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SOYA MARGARINE

“Bread is bread.”

“Just a minute. Let me think about that.

Bread is bread. Is that what you said?”

“Yes. Bread is bread. I’ve been consider-

ing it for some time. Now that I’m sure,

I’ve come straight out with it. My

philosophy is in there somewhere.”

“Hey, Lucy” “Yes, Dan?” “Bread is

bread.” “No kidding!”

Ivor Cutler

A Nice Wee Present From Scotland
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Abstract

Goal Recognition concerns the problem of determining an agent’s final

goal, deduced from the plan they are currently executing (and subse-

quently being observed). For over twenty years, the de facto standard

in plan and goal recognition has been to map an agent’s observations

to a set of known, valid and sound plans held within a plan library. In

this time many novel techniques have been applied to the recognition

problem, but almost all have relied on the presence of a library in

some form or another.

The work presented in this thesis advances the state-of-the-art in goal

recognition by removing the need for any plan or goal library. Such

libraries are tedious to construct, incomplete if done by hand, and

possibly contain erroneous or irrelevant entries when done by ma-

chine. This work presents a new formulation of the recognition prob-

lem based on planning, which removes the need for such a structure

to be present. This greatly widens the scenarios in which goal recog-

nition can be realistically performed.

While this new formalism overcomes many of the problems associ-

ated with traditional recognition research, it remains compatible with

many of the concepts found in previous recognition work. This new

definition is first defined in the context of a rational agent and ob-

server, before several relaxations are introduced which enable tractable

goal recognition. This relaxed implementation is then extensively

evaluated with regard to multiple aspects of the recognition problem.
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Chapter 1

Introduction

1.1 The Recognition Problem

The ability of a system to perform accurate recognition upon the observations of

an agent has long been a target of Artificial Intelligence (AI). Without an ability

to comprehensively understand the true context of an agent’s decision-making

process, the system may be unable to react in the most appropriate manner.

Recognition can exist in many forms, from working with low-level sensor data

through to high-level representations of the world. This can lead to a somewhat

ambiguous definition of the term itself. It may simply mean an awareness of the

environment in which the agent exists for use in its own decision making, or it

can mean observing an external agent for a multitude of possible reasons, such

as surveillance, assistance or competition. Furthermore, it may be performed in

order to determine what the purpose of the plan observed was, or to predict what

that purpose is. The output of these variants can then be used in many more

applications which can further obscure the definition.

Traditionally, recognition can be split into several sub-categories which all

seek to solve different (yet sometimes overlapping) problems. Plan recognition

(PR) — which is often viewed as an umbrella term for all forms of recognition

— is concerned with the detection of the plan which is being executed by an

agent. If only the agent’s final goal is of interest, the work is classed as goal

recognition (GR), with the plan used to achieve this being somewhat irrelevant.

Intent recognition is a pseudo-subset of PR and GR which aims to determine the

agent’s future actions or goals, although not necessarily the complete plan or final
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goal. Another view of this argues that intent recognition exists only when there

is a dialogue between the observer and subject [21]. Activity recognition can be

thought of as a specialisation of PR which uses human knowledge to abstract and

classify certain aspects of the problem. For example, if the agent is seen entering

a car, driving to the supermarket, parking then entering the supermarket, it

may be reasonable to encompass these actions as part of a “shopping” activity.

While plan and goal recognition can be encapsulated as low-level actions or facts,

activity recognition places a more abstract meaning on the plan and/or goal. This

ability to abstract and classify action sequences is a distinctly human quality, and

one which machines struggle with, leading to activity recognition being heavily

associated with fields such as robotics and assistive technologies [50, 68, 114].

This final point hints at an assumption often made in the recognition literature

— the availability of prior, human-level knowledge. This is commonly encapsu-

lated in a plan-library [97], a construct which contains a finite set of known, valid

plans. Entries can explicitly specify plan features such as the goal, abstractions

of actions, ordering requirements, disjunctions and probabilities.

1.1.1 Thesis Motivation

This thesis positions itself against the argument that a plan-library need be

present for recognition to take place. Such structures are expensive to create

in both time and resources required, limiting the ability to rapidly deploy a

recognition-enabled system in the real-world.

To overcome the necessity of plan-libraries, this thesis describes a new and

novel model of performing goal recognition by framing it as a planning problem.

In doing so it tackles pure goal recognition. That is, there are no constraints or

assumptions placed upon the agent being observed or the world in which they

exist beyond those defined in the domain specification (action and fact templates,

along with a grounded initial state). Moreover, there is no dependency upon a

plan-library being available, although one can be implicitly accommodated if it is

available. Thus, the model becomes applicable in scenarios where such structures

are intractable or cannot be constructed.

1.2 Goal Recognition versus Plan Recognition

The ambiguity over which variant of recognition a piece of work falls into extends

to the recognition literature itself. The most common debate is concerned with

whether the problem being tackled is goal recognition or plan recognition. Work
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which is credited as being plan recognition rarely exceeds the accepted definition

of goal recognition [60, 145, 146], yet the all-encompassing term of “plan recog-

nition” remains a consistent presence. Given that the work presented is focussed

on goal recognition, but also has aspects of plan recognition within the model,

both terms must be clarified.

Concisely, goal recognition is the problem of simply determining only the goal

of an agent. This goal may be the final goal within the plan being observed, or

an intermediate goal which must be achieved prior to plan termination. Plan

recognition can be seen to be a superset of GR, in which the plan being executed

is also required. This plan can be used to determine the final goal of the plan,

which should always be a subset or equal to all facts true in the state entered

after the final observation is executed. Additionally, it is trivial to compute the

intermediate states which the agent will pass through before the plan ends, and

just as importantly, when the plan will end.

The model presented in the implementation of this work encapsulates a subset

of pure PR, as shown in Figure 1.1. While the entire GR problem is included

as part of the implementation, certain features of plan recognition which are

conceivably part of the formal model are not explicitly implemented. For example,

while it is possible to infer an agent’s future actions, these are considered discrete

and may not necessarily form a causally-linked plan as would be the case in pure

PR.

A further clarification is required when discussing libraries. In the context of

this work, a “library” shall be classed as “a finite repository of domain-specific

information which is available prior to and/or during the recognition process,

and further, is represented explicitly within memory”. In the case of a plan-

library, the information contained would be at least a set of plans and goals. For

goal recognition, only goals would be stored. This leads to a distinction between

the three terms. Plan libraries are a superset of goal libraries, and a library is

simply anything which meets the definition above. In either case, the library can

have been constructed by hand [60, 70, 97] or automatically by machine before

recognition begins [18] or at runtime [19, 112], and assigned prior probabilities in

a similar manner.

The potential to automatically generate plans for libraries or agents in gen-

eral, hints at a previously only loosely explored avenue of research, wherein plan

recognition and planning are integrated.
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Goal
Recognition

Plan Recognition

Figure 1.1: A visual representation of the model presented in this thesis, in the
context of plan and goal recognition. The checked area indicates that the features
presented are a superset of goal recognition, but a subset of plan recognition.

1.3 Planning and Recognition

While recognition is the process of extracting a hypothesis with regard to the

agent’s observed behaviour, planning is the process of constructing the plan itself.

Like recognition, this is also an active area of AI research, and many parallels

can be drawn between the two.

Viewed abstractly, both planning and recognition problems share the same

world representation. For a given problem, both exist in the state-space, S, in

which the application of actions moves the agent from a predecessor state, S,

to a successor state S ′. The task at hand for planning is to find the shortest

path through this space to a state S ′′ which contains the agent’s goal G ⊆ S ′′.

Recognition strives to determine which of the states containing the agent’s goal,

Sgoal, they are trying to reach G ⊆ S ′′ ∈ Sgoal ⊆ S.

In complete plan recognition where an agent is known to be optimal and

a plan-library of optimal plans is available, members of this library which are

inconsistent with the observed actions are eliminated until a minimal set is left.

This set must contain the true plan and goal, or the library is incomplete. Goal

recognition in S using a plan/goal library is also a process of elimination, in

which states containing goals that could have been achieved prior to the current

timestep are eliminated.

The parallels between planning and recognition may not be apparent at first,
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but consider that in both of these cases an agent is simply transitioning through

the state-space. In both cases, it is reasonable to assume that they will do so in

the most optimal manner. It is this assumption which will drive many of the core

arguments of this thesis.

1.3.1 Heuristic Guidance Through a State-Space

For planning, optimality is determined by which action is chosen at each decision

point (successor state), with this being heavily or completely determined by the

agent’s heuristic. In an optimal or rational agent, the heuristic value computed

in each state will always be perfect and can be used to derive optimal plans to

any goal.

In recognition, the reverse of this is true. The observer is trying to deduce

the agent’s goal by determining which plans or goals best fit the agent’s observed

behaviour thus far. That is, the observer can apply their own heuristic to the

agent’s behaviour, in order to determine which goals are having their heuristic

estimate lowered by the actions of the agent.

As a simple visual example, Figure 1.2 shows a small grid world state-space

in which states are equivalent to goals (Si = Gi). The agent starts at the top-left

corner and wishes to move to the bottom-right state (which contains its goal,

G = S ′′). In the role of the agent, there are three possible successor states at

each decision point — one to the right, another to bottom-right and one below.

The agent uses its heuristic to determine that the bottom-right state will always

provide the lowest estimate of work remaining to the goal, and therefore the

action which achieves it is always selected.

Now consider the case of the observer. At problem initialisation, they can see

that all states are potential goals as no behaviour has been observed yet1. After

the first observation, they can rule out those states which were to the immediate

South and East of the initial state, as their heuristic value after the observation

has not lowered. After three observations the observer can see that only a few

states remain which can be reached in an optimal fashion from the initial state

(Figure 1.2b), therefore this set of states must contain the agent’s goal. Finally,

by the time Figure 1.2c is reached, there are no more states remaining which

could have been reached optimally, so the goal must be within this state.

By modelling the recognition process as one of heuristic estimation, there

1The potential for the agent already being in a goal state at problem initialisation is discussed
later in this work.
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is no need to construct a plan-library. Goals and states can be enumerated at

runtime, given a well-formed problem input. The primary task then becomes one

of substituting a suboptimal heuristic in place of the optimal one, as these are

NP-hard to compute [32].

In the same way that the application of suboptimal heuristics in planning

has allowed for rapid expansion of the field and served to increase its wider

applicability, this thesis states that a similar procedure to that described above

can also reap the rewards of modern domain-independent heuristics when used

in goal recognition.

1.4 Thesis Contributions

The work presented in this thesis advances the state-of-the-art in several areas

which have been overlooked by prior work in GR or modelled in such a way as

to restrict their application or formal evaluation.

The model presented is the first that has the ability to perform goal recognition

with no prior assumptions of the domain, plans or agent being observed. While

other models can theoretically do this, they require a library of goals which makes

real-world application intractable. By representing the GR problem as one of

planning, any combination of facts can be considered as a goal and presented as

a hypothesis. This allows the entire goal-space to be represented using fewer facts,

which in turn reduces problem complexity and removes the requirement of a plan

or goal library being constructed prior to recognition beginning. This culminates

in the model being able to perform recognition on any domain, without prior

knowledge of its existence.

Another contribution of this work is that the agent being observed need not be

rational — that their plans will always be optimal. In fact, as prior information

is not available, knowledge of how long the agent’s plan will be at any time must

therefore be unknown. However, if the length of the agent’s plan is known, or

at least the number of remaining observations, the goal-space can be analysed

to detect which facts are achievable within the remaining n ≥ 0 plan steps.

Therefore, the number of remaining observations is estimated based on what the

current goal hypothesis is. Whilst allowing for more accurate hypotheses, this

further allows the prediction of intermediate states which represent the most

probable state within these n timesteps. All of these features are novel aspects of

the model which further the state-of-the-art of both the goal and plan recognition

literature.
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(a) (b)

(c)

Figure 1.2: An example of an agent transitioning through a state-space from the
top-left corner in Figure 1.2a to the bottom-right in Figure 1.2c. States which
are still reachable by an optimal plan are shaded black, while those which this
no longer applies to are shaded white. The current state in each figure is shaded
grey.
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A consequence of suboptimal agents is the possibility for goal abandonment.

Here, the agent executes part of the plan which achieves their original goal, before

transitioning to another plan which achieves a different goal. Here, the abandon-

ment of the original goal can be viewed as an extreme case of suboptimality in

the plan. Previous work on abandonment has used a plan-library as a means

of determining which actions are expected to be observed, given that a set of

candidate plans are being executed [61]. This naturally suffers from the problems

outlined above, with the ability to detect goal abandonment linked directly to the

completeness of the library. Therefore, this thesis presents a means of detecting

abandoned goals as a side-effect of the observation process, something which has

not been considered before.

Previous probabilistic recognition models based on libraries have had the bene-

fit of being able to assign prior probabilities to each plan/goal before recognition

begins [18, 38, 70]. This is often done by a domain-expert or by training the

underlying system using example problems and plans, both of which are time

consuming tasks. As the model presented has no such library, it therefore must

automatically generate prior probabilities using domain analysis — another novel

contribution of this work. While domain analysis has become common in the

planning community [51, 78, 88, 138, 148], run-time analysis of the state-space is

virtually unknown in the recognition community. As the following chapters will

show, domain analysis becomes possible only once plan-libraries are removed and

the underlying problem structure examined.

Finally, throughout all previous recognition work standardisation of input,

output, testing and scoring metrics has been largely unique to the author and

model presented. This in turn leads to ambiguity in the evaluation and com-

parison of different models and implementations, which further adversely effects

the perception of recognition literature. This work attempts to try and partially

tackle the former of these problems, by first accepting problem input in a well-

known and standardised format [55, 120], and evaluating the model using the

most widely applied techniques.

In summary, the contributions of this thesis are as follows.

• To enable goal recognition without the availability of a plan-library.

• Allow suboptimal agents and plans to be observed, and further to allow the

possibility of the agent abandoning goals.
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• Automatically derive prior probabilities for goals without knowledge of the

domain.

• Accept any problem which adheres to a formalised input specification.

1.5 Statement of Intent

The core concept of the model proposed herein is that it should be possible to

determine an agent’s goal purely by observing their movement through the state-

space in which they exist, primarily using heuristic estimation. This removes

the need for any assumptions to be constructed about the agent, and casts the

problem as the purest form of keyhole recognition [1, 70], in which the agent has

no knowledge of being observed or interaction with the observer.

This is achieved by applying techniques normally associated with planning,

wherein a heuristic is used to guide the search process towards the goal, in order

that the minimum series of actions are executed. In this work, the planning

model is inverted, such that the heuristic is used to determine which areas of

the state-space are being moved towards. This is used as an indicator that the

agent’s true goal lies within this region, which in turn can be used to construct a

hypothesis of this final goal and intermediate goals which must be achieved prior

to this.

Beyond this primary functionality, a new method of extracting the set of

most probable goals prior to observation beginning, using only domain analysis

is presented. This is again achieved using existing planning techniques.

1.6 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 motivates the

argument for a move away from the traditional library-based approach to recogni-

tion, to one which can perform recognition without the need for such a structure.

A description of the most widely accepted models in both plan and goal recog-

nition is provided, along with an introduction to planning using heuristic search.

The core milestones of this work are then set out along with the rationale behind

their choice.

Chapter 3 formally defines the new model of goal recognition by first noting

the similarity between planning and recognition, such that a common formalism

can be constructed. This is then used to present a heuristic-based goal recognition

model.
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While Chapter 3 formalises the new model, Chapter 4 provides details of its

implementation — IGRAPH. This is only possible by applying several relax-

ations to the model, which enable tractable goal recognition to become possible.

Techniques derived from the relaxed implementation are then used to automati-

cally construct a non-uniform initial probability distribution.

Evaluation of various components implemented in IGRAPH is reported in

Chapter 5. This focuses primarily on the accuracy of intermediate and final

hypotheses, which are generated after each observed action. The impact of the

domain analysis carried out prior to recognition beginning is also reported.

Finally, Chapter 6 concludes the thesis by returning to evaluate the system

against the requirements outlined in Chapter 3. Potential for further expansion

and exploitation of the model is also provided.

1.7 Related Publications

• David Pattison and D. Long. Accurately determining intermediate and

terminal plan states using Bayesian goal recognition. In David Pattison,

Derek Long, and Christopher W. Geib, editors, Proceedings of the First

Workshop on Goal, Activity and Plan Recognition (GAPRec), pages 32 –

37, June 2011

• David Pattison and Derek Long. Extracting plans from plans. In S. Fratini,

A. Gerevini, D. Long, and A. Saetti, editors, Proceedings of the 28th Work-

shop of the UK Special Interest Group on Planning and Scheduling, PLAN-

SIG’10, pages 149 – 156, December 2010

• David Pattison and Derek Long. Domain independent goal recognition. In

STAIRS 2010: Proceedings of the Fifth Starting AI Researchers’ Sympo-

sium, volume 222, pages 238 – 250. IOS Press, August 2010
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Chapter 2

Background and Motivation

2.1 Overview

This chapter provides a description of the motivation which drives the work pre-

sented in this thesis. This is performed by providing an overview of the existing

literature on plan and goal recognition, segmented according to the major com-

ponents of the recognition problem and how they are tackled.

The chapter begins with a brief historical overview of automated planning, as

this will form the basis of many common principles used throughout this thesis.

This is then followed by an overview of historical and contemporary work in plan

and goal recognition. Both sections detail the major models of each respective

field and highlight any overlap in common representations.

Historical work is used as the motivator for a new model of recognition in

Section 2.4. This highlights the various aspects of the recognition problem which

current models only partially achieve or ignore. This forms the basis of the model

presented in Chapter 3.

2.2 Planning

The work presented herein is heavily based on planning methodologies applied to

recognition. Therefore, it is prudent to provide a brief overview of this field and

specific areas which relate to this thesis.

As the introductory chapter stated, planning can be viewed as the mirror of

plan recognition. While recognition aims to determine the plan or goal of an

agent by observing a plan, planning is the generation of this plan in an efficient
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manner. In the case of PR with a plan library, the mirrored planning process

would be akin to a focussed heuristic search through only portions of the possible

state-space (i.e. those plans existing in the library).

Planning exists in many forms including simple propositional planning [23,

27, 79, 88]; metric and temporal planning [42, 83]; probabilistic [22, 25, 163]; con-

formant and contingent planning [87, 128]. Each of these fields can be generalised

to the creation of a plan given a set of hard or soft constraints. These may take

the form of goal literals; limited numeric resources or temporal orderings amongst

others. While a constraint is intended to affect the plan created in some manner,

this is implicitly assumed to be the lowest cost solution.

2.2.1 Classical Planning

In classical planning the world is represented using propositional logic1, as pop-

ularised by the STRIPS formalism [49]. No metric resources or temporal aspects

are present, and the world is fully-observable and deterministic. Each action has

an associated cost, which is usually assumed to be uniform across all actions.

The purpose of planning is to generate a minimal set of ordered actions which

transform the initial state I into a state S ′ containing all specified goals G∗ ⊆ S ′,

although in practice any ordering of actions which achieve G∗ is acceptable. This

positions planning as a directed-graph search problem, where nodes equate to

states and each edge ai = 〈S, S ′〉 equates to an action which if applied in S

transforms the state to S ′. Therefore, the problem is how to guide the search

through this state-space S, as enumeration for non trivial problems is not tractable

due to the curse of dimensionality [32].

This problem of state-space explosion is most commonly tackled by using a

heuristic to guide search towards the goal with minimal enumeration of S. If

the heuristic is domain-dependent then the planner is similarly classed and will

likely perform well only on specific problems [7, 106, 126, 127]. However, if the

heuristic is domain-independent it can potentially perform well on a variety of

unseen domains. It is this latter class which will be used in this work.

1Note that other forms of planning exist, such as using constraint satisfaction problems
(CSP) or satisfiability (SAT) problems [46, 156]. While these can be translated into a STRIPS-
esque form and vice-versa, this thesis will concentrate solely on graph-based approaches. As
there is a one-to-one mapping possible between all of these models, it is conceivable that the
work presented can be implemented in such forms.
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2.2.2 Domain-Independent Heuristics

The arrival of informative domain-independent heuristics in planning [27, 28, 119]

enabled a variety of problems to be solved using a single heuristic within a planner.

These heuristics use the structure of the state-space to compute an estimate of

how much work remains to achieve a specified goal. In the case of classical

planning, this estimate is simply the number of actions required to achieve the

goal from a specific state.

An informative heuristic can result in a massive reduction in search time

and number of successor states expanded whilst searching for the goal, versus a

brute-force expansion of all states until the goal is found [23]. However, in this

form the problem is intractable due to its complexity [32]. Thus, the problem is

often relaxed by ignoring certain components such as the delete-effects of actions

[28, 88]. Regardless of the technique used, domain independent heuristics2 are

based upon computing an estimate h(G∗), of the work required to achieve a goal

G∗, based upon the available action set.

In addition to simple heuristic estimates, some additional problem-solving

abilities may be implemented to aid in minimising search. For instance, Hoff-

mann’s work on the Fast Forward (FF) planner and associated heuristic [88]

incorporates the concept of helpful actions to guide search. These are actions

which are applicable in the current state and achieve at least one of the goal

literals found in first layer of the relaxed plan. Given two successor states with

equal heuristic estimates, if one is achieved using a helpful action, it will always be

selected as the best option. This domain-independent functionality contributes

strongly to the performance of FF.

2.2.3 Domain Analysis

Early work on planning used only the heuristic estimate during the search process

[23, 28]. While this is an acceptable approach if the heuristic is known to be

optimal, in practice additional information is often used to guide search. This

is often done through incorporating modest amounts of domain analysis. That

is, prior to search starting, the domain and problem structure are analysed for

any useful information which can speed up or optimise planning. For example,

approximation of domain invariants enables faster planning through lowering the

number of reachable states considered in search [16, 51, 53, 64, 65, 149], while

2From this point onwards, the term “heuristic” can be assumed to refer to the domain-
independent variety, unless otherwise stated.
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detection of goal-ordering and landmarks (literals which must be true in every

plan for a given goal) often allows the number of expanded states to be minimised

[103, 115, 148].

Indeed, the majority of modern planning systems use some kind of domain

analysis to make the search process more focussed [54, 115, 116, 138, 148]. While

potentially expensive, this can result in a performance increase on certain classes

of problem, and enable solutions to be derived on other wise intractable problems.

Domain analysis in planning often aims to make difficult problems tractable by

guiding search [148, 161] and ignoring areas of the state-space which are irrelevant.

This principle can also be applied to recognition. Given an unseen problem, the

structure of the domain will make certain goals more probable than others, giving

the recogniser the potential to produce better hypotheses prior to and during

observation. This is in contrast with existing work in recognition, which does not

use domain analysis.

2.3 Historical Background

2.3.1 Plan Recognition

Modern plan and goal recognition can trace its origins back to the study of

human psychology and behaviour in problem solving, largely explored through

understanding in natural language parsing scenarios [12, 34, 48, 135].

The first formal definition of this was by Schmidt et al. in 1978 [150], who used

natural language processing as an application of recognition. Their formalism

dictated that a strict language is required for performing recognition tasks in

order for all experiments to be sound. Their work also stated that it is necessary

for the recognition system to reflect the assumptions of the user/observer, such

as the information available to and used by the subject; the subject’s knowledge

at problem instantiation; and a model of how the world transforms as a result of

the subject’s actions, or more generally, simply how the world behaves.

The influence of human psychology on the work of Schmidt et al. is evident in

their further assumptions. For example, it is assumed that the observer will only

carry a single hypothesis at any time, and that it is often more likely that this

will be generalised based on the observed evidence not being specific enough —

it is better to say that the subject is getting something out of the fridge, rather

than being forced to choose amongst all items in the fridge. This lifted hypothesis

(“get something from the fridge”) can then be refined after more evidence has
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been provided, to produce a grounded hypothesis (“get milk out of the fridge”).

The work of Schmidt et al. and other early PR pioneers [135] has been ex-

tended throughout the intervening years. This has led to a divergence in many of

the current models of PR, which seek to target differing areas of the PR problem.

However, at a more abstract level, these models fall into one of three categories:

keyhole, intended and adversarial recognition.

In keyhole recognition [41], the agent is assumed to be unaware of the ob-

serving agent, and cannot interact with them in any way and lends itself towards

applications such as security surveillance [5] or deriving user goals in a game-

environment [1, 74, 75]. Unlike this, intended recognition [41], allows the subject

and observer to interact — specifically, the recogniser is allowed to query the

subject. For instance, the recogniser may ask for the rationale behind a subject’s

actions, or for assistance in deriving the current world state. Such work is often

related to natural dialogue systems [2, 91, 122] or situations in which a system is

designed to assist the user [13].

Finally, in adversarial recognition [59], it must be assumed that the agent is

aware of the observer, and that they may attempt to explicitly interfere with the

recognition process. This can be done through attempting to “cover up” actions

executed or by intentionally leading the observer to believe that a plan/goal other

than the true one is being pursued. While keyhole recognition is acceptable if the

subject does not know they are under surveillance (such as CCTV monitoring),

adversarial recognition is a more likely model to adopt in some scenarios — such

as detecting terrorist behaviour [94], network intrusion monitoring [29, 60, 142]

or video/serious-game opponents [95, 104].

Together, these three areas encapsulate all work in plan recognition. However,

the underlying models used can differ greatly, as each attempts to target different

areas of the PR problem. The following section provides an overview of the

most widely accepted models, grouped according to their most prominent features

(although these regularly overlap one another).

Logic-Based

Early work which followed on from Schmidt [150]; Perrault [135] and Allen et al.

[2], naturally derived ideas from these works. This previous work focussed on the

assumption that if plan-recognition is perfect in both its observation of the agent

and in any conclusions drawn, it becomes a process of eliminating plans which

are not consistent with the observations.
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The work of Kautz and Allen in the 1980s, which is widely viewed as the

first formal model of plan recognition as it is viewed today [97, 98], adopts this

approach via various assumptions about the world and agent. This model frames

plan recognition as a process of maintaining a consistent set of entries in a plan-

library (via circumscription), based upon observations of the subject and a set of

rules associated with the problem. A plan-library contains a set of hierarchical

task networks3 (HTN) [125], which represent the decomposition of a single, high-

level goal into subtasks and atomic actions. In Kautz and Allen’s work, this

collection must be complete, meaning it must contain every possible plan for a

given problem — or rather that it must contain every plan which is regarded as

a valid output for the problem.

This final point is made possible by the assumption that all actions are exe-

cuted for a reason. That is, that the subject demonstrates rationality or bounded

rationality. In the former case, the agent will always execute an optimal plan,

while in the latter they may not perform the optimal plan to achieve their goal as

defined by an external observer — but instead will execute the plan to the best

of their ability and knowledge.

Kautz and Allen’s model overcomes many of the problems associated with

prior work such as that of Schmidt et al., by allowing for multiple, concur-

rent plans, which may share actions, to be considered. However, the major

contribution of this work is arguably the concept and use of a plan-library in

performing recognition. This allows the problem to become one of eliminat-

ing inconsistent plans given the set of observations so far. A plan is inconsis-

tent if an observed action cannot be mapped to it given previous observations.

The assumption of a plan-library or similar structure4 being available to the

recogniser has become the de facto standard approach to recognition [35] and

has since framed the vast majority of both plan and goal recognition literature

[6, 18, 30, 37, 38, 60, 70, 112, 141].

Unfortunately, the richness of Kautz’ model means that the runtime is expo-

nential in the size of the plan-library. This results in only trivial problems being

solvable. The logic-based approach to the model also means that if multiple plans

are returned as valid candidates, they are considered as equivalent, despite some

potentially being highly unlikely.

3There are perhaps some minor differences between Kautz and Allen’s model of an HTN
and the modern definition, but these are trivial and for ease of presentation can be overlooked.

4Here, a “similar structure” to a plan-library is a data structure which contains a set of pre-
viously known plans and/or goals. The underlying representation (such as HTNs), is irrelevant.
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Probabilistic and Bayesian

While the logic-based and grammatical model advances the recognition problem,

it suffers from many restricting assumptions which limit the scope of potential

application. For example, all consistent plans are equally likely despite some

potentially being highly improbable. The output of the recognition process is

also assumed to be a single hypothesis, which prohibits the potential for multiple

explanations for the subject’s actions, and also prevents multiple goals and plans

being considered5.

Given these drawbacks, it is therefore natural that a move towards probabilis-

tic recognition evolved in subsequent years. This was first argued by Charniak

and Goldman [37, 38] (C&G), who stated that without probabilistic models, am-

biguity between hypotheses was inevitable and that it is better to output multiple

probable hypotheses rather than a single hypothesis. However, the core of their

argument is that the recognition problem is one of dealing with uncertainty —

both in the world and agent observed.

The immediate effect of this is that plans can have an associated prior prob-

ability, indicating the likelihood of them being the true plan before observation

has begun. For instance, if the only observation known is the subject entering

a shop, then it is more probable that they are performing the “shopping” plan,

rather than the “rob store” plan. However, C&G also allow for multiple hypothe-

ses to be presented on the rationale that it is better to present several dissimilar

hypotheses than a single unlikely hypothesis.

C&G’s model was one of the first to incorporate Bayesian logic in performing

PR reasoning — something which has become commonplace in later models and

applications [1, 3, 31, 139, 140, 152]. Subsequently, the PR community has largely

adopted Bayesian logic as standard, although frequentist approaches have also

been explored [14, 33].

In particular, graphical models [124, 133, 143] have been heavily applied as

a means of inferring agent intent [31, 74, 105]. C&G themselves automatically

construct a Bayesian network for application in a story-telling environment [37,

38, 69]. Here, high-level goals are represented as root variables in the graph, with

propositions derived from the story linked to these via a causal arc. As with much

Bayesian research, a large volume of evidence is required to derive the conditional

5While Kautz and Allen’s model supports concurrent plans and actions, these must be
contained within a single HTN. It is not possible to consider multiple goals and associated
plans across multiple HTNs.
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and prior probabilities.

One of the most commonly cited model of recognition was formalised in 1999

by Goldman, Geib and Miller (GG&M) in their PHATT system, which is in

fact a combination of a logic and probabilistic-based model [70]. Motivated by a

wish to assist human subjects, it differs from the previously discussed models by

taking the state of the agent into consideration. This builds upon the previously

discussed models by allowing hierarchical plans to include partial-orderings be-

tween actions, and partial observability. As actions are observed, a pending set

is constructed which contains all actions which could potentially follow the pre-

vious observation. These are extracted from members of the plan-library which

are consistent with the observations thus far. If an action is observed which is

not a member of the pending set, this can be used as evidence of a previous

observation being unobserved. The pending set can then be used as a source

of actions which the system can itself potentially execute, without breaking the

observation/inference process.

In addition to this, GG&M’s model includes some potential for the agent

behaving irrationally. That is, the agent may perform actions simply “for the

sake of it”, where these actions have no effect on achieving any goal in the plan-

library.

GG&M’s work is implemented through an abductive reasoning system [136],

which essentially models Occam’s razor — the principle that the simplest expla-

nation is the most probable. In the case of PR, this is naturally the plan which

best maps to the observed actions with the fewest assumptions. In GG&M’s

implementation, this is done through a hand-coded rule-set, where each rule en-

capsulates a feature of the model (negative evidence, pending set etc.).

If left at this point, the model would potentially be consistency-based (if the

plan observed were optimal). However, GG&M further incorporate probabilities

into the model by associating a real value against the probability that the agent

will perform some action for its own sake; that the agent will choose a particular

sub-plan for a given goal; and that the agent will choose a particular action

from a pending set of actions. In doing so, GG&M encapsulate the functionality

associated with C&G’s prior model.

Grammar-Parsing

Following on from Kautz and Allen’s formal definition of PR, Vilain constructed a

correspondence between this model and one of grammar parsing [158, 159]. The
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relationship here is that if a plan is constructed of several actions, it becomes

akin to deriving meaning from a sentence in some formalised grammar, where

each action is a lexical token and the plan-library defines the grammar. Partial

plans can subsequently be represented by shorter sentences and atomic actions

by terminals in the target language.

Context-free grammars (CFGs) [90] are particularly suited through applica-

tion of production rules which form the basis of the language. Here, the CFG is

defined as a tuple, G = (Σ, N, S, P ), where Σ and N are finite, disjoint sets of

terminal and non-terminal symbols respectively, S ∈ N is the start symbol and

P is a set of production rules. Each rule takes the form E → Λ, where E ∈ N
indicates that E must be true in order for tokens Λ ∈ (Σ ∪N)+ to be achieved.

Given this definition, the transformation of a library-based plan recognition

problem into a CFG formalism is obvious, with actions replaced by rules, goals

by terminal/non-terminals and the initial state replaced by the start symbol [62].

By encoding the problem using context-free grammars (CFG) and using rel-

evant newly-applicable algorithms, Vilain shows that a subset of Kautz’ model

can become solvable in polynomial time. However, to achieve this speed increase

all plans must now be totally-ordered and cannot share/interleave actions.

Like Kautz and Allen’s model, all hypotheses are equally probable, which

leads to the previously discussed drawbacks. Pynadath and Wellman [140, 141]

therefore use probabilistic context-free grammars (PCFGs) [36, 72] and later prob-

abilistic state-dependent grammars, where production rules now have an associ-

ated probability P(E → Λ) indicating how likely rule E is to be expanded into

string Λ. This is not used in conjunction with typical PCFG algorithms, but

rather to construct a dynamic Bayesian network [124, 133]. These are used to

derive a probability distribution over the range of possible plans currently being

executed, but in doing so are limited in their treatment of plans containing loops.

Further models have also been derived by Geib, Maraist and Goldman [63],

and later by Geib alone [56, 57, 58] which extend the relationship between PR and

natural language processing (NLP). The former takes GG&M’s earlier PHATT

model and optimises it by pruning matching plan-trees, sometimes reducing run-

times by an order of magnitude. The latter targets the follow-on problem of the

pending set in GG&M’s work potentially growing to an exponential size through

committing to a hypothesis early in the observation process. This is done by

translating the problem into a combinatorial categorial grammar [151], and pre-
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selecting critical actions from each plan6 that can be used to minimise the pending

set by rejecting candidates whose critical action has not yet been observed. This

minimisation allows for extremely fast runtimes when the critical action is located

on the rightmost token/observation, although in doing this the system loses pre-

dictive capability as the true hypothesis has its commitment delayed until the

final observation.

GG&M’s model is perhaps the most complete for library-based plan recogni-

tion published thus far. It incorporates many facets of prior models (such as plan

interleaving and probabilistic reasoning), alongside novel features aimed at solv-

ing previously ignored or overlooked problems (negative evidence, agent state,

plan intervention). However, it is not without flaws. There is no concept of un-

achievable actions (i.e. dead-ends or states which are no longer reachable due

to previous observations), and the assumption of a plan-library remains, which

now also requires a set of pre-assigned probabilities. GG&M also do not provide

an implementation of the theory, but rather use a probabilistic horn abduction

theorem prover [136] to validate the various rules outlined in the paper [70].

2.3.2 Goal Recognition

Until recently, goal recognition was often considered only in the wider context

of plan recognition. Plan recognition systems which rely on a plan-library often

have the goal for each plan explicitly specified [1, 6, 20, 37, 60, 70, 97], making

selection of a goal hypothesis a side-effect of selecting a plan hypothesis. A major

advantage of this model is that the number of goals can be relatively small when

compared against the number of plans that are capable of achieving them. For

example, completeness in Kautz and Allen’s formalism refers only to the set of

plans for each goal. Without this assumption, the complete set of goals for a

problem is equal to every valid combination of literals which are reachable from

the initial state.

While plan recognition makes use of a plan-library, a similar (or identical)

structure is often used in goal recognition to limit the number of goals considered.

Like plan recognition, the construction of this structure is often done by hand,

but as there is no ordering to the data (each goal is often mutually-exclusive),

automatic generation becomes a tractable possibility [19, 112].

Like plan recognition, goal recognition can be classed as keyhole, intended or

adversarial. As this work concentrates on keyhole recognition, associated work

6Termed plan heads in [58], which are analogous to head words in an NLP sentence.
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shall frame much of the following discussion on prior research. However, a further

distinction is also possible. Blaylock [18] states that a goal recogniser can also be

flat or hierarchical. In the former case, this means it can recognise only the top-

level goal of the plan, while in the latter ordered (or partially-ordered) sub-goals

of the overall goal can also be recognised (similar to a HTN).

As work in GR has progressed alongside PR until recently, it is simpler to

group prior research by major authors in the field, rather than by evolution as in

the case of PR above. Therefore, the following section instead lists the work of

the primary researchers in GR, in approximately chronological order. The smaller

nature of the GR research field also allows for further detail on prior work to be

provided.

Lesh and Etzioni

Early work by Lesh and Etzioni [111] modelled goal recognition in a similar

manner to Kautz and Allen’s definition of plan recognition. That is, goals are

eliminated based on their consistency with the actions observed. This is derived

from a fully-connected consistency graph — a graph in which nodes represent

all action and goal schemas, along with any observed actions, and edges indicate

a dependency between nodes. Here, the term “schema” is analogous to a lifted

action representation in planning or, alternatively, a collection of all possible

grounded instances of an action. Observations are equivalent to a single grounded

action.

After each observation the consistency graph is updated to eliminate goals

and action schema that are no longer connected to the main graph (therefore

being classed as inconsistent). Edges are removed based on a set of rules, such

as eliminating the link between observed action ai and unobserved action aj if

(aiadd ∪ aidel) ∪ ajpre 6= ∅, where aiadd, a
i
del and ajpre are the respective action add

effects, delete effects and preconditions. That is, there is no causal link between

them. Goal and action schemas which are no longer connected to the main graph

are then pruned from consideration and future hypotheses.

Lesh and Etzioni have also explored adapting recognition to a previously un-

seen agent’s plan with the ADAPT system [109]. The recogniser is trained using

an agent’s recent behaviour which has not been annotated with the agent’s true

goal. This data is then used to try and find the combination which provides the

best results. Unlike the previous system, this work does not assume access to

training data or require a policy to be constructed for recognition. However, it is
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noted that the ADAPT system is intended to be an enhancement to an existing

system and not a full goal-recogniser.

Outwith this prior work, Lesh and Etzioni were amongst the first to tackle

automatic generation of plan libraries for application in goal recognition [112],

with the work focussed on the problem of scalability in plan and goal recognition.

They use automatic generation of complete7 plan libraries and represent these

plans in a compact fashion in order to reduce the space requirements. Each goal

an agent has is mapped to a single plan in the library, with agents assumed to

be executing between 1 and n plans in order to achieve n goals.

Blaylock and Allen

The problem of automatically obtaining plan libraries/corpus8 has also been tack-

led by Blaylock and Allen [19]. This is accomplished by using the SHOP2 plan-

ner [127], modified such as to stochastically generate hierarchical plans [125] (see

Figure 2.1a) for a random (but valid) initial state and goal. The type of goal

generated for planning is derived by hand-coded probabilities which are provided

a-priori. While no results are given, the authors do note that the quality of the

resulting library is highly dependent upon the quality of the planner and algo-

rithms used to seed the initial state and goal. In particular, deriving a library

using a planner may not have a strong correlation with human behaviour, which

much PR work is targeted at.

Aside from this work, Blaylock and Allen have explored other areas of the goal

recognition problem. Continuing the strong relationship between recognition and

language, they have used NLP techniques in the context of goal recognition [18],

by using n-gram models along with a plan corpus to estimate the true goal. Here,

the prior probability of a goal being the true goal is determined by analysing the

plan corpus before recognition begins, in the same manner as the probability of

a word appearing in a text document can be determined in NLP. To compute

these probabilities they apply both unigram and bigram models, which state that

in the former case, an observation is only dependent upon the goal, and in the

latter that it is further dependent upon the previous observation9.

7Complete in this context rules out any plans and goals which will never be attempted or
achieved.

8Blaylock and Allen often refer to the plan or goal library as plan or goal corpus. In this
thesis, these terms can be viewed as interchangeable.

9To accommodate the situation where only a single action has been observed, the plan is
always annotated with a “start” action stub. This allows information on which true actions
tend to be applied first in a plan to be obtained.
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In practice, the plan corpus used is Lesh’s Unix plan-library [109]. This con-

tains 11 unique goals and 412 possible actions, which have 22 underlying action

types. The recogniser was able to successfully identify the final goal with 55.4%

and 55.6% accuracy for the unigram and bigram models respectively. However,

the average plan length is only 7 steps long, with results for larger domains not

given. In addition, while the system is aimed at rapid deployment, the problem

of data collection is highlighted by the authors as a potential barrier to this. This

observation led to the work on automatic library generation discussed above [19].

Later work by the authors has applied machine learning techniques to goal

recognition [20], in order that recognition is no longer considered to be inferring

only the agent’s final goal, but also any intermediate goals. The SHOP2 planner

[127] is again used as the source of hierarchical plans, but these are no longer

considered in their original form. Instead, each plan is decomposed into a set of

ordered sub-goals which are equivalent to a depth-first traversal of the original

plan, starting from the root node as shown in Figure 2.1b. Each of these goal

chains is used to form a cascading hidden Markov model (CHMM) — a structure

related to hierarchical hidden Markov models (HMM) [123], in which HMMs [143]

are stacked upon one another. The emissions of hidden state i in layer D are equal

to the observed action at timestep i. These hidden states are then used as the

emissions of layer D − 1, a process which repeats until layer 1 is reached. The

depth of the CHMM is equal to the size of the longest plan of any HTN in the

corpus, with any variable-length plans being padded out to match this maximum

depth [21].

Once the CHMM has been formed, it is trained using the MONROE corpus

— a SHOP2 plan-library which has been constructed using the same principles

as described above, albeit on a larger scale [19]. This provides transition and

emission probabilities, along with a prior goal distribution. The forward algorithm

is then applied to predict the next n observations, based upon the trained CHMM

and any previously observed states. In practice this leads to unexceptional results,

so the CHMM is augmented to include a bigram model as in their earlier work.

While this produces accurate results the average plan length of the MONROE

corpus remains very low, at 9.5 actions per plan.

Hong

Hong’s approach [89] to the problem of goal recognition was the first known

system based on planning methodologies. It extends the concept of a plan graph
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(a) A hierarchical plan as exemplified by
output of the SHOP2 planner [127].
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(b) A complete set of linear paths through
the original hierarchical plan, as produced
by Blaylock and Allen’s work [20].

Figure 2.1: A hierarchical plan, in which the root node represents the overall
goal of the plan, and each child node is a decomposition of its parent node. Leaf
nodes in the tree are terminal actions in the final plan. For example, the root
goal G can be decomposed into the achievement of sub-goals S1:1 and S1:2 in
left-to-right order. Were figure 2.1b to be used in a CHMM, an additional set of
edges would be present on all nodes other than those representing actions. These
would connect each node/hidden state to its immediate right-hand neighbour,
with downward facing arrows representing the emissions of the hidden state.
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[23] — a structure which represents every possible path from an initial state to

a goal — to produce a goal graph. Unlike other previous models of recognition,

Hong’s model is used in an a-posteriori context. That is, the system can only

determine the agent’s goal after the entire plan has been observed. The work is

aimed at explaining an agent’s plan, rather than predicting what the plan will be

and what its purpose is.

While the model is not predictive, is does share a strong similarity with other

models of plan and goal recognition, namely that recognition is based on elimi-

nating inconsistent goal candidates. Hong does this through constructing the goal

graph — a data structure used to track facts that may be goals, and eliminate

any which are no longer consistent with the observed plan.

First, the goal graph is initialised with a single fact layer containing all facts

present in the initial state. After each observation a new layer is added containing

all facts in the newly updated world state. Facts which were deleted by the

observed action are also recorded in their negated form. In addition to this new

fact layer, a parallel layer is added containing all goals consistent with the previous

observations. A goal G is consistent if it was added10 by the last observation Ot

or if there is a causal link between Ot and an unseen action Ot+1 which achieves

G. The goal which the system proposes as the final hypothesis is that which is

most consistent with the observed plan. This is simply the goal which has the

most actions contributing to its achievement.

As the goal graph has no probability or inference associated with it, the system

scales extremely well, with the number of goals that can be considered in the tens-

of-thousands. In addition to this, there is no assumption of optimality in the plan

observed.

Ramı́rez and Geffner

Since Hong’s work in 2001, the only known work which has made a similar use

of planning techniques in recognition is the work presented herein and that of

Ramı́rez and Geffner [145, 146, 147]. Like this work (although development of

these two research avenues was independent), the problem is formulated as one

of determining the final goal of an agent as it transitions through the state-space.

However, there are also many differentiating factors which have a significant im-

pact upon the way the system is used and the domains tackled.

Ramı́rez and Geffner’s (R&G) early work [145] is analogous to Kautz and

10The same principle applies to negated facts.
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Allen’s model of PR, in that it is non-probabilistic and hypotheses are produced

as a side-effect of eliminating inconsistent goals. R&G remove the assumption of a

plan-library and instead model the problem as one of domain theory with respect

to a known set of goals. The principle here is that the agent will always select

the optimal or near-optimal plan for achieving the goal. Therefore, if an action is

observed which is non-optimal with respect to a given goal, it can be eliminated

from hypothesis consideration. R&G use both an optimal [77] and modified

suboptimal planner [88] to determine the distance to each goal considered after

an observation.

In their follow-up work [146], R&G move to a probabilistic model and relax

the assumption of rationality in the agent. Here, after each action Ot is observed,

a standard domain-independent planner is used [161] to compute a plan from

the new belief-state to each possible goal. A second plan is then generated for

every goal in the same goal-space, with the exception that Ot is removed from

the action set used to generate a plan. This enables the recogniser to determine

whether a goal becomes easier or harder to achieve once Ot is observed, versus if

it is never observed.

Finally, R&G’s work culminates in tackling the problem of uncertainty in ob-

serving an agent by applying their previous research using a partially observable

Markov decision process (POMDPs) [96]. Previously, they consider the world

as deterministic and fully-observable, but here they adopt Charniak and Gold-

man’s view of recognition as inference under uncertainty [38]. Uncertainty arises

from having only a partially observable representation of the subject’s state and

stochastic action effects. Baker et al. [12] have also investigated the use of plan-

ning in modelling agent recognition through the use of a MDP and POMDP,

particularly in the context of a theory-of-mind.

Like Hong’s work, the goal-space in R&G’s work is generated at runtime,

meaning a plan-library is not needed. However, while it is technically feasible to

consider any number of goals, only a trivial number are evaluated in the associated

literature. In particular, the repeated use of a POMDP planner [25] could make

large-scale goal-spaces difficult to accommodate.

Prior Work Conclusions

Previous research in both plan and goal recognition has attempted to find a uni-

fied model of recognition which can cover all facets of the problem. However,

all of these models can trace their roots back to Kautz and Allen’s original def-
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initions, in that the assumption of a plan-library being present remains (with

the exception of those planning-based approaches given [12, 89, 145, 146, 147]).

While there have been attempts to automatically generate such structures, this

research has not progressed or been widely applied. Recently, Keren et al. have

taken an alternate view of this problem, by using planning techniques to assist

in the design of GR problems. Instead of generating plan libraries for a given

problem, they attempt to reduce the number of non-unique plans for each poten-

tial goal, thus simplifying recognition [99]. However, this offline process requires

that O(n2) optimal plans be generated (where n is the number of possible goals),

reducing application to domains with a relatively small goal-set/domain size.

In contrast, the planning-based approaches given suffer from tractability due

to complex modelling techniques. This makes rapid deployment of such systems

difficult without some human intervention.

2.4 Motivation for a New Model of Recognition

The previous section presented an overview of the major models and accepted

approaches to both plan and goal recognition. This section details the various

motivating factors for a new model of goal recognition which are not addressed

(or only partially addressed) by prior work.

Before each motivating factor is presented, it is useful to have a concrete

example on which to draw these motivations from.

2.4.1 The Need for Recognition

Consider the following example, in which we observe a subject leaving their house

and travelling around a city before returning home. First, the subject prepares

breakfast at 08:00, exits the house and drives due East for several city blocks

before turning North and driving to a supermarket. They enter the supermarket

during which time they cannot be observed, and emerge 10 minutes later carrying

a bag. They then drive to a factory and again cannot be observed until they exit

at 17:05. They then drive West to a school where another person enters the car,

and both return to the driver’s house. They are then observed preparing a meal

and consuming it.

At its simplest level and a posteriori, this scenario poses one question: what

was the agent’s plan? A human can easily infer that it is someone going to work

and picking up their child on the route home, but this requires years of prior

knowledge of how the world works. To a machine there are countless possible
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plans. Was the goal simply to return home? Was it to be at the factory? Was

stopping at the supermarket required before they could visit the factory? Perhaps

the goal was simply to be in the car at several points during the day, or to remove

the second person from being at the school. All of these are viable hypotheses

given the evidence presented, and it is here that the plan recognition problem

lies.

At a more complex level, this problem demonstrates partial-observability (con-

suming breakfast was not observed, merely the preparation); non-optimal plans

(there may have been a shorter route to the supermarket); conjunctive, inter-

mediate and ordered goals (the supermarket had to be visited before dinner was

prepared) and finally, potentially demonstrates multiple agents (does the child

execute their own plan or are they merely a part of the parent’s overall plan?).

Harder still is the problem of the plan being presented incrementally and a hy-

pothesis required after each observation. Finally, there must be an assumption

that any valid combination of goals is possible and that any length of plan, P ,

can achieve it (where optimal(P ) ≤ |P | < inf, and |P | is unknown).

This set of constraints closely mimics those of a real-life recognition scenario,

although further assumptions such as adversarial agents are also possible. Yet,

many of these are not reflected in prior work, with each researcher selecting a

subset of the problem to tackle. While some of these are often required to make

the problem tractable, some assumptions, such as the length of an agent’s plan,

can overly constrain the problem to the point that real-world deployment would

be unlikely to succeed.

With this example in mind, the following sections will discuss the various ways

in which previous plan and goal recognition models fail to address the complete

scenario. There is also a discussion of other, non-model related aspects of previous

work which prevents wider acceptance of the field.

2.4.2 Tractability of Plan Libraries

As detailed above, the use of plan libraries is the standard approach to plan or

goal recognition. Yet it is accepted within the recognition community that the

construction and availability of such structures is a hindrance to evaluation and

deployment. While it is possible to generate such libraries at runtime [111] or

in an offline context [92], the vast majority of recognition research uses libraries

constructed by hand, possibly by a domain expert, or from recordings of observed

plan-traces [6, 18, 37, 60, 70, 97, 111].
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While the construction of a plan-library is an expensive process, the plans

contained within it are also crucial to many recognition implementations. Kautz

and Allen’s [97] original model assumes that the library is complete, with respect

to all plans which can possibly be observed. Were this model to be applied in

the above example in which the plan designer has not accounted for visits to the

school, no hypothesis produced could take this into account.

In this context, complete is a misleading term. The library can only be truly

complete if it contains all possible plans for all possible goals — something which

is not only intractable but can potentially be infinite (if loops are allowed). Thus,

a complete library can only be generated if the meaning of this is constrained in

some way, e.g. only optimal plans. On the other hand, completeness includes

all extraneous plans too. While models such as Charniak and Goldman’s [38]

allow any plan to be a sub-plan of another, others such as Lesh and Etzioni’s

[111] require that extraneous plans be eliminated from the library to prevent

poor hypotheses being presented. In the example scenario this may mean ignor-

ing plans in which the parent visits the supermarket twice, having forgotten to

pick something up on the first visit. In the case of the library-free approaches

such as Ramı́rez and Geffner’s, the system would need to know which subset of

the potential goal-space to consider as the true goal in order for results to be

produced in a reasonable timeframe. Such restrictions may make using a library

feasible, but they limit the ability for the system to accommodate uncertainty

and redundancy in the agent’s plan. Similarly, the techniques Keren et al. use to

increase the uniqueness of a plan (and thus the associated goal), require that op-

timal plans be computed — essentially constructing a plan-library by side-effect

[99].

2.4.3 Initial Probability Distribution

In probabilistic inference, the quality of the initial probability distribution across

the goal and plan-space can result in high (or low) quality hypotheses being

produced during the early stages of recognition. Like library design, the selection

of these probabilities is often left to domain-experts or a uniform probability

distribution is applied [38, 70, 147]. Alternatively, some systems use machine

learning and prior observations to estimate these values [1, 18] .

While the latter approach is a useful step towards increasing the generalisation

of a recognition system, it requires that many training examples be observed first.

Additionally, just as a domain-expert may not be available to construct a plan-
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library, a suitable (possibly annotated) training set may not be available either.

In the absence of such training data or prior knowledge, it is better for the

recogniser to provide a per-problem initial distribution, based upon the structure

of the problem being examined.

As stated previously, extraction of domain and problem features at runtime

is common in the field of planning. Detection of invariants [16, 51, 53, 64, 65,

149], goal-orderings and landmarks [103, 115, 138, 148] are performed at runtime

on the problem at hand in order to speed up search or improve plan quality.

Examples of domain-independent feature extraction are unknown in the field

of recognition, despite many problems (including those commonly cited in the

literature) demonstrating an underlying goal structure from which probabilities

can be derived.

2.4.4 Plan and Goal Abandonment

Much of the work discussed previously has been evaluated in a research context or

is purely theoretical, with no deployment in the real-world. In such research-based

evaluation, agents often have only a single goal or plan, which they pursue without

deviation until completion. Unfortunately, this assumption is rarely applicable

when considering agents in real-life recognition deployment, in which plans and

goals may change over time. Therefore, it is crucial for a recogniser to be able

to detect that a plan or goal which was previously being pursued has now been

abandoned.

Little prior work exists in the field of plan and goal abandonment, with only

Geib and Goldman providing an explicit model for this [61]. Building on their

earlier PHATT model [70], they estimate the probability of a goal11 G having

been abandoned as a function of the number of timesteps since action Os was

observed, where Os is known to precede the unobserved action Os+1 in the HTN

plan for G. If Os+1 has not been observed after k > 0 further observations, then

the probability that the plan/goal which it is associated with has been abandoned

increases for every observation which follows Os. The boundary for classifying a

plan as abandoned is dictated by a parameter, ε, where Pabandon(G) ≤ ε ≤ 1.

The concept of abandonment is a stronger case of negative evidence, which

Geib, Goldman and Millar discuss in their earlier work [70]. They define this to

11As described in Section 2.3.1, the PHATT model uses HTN plan representations, which
have a single root node representing the goal. Thus, there is a known plan for each goal which
can also be considered abandoned.
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be the failure to observe an expected action. For instance not seeing the subject

in the example scenario consuming breakfast, despite preparing it. In this case,

an explanation may be that they are running late and have realised they do not

have time to eat. However, more generally the failure to observe can be explained

by a failure in the sensor model, or that the agent may have abandoned their plan

(in this case, a plan in which they eat breakfast).

Geib and Goldman’s later model can successfully represent the abandonment

of goals, but requires a prior knowledge of action-orderings (that is, a plan). Fur-

ther, it requires an additional calculation for the probability of the plan being

abandoned. Without this and a suitable value for ε, the system cannot work.

Thus, a further motivation for a new model of recognition is that plan aban-

donment be an integral part of the model, rather than a separate or additional

feature of an existing model.

2.4.5 Standardisation

The example scenario outlined above uses natural language to describe the prob-

lem and actions observed. In this form, the underlying representation is deter-

mined by the reader. For instance, plans may be hierarchical or flat in nature;

goals can be individual or conjunctive; or the adult and child may be viewed

as separate agents (although the concept of “adult” and “child” are themselves

inferred by the reader!).

This reader-specific representation mirrors that of prior recognition research.

As a scientific field, there is little standardisation or compatibility between recog-

nisers due to a lack of standardised input or output. While this prevents cross-

testing of problems by external parties, the problem is further exacerbated by the

absence of a common evaluation metric.

Problem Formulation

Given the problem domain at hand, each researcher implements their own model

of the problem. While innovation in solving the recognition problem is of course

to be encouraged, ambiguity in how the problem is defined can lead to different

assumptions about the problem and thus differing solutions.

A strong motivating factor for this work is that input should be in an exist-

ing standardised form, such that other researchers can evaluate the system and

construct new test domains with relative ease. Output can also be presented in

a standardised form.
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Evaluation Metrics

Closely linked to the issue of a standardised problem representation, is the method

in which recognition systems are evaluated. Carberry noted in 2001 that there was

still no common evaluation schema for plan or goal recognition [35], something

which remains the case today. There has been some recent speculation that a

common metric could come from holding a community-wide competition [71, 132],

similar to the International Planning Competition [117], although there are fears

it may stifle research and alienate some areas of the community.

Indeed, it could be argued that by nature, recognition does not lend itself

towards a common evaluation metric. The range of problems which can be classed

as “recognition” is so diverse that comparisons are often impossible. It may even

be that in order to elegantly tackle the issue of metrics, a common input/output

formalism must first be agreed upon.

2.5 Summary

The work presented in this thesis mimics many of the advances in planning out-

lined in Section 2.2, but applies them in the context of goal recognition. As the

following chapters will show, heuristics can be used to determine which goal the

subject is working towards, without prior knowledge of the plans which achieve

these. Further, domain analysis can provide a means for bootstrapping the recog-

nition process, in order that hypotheses can be produced without observing the

agent’s behaviour.
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A New Model of Plan

Recognition

3.1 Introduction

Chapter 2 outlined ways in which planning and recognition can share a common

model. This chapter presents a new formal model of goal recognition, by in-

troducing a common planning-recognition problem representation. By modelling

recognition as one of inverse planning1, it becomes possible to apply historical

and current planning research.

The purpose of this formalism is that it negates the need for a plan library

to be present, and instead frames the problem as one of an agent traversing a

state-space — that is, executing a plan. The formalism presented in this chapter

is based upon the assumption of rationality in both the executing agent and

observer (although the former will be relaxed to allow suboptimality in plans).

As the problem representation put forth in this chapter is based upon optimal

heuristics, it is ultimately intractable in the real-world due to its complexity [32].

To guarantee optimal heuristic estimates, the entire state-space must be explored,

which results in exponential processing time or memory requirements. However,

Chapter 4 provides several means by which the problem can be relaxed to obtain

a usable solution.

1The term inverse planning is borrowed from Baker et al. [12].
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3.1.1 Overview

Section 3.2 formalises a common model between planning and recognition, before

Section 3.3 demonstrates how heuristics can be applied to the problem. Here,

recognition becomes a process of eliminating inconsistent goals (in line with

Kautz and Allen’s model [97]), with respect to optimality in the agent’s plan.

This consistency-based approach is then relaxed in Section 3.4, which removes

the assumption of rational agents through introducing a probabilistic represen-

tation. This form allows inference to take place during the recognition process.

Finally, Section 3.6 details how the final model relates to previous work in the

field of recognition, and any prominent features of the model which have not been

previously enumerated.

3.2 A Base Planning and Plan Recognition For-

malism

Many of the terms which appear in both planning and plan recognition literature

can be described by a common formalism. For example, both problems use liter-

als, actions, states and goals which all share the same definition. Moving beyond

this, more abstract concepts such as the state-space and goal-space can also have

a common definition, which allow the potential for performing recognition (or

planning) using research from both fields. This section will enumerate and define

the various components required to perform such a task.

3.2.1 Core Shared Terminology

Conceptually, planning is the problem of constructing a path through the state-

space of a problem — a graph of all states which are reachable from the initial

state through action transitions. As Section 1.3 described, the same structure

exists in recognition, with the observer wishing to determine the final state the

agent will end in.

The base model of a state-space is well known in planning, wherein the world is

represented as a set of boolean propositions (also referred to as facts), popularised

by the STRIPS formalism [49], with no metric or temporal aspects and the world

is fully observable and transitions are deterministic. This frames the problem as

a classical planning problem.

Definition 1. Classical Planning Problem

A classical planning problem is a tuple π = 〈F,A, I,G〉, where F is a set of literals
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in first-order logic and A is the set of all grounded actions in the domain. I ⊆ F

is the initial state for the problem and G is the goal G ⊆ F , G 6= ∅. Each action

a ∈ A is a triple 〈apre, aadd, adel〉, where apre, adel ⊆ F are the preconditions and

delete effects of a, respectively, and aadd j F are the add effects. Each action

a ∈ A has an associated cost, c(a) = 1.

In classical planning the closed-world assumption applies. That is, the appli-

cation of (valid) action a ∈ π(A) which is applicable in state S, will always lead

to a reachable state S ′, and any literal which is not known to be true is assumed

to be negated, with no further literals or actions added after problem instantia-

tion. A state is reachable if it can be achieved through a series of actions applied

in order from the initial state. An action is valid if it can be applied through a

sequence of state-transitions from the initial state. Such states are sound — they

contain no mutually-exclusive facts. Note that every action must have at least

one add effect, as the negation of a literal is not considered a valid precondition

or goal.

Two facts are mutually-exclusive (mutex) if it is impossible for both to be true

in the same state. The set of all mutex relations associated with each planning

problem, M(π), is a mapping of each fact f ∈ π(F ) to a further set of literals,

f →M(f) ⊂ F , where M(f) may potentially be the empty set.

These properties allow the planning problem to be represented as a directed

graph, known as the state-space, in which vertices are states and edges are the

actions which transform states into successor states.

Definition 2. State-Space

The state-space of a problem is a directed, possibly cyclic, graph S = 〈V,E〉,
which represents all action transitions and resulting states in a planning problem

π. Each vertex v ∈ V , is a state, and each edge 〈S, S ′〉 ∈ E is an action, a ∈ π(A),

for which apre ⊆ S and S ′ = (S \ adel) ∪ aadd.

Definition 3. Reachable State

A state S ∈ S is reachable if there exists a finite path of totally-ordered action

transitions from the initial state π(I) to S.

While theoretically possible, enumeration of the state-space for all but the

simplest of problems is intractable. Yet, in the case of recognition the problem

is even harder, as the state-space is of limited assistance in determining the final

goal. This stems from the fact it is unlikely an agent’s goal will be the achievement
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of a state G = S ∈ S. Rather, it will be a subset of a state, G ⊆ S ∈ S. Just as

states exist within the state-space, goals are deemed to exist within the goal-space.

3.2.2 The Goal-Space

The state-space represents how an agent can move through intermediate, causally-

linked states in order to achieve its final goal. The goal-space is a superset of this

where instead of vertices representing states, they represent an explanation of

why the previous action was applied. That is, the “goal” of applying an action is

to achieve a subset or all of the literals within the successor state. For example, if

an action a is executed in state S, it is because the goal2 was not wholly contained

within S, but is within S ′.

Definition 4. Goal-Space

The goal-space of a problem is a directed, possibly cyclic, graph G = 〈V,E〉,
in which each node v ∈ V represents a state comprising a set of non-mutually-

exclusive facts v ⊆ π(F ). Each edge is an action a ∈ π(A). For an edge to

exist between vertices 〈u, u′〉, the preconditions of a must be at least partially

applicable in u, such that (apre ∩ u) ⊆ apre (where apre and adel can be the empty

set, but aadd cannot). For each partially or wholly applicable action, u will have

2|K−1| outgoing edges, where K = (u \ adel) ∪ aadd. The associated outgoing

vertex set is equal to
⋃2|aadd|−1

i=1 ℘i(u \ adel) ∪ aadd, where ℘i is the ith member of

the associated power set. If only full states are considered as goals, G is equivalent

to S — or more generally G ⊇ S.

Like the state-space, the notion of causally-linked action transitions is re-

tained, but in a relaxed manner. Here, an action is considered applicable if the

goal is merely a partial subset of the action’s preconditions. While in the context

of the state-space these transitions would be illegal as the state need not include

all an action’s preconditions, for the goal-space the agent may have only wished

to achieve a single fact as the intermediate goal, with any other achievements

being side-effects of the action. The goal-space is not intended to represent legal

action transitions, but rather an agent’s logic in selecting an action or plan. For

example, in Figure 3.1c there is a single initial state I = {X}. If the agent exe-

cutes action B, they will have done so in order to achieve one of the successor goal

2Here, the term “goal” merely refers to the immediate reason for applying an action. In
practice, there may be several transitions through the state-space (i.e. a plan). Thus it may
be appropriate to think of members of the goal-space as intermediate goals, unless the plan is
known to have finished.
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states {U,XU }. If the goal were simply to have X true, no action should have

been executed. By moving to another state within S, the agent has indicated

that the goal was not wholly contained within the predecessor state.

By defining the planning problem and goal-space, the goal recognition problem

can now be formalised.

Definition 5. Goal Recognition Problem

A goal recognition problem is a triple γ = {G, I, G∗}, where G is the goal-space

of the problem; I is the initial state and G∗ ∈ G is the true goal of the agent

moving through G, which is unknown to the observer.

While planning is defined as movement through the state or goal-space to

a known goal, the equivalent goal recognition problem is viewed as the same

movement with no knowledge of π(G) (where π(G) and γ(G∗) are equal). Of

course, in the case of planning the agent’s movement through G has a known end

point, while in recognition this terminal state is unknown.

Viewing the Goal-Space as an Observer

While the goal-space represents a deterministic transition model to the executing

agent, for an external observer it will be non-deterministic3. This is for the

simple reason that only the agent knows why it transitioned into state S ′, while

the observer must infer this. More importantly, only the agent knows which goal-

state G′ ∈ G it has entered. For example, if the subject’s goal-space contains only

three facts {X, Y, Z} and a single action A which deletes X and adds {Y, Z} such

as that in Figure 3.1a, it is impossible to determine which of the successor goals

is the true goal. Thus, at any point in time the subject’s goal can be considered

to be one of the 2k− 1 current belief-goals GB ∈ Gt, where k = |S| is the number

of literals which comprise the current state S ∈ S and Gt is the goal-space at

time t. It is also possible to consider the situation where no observations will be

made, indicating that G∗ ⊆ I.

While accounting for non-determinism in the model may seem to increase the

complexity of the problem, much of this uncertainty only remains until the next

action is observed. At this point some of the belief-goals present before the obser-

vation may be eliminated from the set of possible agent goals depending on the

form of the action. If the observed action has no delete effects, then all previous

belief-goals can be ignored, because the addition of new facts indicates that the

3Note that in a fully-observable environment, the state-space remains fully deterministic for
both subject and observer.

37



Chapter 3. A New Model of Plan Recognition

X

Y
A

YZ
A

Z

A

(a) An example of non-
determinism in the goal-
space

X

YZA

XU

B

YZU

B

YZVC

A

YZUV
C

B

(b) A fully enumerated state-space

X

Y

A

YZ

A

Z
A

XU
B U

B

B

YU

B

VC

YV

C

ZV

C

YZV

C

B

B

ZU

B

YZU

B

C

C

C

C

B

B

A

A

A

A

A

A

A C

UVC

C

C

C

C

C

ZUV

C

YUV

C

YZUV

C

B

B

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

(c) The goal-space representation of Figure 3.1b

Figure 3.1: Representations of various spaces within the model.
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goal is at least partially contained within the newly added literals. However, if

delete effects are present, then only those belief-goals which are a partial superset

of the delete effects can be eliminated, because the removal of a fact is enough to

indicate that it is an unwanted goal4. To clarify this point, consider the following

example in which the subject being observed moves through the (fully enumer-

ated) states-space shown in Figure 3.2 and associated goal-space given in Figure

3.3.

The agent exists in an extended version of the previous example world, which

now has predicates {X ,Y ,Z ,U ,V }, and three actions A = 〈X, {Y ,Z}, X〉,
B = 〈∅, U, ∅〉 and C = 〈Y, V, ∅〉, which are of the form a = 〈apre, aadd, adel〉. The

agent still starts in state X, and is observed executing action A. As before, this

transitions the agent from X to one of several possible belief-goals representing

the agent’s potential reason for executing A (i.e. they wanted to achieve Y , Z

or YZ ). The agent then executes action B which leads to the set of belief-goals

becoming {U ,YU ,ZU ,YZU }, before finally executing action C. This causes the

final set of belief-goals to be {V ,YV ,ZV ,UV ,YZV ,YUV ,ZUV ,YZUV }.
Once the first action has been observed, and fact X deleted, all hypotheses

containing X can be eliminated from G, as it is no longer achievable. After

the second observation, U is added to the state, which means that only goals

containing this should be considered. This is also true after the addition of V

in the third observation. The question of which of the belief-goals represents the

true goal will be considered in Section 3.3.

The example above shows the complexity which arises from the uncertainty

involved in viewing the goal-space as an observer. However, while the example

maintains a consistent set of belief-goals (that is, the plan so far is “consistent”

with each belief-goal being the goal), it is a näıve model as many can be ruled

out. For instance, V can be removed from the final set of hypotheses because

selecting C as the second action would have been a shorter plan to achieve solely

V . Thus, the model assumes that the agent is rational, and will always take the

optimal path to the goal.

Definition 6. Rational Agent

An agent is rational within a state-space S, if for their goal G∗ and initial state

I, all plans executed achieving G∗ from I are guaranteed to be of minimal cost.

The implications of this assumption are clearly strong, and heavily limit the

4The impact of this assumption will be discussed further in this chapter.
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Figure 3.2: The agent’s movement through the example state-space during exe-
cution of plan P = 〈A,B,C〉. The initial state is highlighted with a double-circle,
with the current state is highlighted with a black border. The action selected to
transition out of the current state is shown as a dashed arrow. States which have
been passed through remain shaded.
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Figure 3.3: The agent’s movement through the example goal-space during plan
execution, corresponding with actions taken in the state-space shown in Figure
3.2. Belief-goals are highlighted using double-circles. Figure 3.3a shows the com-
plete goal-space at problem instantiation, with all optimal paths to each goal
from state X. After the first observation is processed, all states in the previous
goal-space which can no longer be reached by an optimal path from the original
initial state are eliminated. As further observations are processed the goal-space
reduces until (in this example case) only belief-goals remain.
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application of the model in a real-life scenario. Luckily, this assumption can be

relaxed to allow for suboptimal agents, as will be discussed in Section 3.4. For

now, it serves as a useful aid in explaining the principles of the model presented.

3.2.3 The Plan-Space

The goal-space of a problem — while monotonically decreasing in nature if a

rational agent is assumed — remains constant throughout plan execution, with

no new goals being added to it. However, associated with every planning problem

π is a further graph representing the plan-space of the agent. This graph is the set

of all possible plans which can achieve the agent’s goal G∗ from their initial state.

In recognition, since there is no knowledge of G∗, this space must be expanded

to also include all plans to all goals in G. This is somewhat analogous to a

fully-enumerated representation of a traditional library-based PR system with a

complete set of plans, such as Kautz and Allen’s work [97, 98].

Definition 7. Plan

A plan is a pair P = {I, O}, where I is the initial state of the agent I ∈ S, and

O is a series of totally-ordered actions 〈O1...On〉, or the empty set.

While unintuitive, empty plans must be considered as valid, as Definition 1

does not state that G∗ /∈ I. Therefore, it is possible for the agent’s goal to be

already achieved in the initial state. In such cases, the state and goal-spaces will

never reduce as no observations will be processed. However, this does not prevent

generation of a hypothesis, as I is always a member of G at problem instantiation.

In the context of recognition, each plan has an associated set of belief-goals

GB. This is the set of belief-goals existing after the action sequence has executed,

one of which will represent the true goal G∗ ∈ GB.

Definition 8. Plan-Space

The plan-space P = {S → G} is a finite5 mapping of all optimal plans from the

current state S ∈ S to all reachable goals in goal-space G. Plans within P may

be of length 0...τ , where τ = �(S)
2

is the radius of S which represents the longest

possible acyclic plan. Zero-length plans indicate that the goal is achieved in S.

The plan-space may alternatively be thought of as a series of paths through

both the state and goal-spaces. However, if plans are allowed to overlap and

5In a STRIPS context with an optimal agent, the path through G should always be finite,
as looping plans would be impossible because the plan will terminate as soon as every required
goal literal has been met by a state transition.
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intersect, a graph structure becomes a more natural method of representation.

Alternatively, Figure 3.4 shows a representation of the plan-space which includes

a representation of the goal-space. Regardless of this, all plans exist in the same

form in the state, goal and plan-spaces, with only the observer’s perception af-

fecting the deterministic or non-deterministic movement through each space.

This section has presented a common representation for goal recognition and

planning, based on the assumption of rational agents which have optimal plans.

The state; goal and plan-spaces were also introduced and detailed, with each

modelling the movement of an agent as it executes its plan. In particular, the

goal-space was described as a means of modelling the fact an agent will execute

an action in order to achieve a subset of the successor state. That is, one of these

subsets is the agent’s intermediate goal. Until now, only intermediate goals have

been considered as hypotheses, however, the true task of goal recognition is to

determine the final goal.

Of course, in order to achieve the final goal, an agent must first achieve n

intermediate goals by executing actions, where n = |P | − 1. The process of

selecting an action to apply is planning. The next section discusses how techniques

for action selection related to planning can be utilised in goal recognition, in order

that the final goal can be deduced.

3.3 Heuristic-Based Goal Recognition

Given a reachable goal G, a rational agent will always find a minimal-length plan

which achieves this (or in the case of an unreachable goal, it will know this is

impossible). As the state-space is a graph, the planning process is one of searching

through this structure to find the shortest path from the initial state to a goal-

state. This is done through application of a heuristic, h, and search algorithm

such as A∗. If the agent is using an admissible heuristic, then estimates are

guaranteed to never exceed the true the distance to the goal.

Determining which action is the optimal choice can be achieved using an

optimal heuristic, denoted h+. In the context of action selection, a heuristic

returns a value h+(G) ∈ Z+ corresponding to the number of further actions

required to achieve the goal. It is possible [121] for the heuristic estimate to be a

real value h(G) ∈ R+, but in a classical-planning model such as that presented,

only integer values are considered.

In planning, heuristics are used to guide search through the state-space. An
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Figure 3.4: An alternative visual representation of the plan and goal-spaces from
the problem described in Section 3.2.2, starting from the initial state. The goal-
space is represented as the perimeter of the polygon, with every reachable goal
represented. The distance from the centre indicates the number of steps required
to achieve the goal. Only optimal plans are included, and are represented as
dashed lines emanating from the centre of the polygon to the specific goal they
achieve. While not explicitly shown, it is possible for there to be multiple in-
stances of the same plan. For example, ZUV and YZUV are both achieved
through plan 〈B,A,C〉. X has no associated plan as it is true in the initial/cur-
rent state.

optimal plan can be derived only if there is always an action which lowers h+(G)

after application. This process is shown in Algorithm 1, wherein each successor

of the current state is expanded, and used to re-test the heuristic. The successor

state which has the lowest heuristic estimate has the action which achieved it

added to the plan (see Figure 3.5).

The type of heuristic used in plan generation indicates the class of planning

which it belongs to. Domain dependent planning uses heuristics which are tailored

to a specific problem or class of problems and provide highly accurate and reliable

results. Alternatively, domain independent heuristics are designed to provide

good results across any problem and can still produce optimal plans. Naturally,
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Algorithm 1 getOptimalPlan(I,G∗)

Scurr := I {Set current state to initial state}
P := 〈〉 {Create empty plan}
while G∗ * Scurr do
hbest := getEstimate(Scurr, G

∗) {Get estimate to goal from current state}
Aapp := getApplicableActions(Scurr) {Get actions applicable in Scurr}
Abest := {} {Actions which give the best successor states}
for all a ∈ Aapp do
Snext := apply(Scurr, a) {Get successor state}
hsucc := getEstimate(Snext, G

∗) {Re-estimate using Snext}
if hsucc < hbest then
Abest := {}
append(Abest, a)
hbest := hsucc

else if hsucc = hbest then
append(Abest, a)

end if
end for
if |abest| = 0 then

return Fail: No optimal plan
end if
achosen := rand(Abest) {Randomly select from best action set}
append(P, achosen)
Scurr := apply(Scurr, achosen)

end while
return P
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Figure 3.5: Using a heuristic to guide search through the state-space. The initial
state is highlighted with a hollow border, and any state containing the goal with
a black border. Successor states are expanded after each action application and
the distance to the goal, G, estimated. Successors which have the lowest estimate
have their associated action chosen, until a successor state which contains G is
found.

it is this latter class which is of relevance in performing domain-independent goal

recognition.

3.3.1 Observing Planning

Now consider how Algorithm 1 operates. After a new state has been entered

(or at initialisation), each applicable action in the state is individually applied

to construct a set of new successor states. The heuristic estimate from each of

these states to the goal is then computed. In an optimal context, the best action

to choose is that which has the lowest heuristic estimate from its corresponding

successor state. Therefore, h+(G) always lowers after each observation until it

becomes equal to zero.

This behaviour, whereby the agent always selects the action that lowers h(G),

is visible to external observers with one caveat — they are unaware of what G

is. Note that while they may not know that G is the agent’s true goal, they

may be aware that G exists and therefore able to compute h(G) themselves,

although this value may be different to that which the agent has computed (due

to differing heuristics). Thus, goal recognition can be modelled as the observation
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of the agent’s movement through G, in order to determine which goal is being

converged upon. This goal or set of goals, will therefore contain the agent’s true

goal.

Definition 9. Heuristic Convergence

For a goal-space Gt and plan P , a heuristic is said to be converging on a goal

G ∈ Gt if h+
t (G) < h+

t−1(G), for all timesteps 1 ≤ t ≤ |P |, where |P | is the

unknown length of the plan. After each observation the size of the goal-space will

be reduced by at least one, such that Gt ⊂ Gt−1, given that there are no actions

with both empty preconditions and effects.

With the model of planning which has been outlined above, goal recognition

becomes a process of observing an agent moving through a goal-space and de-

ducing a set of final belief-goals, one of which represents their goal. Heuristics —

possibly the same as the agent is using6 — can be used to get the estimate to each

member of the goal-space, and eliminate any goals for which h+
t (G) ≥ h+

t−1(G).

This is shown in Algorithm 2.

While heuristic convergence in planning is concerned with only the work re-

quired to achieve the goal from the current state, in recognition the work, W (G),

which has been expended in achieving the goal is of greater interest. Given that

there is no knowledge of the agent’s true goal in the goal-space, a recogniser must

calculate the heuristic estimate to all goals G ∈ G. For an optimal heuristic and

rational agent, the estimate h+(G) will decrease monotonically until plan termi-

nation if G = G∗. After each observation, a new estimate of the work remaining

to each goal in the goal-space is computed and compared against the estimate at

the previous timestep. If the application of the observed action lowers the heuris-

tic estimate (or achieves) the goal, it is said to have has contributed towards the

goal.

The difference in the heuristic value at time t = 0 and the current time t = |O|
is therefore an estimate of the work expended on achieving goal G (Equation 3.1).

As the goal-space is guaranteed to reduce after each observation (Definition 9),

all goals G ∈ Gt will have the same value for W (G). Equation 3.1 demonstrates

this. Any goals which are no longer reachable after an observation are said to

have had no work expended upon them — as by definition the goal cannot be

one of these.

6The topic of agent and recogniser using the same heuristic is evaluated in Chapter 5.
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Wh+(G|Ot) =

{
h+

0 (G)− h+
t (G) if G is reachable

0 if G is unreachable
(3.1)

While all members of the goal-space at any timestep will have the same value

of work associated with them, it is only the belief-goals which can be considered

as candidates for a hypothesis.

To illustrate this, recall the example outlined in Figure 3.3. If this is now re-

visited using a heuristic-based approach to the elimination of goals, the size of the

final set of belief-goals can be halved to {UV ,YUV ,ZUV ,YZUV }. The reason

for this reduction is that all other goals can be ignored due to there being shorter

plans which can achieve them. Table 3.1 shows how heuristic estimates can be

used to eliminate members of the goal-space whose distance has not lowered after

the previous observation.

G h(G) h(G|A) h(G|B) h(G|C)

X 0 - - -
XU 1 - - -
Y 1 0 - -
Y Z 1 0 - -
Y ZU 2 1 0 -
Y U 2 1 0 -
Y V 2 1 - -
Y UV 3 2 1 0
Y ZV 2 1 - -
Y ZUV 3 2 1 0
Z 1 0 - -
ZU 2 1 0 -
ZV 2 1 - -
ZUV 3 2 1 0
U 1 1 0 -
UV 3 2 1 0
V 2 1 - -

Table 3.1: Heuristic convergence on a subset of G for the plan P = 〈A,B,C〉.
All goals which cannot be achieved by an optimal plan after each observation are
denoted as ‘-’ and can be eliminated from G. Note that X cannot appear with
any goal other than U , as it not reachable if the first observation is anything other
than B.
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Algorithm 2 getNewGoalSpace(Gt, St, Ot)

Gt+1 := 〈〉 {Create successor goal-space}
St+1 := apply(St, Ot) {Get successor state}
for all G ∈ Gt do
ht(G) := getEstimate(St, G)
ht+1(G) := getEstimate(St+1, G)
if ht+1(G) < ht(G) then
add(Gt+1, G) {If estimate has reduced, add to new goal-space}

end if
end for
return Gt+1

Historical Context

By using optimal heuristic estimates to minimise the set of belief-goals, the model

presented becomes equivalent to Hong’s work on determining the goal of an agent

a posteriori [89]. Hong accomplishes this by tracking the number of observed

actions which have contributed towards achieving the goal. An action contributes

to a goal if it achieves the goal, or it is part of a series of causal-links which connect

a previously-achieved literal to the goal.

The model outlined above and Hong’s model can be considered equivalent only

if the agent is rational. Under such assumptions, every action will be considered

a causal-link in achieving the true goal. However, instead of tracking such links

between actions, an optimal heuristic is used to achieve the same result. Of

course, Hong can achieve this without such assumptions of optimality.

The assumption of rational agents also draws parallels with Kautz and Allen’s

library-based model [98]. Here recognition is classed as minimising the set of top-

level goals which are consistent with the observed plan. Like Kautz and Allen’s

model, any belief-goals which are consistent are assumed to be equally probable,

something which is rarely the case.

While there are similarities with Hong’s work and the use of optimal heuristics

in the previous section, Hong allows consistent goals to be ranked by the number

of observed actions which have contributed towards it becoming achieved (that

is, the number of causal-links the goal has). This allows the assumption of ratio-

nality to be removed, and introduces ordering of hypotheses. Ideally, the model

presented above should also have the ability to rank hypotheses.

Ramı́rez and Geffner adopt a similar model in their earlier work [145], whereby

49



Chapter 3. A New Model of Plan Recognition

the agent is again assumed to be rational. This consistency-based model allows

them to produce the same output as Hong’s work, albeit they use this in an online

context.

The assumption that the agent being observed will be rational, and any heuris-

tic used to evaluate the goal-space will be optimal, has been done to simplify the

presentation of the initial model components. It has intentionally restricted any

predictive capabilities to only allow hypotheses for the previous observation. Such

hypotheses are equal to the current set of belief-goals which maximise h+(G), with

no way to distinguish between goals of equal score. These issues are addressed in

the following section by adapting the model to incorporate probabilistic reasoning

with suboptimal agents.

3.4 Incorporating Probabilistic Inference

The model presented in the previous section, while potentially applicable, poses

two key problems to deployment. The first is that optimality in agent behaviour

rarely exists in the real-world. Agents — whether they be human or virtual —

may derive an optimal plan, but it is far likelier that they will execute a subop-

timal plan which achieves their goal in near-optimal time. The second is that all

members of the set of consistent goals are equally likely. It is impossible to select

one as being the most probable, despite most real-world goals demonstrating a

prior probability of being the true goal. In addition to these, the model is not

predictive — it can only produce hypotheses in an a posteriori context. As this

section will demonstrate, all of these issues can be at least partially resolved if

the model is adapted to become probabilistic.

The first step in this conversion is to place a probability distribution across

the goal-space.

Definition 10. Probabilistic Goal-Space

A probabilistic goal-space GP is a standard goal-space G with associated prob-

ability distribution ϑ in which every goal G ∈ G maps to a probability P(G) →
ϑ(G) ∈ [0 : 1].

Before recognition begins, the goal-space can have an initial probability distri-

bution imposed upon it. These prior probabilities can come from domain knowl-

edge or can be computed at runtime using domain analysis. If no information

about the domain can be extracted, a uniform distribution is applied such that

P(G) = 1
|G| , ∀G ∈ G. For now, a uniform distribution will be assumed with
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non-uniform distributions considered later in Chapter 4.

In this probabilistic representation, the assumption that agents are rational

is relaxed, as this would otherwise be identical to the original, non-probabilistic

version. Instead, the agent is assumed to exhibit bounded rationality, in which

the agent actively pursues the goal but may unintentionally execute unnecessary

or unhelpful actions. The assumption that an optimal heuristic is available to the

observer for measuring the distance to goals will be retained. This assumption

will itself be relaxed in Chapter 4.

Definition 11. Bounded Rationality

An agent exhibits bounded rationality if they produce a plan P = 〈O1...On〉 for

goal, G∗, in which the majority of plan steps cause the goal to become heuristically

closer. The set of positive observations, O+, contains any action Oi for which

hn(G∗) < hi(G
∗) ≤ hi−1(G∗), for plan steps i = {1...n− 1}. This must be greater

than the set of negative observations O− = P \O+, for which hi(G
∗) > hi−1(G∗).

While the agent may potentially have an optimal plan, it is more likely the

plan will be suboptimal but that, crucially, it will still achieve the goal without

deviating wildly from the optimal plan. Actions which do not alter the distance

to the goal are allowed, as are actions which increase the distance to G∗. These

negative actions can be viewed as poorly-informed decisions made by the agent,

and are tolerable, provided that at the end of observation, |A+| > |A−|. This is

similar to Hong’s premise of goal consistency when explaining the purpose of a

completed plan [89].

Occasionally, previous work in recognition has allowed for suboptimal agents,

albeit in a weaker form. In particular, Goldman et al. [70] allow agents to

perform actions “for the sake of it”. This translates to agents being permitted

actions which have no effect on the achievement of a goal. For instance, if all

goals are related to the movement between locations, an observation in which the

agent reads a book will be of no consequence in reaching their destination7. Such

actions are equivalent to the heuristic estimate for a goal remaining the same

over n observations, ht(G) = ht+1(G) = ... = ht+n(G). However, if the agent does

indeed demonstrate bounded rationality, an observation which does not reduce

the estimate cannot be classed as irrelevant, as they may simply have taken a

poor decision.

7It will be assumed that the agent is not referring to a map!
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3.4.1 Heuristic Estimates as a Metric of Work Performed

Definition 4 describes the goal-space as a monotonically decreasing graph which

is modified after each observation. Now that the agent is no longer assumed to

be rational, the goal-space will only decrease in size if a goal is deemed to be

unreachable. For instance, in the running example (Figure 3.1a, page 38), after

action A is observed, fact X can never be re-achieved. This causes all goals which

contain X to also become unreachable. All reachable goals cannot be pruned as

it is always possible for a goal to be achieved using a suboptimal plan (which

covers looping, potentially infinite plans).

Despite the goal-space now being constant (aside from any pruning of un-

reachable goals), the set of belief-goals at time t will remain as before, as these

merely explain the reason for transitioning between states. The definition of work

performed by a plan being equal to the difference between the initial and current

estimates can also be retained. However, in this form values for work can be in

the range of natural numbers W (G) ∈ N, while it would be preferable to have a

normalised value in the new probabilistic model.

To achieve this, Equation 3.1 can be modified to derive the maximum likelihood

(ML) of the observations seen thus far contributing towards a specified goal. This

is denoted as the number of observations which have resulted in the goal becoming

nearer, versus the total number of observations. A goal is classed as becoming

nearer at time t if ht(G) < ht−1(G). Conversely, it is classed as having become

further away if ht(G) > ht−1(G). Equation 3.2 outlines this new definition.

WML(G|Ot) =

∑t
i=1

{
1 if hi(G) < hi−1(G) and i > 0,

0 otherwise

|O|
(3.2)

Equation 3.2, in conjunction with the now potentially suboptimal agent, pro-

vides both a means of ranking members of the current belief-goals and a basic

approach to predicting the final goal. Table 3.2 shows the values of WML associ-

ated with the running example. If G∗ is any goal containing U and V , the plan

〈A,B,C〉 is optimal as WML = 1. However, if the goal is Y V this previous plan

will be suboptimal, as executing action B will have no effect on the heuristic

estimate for this goal. Note that after each observation, all remaining reachable

facts must be still considered as possible goal candidates, as the length of the

agent’s plan is unknown. For instance, while goals containing literals U and V
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G WML(G|A) WML(G|B) WML(G|C)

X 0 0 0
XU 0 0 0
Y 1 0 0
Y Z 1 0 0
Y ZU 1 1 0
Y U 1 1 0
Y V 1 0.5 0.667
Y UV 1 1 1
Y ZV 1 0.5 0.667
Y ZUV 1 1 1
Z 1 0 0
ZU 1 1 0
ZV 1 0.5 0.667
ZUV 1 1 1
U 0 0 0
UV 1 1 1
V 1 0.5 0.667

Table 3.2: Values of work performed after each observation. In the first column,
the true goal is highlighted in bold. Entries in other columns which are bold have
a zero-value and are no longer reachable, in accordance with Equation 3.1.

have maximum probability, other goals with lesser probabilities cannot be elimi-

nated as there may be a further series of observations which are helpful towards

their achievement.

With this said, using the ML score as a sole means of estimating the final

goal is acceptable only under the condition that all goals are considered equally-

probable at problem initialisation. As this is unlikely to be the case, the ML score

can be used instead in the computation of a Bayesian posterior probability. This

allows the prior probability of each goal to be used in addition to the observed

evidence. Note that for now these prior probabilities are assumed to be provided

by an external source. Chapter 4 describes an automated means of extracting

these on a relaxed form of the complete model.

3.4.2 Predicting the Final Goal Using Bayesian Inference

Bayesian inference has a long history in recognition [1, 30, 38, 50, 91, 93], and is

a natural choice for determining whether observed evidence matches up with a

hypothesis (in this case, a member of the goal-space).
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After each observation, O, every member of GP has its probability updated

according to the standard Bayesian inference formula (see Equation 3.3), with

the work expended on the goal, WML, offering a convenient likelihood function

(Equation 3.4). This results in a posterior probability, P(G|O), which indicates

the prospect of G being the goal given the plan seen thus far and any prior

probability of it being the goal. In this form the denominator P(O) captures all

goals which are mutually-exclusive with G, rather than the simple value of WML

which only implicitly captures this. In the complete goal-space model presented

in this chapter this property is somewhat moot, however it will be invaluable once

the relaxed model is introduced in Chapter 4.

P(G|O) =
P(G)P(O|G)

P(O)
=

P(G)P(O|G)∑
P(Gi)P(O|Gi)

∀Gi ∈ G (3.3)

P(O|G) = W (G|O) (3.4)

If the example outlined previously is now revisited using Bayesian probability,

Table 3.3 is derived. If a uniform initial probability distribution is used, the same

set of goals (those containing UV ) will be selected for the hypothesis set. While

it is good to know that the original results have not been destroyed by the move

to Bayesian inference, there is still no way to distinguish between results with

the same score. To do this, a non-uniform initial probability distribution must be

applied. Table 3.4 shows the difference in results if an initial distribution which

favours goals Y ZV and Y ZUV is used. Both goals remain the most probable

after observation A, but after the second observation, Y ZUV becomes the most

probable, as fact U has been added by the observation.

The assumption of having access to a good initial distribution is perhaps too

convenient for the running example, given that the agent is indeed trying to reach

Y ZUV . Fortunately, Bayesian probability allows the model to accommodate a

poor or näıve initial probability distribution being used instead.

For example, consider the example presented in Table 3.5, wherein goal Z

has been incorrectly favoured in the initial distribution. As observations are

processed, the distribution changes to favour those goals which are supported by

the current evidence.

Encountering an uninformative initial probability distribution is analogous to

monitoring for plan and goal abandonment. In both cases prior evidence suggests

that a particular goal is being pursued, followed by new evidence which no longer
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G P (G) P (G|A) P (G|B) P (G|C)

X 0.059 0 0 0
XU 0.059 0 0 0
Y 0.059 0.067 0 0
Y Z 0.059 0.067 0 0
Y ZU 0.059 0.067 0.1 0
Y U 0.059 0.067 0.1 0
Y V 0.059 0.067 0.05 0.063
Y UV 0.059 0.067 0.1 0.188
Y ZV 0.059 0.067 0.05 0.063
Y ZUV 0.059 0.067 0.1 0.188
Z 0.059 0.067 0 0
ZU 0.059 0.067 0.1 0
ZV 0.059 0.067 0.05 0.063
ZUV 0.059 0.067 0.1 0.188
U 0.059 0.067 0.1 0
UV 0.059 0.067 0.1 0.188
V 0.059 0.067 0.05 0.063

Table 3.3: Probabilities for the example plan using Bayesian inference with a
uniform initial probability distribution and optimal heuristic. Items in bold are
the maximum value for their respective column.

supports the previous hypothesis. For instance, goal Z is supported by the first

observation, but not by the remainder of the plan.

Section 2.4.4 discussed Geib and Goldman’s work on goal abandonment [61]

as one of explicitly measuring the probability of an action in a plan never be-

ing seen, given that the action which is known to precede it is successfully ob-

served. However, in reality this model is targeted at plan abandonment only —

as the abandonment of a goal is tied directly to the plan which achieves it. The

heuristic-based approach presented exists at a lower level than this, where plans

are unknown. That is, Geib and Goldman’s representation of the distribution

across G is hidden beneath the distribution across the plan-space, P.

The running example is sufficient to demonstrate the basic principles of the

model presented, but its simplicity masks a subtler problem which is unique to

non-library-based recognition. Consider a hypothesis Hyp, representing the cur-

rent belief of the agent’s terminal goal. As the model is now probabilistic, it

is natural for any hypothesis to be the goal which has the maximum probabil-
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G P (G) P (G|A) P (G|B) P (G|C)

X 0.013 0 0 0
XU 0.013 0 0 0
Y 0.013 0.014 0 0
Y Z 0.013 0.014 0 0
Y ZU 0.013 0.014 0.019 0
Y U 0.013 0.014 0.019 0
Y V 0.013 0.014 0.009 0.008
Y UV 0.013 0.014 0.019 0.023
Y ZV 0.4 0.411 0.280 0.227
Y ZUV 0.4 0.411 0.561 0.682
Z 0.013 0.014 0 0
ZU 0.013 0.014 0.019 0
ZV 0.013 0.014 0.009 0.008
ZUV 0.013 0.014 0.019 0.023
U 0.013 0.014 0.019 0
UV 0.013 0.014 0.019 0.023
V 0.013 0.014 0.009 0.008

Table 3.4: Probabilities for the example plan using Bayesian inference with a
favourable initial probability distribution and optimal heuristic. Items in bold
are the maximum value for their respective column.

ity Hyp = arg max P(G), G ∈ GP . However, a hypothesis produced using this

principle ignores a critical component which is implicitly present in library-based

recognition — the length of the agent’s plan.

3.4.3 Hypotheses and Estimating Plan Length

In planning, heuristic convergence upon the goal (that is, h(G∗) = 0) indicates

that the search process can now stop. In library-free goal recognition where there

is no knowledge of the length of the agent’s plan, it is impossible to determine

if the current state which follows any observation is an intermediate or terminal

state (and hence, whether it contains the goal)8.

For instance, in Figure 3.3 (page 41), if the agent’s complete plan was P =

〈A,B〉 for the goal G∗ = {Y ,Z ,U }, there is no way to know that {Y ,Z ,U ,V }
should be eliminated from the potential set of goals. In this case (and given equal

initial probabilities), the heuristic has converged by the same amount for both

8Unless the state which has been entered is a dead-end, where |St| = |Gt| = 1, meaning it is
impossible to transition out of the state.
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G P (G) P (G|A) P (G|B) P (G|C)

X 0.006 0 0 0
XU 0.006 0 0 0
Y 0.006 0.006 0 0
Y Z 0.006 0.006 0 0
Y ZU 0.006 0.006 0.1 0
Y U 0.006 0.006 0.1 0
Y V 0.006 0.006 0.05 0.063
Y UV 0.006 0.006 0.1 0.188
Y ZV 0.006 0.006 0.05 0.063
Y ZUV 0.006 0.006 0.1 0.188
Z 0.9 0.911 0 0
ZU 0.006 0.006 0.1 0
ZV 0.006 0.006 0.05 0.063
ZUV 0.006 0.006 0.1 0.188
U 0.006 0.006 0.1 0
UV 0.006 0.006 0.1 0.188
V 0.006 0.006 0.05 0.063

Table 3.5: Bayesian probabilities for the example plan when provided with a poor
initial probability distribution. Goals which are no longer reachable are essentially
pruned from the goal-space by having a zero value for W (G) (see Equation 3.1).

goals. This means that at any point during the recognition process, the recogniser

cannot be sure if the previous observation achieved the agent’s goal, or whether

there will be an unknown number of further observations, ε ∈ Z+, which can be

used to further refine the set of hypotheses.

To state this in a more concise form, the challenge is no longer to select

only the goal which is the most probable given the observed plan, but to further

refine this set by estimating which goals are achievable given the unseen future

observations. This is equivalent to a probability distribution across the plan-

space from the current state, where probabilities represent the likelihood of each

plan being the agent’s true plan. In turn, this will cause a further distribution

across the goal-space, derived from the associated plan. However, instead of there

being only a single goal-space distribution representing the final goal, it is possible

to construct a further distribution for each unseen observation at time b, where

1 ≤ b ≤ ε ≤ τ , and τ is the radius of the state-space (see Definition 8). As such,

hypotheses can be bounded by placing a value on the estimated number of steps

remaining, which limits the size of the goal and plan-spaces.
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3.4.4 Bounded Goal Hypotheses

In an environment where the agent is rational, and provided that there have

been fewer than τ actions observed so far, the number of observations remaining

cannot be determined, but will have an upper limit of τ − |P |. In environments

where agents merely demonstrate bounded rationality, knowledge of τ would be

of limited use, as the agent’s plan can potentially be suboptimal or looping.

Here, an approximation of this, τmax, can be constructed by taking the maximum

estimate to any goal in the goal-space, using an optimal heuristic. In other words,

the agent is assumed to be optimal from “now” until the end of observation.

Alternative methods of approximating this include purely analytical means [99,

116]; by utilising a plan-library [20], or constructing a model of agent behaviour

[1].

τmax = arg max
G

h+(G) ∀G ∈ G (3.5)

With a value assigned to τ , it becomes possible to produce bounded hypothe-

ses. These are goals which the agent will have to achieve prior-to the final goal.

In other words, while the plan P which is being executed will be to achieve some

final goal in G, there will be |P | − 1 goals which must be achieved prior to this

that are mutually-exclusive with G∗. The agent’s bounded goal associated with

each of these timesteps is the difference between the state at time t and preceding

state St \ St−1. Alternatively, the bounded goal at time t is equal to the effects

of observation Ot−1.

Definition 12. Bounded Goal Hypothesis

A bounded goal hypothesis, Hypbc, is a goal G ∈ G, G 6= G∗ created at time c on

the premise that G = Sc+b \ Sc is the goal to be achieved at time c + b, where

0 ≤ c < |P | − 1 and 1 ≤ b ≤ |P |.

Bounded hypotheses differ from final goal hypotheses in that they represent

only the individual facts in state Sc+b which are required to change from state Sc,

in order to reach state Sc+b+1, or achieve the goal in Sc+b. Therefore, while inter-

mediate hypotheses can be any member of the goal-space, bounded hypotheses

are a subset of this. As the observer has access to an optimal heuristic, it is triv-

ial to derive all possible bounded hypotheses for all goals in G, when combined

with the plan-space P. Chapter 4 explores how such hypotheses can be used in

practice.
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This chapter has thus far presented a model of goal recognition based upon

the use of heuristics in modelling the agent’s behaviour. Motivation for this has

stemmed from the belief that a plan-library should not be required in order for

recognition to take place. Yet, it would be folly to ignore such resources if they

are available. It is not in dispute that libraries offer a rich source of information

about agents, plans, action orderings and goals. The next section demonstrates

how such structure can be integrated into the model in order that goal recognition

can be improved.

3.5 Library Integration

The previous description of the goal-space offers a complete model of all goals

which can be achieved within the problem. If a library, Γ, is available, G can be

modified in one of two ways. The first is that the recogniser can simply replace

the standard goal-space with the library goal-space, GΓ. This will likely be a

highly refined subset of the original goal-space, from which any extraneous goals

have been removed. Secondly, the library may also offer information on the prior

probabilities of goals. Under the assumption that the agent’s goal is indeed part

of GΓ, the resulting goal-space is potentially minimal and contains no irrelevant

entries. While this is ideal, the constraint that the agent’s goal must be a part of

the library is too strong for real-world deployment, or for scaling beyond trivial

goal-spaces. A second, better approach, is to integrate the information contained

within the library, with the standard goal and plan-spaces.

As G should be complete, all goals within GΓ should already be present.

Therefore, of greater interest is the initial probability distribution across GΓ.

This, as with the contents of the library, will most likely have been optimised

using prior observation of the domain or expert knowledge.

Indeed, the presence of a plan-library can even negate the requirement of a

heuristic. For instance, if all plans are known, their length can be used as a lookup

table in place of a heuristic. Of course, as such completeness is unlikely and has

been argued against throughout this chapter, it would be better to view this

lookup table as a more informed heuristic. The next chapter shall demonstrate

that the optimal heuristic which has been discussed in this chapter is rarely a

possibility in the real-world.
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3.6 Model Features and Historical Context

3.6.1 Library-Free Recognition

The model detailed above shows how heuristics can be applied to goal recognition

by representing the problem in a planning formalism. The model is complete in

that all possible goals are considered a member of the goal-space. It is sound

as any hypothesis produced should be a valid goal candidate at the time of hy-

pothesis generation. Should any goal become unreachable during observation, it

cannot be put forward as a hypothesis candidate.

The speed and scalability of the complete model given is dictated by the size

of the goal-space. The runtime is linked to the complexity of the underlying

heuristic used in observation, which will need to be called (at most) |G| times,

per observation. The following chapter will look at how this truly manifests itself

in the relaxed model.

By incorporating existing plan libraries, the model is somewhat backwards-

compatible with prior research. Access to an existing library would most likely

make recognition more accurate, and potentially reduce runtimes.

3.6.2 Relationship with Prior Art

Aside from the primary features of the model given above, many of the require-

ments put forth in previous PR literature are also covered. In particular, Gold-

man, Geib and Miller (GG&M) [70] provide extensive criteria for the recognition

system to adhere to. This section shall briefly enumerate the most important of

these and how the heuristic-based model accommodates them.

• Negative Evidence — The model uses heuristics to detect those fact-

s/goals which have become “closer” after an observation, and assigns a

higher probability weighting to these literals. Conversely, if the heuristic

indicates that an observation has not assisted in making a goal become

closer, the associated goal-probability is reduced. The latter can be viewed

as a form of negative evidence, which GG&M put forward as a means of de-

tecting both missed observations and goal abandonment [60, 61, 70]. While

GG&M model abandonment as an additional computation which is linked

to the probability of seeing observation Ok+1 given that Ok has been ob-

served, the heuristic-based model would naturally degrade the associated

probability over time. That is, there is no explicit assumption of causality
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between successive observations, but that this is implicitly modelled by the

heuristic estimate not reducing (or increasing) over time. The weaker case

of an agent executing an action “for the sake of it” is also covered by the

heuristic-based mode, as this simply translates to the heuristic estimate for

all goals remaining the same across observations.

• Pending Set — Another of GG&M’s model features is to include the state

of the world, rather than relying purely upon observations. This allows a

pending set of applicable actions to be available at any time during recogni-

tion, with the next observation coming from this set9. The heuristic-based

model also incorporates the notion of state and therefore of the pending

set.

• Partially-ordered/Interleaved Plans — In library-based recognition,

partial-orderings between observations and multiple concurrent plans must

be explicitly accounted for during modelling. In the heuristic-based model

(given that the goal-space is complete), these orderings are irrelevant. Pro-

vided that each concurrent plan does not interact with the heuristic es-

timates for each respective goal (e.g. one lowering the distance to a goal,

whilst the other increases it), the associated probabilities will be unaffected.

If the observer has an optimal heuristic, partial-ordering of actions is also

irrelevant, as the estimate will be accurate regardless of when the action is

observed.

• Plan/Goal Abandonment — Detecting whether an agent has abandoned

their goal has been largely ignored by the PR community. It is assumed

that the agent will either always complete their original plan [70, 97], or that

the “abandoning” of the goal is actually incorporated in the original plan

[5]. Only Geib and Goldman have tackled this issue [61], by incorporating

additional logic into their existing library-based model of PR [70].

The heuristic-based model of recognition implicitly allows modelling of

abandoned goals, by treating the original and subsequent plans as a form of

suboptimality on the part of the agent. While Geib and Goldman must con-

sider whether the actions observed have a match within the set of possible

plans being pursued, the heuristic-based model naturally shifts probabilistic

weights towards the goals which are currently being pursued. For example,

9Only guaranteed if the world is fully-observable.
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once the agent has switched their goal (prior to achievement), the heuristic

estimate to the new goal will begin to decrease, while the estimate to the old

goal will increase10, resulting in the probability of the new goal increasing

over time.

Outwith the work of GG&M, others have proposed specific types of goals,

which will be treated differently by executing agents than a typical “final” goal

achieved in the last state. Motivated by safety in robotic/assistive plan execution,

Weld and Etzioni proposed dont-disturb and restore goals [160]. In the former

the goal should never be achieved (such as a software agent deleting files), while

the latter indicates that the goal which is true in the initial state must also be

true at the end of plan execution, as it may have been negated during execution.

Bacchus and Kabanza later incorporated these goal types in their work [7],

renaming them as safety and maintenance goals. The model presented herein

allows for both of these goal types to be recognised, albeit without formally clas-

sifying them. Bacchus and Kabanza’s terminology is used as they also define two

further goal groups which are of relevance. Note that the recogniser is unaware

of these definitions, and treats all goals equally.

• Classical Goals — These are simply goals which must be achieved in the

final state such as those described in the previous sections. Their previous

values during plan execution are irrelevant as long as the fact is achieved

at plan termination.

• Safety Goals — In a domain where the agent is assumed to demonstrate

bounded rationality, safety goals will have fixed probabilities throughout

observation. For every goal in G which contains a safety goal Gs ⊂ G ∈ G,

the associated posterior probability will be equal to P(G \ Gs|Ot). That

is, while achievement of the safety goal is not assisted by Ot, it cannot be

ruled out as being negated in the future (as the fact this is a safety goal is

unknown to the recogniser), meaning it and any goals which it forms a part

of must remain valid goal candidates.

• Maintenance Goals — Once negated, these goals are treated in the same

manner as classical goals, in that any movement by the agent towards their

achievement will be reflected in the associated posterior probability.

10Note that this is will only be the case once the estimate to the new goal has reduced by a
greater amount than the original goal.
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• Timing Deadlines — Weld and Etzioni define these goals to be those

which must be true by a certain time, k, after plan execution begins. Here,

these would be treated as classical goals which are achieved early in the

plan (most likely prior to termination). While timed deadlines could be

viewed as a form of bounded goal as described in Section 3.4.4, the explicit

detection of achievement times these is not considered in this work.

3.7 Chapter Summary

This chapter has presented a new model of recognition as a process of estimating

an agent’s goals based upon heuristic estimates, in a planning-based problem

representation. The features of the heuristic-based model have been enumerated

in detail, and their relationship to previous models of recognition explained.

The original model given in Section 3.3, which is comparable with previ-

ous work [89, 97, 145], was relaxed to accommodate agents which demonstrated

bounded rationality, which moved the model to a probabilistic form in line with

previous beliefs on how the PR problem must be represented [38].

While the agent was no longer assumed to be rational, the assumption that the

observer had access to an optimal heuristic was retained. The following chapter

shall instead look at how the model can be relaxed to accommodate suboptimal

heuristics, thus allowing tractable usage of any derived system.
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Chapter 4

IGRAPH — A Library-Free

Implementation of Goal

Recognition

4.1 Introduction

Chapter 3 described in detail a model of goal recognition which uses heuristics

to eliminate parts of the goal-space in order to determine and predict the agent’s

goal. Any implementation of this model would require a full enumeration of the

state, goal and plan-spaces — something which is infeasible for all but the simplest

of problems. Section 3.4 relaxed the assumption of the agent being rational, in

order that suboptimal plans could be considered. However, the further assump-

tion of an optimal heuristic, h+, being available to the observer was retained.

Unfortunately, this assumption is itself intractable in the real-world, with the

derivation of any optimal heuristic having the same time and space complexity

as the underlying problem [32].

Due to this intractability, any implementation of the model must be relaxed

to make the problem solvable in reasonable time. As a comparison, planning is

PSPACE-complete in its most expressive form, but simple relaxations [17] such as

the delete-list relaxation [28, 88] allow the problem to become at most NP-hard

for optimal heuristics [32]. If suboptimal heuristics are used instead, the prob-

lem can attain polynomial complexity and becomes tractable. This chapter will

demonstrate that the same principles can be applied in the context of recognition.
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4.1.1 Overview

This chapter introduces several relaxations to the model presented in Chapter 3,

which enable recognition to become tractable on unseen domains. The implemen-

tation, IGRAPH (Intermediate Goal Recognition with A Planning Heuristic),

successfully performs goal recognition on a variety of problems. Unlike other goal

recognisers, IGRAPH is intended to be rapidly deployable. That is, it should be

possible for a non-expert user to perform recognition with only a basic description

of the domain. Knowledge of the agent’s most probable goals and motivations

cannot be assumed, meaning no prior knowledge can be encoded (such as prior

probabilities).

To achieve this, a standard and widely accepted input language has been used

(PDDL 2.1 [55]), which also allows existing domains to be used in evaluation.

Section 4.2.1 provides an overview of the PDDL language, and also introduces

a second formalism, SAS+, which can be derived from and encodes a different

(but ultimately equivalent) representation of the PDDL problem. IGRAPH

combines these representations to allow techniques from both formalisms to be

applied. Both representations are defined along with any relevant associated data

structures. Additionally, this section also describes a technique for constructing

an explicit, graph-based representation of the observed plan, something which is

normally taken for granted in plan/goal recognition literature, where plan libraries

are available.

Section 4.3 introduces several relaxations to the existing model which enable

tractable goal recognition to be performed. The primary relaxation presented

is to allow suboptimal heuristic estimates for members of the goal-space. This

incurs further relaxations on aspects of the new model, such as the goal-space

and reachable goals. Section 4.3.2 discusses a method for extracting conjunctive

hypotheses from these newly relaxed goal-spaces, without loss of completeness.

Several heuristics are introduced in Section 4.3.3 which allow a trade-off between

accuracy and computation time, while Sections 4.3.5 and 4.3.6 describe how the

Bayesian likelihood function can be modified from a maximum-likelihood ap-

proach to one more suited to a relaxed model. Aspects of the complete model

which are implicitly present in the relaxed model are given in Section 4.3.7 and

4.3.8, followed by discussion of how goal abandonment can be detected in Section

4.3.9.

Work on the automatic derivation of prior probabilities using only domain

65



Chapter 4. IGRAPH — A Library-Free Implementation of Goal Recognition

structure is presented in Section 4.4, before the features of the relaxed model are

summarised in Section 4.5.

4.2 Cross Domain Goal Recognition Using A

Standardised Input Formalism

As Chapter 2 explained, planning and recognition share many similarities in their

respective representations. Section 3.2 presented a formal base model of this

crossover and noted that the difference between performing planning and recog-

nition in this model is merely the utilisation of the heuristic. Thus, both planners

and recognisers can be constructed from the same code-base and data-structures.

This section demonstrates how the existing and widely adopted planning input

formalism can be applied to recognition problems.

4.2.1 Utilising An Existing Planning-Based Representa-

tion

The use of first-order, propositional logic to represent problem components such

as state and action effects is common throughout both the planning [23, 27, 49]

and recognition literature [60, 89, 97]. IGRAPH is no exception to this, but

unlike other work in recognition1 it uses a standardised input language in the

form of PDDL [55, 120]. In its simplest form, recent versions of PDDL closely

resemble the STRIPS formalism [49] with no metric or temporal aspects in the

model (also known as PDDL level 1). While these features are supported by

modern day PDDL [47, 55, 67], IGRAPH is based solely upon the classical

representation (as defined in Section 3.2). As such IGRAPH has the ability to

perform recognition on all existing classical competition and benchmark domains

which adhere to this formalism.

In addition to the PDDL representation which defines the problem being

tackled, a second planning formalism can be derived using a suite of translation

tools. This work [78], transforms the initial PDDL problem into a SAS+ formalism

[9], which extracts further domain knowledge.

PDDL

In PDDL, problems are split into two separate parts, which when combined form

a planning-task, π, and the associated state-space from which the planning task

1With the notable exception of Ramı́rez and Geffner [145, 146, 147] who also use PDDL as
an input language.
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can be solved. The domain file contains a formal definition of object types,

predicate and action templates and is similar to that used in previous recognition

literature [18, 38, 109], where these would be referred to as schema. In planning,

a schema is referred to as a lifted representation. It is this latter term which will

be used for the remainder of this chapter.

The second input — the problem file — details a set of objects that exist in

the world along with the initial and goal states. Each object has an associated

type, and all facts in the initial and goal states must be grounded. A grounded

fact is simply one in which all parameters have been assigned an object. Once

parsed, these two files are combined to create a grounded problem which contains

the initial state and the grounded fact and action sets. In the case of IGRAPH,

the goal section is naturally ignored or not present in the problem file.

During the grounding process, invalid actions and facts can be created such

as (on crate1 crate1), or (drive london london). These unreachable facts

and actions can cause recognition difficulties in the form of invalid hypotheses.

For example, a conjunctive hypothesis of the form (and (on crate1 crate1)

(on crate1 crate2)) is partially correct but unreachable by the agent.

The prospect of invalid and irrelevant facts being present in the recognition

process is something which is often overlooked or ignored by previous work. Im-

plementations which use a plan-library often follow Kautz and Allen’s assump-

tions that the library will be complete [97], and that soundness is implied by all

plans being legal and relevant. Others such as Lesh and Etzioni [109, 111, 112]

make it explicit that there must be no possibility of illegal plans being present in

the library, or recognition will fail.

If a plan-library is indeed used, this assumption is somewhat tractable, pro-

vided that the source of the plans contained therein is itself sound2. However,

once the library is removed as in this work, valid goals must be derived from the

domain description alone. This is problematic due to the grounding process hav-

ing no knowledge that (on crate1 crate2) is valid, while (on crate1 crate1)

is not, as both fit the required type constraints of the “on” predicate.

There are several methods for trying to resolve this issue, which vary the

degree to which unreachable facts are filtered out versus analysis time. In this

work, the output of Helmert’s PDDL-to-SAS+ translator is used as the source of

reachable facts [78].

2Whether the source of plans be from human or machine is irrelevant, as long as their validity
is provable.
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The grounded problem generated from a PDDL representation is extremely

uninformative in its initial form. No domain information is extracted or encoded

in the input files, meaning any further data must be extracted through domain

analysis. For example, mutually-exclusive facts are unknown and must be derived

from the ground problem (although this is not a necessary step).

Of course, PDDL is merely one possible implementation of the model de-

scribed in Chapter 3, albeit the most similar. A second formalism, SAS+ [9], can

encode the same information in a differing format. Recent work by Helmert [78]

supports the translation of traditional PDDL problems into the SAS+ formalism,

and further, detects several useful problem features using domain analysis, which

can be applied in the context of goal recognition.

SAS+

The translation of a PDDL problem into a SAS+ representation analyses the

propositions and actions of the domain and problem file and converts them from

first-order logic predicates into a set of variables V = {v1...vn}. Each variable

represents a single object3 specified in the problem file or derived from the do-

main description. The domain, Dv, of each variable, v ∈ V , represents a finite

set of possible values equivalent to the set of facts which contain v as a pa-

rameter, or encapsulate the behaviour of an implicit variable. For instance, the

PDDL representation may encode the individual facts (at driver location1),

(driving driver truck), and (at driver location2), while SAS+ would en-

capsulate these as a single variable associated with driver, and domain Ddriver =

{(at driver location1), (driving driver truck), (at driver location2)}.
Note that it is possible (and indeed, probable), that members of a variable’s do-

main can appear in the domain of other variables too. In the above example,

there would also be a variable for the truck, the domain of which would contain

(driving driver truck). This possibility and its implications on performing

recognition in a relaxed environment will be discussed further in Section 4.3.1.

Definition 13. SAS+ Problem

A SAS+ problem is a tuple φ = {V,A, I,G∗}, where V is a set of variables, A is a

set of grounded actions, I is the initial state and G∗ is a partial state representing

the goal. States are represented as an assignment to all v ∈ V .

The primary reason for translating the original PDDL problem into this form

is the production of domain transition graphs (DTGs) and a causal graph (CG).

3Note that a SAS+ variable is not strictly equivalent to a PDDL object.
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Each DTG represents the values which a variable v can take during plan execu-

tion, with every node being a single fact in which v appears as a parameter. Edges

represent an action which once applied, will transition the current/outgoing value

to the incoming value. Figures 4.1a and 4.1b respectively show the DTGs for a

truck and driver in the Driverlog problem given above4. The causal graph

represents dependencies between variables within the problem domain. For ex-

ample, the causal graph shown in Figure 4.1c shows that trucks are dependent

upon drivers and vice-versa, while packages are only influenced by trucks.

Definition 14. Causal Graph

Given a SAS+ problem φ, the associated causal graph is a connected, directed

graph, {V,E}, where V is equivalent to the set of all variables V = φ(V ) and

E is a set of edges indicating an influence between two variables. A directed

edge, 〈u, v〉, exists if u 6= v and ∃a ∈ φ(A), such that aadd ∪ adel ⊂ Dv and

apre ∪ aadd ∪ adel ⊂ Du.

Definition 15. Domain Transition Graph

A domain transition graph is a directed graph which represents the legal transi-

tions of a variable, v, through a SAS+ problem φ. The vertex set, D, is equivalent

to the domain of the variable, and the edge set, E, is comprised of actions which

transition between vertices. An edge, 〈d, d′〉, exists if d ∈ apre∩adel, and d′ ∈ aadd.

Further to the production of these graphs, information on sets of facts which

are mutually-exclusive with one another is also produced during translation. How-

ever, this information is not complete, meaning not all mutexes are guaranteed to

be detected. This, along with the possibility of illegal facts groundings discussed

above, has implications for hypothesis generation — namely that of unreachable

goals or goal conjunctions. These are explored in Section 4.3.2.

4.3 A Relaxed Model of Goal Recognition

Using the two formalisms defined above, it is now possible to present a relaxed

model of the formalism presented in Chapter 3. Relaxations take the form of

using suboptimal but domain-independent heuristics and reducing the scale of the

goal-space, such that it becomes tractable. Completeness can be preserved, but

at the cost of soundness. That is, the agent’s true goal will always be contained

4See Appendix D for a descriptions of the Driverlog domain and others referred to in this
thesis.
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at truck location1 at truck location2
drive truck location1 location2

drive truck location2 location1

(a) The DTG for a truck variable. Nodes represent members of the
variables domain.

at driver location1 driving driver truck1
embark truck driver location1

at driver location2
embark truck driver location2disembark truck driver location1

disembark truck driver location2

(b) The DTG for a driver variable. Nodes represent members of the variables domain.

driver

truck

package1 package2 package3

(c) A causal graph. Arrows indicate a dependency
between nodes, such that the outgoing variable may
influence the value of the incoming variable. Each
node has an associated DTG.

Figure 4.1: A causal graph and a subset of the associated DTGs for a simple
logistics problem.
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within the relaxed goal-space, but a hypothesis cannot be guaranteed to be non-

mutex in the original domain or contain unreachable facts. The latter of these

is determined via the grounding process, which must be assumed to be correct,

despite often being an overestimation.

This section is structured as follows. In Section 4.3.1 the goal-space is relaxed

to allow a subset of the complete goal-space to be enumerated at runtime, before a

method of constructing hypotheses from this goal-space is given in Section 4.3.2.

Three suboptimal heuristics are introduced in Section 4.3.3, while the original

definition of work performed by observations is updated in Section 4.3.5 for a re-

laxed environment. Section 4.3.6 follows on from this by providing alternatives to

the simple maximum-likelihood work function, which may be better suited to the

relaxed model. The relaxed model features are then rounded off with a discussion

of bounded hypotheses, plan-library integration and goal abandonment.

4.3.1 Relaxed Goal-Space

The model presented in the previous chapter reflects many assumptions which are

unrealistic in real-life application. This section will present a way of mitigating

the inability to detect all mutexes at runtime, but will retain the assumption of

an optimal heuristic being available to the observer (which will itself be relaxed

later). While it is trivial to detect simple binary mutex relations at runtime [23],

detecting all mutex relations between goals is as hard as the underlying problem

[32]. This forces the assumption of soundness in the goal-space to be broken,

as there may be goal conjunctions which are invalid due to incomplete mutex

information, such as a car being in two locations at once.

Of course, this new goal-space without complete mutex information is itself no

more tractable to enumerate than the previous definition of G. Thus, a relaxation

is applied in which only single literal facts within G are enumerated, to achieve

a relaxed goal-space G. This relaxed goal-space considers only facts which are

reachable from the initial state to be goals, reducing the size of the goal-space

size from at most 2|F | to |F |.

Definition 16. Relaxed Goal-Space

Given a base planning problem with an unknown goal, the corresponding com-

plete goal-space, G, can be relaxed to contain only individual goal literals. This

relaxed goal-space, G ⊆ G, will be equal to an enumeration of single literals in

the original goal-space at time t, such that G = π(F ).
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Figure 4.2: The relaxed version of the goal-space outlined in Figure 3.3. Only
individual literals are enumerated at any time, with any literals which are true
in the current state highlighted using double-circles. Actions are still applicable
if goal G ⊆ apre.

If left in this form, completeness will be lost as any hypothesis will be a sin-

gle literal, with all members of G being mutually-exclusive (as was the case in

G). However, in practice this can be retained as the next section will show.

Figure 4.2 provides an example of this relaxed goal-space when applied to the

fully-enumerated goal-space equivalent in Figure 3.3 (page 41). Note that the

transitioning behaviour which applied to the previous complete goal-space is re-

tained in the relaxed model.

At this point, the goal-space has been relaxed to allow tractable goal recog-

nition to occur. However, the new single literal relaxation allows for a further

change to be made to G, such that it is no longer simply a probability distribution
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across π(F ), but rather a probability distribution across multiple sub-goal-space

distributions.

Extending G to a Multivariate Form

With the relaxed goal-space, any implementation becomes much closer to previous

work on plan and goal recognition, in which there is assumed to be only a single

goal that the agent is pursuing [18, 38, 60, 97, 111]. This goal is further assumed

to be mutually-exclusive with all other members of the goal-space, meaning the

agent ceases executing actions once the goal is achieved for the first time5.

At first glance, this would also appear to hold true in G, and indeed can

without issue. However, the assumption of a single literal goal is not only highly

restrictive in practice, but also enforces unnecessary complexity during Bayesian

probability updates (Section 3.4.2). This is because most goals in a given problem

will not be mutually-exclusive with the rest of the goal-space, but rather with

only a subset of this. For example, a goal literal representing the location of a

package in a logistics domain is unaffected by the value of a driver’s location. This

is conceptually similar to the use of variables in the SAS+ representation outlined

above. Each variable v ∈ φ(V ) will have its current value represented as a member

of its domain Dv ⊆ π(F ), which when viewed in the context of recognition, can

itself be considered a probabilistic relaxed goal-space, representing only the most

likely final value of Dv. However, instead of applying a distribution across Dv,

it is better to make this distribution across each mutex-set detected at runtime,

Mv1 ...Mvn , for which Dvi ⊆Mi.

Choosing mutex-sets instead of variable domains will allow for more accurate

Bayesian inference by including mutex-relations which exist outside that of the

variable’s domain (as the domain of each variable is itself guaranteed to be mu-

tex). In the context of a pure SAS+ problem, performing recognition across each

variable present will result not in goal recognition, but rather state recognition.

In fact, the use of mutex-sets only partially weakens this statement, and will be

explored further in Chapter 5.

If each mutex-set now has an associated probability distribution, a new re-

5Here, the term “single literal goal” is defined to be a member of π(F ). This negates the
potential for high-level goals, in which a single literal encapsulates the achievement of n members
of π(F ). For instance, in the classic library-based approach to recognition, a high-level goal
may encapsulate the execution of an entire plan, but have no mapping to anything within the
original set of ground facts. A plan which has the overall goal of (all packages delivered),
encapsulates the achievement of (delivered package1), (delivered package2) etc. but
may not exist in the original domain model.
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laxed goal-space is effectively formed. Therefore, the overall goal-space can be

considered to be a single, relaxed distribution across n ∈ [1 : |π(F )|] relaxed

goal-spaces, each of which is a further distribution across its own members. This

high-level distribution shall be referred to as the multivariate relaxed goal-space

GV , and is illustrated in Figure 4.36.

Definition 17. Multivariate Goal-Space

Given a series of mutex-sets M1...Mn, a relaxed goal-space can be constructed for

each, such that Mi → Gi. A multivariate relaxed goal-space GV is a probabilistic

distribution across these n sub-goal-spaces.

To place this in the context of heuristic-based goal recognition, consider the

following example in which a package, p1, must be moved from location s1 to

s2. In the original goal-space G, the heuristic estimate of (at s2 p1) would be

computed, along with all other members of G in order to determine the amount

of work WML(G) the agent’s plan has expended on achieving G. This would then

be used in computing the posterior probability of G = (at s2 p1) being the

true goal. As G was complete, the denominator of Bayes’ theorem would include

the likelihood probabilities of all goals, producing an extremely small posterior

probability.

In the multivariate model, only members of the associated mutex-set are used

in the Bayesian denominator (in this case goals such as (at s1 p1), (at s1 p3)

and (in p1 truck)), resulting in much larger posteriors with fewer calculations

required. However, there is one further advantage to this representation — the

ability to retain completeness in the relaxed goal-space. Given that each sub-

goal-space represents a set of mutually-exclusive facts, all hypotheses present in

the original goal-space G can still be produced as a conjunction of k literals taken

from the n mutex-sets, where 1 ≤ k ≤ n. Note that GV is still referred to simply

as “the goal-space”, and that “all goals in GV ” is the union of all members of

the sub-goal-spaces,
⋃|GV |
i=1 Gi ∈ GV = π(F ) = φ(F ), with the exception of any

SAS+-specific facts generated during translation.

Here “completeness” is, in fact, potentially an overestimation of the original

goal-space. This is once again due to the inability to detect all mutexes at runtime

[32]. As such, some mutex-sets may be incomplete, so while any hypothesis

6The term “multivariate” is somewhat misleading as it implies that each sub-goal-space is
indeed a distribution across each variables domain and not a mutex-set as specified. However,
it serves as a useful associative term in aiding understanding of the relaxed model.
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that overlapping goal-spaces have been omitted for simplicity.

Figure 4.3: The difference in probability distributions between the original com-
plete goal-space and a separate multivariate relaxed goal-space.
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produced from the multivariate relaxed goal-space is valid in terms of the known

mutexes, these may not necessarily map directly to the full set of undetectable

mutexes. The construction of hypotheses will be discussed in further detail in

Section 4.3.2.

Including All False Goals in Gi

Thus far, the model presented has had the implicit assumption that all goals

must exist as positive literals within G. In the complete model this assumption

translates to only considering the achievement of a literal as a goal, rather than

the negation. However, in practice observations can also be used to indicate

what is not a goal, by considering those goals which have consistently had their

heuristic estimate increase. These all false goals are not the individual negation

of literals (such as (not(a)) w.r.t a), but rather the negation of all mutex goals.

That is, if facts A and B are mutex then there may be an implicit case where

neither are true.

In the original complete goal-space, considering situations where all members

of a mutex-set are false results in an extra literal being added, |G| = 2F +1. This

results in the all false goal (denoted G∅) being considered a valid hypothesis.

However, in practice this is extremely unlikely behaviour, as it translates to every

goal in the goal-space becoming further away from its original heuristic estimate.

This itself is only possible if every action in the problem has empty add effects.

In the relaxed multivariate model the potential of these all false goals being the

true goal is a far more likely consideration. Each sub-goal-space Gi = {G1...Gn}
therefore has a respective all false goal added to it, Gi = {G1...Gn, G∅}. Each

new goal G∅ is itself treated as if it were a positive literal, in that the work

function for it remains as in Equation 3.2, where work is considered to be the

ratio of observations which have been helpful. However, in this special case, the

definition of what “nearer” means must be inverted in order that an observation

is considered helpful for G∅ only if all mutex goals have become further away.

For example, if an observation causes goals A, B and C to have their estimates

increased (where G = {A,B,C}), then no work has been put towards their

achievement. In fact, the action has served only to make it harder to achieve any

of these goals, therefore making it helpful towards achieving G∅. This behaviour

is shown in equation 4.1, where G+ is a standard goal (i.e. not an all false goal)

in goal-space G.
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WML(G∅|Ot) =

∑t
i=1

{
1 if hi(G

+) < hi−1(G+) and i > 0,∀G+ ∈ G,

0 otherwise

|O|
(4.1)

Were the above behaviour to occur in the original complete goal-space, the

only goal remaining would be G∅, as all others could no longer be achieved with

an optimal plan. In the relaxed model, this rather indicates that the values held

within the second sub-goal-space are not relevant to the agent, and that they

may be side-effects of the plan for achieving the true goal.

In reality, mutex-sets virtually never contain facts which can be completely

negated under certain circumstances. However, there is one exception to this

which all false are always required — the situation in which the sub-goal-space is

of size |Gi| = 1. Here, the positive goal, G+, is mutex only with its negation, such

as an image having been transmitted or not in the Rovers domain7. This fact

is independent of all others in the goal-space, which would result in a Bayesian

posterior of P(G|O) = 1 for all observations. Under these circumstances, the

inclusion of G∅ in Gi allows for the correct posteriors to be computed, and prevents

G+ from always being put forward as a valid goal candidate8.

While the multivariate goal-space GV may contain several sub-goal-spaces, by

itself it represents the distribution across the union of all goals in these sub-goal-

spaces GV =
⋃|φ(M)|
i=1 Gi. Now recall that in the complete goal-space it is trivial to

extract a hypothesis, as it is simply the member of G with the highest probability.

However, in the relaxed goal-space GV , only single literal goals can be considered

using this approach. Given that it is unlikely the agent’s goal will be only a

single literal, a method for extracting conjunctive hypotheses from the relaxed

goal-space is necessary.

4.3.2 Conjunctive Hypothesis Extraction

In the multivariate model, each sub-goal-space will have its own distribution

across its member goals. The goal which has the highest associated probability

is therefore the natural candidate for any hypothesis produced. As there are n

7See Appendix D.
8In domains such as Rovers, sub-goal-spaces which would otherwise be of size 1 are nu-

merous. If the negation of the positive literals contained within these spaces is not considered,
hypotheses can become extremely large.
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sub-goal-spaces in GV , hypotheses can be constructed by taking each of these

maximum-probability goals from each sub-goal-space. This is referred to as a

relaxed hypothesis. That is, the relaxed hypothesis formed will comprise of the

set of goals from each sub-goal-space which have the maximum probability.

Definition 18. Relaxed Hypothesis

Given a multivariate relaxed goal-space GV , a relaxed hypothesis, Hyp is defined

to be the union of maximal members of each sub-goal-space Gi ∈ GV , such that

Hyp =
⋃|GV|
i=1 [arg max P(G)] ,∀G ∈ Gi.

Note that there may be situations in which a goal appears in more than one

mutex-set, and thus more than one relaxed goal-space in GV . This is not the

manifestation of the loss of soundness caused by moving to a relaxed model,

but rather an example of the natural overlap between members of GV . Without

taking action against this, unreachable hypotheses can potentially be created. For

example, if G1 = {A,B} and G2 = {B,C}, and B has the maximum probability in

both distributions, the relaxed hypothesis produced would simply be Hyp = B,

which is both reachable and minimal in size. However, if instead A has the

maximum probability in G1, the hypothesis would be Hyp = {A,B}.
IGRAPH mitigates the problem of two goals being mutually-exclusive in a

hypothesis by filtering the set of goals chosen to obtain a greedy relaxed hypothesis.

This is a sound hypothesis in the relaxed goal-space, in that it will be free of all

known mutually-exclusive goals.

A näıve approach to this would be to always retain the goal which has the

higher probability between two mutex goals. However, this is flawed and can

lead to a biased hypothesis which always favours certain goals. Specifically, goals

which appear in multiple sub-goal-spaces will have varying probabilities across

these spaces which may vary greatly. For example, a goal may have probability

P(G) = 0.8 in G1, but probability P(G) = 0.05 in G2. In the former case G

will always be selected for the relaxed hypothesis, but there may exist a goal in

G2 which has a higher probability than G (in this sub-goal-space), resulting in a

mutex hypothesis being formed. If G is simply retained because it has a higher

probability in G1, then it may bias the hypothesis toward goals which have, in

reality, not been supported by the observed plan.

This behaviour is caused by sub-goal-spaces whose size is small (e.g. |Gi| = 2),

as the “helpfulness” of observations are distributed across all members of Gi.

Therefore smaller goal-spaces which feature a goal that has become heuristically

78



Chapter 4. IGRAPH — A Library-Free Implementation of Goal Recognition

Algorithm 3 This algorithm greedily extracts a hypothesis from the set of max-
imal goals in each sub-goal-space as given in Definition 18. Before the maxi-
mum probability goal from each sub-goal-space is added to the hypothesis, it
is checked against all current members of the hypothesis to determine if it is
mutually-exclusive with them. If it is, the fact which is retained is determined
by the doT ieBreak function, given in Algorithm 4. Finally, any strictly terminal
facts which have been achieved during observation are added to every hypothesis
(see Definition 23).

Require: getHypothesis()
1: Hyp := max(GV ) {Set of highest-probability goals}
2: queue := ∀G ∈ Hyp
3: inferior := {}
4: while !isEmpty(queue) do
5: Ghigh := pop(queue)
6: if Ghigh ∈ inferior then
7: continue
8: end if
9: for all GQ ∈ queue do

10: {Find if goals are mutex}
11: if mutex(Ghigh, GQ,G

V ) then
12: {If so, find if Ghigh is preferred, where Ghigh, GQ ∈ Gi and Gi ∈ GV }
13: if doT ieBreak(Ghigh, GQ,Gi) then
14: add(inferior,GQ)
15: else
16: continue
17: end if
18: end if
19: end for
20: end while
21: HypG := {Hyp \ inferior}
22: HypG := HypG ∪ STachieved
23: return HypG

closer will receive higher posteriors than those which have more members. It

follows that the probability alone is not sufficient for comparing goal candidates

across multiple goal-spaces.

Should the above situation occur, one of the mutex goals must be removed

from the hypothesis. As probabilities are inapplicable, a series of tie-breaks are

performed to determine which goal is the most likely candidate. Algorithm 3

shows this greedy filtering process, the output of which is a valid hypothesis in

the relaxed goal-space.

This algorithm considers first which goal has had the most work put towards
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Algorithm 4 A tie-breaking algorithm for determining whether goal GA should
be given precedence over mutex goal GB. The algorithm takes in two goals GA

and GB, and an optional parameter Gi, corresponding to the sub-goal-space both
goals belong to (if applicable). In the case of non-mutex goals which both appear
in Gi, the algorithm simply returns which has the higher associated probabil-
ity. However, if these do not both belong to Gi, various tie-breaking criteria are
checked. These are, in order; the total distance moved towards the goal (∆+h(G),
more movement preferred); the layer the goal exists on the causal-graph (CGL(G),
higher layers preferred — this concept will be introduced in Section 4.4.3) and
finally the distance remaining to the goal (h(G), further goals preferred). If none
of these criteria are met, a random coin-flip is used.

Require: doT ieBreak(GA, GB,Gi)
1: if !mutex(GA, GB,Gi) and PGi

(GA) > PGi
(GB) then

2: return true
3: else if !mutex(GA, GB,Gi) and PGi

(GA) < PGi
(GB) then

4: return false
5: else
6: if ∆+h(GA) > ∆+h(GB) then
7: return true
8: else if ∆+h(GA) < ∆+h(GB) then
9: return false

10: else
11: if CGL(GA) > CGL(GB) then
12: return true
13: else if CGL(GA) < CGL(GB) then
14: return false
15: else
16: if h(GA) > h(GB) then
17: return true
18: else if h(GA) < h(GB) then
19: return false
20: else
21: if rand() < 0.5 then
22: return true
23: else
24: return false
25: end if
26: end if
27: end if
28: end if
29: end if
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its achievement, as this value informs the probability of it being the goal. After

this, the layer at which each goal appears in the causal graph is analysed. A

full description of goal layers shall be enumerated in section 4.4.3. Briefly, goals

which appear at lower layers of the causal graph are often more likely to appear

as goals in a planning problem as they are influenced by other goals, but exert

no influence themselves. For example, packages in Driverlog exist only to be

moved to other locations — their location does not influence the movement of

trucks or drivers.

Should the causal graph layer be equal for both goals, the distance remaining

to the goal is considered, with further goals being preferred. Finally, a random

coin-flip is used to determine which goal will be retained.

The exceptions to this process are all false goals. If an all false goal is selected

as being the most probable member of a sub-goal-space, it is simply omitted from

the hypothesis prior to tie-breaking.

Final Hypotheses

If an agent is known to have finished their plan, then their goal must exist within

the final state, G∗ ∈ S∗. Therefore, the above hypothesis extraction method is no

longer relevant, as the probability associated with each fact in the goal-space is of

no use. That is, having the highest probability in the associated sub-goal-space

does not matter, if the fact itself is not true in S∗. To this end, given that it is

known there will be no more observations, the system should be able to determine

which of the goals in S∗ are the true goal and not simply side-effects9.

The problem of extracting a goal given the complete plan has previously been

tackled by Hong [89], in which a plan graph [23] is constructed to determine those

facts in the final state which have the most actions contributing towards their

achievement. This is done by tracking the causal-links between actions from

the initial to final state. While this approach is valid for IGRAPH, it would

require enumerating 2k fact combinations, where k = |S∗| in order to determine

which subsets have had the most work contributed towards them. If instead only

single literals are considered, there is a risk that goals which are achieved using

relatively few observations will be ignored as irrelevant. Therefore, IGRAPH

adopts a different approach to final hypothesis construction.

The problem of extracting goals from the final state is common to both the

9Given that the world is fully-observable and deterministic, any final hypothesis is guaran-
teed to be sound in the original state and goal-spaces (unlike intermediate hypotheses which
are relaxed).
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complete and relaxed goal-space models. In both cases, regardless of whether all

conjunctive goals or only single literals are enumerated, any combination of facts

present in S∗ will necessarily exist in G. It is therefore impossible to determine

which subset of the final state is actually the agent’s goal without placing some

assumptions on the model. To this end, final hypotheses in IGRAPH are based

upon selecting those which have the highest stability, as defined below. Using

Hong’s approach of selecting the goal which has had the most heuristic movement

towards it can also be viewed as a valid technique [89], but is rejected as it does

not take movement of resources into account. For example, a truck with limited

capacity delivering multiple packages to a destination will need to make the same

journey several times, leading to a higher value for total heuristic movement than

the packages themselves (which are most likely the true goal).

Definition 19. Goal Stability

Given a fact/goal, G ∈ G, the associated stability of that goal, Υ(G) ∈ (0 : 1], is

the ratio of times the goal has had its value changed since its first achievement

in the plan. Each fact has a value of Υ(G) = 1 until its first achievement, after

which the previous statement applies.

Υ(G) =


1 if G has been achieved 0 or 1 times,

1

switches(G)
otherwise

(4.2)

Equation 4.2 provides a further expansion of this, where switches(G) is the

number of times the goal has been deleted or re-achieved since its first achieve-

ment. For example, if goal G is first achieved on observation 10, then deleted and

re-achieved in observations 11 and 12 respectively, its value has changed twice

— once to false after the first achievement (which is not counted) and then to

true. This results in a value of Υ(G) = 1
2
, which would remain until G was again

negated. Note that all false goals will always have a stability of 1, as by-nature

they cannot be negated.

IGRAPH applies the assumption that an agent will always strive to maintain

a goal literal as true once it is first achieved. Computing the stability of a goal

therefore provides a means of ranking goals, something which can be applied to

final hypothesis construction.
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Definition 20. Final Hypothesis

Given a final state S∗, the final hypothesis HypΩ ⊆ S∗, is equal to all facts true

in this state f ∈ S∗ for which Υ(f) ≥ η, where η ∈ [0 : 1].

The final hypothesis is therefore all facts in the final state which have a sta-

bility of at least η. A value of η = 1, translates to the assumption that the agent

will always keep a goal literal true, while the opposite extreme of η = 0 states

that any fact true in the final state can be considered a goal.

Note that it is not considered valid for the final hypothesis to be empty,

HypΩ = ∅. While this is valid behaviour in intermediate hypotheses, it is only

possible as a side-effect of undetectable mutexes and is still considered “unex-

pected” behaviour — the assumption of the agent having at least one positive

literal goal is retained, and as the final state must contain the goal, it therefore

follows that G∗ ∈ S∗.

This section has described a means of relaxing the original goal-space while

still being able to construct conjunctive hypotheses, in order that its application

becomes tractable. However, the assumption of an optimal heuristic being avail-

able to the observer has been retained, despite also being intractable to produce

in a domain-independent context [32]. The next section will describe several sub-

optimal domain-independent heuristics which have been previously been applied

in the field of planning, in order that these can be evaluated in IGRAPH as a

means of approximating an optimal heuristic.

4.3.3 Relaxed Heuristics

The approximation of optimal, domain-independent heuristics is a topic of great

interest within the planning community [17, 81]. Yet, suboptimal heuristics have

been shown to be highly informative in plan generation [27, 78, 79, 88] to the

point where classical planning can be performed on extremely large and complex

problems. However, while planning is commonly moving towards tackling more

complex problem representations, this work and that of Ramirez and Geffner

[145, 146, 147] represents the first time such heuristics have been applied in

recognition. Naturally, this is because a plan-library is commonly available, thus

negating the need for heuristics. This is unfortunate, as it limits the ability to

perform recognition on any problem without considerable investment in library

construction.

IGRAPH utilises suboptimal planning heuristics which have shown to be in-
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formative across multiple planning domains, in order that goal recognition can

be performed without prior knowledge of the domain or executing agent. A

heuristic is suboptimal if it can — in addition to being accurate — over or under-

estimate the distance to goal G. For example, a heuristic may produce a value

of ht(G) = 14 at time t, and a value of ht+1(G) = 15 after the next obser-

vation, despite the action contributing towards achieving G. This risk can be

somewhat mitigated by using an admissible heuristic, which guarantees to never

over-estimate the distance to G, where h(G) ≤ h+(G), ∀G ∈ G.

IGRAPH implements three heuristics which represent milestones in the de-

velopment of domain-independent planning. The first, the max heuristic (hmax)

[27] and the HSP planner which introduced it [26], demonstrated that both for-

ward and backward-chaining planning was possible using a domain-independent

heuristic. However, hmax is extremely uninformative by modern standards (and

was regarded as poor even in 2000), but is the only heuristic implemented in

IGRAPH which is admissible. It therefore serves as a useful baseline for other

heuristics to be judged against.

The second heuristic implemented is the FF heuristic, hff [88]. This quickly

subsumed hmax (and associated hadd heuristic [26] detailed below) as the state-of-

the-art, and the associated planner was successful in several International Plan-

ning Competitions (IPC) [47, 117]. Indeed, the heuristic itself has also been a

component of multiple successful planners [39, 43, 79, 83, 85, 86, 163].

Finally, unlike the previous two heuristics, the context-enhanced additive heuris-

tic hcea [80], uses a SAS+ based representation [10] to search for relaxed paths

through the associated causal graph and DTGs. It is more accurate than hff on

some problems, such as those which demonstrate a high branching-factor, but

can sometimes overestimate the distance to goals which are made up of several

literals.

Each of these heuristics will now be presented in more detail. Note that only

a single heuristic is used during recognition.

The Max Heuristic

The max heuristic, denoted as hmax, is one of the oldest domain independent

planning heuristics. Proposed by Bonet and Geffner in 1997 [27], it signalled

that planning was tractable on multiple unseen problems using a single common

heuristic. hmax offers an interesting baseline heuristic for application in a goal

recognition system, as it is both fast to compute and admissible. However, it is
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also regarded as uninformative, in that it will usually heavily underestimate the

work remaining, which can lead to poor values being computed, particularly in

domains which feature actions with a large set of preconditions.

hmax is built upon the delete-list relaxation [28], in which the delete-effects

of actions are ignored during calculation of the heuristic cost to a goal. As its

name indicates, the cost of a conjunctive goal G is the maximum cost of achieving

each of the individual literals. This is computed recursively from goal G, until

∀g ∈ G, g ∈ S, where S is the current state. Figure 4.4 shows this process for a

simple problem. This is done using the following formula, where Aachievers(g) is

the set of actions for which g ∈ aadd.

hmax(G) = max
g∈G

0 if g ∈ S,

min
a∈Aachievers(g)

[1 + hmax(apre)] otherwise
(4.3)

Table 4.1 shows heuristic estimates from the initial state to the goal, using

hmax across 20 problems in the Rovers domain, taken from IPC5. The second

column indicates the value of hmax, while the fourth indicates the shortest solution

length of the best planner in the competition. As the table clearly demonstrates,

for non-trivial problems hmax provides extremely poor estimates. It is included

as a means of demonstrating whether heuristic-based goal recognition is possible

even when the heuristic itself is uninformed, and as a baseline for comparing

against other heuristics.

h(g) = 1 + max(h(d), h(e), h(f))
h(g) = 1 + max(1, 2, 2)

h(g) = 3

h(d) = 1 + max(h(b))
h(d) = 1 + max(0)

h(d) = 1
A6

h(e) = 1 + max(h(b), h(d)
h(e) = 1 + max(0, 1)

h(e) = 2

A6

h(f) = 1 + max(h(f))
h(f) = 1 + max(1)

h(f) = 2

A6

h(b) = 0A3

h(b) = 0A4

h(d) = 1 + max(h(b))
h(d) = 1 + max(0)

h(d) = 1

A4

h(d) = 1 + max(h(b))
h(d) = 1 + max(0)

h(d) = 1

A5

h(b) = 0
A3

h(b) = 0
A3

Figure 4.4: The computation of the cost for goal g using the hmax heuristic.
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Problem hmax hff |P | Problem hmax hff |P |

1 4 10 10 11 5 30 32
2 3 9 8 12 4 23 19
3 4 11 11 13 4 42 46
4 3 10 8 14 4 31 31
5 4 20 22 15 3 37 42
6 4 30 36 16 3 36 41
7 3 15 18 17 4 42 50
8 4 28 26 18 4 43 46
9 4 27 31 19 4 70 69
10 3 33 35 20 4 83 99

Table 4.1: Heuristic estimates for the hmax and hff heuristic, versus the length of
the best solution found at IPC5 on the Rovers domain.

The FF Heuristic

One of the best known heuristics in the planning community is the Fast Forward

(FF) heuristic. This and the eponymous planner which first implemented it [88]

quickly became the baseline against which all other planning research was judged

[47, 117]. The FF heuristic is both fast and informative, and further can be

computed in polynomial time [82], although computation of an optimal cost even

in the relaxed problem is still NP-hard [32].

Like hmax, the problem is relaxed to remove all delete-effects from actions and

mutexes are ignored. The cost of a goal G is determined by the FF heuristic to be

the length of the relaxed plan P which achieves it, where a relaxed plan is simply a

valid plan within the relaxed state-space. This relaxed state-space is represented

by constructing a relaxed planning graph (RPG) — a graph of alternating fact

and action layers, as shown in Figure 4.5.

During RPG construction, the graph is initialised with a single fact layer,

F0, which is equal to the facts present in the initial state. An iterative process

then begins in which two further layers are created per iteration, with both layers

classed as layer k. The first is an action layer, Ak, containing all actions for which

apre ⊆ Fk−1, while the second is a fact layer, Fk, equal to Fk−1 ∪ aadd,∀a ∈ Ak.
All facts in the previous layer are guaranteed to be added through the automatic

addition of no-ops — stub actions with no preconditions or effects which map to

every fact present in the previous layer. This process then repeats until G ⊆ Fn.

Alternatively, if no goal is specified construction stops once Fn = Fn−1 (with the
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duplicate layer Fn ignored), in which case the RPG is said to have stabilised. The

relaxed plan is then extracted, starting at the first fact layer which contains all

literals in G. It is likely that the relaxations imposed during RPG construction

will cause the relaxed plan to be invalid in the original state-space, such that

P /∈ P, hence it cannot simply be used as the final plan.

The estimate itself is constructed using the additive heuristic [27] (see Equa-

tion 4.5). However, unlike the original application of this, hff computes the cost

from the RPG. This allows positive interactions to be included in the relaxed

plan, which lowers the final cost. For example, Figure 4.5 shows how hff returns

a value of h(g) = 4, while hadd returns a cost of h(g) = 6 on the same problem,

as shown in Figure 4.6.

To estimate the cost of achieving G, a set of open goals is created which

initially contains all single literals g ∈ G. A relaxed plan is then regressively

extracted from the RPG, starting at the first layer for which G ⊆ Fn. For each

literal g, the first action in the set of actions that achieves g and appears in action

layer An is chosen to be added to the relaxed plan. If this set contains a no-op,

this will always be chosen over normal actions. The effects of selected actions

are removed from the set of open goals and the union of all preconditions added.

This process iterates until the set of unachieved goals is a subset of the initial

state.

Table 4.1 (page 86) shows the improvements in heuristic accuracy if hff is

used in the Rovers domain, versus the hmax heuristic. hff shows a marked

improvement in estimating the final solution length, although it should be noted

that it is possible that some of the best solutions found were produced, at least

in part, using the hff heuristic.

hff (G) = |P| (4.4)

hadd(G) =
∑
g∈G

0 if g ∈ S,

min
a∈Aachievers(g)

[1 + hadd(apre)] otherwise
(4.5)

The Context-Enhanced Additive Heuristic

Unlike the previous two heuristics, the context-enhanced additive heuristic, hcea,

is not formulated for propositional-logic (as represented by PDDL). Instead, the

SAS+ formalism as described in Section 4.2.1 is used [11]. Using the work of
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Figure 4.5: A relaxed planning graph showing one possible variation of relaxed
plan extraction for the single literal goal g in layer F3 using the FF heuristic,
with a final cost of h(g) = 4. OG is the set of open goals which should be satisfied
by the previous action layer and P is the current relaxed plan. Note that no-ops
are shown by dashed links and are always preferred to actions.

h(g) = 1 + sum(h(d), h(e), h(f))
h(g) = 1 + sum(1, 2, 2)

h(g) = 6

h(d) = 1 + sum(h(b))
h(d) = 1 + sum(0)

h(d) = 1
A6

h(e) = 1 + sum(h(b), h(d))
h(e) = 1 + sum(0, 1)

h(e) = 2

A6

h(f) = 1 + sum(h(d))
h(f) = 1 + sum(1)
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Figure 4.6: The computation of the cost for single literal goal g using the additive
heuristic. The cost of a goal is the sum of achieving the goal itself plus the cost of
achieving the preconditions of the achieving action. Positive interactions between
actions are not included in the final value, which leads to over-estimation of the
true cost. For example, the cost of achieving facts b and d are both included
twice.
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Helmert [78], PDDL problems can be translated into an equivalent SAS+ repre-

sentation, which allows the hcea heuristic to be applied.

However, before hcea can be described, the problem setup and prior work must

be given. This has partly been covered through detailing the hadd heuristic, but

also requires that the causal graph heuristic be expanded upon, as these form the

basis of hcea.

Causal Graph Heuristic The causal graph heuristic [78] uses the causal graph

and domain transition graphs generated by Helmert’s translator, to compute a

path from the current state to the goal. This path is in fact the conjunction

of other paths through various SAS+ subproblems generated during search as

follows.

Every variable, v ∈ φ(V ), in the causal graph has a corresponding domain

transition graph, DTG(v). An edge 〈a, b〉 in the causal graph indicates that at

least one transition in DTG(b) has a precondition that the value of DTG(a) be

set to a specific value. In this situation, b is referred to as the high-level variable,

vH , and each object connected by an incoming edge is referred to as a low-level

variable, vL. If vH has no outgoing edges (that is, it is a leaf in the graph), and

all low-level variables connected via an incoming edge are roots of the graph, then

the problem is a SAS+-1 problem.

Definition 21. SAS+-1 Problem

A SAS+-1 problem, Φ, is a SAS+ problem, φ, in which the causal graph contains

a single high-level variable vH and all other variables are low-level variables of

vH . The single goal, G∗, of Φ is for vH to transition from its current value to

G∗ ∈ D(vH), where D(vH) is the domain of the high-level variable.

For a given SAS+-1 problem and goal G∗, a plan is any sequence of actions

which enables the high-level variable to transition to G∗. This is achieved through

applying Dijkstra’s algorithm to find the shortest path to all nodes in DTG(vH)

from the current value s0(v(H)), as shown in Algorithm 5. As with standard

Dijkstra application, the shortest known plan in the queue is expanded first.

The solution output by the solveProblem algorithm is an optimal plan for the

achievement of the single literal goal G∗, as the low-level variables do not rely on

any other variables in the causal graph.

This principle can be applied to the original SAS+ problem by considering

each goal g ∈ G∗ to be a separate SAS+-1 problem, as shown in Algorithm 6.

However, before this can take place, any cycles within the causal graph must be
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Algorithm 5 solveSubproblem

G∗ := vH ∈ Dv

plans(dH) := ∅, ∀d′ ∈ DH

plans(s0(vH)) := 〈〉
queue := DH

while queue 6= ∅ do
dH := min(queue)
P := plans(dH)
S := plan(s0)dH))
if dH = G∗ then

return P

else if plans(diH) = ∅, ∀diH ∈ queue, then
Failure — no plan possible

end if
for all 〈d, d′〉 ∈ DTG(dH) do
PL := 〈〉
for all vL ∈ (apre \ dH) do
PL := PL + dijkstra(DTG(vL), S(DTG(vL)), apre(DTG(vL))

end for
P′ := P + PL + 〈d, d′〉
if |P′| ≤ |P| then
plans(dH) := P′

end if
end for

end while

broken, in order that ∀〈v, v′〉 ∈ CGedges,@〈v′, v〉 ∈ CGedges. By doing this, the

algorithm is guaranteed to terminate, but that information about the problem

may also be lost. The decision as to which edge is removed (〈v, v′〉 or 〈v′, v〉), is

based upon whether v or v′ appears in fewer action preconditions. The variable

which has the least occurrences has its outgoing edge removed from the causal

graph, thus respecting as many preconditions as possible.

With an acyclic graph, the heuristic estimate to a conjunctive goal G is the

sum of each individual goal’s estimate, as given in Equation 4.6 and Algorithm

6.

hcg(G) =

|G|∑
i=1

hcg(gi) (4.6)

Incorporating Cyclic Causal Graphs The acyclic graph required for hcg to

terminate is problematic, as many planning problems contain cyclic dependencies.
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Algorithm 6 solveProblem

P̄ := ∅
for all g ∈ G∗ do
Pg := solveSubproblem(g)
P̄ := P̄ + Pg

end for
return P̄

When such cycles are broken, the result of the Dijkstra search can be extremely

poor heuristic estimation in domains with combinatorial aspects (such as block

stacking). Helmert and Geffner address this problem by combining the additive

heuristic with hcg to derive the context-enhanced additive heuristic, hcea [80].

In the above description of hcg, SAS+-1 problems are trivial to solve, as there

is only one root/high-level variable, and each connected leaf/low-level variable has

no further children. In this case, the plan to solve the goal is optimal. Helmert

and Geffner note that this is also the case if the additive heuristic is applied, and

derive hcea as a method of obtaining heuristic estimates when the goal is not a

simple SAS+-1 problem. Equations 4.7 and 4.8 show how hadd is transformed

when applied to a SAS+ problem, where S is a state (initialised to the initial

state) and G is a set of variable-value pairs indicating the goal, which can be

considered a partial state. The notation xs indicates that variable x holds the

value of variable x in state S. By maintaining a representation of the current

state as execution proceeds, hcea can provide more accurate estimates than hadd,

which only uses the initial state to determine whether goals have been met (hence

the term “context-enhanced additive heuristic”). Note that if hcg is computable,

it will be equal to hcea.

hadd(S) =
∑
xg∈G

hadd(xg|xS) (4.7)

hadd(x|x′) =
∑

0 if x = x′,

min
o:P→x

c(o) +
∑
y∈P

hadd(y|yS) otherwise (4.8)

hcea treats actions as rules of the form o : x′, z → x, where o is the operator

(action) and x′ is the precondition value of variable X which transitions to X = x

once the rule is applied. z is the set of preconditions on other variables which

must also hold true in the current state prior to the rule being applied. These
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rules are applied automatically when the state meets the required preconditions.

Like hadd, hcea operates recursively, as defined in Equation 4.10 and 4.9. Start-

ing from state, S, in which variable X = x′ (denoted S[x′]), all operators which

achieve x are expanded in order to determine the cost of achievement, in much

the same way as hadd and hcg do. However, unlike these, the cost of achieving

the associated preconditions is evaluated in the state resulting from the applica-

tion of o. That is, instead of considering each precondition of o as independent

of one another, the cost of achieving each zi ∈ z is computed only after x has

been achieved. The state resulting from this application is referred to as a con-

text state, as defined in Equation 4.11, where s(x′′|x′)[z, x][y1, ..., yn] indicates

the state s resulting from the achievement of x′′ starting at value x′, in which

preconditions x and z are set. y1, ..., yn are the effects of other applicable rules

which are applied simultaneously once o is known to be the best cost minimising

operator which achieves x.

In this form, this approach would result in an explosion of context states,

making computation intractable. Therefore, once Equation 4.11 is applied, all

information relating to variables other than X is discarded.

hcea(S) =
∑
x∈G∗

hcea(x|xS) (4.9)

hcea(x|x′) =


0 if x = x′

min
o:x′′,z→x

(
1 + hcea(x

′′|x′) +
∑
xi∈z

hcea(xi|x′i)

)
if x 6= x′

(4.10)

S(x|x′) =

{
S[x′] if x = x′

S(x′′|x′)[z, x][y1, ..., yn] if x 6= x′
(4.11)

The additive nature of hcea and the relaxations applied to contexts means that,

like hadd and hcg, the heuristic is inadmissible. In planning, this can lead to

extreme over-estimations of the true goal distance, which could cause search to

fail.

However, in the case of IGRAPH the majority of estimates required will

be for the single literal goals contained in G, making the heuristic potentially

more accurate than hmax or hff . Table 4.2 again shows results of the heuristic

estimate over a set of increasingly distant goals in the Rovers domain (which
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has largely disconnected goals), while Figure 4.7 visualises this. However, unlike

Table 4.1, the estimates for all 40 problems are shown, in order that the difference

with hff are clearer. This table further demonstrates that hcea is inadmissible for

most problems (particularly those with multiple goals), and also that hff often

underestimates the true goal distance as solution length increases.

Using Helmert’s Translator for Recognition

The translator developed by Helmert [78] is designed to transform a PDDL do-

main into an equivalent SAS+ representation. However, as this is intended for

use in planning applications [79], the output generated is optimised such as to

allow for faster heuristic search by minimising the state-space. For example, if

a problem has variables φ(V ) = v1...vn, but only v1 appears in the goal G∗, and

only v2 is required to achieve this, variables v3...vn will be pruned from the re-

sulting output. This results in fewer actions, DTGs and a smaller causal graph,

all of which speed up the planning process.

Clearly, these optimisations are of little assistance in a recognition context,

where G∗ is unknown and can be any combination of literals. Therefore, the trans-

lator has been modified to eliminate these optimisations. Concretely, this means

that variables and the associated domains are never pruned from the output, and

mutually-exclusive goals are allowed. In this latter case, as the translator still

expects to parse a goal specification, this is randomly generated by IGRAPH, in

order that every object present in the original PDDL file is present in at least one

of the goal-literals passed to the translator. This forces the translator to generate

variables for all objects in the domain, even though these may not all strictly be

required for planning.

4.3.4 Goal Recognition with Suboptimal Heuristics

With any of the suboptimal heuristics described above and the other aspects of

the relaxed model, everything required to perform goal recognition is now present.

This amounts to using the observed evidence to construct a maximum likelihood

Bayesian posterior probability across each sub-goal-space, before using Algorithm

3 to select those goals which are deemed to have had the most work put towards

their achievement.

However, as the agent and observer in the relaxed model now cannot be

guaranteed to have optimal heuristic estimates to a goal, and that only single

literal goals exist explicitly in the goal-space, the value for WML(G) may be
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Problem hmax hff hcea |P | Problem hmax hff hcea |P |

1 4 10 9 10 21 4 61 88 62
2 3 9 7 8 22 4 79 140 70
3 4 11 11 11 23 4 80 145 90
4 3 10 10 8 24 5 92 149 129
5 4 20 21 22 25 3 42 73 30
6 4 30 32 36 26 4 65 100 64
7 3 15 15 18 27 4 87 132 100
8 4 28 24 26 28 4 85 146 76
9 4 27 33 31 29 4 66 124 62
10 3 33 30 35 30 4 109 181 126
11 5 30 48 32 31 4 104 192 136
12 4 23 22 19 32 4 150 253 173
13 4 42 60 46 33 4 191 333 261
14 4 31 28 31 34 4 148 254 148
15 3 37 30 42 35 5 267 479 368
16 3 36 39 41 36 5 185 332 246
17 4 42 63 50 37 5 209 270 377
18 4 43 43 46 38 4 228 496 300
19 4 70 113 69 39 5 292 517 380
20 4 83 153 99 40 4 273 542 356

Table 4.2: Heuristic estimates from the initial state for the hmax, hff and hcea
heuristics on the IPC5 variant of the Rovers domain.

uninformative. As the work performed is computed in the context of the entire

observed plan, posteriors for one of the single literal goals which make up the

true goal may be low, leading to an incorrect hypothesis or a late-commitment

to the true goal.

The following section presents two methods of mediating this decreasing work

function by first considering work performed in the context of causally-linked

observations, and secondly by taking a per observation approach to how helpful

an action is.

4.3.5 Work Performed in Relaxed Goal-Spaces

In Section 3.3, an optimal heuristic was used in the complete goal-space to provide

a means of determining how much work, W (G), had been expended on achieving

a goal. Equation 3.1 defined this as the difference between the current and initial

heuristic estimates to G, which was in turn relaxed to form Equation 3.2 (page
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Figure 4.7: A plot of the various heuristic estimates shown in Table 4.2. Values
for h(G) are computed from the initial state in each respective problem of the
Rovers domain from IPC5. The plan length, |P | is taken to be the shortest
solution generated by a planner in this same competition. The inadmissibility of
the hcea heuristic is clearly visible, as most problems have a higher initial estimate
than final plan length. Similarly, hff overestimates some problems, but in general
underestimates the distance to the goal. Only hmax is admissible, but provides
extremely poor estimates.

52). This considered suboptimal plans being observed, by stating that the work

put towards a goal is equal to the number of observations which have lowered

the initial estimate, divided by the total number of observations. That is, the

maximum likelihood of each observation contributing towards the goal, WML(G).

The principle behind using the maximum likelihood to compute the work

performed by an action still holds in the new relaxed goal-space, but crucially,

only when the agent’s goal is a single literal G∗ ∈ π(F ). If this assumption does

not hold — which it rarely does — any estimates computed for conjunctive goal

G∗ will be biased towards the order in which each individual goal is achieved. For

example, if G∗ = {A,B}, but that every action possible is guaranteed to only

contribute towards achieving A or B, then the order of actions will affect the

posterior probabilities of each goal if the maximum likelihood model is used.

Table 4.3 demonstrates how the value of WML(A) decays over time once A has

been achieved by observation OA
3 . Goal B is also affected by having an artificially

low value of WML(B) = 0.25 after action OB
4 has been observed.
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Obs P(A) P(B) WML(A) WML(B) P(A|O) P(B|O)

OA
1 0.50 0.50 1.00 0.00 0.83 0.17

OA
2 0.83 0.17 1.00 0.00 0.88 0.12

OA
3 0.88 0.12 1.00 0.00 0.89 0.11

OB
4 0.89 0.11 0.75 0.25 0.84 0.16

OB
5 0.84 0.16 0.60 0.40 0.77 0.23

OB
6 0.77 0.23 0.50 0.50 0.68 0.32

Table 4.3: The prior and posterior values for goals A and B when the true goal
is G∗ = {A,B}, and both literals are treated individually, as opposed to in the
correct conjunctive form. Equation 4.21 is used to compute the posteriors, in
order that non-zero values are produced. Of the six observations, the first three
only assist in achieving A, while the last three only assist in achieving B. Note
that the posterior for A decays after observation OA

4 , due to a similarly decaying
value for WML(A). In contrast, the posterior value for B at the end of the plan
is much lower than that of A due to the maximum likelihood work function not
recognising that the first three steps were of no relevance in achieving B.

Clearly having a work function which demonstrates this behaviour for con-

junctive goals that can be achieved at different timesteps is of little use in prac-

tical recognition. Thus, the relaxed goal recognition model must offer a viable

alternative to the maximum likelihood version of determining work performed.

Achieving Goals Throughout Observation

In the original goal-space representation, G was guaranteed to contain an entry

for all states S ∈ S in addition to all partial states/goals. The relaxed goal-

space now only models probability distributions across each mutex set, which is

identical to modelling the probability of a state being the goal, rather than a

subset of the final-state. The implications of what this change means to goal

recognition is considered in Chapter 5.

While the relaxed goal-space closely models state-estimation, it is still skewed

towards the assumption that every step in the plan will contribute to the goal

being achieved in the final plan step. That is, if a goal is not converged upon after

an observation it can be eliminated. In essence, every plan step will contribute

towards the complete achievement of the goal after the final observation, at which

point the plan will cease. This assumption which has featured prominently in the

literature [18, 38, 97, 111], is severely limiting and forms one of the motivating

factors for a new model of goal recognition.
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In planning, the intuition behind heuristic-guided search is that the heuristic

will always try to minimise the cost of achieving the goal. However, if goals are

achieved throughout plan formation, then the heuristic must also take care not

to negate early achievements in forming a plan for the remaining goals. Equa-

tion 4.12 states that any literals which have remained true over the previous two

observations (h(G) = 0) have had work put towards maintaining their achieve-

ment. The rationale for this is that if an agent keeps a fact true over n ≥ 1

consecutive timesteps, then this fact may be a part of the final goal and should

be treated accordingly. This is referred to as giving “stagnant” facts a heuristic

bonus. In practice, this bonus amounts to considering actions which have not

interacted with a goal’s heuristic estimate (which has been zero for the previous

two timesteps), to have been helpful in achieving the goal, in much the same

manner as an action is helpful to an unachieved goal if it lowers the heuristic

estimate. Equation 4.12 shows how each observation is classed as helpful or not.

Ht(G) =


1 if ht(G) < ht−1(G),

1 if ht(G) = ht−1(G) = 0,

0 otherwise

(4.12)

The application of a heuristic bonus to goals which are achieved prior to

plan completion is a necessity in the relaxed goal-space. Without the bonus,

and considering only the heuristic distance moved towards achievement since

observation began, the probability of the goal will decrease monotonically until

plan termination. This is simply because the assumption of the agent always

working towards a single (conjunctive) goal no longer holds.

However, while giving bonus scores to facts which are true across consecutive

states allows those facts to remain probable goal candidates, it obscures those

goals that are both mutually-exclusive and are still being actively pursued. That

is, if goal A has been true for several observations, but that goal B is moving

closer to achievement, the addition of a bonus for goal A will result in both goals

receiving higher probabilities. Over time this will cause goal A to always be

output as the true goal, despite goal B consistently becoming closer. B will only

be considered as the true goal once it has become true and A has been negated,

and crucially, the number of helpful or bonus observations for B exceeds those of

A.

Unfortunately, there is no elegant solution to this problem. In the example
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given, it is stated that B is the true goal, but the heuristic movement could also

be observed through the side-effects of achieving the non-mutex goal C.

Therefore, the most reasonable course of action is to use the final observation

as an indicator that A truly was not the goal. This uses hindsight to note that the

amount of work put towards A was lower than previously considered. Equation

4.17 shows how this affects the maximum likelihood of a literal being part of the

true goal. In this, a bonus is only applied to the member of a sub-goal-space which

is currently true and has been consecutively true for more than one observation.

Equation 4.15 defines when the bonus is applicable to a goal, G, which is a

member of sub-goal-space G, and where C(G) refers to the number of consecutive

timesteps that a fact has been true (Equations 4.13 and 4.14). This is used by

Equation 4.16, which defines whether an observation at time t is helpful to the

goal’s achievement through either a reduction in the heuristic estimate or the

bonus, B(G), being applicable. This progresses the concept of work performed

by the agent from being one of counting heuristic reductions alone, to one of

counting “helpful” observations (reductions and bonuses), as defined in Equation

4.16.

C(G) = C(G,Scurrent) (4.13)

C(G,St) =

{
1 + C(G,St−1) if G ∈ St,

0 otherwise
(4.14)

B(G,G) =

{
1 if C(G) > 1,

0 otherwise
(4.15)

Ht(G,G) =


1 if ht(G) < ht−1(G),

1 if B(G,G) > 0,

0 otherwise

(4.16)

WML(G) =

∑|O|
t=1Ht(G,G)

|O|
where G ∈ G (4.17)

However, the assumption that the currently true literal in a sub-goal-space

is the true goal is unreasonable for most domains, particularly those with high

concurrency in plans. The constraints under which the bonus is applied are

therefore tightened to only consider facts which are both true for at least two
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timesteps and for which all other members of the sub-goal-space have had their

heuristic estimate increase. Thus, in the previous example the bonus would never

be applied as B is constantly pursued after A has been achieved. Equation 4.18

shows this updated version of B(G,G).

B(G,G) =

{
1 if C(G) > 1 and ∀Gi ∈ {G \G}, ht(Gi) > ht−1(Gi),

0 otherwise
(4.18)

To recap, the above equations define a method of counteracting the loss of

completeness in the relaxed goal-space, caused by suboptimal observations and

concurrency in achieving goals. A bonus is applied to currently true goals where

an observation has not reduced the distance to any mutex goal in the respective

sub-goal-space. This is done to mitigate situations in which the true goal has

been achieved, but other members of the same sub-goal-space may become closer

through side-effects of future observations, or suboptimal choices by the subject.

While observations which do not reduce the distance to a goal literal can now

be classed as helpful to their achievement, the use of the bonus score is not without

issue. By believing that the currently true literal G in a sub-goal-space is the

true goal, there is potential for hypotheses to become skewed towards currently

true goals only. This perhaps belies a more fundamental question of whether a

literal which has been true for n observations is a more relevant goal candidate

than the subsequent transition to a mutex literal, G′ at time n + k. The use of

the bonus count in producing an estimate for WML(G) states that until further

evidence is observed, there is no reason to believe that any goal other than G is

the goal (unless there has actually been more work put towards a mutex goal).

Only after G′ has been achieved can the work function be updated to remove

these incorrect bonus scores, thus reducing the work associated with G being the

true goal.

A positive side-effect of applying a bonus to stagnant facts is that the model

can implicitly detect persistent goals. These are goals which are true in the initial

state and remain unmodified throughout observation. The detection of these is

highlighted as one of the features the heuristic-based model has in common with

the prior work of Geib et al. in Section 3.6.2, where they were referred to as

safety goals.
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4.3.6 Alternatives to Maximum Likelihood

By altering the conditions under which an observation is classed as helpful to a

goal, the modified maximum likelihood function advances towards a more accu-

rate approximation of the original definition of WML (page 52). However, it may

be that the conditions under which the bonus is applied are never met, as having

all mutex goals in a sub-goal-space become further away after an observation

may not occur in some domains. It is more likely that one or two members will

have some slight movement over time, but that the currently true goal remains

achieved throughout the remainder of observation.

The key here is that once a goal is achieved (and is assumed to remain

achieved), all subsequent observations are irrelevant to the amount of work per-

formed if the bonus is not applied. This is especially true if there is no causal

link between the achievement of the first goal and subsequent goals. The goals

are therefore at least semi-independent of one another, and may have weak con-

straints on their temporal ordering. It is therefore logical that recognition per-

formance could be improved if these irrelevant observations were ignored from

the computation of work performed. The following section explores one approach

to determining which observations contribute towards the achievement of a goal,

and uses this in computing a more useful value for W (G).

Work Performed Across Sub-Plans

In the complete goal-space, the value of WML is a perfect indicator of whether an

individual or conjunctive literal is a goal candidate. In the relaxed model this is

not the case. Here, the agent’s goal is considered to be made of several individual

goal-literals, which is not equivalent to a conjunctive goal in the original goal-

space. Therefore, the agent’s plan may achieve one goal with the first part of

the plan, and the remaining goals with the remainder of the plan. Alternatively,

the agent may achieve goals using any ordering of actions, with some actions

contributing towards achieving more than one goal literal. The challenge here is

in modelling the causal-links between observations, such that only those actions

which were required to precede the helpful observation are considered relevant to

computing the work performed. This can be viewed as being equivalent to the

construction of a graph which models these causal-links between observed actions

and the states which precede and succeed them.

Consider the following logistic example shown in Figure 4.8, in which three

packages, package1, package2, package3, must be delivered to their respective
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destinations. All packages start out at the same location, loc0, with two trucks

truck1, truck2, also at this location. package1 and package2 must be deliv-

ered to location loc3 and package3 to loc6. The recogniser then observes the

twelve-step, totally-ordered plan shown in Table 4.4 which achieves the agent’s

true conjunctive goal of (and (at package1 loc3) (at package2 loc3) (at

package3 loc6)).

A human observer can see that there are two sub-plans within this totally-

ordered plan and use this information to infer each sub-goal, along with the true

overall goal. Here, each sub-plan is referred to as a plan thread as it will nor-

mally account for only part of the overall plan, and may interleave with other

plan threads when necessary. The resulting graph10 is referred to as the plan-

thread graph. Extracting the relevant portions of the plan-thread graph should

allow a more intuitive value for W (G) to be extracted. The graph is constructed

iteratively as follows.

Plan Thread Graph Construction After each observation O the observed

plan is scheduled such that each observation is assigned a timestamp s indicating

its earliest possible application time. That is, the observation could have been

seen at time 0 ≤ s ≤ t, but due to the linear nature of the observed plan, it

was observed at time t. The simple algorithm which performs this scheduling is

omitted here for brevity, but can be found in Appendix A.

The scheduled observation Os
t is then linked to at least one of the states in

the plan graph which exist at time s. Scheduled actions are simply a tuple Os
t =

{s,Ot}, corresponding to an action observed at time t with earliest scheduled

time s. While plan threads are constructed iteratively, they can also be extracted

by performing an all-paths search from any leaf nodes to the root of the graph

(which is equivalent to the initial state of the problem). The set of existing plan

threads is denoted T, and is a subset of the original plan-space, T ⊆ P, which is

updated after each observation.

Once the plan has been scheduled, the construction of the plan-thread graph

can begin. The output of this process is a series of plan threads, each of which is

itself a normal, valid plan as defined in Section 3.2.3. Each plan thread encapsu-

lates the set of actions which are required in order for the last action in the plan

thread to be applicable. Any actions which are part of the original plan, but have

no effect on the achievement of this final scheduled action will not appear in the

10In reality this may actually an n-ary tree, provided that each action requires a single
predecessor state. If more than one is required, it can be considered a single-directed graph.
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t s Obs

1 0 load package1 truck1 loc0

2 0 load package2 truck1 loc0

3 1 drive truck1 loc0 loc1

4 0 load package3 truck2 loc0

5 2 drive truck1 loc1 loc2

6 1 drive truck2 loc0 loc4

7 3 drive truck1 loc2 loc3

8 4 unload package1 truck1 loc3

9 2 drive truck2 loc4 loc5

10 5 unload package2 truck1 loc3

11 3 drive truck2 loc5 loc6

12 4 unload package3 truck2 loc6

Table 4.4: The timestamps for a series of observed actions in both a totally-
ordered and scheduled context. Column t indicates the time at which the action
was observed, while column s indicates the earliest time at which the action
could have been observed. The scheduled time can then be used in construction
of the plan-thread graph. An algorithm which performs this scheduling is given
in Appendix A.

plan thread.

Definition 22. Plan Thread

A plan thread is a tuple T = {I,Θ, head(T )} where I is the initial state of

the problem and Θ is a set of ordered tuples representing the actions and state

observed thus far. Each θ ∈ Θ is itself a tuple θt = {Spred, Os
t , Ssucc}, where

Spred is the set of predecessor states which are required to apply action Os
t , such

that
⋃
Spred ⊇ Opre. Ssucc represents a single successor state which is formed by

applying actions O1
1...O

s
t in order from I. Each θ ∈ Θ is naturally ordered by the

timestamp s ∈ Z+ associated with each observation, θ(Os
t ).

head(T ) represents the plan thread head — the state which is created by

applying all actions in the thread in order from state I, and is equivalent to the

final member of Θ, head(T ) = Θlast(Ssucc).

Plan threads are constructed iteratively after each observation, with a single

plan thread guaranteed to be returned during the threading process. Whether this

is an existing thread or a new thread is dependent upon the timestamp assigned

to the observation by the scheduler and the thread to which it is assigned. If

the observation has timestamp s ≥ head(T )t, where head(T )t is the timestamp
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0

1

1: load package1 truck1 loc0

2

2: load package2 truck1 loc0

3

3: drive truck1 loc0 loc1

4

4: load package3 truck2 loc0

5

5: drive truck1 loc1 loc2

6

6: drive truck2 loc0 loc4

7

7: drive truck1 loc2 loc3

8

8: unload package1 truck1 loc3

9

9: drive truck2 loc4 loc5

10

10: unload package2 truck1 loc3

11

11: drive truck2 loc5 loc6

12

12: unload package3 truck2 loc6

(a) The original, totally-
ordered plan.

0

1

0.001: load package1 truck1 loc0

2

0.002: load package2 truck1 loc0

4

0.003: load package3 truck2 loc0

3

1.001: drive truck1 loc0 loc1

5

2.001: drive truck1 loc1 loc2

6

1.002: drive truck2 loc0 loc4

7

3.001: drive truck1 loc2 loc3

9

2.002: drive truck2 loc4 loc5

8

4.001: unload package1 truck1 loc3

10

5.001: unload package2 truck1 loc3

11

3.002: drive truck2 loc5 loc6

12

4.002: unload package3 truck2 loc6

(b) The same plan as Figure 4.8a after being transformed into
a plan-thread graph.

Figure 4.8: The plan shown in Table 4.4 in its original totally-ordered form (4.8a)
and after scheduling and thread-graph construction has taken place (4.8b).

of the head of T , then it will be appended. If s < head(T )t, the thread will be

branched at time s to form a new thread, Tnew.

• Append — An action Os which has been scheduled at timestamp s can be

appended to T ∈ T if s is equal to the timestamp of head(T ) and Os
pre ⊆

head(T ). This will result in a tuple θnew = {head(T ), Os, heads+1(T )}, where

heads+1(T ) is the state formed by applying Os in the head state. After θnew

is created, it is added to Θ, and head(T )s+1 becomes the new thread-head.
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The number of threads present in the graph remains the same, |Tt| = |Tt−1|.

• Branch — Given a scheduled observation Os
t , an existing thread T ∈ T can

be branched to form a new thread Tnew, if ∃θ ∈ T (Θ), such that θ(Sssucc) ⊆
Opre. That is, thread T contains a tuple θ which has a successor state

Ssucc that is true at time s, which satisfies all preconditions of Os
t . The

branched thread is created by copying the actions of thread T up to time s.

Formally, Tnew = 〈T (I), T (Θs), head(T )s+1〉, where T (Θs) = 〈θ0...θs〉. This

new thread then has Os appended in the manner described above. Thread

T remains unaltered by this process, with Tt = Tt−1 ∪ Tnew

Both of the above operations assume that there will be a single thread which

the observation can be appended to at time s. However, for most plans this

is unlikely, as there is often a degree of overlap between threads, meaning they

must be merged before the action becomes applicable. For example, thread TA

may have a head containing facts {x, y}, while thread TB has head {y, z}. A

new observation which requires {x, y, z} to be true will require a combination of

both thread-heads, meaning threads TA and TB must be merged to form a new

thread before the observation can be appended, with the same principle applying

to branching of threads at time s.

Merging Threads If an action cannot be appended or branched from any

of the existing thread heads, it is because the action’s preconditions cannot be

met by a single state at time s. In this case, multiple threads must be merged

together in order that the action’s preconditions can be met. Given that each

thread represents a partial-plan, merging 2 ≤ n ≤ |T| threads is guaranteed to

produce the true current state.

The specific n threads selected to be merged are those which last achieved the

required preconditions. Preferring late-achievers of a fact over early-achievers

has two advantages. First, this information has already been determined sepa-

rately during the initial scheduling process, and can be directly referenced during

threading. Secondly, this removes the potential for ties between threads as to

which is the best for inserting the observation into. By always preferring the last

action which achieved a fact f , the algorithm is certain to terminate. If a thread,

Tearly, which contains an earlier achiever of f is used instead, there is a possibility

that a future observation which is appended to Tearly will delete f within the as-

sociated thread-head. This will render threading impossible because the union of
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Algorithm 7 The algorithm for updating the current thread-head is simply a
matter of taking the thread T , and applying the operator Os

t which is associated
with each tuple θ in the totally-ordered set Θ.

Require: T = {I,Θ, head(T )}
head(T ) := I
for all θ ∈ Θ do
a := θ(Os)
head(T ) := (head(T ) \ adel) ∪ aadd

end for

the active thread-heads no longer contains the relevant set of preconditions, and

it cannot be detected by the scheduler, as the action has not yet been observed.

When n threads must be merged, a new thread is constructed by simply

copying over all tuples within each thread’s Θ set into a new set Θmerge which

represents the merged thread. This new tuple Tmerge now represents a single

thread, but still retains the parallelism which was present in the previous threads,

as each θ ∈ Θmerge is still valid. That is, each tuple encapsulates the states

required for an action to be applicable, plus the single successor state. In this

way, merged threads can themselves contain multiple previously-merged threads.

Once Θmerge is constructed from the set of threads to merge, Tmerge, as

Θmerge =
⋃|Tmerge|
i=1 Ti(Θ), a further stub tuple θmerge must be appended to con-

struct the state from which Os
t is applicable. The purpose of this tuple is

to provide a link between the n threads to be merged, such that θmerge =

{Smerge,M, head(T )s}, where Smerge =
⋃|Tmerge|
i=1 head(Ti), M is an empty action

of the form M = 〈∅, ∅, ∅〉, and head(T )s is computed as in Algorithm 7. Finally,

with the merge action in place and the new plan-head computed, action Os can

be appended as normal.

Threading Algorithm After each observation at time t, the action is added

to the totally-ordered plan P , which is then scheduled using Algorithm 13 (page

215). As the scheduler is deterministic and considers actions strictly in the order

in which they were observed, they will always be assigned the same scheduled

timestamp s. The timestamped action, Os, and the set of threads, T, which

existed at time t−1 are then passed to Algorithm 8 in order that the observation

can be assigned to a thread.

The algorithm returns a single thread Tnew which has its head at time s+ 1,

mapped to the threads from which it was created. These modified threads can

be discarded when performing batch-threading (wherein the entire plan is known
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Algorithm 8 The batch threading algorithm. This requires a pre-scheduled plan
PS = 〈O0

0...O
m
n 〉, where n is the total number of actions in the plan and m is the

timestamp of the latest scheduled action.

Require: PS
t := 0 {Initialise timestamp counter}
Tinitial := 〈I, ∅, I〉
add(T, Tinitial)
while |PS| > 0 do
Told := ∅
Tnew := ∅
for all Os ∈ PS do

if Os(s) = t then
Tparent := ∅
Tnew := scheduleAction(Os,T,Tparent)
add(Told,Tparent)
add(Tnew, Tnew)

end if
end for
t = t+ 1 {STRIPS-based actions, all have cost 1}
T := (T \ Told) ∪ Tnew

end while
return T {Return final threads at t}

apriori), or retained in iterative-threading. In the former case which is detailed

in Algorithm 8, all actions are processed at-once, meaning that only a single set

of threads need be kept during processing as all actions which will exist at time

0 ≤ s ≤ |P | are known. This essentially removes the need for explicit branching

of threads.

In the latter case of iterative threading (Algorithms 9 and 10), all threads

present at time s must be retained throughout execution. By keeping note of all

threads which exist at each timestamp, the observed action can be appended to

one or more of these threads without the need to consider actions before or after

time s. For instance, if a new observation is scheduled for time s = 5, all threads

which have their thread-head at time 0 ≤ k ≤ s need be considered as potentially

supporting the observation (which leads to appending, branching or merging).

Once threading is complete, the thread to which the observation has been

appended is returned to IGRAPH. This provides context as to which of the

previous observations were required for the current observation to take place.

This information can then be used to assist in the recognition process, by deriving

a new work function.
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Algorithm 9 The iterative threading algorithm. This requires a single scheduled
observation Os which is to be added to at least one of the threads active at time
0 ≤ s ≤ m, and a list of all threads which have existed at all timepoints during
the threading process, Tall = {T0...Tm}, where m is the timestamp of the latest
thread-head in Tall.
Require: Os,Tall
Ts := Tsall
Tnew := scheduleAction(Os,Ts) {See Algorithm 10}
add(Tall(s+ 1), Tnew) {Add the new thread to those at time s+ 1}
return Tnew

Algorithm 10 The scheduleAction method takes in a single action to be ap-
pended to one of the threads in Ts or a combination of threads within this. The
collection Told = ∅ is populated with those threads which are used to create the
returned value, Tnew, such that Told ⊆ Ts.

Require: Os,Ts,Told
Tlink := ∅
for all pc ∈ Opre do
Tlink := lastAchiever(pc,Ts)
add(Tlink, Tlink)

end for
Tnew := NULL
if |Tlink| > 1 then
Tnew := merge(Tlink) {Merge and append “stub” action}

else
Tnew := poll(Tlink) {Only 1 thread, so remove from list}

end if
append(Os, Tnew {Add the action to the chosen thread}
Told := Tlink
return Tnew

Using Plan Threads to Compute Work Performed Now that a more ac-

curate representation of the causal links between actions has been produced, it

becomes possible to obtain a more refined value for W (G). Given that the ob-

served action Ot lowered the heuristic estimate to G, the thread to which this was

appended is marked as being helpful in achieving G. That is, instead of comput-

ing WML(G), which considers those steps that have been useful across the entire

observed plan, the threaded maximum-likelihood score WMLT (G), considers those

observations which were helpful in achieving G against only those observations

which were required to make these actions applicable. For example in Figure 4.9,

if observation O6 is considered helpful in achieving goal G, then only observations
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I

1O1

4

O4

2O2 3O3

5O5 6O6

Figure 4.9: The result of applying Algorithm 8 to the observed, totally-ordered
plan P = 〈O1...O6〉 shown in Table 4.3 (page 96). Actions which can be sched-
uled at a timestamp earlier than their observation time are linked only to the
actions/states which achieve their preconditions. For instance, O4 is not linked
to O3, as this latter observation has no impact upon the achievement of O4. This
results in two sub-plans being formed, which can be used to improve the value
for W (G).

4 and 5 are required to compute the value of work performed, as these were the

only actions which allowed the execution of observation 6.

In simple terms, the threaded maximum-likelihood value is the same process

as computing WML, but in the context of a (hopefully) smaller set of observa-

tions, such that WMLT (G) ≥ WML(G),∀G ∈ G. Equation 4.9 provides a formal

definition of this process, where Thelpful ⊆ T is the set of threads which contain

an action that has been considered helpful in achieving fact G. Note that there

is still potential for the bonus to be applied through H(G,G), which remains as

defined in Equation 4.16. The only difference between this and WML is the de-

nominator, which considers a smaller or equal number of observations as being

relevant.

WMLT (G|Ot) =

t∑
i=1

Hi(G,G)∑
|T |

∀T ∈ Thelpful(G),where G ∈ G
(4.19)

Here the numerator remains the same as in the original formula for WML —

representing the number of observations which have lowered the estimate to G.

The denominator represents the cumulative length of every thread which has been
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helpful towards achieving G. Steps which are not relevant to the achievement of

G are ignored from the calculation, resulting in a higher score.

In the previous example using Figure 4.9, the value of work performed after

observation Os=3
t=6 would therefore be WMLT (G∗) = 1

3
, given that only this obser-

vation was helpful; there are no bonuses applied, and the thread the observation

is appended to has length 3. If instead observations Os=1
t=2 , Os=2

t=3 and Os=3
t=6 were

helpful, the value would be WMLT (G∗) = 3
6

= 0.5, as both threads contain a

helpful action. In this case, WMLT (G∗) = WML(G∗). A visual example of this

is shown in Figure 4.10, in which the thread-graph becomes more connected as

further observations are processed, until it represents a single-thread.

As this figure shows, depending upon the domain and plan observed, the

thread graph can become highly-connected as more observations are processed.

Therefore, the longer the plan the more likely it is that observations which are

present in multiple threads become necessary to activate subsequent actions which

lower the distance to the goal.

All False Goals As with the maximum-likelihood work function, the threaded-

maximum-likelihood must also accommodate the all false literals introduced in

Section 4.3.1. Luckily, this is trivial as the work contributed towards an all

false goal within a sub-goal-space remains the same as for the case of maximum-

likelihood. The threaded-maximum-likelihood for a normal, positive goal is de-

rived as a function of how many steps have been helpful over those steps required

for them to be helpful. However, the work put towards the all false goal re-

mains the number of observations which have moved all positive, mutex goals

further from being achieved. The thread to which these actions are appended is

irrelevant.

Like the maximum likelihood model, WMLT retains the assumption that all

goals in the sub-goal-space are mutually-exclusive, despite this no longer being

the case. It also retains the implicit assumption that the majority of steps in the

plan or thread will contribute towards achieving the true goal G∗ (with the hope

being that WMLT (G∗) provides a higher value than simply WML(G∗)).

However, in domains where several overlapping goals are achieved using very

short plan-threads, but the overall plan length is considerably higher, both of

these work functions will produce values which degrade over time. The following

section therefore presents an alternative model in which only the current obser-

vation is used in the computation of W (G).
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0

1

0.001: O1

4

0.002: O4

5

0.003: O5

2

1.001: O2

3

2.001: O3

9

1.003: O9

10

10.001: O10

11

11.001: O11

6

1.002: O6

7

2.002: O7

8

3.002: O8

(a) A threaded representa-
tion of an incomplete plan.
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0.001: O1
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0.002: O4

5

0.003: O5
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1.001: O2
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2.001: O3
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13.001: Merge

9

1.003: O9
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10.001: O10
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12.001: Merge 11

11.001: O11

12.001: O12

13.001: O13
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14.001: O14

6

1.002: O6

7

2.002: O7

8

3.002: O8

(b) The threaded represen-
tation of the same plan,
with additional observa-
tions.
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13.001: Merge
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1.003: O9
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10.001: O10
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1.002: O6
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2.002: O7
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3.002: O8
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15.001: Merge
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12.001: Merge 11

11.001: O11

12.001: O12

13.001: O13
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14.001: O14

15.001: O15
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16.001: O16

(c) The threaded representa-
tion of the complete plan.

Figure 4.10: The thread-graphs produced at t = 11, t = 14 and t = 16 for an
example 16-step plan. In all cases actions which have been helpful in achieving
the goal G are denoted with a dashed line. Threads which contain at least one
of these helpful observations are shaded. In Figure 4.10a, only a single thread is
considered helpful and all observations within it are also helpful, giving a value
of WMLT (G) = 3

3
= 1. In Figure 4.10b, an action in the left-most thread has also

been useful in achieving G, therefore it too is included as part of the sub-plan
which is trying to achieve G. The value of work in this case is WMLT (G) =
5
10

= 0.5. The respective values for Figures 4.10a and 4.10b using only maximum
likelihood would be WML(G) = 3

11
= 0.27 and WML(G) = 5

14
= 0.36. In the

final figure, all threads have converged into a single thread which encapsulates
the entire observed plan, giving a value of WMLT (G) = WML(G) = 7

16
= 0.44.
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Work Performed Across Mutex-Sets

As stated above, when computing WML(G) the entire observed plan is considered

relevant, which may lead to low values during later observations as only single lit-

eral goals are considered. Threading plans can assist in mitigating the possibility

of goals being pursued in an interleaved and partial-ordering by producing higher

values than would otherwise be computed by WML. However, both of these cases

ignore the fact that goals G ∈ G∗ are probably mutually-exclusive with several

others in G. For example, if an observation is helpful towards goal G1, then it

can be considered unhelpful for all those goals which are mutually-exclusive with

G1 (and have not also become closer).

Calculating work in this context takes full advantage of the relaxed multi-

variate goal-space model GV , by considering how helpful each observation is with

respect to only the members of each sub-goal-space. As each sub-goal-space Gi

contains only facts which are mutually-exclusive, the amount of work performed

by single action, WSA, can be said to be distributed across these goals. Equation

4.20 provides a definition of this, where G is the goal-space of which G is a mem-

ber and Gnearer ⊆ Gi is the set of all goals in the goal-space which have had their

heuristic estimate reduced by the observation or have had a bonus applied.

WSA(G|Ot,G) =


1

|Gnearer|
if Ht(G,G) > 0,

0 otherwise

(4.20)

WSA can be seen as a minimalist interpretation of the threaded-maximum-

likelihood function presented previously. Here, instead of considering only those

steps in the plan which are deemed relevant to the specific goal, only the current

observation is of interest. WSA spreads the work performed across those goals

which have become closer through the previous observation, WSA(G) ∈ [0 : 1].

Table 4.5 shows the value of W (G) using each of the proposed metrics after

each observation, in the context of the example plans given in Figure 4.8.

Unlike WML and WMLT , the single action configuration does not consider

historical context. Moreover, it does not correct any historical references to ob-

servations which have been incorrectly assigned the heuristic bonus, as defined in

Section 4.3.5. That is, if observation Ot−1 is marked as helpful to a goal (where

t < |P |) but this is later removed due to the goal estimate changing after a subse-

quent observation, the probability of the goal will not be recomputed to consider

this — only the current value of WSA (and thus whether the current observation
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Time (at package1 loc3) (at package2 loc3) (at package3 loc6)

WML WMLT WSA WML WMLT WSA WML WMLT WSA

1 1.00 1.00 0.14 0.00 0.00 0 0.00 0.00 0
2 0.50 1.00 0 0.50 1.00 0.13 0.00 0.00 0
3 0.67 1.00 0.33 0.67 0.67 0.33 0.00 0.00 0
4 0.50 1.00 0 0.50 0.67 0 0.25 1.00 0.13
5 0.60 1.00 0.50 0.60 0.75 0.50 0.20 1.00 0
6 0.50 1.00 0 0.50 0.75 0 0.33 1.00 0.33
7 0.57 1.00 1.00 0.57 0.80 1.00 0.29 1.00 0
8 0.63 1.00 1.00 0.50 0.67 0 0.25 1.00 0
9 0.56 1.00 0 0.44 0.67 0 0.33 1.00 0.50

10 0.50 1.00 0 0.50 0.71 1.00 0.30 1.00 0
11 0.45 1.00 0 0.45 0.71 0 0.36 1.00 1.00
12 0.42 1.00 0 0.42 0.71 0 0.42 1.00 1.00

Table 4.5: The difference in value for W (G) using the various definitions, over the
12-step example plan outlined in Figure 4.8. Only the true goals are enumerated.
Entries for WSA with a ‘0’ indicate that no work was performed for the relevant
goal.

is helpful) is considered.

In some ways this makes the WSA function a more näıve approach to com-

puting the helpfulness of an observation, but in doing so better captures the

interaction of the agent with multiple goals. Further, any historical mistakes by

the agent are ignored, minimising the chance of probabilities decaying over time

While assigning bonuses to achieved facts is a suitable means of continuing to

support potential goals after achievement, the relaxed model must be modified in

one more way before recognition under relaxed conditions can take place. This

involves accepting that both agents and observers are not rational, and therefore

that they may make mistakes in their heuristic estimates. In particular, the

potentially suboptimal nature of plans combined with the relaxed single literal

goal-space can mean that an observation contributes no work towards a fact which

is actually a goal. This, in turn, would produce a posterior probability of zero

for the goal, which eliminates it from future consideration.

Preventing Zero-Valued Posteriors

The above modifications to the definition of work performed are in accordance

with the assumption that the agent will display bounded rationality as outlined
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in Section 4.3.1. However, all of these functions (which are used as the likelihood

function during Bayesian updates) have the potential to output a zero-value for

work performed by an observation. In the complete and optimal goal-space this

is not important — indeed, it is the preferred behaviour — but the relaxed goal-

space it can lead to zero-valued Bayesian posteriors.

For example, in Table 4.5, the posterior probabilities of (at package2 loc3)

and (at package3 loc6) after the first observation would always be zero, as the

action observed has contributed nothing towards its achievement. This is because

the first observation is aimed at achieving the non-mutex goal (at package1

loc3). As each literal is considered individually in the relaxed goal-space the

posterior probability for (at package2 loc3) and (at package3 loc6) would

be zero. This is despite both literals still being valid goals. Therefore, the stan-

dard Bayesian update formula (Equation 3.3) outlined in Section 3.4 must be

modified to consider the possibility of conjunctive goals in the relaxed goal-space.

Inspired by work in Information Retrieval [164], a smoothing parameter, λ,

can be introduced into the Bayesian update formula to remove the chance of a

posterior probability being zero. Equation 4.21 shows this modification, which

uses the constant λ ∈ (0 : 1) to smooth probability updates for goal G with a

non-zero value for W (G|O)11. If O has not contributed towards achieving G, the

second term ensures a non-zero probability is returned for the likelihood function.

Until now, the likelihood function of Bayes’ theorem and work performed have

been equivalent. However, from this point onwards these should be treated as

separate concepts.

P(O|G,G) =

[
λ×W (G|O)

]
+

[
(1− λ)× 1

|G|

]
where G ∈ G (4.21)

This minor modification prevents any goal being eliminated from the goal-

space due to a posterior of zero. The effect of the smoothing constant for

W (G|O) = 0 is to spread the work attributed to O across all G ∈ Gi. The

degree to which this work is spread is dependent upon the value of λ. Low values

will cause a smaller value to be returned for the likelihood function, which will

result in smaller posterior increments or decrements, with the opposite being true

of high values.

11A value of λ = 1 will result in the same behaviour as if an optimal heuristic and single
literal goal is assumed, while λ = 0 would ignore all observed evidence.
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High values of λ would emulate the original assumption of optimality in the

agent and completeness in the goal-space, while low values would indicate that

observations had little impact upon the goal being pursued. Note that if this

value was different for each goal, the value of λ would equate to how relevant the

observation was for each goal (or how “trustworthy” it is in a partially observable

environment). For example, a high value of λ would mean that the observation

is highly relevant to the posterior of a goal, while low values would indicate that

it is irrelevant or perhaps untrustworthy. However, as stated, this work does not

explore this possibility and instead uses a fixed value for λ.

Indeed, the value of λ used within IGRAPH is somewhat moot, as the al-

gorithm used to construct hypotheses (page 79) will always output the same set

of goals regardless of λ value used. This is because a constant λ ∈ (0 : 1) value

simply dampens the resulting posterior probability, regardless of the specific goal.

For instance, using a value of λ = 0.99 on uniformly distributed goals G1, G2 ∈ G1

may produce posteriors of P(G1) = 0.995 and P(G2) = 0.005, while a value of

λ = 0.01 results in P(G1) = 0.505 and P(G2) = 0.495. For all values of λ, goal

G1 will always be inserted into the resulting hypothesis over G2. Therefore, while

possibly interesting for future work, the λ value currently serves only to prevent

zero-value posteriors.

Stability as an Indication of Goal Likelihood

One of the underlying assumptions given previously is that agents will always

strive to retain any goals which are achieved prior to plan termination. That is,

if the agent achieves one of their goal literals on the first observation of an n-step

plan, they will try to keep this literal true over the remaining steps, such that it

is never negated then re-added later.

This is simply the goal’s stability, as defined previously in Section 4.3.2. This

stability, Υ(G) ∈ (0 : 1], is the number of timesteps over which the goal has been

true since its first achievement, and serves as a useful addition to the likelihood

function, P(O|G).

P(O|G,G) =

[
λ×W (G|O)×Υ(G)

]
+

[
(1− λ)× 1

|G|

]
where G ∈ G (4.22)

The inclusion of the goal stability can provide context to facts which rapidly

fluctuate between true and negated, that would otherwise be added to hypothe-
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ses. For example, in the Zenotravel domain, planes must carry passengers

between airports. Given that the same plane may visit the same airport multiple

times within a plan, the stability of the goals describing the plane’s location (such

as (at airport1 plane)) will dwindle after the first visit. If the stability is not

considered, the movement between airports can result in a uniform distribution

across those airports the plan can fly to, which leads to a poor hypothesis. How-

ever, if the stability is included as shown in Equation 4.22, the resulting value

for the likelihood function will be dampened such that it is lower than previously

computed. By itself this is not of great importance, as the posterior probability

will not change greatly if all facts considered in the Bayesian update exhibit this

behaviour. However, recall that the all false goal which exists in every sub-goal-

space will always have a stability of 1. Therefore, problems in which the standard

positive literal members of a sub-goal-space have low stability, can potentially re-

sult in the all false goal having a high posterior due to a higher-valued likelihood

function. This is the desired behaviour, as throughout observation the recogniser

will begin to believe that low-stability goals are of no relevance in being included

in hypotheses.

Of course, it is possible for facts which have low stability values at the end of

recognition to actually be part of the true goal. These were termed maintenance

goals in Section 3.6.2, where they were described as being a goal which is only

actively pursued for part of the plan (after being negated). By incorporating the

stability of the goal in the likelihood function, detection of these maintenance

goals becomes more difficult as posterior probabilities will be lowered. However,

the use of the goal stability does not prevent the detection of these goal types,

merely that this detection is less likely.

4.3.7 Bounded Hypotheses in a Relaxed Goal-Space

Section 3.4.3 defined a method for estimating the number of observations remain-

ing, ε ∈ {x ∈ Z+|1 ≤ x ≤ τmax} as being equal to the number of steps required

to achieve the goal in G with the highest associated probability (where τmax is

the distance from the current state to the furthest goal). In the relaxed model,

these same principles apply, with the exception that the heuristic estimate may

now be inaccurate.

The impact of this loss of accuracy is naturally that the number of estimated

steps to achieve the same goal may change (or remain the same) between obser-

vations. For example, if h(G) = 4 after an observation, the successive estimation
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may be h(G) ≥ 4. In turn, this will impact the number of bounded hypotheses

produced.

After each observation, n bounded hypotheses can be produced as described

in Section 3.4.4 (page 58), where 1 ≤ n ≤ τmax. In the relaxed model these hy-

potheses are still computed in the same manner as previously, but the possibility

of inaccurate values of n may cause extraneous hypotheses to be produced. While

the method for extracting these hypotheses remains unchanged, it is no longer

applied to the multivariate goal-space, but rather to each sub-goal-space in GV .

Bounded hypotheses are constructed in an identical manner to intermediate

hypotheses, albeit with a smaller pool of goal literals to choose from. Whereas

intermediate hypotheses can select any combination of goals across GV , bounded

hypotheses are limited to those which have an estimate of 1 ≤ h(G) ≤ τmax. If a

bound, b, is placed on the hypothesis, the set of potential goals is constrained to

those where 1 ≤ h(G) ≤ b. In other words, only goals which can be achieved after

the current state but prior-to or at the bound are considered valid candidates.

This subset of the goal-space is then used to construct a greedy hypothesis in

the same manner as given in Algorithm 3. This approximates the behaviour of

the complete model by allowing conjunctive bounded goals to be considered.

4.3.8 Library Integration

In the relaxed goal-space, only single literal facts are enumerated to enable

tractable recognition. However, this does not disallow the presence of conjunctive

goals in G. Such goals can largely be treated in the same manner as single literal

goals, making integration of an existing goal-library a simple operation.

By including conjunctive goals, the observer can normally extract more accu-

rate heuristic estimates, and therefore improve upon recognition. The only feature

of the complete model which would need to be modified would be related to the

formation of sub-goal-spaces. Given that each sub-goal-space is formed from a

mutex-set, this set would need to be modified to consider the new conjunctive

goals. For instance, the mutex set M = {A,B} would have to be extended to

include goals which were mutex with relevant conjunctions, such as AC.

In reality, this modification could potentially be ignored. By leaving the orig-

inal mutex sets/sub-goal-spaces in their standard form and instead considering

each conjunction to only be mutex with its negation, the original algorithms used

for relaxed recognition can be retained. However, this is not ideal, as it invali-

dates the benefits in considering the goal-space as a distribution over mutex-sets,
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and moves the model towards the original complete goal-space wherein all goals

are mutex with one another.

Rather, the greedy relaxed hypothesis extraction algorithm (definition 18, page

78) would need to be modified to account for situations in which a conjunctive

goal and mutex single literal goal are put forward by the basic relaxed hypothesis

extraction algorithm (algorithm 3, page 79). For example, if conjunctive-goal AB

has probability P(AB) = 0.7 and the mutex goal BC also has P(BC) = 0.7, the

decision as to which goal (A,B,C,AB or BC) is included in the hypothesis must

be determined by the greedy algorithm.

4.3.9 Goal Abandonment

The ability to detect an agent abandoning their goal mid-plan was discussed

briefly in Section 3.6, where it was shown that this is implicitly catered for in the

heuristic-based model.

Modelling of goal abandonment is retained in the relaxed model of recognition.

As heuristic estimates are still used as the primary indicator of a goal being

pursued, a goal being abandoned should still result in a decrease in the associated

probability — although suboptimal heuristics may have an influence on the speed

of detection. Abandonment is also unaffected by the introduction of the single

literal goal-space, as abandoning individual goals can be treated in the same

manner as conjunctive goals in the complete goal-space. However, there are also

a number of other factors which will determine whether an abandoned goal is

successfully detected.

• Helpful Observations — The most important consideration in detecting

goal abandonment is naturally the number of observations which contribute

towards the original goal, versus the successor goal. As the likelihood of a

goal being abandoned is not computed separately, the switch between goals

is treated as a suboptimal (or irrelevant) series of early observations in the

overall plan. A high number of helpful observations for the first goal may

cause the second goal to be undetected. This is largely determined by the

work function used in the respective configuration of IGRAPH.

• Work Function — Naturally, the maximum likelihood work function,

WML, is targeted at optimal plan traces where the agent does not aban-

don the goal. Therefore, configurations using this function are expected

to perform poorly when detecting goal abandonment. WMLT will perform
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identically to WML in cases where the observed plan is totally-ordered. The

abandoned goal will only be found when WMLT determines that the suc-

cessor plan could have been started at an earlier time and the number of

helpful observations for the latter goal exceeds that of the first, making it

similarly unhelpful in detecting abandonment.

Finally, the WSA function offers the simplest behaviour for detecting aban-

doned goals. As only the current observation is considered when determin-

ing whether an observation is helpful, the probability of the abandoned goal

being the true goal will be exceeded once the successor goal has a higher

number of helpful observations.

• Abandonment Time — The time at which a goal is abandoned will have

a large impact on detection. Goals abandoned early or late in the initial

plan may be easier to detect than those abandoned midway. In the former

case, this is because there will have been minimal commitment to the goal,

while in the latter it is often the case that the work put towards achieving

the abandoned goal will also be useful in the context of the successor goal

(leading to a natural progression from the first to second goals). Goals

abandoned in the middle of a plan do not offer these properties, forcing

detection to be one of counting helpful observations.

• Stability — While unlikely for most problems, it is possible that the goal

which is abandoned may have been achieved and negated prior to aban-

donment. Alternatively, the successor goal may be possible only through

achieving the former goal. In situations like this, the stability of the aban-

doned goal will be lowered, impacting upon the overall probability (as given

in Equation 4.2).

• Successor Goal — As the previous point hints at, the agent’s successor

goal can dictate whether abandonment is viewed as simply a suboptimal

plan achieving the successor, or as an altogether different plan. For a suc-

cessor goal which is achieved through a similar set of plans to the predeces-

sor goal, detection is simply a matter of noting that the predecessor goal

has been achieved and that further actions have been observed. However,

if the abandoned and successor goal have no relation (altogether different

plans/areas of the goal-space), detection is determined by the criteria given

above.

118



Chapter 4. IGRAPH — A Library-Free Implementation of Goal Recognition

Each of these factors will have a role in determining whether the agent aban-

doning their goal is detected. In most cases, the total heuristic movement will

be the primary factor in this process, although the work function and time of

abandonment can also play a crucial role. Chapter 5.16 investigates how some of

these elements affect abandonment detection.

4.3.10 Relaxed Model Conclusions

The relaxed model of goal recognition given in the preceding section enables

tractable recognition to take place using a linear goal-space representation and

suboptimal heuristics for both observer and agent. In this form, IGRAPH can

be seen as a baseline implementation of the model given in Chapter 4.1, wherein

observations are used purely as a means of determining the agent’s goal.

Knowing that the agent will actively pursue their goal may be sufficient to

perform accurate recognition, in that the agent’s actions contain enough informa-

tion to derive their goal. However, many problems have an underlying structure

which makes certain literals more likely to be goals than others. At a basic level,

if these goals could be detected, then the uniform initial probability distribution

which has been assumed until now can be eliminated, and replaced with one

which favours these highly probable goals.

4.4 Inferring Structure From Domain Analysis

Section 4.3 introduced several relaxations to the previous optimal and complete

model given in Chapter 3, in order that goal recognition can become tractable

for non-trivial problems, without prior knowledge of the domain. Yet, while goal

recognition can be successfully performed using this new model, only information

encountered during observation (i.e. the observed actions themselves) is used in

inferring the agent’s goal. Thus, any information which can be extracted from

the domain at runtime is neglected, despite this potentially aiding in recognition.

IGRAPH introduces several techniques which are used to help “bootstrap”

recognition — fact partitioning ; goal causality, and hierarchical goal likelihoods.

These are primarily targeted at the generation of an initial probability distribu-

tion, which can assist in producing more accurate hypotheses in the early stages

of observation. Domain analysis is a common technique within the planning lit-

erature [16, 40, 51, 52, 53, 64, 65, 73, 84, 100, 138, 148, 149, 161], where it is

used to assist in focusing search towards the goal. In contrast, domain analysis is
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all but unknown in recognition12, as the availability of a plan-library negates any

need for feature extraction. This is unfortunate, as the presence of a plan-library

could only aid in the automatic derivation of domain knowledge.

4.4.1 Fact Partitioning

In any recognition task, a human expert can quickly derive the most probable

goals and methods with which to achieve them. This can often extend to any

human observer, who can draw on observations and their own previous knowl-

edge to infer the agent’s goal. In a propositional world such as that presented,

these common goals can sometimes fall into partitions, such that members of one

partition are more likely to be selected by a human observer as being in (or not

in) the goal set.

In IGRAPH, partitions are created for a subset of the goals contained within

GV , prior to observation beginning. Any information extracted can then be used

in the generation of the initial probability distribution, or during recognition.

Specifically, three non-overlapping subsets of the goal-space are extracted as fol-

lows, where g ∈ GV and π is the planning problem as defined on page 34.

Definition 23. Fact Partitions:

1. Strictly Activating — A fact g, is strictly activating if g ∈ π(I) and

∀a ∈ π(A), g /∈ aadd ∪ adel. Further, ∃a ∈ π(A), g ∈ apre, where π(A) is the

set of grounded actions.

2. Unstable Activating — Any fact g ∈ π(I) is unstable activating if ∀a ∈
π(A), g /∈ aadd and ∃a ∈ π(A), g ∈ apre and ∃a ∈ π(A), g ∈ adel.

3. Strictly Terminal — If ∃a ∈ π(A), g ∈ aadd and ∀a ∈ π(A), g /∈ apre, g /∈
adel.

Simplified, the partitions behave in the following manner. Strictly terminal

(ST) facts are those which do not appear as a precondition to any action, and

once added, cannot be deleted. Of all partitions, these are the most likely goal

candidates, as their achievement serves no other purpose (i.e. there is no causal

link between these and other goals). It is possible that an agent would wish to

prevent a ST goal becoming true, as this may represent an unwanted world state.

However, without observed evidence this is impossible to determine, but once

12With the recent exception of Keren et al. [99], although this is performed offline and
involves the generation of an optimal plan-space.
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this is available it should be clear whether the goal is being pursued or avoided.

Therefore, it is assumed that ST facts are indeed more likely to be goal candidates

than not.

Strictly activating (SA) facts are the opposite of ST facts. While members of

the ST partition cannot be deleted once added, SA facts can never be deleted or

added. This means that all members of this partition must be true in the initial

state, such that ∀f ∈ SA ∈ π(I). In practice, these facts can be eliminated from

the goal-space and play no role in recognition, as they fundamentally cannot form

part of the agent’s goal. Instead, they are used to provide problem structure, such

as indicating that two locations are connected via a road.

Finally, the unstable activating (UA) partition contains facts which once

deleted, cannot be re-achieved. Like the strictly activating set, any member of

this set must be true in the initial state, but can be subsequently deleted. These

are often associated with dead-ends. For instance, deletion of fact X may prevent

execution of actions which achieve the goal (or part of the causal-link towards

the goal). Alternatively, these can form a fact resource, which is consumed in

achieving the goal. Once deleted by an observation, these too can be removed

from the goal-space.

By themselves, these partitions can provide a non-expert human operator with

additional information, but they can also offer assistance in lowering the size of

the goal-space or in constructing hypotheses. In particular, if a member of the

ST set is achieved, it will always be added to any future hypothesis. This is in

keeping with the assumption that ST facts are goals which are desired by the

agent to be achieved, rather than avoided.

The above definitions allow certain members of the goal-space to be highlighted

as being of interest to the observer for various reasons. This is done by examining

the relationship of each goal with the actions that require, add or delete it. While

only three partitions are defined, the concept of using this relationship between

goals and actions can be extended to all members of the goal-space. This amounts

to computing the probability of a fact being added to the domain as a goal, versus

it being added in order to be achieved by another action, or threatened with

deletion by other actions. This is referred to as the risk associated with a goal.

4.4.2 Goal Likelihood as Risk of Negation

In most goal recognition problems, certain goals will have a higher probability of

being the agent’s true goal than others. Fact partitioning provides a means of
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extracting a (possibly small, or even empty) subset of the domain which exhibit

strict properties that can be exploited. However, this does not assist in the

generation of a non-uniform initial probability distribution across G. Members

of each partition could be assigned manual probabilities, but this would leave a

large subset of the goal-space untouched, and these weights would not be domain-

independent.

In a probabilistic model such as that presented, each goal must have a prior

probability assigned before recognition begins. Traditionally, these probabilities

are determined by a domain-expert [60, 70, 97] or by performing statistical anal-

ysis on a set of the agent’s previous plans [3, 18]. For the latter, this can mean

observing, or at least having access to, a large number of plans generated by the

agent, while the former requires the time, availability and knowledge of someone

versed in the problem domain.

Both of these approaches to assigning prior probabilities are common to the

recognition literature, yet they are both unreasonable to assume in widespread

application. Moreover, they represent a bottleneck in the deployment of a recog-

nition system. As such, there should always be a domain-independent method of

estimating prior probabilities based purely upon domain analysis when no fur-

ther information is available. The näıve method of achieving this is to assign a

uniform probability distribution across each sub-goal-space as follows13.

P(G) =
1

|G|
,∀G ∈ G (4.23)

While this does provide a basic means of assigning weight, it offers little in-

sight into the most probable goal before recognition begins. IGRAPH assigns

probabilities to facts by making the assumption that the subject will try to main-

tain a goal literal once achieved. Given that the observed agent will achieve its

goal through a series of causal-links, the notion of goal causality is introduced

to provide an indicator of which facts are most likely to be goals. This can be

defined as follows, and expressed in Equation 4.24.

Definition 24. Goal Causality

Given a goal-space G, and action set π(A), the most probable goals G ∈ G are

those which interact the least with members of π(A), once G has been achieved.

This can be expressed as a causality value, C(G) ∈ [0 : 1].

13The original notation for the goal-space, G, is used here as the concept of goal-causality
extends to both the complete and relaxed models.
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C(G) =
|Aachievers(G)|

|Aachievers(G)|+ |Adeleters(G)|+ |Arequirers(G)|
(4.24)

Each set, Aachievers(G), Adeleters(G), Arequirers(G) ∈ π(A) corresponds to a sub-

set of the action set which achieve, delete or require G as a precondition respec-

tively. This equation allows a probability P(G) ∈ [0 : 1], to be assigned to each

fact, based upon its likelihood of being deleted or being part of an intermediate

causal-link in the plan.

In the case of all false goals, the assumption set out in Chapter 3 stating that

the agent’s goal will be a positive literal is retained. However, the notion of goal

causality does not easily extend to all false literals. Therefore, G∅ is initialised

with the same value as the uniform initial distribution would produce.

Once initial probabilities have been determined, they can be normalised across

each sub-goal-space to achieve a non-uniform initial probability distribution. Note

that is often not possible to get the probability distribution across the entire

multivariate goal-space (where each goal appears only once), as goals can appear

in more than one sub-goal-space, where probabilities can vary greatly.

Detecting a fact’s goal causality allows the creation of a domain-independent

distribution which is weighted towards those members which appear to be the

target of planning rather than the requirement for planning. However, further

analysis can influence the initial probabilities towards those members of the goal-

space which the underlying domain structure indicates will form part of the final

goal.

4.4.3 Utilising the Causal Hierarchy

Recall that the causal graph, CG, as defined in Section 4.2.1 represents how

objects interact with one another in a given problem. While the majority of

these interactions will be bidirectional, certain problems and variables have uni-

directional influences, such that an object will only influence or be influenced by

another. If an object can only be influenced by others, then it is classed as a leaf

variable, while if it exclusively influences other objects, it is a root variable.

Definition 25. Leaf and Root Variables

A node v ∈ CG in the causal graph CG is a leaf variable if |vin| > 0 and |vout| = 0.

Conversely, v is a root variable if |vin| = 0 and |vout| > 0.

Intuitively, leaf variables are those which are most likely to contain goal literals

in their associated domain transition graph, while roots are the least likely to
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appear in the goal. For example, in the Driverlog domain [117], packages are

leaf variables — they exist only to be moved from one location to another. On the

other hand, in the Rovers domain, rovers themselves are roots — they influence

the derivation of all facts in the domain (aside from those in their associated

DTG).

Based on the rationale that the leaves of the causal graph are the most likely

to appear in goal literals, and that the roots are therefore the least likely, the

causal graph can be converted into a hierarchical causal graph, CGH . This in-

volves assigning a layer, Lv, to each variable v ∈ CG. Algorithm 11 outlines the

procedure for determining each variable’s layer, while Algorithm 12 demonstrates

how to extract the layer of an individual goal literal. In the event that the causal

graph has neither roots nor leaves, hierarchical analysis cannot be performed and

all variables are said to lie on the same layer, CGH(v) = 1,∀v ∈ CG.

With a layer assigned to each variable as in Figure 4.11b, the initial probability

distribution can be augmented to incorporate this as in Equation 4.25. This is

done by obtaining the minimum layer at which each goal in GV lies, and adjusting

the causality value C(G). Using the minimum layer causes the fact to receive the

highest possible initial probability.

P(G) =
C(G)

arg minLv(G)
∀v ∈ CGH (4.25)

4.4.4 Domain Analysis Conclusions

Analysis of the domain in which recognition is being performed is in line with

the assumptions set out previously. Here, goals are assumed to remain true once

achieved, with the causality of the goal being used as an indicator of how likely

it is to form part of the true goal. This value is then weighted according to the

layer of the causal graph which the goal appears in, as it is believed that goals

which appear as leaves/on lower levels are more likely to be a part of the agent’s

goal than those at higher levels. Finally, fact partitions are used at runtime as a

means of appending facts to hypotheses or pruning areas of the goal-space.

Work by Keren et al [99] uses planning to assist in the design of PR/GR

problems, in order that recognition becomes simpler. While not required, it may

be that the design of a domain which IGRAPH is targeted at can be modified,

so as to maximise the benefits of the above feature extraction processes. For
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Algorithm 11 createHierarchy(CG)

CGH := 〈DTGs, 1〉 {Initialise all DTGs to layer 1}
closed := {}
if CGroots = CGleaves = 0 then

return
end if
if CGleaves > 0 then
Q := {CGleaves} {Initialise queue with leaves}
while |Q| > 0 do
v := poll(Q)
prev := CGH(v)
add(closed, v)
for all out ∈ vout do

if prev ∈ closed then
continue

end if
curr := prev + 1
add(Q, out)
add(CGH(out), curr)

end for
end while

else
Q := {CGroots} {Initialise queue with roots}
min := |CG| {Set minimum layer to size of CG}
while |Q| > 0 do
v := poll(Q)
prev := CGH(v)
add(closed, v)
for all out ∈ vin do

if prev ∈ closed then
continue

end if
curr := prev − 1
add(Q, in)
add(CGH(in), curr)
if curr < min then
min := curr

end if
end for

end while
{Need to modify layers such that ∃v ∈ CGH , Lv = 1}
for all v ∈ CGH do
Lold := CGH(v)
Lnew := Lold − CGH(v) + 1 {Add 1 to ensure no variable is Lv = 0}
CGH(v) := Lnew

end for
end if
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truck2

driver2

driver1

package2 package1

domainvar7

domainvar6

truck1

(a) The causal graph as output by SAS+ trans-
lation.

driver1 driver2

domainvar7

package1 package2

truck1

domainvar6

truck2

L = 4 L = 4

L = 3 L = 3

L = 2 L = 2

L = 1 L = 1

(b) The equivalent hierarchical causal
graph in which every object has been as-
signed a layer, L.

Figure 4.11: The causal graph for a Driverlog problem before and after detec-
tion of each variable’s layer. Note that variables “domainvar6” and “domainvar7”
are generated by SAS+ translation to model whether a truck is empty or not (the
corresponding “truck occupied” literals appears in a driver’s mutex set).
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Algorithm 12 getGoalLayers(CG)

minLayers :=< G, 1 > {Initialise all goals to layer 1}
if CGroots = CGleaves = 0 then

return
end if
for all dtg ∈ DTGs do
Lprev := minLayers(dtg)
for all G ∈ dtg do
Lcurr := minLayers(G)
if Lcurr < Lprev then
add(minLayers(G), Lcurr)

end if
end for

end for

example, addition of ST facts as goals or ensuring that the causal graph contains

roots/leaves.

4.5 Chapter Summary

This chapter has introduced multiple relaxations to the complete and optimal

model presented in Chapter 3. This relaxed model retains all of the desired

features discussed in Section 2.4, which are repeated here for clarity.

• Removal of Plan Library Dependence — Plan libraries are not required

for recognition to be performed. Instead, the goal-space is generated by

analysing the possible set of goals. This set is an over-estimation of the

true goal-space, as it can contain unreachable or invalid facts. However, all

valid facts should be present. The agent’s goal should always be present

within the relaxed goal-space, although generation of this as a conjunctive

hypothesis may not be possible due to the incomplete detection of mutually-

exclusive facts in the domain. An approximation of this is often possible,

but may be invalid as there may be mutually-exclusive facts present which

are not simple to detect at runtime.

• Automated Initial Distribution — Section 4.4 demonstrated several

ways in which domain analysis could be used to extract further information

from the domain which may aid in recognition. In particular, the automatic

generation of an initial probability distribution across each sub-goal-space

Gi ∈ GV is performed by computing the causality value of each goal and its
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corresponding, minimal layer in the hierarchical causal graph.

• Plan/Goal Abandonment — Detecting and adjusting to an agent aban-

doning their goal was expanded upon in Section 4.3.9. Chapter 5 will pro-

vide a demonstration of this ability.

• Standardisation — IGRAPH receives its input from a common formal-

ism. PDDL [55] is used to define a domain and problem in a format sim-

ilar to that of STRIPS [49], from which a grounded problem is generated.

These input files can also be converted into a SAS+ form [9] using an existing

translator [78]. By using a standardised input, problems can be constructed

more rapidly, and existing domains, problems and solutions can be used in

evaluation.

With the relaxed model finalised, the next chapter will present the results of

evaluating this model against a series of domains taken from various International

Planning Competitions. This will cover the classic goal recognition behaviour,

as well as more novel aspects of the model. In addition to this, features such as

the source of plan, heuristic used in generation of this, and plan length will be

explored.
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Evaluation

This chapter presents results of several evaluation schema on IGRAPH. Rather

than only reporting the accuracy of hypotheses with regard to the agent’s fi-

nal goal, the heuristic-based GR model is explored in further detail. This has

been done to demonstrate several features which may not be present in previous

models.

5.1 Overview

The chapter begins with an overview of the evaluation techniques applied (Section

5.2), and describes how these compare with previous evaluation metrics in the

recognition literature (Section 5.3). Section 5.4 discusses how implementation

of a heuristic-based recogniser can be achieved using an existing planner. The

typical test setup used during evaluation along with any specific parameter values

is given in Section 5.5. The expected output of the heuristic-based model is briefly

discussed in Section 5.6, along with the IPC domains1 and plan sources used in

this chapter (Sections 5.7). Section 5.8 then details the source of plans used

during evaluation of the International Planning Competition domains and their

suitability in recognition, while Section 5.9 provides some context on the size of

the respective goal and action-spaces.

Section 5.10 evaluates the accuracy of intermediate hypotheses within IGRAPH,

both in the context of the final goal and the final state. Evaluation of final hy-

potheses themselves is covered in Section 5.11. The accuracy of the recogniser in

1See Appendix D for a list of domain descriptions.
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predicting goals before and after their achievement is given in Section 5.12. Sec-

tions 5.13 and 5.14 respectively describe the accuracy of the estimated number

of remaining steps and the bounded hypotheses derived from this figure.

The impact of generating a non-uniform initial distribution on the accuracy

of hypotheses produced throughout observation is provided in Section 5.15. De-

tection of goal abandonment in under various conditions in the heuristic-based

model is explored in Section 5.16.

Section 5.17 provides analysis on whether recognition accuracy is improved

by using plans generated with a domain-dependent heuristic, while Section 5.18

looks at whether there is a bias in results when the observer and agent use the

same heuristic.

Finally, Section 5.19 provides possible explanations for some of the unex-

pected behaviour exhibited by IGRAPH, before 5.20 concludes the evaluation

and highlights the observed results of the heuristic-based model of recognition.

5.2 Evaluation Techniques

In evaluating any system, it is often helpful to have a single metric which can

be used to demonstrate that system A is better than system B on problem X.

Unfortunately, the plan and goal recognition community has yet to settle upon

a common metric for goal, plan, intent or activity recognition, despite this being

an ongoing topic of discussion [18, 35, 71, 132]. This is in part due to the decen-

tralised nature of the field, and in part to the absence of a common input/output

formalism. As a comparison, the planning community has had both a standard

language [47, 55, 67, 120] and evaluation schema [117] for over a decade, which

has aided in bringing the community together and fostering competitive research.

However, this is not to say that every recognition-related work is evaluated us-

ing a unique metric. In practice, precision and recall (or extremely close variants

of this) has emerged as a semi-standard metric for goal recognition, having been

applied in several GR papers [3, 18, 20, 109, 122]. This is also a useful metric for

the heuristic-based GR model, as the following section shall demonstrate.

5.2.1 Precision and Recall

The precision and recall (P+R) metric is often associated with database docu-

ment retrieval, where it is used to evaluate the accuracy of the results returned by

a search algorithm against the necessary results. While referred to as a singular

metric, precision and recall are in fact two distinct equations, which can be used
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in conjunction to demonstrate the generalisation of a system versus its accuracy.

In the context of goal recognition, P+R can be used to analyse how complete

a hypothesis is, versus how concise this is. That is, how many of the true goal

literals G∗ = {G1...Gn} are contained in the hypothesis (recall score), versus how

many of the goals contained in the hypothesis Hyp are required (precision score).

Formally, precision and recall are defined as follows.

Prec(Hyp) =
|G∗ ∩Hyp|
|Hyp|

∈ [0 : 1] (5.1)

Rec(Hyp) =
|G∗ ∩Hyp|
|G∗|

∈ [0 : 1] (5.2)

Thus, the precision of a hypothesis represents the number of goals present

in the hypothesis which are necessary, while recall is number of goals in the

hypothesis which are actually correct (part of G∗). In the case of precision, a

score of Prec(Hyp) = 1 means that all literals in the hypothesis are a member

of G∗, while a score of Rec(Hyp) = 1 means that all true goals were contained in

the hypothesis.

As an example, consider hypothesis Hyp = {A,B,C} against the true goal

G∗ = {A,B,X,Z}. Here, the precision and recall scores would be as follows.

Prec(Hyp) =
|G∗ ∩Hyp|
|Hyp|

Rec(Hyp) =
|G∗ ∩Hyp|
|G∗|

=
|{A,B,X,Z} ∩ {A,B,C}|

|{A,B,C}|
=
|{A,B,X,Z} ∩ {A,B,C}|

|{A,B,X,Z}|

=
|{A,B}|
|{A,B,C}|

=
|{A,B}|

|{A,B,X,Z}|

=
2

3
=

2

4

= 0.66 = 0.5

F1 Score

As has already been stated, it can be useful to have a single metric against

which to compare results. While precision and recall provide a means of quan-

titatively evaluating a hypothesis, the output requires a qualitative examina-

tion. For instance, if there are two hypothesis Hyp1 and Hyp2 with scores of
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Prec(Hyp1) = 0.6, Rec(Hyp1) = 0.8 and Prec(Hyp2) = 0.9, Rec(Hyp2) = 0.5, it

is unclear as to which is the better result.

One solution to this is to compute the F1 score [157], which returns a single

value F1 ∈ [0 : 1], that is intended to provide a trade-off between precision and

accuracy.

F1(Hyp) = 2 · Prec(Hyp) ·Rec(Hyp)
Prec(Hyp) +Rec(Hyp)

(5.3)

The F1 score is in fact a specialisation of the general Fβ score, in which β = 1.

Higher values of β > 1 would be used to indicate that the recall score is of higher

importance than the precision, while values of 0 < β < 1 would indicate that

precision has greater precedence.

Fβ(Hyp) =

{
(1 + β2) · Prec(Hyp) ·Rec(Hyp)

β2 · Prec(Hyp) +Rec(Hyp)
where β > 0 (5.4)

In the previous example, the F1 scores forHyp1 andHyp2 would be F1(Hyp1) =

0.69 and F1(Hyp2) = 0.64, indicating that Hyp1 is the superior hypothesis. How-

ever, it is arguable that in goal recognition, the recall score is of higher impor-

tance. That is, the true goal being contained within Hyp is of more importance

than the size of Hyp. This is especially prudent when it is considered that Hyp

will approximate a set of mutually-exclusive goals — meaning as the size of Hyp

increases, it moves towards being a state hypothesis, 1 ≤ |Hyp| ≤ |π(M)|. Of

course, in the context of IGRAPH, these are relaxed hypotheses where the goals

proposed cannot guarantee to be free of mutually-exclusive facts.

Given that recall is often more important in goal recognition, deriving the F2

score may arguably be a better choice for evaluation. However, in order to prevent

further evaluation-schema fragmentation within the recognition community, the

F1 score is retained.

5.3 Evaluation in Previous Recognition Litera-

ture

As referred to above, no common or de facto evaluation metric has emerged from

the literature despite anticipation that this would occur [35, 132]. For many

recognition systems, time is the primary metric of evaluation, with shorter pro-

cessing times being preferable [6, 21, 60, 63, 89, 113, 114, 146]. Runtime results for
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IGRAPH are reported in Appendix C, although computational resource usage

is not viewed as critical to this work.

Precision and recall have been used by others in recognition, in particular

Blaylock uses P+R [19, 21], although this definition is not the same as that given

above. Others which use Blaylock’s plan corpora also use the same metrics [3, 4,

122]. Additionally, Blaylock defines the convergence point of the recogniser — the

time at which the correct goal is first hypothesised. This metric is also technically

suitable for IGRAPH, but is omitted as the heuristic-based model does not lend

itself to convergence upon a single hypothesis. Rather, the hypothesis is made

of multiple individual facts which can be added or removed after an observation,

making the concept of a “convergence point” unwieldy.

Other more bespoke metrics include prediction of the next action and agent

location [1]; impact, which seeks to quantify how much work/effort has been saved

by recognising the goal/plan and automating the process (akin to the convergence

point defined above) [110, 112], and efficiency coefficients [31] which measure

relative accuracy versus processor time. Others simply use the ratio of tests

which correctly identified the goal [89].

Plan Library Resources

Similar to the lack of a common evaluation metric emerging from the community,

a suite of plan libraries on which to test models has also not appeared despite the

expectation that more connectivity and dissemination of research would achieve

this [35]. While the use of libraries remains widespread, these structures are often

extremely domain-specific [107, 108, 118, 154, 162]2, and do not generalise across

the field of recognition.

The most commonly cited libraries used are Lesh’s Unix domain [89, 111, 112],

and Blaylock’s Linux and Monroe domains [3, 4, 21, 144, 155], with Linux

being a modernised version of Unix. Unfortunately, all of these domains are

encoded in a hierarchical fashion, and no suitable translator could be found to

encode them in PDDL. Finally, Ramirez and Geffner make use of PDDL and

variants in their work [145, 146, 147], but in a largely partially-observable context,

which IGRAPH does not support.

2Example datasets taken from http://www.planrec.org.
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5.4 Development of a Recognition System Us-

ing an Existing Planner

IGRAPH has been implemented in Java, and builds upon the JavaFF planner

[44], which has been extended to allow parsing of non-STRIPS domains3. JavaFF

was chosen as the baseline planner due to a familiarity with the underlying struc-

ture and a readily available source of the FF heuristic. Yet, despite ostensibly

supporting many of the features required by IGRAPH, approximately half of all

files required alteration to achieve compatibility with the relaxed model. Beyond

this, SAS+ planning and STRIPS scheduling have been implemented, along with

code required to perform the probabilistic reasoning required by the relaxed goal

recognition model.

Specifically (with any alterations ignored), IGRAPH extensively uses the

grounded and ungrounded PDDL type hierarchy and associated parser present in

JavaFF. The planning and relaxed planning graph structures are used, as well

as the FF-style relaxed plan extraction process. This allows both the hff and

hmax heuristics to be used4 without any additional modification. However, the

hcea heuristic and associated code base do not feature in JavaFF, and, along

with the threading algorithm and supporting structures must be implemented

separately.

When development of IGRAPH began, few existing planners had intuitive or

supported code bases. However, this is no longer the case, with frameworks such

as Fast Downward 5 offering almost all of the required features for heuristic-

based goal or plan recognition. Indeed, one of the major advantages of the

heuristic-based recognition model is that such libraries can be used as a code

base. As much of the model presented in Chapter 4 uses existing planning tech-

nologies (heuristic, states, facts, goals etc.), these open source implementations

should be usable for recognition with only minor additions. Were IGRAPH to

be reimplemented in this framework, development time could be cut from months

to days as only code related to the recognition process itself would be needed. As

an example, Ramı́rez and Geffner make use of this framework in their 2010 work

3Specifically, in addition to the :strips and :typing PDDL tags, the modified
JavaFF supports :adl, :equality, negative-preconditions, quantified-preconditions,
existential-preconditions and universal-preconditions tags.

4The value for hmax can be derived from the relaxed planning graph, as being equal to the
layer at which all required facts first appear.

5http://www.fast-downward.com
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[146], which results in only a few additional files being required6.

Integration of planner and recogniser can be even further expanded upon by

making use of the recogniser’s output in the planning process. For instance,

in multi-agent planning, individual agents can use hypotheses generated by a

recogniser to better plan opportunistically or to inform their own estimation of

the world. Here only the pre-planning stage need be modified to account for

hypotheses, as the existing probabilistic planning algorithm does not need to be

changed, which again minimises any duplication of effort.

5.5 Test Setup

Test results have been collected on an 8-core machine running Ubuntu 11.10 64-

bit, on an Intel Core i7 processor with a maximum 12GB of memory7, although

only approximately 2GB is ever in-use. Version 1.7 of the Java Virtual Machine

has been used on the 64-bit OpenJDK. All tests were given as long as necessary

to complete. Runtime results for processor time; wall clock time and memory

consumed are available in Appendix C.

5.5.1 Standard Test Parameters

As there are several parameters present at various points in the IGRAPH recog-

nition pipeline, it is helpful to make these values explicit, as many remain un-

changed during ‘standard’ tests. As a rule-of-thumb, these parameters are as

follows.

1. Unless otherwise stated, all IPC-related tests have been executed using the

first 15 problems of the propositional variant of each associated domain.

This figure has been selected as problems beyond this are generally in-

tractable for IGRAPH, due to the exponential increase in runtimes due

to the complexity of the problem. While not all domains exhibit this be-

haviour, retaining a standard problem-set size across domains is helpful

in interpreting results. Runtimes themselves are reported in Appendix C,

6Code available at https://sites.google.com/site/prasplanning/file-cabinet
7As an interesting technical sidenote, the test-build of IGRAPH is launched through an

external script, rather than directly calling Java. This is due to the fact IGRAPH must
call the SAS+ translation scripts [78] as a separate process. This causes Java to call fork()
on the underlying operating system, which creates a new memory block of the same size as
the JVM itself and assigns it to the external process. Thus, the maximum memory available
to IGRAPH itself would be half the physical memory available. For this reason the SAS+

translation is performed prior to calling IGRAPH, which simply assumes that the relevant
SAS+ files are correct for the current problem.

135

https://sites.google.com/site/prasplanning/file-cabinet


Chapter 5. Evaluation

however for now it is sufficient to state that the runtime of IGRAPH is

dominated by the complexity of the heuristic used and the number of goals

in the goal-space, leading to the exponential behaviour mentioned.

2. A further detail regarding runtimes is related to the generation of bounded

hypotheses. Recall that the number of bounded hypotheses generated af-

ter each observation is equal to the estimated number of steps remaining

(Section 3.5). In certain domains such as Rovers and using the context-

enhanced additive heuristic, the number of estimated steps remaining can

be in the tens-of-thousands8. Therefore, while the number of estimated

remaining observations ε is calculated, only |P | − |O| hypotheses are pro-

duced, where |P | is the true plan length and |O| is the number of observa-

tions seen so far. That is, if there are n steps remaining in the plan, only

1 ≤ ε ≤ τmaxn ≤ τ bounded hypotheses will be produced. While this nat-

urally means that the runtime of IGRAPH cannot be accurately reported

when bounded hypotheses are being produced, the actual time required for

these is trivial and therefore is included in the runtimes given in Appendix

C.

3. The use of domain analysis as described in the previous chapter should also

be assumed to have been carried out prior to observation beginning. This

entails solely of creating an initial probability distribution and performing

a reachability analysis. The impact of not performing domain analysis and

using a uniform initial distribution is explored in Section 5.15.

4. Regarding the use of λ in the Bayesian posterior probability update, a value

of λ = 0.8 has been used across all tests. This reflects the assumption that

the agent will always strive to achieve a minimal-length plan, but that

they may do this using suboptimal heuristics. However, as Section 4.3.6

detailed, the exact value of this variable is irrelevant as it has no impact

on the output of the planner (provided that 0 < λ < 1). Therefore, while

λ = 0.8 is a reasonable value to apply, varying this value does not change

the hypotheses generated.

8For Rovers this is caused by the additive nature of the causal-graph heuristic, and the
fact that there are often appears to be tens of non-mutually-exclusive strictly terminal goals
being pursued at any time, when in reality only a single goal is being pursued. This causes
the algorithm for estimating the number of remaining steps to output the sum of achieving all
of these literals, which can be equal to thousands of actions, as positive interactions between
these goals is not accounted for.
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5.6 Expected Output

The formal model outlined in Chapter 3 stated that by having an optimal heuris-

tic, the observer can always accurately infer the number of actions required to

achieve each goal in G. Given a rational agent, goal recognition becomes a matter

of eliminating those goals whose estimate has not reduced after each observation.

This was then relaxed to allow for suboptimal agents, which moved the model to

include Bayesian probabilistic inference.

Chapter 4 stated that this view can be extended to include domains in which

the observer has a suboptimal heuristic. However, even in this relaxed form, the

central concept of an agent moving through the goal-space to achieve their final

goal is retained, albeit without the absolute knowledge provided by an optimal

heuristic. It is therefore expected that the result of testing will show a heuristic

whose estimates approach h+ will provide more accurate hypotheses than one

which is known to provide poorer estimates, but only if the agent being observed

demonstrates bounded rationality. As this final point is intractable to compute

(determining whether a plan is optimal for all IPC solutions), the best known

solution is assumed to approximate this.

Of the three heuristics implemented by IGRAPH (Section 4.3.3), hmax is

expected to provide the poorest results, as it is known to be extremely unin-

formative under standard planning conditions [27]. Conversely, hff and hcea are

expected to perform far better, as they have been shown to be largely informative

in the respective planners which initially implemented them [79, 88].

In addition to the standard test parameters presented above, most test prob-

lems have been evaluated using all configurations of heuristics and work functions

(WML, WMLT and WSA, see Section 4.3.5). This leads to 9 different configurations

for each test.

5.7 Evaluation of International Planning Com-

petition Domains

The International Planning Competition (IPC) is a (roughly) bi-annual competi-

tion held at the International Conference on Automated Planning and Scheduling

(ICAPS)9 since 1998. Entrants compete in several competition tracks, aiming to

produce the most “optimal” plans for the problem — where “optimal” can mean

9ICAPS was not formed until 2003. Prior to this the IPC was part of the AIPS conference,
from which ICAPS was partly formed.
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plan length, resources used or time taken.

While this competition is a useful source of heuristics for IGRAPH, it is the

test domains and solutions produced which offer the most interest for evalua-

tion. In particular, all IPC domains have been formalised in PDDL, which allows

IGRAPH to use all of these in performing evaluation. With this said, evaluation

is restricted to domains written in PDDL 2.1 level 1 [55], which is approximately

equivalent to STRIPS [49] and ADL [134], with ADL domains being compiled

into the equivalent STRIPS representation immediately after parsing.

In some cases, the translation of ADL to STRIPS-style representations will

generate many more actions than would otherwise exist, which is expected to lead

to slower execution times. This primarily impacts the computation of the hmax

and hff heuristics, where the higher branching factor will mean more calculations

are necessary. Computation of the hcea heuristic is unaffected by this, as ADL

is automatically compiled into additional “stub” facts which are then treated as

standard preconditions/effects in SAS+.

Historically, these languages have been associated purely with the non-metric

tracks of the competition, in which the task is to find the shortest valid plan for the

given problem. More recently, this has split into optimal and satisficing branches,

in which competitors must find the shortest plan, or any plan respectively.

The domains selected for evaluation are taken from IPC3 and IPC5. The

IPC3 domains include Depots, Driverlog, Rovers10, Satellite and Zeno-

travel, while the IPC5 domains are Openstacks, Storage and Trucks.

Detailed descriptions of these domains and their respective interesting features

can be found in Appendix D. These domains have been selected as they con-

form to the PDDL 2.1 level 1 standard mentioned previously. Other domains

within these competitions and others either use an unsupported features of ADL

(IPC4), or include new PDDL syntax (IPC6, IPC7). Domains from IPC3 and

IPC5 which have been excluded from testing have been done so because of bugs

in the third-party SAS+ translator.

5.7.1 Applicability of IPC Domains in Recognition

The IPC has been selected as the best source of domains for evaluation for sev-

eral reasons. First, it offers a standardised set of problems which adhere to a

strict description language, for which parsers are widely available. Second, the

10Note that the Rovers domain appeared in both IPC3 and IPC5. The IPC3 variant is used
exclusively in evaluating IGRAPH.
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domains used demonstrate several interesting characteristics which are common

to the recognition problem. For instance, transportation of resources is present

to a certain extent in all domains, while strictly terminal goals exist in Rovers,

Satellite and Openstacks. All domains feature disjoint goals which can of-

ten be achieved using non-overlapping subplans that can, in turn, be executed

in parallel. Goals may be achieved in any order or linearly, and in some cases

may already be true in the initial state (where this means that they remain true

throughout execution or must be negated then re-achieved later). The actual

meaning of the domains (moving packages, observing locations from space etc.)

are somewhat irrelevant, as it is the underlying structure and detection of move-

ment through the goal-space which is of interest. Finally, the wide availability of

the IPC domains used (and others) means that future researchers can use these in

benchmarking their own recognisers against the results produced by IGRAPH.

One potential drawback to using IPC domains and problems is that the true

goal often exists at the edge of the state and goal-spaces. For example, in some

Driverlog problems, packages are often moved to the location furthest from

their start point. Locating goals at a distance of h(G) = τ (particularly single

literal goals) may lead to early observations having a higher impact than if the

goal were located in the middle of the goal-space. This impact is dependent upon

whether the heuristic is accurate in lowering the estimate during these initial

observations. If this is the case, other goals which exist near τ , but on different

trajectories will have their probabilities decrease rapidly.

In this case, it can be argued that this is actually the preferred behaviour of the

system as mutually-exclusive goals which are not being pursued are eliminated

early. However, this is most likely a poor reflection of real world application,

where the true goal can be located anywhere in the goal-space. Additionally, the

number of candidate goals on the same trajectory as G∗ may be minimal once the

final observation is processed, making hypotheses more accurate by side effect of

domain design.

A minor consideration is that IGRAPH may give a small bonus to facts in

the initial hypothesis where h(G) ≈ τ and prior probabilities are equal, as more

distant goals are given preference during hypothesis tie breaking (see Algorithm

4, page 80).

In practice, the impact of this behaviour will be determined by the domain

designer and problem at hand. For evaluation of IGRAPH, this “optimised”

goal-space is only the case in some of the domains tested, such as Driverlog,
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Rovers and Openstacks, and sometimes only on specific problems. It is un-

likely that this will have a noticeable impact on results when it is considered that

the accuracy of all heuristics used lowers as the true estimate increases (see Table

4.2). This should negate the effects described above when non-trivial problems

are evaluated.

5.8 Plan Sources

In order to perform goal recognition, IGRAPH requires three files: a domain file

describing the lifted representation of the problem; a problem file describing any

objects present along with a grounded initial state; and a solution file, containing

a valid plan for the problem file. Of course, as these are taken from the IPC

there is an additional goal section in the problem file. This is removed by the

test harness used in evaluation, before recognition begins.

The solutions used in evaluating IPC domains come from the results of each

associated competition. Each domain has approximately 20 associated problems

varying from easiest to hardest (to find a plan in), which will in turn have been

solved by a number of planners. For each problem, the plan which has the lowest

plan length is selected as the solution for use in IGRAPH. This means that

the solutions of multiple planners can be used when performing recognition on

a domain. For example, problem 1 may be a solution produced by FF [88],

while problem 2 may use a solution from LPG [66]. Naturally, this leads to older

planners being used in older competition domains, while more recent competitions

represent a closer estimation of the state-of-the-art. Portions of example domain,

problem and plan files are shown in Figure 5.1. Descriptions of each domain used

in the evaluation of IGRAPH are given in Appendix D. Figure 5.2 shows the

number of goals which appear in each domain and problem used in testing.

The use of the FF heuristic in both IGRAPH and the planner which gener-

ated the solution used in testing raises the interesting question of heuristic bias

during recognition. Section 5.18 evaluates the possibility of recognition results be-

ing skewed by the observer and agent using the same heuristic for goal-estimation.

5.9 Goal and Action-Space Sizes

To provide context in the following sections, it is useful to describe the size of

the goal and action-spaces of the IPC domains tested. Figure 5.3a shows the

variance in goal-space size for IPC3 and IPC5 domains, while Figure 5.3b shows

the size of the respective action-spaces. Note that these are the respective results

140



Chapter 5. Evaluation

(define (domain driverlog)

(:requirements :typing)

(:types location locatable - object

driver truck obj - locatable

)

(:predicates

(at ?obj - locatable ?loc - location)

(in ?obj1 - obj ?obj - truck)

(driving ?d - driver ?v - truck)

(link ?x ?y - location) (path ?x ?y - location)

(empty ?v - truck)

)

(:action LOAD-TRUCK

:parameters

(?obj - obj

?truck - truck

?loc - location)

:precondition

(and (at ?truck ?loc) (at ?obj ?loc))

:effect

(and (not (at ?obj ?loc)) (in ?obj ?truck)))

...

(define (problem DLOG-2-2-2)

(:domain driverlog)

(:objects

driver1 - driver

truck1 - truck

package1 - obj

s0 - location

s1 - location

p1-0 - location

)

(:init

(at driver1 s2)

(at truck1 s0)

(empty truck1)

(at package1 s0)

(path s1 p1-0)

(path p1-0 s1)

(path s0 p1-0)

(path p1-0 s0)

(link s0 s1)

(link s1 s0)

)

(:goal (and

(at driver1 s1)

(at truck1 s1)

(at package1 s0))

)

)

(walk driver1 s2 p1-2)

(walk driver1 p1-2 s1)

(walk driver1 s1 p1-0)

(walk driver1 p1-0 s0)

(board-truck driver1 truck1 s0)

(drive-truck truck1 s0 s1 driver1)

(disembark-truck driver1 truck1 s1)

Figure 5.1: Example domain, problem and solution files in PDDL 2.1, for a
small Driverlog problem. This example uses typing of objects, which could be
compiled away to an ordinary STRIPS representation.
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Figure 5.2: The number of goals specified in each respective problem file for each
IPC domain used in evaluation. Easier problem numbers require around 5 goals
be satisfied, while harder goals require 5–10 goals be achieved. Satellite and
Openstacks require even higher numbers — approximately 15–25 goals in each
problem.

after reachability analysis has been performed. Figures 5.4a and 5.4b show how

the reachability analysis reduces the goal and action-spaces on each problem. In

some domains this can result in a 90% reduction over a complete model, while in

others it makes no difference.

For example, in Depots problem 15, the näıve number of grounded actions

is 29232, but after simple reachability analysis becomes 4002. This is caused

by a large number of unreachable actions being generated during the grounding

process. However, other domains such as Zenotravel offer no such reductions,

as all actions generated during grounding are reachable11.

5.10 Intermediate Hypothesis Evaluation

The primary function of any goal recogniser is to determine the observed agent’s

true goal, G∗ ⊆ S∗, where S∗ is the state in which observation ends. These

11This is the case in both Zenotravel and Satellite. In the former, planes can fly directly
from an airport to all other airports, making all grounded goals and actions reachable. In the
latter, satellites are similarly free to turn and face any target without any ordering constraints.
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Figure 5.3: The size of the goal and action-spaces after reachability analysis in an
alternative, overlapping form. Simple problems tend to have 10 – 100 goals, while
harder domains such as Depots and Trucks have 100 – 1000 goals. Action-
spaces scale similarly, but often at an order-of-magnitude greater.
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Figure 5.4: The size of the various goal and action-spaces across problems 1-15
for each respective IPC domain, before and after reachability analysis has been
performed.
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hypotheses are produced after each observation, but are constructed differently

based upon whether IGRAPH has been told that the plan has finished.

For clarity, hypotheses which are produced after an observation are referred

to as intermediate hypotheses, and are produced on the assumption that there

may be further observations. These hypotheses are computed using Definition

18 (page 78) and Algorithm 3 (page 79). Hypotheses which are produced in

the knowledge that the plan has terminated are referred to as final hypotheses.

In this situation, the goal must form part of the final state S∗, so hypothesis

generation is simply the process of selecting those facts f ∈ S∗ which are most

likely to be a goal. These latter hypotheses are covered in Section 5.11.

The intermediate hypotheses produced by IGRAPH are perhaps the most

familiar output of the system. Such hypotheses encapsulate the set of goals

which the recogniser believes have been most actively pursued by the agent.

This is achieved in accordance with the original model presented in Chapter 3,

where both the observer and agent are assumed to have optimal heuristics/plans,

therefore reducing hypothesis generation to one of tie-breaking those mutually-

exclusive goals with equal, maximum probability. This method implicitly extends

to the relaxed model presented in Chapter 4, albeit with suboptimal heuristics

possible for both agent and observer.

5.10.1 Cross-Domain Results

In order to simplify the visualisation of these results, they are first presented

in terms of the total F1 score for each domain and problem. While hiding the

progress of recognition accuracy, this serves the purpose of providing a single eval-

uator which configurations can be compared against. In theory, if configuration

A provides better recognition than configuration B on a problem it will result in

a higher total F1 score, as the plan sources are the same.

Figure 5.5 shows these results for all intermediate hypotheses produced during

observation, where the total F1 score for a single problem is simply
∑|P |

i=1 F1(Hypi),

Hypi is the intermediate hypothesis produced after observation i, and |P | is the

final length of the observed plan. Results for problems 1–15 are ordered from

left to right for each domain. Harder problems tend to have higher scores than

lower-numbered problems as there are more observations in each associated plan.

Figure 5.5a displays these results in their raw form, which serves only to

show the difference in overall score between domains. Here the results cannot be

accurately compared, as the differing plan lengths or accuracy of hypotheses in
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each domain can appear to weight results to a specific configuration. Therefore,

Figure 5.5b provides a more suitable high-level comparison of each configuration

on each domain tested. This is achieved by stacking the total F1 score of each

problem tested to reveal the relative accuracy of each configuration.

The most obvious feature of this resulting graph is that there is no clear out-

right “winning” configuration for recognition on generic domains. Some results

show a large variation in results, even within the same domain (Driverlog),

while others show a near-uniform results across all problems (Rovers, Satel-

lite and Trucks).

Domains showing near-uniform results correlate directly with those which con-

tain large numbers of strictly terminal facts and goals. This greatly simplifies the

recognition process, leading to more uniform hypotheses, regardless of configura-

tion. As this will result in a near-perfect recall score, there will be little variation

in hypothesis F1 score (as precision will also remain relatively constant). These

traits will also be manifested in subsequent results given in this chapter.

Continuing with a high-level analysis of the IPC results, Table 5.1 shows the

overall weighting of the total F1 score for each configuration relative to each

specific heuristic and work function. This shows that the hff and hcea heuristics

outperform hmax in all configurations, although the difference between these two

former heuristics is negligible. Similarly, the WML work function is outperformed

by WMLT and WSA to a similar level of accuracy. While hmax produces a lower

overall accuracy, the score is still sufficiently high to merit further investigation.

Section 5.19 enumerates possible reasons for this performance.

The raw results for each configuration are given in Table 5.2. These show that

hff and hcea each outperform other heuristics in three of the eight domains tested.

The pairing of 〈hmax,WSA〉 is the only configuration where hmax provides better

results on a specific domain (Depots and Storage). The pairing of 〈hff ,WSA〉
narrowly beats others in being the best overall performing configuration, although

this is largely caused by a high score in Openstacks.

The similarity between configurations using hff and hcea is caused by most

domains having approximately equal results across each work function configura-

tion, indicating that in practice both of these heuristics have equal performance

(although not necessarily equal estimates). However, the features of each heuris-

tic are visible in some specific domains. For example, hcea outperforms hff on

Depots where the delete-relaxation causes poor estimates on the crate-stacking

subproblem.
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Figure 5.5: F1 scores for all intermediate hypotheses produced across all domains
and configurations. Figure 5.5a demonstrates the difference in (non-normalised)
F1 scores across each domain. Figure 5.5b shows these results as a percentage of
the total F1 score for each problem.
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Configuration hmax hff hcea Total

WML 9.33 10.92 10.86 31.10
WMLT 10.34 11.27 11.64 33.25
WSA 11.39 12.31 11.94 35.65

Total 31.05 34.50 34.44 100.00

Table 5.1: The percentage of total F1 score which each configuration of IGRAPH
achieved, in terms of the sum of these scores.

Domain hmax hff hcea Total
WML WMLT WSA WML WMLT WSA WML WMLT WSA

Depots 55.53 76.72 103.68 53.37 53.47 67.29 57.68 72.88 71.06 611.68
Driverlog 116.61 119.43 83.27 116.05 104.68 80.85 125.09 123.8 83.62 953.4
Rovers 92.29 95.86 110.94 93.13 95.53 110.45 92.78 94.93 111.07 896.98
Satellite 91.71 93.5 102.31 92.86 93.47 102.52 92.96 93.49 102.28 865.1
Zenotravel 57.21 64.82 73.85 61.85 64.03 78.27 65.87 70.7 82.18 618.78
Openstacks 189.45 208.26 245.4 294.85 311.74 349.86 274.29 294.09 318.34 2486.28
Storage 18.52 31.97 39.23 18.09 31.52 31.64 17.4 29.89 27.41 245.67
Trucks 17.13 17.16 20.76 17.13 17.12 22.05 17.12 17.12 21.63 167.22

Total 638.45 707.72 779.44 747.33 771.56 842.93 743.19 796.9 817.59 6845.11

Table 5.2: The total F1 score for each domain and configuration across all 15 test
problems. The best performing configurations are highlighted in bold.

While providing an overall impression of each configuration, these results only

provide information on how IGRAPH performed after observation has com-

pleted. The following section breaks down these results into the performance of

each configuration as observation progresses.

5.10.2 Accuracy During Observation

With an overview of the intermediate results given, this section will examine

how the accuracy of hypotheses changes during plan observation. The expected

outcome of the heuristic-based observation process is that higher posterior prob-

abilities will be assigned to those goals which have had their heuristic estimate

lowered by the greatest amount since observation began. This equates to an

increase in accuracy as more observations are processed.

As plan-length varies massively from problem-to-problem, all results for a

given problem have been normalised against the length of the respective plan.

This enables a comparison of hypotheses for differing problems, constructed after

the same percentage of total observations. However, unlike the previous results

overview, this section enumerates the precision, recall and F1 scores.

Figures 5.6 and 5.7 show the average F1 score for all hypotheses at problem
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instantiation, 25%, 50%, 75% and 100% of plan completion, on each IPC domain

tested. Note that at all stages (including 100% of the plan being observed),

IGRAPH is never told that the plan is over or alternatively that there will be

more observations. For intermediate hypothesis generation, this latter case is

always assumed to be true. However, the standard initial hypothesis is used for

values at 0% of observation, as a means of showing how observations affect the

initial goal hypothesis. This will be covered explicitly in Section 5.15.

The F1 scores show that Depots, Driverlog, Openstacks and Zeno-

travel display the expected heuristic convergence behaviour, whereby more ob-

servations lead to an increase in hypothesis accuracy across all configurations.

Storage shows some improvement in accuracy if the appropriate configuration

is used. The remaining domains show no improvement in the F1 score for any

configuration. This is naturally a disconcerting result, but can be explained when

the individual P+R graphs are analysed separately. Figures 5.8–5.9 and 5.10–5.11

respectively show these results.

In the case of precision, half of the domains tested exhibit some form of con-

vergence upon the correct number of goal literals (Depots, Driverlog, Zeno-

travel and Openstacks). Recall that precision should increase if an entire

sub-goal-space is omitted from a hypothesis due to the all false goal becoming

the most likely candidate, although it is possible that the greedy hypothesis con-

struction algorithm eliminates other goal candidates through mutex relations.

While these results are far from perfect (precision scores never exceed 50% accu-

racy), they do indicate that IGRAPH is performing as expected. This behaviour

can be construed as recognising negative evidence — where a lack of evidence is

used to support a hypothesis — which is one of the key features of both the

heuristic-based model presented and of Goldman et al’s widely accepted model

[60, 70].

Delving into individual results, the Rovers, Satellite and Trucks do-

mains all show near-perfect recall results across all configurations, due to the

often almost exclusive presence of strictly terminal facts in the agent’s goal. As

stated in Section 4.4.1, once achieved these goals are always added to all future

hypotheses, which maintains the high recall score. Unfortunately, this is at the

cost of precision as hypotheses will often contain surplus, but ultimately indis-

tinguishable, ST goals. This behaviour is the source of the near-uniform results

shown in Figure 5.5 for these domains. The corresponding F1 score for Trucks

is extremely low due to the poor precision scores, caused by a large number of
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sub-goal-spaces in GV , all of which contribute to the hypothesis size.

The remaining domains (Driverlog, Depots, Zenotravel, Storage and

Openstacks), all demonstrate a varying degree of convergence upon the true

goal over the course of observation. However, the work function applied appears

to cause differing results based on the target domain. For instance, Driverlog

under-performs when using the WSA function, regardless of the heuristic used,

while in Storage this function performs best when paired with hmax rather than

a more accurate heuristic.

Openstacks shows an interesting recall-rate. Despite containing ST facts12,

the goal is not converged upon until the last 25% of observation, with configura-

tions using hff and hcea performing equally-well. This indicates that the heuristics

used in testing may have trouble detecting movement toward this goal, or that it

is obscured by movement toward a mutex goal. This is also the only domain to

demonstrate the expected behaviour regarding hmax being outperformed by all

other configurations.

A further interesting result is that of Rovers. Here, there is a dip in recall

accuracy at 25% of observation. This is caused by the initial hypothesis being

correct, but the heuristic estimates to the relevant goals being less accurate in the

initial stages of observation, causing these literals to be dropped from hypotheses.

These particular literals are largely related to the position of rovers, which can

appear in the true goal, but are often the same as the start position, meaning

estimates increase in the early stages of the plan. The remaining 75% of obser-

vation allows these estimates to again be converged upon. Similar behaviour can

be seen in Trucks, albeit on a smaller scale.

12Once an order is complete in Openstacks, it is considered shipped, which is usually the
goal of the problem.

150



C
h
ap

ter
5.

E
valu

ation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  25  50  75  100

A
ve

ra
ge

 F
1 

Sc
or

e

Plan Completion (%)

Average F1 Score Score Over Total Plan Length
Depots

hmax WML
hmax WMLT
hmax WSA
hff WML
hff WMLT
hff WSA
hcea WML
hceaWMLT
hcea WSA

(a) Depots

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  25  50  75  100

A
ve

ra
ge

 F
1 

Sc
or

e

Plan Completion (%)

Average F1 Score Score Over Total Plan Length
Driverlog

hmax WML
hmax WMLT
hmax WSA
hff WML
hff WMLT
hff WSA
hcea WML
hceaWMLT
hcea WSA

(b) Driverlog
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Figure 5.6: The average F1 score for each domain and configuration at 25%, 50%, 75% and 100% of plan completion.
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Figure 5.7: The average F1 score for each domain and configuration at 25%, 50%, 75% and 100% of plan completion.
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Figure 5.8: The average precision score for each domain and configuration at 25%, 50%, 75% and 100% of plan completion.
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Figure 5.9: The average precision score for each domain and configuration at 25%, 50%, 75% and 100% of plan completion.
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Figure 5.10: The average recall score for each domain and configuration at 25%, 50%, 75% and 100% of plan completion.
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Figure 5.11: The average recall score for each domain and configuration at 25%, 50%, 75% and 100% of plan completion.
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Chapter 5. Evaluation

These results show that heuristic convergence occurs for most domains and

configurations of IGRAPH, with the exception of those containing ST facts.

However, these do not provide any information on the rate at which recognition

occurs. As the complete GR model should theoretically converge on the goal at

a linear rate (due to an optimal heuristic and subject), this convergence rate can

be a useful indicator of how well IGRAPH is performing.

5.10.3 Heuristic Convergence Rate

The P+R/F1 results shown in Figures 5.6 – 5.11 indicate that in general, scores

will increase linearly with the number of observations processed. That is, if 50%

of the plan has been observed, the resulting F1 score will be around 50% of the

final score. This section will explore how accurate this statement is.

The linear F1 score for a problem can be computed as the sum of achieving

a score of F1 = i
|P | after each observation, where |P | is the length of the actual

plan and i is the index of the current observation. Equation 5.5 shows the full

form of this.

F1linear
=

|P |∑
i=1

i

|P |
(5.5)

Figure 5.12a shows the normalised total F1 score for the actual hypotheses

produced by IGRAPH compared against the equivalent F1 score for each prob-

lem. The results presented cover all configurations of IGRAPH and have been

rounded to the nearest 2d.p. All points which lie above the X/Y axis indicate

that the total F1 score achieved was higher than the equivalent linear score, while

those below this line indicate the opposite. Figure 5.12b shows these same results

in the form of a heatmap, in order that duplicate results are clearer.

From these two figures it can be seen that IGRAPH is producing results which

exceed the potential linear score. While this cannot be used as an indicator of

predictive power or accuracy, it does confirm that the accuracy of hypotheses

produced is generally better than the total linear score. The percentage of tests

with a higher overall F1 score is given in Table 5.3. These echo the results shown

in Figure 5.12, in that a high percentage of all observation-traces exceed the

linear rate. However, with the exception of WML, which has been shown to be

the poorest performing work function, there is little difference in the performance

of WMLT and WSA regardless of the heuristic used.
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(a) A point-cloud of all results produced by IGRAPH during all IPC tests.
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(b) A heatmap of all IPC results, where the brightness of a cell indicates the number
of tests which share the same X/Y values.

Figure 5.12: The total F1 scores for all IPC domains and configurations, when
normalised against the total potential F1 score for each problem. Figure 5.12a
shows these results as a simple point-cloud (with results rounded to the nearest 2
decimal-places). Figure 5.12b shows this same data as a heatmap, where brighter
colours indicate the number of results which shared the same value. In both cases
the x-axis is the total linear F1 score for a problem, while the y-axis indicates
the true F1 score of the problem.
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Chapter 5. Evaluation

Configuration hmax hff hcea

WML 80.00 85.00 85.00
WMLT 89.17 90.00 90.83
WSA 91.67 88.33 89.17

Table 5.3: The percentage of tests across all configurations of IGRAPH which
achieved a total F1 score greater than that of the linear total F1 for the respective
problem.

5.10.4 Hypotheses as Final State Predictions

The previous section has analysed how well IGRAPH performs in predicting

the final goal of the agent during observation. In these intermediate hypotheses,

the score for precision was consistently lower than that of recall, which in turn

brought down the F1 score for each respective problem.

The cause of these low precision scores is that given a set of goals, IGRAPH

does not distinguish between those which are more likely to be the end goal

rather than simply a standard goal. While the domain analysis used in con-

structing the initial probability distribution does make some assumptions about

what behaviour a “good” goal candidate will show, the hypothesis extraction

algorithm bases its output purely on evidence observed.

This algorithm (page 79), extracts a single maximum-probability member

from each sub-goal-space in the multivariate goal-space for inclusion in the hy-

pothesis. Therefore, as each sub-goal-space encapsulates a set of mutually-exclusive

facts detected at runtime, a hypothesis has the potential to be a complete relaxed

state prediction. This section briefly analyses how the previously presented re-

sults change when hypotheses are viewed in this context, such that G∗ = S∗. S∗

itself is computed simply by applying all observations in the plan, in order, from

the initial state.

Figures 5.13–5.18 show the average F1, precision and recall scores, when the

same intermediate hypotheses generated previously are considered as states rather

than goals. As is to be expected, the intermediate-state scores are higher across

all domains, although only marginally in some cases. Table 5.4 shows the average

increase in total F1 score, across all configurations, over the original intermediate

goal hypotheses.
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Problem Depots Driverlog Rovers Satellite Zenotravel Openstacks Storage Trucks

1 162.7 34.7 86.1 39.6 16.3 230.0 179.8 117.5
2 24.6 5.8 118.8 28.3 20.5 228.2 134.2 101.5
3 41.4 82.9 126.4 65.4 20.9 224.4 210.8 109.6
4 110.5 1.4 163.9 35.5 80.8 224.4 97.5 101.2
5 150.5 38.6 89.3 45.8 211.4 224.4 160.1 102.8
6 309.3 0.4 58.9 59.0 32.9 193.4 615.5 106.5
7 465.7 18.1 100.4 71.1 52.0 249.4 133.2 101.0
8 120.1 26.5 102.9 59.2 31.0 117.3 104.9 116.8
9 169.1 30.8 113.9 55.8 98.9 279.1 363.5 109.7

10 1118.9 36.9 93.6 68.4 116.0 86.0 198.4 115.2
11 153.4 244.7 109.6 42.4 26.1 82.6 162.7 110.5
12 361.8 10.9 135.9 33.6 45.5 116.0 - 104.0
13 52.7 42.8 74.6 25.6 73.9 243.8 191.7 106.6
14 62.0 171.6 118.3 43.0 63.9 197.1 201.6 121.4
15 131.6 81.3 85.1 41.3 144.8 143.2 225.0 102.2

Table 5.4: The average percentage increase in the overall F1 score, across all configurations, when hypotheses are regarded as
final state predictions rather than final goal predictions. Entries with a ’-’ indicate results where the total F1 score for goal
hypotheses is zero.
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Figure 5.13: The average state F1 score for each domain and configuration at 25%, 50%, 75% and 100% of plan completion.
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Figure 5.14: The average state F1 score for each domain and configuration at 25%, 50%, 75% and 100% of plan completion.
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Figure 5.15: The average state precision score for each domain and configuration at 25%, 50%, 75% and 100% of plan
completion.163
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Figure 5.16: The average state precision score for each domain and configuration at 25%, 50%, 75% and 100% of plan
completion.164
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Figure 5.17: The average state recall score for each domain and configuration at 25%, 50%, 75% and 100% of plan completion.
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Figure 5.18: The average state recall score for each domain and configuration at 25%, 50%, 75% and 100% of plan completion.
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Chapter 5. Evaluation

While these results may appear impressive, they must be regarded with some

scepticism. In some domains it is possible to receive a high P+R score simply

by outputting the initial state as the hypothesis, due to minimal state changes

between observations. For example, if the initial state contains 10 facts of which

8 will be ignored by the agent, an intermediate state hypothesis can achieve a

score of 0.8 by saying that the initial state is the goal.

Therefore, while clearly not the preferred output of a goal recogniser, in some

applications such as those where a human operator is involved, inferring side-

effects or partial states may be of additional use in determining the agent’s goal.

Future work could potentially explore how the correct inference of one non-goal

literal can assist in predicting true-goal literals.

5.11 Final Hypothesis Evaluation

As explained in Section 4.3.2, final hypotheses are constructed from those facts

true in the final observed state, S∗ (the observer is assumed to have been told that

observation is complete). Therefore, the probability associated with each goal is

no longer necessary, reducing final hypothesis extraction to one of eliminating

goals present in S∗.

As described in Section 4.3.2, IGRAPH uses the stability of a goal Υ(G) to

determine those facts in S∗ which are suitable for the final hypothesis HypΩ ⊆ S∗.

Any fact which has a stability of at least 0 < Υ(G) ≤ η ≤ 1 is added to HypΩ.

Given a value of η = 1, final hypotheses will contain only those facts which

have been added to the state and never deleted. This value is in keeping with the

assumption that the agent will always endeavour to keep a goal literal true once

achieved. Figure 5.19 shows the precision of HypΩ under these conditions across

all IPC domains. Note that the configuration of IGRAPH is irrelevant, as the

plan used in observation is always the same, leading to the same final-state and

thus the same final hypothesis. That is, given that the goal state is known, there

is no need to run the greedy hypothesis extraction algorithm which could lead to

different hypotheses through tie-breaking.

167



C
h
ap

ter
5.

E
valu

ation

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  6  9  12  15

F1
 S

co
re

Problem

Average F1 Score
All IPC3 Domains

Depots
Driverlog

Rovers
Satellite

Zenotravel

(a) IPC3 domains F1 score

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  6  9  12  15

Pr
ec

is
io

n 
Sc

or
e

Problem

Average Precision Score
All IPC3 Domains

Depots
Driverlog

Rovers
Satellite

Zenotravel

(b) IPC3 domains precision score

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  6  9  12  15

R
ec

al
l S

co
re

Problem

Average Recall Score
All IPC3 Domains

Depots
Driverlog

Rovers
Satellite

Zenotravel

(c) IPC3 domains recall score

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  6  9  12  15

F1
 S

co
re

Problem

Average F1 Score
All IPC5 Domains

Openstacks
Storage
Trucks

(d) IPC5 domains F1 score

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  6  9  12  15

Pr
ec

is
io

n 
Sc

or
e

Problem

Average Precision Score
All IPC5 Domains

Openstacks
Storage
Trucks

(e) IPC5 domains precision score

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  6  9  12  15

R
ec

al
l S

co
re

Problem

Average Recall Score
All IPC5 Domains

Openstacks
Storage
Trucks

(f) IPC5 domains recall score

Figure 5.19: The F1, precision and recall scores for final hypotheses, produced at the end of observation. Results which are
not visible have perfect scores (e.g. the recall score for Openstacks and Storage is always 1).
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As the results for η = 1 show, the average F1 score varies from approximately

0.2 to 0.85 across the various domains (see Table 5.5 for averaged F1 results). As

always, lower F1 scores are caused by the hypothesis either containing too many

goals (too many non-goal facts with Υ(G) ≥ η), or by not proposing all true-goal

literals (at least one true goal has Υ(G) < η).

For the majority of domains tested this trade-off is clear — domains which

exhibit goals where Υ(G) ≥ η often contain many side-effects which will also

have high values for stability. For instance, in Openstacks the goal is to have

each order become shipped, however, prior to this the order must also be made.

Therefore, while a shipped goal will always be added to HypΩ, a corresponding

made fact will also be included, lowering the precision and F1 scores.

For other domains such as Driverlog, there is the potential for the true goal

to include cyclic goals in which the agent must return a resource such as a truck

to its original location, or to another location which has previously been visited

during the plan. As such, the recall score is lower than in all domains other than

Storage. However, by virtue of these trucks/drivers being part of the goal, the

precision score is high. Storage itself exhibits this same behaviour, but has

lower P+R scores as not all sub-goal-spaces will contain a goal literal (leading to

a low precision score).

Placing the assumption of η = 1 on the final goal is in line with both the

agent-related assumptions presented in Chapter 3 and many previous classical

GR models, wherein the achievement of the (often single literal) goal indicates

the immediate termination of the plan [18, 38, 70, 146]. However, in this case

goals can be achieved throughout a plan, rather than only on the final observation.

Given that this is the expected behaviour, all results for recall should be equal

to 1. Yet, as Table 5.5 shows, the average recall score is below 1 for all domains

other than Rovers. This is the manifestation of the problem described above,

in which goals can be achieved early in the plan, then deleted and re-achieved.

Figure 5.20 shows the times13 at which goal facts are deleted in the IPC test

domains. Domains such as Depots retain a high average recall score through

the volume of goals which are achieved during the 15 problems tested, while

others such as Storage have a lower recall score as there are generally fewer

goals achieved during a typical plan (see Figure 5.2, page 142).

13Goal deletion times are normalised against their respective plan lengths.
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Domain Average F1 Average Precision Average Recall

Depots 0.59 0.44 0.96
Driverlog 0.79 0.74 0.88
Rovers 0.54 0.37 1.00
Satellite 0.72 0.58 0.96
Zenotravel 0.77 0.66 0.95
Openstacks 0.63 0.46 1.00
Storage 0.30 0.19 0.80
Trucks 0.63 0.46 1.00

Table 5.5: The averaged final P+R and F1 scores for all IPC domains across
problems 1–15.
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Figure 5.20: The normalised timepoints at which at least one of the agent’s true
goals is deleted for the plans used in evaluation. Rovers, Openstacks and
Trucks are not included as the true goal is always comprised of strictly terminal
facts.

5.12 Predictive Accuracy

The intermediate hypothesis results presented above show how the accuracy of

hypotheses change over the duration of observation, using P+R as a means of

scoring. However, in this form the results do not provide any context as to the

predictive performance of IGRAPH. That is, the above scores may simply be

derived from the final intermediate hypothesis only. Therefore, it is beneficial to
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Configuration Before Same After None

〈hmax,WML〉 10929 1625 2331 3463
〈hmax,WMLT 〉 12764 1822 3109 2480
〈hmax,WSA〉 18928 3966 1120 1518
〈hff ,WML〉 11762 1624 1991 3574
〈hff ,WMLT 〉 13580 2376 2426 2601
〈hff ,WSA〉 25885 3384 1071 1843
〈hcea,WML〉 11746 1761 1966 3381
〈hcea,WMLT 〉 13901 2577 2128 2366
〈hcea,WSA〉 19964 3374 1007 1693

Total 139459 22509 17149 22919

Table 5.6: Specific goal prediction results for each configuration. Configurations
using the WSA work function have the highest number of correct goal predictions
prior to achievement, as well as the fewest number of post-achievement predic-
tions.

look at when a goal is included in a hypothesis relative to its achievement in the

plan. Note that this includes situations where the goal has been added, deleted

and then re-added to a state.

Table 5.6 shows how each configuration of IGRAPH performs at including

goals in hypotheses before, at the same time and after achievement of the goal

itself by the executing plan. Results for goals which are never included in a

hypothesis are also given, with each configuration showing the total results for

all IPC3 and IPC5 domains tested. The total given for a configuration is the

number of times a goal is added to the intermediate hypothesis for the first time.

From these results, configurations using WSA appear to perform the best at

predicting the goal before achievement, with the hff heuristic providing the fewest

post-achievement inclusions. Figures 5.21a and 5.21b show these results relative

to one another. The variance shown in Figure 5.21a between the total number of

goals included in hypotheses is caused by each configuration producing a different

number of goals in each hypothesis, and the scoring mechanism given in the

previous paragraph. For instance, WSA appears to add true-goals to hypotheses

more frequently than other configurations. In all cases the number of goals which

are added to a hypothesis before or at the same time as their achievement is

greater-than 70%.

With a before-achievement prediction rate of approximately 60% over all con-
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Figure 5.21: The total and relative accuracy of goal predictions produced under
each configuration of IGRAPH. As Figure 5.21a shows, configurations using
WSA generate more hypotheses which successfully predict the goal. Note that
the totals in Figure 5.21a are not equal despite being evaluated on the same
domains and problem files. This is due to each configuration adding or removing
the relevant goal fact multiple times during observation. That is, configurations
using WSA add/re-add goals to hypotheses more often than those using WML and
WMLT , with each addition being counted towards the total score once.
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figurations and an at-achievement rate of 10–15%, IGRAPH provides accuracy

which is sufficient for select applications. For example, in a video game envi-

ronment, such accuracy may be sufficient to provide an intelligent response to a

player’s strategies. Alternatively, it may provide useful guidance to an operator

on a hacker’s behaviour within a company network.

Outwith predictive aspects, the ability to determine the goal post-achievement

(5–10% accuracy) echoes Hong’s earlier work in goal diagnosis [89]. However,

Hong’s work is most similar to the final hypothesis results given previously, in

that the system has been told of plan termination. IGRAPH demonstrates that

on average 80–90% of goals can be determined prior to being notified of plan

termination.

5.13 Plan Length Prediction

As described in Section 3.4.3, in the complete goal-space model it is possible

to estimate the remaining number of observations as the heuristic estimate to

the most-probable goal. This concept also carries over to the relaxed goal-space

model, in which suboptimal heuristics can be used to estimate the number of

steps remaining, ε.

After each observation is processed, IGRAPH estimates the number of re-

maining observations in order that this value can be used to generate ε bounded

hypotheses. The accuracy of these hypotheses is considered in Section 5.14. How-

ever, before this the accuracy of ε itself is considered.

As the value for ε is equal to a heuristic estimate, its accuracy is naturally

affected by the heuristic used. Figure 5.22 shows the difference in the estimated

number of steps versus the actual number of steps remaining across each con-

figuration on each IPC domain as a Gaussian distribution, clamped to the 95th

percentiles. These figures also show the maximum and minimum estimations,

which appear as the upper and lower bounds of each candlestick.

The accuracy of the estimates varies greatly across each domain and config-

uration, with the heuristic used causing the greatest variance (as expected). In

Depots and Driverlog, ε varies only slightly between configurations, with all

underestimating the number of steps remaining in virtually every test. Rovers

and Storage show the best results, with the variance in ε revolving around zero

(which would be a correct estimate of the number of steps remaining), although

the standard deviation is still ±10–20 steps. In both cases, and more generally,

hff provides the least variance in estimates. This may be due to the fact it is
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the only heuristic which takes positive interactions of actions into account when

producing estimates.

In most of the remaining domains, configurations which use the hcea heuristic

are highlighted due to the number of extreme over-estimations. In the case of

Satellite, Openstacks and Trucks these over-estimations can be thousands

of steps from the true value, while Rovers shows the same behaviour at an order

of magnitude less. This behaviour is caused by the large number of mutex-sets

in these domains, combined with the additive nature of hcea. As hypotheses in

IGRAPH often verge towards state-estimations, the number of facts contained

in them can be far larger than the true goal. Given that the hcea heuristic assumes

that all goals are independently achieved, it simply sums together the estimate

of each fact in a hypothesis when in reality only a small subset of the goals will

be achieved, or that the achievement of these will be done concurrently. This is

both a reflection of the relaxed goal-space model and the heuristic used.

The large variance in estimations within the results is caused by ε being

equal to the estimate of the intermediate hypothesis produced after the respective

observation. That is, εt = h(Hypt), where t is the current timestep. As this is

simply the maximal grouping across G, its value will change according to the facts

chosen. In practice, the observed behaviour is that ε decreases by 1 after each

observation for a series of steps, before the intermediate hypothesis changes to one

which is sufficiently different so as to cause a large change in ε. This behaviour

then repeats throughout observation, to a varying degree depending upon the

domain and heuristic used.

While the value of ε appears to be unreliable for most domains which do not

have an underlying transportation component in their goals, it is also used as

an upper-bound in the production of bounded hypotheses (Section 3.4.4). The

following section will analyse the accuracy of hypotheses produced with ε.

5.14 Bounded Hypothesis Evaluation

Recall that Section 3.4.4 proposed bounded goal hypotheses as a means of estimat-

ing the agent’s goal in n steps. These hypotheses are constructed not to determine

the agent’s final goal G∗, but rather to predict the intervening steps on the path

to the goal14. While the estimated number of steps remaining ε has been shown

14Note that the term “intermediate goal” is intentionally avoided, to prevent confusion with
intermediate hypotheses, which are only produced after an observation and hypothesise the
terminal goal, G∗.
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Figure 5.22: The difference in standard deviation of each estimated number of
remaining steps, ε, in each domain and configuration. Black bars represent a
Gaussian distribution with 95% confidence, with upper and lower bounds repre-
sented by lines. Negative values indicate that ε is an under-estimation of the true
value, while positive numbers indicate an over-estimation.
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to be inaccurate on most domains, it does offer a convenient upper-limit on the

number of bounded hypotheses which should be produced at each timestep.

After each observation, n bounded hypotheses are produced, where n = {x ∈
Z+|1 ≤ x ≤ ε}. A bounded hypothesis, Hypbc has an associated creation, c, and

bound time, b. As these are simply standard hypotheses, albeit computed using

a slightly more restrictive technique, they can be evaluated in both the context

of being a goal and state hypothesis.

With this said, in practice it makes sense to only consider bounded hypotheses

in the context of goals, rather than as states. This is because considering bounded

hypotheses as states can lead to inflated P+R scores,due to the gradual nature of

state transitions. For example, if the bounded hypothesis for the state following

S1 (b = 1) is simply Hypb = S1, then the hypothesis will probably have a high

P+R score due to the relatively small changes caused by the observed action’s

add and delete effects. That is to say, if only a small subset of the state changes

after each observation, a “good” bound hypothesis is simply equal to the current

state.

To account for this potential bias in results, bounded hypotheses are therefore

scored against the difference between the state in which they were created c,

versus that in which they should be true, c + b. This is formally defined in

Definition 26.

Definition 26. Bounded Hypothesis Score

Given a bounded hypothesis, Hypbc, where c = {x ∈ Z+|0 ≤ x} is the time at

which the hypothesis was created and b = {x ∈ Z+|1 ≤ x} is the time at which

the hypothesis is expected to be true, the score for the hypothesis uses standard

precision and recall, with the exception that the true sub-goal G∗c+b, is equal to

G∗c+b = Sc+b \ Sc.

The sub-goal is considered to be the difference between the facts in the bound

hypothesis and those in the actual state. For instance, if Sc = {A,B,C} and

Sc+b = {A,D,E}, then the sub-goal which the bounded hypothesis will be com-

pared against is Gc+b = {A,D,E} \ {A,B,C} = {D,E}. That is, the agent was

trying to achieve {D,E} on the way to achieving the final goal, and that the

bounded hypothesis should be scored against these facts only.

Figures 5.23 shows typical bounded hypothesis F1 scores for the domains

tested, based on the 〈hff ,WSA〉 configuration which has been shown to have the

best performance in generating intermediate hypotheses. The complete set of
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results for all configurations are omitted here for brevity, but can be found in

full in Appendix B, including precision and recall results. Note that as stated in

Section 5.5, bounds which exceed the end of the actual plan do not have bounded

hypotheses generated, as they cannot have a score assigned.

These results echo those of the intermediate hypothesis results, in that certain

domains perform well, while others do not. Those such as Rovers, Storage

and Openstacks receive high scores for bounded hypotheses with both low or

high creation and bound times. In the case of Openstacks, determining the true

final goal is trivial, as the true goal is always made up exclusively of ST literals,

with no extraneous ST facts which are not part of the goal. This leads to very

high accuracy results at extreme bounds where the number of facts which can

be achieved at this minimum distance is small. Storage offers an interesting

contrary to this, as goals in this domain are non-ST, yet bounded hypotheses

appear to perform well across creation and bound times, with the exception of the

plan-horizon boundary where accuracy falls off. This is caused by the recogniser

being unable to determine which container a crate will be unloaded into (as there

can be multiple crates in a warehouse).

The F1 results for Rovers show strange behaviour, in that the bounded hy-

potheses become worse as observation proceeds. This is caused by the precision

of the hypotheses being lowered as creation time progresses. At the start of

observation, bounded hypotheses are highly accurate as the domain exhibits a

strong causal chain of actions, with largely non-overlapping plan threads. How-

ever, as observation proceeds, a large number of reachable ST facts will remain

unachieved, but will continue to be put forth as being achievable within a single

observation. This same behaviour is echoed in the results for Satellite, but

at a much lower F1 score. Appendix B.3 shows that bounded hypotheses in this

domain largely receive perfect recall, but very low precision scores.

The results for the remaining domains (Depots, Driverlog, Zenotravel,

Trucks), are more in line with the expected accuracy of bounded hypotheses.

In general, hypotheses with high bound times have low accuracy, while those

with low bounds are more accurate. In fact, all domains have a strong accuracy

relating to a bound of b = 1, regardless of creation time, although this can drop

off rapidly depending upon the domain. Of these four domains, the only notable

result is that of Trucks hypotheses which are close to the end of observation,

where a high accuracy is obtained (as the recogniser realised that packages are

about to be delivered to their final destination).
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Figure 5.23: Results for the average F1 score using the 〈hff ,WSA〉 configuration
on all IPC domains and problems.

178



Chapter 5. Evaluation

These results appear to indicate that generating bounded hypotheses is a vi-

able part of the heuristic model. While these are largely linked to underlying

domain structure (as would appear to be the general case also), they do offer

use in certain scenarios. In particular, applications in which the observed must

be intercepted prior to the termination of their plan could benefit from such hy-

potheses. However, the uncertainty and high branching factor of some domains

means that some form of probabilistic planning, such as a Markov decision pro-

cess [15], would be helpful in filtering out facts which are unlikely to appear in

most plans at a given bound.

5.15 Impact of Domain Analysis on the Initial

Probability Distribution

In Section 4.4, various domain analysis techniques were presented to enable the

creation of an intelligent initial probability distribution, prior to observation be-

ginning. This involved computing the probability of a standard literal being a

goal given its causality value and its associated locations in the causal graph.

This section will evaluate how successful the use of this initial distribution is,

when compared against a simple uniform initial distribution. For clarity, the

initial distribution produced using domain analysis shall be referred to as the

contextualised initial distribution.

The initial probability distribution is useful in two regards. Firstly, it naturally

offers the potential for a “head-start” in the recognition process, enabling more

accurate hypotheses to be produced early in observation. Secondly, it allows

the construction of a hypothesis prior to observation beginning, rather than the

random hypothesis which would be produced using a uniform distribution.

5.15.1 Initial Hypothesis Accuracy

The first beneficiary of domain analysis is naturally the initial hypothesis. This

is constructed prior to recognition beginning and uses only the initial state;

grounded problem representation and any information extracted through the do-

main analysis to select facts in G which are the best goal candidates.

IGRAPH generates the initial hypothesis in the same manner as intermedi-

ate hypotheses (page 77). Figure 5.24 shows the increase in F1 score when the

contextualised initial distribution is used over the uniform distribution. Table

5.7 expands upon this by giving details of the minimum, maximum and average

179



Chapter 5. Evaluation

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Depots

Driverlog

Rovers

Satellite

Zenotravel

Openstacks

Storage

Trucks

F1
 S

co
re

 D
if

fe
re

nc
e

Domain

Initial Hypothesis with Domain Analysis
F1 Score Improvement

Figure 5.24: The increase in the F1 score of the initial hypothesis when domain
analysis is used to produce a non-uniform initial distribution across the goal-
space.

Domain Total F1 Increase Average Min Max

Depots -0.10 -0.01 -0.10 0.00
Driverlog 0.21 0.01 -0.29 0.27
Rovers 1.06 0.07 0.04 0.21
Satellite 0.27 0.02 -0.02 0.09
Zenotravel 0.37 0.02 -0.10 0.23
Openstacks 9.15 0.61 0.53 0.65
Storage 0.00 0.00 0.00 0.00
Trucks 0.05 0.00 0.00 0.01

Table 5.7: Various statistics relating to the improvement in F1 score for initial
hypotheses in the IPC domains. “Total F1 Increase” is the total improvement in
the initial hypotheses for a particular domain across all 15 test problems.

improvement in F1 score, as well as the total improvement across each of the 15

problems associated with a domain.

The results in this table show that the contextualised initial hypothesis ben-

efits only some of the domains tested. Openstacks clearly gains value from

the non-uniform initial distribution, with an average increase in the F1 score of

0.61, while Rovers has a lesser but notable increase. This is again caused by

SA facts being present in these domains, and being assigned higher probabilities
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than mutex goals. Satellite shows minor improvements, however Driverlog

and Zenotravel show an increase in accuracy on some domains and a decrease

in others. This is most likely caused by the contextualised distribution being

unable to determine where a package or passenger will located at the end of the

plan.

Depots, Storage and Trucks show no improvement in hypothesis score

over a uniform distribution. This may be partly explained by the hypothesis

extraction algorithm always preferring to select a true literal rather than an all

false goal, as the contextualised distribution often also assigns these a higher

initial probability. However, these domains are also simply hard domains on which

to perform recognition. For example, without any observations it is impossible

to determine which location a crate will be delivered to, or which surface it will

be stacked onto.

5.15.2 Intermediate Hypotheses

As with previous sections, the impact of the initial distribution is evaluated

against the intermediate hypotheses produced by IGRAPH. Figure 5.25 shows

the percentage increase in the total intermediate F1 scores when using the con-

textualised initial distribution rather than the uniform distribution, across all

domains and all configurations. This indicates that on average there is a slight

improvement in overall score, but that there are multiple cases where this score

decreases instead.

Table 5.8 shows the average percentage increase in the total F1 score across

problems 1-15 for each domain. This shows that configurations which use the

WSA work function have the highest average increase, with more accurate heuris-

tics gaining the most from the contextualised distribution. This is in line with

previous results involving intermediate hypotheses.

The results show that by using the contextualised initial distribution, most do-

mains benefit from an increase in total intermediate hypothesis accuracy. Figure

5.26 shows these results on a per-domain and per-configuration basis. Rovers,

Satellite, Zenotravel, Openstacks and Storage show the most consis-

tent improvements across all heuristics and work functions. This could be a result

of these domains exhibiting a strong causal hierarchy, with goals often based on

variables associated with the leaves of the causal graph.

Results for some domains such as Trucks are more configuration-dependent.

In this case, configurations using WSA show a reduction in overall accuracy, while
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Figure 5.25: A point-cloud representation of the overall increase in total F1 score
for every problem and configuration.

Domain Configuration
hmax hff hcea

WML WMLT WSA WML WMLT WSA WML WMLT WSA

Depots -0.04 -0.05 -0.16 -0.02 -0.40 -0.26 -0.03 -0.25 -0.13
Driverlog 0.00 0.05 -0.24 0.01 0.11 -0.48 0.09 0.13 -0.20
Rovers 0.48 0.53 1.12 0.47 0.59 1.09 0.47 0.57 1.08
Satellite 0.27 0.05 0.15 0.07 0.05 0.16 0.06 0.05 0.22
Zenotravel 0.07 0.11 0.84 0.09 0.05 0.59 0.07 0.02 0.71
Openstacks 0.18 0.13 1.59 0.07 0.00 1.74 0.16 0.01 2.46
Storage 0.03 0.27 0.38 0.05 0.40 0.30 0.09 0.32 0.50
Trucks 0.06 0.05 -0.35 0.01 0.01 -0.12 0.02 0.02 -0.17

Total 1.04 1.14 3.33 0.76 0.81 3.04 0.94 0.87 4.46

Table 5.8: The average percentage increase in overall intermediate hypothesis F1

score when the contextualised initial distribution is used over a uniform distribu-
tion. The highest non-trivial increase in scores are highlighted.

others show a trivial increase. This relates to the extremely low precision in

Trucks hypotheses, which will cause a minor increase in overall accuracy due to

the low corresponding F1 scores. As discussed above, Depots and Driverlog

show no overall increase in total score, regardless of configuration used.

The results appear to indicate that small increases in total F1 score are possible

when basic domain analysis is used. However, this is largely dependent upon the

underlying domain structure.

Of the domains which do show an improvement in the initial hypothesis or
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(b) Driverlog
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(d) Satellite
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(e) Zenotravel
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(f) Openstacks
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Figure 5.26: A domain-specific visualisation of the difference using a contextu-
alised initial distribution makes to the total F1 score. Boxes are centred around
the mean difference in F1 result (shown in percent) for problems 1–15, with their
high dependence upon the corresponding standard deviation. The minimum and
maximum difference in F1 score is shown by the upper or lower point respectively.
The x-axis in each graph corresponds to a different heuristic and work function
configuration of IGRAPH.
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overall F1 score, this increase is small enough to question how useful the contex-

tualised distribution is once observations have started being processed. It would

appear that the first few observations destroy the contextualised distribution,

which has the possibility of being more accurate in determining the final goal

than the resulting distribution after actions have been observed.

While these results are heavily dependent upon the structure of the underlying

state, goal and plan-spaces, many classical recognition applications would be

suitable candidates for such analysis. For example, Blaylock’s MONROE corpus

[18], which models emergency response scenarios, has many strictly terminal facts

which could be used to improve the initial probability distribution as above15.

5.16 Plan/Goal Abandonment

Section 3.6 described how plan/goal abandonment is implicitly present in the

heuristic-based model, something that is in contrast to previous work which must

explicitly model this [61]. This section shows how abandonment is detected within

various domains and at different points of plan observation.

For the purposes of demonstrating abandonment, the IPC domains used else-

where are put to one side in preference of a simple grid based world. The benefits

of this are two-fold. Firstly, they allow the evaluation of IGRAPH on a domain

where there is only a single goal (for the agent to be at a location), so no conflict-

ing goals can be included in a hypothesis. Secondly, it simplifies the visualisation

of how important goal abandonment speed is. That is, whether it is harder to

detect a goal being abandoned at 10% or 90% of the observed plan. The cost of

this grid based model is that the F1 score is not a useful metric, as there is often

a large number of goals which become closer at the same time, making differen-

tiation of the true goal difficult. Therefore, the probability associated with the

goal at each observation is reported instead16.

The plans used in this section are generated by modifying the JavaFF planner

[44] to produce a chain of plans which have their goal switched at a pre determined

percentage of the overall plan. For instance, if goals are to switch after 30%

of observations, a plan is generated for the first randomly selected goal, then

15An attempt was made to automatically derive a PDDL representation of the MONROE
domain using only the action traces contained within the corpus. Unfortunately, the number
of action templates present in the plans proved too complex for the tool used (LOCM2 [45]).

16In the case of a simple grid world, using the probability as a metric is reasonable, as the
relaxed goal-space is equal to the complete goal-space G, meaning the mutex-set restrictions
reported in Section 4.3.1 do not apply.
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trimmed to include only the first 30% of actions, before another goal is randomly

selected and the process repeats. Goals are constrained to be a minimum of

5 plan-steps apart in order to differentiate between abandonment and slightly

suboptimal plans17. Note that the results presented do not consider whether

the goal was correctly hypothesised — merely that the probability of the latter

goal exceeds that of the former post-abandonment. This is because the previous

sections have demonstrated the recognition ability of IGRAPH, while here the

matter of whether a heuristic-based model can detect goal switches is of greater

interest.

As an initial example, Figure 5.27 shows a 21x21 grid world where the agent

starts in the centre and must move to the South-West corner to achieve their

goal. However, this goal is abandoned at 10%, 50% and 90% of plan completion,

at which time the agent switches to the North-West, North-East or South-East

goal respectively. Figure 5.28 shows the corresponding probabilities of the aban-

doned and new goals over plan observation. For this simple world, IGRAPH

is initialised to use the 〈hmax,WSA〉 as estimates will be optimal regardless of

heuristic choice, while a uniform initial distribution is applied. In all cases the

goal is correctly recognised, although later goal abandonment naturally leads to

a longer delay in detection.

While the IPC domains are suitable for standard recognition, they are a poor

fit for demonstrating abandonment detection. Therefore, a simple domain in

which the agent moves around a dense but loosely connected city environment

is used, where being at a location is the only possible goal. Figure 5.29 shows

a complete enumeration of the state-space for such a domain with 1000 possible

locations. Local areas of the state-space are clearly visible, along with paths

between some of these local problems. These are intended to mimic areas of a

more complex state-space in which local neighbourhoods can be solved through

multiple means. Some of these neighbourhoods are visible as outlying points in

Figure 5.29b, while the central core shows highly-connected areas of the state-

space. Once the agent enters one of these neighbourhoods the recogniser should

rapidly converge onto those goals which are in this local area.

Figures 5.30 and 5.31 shows the probability of each abandoned goal when

1, 4 and 9 goals are abandoned throughout plan execution (plus a further goal

17It is of course possible for an agent to abandon their goal on the last plan step, but under
these circumstances a heuristic-based recogniser would most likely be unable to determine that
this was the case, and not simply that the new goal was the true goal all along.
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SW SE

NENW

Figure 5.27: Goal abandonment in a 21x21 grid world where the agent starts in
the centre and the initial goal is always to reach the South-West corner. The
same initial plan is used in all cases, as marked by a solid line. Plans generated
after abandonment are shown by dotted lines. The North-East goal is switched
to after 10% of the initial plan has been executed; the North-West goal after
50%, and the South-East goal after 90%. Other results (such as switching to the
North-West goal at 10% or 90%) are omitted as any differences in results are
minimal.
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(b) Goal abandoned at 50% of observation for NW goal.
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(c) Goal abandoned at 90% of observation for SE goal.

Figure 5.28: Examples of an agent in a grid world domain abandoning the current
goal at different stages of plan completion, using hmax in all cases, and WSA as
the work function. Arrows along the x-axis indicate the time at which the current
goal was abandoned, with the true goal probability being indicated as a line with
star points.
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(a) A standard map of the city state-space.
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(b) A circular map of the city state-space which highlights a (relatively) densely connected
central path network and outlying local problems.

Figure 5.29: Two representations of a 1000 node city state-space. The first
figure shows a central cluster of paths through the state-space, with various edges
between local problems visible. The second shows the same space with densely
connected nodes clustered in the centre of the circular area. Outlying local areas
of the state-space are highlighted as arms emanating from the centre.

indicating the agent’s final position). These results are again generated using the

〈hmax,WSA〉 configuration. The WML and WMLT functions are a weak choice for

problems in which goals are expected to be abandoned, as they consider the entire

plan trace and assume optimality in either a linear or concurrent form. Instead,

WSA only considers the current observation with no historical context. Note that

in all cases larger abandonment goal lists are a superset of smaller goal lists.

Figure 5.30 shows that goal switches are correctly detected in this movement-
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(a) 1 goal abandoned at 10% of plan com-
pletion.
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(b) 2 goals abandoned at 10% of plan com-
pletion.
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(c) 1 goal abandoned at 50% of plan com-
pletion.
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(d) 2 goals abandoned at 50% of plan com-
pletion.

 0

 0.5

 0  2  4  6  8  10  12  14  16  18  20

G
oa

l P
ro

ba
bi

lit
y

Observation

Goal Probability After Abandonment
City 1000, 1 Goal Changes at 90% Completion

(e) 1 goal abandoned at 90% of plan com-
pletion.
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(f) 2 goals abandoned at 90% of plan com-
pletion.

Figure 5.30: Results for abandonment on the city domain for 1 and 2 goals being
abandoned at 10%, 50% and 90% of plan completion. Arrows along the x-axis
indicate the time at which the current goal was abandoned, with the true goal
probability being indicated as a line with star points.
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(a) 4 goals abandoned at 10% of plan com-
pletion.
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(b) 9 goals abandoned at 10% of plan com-
pletion.
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(c) 4 goals abandoned at 50% of plan com-
pletion.
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(d) 9 goals abandoned at 50% of plan com-
pletion.
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(e) 4 goals abandoned at 90% of plan com-
pletion.
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(f) 9 goals abandoned at 90% of plan com-
pletion.

Figure 5.31: Results for abandonment on the city domain for 4 and 9 goals being
abandoned at 10%, 50% and 90% of plan completion. Arrows along the x-axis
indicate the time at which the current goal was abandoned, with the true goal
probability being indicated as a line with star points.
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based domain. In particular, Figure 5.30e shows a distinctive dip in the original

goal’s probability following abandonment at step 6, something which is also visible

in Figure 5.30f at both abandonments.

As the number of abandoned goals increases in Figure 5.31 it becomes harder

to differentiate between prior and current movement towards a latter goal. For

instance, Figure 5.31b shows that the true final goal is not converged upon until

the last few observations, with a prior, already abandoned goal having a higher

probability from steps 11 – 18. Later plan abandonment as shown in Figure 5.31f

makes distinguishing the true goal more difficult still.

The natural conclusion of this is that it will be very difficult to generate

an accurate hypothesis for an agent which constantly abandons its current goal.

Figure 5.32 shows this situation, where the agent abandons 99 goals before finally

terminating their plan. In the case of 90% of plan completion before abandonment

(Figure 5.32c), this results in a plan which approaches 1000 steps. By the end of

such a long period of observation, virtually all (abandoned) goals have a trivial

probability, until the last few observations when the probability of the true goal

rises. In this case, the final spike of probability is likely due to the agent entering

a sparsely populated neighbourhood of the state-space, where virtually all other

members of the goal-space are constantly becoming further away. In fact, the

hypotheses output by IGRAPH begin to converge upon an empty hypothesis as

the number of abandoned goals increases. That is, the all false goal becomes the

most likely candidate, indicating that the agent has no true goal.

While not the core focus of the heuristic-based model, the ability to detect goal

abandonment without additional complexity is useful. In many of the domains

where the model is applicable (network intrusion, assistive-agents, video games

etc.), subjects often abandon goals in favour of others. With a traditional model

of recognition, this would again require that the plan-library contains plans for

these abandoned goals, with the added complexity that these must take into

consideration the agent’s state when the goal is abandoned (as this becomes

the initial state of a subsequent plan). The results show that the heuristic-

based model may have useful application in such domains, without the overhead

required by a model such as that of Geib and Goldman [61]. However, it may be

that modifying the Bayesian likelihood function to give higher weightings to more

recent observations would help overcome the problem of probabilities decaying

over time, in a method similar to reinforcement learning [153].
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(a) Goals abandoned at 10% plan completion.
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(c) Goals abandoned at 90% plan completion.

Figure 5.32: Examples of goal abandonment in the 1000 node city domain across
all abandoned candidate goals, where the agent aborts their goal 99 times before
plan termination. For ease of reading, only the final goal is highlighted in the
legend. At such a high number of goal abandonments it becomes increasingly
hard to determine the current goal being pursued, and IGRAPH generates empty
hypotheses — indicating that it believes there is no active goal for the plan.
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5.17 Performance of Plans Generated with Do-

main Knowledge

In all of the preceding sections, the observer and agent have used domain-independent

heuristics to derive estimates and plans. However, in both recognition and plan-

ning, having access to a heuristic which encodes domain knowledge should allow

for better decision-making, lowering plan length and decreasing suboptimal action

choices. This section explores whether an improvement in recognition accuracy is

possible when the observed agent is known to have domain-specific information

at their disposal.

Specifically, the tests performed will focus on how IGRAPH performs on

plans generated with TLPlan [7], versus the standard FF planner [88]. TLPlan

uses additional domain knowledge provided by human experts prior to planning

beginning, while FF uses the standard domain-independent heuristic described

in Section 4.3.3. Both planners competed in the 3rd International Planning Com-

petition [117] where TLPlan was placed joint first, and FF was placed third.

Note that as TLPlan only competed in IPC3, the IPC5 domains are excluded

due to there being no domain-dependent configuration files available.

Whereas previous tests have used the total F1 score as an indicator of the

accuracy of a configuration, this is not possible when differing plan sources are

used. This is because a longer plan can result in a higher score due to the presence

of additional hypotheses being included. That is, a plan with many low scoring

hypotheses could out-score a shorter plan with a few high accuracy hypotheses.

However, these issues can be somewhat mitigated by using measurements taken

at respective times during execution. For example, the score at 50% of plan

observation of a more optimal plan should be higher than the same score for a

longer plan18.

Table 5.9 shows the improvement in plan length for solutions produced by

TLPlan versus FF. In Depots solutions are, on-average, 11.06% shorter, while

Driverlog shows no notable difference, and all other IPC3 domains have longer

solutions despite the use of control-rules. Figure 5.33 shows a scatter plot of all

individual plan lengths for each planner.

Figure 5.34 shows a stacked view of the improvement in F1 score when TLPlan

sources are used in preference to FF plans. Results above the x-axis indicate that

18This assumes that the time to achieve each goal is proportionally greater on the longer
plan, which is not always the case, but is a useful metric nonetheless.
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Domain TLPlan Improvement

Depots 11.06
Driverlog 0.23
Rovers -9.66
Satellite -3.96
Zenotravel -6.47

Table 5.9: The average improvement in solution length when TLPlan is used,
relative to plans produced by FF.
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Figure 5.33: A scatter-plot of plan-lengths created by TLPlan and FF.

the hypothesis generated was better when a TLPlan source was used over the

respective FF plan. At first glance, these results show that any improvement in

recognition quality is ambiguous, and appears unrelated to configuration. How-

ever, while a configuration or domain-wide improvement is not apparent, prob-

lems which do show an notable improvement/reduction in score are generally

consistent across all configurations. In particular, most Zenotravel problems

have an improvement when using TLPlan, while Driverlog problems show

an almost universal decrease in precision.

More formally, Table 5.10 shows the correlation coefficients between the im-

provement in plan length when TLPlan versus FF plan sources are used, and

the average increase in respective F1 scores across each problem and configura-

tion. These are derived from the Pearson linear correlation, and again indicate
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Configuration Depots Driverlog Rovers Satellite Zenotravel

〈hmax,WML〉 0.06 0.03 0.09 -0.61 0.05
〈hmax,WMLT 〉 0.32 -0.01 -0.14 -0.49 -0.05
〈hmax,WSA〉 0.13 -0.07 0.13 0.23 0.07
〈hff ,WML〉 0.08 0.12 0.04 -0.41 0.08
〈hff ,WMLT 〉 0.02 0.08 -0.13 -0.49 -0.07
〈hff ,WSA〉 0.14 0.11 0.09 0.11 0.11
〈hcea,WML〉 0.12 0.02 0.15 -0.40 0.12
〈hcea,WMLT 〉 0.11 0.05 0.16 -0.49 -0.02
〈hcea,WSA〉 -0.21 0.25 0.24 -0.01 -0.15

Table 5.10: Correlation coefficients of the improvement in plan length when
TLPlan plans are used over FF plans, versus specific configurations on each
domain tested.

that there is no overall correlation between a reduction in plan length and im-

provement in recognition score.

Results for Satellite show a correlation coefficient of -0.49 on all config-

urations which use the WMLT work function, indicating that plan length plays

a partial role in scoring. The highest correlation coefficient of -0.61 is also in

Satellite, for the 〈hmax,WML〉 pair, which may be linked to some of the more

general reasons for the performance of hmax outlined in Section 5.19. However,

the actual difference in average F1 score is trivial, regardless of configuration

applied, making this a somewhat misleading statistic.

The results for Depots offer the most interesting output, as they do not show

the expected improvement in recognition score. This is despite plans produced

by TLPlan being an average of 11.06% shorter than the FF equivalent.

A natural follow-up to this confusing behaviour is the question of whether

performance can be improved if the observer has access to the same heuristic

as the agent. In this case, the question is perhaps more succinctly posed as

whether doing this can inflict bias upon the results. That is, if the observer and

agent both make decisions based upon the same information, it is conceivable

that the observer will have an unfair advantage in estimating the agent’s goal.

Such behaviour may explain why a longer FF-derived plan can outscore a shorter

TLPLan-derived plan.

Recall that in the previous IPC tests, the plans which IGRAPH has been

evaluated on have come from the best known solutions produced in the associated
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Figure 5.34: The average improvement in F1 score, per observation, when plans
generated by the domain-dependent planner TLPlan are used, relative to those
generated by the domain-independent planner FF. These averages are taken from
the F1 score at 25%, 50%, 75% and 100% of the respective plan’s execution, in
order to allow plans of differing lengths to be compared.
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competition. For the IPC3 domains, the FF planner was extremely successful,

and as such many solutions produced by this planner have been used in testing.

Given that the FF heuristic has been implemented in IGRAPH, there may be a

bias towards plans also produced with this. The following section shall investigate

how true this statement is, by evaluating the three heuristics used by IGRAPH

against a variety of plans generated by different planners and heuristics.

5.18 Evaluating Potential Heuristic Bias

In the original complete goal-space model, both observer and the executing agent

are assumed to be rational, and will never incorrectly estimate the distance to

a goal. In the relaxed model this no longer holds, which leads to the seemingly

obvious statement that both agent and observer may not be using the same

heuristic.

While rather self-evident, this may have a profound impact upon recogni-

tion. If the observer is using a more accurate heuristic than the agent, then they

can potentially produce better goal hypotheses, while if the opposite is true, the

agent can reach the goal in a shorter number of steps. However, if both agent

and observer are using the same suboptimal heuristic, then there is potential for

the observer to have an advantage in determining the agent’s goal (in a keyhole

recognition context [1].). For instance, if the agent is in state Sn and the observer

knows that because of the state’s structure the agent will always choose action

A1, they can better predict the final goal being pursued. Indeed, if the heuristic

is deterministic, it becomes possible to produce all possible plans the agent can

possibly be pursuing — in turn reducing the recognition problem to that of clas-

sical recognition, wherein plans in a library are eliminated by observed evidence

[97].

This section shall investigate whether this is a possibility in the domains

tested. In particular, it will look at how IGRAPH performs on the same IPC3

domains that were considered in Section 5.17, when both the plan being observed

and the heuristic used for observation are identical. Specifically, the FF heuristic

as encoded in IGRAPH will be applied to plans generated with the original FF

planner [88], the JavaFF planner [44], and LPG planner [66].

Note that here a distinction must be made between the FF heuristic, and what

will be termed the JavaFF heuristic (and the respective planners). IGRAPH

is built upon the code-base for JavaFF, which itself aims to be a Java imple-

mentation of the FF planner. However, in practice, JavaFF is not a perfect
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duplication, but for most problems will produce the same plan19. Therefore, for

clarity, the FF heuristic has been used to generate plans with the FF planner,

and an encoding of it has been implemented in IGRAPH (referred to as the

JavaFF heuristic), and used again to generate a further set of plans which are

referred to as JavaFF plans.

The reason for choosing the LPG planner as the counter to FF is that it

is not a forward-chaining planner. Rather, it generates plans using local search

through genetically-inspired means. Briefly, an initial plan is created quickly and

näıvely which solves the goal but is probably of extremely poor quality (length).

After this initial plan has been produced, the planner introduces local flaws into

the plan, then attempts to find a solution for these which is shorter than the

original plan. This partial-order planning approach allows the original plan to be

optimised over time, which may lead to causal chains not encountered during the

forward-search planning approach which FF uses.

The expectation of these results is that IGRAPH will show a performance

improvement on those problems where the planner and recogniser share the same

heuristic. This is exemplified by plans created with JavaFF, and configurations

of IGRAPH which use the hff /JavaFF heuristic. Plans created with FF are

also expected to show this behaviour, but as the JavaFF implementation is not

an exact replica of the original, this will have a slightly poorer performance (but

will still show a bias in the results).

Figure 5.35 shows the total F1 accuracy for observations at 25%, 50%, 75%

and 100% of plan observation. This is termed the total “relative” F1 score and is

used as a means of comparing the results of three different plan sources, where the

total F1 score is unsuitable for the same reasons given in Section 5.17. While, a

shorter plan should theoretically have a higher score at these relative percentages

of plan completion, having heuristic estimates which are the same across planner

and recogniser may cause a similar pattern to emerge. Of the configurations

shown in Figure 5.35, those using the hff /JavaFF heuristic are of the greatest

interest, as these should inflate any bias towards plans generated using JavaFF

and perhaps FF itself.

As is now to be expected, the general performance of each configuration echoes

that of previous results where use of WSA performs best, with the exception of

19Note that JavaFF as presented in [44] lacks many of the original features which made FF
successful, such as helpful actions, goal-ordering and a deterministic heuristic. Almost all of
these missing features have been added to the version used in testing. Only goal-ordering as
specified in [101, 102] and the deterministic search function present in FF are not included.
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Domain FF LPG JavaFF

Depots 3 10 —
Driverlog 3 12 3
Rovers 12 — 6
Satellite 8 14 3
Zenotravel 12 10 2

Total 38 46 14

Table 5.11: The number of plans for each planner and domain, which are equal to
the best plan-length used in testing. For example, in Rovers, the plan generated
by FF has the shortest length in 12/15 tests, while JavaFF achieves this only
6/15 times. In this case, LPG has no results as it cannot produce an adequate
set of solutions for all 15 problems.

Driverlog where these configurations perform score approximately 25% lower

than others. However, there is no overall bias towards configurations of IGRAPH

which use hff , with the total score being similar across most domains no matter

the configuration used.

In most cases LPG has the highest scores on both Depots and Zenotravel,

while on Satellite this is only achieved on configurations where WSA is not

used. Of the domains where JavaFF plans are available, there is no consistent

behaviour between the use of this or the FF heuristic. For instance, FF gener-

ally slightly outperforms JavaFF on Driverlog, while the reverse is true on

Satellite and Zenotravel. Scores for Rovers are almost identical.

While these results appear to show no bias, it is not possible to state for

certain that this is the case. However, it is conceivable that the source which has

the shortest plans will receive the highest score as this should result in faster goal

convergence. Table 5.11 shows the number of plans for which each planner finds

the shortest solution. Overall, JavaFF matches the shortest plan only 14 times

out of a possible 75 (five domains with 15 problems each), yet in recognition

exceeds other plan-sources on some domains, such as Satellite where LPG

is outperformed in configurations using WSA and FF is dominated across all

configurations. This is despite JavaFF only finding the shortest known solution

for 3 problems, while FF and LPG find this 8 and 14 times respectively. It is

therefore plausible that any bias in heuristic usage is domain-dependent.

The use of a heuristic (and indeed, a planner) to produce valid plans for

each goal in G has previously been explored by Ramı́rez and Geffner [145]. Here,
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Figure 5.35: The total F1 score for each configuration of IGRAPH when tested
on plans generated using FF, JavaFF and LPG, and only hypotheses generated
at 25%, 50%, 75% and 100% of observation are included. Note that there are no
available results for Rovers using LPG or for Depots using JavaFF.
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goals are single literals as in the relaxed goal-space presented 20, and a planner

[76, 161] is used to produce plans which are in turn used as heuristic estimates.

Such behaviour naturally produces both accurate goal estimates and would be

more susceptible to bias — although it is unknown whether this was considered

or indeed a possibility.

While the results appear to show that IGRAPH does not suffer from bias,

having a model of the agent’s heuristics with which to guide recognition is of

course highly desirable. As stated previously, while the core argument of this

thesis is that recognition should be possible without any prior knowledge, if such

information is available or can be constructed at runtime, it should of course

be applied. Learning models of agent behaviour is perhaps most akin to policy

learning [153], and is closely related to classical plan recognition models where

a plan-library can be used to construct a probabilistic policy — or vice versa

[30, 38, 63].

5.19 On the Unexpected Performance of hmax
In the previous results, the performance of the hmax heuristic has often been

surprisingly close to that of the supposedly more informed hff and hcea heuristics.

This is despite it offering extremely poor estimations for any goal which is more

than a few steps from being achieved. This section enumerates some possible

explanations for this behaviour.

5.19.1 Heuristic Admissibility

While hmax is admissible, both hff and hcea are not, but do offer far more accurate

estimates. However, at further goal distances these estimates become less reliable

and, in certain domains, may increase when there should be a decrease (and this

increase exceeds the true number of steps required).

This raises the question of whether heuristic accuracy is strongly linked to

admissibility in goal recognition. In essence, an increase in the estimate to a

goal indicates that the literal is not being pursued, while a stagnation of the

estimates is inconclusive. It may be that hmax is achieving the same results as

more accurate heuristics, by simply “ignoring” any heuristic movement until it is

definitely closer.

20The model presented by Ramı́rez and Geffner does allow for conjunctive goals to be con-
sidered, but in practice only a small set of individual literals are enumerated and evaluated in
their equivalent of G.

201



Chapter 5. Evaluation

5.19.2 Heuristic Estimate Similarity

The admissibility of hmax is also linked to a further possible reason for the overall

performance. Ideally, when an agent pursues their goal, the estimate to the goal

should lower while other mutually-exclusive goals have their estimates increase

(or at least stay the same). However, in practice this behaviour can be unlikely,

with multiple goals becoming closer at the same time — such as the possibility

of communicating a rock sample instead of image analysis results in Rovers,

or a passenger getting off at a given airport versus staying on the plane and

disembarking at the next airport in Zenotravel.

One possibility is that regardless of heuristic choice, in most cases when h(G∗)

lowers, the estimates to most goals in the true goal’s sub-goal-space also decrease

(or also increase/stay the same). This would lead to similar posterior probabilities

being generated after the observation, as it is not important how many times

a goal has gotten closer, if all mutually-exclusive goals demonstrate the same

behaviour regardless of heuristic.

As an example, consider the relaxed goal-space G = {G1, G2, G3}. At ini-

tialisation, G1 is true and G2 and G3 both have an estimate of five. The agent

is then observed executing four actions which lower this estimate to both un-

achieved goals, before finally executing a fifth action which achieves G2 only. In

this scenario where an optimal heuristic estimate is available, it is impossible to

determine whether G2 or G3 is the true goal until the last observation. As the

estimates lower at the same time, they will have the same posterior probability,

making any hypothesis a tie-break between them.

Now consider that hff is used, and that it believes that after the second

observation both G2 and G3 are further away from being achieved. This will not

affect the output of IGRAPH — both goals have the same probability until the

last observation. The same is true of hcea, which may offer more accuracy but

can ultimately produce inadmissible estimates.

However, if hmax believes that both unachieved goals are five steps away at the

beginning of observation, then it is guaranteed that this value will not increase

given the observed plan. Therefore, as long as at least a single observation lowers

the distance to G2 and G3, there will be no difference in the hypotheses produced

by hmax, hff or hcea prior to the final observation (given that tie-breaking is

deterministic).

While this example is perhaps contrived in order to demonstrate a possible
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Figure 5.36: The distribution of goal-achievement times, normalised by over-
all plan length for all IPC problems, using the shortest solutions taken from
IPC3/IPC5. Goals which are achieved on the final observation (100% comple-
tion) account for only 11.6% of the total goals achieved.

explanation for the performance of hmax, such behaviour is nonetheless possible

during observation.

5.19.3 Achieving Goals Throughout Observation

As has been covered previously, hmax is known to be poor at producing accu-

rate estimates for facts which are more than a few steps from being achieved.

However, while the final goal in the IPC domains tested is often conjunctive, the

achievement time of the individual literals tends to be scattered throughout the

plan.

As a visual aid, Figures 5.36 and 5.37 show the normalised times at which

goal-literals are actually achieved during the plans used for evaluation. As these

demonstrate, for non-trivial problems goals are often achieved almost uniformly

throughout execution/observation.

While it is unknown which goal the planner is pursuing at each step in the

planning process (if any), these results appear to indicate that the difference

in heuristic estimate between consecutively achieved goals is often a small value

(relative to overall plan length). This may allow the performance of hmax to

approach other more informative heuristics, given that the relaxed goal-space

contains only individual literals. For instance, after the achievement of goal G1,
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Figure 5.37: The individual goal achievement times as a ratio of per-problem plan
completion. Each figure shows that for non-trivial problems, goals are achieved
throughout plans rather than at the end (although the achievement of the final
unachieved goal will always denote plan completion in a well-written STRIPS
plan). The average goal-achievement time on each problem is plotted as a line.
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the estimate from the achieving state to goal G2 may be small enough such that

hmax(G2) = hff (G2) = hcea(G2), resulting in no substantial difference between

heuristics.

Even if this is not the case, and the estimates are not equal, this behaviour will

be approximated as the variance between each heuristics estimate reduces. This

“lag” may be what causes the total F1 score for hmax on intermediate hypotheses

to be only slightly lower than those of hff and hcea.

In reality, it is likely that the true reason for the uniform results is a mixture

of the above suppositions. It is certainly the case that domains in which hmax

performs well are those where it is difficult for hff and hcea to compute accurate

estimates due to combinatorial search. These domains (Depots, Driverlog,

Storage), all contain a block-stacking subproblem which hff and hcea struggle

with, leading to estimates fluctuating wildly between observations. On the other

hand, hmax has an upper bound which usually only lowers once the goal truly

has gotten closer. While the other heuristics are indicating that a goal is getting

further away, hmax more often than not believes that it has not moved at all,

causing the associated probability to remain the same across the respective sub-

goal-space.

5.20 Chapter Summary

This chapter has investigated the heuristic-based model of goal recognition put

forward in Chapters 3 and 4.

The results given show that it is largely possible to perform accurate goal

recognition using a domain-independent formalism. Section 5.10 demonstrated

that domain-independent heuristics taken from the planning community can be

successfully used in determining an agent’s goal across multiple example domains.

This was shown to be applicable in both an online context through generating

intermediate hypotheses and an offline context with final hypotheses.

Three suboptimal heuristics have been evaluated — the max [27], Fast-Forward

[88] and context-enhanced additive heuristics [80] — each with their own benefits

and drawbacks, along with three methods for deriving a value for the Bayesian

likelihood function. It has been shown that heuristics which provide more accu-

rate estimates have higher accuracy, although admissibility may play an impor-

tant role in this.

Section 5.12 showed that the model enables accurate online prediction of the
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true goal for the majority of test cases. This section also demonstrated that

80–90% of goals are successfully hypothesised at some point during recognition.

This indicates that the model is largely backwards-compatible with previous work

on planning-based goal recognition [89], with the added benefits of predictive

capabilities.

Beyond classical plan recognition scenarios, Section 5.13 showed that while

estimates for the true number of observations remaining is inconsistent in its

accuracy, the bounded hypotheses produced can be highly accurate in determining

short-term goals. This has implications for online scenarios where a subject’s

plans are to be intercepted or even assisted by a virtual agent.

Investigations into the automatic derivation of prior probabilities at runtime

based upon domain knowledge, have demonstrated that it is possible to bootstrap

the recognition process during early observations. However, these benefits are

only present if the domain exhibits certain properties (strictly terminal, distant

goals, acyclic plans), and are often rapidly subsumed by observed evidence.

Section 5.16 showed how the heuristic-based model can be applied to detect

goal abandonment, which was exemplified in a simple grid based and various

city-navigation problems where the agent abandoned their goal from 1 to 99

times. Detection of goal abandonment has previously only been considered as an

additional problem on top of an existing plan recognition model [61], as opposed

to the heuristic-based model has implicit support.

Section 5.17 investigated the possibility of plans generated with domain knowl-

edge offering better results than those using a domain-independent planner. This

was done by considering the “relative” accuracy of hypotheses at various points

during observation and the resulting difference in accuracy between plan sources.

These results appeared to show that use of a domain-dependent plan did not

cause any improvement in observation beyond that expected from using a shorter

plan. Following on from this, the issue of heuristic bias was explored in Section

5.18. Like the domain-dependent plan sources, there appeared to be no visible

bias towards plans which made use of the same heuristic as the observer. Finally,

Section 5.19 presented some possible explanations for the performance of the hmax

heuristic, which exceeds the predictions given in Section 5.6 stating that less in-

formed heuristics should have lower recognition performance than more informed

heuristics.
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Conclusions

6.1 Overview

This thesis has shown that it is possible to perform goal recognition using a

heuristic-based model, rather than the traditional use of plan-libraries. Chapter

2 introduced and motivates the need for this model, before a complete model of

the problem is presented in Chapter 3. This was then relaxed in Chapter 4 to

provide a tractable implementation of heuristic-based recognition. This relaxed

model has been evaluated thoroughly in Chapter 5, wherein it was shown to be

able to produce accurate hypotheses across a range of applications.

6.2 Summary of Contributions

The heuristic model presented has several advantages over previous recognition

models [38, 70, 97], which address neglected areas of the recognition problem, or

enable further application of the research. The original contributions of this work

as set out in Section 1.4 are revisited here.

• Reliance of Plan Libraries

By removing the need for a plan-library to be present goal recognition

is less-constrained, leading to a more complete model of the underlying

problem. Sections 3.2 and 4.3 described how automatic generation of the

goal-space, along with automatic reachability analysis allows the behaviour

of libraries to be approximated without the need for human interaction.

Section 3.3 detailed how heuristics can be used as a means of determin-

ing which members of the goal-space are being converged upon after each

207



Chapter 6. Conclusions

observation. This enables rapid deployment of the system on a variety of

problems, which would not otherwise be possible without a plan-library or

domain expert being available.

• Suboptimal Agents and Goal Abandonment The use of heuristics and

a planning-based representation allows for suboptimal agents to be observed

without generation of a plan-library. While this means that the agent’s

plan length will be unknown, Section 4.3.7 demonstrated how heuristics

could again be used to estimate the number of steps remaining based on

the most probable hypothesis. This bound, 1 ≤ b ≤ τmax, was in turn

used to generate multiple bounded hypotheses representing the agent’s most

probable goal in the next b timesteps.

Virtually all library-based models assume that the agent will pursue the

same goal throughout observation. This assumption is also used through-

out the heuristic-based model, but unlike library-based approaches, goal

abandonment is implicitly supported. This is in contrast with previous

work where abandonment must be computed as a separate process on top

of the recognition problem.

Section 4.3.9 demonstrated how the heuristic-based model instead requires

only observed evidence to detect the abandonment of a goal. This widens

the application of the model to real-world scenarios where agents are both

suboptimal, may change goals mid-plan, or even situations where the sub-

ject is attempting to hide their true goal.

• Non-Uniform Initial Distributions

Part of the functionality of the plan-library is to provide a prior distribution

over the goal/plan-space. This distribution can only be applied if a domain

expert has generated it, or repeated observations of subjects are available.

Section 4.4 showed that this can be replaced with basic analysis of the

underlying problem, such that a non-uniform distribution across the goal-

space can be generated which bootstraps early hypotheses.

• Standardisation

Previous work in recognition has often been unique, with no cross-testing

of domains/plan libraries. This work uses a standardised input language in

the form of PDDL 2.1, enabling recognition to be performed on any valid

domain.
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Beyond these criteria, the heuristic model also has compatibility with several

features of previously-accepted recognition models, particularly that of Goldman,

Geib and Millar [70]. In particular, negative evidence, pending sets and partially-

ordered plans are accounted for. The model also implicitly supports plan and goal

abandonment [61], as well as goals which remain true throughout observation.

6.2.1 Interesting Observations

Chapter 5 evaluated the relaxed heuristic model, and raised several interesting

observations relating to the recognition problem.

The first of these is that heuristic accuracy may not be as important as the-

oretical results would indicate. While configurations of IGRAPH which used

the hmax heuristic had the lowest overall performance, the associated score was

not so low as to indicate that the heuristic was of no use in recognition. Given

that the computation time associated with this heuristic is trivial, there may

be specific applications where it is of use, such as environments with limited

processor-time (video games) or where the domain exhibits certain properties (a

transport problem such as that shown in Figure 5.29).

While only partially explored in Chapter 5, the use of hypotheses as goal-state

estimations rather than purely goals offers interesting possibilities in integrating

recognition with a planner. For example, given a state-hypothesis, a planner

acting in a co-operative manner may be able to plan to the hypothesis-state

more quickly using the additional facts. Conversely, the planner may inform the

hypothesis-construction process by informing the recogniser that the hypothesis

is unreachable.

6.3 Future Work

IGRAPH can be seen as a first-step into the world of heuristic-based and library-

free goal recognition. Now that the base-formalism has been defined and evalu-

ated, there are many avenues of continued research which can be explored. This

section will provide a brief overview of these.

• Landmarks

In constructing a plan, an agent may not decide to ‘aim’ directly for the end

goal. Instead, they may decide to plan to specific landmarks which occur

on the path to the true goal. In the strictest form, these are facts/goals

which must be achieved prior to another goal, while in a more relaxed form
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they include a set of facts, of which one must be true before another fact

can be achieved. For example, in order to achieve the “at-work” goal, the

agent will consider the landmark goals “leave-house” and “get-train” first,

knowing that these will ultimately achieve the end-goal.

The use of landmarks in planning has been known of since 2000 [137, 138],

and forms the backbone of the winning planner in the last International

Planning Competition (satisficing track) [161]. The planner, LAMA, au-

tomatically detects the ordered landmarks of the (known) goal at runtime

using domain analysis, then plans to each landmark in turn.

Having the ability to detect which landmarks an agent is using to guide

their search can have powerful implications for recognition. Knowing that

there is a partial or total ordering of landmarks between goals could enable

more accurate inference. For example, the knowledge that the agent in

the above scenario must first use some form of transport to get to their

destination could allow the observer to more accurately infer that they are

going to work. With an optimal heuristic at the observer’s disposal, this

would offer no benefit, but as the evaluation chapter has shown, heuristics

can struggle to offer high-quality estimations for distant goals. Knowing

that landmark L1 precedes goal G1, could allow the observer to increase

the probability of G1 being the true goal, as L1 has become closer, while

the heuristic estimate of G1 has remained the same due to its distance from

the initial state.

• Conjunctive Goals

Incorporation of conjunctive goals is a natural progression of the heuristic-

based model. The primary benefit of having conjunctions present in the

goal-space is that heuristic estimates are often more accurate than con-

sidering each goal separately, which should increase accuracy and reduce

the need for additional relaxed model features (such as thread graphs and

heuristic bonuses).

Inclusion of conjunctive goals could be performed through extending sub-

goal-spaces to include domain-generated literals representing the conjunc-

tive literals. However, this process may be unsuited to domains where all

mutex sets cannot be determined, as unreachable conjunctions could be

inserted into the goal-space. However, approximation of valid conjunctive

goals from plan traces is also an interesting area of extension.
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• Co-operative/Adversarial Recognition

The domains evaluated in Chapter 5 are done in the context of keyhole

recognition. However, the results presented indicate that further work is

possible in the areas of co-operative and adversarial recognition. In the

former, agents are assisted by having the recognising agent perform actions

on their behalf, which move the goal closer to being achieved. Conversely,

in adversarial recognition the goal of the agent must be prevented by in-

tercepting the executing plan. Integration of IGRAPH with a planner in

order to achieve either of these tasks is a simple exercise, which when com-

bined with the standardised input formalism of PDDL could enable a wide

range of applications.
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Scheduling The Observed Plan

A.1 Overview

The underlying model used in IGRAPH assumes that all observations will be

totally-ordered, such that observation On will always be guaranteed to have oc-

curred after On−1. At its most basic level this means that the plan being observed

can be represented as a linear series of actions. However, this will be an inaccu-

rate representation for most plans, as there is often an element of concurrency or

parallelism present.

Concurrency in a plan indicates that n actions may execute at the same time

t, in order to achieve a single goal. Parallelism is a weaker form of concurrency

in which the plan contains several sub-plans which may or may not achieve the

same goal1.

Parallelism is of particular interest in goal recognition, as it is entirely possible

that the subject may be undertaking several parallel sub-plans, in order that

multiple goals can be achieved at plan completion. For instance, goals A and B

may be achieved using every odd-numbered observation, while goal C is achieved

using even-numbered observations.

In the complete goal-space model, parallelism is of no use because all goals

exist within G and an optimal heuristic is available. Thus all steps of the plan

are considered useful for the true goal. However, in the relaxed goal-space model

1The term “sub-plan” is used in a different context to that of classical recognition literature,
where it is used to describe a decomposition of a high-level action-task. Here, a sub-plan is
a series of causally-linked actions which achieve a subset of the overall goal conjunction or an
intermediate goal.
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t s Obs

1 0 load package1 truck1 loc0

2 0 load package2 truck1 loc0

3 1 drive truck1 loc0 loc1

4 0 load package3 truck2 loc0

5 2 drive truck1 loc1 loc2

6 1 drive truck2 loc0 loc4

7 3 drive truck1 loc2 loc3

8 4 unload package1 truck1 loc3

9 2 drive truck2 loc4 loc5

10 5 unload package2 truck1 loc3

11 3 drive truck2 loc5 loc6

12 4 unload package3 truck2 loc6

Table A.1: The timestamps for a series of observed actions in both an totally-
ordered and scheduled context. Column t indicates the time at which the action
was observed, while column s indicates the earliest time at which the action could
have been observed. The scheduled time can then be used in construction of the
plan-thread graph.

presented in Chapter 4, modelling parallelism can lead to more accurate estimates

for work expended on each goal, W (G).

A.2 Plan Scheduling

In order for a plan-thread graph2 as described in Section 4.3.6 to be constructed,

each observation must be assigned a timestamp indicating its earliest possible

application in the plan. This allows for partially-ordered plan steps within a

totally-ordered plan to be accommodated, and is achieved by scheduling the

currently-observed plan. Note that a timestamp is not an indication of when

the action was observed, but rather when it could have been observed. That is,

an action Ot can be observed at time t, but could have been observed as early as

time s. For clarity, a scheduled observation is denoted Os
t .

Algorithm 13 outlines the algorithm for scheduling a STRIPS-style plan [49].

Here, actions are assumed to have a fixed-length of 1, while timestamps t ∈ Z+,

and s ∈ N+. A scheduled timestamp s is essentially an integer, as this is a

STRIPS-based plan, however, small epsilon values are added to the scheduled

2While the term “plan-graph” may seem appropriate here, it is avoided as it has a prior and
different meaning within the planning literature [23].
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timestamp to preserve the order in which actions were observed. For example,

observation Ot=1 and Ot=2 which are both applicable at the same timestamp, will

have a final scheduled timestamp of Os=1.0001
t=1 and Os=1.0002

t=2 . The left-hand-side of

the decimal place is referred to as the major timestamp, with the epsilon-value,

κ, called the minor timestamp. Observations scheduled for later in the plan will

have their κ value restart at 0.0001 (i.e. Os=2.0001
t=3 ). This distinction between

actions scheduled at the same major timestamp is a technical one which will be

used during scheduling.

Regarding the input to the algorithm, I is the initial state and PU is the un-

scheduled (totally-ordered) plan. In addition to these, a set of known mutexes M

are passed to the algorithm. This mutex set must be complete, and therefore can-

not simply be the set of binary-mutexes detected at runtime. The complete3 set

of Graphplan style action and fact mutexes [23] can be iteratively constructed

throughout the threading process. These are as follows.

• Interference – Two actions are mutex if one deletes a precondition or add

effect of the other.

• Competing Needs – Actions a and b are mutex if a precondition of a is

mutex with a precondition of b. Two facts are themselves mutex if all

actions which achieve them are mutex.

In addition to these mutex relations, a further relation is made explicit. While

this is in fact a specialisation of the interference mutex, it is useful to fully specify

it as it can often be overlooked.

• Blocking – If action a has a fact f ∈ {aadd ∪ adel}, then it is mutex with

any other action b for which f ∈ {badd ∩ bdel}. By both deleting and adding

the fact at the same time4, b is said to be blocking achievement of f (where

“achievement” can mean addition or deletion).

3The term “complete” is used in the context of the actions within the unscheduled plan.
That is, the complete set of mutexes required by the scheduler need only include those members
of the observed plan.

4The accepted principle within the planning community is that delete effects should always
be applied prior to add effects.
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Algorithm 13 schedule(I, PU ,M)

1: PS := {} {The scheduled plan}
2: A0 := 〈{}, I, {}〉 {Stub action which adds initial state}
3: lastAchievers := {} {Map of each facts last achieving action}
4: requiredBy := {} {Map of facts required by scheduled actions}
5: scheduled := {} {Map of timestamps to scheduled actions}
6: for all F ∈ I do
7: lastAchievers(F )← A0

8: end for
9: for all A ∈ PU do

10: latest := 0 {The last action to achieve Fpc}
11: for all Fpc ∈ Apre do
12: achiever := lastAchievers(Fpc)
13: if achievermajor > latest then
14: latest := achievermajor

15: end if
16: end for
17: currentT ime := latest
18: mutex := true
19: while mutex do
20: mutex := true
21: {Get actions already scheduled at currentT ime}
22: existing := scheduled(currentT ime)
23: if areMutex(A, existing,M) then
24: currentT ime := currentT ime+ 1
25: continue {Advance a single timestep and re-check}
26: end if
27: {Check that action does not delete any future scheduled actions preconditions}
28: for all Fdel ∈ Adel do
29: requires := requiredBy(Fdel)
30: for all r ∈ requires do
31: if rmajor ≥ latest then
32: currentT ime := currentT ime+ 1
33: goto 19 {Advance a single timestep and re-check}
34: end if
35: end for
36: end for
37: {If this point has been reached, the value of currentT ime is a valid schedule time}
38: mutex := false
39: end while
40: scheduled(currentT ime)← A
41: for all Fpc ∈ Apre do
42: requiredBy(Fpc)← A
43: end for
44: for all F ∈ Aeff do
45: achievedBy(F )← A
46: end for
47: PS ← A
48: end for
49: return PS
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Bounded Hypothesis Results

This appendix contains visualisations of the results produced by bounded hy-

potheses as evaluated in Section 5.14. The figures presented here are averages of

bounded hypotheses F1, precision and recall scores over each domain and con-

figuration tested. Each figure is a single configuration and domain pairing, with

the score at a creation and bound time representing the average of all bounded

hypotheses generated on the particular domain, across all problem files. That is,

a score of Hyp10
4 = 0.5 means that the average score across all problems in the

domain, at creation time c = 4 and bound time b = 10 is 0.5.
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Figure B.1: F1 bounded hypothesis results.
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F1 bounded hypothesis results.

219



Appendix B. Bounded Hypothesis Results

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45 0

 0.2

 0.4

 0.6

 0.8

 1

Rovers Bounded Goal Hypothesis Score Max ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(a)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45 0

 0.2

 0.4

 0.6

 0.8

 1

Rovers Bounded Goal Hypothesis Score Max MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(b)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45 0

 0.2

 0.4

 0.6

 0.8

 1

Rovers Bounded Goal Hypothesis Score Max SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(c)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45 0

 0.2

 0.4

 0.6

 0.8

 1

Rovers Bounded Goal Hypothesis Score FF ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(d)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45 0

 0.2

 0.4

 0.6

 0.8

 1

Rovers Bounded Goal Hypothesis Score FF MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(e)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45 0

 0.2

 0.4

 0.6

 0.8

 1

Rovers Bounded Goal Hypothesis Score FF SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(f)

F1 bounded hypothesis results.

220



Appendix B. Bounded Hypothesis Results

 5
 10

 15
 20

 25
 30

 35
 40

 45

 1
 2

 3
 4

 5
 0

 0.2

 0.4

 0.6

 0.8

 1

Rovers Bounded Goal Hypothesis Score CG ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(a)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 1
 2

 3
 4

 5
 0

 0.2

 0.4

 0.6

 0.8

 1

Rovers Bounded Goal Hypothesis Score CG MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(b)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 1
 2

 3
 4

 5
 0

 0.2

 0.4

 0.6

 0.8

 1

Rovers Bounded Goal Hypothesis Score CG SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(c)

 10
 20

 30
 40

 50
 60

 10
 20

 30
 40

 50
 60 0

 0.2

 0.4

 0.6

 0.8

 1

Satellite Bounded Goal Hypothesis Score Max ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(d)

 10
 20

 30
 40

 50
 60

 10
 20

 30
 40

 50
 60 0

 0.2

 0.4

 0.6

 0.8

 1

Satellite Bounded Goal Hypothesis Score Max MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(e)

 10
 20

 30
 40

 50
 60

 10
 20

 30
 40

 50
 60 0

 0.2

 0.4

 0.6

 0.8

 1

Satellite Bounded Goal Hypothesis Score Max SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(f)

F1 bounded hypothesis results.

221



Appendix B. Bounded Hypothesis Results

 10
 20

 30
 40

 50
 60

 10
 20

 30
 40

 50
 60 0

 0.2

 0.4

 0.6

 0.8

 1

Satellite Bounded Goal Hypothesis Score FF ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(a)

 10
 20

 30
 40

 50
 60

 10
 20

 30
 40

 50
 60 0

 0.2

 0.4

 0.6

 0.8

 1

Satellite Bounded Goal Hypothesis Score FF MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(b)

 10
 20

 30
 40

 50
 60

 10
 20

 30
 40

 50
 60 0

 0.2

 0.4

 0.6

 0.8

 1

Satellite Bounded Goal Hypothesis Score FF SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(c)

 10
 20

 30
 40

 50
 60

 0.5
 1

 1.5
 2

 2.5
 3

 3.5 0

 0.2

 0.4

 0.6

 0.8

 1

Satellite Bounded Goal Hypothesis Score CG ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(d)

 10
 20

 30
 40

 50
 60

 0.5
 1

 1.5
 2

 2.5
 3

 3.5 0

 0.2

 0.4

 0.6

 0.8

 1

Satellite Bounded Goal Hypothesis Score CG MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(e)

 10
 20

 30
 40

 50
 60

 0.5
 1

 1.5
 2

 2.5
 3

 3.5 0

 0.2

 0.4

 0.6

 0.8

 1

Satellite Bounded Goal Hypothesis Score CG SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(f)

F1 bounded hypothesis results.

222



Appendix B. Bounded Hypothesis Results

 5
 10

 15
 20

 25
 30

 35
 40

 1
 2

 3
 4

 5
 0

 0.2

 0.4

 0.6

 0.8

 1

Zenotravel Bounded Goal Hypothesis Score Max ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(a)

 5
 10

 15
 20

 25
 30

 35

 1
 2

 3
 4

 5
 6

 0

 0.2

 0.4

 0.6

 0.8

 1

Zenotravel Bounded Goal Hypothesis Score Max MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(b)

 5
 10

 15
 20

 25
 30

 35
 40

 1
 2

 3
 4

 5
 6

 7
 0

 0.2

 0.4

 0.6

 0.8

 1

Zenotravel Bounded Goal Hypothesis Score Max SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(c)

 5
 10

 15
 20

 25
 30

 35
 40

 2
 4

 6
 8

 10
 0

 0.2

 0.4

 0.6

 0.8

 1

Zenotravel Bounded Goal Hypothesis Score FF ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(d)

 5
 10

 15
 20

 25
 30

 2
 4

 6
 8

 10
 0

 0.2

 0.4

 0.6

 0.8

 1

Zenotravel Bounded Goal Hypothesis Score FF MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(e)

 5
 10

 15
 20

 25
 30

 35
 40

 1
 2

 3
 4

 5
 0

 0.2

 0.4

 0.6

 0.8

 1

Zenotravel Bounded Goal Hypothesis Score FF SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(f)

F1 bounded hypothesis results.

223



Appendix B. Bounded Hypothesis Results

 5
 10

 15
 20

 25
 30

 35
 40

 0.5
 1

 1.5
 2

 2.5
 3

 3.5 0

 0.2

 0.4

 0.6

 0.8

 1

Zenotravel Bounded Goal Hypothesis Score CG ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(a)

 5
 10

 15
 20

 25
 30

 0.5
 1

 1.5
 2

 2.5
 3

 3.5 0

 0.2

 0.4

 0.6

 0.8

 1

Zenotravel Bounded Goal Hypothesis Score CG MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(b)

 5
 10

 15
 20

 25

 0.5
 1

 1.5
 2

 2.5
 3

 3.5 0

 0.2

 0.4

 0.6

 0.8

 1

Zenotravel Bounded Goal Hypothesis Score CG SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(c)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 10
 20

 30
 40

 50
 60

 70
 80

 90
 0

 0.2

 0.4

 0.6

 0.8

 1

Openstacks Bounded Goal Hypothesis Score Max ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(d)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 10
 20

 30
 40

 50
 60

 70
 80

 90
 0

 0.2

 0.4

 0.6

 0.8

 1

Openstacks Bounded Goal Hypothesis Score Max MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(e)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 10
 20

 30
 40

 50
 60

 70
 80

 90
 0

 0.2

 0.4

 0.6

 0.8

 1

Openstacks Bounded Goal Hypothesis Score Max SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(f)

F1 bounded hypothesis results.

224



Appendix B. Bounded Hypothesis Results

 10
 20

 30
 40

 50
 60

 70
 80

 90

 10
 20

 30
 40

 50
 60

 70
 80 0

 0.2

 0.4

 0.6

 0.8

 1

Openstacks Bounded Goal Hypothesis Score FF ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(a)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 10
 20

 30
 40

 50
 60

 70
 80 0

 0.2

 0.4

 0.6

 0.8

 1

Openstacks Bounded Goal Hypothesis Score FF MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(b)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 10
 20

 30
 40

 50
 60

 70
 80 0

 0.2

 0.4

 0.6

 0.8

 1

Openstacks Bounded Goal Hypothesis Score FF SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(c)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5 0

 0.2

 0.4

 0.6

 0.8

 1

Openstacks Bounded Goal Hypothesis Score CG ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(d)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5 0

 0.2

 0.4

 0.6

 0.8

 1

Openstacks Bounded Goal Hypothesis Score CG MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(e)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5 0

 0.2

 0.4

 0.6

 0.8

 1

Openstacks Bounded Goal Hypothesis Score CG SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(f)

F1 bounded hypothesis results.

225



Appendix B. Bounded Hypothesis Results

 2
 4

 6
 8

 10
 12

 14
 16

 18

 2
 4

 6
 8

 10
 12

 14
 16

 18
 0

 0.2

 0.4

 0.6

 0.8

 1

Storage Bounded Goal Hypothesis Score Max ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(a)

 2
 4

 6
 8

 10
 12

 14
 16

 18

 2
 4

 6
 8

 10
 12

 14
 16

 18
 0

 0.2

 0.4

 0.6

 0.8

 1

Storage Bounded Goal Hypothesis Score Max MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(b)

 2
 4

 6
 8

 10
 12

 14
 16

 18

 2
 4

 6
 8

 10
 12

 14
 16

 18
 0

 0.2

 0.4

 0.6

 0.8

 1

Storage Bounded Goal Hypothesis Score Max SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(c)

 2
 4

 6
 8

 10
 12

 14
 16

 18

 2
 4

 6
 8

 10
 12

 14
 0

 0.2

 0.4

 0.6

 0.8

 1

Storage Bounded Goal Hypothesis Score FF ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(d)

 2
 4

 6
 8

 10
 12

 14
 16

 18

 2
 4

 6
 8

 10
 12

 14
 16 0

 0.2

 0.4

 0.6

 0.8

 1

Storage Bounded Goal Hypothesis Score FF MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(e)

 2
 4

 6
 8

 10
 12

 14
 16

 18

 2
 4

 6
 8

 10
 12

 14
 16 0

 0.2

 0.4

 0.6

 0.8

 1

Storage Bounded Goal Hypothesis Score FF SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(f)

F1 bounded hypothesis results.

226



Appendix B. Bounded Hypothesis Results

 2
 4

 6
 8

 10
 12

 14
 16

 18

 1
 2

 3
 4

 5
 6

 0

 0.2

 0.4

 0.6

 0.8

 1

Storage Bounded Goal Hypothesis Score CG ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(a)

 2
 4

 6
 8

 10
 12

 14
 16

 18

 1
 2

 3
 4

 5
 6

 0

 0.2

 0.4

 0.6

 0.8

 1

Storage Bounded Goal Hypothesis Score CG MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(b)

 2
 4

 6
 8

 10
 12

 14
 16

 18

 1
 2

 3
 4

 5
 6

 0

 0.2

 0.4

 0.6

 0.8

 1

Storage Bounded Goal Hypothesis Score CG SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(c)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45
 0

 0.2

 0.4

 0.6

 0.8

 1

Trucks Bounded Goal Hypothesis Score Max ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(d)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45
 0

 0.2

 0.4

 0.6

 0.8

 1

Trucks Bounded Goal Hypothesis Score Max MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(e)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45
 0

 0.2

 0.4

 0.6

 0.8

 1

Trucks Bounded Goal Hypothesis Score Max SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(f)

F1 bounded hypothesis results.

227



Appendix B. Bounded Hypothesis Results

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45
 0

 0.2

 0.4

 0.6

 0.8

 1

Trucks Bounded Goal Hypothesis Score FF ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(a)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45
 0

 0.2

 0.4

 0.6

 0.8

 1

Trucks Bounded Goal Hypothesis Score FF MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(b)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 5
 10

 15
 20

 25
 30

 35
 40

 45
 0

 0.2

 0.4

 0.6

 0.8

 1

Trucks Bounded Goal Hypothesis Score FF SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(c)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 2
 4

 6
 8

 10
 12

 14
 16 0

 0.2

 0.4

 0.6

 0.8

 1

Trucks Bounded Goal Hypothesis Score CG ML, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(d)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 2
 4

 6
 8

 10
 12

 14
 16 0

 0.2

 0.4

 0.6

 0.8

 1

Trucks Bounded Goal Hypothesis Score CG MLT, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(e)

 5
 10

 15
 20

 25
 30

 35
 40

 45

 2
 4

 6
 8

 10
 12

 14
 16 0

 0.2

 0.4

 0.6

 0.8

 1

Trucks Bounded Goal Hypothesis Score CG SA, F1

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(f)

F1 bounded hypothesis results.

228



Appendix B. Bounded Hypothesis Results

B.2 Precision

 10
 20

 30
 40

 50
 60

 70
 80

 90

 5
 10

 15
 20

 25 0

 0.2

 0.4

 0.6

 0.8

 1

Depots Bounded Goal Hypothesis Score Max ML, Precision

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(a)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 5
 10

 15
 20

 0

 0.2

 0.4

 0.6

 0.8

 1

Depots Bounded Goal Hypothesis Score Max MLT, Precision

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(b)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 5
 10

 15
 20

 0

 0.2

 0.4

 0.6

 0.8

 1

Depots Bounded Goal Hypothesis Score Max SA, Precision

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1
F1

 S
co

re

(c)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 2
 4

 6
 8

 10
 12

 14
 16

 18 0

 0.2

 0.4

 0.6

 0.8

 1

Depots Bounded Goal Hypothesis Score FF ML, Precision

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(d)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 5
 10

 15
 20

 0

 0.2

 0.4

 0.6

 0.8

 1

Depots Bounded Goal Hypothesis Score FF MLT, Precision

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(e)

 10
 20

 30
 40

 50
 60

 70
 80

 90

 2
 4

 6
 8

 10
 12

 14
 16

 18
 0

 0.2

 0.4

 0.6

 0.8

 1

Depots Bounded Goal Hypothesis Score FF SA, Precision

CreationBound

 0

 0.2

 0.4

 0.6

 0.8

 1

F1
 S

co
re

(f)
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Appendix C

Runtime

This appendix provides results on the runtime of IGRAPH, on the IPC domains

tested in Chapter 5. As the system makes heavy use of heuristic calculations,

these and the associated size of the goal-space dictate the runtime and resources

required to perform recognition.

Section C.1 contains figures displaying the CPU time required to perform

recognition on each domain and problem, while Section C.2 shows the wall-clock

time for the same tests. Finally, Section C.3 shows results for the maximum

memory requirements of IGRAPH.

In all cases of runtime there is an exponential growth as the goal-space size

increases. Fluctuations in runtime between consecutive problems (such as the

CPU time results for Depots) is caused by the same input problem being used

for 3-4 problems, but with an increasing number of goals. As is to be expected,

configurations using hmax have the lowest runtimes, followed by hff and hcea. The

work function used has no discernible impact on runtime.

Finally, the maximum amount of memory used by IGRAPH does tend to

grow as problem number and goal-space size increase, but at a far lower rate than

runtime. However, there can be a large difference in memory required between

configurations of the system. For example, while the 〈hmax,WML〉 configuration

requires approximately 50MB on Satellite, the pairing of 〈hcea,WSA〉 requires

over 2GB.
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Figure C.1: Results for CPU time on the IPC domains.
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C.2 Wall-Clock Time
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Figure C.2: Results for wall-clock time on the IPC domains.
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C.3 Maximum Memory Usage
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Figure C.3: Results for maximum memory requirements on the IPC domains.
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Appendix D

International Planning

Competition Domains

D.1 Overview

This section provides an overview of the various domains used in the evaluation

of IGRAPH. All of these have been taken from the 3rd and 5th International

Planning Competition (IPC).

D.2 IPC3 Domains

Many of the domains in the 3rd IPC were intended to model real-life scenarios.

It is perhaps expected then, that many of them model an underlying logistics

problem with associated transportation network. Further descriptions of these

domains along with results and analysis, can be found in [117].

• Depots

A combined transportation and stacking domain. Packages can be moved

between depots by loading them onto and off of trucks at other depots.

Packages can then be stacked onto palettes or other packages, using a hoist.

The problem demonstrates potential parallelism in moving trucks between

depots, while the stacking problem exhibits complex goal interaction.

• Driverlog

A transportation domain in which packages are delivered by trucks from

locations interconnected by a road network. Drivers are required for trucks
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to move between locations connected by a road, but drivers can themselves

walk between locations connected by paths. Often, paths between two

locations are connected by a central pseudo-location, such that walking

requires two actions, while driving requires one.

• Rovers

This domain is based upon a number of robotic rovers completing goals

on another planet such as Mars. It contains a waypoint map for traversal

between objects of interest, such as rocks or soil, which can be sampled

and the results communicated back to the lander. In general, there are

multiple variations to this communication, such as transmitting an image

in high resolution or low resolution; colour or black-and-white. However,

most problems require that only a single variant be achieved.

Rovers is unique, in that each rover’s plan rarely overlaps in any way. If

rover A is equipped for imaging, while rover B is equipped for sampling

soil, neither plans will interact or conflict, with the exception that only a

single rover may communicate with the lander at one time. This is enforced

by a stub fact being both added and deleted in the “communicate” actions,

which is captured as a pause mutex relation.

• Satellite

The Satellite domain is concerned primarily with scheduling rather than

planning. In it, a satellite must take images of certain objects using differing

instruments. This is achieved by moving the satellite into position, with

some calibration of optics required.

• Zenotravel

Zenotravel models the movement of passengers and aircraft between air-

ports. Passengers embark and disembark aircraft, which can move between

any airport in the problem domain. Aircraft have an associated fuel-level,

which is represented as a series of literals rather than numerically. They

may choose to fly normally between locations, in which a single unit of fuel

is used, or can choose to “zoom” between location, in which case two units

are consumed. Aircraft may refuel at airports. A single unit of fuel is added

per “refuel” action.
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D.3 IPC5 Domains

In the 5th IPC, many of the domains used contained more expressive syntax

than IPC3. Portions of this grammar is unsupported by both the parser used

in IGRAPH and the SAS+ scripts used for translation. As such, only three

domains are taken from the competition.

• Openstacks

Within the Openstacks domain, various products must be manufactured

and combined into a single order. Each order requires a stack area which

will be occupied by products while the entire order is incomplete. The

problem lies in minimising the number of simultaneously open stacks during

production, as these take up space on the shop-floor.

The Openstacks domain is an optimisation problem, in that it is trivial

to find plans which achieve the hard constraints imposed by the domain,

but that it is extremely difficult to find a plan which minimises the number

of open stacks, by building products in the most optimal order.

• Storage

At first glance, the Storage domain is very similar to the Depots domain,

in which trucks and hoists must stack crates in a specified order. However,

here the crate-stacking problem is removed and replaced with the ability for

the hoists which load/unload crates to move between storage and transit

areas.

As there is no ordering to crates and hoists are moveable, loose fact-ordering

and tight action-ordering constraints are present. This results in a large

(potentially complete) action-space.

• Trucks

Trucks can be seen as a derivative of both Driverlog and Depots.

Here, packages are again transported about by trucks to their destinations,

with the difference that trucks no longer have unlimited capacity, and once

packages arrive at their destination, they are classed as “delivered” rather

than simply being “at” the location.

The addition of limited space inside trucks has interesting implications for

RPG-based heuristics, as these cannot determine that the truck may have
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to make the same trip several times to deliver all packages. However, the

move to packages being “delivered” is beneficial for recognition as these are

strictly terminal facts.
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[10] Christer Bäckström. Computational aspects of reordering plans. Journal

of Artificial Intelligence Research, 9:99–137, 1998.
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