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Abstract

A lot of practical systems, whose structure and parameters may change abruptly,

can be modeled by the stochastic differential equations driven by continuous-time

Markov chain (also known as hybrid SDEs). Among many interesting topics, sta-

bility has drawn intensive attention. In the case when a given hybrid SDE is

unstable, it is a general practice to use state feedback control to achieve stabili-

sation. Theoretically, the design of feedback control is based on continuous-time

state observations. However, in practice, it will be extremely costly and impossible

to have continuous observations of the state for all time. So it is more realistic

and costs less if the state is only observed at discrete times.

(Mao 2013) started the study of discrete-state-feedback stabilisation of hybrid

SDEs. After several years’ development, most results paid much attention to hy-

brid SDEs satisfying the classical linear growth condition, which could exclude

many important real models. In this thesis, we will hence investigate this sta-

bilisation problem without this restrictive condition, namely in highly nonlinear

area.

We will firstly make some improvements on the existing results on this sat-

bilisation problem of highly nonlinear hybrid SDEs. A new method will be given

to estimate the difference between current-time state and discrete-time state, so

that conditions imposed on the underlying systems will be less restrictive. To

determine the upper bound of the observation duration, we will use optimisation

method to avoid searching for free parameters and make the control rules be much

more easily to verify.

Then, by taking different system structures (except for different system coeffi-

cients) in different Markovian modes into consideration, we will study the struc-

tured stabilisation of hybrid SDEs. The system structures are classified according

to the view of Khasminskii-type condition. The control function will be designed
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in a bounded state area, rather than every observable state, in order to reduce con-

trol cost. Further, we will extend the structured stabilisation problem to hybrid

stochastic delay differential equations (SDDEs). The time delays will meet a weak

condition, rather than the usually seen but restrictive differential assumption. In

this case, more time delays such as piece-wise constant delay could be included.

Moreover, time delays could influence our mode-structure classification scheme.

By making use of Lyapunov functional method and integral transform (for

hybrid SDDEs), H∞ stability, almost surely asymptotic stability, mean square ex-

ponential stability could be achieved. However, constructing an appropriate Lya-

punov functional is always challenging, especially when integral transform method

is invalid for some kinds of hybrid SDDEs, or the underlying systems are discon-

tinuous. In this case, Razumikhin method, which is aimed to stability analysis for

delay equations, will be powerful, since the discrete-time state feedback control

itself is also a delay segment.

We will use Razumikhin idea to the stabilisation of hybrid SDDEs, where time

delays will be relatively relaxed with little restriction. In other words, we are not

able to use integral transform to deal with time delays now such as discrete-time

delays. Next we will use this technique to study the stabilisation of hybrid SDEs

by discrte-time state feedback control working intermittently and having rest time.

Some important stability properties will be obtained in the sense of p-th moment

exponential stability and almost surely exponential stability.

The successful applications to stochastic volatility model, neural networks, and

oscillator systems demonstrate the practicability of our theory.
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Notation

The general notations widely used in this thesis are list here. Other notations

will be explained where they first appear.

p := q : p is defined by q or q is denoted by p.

AT : the transpose of a vector of a matrix A.

trace(A) : =
∑d

i=1 aii for a square matrix A = (aij)d×d.

λmin(A) : the smallest eigenvalue of a matrix A.

λmax(A) : the largest eigenvalue of a matrix A.

|A| : trace norm for a matrix A, i.e. |A| =
√

trace(ATA).

||A|| : operator norm for a matrix A, i.e. ||A|| =
√

λmax(ATA) .

∅ : the empty set.

AC : the complement of A in S, i.e. AC = S − A.

A ⊂ B : A ∩BC = ∅.
f : A → B : the mapping f from A to B.

IA : the indicator function of A, i.e. IA(a) = 1 if a ∈ A;

otherwise 0.

R = R1 : the real line.

R+ : the set of non-negative real numbers, i.e. R+ = [0,∞).

N : the set of natural numbers, i.e. N = {0, 1, 2, · · · }.
N+ : the set of positive natural numbers, i.e. N+ = N− {0}.
a ∨ b : the maximum of real numbers a and b.

a ∧ b : the minimum of real numbers a and b.

[a] : the integer part of real number a.

Rd : the d-dimensional Euclidean space.

|x| : the Euclidean norm of x ∈ Rd.

Bh : = {x ∈ Rd : |x| ≤ h}.
σ(C) : the σ-algebra generated by C.
B = B1 : the Borel-σ-algebra on R.
Bd : the Borel-σ-algebra on Rd.

C(D;Rd) : the family of continuous Rd-valued functions defined on a

domain D.

Cm(D;Rd) : the family of continuously m-times differentiable Rd-

valued functions defined on D.
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C2,1(D × R+ × S;R) : the family of real-valued functions defined on D×R+×S,
which are continuously twice differentiable in x ∈ D and

once in t ∈ R+.

C2(D × S;R) : the family of real-valued functions defined onD×S, which
are continuously twice differentiable in x ∈ D.

Vt : = ∂V
∂t
.

Vx : =
(

∂V
∂x1

, · · · , ∂V
∂xd

)
.

Vxx : =
(

∂2V
∂xi∂xj

)
d×d

.

C([−τ, 0];Rd) : the family of continuous Rd-valued functions ϕ defined on

[−τ, 0] with norm ||ϕ|| = sup−τ≤θ≤0 |ϕ(θ)|.
Lp([a, b];Rd) : the family of Borel-measurable functions h : [a, b] → Rd

such that
∫ b

a
|h(t)|pdt < ∞.

(Ω,F , P ) : a complete probability space.

a.s. : almost surely, or with probability 1.

E(ξ) : the expectation of a random variable ξ.

||ξ||p : = (E|ξ|p)
1
p .

Lp(Ω;Rd) : the family of Rd-valued random variables ξ such that

E|ξ|p < ∞.

Lp
Ft
(Ω;Rd) : the family of Ft-measurable Rd-valued random variables

ξ such that E|ξ|p < ∞.

Lp
Ft
([−τ, 0];Rd) : the family of Ft-measurable C([−τ, 0];Rd)-valued random

variables φ such that E||φ||p < ∞.

Cb
Ft
([−τ, 0];Rd) : the family of Ft-measurable bounded C([−τ, 0];Rd)-

valued random variables.

Lp
Ft
([a, b];Rd) : the family of Rd-valued Ft-adapted stochastic process

{f(t)}a≤t≤b such that
∫ b

a
|f(t)|pdt < ∞ a.s.

Lp(R+;Rd) : the family of Rd-valued stochastic process {f(t)}t≥0 such

that
∫ T

0
|f(t)|pdt < ∞ a.s. for every T > 0.
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Chapter 1

Introduction

1.1 Stabilisation problem

Stochastic differential equations (SDEs) appear as a useful modelling tool in

many sciences, such as asset price movement in financial market (Lewis 2000,

Vasicek 1977), population evolution process in crowded environment (Roberts &

Saha 1999). However, due to the repairing work or environmental changes, a SDE

may not keep staying in one mode for all the time. More generally, it will jump

from one mode into another following some rules. For example, the famous Black-

Scholes model (Black & Scholes 1973) is used to study the stock price. Usually,

there are two modes in the overall stock market (e.g. (Yin & Zhou 2004)), bullish

mode and bearish mode. In the bullish mode, the general market goes up, most

stocks then increase. In the other mode, the market moves backward, most stocks

so follows. While for investors, they need to make decisions during the continuous

switches of these two modes.

Markovian switching, as one of the mode jumping rules, has drawn much atten-

tion. Because it can be used to describe one natural but important phenomenon,

where the future mode only depends on the current mode and the information

of past modes is of no use (see (Gillespie 1992, Anderson 1991, Norris 1998).

In 1990’s, Markovian switching process, was considered into the investigation of

SDEs to modulate the time-varying structures or coefficients. Until now, there

have been enormous publications in this area. For theory, we cite (Basak, Bisi &

Ghosh 1996, Mao & Yuan 2006) as references. For applications, we recommend

(Rong 2006, Li, Omotere, Qian & Dougherty 2017). Most of the existing results
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Chapter 1 2

are concerned with SDE with Markovian switching in the following form

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dW (t),

where x(t) is the system state taking values continuously, mode r(t) is a Markov

chain taking discrete values. Since there are two different states involved, we also

call this kind of systems as hybrid SDEs. The detailed explanation of this equation

will be given in Chapter 2.

One of the important topics in the investigation of hybrid SDEs is the stability

analysis. Roughly speaking, stability depicts the ability of a system to resist

disturbance caused by small changes in the initial condition or system parameters

(see (Mao & Yuan 2006)). At most times, we want a hybrid SDE to remain stable

and become less sensitive to these small changes. Therefore, when a given hybrid

SDE is not stable, we need to impose exterior inputs into the system to derive

it to a stable state. Such a process is the stabilisation and the inputs are often

referred to controllers. In this thesis, we will focus on one important stabilisation

problem: discrete-state-feedback stabilisation.

Given a hybrid SDE unstable, it is a general practice to use state feedback

control u(x, t, i) to achieve stabilisation. Traditionally, the control is designed

based on continuous-time state observations, that is, u(x(t), t, r(t)). Stabilisation

by continuous-time state feedback control for hybrid SDEs has been intensively

studied (e.g. (Ji & Chizeck 1990, Shaikhet 1996, Mao, Yin & Yuan 2007, Deng,

Luo & Mao 2012)). But to impose such a control, we need to continuously observe

the underlying hybrid SDE to obtain the values of x(t) for all the time. This

is extremely costly, and sometimes seems a little impossible, such as pandemic

intervention when the cases are collected day by day.

Therefore in practice, it is much wiser to implement the feedback control based

on the state observations at discrete times, say by 0, τ, 2τ, · · · . This could be

explained as follows: at the initial time 0, we observe the system and obtain the

value of state x(0), then input the control based on this information until we make

the next observation at time τ . Our control hence becomes u(x([t/τ ]τ), t, r(t)),

which is obviously less costly. Although such a problem for deterministic systems

has been widely investigated (see (Chammas & Leondes 1979, Hagiwara & Araki

1988, Allwright, Astolfi & Wong 2005)), it was (Mao 2013) that initialed the study

of discrete-state-feedback stabilisation for stochastic systems. In this thesis, we will

mainly pay attention to imposing discrete-time state feedback control into the drift
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coefficient. In other words, our controlled SDE becomes

dx(t) =
(
f(x(t), t, r(t)) + u(x([t/τ ]τ), t, r(t))

)
dt+ g(x(t), t, r(t))dW (t).

1.2 Research methods

In 1892, Lyapunov created a very powerful tool in stability analysis known

as Lyapunov second method. It transferred the problem from analysing system

solutions directly into verifying system coefficients by an auxiliary function (so-

called Lyapunov function). This method has been developed to deal with stability

for stochastic systems by many authors, see (Arnold 1974, Kushner 1967, Mao &

Yuan 2006, Khasminskii 2012). Thus the main method to study stability in this

thesis is still the Lyapunov method.

If we let ζ(t) = t − [t/τ ]τ , we could find the controlled SDE is actually a

delay equation with time delay ζ(t). The stability analysis of delay equations is

absolutely more technical than non-delay ones, and we cite (Mohammed 1986, Kol-

manovskii & Myshkis 1999, Mao & Yuan 2006) as references. But these classical

results are not well-applicable to our control problem since ζ(t) behaves unusually

with discontinuity. After several years’ development, there are two useful methods

to this problem.

The first one is the indirect technique. Construct an auxiliary SDE

dy(t) = (f(y(t), t, r(t)) + u(y(t), t, r(t)))dt+ g(y(t), t, r(t))dW (t),

which is proved to be stable in advance. Then estimate the state difference between

x(t) and y(t), which is governed by the observation duration τ . The stability of x(t)

is obtained from the decomposition x(t) =
(
x(t)−y(t)

)
+y(t), where the former is

sufficiently small if letting τ work small enough, the latter is stable. This method

is often called the comparison idea. It was very popular at the beginning stage

of discrete-state-feedback stabilisation problem (e.g. (Mao 2013, Zhao, Zhang,

Xu, Bai & Zhang 2017, Song, Zheng, Luo & Mao 2017)), since we only need pay

attention to the stability analysis of the auxiliary system. This is a non-delay

equation, and there is very rich literature in this problem (see, e.g. (Chen &

Zhang 2004, Dragan, Morozan & Stoica 2004, Mao et al. 2007, Deng et al. 2012)).

However, the value of τ derived by using this method is usually not very sharp.

But even worse, this method only works well when the underlying hybrid SDE
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is globally Lipschitz continuous (see (Hu, Liu, Deng & Mao 2020)), which might

exclude many important functions such as x sin(x) and x2.

The other one is therefore becoming significant, which works directly to the con-

trolled system. Now, to implement this idea, the technique of Lyapunov functional

has received much attention. Lyapunov functional is an extension of Lyapunov

function to the functional equations. One popular functional for the stabilisation

problem by discrete-time state feedback control is given in the following type∫ 0

−τ

∫ t

t+s

(
τ |f(x(v), v, r(v)) + u(x([v/τ ]τ), v, r(v))|2 + |g(x(v), v, r(v))|2

)
dvds.

By making use of this method, You et al. in (You, Liu, Lu, Mao & Qiu 2015)

also obtained a better τ than that in (Mao 2013). Nevertheless, it should also be

pointed out that this approach depends closely on the construction of Lyapunov

functional. But as we all know, constructing Lyapunov functional effectively is

sometimes really a challenge work. The functional we gave above is indeed suitable

for some hybrid SDEs (see (You et al. 2015, Fei, Fei, Mao, Xia & Yan 2020, Mei,

Fei, Fei & Mao 2020, Shi, Mao & Wu 2022)), but might also be useless for others

(e.g. Chapters 6, 7). Then what should we do if an appropriate functional is out

of reach?

Actually, such difficulty was overcame by Razumikhin in (Razumikhin 1956,

Razumikhin 1960). He proposed a novel idea to check differential operator, and

established theorems via Lyapunov function rather than Lyapunov functional,

named as Razumikhin-type theorems. In the past two decades, Razumikhin-

type theorems for stochastic stability have been developed (see (Mao 1996, Wu

& Hu 2012, Cao & Zhu 2021)). But for our control problem, so far (Li, Lu, Kou,

Mao & Pan 2018) was the only paper to use this approach.

1.3 Thesis outline

But it should be strengthened that most of results in discrete-state-feedback

stabilisation problem mentioned above paid much attention to hybrid SDEs which

satisfy the following linear growth condition

|f(x, t, i)|2 ∨ |g(x, t, i)|2 ≤ K(1 + |x|2).
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This might exclude many real models, such as the stochastic volatility model (see

(Lewis 2000, Heston 1997))

dx(t) = (µ− αx3(t))dt+ σx1.5(t)dW (t),

and stochastic population system (see (Kloeden & Platen 1992, Mao 2007))

dx(t) = diag(x1(t), · · · , xd(t))((b+ Ax(t) +Gx(t))dt+ Cx(t)dW (t)).

Consequently, this thesis is devoted to the study of discrete-state-feedback stabil-

isation of highly nonlinear hybrid systems. Here, highly nonlinearity means the

absence of linear growth condition.

Our aim is to make the underlying system more general: (i) weaken condi-

tions imposed; (ii) study structured stabilisation; (iii) consider delay equations

with general time delays, and to make the controller less costly: (i) make control

rules easily checked; (ii) design bounded control; (iii) let control work intermit-

tently. The main methods we will use are the Lyapunov functional technique and

Razumikhin idea.

The layout of this thesis is organised as follows. Chapter 2 is set to prepare

the fundamental theory of stochastic analysis. The elementary concepts in proba-

bility theory, stochastic process and Brownian motion are firstly given. Then after

introducing Itô stochastic integral and Markov chains, the basic definitions and

stability properties of hybrid SDEs are provided. It should be pointed out that

Mao’s books (Mao & Yuan 2006, Mao 2007) are the main sources of reference for

this chapter. These results could also be found in many mathematical books or

papers on stochastic analysis (see (Arnold 1974, Kloeden & Platen 1992, He, Wang

& Yan 1992, Rong 2006)).

In Chapter 3, we make some improvements on current results about discrete-

state-feedback stabilisation of highly nonlinear hybrid SDEs. The conditions im-

posed are weaken since we provide a new method to estimate the difference between

current-time state and discrete-time state. The method to determine the value of

observation duration is improved so that the control rules could be checked much

easily. The stability types studied in this part are H∞-stability and almost surely

asymptotic stability.

Chapters 4 and 5 are devoted to structured stabilisation problem, where we

consider there are different structures on different Markovian modes of underlying

systems. The control function is designed in a bounded state area to reduce control
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cost. Except for stability types in Chapter 3, mean square exponential stability is

our main interest. Chapter 4 continues going to hybrid SDEs, while Chapter 5 is

concerned with hybrid SDDEs. Time delays are relaxed, at least the commonly

used differential assumption being lifted.

In these three chapters, the method of Lyapunov functional is the main tech-

nique to study stability. But when it is difficult to construct an appropriate func-

tional, Razumikhin method becomes very powerful.

In Chapter 6, we firstly provide a Razumikhin-type theorem for highly non-

linear SFDEs, then apply it to our stabilisation problem of hybrid SDDEs, where

time delays are more general than before (in theory, the integral transform to

eliminate delay effect is invalid). In Chapter 7, we use Razumikhin idea to the

stabilisation of hybrid SDEs by discrete-time state feedback control working inter-

mittently and having rest time. Since intermittent control is a piece-wise constant

function, Razumikhin condition is generalised to time-inhomogeneous situation.

The stability in these two parts includes p-th moment exponential stability and

almost surely exponential stability.

At the end of each chapter, we also provide an application example from prac-

tical models.

Our main results in Chapters 3-7 could be found in the following publications:

• Xu, H. & Mao, X. (2023), ‘Advances in discrete-state-feedback stabilization

of highly nonlinear hybrid systems by Razumikhin technique’, IEEE Trans.

Autom. Control 68(10), 6098-6113.

• Xu, H. & Mao, X. (2023), ‘Improved delay-dependent stability of superlin-

ear hybrid stochastic systems with general time-varying delays’, Nonlinear

Anal.-Hybrid Syst., 50, 101413.

• Xu, H. & Mao, X. (2024), ‘Structured Stabilisation of Superlinear Delay Sys-

tems by Bounded Discrete-Time feedback control’, Automatica, 159, 111409.

• Xu, H. & Mao, X. (2024), ‘Razumikhin technique to stabilisation of highly

nonlinear hybrid systems by bounded discrete-time state feedback control

working intermittently’, Numer. Algebr. Control Optim., Doi: 10.3934/

naco.2024003.



Chapter 2

Stochastic Analysis

2.1 Probability theory

Measurable spaces

Probability theory is concerned with mathematical models of experiments in-

volving randomness. The collection of all possible individual outcomes ω is called

the sample space, denoted by Ω. A subset of Ω is refered to an event. But not

every event is our interest, so we need put the interesting events together as a

family, F , which should be a σ-algebra

(i) Ω ∈ F ;

(ii) if A ∈ F , then the complement AC should be in F ;

(iii) if the countable collection {An}n∈N+ ⊂ F , then
⋃∞

n=1An ∈ F .

The pair (Ω,F) is then called a measurable space, and the elements of F is hence

called F -measurable sets instead of events.

If C is any family of subsets of Ω , it might not be a σ-algebra. But there is

a smallest σ-algebra σ(C) which covers C. This σ(C) is referred to the σ-algebra

generated by C. If Ω = Rd and C is the family of all open sets in Rd, then Bd := σ(C)
is called the Borel σ-algebra, whose elements are called the Borel sets.

Random variables

A real-valued function X : Ω → R is said to be F-measurable if for any c ∈ R

{ω : X(ω) ≤ c} ∈ F .

7
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In probability theory, the function X is also called a (F -measurable) random

variable. An Rd-valued function X(ω) = (X1(ω), · · · , Xd(ω))
T is said to be F-

measurable if all the elements X1, · · · , Xd are F -measurable. A d × m-matrix-

valued function X(ω) = (Xij(ω))d×m is F-measurable if all Xij are F -measurable.

If the measurable space is (Rd,Bd), a Bd-measurable function is usually called a

Borel measurable function.

For any given functionX : Ω → Rd, we can define the σ-algebra σ(X) generated

by X as

σ(X) = σ
({

{ω : X(ω) ∈ U} : U is an open set of Rd
})

.

Clearly, X is σ(X)-measurable. Moreover, if X is F -measurable, then σ(X) ⊂ F .

For a collection of Rd-valued functions {Xn}n∈I , where I is an index set, the σ-

algebra generated by this collection is given as

σ({Xn}n∈I) = σ

(⋃
n∈I

σ(Xn)

)
.

Here, it should be pointed out that the union of two σ-algebras may not still be a

σ-algebra.

Let A be a subset of Ω. Its indicator function IA will be widely used, which is

defined by

IA(ω) =

{
1, for ω ∈ A,

0, for ω /∈ A.

The indicator function IA is F -measurable if and only if A ∈ F . The σ-algebra

generated by IA is easy to understand, i.e. σ(IA) = {∅,Ω, A,AC}.

Probability measures

A probability measure P on a measurable space (Ω,F) is a function P : F →
[0, 1] such that

(i) for the entire space, P (Ω) = 1;

(ii) for any disjoint sequence {An}n∈N+ ⊂ F (i.e. An ∩ Ak = ∅ if n ̸= k)

P

(
∞⋃
n=1

An

)
=

∞∑
n=1

P (An).

The triple (Ω,F , P ) is called a probability space. We can set F̄ = {A ⊂ Ω :

there are B,C ∈ F such that P (B) = P (C) with B ⊂ A ⊂ C}. Then F̄ is a
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σ-algebra, which is called the completion of F . If F = F̄ , the probability space

(Ω,F , P ) is said to be complete. In the sequel of this section, we will let (Ω,F , P )

be a complete probability space.

An ‘event’ A ∈ F is said to happen almost surely if P (A) = 1. In addition,

the following properties of probability measure P are very useful

(1) (complement rule) P (AC) = 1− P (A);

(2) (inclusion rule) P (A ∪B) = P (A) + P (B)− P (A ∩B);

(3) (subset rule) if A ⊂ B, then P (A) ≤ P (B);

(4) (almost sure rule) if P (An) = 1 for all n ∈ N+, then P (
⋂∞

n=1An) = 1;

(5) (continuity rule) if {An}n∈N+ is increasing, P (
⋃∞

n=1An) = limn→∞ P (An).

Sometimes, given a sequence of sets {An}n∈N+ in F , we are more interested in

the upper limit of the sets

lim sup
n→∞

An = {ω : ω ∈ An for infinitely many n} =
∞⋂
n=1

∞⋃
k=n

Ak.

In terms of its probability, we have the following well-known Borel-Cantelli Lemma,

whose proof can be found in Section 2.7 in (Williams 1991).

Lemma 2.1. (First Borel-Cantelli lemma) Let {An}n∈N+ be a sequence of sets

in F such that
∑∞

n=1 P (An) < ∞. Then

P

(
lim sup
n→∞

An

)
= 0.

In other words, there is a set Ω0 ∈ F with P (Ω0) = 1 and a random integer n0

such that for every ω ∈ Ω0, we have ω /∈ An whenever n ≥ n0(ω).

Independence

Let I be an index set. Sub-σ-algebras {Fn}n∈I ⊂ F are called independent if,

whenever, An ∈ Fn (n ∈ I), and any possible choice of indices n1, · · · , nk ∈ I,

then

P (An1 ∩ · · · ∩ Ank
) = P (An1) · · ·P (Ank

).

A collection of random variables {Xn}n∈I is said to be independent if the σ-algebras

{σ(Xn)}n∈I generated by them are independent. A family of F -measurable sets

{An}n∈I is said to be independent if their indicator function {IAn}n∈I are inde-

pendent. In particular, two sets A1, A2 ∈ F are independent if P (A1 ∩ A2) =
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P (A1)P (A2).

Now in the view of independence, we can give the second Borel-Cantelli Lemma

(see Section 4.3 in (Williams 1991)).

Lemma 2.2. (Second Borel-Cantelli lemma) If the sequence {An}n∈N+ ⊂ F
is independent and

∑∞
n=1 P (An) = ∞, then

P

(
lim sup
n→∞

An

)
= 1.

That is, there is a set Ω0 ∈ F with P (Ω0) = 1 such that for every ω ∈ Ω0, we can

find a sub-sequence {Ank
}k∈N+ for ω belonging to all Ank

.

Expectation

If X is a real-valued random variable and is integrable with respect to P , the

number

EX =

∫
Ω

X(ω)dP (ω)

is called the expectation of X. Let Y be another real-valued integrable random

variable but independent from X. Then XY is also integrable and E(XY ) =

EX · EY .

For an Rd-valued random variable X, define EX = (EX1, · · · , EXd)
T. Let

p ∈ (0,∞). The number E|X|p is said to be the p-th moment of X (here, E|X|p

is always well-defined). The family of all Rd-valued random variables X with

E|X|p < ∞ is denoted by Lp = Lp
(
Ω;Rd

)
. Clearly, Lp is a normed space with

p-norm ||X||p = (E|X|p)
1
p . In L1, we have |EX| ≤ E|X|. Moreover, the following

probability inequalities will be widely used (see Section 6.13 in (Williams 1991))

(1) (Hölder inequality) if p, q > 1, 1
p
+ 1

q
= 1, X ∈ Lp, Y ∈ Lq∣∣E (XTY

)∣∣ ≤ ||X||p||Y ||q;

(2) (Minkovski inequality) if p ≥ 1, X, Y ∈ Lp

||X + Y ||p ≤ ||X||p + ||Y ||p;

(3) (Chebyshev inequality) if c > 0, p > 0, X ∈ Lp

P ({ω : |X(ω)| ≥ c}) ≤ E|X|p

cp
.

A simple appplication of Hölder inequality implies the monotonicity of p-norm, i.e.

for 0 < r < p < ∞, X ∈ Lp, ||X||r ≤ ||X||p.
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Next, we introduce four important convergence modes. LetX andXn (n ∈ N+)

be Rd-valued random variables. The sequence {Xn}n∈N+ is said to converge to X

(1) with probability 1 or almost surely : if P (|Xn −X| → 0) = 1;

(2) in probability : if P ({ω : |Xn(ω)−X(ω)| > ε}) → 0 for every ε > 0;

(3) in Lp: if Xn, X belong to Lp and E|Xn −X|p → 0;

(4) in distribution: if E(g(Xn)) → E(g(X)) for every continuous bounded func-

tion g : Rd → R.
The following three integration convergence results are needed.

Theorem 2.1. (Monotonic convergence theorem) If {Xn}n∈N+ is a non-

decreasing sequence of non-negative random variables, then

lim
n→∞

EXn = E
(
lim
n→∞

Xn

)
.

Theorem 2.2. (Fatou lemma) If {Xn}n∈N+ is a sequence of non-negative ran-

dom variables, then

lim inf
n→∞

EXn ≤ E
(
lim inf
n→∞

Xn

)
.

Theorem 2.3. (Dominated convergence theorem) Let p ≥ 1, {Xn}n∈N+ ⊂
Lp(Ω;Rd) and Y ∈ Lp(Ω;Rd). Assume that |Xn| ≤ Y a.s. and {Xn}n∈N+ converges

to X in probability. Then X ∈ Lp(Ω;Rd), {Xn}n∈N+ converges to X in Lp, and

lim
n→∞

EXn = E
(
lim
n→∞

Xn

)
= EX.

Their proof could be found in Sections 5.3, 5.4 and 13.7 in (Williams 1991),

respectively.

Conditional expectation

Let A,B ∈ F with P (B) > 0. The conditional probability of A under condition

B is

P (A|B) =
P (A ∩B)

P (B)
.

However, we frequently need the more general concept of condition expectation.

Let X be a random variable in L1(Ω;R) and G be a sub-σ-algebra of F . In general,

X is not G-measurable. Now we want to find an integrable G-measurable random

variable Y such that E(IGY ) = E(IGX) for all G ∈ G. By the Radon-Nikodym

theorem (see Section 14.13 in (Williams 1991)), there indeed exists one such Y ,
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almost surely unique. The random variable Y is called the conditional expectation

of X under the condition G, denoted by

Y = E(X|G).

We list some important properties of conditional expectation as (all the equalities

and inequalities shown hold almost surely)

(1) E(E(X|G)) = EX;

(2) G = {∅,Ω} =⇒ E(X|G) = EX;

(3) X is G-measurable =⇒ E(X|G) = X;

(4) X is a constant c =⇒ E(X|G) = c;

(5) X ≥ 0 =⇒ E(X|G) ≥ 0;

(6) |E(X|G)| ≤ E(|X||G);

(7) E(aX + bY |G) = aE(X|G) + bE(Y |G) for constants a, b;

(8) X is G-measurable =⇒ E(XY |G) = XE(Y |G);

(9) σ(X), G are independent =⇒ E(X|G) = EX;

(10) G1 ⊂ G2 ⊂ F =⇒ E
(
E(X|G2)

∣∣G1

)
= E(X|G1).

For an Rd-valued random variable X, its conditional expectation under G is

defined as E(X|G) = (E(X1|G), · · · , E(Xd|G))T.
Finally, we recommend readers to (Williams 1991) for more information about

probability theory.

2.2 Stochastic processes

Stochastic basis

A complete probability space (Ω,F , P ), with an increasing family of sub-σ-

algebras of F (i.e. Fs ⊂ Ft ⊂ F for all 0 ≤ s ≤ t < ∞), which satisfies the usual

conditions

(i) right-continuous, i.e. Ft =
⋂

s>tFs for all t ≥ 0;

(ii) complete, i.e. F0 contains all P -null sets,

is called a stochastic basis. The family {Ft}t≥0 is often called a filtration. We also

define F∞ = σ
(⋃

t≥0Ft

)
. Through this thesis, we will always let (Ω,F , {Ft}t≥0, P )

be a stochastic basis.
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A family {Xt}t∈I of Rd-valued random variables defined on (Ω,F , {Ft}t≥0, P )

is said to be a stochastic process with index set I and state space Rd. For each

fixed t ∈ I, we have a Rd-valued random variable Xt(ω). For each fixed ω ∈ Ω, we

have a function of t, Xt(ω) : I → Rd, which is called a sample path of the process.

If I is identified, we often write {Xt}t∈I as {Xt}. Usually, {Xt}t≥0 is denoted by

Xt or X(t) simply.

Let {Xt}t≥0 be an Rd-valued process. It is said to be

(1) continuous : for almost all ω ∈ Ω, function Xt(ω) is continuous on t ≥ 0;

(2) cadlag : if for almost all ω ∈ Ω, it is right-continuous and the left limit

lims↑t Xs(ω) exists and is finite for all t > 0;

(3) integrable: if for every fixed t ≥ 0, Xt is an integrable random variable;

(4) square integrable: if for every fixed t ≥ 0, E|Xt|2 < ∞;

(5) adapted : if for every fixed t ≥ 0, random variable Xt is Ft-measurable;

(6) progressively measurable: if for every fixed T ≥ 0, {Xt}0≤t≤T regarded as a

function of (t, ω) from [0, T ]× Ω is B([0, T ])×FT -measurable.

In particular, for a real-valued process {At}t≥0, it is called increasing if for almost

all ω ∈ Ω, function At(ω) is non-negative, increasing, right-continuous on t ≥ 0.

Stopping times

A random variable τ : Ω → [0,∞] is called a stopping time if for any t ≥ 0

{ω : τ(ω) ≤ t} ∈ Ft.

Since the technique of stopping times plays a crucial role in this thesis, we prepare

two useful theorems.

Theorem 2.4. If {Xt}t≥0 is a progressively measurable process and τ is a stopping

time, then Xτ I{τ<∞} is Fτ -measurable. In particular, if τ is finite, then Xτ is Fτ -

measurable.

Theorem 2.5. Let {Xt}t≥0 be an Rd-valued, cadlag, adapted process, and D an

open subset of Rd. Define

τ = inf{t ≥ 0 : Xt /∈ D},

where we use the convention inf ∅ = ∞. Then τ is a stopping time, which is

usually called the first exit time form D.
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Martingales

An Rd-valued, adapted, integrable process {Mt}t≥0 is called a martingale (with

respect to {Ft}t≥0) if for all 0 ≤ s < t < ∞

E(Mt|Fs) = Ms a.s.

If X = {Xt}t≥0 is a progressively measurable process and τ is a stopping time,

then Xτ = {Xt∧τ}t≥0 is called a stopped process of X. The following is the well-

known Doob stopping theorem, whose proof can be found in Theorem 2.35, p47,

(He et al. 1992).

Theorem 2.6. (Doob stopping theorem) Let {Mt}t≥0 be an Rd-valued mar-

tingale, and θ, ρ two finite stopping times. Then

E(Mθ|Fρ) = Mθ∧ρ a.s.

In particular, if τ is a stopping time, the stopped process M τ = {Mt∧τ} is still a

martingale.

We also prepare the following useful Doob martingale inequalities (see Theorem

1, p62 and Theorem 2, p64 in (Liptser & Shiryayev 1989)).

Theorem 2.7. (Doob martingale inequalities) Let {Mt}t≥0 be an Rd-valued

martingale, and [a, b] be a bounded interval in R+.

(1) If p ≥ 1 and Mt ∈ Lp(Ω,Rd), then for all c ≥ 0

P

({
ω : sup

a≤t≤b
|Mt(ω)| ≥ c|

})
≤ E|Mb|p

cp
.

(2) If p > 1 and Mt ∈ Lp(Ω,Rd), then

E

(
sup
a≤t≤b

|Mt|p
)

≤

(
1

1− 1
p

)p

E|Mb|p.

If M = {Mt}t≥0 is a real-valued, square-integrable, continuous martingale,

then there is a unique continuous, integrable, adapted, increasing process, denoted

by {⟨M,M⟩}, such that {M2
t − ⟨M,M⟩} is a continuous martingale vanishing at

t = 0. The process {⟨M,M⟩} is called the quadratic variation of M . Particularly,

for any finite stopping time τ , EM2
τ = E⟨M,M⟩τ .

A right-continuous, adapted process M = {Mt}t≥0 is called a local martingale

if there is an increasing sequence of stopping times {τn}n∈N+ with τn ↑ ∞ a.s. such

that every {Mt∧τn −M0}t≥0 is a martingale. By Theorem 2.6, every martingale is



Chapter 2 15

a local martingale. For a real-valued, continuous, local martingale M = {Mt}t≥0,

its quadratic variation {⟨M,M⟩} is the unique continuous, adapted process such

that {M2
t − ⟨M,M⟩} is a continuous, local martingale vanishing at t = 0.

The following result is the useful strong law of large numbers for martingales

(see Theorem 10, p144 in (Liptser & Shiryayev 1989)).

Theorem 2.8. (Strong law of large numbers) Let M = {Mt}t≥0 be a real-

valued, continuous, local martingale vanishing at t = 0. Let {At}t≥0 be continuous,

adapted, increasing process. If

lim
t→∞

At = ∞ and

∫ ∞

0

d⟨M,M⟩t
(1 + At)2

< ∞ a.s.,

then

lim
t→∞

Mt

At

= 0 a.s.

To close this section, we provide a useful convergence theorem, which plays an

important role in the stability analysis.

Theorem 2.9. (Semi-martingale convergence theorem) Let {At}t≥0 and

{Ut}t≥0 be two continuous, adapted, increasing processes with A0 = U0 = 0 a.s.

Let {Mt}t≥0 be a real-valued, continuous, local martingale with M0 = 0 a.s. Let ξ

be a non-negative, F0-measurable random variable. Define Xt = ξ +At − Ut +Mt

for all t ≥ 0. If Xt is non-negative, then{
lim
t→∞

At < ∞
}
⊂
{
lim
t→∞

Xt exists and is finite
}
⊂
{
lim
t→∞

Ut < ∞
}

a.s.

In particular, if limt→∞ At < ∞ a.s., then for almost all ω ∈ Ω,

lim
t→∞

Xt(ω) exists and is finite, and lim
t→∞

Ut(ω) < ∞.

We cite (Liptser & Shiryayev 1989) (Theorem 7, p139) as a reference for this

theorem.

Brownian motion

Brownian motion is the name given to the irregular movement of pollen grains

suspended in water, observed by the Scottish botanist Robert Brown in 1928.

Then it was used to explain by the random collisions with the molecules of water.

In mathematics, it is natural to use a stochastic process Wt(ω) to describe the

motion, explained as the position of the pollen grain ω at time t. The following is

the mathematical definition of Brownian motion.
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Definition 2.1. Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis. A one-dimensional

Brownian motion is a real-valued, continuous, adapted process {Wt}t≥0 with the

following properties

(i) W0 = 0 a.s.;

(ii) for 0 ≤ s ≤ t < ∞, the increment Wt − Ws is normally distributed with

expectation 0 and variance t− s;

(iii) for 0 ≤ s ≤ t < ∞, the increment Wt −Ws is independent of Fs.

In honor of American mathematician Norbert Wiener for his investigations on

the mathematical properties of Wt(ω), we also call Brownian motion as Wiener

process. Here we list some important properties

(1) let c > 0 and define Xt =
Wct√

c
for t ≥ 0, then {Xt} is a Brownian motion

with respect to the filtration {Fct};

(2) {Wt} is a continuous, square-integrable martingale with quadratic variation

⟨W,W ⟩t = t for all t ≥ 0;

(3) applying the strong law of large numbers to {Wt} yields that

lim
t→∞

Wt

t
= 0 a.s.;

(4) for almost every ω ∈ Ω, the sample path Wt(ω) is nowhere differentiable.

Sometimes we shall speak of a Brownian motion {Wt}0≤t≤T on [0, T ], and the

meaning is apparent. Next we define the d-dimensional Brownian motion.

Definition 2.2. A d-dimensional process
{
Wt =

(
W 1

t , · · · ,W d
t

)}
t≥0

is called a d-

dimensional motion if every {W i
t } is a one-dimensional Brownian motion, and

{W 1
t } , · · · ,

{
W d

t

}
are independent.

From this definition, the similar properties of one-dimensional Brownian motion

hold for d-dimensional Brownian motion as well. Finally, we give a useful result.

Theorem 2.10. Let M = {Mt}t≥0 be a real-valued, continuous, local martingale

such that M0 = 0 and ⟨M,M⟩t = t a.s. Define the stopping time

τt = inf{s : ⟨M,M⟩s > t}.

Then {Mτt}t≥0 is a one-dimensional Brownian motion with respect to the filtration

{Fτt}t≥0.

We recommend readers to (Karatzas & Shreve 1991) for more knowledge of

Brownian motion.
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2.3 Itô integrals

In this section, we shall define the Itô stochastic integral
∫ t

0
f(s)dW (s) with

respect to an m-dimensional Brownian motion for a class of d×m-matrix-valued

stochastic processes {f(t)}t≥0, which was first proposed by K. Itô (see (Itô 1944)).

Since the Brownian sample path is nowhere differentiable, the integral cannot be

defined in the ordinary way. Thus we will give the definition of Itô stochastic

integral step by step.

Fundamental ideas

We firstly focus on a basic situation. Let (Ω,F , {Ft}t≥0, P ) be a stochastic

basis, and W = {W (t)}t≥0 be a one-dimensional Brownian motion. The processes

considered in this part should belong to the following space.

Definition 2.3. Let 0 ≤ a < b < ∞. Denote by M2([a, b];R) the space of all

real-valued, measurable, adapted processes f = {f(t)}a≤t≤b such that

||f ||2a,b = E

∫ b

a

|f(s)|2ds < ∞. (2.1)

We say f and f̄ are equivalent in M2([a, b];R) if ||f − f̄ ||2a,b = 0.

Motivated by the definition of Lebesgue integral, we can show how to define

the Itô integral for a process f ∈ M2([a, b];R). The idea is natural: first define

the integral
∫ t

0
g(s)dW (s) for a class of simple processes g; then use such simple

processes g’s to approximate any process f , and define the limit of
∫ t

0
g(s)dW (s)

as the integral
∫ t

0
f(s)dW (s). Therefore, we need to know the concept of simple

processes.

Definition 2.4. A real-valued process g = {g(t)}a≤t≤b is said to be simple if there

is a partition a = t0 < t1 < · · · < tn = b of [a, b], and bounded random variables

ξi, 0 ≤ i ≤ n− 1 such that ξi is Fti-measurable and

g(t) = ξ0I[t0,t1](t) +
n−1∑
i=1

ξiI[ti,ti+1](t). (2.2)

Denote by M0([a, b];R) the family of all such processes.

Clearly, M0([a, b];R) ⊂ M2([a, b];R). We now introduce the Itô integral for

such simple process.
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Definition 2.5. (Itô integral of simple processes) For a simple process g with

the form of (2.2), define∫ b

a

g(s)dW (s) =
n−1∑
i=0

ξi(W (ti+1)−W (ti)) (2.3)

and call it the Itô integral of g with respect to the Brownian motion W .

The integral
∫ b

a
g(s)dW (s) is Fb-measurable. Further, it belongs to L2(Ω;R).

Lemma 2.3. For g ∈ M0([a, b];R), we have

E

∫ b

a

g(s)dW (s) = 0 and E

∣∣∣∣∫ b

a

g(s)dW (s)

∣∣∣∣2 = E

∫ b

a

|g(s)|2ds.

The latter is often called the Itô isometry. The linearity property is obvious.

Lemma 2.4. Let g1, g2 ∈ M0([a, b];R) and let c1, c2 be two real numbers. Then

c1g1 + c2g2 ∈ M0([a, b];R) and∫ b

a

(c1g1(s) + c2g2(s))dW (s) = c1

∫ b

a

g1(s)dW (s) + c2

∫ b

a

g2(s)dW (s).

For a general process in M2([a, b];R), we will use the approximation result.

Lemma 2.5. For any f ∈ M2([a, b];R), there is a sequence {gn}n∈N+ of simple

processes such that

lim
n→∞

E

∫ b

a

|f(s)− gn(s)|2ds = 0. (2.4)

Lemmas 2.3 and 2.4 also tell us that
{∫ b

a
gn(s)dW (s)

}
n∈N+

is a Cauchy se-

quence in L2(Ω,R) since as n,m → ∞

E

∣∣∣∣∫ b

a

gn(s)dW (s)−
∫ b

a

gm(s)dW (s)

∣∣∣∣2 =E

∣∣∣∣∫ b

a

(gn(s)− gm(s))dW (s)

∣∣∣∣2
=E

∫ b

a

|gn(s)− gm(s)|2ds → 0.

This leads to the following definition.

Definition 2.6. (Itô integral of M2-processes) Let f ∈ M2([a, b];R). The Itô

integral of f with respect to W is defined by∫ b

a

f(s)dW (s) = lim
n→∞

∫ b

a

gn(s)dW (s), (2.5)

where {gn}n∈N+ is a sequence of simple processes such that (2.4) is satisfied.
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After figuring out how to define the Itô integral for M2-processes, we give some

nice properties. For f, g ∈ M2([a, b];R),
(1)

∫ b

a
f(s)dW (s) is Fb-measurable;

(2) E
∫ b

a
f(s)dW (s) = 0;

(3) E
∣∣∣∫ b

a
f(s)dW (s)

∣∣∣2 = E
∫ b

a
|f(s)|2ds;

(4)
∫ b

a
(c1f(s) + c2g(s))dW (s) = c1

∫ b

a
f(s)dW (s) + c2

∫ b

a
g(s)dW (s).

Generally, we are interested in that [a, b] = [0, T ] for some T > 0.

Definition 2.7. Let f ∈ M2([0, T ];R). For 0 ≤ t ≤ T , define

I(t) =

∫ t

0

f(s))dW (s),

where I(0) = 0 by definition. We call {I(t)}0≤t≤T the indefinite Itô integral of f .

It is easy to derive that {I(t)} is an adapted, continuous, square-integrable

martingale with quadratic variation given by

⟨I, I⟩t =
∫ t

0

|f(s)|2ds. (2.6)

Generalised definitions

Let us next extend the Itô integral to more general cases. The first one is

stochastic integrals with stopping times.

Definition 2.8. Let f ∈ M2([0, T ];R) and τ be a stopping time such that 0 ≤
τ ≤ T . Then

{
f(t)I[0,τ ](t)

}
0≤t≤T

∈ M2([0, T ];R) clearly, and we define∫ τ

0

f(s))dW (s) =

∫ T

0

f(s)I[0,τ ](s)dW (s).

Furthermore, if ρ is another stopping time with 0 ≤ ρ ≤ τ , we define∫ τ

ρ

f(s))dW (s) =

∫ τ

0

f(s)dW (s)−
∫ ρ

0

f(s)dW (s) =

∫ T

0

f(s)I[ρ,τ ](s)dW (s).

We also have that

E

∫ τ

ρ

f(s)dW (s) = 0 and E

∣∣∣∣∫ τ

ρ

f(s)dW (s)

∣∣∣∣2 = E

∫ τ

ρ

|f(s)|2ds.

Then let us pay attention to the multi-dimensional situation. Let {W (t)}t≥0

be an m-dimensional Brownian motion, where W (t) = (W1(t), · · · ,Wm(t))
T, and
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M2([0, T ];Rd×m) denote the family of d×m-matrix-valued, measurable, adapted

process f = {(fij(t))d×m}0≤t≤T such that E
∫ T

0
|f(s)|2ds < ∞.

Definition 2.9. Let f ∈ M2([0, T ];Rd×m). Define the multi-dimensional indefi-

nite Itô integral∫ t

0

f(s)dW (s) =

∫ t

0

(
f11(s) · · · f1m(s)

.

.

.

.

.

.

fd1(s) · · · fdm(s)

)(
dW1(s)

.

.

.

dWm(s)

)
.

If ρ and τ are two stopping times 0 ≤ ρ ≤ τ ≤ T , then

E

∫ τ

ρ

f(s)dW (s) = 0 and E

∣∣∣∣∫ τ

ρ

f(s)dW (s)

∣∣∣∣2 = E

∫ τ

ρ

|f(s)|2ds.

Finally we shall extend Itô integral to a larger class of stochastic processes.

Let L2(R+;Rd×m) denote the family of d×m-matrix-valued, measurable, adapted

process f = {f(t)}t≥0 such that∫ T

0

|f(s)|2ds < ∞ a.s. for every T > 0.

It is easy to see that M2(R+;Rd×m) is a subspace of L2
(
R+;Rd×m

)
. Thus we will

use the Itô integral of M2-processes to help define the Itô integral of L2-processes.

Let f ∈ L2(R+;Rd×m). For each n ∈ N+, define the stopping time

τn = n ∧ inf

{
t ≥ 0 :

∫ t

0

|f(s)|2ds ≥ n

}
.

Clearly τn ↑ ∞ a.s. More importantly, {f(t)I[0,τn](t)}t≥0 ∈ M2(R+;Rd×m) so the

integral In(t) =
∫ t

0
f(t)I[0,τn](t)dW (s) is well-defined. We could further derive that

Ik(t ∧ τn) = In(t) for 1 ≤ n ≤ k and t ≥ 0, which implies that

Ik(t) = In(t), 0 ≤ t ≤ τn.

Definition 2.10. Let f ∈ L2(R+;Rd×m). The indefinite Itô integral of f with

respect to W is the Rd-valued process {I(t)}t≥0 defined by

I(t) = In(t) on 0 ≤ t ≤ τn.

As before, we usually write
∫ t

0
f(s)dW (s) instead of I(t).

To close this part, we present the well-known Burkholder-Davis-Gundy inequal-

ity to estimate the Itô integral for L2-processes.

Theorem 2.11. (BDG inequality) Let f ∈ L2(R+;Rd×m). Define for any t ≥ 0

x(t) =

∫ t

0

f(s)dW (s) and A(t) =

∫ t

0

f(s)ds.
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Then for every p > 0, we have

cpE|A(t)|
p
2 ≤ E

(
sup
0≤s≤t

|x(s)|p
)

≤ CpE|A(t)|
p
2 ,

where

cp =(p/2)p , Cp =(32/p)p/2 , if 0 < p < 2;

cp =1, Cp =4, if p = 2;

cp =(2p)−p/2, Cp =
(
pp+1/2(p− 1)p−1

)p/2
, if p > 2.

Itô formula

In this part, we will introduce the stochastic version of chain rule for the Itô

integral, which is known as Itô formula, in the explicit calculations.

Let W (t), t ≥ 0 be an m-dimensional Brownian motion. An d-dimensional

Itô process is an Rd-valued, continuous, adapted process x(t), t ≥ 0, with x(t) =

(x1(t), · · · , xd(t))
T, of the form

x(t) = x(0) +

∫ t

0

f(s)ds+

∫ t

0

g(s)dW (s),

where f = (f1, · · · , fd(t))T ∈ L1(R+;Rd) and g = (gij)d×m ∈ L2(R+;Rd×m). We

shall say that x(t) has an Itô differential dx(t) on t ≥ 0 given by

dx(t) = f(t)dt+ g(t)dW (t).

Sometimes, we will speak of Itô process x(t) and Itô differential dx(t) on t ∈ [a, b],

and the meaning is apparent.

Let C2,1(Rd × R+;R) denote the family of all real-valued functions V (x, t)

defined on Rd × R+ such that they are continuously twice differentiable in x and

once in t with Vt =
∂V
∂t
, Vx =

(
∂V
∂x1

, · · · , ∂V
∂xd

)
and Vxx =

(
∂2V

∂xi∂xj

)
d×d

.

Theorem 2.12. (Itô formula) Let x(t) be a d-dimensional Itô process on t ≥ 0

with the Itô differential

dx(t) = f(t)dt+ g(t)dW (t), (2.7)

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). Let V ∈ C2,1(Rd × R+;R). Then

V (x(t), t) is a real-valued Itô process with Itô differential

dV (x(t), t) =

(
Vt(x(t), t) + Vx(x(t), t)f(t) +

1

2
trace

(
gT(t)Vxx(x(t), t)g(t)

))
dt
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+ Vx(x(t))g(t)dW (t) a.s.

Given V ∈ C2,1(Rd × R+;R), define an operator LV : Rd × R+ → R by

LV (x, t) = Vt(x, t) + Vx(x, t)f(t) +
1

2
trace

(
gT(t)Vxx(x, t)g(t)

)
, (2.8)

which is called the diffusion operator of the Itô process (2.7). If there is absence

of t in the construction of a function V (x, t), we simply write C2,1(Rd ×R+;R) as
C2(Rd;R).

More detailed descriptions and proofs about this section can be found in (Mao

& Yuan 2006) (Sections 1.5 and 1.6).

2.4 Markov chains

Markov chains

Definition 2.11. A stochastic process r(t), t ≥ 0 defined on a probability space

(Ω,F , P ), which takes values in a countable set S, is called a continuous-time

Markov chain, if for all t, h ≥ 0, all i, j ∈ S, any times 0 ≤ t1 < · · · < tn < t and

any i1, · · · , in ∈ S

P (r(t+ h) = j|r(t) = i, r(tn) = in, · · · , r(t1) = i1)

=P (r(t+ h) = j|r(t) = i).

We are going to concentrate on homogeneous Markov chains: if for all t, h ≥ 0

and i, j ∈ S, the conditional probability P (r(t+ h) = j|r(t) = i) only depends on

the time increment h, we say the Markov chain r is homogeneous. In this situation,

P (r(t+ h) = j|r(t) = i) = P (r(h) = j|r(0) = i), and the function

pij(h) = P (r(h) = j|r(0) = i), i, j ∈ S, h ≥ 0

is called the transition function or transition probability of the Markov chain r.

The law of r is determined by the transition probability and its initial distribution

λ = (λi)i∈S, where λi = P (r(0) = i),

P (r(t) = j) =
∑
i∈S

λipij(t).

In addition, we have that for each fixed t and i,
∑

j∈S pij(t) = 1.

Next, we say the transition probability matrix P (t) := (pij(t))i,j∈S is standard

if for any i ∈ S, limt↓0 Pii(t) = 1.
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Theorem 2.13. Let P (t) be a standard transition probability matrix. Then

qi = lim
t→0

1− pii(t)

t

exists (but may be ∞) for all i ∈ S.

A state i ∈ S is said to be stable if qi < ∞.

Theorem 2.14. Let P (t) be a standard transition probability matrix and j be a

stable state. Then qij = p′ij(0) exists and is finite for all i ∈ S.

From Theorem 2.14, for all t ≥ 0, as h ↓ 0,

P (r(t+ h) = j|r(t) = i) = pij(h) =

{
1+qijh+ o(h), if i = j,

qijh+ o(h), if i ̸= j.
(2.9)

When i ̸= j, we observe that qij ≥ 0, which is called the transition rate from i to

j. When i = j, since
∑

j∈S pij(t) = 1, we have that qii = −
∑

j ̸=i qij. The matrix

Q = (qij)i,j∈S is called the transition rate matrix of r.

If the state space is finite, which we can take to be S = {1, · · · , S}, then the

process is called a continuous-time finite Markov chain. Throughout this thesis,

the underlying Markov chains are finite and all states are stable. For such a Markov

chain, almost every sample path is a right-continuous step function.

It is useful to stress that a continuous-time Markov chain r(t) with the tran-

sition rate matrix Q = (qij)S×S can be represented as a stochastic integral with

respect to a Poisson random measure. Let ∆i,j be consecutive, left-closed, right-

open intervals of the real line with length qij such that ∆12 = [0, q12), ∆13 =

[q12, q12+q13), · · · , ∆1S =
[∑S−1

j=2 q1j,
∑S

j=2 q1j

)
, ∆21 =

[∑S
j=2 q1j,

∑S
j=2 q1j + q21

)
,

· · · , ∆2S =
[∑S

j=2 q1j +
∑S−1

j=1,j ̸=2 q2j,
∑S

j=2 q1j +
∑S

j=1,j ̸=2 q2j

)
and so on. Define a

function φ : S× R → R by

φ(i, y) =

{
j − i, if y ∈ ∆ij,

0, otherwise.
(2.10)

Then

dr(t) =

∫
R
φ(r(t−), y)Pois(dt, dy)

with initial data r(0) = λ, where Pois(dt, dy) is a Poisson random measure with

intensity dt× Leb(dy), in which Leb is the Lebesgue measure on the real line.
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Generalised Itô formula

Form now on, unless otherwise specified, we let (Ω,F , {Ft}t≥0, P ) be a stochas-

tic basis (i.e. (Ω,F , P ) is a complete probability space with filtration {Ft}t≥0

satisfying the usual conditions). Let W (t) be an m-dimensional Brownian motion

defined on the probability space. Let r(t) be a right-continuous Markov chain on

the probability space taking values in a finite state space S = {1, · · · , S} with

transition rate matrix Q = (qij)S×S given in (2.9). Assume that the Markov chain

r and the Brownian motion W are independent under probability measure P .

Consider a d-dimensional Itô process on t ≥ 0 with Itô differential

dx(t) = f(t)dt+ g(t)dW (t), (2.11)

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). The Itô formula established in

Section 2.3 shows that a C2,1(Rd × R+;R)-function V maps the Itô process x(t)

into another Itô process V (x(t), t). But now, we shall consider the paired process

(x(t), r(t)) and need to know how a function V : Rd × R+ × S → R will map

(x(t), r(t)) into another process V (x(t), t, r(t)).

For this aim, let C2,1(Rd×R+×S;R) denote the family of all real-valued func-

tions V (x, t, i) on Rd ×R+ × S such that for each i ∈ S, V (x, t, i) are continuously

twice differentiable in x and once in t. If V ∈ C2,1(Rd × R+ × S;R), define the

diffusion operator LV : Rd × R+ × S → R of the Itô process (2.11) by

LV (x, t, i) =Vt(x, t, i) + Vx(x, t, i)f(t) +
1

2
trace

(
gT(t)Vxx(x, t, i)g(t)

)
+
∑
j∈S

qijV (x, t, j). (2.12)

Theorem 2.15. (Generalised Itô formula) If V ∈ C2,1(Rd ×R+ × S;R), then
for any t ≥ 0

V (x(t), t, r(t))

=V (x(0), 0, r(0)) +

∫ t

0

LV (x(s), s, r(s))ds+

∫ t

0

Vx(x(s), s, r(s))g(s)dW (s)

+

∫ t

0

∫
R

(
V (x(s), s, r(0) + φ(r(s), l))− V (x(s), s, r(s))

)
µ̄(ds, dl) a.s.,

where the function φ is defined by (2.10) and µ̄(ds, dl) := ν(ds, dl) − µ(dl) is

a martingale measure. Here ν(ds, dl) is a Possion random measure with density

ds× µ(dl), in which µ is the Lebesgure measure on R.
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The proof can be found in Lemma 3, p104, (Skorokhod 1989). In particular,

making use of the martingale property of Poisson measures and taking expectations

on both sides of the last inequality gives a useful lemma.

Lemma 2.6. Let V ∈ C2,1(Rd × R+ × S;R) and τ1, τ2 be bounded stopping times

such that 0 ≤ τ1 ≤ τ2 a.s. If V (x(t), t, r(t)) and LV (x(t), t, r(t)) are bounded on

t ∈ [τ1, τ2] with probability 1, then

EV (x(τ2), τ2, r(τ2)) = EV (x(τ1), τ1, r(τ1)) + E

∫ τ2

τ1

LV (x(s), s, r(s))ds.

2.5 Hybrid stochastic differential equations

Let f : Rd × R+ × S → Rd and g : Rd × R+ × S → Rd×m be Borel measur-

able functions. Then consider the stochastic differential equations (SDEs) with

Markovian switching of the following form

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dW (t) (2.13)

on t ≥ 0 with the initial data

x(0) = ξ0 ∈ Rd, r(0) = i0 ∈ S. (2.14)

Since there involve two different states, x(t) taking values continuously and r(t)

taking discrete values, equation (2.13) is often referred to a hybrid SDE. f(x, t, i)

and g(x, t, i) are called the drift coefficient and diffusion coefficient, respectively.

By the definition of Itô differential, the hybrid SDE (2.13) is equivalent to the

following stochastic integration equation

x(t) = x(0) +

∫ t

0

f(x(s), s, r(s))ds+

∫ t

0

g(x(s), s, r(s))dW (s), t ≥ 0. (2.15)

A Rd-valued process {x(t)}t≥0 is a (global) solution of the hybrid SDE (2.13)

if

(i) x(t) is continuous and adapted;

(ii) {f(x(t), t, r(t))}t≥0 ∈ L1(R+;Rd), {g(x(t), t, r(t))}t≥0 ∈ L2(R+;Rd×m);

(iii) equation (2.13) is satisfied almost surely.

Moreover, a solution x(t) is said to be unique if any other solution x̄(t) is such that

P (x(t) = x̄(t) for all t ≥ 0) = 1. Next we introduce the concept of local solution.
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Definition 2.12. Let σe be a stopping time such that 0 ≤ σe ≤ ∞ a.s. An Rd-

valued, adapted, continuous process {x(t)}0≤t<σe is called a local solution of the

hybrid SDE (2.13) if there is an increasing sequence {σn}n∈N+ of stopping times

such that 0 ≤ σn ↑ σe a.s. and

x(t) = x(0) +

∫ t∧σn

0

f(x(s), s, r(s))ds+

∫ t∧σn

0

g(x(s), s, r(s))dW (s)

holds for any t ≥ 0 and n ∈ N+ almost surely. If further, lim supt→σe
|x(t)| = ∞

whenever σe < ∞, then it is called a maximal local solution and σe is called the

explosion time. A maximal local solution {x(t)}0≤t<σe is said to be unique if any

other maximal local solution {x̄(t)}0≤t<σ̄e is so that σe = σ̄e and x(t) = x̄(t) for all

t ≥ 0 almost surely.

The following theorem is the classical result in existence of unique maximal

local solution of the hybrid SDE (2.13).

Theorem 2.16. Assume that for every n ∈ N+, there is a positive constant Kn

such that for all t ≥ 0, i ∈ S and those x, y ∈ Rd with |x| ∨ |y| ≤ k

|f(x, t, i)− f(y, t, i)|2 ∨ |g(x, t, i)− g(y, t, i)|2 ≤ Kn|x− y|2. (2.16)

Then there is a unique maximal local solution of the hybrid SDE (2.13).

Condition (2.16) is the well-known Local Lipschitz condition, but it only guar-

antees the maximal local solution, which may explode at a finite time. To suppress

the potential explosion and make sure the solution is global, the classical condition

is the following linear growth condition.

Theorem 2.17. Let the local Lipschitz condition (2.16) hold. Assume that (linear

growth condition) there is a positive constant K ≥ 0 such that

|f(x, t, i)|2 ∨ |g(x, t, i)|2 ≤ K(1 + |x|2). (2.17)

Then there is a unique global solution of the hybrid SDE (2.13), which belongs to

M2(R+;Rd).

Among other topics of hybrid SDEs, stability is very important one. For a

stable system, the trajectories which are close to each other at a specific instant

should keep close to each other at the remaining instants. If we assume that

f(0, t, i) ≡ 0 and g(0, t, i) ≡ 0, (2.18)
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then the solution of the hybrid SDE (2.13) will remain to be zero if it starts from

zero, namely x(t; ξ0, 0, i0) ≡ 0. In other words, zero is an equilibrium state or a

trivial solution.

Throughout this thesis, we will mainly focus on the stability of the hybrid SDE

(2.13), in the sense of the following

(1) H∞ stability : for all (ξ0, i0) ∈ Rd × S∫ ∞

0

E|x(t; ξ0, 0, i0)| < ∞;

(2) p-th moment asymptotic stability : for some p > 0 and all (ξ0, i0) ∈ Rd × S

lim
t→∞

E|x(t; ξ0, 0, i0)|p = 0;

when p = 2, it is said to be asymptotically stable in mean square;

(3) almost surely asymptotic stability : for all (ξ0, i0) ∈ Rd × S

P
(
lim
t→∞

|x(t; ξ0, 0, i0)| = 0
)
= 1;

(4) p-th moment exponential stability : for some p > 0, there is a positive constant

ε such that for all (ξ0, i0) ∈ Rd × S

lim sup
t→∞

1

t
log (E|x(t; ξ0, 0, i0)|p) ≤ −ε;

when p = 2, it is said to be exponentially stable in mean square;

(5) almost surely exponential stability : there is a positive constant ε such that

for all (ξ0, i0) ∈ Rd × S

lim sup
t→∞

1

t
log (|x(t; ξ0, 0, i0)|) ≤ −ε a.s.

More details about this section can be found in (Mao & Yuan 2006) (Chapters

3 and 5).

2.6 Useful inequalities

In the end of this chapter, we introduce several inequalities which are used

frequently later on. We also recommend Chapter 2 in (Mao & Yuan 2006) as

reference.
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Arithmetic inequalities

Let us begin with the simplest inequality

2ab ≤ εa2 +
1

ε
b2, ∀a, b ∈ R, ∀ε > 0. (2.19)

Now we proceed to the Yong inequality, for any a, b ∈ R and ε > 0

|a|p|b|q ≤ ε|a|p+q +
q

p+ q

(
p

ε(p+ q)

) p
q

|b|p+q. (2.20)

Another inequality frequently-used is the discrete Hölder inequality∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣
p

≤ Hp

n∑
i=1

|ai|p (2.21)

for any ai ∈ R, n ≥ 2, where Hp = np−1 if p ≥ 1 and np if p ∈ (0, 1). One more

useful inequality is

|ap − bp| ≤ p(a− b)(ap−1 + bp−1), ∀a, b ≥ 0, ∀p ≥ 1. (2.22)

Integral inequalities

When using the method of Lyapunov functional, the following inequality is

very helpful. Let τ be a positive constant and ϕ : [−τ,∞) → R+ be an integrable

function, then for any t ≥ 0∫ 0

−τ

∫ t

t+s

ϕ(v)dvds ≤ τ

∫ t

t−τ

ϕ(v)dv. (2.23)

Then we give the well-known Gronwall inequality

Theorem 2.18. (Gronwall inequality) Let T > 0 and c ≥ 0. Let u : [0, T ] →
R+ be a Borel-measurable bounded function, and v : [0, T ] → R+ be an integrable

function. Then for any t ∈ [0, T ]

u(t) ≤ c+

∫ t

0

v(s)u(s)ds =⇒ u(t) ≤ c exp

(∫ t

0

v(s)ds

)
.

Matrix inequalities

For a matrix A ∈ Rd×m, its operator norm is given by ||A|| = supx∈Rm,|x|=1 |Ax|,
while its trace norm is defined by |A| =

√
trace(ATA). We always have

|Ax| ≤ ||A|||x| and |Ax| ≤ |A||x|, ∀x ∈ Rm.
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For a symmetric matrix A ∈ Rd×d, denoted its largest and smallest eigenvalue

by λmax(A) and λmin(A), respectively. Moreover,

λmin(A)|x|2 ≤ xTAx ≤ λmax(A)|x|2, ∀x ∈ Rd.

Then the operator norm of a matrix A ∈ Rd×m can be writen as

||A|| =
√
λmax(ATA).

The theory of M -matrices will play an important role in the study stabilisation

and control in this thesis. We present some conditions equivalent to non-singular

M -matrix, and refer the reader to (Berman & Plemmons 1994) for more details.

Theorem 2.19. If A ∈ Zd×d := {A = (aij)d×d : aij ≤ 0, i ̸= j}, then the following

statements are equivalent

(1) A is a non-singular M-matrix;

(2) A−1 exists and all elements of A−1 are positive;

(3) There exists x ≫ 0 in Rd such that Ax ≫ 0.

Here x ≫ 0 means all elements of x are positive.
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A note on stabilisation of hybrid

SDEs by state feedback control

observed at discrete times

3.1 Introduction

In Chapter 1, we have discussed the following stabilisation problem: given an

unstable hybrid SDE

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dW (t) (3.1)

on t ≥ 0, compared with continuous-time state feedback control u(x(t), t, r(t)), it is

more practical and less costly to use feedback control based on discrete-time state

observations, say at times 0, τ, 2τ, · · · , to achieve the stabilisation of the controlled

SDE

dx(t) =
(
f(x(t), t, r(t)) + u(x(tτ ), t, r(t))

)
dt+ g(x(t), t, r(t))dW (t). (3.2)

Here for convenience, we let tτ = [t/τ ]τ . This stabilisation problem for stochastic

systems was initially proposed by (Mao 2013). Traditionally, the coefficients f and

g should satisfy the linear growth condition (see, e.g. (You et al. 2015, Li & Kou

2017)). But (Fei et al. 2020) eased this restriction and brought this stabilisation

problem into highly nonlinear area. Although the theory developed therein has

made great progress and more real models could be included, such as volatility

model (Lewis 2000, Heston 1997), there are still two questions deserved our further

discussion.

30
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Firstly, we emphasise the key ingredient in (Fei et al. 2020) for stabilisation

purpose, namely, the following condition: assume that there are non-negative

constants χi1, χ̂i1, positive constants χi2, χ̂i2, and p > 1 such that for every

(x, t, i) ∈ Rd × R+ × S
xTf(x, t, i) +

1

2
|g(x, t, i)|2 ≤ χi1|x|2 − χi2|x|p+1,

xTf(x, t, i) +
p

2
|g(x, t, i)|2 ≤ χ̄i1|x|2 − χ̄i2|x|p+1.

(3.3)

Condition (3.3) is indeed more advanced than the conventional linear growth con-

dition. But the reader might wonder why we need to give two similar inequalities

at the same time, particularly, the first one can be deduced from the other.

It is actually arisen from the effect of discrete-time state observations. To deal

with this effect, we usually decompose the drift coefficient of the controlled SDE

(3.2) as(
f(x(t), t, r(t)) + u(x(t), t, r(t))

)
+
(
u(x(tτ ), t, r(t))− u(x(t), t, r(t))

)
(3.4)

and hope the second term (or |x(t)−x(tτ )|) could be small enough if the observation

duration τ is sufficiently small. Currently, one popular method to estimate the

second term is to compute E|x(t) − x(tτ )|2. Then the estimation result (see, e.g.

equation (47) in (Fei et al. 2020)) forces us to give two inequalities in condition

(3.3) unavoidably. But is it possible for us to modify the estimation so that

condition (3.3) could be relaxed? In this chapter, we will give a positive answer

to this question (see Lemma 3.1 below). Owing to this modification, only the first

inequality of condition (3.3) is required in the stability analysis.

Secondly, it should be highlighted that some conditions in (Fei et al. 2020) are

not easily verified in practice. In particular, we need to find five free parameters

χ̂j > 0 (j = 1, · · · , 5) to let

L1U(x, t, i) + χ̂1|Ux(x, i)|2 + χ̂2|f(x, t, i)|2 + χ̂3|g(x, t, i)|2 ≤ −χ̂4|x|2 − χ̂5|x|2p

hold for all (x, t, i) ∈ Rd ×R+ × S. Here, U(x, i) is in the form of |x|2 + |x|p+1 and

the definition of L1U(x, t, i) can be found in (3.15). For more details, we refer to

Condition 4.6 in (Fei et al. 2020). These free parameters all influence the bound

of τ we obtain, and sometimes a bad choice may bring us a relatively small τ .

Therefore, in this chapter, we will provide a new method to determine the value of

τ , so that there is no need to find any free parameters in reality. In other words,

conditions imposed on the original system and the control function can be verified
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much more easily than before.

Let us now start to develop these new techniques and establish our new theory.

3.2 Standing hypothesis

Suppose that our underlying system is described by the hybrid SDE (3.1) with

the initial data

x(0) = ξ0 ∈ Rd, r(0) = i0 ∈ S,

where f : Rd × R+ × S → Rd and g : Rd × R+ × S → Rd×m are locally Lipschitz

continuous. Although the linear growth condition is not of our interest, we still do

not want coefficients to grow very sharply. Hence the following polynomial growth

condition is required.

Assumption 3.1. Assume that there are non-negative constants H1, H2, H̃1, H̃2

and p > 1 such that for every (x, t, i) ∈ Rd × R+ × S,

|f(x, t, i)| ≤ H1|x|+H2|x|p (3.5)

and

|g(x, t, i)|2 ≤ H̃1|x|2 + H̃2|x|p+1. (3.6)

But note that Assumption 3.1 cannot guarantee the hybrid SDE (3.1) has a

unique global solution. For this purpose, the Khasminskii-type condition is always

needed, which arises widely now in the study of highly nonlinear stochastic systems

(see, e.g. (Mao & Yuan 2006, Fei et al. 2020, Shi et al. 2022)).

Assumption 3.2. Assume that there exists a positive constant α̂ such that

xTf(x, t, i) +
p

2
|g(x, t, i)|2 ≤ α̂|x|2 (3.7)

for any (x, t, i) ∈ Rd × R+ × S.

Under Assumptions 3.1 and 3.2, it is then easy to see from Theorem 3.19

in (Mao & Yuan 2006) that the hybrid SDE (3.1) has a unique global solution

satisfying that for any t > 0, sup0≤s≤t E|x(s)|p+1 < ∞.

Before giving another assumption, let us make comments on condition (3.6).

Remark 3.1. From conditions (3.5) and (3.7), compute that for any (x, t, i) ∈
Rd × R+ × S,

|g(x, t, i)|2 ≤ 2

p

(
α̂|x|2 + |x||f(x, t, i)|

)
≤ 2(α̂ +H1)

p
|x|2 + 2H2

p
|x|p+1.
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This implies that condition (3.6) holds with H̃1 =
2(α̂+H1)

p
and H̃2 =

2H2

p
. Although

condition (3.6) could be deduced from conditions (3.5) and (3.7), the values of H̃1

and H̃2 derived from this estimation are too rough. These two parameters could

influence the upper bound of τ . The more accurate they are, the better τ we could

obtain. As a result, we need to give condition (3.6) as a hypothesis seperately.

Assumption 3.3. For each i ∈ S, assume that there are constants γi ≥ 0 and

βi > 0 such that for every (x, t) ∈ Rd × R+

xTf(x, t, i) +
1

2
|g(x, t, i)|2 ≤ γi|x|2 − βi|x|p+1. (3.8)

But the reader may find that Assumptions 3.2 and 3.3 look quite similarly. Is

it necessary to give them at the same time? The following remark may be helpful.

Remark 3.2. It should be pointed out that Assumptions 3.2 and 3.3 are both

needed. At first, they play different roles. Assumption 3.2 is used to ensure the

existence of global solution with certain moment properties, while Assumption 3.3

is for stabilisation and control design. Secondly, these two conditions are quite

different, and any one cannot be deduced from the other. Let us use a scalar

example operating just in one mode to explain this.

Case 1: f(x, t, 1) = x − x3 sin2(x), g(x, t, 1) = x. Then Assumption 3.2 is

satisfied with α̂ = 3.5. But we could not find a positive β1 such that for all x ∈ R

xTf(x, t, 1) +
1

2
|g(x, t, 1)|2 = 1.5|x|2 − |x|4 sin2(x) ≤ 1.5|x|2 − β1|x|4.

Case 2: f(x, t, 1) = x−x3, g(x, t, 1) = x2. It is easy to verify that Assumption 3.3

holds with α1 = 1, β1 = 0.5. But Assumption 3.2 is not satisfied since

xTf(x, t, 1) +
3

2
|g(x, t, 1)|2 = |x|2 + 0.5|x|4.

3.3 Control design

Although the solution of the hybrid SDE (3.1) is in Lp+1 under Assumptions

3.1 and 3.2, it might still be unstable. In this case, we need to design discrete-time

state feedback control u(x(tτ ), t, r(t) to make the controlled SDE (3.2) stable. Here,

the control function u : Rd × R+ × S → Rd is supposed to be Borel-measurable.

In this section, we shall propose some rules for the control u(x(tτ ), t, r(t)) to meet

the stabilisation aim.
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Rule 3.1. Design the control function u(x, t, i) so that we can find a positive

constant KM to let

|u(x, t, i)− u(y, t, i)| ≤ KM |x− y| (3.9)

hold for all (x, y, t, i) ∈ Rd × Rd × R+ × S, and moreover u(0, t, i) ≡ 0.

Rule 3.1 tells us that the control function u(x, t, i) should be globally Lipschitz

continuous in x. This rule implies the following linear growth condition

|u(x, t, i)| ≤ KM |x|, ∀(x, t, i) ∈ Rd × R+ × S. (3.10)

This seems a little surprising since we would normally look for the control func-

tion which should be highly nonlinear given the high nonlinearity of the underlying

hybrid SDE (3.1). But we will demonstrate that the globally Lipschitz continu-

ous control function works well, which also makes the control design in practice

and theoretical analysis much more easily, such as the following existence-and-

uniqueness theorem.

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold, if the control function u(x, t, i)

meets Rule 3.1, then the controlled SDE (3.2) has a unique global solution x(t) on

t > 0, which satisfies that

sup
0≤s≤t

E|x(s)|p+1 < ∞. (3.11)

This theorem can be shown in the same way as Theorem 7.13 in (Mao &

Yuan 2006) so we omit the proof. Moreover, it should be pointed out that the

controlled SDE (3.2) admits a trivial solution since f(0, t, i) ≡ 0 and g(0, t, i) ≡ 0

from Assumption 3.1, along with the requirement that u(0, t, i) ≡ 0 in Rule 3.1.

However, in order for the stability of the controlled SDE (3.2), Rule 3.1 is not

enough, so more rules are needed. The following one is very critical.

Rule 3.2. For each i ∈ S, design the control function u(x, t, i) such that there is

a non-negative constant κi for

xTu(x, t, i) ≤ −κi|x|2, ∀(x, t) ∈ Rd × R+, (3.12)

while for A := −2diag(α1, · · · , αS) − Q to be a non-singular M-matrix with αi =

γi − κi, where γi is given in Assumption 3.3.

But the reader may wonder if we can really find the control function u(x, t, i)

to make Rules 3.1 and 3.2 fulfilled. The following remark will deny this worry.
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Remark 3.3. In fact, there are a lot of control functions available under Assump-

tion 3.3. For example, design the control function in the linear form u(x, t, i) =

−Aix with Ai being symmetric and positive-definite such that λmin(Ai) ≥ (α+1)γi

with a sufficiently large α. It is then easy to see that Rule 3.1 holds with KM =

maxi∈S |Ai|. Further, we have κi = (α + 1)γi and A ≈ 2αdiag(γ1, · · · , γS) when α

is large enough. Thus, Rule 3.2 is satisfied.

After knowing about the design and existence of control functions, we should

pay attention to the observation duration τ in order to input the discrete-time state

feedback control. It is certainly impossible to have a τ as large as we want since the

information received from discrete-time state observations would be inadequate to

achieve stabilisation. Therefore, the upper bound of τ is usually required.

Rule 3.3. Let the observation duration τ be smaller than τ ∗, which is determined

by τ ∗ = max
ε∈

(
0, 1

KMηM

) φ(ε), where

φ(ε) =
1

KMηM

(
1−KMηMε

2H1 + 2KM + H̃1

ε
+ 1

ηM

∧ 2βη

2H2 +
H̃2

ε
+ 2βη

ηM

)
,

in which ηM = maxi∈S ηi with (η1, · · · , ηS)T = A−1(1, · · · , 1)T, βη = mini∈S(βiηi).

We make some comments on this rule.

Remark 3.4. At first, since A is a non-singular M-matrix, all ηi (i ∈ S) are

positive. As a result, the interval
(
0, 1

KMηM

)
is reasonable. Next, it is easy to

find that φ(ε) is a positive continuous function in
(
0, 1

KMηM

)
. When ε tends to

0 or 1
KMηM

, φ(ε) goes to zero. Therefore, there exists a number 0 < ε∗ < 1
KMηM

such that φ(ε∗) = max
{
φ(ε) : 0 < ε < 1

KMηM

}
. In this case, τ ∗ is well-defined.

It is also useful later that τ ∗ < 1
KM

since 1
KM

is one bound of function φ(ε) in(
0, 1

KMηM

)
.

3.4 Lyapunov functional

The main method to study stability in this chapter is the technique of Lya-

punov functional. Before that, we need some preparations. Let us firstly define a

Lyapunov function U(x, i) ∈ C2(Rd × S;R+) by

U(x, i) = ηi|x|2. (3.13)
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Define its corresponding operator LU : Rd×Rd×R+×S → R with respect to the

controlled SDE (3.2) by

LU(x, z, t, i) =Ux(x, i)(f(x, t, i) + u(z, t, i))

+
1

2
trace

(
gT(x, t, i)Uxx(x, i)g(x, t, i)

)
+

S∑
j=1

qijU(x, j). (3.14)

As mentioned before, to deal with the effect from discrete-time state observations,

the basic idea is using decomposition (3.4). While from the perspective of stability

theory, this means we should treat LU(x, z, t, i) as LU(x, z, t, i) = L1U(x, t, i) +

L2U(x, z, t, i), where

L1U(x, t, i) =Ux(x, i)(f(x, t, i) + u(x, t, i))

+
1

2
trace

(
gT(x, t, i)Uxx(x, i)g(x, t, i)

)
+

S∑
j=1

qijU(x, j) (3.15)

and

L2U(x, z, t, i) = Ux(x, i)(u(z, t, i)− u(x, t, i)). (3.16)

We then give the following remark to show the estimation of L1U(x, t, i) as well

as the role of Assumption 3.3.

Remark 3.5. From (3.8) and (3.12), we easily see that

xT(f(x, t, i) + u(x, t, i)) +
1

2
|g(x, t, i)|2 ≤ αi|x|2 − βi|x|p+1

for any (x, t, i) ∈ Rd × R+ × S. This implies that

L1U(x, t, i) ≤2ηi

(
xT(f(x, t, i) + u(x, t, i)) +

1

2
|g(x, t, i)|2

)
+

S∑
j=1

qijηj|x|2

≤

(
2ηiαi +

S∑
j=1

qijηj

)
|x|2 − 2ηiβi|x|p+1.

Noting that 2ηi +
∑S

j=1 qijηj = −1 and βη = mini∈S(βiηi), we then have

L1U(x, t, i) ≤ −|x|2 − 2βη|x|p+1. (3.17)

From the inequality above, we observe that Assumption 3.3 is actually used to make

L1U(x, t, i) be negative, which is fundamental in Lyapunov stability analysis. The

first term γi|x|2 helps the design of control function, which could be found in Rule

3.2. The second term βi|x|p+1 is used to balance the high nonlinearity of f and g.



Chapter 3 37

In view of mathematics, we have till seen that Assumption 3.1 depicted the high

nonlinearity of our underlying SDE, Rule 3.1 (Assumption 3.2) aimed at global

solution of the controlled SDE, Rule 3.2 (Assumption 3.3) was used to estimate

L1U(x, t, i). But how about Rule 3.3? The following lemma gives the answer.

Lemma 3.1. Under Assumptions 3.1, 3.2, 3.3, let the control function u(x, t, i)

satisfy Rules 3.1, 3.2, and the observation duration τ meets Rule 3.3. Then for

any t > 0, we have

E|L2U(x(t), x(tτ ), t, r(t))| ≤ϕ1E|x(t)|2 + ϕ2E|x(t)|p+1 + ϕ3

∫ t

t−τ

E|x(v)|2dv

+ ϕ4

∫ t

t−τ

E|x(v)|p+1dv, (3.18)

where ϕ1 =
KMηM
1−KM τ

((H1 + 2KM)τ + ε∗), ϕ2 =
KMηM
1−KM τ

2H2τ
p+1

, ϕ3 =
KMηM
1−KM τ

(
H1 +

H̃1

ε∗

)
,

ϕ4 =
KMηM
1−KM τ

(
2pH2

p+1
+ H̃2

ε∗

)
.

Proof. For any fixed t > 0, there is an integer k such that kτ ≤ t < (k + 1)τ .

Hence x(tτ ) = x(kτ), and also x(vτ ) = x(kτ) for any kτ ≤ v ≤ t. Then it is easy

to see from (3.9) that

|L2U(x(t), x(tτ ), t, r(t))| ≤ 2KMηM |x(t)||x(t)− x(kτ)|. (3.19)

Letting Mk =
∫ t

kτ
g(x(v), v, r(v))dW (v), we derive from (3.5) and (3.10) that

|x(t)||x(t)− x(kτ)|

≤|x(t)|
(∫ t

kτ

(|f(x(v), v, r(v))|+ |u(x(kτ), v, r(v))|)dv + |Mk|
)

≤
∫ t

kτ

|x(t)| (H1|x(v)|+H2|x(v)|p +KM |x(kτ)|) dv + ε∗

2
|x(t)|2 + 1

2ε∗
|Mk|2

≤
∫ t

kτ

(
H1

2
|x(t)|2 + H1

2
|x(v)|2 + H2

p+ 1
|x(t)|p+1 +

pH2

p+ 1
|x(v)|p+1

)
dv

+KMτ |x(t)||x(kτ)|+ ε∗

2
|x(t)|2 + 1

2ε∗
|Mk|2

≤KMτ |x(t)||x(t)− x(kτ)|+
((

H1

2
+KM

)
τ +

ε∗

2

)
|x(t)|2 + H2τ

p+ 1
|x(t)|p+1

+
H1

2

∫ t

t−τ

|x(v)|2dv + pH2

p+ 1

∫ t

t−τ

|x(v)|p+1dv +
1

2ε∗
|Mk|2.
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Recalling that τ < τ ∗ < 1
KM

in Remark 3.4, we further have

|x(t)||x(t)− x(kτ)| ≤ 1

1−KMτ

(((
H1

2
+KM

)
τ +

ε∗

2

)
|x(t)|2 + H2τ

p+ 1
|x(t)|p+1

+
H1

2

∫ t

kτ

|x(v)|2dv + pH2

p+ 1

∫ t

kτ

|x(v)|p+1dv +
1

2ε∗
|Mk|2

)
.

Substituting this into (3.19), then taking expectations on both sides gives that

E|L2U(x(t), x(tτ ), t, r(t))|

≤ϕ1E|x(t)|2 + ϕ2E|x(t)|p+1 +
KMηM
1−KMτ

(
H1

∫ t

kτ

E|x(v)|2dv

+
2pH2

p+ 1

∫ t

kτ

E|x(v)|p+1dv +
1

ε∗

∫ t

kτ

E|g(x(v), v, r(v))|2dv
)

≤ϕ1E|x(t)|2 + ϕ2E|x(t)|p+1 + ϕ3

∫ t

kτ

E|x(v)|2dv + ϕ4

∫ t

kτ

E|x(v)|p+1dv.

Here, we have used (3.11) to deal with E|Mk|2. The required assertion (3.18)

follows since t− τ ≤ kτ . The proof is complete.

Clearly, Rule 3.3 is used to restrict the value of τ , which dominates the differ-

ence between x(t) and x(tτ ). Let us say more about this estimation.

Remark 3.6. In order to estimate E|L2U(x(t), x(tτ ), t, r(t))|, the traditional way

is firstly using the Hölder inequality to split it as E|Ux|2 and E|x(t)−x(tτ )|2, then
applying the classical method (namely, the Hölder inequality and the Itô isometry)

to compute E|x(t)− x(tτ )|2 such as (Fei et al. 2020, Shi et al. 2022). This makes

us give restriction on xTf(x, t, i) + p
2
|g(x, t, i)|2 and use the Lyapunov function in

the form of |x|2+ |x|p+1. But in Lemma 3.1, we sharpen this estimation by treating

E|L2U(x(t), x(tτ ), t, r(t))| as a whole and making use of the constant property of

tτ between two observations. This improvement helps us weaken conditions and

simplify the proof process since we only use Lyapunov function in the form of |x|2.

Now, we can give the Lyapunov functional used in this chapter by

V (xt, t, r(t)) = U(x(t), r(t)) +

∫ 0

−τ

∫ t

t+s

(
ϕ3|x(v)|2 + ϕ4|x(v)|p+1

)
dvds (3.20)

on t ≥ 0. Here, xt = {x(t + θ) : −τ ≤ θ ≤ 0}. While for xt to be well defined on

t ∈ [0, τ ], we set x(θ) = ξ0 for θ ∈ [−τ, 0).
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3.5 Stabilisation results

In this part, we will show that the underlying unstable hybrid SDE (3.1) could

indeed be stabilised by the discrete-time state feedback control u(x(tτ ), t, r(t))

satisfying Rules 3.1, 3.2, 3.3. The first result is given in the sense of H∞ stability.

Theorem 3.2. Under the same conditions with Lemma 3.1, the solution of the

controlled SDE (3.2) satisfies that∫ ∞

0

E|x(t)|p+1dt < ∞ (3.21)

and

sup
0≤t<∞

E|x(t)|2 < ∞. (3.22)

Proof. By the generalized Itô formula and the fundamental theory of calculus, it

is easy to show that

V (xt, t, r(t)) = V (ξ0, 0, i0) +

∫ t

0

LV (xs, s, r(s))dt+M(t), (3.23)

where

LV (xt, t, r(t)) =LU(x(t), x(tτ ), t, r(t)) + ϕ3τ |x(t)|2 + ϕ4τ |x(t)|p+1

− ϕ3

∫ t

t−τ

|x(v)|2dv − ϕ4

∫ t

t−τ

|x(v)|p+1dv

and M(t) is a continuous local martingale vanishing at t = 0. The explicit form of

M(t) is of no use in this paper so we omit it here, but it can be found in Theorem

2.15. Taking expectations on both sides of (3.23), if necessary, using the procedure

of stopping times, we could obtain that

EV (xt, t, r(t)) ≤ V (ξ0, 0, i0) +

∫ t

0

ELV (xs, s, r(s))ds. (3.24)

This requires us to estimate ELV (xs, s, r(s)). Recalling the estimations of L1U in

(3.17) and L2U in (3.18), we have

ELV (xs, s, r(s)) ≤ −(1− ϕ1 − ϕ3τ)E|x(s)|2 − (2βη − ϕ2 − ϕ4τ)E|x(s)|p+1.

Substituting this into (3.24) yields that

ηmE|x(t)|2 ≤V (ξ0, 0, i0)− (1− ϕ1 − ϕ3τ)

∫ t

0

E|x(s)|2ds

− (1− ϕ2 − ϕ4τ)

∫ t

0

E|x(s)|p+1ds,



Chapter 3 40

where ηm = mini∈S ηi. Next, calculate

1−ϕ1−ϕ3τ =
1

1−KMτ

(
1−KMηMε∗ −KMηM

(
2H1 + 2KM +

H̃1

ε∗
+

1

ηM

)
τ

)
.

Since τ < 1
KM

and

τ < τ ∗ = φ(ε∗) ≤ 1

KMηM

1−KMηMε∗

2H1 + 2KM + H̃1

ε∗
+ 1

ηM

,

the number 1− ϕ1 − ϕ3τ is positive. Applying the similar analysis, we could also

have that 1− ϕ2 − ϕ4τ > 0. Therefore,

E|x(t)|2 ≤ V (ξ0, 0, i0)

ηm
,

∫ t

0

E|x(s)|p+1ds ≤ V (ξ0, 0, i0)

1− ϕ2 − ϕ4τ
.

Since these hold for every t > 0, the assertions (3.21) and (3.22) follow immediately.

The proof is complete.

In Theorem 3.2, we have known that the controlled SDE (3.2) is H∞ stable

and also bounded in L2. Then using the technique of stochastic LaSalle principle,

we can conclude that the controlled SDE (3.2) is also almost surely asymptotically

stable.

Theorem 3.3. Let all the conditions in Lemma 3.1 hold. Then the solution of the

controlled SDE (3.2) has the property that

lim
t→∞

x(t) = 0 a.s. (3.25)

Proof. Step 1. From the proof above, we could also see that∫ ∞

0

E|x(t)|2dt < ∞,

which implies that E
∫∞
0

|x(t)|2dt < ∞ by the Fubini theorem. Therefore,∫ ∞

0

|x(t)|2dt < ∞ a.s.,

and

lim inf
t→∞

|x(t)| = 0 a.s. (3.26)

We claim that

lim
t→∞

|x(t)| = 0 a.s. (3.27)

If this is not true,

P

(
lim sup
t→∞

|x(t)| > 0

)
> 0.
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There is then a sufficiently small ϵ > 0 such that

P (Ω1) ≥ 3ϵ, with Ω1 =

{
lim sup
t→∞

|x(t)| ≥ 2ϵ

}
. (3.28)

Step 2. For any constant h > |ξ0|, define the stopping time

σh = inf{t > 0 : |x(t)| ≥ h}.

By the Itô formula and conditions (3.8), (3.12), we obtain that

E|x(t ∧ σh)|2

=|ξ0|2 + E

∫ t∧σh

0

(
2x(s)TF (s) + |G(s)|2

)
ds

≤|ξ0|2 +
∫ ∞

0

(
(2γM +KM)E|x(s)|2 +KME|x(sτ )|2

)
ds,

where

F (t) = f(x(t), t, r(t)) + u(x(tτ ), t, r(t)), G(t) = g(x(t), t, r(t)).

Hence, we can find a constant C1 > 0 such that E|x(t∧σh)|2 ≤ C1 for all the time

t, which yields that h2P (σh ≤ t) ≤ C1. Then we can choose h appropriately such

that C1

h2 ≤ ϵ. Letting h → ∞, we have

P (σh < ∞) ≤ C1

h2
≤ ϵ.

This tells us that

P (Ω2) ≥ 1− ϵ, with Ω2 = {|x(t)| ≤ h, ∀ 0 ≤ t < ∞} . (3.29)

It follows from (3.28) and (3.29) that

P (Ω1 ∩ Ω2) ≥ 2ϵ. (3.30)

Step 3. Define a sequence of stopping times

a1 = inf{t > 0 : |x(t)|2 ≥ 2ϵ},

a2n = inf{t > a2n−1 : |x(t)|2 ≤ ϵ}, n = 1, 2, · · · ,

a2n+1 = inf{t > a2n : |x(t)|2 ≥ 2ϵ}, n = 1, 2, · · · .

From (3.26) and the definitions of Ω1, Ω2, we observe that a2n < ∞ whenever

a2n−1 < ∞. Moreover, σh = ∞ and an < ∞ for all n ≥ 1 in Ω1 ∩ Ω2. Next

calculate

∞ >E

∫ ∞

0

|x(t)|2dt ≥
∞∑
n=1

E

(
I{a2n−1<∞,σh=∞}

∫ a2n

a2n−1

|x(t)|2dt
)
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≥ϵ
∞∑
n=1

E
(
I{a2n−1<∞,σh=∞}(a2n − a2n−1)

)
. (3.31)

Since functions f , g, u are all locally Lipschitz continuous, we can find a constant

K̄h such that

|F (t)|2 ∨ |G(t)|2 ≤ K̄h, whenever |x(t)| ∨ |x(tτ )| ≤ h.

By the Hölder inequality and the Doob martingale inequality, for any time T > 0

E

(
I{σh∧a2n−1<∞} sup

0≤t≤T
|x(σh ∧ (a2n−1 + t))− x(σh ∧ a2n−1)|2

)

≤2E

I{σh∧a2n−1<∞} sup
0≤t≤T

∣∣∣∣∣
∫ σh∧(a2n−1+t)

σh∧a2n−1

F (s)ds

∣∣∣∣∣
2


+ 2E

I{σh∧a2n−1<∞} sup
0≤t≤T

∣∣∣∣∣
∫ σh∧(a2n−1+t)

σh∧a2n−1

G(s)dW (s)

∣∣∣∣∣
2


≤2TE

I{σh∧a2n−1<∞}

∣∣∣∣∣
∫ σh∧(a2n−1+T )

σh∧a2n−1

F (s)ds

∣∣∣∣∣
2


+ 8E

I{σh∧a2n−1<∞}

∣∣∣∣∣
∫ σh∧(a2n−1+T )

σh∧a2n−1

G(s)ds

∣∣∣∣∣
2


≤2K̄hT (T + 4). (3.32)

Let θ = ϵ
2h
, then ||x|2 − |y|2| ≤ ϵ whenever |x − y| ≤ θ and |x| ∧ |y| ≤ h. Choose

T sufficiently small such that

2K̄hT (T + 4)

θ2
≤ ϵ.

We could derive from (3.32) that

P

(
{σh ∧ a2n−1 < ∞} ∩

{
sup

0≤t≤T
|x(σh ∧ (a2n−1 + t))− x(σh ∧ a2n−1)| > θ

})
< ϵ.

Consequently,

P

(
{a2n−1 < ∞, σh = ∞} ∩

{
sup

0≤t≤T
|x(a2n−1 + t)− x(a2n−1)| > θ

})
≤P

(
{σh ∧ a2n−1 < ∞} ∩

{
sup

0≤t≤T
|x(σh ∧ (a2n−1 + t))− x(σh ∧ a2n−1)| > θ

})
<ϵ.
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This further implies that

P

(
{a2n−1 < ∞, σh = ∞} ∩

{
sup

0≤t≤T
|x(a2n−1 + t)− x(a2n−1)| ≤ θ

})
≥P ({σh ∧ a2n−1 < ∞})

− P

(
{a2n−1 < ∞, σh = ∞} ∩

{
sup

0≤t≤T
|x(a2n−1 + t)− x(a2n−1)| > θ

})
≥2ϵ− ϵ = ϵ

and

P

(
{a2n−1 < ∞, σh = ∞} ∩

{
sup

0≤t≤T
||x(a2n−1 + t)|2 − |x(a2n−1)|2|2 ≤ ϵ

})
≥P

(
{a2n−1 < ∞, σh = ∞} ∩

{
sup

0≤t≤T
|x(a2n−1 + t)− x(a2n−1)| ≤ θ

})
≥ϵ. (3.33)

Set

Ω̄n =

{
sup

0≤t≤T
||x(a2n−1 + t)|2 − |x(a2n−1)|2|2 ≤ ϵ

}
.

Noting that a2n − a2n−1 ≥ T in {a2n−1 < ∞, σh = ∞}∩ Ω̄n, we derive form (3.31)

and (3.33) that

∞ >ϵ
∞∑
n=1

E
(
I{a2n−1<∞,σh=∞}(a2n − a2n−1)

)
≥ϵ

∞∑
n=1

E
(
I{a2n−1<∞,σh=∞}∩Ω̄n

(a2n − a2n−1)
)

≥ϵT
∞∑
n=1

P ({a2n−1 < ∞, σh = ∞} ∩ Ω̄n)

≥ϵT
∞∑
n=1

ϵ = ∞,

which is a contradiction. Then (3.27) must hold. The proof is complete.

3.6 Application to volatility model

Consider a scalar hybrid SDE in financial mathematics, which can be regarded

as a generalisation of the well-known Heston stochastic volatility 1.5-model (see
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(Lewis 2000, Heston 1997))

dx(t) = x(t)
(
ar(t) − br(t)|x(t)|

)
dt+ cr(t)|x(t)|1.5dW (t) (3.34)

on t ≥ 0 with one-dimension Brownian motionW (t). In order to avoid complicated

calculations, we let r(t) be a continuous Markov chain on the state space S = {1, 2}
with transition rate matrix

Q =

(
−1 1

6 −6

)
.

The parameters are given as

a1 = 2, a2 = 0.2, b1 = 1, b2 = 0.4, c1 = 1, c2 = 0.5.

It is easy to verify that Assumptions 3.1 and 3.2 are satisfied with H1 = 4, H2 = 2,

H̃1 = 0, H̃2 = 1, p = 2 and α̂ = 1.75. Through computer simulation, we can find

that the hybrid SDE (3.34) is unstable (see Fig. 3.1 middle).

Thus, we need to design the discrete-time state feedback control u(x(tτ ), r(t))

to make the controlled SDE

dx(t) =
(
x(t)

(
ar(t) − br(t)|x(t)|

)
+ u(x(tτ ), r(t))

)
dt+ cr(t)|x(t)|1.5dW (t) (3.35)

become stable. Before the control design, compute

x (aix− bix|x|) +
c2i
2
|x|3 ≤ ai|x|2 −

(
bi −

c2i
2

)
|x|3.

Then Assumption 3.3 holds with γ1 = 2, γ2 = 0.2, β1 = 0.5, β2 = 0.275. With this

information, the control function can be given as

u(x, 1) = −4x, u(x, 2) = 0. (3.36)

Remark 3.7. Here we study an interesting phenomena that the state can be ob-

served fully in mode 1 but in mode 2, it is not observable. Therefore, we can only

design feedback control in mode 1, based on discrete-time state observations of

course, but we cannot have feedback control in mode 2. For example, the financial

market can be roughly divided as “bullish” mode and “bearish” mode. Sometimes,

only “bearish” mode can cause investors’ much attention, where the market can be

observed easily and needed extra control.

We can easily check that Rule 3.1 is satisfied with KM = 4, Rule 3.2 holds with

κ1 = 4, κ2 = 0, and

A =

(
5 −1

−6 5.6

)
,
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Figure 3.1: Ten sample paths of the Markov chain, the hybrid SDE (3.34) and

the controlled SDE (3.35) with τ = 0.01, using the truncated Euler-Maruyama

method (see (Mao 2015)) with time step size 10−4. For each path, the initial data

is fixed given by ξ0 = 2 and i0 = 1.

which is clearly a non-singular M -matrix. We then obtain that η1 = 0.3 and

η2 = 0.5. Using the method introduced in Rule 3.3, we get τ ∗ = 0.019643. By

Theorem 3.3, we can conclude that the controlled SDE (3.35) is almost surely

asymptotically stable if τ < 0.019643. We perform a computer simulation with

τ = 0.01 in Fig. 3.1 bottom, which supports our theoretical results clearly.

On the other hand, we see that

x (a2x− b2x|x|) +
p

2
c22|x|3 ≤ 2|x|2,

which means that the second inequality of condition (3.3) is not satisfied. Thus

the theory in (Fei et al. 2020) cannot be applied to this example, and we weaken

the conditions in (Fei et al. 2020).

3.7 Summary

Compared with the existing papers on discrete-state-feedback stabilisation prob-

lem, this chapter presents a new method to estimate the difference between current-
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time state and discrete-time state. As a result, conditions imposed on the underly-

ing system are less restrictive, at least replacing condition (3.3) by condition (3.8).

An application example to the volatility model shows this clearly. The Lyapunov

functional used in this chapter is also modified to adapt to this change. Moreover,

a new method is given to determine the upper bound of the observation duration,

so that there is no need to find any free parameters, and it will be much easier to

verify conditions in reality.



Chapter 4

Stabilisation of hybrid SDEs with

different structures by bounded

discrete-time state feedback

control

4.1 Introduction

In Chapter 3, we have made some improvements on the stabilisation problem

by discrete-time state feedback control, including weaken and easily checked con-

ditions. But there are two issues to be addressed in order to make our theory more

useful and applicable.

At first, recalling condition (3.8), from the previous analysis, we see it plays a

key role in stabilisation, which eliminates the effect from highly nonlinearity and

makes the global Lipschitz continuous control design possible. It is certainly more

advanced than condition (3.3). However, it is required for all modes, in particular,

βi should be strictly positive for any i ∈ S. This seems a little restrictive in reality

as this structure might be lost in some modes. For example, (Fei, Hu, Mao &

Shen 2018) studied a population system described by{
dx(t) = −2x(t)dt+ 0.8x(t)dW (t), in mode 1: dry,

dx(t) = x(t)
(
1− 2x2(t)

)
dt+ 1.2x2(t)dW (t), in mode 2: rain.

It is clear that condition (3.3) cannot be satisfied in mode 1 since β1 = 0. This

47
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then tells us that the results in Chapter 3 are not well applicable to hybrid SDEs

experiencing abrupt changes in their structures. Thus to deal with this situation,

we need to consider structured stabilisation.

To the best of the authors’ knowledge, although the structured stability has

drawn many researchers’ interest (e.g. (Fei et al. 2018, Shen, Mei & Deng 2019,

Lu, Song & Zhu 2022)), there are few results on structured stabilisation. While

recently, (Shi et al. 2022) made some efforts to this problem. They successfully

designed a discrete-time state feedback control for hybrid SDEs with different

structures in different modes. But it was still on the frame of original condition

(3.3). Then in this chapter, we will consider the structured stabilisation problem

based on our new settings.

The other one is concerned with control design. It should be underscored

that in many papers studying discrete-state-feedback stabilisation problem such

as (Fei et al. 2020, Shi et al. 2022), the control function u(x, t, i) is usually designed

on every observable discrete-time state, such as the linear form νix([t/τ ]τ) with

ν1 = −4 and ν2 = 0 in Section 3.6. But this sometimes seems a little rough and

would lead to some unnecessary cost. In general, the control cost is proportional

to |u(x(tτ ), t, r(t))|. Thus the control cost goes up as system state value |x(tτ )|
increases. Particularly, if the initial data is given large, the cost on the beginning

stage will be relatively high. This then begs a question: is it really necessary to

impose control on every discrete-time state? The answer at least in this paper is

negative.

To see this clearly, let us go back to condition (3.8) again. For the i-th mode,

we can rewrite the right-hand side of condition (3.8) by

γi|x|2 − βi|x|p+1 = −γi|x|2 −
βi

2
|x|p+1 +

(
2γi|x|2 −

βi

2
|x|p+1

)
.

Define a function ϕ : R+ → R by ϕ(z) = 2γiz
2 − βi

2
zp+1. When z > Ri, where

Ri =
(

4γi
βi

) 1
p−1

, we find that ϕ(z) is non-positive. This implies that when |x| > Ri,

xTf(x, t, i) +
1

2
|g(x, t, i)|2 ≤ −γi|x|2 −

βi

2
|x|p+1.

There is hence no need to impose any control when |x| exceeds Ri in the modes

where condition (3.8) is true. In other words, the control is merely designed in a

bounded state area
{
x ∈ Rd : |x| ≤ Ri

}
. Roughly speaking, the control function in

Section 3.6 could be modified by u(x, t, 1) = −4x if |x| ≤ R1 and 0 otherwise. Such
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a control is much smaller than before so that the control cost could be reduced

significantly, especially for large system states.

In conclusion, this chapter is devoted to the stabilisation of hybrid SDEs with

different structures by bounded discrete-time state feedback control based on the

theory in (Shi et al. 2022) and Chapter 3.

4.2 Problem statement

Consider a general hybrid SDE

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dW (t) (4.1)

on t ≥ 0 with the initial data x(0) = ξ0 ∈ Rd and r(0) = i0 ∈ S, where f(x, t, i)

and g(x, t, i) are locally Lipschitz continuous. Supposing it is unstable, we want

to use discrete-time state feedback control to make the controlled system

dx(t) =
(
f(x(t), t, r(t)) + u(x(tτ ), t, r(t))

)
dt+ g(x(t), t, r(t))dW (t) (4.2)

become stable.

4.2.1 Structures on original system

Since we are mostly interested in stabilisation, the structure classification al-

ways happens on the stability analysis and the corresponding conditions. There-

fore, we still let Assumptions 3.1 and 3.2 hold to guarantee that there is a unique

global solution of the hybrid SDE (4.1), which is in Lp+1 for all the time. But the

significant Assumption 3.3 will be modified as follows.

Assumption 4.1. For simplicity, we divide the mode space S into two parts,

S1 = {1, · · · , S1} and S2 = {S1 + 1, · · · , S} with 1 ≤ S1 < S.

For i ∈ S1, assume that we can find constants αi, α̂i ∈ R such that for every

(x, t) ∈ Rd × R+ 
xTf(x, t, i) +

1

2
|g(x, t, i)|2 ≤ αi|x|2,

xTf(x, t, i) +
p

2
|g(x, t, i)|2 ≤ α̂i|x|2.

(4.3)

These constants α̂i should also make Â := −(p + 1)diag(α̂1, · · · , α̂S1)−Q to be a

non-singular M-matrix.
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For i ∈ S2, assume that there are constants γi ≥ 0 and βi > 0 such that

xTf(x, t, i) +
1

2
|g(x, t, i)|2 ≤ γi|x|2 − βi|x|p+1 (4.4)

for any (x, t) ∈ Rd × R+.

This assumption reflects our idea of mode-structure classification.

Remark 4.1. In view of Khasminskii-type condition, the structure in S2-modes

remains the same as before, but in S1-modes, the structure differs since there is no

requirement for positivity on βi herein, namely, the serious presence of high-order

term |x|p+1. For example, the population system in the Introduction part satisfies

Assumption 4.1 with S1 = {dry} and S2 = {rain}. Therefore, our Assumption 3.3

before is indeed generalised. Moreover, since |x|p+1 does not appear in Assumption

3.2, which is given for the existence-and-uniqueness theorem, there is no need to

consider mode-structure classification in this assumption.

Remark 4.2. It is also worth mentioning that the classification scheme here is

motivated by (Shi et al. 2022). But a little differently, for S1-modes, there was

an additional linear growth condition requirement in (Shi et al. 2022). But in

our thesis, we could not conclude from conditions (4.3) that the subsystems in S1-

modes meet this condition as they are likely highly nonlinear, such as f(x, t, i) =

−x− 1.5x3, g(x, t, i) = x2.

4.2.2 Bounded-state-area feedback control

Next, we will explain how to design the bounded control function u(x, t, i)

according to mode-structure classification in Assumption 4.1. For convenience,

we denote by Ba =
{
x ∈ Rd : |x| ≤ a

}
, Bc

a =
{
x ∈ Rd : |x| > a

}
, Bb − Ba ={

x ∈ Rd : a < |x| ≤ b
}
for any 0 < a < b.

Rule 4.1. For i ∈ S1, let u(x, t, i) = 0 for all (x, t) ∈ Rd × R+.

For S2-modes, firstly choose non-negative constants κi(i ∈ S2) to let

A := −2diag(α1, · · · , αS1 , γS1+1 − κS1+1, · · · , γS − κS)−Q

be a non-singular M-matrix. Then for the i-th mode, set Ri =
(

2κi

βi

) 1
p−1

and

• when x ∈ BRi
, design u(x, t, i) such that we can find a non-negative constant

Ki such that for any (x, y, t) ∈ BRi
×BRi

× R+

|u(x, t, i)− u(y, t, i)| ≤ Ki|x− y|, (4.5)
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xTu(x, t, i) ≤ −κi|x|2, (4.6)

and moreover u(0, t, i) = 0 for all t ∈ R+;

• when x ∈ B2Ri
−BRi

, let u(x, t, i) = u
((

2Ri

|x| − 1
)
x, t, i

)
for all t ∈ R+;

• when x ∈ Bc
2Ri

, let u(x, t, i) = 0 for all t ∈ R+.

Here for convenience, we let Ki = κi = 0 for i ∈ S1. Let us now make some

comments on this control rule.

Remark 4.3. On the one hand, if we pay attention to the hybrid SDE (4.1) on S1,

we find these subsystems might become stable. There is hence no need to impose

any control when i ∈ S1. On the other hand, for S2-modes, the control function is

designed in the bounded state area. But here, we have the following decomposition

(γi − κi)|x|2 −
1

2
βi|x|p+1 +

(
κi|x|2 −

1

2
βi|x|p+1

)
, (4.7)

where κi can be chosen freely and is not required to be 2γi strictly as given in the

Introduction part. This makes our decomposition more flexible to adapt to different

actual needs.

We also strengthen that although S1-subsystems have a certain stability prop-

erty, this could not imply the stability of the whole system since we require S2 ̸= ∅.
Therefore, the control design in S2-modes is still useful.

Remark 4.4. It should also be pointed out that we could in fact let

u(x, t, i) = 0, ∀x /∈ BRi
, (t, i) ∈ R+ × S2.

However, in our scheme, we set an additional connect area B2Ri
−BRi

and require

u(x, t, i) to vanish when |x| ≥ 2Ri. This is needed for the purpose of continuity of

u(x, t, i) in x to guarantee the existence of unique global solution of the controlled

SDE (4.2). Certainty, we have many choices on how to construct the connect area

and the control function in this area. Among others, in this paper, we select a

relatively simple and easily implemented way, namely spherical symmetry. This

can also guarantee the global Lipschitz continuity of u(x, t, i) in x with the same

Lipschitz coefficient assumed in x ∈ BRi
, which is stated as Lemma 4.1.

From the discussions above, after giving an appropriate κi, we see that the

design of u(x, t, i) for Rd×R+×S1 and Bc
Ri
×R+×S2 is very clear. The remaining

question is whether we could design u(x, t, i) for BRi
× R+ × S2. Actually, there

are lots of control functions available, such as the linear one u(x, t, i) = −(1+κi)x.
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4.2.3 The upper bound of observation duration

By analogy with Rule 3.3, we need to determine an upper bound of τ . The

basic idea is similar, but due to mode structures, we should be careful to some

parameters. The following preparation work is hence wanted.

Let (η1, · · · , ηS)T = A−1(1, · · · , 1)T and (η̂1, · · · , η̂S1)
T = Â−1(1, · · · , 1)T. Since

A and Â are both non-singularM -matrices, all ηi(i ∈ S) and η̂i(i ∈ S1) are positive.

Denote by βη2 = mini∈S2 (βiηi) and

µ̂ =
βη2

1 + maxi∈S2

(∑S1

j=1 qij η̂j

) .
By the positivity of βi assumed in Assumption 4.1 and properties of Q-matrix, it

is easy to see that βη2 > 0 and µ̂ > 0.

Rule 4.2. Let τ works smaller than τ ∗ := max
{
φ(ε) : 0 < ε < 1

KMηM2

}
, where

φ(ε) =
1

KMηM2

 1−KMηM2ε

2H1 + 2KM + H̃1

ε
+ 1

ηM2

∧ µ̂

2H2 +
H̃2

ε
+ µ̂

ηM2

 ,

with ηM2 = maxi∈S2 ηi and KM = maxi∈S Ki.

Remark 4.5. Compared with Rule 3.3, the key difference is the definition of φ,

where 2βη has been changed to µ̂, and ηM to ηM2. If we do not consider mode-

structure classification, then µ̂ will decay into mini∈S (βiηi), which is exactly Rule

3.3 (owing to bounded control scheme, here is βη rather than 2βη). The detailed

role of µ̂ will be explained in Remark 4.6.

The analysis in Remark 3.4 also applies to τ ∗ here. That is, τ < 1
KM

, and there

exists a ε∗ ∈
(
0, 1

KMηM2

)
such that τ ∗ = φ(ε∗).

4.3 Main results

4.3.1 Control analysis

After giving our new control scheme, we need to discuss its theoretical proper-

ties. The first is for global solution, the other is about keeping the mode structures.
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Global Lipschitz continuity

We give a lemma to see that u(x, t, i) designed in Rule 4.1 could meet with

Rule 3.1. From this point, our control is less costly than before.

Lemma 4.1. Let Rule 4.1 hold. Then for all (x, y, t, i) ∈ Rd × Rd × R+ × S,

|u(x, t, i)− u(y, t, i)| ≤ Ki|x− y|. (4.8)

Proof. The result is clear for i ∈ S1. Then for any (x, y, t, i) ∈ Rd ×Rd ×R+ × S2,

we always assume that |x| ≤ |y| without loss of generality. To show the desired

assertion, let us consider the following six possible cases.

• For x, y ∈ BRi
, it is just our condition (4.5).

• For x, y ∈ B2Ri
− BRi

, we see that
(

2Ri

|x| − 1
)
x and

(
2Ri

|y| − 1
)
y are both in

BRi
. Thus by condition (4.5), we have

|u(x, t, i)− u(y, t, i)| ≤ Ki

∣∣∣∣(2Ri

|x|
− 1

)
x−

(
2Ri

|y|
− 1

)
y

∣∣∣∣ .
Then compute∣∣∣∣(2Ri

|x|
− 1

)
x−

(
2Ri

|y|
− 1

)
y

∣∣∣∣2 ≤ 4Ri

|x||y|
(2Ri − |x| − |y|)(|x||y| − xTy)

+ |x− y|2,

which yields that |u(x, t, i)− u(y, t, i)| ≤ Ki|x− y|, since |x|, |y| > Ri.

• For x, y ∈ Bc
2Ri

, the result is obvious.

• For x ∈ BRi
, y ∈ B2Ri

−BRi
, we have

|u(x, t, i)− u(y, t, i)| =
∣∣∣∣u(x, t, i)− u

((
2Ri

|y|
− 1

)
y, t, i

)∣∣∣∣
≤Ki

∣∣∣∣x−
(
2Ri

|y|
− 1

)
y

∣∣∣∣ .
Because |x| ≤ Ri and Ri < |y| ≤ 2Ri, we observe that∣∣∣∣x−

(
2Ri

|y|
− 1

)
y

∣∣∣∣2 − |x− y|2 = 4(|y| −Ri)

(
xTy

|y|
−Ri

)
≤ 0.

The required assertion follows immediately.

• For x ∈ BRi
, y ∈ Bc

2Ri
, it is easy to derive that

|u(x, t, i)−u(y, t, i)| = |u(x, t, i)| ≤ Ki|x| ≤ KiRi ≤ Ki

∣∣|y|−|x|
∣∣ ≤ Ki|x−y|.
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• For x ∈ B2Ri
−BRi

, y ∈ Bc
2Ri

, we derive that

|u(x, t, i)− u(y, t, i)| =
∣∣∣∣u(x, t, i)− u

(
2Ri

|y|
y, t, i

)∣∣∣∣ ≤ Ki

∣∣∣∣x− 2Ri

|y|
y

∣∣∣∣ .
Here we use the fact that u(y, t, i) = u

(
2Ri

|y| y, t, i
)
= 0 and the result in the

second case. Next compute∣∣∣∣x− 2Ri

|y|
y

∣∣∣∣2 − |x− y|2 = (|y| − 2Ri)

(
2xTy

|y|
− (2Ri + |y|)

)
≤ 0.

The required assertion then follows.

The proof is therefore complete.

From this lemma, we could see that u(x, t, i) is global Lipschitz continuous in

x, that is, Rule 3.1 is satisfied. Together with Assumptions 3.1 and 3.2, in view of

Theorem 3.1, we can conclude that the controlled SDE (4.2) has a unique global

solution x(t), which satisfies that

sup
0≤s≤t

E|x(s)|p+1 < ∞, ∀t > 0.

Structures on controlled SDE

From Assumption 4.1 and Rule 4.1, we observe that the controlled SDE (4.2)

also has different structures in different modes.

For i ∈ S1, since u(x, t, i) ≡ 0, we then derive that for every (x, y, t) ∈ Rd ×
Rd × R+, 

xT(f(x, y, t, i) + u(x, t, i)) +
1

2
|g(x, t, i)|2 ≤ αi|x|2,

xT(f(x, y, t, i) + u(x, t, i)) +
p

2
|g(x, t, i)|2 ≤ α̂i|x|2.

(4.9)

For S2-modes, we have the following lemma.

Lemma 4.2. Let Assumption 4.1 and Rule 4.1 hold. Then for i ∈ S2, we have

that for all (x, t) ∈ Rd × R+

xT(f(x, t, i) + u(x, t, i)) +
1

2
|g(x, t, i)|2 ≤ αi|x|2 −

βi

2
|x|p+1, (4.10)

where αi = γi − κi.

Proof. We divide the proof into two cases. Fix (t, i) ∈ R+ × S2 arbitrarily. For

x ∈ BRi
, by conditions (4.4) and (4.6), it is easy to see that

xT(f(x, t, i) + u(x, t, i)) +
1

2
|g(x, t, i)|2 ≤(γi − κi)|x|2 − βi|x|p+1
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≤αi|x|2 −
βi

2
|x|p+1.

On the other hand, for x /∈ BRi
, we see from the decomposition in Remark 4.3

that

xTf(x, t, i) +
1

2
|g(x, t, i)|2 ≤ (γi − κi)|x|2 −

βi

2
|x|p+1

since κi|x|2 − βi

2
|x|p+1 < 0 when |x| > Ri. Then by the definition of u(x, t, i), for

x ∈ B2Ri
−BRi

,

xTu(x, t, i) =
|x|

2Ri − |x|

(
2Ri

|x|
− 1

)
xTu

((
2Ri

|x|
− 1

)
x, t, i

)
≤− κi(2Ri − |x|)|x| ≤ 0,

and for x ∈ Bc
2Ri

, xTu(x, t, i) = 0. Consequently, for x /∈ BRi

xT(f(x, t, i) + u(x, t, i)) +
1

2
|g(x, t, i)|2 ≤ −αi|x|2 −

βi

2
|x|p+1.

Now we have shown the claim (4.10).

4.3.2 Lyapunov functional

Since we have considered the structured stabilisation, the Lyapunov functional

used in this chapter is a little different than before, which is given by

V (xt, t, r(t)) = U(x(t), r(t)) +

∫ 0

−τ

∫ t

t+s

(
ϖ∗

1|x(v)|2 +ϖ∗
2|x(v)|p+1

)
dvds. (4.11)

Here, ϖ∗
1, ϖ

∗
2 are positive constants to be determined later, and the Lyapunov

function U(x, i) ∈ C2(Rd × S;R+) is defiend as

U(x, i) = ηi|x|2 + µ̂η̂i|x|p+1I{i∈S1}. (4.12)

Recalling (3.14), we now need to estimate L1U and L2U , especially the first of

which is not trivial.

Lemma 4.3. Under Assumption 4.1 and Rule 4.1, for any (x, t, i) ∈ Rd×R+×S,

L1U(x, t, i) ≤ −|x|2 − µ̂|x|p+1. (4.13)

Proof. For i ∈ S1, we have

L1U(x, t, i) ≤2ηi

(
xT(f(x, t, i) + u(x, t, i)) +

1

2
|g(x, t, i)|2

)
+

S∑
j=1

qijηj|x|2

+ (p+ 1)µ̂η̂i|x|p−1
(
xT(f(x, t, i) + u(x, t, i)) +

p

2
|g(x, t, i)|2

)
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+ µ̂

S1∑
j=1

qij η̂j|x|p+1.

It then follows from (4.9) that

L1U(x, t, i) ≤

(
2αiηi +

S∑
j=1

qijηj

)
|x|2 + µ̂

(
(p+ 1)α̂iη̂i +

S1∑
j=1

qij η̂j

)
|x|p+1.

Since 2αiηi +
∑S

j=1 qijηj = −1 and (p+ 1)α̂iη̂i +
∑S1

j=1 qij η̂j = −1, we get

L1U(x, t, i) ≤ −|x|2 − µ̂|x|p+1.

For i ∈ S2, it is easy to derive that

L1U(x, t, i) ≤2ηi

(
xT(f(x, t, i) + u(x, t, i)) +

1

2
|g(x, t, i)|2

)
+

S∑
j=1

qijηj|x|2

+ µ̂

S1∑
j=1

qij η̂j|x|p+1.

Making use of (4.10), we have

L1U(x, t, i) ≤

(
2αiηi +

S∑
j=1

qijηj

)
|x|2 −

(
βiηi − µ̂

S1∑
j=1

qij η̂j

)
|x|p+1.

From the definition of µ̂, we deduce that for i ∈ S2,

µ̂+ µ̂

S1∑
j=1

qij η̂j ≤ µ̂

(
1 + max

i∈S2

(
S1∑
j=1

qij η̂j

))
= βη2 ≤ βiηi.

This implies that

L1U(x, t, i) ≤ −|x|2 − µ̂|x|p+1.

The proof is therefore complete.

Remark 4.6. From the definition of our U-function, we could find that there is

an additional term µ̂η̂i|x|p+1I{i∈S1} compared with (3.13). This is designed to let

the estimation of L1U(x, t, i) for S1-modes behave similarly to S2-modes due to the

absence of high-order term |x|p+1 in this structure. Thus µ̂ is always refered to the

mode balance parameter.

The estimation of L2U is an easy deduction from Lemma 3.1 since

|L2U(x, z, t, i)| =
∣∣(2ηixT + µ̂η̂i|x|p−1xTI{i∈S1}

)
(u(z, t, i)− u(x, t, i))I{i∈S2}

∣∣
≤2ηM2 |x||u(z, t, i)− u(x, t, i)|.



Chapter 4 57

As a result, we only give the result and omit its proof.

Lemma 4.4. Under Assumptions 3.1, 3.2, 4.1, let the control function u(x, t, i)

satisfy Rule 4.1, and τ meets Rule 4.2. Then for any t > 0, we have

E|L2U(x(t), x(tτ ), t, r(t))| ≤ϕ1E|x(t)|2 + ϕ2E|x(t)|p+1 + ϕ3

∫ t

t−τ

E|x(v)|2dv

+ ϕ4

∫ t

t−τ

E|x(v)|p+1dv,

where ϕ1 =
KMηM2

1−KM τ
((H1 +2KM)τ + ε∗), ϕ2 =

KMηM2

1−KM τ
2H2τ
p+1

, ϕ3 =
KMηM2

1−KM τ

(
H1 +

H̃1

ε∗

)
,

ϕ4 =
KMηM2

1−KM τ

(
2pH2

p+1
+ H̃2

ε∗

)
.

4.3.3 Exponential stabilisation

If we use the same analysis in Theorems 3.2 and 3.3, we could obtain the H∞

stability and asymptotic stability. But we should go further to discuss a more

significant type of stability, i.e. exponential stability, which appears widely in our

daily life such as the virus control.

Theorem 4.1. Under the same conditions with Lemma 4.4, there exists a positive

constant λ∗ such that the solution of the controlled SDE (4.2) satisfies that

lim sup
t→∞

1

t
log(E|x(t)|2) ≤ −λ∗. (4.14)

Proof. We divide the proof into two steps.

The first step is to guarantee the existence of λ∗. Define four functions on[
0, 1

τ

)
by ϖ1(λ) =

ϕ3

1−λτ
, ϖ2(λ) =

ϕ4

1−λτ
,

Φ1(λ) = 1− ϕ1 −ϖ1(λ)τ − ηMλ, Φ2(λ) = µ̂− ϕ2 −ϖ2(λ)τ − η̂M2λ,

where η̂M2 = maxi∈S2 η̂i and ηM = maxi∈S ηi. It is easy to see that ϖ1(·) is a

positive increasing function and tends to infinity when λ → 1
τ
. This observation

implies that Φ1(·) is decreasing and goes to negative infinity when λ approaches

its right bound. Next, recalling the definition of ϕ1 and ϕ3, compute

Φ1(0) = 1− ϕ1 − ϕ3τ > 0.

Consequently, there exists a unique solution λ∗
1 ∈

(
0, 1

τ

)
such that Φ1(λ) = 0. The

same analysis applying to ϖ2(·) and Φ2(·) yields that there is a unique solution

λ∗
2 ∈

(
0, 1

τ

)
so that Φ2(λ) = 0. Therefore, we let λ∗ = λ∗

1 ∧ λ∗
2.
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The second step is to show the claim (4.14). We firstly choose the parameters

set in the Lyapunov functional as

ϖ∗
1 = ϖ1(λ

∗) =
ϕ3

1− λ∗τ
, ϖ∗

2 = ϖ2(λ
∗) =

ϕ4

1− λ∗τ
, (4.15)

which are all positive from the discussions above. Applying the generalised Itô

formula to eλ
∗tV (xt, t, r(t)), we obtain that for any t ≥ 0 (if necessary, using the

procedure of stopping times since EV (xt, t, r(t)) < ∞ and E|LV (xt, t, r(t))| < ∞)

eλ
∗tEV (xt, t, r(t))

≤V (ξ0, 0, i0) +

∫ t

0

eλ
∗s(λ∗EV (xs, s, r(s)) + ELV (xs, s, r(s)))ds. (4.16)

Recalling the estimations of L1U in Lemma 4.3 and L2U in Lemma 4.4, compute

ELV (xs, s, r(s)) ≤− (1− ϕ1 −ϖ∗
1τ)E|x(s)|2 − (µ̂− ϕ2 −ϖ∗

2τ)E|x(s)|p+1

− (ϖ∗
1 − ϕ3)

∫ s

s−τ

E|x(v)|2dv − (ϖ∗
2 − ϕ4)

∫ s

s−τ

E|x(v)|p+1dv.

Recalling the definition of V (xs, s, r(s)) and using inequality (2.23), we then have

λ∗EV (xs, s, r(s)) + ELV (xs, s, r(s))

≤− Φ1(λ
∗)E|x(s)|2 − Φ2(λ

∗)E|x(s)|p+1

− ((1− λ∗τ)ϖ∗
1 − ϕ3)

∫ s

s−τ

E|x(v)|2dv − ((1− λ∗τ)ϖ∗
2 − ϕ4)

∫ s

s−τ

E|x(v)|p+1dv,

where the definitions of Φ1(λ
∗) and Φ2(λ

∗) are given before, and we could see that

they are both non-negative. Therefore, we obtain from (4.15) and (4.16) that

ηme
λ∗tE|x(t)|2 ≤ eλ

∗tEV (xt, t, r(t)) ≤ V (ξ0, 0, i0),

where ηm = mini∈S ηi. Letting t → ∞ gives the desired assertion (4.14). The proof

is hence complete.

4.4 Application to neural networks

Consider a stochastic neural network with N (N = 10) neurons perturbed by

a scalar Brownian motion W (t), operating in two modes, busy and free. In free

mode, it obeys the Hopfield model

dxj(t) =

(
−Ljxj(t) +

N∑
k=1

Πjkϑk(xk(t))

)
dt+ σxj(t)dW (t), (4.17)
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while in busy mode, it could be described by the Cohen-Grossberg neuron network

dxj(t) = −Γxj(t)

(
P
(
x2
j(t)− ϱ

)
−

N∑
k=1

Π̃jkϑ̃k(xk(t))

)
dt+ σ̃x2

j(t)dW (t). (4.18)

Here xj(t) is the j-th neuron state, Γxj represents the amplification function,

P
(
x2
j − ϱ

)
is the behaved function, Πjk and Π̃jk stand for the connection weight

from neuron k to neuron j in free mode and busy mode, respectively, σ and σ̃ are

the perturbation strength, ϑj(xj) = ρ1−e−xj

1+e−xj
and ϑ̃j(xj) = ρ̃ exj−e−xj

exj+e−xj
are the transfer

functions, Lj =
∑N

k=1 |Πjk|. For more information about neuron networks (4.17)

and (4.18), we cite (Blythe, Mao & Liao 2001, Wang, Shu, Fang & Liu 2006, Ye,

Michel & Wang 1995) for references.

This neuron network switches from one mode into the other according to a

Markov chain r(t) on the state space S = {1, 2} (1 for free mode, 2 for busy mode)

with transition rate matrix

Q =

(
−8 8

1 −1

)
.

The network parameters are given as ϱ = 0.15, ρ = 0.3, ρ̃ = 0.15, Γ = 3, P = 2.5,

σ = 0.3, σ̃ = 0.1. The connection weight Πjk and Π̃jk can be obtained from the

network connection graphs with free mode in Fig. 4.1 and busy mode in Fig.

4.2. Take Fig. 4.1 as an example to explain the network connection graph: node j

stands for the j-th neuron, directed edge (j, k) means the output of the k-th neuron

is connected with the input of the j-th neuron, the number on the edge (j, k) is the

value of Πjk, if there is no edge between two nodes, these two neurons do not have

direct interaction and the value of Πjk is zero, such as Π21 = 0.09, Π14 = 0. Here,

positive number represents the output-input connection is non-inverting, negative

is inverting.

1 2 3 4
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0.01
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-0.06 0.013

0.022

Figure 4.1: The neuron network connection at free mode.
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Figure 4.2: The neuron network connection at busy mode.

Let x = (x1, · · · , xN)
T, x2 = (x2

1, · · · , x2
N)

T
, L = diag(L1, · · · , LN), ϑ(x) =

(ϑ1(x1), · · · , ϑN(xN))
T, ϑ̃(x) = (ϑ̃1(x1), · · · , ϑ̃N(xN))

T, P = (ϱ, · · · , ϱ)T, Π =

(Πjk)N×N , Π̃ = (Π̃jk)N×N . Then rewrite the network into a general form of the

hybrid SDE as

dx(t) = f(x(t), r(t))dt+ g(x(t), r(t))dW (t). (4.19)

Here g(x, 1) = σx, g(x, 2) = σ̃x2, and

f(x, 1) = −Lx+Πϑ(x), f(x, 2) = −Γdiag(x)
(
P
(
x2 − P

)
− Π̃ϑ̃(x)

)
.

The simulation result in Fig. 4.3 shows the neural network (4.19) is unstable.

We then want to design a state feedback control u(x, i) based on discrete-time

observations at 0, τ, 2τ, · · · to stabilise it. The controlled network becomes

dx(t) = (f(x(t), r(t)) + u(x(tτ ), r(t)))dt+ g(x(t), r(t))dW (t). (4.20)

For each 1 ≤ j ≤ N , we clearly have |ϑj(xj)| ≤ ρ|xj| and |ϑ̃j(xj)| ≤ ρ̃|xj|,
which implies that

|f(x, 1)| ≤(|L|+ |Π|ρ)|x|,

|f(x, 2)| ≤

(
ΓPϱ+

Γ|Π̃|ρ̃
4

)
|x|+

(
ΓP +

Γ|Π̃|ρ̃
4

)
|x|3.

Moreover, it is easy to get

|g(x, 1)|2 ≤ σ2|x|2, |g(x, 2)|2 ≤ σ̃2|x|4.

Assumption 3.1 is satisfied with H1 = 1.1565, H2 = 7.5315, H̃1 = 0.09, H̃2 = 0.01,



Chapter 4 61

p = 3. Next, since |x|4 ≤ N
∑N

j=1 |xj|4, compute

xTf(x, 1) ≤ −
(

min
1≤j≤N

Lj − |Π|ρ
)
|x|2

and

xTf(x, 2) ≤

(
ΓPϱ+

Γ|Π̃|ρ̃
2

)
|x|2 − 1

N

(
ΓP − Γ|Π̃|ρ̃

2

)
|x|4.

Therefore, Assumption 3.2 holds with α̂ = 1.188. It is easy to see that S can be

divided into two parts, S1 = {1} and S2 = {2} (Hopfield structure and Cohen-

Grossberg structure, respectively). Making use of the estimation of xTf(x, i) and

|g(x, i)|2 above, we obtain that for i ∈ S1, α1 = 0.0662, α̂1 = 0.1562, and Â =

7.375, a non-singular M -matrix. While for i ∈ S2, we get γ2 = 1.188, β2 = 0.7387.

As a result, Assumption 4.1 holds.

Then we choose κ2 = 2 and design the control function as follows: for any

x ∈ RN , u(x, 1) = 0, and

u(x, 2) =


− 2x, if |x| ≤ R2,

− 2

(
2R2

|x|
− 1

)
x, if R2 < |x| ≤ 2R2,

0, if |x| > 2R2,

(4.21)

with R2 = 2.327. Consequently, Rule 4.1 is satisfied with K2 = 2 and A =(
7.8675 −8

−1 2.624

)
being a non-singular M -matrix. Compute η̂1 = 0.1356, (η1, η2)

T =

(0.8402, 0.7013)T, µ̂ = 0.0619, and τ ∗ = 0.0173. Up to now, we have verified all

the conditions in Theorem 4.1. We conclude that the controlled network (4.20) is

exponentially stable in mean square if τ < 0.0173. We perform a simulation with

τ = 0.01 to support our theoretical results, which is demonstrated in Fig. 4.3.

4.5 Summary

Taking different system structures in different Markovian modes into consider-

ation, this chapter studies the structured stabilisation of a class of hybrid SDEs by

feedback control based on discrete-time state observations, in the sense of mean

square exponential stability. The controller is designed in a bounded state area,

rather than every observable state, to let the control less costly. An application to

stochastic structured neural networks is given to demonstrate the practicability of

the developed theory in multiple dimensional cases.
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Figure 4.3: Computer simulations of E|x(t)|2 of the neural network (4.19) (top),

the controlled network (4.20) (bottom) using the truncated Euler-Maruyama

method with step size 10−4 and sample size 200 as well as the fixed initial data for

ξ0 = (ξ01, · · · , ξ0N)T, where ξ01 = · · · = ξ0N = 0.5 and i0 = 1 for all 200 samples.
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Structured stabilisation of hybrid

delay systems by discrete-time

state feedback control

5.1 Introduction

In the last two chapters, the discrete-state-feedback stabilisation problem we

have been mainly concerned with is for non-delay systems. However, time delay is

usually encountered unavoidably in our daily life. For example, in communication

networks, a packet of data needs some time to travel through multiple devices,

then be received at its destination and decoded (Fridman 2014). In terms of our

interested SDEs, it means the system might not only be decided by the current

state, but also depend on the past states. Then we could use a stochastic delay

differential equation (SDDE) to describe such a system.

A general hybrid SDDE is given as

dx(t) = f(x(t), x(t− δ(t)), t, r(t))dt+ g(x(t), x(t− δ(t)), t, r(t))dW (t), (5.1)

where δ(t) is the time-delay function. Using a discrete-time state feedback control

to stabilise it (if unstable) has been studied for linear systems (Li & Kou 2017),

highly nonlinear systems (Mei et al. 2020). But these results paid attention to the

hybrid SDDE (5.1) with the same structure in every Markovian mode. Therefore,

we will consider the structured stabilisation of hybrid SDDEs in this chapter.

But the reader might wonder if there is any need to further study this problem

63
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since we have investigated the structured stabilisation of hybrid SDEs in Chapter

4. Will it be an easy generalisation work? The answer is certainly not positive. In

application, time delay could actually influence the mode-structure classification

(see Example 5.1) and the control design (see Rule 5.2). Theoretically, the analysis

of delay equations is much harder than non-delay ones since we need to tackle the

effect arisen from the time delay (always negative). The conditions imposed and

the Lyapunov functional constructed will become more complicated. As a result,

the structured stabilisation of hybrid SDDEs deserves our investigation.

Secondly, it should be underscored that there is a widely imposed but restrictive

condition on the time delay function δ(t) (e.g. (Hu, Mao & Shen 2013, Wang, Liu

& Liu 2008, Min, Xu, Zhang & Ma 2019)), which is supposed to be a differentiable

function and satisfies that

dδ(t)

dt
< 1, ∀t ≥ 0. (5.2)

This condition is just imposed owing to the mathematical need to deal with the

time lag. However, many real-world time delays might miss this condition (e.g. (Li

& Kou 2017, Zhang & Chen 2019, Dong & Mao 2022, Sun, Sun & Chen 2020, Qian

& Zhao 2022, Gugat & Tucsnak 2011)).

For example, in the networked control systems, sawtooth delay appears fre-

quently, such as δ(t) = τ
∑∞

k=0 I[k,k+1)(t) (t− k) (see, e.g. (Sun et al. 2020, Qian

& Zhao 2022)). It was also found in (Gugat & Tucsnak 2011) that the energy

of a vibrating system could decay exponentially with 2T -periodic switching delay,

namely, δ(t) = 4T in the first half of one period and 6T in the latter, where T

represents the wave period. These delays are even discontinuous, let alone meeting

condition (5.2). Therefore, it seems a little unreasonable to continue imposing this

condition. And in this chapter, we will consider a weaker one (namely Assumption

5.1).

5.2 Model formulation

For delay systems, we need to prepare a few more notations. For some constant

∆ > 0, let C
(
[−∆, 0];Rd

)
represent the family of all continuous functions ξ from

[−∆, 0] to Rd and designate the norm of its element ξ by ||ξ|| = sup−∆≤θ≤0 |ξ(θ)|.
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Consider the hybrid SDDE (5.1) with the initial data

{x(t) : −∆ ≤ t ≤ 0} = ξ ∈ C([−∆, 0];Rd), r(0) = i0 ∈ S. (5.3)

Here, drift coefficient f : Rd × Rd × R+ × S → Rd and diffusion coefficient g :

Rd×Rd×R+×S → Rd×m are locally Lipschitz continuous in (x, y), δ : R+ → [0,∆]

is the system delay. The meaning of other notions appearing in the hybrid SDDE

(5.1) stays unchanged. Also to avoid the abuse of notations, many of them will

keep the same as given for SDEs if they are defined in the similar way.

5.2.1 General time delays

As mentioned before, the mathematical techniques used in many papers to

tackle the delay effect, such as (Hu et al. 2013, Wang et al. 2008, Min et al. 2019),

force authors to impose the differentiability condition (5.2) on the time delay δ(t),

which is too restrictive in many real models. Consequently, in this chapter, we will

consider a more general situation, by imposing the following assumption, which

was firstly proposed by (Dong & Mao 2022).

Assumption 5.1. Suppose that δ(t) is a Borel measurable function with the prop-

erty that

∆∗ := lim sup
ϵ→0+

(
sup
s≥−∆

µ(Is,ϵ)

ϵ

)
< ∞, (5.4)

where µ(·) denotes the Lebesgue measure on the real line and

Is,ϵ = {t ∈ R+ : t− δ(t) ∈ [s, s+ ϵ)} .

Although this assumption looks a little cumbersome, it is not so strong and

can be met by many time-varying delay functions in practice.

Remark 5.1. Let T be a positive constant, then the piecewise constant function

δ(t) = T
∞∑
k=0

I[(2k+1)T,(2k+2)T )(t)

satisfies Assumption 5.1 with ∆∗ = 2. Moreover, if δ(t) is a Lipschitz continuous

function with Lipschitz coefficient ĥ ∈ [0, 1), namely

|δ(t)− δ(s)| ≤ ĥ|t− s|, ∀t, s ∈ R+,

then Assumption 5.1 is satisfied with ∆∗ = 1

1−ĥ
. In particular, if δ(t) is differen-

tiable with derivative taking values in [0, 1), then it satisfies Assumption 5.1.
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These examples not only show that there is an abundant class of functions

δ(t), but also condition (5.2) is a special case of Assumption 5.1. For more details,

we refer the reader to (Dong & Mao 2022). But differently, the delay function

δ(t) considered in this chapter is not needed to be bounded below by a positive

constant. Of course we do not want to consider the case where δ(t) = 0 for all

t ≥ 0 as the SDDE reduces to a SDE.

Next, we need to prepare a useful lemma, which plays a fundamental role when

we discuss the properties of the hybrid SDDE (5.1).

Lemma 5.1. Let Assumption 5.1 hold. Let T > 0 and φ : [−∆, T ] → R+ be a

continuous function. Then∫ T

0

φ(v − δ(v))dv ≤ ∆∗
∫ T

−∆

φ(v)dv. (5.5)

Proof. For any ε > 0, we derive from Assumption 5.1 that there is a positive

constant ϵ̄ such that

sup
s≥−∆

µ(Is,ϵ)

ϵ
≤ ∆∗ + ε, ∀ϵ ∈ (0, ϵ̄).

Let n be a large integer so that T+∆
n

< ϵ̄. Then we let ϵ = T+∆
n

and tk = −∆+ kϵ

for k = 0, 1, · · · , n. It is easy to see that

µ(Itk,ϵ) ≤ ϵ sup
s≥−∆

µ(Is,ϵ)

ϵ
≤ (∆∗ + ε)ϵ.

By the definition of the Lebesgue integral, we have∫ T

0

φ(v − δ(v))dv = lim
n→∞

n−1∑
k=0

φ(tk)µ(Itk,ϵ)

≤(∆∗ + ε) lim
n→∞

n−1∑
k=0

φ(tk)ϵ = (∆∗ + ε)

∫ T

−∆

φ(v)dv.

Since ε is chosen arbitrarily, the required assertion (5.5) follows. The proof is

complete.

This lemma tells us how to tackle the effect of the time delay under our new

Assumption 5.1. It should be pointed out that ∆∗ given in Assumption 5.1 always

satisfies that ∆∗ ≥ 1. In fact, if we let φ(t) ≡ 1 for all t ≥ −∆ in Lemma 5.1.

Then this lemma tells us that T ≤ ∆∗(T +∆) for any T > 0, which implies that

∆∗ ≥ limT→∞
T

T+∆
= 1.
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5.2.2 Mode-structure classification

By analogy with Assumption 3.1, we still want to use polynomials to limit the

growth of coefficients, which is given as follows when we consider hybrid SDDEs.

Assumption 5.2. Assume that there are non-negative constants H1, H2, H3, H4,

and H̃1, H̃2, H̃3, H̃4, and p > 1 such that for every (x, y, t, i) ∈ Rd ×Rd ×R+ × S,

|f(x, y, t, i)| ≤ H1|x|+H2|y|+H3|x|p +H4|y|p (5.6)

and

|g(x, y, t, i)|2 ≤ H̃1|x|2 + H̃2|y|2 + H̃3|x|p+1 + H̃4|y|p+1. (5.7)

Recalling Remark 4.1, we do not need to conduct mode-structure classification

in Assumption 3.2, owing to the absence of high-order term |x|p+1. But for the

delay equations, we have to do so since there exists a general Khasminskii-type

condition with the appearance of |x|p+1 and |y|p+1, except for the classical one.

For convenience, we still divide S into two parts, S1 = {1, · · · , S1} and S2 =

{S1 +1, · · · , S} with 1 ≤ S1 < S. The subsytems of the hybrid SDDE (5.1) in S1-

modes and S2-modes satisfy the classical Khasminskii-type condition (condition

(5.8)) and the generalized Khasminskii-type condition (condition (5.9)), respec-

tively.

Assumption 5.3. For i ∈ S1, suppose that there exist constants ãi ∈ R and b̃i ≥ 0

such that for all (x, y, t) ∈ Rd × Rd × R+

xTf(x, y, t, i) +
2p− 1

2
|g(x, y, t, i)|2 ≤ ãi|x|2 + b̃i|y|2 (5.8)

and for Ã := −2pdiag(ã1, · · · , ãS1)− (qij)i,j∈S1 to be a non-singular M-matrix.

For i ∈ S2, assume that there exist constants γ̃i, b̃i, d̃i ≥ 0 and c̃i > 0 such that

for any (x, y, t) ∈ Rd × Rd × R+

xTf(x, y, t, i) +
p

2
|g(x, y, t, i)|2 ≤ γ̃i|x|2 + b̃i|y|2 − c̃i|x|p+1 + d̃i|y|p+1. (5.9)

From Assumption 5.3, it seems that the classification idea is quite similar

to Chapter 4, and we just additionally consider this into the conditions for the

existence-and-uniqueness theorem. However, we highlight that time delay could

really influence our classification scheme. The existence of delay term or not in

one mode will sometimes decide which class it will be put into. Let us give an

example to explain this.
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Example 5.1. Consider a scalar example

f(x, y, t, 1) =− x− 3xy2, f(x, y, t, 2) =x− 4.5x3, f(x, y, t, 3) =− x3,

g(x, y, t, 1) =xy, g(x, y, t, 2) =x2, g(x, y, t, 3) =y,

with transition rate matrix

Q =

 −2 1 1

9 −18 9

5 5 −10

 .

In this situation, time delay vanishes in mode 2. There are actually two clas-

sification schemes. Case 1: S1 = {1, 2}, S2 = {3}. It is easy to obtain that

Ã =
(

8 −1

−9 6

)
, which is a non-singular M-matrix and c̃3 = 1 > 0. Case 2:

S1 = {1}, S2 = {2, 3}. We then have Ã = 8, a non-singular M-matrix, and

c̃2 = c̃3 = 1 > 0.

However, if we consider time delay into subsystem in mode 2 and let

g(x, y, t, 2) = y2,

then we only have one scheme, S1 = {1}, S2 = {2, 3}.

5.2.3 Global solution

Let (η̃1, · · · , η̃S1)
T = Ã−1(1, · · · , 1)T. Since Ã is a non-singular M -matrix, all

η̃i are positive (i ∈ S1). Along with the properties of transition rate matrix and

the fact that c̃i > 0 for all i ∈ S2, the number µ̃ is also positive, defined as

µ̃ =
(p+ 1)mini∈S2 c̃i

1 + maxi∈S2

(∑S1

j=1 qij η̃j

) .
Now, we show that the hybrid SDDE (5.1) has a unique global solution.

Theorem 5.1. Let Assumptions 5.1, 5.2, 5.3 hold. Further assume that

D̃ := 1− (2p− 2 + 2∆∗)max
i∈S1

(
b̃iη̃i

)
> 0

and

µ̃D̃ − (p+ 1)(p− 1 + (p+ 1)∆∗)

2p
max
i∈S2

d̃i ≥ 0.

Then there is a unique global solution x(t) of the hybrid SDDE (5.1) such that

sup
−∆≤s≤t

E
(
|x(s)|p+1 + |x(s)|2pI{r(s)∈S1}

)
< ∞ (5.10)
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for all t > 0.

Proof. We divide the whole proof into two steps.

Step 1. Set a function Ũ ∈ C2
(
Rd × S;R+

)
by

Ũ(x, i) = |x|p+1 + µ̃η̃i|x|2pI{i∈S1},

while define a function LŨ : Rd × Rd × R+ × S → R by

LŨ(x, y, t, i) =Ũx(x, i)f(x, y, t, i) +
1

2
trace

(
gT(x, y, t, i)Ũxx(x, i)g(x, y, t, i)

)
+

S∑
j=1

qijŨ(x, j).

We claim that

LŨ(x, y, t, i) ≤ ζ1|x|p+1 + ζ2|y|p+1 − ζ3|x|2p + ζ4|y|2p, (5.11)

where

ζ1 =(p+ 1)

(
max
i∈S1

ãi ∨max
i∈S2

γ̃i

)
+ (p− 1)max

i∈S
b̃i,

ζ2 =2max
i∈S

b̃i,

ζ3 =µ̃− (2p− 2)µ̃max
i∈S1

(
b̃iη̃i

)
− (p+ 1)(p− 1)

2p
max
i∈S2

d̃i,

ζ4 =2µ̃max
i∈S1

(
b̃iη̃i

)
+

(p+ 1)2

2p
max
i∈S2

d̃i.

In fact, for i ∈ S1, it is easy to derive from (5.8) that

xTf(x, y, t, i) +
p

2
|g(x, y, t, i)|2 ≤ ãi|x|2 + b̃i|y|2.

This, together with (5.8) again, yields that

LŨ(x, y, t, i) ≤(p+ 1)|x|p−1
(
ãi|x|2 + b̃i|y|2

)
+ µ̃

(
2pãiη̃i +

S1∑
j=1

qij η̃j

)
|x|2p + 2pµ̃b̃iη̃i|x|2p−2|y|2.

Since 2pãiη̃i +
∑S1

j=1 qij η̃j = −1, by the Young inequality, we further have

LŨ(x, y, t, i) =
(
(p+ 1)ãi + (p− 1)b̃i

)
|x|p+1 + 2b̃i|y|p+1

− µ̃|x|2p + (2p− 2)µ̃b̃iη̃i|x|2p + 2µ̃b̃iη̃i|y|2p. (5.12)

For i ∈ S2, making use of (5.9), we obtain that

LŨ(x, y, t, i) ≤(p+ 1)|x|p−1
(
γ̃i|x|2 + b̃i|y|2 − c̃i|x|p+1 + d̃i|y|p+1

)
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+ µ̃

S1∑
j=1

qij η̃j|x|2p.

From the definition of µ̃, we deduce that for i ∈ S2,

µ̃+ µ̃

S1∑
j=1

qij η̃j ≤ µ̃+ µ̃max
i∈S2

(
S1∑
j=1

qij η̃j

)
= (p+ 1)min

i∈S2
c̃i ≤ (p+ 1)c̃i.

This implies that

LŨ(x, y, t, i) ≤
(
(p+ 1)γ̃i + (p− 1)b̃i

)
|x|p+1 + 2b̃i|y|p+1

− µ̃|x|2p + (p+ 1)(p− 1)

2p
d̃i|x|2p +

(p+ 1)2

2p
d̃i|y|2p. (5.13)

Combining with (5.12) and (5.13), the required (5.11) follows immediately.

Step 2. Since the system coefficients are locally Lipschitz continuous, we know

that there is a unique maximal local solution x(t) on t ∈ [0, σe) by Theorem 7.12

in (Mao & Yuan 2006), where σe is the explosion time. Let k0 > 0 be sufficiently

large for k0 ≥ ||ξ||. For each integer k ≥ k0, define the stopping time

σk = inf {t ∈ [0, σe) : |x(t)| ≥ k} .

Clearly, σk is increasing as k → ∞. Set σ∞ = limk→∞ σk, whence σ∞ ≤ σe a.s.

If we can show that σ∞ = ∞ a.s., then σe = ∞ a.s., and the solution x(t) is the

global solution. Then, for any k ≥ k0 and t ≥ 0, we derive from the generalised

Itô formula and (5.11) that

EŨ(x(t ∧ σk), r(t ∧ σk)) ≤Ũ(ξ(0), i0) + E

∫ t∧σk

0

LŨ(x(s), x(s− δ(s)), s, r(s))ds

≤Ũ(ξ(0), i0) + E

∫ t∧σk

0

(
ζ1|x(s)|p+1 + ζ2|x(s− δ(s))|p+1

− ζ3|x(s)|2p + ζ4|x(s− δ(s))|2p
)
ds. (5.14)

Making use of Lemma 5.1, we have

EŨ(x(t ∧ σk), r(t ∧ σk)) ≤C1 + E

∫ t∧σk

0

(
ζ1|x(s)|p+1 + ζ2|x(s− δ(s))|p+1

− (ζ3 − ζ4∆
∗)|x(s)|2p

)
ds,

where C1 = Ũ(ξ(0), i0) + ζ4∆
∗∆||ξ||2p. It is easy to compute ζ3 − ζ4∆

∗ ≥ 0 from

the additional conditions in Theorem 5.1. Therefore,

sup
−∆≤s≤t

EŨ(x(s∧σk), r(s∧σk)) ≤ C1+(ζ1+ζ2)

∫ t

0

sup
−∆≤v≤s

E|x(v∧σk)|p+1ds. (5.15)
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This implies that

sup
−∆≤s≤t

E|x(s ∧ σk)|p+1 ≤
(
C1 + ||ξ||p+1

)
+ (ζ1 + ζ2)

∫ t

0

sup
−∆≤v≤s

E|x(v ∧ σk)|p+1ds.

Applying the Gronwall inequality gives that

sup
−∆≤s≤t

E|x(s ∧ σk)|p+1 ≤
(
C1 + ||ξ||p+1

)
e(ζ1+ζ2)t.

This particularly implies that

kp+1P (σk ≤ t) ≤ E|x(t ∧ σk)|p+1 ≤
(
C1 + ||ξ||p+1

)
e(ζ1+ζ2)t < ∞.

We can hence let k → ∞ to obtain that P (σ∞ ≤ t) = 0, namely, P (σ∞ > t) = 1.

Since t ≥ 0 is arbitrary, we must have that P (σ∞ = ∞) = 1 as required. Letting

k → ∞ in (5.15) gives that sup−∆≤s≤t EŨ(x(s), r(s)) < ∞. Then the required

assertion (5.10) follows since(
1 ∧ µ̃min

i∈S1
η̃i

)(
|x|p+1 + |x|2pI{i∈S1}

)
≤ Ũ(x, i).

The proof is therefore complete.

Remark 5.2. In the classical analysis of delay systems, time delay always plays a

negative role. To eliminate this effect, the non-delay term should be strengthened,

as a result of which we give two additional conditions in Theorem 5.1 except for

Assumptions 5.1, 5.2, 5.3. In theory, one common method to cope with delay

function is making use of the integral transform given in Lemma 5.1.

From now on, since the subsequent stability analysis will be our main focus,

we will not mention the conditions of Theorem 5.1 explicitly and assume they are

true.

5.3 Control design

Suppose the hybrid SDDE (5.1) is unstable, we want to design a bounded

feedback control u(x, t, i), which is imposed at discrete times, say 0, τ, 2τ, · · · , to
make it become stable. Our controlled system is described as

dx(t) =
(
f(x(t), x(t− δ(t)), t, r(t)) + u(x(tτ ), t, r(t))

)
dt

+ g(x(t), x(t− δ(t)), t, r(t))dW (t) (5.16)

on t ≥ 0 with initial data ξ and i0.
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5.3.1 Additional assumption

As discussed in Assumption 3.3 or Assumption 4.1, in addition to all conditions

in Theorem 5.1, we need to give another assumption on the hybrid SDDE (5.1)

for the stabilisation aim.

Assumption 5.4. For i ∈ S1, assume that there exist constants ai, âi ∈ R and

bi, b̂i ≥ 0 such that for any (x, y, t) ∈ Rd × Rd × R+,
xTf(x, y, t, i) +

1

2
|g(x, y, t, i)|2 ≤ ai|x|2 + bi|y|2,

xTf(x, y, t, i) +
p

2
|g(x, y, t, i)|2 ≤ âi|x|2 + b̂i|y|2,

(5.17)

while for the following two matrices

A1 :=− 2diag(a1, · · · , aS1)− (qij)i,j∈S1 ,

Â :=− (p+ 1)diag(â1, · · · , âS1)− (qij)i,j∈S1

to be non-singular M-matrices. Moreover, assume that the constants

Db :=1− 2∆∗max
i∈S1

(
bi

S1∑
j=1

(A−1
1 )ij

)
,

D̂ :=1− (p− 1 + 2∆∗)max
i∈S1

(b̂iη̂i)

are positive, where (η̂1, · · · , η̂S1)
T = Â−1(1, · · · , 1)T.

For i ∈ S2, there are non-negative constants γi, bi, di, positive constant ci so

that for all (x, y, t) ∈ Rd × Rd × R+

xTf(x, y, t, i) +
1

2
|g(x, y, t, i)|2 ≤ γi|x|2 + bi|y|2 − ci|x|p+1 + di|y|p+1. (5.18)

Further, letting Dq = 1 +maxi∈S2

(∑S1

j=1 qij η̂j

)
, assume that

Dd := min
i∈S2

ci −
Dq∆

∗

D̂
max
i∈S2

di > 0.

Compared with Assumption 4.1, it seems more complicated in this one since

we additionally need A1 to be a non-singular M -matrix and the constants Db, D̂,

Dd to be positive. These requirements are all blamed for the influence of the time

delay, whose roles will be explained in Remark 5.3.
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5.3.2 Control rules

Also due to the appearance of the time delay, the control should be designed

more carefully than before. In this part, we will step by step give our control rules

and explain the corresponding reasons.

Decomposition and bounded control

Recalling (4.7), we naturally come up with the decomposition scheme from

condition (5.18) that

(γi − κi)|x|2 + bi|y|2 −
ci
2
|x|p+1 + di|y|p+1 +

(
κi|x|2 −

ci
2
|x|p+1

)
. (5.19)

Rule 4.1 should hence be stayed. For the convenience of reading, we state it again.

Rule 5.1. For i ∈ S1, let u(x, t, i) = 0 for all (x, t) ∈ Rd × R+.

For S2-modes, firstly choose non-negative constants κi(i ∈ S2) to let

A := −2diag(α1, · · · , αS1 , γS1+1 − κS1+1, · · · , γS − κS)−Q

be a non-singular M-matrix. Then for the i-th mode, set Ri =
(

2κi

ci

) 1
p−1

and

• when x ∈ BRi
, design u(x, t, i) such that we can find a non-negative constant

Ki such that for any (x, y, t) ∈ BRi
×BRi

× R+

|u(x, t, i)− u(y, t, i)| ≤ Ki|x− y|, xTu(x, t, i) ≤ −κi|x|2,

and moreover u(0, t, i) = 0 for all t ∈ R+;

• when x ∈ B2Ri
−BRi

, let u(x, t, i) = u
((

2Ri

|x| − 1
)
x, t, i

)
for all t ∈ R+;

• when x ∈ Bc
2Ri

, let u(x, t, i) = 0 for all t ∈ R+.

By Lemma 4.1, we can use the similar proof of Theorem 5.1 to show that there

is a global solution of the controlled SDDE (5.16), which satisfies that

sup
−∆≤s≤t

E
(
|x(s)|p+1 + |x(s)|2pI{r(s)∈S1}

)
< ∞, ∀t > 0.

Also from decomposition (5.19), it is easy to obtain the following lemma, that

is, the controlled SDDE (5.16) also has different structures in different modes.

Lemma 5.2. Let Assumption 4.1 and Rule 5.1 hold. Then for i ∈ S1, we derive
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that for every (x, y, t) ∈ Rd × Rd × R+
xT(f(x, y, t, i) + u(x, t, i)) +

1

2
|g(x, y, t, i)|2 ≤ ai|x|2 + bi|y|2,

xT(f(x, y, t, i) + u(x, t, i)) +
p

2
|g(x, y, t, i)|2 ≤ âi|x|2 + b̂i|y|2.

(5.20)

For i ∈ S2, we have that for all (x, y, t) ∈ Rd × Rd × R+

xT(f(x, y, t, i) + u(x, t, i)) +
1

2
|g(x, y, t, i)|2

≤ai|x|2 + bi|y|2 −
ci
2
|x|p+1 + di|y|p+1, (5.21)

where ai = γi − κi.

Lyapunov function and its estimations

The Lyapnov function U : Rd × S → R+ used in this chapter will be similar to

(4.12), given by U(x, i) = ηi|x|2 + µ̂η̂i|x|p+1I{i∈S1} with mode balance parameter

µ̂ =
mini∈S2(ciηi)

Dq

,

where (η1, · · · , ηS)T = A−1(1, · · · , 1)T, and η̂i, Dq have been given in Assumption

5.4. The corresponding operator LU : Rd ×Rd ×Rd ×R+ × S → R+ with respect

to the controlled SDDE (5.16) is defined as

LU(x, y, z, t, i) =Ux(x, i)(f(x, y, t, i) + u(z, t, i))

+
1

2
trace

(
gT(x, y, t, i)Uxx(x, i)g(x, y, t, i)

)
+

S∑
j=1

qijU(x, j).

It can be decomposed as LU(x, y, z, t, i) = L1U(x, y, t, i) + L2U(x, z, t, i), where

L1U(x, y, t, i) =Ux(x, i)(f(x, y, t, i) + u(x, t, i))

+
1

2
trace

(
gT(x, y, t, i)Uxx(x, i)g(x, y, t, i)

)
+

S∑
j=1

qijU(x, j)

and

L2U(x, z, t, i) = Ux(x, i)(u(z, t, i)− u(x, t, i)).

By analogy with Lemma 4.3, one can use the same way of proofing (5.11) to

show the estimation of L1U as follows.

Lemma 5.3. Let Assumption 5.4 and Rule 5.1 hold. Then for any (x, y, t, i) ∈
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Rd × Rd × R+ × S,

L1U(x, y, t, i) ≤ −|x|2+2ν1|y|2−(1−(p−1)ν2)µ̂|x|p+1+(2ν2µ̂+2ν3)|y|p+1, (5.22)

where ν1 = maxi∈S (biηi), ν2 = maxi∈S1(b̂iη̂i), ν3 = maxi∈S2 (diηi).

Dealing with time delays

Compared with Lemmas 4.3 and 5.3, we find there are delay terms |y|2 and

|y|p+1 in the estimation of L1U for SDDEs. In order to eliminate their effects, we

should pick up κi(i ∈ S2) to satisfy an additional rule.

Rule 5.2. Ensure that κi chosen in Rule 5.1 makes the following numbers positive

D1 = 1− 2∆∗ν1, D2 = D̂µ̂− 2∆∗ν3.

But the reader may wonder if we can find the appropriate κi to make Rules

5.1 and 5.2 fulfilled. The following remark will deny this worry.

Remark 5.3. Since A1 is a non-singular M-matrix required in Assumption 5.4,

there is a constant κ large enough such that

−2diag(a1, · · · , aS1 , γS1+1 − κ, · · · , γS − κ)−Q

is a non-singular M-matrix. Therefore, we can choose κi = κ for all i ∈ S2. Rule

5.1 hence holds. Then for sufficiently large κ,

ηi ≈


S1∑
j=1

(A−1
1 )ij, for i ∈ S1,

1

2κ
, for i ∈ S2.

Therefore,

D1 ≈1− 2∆∗max
i∈S1

(
bi

S1∑
j=1

(A−1
1 )ij

)
= Db,

D2 ≈
1

κ

(
D̂

Dq

min
i∈S2

ci −∆∗max
i∈S2

di

)
=

D̂

κDq

Dd.

Since Db, D̂ and Dd are positive, Rule 5.2 could be satisfied. Therefore, we could

see that the requirements on A1, Db, D̂, Dd are used to guarantee the existence of

κi. Certainly, in application, we need to make use of the special forms of f and g

to take κi wisely.



Chapter 5 76

Determination of observation duration

The upper bound of τ could be given in the similar way of Rule 4.2, but

should take the time delay into account. Before that, let ηM2 = maxi∈S2 ηi and

E =
(
0, D1

KMηM2

)
.

Rule 5.3. Let τ works smaller than τ ∗ := maxε∈E φ(ε), where

φ(ε) =
1

KMηM2

(
D1 −KMηM2ε

φ1(ε)
∧ D2

φ2(ε)

)
with

φ1(ε) =
D1

ηM2

+ 2KM + 2H1 + (1 + ∆∗)H2 +
H̃1 +∆∗H̃2

ε
,

φ2(ε) =
D2

ηM2

+ 2H3 +
2(1 + p∆∗)H4

p+ 1
+

H̃3 +∆∗H̃4

ε
.

It is also easy to see that there is a ε∗ ∈
(
0, 1

KMηM2

)
such that τ ∗ = φ(ε∗). To

close this section, we give the estimation of L2U , whose proof is quite similar to

Lemma 4.4, so we omit it.

Lemma 5.4. Under Assumption 5.4, let the control function u(x, t, i) satisfy Rules

5.1 and 5.2, and τ meets Rule 5.3. Then for any t > 0, we have

E|L2U(x(t), x(tτ ), t, r(t))| ≤ ϕ1E|x(t)|2 + ϕ2E|x(t)|p+1 +

∫ t

t−τ

EΨ1(v)dv,

where

Ψ1(t) = ϕ3|x(t)|2 + ϕ4|x(t− δ(t))|2 + ϕ5|x(t)|p+1 + ϕ6|x(t− δ(t))|p+1

with

ϕ1 =
KMηM2

1−KMτ
((2KM +H1 +H2)τ + ε∗), ϕ2 =

KMηM2

1−KMτ

2(H3 +H4)τ

p+ 1
,

ϕ3 =
KMηM2

1−KMτ

(
H1 +

H̃1

ε∗

)
, ϕ4 =

KMηM2

1−KMτ

(
H2 +

H̃2

ε∗

)
,

ϕ5 =
KMηM2

1−KMτ

(
2pH3

p+ 1
+

H̃3

ε∗

)
, ϕ6 =

KMηM2

1−KMτ

(
2pH4

p+ 1
+

H̃4

ε∗

)
.

5.4 Stabilisation results

Before giving the Lyapunov functional used in this chapter, because of the time

delay, we need to redefine xt as xt = {x(t+ θ)| − τ −∆ ≤ θ ≤ 0} for t ≥ 0. For xt
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to be well defined for t ∈ [0, τ + ∆], we set x(θ) = ξ(−∆) for θ ∈ [−τ −∆,−∆).

Then the Lyapunov functional will be of the form

V (xt, t, r(t)) = U(x(t), r(t)) +

∫ 0

−τ

∫ t

t+s

Ψ2(v)dvds

for any t ≥ 0, where

Ψ2(t) = ϖ∗
1|x(t)|2 +ϖ∗

2|x(t− δ(t))|2 +ϖ∗
3|x(t)|p+1 +ϖ∗

4|x(t− δ(t))|p+1.

Here ϖ∗
1, ϖ

∗
2, ϖ

∗
3, ϖ

∗
4 are positive constants, which could be determined by the

following remark.

Remark 5.4. Let ηM = maxi∈S ηi and η̂M1 = maxi∈S1 η̂i. Define six functions on[
0, 1

τ

)
as ϖ1(λ) =

ϕ3

1−λτ
, ϖ2(λ) =

ϕ4

1−λτ
, ϖ3(λ) =

ϕ5

1−λτ
, ϖ4(λ) =

ϕ6

1−λτ
,

Φ1(λ) =1− ϕ1 −ϖ1(λ)τ − (2ν1 +ϖ2(λ)τ)∆
∗eλτ − ηMλ,

Φ2(λ) =(1− (p− 1)ν2)µ̂− ϕ2 −ϖ3(λ)τ − (2ν2µ̂+ 2ν3 +ϖ4(λ)τ)∆
∗eλτ − η̂M1µ̂λ.

Compared with Φ1 and Φ2 given in the first step of proofing Theorem 4.1, the most

significant difference here is the appearance of eλτ , which is caused by the integral

transform of the time delay.

It is easy to see that all ϖj(·) are positive increasing functions and tend to

infinity when λ → 1
τ
. Thus the decreasing function Φ1(·) goes to negative infinity

when λ approaches its right bound. Next, compute

Φ1(0) =D1 − ϕ1 − (ϕ3 +∆∗ϕ4)τ

=
1

1−KMτ
(D1 −KMηM2ε

∗ −KMηM2φ1(ε
∗)τ) > 0.

Consequently, there exists a unique solution λ∗
1 <

1
τ
such that Φ1(λ) = 0. Also we

could find a unique solution λ∗
2 ∈

(
0, 1

τ

)
so that Φ2(λ) = 0. Then Φ1(λ) and Φ2(λ)

are non-negative for any λ ∈ [0, λ∗], where λ∗ = λ∗
1 ∧ λ∗

2. Finally, we could let

ϖ∗
1 = ϖ1(λ

∗), ϖ∗
2 = ϖ2(λ

∗), ϖ∗
3 = ϖ3(λ

∗), ϖ∗
4 = ϖ4(λ

∗). (5.23)

Theorem 5.2. Under the same conditions with Lemma 5.4, there exists a positive

constant λ∗ such that the solution of the controlled SDDE (4.2) satisfies that

lim sup
t→∞

1

t
log(E|x(t)|2) ≤ −λ∗. (5.24)

Proof. Applying the generalised Itô formula to eλ
∗tV (xt, t, r(t)) yields that

eλ
∗tEV (xt, t, r(t))− V (x0, 0, r0)
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≤
∫ t

0

eλ
∗s(λ∗EV (xs, s, r(s)) + ELV (xs, s, r(s)))ds. (5.25)

By Lemmas 5.3 and 5.4, we derive that

ELV (xs, s, r(s)) ≤ EJ1(s)−
∫ s

s−τ

E(Ψ2(v)−Ψ1(v))dv,

where

J1(s) =− (1−ϖ∗
1τ − ϕ1)|x(s)|2 + (2ν1 +ϖ∗

2τ)|x(s− δ(s))|2

− ((1− (p− 1)ν2)µ̂−ϖ∗
3τ − ϕ2)|x(s)|p+1

+ (2ν2µ̂+ 2ν3 +ϖ∗
4τ)|x(s− δ(s))|p+1.

Recalling the definition of V (xs, s, r(s)), we then have

λ∗EV (xs, s, r(s)) + ELV (xs, s, r(s))

≤EJ2(s)−
∫ s

s−τ

E((1− λ∗τ)Ψ2(v)−Ψ1(v))dv, (5.26)

where J2(s) = λ∗U(x(s), r(s))+J1(s). From (5.23), we see that (1−λ∗τ)ϖ∗
1−ϕ3 =

0, (1− λ∗τ)ϖ∗
2 − ϕ4 = 0, (1− λ∗τ)ϖ∗

3 − ϕ5 = 0, (1− λ∗τ)ϖ∗
4 − ϕ6 = 0. Therefore,

(1− λ∗τ)Ψ2(v) = Ψ1(v).

Substituting (5.26) into (5.25) shows that

EV (xt, t, r(t)) ≤ V (x0, 0, r0) + E

∫ t

0

eλ
∗sJ2(s)ds. (5.27)

Since U(x, t) ≤ ηM |x|2 + η̂M1µ̂|x|p+1, we have∫ t

0

eλ
∗sJ2(s)ds ≤− (1−ϖ∗

1τ − ϕ1 − ηMλ∗)

∫ t

0

eλ
∗s|x(s)|2ds

+ (2ν1 +ϖ∗
2τ)

∫ t

0

eλ
∗s|x(s− δ(s))|2ds

− ((1− (p− 1)ν2)µ̂−ϖ∗
3τ − ϕ2 − η̂M1µ̂λ

∗)

∫ t

0

eλ
∗s|x(s)|p+1ds

+ (2ν2µ̂+ 2ν3 +ϖ∗
4τ)

∫ t

0

eλ
∗s|x(s− δ(s))|p+1ds.

Using Lemma 5.1 and eλ
∗s ≤ eλ

∗τeλ
∗(s−δ(s)) further gives that∫ t

0

eλ
∗sJ2(s)ds ≤ C2 − Φ1(λ

∗)E

∫ t

0

eλ
∗s|x(s)|2ds− Φ2(λ

∗)E

∫ t

0

eλ
∗s|x(s)|p+1ds,

where C2 = eλ
∗τ∆∗τ

(
(2ν1+ϖ∗

2τ)||ξ||2+(2ν2µ̂+2ν3+ϖ∗
4τ)||ξ||p+1

)
. From Remark

5.4, we see that Φ1(λ
∗) and Φ2(λ

∗) are non-negative. Therefore, we obtain from
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(5.27) that (
min
i∈S

ηi

)
eλ

∗tE|x(t)|2 ≤ C2 + V (x0, 0, r0).

Letting t → ∞ gives the desired assertion (5.24). The proof is hence complete.

5.5 Application to neural networks

We continue to consider the neural network studied in Section 4.4. Due to the

finite switching speed of amphfiers, time delay usually can not be avoided. The

network model with delay can be described as for j = 1, · · · , N

dxj(t) =



(
−Ljxj(t) +

N∑
k=1

Πjkϑk(xk(t− δ(t)))

)
dt+ σxj(t)dW (t), in mode 1,

− Γxj(t)

(
P
(
x2
j(t)− ϱ

)
−

N∑
k=1

Π̃jkϑ̃k(xk(t− δ(t)))

)
dt

+ σ̃x2
j(t)dW (t), in mode 2.

Using the same notations in Section 4.4, rewrite the neural network as a general

hybrid SDDE

dx(t) = f(x(t), x(t− δ(t)), r(t))dt+ g(x(t), x(t− δ(t)), r(t))dW (t). (5.28)

Here g(x, 1) = σx, g(x, 2) = σ̃x2, and

f(x, y, 1) = −Lx+Πϑ(y), f(x, y, 2) = −Γdiag(x)
(
P
(
x2 − P

)
− Π̃ϑ̃(y)

)
.

Time delay in a network sometimes is larger during business time than other

time. For example, if we regard one second as time unit, then during the business

period
[
0, 1

3

)
, it can be 0.02 second, while in the non-business time

[
1
3
, 1
)
, it will

decrease to 0.01 second. Such a time delay can be described by the following

piecewise-constant function

δ(t) =
∞∑
k=0

(
0.02I[k,k+ 1

3)
(t) + 0.01I[k+ 1

3
,k+1)(t)

)
. (5.29)

Obviously, this delay does not satisfy (5.2) but could meet with our Assumption

5.1 with ∆∗ = 2 and ∆ = 0.02.

Consider the same parameters given in Section 4.4 and time delay (5.29). It is

easy to see that

|f(x, y, 1)| ≤|L||x|+ |Π|ρ|y|
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|f(x, y, 2)| ≤ΓPϱ|x|+ Γ|Π̃|ρ̃
2

|x|2 + Γ|Π̃|ρ̃
2

|y|2 + ΓP |x|3.

Assumption 5.2 is hence satisfied with H1 = 1.1565, H2 = 0.0315, H3 = 7.5315,

H4 = 0.0315, H̃1 = 0.09, H̃2 = 0, H̃3 = 0.01, H̃4 = 0, p = 3. Next, compute

xTf(x, y, 1) ≤−
(

min
1≤j≤N

Lj −
Π|ρ|
2

)
|x|2 + 1

2
|Π|ρ|y|2,

xTf(x, y, 2) ≤ΓPϱ|x|2 + Γ|Π̃|ρ̃
2

|y|2 − 1

N

(
ΓP − Γ|Π̃|ρ̃

2

)
|x|4.

We derive that ã1 = 0.2462, Ã = 6.5226, b̃1 = 0.0099, γ̃2 = 1.125, b̃2 = 0.063,

c̃2 = 0.7287, d̃2 = 0. Then Assumption 5.3 is satisfied. Moreover, η̃1 = 0.1533,

µ̃ = 2.5273, D̃ = 0.9879 and µ̃D̃ − (p+1)(p−1+(p+1)∆∗)
2p

d̃M = 2.4967. Until now, all

the conditions in Theorem 5.1 are fulfilled. Thus, the neuron network (5.28) has

a unique global solution. But it might still be unstable and the simulation results

(see Fig. 5.1 top) also shows this clearly.

Therefore, we want to design a state feedback control u(x, i) based on discrete-

time observations at 0, τ, 2τ, · · · to stabilise the neuron network (5.28). The con-

trolled network then becomes

dx(t) =(f(x(t), x(t− δ(t)), r(t)) + u(x(tτ ), r(t)))dt

+ g(x(t), x(t− δ(t)), r(t))dW (t). (5.30)

Next, we obtain that for i ∈ S1, a1 = 0.0662, b1 = 0.0099, â1 = 0.1562, b̂1 = 0.0099,

and A1 = 7.8675 Â = 7.375, which are non-singular M -matrices. It is then easy

to derive that Db = 0.995, D̂ = 0.992. While for i ∈ S2, we get γ2 = 1.125,

b2 = 0.063, c2 = 0.7387, d2 = 0, Dd = 0.7387. As a result, Assumption 5.4 holds.

Then we use the same control function given in (4.21). Rule 5.1 is true with

K2 = 2 and A =
(

7.8675 −8

−1 2.75

)
being a non-singular M -matrix. Compute µ̂ =

0.423, (η1, η2)
T = (0.7884, 0.6503)T, η̂1 = 0.1356. It is then easy to obtain that

D1 = 0.8361, D2 = 0.4196. Rule 5.2 is hence fulfilled. Up to now, we have verified

all the conditions in Theorem 5.2. Using the method introduced in Rule 5.3, we

have τ ∗ = 0.0203. By Theorem 5.2, we conclude that the controlled network (5.30)

is exponentially stable in mean square if τ < 0.0203. We perform a simulation

with τ = 0.01 to support our theoretical results, which is demonstrated in Fig. 5.1

bottom.
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Figure 5.1: Computer simulations of E|x(t)|2 of the neural network (5.28) (top),

the controlled network (5.30) (bottom) using the truncated Euler-Maruyama

method with step size 10−4 and sample size 200 as well as the fixed initial data

for ξ(t) = (ξ1(t), · · · , ξN(t))T, where ξ1(t) = · · · = ξN(t) = 0.5 + 0.5 cos(t), for

t ∈ [−0.02, 0] and i0 = 1 for all 200 samples.

5.6 Summary

This chapter continues to consider the structured stabilisation problem by

bounded discrete-time state feedback control but for SDDEs. In order to deal

with the time delay, conditions imposed on the underlying system and rules on

the control function become more complicated than non-delay ones. The analysis

of global solution and stability is also not trivial. More importantly, it is found

that delay could influence the mode-structure classification scheme. Meanwhile,

our time delay is more general than the existing results, especially the commonly

used differentiability assumption being relaxed.
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Razumikhin method to

discrete-state-feedback

stabilisation of hybrid systems

with more general delays

6.1 Introduction

In Chapter 5, we have discussed the discrete-state-feedback stabilisation of

hybrid SDDEs with more general time delays δ(t) satisfying Assumption 5.1, which

include the commonly seen periodic switching delay (Gugat & Tucsnak 2011) and

sawtooth delay (Sun et al. 2020). Although this improvement is much advanced,

there are still some important delays not being covered such as discrete time delay.

For example, in complex networks (see (Li, Shen, Wang, Huang & Luo 2019, Liu,

Wang, Ma & Alsaadi 2019)), time delay usually behaves as δ(t) = t− [t/∆]∆ with

time unit ∆. Certainly the delay in our discrete-time state feedback control also

belongs to such type of delay with ∆ = τ . It is clear that discrete time delay

cannot meet with Assumption 5.1 since

∆∗ = lim sup
ϵ→0+

(
sup
s≥−∆

∆

ϵ

)
= ∞.

Theoretically speaking, the absence of this key assumption means we could not

use Lemma 5.1, namely, the integral transform to handle the time delay. As a

result, the Lyapunov functional method might not be valid. Then is it possible to

82
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study the stabilisation of hybrid SDDEs if we do not have Assumption 5.1 on the

time delay, and what tools could we use?

Fortunately, we notice that in the study of the stability of delay systems, the

Razumikhin technique has been proved as a very powerful tool. It is quite different

from the classical Lyapunov idea, which requires us to check the negativity of the

Lyapunov operator for every time like we have done before. While in Razumikhin

method, we only need to do the verification work at some particular time (see

Assumption 6.2). Due to this breakthrough idea, this method has been widely

applied to stochastic functional differential equations (SFDEs). We cite (Mao &

Yuan 2006, Janković, Randjelović & Jovanović 2009, Wu, Yin & Wang 2015, Zhu

2017, Cao & Zhu 2021) to readers for more details. Therefore, as a special case of

SFDEs, the conditions given on time delays of SDDEs could be relatively relaxed.

So this begs a question naturally: can we use the Razumikhin method to

investigate the stabilisation problem of discrete-time state feedback control? The

answer is positive. In fact, (Li et al. 2018) successfully applied the Razumikhin

method to the discrete-state-feedback stabilisation problem for a class of hybrid

stochastic systems. And to our knowledge, so far (Li et al. 2018) has been the only

paper to use the Razumikhin approach to investigate this kind of stabilisation

problem. But unfortunately, they still required system coefficients to meet the

linear growth condition.

Consequently, motivated by (Li et al. 2018), we will try to employ the Razu-

mikhin technique to study this stabilisation problem of highly nonlinear hybrid

SDDEs without Assumption 5.1 in this chapter. Since this work is full of challenge,

to make the problem much easier, we will not consider the structured stabilisation

here. Moreover, since time delay is quite general, the conditions imposed on the

underlying systems will be a little different than before.

6.2 Razumikhin-type theorem

We first give our Razumikhin-type theorem of general SFDEs, which will be

used later for discrete-state-feedback stabilisation problem. Except for stability

property, this theorem will also be generalised to asymptotic boundedness of hybrid

stochastic systems.
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Let us consider a d-dimensional hybrid SFDE

dx(t) = F (xt, t, r(t))dt+G(xt, t, r(t))dW (t) (6.1)

on t ≥ 0 with the initial data

{x(θ) : −h ≤ θ ≤ 0} = ξ̂ ∈ C([−h, 0];Rd), r(0) = i0 ∈ S.

Here xt = {x(t+ θ) : −h ≤ θ ≤ 0} is the past segment while F : C([−h, 0];Rd)×
R+×S → Rd, G : C([−h, 0];Rd)×R+×S → Rd×m are locally Lipschitz continuous.

For convenience, we extend r(t) to [−h, 0] by setting r(θ) = i0 for all θ ∈ [−h, 0].

Razumikhin-type theorem is usually given in terms of Lyapunov functions.

Thus for any V ∈ C2,1(Rd× [−h,∞)×S;R+), define an operator LV with respect

to the hybrid SFDE (6.1) from C([−h, 0];Rd)× R+ × S to R by

LV (ϕ, t, i) =Vt(ϕ(0), t, i) + Vx(ϕ(0), t, i)F (ϕ, t, i)

+
1

2
trace

(
GT(ϕ, t, i)Vxx(ϕ(0), t, i)G(ϕ, t, i)

)
+

S∑
j=1

qijV (ϕ(0), t, j). (6.2)

Assume that for every initial data ξ̂ and i0, there exists a unique global solution

x(t) of the hybrid SFDE (6.1) satisfying the following conditions.

Assumption 6.1. There is a C2,1-function V (x, t, i) such that for any t ∈ R+

sup
0≤s≤t

EV (x(s), s, r(s)) < ∞, sup
0≤s≤t

E|LV (xs, s, r(s))| < ∞.

Moreover, EV (x(t), t, r(t)) and ELV (xt, t, r(t)) are right-continuous as functions

of t.

Assumption 6.2. For such V (x, t, i) given in Assumption 6.1, assume that there

exist constants q > 1, λ1 ≥ 0 and λ2 > 0 such that

ELV (xt, t, r(t)) ≤ λ1 − λ2EV (xt(0), t, r(t)) (6.3)

when xt satisfies that for any θ ∈ [−h, 0]

EV (xt(θ), t+ θ, r(t+ θ)) ≤ qEV (xt(0), t, r(t)). (6.4)

Assumption 6.2 is the so-called Razumukhin-type condition. We only need to

check LV at time t, when (6.4) happens. While for other time when EV (xt(θ), t+

θ, r(t + θ)) > qEV (xt(0), t, r(t)), it is naturally to obtain the negativity of LV
since state in past time is larger than that in current time.
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Theorem 6.1. Let Assumptions 6.1, 6.2 hold. Then the solution of the hybrid

SFDE (6.1) has the property that

lim sup
t→∞

EV (x(t), t, r(t)) ≤ λ1

λ
,

where λ = min
{
λ2,

log(q)
h

}
. In particular, if λ1 = 0,

lim sup
t→∞

1

t
logEV (x(t), t, r(t)) ≤ −λ.

In the view of V , the hybrid SFDE (6.1) is moment asymptotically bounded and

exponentially stable (when λ1 = 0). Before diving into the proof, we make some

comments about the right-continuity of EV and ELV required in Assumption 6.1.

Remark 6.1. In subsequent Razumikhin analysis, we could find that it is crucial

to require both EV (x(t), t, r(t)) and ELV (xt, t, r(t)) to be right-continuous. But

to guarantee the right-continuity of these two functions is not trivial, especially

for highly nonlinear systems. Moreover, even if we have the right-continuity of

V (x(t), t, r(t)) and LV (xt, t, r(t)), we still cannot draw the conclusion that their

expectations are right-continuous. Because in general, only the right-continuity of

a process cannot guarantee its expectation remains right-continuous. The following

example is very helpful to show this.

Example 6.1. Let W (t) be a scalar Brownian motion. Define the stopping time

T = inf{t ≥ 0 : W (t) = 1}.

It is easy to see that T < ∞ a.s. from the recurrence of W (t). Then for any

t ≥ 0, set Y (t) = W (t ∧ T ). By the Doob stopping theorem (Theorem 2.6), Y (t)

is actually a continuous martingale vanishing at t = 0 with the property that

lim
t→∞

Y (t) = 1 a.s.

Define a process X(t) by

X(t) =


Y

(
1

t− 1

)
, t > 1,

1, 0 ≤ t ≤ 1.

Since limt→1+ X(t) = lims→∞ Y (s) = 1 a.s., we observe that X(t) is continuous

(certainly right-continuous). However, we have that for 0 ≤ t ≤ 1, EX(t) = 1,

and for t > 1

EX(t) = EY

(
1

t− 1

)
= 0.
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This means EX(t) is not right-continuous at t = 1.

Now we give the proof of Theorem 6.1.

Proof. Fix any initial data ξ̂ and i0. Let η ∈ (0, λ) be arbitrary and set λ̄ = λ− η.

For t ≥ 0, define

U(t) = sup
−h≤θ≤0

(
eλ̄(t+θ)EV (x(t+ θ), t+ θ, r(t+ θ))

)
.

From Assumption 6.1, we know that U(t) < ∞ for any t ≥ 0, so U(t) is well-

defined. Letting yη(t) = λ1

∫ t

0
eλ̄sds, we then claim that

D+(U(t)− yη(t)) ≤ 0, t ≥ 0. (6.5)

If assertion (6.5) is true, we have

U(t)− yη(t) ≤ U(0)− yη(0) ≤ M, t ≥ 0,

where M = sup−h≤θ≤0 V (ξ̂(θ), θ, r(θ)). It then follows that for any t ≥ 0,

eλ̄tEV (x(t), t, r(t)) ≤ M + λ1

∫ t

0

eλ̄sds ≤ M +
λ1

λ̄
eλ̄t.

Since η is arbitrary, we have

EV (x(t), t, r(t)) ≤ Me−λt +
λ1

λ
. (6.6)

Finally, letting t → ∞ gives

lim sup
t→∞

EV (x(t), t, r(t)) ≤ λ1

λ
.

If λ1 = 0, we derive from (6.6) that

lim sup
t→∞

1

t
logEV (x(t), t, r(t)) ≤ −λ.

Now we show that assertion (6.5) is true. Fix t̂ ≥ 0 arbitrarily. It is easy to

observe that either

U(t̂) > eλ̄t̂EV (x(t̂), t̂, r(t̂))

or

U(t̂) = eλ̄t̂EV (x(t̂), t̂, r(t̂)).

For the former case, we derive from the right-continuity of EV (x(·), ·, r(·)) that

for all sufficiently small ϵ1 ∈ (0, h),

U(t̂) > eλ̄tEV (x(t), t, r(t)), t̂ ≤ t ≤ t̂+ ϵ1. (6.7)
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For t̂+ ϵ1 − h ≤ t < t̂, we naturally have

eλ̄tEV (x(t), t, r(t)) ≤ sup
−h≤θ≤0

(
eλ̄(t̂+θ)EV (x(t̂+ θ), t̂+ θ, r(t̂+ θ))

)
= U(t̂).

This together with (6.7) yields that U(t̂+ ϵ1) ≤ U(t̂), and so

U(t̂+ ϵ1) < U(t̂) + λ1

∫ t̂+ϵ1

t̂

eλ̄sds.

Then we have

U(t̂+ ϵ1)− yη(t̂+ ϵ1) < U(t̂)− yη(t̂),

which indicates that

D+(U(t̂)− yη(t̂))

:= lim sup
ϵ1→0+

(
U(t̂+ ϵ1)− yη(t̂+ ϵ1)

)
−
(
U(t̂)− yη(t̂)

)
ϵ1

≤ 0.

On the other hand, if U(t̂) = eλ̄t̂EV (x(t̂), t̂, r(t̂)), we derive that for any θ ∈ [−h, 0],

eλ̄(t̂+θ)EV (x(t̂+ θ), t̂+ θ, r(t̂+ θ)) ≤ eλ̄t̂EV (x(t̂), t̂, r(t̂)).

Consequently,

EV (x(t̂+ θ), t̂+ θ, r(t̂+ θ)) ≤e−λ̄θEV (x(t̂), t̂, r(t̂))

≤eλ̄hEV (x(t̂), t̂, r(t̂))

≤qEV (x(t̂), t̂, r(t̂)),

where we have used the fact that q ≥ eλh. Then by condition (6.3), we have

ELV (xt̂, t̂, r(t̂)) + λ̄EV (x(t̂), t̂, r(t̂)

≤ELV (xt̂, t̂, r(t̂)) + λ2EV (x(t̂), t̂, r(t̂)) ≤ λ1 < λ1 + ϵ,

where ϵ > 0 is an arbitrary constant. We therefore see from the right-continuity

of EV (x(t), t, r(t)) and ELV (xt, t, r(t)) that for all ϵ2 ∈ (0, h) sufficiently small,

ELV (xt, t, r(t)) + λ̄EV (x(t), t, r(t)) < λ1 + ϵ (6.8)

for any t̂ ≤ t ≤ t̂+ ϵ2. For each integer k ≥ 1, define the stopping time

σk(ω) = inf
{
t ≥ t̂ : |x(t, ω)| ≥ k

}
,

which represents the first exiting time of sample path x(t, ω) leaving from the area

{x ∈ Rd : |x| < k} after time t̂. But this could be infinity since it is possible

that for some ω, x(t, ω) would never go beyond that area. In this situation, the
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time set
{
t ≥ t̂ : |x(t, ω)| ≥ k

}
is empty. For convenience, we denote σk(ω) by σk.

Because the hybrid SFDE (6.1) admits a unique global solution, we observe that

σk is increasing to infinity almost surely as k → ∞. For each k ≥ 1, by the

generalized Itô formula, we have

eλ̄t̂kV (x(t̂k), t̂k, r(t̂k))− eλ̄t̂V (x(t̂), t̂, r(t̂))

=

∫ t̂k

t̂

eλ̄s
(
LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))

)
ds+Mk,

where t̂k = (t̂+ ϵ2) ∧ σk and

Mk =

∫ t̂k

t̂

eλ̄sVx(x(s), s, r(s))G(xs, s, r(s))dW (s).

Note that when |x(t̂)| ≥ k we have t̂k = t̂; while when |x(t̂)| < k, since G is locally

Lipschitz continuous, we see that for any s ∈ [t̂, t̂k]

eλ̄sVx(x(s), s, r(s))G(xs, s, r(s)) ≤ eλ̄(t+ϵ2)Lk < ∞.

Therefore, we have EMk = 0 and hence

E
(
eλ̄t̂kV (x(t̂k), t̂k, r(t̂k))

)
− E

(
eλ̄t̂V (x(t̂), t̂, r(t̂))

)
=E

∫ t̂k

t̂

eλ̄s
(
LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))

)
ds.

It is easy to see that for each k ≥ 1,∣∣∣∣∣
∫ t̂k

t̂

eλ̄s
(
LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))

)
ds

∣∣∣∣∣
≤
∫ t̂+ϵ2

t̂

∣∣∣eλ̄s (LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))
)∣∣∣ ds.

Since

E
∣∣∣eλ̄s (LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))

)∣∣∣
≤eλ̄s

(
E|LV (xs, s, r(s))|+ λ̄EV (x(s), s, r(s))

)
< ∞

holds for any s ∈ [t̂, t̂+ ϵ2], by Fubini theorem, we have

E

∫ t̂+ϵ2

t̂

∣∣∣eλ̄s (LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))
)∣∣∣ ds

=

∫ t̂+ϵ2

t̂

E
∣∣∣eλ̄s (LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))

)∣∣∣ ds < ∞.

Letting k → ∞ and using the Fatou lemma, the dominated convergence theorem,
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we obtain that

eλ̄(t̂+ϵ2)EV (x(t̂+ ϵ2), t̂+ ϵ2, r(t̂+ ϵ2))

=E
(
lim inf
k→∞

eλ̄tkV (x(tk), tk, r(tk))
)

≤ lim inf
k→∞

E
(
eλ̄tkV (x(tk), tk, r(tk))

)
=eλ̄t̂EV (x(t̂), t̂, r(t̂)) + E

∫ t̂+ϵ2

t̂

eλ̄s
(
LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))

)
ds.

Applying the Fubini theorem again as well as (6.8) yields that

eλ̄(t̂+ϵ2)EV (x(t̂+ ϵ2), t̂+ ϵ2, r(t̂+ ϵ2))

<eλ̄t̂EV (x(t̂), t̂, r(t̂)) +

∫ t̂+ϵ2

t̂

(λ1 + ϵ)eλ̄sds. (6.9)

By analogy with (6.9), for any t̂ ≤ t ≤ t̂+ ϵ2, we have

eλ̄tEV (x(t), t, r(t)) <eλ̄t̂EV (x(t̂), t̂, r(t̂)) + (λ1 + ϵ)

∫ t

t̂

eλ̄sds

≤U(t̂) + (λ1 + ϵ)

∫ t̂+ϵ2

t̂

eλ̄sds.

For t̂+ ϵ2 − h ≤ t < t̂, it is also easy to see that

eλ̄tEV (x(t), t, r(t)) < U(t̂) + (λ1 + ϵ)

∫ t̂+ϵ2

t̂

eλ̄sds

since eλ̄tEV (x(t), t, r(t)) < U(t̂). Thus, we obtain that

U(t̂+ ϵ2) ≤ U(t̂) + λ1

∫ t̂+ϵ2

t̂

eλ̄sds+ ϵ

∫ t̂+ϵ2

t̂

eλ̄sds.

Letting ϵ2 → 0 implies that D+(U(t̂)− yη(t̂)) ≤ ϵeλ̄t̂. This holds for any ϵ > 0, so

we must have D+(U(t̂) − yη(t̂)) ≤ 0. Since t̂ is chosen arbitrarily, claim (6.5) is

true. This therefore completes the proof.

6.3 Stabilisation problem

6.3.1 Standing hypothesis

We will try to use the Razumikhin theory above to the stabilisation problem

of the hybrid SDDE

dx(t) = f(x(t), x(t− δ(t)), t, r(t))dt+ g(x(t), x(t− δ(t)), t, r(t))dW (t), (6.10)
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with initial data

{x(t) : −∆ ≤ t ≤ 0} = ξ ∈ C([−∆, 0];Rd), r(0) = i0 ∈ S.

Here, time delay δ : R+ → [0,∆] is Borel measurable, drift coefficient f and

diffusion coefficient g are locally Lipschitz continuous. The polynomial growth

condition is still required.

Assumption 6.3. Assume that there are non-negative constants H1, H2, H3, H4

and p > 1 such that for every (x, y, t, i) ∈ Rd × Rd × R+ × S,

|f(x, y, t, i)| ≤ H1|x|+H2|y|+H3|x|p +H4|y|p. (6.11)

Remark 6.2. Here we do not give the condition on g since combining Assumption

6.3 with the following Assumption 6.4 could yield that

|g(x, y, t, i)|2 ≤ C
(
|x|2 + |y|2 + |x|p+1 + |y|p+1

)
(6.12)

using the method in Remark 3.1. Its detailed form is useless throughout this chapter

as we will give a new method to estimate |x(t)− x(tτ )|.

In order to highlight the well-applicability of Razumikhin method, we will only

consider that the structures on every mode keep the same. Since the delay integral

transform is invalid, for the existence-and-uniqueness of global solution, we could

only give the classical Khasminskii condition, rather than the generalised one.

Assumption 6.4. Assume that there exist a pair of positive constants â and b̂

such that

xTf(x, y, t, i) +
3p− 2

2
|g(x, y, t, i)|2 ≤ â|x|2 + b̂|y|2 (6.13)

for any (x, t, i) ∈ Rd × Rd × R+ × S.

By Theorem 7.13 in (Mao & Yuan 2006), it is easy to see that the hybrid SDDE

(6.10) has a unique global solution x(t) such that for any t > 0

sup
−∆≤s≤t

E|x(s)|3p−1 < ∞. (6.14)

For the purpose of control design, the following assumption is still wanted,

which is also the classical Khasminskii condition owing to the absence of high-

order delay term |y|p+1.
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Assumption 6.5. For each i ∈ S, assume that there are constants γi ≥ 0, γ̄i ≥ 0,

bi ≥ 0, b̄i ≥ 0, ci > 0, c̄i > 0 such that for every (x, y, t) ∈ Rd × Rd × R+
xTf(x, y, t, i) +

1

2
|g(x, y, t, i)|2 ≤ γi|x|2 + bi|y|2 − ci|x|p+1,

xTf(x, y, t, i) +
p

2
|g(x, y, t, i)|2 ≤ γ̄i|x|2 + b̄i|y|2 − c̄i|x|p+1.

(6.15)

Before going to the control problem, let us make some comments on Assump-

tions 6.4 and 6.5.

Remark 6.3. Recalling the corresponding parts in Chapter 3, readers might find

that these two assumptions are stronger than Assumptions 3.2 and 3.3. In As-

sumption 6.4, the moment has been changed from p + 1 to 3p − 1, while in As-

sumption 6.5, the traditional condition (3.3) has came back, namely, the second

inequality of (6.15). We point out that they are both due to the application of

Razumikhin-type Theorem 6.1. The former is needed for the right-continuity of

EV (x(t), t, r(t)), ELV (xt, t, r(t)) in Assumption 6.1, and the latter is used to

compare ELV (xt, t, r(t)) with EV (xt(0), t, r(t)) in Assumption 6.2. The detailed

theoretical explanation will be given in Theorem 6.2 and subsequent Remark 6.6.

6.3.2 Control design

If the hybrid SDDE (5.1) is unstable, we want to design the discrete-time state

feedback control to make our controlled system

dx(t) =
(
f(x(t), x(t− δ(t)), t, r(t)) + u(x(tτ ), t, r(t))

)
dt

+ g(x(t), x(t− δ(t)), t, r(t))dW (t) (6.16)

become stable. We will give control rules one by one according to Assumption 6.5.

By condition (6.15), we have new decomposition scheme as
(γi − κi)|x|2 + bi|y|2 −

ci
2
|x|p+1 +

(
κi|x|2 −

ci
2
|x|p+1

)
,

(γ̄i − κi)|x|2 + b̄i|y|2 −
c̄i
2
|x|p+1 +

(
κi|x|2 −

c̄i
2
|x|p+1

)
.

(6.17)

As a result, the bounded control function should be modified as follows.

Rule 6.1. Choose non-negative constants κi(i ∈ S) to let

A := −2diag(γ1 − κ1, · · · , γS − κS)−Q

be a non-singular M-matrix. Then for the i-th mode, set Ri =
(

2κi

ci∧c̄i

) 1
p−1

and



Chapter 6 92

• when x ∈ BRi
, design u(x, t, i) such that we can find a non-negative constant

Ki such that for any (x, y, t) ∈ BRi
×BRi

× R+

|u(x, t, i)− u(y, t, i)| ≤ Ki|x− y|, xTu(x, t, i) ≤ −κi|x|2,

and moreover u(0, t, i) = 0 for all t ∈ R+;

• when x ∈ B2Ri
−BRi

, let u(x, t, i) = u
((

2Ri

|x| − 1
)
x, t, i

)
for all t ∈ R+;

• when x ∈ Bc
2Ri

, let u(x, t, i) = 0 for all t ∈ R+.

Under this rule, we could draw the similar conclusion for the controlled SDDE

(6.16) from (6.14). But with a little more effort, we can have a better result.

Lemma 6.1. Under Assumptions 6.3, 6.4, 6.5, let the control function u(x, t, i)

satisfy Rule 6.1, the solution of the controlled SDDE (6.16) has the property that

E

(
sup
0≤s≤t

|x(s)|2p
)

< ∞, ∀t > 0. (6.18)

Proof. It is easy to derive that for any (x, y, t, i) ∈ Rd × Rd × R+ × S

|u(x, t, i)− u(y, t, i)| ≤ KM |x− y| (6.19)

with KM = maxi∈SKi, and naturally the linear growth condition

|u(x, t, i)| ≤ KM |x|, ∀(x, t, i) ∈ Rd × R+ × S. (6.20)

Fix any time t ≥ 0. Applying the Itô formula to |x|2p, we see that for any 0 ≤ s ≤ t

|x(s)|2p =|ξ(0)|2p +
∫ s

0

2p|x(v)|2p−2xT(v)(f(x(v), x(v − δ(v)), v, r(v))

+ u(x(vτ ), v, r(v)))dv +

∫ s

0

p|x(v)|2p−2|g(x(v), x(v − δ(v)), v, r(v))|2dv

+

∫ s

0

p(2p− 2)|x(v)|2p−4
∣∣xT(v)g(x(v), x(v − δ(v)), v, r(v))

∣∣2 dv
+

∫ s

0

2p|x(v)|2p−2xT(v)g(x(v), x(v − δ(v)), v, r(v))dW (v).

From condition (6.13), for all (x, y, t, i) ∈ Rd × Rd × R+ × S

xTf(x, y, t, i) +
2p− 1

2
|g(x, y, t, i)|2 ≤ â|x|2 + b̂|y|2.

Using this and (6.20) as well as the Young inequality, and then taking expectations

on both sides, we get

E

(
sup
0≤s≤t

|x(s)|2p
)
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≤|ξ(0)|2p + E

∫ t

0

(
2pα̂ + (2p− 2)b̂+ (2p− 1)KM

)
|x(v)|2pdv

+ E

∫ t

0

(
2b̂|x(v − δ(v))|2p +KM |x(vτ )|2p

)
dv + J(t), (6.21)

where

J(t) = E

(
sup
0≤s≤t

∣∣∣∣∫ s

0

2p|x(v)|2p−2xT(v)g(x(v), x(v − δ(v)), v, r(v))dW (v)

∣∣∣∣) .

By the Burkholder-Davis-Gundy inequality (Theorem 2.11) , we compute

J(t) ≤3E

(∫ t

0

4p2|x(v)|4p−2|g(x(v), x(v − δ(v)), v, r(v))|2dv
) 1

2

≤E

(
sup
0≤s≤t

|x(s)|2p
∫ t

0

36p2|x(v)|2p−2|g(x(v), x(v − δ(v)), v, r(v))|2dv
) 1

2

≤1

2
E

(
sup
0≤s≤t

|x(s)|2p
)
+ 18p2E

∫ t

0

|x(v)|2p−2|g(x(v), x(v − δ(v)), v, r(v))|2dv.

Substituting this into (6.21) and using (6.12) gives that

E

(
sup
0≤s≤t

|x(s)|2p
)

≤2|ξ(0)|2p + CE

∫ t

0

(
|x(v)|2p + |x(v − δ(v))|2p + |x(vτ )|2p

+ |x(v)|3p−1 + |x(v − δ(v))|3p−1
)
dv, (6.22)

where C is a positive constant independent from t. Since sup0≤s≤t E|x(s)|3p−1 < ∞,

we obtain that

E

(
sup
0≤s≤t

|x(s)|2p
)

≤ 2|ξ(0)|2p + C

(
1 + sup

0≤s≤t
E|x(s)|3p−1

)
t < ∞.

This completes the proof.

To deal with the time delay, the following rule is also required like Rule 5.2.

Before that, let (η1, · · · , ηS)T = A−1(1, · · · , 1)T, and ai = γi − κi, āi = γ̄i − κi.

Denote by ηM = maxi∈S ηi, ηm = mini∈S ηi, aM = maxi∈S ai, āM = maxi∈S āi, bM =

maxi∈S bi, b̄M = maxi∈S b̄i, c̄m = mini∈S c̄i, bη = maxi∈S(biηi), cη = mini∈S(ciηi).

Rule 6.2. Ensure that κi chosen in Rule 6.1 also makes Dη positive, where

Dη =
1

ηM
− 2bη

ηm
− 2b̄M .

We give the following remark to show that we can also find the appropriate κi.

Remark 6.4. Choose a sufficiently large number κ such that κ > bM + b̄M and

−2diag(γ1 − κ, · · · , γS − κ)−Q is a non-singular M-matrix. Then let κi = κ for
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each i ∈ S. In this case, ηi ≈ 1
2κ
, which implies that

Dη ≈ 2κ− 2bM − 2b̄M > 0.

Here readers might find there is not any restriction on bi and b̄i unlike Db > 0

required in Chapter 5, because we would use Razumikhin method to eliminate time

delay rather than delay integral transform method.

Next we give a new method to determine the value of observation duration.

Rule 6.3. Let ε = 1
cη

(
(p+ 1)((āM ∨ 0) + b̄M) + 2bη

ηm

)
and E = (ε,∞) × (0, Dη).

Then τ should work smaller than τ ∗ := max{φ(ε1, ε2) : (ε1, ε2) ∈ E}, where

φ(ε1, ε2) =
1

φ2(ε1, ε2)

(
cη(ε1 − ε) ∧ (Dη − ε2)

)
with φ2(ε1, ε2) =

(
K2

MηMε1
ε2

+
(p+1)K2

M

2c̄m

)(
2(aM∨0)+2bM+2H1+2H2+6KM

ηmε1
+ 2H3 + 2H4

)
.

It is easy to see that φ is a positive continuous function on E . When (ε1, ε2)

tends to the boundary of E , φ(ε1, ε2) goes to zero. We are hence able to find

(ε∗1, ε
∗
2) ∈ E such that τ ∗ = φ(ε∗1, ε

∗
2) = maxE φ(ε1, ε2). For convenience, denote by

φ∗
2 = φ2(ε

∗
1, ε

∗
2).

Remark 6.5. It is worthy to point out that we set an additional parameter ε1 here

compared with the rules to determinate τ ∗ in previous chapters. In the subsequent

stability analysis, we will see that ε∗1 is used to balance āi and b̄i, since we do not

require −(p+ 1)diag(ā1, · · · , āS)−Q also to be a non-singular M-matrix as other

papers (e.g. (Fei et al. 2020, Mei et al. 2020, Shi et al. 2022)).

6.4 Stabilisation results

Let h = ∆+ τ . Define, for (ϕ, t, i) ∈ C
(
[−h, 0];Rd

)
× R+ × S,

F (ϕ, t, i) =f(ϕ(0), ϕ(−δ(t)), t, i) + u(ϕ(−ζ(t)), t, i),

G(ϕ, t, i) =g(ϕ(0), ϕ(−δ(t)), t, i),

where ζ(t) := t − tτ takes values in [0, τ ]. Then our controlled SDDE (6.16)

becomesthe the hybrid SFDE (6.1) on t ≥ 0 with initial data ξ̂(θ) = ξ(θ) for

θ ∈ [−∆, 0] and ξ̂(θ) = ξ(−∆) for θ ∈ [−∆− h,−∆].
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6.4.1 Lyapunov function

The Lyapunov function V (x, t, i) required in Theorem 6.1 will be of the form

V (x, t, i) = ε∗1ηi|x|2 + |x|p+1. (6.23)

Define two functions L1V, L2V : Rd × Rd × R+ × S → R by

L1V (x, y, t, i) =2ε∗1ηi

(
xT(f(x, y, t, i) + u(x, t, i)) +

1

2
|g(x, y, t, i)|2

)
+ (p+ 1)|x|p−1

(
xT(f(x, t, i) + u(x, t, i)) +

p

2
|g(x, y, t, i)|2

)
+

S∑
j=1

qijε
∗
1ηj|x|2

and

L2V (x, z, t, i) =
(
2ε∗1ηix

T + (p+ 1)|x|p−1xT
)
(u(z, t, i)− u(x, t, i)).

Then the operator LV defined in (6.2) with respect to (6.1) could be rewritten as

LV (ϕ, t, i) = L1V (ϕ(0), ϕ(−δ(t)), t, i) + L2V (ϕ(0), ϕ(−ζ(t)), t, i).

Using decomposition (6.17), it is easy to derive that
xT(f(x, y, t, i) + u(x, t, i)) +

1

2
|g(x, y, t, i)|2 ≤ ai|x|2 + bi|y|2 −

ci
2
|x|p+1,

xT(f(x, y, t, i) + u(x, t, i)) +
p

2
|g(x, y, t, i)|2 ≤ āi|x|2 + b̄i|y|2 −

c̄i
2
|x|p+1,

(6.24)

which gives the following estimation of L1V (x, y, t, i).

Lemma 6.2. Let all the conditions in Lemma 6.1 hold. Then for any (x, y, t, i) ∈
Rd × Rd × R+ × S,

L1V (x, y, t, i) ≤− ε∗1|x|2 + 2bηε
∗
1|y|2 − (cηε

∗
1 − (p+ 1)āM − (p− 1)b̄M)|x|p+1

+ 2b̄M |y|p+1 − (p+ 1)c̄m
2

|x|2p. (6.25)

Since there is an additional term |x|p+1 in our Lyapunov function than (3.13),

we will give a new method to estimate L2V (x, z, t, i).

Lemma 6.3. Under the same conditions in Lemma 6.1, we have

EL2V (x(t), x(t− ζ(t)), t, r(t)) ≤ηMε∗1ε
∗
2E|x(t)|2 + (p+ 1)c̄m

2
E|x(t)|2p

+ φ∗
2τ sup

−h≤θ≤0
EV (x(t+ θ), t+ θ, r(t+ θ)).

(6.26)
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Proof. For any t ≥ 0, there is some integer k ≥ 0 such that kτ ≤ t < (k + 1)τ .

Then it is easy to see that v−ζ(v) = kτ for v ∈ [kτ, t]. Using the Hölder inequality

and (6.19) to split L2V as

EL2V (x(t), x(kτ), t, r(t))

≤ηMε∗1

(
ε∗2E|x(t)|2 + K2

M

ε∗2

)
E|x(t)− x(kτ)|2

+
(p+ 1)c̄m

2
E|x(t)|2p + (p+ 1)K2

M

2c̄m
E|x(t)− x(kτ)|2. (6.27)

It is then significant to estimate |x(t) − x(kτ)|2. Actually x(s) − x(kτ) is an Itô

process on [kτ, t] with

x(s)− x(kτ) =

∫ s

kτ

(f(x(v), x(v − δ(v), v, r(v)) + u(x(kτ), v, r(v)))dv

+

∫ s

kτ

g(x(v), x(v − δ(v), v, r(v))dW (v).

Applying the Itô formula to the above process yields that

E|x(t)− x(kτ)|2

=E

∫ t

kτ

(
2(x(v)− x(kτ))T(f(x(v), x(v − δ(v), v, r(v)) + u(x(kτ), v, r(v)))

+ |g(x(v), x(v − δ(v), v, r(v))|2
)
dv

=E

∫ t

kτ

(
2xT(v)(f(x(v), x(v − δ(v), v, r(v)) + u(x(v), v, r(v)))

+ |g(x(v), x(v − δ(v), v, r(v))|2
)
dv

− E

∫ t

kτ

2xT(kτ)f(x(v), x(v − δ(v), v, r(v))dv − E

∫ t

kτ

2xT(v)u(x(v), v, r(v))dv

+ E

∫ t

kτ

2xT(v)u(x(kτ), v, r(v))dv − E

∫ t

kτ

2xT(kτ)u(x(kτ), v, r(v))dv.

Making use of (6.11), (6.20) and (6.24), we further derive that

E|x(t)− x(kτ)|2

≤E

∫ t

kτ

(
(2aM +H1 + 3KM)|x(v)|2 + 2pH3

p+ 1
|x(v)|p+1

)
dv

+ E

∫ t

kτ

(
(2bM +H2)|x(v − δ(v))|2 + 2pH4

p+ 1
|x(v − δ(v))|p+1

)
dv

+ E

∫ t

kτ

(
(H1 +H2 + 3KM)|x(kτ)|2 + 2(H3 +H4)

p+ 1
|x(kτ)|p+1

)
dv
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≤
(
2(aM ∨ 0) +H1 + 3KM

ε∗1ηm
+

2pH3

p+ 1

)∫ t

kτ

EV (x(v), v, r(v))dv

+

(
2bM +H2

ε∗1ηm
+

2pH4

p+ 1

)∫ t

kτ

EV (x(v − δ(v)), v − δ(v), r(v − δ(v)))dv

+

(
H1 +H2 + 3KM

ε∗1ηm
+

2(H3 +H4)

p+ 1

)∫ t

kτ

EV (x(kτ), kτ, r(kτ))dv

≤
(
2(aM ∨ 0) + 2bM + 2H1 + 2H2 + 6KM

ηmε∗1
+ 2H3 + 2H4

)
τ

× sup
−h≤θ≤0

EV (x(t+ θ), t+ θ, r(t+ θ)). (6.28)

Substituting this into (6.27) gives that

EL2V (x(t), x(kτ), t, r(t)) ≤ηMε∗1ε
∗
2E|x(t)|2 + (p+ 1)c̄m

2
E|x(t)|2p

+ φ∗
2τ sup

−h≤θ≤0
EV (x(t+ θ), t+ θ, r(t+ θ)).

The proof is therefore complete.

6.4.2 Exponential stabilisation

Next we could give our stabilisation results by Razumikhin-type theorem.

Theorem 6.2. Under Assumptions 6.3, 6.4, 6.5, let the control function u(x, t, i)

satisfy Rules 6.1, 6.2, and the observation duration τ meet Rule 6.3. Then the

solution of the controlled SDDE (6.16) obeys that

lim sup
t→∞

1

t
logE|x(t)|p+1 < 0. (6.29)

Proof. To apply Theorem 6.1, we need to check Assumptions 6.1 and 6.2.

Step 1. For any t ≥ 0, it is easy to see that

sup
0≤s≤t

EV (x(s), s, r(s)) ≤ sup
0≤s≤t

E
(
ηM |x(t)|2 + |x(t)|p+1

)
≤C

(
1 + sup

0≤s≤t
E|x(t)|p+1

)
< ∞.

By (6.11), (6.12) and (6.20), compute

|LV (xt, t, r(t))| ≤
(
2ε∗1ηM + (p+ 1)|x(t)|p−1

) (
|x(t)||f(x(t), x(t− δ(t)), t, r(t))|

+ |x(t)||u(x(t− ζ(t)), t, r(t))|+ p

2
|g(x(t), x(t− δ(t)), t, r(t))|2

)
+ S

(
max

1≤i,j≤S
|qij|

)
ηM |x(t)|2
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≤C
(
|x(t)|2 + |x(t)|p+1 + |x(t)|2p + |x(t− δ(t))|2 + |x(t− δ(t))|p+1

+ |x(t− δ(t))|2p + |x(t− ζ(t))|2
)
,

which implies that

sup
0≤s≤t

E|LV (xt, t, r(t))| ≤C sup
0≤s≤t

E
(
1 + |x(t)|2p + |x(t− δ(t))|2p + |x(t− ζ(t))|2p

)
≤C

(
1 + sup

−h≤s≤t
E|x(t)|2p

)
< ∞.

From the definition, it is clear that V (x(t), t, r(t) and LV (xt, t, r(t)) are right-

continuous on t ≥ 0. For any sufficiently small ϵ > 0, we have

sup
t≤s≤t+ϵ

|V (x(s), s, r(s))| ≤ C

(
1 + sup

0≤s≤t+ϵ
|x(s)|p+1

)
and

sup
t≤s≤t+ϵ

|LV (xs, s, r(s))| ≤ C

(
1 + sup

0≤s≤t+ϵ
|x(s)|2p

)
.

Since in Lemma 6.1, we have shown that

E

(
sup

0≤s≤t+ϵ
|x(s)|2p

)
< ∞,

using the Hölder inequality and the dominated convergence theorem shows that

lim
s→t+

EV (x(s), s, r(s)) = E

(
lim
s→t+

V (x(s), s, r(s))

)
= EV (x(t), t, r(t))

and

lim
s→t+

ELV (xs, s, r(s)) = E

(
lim
s→t+

LV (xs, s, r(s))

)
= ELV (xt, t, r(t)).

As a result, EV (x(t), t, r(t) and ELV (xt, t, r(t)) are right-continuous. Up to now,

all the conditions in Assumption 6.1 are fulfilled.

Step 2. Combing the estimations of L1V in (6.25) and L2V in (6.25), we

derive that

ELV (xt, t, r(t))

≤− (1− ηMε∗2)ε
∗
1E|x(t)|2 + 2bηε

∗
1E|x(t− δ(t))|2

− (cηε
∗
1 − (p+ 1)āM − (p− 1)b̄M)E|x(t)|p+1 + 2b̄M |x(t− δ(t))|p+1

+ φ∗
2τ sup

−h≤θ≤0
EV (x(t+ θ), t+ θ, r(t+ θ))

≤−
(

1

ηM
− ε∗2

)
E
(
ε∗1ηr(t)|x(t)|2

)
− (cηε

∗
1 − (p+ 1)āM − (p− 1)b̄M)E|x(t)|p+1
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+

(
2bη
ηm

+ 2b̄M + φ∗
2τ

)
sup

−h≤θ≤0
EV (x(t+ θ), t+ θ, r(t+ θ)).

From Rule 6.3, we could find that

1

ηM
− ε∗2 −

2bη
ηm

− 2b̄M = Dη − ε∗2 > φ∗
2τ

and

cηε
∗
1 − (p+ 1)āM − (p− 1)b̄M − 2bη

ηm
− 2b̄M = cη(ε

∗
1 − ε) > φ∗

2τ.

Therefore, there is a constant q > 1 such that
1

ηM
− ε∗2 > q

(
2bη
ηm

+ 2b̄M + φ∗
2τ

)
,

cηε
∗
1 − (p+ 1)āM − (p− 1)b̄M > q

(
2bη
ηm

+ 2b̄M + φ∗
2τ

)
.

If for some t, sup−h≤θ≤0EV (x(t+ θ), t+ θ, r(t+ θ)) ≤ qEV (x(t), t, r(t)), then

ELV (xt, t, r(t))

≤−
((

1

ηM
− ε∗2

)
∧ (cηε

∗
1 − (p+ 1)āM − (p− 1)b̄M)

)
EV (x(t), t, r(t))

+ q

(
2bη
ηm

+ 2b̄M + φ∗
2τ

)
EV (x(t), t, r(t)).

Consequently, condition (6.3) holds with λ1 = 0 and

λ2 =

((
1

ηM
− ε∗2

)
∧ (cηε

∗
1 − (p+ 1)āM − (p− 1)b̄M)

)
− q

(
2bη
ηm

+ 2b̄M + φ∗
2τ

)
.

Finally, the required assertion (6.29) follows from Theorem 6.1.

Remark 6.6. For hybrid SDDEs meeting the linear growth condition (e.g. (Mao

& Yuan 2006)), it is very easy to prove the right-continuity of EV and ELV since

we always have E
(
sup0≤s≤t |x(s)|r

)
< ∞ for any t ≥ 0 at any positive order r.

However, in the highly nonlinear ones, the first step in the previous proof tells us

that we need to impose extra assumptions to guarantee this, see Lemma 6.1. This

is the main reason why we require 3p− 1 in Assumption 6.4.

Theorem 6.2 is actually stronger than Theorem 5.2, where the moment is p+1

rather than mean square. This is the result that we give an additional requirement

in Assumption 6.5, namely, xTf(x, y, t, i)+ p
2
|g(x, y, t, i)|2 ≤ γ̄i|x|2+b̄i|y|2−c̄i|x|p+1.

Owing to this condition, we could also obtain the almost surely exponential sta-

bility.
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Theorem 6.3. Let all the conditions in Theorem 6.2 hold. Then the controlled

SDDE (6.16) has the property that

lim sup
t→∞

1

t
log |x(t)| < ∞ a.s. (6.30)

Proof. By Theorem 6.2, there is a constant λ such that

E|x(t)|p+1 ≤ Ce−λt, ∀t ≥ h.

Let k = 2, 3, · · · . For any (k − 1)h ≤ t ≤ kh,

E

(
sup

(k−1)h≤t≤kh

|x(t)|

)

≤E|x((k − 1)h)|+ E

∫ kh

(k−1)h

|f(x(v), x(v − δ(v)), v, r(v))|dv

+ E

∫ kh

(k−1)h

|u(x(v − ζ(v)), v, r(v))|dv

+ E

(
sup

(k−1)h≤t≤kh

∣∣∣∣∫ t

(k−1)h

g(x(v), x(v − δ(v)), v, r(v))dW (v)

∣∣∣∣
)
.

Using the similar way to show (6.22), we could get

E

(
sup

(k−1)h≤t≤kh

|x(t)|

)
≤E|x((k − 1)h)|+ C

∫ kh

(k−1)h

(
1 + E|x(v)|p+1

+ E|x(v − δ(v))|p+1 + E|x(v − ζ(v))|p+1
)
dv

≤Ce−
λ

p+1
(k−1)h.

By the Chebyshev inequality,

∞∑
k=1

P

(
sup

(k−1)h≤t≤kh

|x(t)| > e−
λ

2(p+1)
(k−1)h

)
≤

∞∑
k=1

C1e
− λ

2(p+1)
(k−1)h < ∞.

The well-known Borel-Cantelli lemma then shows that for almost all ω ∈ Ω, there

is positive integer k0 = k0(ω) such that

sup
(k−1)h≤t≤kh

|x(t)| ≤ e−
λ

2(p+1)
(k−1)h, k ≥ k0.

Hence for almost all ω,

1

t
log |x(t)| ≤ − λ

2(p+ 1)

(k − 1)h

(k + 1)h
,
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for t ∈ [(k − 1)h, kh], k ≥ k0. Letting t → ∞ shows that

lim sup
t→∞

1

t
log |x(t)| ≤ − λ

2(p+ 1)
< 0 a.s.,

which is the required assertion (6.30). This completes the proof.

6.5 Application to van der Pol–Duffing oscillator

Consider the modified stochastic van der Pol–Duffing oscillator studied in (Liu,

Liu & Li 2021) described by

dx1(t) =
(
− (1 + λ̂r(t))x1(t) + B̂r(t)(x2(t)− x1(t))

3 + λ̂r(t)x2(t)

− Âr(t)x
3
1(t)
)
dt+ δ̂r(t)x1(t− δ(t))dW1(t)

dx2(t) =
(
λ̂r(t)x1(t)− ρ̂r(t)x3(t)− B̂r(t)(x2(t)− x1(t))

3 − (λ̂r(t) + 1)x2(t)

− Ĉr(t)x
3
2(t)
)
dt+ δ̂r(t)x2(t− δ(t))dW2(t)

dx3(t) =
(
x2(t) + ρ̂r(t)x3(t)− D̂r(t)x

3
3(t)
)
dt+ δ̂r(t)x3(t− δ(t))dW3(t)

operating in two modes, following the Markov chain r(t) with transition rate ma-

trix Q =

(
−1 1

6 −6

)
. Here W1(t), W2(t), W3(t) are independent scalar Brow-

nian motions, δ(t) is the time delay occurring when the perturbation reaches the

oscillator, which could be described by a discrete-time function

δ(t) = t− [t/0.01]0.01.

Other parameters are given by

λ̂1 =0.5, ρ̂1 =0.2, Â1 =1, B̂1 =0.2, Ĉ1 =0.8, D̂1 =0.8, δ̂1 =0.3,

λ̂2 =0.3, ρ̂2 =0.1, Â2 =0.8, B̂2 =0.4, Ĉ2 =1, D̂2 =1.2, δ̂2 =0.2.

Letting x(t) = (x1(t), x2(t), x3(t))
T and W (t) = (W1(t),W2(t),W3(t))

T, we can

rewrite the oscillator as

dx(t) = f(x(t), r(t))dt+ g(x(t− δ(t)), r(t))dW (t), (6.31)

where g(y, i) = δ̂idiag(y1, y2, y3) and

f(x, i) =

 −(1 + λ̂i)x1 + B̂i(x2 − x1)
3 + λ̂ix2 − Âix

3
1

λ̂ix1 − ρ̂ix3 − B̂i(x2 − x1)
3 − (λ̂i + 1)x2 − Ĉix

3
2

x2 + ρ̂ix3 − D̂ix
3
3

 .
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It is easy to check that Assumption 6.3 holds with H1 = 3.6056, H2 = 0, H3 =

3.7736, H4 = 0, p = 3. Then, compute

xTf(x, i) ≤− x2
2 − ρ̂ix2x3 + ρix

2
3 − Âix

4
1 − Ĉix

4
2 − D̂1x

4
3

≤
(
ρ̂2i
4

+ ρ̂i

)
|x|2 − 1

3
(Âi ∧ Ĉi ∧ D̂i)|x|4

and |g(y, i)|2 ≤ δ̂2i |y|2. Hence, Assumption 6.4 holds with â = 0.21 and b̂ = 0.36.

Through computer simulation, we find that the oscillator (6.31) is unstable (see

Fig. 6.1).

It is necessary to impose a discrete-time state feedback control u(x(tτ ), r(t)) to

make the controlled oscillator

dx(t) =
(
f(x(t), r(t)) + u(x(tτ ), r(t))

)
dt+ g(x(t− δ(t)), r(t))dW (t) (6.32)

stable. Before the control design, we check that Assumption 6.5 is satisfied with

γ1 = 0.21, γ2 = 0.1025, b1 = 0.045, b2 = 0.02, c1 = 0.2667, c2 = 0.2667, γ̄1 = 0.21,

γ̄2 = 0.1025, b̄1 = 0.135, b̄2 = 0.06, c̄1 = 0.2667, c̄2 = 0.2667. Then we choose

κ1 = 0.8 and κ2 = 0.5 to let A =

(
2.18 −1

−6 6.795

)
being a non-singular M -matrix.

Design the control function as follows: for any x ∈ R3,

u(x, i) =


− κix, if |x| ≤ Ri,

− κi

(
2R2

|x|
− 1

)
x, if Ri < |x| ≤ 2Ri,

0, if |x| > 2Ri,

with R1 = 2.4495, R2 = 1.9365. Obviously, K1 = 0.8, K2 = 0.5. We then see

that (η1, η2) = (0.8845, 0.9282) and Dη = 0.7174, which implies that Rule 6.2

holds. Using the method given in Rule 6.3, we derive that τ ∗ = 0.002841. Letting

τ < 0.002841, by Theorems 6.2 and 6.3, we conclude that the controlled oscillator

(6.32) is exponentially stable in the sense of L4 and almost surely. We perform a

simulation with τ = 0.001 to support our theoretical results in Fig. 6.1.

6.6 Summary

In this chapter, we firstly develop a Razumikhin-type theorem to study the

asymptotic boundedness and moment exponential stability of hybrid SFDEs. Then

we apply this generalised theory to our discrete-state-feedback stabilisation prob-
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Figure 6.1: Ten sample paths of the Markov chain, the oscillator (6.31) and the

controlled oscillator (6.32), using the truncated Euler-Maruyama method with

time step size 10−4. For each path, the initial data is fixed given by ξ = (1 +

cos(t), 0.5 + sin(t), 0)T for t ∈ [−0.01, 0] and i0 = 1.

lem of hybrid SDDEs with more general time delays in the sense of (p + 1)-th

moment exponential stability and almost sure exponential stability. Herein, there

is only little restrictions on the time delay. Besides, compared with the Lyapunov

functional method, Razumikhin technique could avoid the difficulty of constructing

appropriate Lyapunov functionals and much complicated analysis.
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Intermittent control strategy to

stabilisation of hybrid systems by

generalised Razumikhin technique

7.1 Introduction

In Chapter 6, we have seen the effectiveness of Razumikhin method to the

stabilisation problem of delay systems. Then in this part, we will present its

another application, to the intermittent control strategy.

Currently, most of the discrete-state-feedback stabilisation results (see, e.g.

(Li & Kou 2017, Fei et al. 2020, Li et al. 2018, Shi et al. 2022) and the precious

chapters) are based on the controller imposed to the system for all the time without

any rest. This undoubtedly will shorten the life of our controller. Therefore, a more

practical technique is to let the controller working intermittently, where we divide

the whole time periodically, and each period is consisted of working time and rest

time. Then, the controller becomes

u(x(tτ ), t, r(t))
∞∑
k=0

I[kT,kT+δµT )(t),

where T > 0 is the control period, δµT is the working width with strength δµ ∈
(0, 1). In theory, we do not need to know the value of T , which should be fixed

according to practical needs. But in application, we always let T = τ to make the

control design be easily implemented.

Due to its efficiency in reducing the control cost, intermittent control recently

104
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has drawn abundant interest (see, e.g. (Jiang, Hu, Lu, Mao & Mao 2021, Mao,

You, Jiang & Mao 2023, Li, Feng & Liao 2007, Xia & Cao 2009, Zhang, Deng, Peng

& Xie 2018, Wang, Hong & Su 2018, Liu et al. 2021, Liu & Wu 2020, Chen, Wang

& Wu 2022, He, Ahn & Shi 2020)). But unfortunately, due to the difficulty in

dealing with two discrete strategies, x(tτ ) and I(t) :=
∑∞

k=0 I[kT,kT+δµT )(t), at the

same time, there are only a few results (e.g. (Jiang et al. 2021, Mao et al. 2023, Liu

& Wu 2020, Chen et al. 2022, He et al. 2020)) considering them together. Until

now, the comparison idea has been proven to be the most helpful method to study

the intermittent discrete-time state feedback control. However, it only works well

when the underlying hybrid SDEs are globally Lipschitz continuous (see Appendix

in (Hu et al. 2020)). It is hence necessary to develop new techniques to deal with

this stabilisation problem to cover more general models.

On the one hand, Lyapunov functional method might not be a good choice.

Because it will be difficult to construct a continuous differential functional and

apply the Itô formula for all time owing to the piece-wise constant property of

I(t). On the other hand, in the proof Theorem 6.1, only the right-derivative is

used. As a result, Razumikhin method deserves our consideration.

But it should be pointed out Theorem 6.1 might not be used to the intermittent

control problem directly. This is because condition (6.3) cannot be met. At

first, I(t) is discontinuous, which could not be considered into the construction of

continuous Lyapunov function. Moreover, λ2 is time-inhomogeneous, which would

let the time-varying property of I(t) be ignored. Therefore, it is wiser to establish

the Razumikhin theory based on the function λ2(t) rather than the constant λ2.

This change will make our stability analysis more technical than before.

7.2 Control problem

To make the intermittent discrete-state-feedback stabilisation problem simple,

we only try to consider the hybrid SDE

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dW (t) (7.1)

on t ≥ 0 with initial data x(0) = ξ0 ∈ Rd and r(0) = i0 ∈ S. Suppose that

f : Rd × R+ × S → Rd and g : Rd × R+ × S → Rd×m are locally Lipschitz

continuous. For the existence of a unique global solution, the polynomial growth

condition and Khasminskii-type condition are still required.
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Assumption 7.1. Assume that there are non-negative constants H1, H2, and

p > 1 such that for every (x, t, i) ∈ Rd × R+ × S,

|f(x, t, i)| ≤ H1|x|+H2|x|p, ∀(x, t, i) ∈ Rd × R+ × S. (7.2)

Assumption 7.2. Assume that there exists a positive constant α̂ such that

xTf(x, t, i) +
3p− 1

2
|g(x, t, i)|2 ≤ α̂|x|2, ∀(x, t, i) ∈ Rd × R+ × S.

For the aim of control design, the following assumption is needed, which is

stronger than Assumption 3.3 since we will use Razumikhin method.

Assumption 7.3. For each i ∈ S, assume that there are non-negative constants

γi, γ̄i, and positive constants βi, β̄i such that for any (x, t) ∈ Rd × R+
xTf(x, t, i) +

1

2
|g(x, t, i)|2 ≤ γi|x|2 − βi|x|p+1,

xTf(x, t, i) +
p

2
|g(x, t, i)|2 ≤ γ̄i|x|2 − β̄i|x|p+1.

(7.3)

Given the hybrid SDE (7.1) is unstable, we would like to design a state feedback

control based on discrete-time observations working intermittently to make the

controlled SDE

dx(t) =
(
f(x(t), t, r(t)) + u(x(tτ ), t, r(t))I(t)

)
dt+ g(x(t), t, r(t))dW (t) (7.4)

become stable.

Based on Assumption 7.3, we first give the rule on the bounded control function.

Rule 7.1. Choose non-negative constants κi(i ∈ S) such that{
A := −2diag (γ1 − κ1, · · · , γS − κS)−Q

Ā := −(p+ 1)diag (γ̄1 − κ1, · · · , γ̄S − κS)−Q

are non-singular M-matrices. Then for each i ∈ S, set Ri =
(

2κi

βi∧β̄i

) 1
p−1

. The

control function can be designed as:

• when x ∈ BRi
, design u(x, t, i) such that we can find a non-negative constant

Ki to let for any (x, y, t) ∈ BRi
×BRi

× R+

|u(x, t, i)− u(y, t, i)| ≤ Ki|x− y|, xTu(x, t, i) ≤ −κi|x|2,

and moreover u(0, t, i) = 0 for all t ∈ R+;

• when x ∈ B2Ri
−BRi

, let u(x, t, i) = u
((

2Ri

|x| − 1
)
x, t, i

)
for all t ∈ R+;
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• when x ∈ Bc
2Ri

, let u(x, t, i) = 0 for all t ∈ R+.

Then under Assumptions 7.1, 7.2, 7.3, Rule 7.1, the controlled SDE (7.4) admits

a global solution x(t), which satisfies that for any t > 0

sup
0≤s≤t

E|x(s)|3p−1 < ∞, E

(
sup
0≤s≤t

|x(s)|2p
)

< ∞.

Rule 7.2. Compared with Rule 6.1, we additionally require Ā to be a non-singular

M-matrix since it is no longer appropriate to set a parameter to balance the positive

term |x|p+1 like ε∗1 in Chapter 6, as we will propose a totally different way to

determine the value of τ .

Let (η1, · · · , ηS)T = A−1(1, · · · , 1)T and (η̄1, · · · , η̄S)T = Ā−1(1, · · · , 1)T. For

convenience, denote by ηM = maxi∈S ηi, ηm = mini∈S ηi, η̄M = maxi∈S η̄i, η̄m =

mini∈S η̄i, γM = maxi∈S γi, β̄m = maxi∈S β̄i, KM = maxi∈SKi. It is easy to see the

constants

µ1 :=
1

ηM
∧min

i∈S

(
1 + ηiβi

η̄i

)
,

µ2 :=max
i∈S

(
1

ηi

(
2ηiγi +

S∑
j=1

qijηj

)
∨ 1

η̄i

(
−ηiβi + (p+ 1)η̄iγ̄i +

S∑
j=1

qij η̄j

))
are positive.

Rule 7.3. Choose δµ ∈
(

µ2

µ1+µ2
, 1
)
and let τ ∗ be the unique root of

φ(τ) := exp

((
µ2

δµ
− µ2

)
τ

)
− 1

φ1(τ)

(
µ1 + µ2 − µ2

δµ√
τ

−KM

)
, τ ∈ (0, τ̂ ],

where τ̂ =

(
µ1+µ2−µ2

δµ

KM

)2

and

φ1(τ) =

(
2γM + 4KM + 2H1

ηm
+

2H2

η̄m

)(
KMηM +

(p+ 1)K2
M η̄M

2β̄m

√
τ

)
.

Let τ works smaller than τ ∗.

Remark 7.1. Let δµ ∈
(

µ2

µ1+µ2
, 1
)

be chosen. It is easy to see that φ(·) is an

increasing continuous function on (0, τ̂ ]. Moreover, limτ→0+ φ(τ) = −∞, and

φ(τ̂) > 0. Therefore, there is a unique root of φ, and so the definition of τ ∗ is

clear.
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7.3 Stabilisation results

7.3.1 Useful lemmas

Define the Lyapunov function U : Rd × S → R+ by

U(x, i) = ηi|x|2 + η̄i|x|p+1,

while define the operator LU(x, z, t, i) with respect to the controlled SDE (7.4) by

LU(x, z, t, i) = L1U(x, t, i) + L2U(x, z, t, i)

where

L1U(x, t, i) =Ux(x, i)(f(x, t, i) + u(x, t, i)I(t))

+
1

2
trace

(
gT(x, t, i)Uxx(x, i)g(x, t, i)

)
+

S∑
j=1

qijU(x, j)

and

L2(x, y, t, i) = Ux(x, i)(u(z, t, i)− u(x, t, i))I(t).

Owing to the intermittent control, we need to modify the estimations of L1U

and L2U .

Lemma 7.1. Let Assumptions 7.1, 7.2, 7.3, Rule 7.1 hold. Then

L1U(x, t, i) ≤ (−µ1I(t) + µ2(1− I(t)))U(x, i)− p+ 1

2
η̄iβ̄i|x|2p (7.5)

holds for any (x, t, i) ∈ Rd × R+ × S.

Proof. At first, it easy to show that for any (x, t, i) ∈ Rd × R+ × S
xT(f(x, t, i) + u(x, t, i)I(t)) +

1

2
|g(x, t, i)|2 ≤ (γi − κiI(t))|x|2 −

βi

2
|x|p+1,

xT(f(x, t, i) + u(x, t, i)I(t)) +
p

2
|g(x, t, i)|2 ≤ (γ̄i − κiI(t))|x|2 −

β̄i

2
|x|p+1.

In fact, fix (t, i) ∈ R+ × S arbitrarily. For x ∈ BRi
, it is easy to see that

xT(f(x, t, i) + u(x, t, i)I(t)) +
1

2
|g(x, t, i)|2 ≤(γi − κiI(t))|x|2 − βi|x|p+1

≤(γi − κiI(t))|x|2 −
βi

2
|x|p+1.

On the other hand, we have that for x ∈ Bc
Ri
, xTu(x, t, i) ≤ 0. Therefore,

xT(f(x, t, i) + u(x, t, i)I(t)) +
1

2
|g(x, t, i)|2
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≤γi|x|2 − βi|x|p+1

=(γi − κiI(t))|x|2 −
βi

2
|x|p+1 +

(
κiI(t)|x|2 −

βi

2
|x|p+1

)
≤(γi − κiI(t))|x|2 −

βi

2
|x|p+1

since κiI(t)|x|2 − βi

2
|x|p+1 ≤ κi|x|2 − βi

2
|x|p+1 ≤ 0 when |x| > Ri. Next, compute

L1U(x, t, i)

≤2ηi

(
(γi − κiI(t))|x|2 −

βi

2
|x|p+1

)
+

S∑
j=1

qijηj|x|2

+ (p+ 1)η̄i|x|p−1

(
(γ̄i − κiI(t))|x|2 −

β̄i

2
|x|p+1

)
+

S∑
j=1

qij η̄j|x|p+1

=

(
2ηi(γi − κi) +

S∑
j=1

qijηj

)
I(t)|x|2 +

(
2ηiγi +

S∑
j=1

qijηj

)
(1− I(t))|x|2

+

(
−ηiβi + (p+ 1)η̄i(γ̄i − κi) +

S∑
j=1

qij η̄j

)
I(t)|x|p+1

+

(
−ηiβi + (p+ 1)η̄iγ̄i +

S∑
j=1

qij η̄j

)
(1− I(t))|x|p+1 − p+ 1

2
η̄iβ̄i|x|2p

=− I(t)|x|2 − (ηiβi + 1)I(t)|x|p+1 +

(
2ηiγi +

S∑
j=1

qijηj

)
(1− I(t))|x|2

+

(
−ηiβi + (p+ 1)η̄iγ̄i +

S∑
j=1

qij η̄j

)
(1− I(t))|x|p+1 − p+ 1

2
η̄iβ̄i|x|2p

≤(−µ1I(t) + µ2(1− I(t)))U(x, i)− p+ 1

2
η̄iβ̄i|x|2p.

This completes the proof.

Lemma 7.2. Under the same conditions in Lemma 7.1, then the solution of the

controlled SDE (7.4) satisfies that for any t ∈ R+

EL2U(x(t), x(tτ ), t, r(t))

≤
(
KMEU(x(t), r(t)) + φ1(τ) sup

−τ≤θ≤0
EU(x(t+ θ), r(t+ θ))

)√
τI(t)

+
p+ 1

2
E
(
η̄r(t)β̄r(t)|x(t)|2p

)
. (7.6)

Proof. Let t be fixed. It is easy to derive from the global Lipschitz continuity of
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u(x, t, i) that

EL2U(x(t), x(tτ ), t, r(t))

≤E
((
2ηr(t)|x(t)|+ (p+ 1)η̄r(t)|x(t)|p

)
KM |x(t)− x(tτ )|

)
I(t)

≤E

(
KMηr(t)

√
τ |x(t)|2 +KMηr(t)

1√
τ
|x(t)− x(tτ )|2

+
p+ 1

2
η̄r(t)β̄r(t)|x(t)|2p +

(p+ 1)K2
M η̄r(t)

2β̄r(t)

|x(t)− x(tτ )|2
)
I(t). (7.7)

We can find a non-negative integer n such that nτ ≤ t < (n+ 1)τ . Then we have

tτ = nτ , and sτ = nτ for any s ∈ [nτ, t]. Applying the Itô formula yields that

E|x(t)− x(nτ)|2

≤E

∫ t

nτ

(
2(x(s)− x(nτ))T(f(x(s), s, r(s)) + u(x(nτ), s, r(s))I(s))

+ |g(x(s), s, r(s))|2
)
ds

≤(2γM +KM +H1)

∫ t

nτ

E|x(s)|2ds+ 2H2p

p+ 1

∫ t

nτ

E|x(s)|p+1ds

+ (3KM +H1)

∫ t

nτ

E|x(nτ)|2ds+ 2H2

p+ 1

∫ t

nτ

E|x(nτ)|p+1ds

≤
(
2γM + 4KM + 2H1

ηm
+

2H2

η̄m

)
τ sup

−τ≤θ≤0
EU(x(t+ θ), r(t+ θ)).

Substituting this into (7.7), we obtain the assertion (7.6). This ends the proof.

If we use the same way as in the proof of Theorem 6.2, we can show that

EU(x(t), r(t)) and ELU(x(t), x(tτ ), t, r(t)) are right-continuous. But with a little

more effort, we could see that EU(x(t), r(t)) is actually continuous.

Lemma 7.3. Let all the conditions in Lemma 7.1 hold. Then as functions of t,

EU(x(t), r(t)) is continuous, and ELU(x(t), x(tτ ), t, r(t)) is right-continuous.

Proof. For any t ∈ R+, applying the generalized Itô formula to U(x, i), we see that

U(x(t), r(t)) =U(ξ0, r0) +

∫ t

0

LU(x(s), x(sτ ), s, r(s))ds

+

∫ t

0

Ux(x(s), r(s))g(x(s), s, r(s))dW (s) +M(t), (7.8)

where M(t) is a continuous martingale vanishing at t = 0. It is easy to obtain

that for any (x, z, t, i) ∈ Rd × Rd × R+ × S

|LU(x, z, t, i)| ≤ C
(
1 + |x|2p + |z|2p

)
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and

|Ux(x, i)g(x, t, i)| ≤ C(1 + |x|2p).

Since for any s ∈ [0, t], E|x(s)|2p < ∞,

E|LU(x(s), x(sτ ), s, r(s))| ≤ C
(
1 + E|x(s)|2p + E|x(sτ )|2p

)
< ∞

and

E|Ux(x(s), r(s))g(x(s), s, r(s))| ≤ C
(
1 + E|x(s)|2p

)
< ∞.

Let n0 be a sufficiently large integer for n > |ξ0|. For each integer n ≥ n0, define

the stopping time σn = inf{t ∈ R+ : |x(t)| ≥ n}. Clearly, σn ↑ ∞ a.s. It then

follows from (7.8) that

EU(x(t ∧ σn), r(t ∧ σn)) = U(x0, r0) + E

∫ t∧σn

0

LU(x(s), x(sτ ), s, r(s))ds. (7.9)

For each n ≥ n0, we have∣∣∣∣∫ t∧σn

0

LU(x(s), x(sτ ), s, r(s))ds

∣∣∣∣ ≤ ∫ t

0

|LU(x(s), x(sτ ), s, r(s))|ds

and

E

∫ t

0

|LU(x(s), x(sτ ), s, r(s))| ds =
∫ t

0

E |LU(x(s), x(sτ ), s, r(s))| ds < ∞.

On the other hand,

U(x(t∧σn), r(t∧σn)) ≤ ηM |x(t∧σn)|2+η̄M |x(t∧σn)|p+1 ≤ C

(
1 + sup

0≤s≤t
|x(s)|p+1

)
.

Since E
(
sup0≤s≤t |x(s)|p+1

)
< ∞, we can let k → ∞ on both sides of (7.9) and

use the dominated convergence theorem to get that

EU(x(t), r(t)) = U(x0, r0) +

∫ t

0

ELU(x(s), x(sτ ), s, r(s))ds.

Clearly, EU(x(t), r(t)) is continuous at time t.

7.3.2 Exponential stabilisation

It is challenging to give a time-inhomogeneous Razumukhin-type theorem for a

general SFDE. Thus we only use the idea in Theorem 6.1 to show our exponential

stability.

Theorem 7.1. Let all the conditions in Lemma 7.1 hold and τ meet Rule 7.3.
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Then the solution of the controlled SDE (7.4) satisfies that

lim sup
t→∞

1

t
log
(
E|x(t)|p+1

)
< 0 (7.10)

and

lim sup
t→∞

1

t
log (|x(t)|) < 0 a.s. (7.11)

Proof. We divide the proof into three steps.

Step 1. For fixed τ , write φ1 = φ1(τ) for simplicity. Since φ is increasing on

(0, τ ∗), we naturally have

exp

((
µ2

δµ
− µ2

)
τ

)
<

1

φ1

(
µ1 + µ2 − µ2

δµ√
τ

−KM

)
.

Therefore, we could choose a constant q such that

exp

((
µ2

δµ
− µ2

)
τ

)
< q <

1

φ1

(
µ1 + µ2 − µ2

δµ√
τ

−KM

)
. (7.12)

If ξ0 = 0, the result is obvious. Thus we always assume that |ξ0| > 0. If for

some t, the solution satisfying that

sup
−τ≤θ≤0

EU(x(t+ θ), r(t+ θ)) ≤ qEU(x(t), r(t)), (7.13)

we then derive from Lemmas 7.1 and 7.2 that

ELU(x(t), x(tτ ), t, r(t))

≤(−µ1I(t) + µ2(1− I(t)))EU(x(t), r(t))− p+ 1

2
E
(
η̄r(t)β̄r(t)|x(t)|2p

)
+

(
KMEU(x(t), r(t)) + φ1 sup

−τ≤θ≤0
EU(x(t+ θ), r(t+ θ))

)√
τI(t)

+
p+ 1

2
E
(
η̄r(t)β̄r(t)|x(t)|2p

)
≤−

(
(µ1 − (KM + φ1q)

√
τ)I(t)− µ2(1− I(t))

)
EU(x(t), r(t)).

Letting φ2 = µ1 − (KM + φ1q)
√
τ and λ2(t) = φ2I(t)− µ2(1− I(t)), we have

ELU(x(t), x(tτ ), t, r(t)) ≤ −λ2(t)EU(x(t), r(t)). (7.14)

Step 2. For t ≥ 0, define λ(t) = λ2(t) ∧ log(q)
τ

, and

V (t) = exp

(∫ t

0

λ(s)ds

)
EU(x(t), r(t)).

It is easy to see that V (t) is well-defined, and further is a continuous function from
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Lemma 7.3. Next, we claim that

V (t) ≤ V (0), ∀t ≥ 0, (7.15)

where V (0) = U(ξ0, r0) is a positive constant. If (7.15) is true, it then follows that

E|x(t)|p+1 ≤ 1

η̄M
EU(x(t), r(t)) ≤ V (0)

η̄M
exp

(
−
∫ t

0

λ(s)ds

)
.

Since δµ < 1, we can easily observe that

q <
1

φ1

(
µ1 + µ2 − µ2

δµ√
τ

−KM

)
<

1

φ1

(
µ1√
τ
−KM

)
,

which implies that φ2 > 0. As a consequence,∫ t

0

λ(s)ds =

(
φ2 ∧

log(q)

τ

)∫ t

0

I(s)ds− µ2

∫ t

0

(1− I(s))ds

=− µ2t+

(
µ2 + φ2 ∧

log(q)

τ

)∫ t

0

I(s)ds.

For any fixed t ≥ 0, we can find a non-negative integer k such that kT ≤ t <

(k + 1)T . If t ∈ [kT, kT + δµT ), we obtain that∫ t

0

λ(s)ds =− µ2t+

(
µ2 + φ2 ∧

log(q)

τ

)
(δµkT + t− kT )

=

(
−µ2 + µ2δµ + φ2δµ ∧

log(q)

τ
δµ

)
kT

+

(
−µ2 + µ2 + φ2 ∧

log(q)

τ

)
(t− kT )

≥
(
−µ2 + µ2δµ + φ2δµ ∧

log(q)

τ
δµ

)
kT.

From the first inequality of (7.12), we derive that log(q)
τ

> µ2

δµ
−µ2. The other side of

(7.12) implies that φ2 >
µ2

δµ
−µ2. In other words, λ̄ := −µ2+µ2δµ+φ2δµ ∧ log(q)

τ
δµ

is positive, and so ∫ t

0

λ(s)ds ≥ λ̄(t− T ).

If t ∈ [kT + δµT, (k + 1)T ), we have∫ t

0

λ(s)ds =− µ2t+

(
µ2 + φ2 ∧

log(q)

τ

)
δµ(k + 1)T

≥− µ2t+

(
µ2 + φ2 ∧

log(q)

τ

)
δµt ≥ λ̄(t− T ).
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In conclusion, we have shown that for any t ≥ 0

E|x(t)|p+1 ≤ V (0)

η̄M
exp

(
−
∫ t

0

λ(s)ds

)
≤ V (0)

η̄M
exp

(
λ̄T
)
exp

(
−λ̄t

)
,

which yields that

1

t
log
(
E|x(t)|p+1

)
≤ 1

t
log

(
V (0)

η̄M
exp

(
λ̄T
))

− λ̄.

Letting t → ∞ gives the assertion (7.10). After achieving the moment exponential

stability, we can use the same analysis as in the proof of Theorem 6.3 to prove the

assertion (7.11).

Step 3. The remaining work is to prove claim (7.15). Supposing not, there will

be some t > 0 such that V (t) > V (0). We can set t̂ = inf{t > 0 : V (t) > V (0)}.
Because of the continuity of V (t), we see that for 0 ≤ t < t̂, V (t) ≤ V (0); for

t = t̂, V (t̂) = V (0); and there is a sequence {tn}n≥1 such that tn > t̂, tn ↓ t̂, and

V (tn) > V (0).

On the other hand, for any θ ∈ [−τ, 0], if t̂+ θ > 0, we obtain that

EU(x(t̂+ θ), r(t̂+ θ)) ≤ exp

(∫ t̂

t̂+θ

λ(s)ds

)
EU(x(t̂), r(t̂)) ≤ qEU(x(t̂), r(t̂))

since V (t̂ + θ) ≤ V (0) = V (t̂) and
∫ t̂

t̂+θ
λ(s)ds ≤ log(q)

τ
(−θ) ≤ log(q). Otherwise,

as t̂ ≤ τ , we have

EU(x(t̂+ θ), r(t̂+ θ)) =U(ξ0, r0) = V (t̂) = exp

(∫ t̂

0

λ(s)ds

)
EU(x(t̂), r(t̂))

≤qEU(x(t̂), r(t̂)).

In other words, we have shown that for any −τ ≤ θ ≤ 0,

EU(x(t̂+ θ), r(t̂+ θ)) ≤ qEU(x(t̂), r(t̂)),

which is exactly condition (7.13). Using the results in Step 1, we have

ELU(x(t̂), x(t̂τ ), t̂, r(t̂)) ≤− λ(t̂)EU(x(t̂), r(t̂))

≤− λ(t̂)EU(x(t̂), r(t̂)) < −λ(t̂)EU(x(t̂), r(t̂)) + ϵ,

where ϵ is an arbitrary positive constant. We can also find a non-negative integer

K such that KT ≤ t̂ < (K + 1)T . Let δµ > 0 be small enough so that ∆1 <

(KT + δµT − t̂)I{KT+δµT>t̂} + ((K + 1)T − t̂)I{KT+δµT≤t̂} and δµ < τ . We then see
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from the right-continuity of ELU that

ELU(x(t), x(tτ ), t, r(t)) < −λ(t)EU(x(t), r(t)) + ϵ, ∀t ∈ [t̂, t̂+∆1].

The interval [t̂, t̂+∆1] is either in [KT,KT + δµT ) or [KT + δµT, (K+1)T ). Thus

applying the generalised Itô formula to exp
(∫ t

0
λ(s)ds

)
U(x(t), r(t)) gives that

V (t̂+∆1)− V (t̂)

= exp

(∫ t̂+∆1

0

λ(s)ds

)
EU(x(t̂+∆1), r(t̂+∆1))

− exp

(∫ t̂

0

λ(s)ds

)
EU(x(t̂), r(t̂))

=

∫ t̂+∆1

t̂

exp

(∫ s

0

λ(v)dv

)(
ELU(x(s), x(sτ ), s, r(s)) + λ(s)EU(x(s), r(s))

)
ds

<ϵ

∫ t̂+∆1

t̂

exp

(∫ s

0

λ(v)dv

)
ds ≤ ϵ

∫ t̂+τ

t̂

exp

(
log(q)

τ
s

)
ds.

Since
∫ t̂+τ

t̂
exp

(
log(q)

τ
s
)
ds is a positive constant and ϵ is chosen arbitrarily, V (t̂+

∆1)− V (t̂) ≤ 0. For sufficiently large n with tn − t̂ ≤ ∆1, we obtain that

V (tn) ≤ V (t̂) = V (0),

which is a contradiction with the fact that V (tn) > V (0) derived before. Therefore

claim (7.15) must be true. The proof is therefore complete.

7.4 Application to coupled oscillators

Consider the coupled Van der Pol–Duffing oscillator system, which is consisted

of N oscillators and the n-th oscillator is described as

dxn(t) =
(
−
(
an(r(t)) + bn(r(t))

)
xn(t) +Bn(r(t))(yn(t)− xn(t))

3

+ bn(r(t))yn(t)− An(r(t))x
3
n(t)

)
dt+ νn(r(t))xn(t)dw

(1)
n (t),

dyn(t) =
(
bn(r(t))xn(t)− zn(t)−Bn(r(t))(yn(t)− xn(t))

3

− (bn(r(t)) + 1)yn(t)− Cn(r(t))y
3
n(t))

)
dt+ νn(r(t))yn(t)dw

(2)
n (t),

dzn(t) =

(
yn(t) +

S∑
j=1

enj(r(t))Πnj(zn(t), zj(t), r(t)) + Pn(zn(t), r(t))

)
dt

+ νn(r(t))zn(t)dw
(3)
n (t),
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where xn, yn, zn ∈ R, an(i), bn(i), An(i), Bn(i), Cn(i), νn(i) are positive constants,

enj(i) stands for connection weight from oscillator j to oscillator n, Πnj(zn, zj, i)

and Pn(zn, i) are locally Lipschitz continuous functions in the i-th mode. Here, we

need to impose the following conditions on these functions.

Assumption 7.4. For every i ∈ S and n, j = 1, · · · , N , assume that there are

positive constants Λnj(i), J
(1)
n (i), J

(2)
n (i), D

(1)
n (i), D

(2)
n (i) so that for all x, y ∈ R

|Πn,j(x, y, i)| ≤ Λnj(i)(|x|+ |y|) (7.16)

and

|Pn(x, i)| ≤ J (1)
n (i)|x|+ J (2)

n (i)|x|3, xPn(x, i) ≤ D(1)
n (i)|x|2 −D(2)

n (i)|x|4. (7.17)

Let Xn = (xn, yn, zn)
T, X =

(
XT

1 , · · · , XT
N

)T
, Wn =

(
w

(1)
n , w

(2)
n , w

(3)
n

)T
, W =(

WT
1 , · · · ,WT

N

)T
. Then the oscillator system can be written as

dX(t) = F (X(t), r(t))dt+G(X(t), r(t))dW (t), (7.18)

where

F (X, i) =
(
FT
1 (X1, i), · · · , FT

N (XN , i)
)T

,

G(X, i) =


G1(X1, i)

. . .

GN(XN , i)

 ,

with Gn(Xn, i) = νn(i)diag(xn, yn, zn) and

Fn(Xn, i) =

 −(an(i) + bn(i))xn +Bn(i)(yn − xn)
3 + bn(i)yn − An(i)x

3
n

bn(i)xn − zn −Bn(i)(yn − xn)
3 − (bn(i) + 1)yn − Cn(i)y

3
n

yn +
∑S

j=1 enj(i)Πnj(zn, zj, i) + Pn(zn, i)

 .

With the detailed calculation, we derive that for each i ∈ S, |F (X, i)|2 ≤ L1i|X|2+
L2i|X|6, where

L1i = max
1≤n≤N

(
4(an(i) + bn(i))

2 + 5b2n(i)
)
∨ max

1≤n≤N

(
4b2n(i) + 5(bn(i) + 1)2 + 3

)
∨

(
max

1≤n≤N

(
5 + 3(J (1)

n )2 + 6N
S∑

j=1

(|enj(i)|Λnj(i))
2

)

+ 6N max
1≤n,j≤N

(|enj(i)|Λnj(i))
2

)
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and

L2i = max
1≤n≤N

(
4A2

n(i) + 288B2
n(i)
)
∨ max

1≤n≤N

(
5C2

n(i) + 288B2
n(i)
)
∨ max

1≤n≤N
3(J (2)

n )2.

Therefore, Assumption 7.1 is satisfied with p = 3, H1 = maxi∈S
√
L1i, H2 =

maxi∈S
√
L2i. Next, compute

XTF (X, i) ≤
N∑

n=1

(
− an(i)x

2
n − y2n +

N∑
j=1

|enj(i)Πnj(zn, zj, i)zn| − An(i)x
4
n

− Cn(i)y
4
n + znPn(zn, i)

)

≤
N∑

n=1

(
N∑
j=1

|enj(i)Λnj(i)(z
2
n + |znzj|)|+D(1)

n (i)z2n − An(i)x
4
n

− Cn(i)y
4
n −D(2)

n (i)z4n

)
.

Since |X|4 ≤ 3N
∑N

n=1(x
4
n + y4n + z4n), we further have

XTF (X, i) ≤ hi|X|2 − 1

3N
min

1≤n≤N

(
An(i) ∧ Cn(i) ∧D(2)

n (i)
)
|X|4,

where

hi = max
1≤n≤N

(
3

2

N∑
j=1

|enj(i)|Λnj(i) +D(1)
n (i)

)
+

1

2
max

1≤n,j≤N
(|enj(i)|Λnj(i)).

It is easy to see that

|G(X, i)|2 ≤
N∑

n=1

ν2
n(i)(x

2
n + y2n + z2n) ≤ max

1≤n≤N
ν2
n(i)|X|2.

As a result, Assumption 7.2 holds with α̂ = maxi∈S (hi + 4max1≤n≤N ν2
n(i)). As-

sumption 7.3 is also satisfied with

γi =hi +
1

2
max

1≤n≤N
ν2
n(i), γ̄i = hi + max

1≤n≤N
ν2
n(i),

βi =β̄i =
1

3N
min

1≤n≤N

(
An(i) ∧ Cn(i) ∧D(2)

n (i)
)
.

But the oscillator system (7.18) might not be stable (see the simulation in Fig.

7.3). It is hence necessary to design controller according to the results above to

achieve stabilisation. At first, the control function U(X, i) can be designed as

follows.

Rule 7.4. Choose non-negative constants κi(i ∈ S) such that A and Ā are non-
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singular M-matrices. Then for each i ∈ S, letting Ri =
√

2κi

βi
, we can design the

control function as follows

U(X, i) =


− κiX, X ∈ BRi

,

− κi

(
2Ri

|X|
− 1

)
X, X ∈ B2Ri

−BRi
,

0, X ∈ Bc
Ri
.

(7.19)

It is easy to verify that U(X, i) designed in Rule 7.4 meets Rule 7.1 with

Ki = κi. Next, we let the feedback control U(X(t), r(t)) working imminently with

strength δµ and being observed at discrete times 0, τ, 2τ, · · · In other words, the

controlled oscillator system is given as

dX(t) = (F (X(t), r(t)) + U(X(tτ ), r(t))I(t))dt+G(X(t), r(t))dW (t), (7.20)

where tτ = [t/τ ]τ and I(t) =
∑∞

k=0 I[kT,kT+δµT )(t) are the same as before. By

Theorem 7.1, we can make the following assertion.

Theorem 7.2. Let Assumption 7.4 hold and the control function U(X, i) be given

in Rule 7.4. Using the method in Rule 7.3 to determine tha value of τ , then the

controlled oscillator system (7.20) is exponential stable in the sense of L4 and

almost surely.

For the sake of showing the viability of our results, a numerical example is

provided below.

Example 7.1. Let the Markov chain r(t) taking values in S = {1, 2} with Q =(
−10 10

10 −10

)
. We consider the oscillator system (7.18) with 25 oscillators. The

parameters are given as

an(1) =0.2, bn(1) =0.3, An(1) =1.6, Bn(1) =0.05, Cn(1) =1.7, νn(1) =0.5,

an(2) =0.5, bn(2) =0.4, An(2) =2, Bn(2) =0.03, Cn(2) =1.9, νn(2) =0.8,

and the functions are given as Πn,j(x, y, 1) = 0.01(x−y), Πn,j(x, y, 2) = 0.005(x−
y), Pn(x, 1) = 0.5x − 1.5x3, Pn(x, 2) = 0.3x − 1.8x3 for all n, j = 1, · · · , 25. The

connection weight (en,j(i))25×25 can be obtained from the connection graphs in Fig.

7.1 and Fig. 7.2. Here for both two modes, node n stands for the n-th oscillator,

directed edge (n, j) means the output of the j-th oscillator is connected with the

input of the n-th oscillator, the number on the edge (n, j) is the value of en,j(i). It
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is then easy to verify that Assumption 7.4 is satisfied with Λn,j(1) = 0.01, Λn,j(2) =

0.005, J
(1)
n (1) = D

(1)
n (1) = 0.5, J

(2)
n (1) = D

(2)
n (1) = 1.5, J

(1)
n (2) = D

(1)
n (2) = 0.3,

J
(2)
n (2) = D

(2)
n (2) = 1.8.
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Figure 7.1: The oscillator connection graph at mode 1.

Through computer simulations (see Fig. 7.3), we find the oscillator system

(7.18) is indeed unstable. Therefore, we want to use the controller U(X(tτ ), r(t))I(t)

to realise stabilisation. Before that, we can easily get L1(1) = 11.81, L1(2) = 13.44,

L2(1) = 15.17, L2(2) = 18.3092, h(1) = 0.5045, h(2) = 0.3012, γ(1) = 0.6295,

γ(2) = 0.6212, γ̄(1) = 0.7545, γ̄(2) = 0.9412, β(1) = β̄(1) = 0.02, β(2) = β̄(2) =

0.024. We choose κ1 = 6 and κ2 = 5, as a result of which

A =

(
20.7411 −10

−10 18.7566

)
, Ā =

(
30.9821 −10

−10 26.2351

)
are non-singular M-matrices. The bounds of control area are given as R1 =

24.4949 and R2 = 20.4124. Then Rule 7.4 is fulfilled. With detailed calcula-

tion, we derive that µ1 = 1.0391, µ2 = 4.2888. Thus we can take the control rate

δµ = 0.9 to get the value of τ ∗ as 2.17 × 10−6. By Theorem 7.2, we can conclude

that the controlled oscillator system (7.20) is exponential stable in the sense of L4

and almost surely if δµ = 0.9 and τ < 2.17× 10−6. The simulation results support

our theory clearly (see Fig. 7.3).
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Figure 7.2: The oscillator connection graph at mode 2.

7.5 Summary

This chapter applies the Razumikhin idea to study the stabilisation of hybrid

SDEs by discrete-time state feedback control, which works intermittently and is

designed boundedly. Theoretically, the Razumikhin method is generalised in view

of time-varying functions, rather than constants, where the time-inhomogeneous

property of intermittent control could be fully made use of. In practice, the control

cost could be reduced significantly since the controller is bounded, not observed

continuously and having rest time. Moreover, there will be a wider range of appli-

cations especially for models that do not satisfy the linear growth condition. An

example of the coupled Van der Pol–Duffing oscillator system is hence provided to

show the practicability of the developed theory.
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Figure 7.3: Ten sample paths of the Markov chain, the oscillator system (7.18),

the controlled oscillator system (7.20) with δµ = 0.9 and τ = 1 × 10−6. Here the

initial data is fixed as xn(0) = 0.2, yn(0) = 0.1, zn(0) = 0 for each n = 1, · · · , 25.
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Conclusions and Future work

8.1 Conclusions

In this thesis, we have discussed the discrete-state-feedback stabilisation of

highly nonlinear hybrid systems (namely, do not satisfy the classical linear growth

condition).

In Chapter 3, we have shown that the unstable highly nonlinear hybrid SDEs

could be stabilised by the globally Lipschitz continuous feedback controls based

on discrete-time state observations, in the sense of H∞ stability and almost surely

asymptotic stability. By utilising the constant property of discrete-time states

x(tτ ), we gave a new method in the estimation of difference between current-time

state and discrete-time state. This improvement helped us to relax conditions

imposed on the underlying systems and simplify the construction of Lyapunov

functional as well as stability analysis. Moreover, we used the optimisation method

to determine the value of τ , so that the inconvenience of finding free parameters

was avoided.

But results developed in Chapter 3 only worked well for hybrid SDEs, where

the structure in every Markovian mode was the same. The systems with changes

between linear structures and highly nonlinear structures might not be included.

Therefore, in Chapter 4, we considered the structured stabilisation of hybrid SDEs

by discrete-time state feedback control. The mode-structure classification was

made according to the Khasminskii-type condition, that is, the high-order term

|x|p+1 was strictly positive or vanished. Meanwhile, by spherical symmetry, we

designed the feedback control in a bounded state area in order to reduce control

122
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cost. The stability studied was the every significant exponential stability.

Then we extended the structured stabilisation problem to hybrid SDDEs in

Chapter 5. Condition on time delay was relaxed from differential assumption to

a weak one, as a result of which the commonly seen sawtooth delay and piece-

wise constant delay could be covered. Due to the time delay effect, the conditions

imposed became more complicated. Compared with the non-delay systems, time

delay could influence the mode-structure classification scheme. Also for conve-

nience, the mode space was divided into two sub-spaces, satisfying the classical

Khasminskii-type condition and the generalised one, respectively.

The research technique in Chapters 3-5 was Lyapunov functional method. But

constructing an appropriate functional was sometimes challenging. Even worse,

it would less useful when integral transform failed or systems were discontinuous.

In this case, Razumikhin method would be very helpful. Thus, in Chapters 6 and

7, we tried applying this method to our control problem. To highlight this idea,

for simplicity, we did not consider the structured stabilisation. Also in these two

parts, to use Razumikhin idea, we calculated the difference between current-time

state and discrete-time state by Itô formula.

In Chapter 6, we firstly generalised the Razumikhin-type theorem to study

the asymptotic boundedness and moment exponential stability of highly nonlinear

functional equations. Then we used the developed theory to the stabilisation of

hybrid SDDEs with more general time delays compared with Chapter 5. Since the

time delay was relatively relaxed, we needed to give a little stronger conditions

on the underlying systems. But stability properties became better, in the sense

of (p + 1)-th moment exponential stability and almost sure exponential stability.

Chapter 7 was devoted to the stabilisation of hybrid SDEs by discrete-time state

feedback control working intermittently, to let the controller have a rest time.

Due to the discontinuity of intermittent control, the Razumikhin method was

generalised to time-inhomogeneous functions, rather than constants.

In each chapter, we presented an example from real models. These applica-

tions to stochastic volatility model, neural networks, delayed nerual networks, van

der Pol–Duffing oscillator and coupled oscillators showed the practicability of our

theory.
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8.2 Future work

After this thesis, there are still some problems deserved our further considera-

tion.

In Chapters 4 and 5, due to mathematical techniques, we assumed that S1-

subsystem had certain stability property. But it could be unstable, so this re-

quirement seemed unreasonable in practice. On the other hand, we have noticed

that there had been some results showing that we could only impose control on

S2-subsystem to achieve stabilisation when S1-subsystem and S2-subsystem were

both unstable, if their structures were the same. Therefore, in our future work,

we will extend this theory to our stabilisation problem and get rid of the stability

assumption on S1-subsystem.

In Chapters 6 and 7, because of the requirement to compare the past segment

with current state in view of the same Lyapunov function, we gave two conditions

in the assumption for control design purpose, rather than just one condition in the

previous parts. Then in the future, we will continue to develop the Razumikhin

technique to let this assumption relaxed. Also we will consider to use this method

to structured stabilisation problem.

In Chapter 6, owing to the lack of integral transform method, the high-order

term of delay |y|p+1 vanished in the existence-and-uniqueness theorem unlike Chap-

ter 5. We will try to consider the generalised Khasminskii-type condition for hybrid

SDDEs with quite general time delays in the future.

While in Chapter 7, we only studied the intermittent control problem for hybrid

SDEs. Then in the future work, we will consider it into delay systems.
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