -;,,- (6.40) 

&(r, E, t) = exp (it:) u(r,E) exp (-~if), (6.41) 

will be used, where iI is the full Hamiltonian for the system, given in (6.8). 

Consider a detector volume which contains condensate atoms. As time 

evolves these can do one of three things. They can remain in the volume, 

they can flow out of the surface of the volume or they can be detected. Thus 

the rate at which atoms are detected in the volume is the rate of decrease of 

particles in the volume, less the rate of flow of particles out of the volume. 

Upon defining the particle flux-density operator 

J(r, t) = 2~m {;Pt(r, t) [V~(r, t)] - [V~t(r, t)] ;P(r, t)}, (6.42) 
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we may write the detection rate as 

In order to calculate this we need to know the time derivative of the field 

operator. It is possible to draw analogy between this system and the lossy 

harmonic oscillator [28]. In our case the reservoir will be the detector atoms, 

while the matter wave field is analogous to the harmonic oscillator itself. 

We use the Heisenberg equation of motion to calculate the evolution of 

the boson field operator, which is given by 

[
_n2 1 A - 2m V'2 + V(r} + Ee 'Ij;(r, t} 

+ Joo d3r' [00 dED(r'}C(r - r', E}iT(r', E, t}. (6.44) 
-00 Jo 

The evolution of the detector operator iT can also be calculated, with the 

resul t being 

in !u(r, E, t} - D(r}Eu(r, E, t) 

+D(r) i: d3r'~(r - r', E)1b(r', t). (6.45) 

In order to proceed we formally integrate (6.45) and substitute the result 

into (6.44). Just as in the previous section, we assume that the UV photons 

involved in the detection travel a distance much smaller than the wavepacket 

size before it is detected and write ~(r - r', E) in the form (6.22). The 

detector response function x( E) is assumed to be a slowly varying function 

of E. We also use the fact that the internal energy Ee is large. This leads us 

to write the time derivative of the boson field operator as 

8 A [_1'1,2 2 1 A A 

in at 'Ij;(r, t) = 2m V + V(r) + Ee - ilif D(r) 'Ij;(r, t) - iliF(r, t), (6.46) 
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where we have defined 

A i 100 
(-iEt) F(r,t) = r;,D(r)x*(Ee ) -00 dEexp -h- a-(r,E,O) (6.47) 

after the Langevin force in the lossy harmonic oscillator problem. We see that 

r is the decay rate for the field operator while inside the detector. In order 

to be consistent the commutator must remain constant under this evolution. 

We can show this by formally integrating (6.46) and using the fact that the 

initial matter wave and detector operators commute. The commutator of 

the Langevin force operator with its conjugate is also needed and this can 

be shown to be 

[F(r, t), Ft(r', t')] = 2rD(r)D(r')8(r - r')8(t - t'). (6.48) 

This leads us to recover the equal time commutator for the matter wave field 

operator inside the detector: 

[~(r, t), ~t(r', t)] = 8(r - r'), (6.49) 

which demonstrates the consistency of our approximations. 

In order to obtain the correction to the detection rate in (6.39) we use 

equation (6.46) to calculate the rate of increase of particles in a volume 

r ---+ r + t:l.r, which is given by 

! i r
+6.r d3ro (~t(ro, t)~(ro, t)) 

- ir
+6.r d3ro (-\I. J(ro, t) - 2rD(ro)~t(ro, t)~(ro, t) 

-Ft(ro, t)~(ro, t) - ~t(ro, t)F(ro, t)) . (6.50) 

As the state used to evaluate the expectation value is the initial state (6.15), 

which contains only the unexcited detector state, the terms involving F(ro, t) 
and its Hermitian conjugate vanish exactly as F(ro, t) ex: a-(ro, E, 0). Upon 
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using Gauss' theorem on the flux term we find 

where A is the surface of the volume of interest and dS is an infinitesimal 

area element normal to this surface. This allows the atom detection rate to 

be expressed as 

(6.52) 

which has the same form as the perturbative rate (6.29), but with the fully­

evolved matter wave operators replacing the free evolution operators. In 

order to express the detection rate in terms of the flux operator alone, we 

once again consider the case in which no helium atoms were present in the 

detector at t = -00. This allows us to rewrite the detection rate as 

l
r +6r jt a (A A ) 'R(t, r, ~r) = 2r r d3roD(ro) -00 dt' at' 'Ij}(ro, t')'I/J(ro, t') . (6.53) 

In order to proceed we must explicitly solve the differential equation in (6.51). 

The resulting expression for the rate is 

'R(t, r, ~r) = -2f f~oo dt' (i, J(ro, t')· dS) exp [-2r(t - t')] , (6.54) 

where A' is the surface of that part of the volume r -+ r + 6.r which is 

inside the detector and dS is an infinitesimal area element normal to At. 

The rate of detection is dependent on the flux through the detector surface 

at all previous times, weighted by a factor which decays exponentially with 

time. 
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6.5 Single atom example 

As an example we will consider a single atom wavepacket falling under gravity 

onto a flat detector which is much larger than the width of the wavepacket. In 

the direction of acceleration of the wavepacket, the detector is large enough 

for the probability of the wavepacket exiting through the bottom surface to 

be negligible. We quantify this by considering the direction of acceleration 

to be -z, with the detector being infinite in the x and y dimensions and 

semi-infinite in the z dimension. The top of the detector is set at z = O. We 

will use the initial state from (6.15) with the initial matter wave state given 

by the single particle state 

(6.55) 

where </J( r) is the single particle wavefunction. For the sake of simplicity we 

choose </J( r) to be a Gaussian with the normalised form 

(6.56) 

Here w is the width of the Gaussian and ro is the initial position of the 

centre of the wavepacket. In order to calculate the rate given in (6.54) we 

must solve (6.46) with V(r) = mgz. Thus the equation of motion for the 

field operator is 

a A [_h2 
2 ]- A ih

8t
¢(r,t)= 2m \l +mgz+Ee-ihfD(z) ¢(r,t)-ihF(r,t).(6.57) 

We do not need to solve (6.57) explicitly in order to find the detection rate. 

What we do need is the action of ;p on the initial state vector. In order to 

find this we act (6.57) on Ii), noting that P depends only on the initial value 

of u: 
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The conditions that we would like to impose at the boundary are those of 

continuity of the operator and of its first spatial derivative. If we were to 

insist on continuity of the derivative then we would have to include reflections 

in our model. In making the decay rate r small we make the reflections 

negligible. This allows us to neglect the derivative continuity and make the 

ansatz 

~(r, t) = A(z, t)~f(r, t) (6.59) 

where ~ f is the free space field operator which satisfies 

(6.60) 

If we substitute (6.59) into (6.58) we obtain 

As we have neglected reflections in this calculation, it is also necessary to 

neglect the contribution of ~:1 to the evolution of A. In doing this we obtain 

the first order differential equation 

(6.62) 

It is a straightforward but lengthy calculation to solve this for A using the 

method of characteristics. The result obtained is 

A(z, t) = { [ 
-(z - zo) (t + imw2 jn) 

exp -fD(z)t-fD(z) g(t-imw2jn) - 2 

(z - ZO)2 (t - imw2 jn)2 z + Zo 

g2(t - imw2jn)2 + 4 + 9 
} . (6.63) 

For simplicity in plotting we have used dimensionless variables 

Q = 
r 

w 
(6.64) 
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and we have used a system of units such that 
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(6.65) 

(6.66) 

(6.67) 

In figure 6.1 we have plotted both wJJ(¢6(r,t)¢o(r,t))dxdy from section 

6.3 and w JJ(¢t(r, t)¢(r, t))dxdy from section 6.4 as functions of Qz, with 

the decay constant being, = 0.1. The initial centre of the wavepacket is at 

Q z = 4 which is sufficiently high above the detector for the probability of 

finding the atom inside the detector to be negligible. These snapshots are 

taken at T = 4 which corresponds to a time at which most of the wave­

packet has entered the detector. Here we see the effect of the detector on the 

probability density, with the probability of the atom being present decaying 

exponentially with distance travelled through the detector. Figure 6.2 shows 

the form of the dimensionless rate mw2R(t, r, Ar)/h as a function ofT, with 

the perturbative solution and the exact solution both plotted. Here the vol­

ume under consideration contains the entire detector. From this graph the 

effect of the detector presence on the detection rate is quite clear, with an 

exponential decay in time being seen. 

6.6 Conclusions 

With a microscopic description of detection as a starting point, we have de­

rived a rate for quantum matter wave detection. This detection rate depends 

upon the flux-density of the matter waves through the detector surface at all 

earlier times, with an exponentially decaying weight factor. 

It is probable that this theory could be extended to photo-detection. The 

electromagnetic energy density is given by 

W(r, t) = ~ {E(r, t) . D(r, t) + B(r, t) . H(r, t)} . (6.68) 
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Figure 6.1: w ff("pt(r, t)"p(r, t)}dxdy as a function of Q in the single atom 
example. The solid line is the Langevin solution and the dot-dash line is the 
shorl-time-window approximation. The horizontal line indicates the position 
of the detector top surface. 

This energy density obeys a continuity equation of the form 

a A, ..... A ,.. 

at W(r, t) + v . S(r, t) = -E(r, t) . J(r, t), (6.69) 

where the electromagnetic energy flux density is given by the Poynting vector 

operator 

S(r, t) = {E(r, t) x H(r, t)} (6.70) 

and J is the current operator [16]. One may show, using Fermi's Golden 
A_ A+ 

Rule, that the photo-detection rate is proportional to (E (r, t) . E (r, t)}, 
where the superscripts + and - refer to the positive and negative frequency 

components, or the annihilation and creation operator components, respec­

tively. In the case of polarised parallel light beams this can be shown to 

be equal to the normal ordered Poynting vector operator [25]. However in 
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Figure 6.2: mw21?/Ti as a function ofT in the single atom example. The solid 
line is the Langevin solution and the dashed line is the short-time-window 
approximation. 

general we would expect to use a similar method to that in section 6.3 to 

relate the detection rate to S. 
The relationship between detection rate and flux arises, at least in the 

perturbative calculation, from the continuity equation which states that the 

number of particles is conserved. In the Langevin calculation particles are 

not conserved as loss due to detection is included, however equation (6.50) is 

a form of the continuity equation in the presence of a sink. As we have seen 

in chapter 4, there are other quantities apart from particle number which are 

conserved. These include energy, momentum and angular momentum and it 

would be interesting to investigate the transfer of these quantities in terms 

of their flux-densities. 



Chapter 7 

Phase fluctuations of two 

coupled one-dimensional 

condensates 

7.1 Introduction 

We turn our attention to trapped condensates. In such situations, the inter­

actions between atoms, which we have ignored up until this point, become 

important. This chapter is concerned with trapped condensates which can be 

approximated by a one-dimensional (ID) gas. This means that the trapping 

in one dimension is much weaker than that in the transverse dimensions. This 

chapter represents an original contribution to the literature and is published 

in ref. [29]. 

7.2 Background 

Recently, longitudinal phase fluctuations in very elongated Bose-Einstein 

condensates have been observed experimentally [30, 31]. Such phase fluctua­

tions are characteristic of ID Bose gases and appear in the small interaction 

regime where p ~ Jmpg In, p being the linear density of atoms, 9 the in­

teraction between atoms and m their mass. The opposite limit, called the 

77 
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Tonks regime [32], where strong correlations between atoms appear is not 

investigated in this chapter. For 1D Bose gases, at temperatures T much 

smaller than Tp = Tip'; pg/m/kB' fluctuations of density are suppressed and 

one has a quasi-condensate [33, 34, 35, 36, 37]. However fluctuations of phase 

are still present [33] and with normal experimental parameters these phase 

fluctuations are produced by the thermal population of collective modes. 

In this chapter we are interested in the case of two elongated conden­

sates coupled along their whole extension by a single-atom interaction which 

enables local transfer of atoms from one condensate to the other. Such a 

situation could be achieved using a Raman or RF coupling between differ­

ent internal states. It could also model the case of condensates in two very 

elongated traps coupled by a tunnelling effect. The physics of two coupled 

condensates, which contains the Josephson oscillations, has been studied in 

a two-mode model [38, 39, 40]. In particular the many body ground state 

[39] and the thermal equilibrium state [40] have been computed. Within 

the two-mode model the excitation spectrum of two-component condensates 

coupled by a local single-atom coupling has been calculated using Bogoli­

ubov theory [41]. In the case of two elongated condensates, two effects act 

in opposite directions. Longitudinal phase fluctuations in each condensate 

tend to smear out the relative phase between the two condensates, while the 

coupling between the condensates energetically favours the case of identical 

local relative phase. The goal of this chapter is to determine the relative 

phase of the two condensates at thermal equilibrium as a function of the 

strength of the coupling. 

7.3 Formalism 

We are interested in cylindrical condensates where the temperature kBT, the 

interaction energy gp and the coupling strength 'Y are all much smaller than 

the transverse confinement energy 1iw 1., which is the strength of the trap in 

the dimensions perpendicular to the condensate axis. In this case we can 

treat the BECs as 1D objects. Figure 7.1 gives a pictorial representation of 

the situation studied here. The BECs are labelled a and b, and we write the 
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Figure 7.1: Situation studied in this chapter. Two elongated condensates 
are coupled by a interaction which enables local transfer of atoms from one 
condensate to the other. 

Hamiltonian in the form 

Ho = L: dz { ~~ [~~(z, t) ::' ~.(z, t) + ~I(z, t) ::' th,(z, t)l 

+U(z) [,,],!(z, t){fia(Z, t) + ,,],~(z, t),,],b(Z, t)] 
g [At At A A At At A A ] 

+2 'l/Ja(z, t)'l/Ja(z, t)'l/Ja(z, t)'l/Ja(z, t) + 'l/Jb(Z, t)'l/Jb(Z, t)'l/Jb(Z, t)'l/Jb(Z, t) 

-'Y [(fi!(z, t){fib(Z, t) + {fit(z, t){fia(Z, t)]}, (7.1) 

where U(z) is the trapping potential in the axial direction. Here we can see 

the kinetic energy term, the trapping potential and the interaction terms 

on the first three lines respectively, and the last line represents the coupling 

between the condensates. As we wish to conserve the number of particles 

on average, the Hamiltonian we use is in fact fl = flo - p,N, where p, is the 

chemical potential. Assuming that the size of the transverse ground state 

a.l = J21i/mw.l. is much larger than the s-wave scattering length a, the 

effective coupling constant is simply 9 = (21i2/m) (2a/a'i) 

The bosonic field operators for different condensates commute and so we 

write the equal time commutation relations as 

(7.2) 

Upon calculating the Heisenberg equation of motion (2.29) for the bosonic 
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field operators, we obtain their evolution 

(7.3) 

For quasi-condensates the Bogoliubov theory cannot be used in the same 

form as presented in chapter 2. This is due to the fact that there is not a 

single macroscopically occupied quantum state. Instead we must expand the 

operator -J;(z, t) in terms of its density operator p and phase operator 8. The 

field operator thus becomes [33, 37] 

~(z, t) = exp [i8(z, t) J J p(z, t), (7.4) 

where the commutator of the density and phase operators is given by 

(7.5) 

We must be very careful with the definition of the phase operator. In quan­

tum optics the phase operator is not a simple quantity to define, due to the 

its periodicity. Pegg and Barnett [42, 43, 44] give a detailed description of an 

interpretation of the phase operator in quantum optics. It is only permissible 

to write the field operator in the form in (7.4) if the state in question has a 

large amplitude and the fluctuations in the phase and density operators are 

small. This is indeed the situation in quasi-condensates. 

Upon expanding the field operator as suggested in (7.4), we obtain a 

complex differential equation. If we equate the real and imaginary parts, the 

resulting coupled evolution equations are given by 

",8Pa,b -at 

", 88a,b -at 
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A (A A) ~ -gPa,b +, COS Ba,b - Bb,a J A 

Pb,a 
(7.7) 

The approximation of small density fluctuations together with equation (7.6) 

implies that the phase gradient will also be small. We make the a priori 

assumption that the phase difference between the condensates at a given 

position will be small, so that 

(7.8) 

The small density fluctuations are quantified by splitting the density operator 

into a mean field (stationary solution) and a fluctuating part 

Pa,b(Z, t) = Po(z) + 6pa,b(Z, t) (7.9) 

where 6pa,b «Po. The coupled evolution equations above may be expanded 

in terms of the small parameters 6pa,b/ Po, D.9 and 89a,b/8z. To the lowest 

order in these parameters we obtain the equations 

8po 
at - 0 (7.10) 

h? 82.fiiO 
o - 2m.fiiO 8z2 - U + /-I. - gpo +,. (7.11) 

The first of these gives the stationarity of Po and the second is the time­

independent Gross-Pitaevskii equation for #0, with the chemical potential 

modified by taking /-I. --+ /-I. +,. The first order terms give us the evolution 

equations 

_ _ (_;"2 8
2 

+ U + 3gpo _ /-I.) (6pa,b) 
2m 8z2 2.fiiO 

+ (6Pb,a) 
"( 2.fiiO 

(7.12) 

nE.. (6pa,b) 
at 2.fiiO (

_n2 
82 ) (A ) 

- 2m 8z2 + U + gPo - P. ()a,bVPo 
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(7.13) 

We can see that these are identical to the single 1D condensate equations, 

with coupling terms added. In order to begin to solve these equations, we 

perform a transformation to new operators Ba,b given by 

(7.14) 

By using the commutator (7.5) we can evaluate the equal time commutator 

[Bi(z, t), BJ(Z/, t)] = [6~ + iO,VPo(z'), 6~ -iOM, t}VPo{Z'}] 
2 Po(z) 2 PO(Z/) 

i.;r;J0 {[ A ~ I ] [A A I ]} - r::t:\ 8Pi(Z, t), 8j (z , t) - 8i(z, t), 8pj(Z , t) 
2y po{z) 

- 8(z - z/)8ij , (7.15) 

with all other combinations being zero. Thus the B are bosonic operators 

and they evolve according to 

With the help of the matrices 

£(0:) = (2~Ll+U-0:+29PO 
-gpo 

r= (7~)' 

gPo ) 
rt2 
2mLl- U + 0:- 2gPo 

(7.17) 

(7.18) 
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we can write the evolution of the B operators as a matrix equation 

'n a 1, -
at 

= ( £(p,) r ) 
r £(p,) 

(7.19) 

Such an evolution is the same as the one given by standard Bogoliubov theory. 

This has been calculated before for the case of a multicomponent condensate 

with a single particle coupling [41]. 

We wish to transform these equations into a decoupled set of equations, 

which means transforming the matrix in (7.19) into a block diagonal one. In 

order to do this we write the B operators in terms of their decomposition 

into quasi-particle modes, just as we did in chapter 2. Thus we write 

Ba(Z, t) = L [bSk(t)USk{Z) + b!k(t)V:k{Z) 
k 

+bnk(t)Unk(Z) + b~k(t)V:k(Z)] (7.20) 

Bb(z, t) - L [bsk(t)USk(Z) + b!k(t)V:k(Z) 
k 

-bnk(t)Unk(Z) - b~k(t)V:k(Z)] (7.21) 

and the inverse transformation equations are 

(7.22) 

(7.23) 

The meaning of the subscripts is shown by equations (7.22) and (7.23). The 

subscript s indicates a symmetric combination of the two iJ operators, where 

n indicates an antisymmetric combination. The quasi-particle mode opera-
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tors obey the bosonic commutation relations 

(7.24) 

where i and j take on the values 8 or n. This is valid so long as the mode 

functions labelled U and v obey the orthonormality rules 

(7.25) 

In linear algebra terms, this transformation diagonalises the matrix in (7.19) 

if the vectors (Usk, Vsk, Usk, vskf, (V;k, u:k, v;k, U:k)T, (Unk, Vnk, -Unk, -Vnk)T 

and (V~k' U~k' -V~k' -u~kf are its eigenvectors. We label the corresponding 

eigenvalues as f.sk, -f.sk, f.nk and -f.nk respectively. The evolution equation 

(7.19) thus reduces to the decoupled equation 

bSk f.sk 0 0 0 bSk 

'n a b!k 0 -f.sk 0 0 b!k 
'l- - (7.26) at bnk 0 0 f.nk 0 bnk 

b~k 0 0 0 -f.nk b~k 

As for the standard Bogoliubov theory, the Hamiltonian is then written as a 

sum of independent bosonic excitations (cf. equation (2.110)) 

(7.27) 

where i takes on the values s and n, Ho is the ground state energy and the 

sums are done only on the eigenvectors normalised as in (7.25). 

In terms of the B operators, the phase operator is written as 

(7.28) 

and in terms of the b operators this becomes 
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(7.29) 

where the sum and difference refer to Oa and Ob, respectively. We are inter­

ested in the correlation function of the phase difference !lO which is written, 

after commuting the B operators to normal order, as 

(!lO(z)!lO(z')) = (: !lO(z)!lO(z') :) + 6(z - z') . (7.30) 
2po 

The second term merely accounts for the phase fluctuations in a coherent 

state with linear density Po for each condensate. We are only interested here 

in the anomalous fluctuations, and thus we will consider only the normal 

ordered expectation value. If we expand this in terms of the b operators 

and consider thermal equilibrium, so that no correlations between different 

excitations exist, we obtain 

(: !lO(z)!lO(z'):) = ~ L { (b~kbnk) (fnk(z)f:k(Z') + fnk(Z')f:k(Z)] 
Po k 

-v~kfnk(Z') - vnkf:k(z')} , (7.31) 

where fnk(Z) = Unk(Z) - Vnk(Z). As expected only the antisymmetric modes 

contribute because we are interested in phase difference. This expression, 

which gives the relative phase fluctuations once the spectrum of antisym­

metric modes has been calculated, is the main result of this chapter. In the 

following section we will give explicit results in the case of a homogeneous 

gas. 

7.4 Results for homogeneous condensates 

We now consider a homogeneous gas with periodic boundary conditions in 

a box of size L, which is a ID version of the method presented in section 

2.3. We set the potential U to zero and the density is uniform. Thus the 

Gross-Pitaevskii equation gives 

J.L = gPo - 'Y. (7.32) 
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The Bogoliubov functions can be looked for in the form 

1 
Usk - (2L)-2 exp(ikz)USk 

1 
Vsk - (2L)-2 exp(ikz)Vsk (7.33) 

where the functions U and V are real and U;k - Ys~ = 1. A similar equation 

holds for the antisymmetric modes, given by 

1 
Unk - (2L)-2 exp(ikz)Unk 

1 

Vnk - (2Lt2 exp(ikz)Vnk . (7.34) 

The eigenvalue equation for the symmetric modes then reduces to the equa­

tion 

{7.35} 

with eigenvalues given by 

(7.36) 

This is exactly the spectrum for the standard Bogoliubov calculation given 

in section 2.3. This time we find the values of U and V in a slightly different 

way, by defining them as the eigenvector components above. Upon expanding 

the eigenvalue equation, we obtain two coupled equations given by 

(1i:!2 + 9Po) U •• + 9PoV.. - < •• U •• 

-9PoU •• - C:!2 + 9Po) v.. - < •• v.. 

{7.37} 

(7.38) 
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If we then add and subtract these equations and multiply the resulting si­

multaneous equations for Usk + Ysk and Usk - V sk , we obtain the equation 

(7.39) 

Combining this with the normalisation condition 

(7.40) 

leads to the sum and difference of the mode functions: 

(7.41) 

(7.42) 

For the antisymmetric modes the eigenvalue equation becomes 

(7.43) 

which is simply the same as the symmetric case, with the kinetic energy 

shifted by 2')'. Thus the eigenvalues and eigenvector components are 

€nk - (h2k2 ) C2
k2 ) 2m +2')' 2m +2,),+2gpo (7.44) 

("~ r Unk + Vnk 
-+2')' 

- ~;!2 :2')'+2gpO 
(7.45) 

("" ) -1/. Unk - Vnk 
- + 2')' 

- ~:!2 ~ 2')' + 2gpo 
(7.46) 

The behaviour of the symmetric and antisymmetric spectra as a function of 

wavenumber is plotted in figure 7.2. This two-branch spectrum was obtained 

for the case of a two-component condensate in [41]. In the strong coupling 
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Figure 7.2: The two-branch spectrum of excitations. The dashed line shows 
the symmetric spectrum €sk and the solid line shows the antisymmetric one 
€nk. We have used the dimensionless wavenumber K = likl JmgPo and the 
dimensionless energy E = €Igpo. The dimensionless quantitY'Ylgpo is set 
to 10 here in order to illustrate the nature of the spectrum. A typical value 
of €/1i can be found by taking the reasonable experimental parameters 'Ylli = 
50Hz and gpo/Ii = 3kHz, giving a value of €nklli at k = 0 on the order of 
400Hz. 
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case where, » gpo, we find that Vnk «: Unk for any k. From (7.23) we 

see that this means the excitations will be in the form of particles in a 

superposition of the two condensates and their energy is simply li2k 2/2m+2,. 

In the opposite case (weak coupling) where, «: gpo, three zones can be 

identified. For k «: 2Jm,/li we obtain collective excitations with IVI ~ 
lUI and with energy 2J,gpo. For 2Jm,/li «: k «: 2Jmgpo/li we still 

have collective excitations with IVI ~ lUI but their energy is given by the 

normal Bogoliubov dispersion law likJ gpo/m. Finally for k » 2Jmgpo/li 

excitations are just particles with energy 1'1,2 k 2 /2m. 

Using the plane wave expansion (7.34) and the normalisation condition 

U~k - V;k = 1, the correlation function (7.31) of the relative phase fluctuation 

is written 

A A 1 
(: ~B{z)~B(Z') :) = 2poL 

L {(Unk - Vnk)2 (2nnk + 1) - I} cos[k(z - z')), (7.47) 
k 

where nnk = l/(eEnk/kBT - 1) is the occupation number for the state with 

energy Enk. Using the expression (7.46) this correlation function can be com­

puted numerically. In the following we analytically compute the phase fluc­

tuations using some approximations. 

The terms which do not involve nk correspond to the zero temperature 

contribution. As the function V;k - Unk Vnk is always smaller than the cor­

responding function for a single condensate, the relative phase fluctuations 

will be smaller than the phase fluctuations of a single condensate. These 

fluctuations can be calculated by a similar method to that given here, but 

without the presence of the coupling term,. The result is that the phase 

fluctuations of a single condensate are given by 

(7.48) 
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Thus the relative phase fluctuations will be bounded via 

(: M':) < vr;:ln (L~). (7.49) 

The whole theory is valid only for large density so that Jmgpo/(npo) « 1 

and in the experiments accessible until now the size of the condensate is not 

large enough to produce noticeable phase fluctuations at zero temperature. 

Phase fluctuations are thus due to thermal excitation of the collective 

modes and we will give a simplified expression by making several approxi­

mations. First we will approximate the Bose factor by 

(7.50) 

This is justified as this expression deviates in a significant way from the Bose 

occupation factor only when nk becomes smaller than 1, i.e. when fnk < kBT, 

and the contribution to phase fluctuations of those modes is small even with 

the previous expression which overestimates their population. Let us now 

consider separately the case where, » gpo and the case, « gpo. 

If the coupling strength is much stronger than the interparticle interac­

tion, so , » gpo, then (Unk - Vnk )2 ~ 1 for all k and fk ~ n2k2/2m + 2,. 

This gives, approximating the discrete sum by an integral, 

(7.51) 

(7.52) 

As we are in the quasi-condensate regime, we consider only temperatures 

lower than npovgpo/m/kB and therefore these phase fluctuations are always 

very small. This is physically reasonable because for strong coupling we 

expect the phases of the two condensates to be locked and thus fluctuations 

will be negligible. 

Let us now consider the case where the coupling is much weaker than 

the interparticle interaction, so , «gPo. We expect the modes with high 



CHAPTER 7. PHASE FLUCTUATIONS ... 91 

wavevectors, such that Ikl » ko = .jmgpo/fi, to give a negligible contribution 

to the phase fluctuations. Indeed for those terms (Unk - Vnk )2 ~ 1 and 

fk ~ fi2k2/2m so that their contribution to the phase fluctuation is 

(7.53) 

which is always small in the regime of quasi-condensates. Thus only the low 

wavevector modes Ikl « 2.jgpom/fi are considered for which 

(7.54) 

and the correlation function then becomes 

~ ~ 2kBT lkO dk 
(: ~O(z)~O(z') :) 1"0.1 -- 1i2 k2 cos[k(z - z')]. 

Po7r 0 Tn + 4')' 
(7.55) 

The integral can be extended to infinity as higher k values give negligible 

contributions and we find 

Note that this expression is the same as (7.52), which was not expected a 

priori. This formula, which gives the amplitude of the relative phase fluc­

tuations as well as their correlation length fi/(2.jm')') agrees well with the 

numerical calculation of equation (7.47), and these are plotted in figure 7.3. 

Phase fluctuations are small only if 

(7.57) 

Note that as we assume small relative phase difference, this is also the limit 

of validity of our calculation. The phase diagram in figure 7.4 summarises 

these results. 
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Figure 7.3: Correlation function of the relative phase fluctuations. The solid 
line is the numerical calculation of equation (7.47) with 'Y = gPo/lO, T = 
liPoJ1/(2vmkB) and L = lOOIi/Jmgpo. The dotted line is the analytical 
expression equation (7. 56) which only differs from the numerical expression 
at small separations. 

7.5 Discussion 

In conclusion we have shown that as long as the temperature is small enough 

to fulfil equation (7.57), although there might exist large phase fluctuations 

along each condensate, the local relative phase between the two conden­

sates stays small. In the opposite case there are large fluctuations of the 

relative phase whose correlation length is le = 1i/2Jm'Y. As an example 

let us consider the case of two Rubidium condensates of 104 atoms elon­

gated over L = 200 J.lm, confined transversely with an oscillation frequency 

W.L/27r = 1 kHz and coupled using 'Ylli = 50 Hz. The phase of each conden­

sate changes by about 27r from one end of the condensate to the other as 

soon as T > T~ = li2 Pol (mLkB) = 1.8 nK. However the local relative phase 

between the two condensates stays very small if T ~ liPoJ1/(kBIffi) = 
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Figure 7.4: Phase diagram for the fluctuations of the relative phase 
between the two condensates. Only temperatures much smaller than 
hpoJgPo/(kBVm) are relevant as for larger temperatures one does not have 
a quasi-condensate anymore. For temperatures laryer than h2po/(kBLm), 
each condensate has longitudinal phase fluctuations. Below the curve, which 
corresponds to equation (7.57), the coupling between the condensates is larye 
enough to suppress local relative phase fluctuations between the two conden­
sates. Above this curve, there are local relative phase fluctuations between 
the two condensates. 

180 nK. The calculations made here for homogeneous condensates could be 

used to describe a trapped inhomogeneous gas via a local density approx­

imation similar to that used in (45] as long as both the healing length 

lh = hi Jmgpo - the length over which, after being subject to a localised 

perturbation, the condensate wave function tends to its bulk value - and 

the correlation length of the phase fluctuations are both much smaller than 

the extension of the condensate. In the above example, lh = 0.6 p.m and 

Ie = 2 p.m are indeed much smaller than L. 

To measure experimentally the relative phase fluctuations and their cor­

relation length, one should perform an interference experiment. In the case 
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where the two states are internal states, an intense 7r /2 pulse has to be ap­

plied. Measurement of the local density of atoms in the states la) and Ib) 
then gives access to the local relative phase of the two condensates. In the 

case where la) and Ib) are confined in the wells of a double well potential, 

the interference measurement is performed via a fast release of the confining 

potential followed by a time of flight long enough for the two clouds to over­

lap. Indeed, the total intensity presents fringes in the direction orthogonal 

to z [46] and, at a given z, the position of the central fringe gives the value 

of the local relative phase. 



Chapter 8 

Summary and Conclusion 

In this thesis we have studied matter waves and Bose-Einstein condensates. 

In particular, we have derived a theory of matter wave detection. This was 

done semiclassically in chapter 5, where we revealed the failure of anal­

ogy with photoelectron detection, and quantum mechanically in chapter 6 

through a microscopic description of the detection process. As experiments 

performed in this area progress towards the counting of single atoms incident 

on a detector surface, this theory will become increasingly important. The 

conclusions we have drawn are that due to the dispersive nature of matter 

waves in free space one must consider the flux density of particles through 

the detector rather than simply the particle density. Now that the theory of 

matter wave detection is laid out clearly, there are many possible applications 

to consider. Some of these include calculating correlations between detection 

of matter waves at different point on the detector surface and correlations 

between subsequent detections in a matter wave beam. 

In terms of the properties of BECs themselves, we have calculated in 

chapter 7 the fluctuations in the relative phase between two very elongated 

condensates which are connected via a localised coupling. This has given a 

regime in which experiments should be performed in order to see the relative 

phase fluctuations, and this occurs between the true condensate temperature 

Tipo/(LmkB) and the quasi-condensate temperature TiPovgpo/m/kB' There 

are several potential elaborations on this theory which are possible. The 

95 
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calculation is only done here in terms of a uniform (square-well) trap. In 

an experiment it is more likely that the trapping potential will be harmonic 

and so the theory will need to be modified to predict the fluctuations in that 

situation. Also there is the more ambitious problem which involves coupled 

3D condensates as opposed to the ID ones used here. 

Finally, we have shown in chapter 4 that matter waves should in principle 

be subject to conservation laws and have given some examples for a very 

simple particle conserving system in a linear potential. This work has great 

potential for further development. In particular the second quantised version 

of this theory should be developed, and then realistic situations could be 

considered including those where particles are created or annihilated. 
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