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Abstract 

The thesis addresses the problem of obtaining high-resolution image from a set of 

one or more low-resolution images. The thesis focused on three building blocks of 

super-resolution algorithms i.e., image registration for super-resolution, image fusion 

for super-resolution and super-resolution image reconstruction. These three parts are 

addressed separately and singular value decomposition-based fusion is introduced 

before performing interpolation or single-image super-resolution.  

An accurate image registration is crucial for super-resolution. An image registration 

approach for super-resolution based on a combination of Scale Invariant Feature 

Transform (SIFT), Belief Propagation (BP) and Random Sampling Consensus 

(RANSAC) is described to automatically register the low-resolution images. The 

results have shown effective for the removal of the mismatched features in the 

image. 

A novel SVD-based image fusion for super-resolution is developed for integrating 

the significant features from low-resolution images. The SVD-based image fusion is 

shown to enhance the super-resolution results.  

The implementation of a novel interpolation method based on a linear combination 

of the bicubic interpolation and their first-order derivates and the use of first-order 

difference equation to extract the features from the low-resolution images are 

described and shown to improve the method of single image super-resolution using 

sparse representation. The proposed method has shown to reduces the computational 

time and enhance the prior estimation of the high-resolution image as well as the 

final super-resolution results. 

The performance of the algorithms is evaluated using synthetic sequences and also 

on real sequences subjectively and objectively.  
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CHAPTER 1 

1. INTRODUCTION 

 

Recent years have seen a growing interest in the problem of obtaining high-

resolution image from low-resolution images obtained from various sources 

including medical imaging devices, traffic cameras, CCTV etc (Park et al, 2003). 

The process to retrieve high-resolution data from a set of one or more low-resolution 

images is called super-resolution.  

Two approaches to perform super-resolution image reconstruction are single-image 

(or single-frame) super-resolution and multi-image (or multi-frame) super-resolution. 

Single-frame super-resolution usually requires an interpolation of neighbouring 

pixels to estimate the high-resolution image from a single low-resolution image. 

Multi-frame super-resolution, on the other hand, uses available information from a 

low-resolution image sequence to reconstruct a high-resolution image. The super-

resolution can be applied to an image sequence to improve the spatial resolution by 

incorporating into the final high-resolution result the additional new details revealed 

in each low-resolution image. In particular, camera and scene motion leads to frames 

in the image sequence containing similar, but not identical information. The 

additional information available in these frames makes it possible to reconstruct 

visually superior frames at a higher resolution than that of the original data. The 

major advantage of this approach is that it may cost less and the existing low-

resolution imaging systems can be still utilised. 

The super-resolution image reconstruction is proved to be useful in many practical 

applications where multiple frames of the same scene can be obtained, including 

medical imaging (Robinson et al., 2010), traffic control (Hao et al., 2009), video 

applications (Gunturk et al., 2004) and satellite imaging (Chang and Wu, 2007). 

Super-resolution can also be used in surveillance (Gehani et al., 2007) and forensics 
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Low-resolution 

images 

(Lin et al., 2005) where it is often needed to magnify objects in the scene. One of the 

super-resolution applications is to enhance license plates as shown in Figure 1-1. In 

this example, the license plates in the low-resolution images are super-resolved using 

super-resolution method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Super-resolution of license plates 

  

Super-resolution 

High-resolution 

image 
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1.1 Stages in super-resolution 

Generally multi-image super-resolution involves image registration, image 

interpolation and image restoration. The stages can be performed successively or 

simultaneously. The implementation of these stages are depends on the method used 

to solve the problem. For example, the non-uniform interpolation based super-

resolution performs the stages successively while super-resolution based on 

estimation method simultaneously performs image interpolation and restoration. The 

fusion based super-resolution introduces image fusion prior to interpolation stage to 

integrate the important information from the low-resolution images. Figure 1.2 

shows the super-resolution stages.  

Image registration is used to register the low-resolution image sequence by finding 

the disparity between the low-resolution images. The image registration will be 

discussed in more details in Section 3.5 of Chapter 3. Image fusion is used to 

integrate complementary information from the low-resolution images. The image 

fusion will be discussed in more details in Section 3.9 of Chapter 3. An interpolation 

step is used to improve the resolution by combining all pixel information from low-

resolution images according to the estimated sub-pixel shifts. While image 

restoration is applied to enhance the quality of the low resolution images in the 

sequence by removal of system blur and noise.  
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Figure 1-2: The super-resolution stages 

 

This thesis focuses on three building blocks of super-resolution algorithms, i.e., 

image registration for super-resolution, image fusion for super-resolution and super-

resolution image reconstruction. The proposed algorithms are tested on synthetic 

sequences and also on real sequences. In this thesis, the different parts of the super-

resolution problem are addressed separately and introduced singular value 

decomposition (SVD)-based fusion before performing interpolation or single-image 

super-resolution.  

Low-

resolution 

images 

Image registration 

Image fusion 

Interpolation  

Image restoration and 
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1.2 Motivation 

Images with high pixel density are desirable in many applications such as high-

resolution medical images for medical diagnosis (Villanueva et al., 2010), high 

quality video conference, high definition television broadcasting (S. Mallat.), etc. 

Imaging devices have limited achievable resolution due to many theoretical and 

practical restrictions. Thus, software resolution enhancement techniques are very 

desirable for these applications. The performance of the simple interpolation method 

is poor due to the aliasing effect. Image super-resolution is therefore a solution to 

overcome the physical limitations of hardware capabilities (Park et al., 2003). 

Super-resolution is important in addressing the current need for the higher resolution 

images in most applications, the improvement of existing super-resolution methods is 

important. There has been little work so far on incorporating image fusion and 

sparse-representation into the super-resolution procedure. The improvement on 

existing super-resolution methods by inclusion of image-fusion in existing literature 

is desirable. The new methods for single image super-resolution using sparse 

representation should also be expected to provide improved super-resolution results. 

Thus this motivates the work in the development of a super-resolution algorithm that 

enables high-resolution display of low-resolution images. 
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1.3 Original contributions of the work 

In this work, the novel contributions are described below: 

 

1. A novel image registration for super-resolution based on the combination of 

Scale Invariant Feature Transform (SIFT) with Belief Propagation (BP) and 

Random Sampling Consensus (RANSAC) is studied in Chapter 4. The 

technique incorporates the RANSAC algorithm after BP in SIFT matching 

procedure to match image features. Incorporating RANSAC after BP makes 

an extension to the SIFT for image registration which filter out the outliers 

introduced in the SIFT-BP method.  

2. A novel image fusion for super-resolution using singular value decomposition 

(SVD) is introduced in Chapter 5. This method fuses the singular values of 

the reference image and the registered image. SVD-based image fusion which 

is introduced in this thesis in order to preserves the good contrast of the low-

resolution image which is degraded in the registration process. The method 

enhances super-resolution results by integrating the significant features from 

low-resolution images.  

3. A novel multi-image super-resolution scheme by incorporating SVD-based 

image fusion prior to interpolation. The technique improves the super-

resolution result by registering the low-resolution images using SIFT-BP-

RANSAC and integrating the important features from low-resolution images 

prior to interpolation using SVD-based image fusion. 

4. A new image interpolation method using bicubic interpolation and first- order 

difference equations is carried out in Chapter 6. The method provides image 

with stronger edges by adding the first order difference of the interpolated 

image to the bicubic interpolated image. This linear combination enhances 

the important features of the image especially edge information.   

5. An improvement of (Zeyde et al., 2010) methods of single-image super-

resolution using sparse representation is studied by adapting the proposed 

new image interpolation for initial estimation of the high-resolution image 

and the use of the first-order difference equation to extract the features from 
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the low-resolution images. The proposed interpolation technique enhances the 

prior estimation of the high-resolution image and provides better features for 

the image patches. The use of the first-order filter for feature extraction 

reduces the computational time. 

 

1.4 Organisation of the thesis 

The organisation of the thesis is as follows: 

 

Chapter 1 describes the objective and motivation for the research, as well as original 

contributions that are presented in this work. 

Chapter 2 provides a review of super-resolution approaches which describes existing 

work on single image super-resolution and multi-frame super-resolution. This 

chapter also presents existing works on image registration and image fusion for 

super-resolution.  

Chapter 3 presents an overview of super-resolution methods particularly the non-

uniform interpolation approach. The chapter describes the SIFT, belief propagation 

and RANSAC algorithms for detecting and matching feature points in the image. 

This chapter also presents an overview of image fusion and interpolation techniques. 

The quality metric used for assessing the performance of the methods are explained 

at the end of the chapter. 

Chapter 4 presents an image registration approach for super-resolution based on a 

combination of Scale Invariant Feature Transform (SIFT), Belief Propagation (BP) 

and Random Sampling Consensus (RANSAC). The chapter explains how the SIFT 

algorithm is used to detect and extract the local features in images, BP is used to 

match the features while RANSAC is adopted to filter out the mismatched points and 

then estimate the transformation matrix. The chapter provides experimental results 

by comparing the proposed method with traditional SIFT. This chapter also presents 

the result of using the proposed approach in the super-resolution application by 

compared to the traditional approach where SIFT is used for image registration step. 
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Chapter 5 presents a novel SVD image fusion approach for super-resolution. SVD 

image fusion is used to enhance the super-resolution results. The objective of using 

SVD is to integrate the important features from low resolution images into the 

method. The chapter describes how the proposed method converts the registered and 

reference image into the SVD domain and then the images‟ singular values are fused 

based on the fusion rule before performing the interpolation. The chapter also 

provides simulation results of applying SVD-fusion prior to interpolation by 

comparing to standard interpolation techniques and existing learning-based super-

resolution approaches.  

Chapter 6 presents an improvement of (Zeyde et al., 2010) methods of single-image 

super-resolution using sparse representation by proposing a novel image 

interpolation based on linear combination of the original patches with their first-order 

derivates. The chapter describes how the proposed method enhances the prior 

estimation and reduces the computation time and hence improves the super-

resolution results. The chapter also provides the simulation results by comparing to 

methods of (Zeyde et al., 2010). 

Chapter 7 presents the summary of the research and with some suggestions for future 

work. 

All references can be found at the end of the thesis. 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1   Introduction 

There is a great deal of research on super-resolution in the literature and a variety of 

techniques have been proposed so far. A review of earlier super-resolution 

techniques can be found in (Borman and Stevenson, 1998b). More recent reviews 

can be found in (Park et al., 2003) and (Tian and Ma, 2011). Super-resolution 

methods can be classified into several categories based on the method adopted to 

solve the super-resolution problem (Borman and Stevenson, 1998, Park et al., 2003, 

Tian and Ma, 2011). Super-resolution image reconstruction methods can also be 

categorised into single-image (or single frame) super-resolution and super-resolution 

from multiple images (or multi-frame super-resolution). Super-resolution can be 

carried out in two different domains i.e., either in frequency domain or spatial 

domain.  

Extensive work has been published on single-image super-resolution (Yang et al., 

2008, Glasner et al., 2009., Adler et al., 2010, Zeyde et al., 2010, Kim and Kwon, 

2008) and multi-frame super-resolution (Yang et al., 2008, Glasner et al., 2009., 

Adler et al., 2010, Zeyde et al., 2010, Kim and Kwon, 2008). Single-image super-

resolution methods usually require a large amount of training data to generate 

efficient learning models, while multi-image/frame super-resolution methods 

regularly involve an ill-posed inverse problem with matrices of large dimensions.    

In this chapter, the existing work on super-resolution approaches is reviewed. The 

remainder of the chapter is organised as follows: The interpolation-based super-

resolution method is presented in Section 2.2. A brief review of early multi-frame 

super-resolution methods is presented in Section 2.3. In Section 2.4, the existing 
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work on super-resolution based as an estimation problem is presented. Work on 

wavelet-based super-resolution is given in Section 2.5 while previous work on non-

uniform interpolation based super-resolution is discussed in Section 2.6. Image 

fusion in super-resolution and learning-based super-resolution is presented in Section 

2.7 and 2.8, respectively. Finally, chapter summary are presented in Section 2.9. 

2.2 Interpolation-based method 

The simplest method to reconstruct a high-resolution image from a single low-

resolution image is an interpolation-based method such as bilinear and bicubic 

interpolation.  The fine details in the reconstructed image usually suffer from blur 

and artefacts. More advanced interpolation methods are proposed in the literature to 

overcome the shortcomings. A number of edge-directed interpolation (EDI) methods 

that make use of the local statistical and geometrical properties to interpolate the 

unknown pixel values are able to obtain high visual quality interpolated images with 

the use of edge map (Allebach and Wong, 1996, Tam et al., 2010, Li and Orchard, 

2001). Work in (Allebach and Wong, 1996) proposed an edge directed interpolation 

by assigning weights to different structures in the image. (Tam et al., 2010) presents 

an improvement of the NEDI method, namely the Modified Edge-Directed 

Interpolation (MEDI), which is an extension of work in (Li and Orchard, 2001).  

(Takeda et al., 2007) developed a kernel regression method by considering the 

underlying structural kernel regression. (Cha and Kim, 2007) developed an efficient 

Partial Differential Equations (PDE)-based interpolation algorithm for image super-

resolution. A texture enhancement method is incorporated as a post-process of PDE-

based interpolation to overcome the drawback of conventional PDE-based 

interpolation that tends to weaken fine structures. The algorithm is suitable for real-

time processing for resolution enhancement of images and video clips that are 

downloaded through internet connections or wireless communications.  

(Lertrattanapanich and Bose, 2002) developed a high-resolution image using 

Delaunay Triangulation. An algorithm based on spatial tessellation and 

approximation of each triangle patch in the Delaunay triangulation (with smoothness 

constraints) by a bivariate polynomial is used to construct a high-resolution image 
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from a set of low-resolution frames. The high-resolution algorithm is accompanied 

by a site-insertion algorithm for update of the initial high-resolution image with the 

availability of more low-resolution frames till the desired image quality is attained. 

The algorithm is followed by post filtering and is suitable for real-time image 

sequence processing because of the fast expected (average) time construction of 

Delaunay triangulation and the local update feature.  

 

2.3 Early works on multi-frame super-resolution 

The problem of image super-resolution from a set of low-resolution images received 

much attention in early 80s as an alternative to interpolation-based methods. (Huang 

and Tsay, 1984) were first to propose multi-frame image restoration in the frequency 

domain using the properties of Fourier transforms and disregarded the blur in the 

imaging process. The point spread function (PSF) was not considered and the 

sampling rate was assumed to be ideal across all frames. (Tekalp et al., 1992) 

extended Tsai and Huang formulation by addressing the problem of noise and blur 

during acquisition. Later, (Kim et al., 1990) extended this to blur and noisy low-

resolution images using a recursive implementation based on the weighted least 

square theory, provided the noise had zero mean and the blur and noise were 

identical across all low-resolution images. They did not address any motion 

estimation. Later, Bose et al used total least squares (Bose et al., 1993).  

Early methods tended to be implemented in the frequency domain. They were 

relatively simple but unable to accommodate general scene observation models 

including spatially varying degradations or blur, non-global relative scene motion or 

noise models (Borman and Stevenson, 1998a). However, improved performance and 

greater flexibility was obtained via spatial domain methods. Spatial domain methods 

improve the super-resolution formulations by incorporating spatially varying noise 

and blur processes as well as complex motion relationships between the low-

resolution images. (Ur and Gross, 1992) suggested an alternative method carried out 

in the spatial domain based on (Papoulis, 1977) and (Brown Jr, 1981). An algorithm 

based on a minimum mean squared error (MMSE) approach for multiple image 
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restoration problems and interpolation of the restored images into a single image is 

proposed by (Srinivas and Srinath, 1990). The limitations of all the above methods 

were global uniform translational displacement between the measured images, linear 

space-invariant (LSI) blur and homogeneous additive noise.  

(Irani and Peleg, 1991) introduced an iterative back-projection method, similar to 

that used in tomography. The main feature of the Irani and Peleg‟s method is that it 

iteratively updates the high-resolution estimate by back-projecting the difference 

between the observed and the simulated low-resolution images. The method allows 

arbitrary smooth motion flow, although the convergence of the proposed algorithm is 

demonstrated only for an affine geometric warp between the measured images.  

A high-resolution image can also be reconstructed using a Projection Onto Convex 

Sets (POCS) algorithm (Stark and Oskoui, 1989), where the estimated reconstruction 

is successively obtained on different convex sets. POCS is one of the early 

approaches. POCS was first applied to super-resolution by Stark and Oskoui (Stark 

and Oskoui, 1989). The method of POCS converges to a point in the feasible region 

called as the feasible solution by successive projection of an initial estimate of the 

solution onto the convex constraint sets. POCS is an iterative method that employs a 

priori information about the degradation operator, the noise statistics and the actual 

high-resolution image distribution. With this prior information an estimate of the 

low-resolution observation is generated. The difference between the actual and the 

estimated low-resolution observation is called the residual of the imaging or 

observation model. The advantages of POCS are its simplicity and that prior 

information can be incorporated into the algorithm. The disadvantages are non-

uniqueness of solution and slow convergence. The POCS formulation for super-

resolution reconstruction was explored by (Stark and Oskoui, 1989) and their work 

was extended by (Tekalp et al., 1992) to include an observation noise. In this method 

an estimate of high-resolution of the reference image is determined iteratively 

starting from some arbitrary initialisation. Successive iterations are obtained by 

projecting the previous estimate onto the convex sets. (Patti et al., 1997) developed a 

POCS super-resolution technique to consider space varying blur and nonzero 
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aperture time.  The POCS method works better than the Iterative Backward 

Projection (IBP) since it can easily be combined with the restoration process.  

2.4 Super-resolution as an estimation problem 

The super-resolution problem has also been tackled as an estimation problem that 

could be solved by means of statistical estimation, specifically, the maximum 

likelihood (ML) and the maximum a-posteriori estimator (MAP). The ML estimate 

of the high-resolution image reduces the mean square error (MSE) between the low- 

resolution images and the simulated ones. (Schultz and Stevenson, 1996) used a ML 

and MAP framework to solve super-resolution.   

(Elad and Feuer, 1994) used the observation models of POCS, ML and MAP 

approaches to solve for single-image restoration from linear blur and additive noise. 

(Farsiu et al., 2004) propose an alternate approach using the l1 norm instead of l2 

norm and robust regularisation based on a bilateral prior to deal with different data 

and noise models. The l1 norm is more robust than l2 norm and it improves the 

performance of super-resolution in terms of errors in motion and blurs estimation and 

results in images with sharp edges.  

Following a Bayesian framework, (Martins et al., 2007) propose a procedure for 

super-resolution image reconstruction based on Markov random fields (MRF) 

(Kindermann, 1980), where a Potts-Strauss model is assumed for the a priori 

probability density function of the actual image. The first step is aligning all the low-

resolution observations over a high-resolution grid and then improving the resolution 

through the Iterated Conditional Modes (ICM) algorithm (Besag, 1986). The method 

is analysed by considering a number of simulated low-resolution and globally 

translated observations. 

There exists extensive work in the literature on super-resolution using estimation 

techniques. More details on the existing work in this area are not discussed here as 

the thesis is focused on non-uniform based interpolation and learning-based 

approaches.  
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2.5 Wavelet-based super-resolution 

Wavelet domain methods have been employed to solve the super-resolution problem. 

This is motivated by the properties of wavelets which provide an efficient multi-scale 

representation of an image for recovering the high frequency information (Nguyen 

and Milanfar, 1999). (Nguyen and Milanfar, 1999) propose an efficient algorithm 

based on representing the low-resolution images using wavelet coefficients and 

relating these coefficients to the desired super-resolution image. (Bose and 

Chappalli, 2004) propose a super-resolution method based on second-generation 

wavelets. A Biorthogonal wavelet system is proposed in (Shen and Sun, 2004) for 

high-resolution image reconstruction. 

(El-Khamy et al., 2005b) perform image registration in the wavelet domain, and then 

the registered low-registration wavelet coefficients are fused to obtain a single 

image. This single image is then interpolated to get a higher-resolution image. 

Interpolation in the Discrete Wavelet Transform (DWT) domain been introduced in 

(Demirel and Anbarjafari, 2011) to produce high-resolution images.  

(Ji and Fermüller, 2006) propose a robust wavelet super-resolution approach which 

performs a wavelet-based denoising scheme in each iteration of super-resolution 

reconstruction. (Chappalli and Bose, 2005) develop a simultaneous denoising and 

super-resolution approach in the wavelet domain. An efficient denoising and 

adaptive interpolation in the wavelet domain are also used in (Liyakathunisa and 

Ananthashayana, 2009) for a robust wavelet based super-resolution reconstruction of 

low-resolution images.  An image interpolation method which is combined with 

deblurring and denoising is proposed by (Li et al., 2007).  

The MAP (Maximum a Posteriori) estimate is adopted to obtain a super-resolution 

image from a sub-sampled, blurred and contaminated image in the wavelet domain. 

The universal hidden Markov tree (uHMT) theory in the wavelet domain is applied 

to construct a prior model for the MAP estimate. The results of (Li et al., 2008)  

show that reconstructed images are much better and sharper than those recovered 

images by the Huber-Markov random field (HMRF) prior model for MAP in the 

space domain. 
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2.6 Non-uniform interpolation based super-resolution 

The non-uniform interpolation approach usually consists of three (Park et al., 2003). 

1) Registration: includes motion estimation and image registration to map the pixels 

from all available low-resolution frames onto a common reference frame. 

2) Interpolation: this step is used to map the registered pixels (usually non-uniformly 

distributed) onto a rectangularly sampled super resolution grid. 

3) Restoration: this step is needed to limit the effect of sensor blur and noise in the 

low resolution frames and to reconstruct sharper image details. 

The three steps can be implemented separately or simultaneously according to the 

reconstruction approach adopted.  

An image registration and image fusion for super-resolution particularly the 

application of SIFT in image registration and different fusion techniques are 

reviewed in the next section. 

2.6.1 Image registration in super-resolution 

Image registration is used to match two or more images of the same scene taken at 

different times, from different viewpoints, and / or from different sensors. It is the 

process of spatially matching two images, i.e., the reference and target images so that 

the corresponding coordinate points in the two images correspond to the same 

physical region of the scene being imaged. 

Accurate image registration is a crucial step in the super-resolution process. In super-

resolution, image registration is used to register low-resolution image frames. A 

subpixel-registered image sequence of the same scene potentially contains more 

information than any single view alone. Image registration enables sub-pixel shifts 

and hence combines useful information from multiple frames. There is a great deal of 

image registration research in the literature. The survey by (Zitova and Flusser, 

2003) provides an overview of image registration methods. Reported image 

registration methods can be classified into two main approaches: intensity-based 

methods and feature-based methods. Intensity-based methods compare the intensity 



Chapter 2 

 

16 

 

patterns in images via correlation metrics, while feature-based methods find 

correspondence between image features.  

In recent years, a number of different image registration techniques have been used 

for super-resolution.  Optical flow image registration by (Lucas and Kanade, 1981) is 

used in optical flow super-resolution by (Baker and Kanade, 1999). Another 

approach can be found in (Farsiu et al., 2004) and (Vandewalle et al., 2006) where a 

frequency domain registration method that removes the aliased part of the spectrum 

of the low-resolution images before registering the images is proposed. (Fan et al., 

2006) proposed an improve registration method of (Keren et al., 1988) and used the 

projection onto convex set (POCS) method to reconstruct high-resolution image from 

several low-resolution image sequences.  

(Madhusudhan and Pais, 2007) used frequency domain registration by segmenting 

the video based on histogram for enhancing the resolution of video. Then bicubic 

interpolation is applied to the video to generate the super-resolution video frames. A 

computationally simple super-resolution algorithm using an adaptive Wiener filter is 

developed by (Hardie, 2007). The algorithm uses gradient based sub-pixel 

registration to position each low-resolution pixel value on a common spatial grid that 

is referenced to the average position of the input frames. Then used a weighted 

nearest neighbour interpolation approach to reconstruct high-resolution image and 

finally wiener filter is applied to reduce blur and noise.  

(Robinson et al., 2009) use the method of variable projections that explore multi-

frame registration under aliasing, while (He et al., 2007) focus on multi-frame 

registration under rotations and shifts. Using recent results from the sampling theory 

for signals with Finite Rate of Innovation (FRI), (Baboulaz and Dragotti, 2007) 

proposed a new technique for sub-pixel extraction from low-resolution images of 

local features like step edges and corners for image registration. By exploiting the 

knowledge of the sampling kernel, the techniques are able to locate exactly the step 

edges on synthetic images.  
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2.6.2 SIFT for image registration  

In this section, an image registration approaches using SIFT and RANSAC are 

reviewed. The Scale Invariant Feature Transform (SIFT) is one of the most popular 

feature-based methods introduced by (Lowe, 2004). SIFT is able to detect and 

describe local features that are invariant to scaling and rotation. Various 

improvements have been made to the SIFT algorithm, and a recent advance reported 

in (Cheng et al., 2009) uses belief propagation to achieve better matching than is 

achieved with the minimum Euclidean distance method (Lowe, 2004). In (Yuan et 

al., 2008) Random Sampling Consensus (RANSAC) (Fischler and Bolles, 1981) is 

used to improve the mismatch points in the SIFT algorithm and then a support vector 

machine is adopted to estimate the transformation matrix. Geometrical information 

between the descriptors is used in (Brown and Lowe, 2007) where SIFT with 

RANSAC is used for robust homography estimation with a probabilistic model to 

verify the match. In, (Seong and Park, 2008), matching in the traditional SIFT 

algorithm is improved by using principal-component analysis (PCA) and RANSAC 

is used to estimate the homography matrix. In (Tang et al., 2008) the SIFT algorithm 

is used to register medical microscopic image sequences where the Gaussian 

weighting function is used to optimise the feature descriptor.  

(Amintoosi et al., 2009a) used SIFT features for registration of images under a 

projective model in a super-resolution problem. The method has been improved in  

(Amintoosi et al., 2009b) by using displacement restriction criteria for removing the 

incorrect matches with the assumption of a Gaussian Probability Distribution 

Function (PDF) for the mentioned displacements.  

Robust SIFT features are used for image registration in (Vrigkas et al., 2011). The 

image registration part is divided into two steps. First the low-resolution images are 

registered by finding the corresponding SIFT features then the registration parameter 

is fine tuned together with the estimation of the high-resolution image in an iterative 

procedure using the maximisation of the mutual information criterion. 

SIFT features have also been used in (Zhu et al., 2010) for image registration in the 

mosaicing problem. The SIFT features and image mosaicing are integrated in order 

to construct a full high-resolution unmanned aerial vehicle (UAV) map.  
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2.7 Image fusion in super-resolution 

In this section, the super-resolution methods that include fusion in the super-

resolution steps are presented. Image fusion is needed to integrate useful information 

from the low-resolution images.  

Various methods have been reported in the literature which incorporates image 

fusion in the super-resolution framework. Image fusion is the process of 

incorporating complementary information that exists in different observation images 

into a single unified image (Hill et al., 2002). It has been successfully used in many 

fields such as remote sensing, robotics, and medical applications. There are a number 

of different techniques for image fusion such as wavelet transform methods and (Li 

et al., 1994) and discrete cosine transform methods (Tang, 2004).  

Singular value decomposition (SVD)-based fusion has been used in many papers 

such as (Pang et al., 2004, Jia and Zhang, 2009, Cernekova et al., 2005, Wang et al., 

2007). In (Pang et al., 2004), a fusion of a linear discriminant analysis (LDA) and 

SVD is used for face recognition. LDA is a classical method for feature extraction 

and dimensionality reduction which has been widely used in several classifications. 

SVD is used as an enhancement of classical LDA by overcoming the singularity 

problem and to reduce dimensions of the scatter matrix.  In (Jia and Zhang, 2009) the 

curvelet transform and SVD are used for facial feature extraction and recognition. 

The curvelet energy features of low-frequency and the high-frequency are first 

extracted and then singular value compression is performed and fused.  SVD-based 

fusion is applied in (Repperger et al., 2009) for image registration. In (Cernekova et 

al., 2005) the features obtained by SVD are fused for the detection of shot boundaries 

in video sequences. In (Cernekova et al., 2005), SVD is used for its capabilities to 

derive a refined low-dimensional feature space from the high-dimensional raw 

feature space, where similar video patterns are placed together and can be easily 

clustered. In (Wang et al., 2007) the SVD-based fusion is applied to the multiple 

spectrum face recognition problem. In (Wang et al., 2007) the image is decomposed 

into three layers with different energy distribution and their eigenvalues are fused for 

reconstruction. 
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Image fusion has also been used in the super-resolution image reconstruction process 

because of its ability to preserve important features from multiple images. For 

example, in (El-Khamy et al., 2005a), the ill-posedness is removed by breaking the 

problem into four consecutive steps: registration, restoration, image fusion and 

interpolation. The low-resolution images are assumed to be correctly registered prior 

to the multi-channel restoration step. The image fusion step is introduced with the 

purpose of integrating the features obtained from each output of the multichannel 

restoration step. Then the fused image is interpolated using maximum entropy 

interpolation. 

In recent years, a number of different fusion techniques have been used for super-

resolution (Liyakathunisa and Ananthashayana, 2009, Liyakathunisa, 2009, Bhushan 

et al., 2010). A wavelet-based fusion approach is used for super-resolution in (El-

Khamy et al., 2005a, Liyakathunisa and Ananthashayana, 2009, Liyakathunisa, 

2009). In (El-Khamy et al., 2005a) a discrete wavelet transform (DWT) image fusion 

approach is used to integrate the outputs of the maximum entropy image restoration 

step, while in (Liyakathunisa and Ananthashayana, 2009) the images are registered 

using affine transformation and the aligned images are then fused in the DWT 

domain which simultaneously reduces the noise. In (Liyakathunisa, 2009) a wavelet 

lifting scheme is adopted as a fusion technique. The low-resolution images are 

registered using an FFT-based algorithm, then these images are decomposed and 

fused using a wavelet lifting scheme before performing wavelet interpolation. 

Recently, a framelet-based fusion is used for super-resolution blind reconstruction in 

(Bhushan et al., 2010).  

(Liyakathunisa and Ananthashayana, 2009) proposed a super-resolution blind 

reconstruction technique for linearly degraded images. The algorithm is divided into 

three parts: image registration, wavelets based fusion and image restoration. The 

three low resolution images are considered which may be sub pixel shifted, rotated, 

blurred or noisy, the sub-pixel shifted images are registered using an affine 

transformation model. A wavelet based fusion is performed and the noise is removed 

using soft thresholding. The technique reduces blocking artifacts and also smoothes 

the edges and it is also able to restore high frequency details in an image.  
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2.8 Learning-based super resolution 

Some super-resolution techniques use learning-based methods to tackle the super-

resolution problem. Learning-based super-resolution requires a sufficient and 

representative database of patches pairs from high-resolution images and their 

corresponding low-resolution images or the coefficients of alternative representation. 

The database is used for training. For the reconstruction, an appropriate high-

frequency or smoothing information needs to be added to the estimated high-

resolution image. (Freeman et al., 2002) proposed a novel approach for interpolating 

high-frequency details from a training set. (Patil et al., 2008) proposed a better 

learning algorithm using a real image training set that enhances the high frequency 

information. The training set consists of preprocessed images which capture the 

structural correlation. The technique learns the fine details that correspond to 

different image structures seen at a low-resolution and then used those learned 

relationships to predict fine details in other images. (Candocia and Principe, 1999) 

proposed an adaptive super-resolution based on local correlations. The procedure 

locally projects image samples onto a family of kernels that are learned from image 

data. First, an unsupervised feature extraction is performed on local neighbourhood 

information from a training image. These features are then used to cluster the 

neighbourhoods into disjoint sets for which an optimal mapping relating homologous 

neighbourhoods across scales can be learned in a supervised manner. A super-

resolved image is obtained through the convolution of a low-resolution test image 

with the established family of kernels.  

A thorough investigation of the application of support vector regression (SVR) to the 

super-resolution problem is conducted by (Ni and Nguyen, 2007). Prior to their 

study, the SVR problem was enhanced by finding the optimal kernel. This was done 

by formulating the kernel learning problem in SVR form as a convex optimization 

problem, specifically a semi-definite programming (SDP) problem. The idea was 

improved upon by observing structural properties in the discrete cosine transform 

(DCT) domain to aid in learning the regression. Further improvement involved a 

combination of classification and SVR-based techniques, extending works in 

resolution synthesis.  
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(Miravet and Rodriguez, 2005) proposed a method based on the use of a hybrid 

multi-layer perceptron-probabilistic neural network (MLP-PNN) architecture, which 

incorporates the use of the local image models as the input for the neural processing 

stage. The data dimensionality was firstly reduced by application of PCA. An MLP, 

trained on synthetic sequences with various amounts of noise, estimates the high-

resolution image data.  

(Chang et al., 2004) used a locally linear embedding (LLE) method to generate the 

high-resolution image patch which depends on multiple nearest-neighbours in the 

training set. (Datsenko and Elad, 2007) proposed finding several candidates for high 

quality patches at each pixel position in the observed low resolution image, these 

candidates are found as the nearest-neighbours image database that contains pairs of 

corresponding low-resolution and high-resolution image patches. These patches are 

used as the prior image model and then merged onto an MAP cost function to arrive 

at the closed-form solution of the desired high-resolution image.  

Recently various attempts have been made to regularise the ill-posed inverse problem 

of image super-resolution using sparse representations of low-resolution image 

patches (Yang et al., 2010, Zeyde et al., 2010). Sparse representation is applied in 

many fields in signal processing including applications such as image denoising, 

image restoration and classification (Elad and Aharon, 2006, Huang and Aviyente, 

2007, Mairal et al., 2008). Image patches can be represented as a sparse linear 

combination of elements from an over-complete image patch dictionary (Wang et al., 

2011, Kim and Kwon, 2008). The idea is to seek a sparse representation for each 

patch of the low-resolution input, followed by exploiting this representation to 

generate the high-resolution output. By jointly training two dictionaries for the low-

resolution and high-resolution image patches, the sparse representation of a low 

resolution image patch can be applied with the high-resolution image patch 

dictionary to generate a high-resolution image.  Yang et al proposed a sparse 

representation based super-resolution method (Yang et al., 2008), predicted on the 

assumption that the high-resolution and low-resolution patches have the same sparse 

representation coefficients with respect to a high-resolution dictionary and a 
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corresponding low-resolution dictionary. Recently the work has been extended and 

improved by (Zeyde et al., 2010).   

(Sun et al., 2011) proposed a method to search for a mapping between a pair of low-

resolution and high-resolution image patches in the gradient domain by learning a 

generic image database and the input image itself. Given a low-resolution image, the 

high-resolution image is reconstructed using sparse representation in the gradient 

domain and solving a Poisson equation. (Yin et al., 2012) used a texture constrained 

sparse representation for single image super-resolution. Firstly, the low-resolution 

observed image is segmented into different texture regions. Through pre-prepared 

texture databases, the low-resolution regions are classified into different texture 

categories using the designed texture classifier. Then, the high-resolution segments 

are reconstructed by sparse representation with relevant texture dictionaries. 

Integrating all segments, the high-resolution result is obtained. 

(Jing et al., 2010) used both the human visual perception and image gradient features 

in the proposed super-resolution framework, the image total variation are 

decomposed into structural components and texture components. Based on the theory 

of sparse signal representation, the K-SVD method is used to generate an ultra-

complete dictionary and to achieve the reconstruction of the texture component. The 

super-resolution reconstruction of the whole original low-resolution image is realised 

by fusing them with the bi-cubic interpolated image reconstruction of the structural 

components. The proposed method, without external image database support, brings 

in the whole image information while depending on the fixed neighbourhood. 

(Ravishankar et al., 2011) used singular values as priors for regularizing the ill-posed 

nature of the single image super-resolution problem. Method of Optimal Directions 

algorithm (MOD) (Engan et al., 1999) has been used in the proposed algorithm for 

obtaining high-resolution and low-resolution dictionaries from training image 

patches. Using the two dictionaries, the given low-resolution input image is super-

resolved. 

(Zhang et al., 2011) proposed a method that speeds up the sparse-representation 

based super-resolution method by dual dictionary learning. The dual dictionary 

learning method is used and further extended to learn the dual filters together with 
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coupled dictionary training procedure for sparse representation based super-

resolution. Yu et al proposed using contextual dictionaries for sparse-representation 

based super-resolution.  The contextual dictionaries refer to the local relationships 

between patches rather than using the entire samples. This will lead to efficient 

discriminative features (Yu et al., 2011).  

2.9 Summary 

This chapter presents the review of super-resolution approaches. Existing work can 

be categorised into single image super-resolution and multi-image super-resolution. 

The existing works on both methods have been presented in this chapter. For work 

on single image super-resolution, an interpolation-based method and learning-based 

method are described in this chapter. The interpolation-based method is the simplest 

method to reconstruct a high-resolution image from a single low-resolution image. 

More advanced interpolation-based methods and learning-based methods are 

proposed in the literature to overcome the drawback of these basic interpolation 

techniques.  

An alternative to interpolation-based methods is multi-frame super-resolution where 

set of low-resolution images are used to reconstruct high-resolution images. There 

exist many variations on the proposed methods in the literature. This chapter presents 

the non-uniform interpolation approach which divides the super-resolution problem 

into three main stages i.e. image registration, interpolation and restoration. Existing 

work on image registration and image fusion for super-resolution is discussed and 

more details on image registration using SIFT and SVD-based fusion is described.  
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CHAPTER 3  

3. KEY COMPONENTS OF SUPER-

RESOLUTION 

3.1   Introduction 

Super-resolution is a set of techniques that in some way enhance the resolution of an 

imaging system, increasing image or video resolution. The term super-resolution is 

typically used in the literature to describe the process of obtaining a high-resolution 

image or a sequence of high-resolution images from a set of low-resolution 

observations. The super-resolution image reconstruction is useful in many 

applications including medical and satellite imaging, and video applications.  

Multi-frame super-resolution uses multiple low-resolution images which provide 

different views of the same scene. The availability of multiple low-resolution images 

captured from the same scene makes super-resolution reconstruction possible.  

Super-resolution will be possible if the low-resolution images are shifted with 

subpixel precision and have different sub-pixels shifts. If low-resolution images are 

shifted by integer units, then each image contains the same information, and then 

there is no new information that can be used to reconstruct a high-resolution image 

so super-resolution serves no purpose. Individual frames can also be obtained from a 

video sequence. If these scene motions are known or can be estimated within sub-

pixel accuracy, then super-resolution image reconstruction is possible by combining 

these new information contained in each low-resolution image. 

This chapter presents key components of super-resolution and its stages. The 

remainder of the chapter is organised as follows. The sampling theorem is given in 

Section 3.2. In Section 3.3, the observation model of the super-resolution problem is 

presented. A non-uniform interpolation approach is given in Section 3.4. Section 3.5 

outlines the image registration techniques followed by SIFT, Belief Propagation and 

RANSAC algorithm in Section 3.6, 3.7 and 3.8. An overview of image fusion is 

http://www.afterdawn.com/glossary/terms/resolution.cfm
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presented in Section 3.9. Section 3.10 discusses interpolation techniques. The quality 

metric used for assessing the performance of the methods are discussed in Section 

3.11. Finally, summary are presented in Section 3.12. 

3.2 The Sampling theorem 

The Nyquist–Shannon sampling theorem states that perfect reconstruction of a signal 

is possible when the sampling frequency ( )sF  is greater than twice the maximum 

frequency max( )F   of the signal being sampled, or equivalently, when the Nyquist 

frequency (half the sample rate) exceeds the highest frequency of the signal being 

sampled. If lower sampling rates are used, the original signal's information may not 

be completely recoverable from the sampled signal (Shannon, 1949).  

For signal upsampling, consider a discrete signal ( )f k on a radian frequency digital 

frequency range. Let L denote the upsampling factor. The process starts by adding 

1L  zeros between each sample in ( )f k or equivalently define as 

max

 if  is an integer
( )

0

 
2

s

k k
f

g k L L

otherwise

LF
F

 

(3-1) 

Then perform low-pass filter with frequency cut off at 
L

 to eliminate copies. 

3.3 Observation Model 

The observation model is a model that relates the high-resolution image to the 

observed low-resolution images (Park et al., 2003). Figure 3-1 from top to bottom 

shows how the high-resolution image is transformed into an observed low-resolution 

image. The reverse process shall be applied in order to reconstruct the high-

resolution image from low-resolution images. 

 

http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Nyquist_frequency
http://en.wikipedia.org/wiki/Nyquist_frequency
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Figure 3-1: Observation model relating LR imaged to HR images (Park et al., 2003)  

 

In super-resolution, the mathematical model is assumed as the ith low-resolution 

image iy  that has 1 1N N   pixels and the original high-resolution image x  is of size 

1 1 2 2L N L N
 
where 1L  and 2L   represent the down-sampling factors in the horizontal 

and vertical directions respectively. Generally, the i-th low-resolution image iy   can 

be obtained from the original high-resolution image x  through blurring, warping and 

down-sampling. The mathematical model can be expressed as follows: 

i i i iy DH M x n   (3-2) 

where D  is the down-sampling matrix and in  represents the additive white Gaussian 

noise. iM   is the warping matrix which contains global or local translation, rotation 

etc and can be determined  through motion estimation algorithms. iH   is the blurring 

matrix.  
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The motion that occurs during the image acquisition is represented by warp matrix

iM . It may contain global or local translation, rotation, and so on. Since this 

information is generally unknown, the scene motion for each frame with reference to 

one particular frame needs to be estimated. The warping process performed on high-

resolution image x  is actually defined in terms of low-resolution pixel spacing 

during the estimation process. Thus, this step requires interpolation when the 

fractional unit of motion is not equal to the high-resolution sensor grid. 

Blurring may be caused by an optical system (e.g., out of focus, diffraction limit, 

aberration, etc.), relative motion between the imaging system and the original scene, 

and the point spread function (PSF) of the low-resolution sensor. It can be modeled 

as linear space invariant (LSI) or linear space variant (LSV), and its effects on high-

resolution images are represented by the matrix iH .  

This blur is usually modeled as a spatial averaging operator as shown in Figure 3-2. 

In the use of super-resolution reconstruction methods, the characteristics of the blur 

are assumed to be known. However, if it is difficult to obtain this information, blur 

identification should be incorporated into the reconstruction procedure. 

The subsampling matrix D may generate aliased low-resolution images from the 

warped and blurred HR image. Although the size of low-resolution images is the 

same here, in more general cases, the different size of low-resolution images can be 

addressed by using a different subsampling matrix (e.g., Dk for 1 ≤ k ≤ p). 

The next section will discuss in details one of the super-resolution approach i.e. non-

uniform interpolation approach. 
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Figure 3-2: Low resolution sensor PSF (Park et al., 2003) 

 

 

3.4 Non-uniform interpolation approach 

There exist many approaches to solve the super-resolution problem as described in 

Chapter 2 in this thesis. This section focuses on the non-uniform interpolation 

method. The non-uniform interpolation method aims to fuse all information from 

low-resolution images as affectively as possible. Generally, three problems must be 

solved for non-uniform interpolation methods: image registration, interpolation and 

restoration. The three stages are performed successively as shown in Figure 3-3. 
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Figure 3-3: Three steps for non-uniform interpolation approach  

 

The first step is to register the low-resolution image sequence. An image sequence of 

the same scene potentially contains more information than any single view alone. 

Image registration is used to determine the disparity between the low-resolution 

images and hence combines useful information from multiple frames. An accurate 

image registration has crucial implications on overall super-resolution performance. 

The image registration will be discussed in more details in Section 3.5. 

The second step is to combine all the low-resolution frames according to the 

estimated sub-pixel shifts. Since the shifts between the low-resolution images are 
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arbitrary, the images will not always match up to a uniformly high-resolution grid. 

Thus, non-uniform interpolation is necessary to obtain a uniformly spaced high-

resolution image from a non-uniformly spaced composite of low-resolution images. 

Non-uniform interpolation between low-resolution images is used to improve 

resolution.  

 

 
Reference LR frame 

Other LR frames 

 

Figure 3-4: Mapping of non-uniform grid to uniform grid (Park et al., 2003)  
 

 

The last step is to enhance the quality of the low resolution images in the sequence 

by removal of system blur and noise. In this step, any image deblurring and 

denoising techniques can be applied. Next, each of the steps will be explained in 

details.  
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3.5   Image registration 

Image registration is the process of determining the optimal spatial transformation 

that maps one image to another. A spatial transformation must be found so that the 

points in one image can be related to their corresponding points in the other. The 

images to be registered have a mapping function to the reference image. Spatial 

transformations are applied to the images using the mapping functions to align 

images to a reference. This mapping is the transformation matrix and its matrix is 

called the homography matrix (Szeliski, 2005).  Homography relates the pixel co-

ordinates in the two images. It is a 3 by 3 matrix H which has eight degrees of 

freedom to represent spatial transformation in 2D space.  
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(3-3) 

where x’ and y’ represents the transformed coordinates and x, y are the original 

coordinates of the pixels. 

There is a great deal of image registration research in the literature. In this section, 

background details on SIFT, belief propagation and RANSAC is discussed as the 

work on image registration of this thesis focus in this area.  
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3.6 SIFT algorithm 

The Scale Invariant Feature Transform (SIFT) is one of the most popular feature-

based methods introduced by (Lowe, 2004). The SIFT algorithm presents a method 

for extracting local features that are tolerant to changes in scale, illumination and 

rotation (Lowe, 2004). There are four main steps when extracting local features:  

(i) Keypoints detection: First, a set of Difference of Gaussian (DoG) images 

covering the range of scales are generated using a Gaussian pyramid and 

then local minima and maxima are tracked through scale space by 

comparing each pixel with its 26  nearest neighbours. Each local minima 

and maxima form a candidate keypoint.  

(ii) Keypoints localisation:  The second step is to determine location and 

scale for each candidate keypoint. Points with low contrast and poorly 

localized edge points are rejected.  

(iii) Orientation assignment:  In the orientation assignment step, each 

keypoint is assigned a direction based on the local image gradient. 

Additional keypoints may be created if strong directions exist.  

(iv) Keypoints descriptor generation:   Lastly, the local neighbourhood of 

each keypoint is used to generate an array of SIFT descriptors.  

The SIFT algorithm extracts features in an image that correspond to local extrema of 

difference-of-Gaussian filters at different scales. Detection of interest points in the 

image start by the convolution of the image with Gaussian filters at different scales 

and the generation of difference-of-Gaussian images from the difference of adjacent 

blurred images.  

A Gaussian-blurred image described as the formula 

( , , ) ( , , )* ( , )L x y G x y I x y  (3-4) 

where L is a blurred image, I is an image, x and y are the location coordinate,  is 

the scale parameter, the * is the convolution operator in x and y and G is Gaussian 

blur operator.  
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2 2

2

( )

2
2

1
( , , )

2

x y

G x y e  
(3-5) 

The blurred images are grouped by octave. An octave corresponds to doubling the 

value of σ. A fixed number of blurred images per octave are obtained by selecting the 

value of k (blur level). This will ensure that the same figure of difference-of-

Gaussian images per octave is obtained. 

Then the difference-of-Gaussian images are generated from the difference of 

adjacent blurred images which is a difference between the Gaussian-blurred images 

at scales σ and kσ. 

( , , ) ( , , ) ( , , )D x y L x y k L x y  (3-6) 

 

 

Figure 3-5: Diagram showing the blurred images at different scales, and the 

computation of the difference-of-Gaussian images (Lowe, 2004). 

Interest points or keypoints are identified as local maxima or minima of the DoG 

images across scales. Each pixel in the DoG images is compared to its 8 neighbours 

at the same scale, plus the 9 corresponding neighbours at neighbouring scales. If the 

pixel is a local maximum or minimum, it is selected as a candidate keypoints.  

k 

k 
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Figure 3-6: Local extrema detection, the pixel marked × is compared against its 26 

neighbors in a 3 × 3 ×3 neighbourhood that spans adjacent DoG images (Lowe, 

2004) 

 

The position for each candidate keypoint is determined by interpolation of the nearby 

data. Then all the candidate keypoints with low contrast are removed and responses 

along edges are eliminated. Accurate keypoints‟ locations are computed by 

discarding points below a predetermined value.  

1ˆ ˆ( )
2

TD
D X D X

x
 

(3-7) 

In (3-7)  is calculated by setting the derivative D(x, y, σ ) to zero. The extremas of 

difference-of-Gaussian have large principal curvatures along edge, it can be reduced 

by checking 

2( ) ( 1)

( ) 2

Tr H r

Det H
 

(3-8) 

H in (3-8) is a 2× 2 Hessian matrix, r is the ratio between the largest magnitude and 

the smallest one. 

After that an orientation is assigned to the keypoint. The gradient orientation 

histogram is computed in the neighbourhood of the keypoint in order to determine 

the keypoint orientation. Keypoint orientation is used to collect the gradient 

directions and magnitudes around each keypoint.  
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To achieve invariance to rotation, the gradient magnitude m(x, y) and orientation  

θ (x, y) are precomputed as the following equations. 

2 2

1

( , ) ( 1, ) ( 1, )) ( , 1) ( , 1))

( , 1) ( , 1)
tan

( 1, ) ( 1, )

m x y L x y L x y L x y L x y

L x y L x y

L x y L x y

 

(3-9) 

The magnitude and orientation is calculated for all pixels around the keypoint. Then, 

a histogram is created for this. In this histogram, the 360 degrees of orientation are 

broken into 36 bins (each 10 degrees). Each sample added to the histogram is 

weighted by its gradient magnitude and by a Gaussian-weighted circular window 

with a σ that is 1.5 times that of the scale of the keypoint. The histogram will have a 

peak at some point. 

Peaks in the histogram correspond to dominant orientations. A separate keypoint will 

be created that relates to the direction corresponding to the histogram maximum, and 

any other direction within 80% of the maximum value. All the properties of the 

keypoint are measured relative to the keypoint orientation, which provides invariance 

to rotation. 

The SIFT descriptor is generated by calculating orientations and magnitude of the 

pixel neighbourhood relative to the keypoint in question. Each descriptor consists of 

an area of 16 x 16 pixels and quantized into 8 bins. Each pixel contributes its 

magnitude to the bin closest to its orientation. Histograms contain 8 bins each, and 

each descriptor contains an array of 4 histograms around the keypoint. This leads to a 

SIFT feature vector with 4× 4×8 =128 elements. This vector is normalized to ensure 

invariance to changes in illumination. More details on how SIFT descriptors are 

generated can be found in (Lowe, 2004).  
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Figure 3-7: Keypoint magnitude is generated and weighted by a Gaussian window 

(circle) (Lowe, 2004). 

3.7 Belief propagation (BP) 

Belief propagation is a method to calculate the marginal distributions for random 

variables through passing messages in factor graphs (Kschischang et al., 2001, 

Yedidia et al., 2003, Loeliger, 2004). Suppose that 1( ,..., )nF x x factors into a product 

of several local functions, each having some subset of 1{ ,..., }nx x  as arguments i.e. 

suppose that 

1 2( , ,..., ) ( )n j j

j J

F x x x f X  (3-10) 

Where J is a discrete index set, jX is a subset of 1{ ,..., }nx x , and ( )j jf X is a function 

having the elements of jX as arguments. 

Factor graphs are graphical representations used to model the factorisation given in 

Figure 3-8. A factor graph consists of nodes and edges. Nodes in a factor graph can 

be listed in two categories: variable nodes representing independent variables ix  and 

factor nodes representing local functions jf . In a factor graph, edges connect a factor 

variable node ix to factor node jf if and only if ix  is an argument of jf . For example, 

the factor graph in Figure 3-8 represents the factorisation of the global function 

1 2 3 4( , , , )F x x x x given by   
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1 2 3 4 1 2 3 4 3 3 4( , , , ) ( , ) ( , ) ( ) ( , )A B C DF x x x x f x x f x x f x f x x  (3-11) 

where the variable nodes are represented by circles and the factor nodes are 

represented by squares. 1 2 3 4( , , , )F x x x x  is a function of four variables, and F can be 

expressed as a product of four factors so that J={A,B,C,D}, 1 3{ , }AX x x , 1 4{ , }BX x x

, 3{ }cX x , 4 3 4{ , }X x x . 

  

 

 

 

 

 

 

 

  

 

Figure 3-8: The factor graph for the global function factorisation in (3.11) 

 

The BP algorithm is based on exchanging messages between variable and factor 

nodes in a factor graph. In every iteration, each function node receives a-prior 

information from the variable nodes connected to it through edges. It then calculates 

the a-posteriori probabilities for the connected variable nodes and passes the 

information back to the variable nodes. Upon receiving the updated information, the 

variable nodes calculate their new-prior information. Hence, two types of messages 

can be found in the BP algorithm. The first type is the message passing on the edge 

from the variable node x to the factor node f which is denoted by ( )x f x . The 

second type is the message passing on the edge from the factor node f to the variable 

node x and is denoted by ( )f x x . These messages are exchanged according to the 

following update rules (Kschischang et al., 2001). 

fA fB fC fD 

x1 x2 x3 x4 
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The message from variable node x to function node f is updated as follows 

( )\{ }

( ) ( )x f h x

h n x f

x x  
(3-12) 

 

where X=n(x) is the set of arguments of the function f. Equation (3-12) implies that 

the message sent from variable node x to function node f is the product of all 

messages received by variable node x on all other edges. 

The message from function node f to variable node x is updated as follows 

{ } ( )\{ }

( ) ( ( ) ( )f x y x

x y n f x

x f X y  
(3-13) 

where X=n(f) is the set of all variable nodes connected to f and ~{x}c is the set of all 

variable nodes connected to f excluding x. In other words, the updated message sent 

from function node f on all other edges. The result is then marginalised to be a 

function of x only. 

When the BP algorithm converges, the marginal distribution f(x) for variable node x 

can be computed by taking the product of all messages received by x, that is  

( )

( ) ( )u x

u n x

f x x  
(3-14) 

When the algorithm is implemented on a factor graph which is a tree, the algorithm 

is guaranteed to converge, and the marginal functions calculated in (3-14) are exact 

after a number of iterations equal to the depth of the tree. However, in the case that 

the factor graph contains cycles (a cycle is a loop that starts and ends at the same 

node), the BP algorithm does not have a natural termination and it needs to be 

stopped after sufficient number of iterations where improvements in the messages are 

minor. Although convergence is not guaranteed in the case of factor graphs 

containing cycles. Numerical results have shown that the algorithm achieves near-

optimal results (Mooĳ and H. Kappen, 2007, Frey and Mackay, 1998).  
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3.8 RANSAC 

This section introduces RANSAC and the steps of the general RANSAC algorithms. 

In this thesis, RANSAC algorithm is applied after BP as an extension of the SIFT 

image registration. RANSAC is used to filter out the outliers introduced in the SIFT-

BP method and to estimate the transformation matrix. The algorithm will be able to 

estimate the model parameters more accurately with the present of less outlier in the 

dataset.      

RANSAC is a robust estimator originally proposed by (Fischler and Bolles, 1981) 

where it was used to derive a usable model from a set of data. It is used to classify the 

matching features into inliers and outliers. Inliers are the data that adhere to the model 

while the outliers are the data that do not. The RANSAC algorithm consists of two 

steps that are repeated in an iterative fashion. The steps are “hypothesize” and “test-

framework”. In the hypothesize step, first minimal sample sets (MSSs) are randomly 

selected from the input dataset and the model parameters are computed using only the 

elements of the MSS. The cardinality of the MSS is the smallest sufficient to determine 

the model parameters. In the test step, RANSAC checks elements of the entire dataset 

are consistent with the model instantiated with the parameters estimated in the first 

step. The set of such element is called consensus set (CS) or inliers. RANSAC is 

terminated when the probability of finding a better ranked CS drops below certain 

threshold.  

The steps of the general RANSAC algorithm are as follows (Fischler and Bolles, 1981) 

1. Suppose there are n training data samples 1 2; ;...; nX x x x  which are fitted to a 

model determined by (at least) m samples ( )m n   

2. Set an iteration counter k = 1. 

3. Choose at random m items from X and compute a model. 

4. For some tolerance , determine how many elements of X are within the 

derived model. If this number exceeds a threshold t, re-compute the model over 

this consensus set and stop. 

5. Set 1k k . If, k < K for some predetermined K, go to 3. Otherwise, accept 

the model with the biggest consensus set so far, or fail. 



Chapter 3 

 

40 

 

3.9   Image fusion 

Image fusion is the process of incorporating complementary information that exists 

in different observation images into a single unified image (Hill et al., 2002). Image 

fusion can be placed into three categories: pixel level, feature level and decision level 

(Lanir et al., 2006). In pixel level fusion, the arithmetic operations are used to fuse 

pixel by pixel information from the input images in time domain. Similarly 

frequency transformations are used in frequency domain. This is the lowest level 

fusion that fuses raw images pixel by pixel and it requires less processing time. The 

objective of pixel level fusion is to produce an output image with more useful 

information that the input images. Feature level fusion involves extraction of features 

from the input images such as edges. Then the fusion is based on the extracted 

features. While in decision level fusion, the fusion is perform after decisions on each 

input images are made. Decision level and feature level fusions are high level fusions 

that require more complex algorithms and involve high computational cost. This 

thesis focuses on pixel level fusion techniques. The pixel level fusion will be 

discussed further in the next section. 

3.9.1 Pixel-level image fusion 

Pixel-level image fusion methods can be categorised into two types: arithmetic 

fusion method and multiscale fusion method (Petrović et al 1999).  

Arithmetic fusion algorithms produce the fused image pixel by pixel, as an arithmetic 

combination of the corresponding pixels in the input images. For pixel level fusion, 

typical arithmetic operations include weighted average and pixel comparison. Other 

methods include, fusion based on colour and intensity-hue saturation, Principal-

Component-Analysis (PCA) based fusion and neural network.  

Arithmetic fusion can be summarised by the expression given in Equation (3-15): 

( , ) ( , ) ( , )A BF n m k A n m k B n m C  (3-15) 

where A, B, and F represent the input and the fused images respectively at location 

(n,m). Furthermore kA, kB and C are constants characterising the fusion method, with 
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kA and kB defining the relative influence of the individual inputs on the fused image 

and C the mean offset. For weighted average, the fusion is based on fixed or variable 

weights assigned to each original image. 

Image averaging is the most commonly used arithmetic fusion method. In this case, 

the fused signal is evaluated as the average value between the inputs, i.e. kA=½, kB=½ 

and C=0. However, despite being significantly more computationally efficient than 

most other fusion systems, image averaging, like all other arithmetic fusion methods, 

does not achieve good performance. The main reason for this is the loss of contrast, 

as a result of destructive superposition when the input signals are added. 

For comparison based fusion, the maximum or minimum intensity at each pixel 

location is selected from the input images to generate the output image as described 

in equation below.  

( , ) max( ( , ), ( , ))

( , ) min( ( , ), ( , ))

F n m A n m B n m

F n m A n m B n m
 

(3-16) 

For multi-scale image fusion, the input images are decomposed into a series of sub-

bands signals (Zhang and Blum, 1999). Multi-scale fusion includes the pyramid 

transform and Discrete Wavelet Transform (DWT) (Lewis et al., 2007). In the 

pyramid transform, information from the input images are represented in different 

scales/pyramids. The pyramid is formed by iterative application of low-pass filtering, 

followed by subsampling with a factor of 2, a process also known as reduction. The 

Gaussian and Laplacian pyramids are the most commonly used pyramid transforms 

in image fusion (Lanir et al., 2006, Blum and Liu, 2005). For DWT, input signals are 

transformed using the wavelet decomposition process into the wavelet representation 

(Lewis et al., 2007). 

The mutiscale based fusion such DWT and pyramid transform decompose an image 

into its multiscale edge representation. Based on the fact that the human visual 

system is primarily sensitive to local contrast changes (i.e. edges) the fusion can be 

performed as a combination of the multiresolution edges resulting from the DWT or 

image pyramid decomposition process. This results in a fused image which combines 

the most salient image features from all scale (Rockinger and Fechner, 1998). 
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3.10 Interpolation 

Interpolation is the process of estimating the values of a continuous function from 

discrete samples. Image interpolation techniques are referred in the literature by 

many terminologies, such as image resizing, image re-sampling, digital zooming, 

image magnification, image enhancement, etc. Image interpolation applications 

include image magnification or reduction, sub-pixel image registration, image 

decompression and super-resolution. Basically, for super-resolution image 

interpolation algorithms convert or resize a digital image from one resolution 

(dimension) to another resolution without losing the visual content in the picture 

(Wittman, 2005).  

Most of the interpolation techniques interpolate the pixels based on image 

characteristics such as edge information. Image interpolation techniques can be 

categorised into non-adaptive and adaptive techniques.  

Adaptive interpolation algorithms mainly rely on the intrinsic image features or 

contents of the image and accordingly the computational logic is mostly dependent 

upon the intrinsic image features and contents of the input image. The non-adaptive 

algorithms do not rely upon the image features or its contents and the same 

computational logic is repeated in every pixel or group of local pixels irrespective of 

the image contents (Acharya and Tsai, 2007). The most common interpolation 

techniques are nearest neighbour, bilinear and bicubic interpolation.  

The thesis focuses on one of the popular non-adaptive interpolation technique i.e., 

bicubic interpolation. A detailed review of image interpolation methods can be found 

in (Acharya and Tsai, 2007). 

3.10.1 Bicubic interpolation 

Bicubic interpolation uses a 4 by 4 neighbourhood to find the missing pixels in the 

high-resolution grid. It uses a polynomial passing through four pixels to make a 

decision. The function employs more complex cubic equations to calculate the output 

intensities. An advantage of using a bicubic interpolation is that it provides smoother 



Chapter 3 

 

43 

 

outputs. This is because bicubic interpolation uses the larger neighbourhood of pixels 

to estimate the unknown pixels.  

In order to carry out a bicubic interpolation within a grid square, it is necessary to 

calculate the gradients (the first derivatives) in both the x and y directions and the 

cross derivative at each of the four corners of the square. This gives 16 equations that 

determine the 16 coefficients (aij), as explained in (Press et al., 2002). 

3.11 Assessment Measures 

This section describes the assessment index measures used in the thesis. In order to 

objectively assess the quality of the reconstructed high-resolution image, a peak 

signal-to-noise ratio (PSNR), sharpness index measure (Lee et al., 2009) and blind 

image quality indices (BIQI) (Moorthy and Bovik, 2010b) (implemented using BIQI 

software release in (Moorthy and Bovik, 2010a) were used. While for image 

registration and image fusion, the mutual information metric and the Root Mean 

Square (RMS) contrast metric were used to assess the results.  

The well-known metrics peak signal-to-noise ratio (PSNR) is used to compare the 

reconstructed high-resolution image with the original high-resolution image. 

Sharpness index measure (Lee et al., 2009) and blind image quality indices (BIQI) 

(Moorthy and Bovik, 2010b) (implemented using BIQI software release in (Moorthy 

and Bovik, 2010a) were used when the reference or original image is not available.  

PSNR is a derivation of mean square error (MSE). MSE calculates error between two 

images while PSNR measures the error variance against the maximum possible 

image variance. MSE and PSNR are defined as follows: 

2

1 1

Im( , ) Im'( , )

.

M N

x y

x y x y

MSE
M N

 

(3-17) 
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Where Im(x,y) is the original image, Im’(x,y) is the test image, M and N are the size 

of image in both horizontal and vertical axes.   

The sharpness index (S-index) is used for sharpness evaluation. The second order 

derivative method was suggested in (Lee et al., 2009) to be used for evaluation of 

sharpness because it is highly sensitive to high frequency regions. To assess the 

sharpness for an image, a summation of the absolute values of all the coefficients in 

single frame is calculated. The sharper the image, the larger the summation value is. 

The sharpness index S is calculated as: 

1 1

0 0

( , )
N N

x y

S L x y  
(3-19) 

 

where N x N is the size of the image whose input is the pixel (x,y) and L(x,y) is the 

output of the Laplacian filter,. The sharper the image, the larger will be the 

summation value M.  

The BIQI, on the other hand, calculates the quality scores of the image. Work in 

(Moorthy and Bovik, 2010b) demonstrated that BIQI performs well in terms of 

correlation with human perception and it is competitive with the classical full-

reference method PSNR. BIQI is used for no-reference image quality assessment 

based on natural scene statistics (NSS). The score typically has a value between 0 

and 100 with 0 representing the better quality and 100 the worst. The BIQI method 

classifies the image into particular distortions category by estimating the presence of 

distortions in the image. The amount of probability of each distortion in the image is 

gauged and denoted as ,{ 1,...,5}ip i . Then the quality of the image along each of 

these distortions is evaluated. Let ,{ 1,...,5}iq i represent the quality scores from each 

of the quality assessment algorithms (corresponding to the five distortions) described 

in (Moorthy and Bovik, 2010b). The quality of the image is then expressed as a 

probability-weighted summation  

 

5

1

 i i

i

BIQI p q  
(3-20) 

 

Further details on the BIQI method can be found in (Moorthy and Bovik, 2010b). 
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The Root Mean Square (RMS) contrast calculate the standard deviation of the error 

signal (Yao et al., 2005), for all the test images.  

21 1

0 0

1
 Contrast=

N M

ij

i j

RMS I I
MN

 
(3-21) 

 

Where N x M is the size of the image, ijI is the reference image, I is the test image. 

The mutual information metrics measures the degree of statistical dependence of two 

images. The mutual information of two discrete random variables X and Y can be 

defined as 

 
( , )

( ; )= ( , ) log
( ) ( )y Y x X

p x y
I X Y p x y

p x p y
 

(3-22) 

 

Where p(x,y) is the probability distribution function of x and y, and p(x) and p(y) are 

the marginal probability distribution function of x and y respectively. 

For an image the entropy is calculated from the image intensity histogram in which 

the probabilities are the histogram entries. For image registration, joint entropy is 

considered. Joint entropy measures the amount of information in the two images. The 

joint entropy H (I, J) can be calculated using the joint histogram of two images. A 

large measure implies better quality because an optimal transformation can be gained 

by maximizing mutual information of the two images (Roshni et al, 2008).  

For images from video frames, the quality of the reconstructed high-resolution 

images is evaluated by BIQI. Generally, a good algorithm is reflected by the 

assessment measure metrics. Nevertheless, the best performance measure remains 

human inspection of the reconstructed high-resolution images. 
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3.12 Summary 

 

This chapter has presented an overview of super-resolution methods particularly the 

non-uniform interpolation approach. The steps in the non-uniform interpolation 

approach have been discussed in detail. The image registration method was presented 

which focused on feature-based image registration. SIFT, belief propagation and 

RANSAC algorithms for detecting and matching feature points in the image been 

discussed in details. Overviews of image fusion and interpolation techniques were 

presented discussed. The quality metrics used for assessing the performance of the 

methods were explained.  
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CHAPTER 4 

4. IMAGE REGISTRATION FOR SUPER-

RESOLUTION USING SCALE 

INVARIANT FEATURE TRANSFORM, 

BELIEF PROPAGATION AND RANDOM 

SAMPLING CONSENSUS 

4.1   Introduction 

Image registration is the process of aligning one image to another image of the same 

scene. The two images are taken from different viewpoints and/or at different times 

or by different sensors. Image registration is an important step in multi-frame super-

resolution; indeed, accurate image registration is crucial for the effectiveness of 

super-resolution. In this chapter an image registration approach for super-resolution 

based on a combination of Scale Invariant Feature Transform (SIFT), Belief 

Propagation (BP) and Random Sampling Consensus (RANSAC) is proposed. The 

SIFT algorithm is used to detect and extract the local features in images, BP is used 

to match the features while RANSAC is adopted to filter out the mismatched points 

and then estimate the transformation matrix. The proposed method is compared with 

traditional SIFT to verify its accuracy and stability. Finally, the result of using the 

proposed approach in the super-resolution application is given and compared to the 

traditional approach where SIFT is used for image registration step. 

This chapter demonstrate the effectiveness of  SIFT with BP algorithm for image 

registration in super-resolution imaging for the test images, and further improve the 

result by applying RANSAC for eliminating the remaining mismatched points and 
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estimating the transformation matrix. The rest of the chapter is organised as follows. 

Section 4.2 describes the implementation of the proposed method. Experimental 

results are given in Section 4.3. Summary of the chapter is given in Section 4.4. 

4.2   The proposed method 

Image registration is used in super-resolution to align low resolution image frames 

prior to subsequent processing. A subpixel-registered image sequence of the same 

scene potentially contains more information than any single view alone. Image 

registration enables the determination of subpixel shifts hence enables the 

uncovering of useful information from multiple frames. In this section, an image 

registration that combines SIFT, Belief propagation and RANSAC techniques is 

described. To simplify exposition, the proposed methods will be explained assuming 

two low-resolution images only. Generalisation to more than two images is 

straightforward for example when three images are being used the third image will 

be registered to the results of registering the first and second image. 

The proposed image registration method for super resolution is shown in Figure 4-1. 

It is assume that the Test image needs to be registered with the Reference image. 

First, the original SIFT algorithm (Lowe, 2004) is used to extract the local features 

from both images. The extracted features are then matched using the BP algorithm as 

in (Cheng et al., 2009). Next, mismatched points that remain after the BP matching 

are eliminated using RANSAC.  Finally, the transformation matrix is estimated once 

all the correct matching points are established, and the image is resampled using the 

optimal transform model. After image registration, the relative pixel positions of all 

low-resolution images in the sequence in reference to the first image are identified. 

Then this information can be projected onto a high-resolution grid. For this task, the 

algorithm of (Kim and Kwon, 2008) is used, though other method can also be 

applied. In the next section, each of the steps will be describe in detail. 
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Figure 4-1: The block diagram of the image registration method. 

 

4.2.1 SIFT feature extraction 

In this step, the SIFT algorithm by (Lowe, 2004) is used for the detection of feature 

points. Many methods are proposed for this task (see (Zitova and Flusser, 2003)) for 

a survey). The SIFT algorithm has been demonstrated to be tolerant to scale and 

illumination changes as well as rotation. The SIFT algorithm is one of the most 

popular feature-based image registration methods often used in panoramic imaging, 

medical imaging, robotics, data mining and surveillance.  

The approach of SIFT feature detection taken in our implementation is similar to the 

one taken by (Lowe, 2004). There are four main steps in extracting the local features: 

SIFT 

Result 

Reference 

image 

Feature Matching 

using BP 

Test  

Image  

Resampling 

SIFT 

RANSAC 

Descriptors Descriptors 
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(i) keypoints detection, (ii) keypoints localization, (iii) orientation assignment, and 

(iv) keypoints descriptor generation. More details on the SIFT algorithm are given in 

Chapter 2.  

One example of the keypoints detection and matching obtained by the SIFT 

algorithm is shown in Figure 4-2. Keypoints are shown by circles and matches with 

lines.  

 

Figure 4-2: Keypoints matching of the original low resolution images using original 

SIFT (25 matches) 

4.2.2  Descriptor matching using belief propagation  

The second step is to match the feature points. The matching points are initially 

established using the Euclidean distance method and then the belief propagation is 

applied to eliminate false matches. In order to achieve a highly accurate registered 

image, belief propagation is employed to refine the keypoint matching and to correct 

for minor matching errors. 

For image matching, descriptor vectors of all keypoints are stored in a database. In 

traditional SIFT (Lowe, 2004), matches between keypoints are found based on 

Euclidean distance. 

In (Cheng et al., 2009), belief propagation (BP) is used in the matching process 

where the keypoint matching is formulated as a global optimisation problem. 

Detailed steps on how BP is used in the SIFT matching process can be found in 

(Cheng et al., 2009) and described in Chapter 2. 

Figure 4-3 demonstrates that the proposed approach eliminates four incorrect matches 

by applying BP after the SIFT algorithm. Thus, using BP after SIFT can reduce the 

number of wrongly matched keypoints that can potentially improve the image 

registration result. 
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Figure 4-3: Keypoints matching using the SIFT-BP (21 matches). 

4.2.3 RANSAC and transformation matrix estimation 

The third step is to employ RANSAC to further refine the keypoint matching and 

estimating the transformation matrix. RANSAC is a robust estimator originally 

proposed by (Fischler and Bolles, 1981) where it was used to derive a robust model 

from a set of data. In (Yuan et al., 2008), RANSAC is used to filter out the 

incorrectly mapped points that come from errors in the SIFT model. 

The correct matching features are classified into inliers and outliers using RANSAC. 

Inliers are the data that adhere to the model while the outliers are the data that do not. 

The RANSAC algorithm starts by randomly selecting sets of corresponding points. 

The mapping transform is found for each possible set of four keypoints at the reference 

image and their respective matches at the target image. Then transformation matrix is 

estimated using those points as follows: 

'

'

1' 1

x x

y A y  

 

        (4-1) 

 

where ', ' ( , )x y x y  are pixel point correspondences, and A is a 3x3 

transformation matrix.  

Using the transformation matrix, the symmetric transfer error 

-1 2 , 2( , ') ( , )d x A x d x Ax is calculated for every matching point, and the numbers 

of inliers that are less than the threshold value are counted. Here ( , )d x y is the 

Euclidean distance between points x and y. Then the same procedure is applied to the 

rest of the keypoints in the reference image, and spatial coordinates of transformed 

keypoints are compared to the coordinates of the respective keypoints in the target 
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image. This allows the number of keypoint pairs that fit the model within a certain 

tolerance to be established. The model that supports the maximum number of 

keypoint pairs (consensus set) within a transform model is considered as optimal. 

Then the model transforms the target image to the reference image, so that 

corresponding points in both images are spatially close to each other. 

Figure 4-4 demonstrates that the approach eliminates two remaining incorrect matches 

by applying RANSAC after the BP algorithm. Thus, using RANSAC after BP can 

reduce the number of wrongly matched keypoints that can potentially improve the 

image registration result, and consequently the super resolution performance. 

 

 

Figure 4-4: Keypoints matching using the SIFT-BP-RANSAC (19 matches). 
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4.3 Results 

This section presents the image registration results illustrating the needs of using SIFT-

BP-RANSAC for accurate registration in super-resolution and the super-resolution 

results obtained with the proposed registration method. The intention is to illustrate the 

effect of incorporating RANSAC into the SIFT-BP image registration framework. The 

performance was tested on simulated and real-world low resolution images.   

A set of images shown in Figure 4-5 are used to test the proposed method,  and in 

Figure 4-6 the proposed method are further tested using low-resolution video frames 

from (Milanfar) i.e., „text‟ and „disk‟. These images were chosen since they represent 

a wide cross-section of image statistics. Image „letter‟, „chart1‟ and „chart2‟ are 

commonly used test images for super-resolution algorithm.  Indeed, images „letters‟ 

and „chart‟ contain a lot of high frequencies – letters and numbers; „Radcliffe‟ is a 

real-world image taken from (Philbin and Zisserman), with many edges and smooth 

areas in between, while „signboard‟ and „girl‟ are real-world images that contain a 

combination of the above features.  

 

 

 

 

  

 

 

 

 

 

  

Figure 4-5: Six low resolution images used in the experiments, referred to as (from 

left to right and top to bottom): „letters‟, „chart1‟, „chart2‟, „Radcliffe‟, „signboard‟ 

and „girl‟. 
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(a) (b) 

Figure 4-6 : Low resolution frames used in the experiment: (a) „text‟ and (b) „disk‟. 

4.3.1 Image registration results 

First, the feature matching results are presented. Figure 4-7 to Figure 4-12 shows the 

keypoint matches obtained by SIFT, SIFT-BP, SIFT-RANSAC, and SIFT-BP-

RANSAC. From the figures, it is observed that there are mismatch points in the 

original SIFT and SIFT-RANSAC but most of the mismatched points are removed 

after BP. In the employed method, RANSAC is used after BP feature matching to 

remove the remaining outliers. Note that, although BP applied after SIFT removes 

many outliers, often there will still be a small number remaining. However, RANSAC 

applied directly after SIFT, on the other hand, results in many undetected outliers. 

Thus, to provide high accuracy, SIFT-BP-RANSAC is used for registration.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-7: Keypoints matching using (a) SIFT (93 matches) (b) SIFT-RANSAC (87 

matches) (c) SIFT-BP (86 matches) and (d) the proposed method (86 matches). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-8: Keypoints matching using (a) SIFT (375 matches) (b) SIFT-RANSAC 

(373 matches) (c) SIFT-BP (288 matches) and (d) the proposed method (288 

matches). 
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  (a) 

 

 
(b) 

 
 (c) 
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(d) 

Figure 4-9: Keypoints matching using (a) SIFT (277 matches) (b) SIFT-RANSAC 

(258 matches) (c) SIFT-BP (89 matches) and (d) the proposed method (87 matches). 

 

 
(a)  

  
(b)  

 
(c)  

 
(d)  

 

Figure 4-10: Keypoints matching using (a) SIFT (353 matches) (b) SIFT-RANSAC 

(349 matches) (c) SIFT-BP (17 matches) and (d) the proposed method (17 matches). 
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(a)  

 
(b)  

 

 
(c)  

 

 
(d) 

Figure 4-11: Keypoints matching using (a) SIFT (7 matches) (b) SIFT-RANSAC (6 

matches) (c) SIFT-BP (7 matches) and (d) the proposed method (6 matches). 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4-12: Keypoints matching using (a) SIFT (93 matches) (b) SIFT-RANSAC 

(93 matches) (c) SIFT-BP (17 matches) and (d) the proposed method (17 matches). 

 

It can be seen in some cases, the number of matches for BP and BP-RANSAC are the 

same. Note that, although they have the same number of matches but transformation 

matrixes estimated from both methods are different. This can be seen from the 

registration results in Figure 4-13 to Figure 4-15 where the proposed method 

provides better results.  

For RANSAC algorithm, the threshold parameters can be set for deciding the outliers 

in the datasets. In this experiment, the threshold value is tested until the minimum 

numbers of outliers are reached. 
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After the incorrect matches have been removed the inliers are used to solve the 

transformation matrix. Figure 4-13 to Figure 4-15 shows the registration results. The 

circles in Figure 4-13 to Figure 4-15 highlight the most obvious errors in the 

registered images after resampling. For example, in Figure 4-13(a) and Figure 4-

13(c) the text has been distorted and the same can be said for the arrow in Figure 4-

13(b). In Figure 4-13(d) however, the proposed method offers improved performance 

as no such artefacts can be seen in the registered image.      

 
  

 

(a) (b) 

 
 

 

 
 

 

(c) (d) 

Figure 4-13: Registered image using (a) SIFT (b) SIFT-RANSAC (c) SIFT- BP 

(d) the proposed method 



Chapter 4 

 

62 

 

Figure 4-14 compares image registration results obtained with SIFT, SIFT-BP 

(Cheng et al., 2009), and SIFT-RANSAC (Yuan et al., 2008). SIFT-BP and the 

proposed SIFT-BP-RANSAC method gave the best results. It can be seen from 

Figure 4-14(c) that the registered image based on SIFT-BP has artefacts due to 

incorrect registration at the first rectangle close to the number 1 on the right of the 

image. This problem was removed by eliminating two more bad matches with 

RANSAC.  

       

 

 

 

(a) (b) 

 

 

 

 

 

         

 

 

(c) (d) 

Figure 4-14: The registered image using (a) SIFT (b) SIFT- RANSAC (c) SIFT-BP 

(d) the proposed method 

 

 

As demonstrated, applying RANSAC after BP improves matching performance and 

consequently provides higher image registration accuracy. This is illustrated in 

Figure 4-15. The circles in Figure 4-15 highlight the most obvious errors in the 

registered images. For example, for image “letters” in Figure 4-15(a) (top) and 

Figure 4-15(c) (top) the text has been distorted in Figure 4-15(b) (top). In Figure 4-

15(d) however, SIFT-BP-RANSAC shows improved performance as no such 

artifacts can be seen in the registered image.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-15 : Registered image using (a) SIFT (b) SIFT-RANSAC (c) SIFT- BP (d) 

the proposed method 
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To objectively assess the quality of the registered image, the mutual information 

metric is used. It measures the degree of statistical dependence of two images. A 

large measure implies better quality. As shown in Table 4-1, the registered image 

obtained by the proposed method has a larger measure. 

 

Table 4-1: Mutual Information 

Test Image  

SIFT SIFT-

RANSAC 

SIFT-BP SIFT-BP-

RANSAC 

Radcliffe 1.4821 2.7567 1.7577 5.9988 

Chart 1.0276 1.8960 1.0282 1.9098 

Signboard 1.0157 2.0748 0.9451 5.7628 

Girl 1.3941 1.8960 1.8769 3.2200 

Letters 0.3937 1.3686 0.4053 2.6579 

Chart2 1.3977 1.6158 1.4340 1.6980 

Text 1.7462 2.4950 1.7909 2.9345 

Disk 3.2721 3.0734 4.5783 4.6620 

 

4.3.2 Super-resolution results 

After image registration, the proposed image registration method is tested for super-

resolution. In this work, the algorithm of (Kim and Kwon, 2008) is used i.e., to 

perform interpolation and restoration of the registered image. Note, however that any 

other interpolation and restoration method can be used instead of. 

Figure 4-16 shows the resulting super-resolution images obtained when SIFT-BP, 

and SIFT-BP-RANSAC were used for image registration. The improved quality of 

images after super resolution with SIFT-BP and SIFT-BP-RANSAC image 

registration compared to the original low-resolution image shown in Figure 4-16(a) is 

obvious. SIFT-BP still suffers from the same artefacts as after registration. 
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(a) 

 
 

 

 

 

 
 

 

(b) (c) 

Figure 4-16: Result comparing (a) the low-resolution image with super-resolved 

image of (b) SIFT-BP (c) the proposed method 

 

As demonstrated, applying RANSAC after BP improves image registration 

performance. As a direct result of the registration improvement, the performance of the 

super resolution algorithm is significantly enhanced. This is illustrated in Figure 4-17 

and Figure 4-18 from which better super resolution performance as a result of more 

accurate registration. The red circles again highlight the most obvious artefacts in the 

resulting images. The super-resolution image obtained using SIFT-BP-RANSAC for 

image registration has better visual quality. Figure 4-17 and Figure 4-18 also show the 

importance of the image registration step, since super resolution applied to poorly 

registered images with SIFT and SIFT-RANSAC (shown in Figure 4-17 to           

Figure 4-18(a) and (b), respectively) leads to  poor high resolution results as shown in 

Figure 4-17 to Figure 4-18(a) and (b), respectively.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-17: Super resolution results with (a) SIFT (b) SIFT-RANSAC (c) SIFT-BP 

(d) the proposed method 

 

Figure 4-17 shows the super-resolution results for image „signboard‟. The circles in 

Figure 4-17 highlight the most obvious errors in the images. In Figure 4-17(a) and 

Figure 4-17(c) it is observed that the text has been distorted and the same can be said 

for the arrow in Figure 4-17(b). In Figure 4-17(d) however, the proposed method 

offers improved performance as no such artefacts can be seen in the super-resolved 

image.  The same improvement can be seen for image „Girl‟ in Figure 4-18(d), where 

the proposed method registration method able to removes the artefacts thus improved 

the super-resolution results. 
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(a) (b) 

  

(c) (d) 

Figure 4-18: Super-resolution results with (a) SIFT (b) SIFT-RANSAC (c) SIFT-BP 

(d) the proposed method 

 

Further results on the improved quality of images after super-resolution with SIFT-BP-

RANSAC image registration are shown in Figure 4-19 to Figure 4-21. In these figures, 

the left hand side shows the low-resolution images and on the right hand side are the 

reconstructed high-resolution images. From the figure, it is observed that the proposed 

method manages to enhance the super-resolution images when accurate registration is 

achieved. From the figure, it is observed that the super-resolution results for video 

frame „disk‟ and „text‟ are poor. This is because the resolution of these video frames is 
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low and the super-resolution method used in this experiment is designed for still 

image. Note that for the same dataset used, better visual results are presented in (Farsiu 

et al., 2004); however, in (Farsiu et al., 2004) twenty low-resolution video frames have 

been used for generating the high-resolution image compared to only two used in this 

experiment.  The reason for testing these video frames in this experiment is to 

demonstrate the effectiveness of the proposed method in registering the video 

sequences.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-19: (left) One of the low resolution image (right) High resolution image 
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Figure 4-20: (left) One of the low resolution image (right) High resolution image 
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Figure 4-21: (left) One of the low resolution image (right) High resolution image 

 

4.4 Summary 

This chapter suggests using SIFT-BP-RANSAC based image registration for image 

super-resolution. The technique was applied on simulated and real-world images and 

the results are encouraging especially when compared to the traditional SIFT 

method. The advantage of the proposed method lies in its ability to overcome the 

outliers introduced in the SIFT-BP method and hence improves the estimation. The 

resulting super-resolution images suggest an improvement of visual quality 

compared to the case when SIFT, SIFT-BP or SIFT-RANSAC alone are used for 

image registration.  
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CHAPTER 5  

5. SVD-BASED FUSION FOR SUPER-

RESOLUTION IMAGE 

RECONSTRUCTION 

5.1   Introduction 

Singular value decomposition (SVD) has been successfully used in image processing 

applications such as image compression, feature extraction and object detection. This 

chapter presents a novel SVD image fusion approach for super-resolution. SVD 

image fusion is used to enhance the super-resolution results. The objective of using 

SVD is to integrate the important features from low resolution images into the 

method. The proposed method converts the registered and reference image into the 

SVD domain and then the images‟ singular values are fused based on the fusion rule 

before performing the interpolation. Simulation results of applying SVD-fusion prior 

to interpolation show significant performance improvement when compared to 

standard interpolation techniques and existing learning-based super-resolution 

approaches.  

The remainder of the chapter is organised as follows. A brief introduction of SVD 

and its properties is presented in Section 5.2. Section 5.3 describes the 

implementation of the proposed SVD-based fusion technique. This method fuses the 

singular values of the registered and reference image in an order to maintain good 

contrast. Experimental results are provided in Section 5.4. In this section, results 

obtained from testing and comparing with bicubic interpolation and the single-image 

super-resolution approach of (Kim and Kwon, 2008) are presented and discussed. 
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The results suggest that SVD-based fusion improved super-resolution results for the 

test images. Finally, summary are presented in Section 5.5. 

5.2   SVD 

In this section, introduction and background information on SVD is presented. SVD 

involves the decomposition of a matrix into three individual components which has 

been widely used in mathematics (Horn and Johnson, 1987) and numerical 

computation (Golub and Loan, 1996).  

SVD of an m x n matrix X is given by: 

                              ,TX U V xx x                                                   (5-1) 

where the columns of the m x n matrix Ux are called the left singular vectors, the 

rows of the n x n matrix V
T
x  contain the elements of the right singular vectors, and 

the diagonal elements of the n x n diagonal matrix 
x
= diag(

1
,...,

n
) are called 

the singular values. Furthermore, 
k
 > 0 for 1 ≤ k ≤ r, and 

k
= 0 for (r+1) ≤ k ≤ n. 

By convention, the ordering of the singular vectors is determined by high-to-low 

sorting of singular values, with the highest singular value being in the upper left 

corner of the 
x
 matrix, that is, 

1
≥

2
≥…≥0. The left singular vectors are the 

orthogonal eigenvectors of X
T
X and the right singular vectors are the orthogonal 

eigenvectors of XX
T
. Thus the singular values  of X are the positive square roots of 

X
T
X. 

5.2.1 SVD properties 

SVD has an important property that makes it useful in many applications. SVD can 

be used to provide the best low-rank linear approximation of the original matrix. It is 

possible to reduce dimensions by selecting greatest k singular values. The value k 

may change according to the size and the structure of the data.  
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The reduced matrix Sk is constructed by retaining the first k singular values. The 

matrices U and V are also reduced to produce matrices Uk and Vk, respectively. The 

matrix Uk is produced by removing (r-k) columns from the matrix U and matrix Vk is 

produced by removing (r-k) rows from the matrix V. Multiplying these three reduced 

matrices, the matrix Xk  is obtained. The reconstructed matrix Xk is a matrix that is 

the closest approximation to the original matrix X. 

Some researchers (Ranade et al., 2007) claim that the low-rank approximation of the 

original matrix is better than the original matrix itself because the small singular 

values mainly represent noise, and thus the rank-k matrix approximation represents a 

filtered signal with less noise. 

The singular value matrix 
x
 also represents the intensity information of a given 

image, where the highest singular values have a great amount of image information 

(Zhu et al., 2008). The main motivation of this work comes from the fact that 

changing the highest singular values affects the illumination of the image 

significantly as reported in (Demirel et al., 2011).  

 

5.3   The proposed method 

In this section, the proposed SVD-based fusion for super-resolution is described for 

generating a high-resolution image from low-resolution images. First, an overview of 

the method is presented and the novelty of the technique is described. To simplify 

exposition, all proposed methods will be explained assuming two low-resolution 

images only.  

The problem of generating a single high-resolution image from two low-resolution 

images is addressed. The proposed method consists of three steps: (i) image 

registration, (ii) SVD-based fusion and (iii) image interpolation. Note that the first 

and third steps are traditionally used in super-resolution and they are usually 

followed by image restoration. In the proposed method, image restoration is carried 
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out during the fusion step prior to interpolation. The proposed method for two low 

resolution images I1 and I2 is shown in Figure 5-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: The block diagram of the proposed method with two low resolution 

images I1 and I2. 

5.3.1 Image registration 

Image registration enables identification of subpixel shifts and hence it extracts 

useful information from multiple images. Image registration starts with the original 

SIFT algorithm (Lowe, 2004)   that is used to extract the local features from both 

images. The extracted features are then matched using the Belief Propagation (BP) 

algorithm as in (Cheng et al., 2009). Next, mismatched points that remain after the 

BP matching are eliminated using RANSAC (Fischler and Bolles, 1981). Finally, the 

transformation matrix is estimated after all the correct matching points have been 

established and the image is resampled using the optimal transform model. The 

High-resolution 

image 

I1 

Image registration 

I2 

 

Interpolation 

SVD image fusion 
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registered image Ir will be used in the fusion step. Details of the image registration 

method used in this work were described in Chapter 4 of the thesis. 

 

5.3.2 SVD-based image fusion 

 

Conventionally, after image registration, interpolation is performed on the registered 

image followed by image restoration. Instead, in this work, an image fusion is 

performed to integrate the information from the low-resolution images prior to the 

interpolation step. The objective is to maintain the important information from the 

low-resolution images, which would not occur if the interpolation were carried out 

on the registered image Ir directly. This thesis proposes the use of SVD for the image 

fusion step.  

The proposed fusion method is shown in Figure 5-2. The SVD is applied to both I1 

and Ir images separately to highlight the features. Then pixel level image fusion is 

applied to obtain the SVD-based fusion results. The image fusion rule used is the 

maximum rule.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: The block diagram of the proposed SVD image fusion method with two 

low resolution images I1 and Ir. 

Fused image 

I1 

Calculate the Ur, r  Vr 

and find the maximum 
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The SVD of the reference image I1 and the registered image Ir is calculated as 

1 1 1 1

TI U V  and 
T

r r r rI U V , respectively. For colour images, the decomposition is 

carried out for each colour matrix separately. Let the maximum singular values of 

matrices 1  and r be 
1max

and 
maxr

, respectively. Then if 
1max maxr

, matrix 1 is 

chosen to be used in the reconstruction of the fused image If; otherwise, matrix r is 

chosen.  That is,   

                                    
max

T

f r rI U V
 
                                                                                                    (5-2) 

Where 
max 1

 if 
1max maxr

or
max r

, otherwise. Matrix fI will be further used 

in the interpolation step. Note that, the approach can be extended to the case when 

more than two low resolution images are available for registration. 

When 
max 1maxr

the reference image is not used at all. However, from the results it 

is observed that in most cases
max 1maxr

, which means that the fused image is 

formed as a combination of the reference image and the registered image. This way, 

higher singular values of the reference image are retained since they contain a 

significant amount of image information preserving useful features of the reference 

low resolution image. Note that the reference and test images have similar intensity. 

The purpose of the SVD-based fusion step is to maintain the contrast level of the 

low-resolution image which is degraded in the registration process. This can be seen 

from Table 5-1, where for most of the test images the low-resolution reference image 

has better contrast than the registered image. The preservation of good contrast in the 

reference image enhances the reconstructed high-resolution results. Table 5-1 shows 

Root Mean Square (RMS) contrast, that calculate the standard deviation of the error 

signal (Yao et al., 2005), for all the test images. The result shows that out of eight 

tested images, only in one case was the contrast of the registered image higher than 

that of the reference image. 
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Table 5-1: The RMS contrast for the test images. Smaller value of the RMS contrast 

indicates higher contrast. 

Test Image RMS Contrast 

Low resolution Registered 

Radcliffe 0.2528 0.2528 

Chart1 0.0842 0.0871 

Signboard 0.0906 0.0907 

Girl 0.1315 0.1391 

Letters 0.1389 0.1431 

Chart2 0.3253 0.3263 

Disk 0.0476 0.0491 

Text 0.0368 0.0521 

 

5.3.3 Interpolation 

After the SVD-based image fusion, an interpolation step is performed. Generally, 

any interpolation technique can be used after SVD-based fusion. In this work, the 

standard bicubic interpolation and the single frame super-resolution approach 

proposed in (Kim and Kwon, 2008) are used. 

The latter interpolation algorithm is summarised as follows: 

1. First the fused image If is interpolated using bicubic interpolation into the 

desired scale. 

2. Then a set of candidate images based on patch-wise regression is generated by  

utilising the kernel ridge regression, and a sparse basis is found by combining 

kernel matching pursuit and gradient descent. 

3. An output image is obtained by combining all candidates based on estimated 

confidences for each pixel. 

4. Post-processing of the regression image is performed to preserve the 

discontinuity at major edges, because the kernel ridge regression tends to 

smooth major edges. 

The details can be found in (Kim and Kwon, 2008). 



Chapter 5 

 

78 

 

5.4 Results 

This section presents the experimental results obtained with the proposed SVD-based 

fusion method with bicubic interpolation and the single-image super-resolution 

approach of (Kim and Kwon, 2008). The images used in the experiments are shown in 

Figure 5-3. The proposed method is further tested using low-resolution video frames 

The images used in the experiments are shown in Figure 5-3. The proposed method is 

further tested using low-resolution video frames from (Milanfar) i.e., „text‟ and „disk‟. 

These images are chosen since they represent a wide cross-section of image statistics. 

Indeed, images „letters‟ and „chart‟ contain a lot of high frequencies – letters and 

numbers; „Radcliffe‟ is a real-world image taken from (Philbin and Zisserman), with 

many edges and smooth areas in between, while „signboard‟ and „girl‟ are real-world 

images that contain a combination of the above features.  

The super-resolution results compare the proposed method with bicubic 

interpolation, a multi-image super-resolution method that uses the same image 

registration method but without SVD-based fusion, a multi-image super-resolution 

method that uses the registration method of (Vandewalle et al., 2006) and robust 

super-resolution method of (Zomet et al., 2001) (implemented using super-resolution 

software of (Vandewalle et al., 2006b)) and the state-of-the-art single-image super-

resolution approach of (Kim and Kwon, 2008).  
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Figure 5-3: Six low resolution images used in the experiments, referred to as (from 

left to right and top to bottom): „letters‟, „chart1‟, „chart2‟, „Radcliffe‟, „signboard‟ 

and „girl‟. 

 

Experiment 1: In this set of experiments, the low-resolution image, I2, was obtained 

from reference low-resolution image I1. The low-resolution image I1 is randomly 

translated and rotated to get low-resolution image I2.  The images were first 

registered, and then the SVD-based fusion was applied as explained in Section 5.3.2; 

finally, the bicubic interpolation or the method of (Kim and Kwon, 2008) was 

performed to obtain a high resolution image. 

To objectively assess the quality of the reconstructed high-resolution image, a 

sharpness index measure (Lee et al., 2009) and blind image quality indices (BIQI) 

(Moorthy and Bovik, 2010b)(implemented using BIQI software release in (Moorthy 

and Bovik, 2010a)) as described in Chapter 3 Section 3.11 were used.  

As shown in Table 5-2 and Table 5-3, the high-resolution image obtained by the SVD-

based fusion with both interpolation methods has a larger sharpness index and best 

quality score. 
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Visual results are shown in Figure 5-4, Figure 5-5 and Figure 5-6 for „letters‟, 

„signboard‟, „chart1‟ and „girl‟ image, respectively. The proposed method is compared 

to the multi-image super-resolution method that does not use SVD-based fusion but 

uses the same registration and interpolation methods, bicubic interpolation and single-

image super-resolution method of (Kim and Kwon 2008). 

Table 5-2: The sharpness index (S) for the test images. 

Test Image Sharpness index (S) 

Bicubic 

interpolation 

only 

Method of 

(Kim and 

Kwon, 2008) 

The proposed 

method with 

bicubic 

interpolation 

The proposed 

method with 

the method of 

(Kim and 

Kwon, 2008) 

Radcliffe 1,094,200 1,784,800 1,136,100 1,961,800 

Chart1 450,700 814,210 492,400 2,998,825 

Signboard 289,260 453,890 316,040 1,692,800 

Girl 917,820 1,347,000 1,096,600 2,052,400 

Letters 3,960 1,714,300 534,621 1,856,500 

Chart2 5,162 1,859,800 15628 2,025,400 

 

Table 5-3: The BIQI for the test images. 

Test Image  BIQI score 

Bicubic 

interpolatio

n only 

Robust SR 

(Zomet et 

al., 2001) 

Method of 

(Kim and 

Kwon, 

2008) 

The proposed 

method with 

bicubic 

interpolation 

The 

proposed 

method 

with the 

method of 

(Kim and 

Kwon, 

2008) 

Radcliffe 24.1505 32.6206 6.4690 6.4702 4.0347 

Chart1 39.6507 6.9690 7.4113 2.9324 0.0603 

Signboard 30.7851 33.7595 5.9350 13.2553 4.0351 

Girl 34.5601 36.5428 6.4705 6.4498 4.0347 

Letters 24.7662 49.3989 8.7549 6.4824 1.4875 

Chart2 10.5394 8.6379 9.0975 6.3791 0.1112 

  

As a direct result of the registration improvement and SVD-based fusion, the 

performance of the proposed super-resolution algorithm is significantly improved. 

This is illustrated in Figure 5-4, Figure 5-5 and Figure 5-6 from which it can be seen 

superior super-resolution performance. As seen in Figure 5-4(c) to Figure 5-6(c) and 
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Figure 5-4(f) – Figure 5-6(f) the super-resolution image obtained using the proposed 

method has the highest visual quality compared to the reconstructed image when no 

fusion had been used prior to interpolation, but the same registration is applied. This 

is in accordance with Table 5-2 and Table 5-3, where the high-resolution image 

obtained by the proposed method has the largest sharpness index and highest quality 

score. For Figure 5-4, it is observed that the letters in the image produced by the 

proposed method is sharper especially letters towards the end of the image. Note that 

due to the fact that the two objective measures used are highly nonlinear, and the 

tested image is not a natural images (as BIQI is proven to be efficient measure for 

natural images), for image „letter‟, BIQI show significant performance advantage of 

bicubic interpolation method over (Kim and Kwon, 2008) compared to sharpness 

index measure. The proposed method also manages to improve the blur effect and 

enhance the image especially the edges for image „signboard‟ and „chart‟ as shown in 

Figure 5-5(f). The same improvement can be seen in Figure 5-6(f) as well, where the 

proposed method produces sharper and enhanced image.  
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(a) (b) (c) 

 

 

 

 

 

 

 

 

 

 

(d) (e) (f) 

Figure 5-4: Super-resolution results obtained for „letters‟ image with: (a) bicubic 

interpolation, (b) SIFT-BP-RANSAC registration method with bicubic interpolation 

without fusion, (c) SIFT-BP-RANSAC registration method with bicubic 

interpolation, (d) method of (Kim and Kwon, 2008) (e) SIFT-BP-RANSAC 

registration method with the method of (Kim and Kwon, 2008) without fusion, (f) the 

proposed super-resolution method with the method of (Kim and Kwon, 2008) 
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(a) (b) (c) 

 

 

 

 

 

 

 

  

(d) (e) (f) 

Figure 5-5: Super-resolution results obtained for „signboard‟ and „chart1‟ image 

with: : (a) bicubic interpolation, (b) SIFT-BP-RANSAC registration method with 

bicubic interpolation without fusion, (c) SIFT-BP-RANSAC registration method 

with bicubic interpolation, (d) method of (Kim and Kwon, 2008) (e) SIFT-BP-

RANSAC registration method with the method of (Kim and Kwon, 2008) without 

fusion, (f) the proposed super-resolution method with the method of (Kim and Kwon, 

2008) 
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(a)  (b) 
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(e) (f) 

Figure 5-6: Super-resolution results obtained for „girl‟ image with: : (a) bicubic 

interpolation, (b) SIFT-BP-RANSAC registration method with bicubic interpolation 

without fusion, (c) SIFT-BP-RANSAC registration method with bicubic 

interpolation, (d) method of (Kim and Kwon, 2008) (e) SIFT-BP-RANSAC 

registration method with the method of (Kim and Kwon, 2008) without fusion, (f) the 

proposed super-resolution method with the method of (Kim and Kwon, 2008) 
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Experiment 2: In this set of experiments, the low-resolution images are created by 

downsampling a high-resolution image. For this experiment, image „Radcliffe‟ taken 

from (Philbin and Zisserman) and „Chart‟ are used.  

Peak signal-to-noise ratio (PSNR) of the reconstructed image is used to objectively 

assess the quality of the reconstructed high-resolution image. The results are shown 

in Table 5-4, from where it is clear the gain of SVD-based fusion is roughly 8dB for 

„Radcliffe‟ image. The proposed method suggests an improvement over method of 

(Kim and Kwon, 2008) and Bicubic interpolation. The PSNR value of 74.30dB was 

obtained for „Radcliffe‟ image by the proposed method with the method of (Kim and 

Kwon, 2008) and 74.29dB for the proposed method with bicubic interpolation. The 

performance of the proposed method over the method of (Kim and Kwon, 2008) and 

bicubic without fusion for image „chart‟ is comparable with some gain of 0.24dB. 

Table 5-4: The PSNR for the test images. 

Test Image  PSNR (in dB) 

Bicubic 

interpolatio

n only 

Robust SR 

(Zomet et 

al., 2001) 

Method of 

(Kim and 

Kwon, 

2008) 

The proposed 

method with 

bicubic 

interpolation 

The 

proposed 

method 

with the 

method of 

(Kim and 

Kwon, 

2008) 

Radcliffe 66.39 30.08 66.41 74.29 74.30 

Chart 65.27 31.69 65.28 65.52 65.52 

 

Visual results are shown in Figure 5-7(a) to (d) and Figure 5-8(a) to (d). From the 

figures, it is observed that the proposed fusion method shows better performance 

than the interpolation method and method of (Kim and Kwon, 2008) without fusion. 

This is because the fused image preserves all the useful information from the low-

resolution. From the figures, one can see that the proposed method produces sharper 

images. 
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(d) 

Figure 5-7: Super-resolution results obtained for „Radcliffe‟ image with: (a) bicubic 

interpolation, (b) the SIFT-BP-RANSAC registration method with bicubic 

interpolation, (c) method of (Kim and Kwon, 2008), (d) the proposed super-

resolution method with the method of (Kim and Kwon, 2008). 
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(a) 

 

(b) 

  
(c) (d) 

 

Figure 5-8: Super-resolution results obtained for „Radcliffe‟ image with: (a) bicubic 

interpolation, (b) the SIFT-BP-RANSAC registration method with bicubic 

interpolation, (c) method of (Kim and Kwon, 2008), (d) the proposed super-

resolution method with the method of (Kim and Kwon, 2008). 
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Experiment 3: The proposed method using the first two frames from the low-

resolution video sequences, „text‟ and „disk‟ taken from (Milanfar) and shown in 

Figure 5-9.  

   

 

(a) (b) 

Figure 5-9: The low-resolution video sequences used in the experiment: (a) „text‟ and 

(b) „disk‟. 

 

To objectively assess the quality of the reconstructed high-resolution image, 

sharpness index measure (Lee et al., 2009) and BIQI (Moorthy and Bovik, 2010b) 

were used. As shown in Table 5-5 and Table 5-6, the high-resolution image obtained 

by the SVD-based fusion with both interpolation methods has a larger sharpness 

index and best quality score. 

Table 5-5: The BIQI for the test images. 

Test Image BIQI score 

Bicubic 

interpolatio

n only 

Robust SR 

(Zomet et 

al., 2001) 

Method of 

(Kim and 

Kwon, 

2008) 

The proposed 

method with 

bicubic 

interpolation 

The 

proposed 

method 

with the 

method of 

(Kim and 

Kwon, 

2008) 

Text 28.2128 28.8263 0.9539 26.5933 0.4486 

Disk 11.4249 16.8026 0.0772 7.7036 0.0633 
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Table 5-5 shows the BIQI score for the test images. From the table, it is observed 

that the proposed method provides an improvement over method of (Kim and Kwon, 

2008) and Bicubic interpolation. For image „Text‟, the performance of the proposed 

method is comparable with the original method with 1.6 gains in BIQI quality score. 

For image „Disk‟ the proposed method gives an improvement of 3.7 quality score. 

Table 5-6 shows the sharpness index measure. It is observed that the proposed fusion 

method produces larger sharpness index than the original method without fusion.   

Table 5-6: The sharpness index (S) for the test images  

Test Image Sharpness index (S) 

Bicubic 

interpolatio

n only 

Robust SR 

(Zomet et 

al., 2001) 

Method of 

(Kim and 

Kwon, 

2008) 

The proposed 

method with 

bicubic 

interpolation 

The 

proposed 

method 

with the 

method of 

(Kim and 

Kwon, 

2008) 

Text 92,217  98,599 297,240 177,480 299,660 

Disk 79,721 76,003 256,960 157,410 259,870 

Visual results are shown in Figure 5-10. It can be seen from the figures that the 

proposed method provides the best visual experience. Note that due to nonlinearity of 

the used objective measures, BIQI and sharpness index show significant performance 

advantage of method of (Kim and Kwon, 2008) over bicubic interpolation, while 

visually, the difference is small. 

Note that for the same dataset used, better visual results are presented in (Farsiu et 

al., 2004), however, in (Farsiu et al., 2004) twenty low-resolution video frames have 

been used for generating the high-resolution image compared to only two used in this 

experiment. 
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(e) (f) (e) (f) 

 

Figure 5-10: Super-resolution results with: (a) bicubic interpolation, (b) method of 

(Kim and Kwon, 2008), (c) the SIFT-BP-RANSAC registration method with bicubic 

interpolation, (d) the SIFT-BP-RANSAC registration method with the method of 

(Kim and Kwon, 2008) without fusion (e) Method of (Zomet et al., 2001), (f) the 

proposed super-resolution method with the method of (Kim and Kwon, 2008) 
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Processing Time: Table 5-7 shows the processing time of the proposed method 

compared to bicubic interpolation and the method of (Kim and Kwon, 2008). All 

algorithms were run on a PC with the Pentium processor (2.50GHz) and 2GB memory. 

The table shows that the registration and fusion steps require roughly four seconds.  

 

Table 5-7: Processing time comparison (Elapsed Time) [sec]. 

Test Image Times(seconds) 

Bicubic 

interpolation 

Method of 

(Kim and 

Kwon, 2008) 

The proposed 

method with 

bicubic 

interpolation 

The proposed 

method with 

the method of 

(Kim and 

Kwon, 2008) 

Radcliffe 0.09 35.77 4.05 39.73 

Chart 0.09 13.39 2.57 15.87 

Signboard 0.07 9.96 2.65 12.54 

Girl 0.35 43.90 3.18 46.73 

Letters 0.06 37.18 1.79 42.21 

Chart2 0.09 64.65 1.39 74.02 

Text 0.01 0.04 0.21 0.76 

Disk 0.01 0.05 0.23 0.77 

 

5.5 Summary 

This chapter presents a novel SVD-based image fusion method for super-resolution 

image reconstruction. The proposed image registration and fusion steps seem 

effective in maintaining the important features of the test images and greatly improve 

the super-resolution results. The proposed SVD-based fusion method suggests 

retaining the important information in the registered low-resolution images and 

hence improving the super-resolution results. The proposed super-resolution scheme 

shows performance improvements compared to the bicubic interpolation and 

methods of (Zomet et al., 2001) and (Kim and Kwon, 2008), using both simulated 

and real-world images and video frames.  
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CHAPTER 6  

 

6. SINGLE IMAGE SUPER-RESOLUTION 

USING SPARSE REPRESENTATION 

6.1   Introduction 

Single-image super-resolution with dictionary learning is a recent effective method 

to increase resolution of a captured image by exploiting the fact that the image is 

sparse in some transform domain. Several recent papers focus on single-image super-

resolution see for example, (Yang et al., 2008, Glasner et al., 2009., Adler et al., 

2010, Zeyde et al., 2010, Kim and Kwon, 2008). Single image super-resolution 

methods can be categorised into (1) the interpolation-based method and (2) the 

learning-based method. The learning based methods are superior, but require a large 

amount of training data to generate efficient learning models. Some of the learning-

based methods need prior estimation of the high-resolution image.  

Recently, sparse representation has been proposed as an efficient learning-based 

single-image super-resolution technique (Zeyde et al., 2010, Yang et al., 2008). 

Sparse representation is applied in many fields in signal processing including 

applications such as image denoising, image restoration and classification (Elad and 

Aharon, 2006, Huang and Aviyente, 2007, Mairal et al., 2008).   

Various attempts have been made to regularise the ill-posed inverse problem of 

image super-resolution using sparse representations of low-resolution image patches 

(Yang et al., 2010, Zeyde et al., 2010). An image patch can be represented as a 

sparse linear combination of elements from an over-complete dictionary (Wang et 

al., 2011, Kim and Kwon, 2008). The idea is to seek a sparse representation for each 

patch of the low-resolution input, followed by exploiting this representation to 
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generate a high-resolution output. By jointly training two dictionaries for the low-

resolution and high-resolution image patches, the sparse representation of a low-

resolution image patch can be applied with the high-resolution image patch 

dictionary to generate a high-resolution image. Yang et al proposed a sparse 

representation based super-resolution method (Yang et al., 2008), based on the 

assumption that the high-resolution and low-resolution patches have the same sparse 

representation coefficients with respect to a high-resolution dictionary and a 

corresponding low-resolution dictionary. Recently, this w, this work has been 

extended and improved by (Zeyde et al., 2010).   

This paper presents a novel image interpolation method that is used to improve single 

image super-resolution using sparse representation in (Zeyde et al., 2010). The paper 

improves a single-image-super-resolution result of (Zeyde et al., 2010) both visually 

and objectively.  The remainder of the chapter is organised as follows. An overview 

of super-resolution using sparse representation is presented in Section 6.2. In Section 

6.3, the improved single image super-resolution using sparse representation is 

discussed. The proposed image interpolation method is given in Section 6.3.1. 

Section 6.4 discusses the obtained results. Finally, summary are presented in    

Section 6.6. 

6.2 Super-resolution via sparse representation (Zeyde et 

al., 2010) 

Sparse theory (Candés et al., 2006) states that many natural signals can be expressed 

as a linear combination of elementary signals or atoms, where most of the 

representation coefficients are zero. Often, the atoms are chosen from a so called 

over-complete dictionary. An over-complete dictionary is a collection of atoms such 

that the number of atoms exceeds the dimension of the signal space. Sparse 

representation is widely used in noise reduction, feature extraction, pattern 

recognition and image super-resolution (Elad, 2010). 

The single-image super-resolution problem focuses on recovery of a high-resolution 

image from a low-resolution one, i.e., given a low-resolution image as lN

lz R , 
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represented as a vector of length lN  pixels, recover higher-resolution image hN

hy R , 

represented as a vector, of the same scene, where l hN N . The observation model 

can be represented as  

  l hz SHy v  (6-1) 

where : h lN N
S R R  is a decimation operator, : h hN N

H R R as a blurring operator and 

v is an additive Gaussian noise.  

The goal of super-resolution using sparse representation is to process lN

lz R to 

produce ˆ hN

hy R such that ˆ
h hy y . Due to the Gaussianity of v, the maximum-

likelihood estimation is obtained by the minimisation
2

ˆ
lSHy z . Since SH is 

rectangular with many columns than rows, it cannot be inverted stably. Zeyde et al 

used Sparse-Land local model (Elad and Aharon, 2006) to overcome this problem. 

This model assumes that each patch from the images considered can be represented 

well as a linear combination of a few atoms from a dictionary using a sparse 

coefficient vector (Zeyde et al., 2010).  
 
 

In super-resolution using sparse-representation, the low-resolution image is scale-up 

by an interpolation operator : l hN N
Q R R to avoid complexities due to different 

resolutions of the low-resolution image and the high-resolution image. The scale-up 

image is denoted by  

  ˆ( ) all

l l h h hy Qz Q SHy v QSHy Qv L y v  (6-2) 

The algorithm of (Zeyde et al., 2010) operates on patches extracted from the low-

resolution image ly aiming to estimate the corresponding patch for the high-resolution 

image. 

Let  

l n

k k lp R y R  (6-3) 
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be a low-resolution image patch of size n n extracted by operator : Nh n

kR R R

from the image lz in location k. k is the location in which the patches are extracted 

around the true pixels in the low-resolution image ly  . The sparse coefficients can be 

estimated from these low-resolution patches, and then using this information the 

dictionary can be estimated. 

According to sparse theory (Candés et al., 2006), each patch from the image can be 

well represented sparsely by m

k R over the dictionary n m

hA R . Each patch is 

considered to be generated by multiplying the dictionary by a sparse (mostly zero) 

vector of coefficients. 

l

k h kp A   (6-4) 

where l n

kP R is the low-resolution patches, 
n m

hA R is an over-complete dictionary 

and m

k R is a vector with very few ( n ) non-zero entries. 

For super-resolution based on sparse representation, given a low-resolution image 

feature patch
k

lp , based on over-complete dictionary hA , the sparse representation 
k
 is 

estimated. The corresponding high-resolution dictionary 
h

A  will be multiplied with 

the sparse representation 
k
to generate the high-resolution patch

h

kp .   

h h

k kp A     (6-5) 

The relation between the low-resolution and the high-resolution patches is 

ˆk k
l h kP LP v         

(6-6) 

Where L is a local operator being a portion of allL and ˆ
kv is the additive noise in the 

patch.  

Associate (1-4) into (1-6) gives 

ˆh l
h k k k kLA LP p v         

(6-7) 

Implying that 
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2

l
k hP LA         (6-8) 

Where is related to the noise power ˆ of v . 

From (6-8), the low-resolution patch can be represented by the same sparse vector 
k

over the effective dictionary l hA LA  with the controlled error l . Based on this for a 

given low-resolution patch 
k

lp , the sparse representation 
k
can be estimated then the 

high-resolution patch
h

kp are generated by multiplying the sparse representation 
k
by 

the dictionary 
h

A (Zeyde et al., 2010)  The process of super-resolution based on over-

complete sparse representation involves the construction of the dictionary as well as 

solving the sparse decomposition problem. 

6.3 The proposed method  

In this section, the proposed image interpolation for single-image super-resolution 

using sparse representation is described for generating a high-resolution image from 

a low-resolution image. The proposed method consists of two steps: (i) image 

interpolation for prior estimate of the high-resolution image (ii) single image super-

resolution using sparse representation (Zeyde et al., 2010). Figure 6-1 shows the 

block diagram of the proposed method. First the low-resolution image lz   is scaled 

up to the original size using the proposed interpolation method. This step provides 

image with stronger edges. The proposed interpolation method improves the 

estimation of the high-resolution image prior to the feature extraction phase in the 

single image super-resolution using sparse representation (Zeyde et al., 2010). 

Finally the enhanced image is used to reconstruct high-resolution image using 

method of (Zeyde et al., 2010). Next, an overview of the overall single image super-

resolution using sparse representation is described in details. 
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Figure 6-1: The block diagram of the improved single image super-resolution using 

sparse representation 

 

6.3.1 The proposed image interpolation method 

In this section, the proposed image interpolation method is described for generating 

an interpolated image from a low-resolution image. The low-resolution patches are 

gathered from the interpolated image to avoid the complexity cause by different 

resolution as well as to avoid coordinate ambiguity. The proposed method consists of 

three steps: (i) bicubic interpolation on the low-resolution image (ii) calculation of 

Up sample 

using bicubic
( )ly  

Low-

resolution
( )lz  

upsample 

 First-order    

difference 
( )ey   

+ 

Enhanced image ( )
l

y  

High-resolution image 

Super-resolution image reconstruction using 

Method of (Zeyde et al., 2010) 

The proposed image 

interpolation  
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the first order difference of the interpolated image and (iii) the resulting image is 

then added to the interpolated image.   

First, the low-resolution image 
lz  is first interpolated using bicubic interpolation.  

l ly Qz  
  (6-9) 

where matrix Q denotes interpolation operator that produces the interpolated image

.ly
 
Then first-order difference of the interpolated image is calculated using  

[ (2 : ,:) (1: 1,:)]e l ly y m y m  (6-10) 

which returns a matrix of row differences. The resulting image ey  is then added to 

the interpolated image ly . 

l l ey y y  (6-11) 

The proposed method enhances the interpolated image so that the edge information is 

more evident in the image. The enhanced image will provides better features for 

generation of image patches. The edges are the locations where there is discontinuity 

in image pixel intensity. The locations where the discontinuities happen can be found 

by applying the first-order difference equation on the interpolated image.  

The images used to test the proposed method are listed in Table 6-1. The original 

high-resolution image is downsample to create a low-resolution image. Note that, the 

test images used in this experiment did not contain noise. This low-resolution image 

is then interpolated using the proposed method. Adding the first-order difference to 

the interpolated image ly will enhance the image. Figure 6-2 shows how this linear 

combination technique enhances the edges for image „Child‟. To objectively assess 

the quality of the proposed interpolation method sharpness index measure (Lee et al., 

2009) and PSNR are used. Table 6-1 shows the sharpness index measure and PSNR 

comparing the bicubic interpolation and the proposed interpolation method.  One can 

see from the table that the images obtained using the proposed method has larger 

sharpness index and PSNR than bicubic interpolation. It will be shown later that this 
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improvement will provide better features for the image patches and dictionary 

learning phase in single-image super-resolution using sparse representation in (Zeyde 

et al., 2010) and will improve the super-resolution results. 

 

 

 

 

 

 

 

(a) (b) 

Figure 6-2: Results of interpolated the low-resolution image using (a) Bicubic 

interpolation (b) the proposed method. 

Table 6-1: The sharpness index (S) and PSNR for the test images. 

Test Image (Size) 

  

Sharpness index (S) PSNR (dB) 

Bicubic 

Interpolation 

The proposed 

method 

Bicubic 

Interpolation 

The 

proposed 

Method 

Lena (170x170) 3.5389e+005 3.9712e+005 27.84 28.85 

Text (120x120) 4.0476e+005 4.7814e+005 18.01 18.26 

Peppers (85x85) 1.4965e+005    1.6510e+005 23.05 23.58 

Barbara (170x170) 3.8864e+005 4.3444e+005 26.74 26.95 

Building (266x266) 1.6412e+006   1.7757e+006   23.68 24.27 

Child (170x170) 3.6104e+005 3.9958e+005 27.62 28.47 
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Figure 6-3: The block diagram of the training phase. 
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6.4 Super-resolution using sparse representation  

As in (Zeyde et al., 2010), there are two ways of obtaining a high-resolution image 

with the proposed method: (i) using the ground truth image to acquire the over-

complete dictionaries of the image patches and (ii) bootstrapping, where only the 

low-resolution image is used to obtain the dictionary and image patches. The 

following subsection describes the single image super-resolution using the ground 

truth image followed by the bootstrapping method. 

6.5 Super-resolution using ground truth image 

As in (Zeyde et al., 2010), the proposed method uses two phases in obtaining a high 

resolution image from a low-resolution image: (i) training phase and (ii) 

reconstruction phase. The method extracts two sparse dictionaries from low and 

high-resolution training image patches. Then these dictionaries are used to super-

resolve the low-resolution test image. Each of the steps in the proposed method will 

be described next.  

6.5.1 Training phase 

The training phase consists of three main steps: (i) training set construction, (ii) 

feature extraction and (iii) dictionary training. Figure 6-3 shows the block diagram of 

the training phase. The proposed improvement is shown as the grey box in         

Figure 6-3.   

Training set construction:  The training phase starts by generating a low-resolution 

image from the ground truth image. The ground truth image hy  is blurred and 

downsampled. This will produce a degraded low-resolution image 
lz . This process is 

essentially the same as in (Zeyde et al., 2010). Then the image 
lz  is scaled up to the 

original size using bicubic interpolation to avoid the complexity cause by different 

resolution as well as to avoid coordinate ambiguity. The upscale image ly has the 

same resolution as hy  but lacks of textures including blur edges. In order to enhance 

the upscale image, sharpening the upscale image prior to the feature extraction phase 

is considered. The upscale image is enhanced using the proposed image interpolation 
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as described in Section 6.3.1. The enhanced image will provide better features for 

extraction of the image patches and the dictionary learning phase. This process will 

significantly improve the super-resolution results.   

This step produces two pairs of training images ,h ly y i.e high-resolution and 

enhanced low-resolution images. The next step is to extract pairs of matching patches 

from these two training images. 

Features extraction: The features are extracted from the two training images i.e. the 

high-resolution image and the enhanced low-resolution image. Different features for 

the low-resolution image patch have been used in the literature.  The high-pass filter 

has been used to extract the edge information in (Freeman et al., 2000). While in 

(Sun et al., 2003) a set of Gaussian derivative filters are used to extract the contours 

in the low-resolution patches. (Chang et al., 2004) used the first- and second-order 

gradients of the patches as the representation. (Zeyde et al., 2010) used the first- and 

second-order gradients of the patches as the representation. In this work, the first 

order difference equation is proposed as a filter to extract the features for the low-

resolution patch due to their simplicity and effectiveness.  

Prior to patches extraction, the pre-processing for high-resolution image is done to 

remove the low-frequencies from the high-resolution image by computing the 

difference images h h lE y y . Computing the difference of these images will remove 

the low-frequencies and retain the coefficients which correspond to the high 

frequency information. The reason is to extract the critical details in the image 

(Zeyde et al., 2010). The low-resolution image is filtered using the first-order 

difference equation to extract the local features that correspond to their high-

frequency information. The first-order difference equation returns a matrix of row 

differences and then the transpose matrix is calculated. The step is repeated to 

produce four filtered images.   

The low-resolution image patches are extracted from the filtered images while the 

high-resolution image patches are extracted from the difference image hE . The whole 

image is divided into same-sized patches with several pixels overlap.  
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The high resolution patches Ph are then extracted from the difference image Eh using 

9 9 block size which is 81 vectors at one time. These vectors are arranged in 81 1

matrix. The total size for the high-resolution patches is calculated as:  

22 ( ) [  , / - 2* ]
k

hP size n N s dd    (6-12) 

where n is the block size of the image patch, dd is the displacement between current 

and previous block, s is a scale-down factor and N is the number of columns in the 

image. This high-resolution patch will be used to create the high-resolution 

dictionary in the dictionary learning phase. The process to gather the high-resolution 

image patches is similar to (Zeyde et al., 2010) except that the difference image is 

obtained from the enhanced image and the original high-resolution image. 

For low-resolution image, patches are selected from the features extraction in the 

four filtered image. The corresponding low-resolution patches are extracted from the 

same locations in the four filtered image using the same block size i.e. (9 9 pixels) 

which is 4 81  vectors. These vectors are arranged in 324 1matrix. There are four 

filtered image so these feature vectors are concatenated into one vector as the final 

representation of the low-resolution patches. The total size for the low-resolution 

patches is  

22 ( ) [4*  , / - 2* ]l

kP size n N s dd  (6-13) 

These low-resolution patches will be used to create the low-resolution dictionary. 

 

Dimensionality reduction: The dimensionality reduction of the input low-resolution 

patches is used to reduce dimension of the low-resolution patches and to reduce 

computational complexity in the subsequent training and super-resolution algorithms. 

The Principal component analysis (PCA) algorithm is applied on these patches, 

finding the components with the strong energy. The eigenvalues of the low-

resolution patches are sorted into the descending order and only the coefficients 

larger than 0.999 will be selected to be put in the reduced feature vector. This is to 

preserve 99.9% of the energy. The projection that transforms the patch l nR

kp R  

(vector of length nR pixels) to its reduced feature vector,
 

l nl

kp R  (vector of length 

nl pixels)  is denoted by nl nRB R , l l

k kp Bp . The reduced patches are used in the 
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dictionary learning phase. Table 6-2 shows the number of coefficients larger than 

0.999 in the low-resolution patches for the method of (Zeyde et al., 2010) before and 

after PCA and the proposed method. It can be seen that the proposed filtering method 

effectively reduces the dimensions of the low-resolution patches by selecting only 

the components with strong energy. Reducing the feature vector (dimensions) will 

lead to less computation.  

 

Table 6-2: Dimensionality reduction comparison 

Image Method of (Zeyde 

et al., 2010) before 

PCA 

Method of (Zeyde et 

al., 2010) 

after PCA  

The proposed 

method 

Peppers 81 29 23 

Lena 81 29 24 

Barbara 81 29 24 

Text 81 28 25 

Building 81 28 25 

Child 81 41 37 

 

Dictionary Learning: The objective of the dictionary learning methods is to find a 

dictionary that provides the sparsest representation for each example in the data set. 

The state-of-the-art algorithms to find the dictionary are the method of optimal 

directions (MOD) (Engan et al., 1999) and K-SVD (Aharon et al., 2006). Both 

methods are iterative methods in which they alternate between the sparse-coding and 

the dictionary update steps.  More details on the dictionary learning using K-SVD 

and OMP can be found in (Aharon et al., 2006), (Zeyde et al., 2010). 

Similar to (Zeyde et al., 2010), the K-SVD dictionary training algorithm          

(Aharon et al., 2006) is used for the dictionary learning for both the high-resolution 

and the low-resolution images. The K-SVD is applied to the low-resolution patches 

for low-resolution dictionary learning.  

 
2

l
,{ }

,{ } argmin
k

l

k l k
l k

A k

A p A    s.t. 
0

 k L   k  
(6-14) 
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L in (6-14) is the number of atoms for the sparse coefficients k . Then perform the 

sparse coding using the Orthogonal Matching Pursuit (OMP) algorithm (Engan et al., 

1999) to obtain the sparse coefficients . OMP is used as in (Zeyde et al., 2010) 

because of its simplicity and fast execution. Then the sparse coefficients are used to 

estimate the high-resolution dictionaries. The dictionary is defined to be the one that 

minimises the mean approximation error 

 

2

2

2

2

arg min

arg min

h

h

h k
h k h

D k

h h
A

A p A

P A Q

    

(6-15) 

where the matrix Ah is constructed with the high-resolution training patches k

hp  as its 

columns, and Q contains k as its columns as in (Zeyde et al., 2010, Yang et al., 

2008). 

The resulting high-resolution dictionaries are used to update the high-resolution 

image patches. The high-resolution patch k

hp  can be recovered by approximating

h k

l h
p A . To recover k

hp , the sparse representation vector that corresponds to the 

low-resolution patch is multiplied by the high-resolution dictionary.  

 

6.5.2 Reconstruction Phase 

This section describes the reconstruction phase for single image super-resolution 

using sparse representation. Figure 6-6 shows the block diagram of the 

reconstruction phase. The reconstruction phase consists of three main steps: (i) 

training set construction, (ii) feature extraction and (iii) high-resolution image 

construction. In the reconstruction phase, the test low-resolution image lz  is to be 

magnified. The generation of the low-resolution image is similar to the construction 

of low-resolution images step in the training phase. Then the proposed image 

interpolation described in Section 6.3.1 is performed prior to patch learning in order 

to enhance the upscale image. After that, the low-resolution image patch as explained 

in Section 6.5.1 is gathered. These two steps produce the low-resolution patches of 

the test image. Then the low-resolution image patches and the low-resolution 
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dictionary from the training phase are used to create the sparse coefficients. The 

OMP algorithm (Engan et al., 1999) is used for sparse coding of the low-resolution 

test image. The rest of the reconstruction phase is the same as in (Zeyde et al., 2010). 

Then the resulting k  is used to estimate the high-resolution patches. The 

approximated high-resolution patches 
h
kp  are obtained as 

    
k

h k

hp A  (6-16) 

The sparse representation vectors are multiplied by high resolution dictionary 
hA  and 

the approximated high resolution patches
hp . The high resolution estimate 

*

h
y  is 

obtained from 
k

hP  by solving the following minimisation with respect to hy . 

    
*

2
* *

2

arg min ( )
h h

h

h
k l k

y k

y R y y p  
(6-17) 

where 
kR is the operator which extracts a patch of size n x n from the high-resolution 

image in location k. The output of this phase is the final super-resolved image
*

h
y .  

 



Chapter 6 

 

107 

 

 

Figure 6-4: Block diagram of the reconstruction phase 

High-resolution 

image 
* )hy  

Upsample using 

bicubic ( )ly  

Low-resolution

( )lz   
downsample upsample 

First-order    

difference 

+ 

Enhanced image ( )
l

y  

Low-resolution 

patches (
h

lP ) 

Reduced patches 

Sparse 

coefficients  

( ) 

Low-

resolution 

Dictionary (

lA ) 

PCA 

High-

resolution 

Dictionary (

hA ) 

*

l hy e  

OMP with 

Difference 

image patches  
*
he   

Reconstructed 

high-resolution 

image ( *)hY  

Filtering 



Chapter 6 

 

108 

 

6.6 Bootstrapping Method 

The bootstrapping method learns the dictionaries from the low-resolution patches 

without the need for the ground truth image. The method is applicable to real 

scenarios in which there is no access to the ideal image. In this method the low-

resolution test image is used to train and “bootstrap” the test image as proposed by 

(Glasner et al., 2009.).  The low-resolution image is downsampled by 0.5 to create 

the low-low-resolution image. This method extracts two sparse dictionaries from 

these low-resolution images.  Then these dictionaries are used to super-resolve the 

low-resolution test image. The improved bootstrapping method by the inclusion of 

the proposed interpolation method prior to patch learning and filtering the low-

resolution image for feature extraction are shown in the grey box in Figure 6.7. 

Similar to the super-resolution using ground truth image explained in Section 3.2.1, 

the proposed image interpolation described in Section 6.3.1 is performed prior to 

patch learning (shown in shaded box in Figure 6.7) in order to enhance the upscale 

image. Then the gathering of low-resolution image patch as explained in Section 

6.5.1 is implemented here. The same reconstruction phase as explained in Section 

6.5.2 is used to reconstruct the high-resolution image for the improved bootstrapping 

method.  

6.6.1 The training phase 

The training phase consists of three main steps: (i) training set construction, (ii) 

feature extraction and (iii) dictionary training. Figure 6-7 shows the block diagram of 

the training phase for the bootstrapping method. The same feature extraction and 

dictionary training steps as described in Section 6.5.1 are adapted in the 

bootstrapping method. 

 

Training set construction: This step is the same as in (Zeyde et al., 2010). In order 

to train the dictionaries of the low-resolution test image and the downsampled 

version of the low-resolution image, the low-resolution image is downsampled by 0.5 

and then upsampled back to its original size to serve as an ideal image. The trained 

dictionaries are used to enable the reconstruction phase, which scales up the low-
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resolution image 
lz  to the high-resolution image hy . The high-resolution image hy  is 

only used to generate a low-resolution image for testing purposes, and it is not 

needed for training the dictionaries.  

This step produces a low-resolution image llz  which is then scaled up back to the 

original size using bicubic interpolation. The upscale image ly has the same resolution 

as hy . Then, the proposed image interpolation described in Section 6.3.1 is applied to 

the upscale image ly . This improvement provides better features for the dictionary 

learning phase and is significantly improve the learned dictionaries. 

The remaining steps in the training phase are similar to the super-resolution method 

using the ground truth image as described in Section 6.5. 

 

6.6.2 Reconstruction Phase 

The same reconstruction phase as explained in Section 6.5.2 is used to reconstruct 

the high-resolution image for the improved bootstrapping method.  
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Figure 6-5: Block diagram of the training phase for bootstrapping method. 
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6.7 Experimental results 

This section presents super-resolution results obtained by the proposed method. First, 

the result of super-resolution in which the high-resolution image is used for training 

is presented and then bootstrapping. The images used in the experiments are shown 

in Figure 6-8. The high-resolution image and the corresponding low-resolution image 

are used to extract the patches. The block size for patch extraction is 9x9 pixels and 

the overlapping between block is 3 pixels. These parameters are used to compare the 

results of the proposed method with (Zeyde et al., 2010).  Then these patches are 

used for dictionary learning where the outputs are low-resolution and high-resolution 

dictionaries and sparse coefficients. The K-SVD algorithm (Aharon et al., 2006) is 

used for dictionary learning. The number of iterations for K-SVD is 40. In this work, 

the proposed method is compared with the method in (Zeyde et al., 2010). The 

results are evaluated both visually and quantitatively in terms of PSNR.  

 

Figure 6-6: Six images used in the experiments, referred to as (from left to right and 

top to bottom): „text‟, ‟lena‟, „peppers‟, „barbara‟, „child‟ and „building‟. 
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6.7.1 Super-resolution results using high-resolution dictionary  

In this experiment, the high-resolution image and the low-resolution image are used 

to gather the image patches and to create the dictionary.  The low-resolution image is 

generated by applying the blurring filter both horizontally and vertically to the high-

resolution image and downsampling it by 0.25. Figure 6-7 shows the results for 

image „barbara‟. Figure 6-7 (a) shows the results of method (Zeyde et al., 2010) and 

(b) the result of the proposed method.  To show the detail after the super-resolution, 

the magnified version of the selected region of (a) and (b) are shown in (c) and (d). 

From the results one can see that the textures in the image (d) have been recovered 

quite well compared to the method of (Zeyde et al., 2010) in (c). The clear 

improvement is shown by the circle. 

Figure 6-8 shows the results for image „text‟. This figure compares the result against 

the ground truth. To show the detail after super-resolution, the extraction of the 

selected region after super-resolution is shown in the right-hand side of the figure. 

The result of the high-resolution image obtained by the proposed method shown in 

(c) is sharper than the result of (b), which has many blurred effects around the text. 

Notice that the proposed method significantly improves the image resolution with 

acceptable blur effect. The proposed method is compared with the method of (Zeyde 

et al., 2010) quantitatively in terms of PSNR as shown in the figure. The comparison 

in terms of PSNR also indicates that the proposed method shows improvement of 

3dB.  
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(a)Method of (Zeyde et al., 

2010)(PSNR=23.96 dB) 
(b) Proposed method  (PSNR=25.81 dB) 

 

 

 

 

(c) Magnified version of (a) 

 

 

(d) Magnified version of (b) 

Figure 6-7: Super-resolution results for image „barbara‟ and  its PSNR (a) Method of 

(Zeyde et al., 2010) (b) The proposed method (c) Magnified version of (a) (d) 

Magnified version of (b). 
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(a)Original Image 

 

(b) Method of (Zeyde et al., 2010) (PSNR=15.84 dB) 
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Figure 6-8: Super-resolution results for image „text‟ and its PSNR (a) Original image 

(b) Method of (Zeyde et al., 2010) (c) Proposed method (PSNR=19.68 dB) 

 

The proposed method is further tested on other images, i.e., „peppers‟, „lena‟ and 

„child‟. The results are shown in Figure 6-9 and 6-10. Notice that in Figure 6-9 the 

output of the proposed method (right) have high-resolution details and have higher 

PSNR compared to the method of (Zeyde et al., 2010). Figure 6-9(b) shows the result 

of applying the proposed method to image „child‟. The visual improvement can be 

seen in the image for the proposed method with PSNR improvement of 7dB.  
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(a) PSNR=24.65dB (b) PSNR=27.65 

  

(a) PSNR=28.62 (b) PSNR=33.32 

Figure 6-9: Super-resolution results and its PSNR: (top) „peppers‟ (bottom) „lena‟ (a) 

Method of (Zeyde et al., 2010) (b) The proposed method  
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(a) (PSNR=23.66) 

 

(b) (PSNR=30.09) 

Figure 6-10: Super-resolution results for „child‟ and its PSNR: (a) Method of (Zeyde 

et al., 2010)(b) The proposed method  
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The PSNR value for the test images are shown in Table 6-3. The improved method has 

higher PSNR value for all of the test image compare to Method of (Zeyde et al., 2010).   

 

Table 6-3: The PSNR (dB) for the test images. 

Test Image (Size) 

  

PSNR (dB) 

Method of (Zeyde 

et al., 2010) 

The proposed 

method 

Lena (170x170) 28.62 33.32 

Text (120x120) 15.84 19.68 

Peppers (85x85) 24.65 27.65 

Barbara (170x170) 23.96 25.81 

Building (266x266) 21.98 25.27 

Child (170x170) 23.66 30.09 

 

6.7.2 Super-resolution results using bootstrapping  

In this section, the result for the bootstrapping approach for single image super-

resolution is presented. For this experiment, the patches and dictionaries are trained 

using only the low-resolution image. The low-resolution image is scaled down by 0.5 

and upscale again for the training phase. Figures 6-11 and 6-12 show the results of 

applying the improved bootstrapping method to image „barbara‟ and „text‟, 

respectively. One can see that the results are visually comparable for both image as 

well as the PSNR. Note that, the result in Figure 6-7 and Figure 6.11 are not 

comparable because the size of the low-resolution images for each experiment is not 

the same. Furthermore the first method uses the ground truth high-resolution image 

for patches and dictionary learning while the bootstrapping method only uses the 

low-resolution image.   
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(a) PSNR=24.53 dB (b) PSNR=24.65 dB 

 

 

(c)  

 

(d)  

Figure 6-11: Super-resolution results for image „barbara‟ and its PSNR (a) Method of 

(Zeyde et al., 2010) (b) The proposed method (c) Magnified version of (a) (d) 

Magnified version of (b) 
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(a) 

 

 

(b) PSNR=16.97dB (c) PSNR=17.1361 

Figure 6-12: Super-resolution results for image „text‟ and its PSNR (a) Original 

image (b) Method of (Zeyde et al., 2010)(c) The proposed method  
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Figure 6-13 and Figure 6-14 shows the results for „peppers‟, „lena‟, „child‟ and 

„building‟. Notice that in these figures the output of the proposed method (right) has 

better image quality and have higher PSNR compare to the method of (Zeyde et al., 

2010).  

  

(a) PSNR=24.65) (b) PSNR=25.75 

  

 

 

 

 

 

 

 

 

 

 

 

(a) PSNR=28.62 (b) PSNR=30.11 

Figure 6-13: Super-resolution results and its PSNR: (top) „peppers‟ (bottom) „lena‟ (a) Method 

of (Zeyde et al., 2010) (b) The proposed method  
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(a) PSNR=32.59 (b) PSNR=32.96 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) PSNR=27.81 (b) PSNR=26.98 

Figure 6-14: Super-resolution results for image „building‟ and its PSNR (a) Method 

of (Zeyde et al., 2010) (b) The proposed method  
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The PSNR value for the test images are shown in Table 6-4. The improved method has 

higher PSNR value for most of the test image except for image „building‟.  

 

Table 6-4: The PSNR (dB) for the test images. 

Test Image (Size) 

  

PSNR (dB) 

  Method of 

(Zeyde et al., 

2010) 

The proposed 

method 

Lena (170x170) 28.62 30.11 

Text (120x120) 16.97 17.13 

Peppers (85x85) 24.65 25.75 

Barbara (170x170) 24.53 24.65 

Building (266x266) 27.51 26.98 

Child (170x170) 32.59 32.96 

 

Processing time: Table 6-5 shows the processing time of the improved bootstrapping 

method compared to the bootstrapping method of (Zeyde et al., 2010). All algorithms 

were run on a PC with the Pentium processor (2.50GHz) and 2GB memory. One can 

see from the table that the improved method effectively reduces the dimensions and 

requires less processing time by 10.36s in average over all six images. 

 

Table 6-5: Complexity comparison (Elapsed Time) [sec]. 

Test Image (Size) Times(seconds) 

Method of (Zeyde 

et al., 2010) 

The proposed 

method  

Barbara  (256x256) 125.44 118.63 

Text (180x180) 93.96 92.37 

Lena (256x256) 119.97 116.25 

Building (400x400) 158.76 143.74 

Peppers (128x128) 97.90 88.41 

Child (256x256) 117.57 116.23 

 Average 117.96 107.60 
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6.8 Summary 

This chapter presents a single image super-resolution using sparse-representation and 

a novel image interpolation based on linear combination of the original patches with 

their first-order difference. The proposed image interpolation before patch learning 

step effectively enhances the prior estimation of the high-resolution image and 

method of (Zeyde et al., 2010). The proposed method enhanced the important 

features as well as the image patches and improved the super-resolution results. The 

proposed method to extract the low-resolution patches also improves the processing 

time. The proposed super-resolution scheme suggests performance improvements 

compared to methods of (Zeyde et al., 2010) for the test images. 
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CHAPTER 7  

7. CONCLUSION 

This chapter presents the summary of the contributions and future work. The 

remainder of the chapter is organised as follows. A summary of contribution is 

discussed in Section 7.1. The recommendation and future work is presented in 

Section 7.2.  

7.1 Summary of contributions 

The thesis has developed the techniques for combining information contained in 

multiple images of the same scene into a single high-resolution image. Different 

parts of the super-resolution problem separately been addressed in this thesis and 

SVD-based fusion before performing interpolation or single-image super-resolution 

is introduced. The advantages are that the solution to each phase can be tailored more 

easily and to avoid complex models. There are three main aspects of this thesis: 

multiple image registration, image fusion and single-image super-resolution.  

For image registration, an image registration approach for super-resolution based on 

a combination of Scale Invariant Feature Transform (SIFT), Belief Propagation (BP) 

and Random Sampling Consensus (RANSAC) is proposed. The SIFT algorithm is 

used to detect and extract the local features in the low-resolution images. BP is used 

to match the features while RANSAC is adopted to filter out the mismatched points 

and then estimate the transformation matrix. The technique has been applied to 

synthetic and real-world images.  The proposed method seems effective for the 

removal of the outliers introduced in the SIFT-BP method. The method produces 

better results for the test images in terms of visual quality compared to the case when 

SIFT, SIFT-BP or SIFT-RANSAC alone are used for image registration.  

For image fusion, a novel SVD-based image fusion approach for super-resolution has 

been proposed. SVD-based image fusion enhances the super-resolution results by 
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integrating the significant features from low-resolution images. The proposed 

method converts the registered and reference image into the SVD domain and then 

the images‟ singular values are fused based on the fusion rule before performing the 

interpolation. In the proposed method, the maximum fusion rule is used because the 

highest singular values convey a great amount of image information representing the 

intensity information of a given image. Significant performance improvement can be 

seen from the results when compared to standard interpolation techniques and 

existing learning-based super-resolution approaches.  

For single-image super-resolution, a novel image interpolation based on a linear 

combination of the original patches with their first-order derivates has been proposed 

to improve the method of single image super-resolution using sparse representation. 

The proposed method has enhanced the prior estimation of the high-resolution image 

while maintaining important image features. The improved method effectively 

enhances the prior estimation and reduces the computational time and hence 

improves the super-resolution results compared to state-of-the-art. The proposed 

method shows clear performance improvements compared to the methods of (Zeyde 

et al., 2010), using the test images.  

7.2 Recommendation and future work 

Although the proposed method was shown to performed well there is always 

opportunity for improvement. The following areas are of interest for potential further 

investigation: 

 In this thesis, the different parts of the super-resolution algorithm are 

addressed separately and SVD-based fusion is introduced before performing 

interpolation or single-image super-resolution. The disadvantage of this 

approach is in terms of processing time, since each stage needs the input from 

the previous stage to process. In the future, the work can be extended by 

simultaneously perform fusion and super-resolution using sparse 

representations.  This will make the algorithm more elegant and will reduce 

the processing time. 
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 The proposed method successfully reconstructs a high-resolution image from 

low-resolution images. The problem could be extended to reconstruct high-

resolution video sequences rather than single images of the scene.  

 Currently the algorithm for single image super-resolution presented in 

Chapter 6 only operates on grayscale images. In future work, the plan is to 

adapt the algorithm to operate with colour images. Basically, this can be 

achieved by applying the algorithm to the different colour planes. The 

extension of this should consider the correlation among the different colour 

channels as a prior knowledge.  
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