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ABSTRACT

The Abhainn Srathain copper mineralisation with at least 10 million tonnes qf’
rock containing copper was worked during the Eighteenth Century and is situated 1-2km
to the south of Meall Mc;r, South Knapdale. The mineralisation is hosted by
epidiorites, quartzites and schists of the Upper Erins Quartzite Formation in which
the levels of copper reach up to 2%, 1.3% and 0.8% respectively. The main sulphide
phases, pyrite and chalcopyrite, occur in disseminations, in layers and as large
crystals in quartz and/or calcite cross—cutting veins.

The observed opaque mineral textures are due to recrystallisation, deformation
and limited mobilisation indicating a premetamorphic origin for the mineralisation.
Microscopic compositional variation of the minerals and isotopic geothermometry of
analysed pyrite-chalcopyrite pairs suggest disequilibrium conditions during the
regional metamorphism. Sulphides contain low minor element concentrations with a high
Co:Ni ratio in pyrite (12.5:1).

The mineralisation 1is associated with the local development of epidote, Mn-rich
garnet, chlorite, muscovite and calcite and/or quartz cross-cutting veins which all
resulted from premetamorphic alteration during ore formation. During this alteration
Ca0, Fe,0,, CO,, M0, Cu, S and some trace elements were added, Al,0, was diluted and
Mg0, FeO, alkalis and some trace elements were removed. The isotopic composition of
bacteriogenically reduced sulphur from sulphides throughout the Knapdale Pyrite
Horizon ranges between 63§=+4.5 and 12.8 per mil. The consistent isotopic values of
the sulphides from the Abhainn Srathain copper mineralisation with an average of.
around +7 per mil regardless of location, depth, lithology and style of mineralisation
suggest that the source of the hydrothermal sulphur is a mixture of inorganically
reduced downward percolating Dalradian seawater sulphate and sulphur leached from
interbedded basic igneous rocks.

Weak exhalative activity caused by the shallow intrusion of sill bodies into the
wet unlithified sediments of the Lower and Upper Erins Quartzite accompanied the
deposition of the Upper Erins Quartzite and is expressed by weak disseminated and
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stratiform pyrite with traces of chalcopyrite and sphalerite (Knapdale Pyrite
Horizon). Increasing intensity of this exhalation was due to the creation of a
geothermal system centred at the site of the present copper mineralisation. During
this stage the hot ascending water reacted with the rocks causing local alteration and
precipitation of pyrite and chalcopyrite as disseminations, layers and cross-cutting
veins. At the same time cold water descended into the hot intrusives and altered the

rocks by dissolving silica and precipitating calcite and oxides.
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CHAPTER 1
INTRODUCTION

1.1 LOCATION

The area under study, Meall Mér, forms part of the Southwest
Highlands of Scotland. It is located within South Knapdale west of
Loch Fyne, mid-way between Tarbert and Lochgilphead and about 60km
due west of Glasgow (Fi1g. 1.1). The main site of the study is the
area around the old Abhainn Srathain mine (NR 8340 7375, Fig. 1.2,
folded map in the back pocket) about 1-2km to the south of Meall Mdr

summit.

The majority of the studied samples in this research represent
drillcore taken from the B.G.S. boreholes 1, 2 and 3 (Fig. 5.1).
Besides, during the field work in 1981 and 1982, sixty-three hand
specimens were collected from the poorly exposed outcrops together
with twenty stream sediment samples and their location is marked on
the folded map (Fig. 1.2). The area sampled is bounded to the north
and south by latitudes 55° 58 N and 55°53§ N respectively. Its
eastern boundary 1s the Loch Fyne coast. This area is covered by
Ordnance Survey 1:50,000 maps Sheet No. 62 of the Landranger Series
and also by Ordnance Survey 1:10,000 maps Sheets No. NR, 87 SE, 87
NW, 87 SW and 87 NE and was described in the Memoir on Jura-Knapdale
and North-Kintyre (Peach et al. 1911), and is included in Sheets No.

28 and 29 of the one-inch geological map of Scotland.

The area 1s largely utilised for sheep farming and deer
stalking and 1t has been extensively planted especially in the
Abhainn Srathain valley. The population of the area is small and
public transport 1s available; the area is served by the A83

Glasgow-Campbeltown trunk road.
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1.2 REASONS FOR RESEARCH

This project is concerned with mineralogical, textural,
geochemical and sulphur 1sotope studies and attempts to construct a
model for the genesis of the Abhainn Srathain copper mineralisation,
south of Meall Mdr summit, hosted by the Upper Erins Quartzite of
the regionally metamorphosed Middle Dalradian rocks. The research
was undertaken at the Department of Applied Geology under the.
supervision of Dr. Allan Hall. This research forms one of many
projects undertaken in this department started in 1977 concerning
the Middle Dalradian mineralisations after revealing their

stratiform nature.

The area was 1nvstigated by the B.G.S. in 1976 as part of their
Mineral Reconnaissance Programme. The investigation delineated the
existence of a zone of weak sulphide mineralisation, the Knapdale
Pyrite Horizon, and revealed the stratiform nature of the Meall Mt
copper mineralisation. Also, the 1investigation demonstrated the
existence of an epidotised zone that coincides with the copper
mineralisation and remobilisation process during regional
metamorphism was proposed to be responsible for the epidotisation
and the formation of large sulphide porphyroblasts in cross-cutting

velns.

The aim of this study 1is to describe the mineralisation in
detail i1n an attempt to examine the possibility of a premetamorphic
hydrothermal alteration of the host rocks during the mineralisation
process 1n order to explain the cross-cutting nature of the Abhainn
Srathain copper mineralisation at the site of epidotisation and to

understand the process of ore formation.

1.3 LAYOUT OF THESIS

This thesis reports the mineralogical, geochemical and sulphur

1sotope investigation of the Abhainn Srathain copper mineralisation,



Meall Mdr. The results of all these investigations are presented
and discussed in Chapters 5, 6 and 7 respectively. In order to have
a complete picture and to wunderstand the genesis of the
mineralisation, a brief summary of the background information is
given in Chapters 2, 3 and 4. Chapter 2 reviews the early history
of mining and thoughts on the genesis up to 1922 in the Loch Fyne
district, which the studied mineralisaton is part of. Chapter 3 of
this thesis attempts to place the mineralisation in its geological
setting and is mainly based on published information on the
Dalradian of Scotland. Chapter 4 describes the studied
mineralisation 1n relation to the other stratiform mineralisation in
the Dalradian and 1s based mainly on the Mineral Reconnaissance
Reports of the B.G.S.

A detailed description of hand specimens, textural and
petrographic examination of microscopic sections of materials from
exposure and drillcore together with the results of microprobe
analysis of selected sulphide, oxide, phosphate and silicate
minerals are reported and discussed in Chapter 5. Chapter 6
describes and discusses the chemistry of the host rocks 1in an
attempt to delineate any premetamorphic hydrothermal alteration
during the mineralisation process. Chapter 7 reports the sulphur
1sotope values from the area and discusses the source of sulphur and
equilibrium during metamorphism. And finally Chapter 8 gives a
possible model for the formation of the Abhainn Srathain copper
mineralisation and also summarises the possible conclusions that are
drawn from this study. Detailed descriptions of the techniques used

in this study constitute Appendices (A.5.1 to A.7.1).



CHAPTER 2
THE MINING HISTORY OF THE LOCH FYNE DISTRICT,
ARGYLLSHIRE

2.1 INTRODUCTION

Metalliferous mining is an old industry in Scotland. Ores of
lead and zinc have a wide distribution and were worked for several
centuries. Copper ores are less frequent, and nickel ores are found

in only a few places.

Production of lead ore in Scotland dates back to pre-Roman
times and probably the earliest authentic record refers to the Lead
Hills district; 1n west Argyllshire mining of lead started in 1424
(Hunter 1884, quoted in Wilson & Flett 1921), or probably earlier,
and the mines seem to have been worked for silver only up to about
the Sixteenth Century when the extraction of silver seems to have
become unprofitable and accordingly the mines were worked for lead
alone [ Cochran Patrick, quoted in Wilson and Flett (1921 1.

Great activity in mining and prospecting was recorded during
the period from the latter part of the Fifteenth Century to the
beginning of the Seventeenth Century following the discovery of the
gold-bearing gravels in the Lead Hills district (Hunter 1884). From
that time to up to the end of the Napoleonic Wars the lead industry
reached 1ts height but after the signing of peace in 1815, the price
of lead fell rapidly, and accordingly several of the mines were
closed down between 1840 and 1880.

Zinc ore has been worked only on a small scale, and the
earliest record is as early as 1865 at Black Craig mines,

Kircudbrightshire.



Ores of copper have been worked in Scotland since remote times
and quite likely back to 1500 or 1800 B.C (Graham Callander 1904).
The first authentic records of copper mines date to 1597 (Cochran
Patrick 1878). It reached the maximum activity just prior to the
war due to the discovery of a mass of copper ore near Kilfinan, in

Argyllshire.

Most of the mining activity was concentrated on vein deposits,
porphyry style mineralisation and concordant mineralisation. By
1925 base-metal mining had ceased in the Highlands and in many cases
these old mines have fallen in, and their sites are now covered up

and grassed over making reinvestigation very difficult.

2.2 LOCH FYNE DISTRICT

This comprises the district on both sides of Loch Fyne in
Argyllshire (Fig. 2.1). The Abhainn Srathain old mine of the
studied area "Meall Mor" belongs to this district. This region has
long been known to contain base-metal concentrations of economic
proportions, and in some localities, for instance, near Loch Arail
(NR 8080 7950), the country rock was known prior to the Eighteenth
Century to be impregnated with sulphide ores to such an extent that
the water of the loch are poisoned, and fish are said to be wunable
to live (Peach et al. 1911).

There are about thirty reported occurrences of mineralisation
in the area, most of them are of minor character, and despite this
wide mineralisation, only three of these occurrences were developed
as mines: these are at Kilfinan, Coillie Bhraghad and Craignure
(Hopkinson 1970). The accounts of mining activity are summarised in
Table (2.1) for the worked mines, and in Table (2.2) a description
of the unworked localities is given. The information represented in
Tables (2.1 & 2.2) 1s taken from the following references: Gunn et
al. (1897), Hill et al. (1905), Peach et al. (1909), Peach et al.
(1911), Clough (1913) and Wilson & Flett (1921).
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Fig. 2.1 : Distribution of the metalliferous mines and
localities in the Loch Fyne district. See
Tables 2.1 & 2.2 for the key to numbers.
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Generally, prospecting for lead, zinc, copper and nickel in
this area seems to be prior to the Sixteenth Century though mining
activity apparently did not reach its zenith wuntil the Eighteenth
Century. During that earliest time of prospecting it was considered
that the east side of Loch Fyne was of less economic value than the
west side until a few years before the First World War when the
Otter Company discovered copper ores north-east at Inveryne (NR 9195
7565).

The ore deposits in this region are usually associated with the
Ardrishaig Phyllites and the underlying quartzites and were thought
to be either vein type or metasomatic replacements (metallic
sulphide replacing limestone) and/or of magmatic segregations in the
case of copper ores. The veins vary from mere stringers to 2.5 or 3
metres 1n width and in many cases they consist of either quartz or
calcite and to a lesser extent of siderite.’ Many of these veins
trend north-east, but others have north-west and east-west trends.
The amount of precious metals occurring in these veins is rather
higher than the average for Scotland especially at Stronchullin (NR
8430 7910), which yields on assay, gold to the average value of 2 oz
to the ton and up to 4 oz to the ton.

2.3 ABHAINN SRATHAIN MINE

The old mines are situated on the sides of the Abhainn
Srathain, 1n a8 gorge known as Eas Cruach nan Cuillean sbout 3km

south-west of Erins.

Several trials have been made (Wilson and Flett 1921); the
lower one 1s about 114 metres up the gorge. It consists of a level
driven along 8 quartz-schist containing specks of copper ore. A
little overhead stoping has been done at the end of the level, and a
shaft was sunk, but it is now full of water. About 38 metres
turther up another level has been driven in a3 north-west direction

along the strike of the quartz-schist that contains chalcopyrite.



Other small levels have been driven north-east along the schist band
that bears pyrite. The "0ld Copper Mine'", shown on the six-inch map
(Fig. 1.2), consists of a shaft, now full of water (Plate 2.1).
There is another shaft about 190 metres farther along the strike.

13



Plate 2.1 : The Abhainn Srathain copper mine south of Meall Mdr
(NR 8340 7375).
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CHAPTER 3
THE GEOLOGICAL HISTORY OF THE DALRADIAN
HOST ROCKS

3.1 INTRODUCTION

The Dalradian Supergroup 1s known to host the highest number of
significant base metal showings amongst the main rock divisions in
Scotland. The majority of these occurrences are hosted by the
Middle Dalradian Easdale Subgroup, notably 1in the Ardrishaig
Phyllite or 1ts lateral equivalent the Erins Quartzite (Fig. 4.1).
The latter formation 1s the host to the present studied Abhainn

Srathain copper mineralisation.

In the first three sections of this chapter, a brief summary of
the geological history (sedimentation, structure, metamorphism and
tectonism) of the Dalradian Supergroup, based mainly on reviews of
Caledonian and Dalradian geology, Harris and Pitcher 1975, Harris et
al. 1975, Harris et al.1978, Harris et al. 1979, Bowes and Leake
1978, Anderton et al. 1979, Anderton 1977, 1982 and 1985, Johnson
1983 and Graham and Harte 1985, 1s given with emphasis placed on
the Middle Dalradian Group, 1n order to provide a background to
their geological setting that could throw a light on the
characteristics and genesis of the mineralisation. The fourth
section of this chapter 1s a summary of the geology of the studied

area, Meall Mor.

3.2 THE GRAMPIAN HIGHLANDS

Scotland can be divided geologically into five regions namely:
(1) the Southern Uplands, (2) the Midland Valley, (3) the Grampian
Highlands, (4) the Northwest Highlands and finally, (5) the
Hebridean Craton. They are separated by the Southern Uplands Fault,
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the Highlands Boundary (Border) Fault, Great Glen Fault, and the
Moine Thrust respectively (Fig. 3.1).

The Grampian Highlands, an area of 25,000 km, is dominated by
the lithologically diverse Dalradian Supergroup (Cowie et al.
1972). This Supergroup 1s of late Precambrian to early Ordovician
age and was deposited in a 250km wide basin oriented
northeast-southwest on the southeast margin of the Laurentian
Containent. The deposition of the Dalradian sediments was
interrupted on occasion by the eruption of volcanic rocks. The
whole sedimentary pile was then deformed and metamorphosed during

the Grampian Orogeny which represents an early stage of the
Caledonian Orogeny.

The Highlands comprise the highest land in Britain. Ben Nevis
reaches ( >1200m) 0.D. and a considerable area in the Cairngorms
exceed 1000m above sea-level (Johnstone 1966). Many of the summits
of the remainder of the mountainous area reach or exceed 600m . Two
contrasted types of mountain-scenery are presented in the Grampian
Highlands and their evolution was reviewed 1n detail by Sissons
(1976). In the Cairngorm area and around Glen Clova great relicts
of an uplifted peneplain still remain. Towards the southwest, it

passes 1nto a more highly dissected type of crests and ridges.

During the maximum Pleistocene glaciation the Grampian
Highlands were a great centre of 1ce dispersal with the main
distribution-centre situated i1n the western half of the region. As
a result of this glaciation, the Highland peneplain 1is deeply
dissected forming an extremly rugged mountainous landscape with

peaks and ridges separated by glacially overdeepened valleys, now
housing the great lochs.

3.3 THE DALRADIAN SUPERGROUP

The British Caledonides were divided by Read (1961) and Kennedy
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1958) 1nto early and late zones, which were then named by Dewey
(1969), the Orthotectonic (the Northern Belt) and the Paratectonic
(Southern Belt) Zones respectively (Fig. 3.2), separated by the
Midland Valley Graben. The Southern Caledonian Belt includes the
Southern Uplands of Scotland, the Lake District, Isle of Man, Wales
and the Northern Caledonian Belt includes Palaeozoic rocks to the

southeast of the Moine Thrust and consists of two grest

metasedimentary assemblages, the Moine and Dalradian (Johnstone 1975

and Harris and Pitcher 1975). The Moine occupying the northern

two-thirds of the belt and consists of a monotonous sequence‘of
psammite and pelite (Johnstone et al. 1969) of probably middle to
late Proterozoic age. These Moine rocks suffered earlier

deformation and metamorphism about 730 Ma ago (Powell 1974, Van

Breemen et al. 1974 and Phillips et al. 1975) and/or possibly about
1000 Ma ago (Brook et 3l. 1977 and Brewer et al. 1979). The

remaining southern one-third of the belt 1is occupied by the
Dalradian Supergroup.

The Dalradian Supergroup of Britain extends from the Banffshire
Coast through the Central Highlands into the Southwest Highlands
(Fig. 3.3) and the large islands of Islay and Jura. This Supergroup
is about 20-25km thick (Harris et al. 1978 and Anderton et al.
1979), although 1ts original thickness may have been in excess of
30km regarding the suggestion of thinning (20-80 %) caused by
deformation as explained by Borradaile and Johnstone (1973),

Borradaile (1973 , Roberts (1974) and Harris et al. (1976). The

sediments are lithologically diverse, mainly metasedimentary and

metaigneous rocks, which were accumulated between the late
Precambrian (Upper Riphean) and Cambro-Ordovician (c. 500 m.y.) and

underwent polyphase deformation and metamorphism during the Grampian
Orogeny.

3.3.1 Stratigraphy and Sedimentation

In order to study such an extended outcrop, the Dalradian

Supergroup was divided into four groups separated by distinctive
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Fig. 3.1: The geological subdivisions of Scotland taken from
Johnstone 1966 with few modifications.

18



Fig 3.2 . Metamorphic rocks of the British Caledonides.
1,northern beit.2,southern beilt,weakly metamor
phosed.3,southern belt,greenschist tacies. OT,
Outer Hebrides Thrust. MT, Moine Thrust. GG,
Great Glen Fault. HF, Highland Boundary Fault.
SF, Southern Uplands Fault. CF, southern limit of
caledonian effects. VF,Variscan Front.
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marker-horizons (Table 3.1) and every group 1s further subdivided
into 1ndividual subgroups on the bases of particular lithological or
sedimentological characteristics. Each subgroup consists of several
formations, which are of local status only and this implies many
correlation problems. As the Dalradian Supergroup 1in the central
area, 1n Argyll and Donegal (Table 3.1), exhibits the least deformed
and metamorphosed rocks, 1t has been used as a type area for the
whole of the Dalradian (Anderton et al. 1979). Accordingly, in the
following summary, the Dalradian subdivisions will include the names
of the type area together with some local equivalents. The
stratigraphic succession of the Scottish Dalradian 1s divided 1into
four groups namely: the Grampian (oldest), Appin, Argyll and
Southern Highland Groups, each of which will be summarised 1in more

detai1l in the following sections.

(1) The Grampian Group

Although the base of the Dalradian is not visible in Scotland,
1t may overlie Moine rocks 1n Ireland and hence the date of
initiation of Dalradian sedimentation can only be guessed. It is
unlikely to be younger than 700 Ma (Dunning 1972) and may be as old
as 800 Ma (Brook et al. 1977). The Grampian Group (Harris et al.
1978) represents the lowest group in the Dalradian and was formerly
named (Harris and Pitcher 1975) the Central Highlands Granulites and
included within the Moine. This was questioned by Thomas (1980) and
Haselock et al. (1982). Also Anderton (1985) pointed out that
geochemical differences between Grampian and Appin Groups, together
with the discussions given by Piasecki (1980) and Lambert et al.
(1982) are sufficient to regard the Grampian Group as a separate

stratigraphic unit within the Dalradian.

The sediments were originally silts and muds interbedded with
poorly sorted, immature, locally pebbly quartz and feldspathic
sands, with cross stratification, ripple marks, grading and

erosional features 1indicating derivation from the south and
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deposition from northerly-flowing currents 1n tidal flat or deltaic

environments Hickman 1975 and Thomas 1980).

(11) The Appin Group

The boundary between the Grampian and Appin Groups 1in the Appin
area 1s shown to be significantly diachronous (Hickman 1975). This
group 1s consists of mud and limestones (now metamorphosed to
quartzite and slates or schists). Stromatolites afe found 1n the
uppermost limestone, the Lismore Limestone. Many formations can be
traced for considerable distances, although lateral facies changes
are recognised (Litherland 1970 and Smith and Harris 1976).
However, the presence of shallow-water sedimentary structures and
the palaeocurrent data, are consistent with a shallow shelf origin
(Anderton et al. 1979). 1In slates of the Ballachulish Subgroup,
pseudomorphs after gypsum are evidence of local high seawater

salinity in the enclosed Dalradian Basin (Hall 1982).

(111) The Argyll Group

Islay Subgroup

The base of the Argyll Group 1s marked by the Port Askaig
Tillite(Kilburn et al. 1965, Spencer 1969 and Howarth 1971). It can
be traced for nearly the whole length (~660km) of the Dalradian
outcrop from Conemara to Banff, but 1t 1s not found i1n Shetland. It
can be correlated with the Varangian or Eocambrian Tillite found
throughout the Caledonian Belt and dated 1in Finmark at 670 Myr
(dated by Pringle 1972). In the Garrvellachs-Easdale area, the Port
Askaig Tillite (c. 750m thick, Spencer 1971) contains up to
forty-seven beds of tillite separated by siltstones, dolomites,
conglomerates and cross- bedded marine sandstones and quartzites.
They were deposited from floating and grounded 1ce sheets derived
from a metamorphic and granitic terrain to the southeast (Spencer
1975 and Anderton 1980b). Eyles and Eyles (1983) suggested a
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glaciomarine, rather than a grounded ice-sheet origin for part of
the Port Askaig Tillite.

Following the Port Askaig Tillite, Dalradian deposition started
to follow some new trends. Very thick formations are found and
major lateral facies changes become important. Deep-water facies
are first found and a tectonic control on sedimentation becomes
evident (Anderton 1974 and 1979).

The Islay Subgroup, with its oldest unit the Bonahaven Dolomite
1s composed of dolomitic shales, siltstones and sandstones (Spencer
1971) normally 30-80m thick, but 300m in Islay (Spencer and Spencer
1972) where 1t was deposited in a semi-restricted coastal zone of
lagoons and tidal flats (Fairchild 1980 a&b). Within these
dolomitic rocks are abundant stromatolitic algal deposits (Hackman
and Knill 1962 and Spencer and Spencer 1972) and the depositional
environment was interpreted as shallow sub-tidal to supra-tidal in a
hot dry climate. In the Loch Creran area the Port Askaig Tillite is
absent and the base of the Islay Subgroup 1s marked by the earliest
recorded turbidites and chlorite-albite-epidote schist (the Green
Beds) in the Dalradian (Section 3.3.2). These were interpreted as
sediments with volcanic conglomerate, possibly basic tuffs
(Lrtherland 1980), and together with the turbidites are evidence of
a dramatic onset of instability resulting in the formation of the
first deep water, second order, basins in the Dalradian. Overlying
the Bonahaven Dolomite, 1s the Jura Quartzite, which shows
considerable lateral variation, both in thickness and facies. In
Jura this quartzite reaches 5km, but 1t thins rapidly northeast
(Kn1ll 1963). It was deposited on a tidal shelf subsiding along a
hingeline 1n the Scarba area (Anderton 1974 & 1976).

In the Schiaehallion-Pitlochry district, the Islay Subgroup is
represented by part of the Perthshire Quartzite Series; the
Schiehallion Quartzite and the Killiecrankie Schist (Heterogenous
Schist of Bradbury et al. 1979).
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A major break 1n depositional conditions occurred at the top of
the Jura Quartzite and 1s reflected 1in significant variations 1n
both thickness and facies i1n the succeeding formations, which can
often be related to tectonic hingelines and can best be 1interpreted
as the result of major syndepositional faults defining the margins
of small turbidite basins. Syndepositional movement of several
kilometres along these faults occurred and from mid-Argyll times
onwards the movement of such faults was probably the major control

over sedimentation (Anderton et al. 1979).

Easdale Subgroup

The transition from the Islay to the Easdale Subgroup marks the
first basin-deepening event 1n the Dalradian. The base of the
Easdale Subgroup 1s defined by the Scarba Conglomerate, mainly
comprising turbidite deposits which fine northwards, from the
Islay-Jura area towards Kerrera (Baldwin and Johnson 1977). To the
east of Islay-Oban-Tayvallich overlying the Easdale Slate 1is the
Carn Mairg Quartzite (Table 3.1). It consists of coarse, often
graded pebbly quartzites. The rapid, probably fault-controlled,
subsidence during Carn Mairg Quartzite times, and a possible marine
transgression towards the northwest, resulted in a sediment starved
basin in which up to 500m of carbonaceous mud accumulated with dark
limestone forming the Ben Eagach Schist. The presence of graded
pebbly quartzites and thin sands with minor hornblende schist within
the Ben Eagach Schist indicate continuing instability and a
relatively deep water environment . The Ben Eagach Schist hosts the
Aberfeldy Ba, Zn, Pb deposits.

In the Islay-Oban-Tayvallich and Loch Awe area, the deep basins
seemed to be filled up, as shown by the succeeding sediment, the
Craignish Phyllite, which 1includes shallow marine and tidal flat
facies with gypsum pseudomorphs (Anderton 1975). To the east of the
Ardrishaig Anticline, in the Loch Fyne area, 1s the Ardrishag
Phyllite correlated with the Craignish Phyllite (Roberts 1966) to

25



the west and with the Ben Lawers Schist to the east. The Ben Lawers
Schist and the Ardrishaig Phyllite were deposited 1n a relatively
deep second order basin, separated from the Craignish Phyllite by
the Loch Fyne carbonate ridge. The Ben Lawers Schist hosts the
Perthshire Pyrite Horizon, whereas the minor Coillie Bhraghad,
Craignure and McPhun's Cairn mineralisations are found within the

Ardrishaig Phyllate.

In Loch Tummel-Ben Vrackie area the succeeding formation is the
Farragon Beds a 400m succession of hornblende-schist, green beds,
quartz- mica schist and quartzite. This represents the first
metabasite horizon 1in the Dalradian. At the same horizon is the
Sron Bheag Schist which again consists of hornblende schist and
green beds mixed with calcareous quartzite and schist. In the
Tyndrum area 1s the Ben Challum Quartzite (Smith et al. 1981)
hosting the Auchtertyre and Ben Challum sulphidic horizons. In the
Loch Fyne area, the lateral equivalent of the Ben Challum Quartzite,
is the St. Catherine's Graphitic Schist, correlated on
lithostratigraphic grounds with the Stronchullin Phyllite (Clough et
al. 1911 and Roberts 1966) of Knapdale and in turn correlating the
Lower Erins Quartzite to the Ardrishaig Phyllite (Smith et al.
1978).

Crinan Subgroup

This subgroup 1s composed mainly of turbidites with great
thickness and facies variations, which again involve deepening of
the basin as a result of syndepositional faulting. This led to the
deposition of turbidites with northeast flowing palaeocurrents
(Kn11l 1963) together with rare tuffaceous sediments, carbonate and

mud containing pseudomophs of reworked gypsum (Barraclough 1981).
The Crinan Grits are correlated with the Upper Erins Quartzite
(Peach 1930 and Roberts 1966 and 1977) which forms a thick sequence

of rather fine-grained quartzites in Knapdale and North Kintyre and
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can be traced along strike towards the head of Loch Fyne, where 1t
wedges out to give way to the Ben Lui Schist. Associated with the
Ben Lui Schist are abundant metabasaltic layers which are probably
high level 1intrusions (Wilson and Leake 1972). Within the Crinan
Grits 1s the Garbh Achadh Cu-mineralisation and the Upper Erins
Quartzite, which hosts the Knapdale Pyrite Horizon and the Meall Mdr

copper mineralisation.

Tayvallich Subgroup

Increasing instability in the deposition of the Argyll Group
became more evident by the first volcanic outburst (Gower 1973) that
led to the deposition of tuffs interbedded with shallow water
limestone, the Tayvallich Limestone, whose base could define the
boundary between Cambrian and Precambrian (Downie et al. 1971) and
1s taken as a marker horizon between the Argyll and Southern
Highland Groups (Rast 1963 and Knill 1963). The Loch Tay Limestone
is a lateral equivalent of the Tayvallich Limestone (Bailey 1938 and
Roberts 1966) and hosts the Kilfinan, Clachan Bheag and Tom na

Gobhair mineralisations.

At the southern end of the Tayvallich Penisula and on the
adjacent small islands, the Tayvallich Volcanics, form part of the
Tayvallich Subgroup and not the basal umit of the Southern Highland

Group.

(1v) The Southern Highland Group

Increasing extension and i1nstability noted in the Argyll Group,
reached 1ts climax by the eruption (dated 600 Ma, Anderton 1980a) of
the Tayvallich Volcanics and the opening of the Dalradian Ocean
(Anderton 1980a & 1982) which was first christened by (Harland and
Gayer 1972) as the lapetus Ocean. The Tayvallich Volcanics are a
2km thick sequence of basaltic lavas and tuffs with minor interbeds

of marine limestones, grits and slates. They show excellent pillow
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structures (Borradaile 1973), and 1n places the lava seems to have
been intruded into a wet sediment beneath the sea floor. Above this
1s the green beds of lava, sporadic tuffs and resedimented volcanic
material. Of similar mineralogy and chemistry are a large number of
s1ll and dyke bodies within the Argyll Group which were considered
probably contemporaneous with these lavas (Graham 1976). However,
Anderton (1985), interpreted the sill pile 1in the Islay-Loch Awe
area as being intruded progressively from bottom to top during
Easdale and Crinan Grits Subgroups times, each sill being 1injected
at a shallow depth into soft sediment, a process similar to that now
forming the quasi-oceanic crust at the head of the Gulf of
California (Fig. 3.7).

The Loch Avich Grits 1s about 1.1km thick and composed of
chloritic grits, green slates and subordinate black slates. It
overlies the Tayvallich Lava but chemically has higher Mg0/Fe,0,
ratio (Fe,0, represent total iron).

The youngest rocks affected by the Grampian Orogeny, i.e. the
top of the Dalradian and Cambro-Ordovician Sequences, are of lower
Ordovician (Arenig or Llanvirn) age. The Dalradian is unconformably

overlain by lower 0ld Red Sandstone in Scotland.

3.3.2 Dalradian Metabasites

Pretectonic 1gneous activity within the Dalradian Supergroup of
Scotland finds 1ts most voluminous expression in the "epidiorites"
of the Argyll and Southern Highland Groups. Their distribution
(F1g. 3.4) shows that they are best developed in the Southwest
Highlands and to a lesser extent 1n the Loch Tay-Portsoy area.
Dalradian metabasites of the Southwest Highlands constitute an
abundant, about 5km thick, broadly contemporaneous, and comagmatic
suite of doleritic and gabbroic sills and overlying submarine lavas
(Borradaile 1972, Wilson and Leake 1972 and Graham 1974) all of
probable Lower Cambrian age (Downie et al. 1971 and Borradaile

—
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1972). They have undergone polyphase deformation and metamorphism
(Wiseman 1934 and Graham 1974) during the Caledonian Orogeny.
On the bases of field and textural relationships they can be
classified into eruptive lavas and pyroclasts (Tayvallich Volcanics
and Loch Avich Lavas of the Southern Highland Group) and intrusive

bodies mainly within the Argyll Group.

(1) Extrusive metabasites

A series of eruptive rocks, now metamorphosed to chlorite
grade, are exposed 1n the core of the Loch Awe Syncline and also
along the Sound of Jura, south of Carsaig. They show very well
developed pillow structures (Peach et al. 1911, MacGregor and
Roberts 1963, Wood 1964, Mercy 1965 and Borradaile 1973). The first
eruption i1n the Dalradian Supergroup is marked by the 2km thick
Tayvallich Volcanics which are chemically tholeiitic lavas with
minor spilites (Wilson and Leake 1972 and Graham 1974) now
metamorphosed to calcite, quartz, albite, chlorite and epidote
assemblages. Later outbreaks include the Loch Avich Lavas
(Borradaile 1973), consisting of more than 500m of tholeiitic
basaltic lava similar to the underlying Tayvallich Volcanics but
comparably more felsic. Of lateral equivalence to this eruptive
suite 1s the " Green Beds " (Roberts 1966) which are considered by
Phillips (1930), Roberts (1966) and Van de Kamp (1970) to constitute
intermediate metabasic and pelitic material. However their lack of
igneous textures and their gradational contacts with the surrounding
metasediments suggest an origin either as basic tuffs, or eroded

volcanic material mixed with sedimentary detritus.

(11) Intrusive metabasites

The remaining two kilometres of metabasites are found as sheets
intruded into the sedimentary sequence below the Tayvallich
Volcanics mainly in the Easdale, Crinan Grits and Tayvallich

Subgroups. The Upper Erins Quartzaite, the host ta the present
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studied copper mineralisation, contains several tabular amphibolite
bodies belonging to this group. These will be described later in
Sections (3.4.1, 5.3.8, 5.3.9 and 6.7). The distribution of these
intrusive sheets shows that they are very well developed in the
vicinity of the Loch Awe Syncline axis. The 1intruded bodies are
about 140m thick and are composed of tholeiitic basalt and doleritic
si1lls and a few dykes, chemically similar to the main overlying
Tayvallich Lavas. The intrusion of these bodies as sills rather
than dykes could indicate 1intrusion into a thick pile of wet,
unlithified sediment (Graham 1976) and some of these intrusions,
particularly the north-south oriented dykes of Jura, could represent
feeders to the Tayvallich Lavas.

3.3.3 Metamorphism

The Dalradian Supergroup underwent polyphase deformation and
metamorphism during the Grampian Orogeny (Johnson 1963, Rast 1963,
Rast and Crimes 1969 and Lambert and McKerrow 1976) which was one of
three orogenic episodes (named by Wright 1969 : Celtic, Grampian and
Cymrian). Each 1s localised 1in time and place and together they
constitute the Caledonian Orogeny. Regional metamorphism of the
Dalradian rocks has been the subject of several studies starting
with Barrow (1893 and 1912), who studied the progressive regional
metamorphism 1in the pelitic rocks of the Dalradian in the Southeast
Highlands, and was able to produce a metamorphic isograd map based

on occurrence of certain index minerals.

Following the work of Barrow, Tilley (1925) and Elles and
Tilley (1930) continued the aisograd map for the Central and
Southwest Highlands; while Elles (1931) continued that of the west
Banff-nappe area. Phillips (1930) and Wiseman (1934) reported a
progressive regional metamorphism study of the Dalradian "Green
Beds" and "Epidiorites" respectively. In the Northeast Highlands,
Read (1923 and 1925) reported an area of unusual mineral assemblages

and he evolved a zonal scheme for what he termed the "Buchan" type
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metamorphism.

In summary, two contrasted and classified styles of regional
metamorphism the "Barrovian" and the "Buchan", are developed i1n the
Dalradian rocks of the Scottish Highlands. Barrovian metamorphism
is characterised by an extensive chlorite zone i1n the lowest grade
areas, and by the occurrence of almandine, kyanite and sillimanite
at successively higher grades; it falls within the
kyanite-sillimanite facies series (Miyashiro 1961) and the grade
rises from low greenschist facies in the South and Southwest
Highlands to upper amphibolite facies 1in the Central Highlands.
Buchan metamorphism, also of greenschist to upper amphibolite
facies, falls within the low-pressure intermediate facies series of
Miyashiro (1961) and can be distinguished by the occurrence of
andalusite and corderite i1n higher grade and by biotite in the lower
grade rocks. The boundary between the Buchan and Barrovian
provinces is the kyanite andalusite 1inversion (Chinner 1966,

Porteous 1973, Chinner and Haseltine 1979 and Chinner 1980).

Figure (3.5) represents a metamorphic 1sograd map for the
Dalradian rocks 1n the Grampian Highlands (after Winchester 1974)
and the nature and attitude of these isograds are described 1in
detail by Anderton (1977), while Fettes (1979 & 1983) gave a review

on the metamorphism of the British Caledonides.

Systematic variations in pressure and temperature are present
across the Dalradian rocks, between the Barrovian and Buchan type on
one hand, and within the Barrovian rocks on the other hand.
Porteous (1973), Fettes et al. (1976) and Graham (1976) showed an

increase 1n pressure within the Barrovian zone towards the

southeast. Oxygen isotope work (Kerrick, Beckinsdale and Durham in
Atherton (1977)) on Dalradian rocks gives temperatures ranging
between 305-588°C. Dalradian rocks i1n the northwest falling within
the lower part of the garnet isograd were metamorphosed at

temperature of 535°C and pressure of 5 kb (Richardson and Powell
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1976). More recently, Wells and Richardson (1979) propose a
temperature of 550-620°C and a pressure of 9-12 kb responsible for
the peak of metamorphism 1in the Central Highlands and Graham (1983 &
1985) propose a temperature of 410-530°C and a pressure of 8-10 kb

in the Knapdale region of the Southwest Highlands.

The age of metamorphism can be fixed both relative to the
deformation history of the rocks and by radiometric and
stratigraphic age dates. However the stratigraphical constraints on
the age of the Dalradian metamorphism are poor (Fettes 1983). The
youngest sediment affected by the main metamorphism is probably
lower to middle Cambrian providing a maximum age of 530-540 Ma. A
minimum age of 410-420 Ma 1s found by the post-kinematic granites
and by the nonmetamorphic cover of Lower Devonian 0ld Red
Sandstone. Radiometric data on the age of the Dalradian
metamorphism and deformation are available (e.g. Pankhurst and
Pidgeon 1976, Bradbury et al. 1976, Harper 1967, Pankhurst 1970 and
Lambert and McKerrow 1976), and on the basis of the above data,
Fettes (1979), has concluded that the metamorphic climax event had
occurred about 490-500 Ma (Lower Ordovician).

3.3.4 Structure

Deformation and uplift of the Dalradian rocks during the
Grampian Orogeny had transferred the area into large, NE-SW
trending, often tight and isoclinal folds, now presented by the
Central and Southwest Highlands (Fig. 3.6). Several phases of
deformation can be recognised and their nature 1s dependent on the
structural levels and lithology (Harris et al. 1976) and they can be

simply classified into primary and secondary phases.

Several workers studied the structure of the Dalradian rocks in
different areas and accordingly various models have been proposed
(Roberts 1974, Roberts and Treaqus 1977 and 1979, Bradbury et al.
1979, Johnson et al. 1979, Shackleton 1979, Thomas 1979 and

——
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Litherland 1982).

In summary, the regional structure is dominated by an
anticlinal nappe (the Tay Nappe) whose upper limb has been removed
by erosion and whose lower limb 1s inverted. The upwards, SE facing
root of the Tay Nappe can be traced as the Ardrishaig Anticline
through the Loch-Awe-Loch-Fyne district of Argyllshire (Roberts
1974). 1Its downward facing closure (Aberfoyle Anticline) can be
traced along the adjacent Highland Border to the southeast
(Shackleton 1958).

Deformational history of the Southwest Highlands can be divided
into two parts; primary and secondary (Roberts and Treagus 1964,
1977 and 1979). The primary deformation 1s associated with the
formation of early folds such as the Islay Anticline, the Loch-Awe
Syncline and the Ardrishaig-Aberfoyle Anticline, forming an
1nvoluted mushroom structure (Rast 1963). The secondary deformation
1s responsible for the refolding of the primary structures and the
formation of secondary ones such as the Tarbert and Ben Leda

Monoforms (Fig. 3.6).
3.3.5 Tectonism

Despite the general agreement that plate tectonics should be
applicable to the Caledonian belt, considerable differences in
opinion exist regarding the details and accordingly many plate
tectonic models have been constructed (e.g. Dewey 1969, 1971 and
1982, Dewey and Pankhurst 1970, Garson and Plant 1973, Phillips et
al. 1976, Lambert and McKerrow 1976, Wright 1976, Moseley 1977,
Harris et al. 1978, Mitchell 1978, Yardley et al. 1982, Watson 1984
and Dewey and Shackleton 1984). The simplest model, in Anderton's
1982 view, that provides a reasonable basis for the Dalradian
evolution, 1s that of Phillips et al. (1976).
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The tectonic evolution of the Dalradian in the British Isles
during the late Precambrian to Lower Ordovician can be formulated as

follows:

(1) The Dalradian Supergroup was deposited in a basin undergoing
subsidence by lithosphere stretching (McKenzie 1978, Le Pichon and
Sibuet 1981 and Dewey 1982).

(2) During the Late Riphean, the Grampian and Appin Groups, were

deposited on a slowly subsiding, intra-cratonic shelf.

(3) During the Vendian, an increasing rate of crustal stretching,
reflected by an 1increase in 1instability accomplished by major
syndepositional faulting (Harris et al. 1978 and Anderton 1979)
started to affect the shelf which by mid-Vendian times or Eocambrian
(c. 625 Ma onwards) had been broken into a series of blocks and
basins (Argyll Group). In the Southwest Highlands, the Dalradian
terrain, developed into a type of quasi-oceanic crust (Fig. 3.7)
similar to that now forming at the head of the Gulf of California
(Moore 1973 and Soper and Anderton 1984). The spreading centre is
suppressed by the rapid 1influx of sediment and takes place on a

limited scale by sill and dyke injection.

(4) Further increase in the crustal tension led, by the end of
Precambrian or early in the Cambrian (600 myr), to rupture of the
Proterozoic Supercontinent (Piper 1982) and birth of the Iapetus
Ocean. This was marked by the extrusion of the tholeiitic

Tayvallich Volcanics.

(5) Later subsidence, following abandonment of the incipient rifting

centre, accommodated the Southern Highland Group.

(6) As a result of regional thermal subsidence on a spreading margin
Plus the increasing volume of the mid-ocean ridges, a marine

transgression then spread towards the present Northwest Highlands
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early i1n the Lower Cambrian and a blanket of carbonate sediment

developed.

(7) As a result of the development of this carbonate platform, the
Dalradian terrain became a sediment starved basin in which the

mudstones and cherts of the Highland Border Series were deposited.

(8) In the early Ordovician, subduction started along a north
steeply dipping subduction zone under northern Britain. Compression
above this subduction zone caused the Grampian Orogeny. A phase of
extension may have immediately preceded this, allowing the intrusion
of ocean floor into the already thinned continental crust and

probably the formation of back-arc ophiolitic rocks.

(9) During the Silurian to early Devonian, subduction eventually led
to continental collision and final closure of the Iapetus along a
line that can be drawn across the British Isles through the Solway
Firth and Shannon Estuary. This collision must have been fairly
gentle because 1t did not produce the towering mountain ranges and
gigantic nappe structures typical of the Alpine-Himalayan collision

Orogeny.

3.4 DETAILED GEOLOGY OF MEALL MOR

3.4.1 Stratigraphy

Three lathostratigraphic units belonging to the Middle

Dalradian Group, are exposed 1n Meall Mor area (Fig. 3.8) :

(1) Upper Erins Quartzite (youngest.)
(2) Stronchullin Phyllite
(3) Lower Erins Quartzite (oldest)

The Erins Quartzite Formation 1s divisible into two portions by
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the occurrence, near the middle, of a subordinate group of phyllite,
the Stronchullin Phyllite. The Lower Erins Quartzite, northwest of
the Stronchullin Phyllite Band, is represented by assemblages of
siliceous schist with alternating pelitic bands of subordinate mica
and quartz schist. Bands and thin layers of limestone, locally

quartzose are also common.

The Stronchullin Phyllite consists mostly of interbedded
quartzite, quartzose schist, phyllite (occasionally calcareous) and
locally developed black graphitic schist mainly in the Stronchullin
and Artilligan Burns and 1in the stream northeast of Meall Bheag
(Fig. 3.8). It is correlated with the St. Catherine's Graphitic
Schist (Roberts 1966 and 1974) of the northern Loch Fyne succession.

The Upper Erins Quartzite, to the southeast of Stronchullin
Phyllite, hosts the Abhainn Srathain copper mineralisation and will
be outlined below in detail. The Lower and Upper Erins Quartzites
are considered to represent lateral facies variation 1in the

Ardrishaig Phyllite and Ben Lui Schist Formations (Table 3.1).

Upper Erins Quartzite

In the Meall Mdr area, the Upper Erins Quartzite, consists of
less than 40% true quartzite. It is mainly psammitic with quartz
and siliceous schist being the most commonly encountered rock types
and a complete gradation from orthoquartzite to mica-schist is
present. The quartzite forms massive bands several tens of metres
thick, mostly pale green or white, but a pistachio green variety
occurs locally where epidote 1is present. Gritty bands are

occasionally seen with clasts up to 4mm across of quartz.

The pelitic units range in thickness from 10cm to several
metres, though interbedded psammite and pelite are more common.
Identification of the Stronchullin Phyllite as a separate

stratigraphic wunit would appear to be heavily dependent on the
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presence of graphitic schist and since the latter 1s only locally
developed, the validity of the Stronchullin Phyllite as a

stratigraphic unit is questionable.

At the southeast shoulder of Meall Mér and in the Artilligan
Burn, brownish-weathered metamorphosed limestone bands were noted.
Also, fragments of similar rock were noted in the spoil heaps at the
site of the old copper mines. The limestone band near Meall Mdr is
folded and although about 2-4m in thickness, it can not be traced
along strike for more than 5-6ém. In the Artilligan Burn, the band
is about 2m thick and can be traced for 150m along the stream bed.
To the east, it passes into dolomitic schist comprising muscovite

(30%), dolomite (30%), chlorite, quartz and pyrite.
Epidiorites

The term "epidiorite" was introduced into geological literature
by Von Gumbel (1874), and he defined it as a rock composed of pale
green fibrous hornblende with plagioclase, chlorite, 1ilmenite or
magnetite, and occasional augite. To British petrographers the name
was regarded as a field term and it signified a metamophosed igneous

rock containing hornblende.

The metasedimentary rocks of South Knapdale contain a
considerable volume of amphibolite bodies which are considered to be
metamophosed basic i1gneous rock. Most of these bodies are, in fact,
metamorphosed basic sills. Within the Upper Erins Quartzite of
Meall Mor (Fig. 3.8), several tabular epidiorite bodies ranging in
thickness from 0.5 to 250m are present. Unbroken bodies seldom
exceed one kilometre 1in 1length, but disrupted remnants of one
continuous unit can be traced for many kilometres along strike.
These rocks consist of fine to medium grained actinolite and albite
with minor biotite, chlorite, garnet and epidote and accessory
magnetite, ilmenite,pyrite and chalcopyrite. These epidiorite

bodies also show a variable amount of alteration to epidotite and
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detail mineralogical descriptions of the epidiorite and the

metasediments are given in Sections (5.3.1-5.3.9).

3.4.2 Structure and Metamorphism

The Meall Mé} area lies on the inverted southeast limb of the
Ardrishaig Anticline (Fig. 3.6), which forms the root zone of a
major recumbent fold, the Tay Nappe (Section 3.3.4). Isoclinal
minor folds which fold the schistosity in the Upper Erins Quartzite
are common and these were considered as B1a of Roberts (1974) and
were formed at a stage in the creation of the Ardrishaig Anticline.
At some localities, these isoclinal minor folds are refolded by
another set (sz). These folds are thought to be responsible for
the great variation in the thickness of the Knapdale Pyrite Horizon
in the immediate vicinity of Meall Mor (Smith et al. 1981 and Willan
1983).

Three strike faults are present in the area (Fig. 3.8) and the
major displacements all trend approximately east-west. Two faults
affect the Stronchullin Phyllite and are sinistral, but no sense of
movement could be detected in faults occurring in the Upper Erins

Quartzite.

During the Grampian Orogeny, these rocks, like the whole of the
Dalradian, underwent polyphase deformation and metamorphism, and
they were transformed into metamorphic rocks belonging to the
greenschist facies and falling within the garnet isograd (Fig.
3.5). Temperatures of metamorphism ranged from about 410°C to about
530°C across Knapdale to the highest-grade garnet-zone rocks near
Tarbert and pressuress ranged between 8-10 kb  (Graham 1983 &
1985).
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CHAPTER 4
STRATIFORM MINERALISATION IN THE DALRADIAN ROCKS
OF THE GRAMPIAN HIGHLANDS

4.1 INTRODUCTION

Significant barium and/or base metal deposits occur within a
restricted stratigraphic interval for about 190km in the Dalradian
Supergroup of the Grampian Highlands. Most of these mineralisations
are small in comparison to the Foss barium + zinc deposit of
Aberfeldy (Coats et al. 1980 and Swenson et al. 1981) discovered 1in
1975 by the British Geological Survey. These deposits are contained
within the Argyll Group (Fig. 4.1); most of these mineral showings
are of vein type, notably those of the Tyndrum mine (Dunham et al.
1978) but some, such as those at Creggans, McPhun's Cairn and Meall
Mor, are by description stratiform, and others for example Coillie
Bhraghad and Craignure, although earlier described as metasomatic

replacement (Wilson and Flett 1921), are evidently stratabound.

In the Loch Fyne area 1s the Clachan Bheag lead + =zinc
replacement mineralisation contained in the Loch Tay Limestone at
the top of the Middle Dalradian succession. The Lecht
iron-manganese deposit occurs 1in the Dalradian rocks of uncertain
age of Banffshire. The latter deposit was regarded as being
fault-controlled (Hinxman 1896), but its orientation led to it being
considered as a secondary deposit related to stratiform sulphide
(Smith et al. 1984 and 1981). However, 1t 1s now known to be

related more closely to post-metamorphic breccia zones (Nicholson
1984).

Outside the Grampian Highlands but still within the Dalradian
Supergroup are the Vidlin Ness deposit in Shetland (Garson and May

1976 a&b), and the Dalradian mineralisation at Ireland (Arthurs
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1976, 1977, and Williams and McArdle 1978). The former
mineralisation occurs in rocks that immediately overlie the Moine
and are, therefore, probably the oldest stratabound mineralisation

recorded 1n the Dalradian.

The majority of these mineral showings were mined a long time
ago and were recorded 1n the old reports of mining activities in
Scotland (Wilson and Flett 1921) and were summarised partly in

Chapter Two.

4.2 EXPLORATION AND REINVESTIGATION THAT POST-DATE THE MINING
ACTIVITIES (i.e. after 1921)

At the beginning of the 19th Century prospecting for metals was
limited 1n scale, and mining activity was concentrated on vein
deposits (Table 2,1) which were thought to be of
metasomatic-replacement or epigenetic origin. Although examples of
what could be explained as stratiform were mentioned for some of the
localities, e.qg. the description of the weakly cupriferous pyrite
mineralisation 1n the Ben Lawers Schist by Grant Wilson (1884)
during the competition of the one-inch geological map. Sixty years
later during examination of hydroelectric excavations by the
geological survey in the late 1950, this zone was confirmed to be
stratiform (Johnstone and Smith 1965). However 1its economic
significance was not appreciated until 1972, after a series of
exchange visits with the Geological Survey of Sweden. Its
similarities with the Scandinavian stratabound ore deposit:
Stekenjokk ( Zachrisson 1971, Juve 1974 and 1977) and Rgros (Rui and
Bakke 1975) encouraged the promotion of a reconnaissance as it was

considered a likely locus of base metal occurrences.

Extensive soil and stream sediment sampling west of the Loch
Fyne area were carried out by the B.G.S., but no new significant
mineralisation was discovered (Wright 1974). At the same time, and

since 1972, the British Geological Survey has been engaged in a
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programme of mineral reconnaissance in selected regions of Britain
to 1dentify areas of economic metalliferous minerals and to develop

the best methods to explore for them.

The programme in the Grampian Highlands commenced with the
reinvestigation of the previously known mineralisations, and each
locality has been described in detail wusing a combination of
different techniques and published in specific Mineral
Reconnaissance Programme Reports by the B.G.S. Geological mapping
established the existence of a discrete zone of stratiform sulphide
mineralisation close to the top of the Ben Lawers Schist near Loch
Tay, extending along the Middle Dalradian rocks strike for at least
50km (F1g. 4.1). Subsequent reconnaissance surveys (Smith 1977)
confirmed 1ts existence from Glenshee to Tyndrum. More recently,
during the follow-up programme of stream sediment anomalies 1in the
Scottish Highlands, over an area of 10,000kﬁ; the B.G.S. discovered
: the barium and zinc mineralisation near Aberfeldy i1n 1975 (Coats
et al. 1980) and barium enrichment near Loch Lyon (Coats et al.
1984); volcanogenic copper, zinc mineralisation at Vidlin, Shetland
(Garson and May 1976 a&b); and finally two horizons (Auchtertyre and
Ben Challum) of base metal concentrations near Tyndrum (Smith 1977

and Smith et al. 1981).

In summary, five distinct mineralised horizons within the
Dalradian Supergroup have been delimited which are in ascending
stratigraphic order: Vidlin copper mineralisation 1in Shetland;
Aberfeldy-Beinn Heasgarnich mineralisation; Perthshire-Knapdale
Pyrite Horizons and their minor mineralised localities; Auchtertyre
zinc, copper mineralisation; and Ben Challum lead, zinc
mineralisation. The last four horizons are located within the
Grampian Highlands and a summary of each horizon will be given 1n
the following sections, based on the relevant Mineral Reconnaissance

Programme Report.
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4,3 THE ABERFELDY-BEINN HEASGARNICH DEPOSITS

A zone of barium, zinc and lead mineralisation, near Aberfeldy,
was discovered by the B.G.S. 1n 1975 during the reconnaissance
geochemical drainage survey. The deposits contain at least ten
million tonnes of baryte, 25 million tonnes of barium silicates and
one million tonnes of sulphides containing up to 8.5% Zn, 3.6% Pb,
and 31 ppm Ag. The maximum thickness of the ore horizon 1s 140m
(Willan 1983) hosted by the Ben Eagach Schist Formation. It has
been located in four main sectors, within a 7km strike length. The
mineralised zone 1s situated within a belt of steeply inclined
strata which lies between southeast-dipping rocks to the north of
Loch Tummel and the gently inclined inverted limb of the Tay Nappe
to the south of Aberfeldy. For detailed geological, geochemical and
geophysical investigation of this mineralisation, refer to Coats et

al. (1980 & 1981).

The mineralisation consists of layers and lenses, a few
centimetres to tens of metres thick, of massive baryte and
quartz-celsian rocks, together with sulphide-bearing carbonate,
muscovite schist, and graphitic-mica schist. Other 1lithologies
intersected in boreholes comprise dolomite-chlorite schists,
calc-biotites and calc-hornblende-biotite-plagioclase rocks which
may represent tuffs (Willan 1983). Individual baryte bands are up
to 16m thick and 1.8km long. Graphitic schist, closely associated
with the mineralised horizon, often contains layers up to 15cm thick
of massive pyrite and thin laminae of pyrrhotite. The
celsian-quartz rocks contain up to 80% celsian. The main
sulphide-bearing lithology 1s a carbonate containing up to 9.5% MnO
and 0.75% Sr0. The principal sulphides comprise intimately
intergrown pyrite, sphalerite (including a manganiferous variety),
galena, and pyrrhotite. Chalcopyrite 1is a minor constituent
together with magnetite, fuchsite, rutile, hyalophane, and cymrite.
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Massive baryte within the Aberfeldy mineralised zone contains
more than 30% BaO, compared to quartz-celsian rocks with 5-25% BaO,
and the barium-enriched schists with up to 4% Ba0O, compared with
0.03% Ba0 1n average black shale (Vine and Toutelot 1970). The base
metals reach a maximum 1in carbonate rock of up to 8% Zn and 4% Pb
(Smith et al. 1980) and in graphitic schist up to 1000 ppm Zn and
600 ppm Pb (Coats et al. 1981). There are weak pre-ore sedimentary

enrichments of barium spanning the 400m of Ben Eagach Schist (Willan

1983).

A thin zone of barium-enriched sulphidic schist has been
1dent1fied 45km southwestward along the strike, from the Aberfeldy
Ba, Zn, and Pb deposits, at Beinn Heasgarnich (Fig. 4.1) near Loch
Lyon (Coats et al. 1984). The zone is enricfied in barium (Grout and

Gallagher 1980).

4.4 THE PERTHSHIRE PYRITE HORIZON

The presence of pyrite with minor chalcopyrite in the Ben
Lawers Schist, west of Loch Tay, was first recorded by Grant Wilson
(1884) and was later delimited by the B.G.S. as a definite horizon,
the Perthshire Pyrite Horizon. This horizon is up to 180m thick,
and its top lies some 10-300m stratigraphically below the top of the
Ben Lawers Schist Formation. It extends for 90km (Fig. 4.1) from
Tyndrum to Glenshee (Smith 1977 and Smith et al. 1977a). Throughout
much of 1ts length the horizon lies on the lower inverted limb of
the Tay Nappe, but between Glen Lyon and Tyndrum its outcrop 1s
below the axial trace of the underlying Ben Lui Fold (Cummins and
Shackleton 1955). The boundaries of the horizon are quite sharp and
hosted 1n calec, chlorite, muscovite, and quartz schists. For
detailed information of the investigation, together with geological,
geophysical and geochemistry maps and data, see the relative Mineral

Reconnaissance Programme No.8 (Smith et al. 1977a).
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Within this horizon, pyrite generally forms no more than 5% by
volume, but 1n some thin units 1t locally exceeds 20%, occurring as
1solated porphyroblasts wup to 1cm in size. The pyrite grains show
considerable variation 1n shape and size, and some grains were
deformed during formation of earlier schistosity and hence are
pretectonic. In places, trace quantities of chalcopyrite and
pyrrhotite are found filling cracks or as inclusions 1n pyrite

grains.

Analysis of samples collected from six cross-sections along the
strike of the horizon, show that the horizon contains low base metal
concentrations (Table 4.1a). Copper, though the most abundant base
metal, seldom exceeds 60 ppm on average. The Pyrite Horizon is
similar to disseminated pyrite mineralisation 1in calc-schist
associated with large stratiform base metal deposits in Scandinavia,
for examples at Stekkenjokk (Juve 1974 and 1977) and Rgros (Rui and
Bakke 1975).

Southwest of Tyndrum similar pyrite mineralisation occurs in
the Ardrishaig Phyllite, the equivalent to the Ben Lawers Schist, as
for example at Creggans. In Knapdale the equivalent of the Ben
Lawers Schist 1s the Erins Quartzite, containing a zone of weak
pyritic enrichment, the Knapdale Pyrite Horizon (Smith et al.
1978). It contains several copper showings (Fi1g. 3.8), all of which
lie at approximately the same level. At the intersection of the
sulphide zone with the west coast of Loch Fyne, pyritic schaist and
quartzaite, similar to those around Loch Tay are exposed. The
similarity, lateral continuity and low base metal concentration of
the Knapdale and Central Pyrite Horizons suggest that they might be
of the same age (Smith et _al. 1984) and that the total strike length
of weak pyrite mineralisation within the Dalradian of the Grampian

Highlands 1s 190km.

As was mentioned earlier, although the Perthshire Pyrite

Horizon appears to have low base metal concentration, its presence
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0-2
0-0.028
25-65

Brerachan Water
Brerachan Water
Creggans, Glen Lochay
Glen Lochsie

Glen Lochsie

Glen Lochsie

Table 4.1a : Base metal content within the Pyrite Horizon.

Data is taken from Rice 1970, Smith et al.

Deposit Grading, wt%
Cu Zn
Ben Challum 0.03 1.0
Auchtertyre 0.07 0.3
Meall Mor 0.58 0.013
Loch Tay 0.032  -——--
Aberfeldy 0.008 1.2
Vidlin 0.72 0.55
Table

19773

and Smith 1977.

Metal Ratio

Pb Cu Zn Pb
0.13 3 86 "
0.001 19 81 1
0.006 97 2 1
0.001 97 0 3
0.44 0 73 27

0.03 56 42 2

4.1b : Estimates of grade and metal ratios in the
Dalradian sulphide deposits. Data is taken

from Smith et al. 1984.
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1s considered significant, as 1t indicates widespread and possibly
syngenetic sulphide enrichment. Related to and within this horizon
are the following mineralisations that have so far been recognised

in the Dalradian Supergroup 1in the Grampian Highlands.

4.4.1 The McPhun's Cairn Zn and Pb Mineralisation

The McPhun's Cairn Zn and Pb mineralisation (Smith et al.
1977b) is located about 950m north-northeast of Creggan Point at the
north end of Loch Fyne (Fig. 4.1) and occurs near the top of the
Ardrishaig Phyllaite, in  host rocks that consist mainly of
argillaceous, calcareous and siliceous rocks. These were folded
into tight 1soclinal folds and underwent greenschist facies

metamorphism during the Grampian Orogeny.

There are two distinctive sulphide assemblages present. The
surface mineralisation constitutes a pyrite ore with sphalerite and
subordinate amounts of pyrrhotite and galena, and the down-hole
mineralised 1intersection 1s essentially a pyrrhotite ore, with
traces of chalcopyrite and sphalerite; galena is rare and pyrite 1s

wholly or nearly absent.

There 1s a marked contrast in the base metal contents between
the two assemblages, with the surface mineralisation assaying 7.5%
Zn, 5.6% Pb, with traces of arsenic, copper, nickel, silver and
gold, while the pyrrhotitic mineralisation contains 1.7% Zn, 1.0%

Pb, and 0.4% Cu.

Reinvestigation of this mineralisation by the B.G.S. led them
to consider it as of no economic potential and to suggest that there
1s a reasonable possibility that a large body of massive sulphide
may occur 1n the area, especially 1f this mineralisation forms a

lateral extension of the adjacent Creggan Point pyritous schast.
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A syngenetic exhalative origin for the mineralisation at
McPhun's Cairn was proposed by the B.G.S., and this was later
supported by the textural, minor and trace elements studies, 1n
particular sphalerite-geobarometry and Co:Ni and S:Se ratios carraied
out by Willan and Hall (1980).

4.4.2 The Garbh Achadh Cu and N1 Mineralisation

A minor stratiform sulphide mineralisation in Garbh Achadh, on
the west side of Loch Fyne (Fi1g. 4.1), was associated with a small
calc-alkaline porphyry 1intrusion with a sequence of quartzites,
quartz-schists and occasional pelites which comprise the Crinan
Crits Subgroup (Ellis et al. 1978). Interbedded within this
sequence are a number of epidiorite sheets which represent

metamorphosed basic sills and possibly some lava flows.

Two distinct types of sulphide mineralisation have been

recognised at Garbh Achadh :

(a) a sporadic sulphide mineralisation occurring in quartzitic
horizons less than one metre thick, similar in mode of occurrence to
the Craignure and Coillie Bhraghad deposits. It 1s characterised by
small pockets of massive replacement pyrrhotite with pyrite, and
occasional later veins and impregnations of chalcopyrite with traces
of arsenopyrite and sphalerite. In some places the sulphides become
predominantly pyrite and chalcopyrite with less pyrrhotite and
assays up to 13.2% Cu and 0.74% Ni, with traces of Zn, As, Cd, Ba,
and Ag.

(b) a disseminated sulphide mineralisation within the porphyry
intrusion and adjacent hornfelsed epidiorite, forming up to 3% by
volume of the rock. It 1s associated with pervasive sericitisation,
kaolinisation and hydrothermal alteration. It is characterised by
the presence of pyrite with subordinate chalcopyrite forming up to

0.24% Cu and the occurrence of molybdenite probably of magmatac
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origin.

Results of chargeability and resistivity pseudo-sections
indicate that the geometry of the main conducting sources producing
the major anomalies at Garbh Achadh 1s shallow. Consequently it 1s
unlikely that "Porphyry Copper" style mineralisation as defined by
Lowell and Guilbert (1970) exists here at depth.

4.4.3 The Coirllie Bhraghad and Craignure Ni and Cu Mineralisations

The Coillie Bhraghad mineralisation is located 2.4km southwest
of Inverary in the Loch Fyne area (Fig. 4.1). It is hosted by the
Ardrishaig Phyllite and consists of nickeliferous pyrrhotite and
chalcopyrite and assays 14% Ni, 7% Cu, 1% Co, with traces of Zn, As,
and Pb (Wilson and Flett 1921).

The Craignure deposit occurs about 13km southwest of Inverary
(Fig. 4.1) and consists of thin concordent layers of nickeliferous
pyrrhotite, pyrite, chalcopyrite, and pentlandite in quartzitic
layers within the Ardrishaig Phyllite. The ore assays 10-12% Ni, 1%

Co, and traces of Zn and Cu.

Odeh (1970) bhad studied the Craignure mineralisation and
described it as synsedimentary in origin. Also, Hopkinson (1970)
recognised the synsedimentary origin of both Craignure and Coillie
Bhraghad deposits and concluded that the ores appear to have been
formed by a combination of sedimentary process and hot spring

activity.

4.4.4 The Kilfinan Cu and Clachan Bheag Pb Mineralisations

Both mineralisations occur in association with the Loch Tay
Limestone in the Loch Fyne area (Fig. 4.1). The Kilfinan copper
deposit, up to 8.2% Cu, lies within a mineralised belt about 6.4km

long and consists of chalcocite, malachite, covellite, pyrite, and
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chalcopyrite minerals. This deposit was studied by Hopkinson (1970)
who suggested that it was formed by the leaching of disseminated
copper from epidiorites and Ben Lui Schist by meteoric water and

redeposition in the Loch Tay Limestone.

The Clachan Bheag deposit consists of galena, sphalerite, and
pyrite layers (30cm thick). The ore assays 12% Pb and 29 ppm Ag
(Wilson and Flett 1921) and has been studied recently by Ringrose
(1978) who described 1t as epigenetic and caused by solution passing
up the Tyndrum-Glen Fyne Fault. He also reports pyrite, pyrrhotite
and chalcopyrite occurrences at two localities in the 1immediate

vicinity of the deposit, which may be of syngenetic origin.

4.5 THE KNAPDALE PYRITE HORIZON

In South Knapdale several sulphide showings have been reported
(Wilson and Flett 1921). Most comprise iron and copper, but
significant amounts of lead with some gold and silver are also
present. Geological mapping confirmed that they lie within a zone
of pyritic quartzite and schist which define the Knapdale Pyrite
Horizon. It extends for at least 10km southwest of Loch Fyne (Fag.
3.8) and consists mainly of orthoquartzite and quartz-mica schist,
weakly enriched in pyrite and chalcopyrite (Smith et al. 1978). Its
cross-strike width varies from 200 to 800m and estimates of its true
thickness are confused by folding “%b’ Section 3.4.2), but 1t 1s
considered to be less than 200m in comparison with the Perthshire

Pyrite Horizon averaging 180m in thickness (Smith et al. 1977a).

In the northern part of the Meall Mor area a further zone of
pyrite enrichment (Fig. 3.8) ranging in width from 39-70m was
recorded 200-300m to the west, but it is not clear whether this

represents a separate horizon or a tectonic repetition of the main
zone.
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4.5.1 Mineralogy of the Knapdale Pyrite Horizon

Mineralogically the Knapdale Pyrite Horizon resembles the
Perthshire Pyrite Horizon (Section 4.4) except that the pyrite 1s
finer grained and occurs in trails parallel to the bedding and early
schistosity, rather than isolated porphyroblasts. The pyrite forms
the dominant sulphide phase forming up to 23% of the quartzites and
13% of the pelites. Small quantities of chalcopyrite occur
sporadically as stratiform blebs and trails throughout the horizon.
An 1increase in the chalcopyrite content is notable between Meall Mor
and the Abbhainn Srathain mine workings. In the Abhainn Srathain
region chalcopyrite and pyrite occur as large crystals associated
with cross-cutting veins mainly of quartz and calcite, as local
disseminations and stratiform. The Abhainn Srathain copper
mineralisation is hosted by metasedimentary rocks and epidiorite
bodies of the Upper Erins Quartzite which are highly epidotised and

w1ll be discussed later 1in the relative sections.

Another copper occurrence 1s where a tributary of the
Artilligan Burn flows through a deep gorge eroded along a fault. On
the north side roughly 100m from the western end of the gorge (NR
8390 7615), phyllites are coated with malachite. Similar
cupriferous schists are present a few metres to the east and assays
give up to 26% Cu, 150 ppm Pb, 260 ppm Zn, 25 ppm Ag, 600 ppm Co,
860 ppm N1, 10 ppm Mo, and 43 ppm As.

4.5.2 Geochemistry of the Knapdale Pyrite Horizon

A geochemical drainage survey was carried out by the B.G.S5. 1in
1975 and 1976 and the results of the distribution of each element

will be summarised below.
Copper
Copper 1s of high concentrations and stream sediment samples
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which are highly anomalous 1n copper were collected on the Abhainn

Srathain, Allt an Erin (NR 8537 7546), and a tributary of Artilligan

Burn.

Ant 1mony

The presence of antimony in the panned concentrates was
unexpected and no antimony mineral was known from the area before
investigation began. It is strongly correlated with copper and is a
sensitive indicator of the mineralisation. Two panned concentrates

from the Allt Mdr contain high Sb.

Zinc, cobalt, and nickel

Generally, they show low concentrations in stream sediment
samples. Zinc when anomalous reflects the presence of sphalerite

bearing veins, for example Artilligan Burn and Stronchullin Burn.

Lead

It 1s of low concentration, but anomalous values in the panned
concentrates reflects galena-bearing veins. Examples are the

Artilligan and Stronchullin Burns.
Barium

In panned concentrates, 1t has a very irregular frequency
distribution and where locally anomalous it reflects the presence of

baryte as a heavy mineral.

4.6 THE MEALL Mdk Cu MINERALISATION

Copper mineralisation occurs about 1-2km to the south of Meall
Mdr, i1n the Abhainn Srathain region (Fig. 4.2), within the Knapdale

Pyrite Horizon 1in the Upper Erins Quartzite. Previously, it was
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reported to occur as veins and segregations 1n epidiorite and
quartzite rocks, probably derived from disseminated chalcopyrite 1in
the country rocks (Peach et al. 1911) and was worked along time ago

(Wilson and Flett 1921).

During 1975 and 1976, the B.G.S. established a coordinated
geochemical, geophysical and geological investigation in the area
and the results imply that the mineralisation is of stratiform
nature. Geological mapping in areas of poor exposure around Meall
Mor was greatly facilitated by using geochemical and geophysical
surveys 1n order to delineate extensions of outcropping

mineralisation.

4.6.1 Geophysical Survey

Induced polarisation (IP) is the most widely used method to
delineate mineralised areas. Chargeability and resistivity
measurments were taken to cover the area, using Huntec Mark III (IP)
equipment for both surface and downhole surveys. Surface (IP)
surveys detected an anomalous chargeability zone about 6.5km long,
within the Erins Quartzite and closely associated with the mapped
pyrite zone. The causing body is near the surface with a possible
width of 60m. The downhole survey indicates a correlation between

anomalous chargeability and the copper analysis log.

A magnetic survey was also carried out to supplement (IP) in
the area but no significant correlation of magnetic and (IP)
anomalies 1s noted, 1indicating that appreciable quantities of
pyrrhotite are not associated with the sulphide mineralisation. The
magnetic anomalies are caused by the presence of magnetite whose

quantities are a1nsufficient to affect the (IP) response

significantly.
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4.6.2 So1l and Rock Sampling

The detailed soil survey outlined a broad anomalous area to the
south of Meall Mdr and a series of narrow linear anomalies further
to the east. Deeper sampling of the soil profile by mechanical

auger has confirmed the metal distribution indicated by the

shallower, hand auger sampling.

The soil anomalies are believed to be caused by two distinct
styles of mineralisation, a broad disseminated copper source and
narrow copper-rich veins. The larger disseminated copper occurrence

offers the more promising target for future investigation by

drilling.

4.6.3 The Abhainn Srathain Cu Mineralisation

Around the Abhainn Srathain mine workings, cross-cutting and
stratiform chalcopyrite and pyrite are abundant and restricted to a
zone 250m wide, which extends along strike 400m north-northeast and
1300m south-southwest of the Abhainn Srathain mine. (e

mineralisation 1s hosted by both epidiorite and metasedimentary

rocks.

Around the old mine, several tabular epidiorite bodies occur up
to 250m thick and extending several kilometres along strike (Section
3.2.1). These bodies were considered (Graham 1976) to be sills and
contemporaneous with the Tayvallich Volcanics. However, at Meall
Mor, the metabasites seem to be interbedded with the quartzite and
quartz-chlorite schist and some of the quartzitic rocks contain

amphibole suggesting that contemporaneous magmatism occured during

sedimentation.

Mineralogical study of cores from boreholes shows that the
mineralisation 1s associated with high development of epidote and
that both the metasedimentary and epidiorite rocks contain variable
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amounts of epidote. The distribution of epidote 1s quite patchy,
with some enriched layers. In the Southwest Highlands,
epidotisation of epidiorite and related volcanics 1is very common,

but it 1s not always associated with copper mineralisation.

4.6.4 Mineralogy of Meall Mor Cu Mineralisation

The principal sulphide minerals are pyrite and chalcopyrite
which occur as stratiform threads and trails of small grains
parallel to the early schistosity and develop prefentially on
micaceous partings. In the Abhainn Srathain region, chalcopyrite is
very abundant and both pyrite and chalcopyrite form large crystals
in  two contrasting styles of mineralisation, stratiform and
cross-cutting veinlets, in both the epidiorite and metasedimentary
rocks. The vein-type in the epidiorites is much coarser and more
irregularly developed. This is particularly apparent in the Abhainn
Srathain mine epidiorite body where chalcopyrite and pyrite form
irreqular patches (5cm) and veinlets often associated with quartz

and calcaite.

Other copper-bearing minerals are also present, but 1in minor
gquantities; examples are, bornite, covellite, chalcocite, and
secondary malachite. Azurite 1s only rarely present. Microscopic
amounts of sphalerite occur forming stratiform trails in the
quartzites, and a peripheral growth on pyrite in the epidiorites.

Galena is the least common base metal sulphide in the area.

4.6.5 Geochemistry of Meall Mor Cu Mineralisation

Drill-cores taken from five boreholes were analysed by the
B.G.S. for Cu, Pb, Zn, Co, Ni, and Ag by atomic absorption
spectrophotometry. The copper analysis log shows little correlation
with rock type and a good broad agreement between copper rich zones
and recorded chalcopyrite. Generally, the levels of copper are

below 2,000 ppm and in places show anomalous values. The highest
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copper value (32.7% Cu) occurs in quartzite between 2.45 and 3.31m
in B.G.S., BH.3. Zn, Pb, Co, N1, and Ag levels are very low. Ni
and Zn have a close correspondence with the chloritic wunits and

possibly indicate a volcanic origin for these metasediments.

The geochemical drainage survey reveals the existence of
strongly anomalous distributions of Cu and Sb in the Abhainn
Srathain draining south from Meall Mr and the highest copper value
is 245 ppm. Antimony has a similar pattern to copper and probably
the element is present as a poorly resistant mineral, e.g. stibnite

or tetrahedrite.

4.7 THE AUCHTERTYRE Zn, Cu AND BEN CHALLUM Zn, Pb HORIZONS

Two horizons of disseminated pyritic base metal mineralisation
occur within the newlx defined Ben Challum Quartzite Formation to
the north of Auchtertyre farm. This formation was previously mapped
as an 1irregular wedge of quartzite within the Ben Lawers Schist.
Later survey (Smith et al. 1977a) confirmed that this quartzitic
rock persists along a strike length over 9%km and on its southern
margin 1s directly overlain by the Ben Lui Schist. It was regarded
as a separate formation referred to as the " Ben Challum Quartzite
", consisting mainly of feldspathic and micaceous quartzite

interbedded with mica-schist and metabasaltic rocks. It 1is
correlated with the Sron Bheag Schist and the Farragon Beds (Table

3.1).

The lower horizon, the Auchtertyre Horizon can be traced along
strike for over 9km from Tyndrum northeastwards into the upper part
of Glen Lochay. It 1s about 80m thick and comprises two units
totalling 36m. Zn average 0.3% and in thinner units goes up to 1.7%
In and 0.1% Cu. The mineralisation consists mainly of pyrite as
disseminations and in trails parallel to the lithological layering,
with which variable amounts of sphalerite and chalcopyrite are

associated and best developed in the quartzites, which 1n places
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have a cherty appearance. Petrographic work reveals that up to 30%

of some of the quartzites consist of albite and orthoclase.

The upper horizon, the Ben Challum Horizon, 1s well exposed
only on the mountainside of Ben Challum, It 1s 10-20m thick
extending 2.5m along strike and consists of elongate lenses and thin
layers of quartzite with trails, disseminations and lenses of

sphalerite and galena forming 3% Zn and 0.1% Pb.

4.8 SUMMARY OF THE IDEAS ON ORE GENESIS

As was mentioned earlier in Chapter Two, the beginning of the
19th Century represents a period of maximum mining activity. The
dominant ideas on ore genesis at that time was epigenetic
replacement and cavity-fill models. These models seems to prevail
until the late 1960's and, for example, Dunham (1952) regarded the
Loch Fyne Cu and N1 mineralisation as associated with the acid

Caledonian intrusions in the area.

Sturt (1961) studied the structure and metamorphism of the area
between Loch Tummel and Aberfeldy and suggested a postmetamorphic
origin for the mineralisation in the area. This was succeeded by a
period where the remobilisation of disseminated sulphides i1n the
country rocks during metamorphism was the current 1dea on ore

genesis, for example Moorbath (1962) for Kilfinan.

Modern syngenetic 1deas characterised the period from 1960 to
the present day. This commenced in the late 1960's, particularly in
Ireland (e.g. Russell 1968). However, the potential of the Scottish
Dalradian in hosting stratiform mineralisation was not generally
recognised until 1970 after exchange visits with Swedish
geologists. Accordingly the B.G.S. reinvestigated the known
mineralisation, and during a regional geochemical survey discovered
new mineralisation. The results reveal a synsedimentary nature for

most of the known and newly discovered deposits.
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Studies on the Cu, Ni mineralisation at Craignure (Odeh 1970
and Hopkinson 1970) and Coillie Bhraghad (Hopkinson 1970) concluded

with syngenetic 1deas on ore genesis.

The B.G.S. workers assumed a syngenetic exhalative origin for

McPhun's Cairn, Aberfeldy, the Pyrite Horizon, and the Ben Challum

mineralisation.

At Aberfeldy, Coats et al. (1980) considered the deposit to be
of synsedimentary origin and to represent deposition of barium,
iron, zinc, lead, manganese, silicon, and other elements from
metal-rich hydrothermal brine 1introduced 1into a black shale
enviroment. Russell (1978) postulated that the Irish deposits
resulted from convection of fluids derived from saline seawater in a
terrain having a high geothermal gradient under rifting conditions.
The hydrothermal convection cells widened and deepened with time as
the crust cooled by this process. Application of this genetic model
to the Dalradian mineralisation of Scotland, especially the
Aberfeldy deposit (Russell et al. 1981a) explains the 400m of

pre-ore phase mineralisation (Willan 1981).

Comparison of the Dalradian deposits (Russell et al. 1981a) to
the sediment-hosted exhalative deposits (SEDEX) formed during early
rifting in continents (Russell et al. 1981b & 1983) leads to the
suggestion that the Dalradian deposits appear to belong to this
class. Similarly Willan (1983) postulated a genetic model for the
Aberfeldy deposits. Briefly, this model involves percolation of
saline Dalradian seawater down through zones of high permeability
along normal and listric faults into the hot sedimentary pile. The
heated, acidified, and highly reduced brines leached Si, Ba, Zn, Pb,
and other elements from the sediments and convectively returned to

the sea floor precipitating the sulphide and sulphate deposit.

More recently Russell et al. (1984) questioned the presence of

aluminium 1n the acid hydrothermal solutions and presented a more
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developed model which seeks to explain the origin of the aluminium
in the celsian rocks. The model states that, Al (OH); is derived
from the deep weathering of the Canadian-Greenland Shield. The
resulting highly alkaline ground and river waters rich in potassium,
silica, and alumina, mixed with the dense hypersaline sea-water in
evaporitic tidal flats and lagoons which finally sank into the
adjacent Dalradian basin, filling fault-bounded troughs such as
newly developing sub-basins at Aberfeldy. Mixing of this brine with
the 1ssuing acid hydrothermal solutions containing Ba, Mn, fe, Zn,
Pb, Ag, and Si resulted in the precipitation of Ba-aluminosilicates,
possibly cymrite by combination of excess barium and silica in the
hydrothermal solutions with Al (OH);in sulphate-free brine pools.
The exact nature of the precursor to celsian is unknown, but relict
cymrite (Forty and Stephens 1982) 1s evidence that this or a similar

hydrous phase formed celsian by dehydration during metamorphism.

For the Perthshire Pyrite Horizon, Smith et al. (1977a)
considered the horizon to contain a synsedimentary enrichment of Fe,
Cu, and S and represent a weak precursor exhalative activity related

to the Farrogan Beds and Sron Bheag Schist.

Smith et al. (1981 and 1984) described the Ben Challum
Quartzite with the two sphaleritic horizons as representing either
siliceous, metal rich exhalites or porous, coarse sandstone units
which acted as channel-ways for hydrothermal fluids and were sealed

at the top and bottom by more pelitic units.

4.8.1 Genesis of the Meall MJr Cu Mineralisation

Copper mineralisation at Meall Mor was first described by Peach
et al. (1911) to be formed from chalcopyrite disseminated in the
country rocks. Later the B.G.S. reinvestigated the area taking into
consideration its stratiform nature and accordingly Smith et al.
(1978) proposed that it might have originated in two stages. The

first stage involved weak stratiform disseminations of pyrite and
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chalcopyrite with traces of Zn, Ba, Ni, and Sb during the deposition
of the host formation, the Upper Erins Quartzite, and the
synsedimentary epidiorite sills. The second stage 1involved
modifications enhanced by metamorphism : transformation of the
epidiorites to assemblages of chlorite, biotite, hornblende, garnet,
calcite, and sphene; development of abundant epidote in some
epidiorites and adjacent sediments during the early stages of
metamophism; and redistribution of metals by late metamorphic fluids
and recrystallisation of pyrite and chalcopyrite as coarse grains in

cross-cuttings veins of quartz and calcite.

Recently Willan (1983) studied stratiform mineralisations 1n
the Dalradian of the Grampian Highlands and concluded that the Meall

/ .
Mor mineralisation may have originated as follows :

(1) Weak exhalative activity, during the deposition of the Upper
Erins Quartzite and prior to sill intrusion, had resulted in a
stratiform assemblage of Mn, fFe, Cu, Zn, Ti, Pb, Ba, Sb, As, and Ag
with the major sulphides, pyrite and chalcopyrite, being

precipitated on combination with bacteriogenic reduced sulphur.

(1i) Shortly afterwards, whilst the sediments were in a wet and
unconsolidated state, (within 300m of the surface?). The shallow
intrusion of gabbroic sills 1into seawater-saturated rapidly
accumulating sediment results in the expulsion of porewaters and the
shallow convection of seawater, resulting in the spilitic alteration
of the sills, and remobilisation of the stratiform zone of weak Cu

enrichment that was later reprecipitated in cross-cutting veins.
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CHAPTER 5
PETROGRAPHY AND MINERAL CHEMISTRY OF
MINERALISED ROCKS

5.1 INTRODUCTION

The purpose of this chapter 1s to summarise the mineralogical
composition of the host rocks and to give a description of the
textures and chemistry of both the ore and their associated
transparent minerals. Samples for this study consist of forty
surface samples collected at the site of the Abhainn Srathain old
copper mine and from poor outcrops near the mine and throughout the
Knapdale Pyrite Horizon, while the majority (n=86) are core from

three diamond drill holes, provided by the B.G.S.

The first part of this chapter 1s an examination of the
petrography of these rocks. This investigation starts with
examination of the microscopic sections to identify their
mineralogical composition under both reflected and transmitted light
using a Vickers M73 Microscope. This 1s followed by description of
the texture of both opaque and transparent minerals, in an attempt
to understand the relationship between mineralisation and
metamorphism, and mineralisation and the intrusion of the epidiorite
s1lls. The preparation of the different microscopic sections is
outlined in Appendix (A.5.1). The mineralogical composition of the
rocks examined, expressed by percentages, 1s given as a visual
estimate over the scale of the microscopic section and therefore 1s
approximate, and 1s represented in Appendix (A.5.2).
Photomicrographs were taken using an Amplival Pol-V polarising

microscope (Carlzeis-Jena) with an Mf camera attachment and

automatic timing unat.
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The second part of this chapter provides information on the
chemistry of the minerals using electron microprobe analysis with
both energy dispersive (EDS) and wavelength dispersive (WDS) on
selected sections. The remainder of the chapter discusses the
textural and mineralogical characteristics of the mineralisation,
the extent of effect of metamorphism on the mineralisation
considering the changes in mineralogy and in fabrics produced by

metamorphism as well as the mobilisation of minerals and elements.

5.2 THE KNAPDALE PYRITE HORIZON : GENERAL CHARACTERISTICS
AND PETROGRAPHY OF THE HOST ROCKS

The Knapdale Pyrite Horizon forms a distinct mapable unit,
about 200m thick, extending at least 10km southwest of Loch Fyne
(Fig. 3.8). It has been described in detail earlier in Section
(4.5) and 1n this section an outline of its general characteristics
will be mentioned. This Horizon is weakly pyritic with traces of
chalcopyrite and 1s hosted by the Upper Erins Quartzite Formation.
It resembles the Perthshire Pyrite Horizon but wilh finer pyrite
grains as trails parallel to the foliation, rather than isolated
porphyroblasts, forming up to 23% of the quartzites and 13% of the
mica schast. Traces of chalcopyrite are present throughout the
Horizon and become highly abundant in the area between Meall Mor and

the Abhainn Srathain mine.

In this study twenty-four surface samples of different
lithologies were collected along the horizon (see Fig. 1.2 and
Appendix (A.5.2) for location) and were microscopically examined in
order to report {heir petrographic description. The examined
twenty-four microscopic sections are divided into the following rock

types.
5.2.1 Quartzite

The quartzitic rocks are pale-grey to white, massive, with
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1ll-defined foliation marked by the discontinuous micaceous
partings. In places the quartzitic rocks contain a considerable

amount of mica (>10%) which enhances the compositional layering.

Examination of nine microscopic sections reveals that they
consist of quartz (65-90%), muscovite (5-20%), chlorite (5-10%) and
biotite (usually <5%) and accessory albite (only sample HMM 2,<5%),
calcite («5%), epidote, sphene and zircon. Opaque minerals 1nclude
pyrite (>5% and locally up to 10%), with traces of chalcopyrite
(locally up to 20%), pyrhotite, bornite and covellite. Samples (HMM

18 &19) contain secondary bornite and covellite up to 7%.

Pyrite occurs in disseminated cubes average 0.5mm across and
in places up to 2.5mm across with rare silicate inclusions and in
places forming alternative thin laminations which underwent folding
during deformation (Plate 5.3). Chalcopyrite occurs 1n fine
disseminations and trails , locally large porphyroblasts and 1in
places where 1t 1s highly enriched filling fractures 1in the
quartzitic rocks (Plate 5.4). Ilmenite occurs as very fine flakes

or trails (<0.01mm) parallel with the ill-defined schistosaity.

5.2.2 Feldspathic Quartzaite

Some of the sampled quartzites contain about 10% or more
feldspar, mainly albite as porphyroblasts averaging 0.25mm across
and reaching up to 0.5mm. These rocks are composed of quartz
(65-80%), albite (10-15%), muscovite (5-15%), with accessory

biotite, calcite, epidote and zircon.

Opaque minerals include pyrite (2-7%) with traces of
chalcopyrite, 1lmenite, rutile and sphalerite. Pyrite 1s present as
disseminated cubes (0.1 - g.5nm across), free of inclusions and

locally as large subhedral grains up to 4mm across containing
inclusions. Traces of chalcopyrite occur either replacing the

pyrite or as trails parallel to the foliation. The ilmenite and/or
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rutile occur 1n fine anhedral grains wusually parallel to the

schistosity.

5.2.3 Quartz-Mica Schast

These relatively mafic rocks are finely striped, in part
with highly crumpled foliation (Plate 5.1), and consist principally
of light (quartz + feldspar + muscovite) and dark (biotite and
chlorite) laminae. When garnetiferous, garnet forms large sieved
porphyroblasts up to O0.6mm across. The quartz-sericite variety
occurs as a light rock of alternating sericite and quartz + feldspar
layers, with thin partings of biotite and chlorite wusually highly

foliated and deformed into tight 1saclinal folds with axial planes.

Compositionally they consist of quartz (15-45%), muscovite
and/or sericite (30-40%), biotite (15-30%), chlorite ( 15%), garnet
(0-20%), with accessory calcite and sphene. Opaque assemblages,
include chalcopyrite (15%), pyrite (<5%), with traces of 1ilmenite,

rutile and sphalerite.

Pyrite 1s found as fine elongated grains (<0.1mm across)
parallel to the foliation and following minor folds, and in places
1s associated with traces of rutile and i1lmenite. Chalcopyrite
occurs elther as fine disseminations or trails (<0.01mm across)
sometimes with sphalerite, quartz and chlorite ainclusions, or

filling the interstices between pyrite grains.

5.2.4 Epadotised Rocks

These 1nclude some quartzites and mica-schists, collected to
the south of Meall Mﬁ} summit and are characterised by their epidote
content. Epidote 1s found as fine scattered grains (<0.5mm across),
in places (0.2mm) and locally large porphyroblasts up to 1mm
across. It 1s also found as elongated grains marking a than

foliation alternating with quartzitic layers or laminae.
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Plate 5.1 : Photograph of mineralised quartzite and schists of the Upper Erins Quartzite
from the Knapdale Pyrite Horizon (photographed by Willan 1983). Left: quartzite with
alternating thin laminae of pyrite and sphalerite. Middle: quartz-chlorite-schist with
thick stratiform pyrite laminae. Right: chlorite-muscovite-quartz schist with disseminated
pyrite.

Plate 5.2 : Photograph showing thin chalcopyrite laminations in epidiorite rock from the
Abhainn Srathain mine. Specimen No. HMM 8, NR 836 737.
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Compositionally they consist of quartz (50-80%), epidote
(5-30%), micaceous minerals (5-10%), with accessory calcite and
albite. Opaque minerals include chalcopyrite (4-10%), pyrite (<5%),
with traces of ilmenite, hematite, rutile, magnetite, sphalerite and

secondary bornite and covellite.

The sulphides, mainly chalcopyrite and pyrite, occur as
stratiform discontinuous layers (0.2-0.6mm wide) of  subhedral

grains, 1n places associated with quartz and/or carbonate veins.

5.3 ABHAINN SRATHAIN COPPER MINERALISATION

This mineralisation is localised within the Knapdale Pyrite
Horizon, about 1-2km to the south of Meall Mor (Fig. 4.3). The
general characteristics of this mineralisation, as summarised
earlier 1n detail in Section (4.6.3), are : (1) the maximum
development of chalcopyrite with pyrite in stratiform, disseminated
and cross-cutting form, (2) the presence of several epidiorite sills
and (3) 1ts association with the local development of metamorphic
minerals such as epidote, garnet, chlorite, calcite and quartz.
Epidotisation and carbonation of the epidiorites and the
metasediments was reported to be restricted to a zone 250m across
and 1,700m long coinciding with the Knapdale Pyrite Horizon and
centered on the epidiorite sills (Fig. 5.1). The distribution of
epidote 1s patchy and the variable development of epidote is present
as epidote-rich lenses and in places alternating epidotised and

non-epidotised layers or laminae.

Samples for this study are taken from outcrops, spoil heaps
(n=36) and from the B.G.S. boreholes 1, 2, and 3 (n=86). Location
of the samples and the boreholes sites are shown in Fig. (5.1). The
structural location of the boreholes are also represented on
cross-sections through the mineralised area (Fig. 5.2A). Figure
(5.2B) represents the distribution of the studied samples from the

B.G.S boreholes. 122 thin, polish-thin and polish sections were
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examined from nine different rock types and will be described

separately in the following sections.

5.3.1 Quartzites

Among the lithologies that were sampled from the mineralised
area are the quartzitic rocks. They are pale-grey or white,
massive and rarely foliated. In places they contain considerable

amounts of mica, feldspar and epidote.

The orthoquartzites consist mainly of banded quartz with a
little mica. The mica generally forms thin discontinuous partings
consisting principally of muscovite, biotite and chlorite flakes.
When garnetiferous, garnet occurs as fine pinkish porphyroblasts
with quartz and mica inclusions. In places considerable amounts of
carbonate (calcite and/or dolomite) are present subordinate to the
quartz or replacing 1it, locally forming patches and very rarely
foliations alternating with the quartz. Narrow veinlets of quartz,

carbonate and sphene (less common) cross-cut the rocks.

Compositionally they consist of quartz (60-90%), with
accessory mica (<10%), calcite («15%) and traces of albite, epidote,
garnet, sphene, zircon and apatite. The opaques consist mainly of
pyrite (5-20%), with traces of chalcopyrite, 1locally (20%),

sphalerite, 1lmenite, rutile and very rarely magnetite.

The sulphides occur as disseminated fine grains (0.1mm
across). Pyrite is found as fine disseminated cubes, free of
inclusions and 1n places as large porphyroblasts (1mm across)
engulfing transparent minerals from the matrix. The porphyroblasts
are either individually scattered or aligned in defined layers
usually parallel with the compositional layering of the rock.
Chalcopyrite is found either as trails parallel with the micaceous
partings or as subhedral grains intergrown with the pyrite or

replacing at. In places chalcopyrite 1is found veining the
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Fig. 5.2A : Structural position of the sampled B.G.S boreholes across two

vertical sections. Taken from Willan (198 3)with few modifications,
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quartzites (Plate 5.4).

5.3.2 Micaceous Quartzite

Some of the quartzitic rocks that host the mineralisation are
micaceous (10-20% mica). These rocks are similar to the previously
described quartzites with higher mica content which enhances the
foliation or compositional layering in the rock. They consist of
closely spaced sericite/muscovite and minor chlorite partings with
occasional biotite porphyroblasts. In places the foliation 1s wavy
or crumpled. In the biotitic quartzites thicker bands of quartz
and biotite (with minor chlorite and white mica) are interbedded.
Carbonate 1s either replacing the quartz in the quartzitic layers or
1s associated with the sericite in the deformed parts. Garnet is
rare and occurs as fine grains with quartz inclusions and is partly

replaced by chlorite.

The examined microscopic sections reveal that this lithological
group consists of quartz (50-80%), white mica (0-20%), biotite
(0-20%), chlorite (0-10%), calcite (0-15%), with accessory albite,
epidote, garnet, sphene and zircon. Among the opaque minerals are :
pyrite (1-15%), chalcopyrite (0-5%), with traces of sphalerite,

rutile, 1lmenite, magnetite, bornite and covellite.

The sulphides are either traces (<5%) as trails parallel to the
micaceous laminae, or as disseminations (>10%) of fine grains (0.5mm
across), locally developed 1nto large porphyroblasts up to 8mm
across and are highly fractured and sieved with transparent mineral
inclusions. Rutile 1s found as spongy trails parallel to the
micaceous laminae, while 1lmenite is found as tabular elongate

crystals (0.1mm across).

5.3.3 Feldspathic Quartzite and Micaceous Schist

This lithological group includes all the examined sections that
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Plate 5.3 : Photograph of polished hand specimen of quartzite with
finely, alternating, folded laminations of sulphide. Specimen No.
(HMM 56, from Meall Mor track).

Plate 5.4 : Photograph of Upper Erlns Quartzitic rock with fractures
filled by chalcopyrite, from Meall MSr track (HMM 29, NR 837 745).
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contain (>5%) feldspar, mostly albite. Albite occurs as
comparatively large porphyroblasts up to 0.5mm across with
polysynthetic and simple twinning (Plate 5.5). Sieve texture
develops 1n the untwinned porphyroblasts which contain calcite, mica
and epidote 1nclusions. This 1lithological group comprises two

subgroups : (a) feldspathic quartzite and (b) feldspathic

mica-schist.

(a) Feldspathic quartzite

Compositionally this subgroup consists of quartz (45-80%),
albite (10-15%), white mica (0-10%), calcite (0-10%), with accessory
epirdote, biotite, chlorite, sphene, zircon and apatite. Opaque

minerals comprise pyrite (7%), chalcopyrite (3%), with traces of

1lmenite, rutile, and sphalerite.

The pyrite occurs as fine disseminated cubes (0.01-0.05mm
across), occasionally as large cubes up to 0.5mm across, free of
inclusions. In a few cases 1t occurs as very large porphyroblasts
(4mm across), full of sphalerite, chalcopyrite, quartz and calcite
inclusions and highly cataclased and fractured and 1in places in
definite layers. Chalcopyrite occurs as fine disseminated trails

(<0.1mm across).

(b) Feldspathic mica-schist

This lithological subgroup consists of quartz (30-65%),
albite (10- 20%), white mica (0-20%), biotite (0-25%), chlorite
(0-30%), calcite (0-19%), epidote (where present 5-10%), with traces
of garnet, sphene, zircon and apatite. Opaque mineral assemblages
are : pyrite (2-30%), ilmenite (0-7%), chalcopyrite (0-3%), rutile

(0-5%), with traces of sphalerite, magnetite and bornite.
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200 aAm

Plate 5.5 : Photomicrograph (in transmitted xed polars) of albite
(AB) porphyroblast in feldspathic quartzite. Sample No. HMMI 28,
B.G.S BH.1, 4.5m.

100 &im

Plate 5.6 : Photomicrograph (in plane transmitted light) of a quartz-
mica-chlorite schist with folded schistosity. Note the very fine pyrite
grains along the schistosity and the large pyrite cubes (PY) at the

hinge and the apex of the folds. Specimen No. HMMI 34, B.G.S, BH.1, 9.8m.
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Pyrite occurs as disseminated cubes, rarely trails and blebs,
on average O0.4mm across, free of inclusions, sometimes with local
large cataclastic porphyroblasts up to 1.5cm, with chalcopyrite,
bornite, magnetite and transparent mineral inclusions. Pyrite may
be associated or not with quartz and/or carbonate veins.
Chalcopyrite where present, occurs in subhedral grains and trails
(<0.1mm across) parallel to the schistosity, intergrown with the
pyrite or replacing 1t. The sulphides show a response to
deformation either by elongation parallel to the schistosity or by
cataclasting and fracturing of the large porphyroblasts. Ilmenite
1s quite common and occurs as subhedral grains, free of inclusions,
in places forming layers up to 2cm thick. Rutile occurs in spongy
disseminated grains and blebs (< 0.1mm across) closely associated

with the chlorite-carbonate layers.

5.3.4 Epidotised Quartzite

The Abhainn Srathain copper mineralisation is characterised by
the presence of epidote. Epidotisation 1s not restricted to the
epidiorite rocks only but epidotised quartzites and schists are also
noted. The epidote 1s found either as scattered individual grains
(0.05mm) or aggregates of grains (>0.2mm, locally up to 1mm
across). Elongated epidote grains are also present marking, with
the micaceous minerals, alternating layers of epidote-rich and

quartz rich layers

Under the microscope, examination of these rocks reveals that
they consist of quartz (50-80%), epidote (5-35%), micaceous minerals
(<15%), with traces of calcite and albaite. Opaques are :
chalcopyrite (3-10%), pyrite (0- 4%), with traces of sphalerite,

rutile, 1lmenite, bornite, covellite and magnetite.

The sulphides are found as fine disseminated grains up to 0.2mm
across or as large elongated subhedral grains full of 1nclusions

forming discontinuous laminations, sometimes associated with quartz
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and/or carbonate velns.

5.3.5 Epi1dotised Schist

This lithological group resembles the previously described
epirdotised quartzite but with more micacecus minerals. Epidote
shows more or less the same characteristics as the previous rock
type but 1n addition mobilised large porphyroblasts and folded

epidote-rich laminations occur.

These rocks are composed of quartz (10-65%),epidote (5-35%),
chlorite (3 -50%), biotite (0-25%), albite (0-20%), white mica
(0-25%), calcite (0-15%), with accessory garnet, sphene and
apatite. The opaque mineral assemblage consists of pyrite (3-17%),
chalcopyrite (0-6%), 1lmenite (0-7%), with traces of sphalerite,

rutile, magnetite, bornite and covellite.

The sulphide minerals occur as disseminations (0.2mm across)
eirther free of 1inclusions or containing calcite and epidote.
Locally they develop large porphyroblasts up to 4mm across and, as
subhedral grains form discontinuous laminae (2.5mm thick). In the
deformed rocks where the original schistosity 1s refolded the
disseminated cubes (pyrite) and anhedral grains (chalcopyrite) are
oriented along the refolded schistosity and become coarser at the
fold apex (Plate 5.6). Ilmenite occurs either as trails (< 0.01mm

across) parallel to the shistosity or as subhedral elongated grains

up to 0.2mm across.

5.3.6 Quartz-Mica Schist

This relatively mafic lithological group can be divided 1into

three subgroups on the basis of micaceous mineral assemblages.
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(a) Quartz-sericite schist

Light coloured rocks, consisting mainly of finely
interbedded quartz + feldspar layers and sericite layers, with
occasional chlorite and biotite flakes forming a discontinuous
foliation. In places the foliation 1s highly crumpled and/or
refolded (Plate 5.1), with sericite being enriched in the core of

the minor folds or crenulations.

(b) Quartz-sericite-chlorite schist

Finely foliated rocks of chlorite + sericite layers and
quartz + calcite layers, 1n places highly deformed. The
predominantly folded or crumpled foliation 1is associated with

relatively thick sericite layers.

(c) Quartz-chlorite-bictite schist

Dark rock, with wavy and highly crumpled foliation of
finely i1nterbedded chlorite and biotite (occasional sheaves) rich

layers with layers of quartz with traces of muscovitic flakes.

(d) Quartz-chlorite-sericite-biotite schist

Dark green rocks with very irregular and poorly developed
foliation, consisting mainly of irregular layers of chloritic or
sericite groundmass with large euhedral biotite porphyroblasts and

sheaves, alternating with more quartzaitic layers.

Mineralogically the quartz-mica schists consist of quartz
(10-70%), white mica (0-50%), baiotate (0-40%), chlorite (D-30%),
calcite (0-15%), with traces of albite, epidote, garnet (locally
20%), amphibole, sphene (locally 10%), zircon and apatite. Opaques
are mainly pyrite (0-15%), chalcopyrite (0-15%), with traces of
rutile (locally 7%), 1lmenite, sphalerite, magnetite, bornite and
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covellaite.

The sulphides occur as fine disseminated grains (< 0.5mm
across), mostly free of inclusions and/or locally large
porphyroblasts (2-4mm  across) full of transparent mineral
inclusions. Pyrite 1s found as cubes (<0.5mm across) disseminated
in the rock and 1locally forming distinct rich layers. Large
anhedral porphyroblasts of pyrite are also common engulfing the
surrounding matrix. In rocks that have suffered deformation, the
pyrite grains are arranged parallel to the refolded schistosity and
are associated with sericite (e.g. HMMI8 & HMMI79). A few grains
show deformation either by cataclasting or by fragmentation and
elongation parallel with the foliation (e.g. HMMIB4). Pyrite is
sometimes replaced or intergrown with chalcopyrite and traces of
sphalerite. Inclusions of chalcopyrite, transparent minerals, and
less commonly bornite and magnetite in the pyrite are noted.
Chalcopyrite occurs as trails usually (<0.1mm across) parallel to
the schistosity, and rarely as large porphyroblasts (1mm across).
Ilmenite occurs as subhedral elongated grains parallel to the
general trend of the micaceous minerals. Rutile where present
occurs as trails of spongy grains (<0.1mm across) parallel to the

schistosity and locally enriched in the sericite-muscovite layers.

5.3.7 Calcareous Rocks

Thin layers of limestone are present as a minor constituent of
the Upper Erins Quartzite Formation. One surface sample (HMM 53)
was collected from outcrop of a thin limestone bed along the track
leading to the Meall Mor summit. This sample contains calcite

(65%), quartz (25%), albite 5% and white mica (5%), with traces of

disseminated pyrite.

Among the lithologies sampled, 1s a group of calcareous rocks
with 20% carbonate, occurring as either brown patches replacing

quartz or as laminae alternating with quartz + mica. This group
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consists of quartz (20-70%), carbonate ( 20%), (albite 5-8%), white
mica (<5%, locally up to 33%), with minor biotite and chlorite
(locally 20%) and traces of zircon and sphene. Opaque minerals,
include pyrite (5-20%), chalcopyrite (0-5%), rutile (0-5%),
magnetite (0-5%), with traces of sphalerite, bornite, 1lmenite and

covellite,

Pyrite occurs as disseminations of fine grains (0.1mm across)
highly fractured and cataclased, with chalcopyrite, magnetite and
transparent mineral inclusions. Chalcopyrite where present 1s found
as medium and large porphyroblasts with bornite 1inclusions, or as
anhedral grains intergrown with pyrite or replacing 1t along cracks,
veins and margins. Rutile 1s rare and occurs as blebs parallel to
the schistosity. Magnetite, as very fine grains, rim the

sulphides.
5.3.8 Epadiorites

Associated with the metasediments that host the Abhainn
Srathain copper mineralisation are several epidiorite sill bodies.
Their general description was given earlier in Section (3.4.1).
Intrusion of these bodies, 1n this area and elsewhere 1in Knapdale,
as s1lls rather than dykes was regarded (Graham 1976) as a result of
their intrusion 1into thick, wet and unlithified sediment below an
estimated half-km deep sea. However, Willan (1983) pointed out the
interbedding and grading of these rocks with the metasediments at
Abhainn Srathain. One borehole (AMax BH.1), intersected fourteen
layers of epidiorite, each approximately one metre thick interbedded
with quartzite and quartz-chlorite schist i1n 25m of drillcore and
therefore may represent lavas or tuffs. This is also supported by
the presence of stratiform sphalerite and chalcopyrite in these
rocks and by the presence of amphibole in the quartzitic rocks of

the Upper Erins Quartzite.
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The epidiorites are dark grey or greenish-grey, medium to fine
grained actinolitic rock. Microscopically some rocks are massive,
while others show evidence of deformation and are therefore
premetamorphic, often marked by a schistose arrangement of
actinolite altermating with quartzitic layers, with occasional
biotite porphyroblasts. When garnetiferous, garnet occurs as
porphyroblasts either scattered in the rock or developed into
definite layers mostly parallel to the compositional layering (Plate
5.7). Veinlets of quartz, carbonate, oxides, chlorite and amphibole
are common 1n these rocks; some are parallel to , others are
cross-cutting the compositional layering (Plate 5.8). These
epidiorites show a variable epidote content and the rocks that
consist of (>15%) epidote, will be described in the next section

under the term "epidotised epidiorites"”.

Microscopically these rocks, consist of actinolite (20-60%),
eprdote (5 -15%), garnet (10-35%), carbonate (5-25%). Accessory
minerals include albite, chlorite and sphene. Only sample HMM 7
contains biotite (20%) and chlorite (10%). The opaque mineral
assemblages consist of mainly chalcopyrite (1-7%), pyrite (1-7%) and
magnetite (1-8%), with traces of sphalerite, bornite, marcasite,
hematite, chalcocite, covellite, ilmenite and rutile. Some of the
epidiorites contain 15% i1lmenite as stratiform grains (e.g. HMMI
31).

Generally the sulphides occur as large porphyroblasts up to 3mm
across, assoclated with oxides forming patches in quartz and/or
carbonate veins. The chalcopyrite porphyroblasts are anhedral to
subhedral, with bornite, pyrite and magnetite inclusions. The large
porphyroblasts show alteration near the margin to a complex
intergrowth of pyrite, marcasite, hematite and magnetite (Plate
5.9). Pyrite occurs as large euhedral to subhedral grains 4mm
across, containing chalcopyrite, bornite and transparent mineral
inclusions. In places they are highly veined, fractured and

replaced by chalcopyrite and less commonly by oxides. The oxide
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400 AM

Plate 5.7 : Photomicrograph (in plane transmitted light) of epid-
otised epidiorite, note the two compositional layerings; the very
rich epidote layer(left part) and the actinolitic rich layer

(right part) witha parallel garnet (GT) vein? or lamination?. Sample
No. HMMI 15, B.G.S, BH.3, 7.6m.

400 am

Plate 5.8 : Photomicrograph (in plane transmitted light) showing
quartz (QZ) and calcite (CC) veinlets cutting across highly epidot-
ised layer in epidotised epidiorite. Specimen No. HMMI 15, B.G.S,
BH.3, 7.6m.
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minerals consist mainly of magnetite porphyroblasts forming either
separate patches or 1in aureoles surrounding the sulphides and/or
intergrown with them (Plate 5.10). The magnetite porphyroblasts are
up to 1mm across, mostly free of i1nclusions and highly replaced by
hematite around the margin and along cleavages and veinlets.
Although not so common, magnetite sometimes contains chalcopyrite

inclusions. A few magnetite grains with hematite rims are enclosed

within the sulphide porphyroblasts.

Stratiform chalcopyrite and pyrite 1s also present 1n these
rocks. The chalcopyrite grains are subhedral to anhedral, free of
inclusions, forming thin laminae up to 2mm thick, locally associated
with quartz and/or carbonate veins parallel to the compositional
layering of the rocks, and associated with comparatively coarse

porphyroblasts of garnet, epidote and actinolite.

Disseminated sulphides and oxides were also noticed in these
rocks, Pyrite grains are up to émm across, with chalcopyrite and
sphalerite 1inclusions and are highly veined and fractured by quartz
and carbonate. The chalcopyrite grains are up to 2mm across and
contain pyrite, bornite and sphalerite inclusions. In the deformed
rocks, chalcopyrite and pyrite are mobilised along the folded
schistosity forming relatively large grains and engulfing some

transparent minerals (Plate 5.11).

5.3.9 Epidotised Epadiorites

As was mentioned earlier, many of the epidiorite samples from
the site of the old copper mine show considerable and variable
alteration to epidote. Epidotisation had resulted 1in the
development of epidosite bands and lenses within the epidiorites,
and true epidosite bands are up to 15cm thack. Microscopically,
eprdote 1n the epidiorites has developed in definite horizons or 1in

lenses, forming a yellowish-green foliation ranging from 1mm to 3cm
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Plate 5.9 : Photomicrograph (in plane reflected light) of chalco-
pyrite (CPY) and pyrite (PY) altered to complex intergrowth of mar-
casite (MA), magnetite (MT) and hematite (HM) near the edge in
epidotised epidiorite rock from the Abhainn Srathain mine. Specimen
No. HMM 8, (NR 836 737).

100 Am

Plate 5.10 : Photomicrograph (in plane reflected light) of magnetite
(MT) rimmed with hematite (HM), pyrite (PY) and chalcopyrite (CPY)
in epidiorite rock. Specimen No. HMM 5, from the mine area (NR 836 737).
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Photomicrograph (in plane transmitted light) of chalco-

Plate 5.11 :
and calcite

pyrite growth (CPY) engulfing garnet (GT), quartz (QZ)
(CC) in epidiorite. Specimen No. HMMI 17, B.G.S, BH.3,10.3m.
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Plate 5.12 : Photomicrograph (in transmitted xed polars) of pyrite

cube (PY) with epidote inclusion in epidotised epidiorite, specimen

No.HMMI 1, B.G.S., BH.3, 17.95m.
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in thickness and alternating with dark greenish-grey actinolitic
foliations. Porphyroblasts or aggregates of fine-grained epidote
are also common. In some rocks, the epidotised layers are cut by
veins/veinlets (Plate 5.8) of various minerals showing truncation at
the boundaries between the different compositional layers and these
veins/veinlets are deformed either by annealing or by segmentation,

suggestive of a predeformation origin.

Compositionally, these rocks consist of epidote (20-75%),
actinolite  (5-45%), quartz (5-25%), carbonate (5-20%), garnet
(0-15%), with accessory biotite, muscovite, chlorite and sphene
(locally 10%). Opaque minerals include pyrite (2-10%), chalcopyrite
(2-15%), magnetite (0-5%), with traces of sphalerite, marcasite,

chalcocite, covellite , bornite and hematite.

The sulphides and the oxides occur as disseminations (0.2mm
across), free of inclusions. Occasionally they develop large
porphyroblasts 4cm across. Trace sphalerite is either interstitial
to the sulphides or replacing them. Large sulphide porphyroblasts

also show alteration near the margins.

Stratiform lamination of chalcopyrite is also common (Plate
5.2), these laminations are up to 4mm thick; in places they are

deformed and folded.

5.4 TEXTURAL DESCRIPTION OF THE MINERALS

5.4.1 Amphibole

Amphibole constitutes the essential mineral of the epidiorites
and most commonly occurs as actinolitic, bluish-green, highly
pleochroic from pale yellowish-green to dark bluish-green, euhedral
prismatic grains with conspicuous cleavage, and in a variation in
sizes and shapes. In the schistose rocks, the grains range from

fine flakes (<0.1mm across) to comparatively moderate tabular
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(>0.2mm  across, occasionally 0.5mm) and elongated (5mm)
poikiloblastic porphyroblasts with feldspar, quartz, carbonate,
epidote and less commonly zircon  inclusions. These large
porphyroblasts are commonly associated with ores in quartz and/or
carbonate veins, oriented either parallel to the compositional
layering or cutting across 1it. In the poorly schistose rocks,
actinolite occurs as stumpy equidimensional grains, with occasional
euhedral tabular crystals and more rarely as patches intergrown with
quartz, carbonate and feldspar. Although not so common, some of the

actinolite grains show partial alteration to fan-shape chlorite.

5.4.2 Feldspar

Feldspar 1s present in both the epidiorites and the
metasediments. In the epidiorites, feldspar occurs as fine (0.05mm)
to moderate (2mm) crystals, mostly untwinned albite plagioclase,
making 1ts petrographic distinction from fine quartz very difficult
and 1ts presence may easily be overlooked. In the foliated
epidiorites, elongated grains and crystals are oriented parallel to
the foliation. Occasional albite porphyroblasts are also common and
are up to 1Tmm across, with simple, polysynthetic and rarely chess
board twinning, often crowded with epidote, muscovite and chlorite
inclusions. Large twinned crystals, up to 2mm across, occur in

quartz and carbonate veins cored with sulphides.

In the metasediments, especially the feldspathic quartzite and
schist, large albite porphyroblasts(0.2mm and locally 0.5mm), (Plate
5.5), with simple and polysynthetic twinning are sieved with

epirdote, muscovite and quartz inclusions.

5.4.3 Epidote
Epidote 1s used here to refer to any member of the epidote

family, ancluding zoisite and clinozoisite. As was mentioned

earlier, the copper mineralisation 1s characterised by the

92



epidotisation of both the metasediments and the epidiorites.

Epidote 1n the metasediments occurs in small amounts, generally
as fine pale yellowish-green, anhedral grains (<0.1mm) across. When
present 1n relative abundance, epidote occurs 1in coarse columnar
crystals (2mm across) and, in places elongated marking a thin
foliation. In the deformed rocks, these epidote layers are
refolded. Less commonly, epidote 1is found as clusters of grains
especially 1n the poorly foliated rocks. Epidote is present as

inclusions 1n the feldspar and in the sulphides (Plate 5.12).

Epidote hosted by the epidiorites occurs in a variety of sizes,
forms and orientations of which the most common occurrence is in
streaks, layers (<2mm) and bands (up to 2cm) thick (Plates 5.7 &
5.8) that do show foliation in the shistose rocks. Epidote is also
present i1n fine grains or aggregates of grains. In places, the
latter form an obstacle, causing the amphibole crystals that define
the schistosity to wrap around them. Also present, but less
commonly, are epidote-rich nodules (2cm) across. In places,
especially along veins that host the ore, epidote 1s mobilised into
comparatively large equant or tabular crystals up to 1.5mwm across.
Fine veinlets of epidote are also present parallel or cutting across
the foliation. Epidote also occurs as inclusions within plagioclase

with various grain size.
5.4.4 Garnet

The distribution of garnets in the host rocks 1is somewhat,
sporadic. A rock 1n a scale of the microscopic section may be
garnetiferous i1n one portion and non-garnetiferous 1in the other.
Garnet seems to be developed prefentially in size and amount in the
epidiorites compared to the metsediments with a correspondingly
distanct chemical variation (Section 5.5.4). It 1is also worth
noting that the garnet has an affinily to the site of the copper

mineralisation, as the majority of the identified garnetiferous
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rocks are encountered in BH.3, at the site of the old copper mines

and a few from the spoil heaps.

Petrographically, garnet hosted by the metasediments,
preferentially in the mica schists, occurs as pale pink, fine
(<0.1mm) to moderate (0.2mm), generally euhedral porphyroblasts,
completely isotropic, scattered through the rocks (typically two to
five grains per slide). Occasionally they develop large
porphyroblasts, up to 0.6mm across, sieved with epidote, chlorite
and quartz 1nclusions (in places, with a concentric spiral
pattern). Less common are large skeletal porphyroblasts with a 1lot
of rounded quartz 1inclusions. In the deformed rocks where the
schistosity 1s marked by the alignment of the micaceous minerals,
garnet forms obstructions and causes the schistosity to flow around
them. Retrograde chlorite replaces garnet on the margin and along
fractures. The garnet is of almandine type with a considerable

spessartine and grossular content (Section 5.5.4).

Garnet hosted by the epidiorites, shows a wide range in
composition (Section 5.5.4) and petrographically occurs in orange
brown, comparatively large euhedral and polygonal porphyroblasts
(1mm across), not completely isotropic (probably due to the high
spessartine content), full of epidote, feldspar, quartz and sphene
inclusions and 1n places free of 1inclusions. They are present
either scattered through the rocks or in fine layers composed almost
of a chain of garnet grains, mostly parallel to the rock foliation
(Plate 5.7) but occasionaly cutting across it. Garnet is closely
associated with the ore i1n veins where it occurs 1n comparatively
large mobilised porphyroblasts (>2mm across), in places engulfed or
being engulfed by the ore minerals (Plate 5.11). Sphene inclusions
in the garnet are very common forming a core to the large
porphyroblasts. Alteration of garnet to chlorite is very rare

compared to garnet hosted by the metasediments.
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5.4.5 Chloraite

Chlorite 1n the more psammitic rocks, where it 1s present 1in
small amounts, occurs 1in fine flakes averaging 0.1mm across, making
with other micaceous flakes, a discontinuous foliation. It less
commonly occurs 1in irregular laminae of chlorite groundmass with
sericite and biotite flakes (in places with coexisting sphene).
Also patches of stumpy chlorite result from retograde alteration of

biotite and garnet.

When present 1n significant amounts, especially in the pelitic
rocks, chlorite tends to assume a crystal habit up to 1mm across and
characteristically shows green pleochroic colour with one cleavage
set. Chlorite occurs intergrown with coexisting biotite and
muscovite. Thick layers of chlorite (with occasional biotite)
alternate with sericite layers in the deformed rocks. In the highly
chloritic rocks, chlorite occurs in thick layers of poorly
crystalline grains containing muscovite and carbonate porphyroblasts
(0.5mm across). Besides the patchy chloritisation of biotite and
garnet, in the pelitic rocks chloritisation of biotite has developed
into definite layers and the remains of the altered biotite have a
brown colour with abundant sphene. In places fan-shaped chlorite

crystals are associated with the ore.

In the epidiorites, chlorite 1s not common and 1s only present
1n a few samples (HMMI 49 & HMMI 31), either as fine flakes
intergrown with actinolite or other micas or more rarely in patches

in retrograde garnet, biotite and to a lesser extent actinolite.

5.4.6 Biotaite

In the less pelitic rocks, fine flakes (0.1mm across) of
yellowish-brown and 1less commonly green biotite 1s present
intergrown with chlorite and/or muscovite flakes, with occasional

euhedral crystals (1mm across).
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In the more pelitic rocks, where 1t constitutes one of the
essential minerals, biotite occurs in schistose layers of coarse
intergrown crystals, with locally developed sheaves (>1mm across)
radiating 1n all directions. Brown biotite showing alteration to
chlorite occurs, either 1in single porphyroblasts or in layers.
Biotite 1s also found as inclusions in the feldspar and ore
minerals. Inclusions in the biotite are quartz , muscovite and less

commonly feldspar.

Biotite in the epidiorites occurs as brown, small flakes of
interstitial habit, often intergrown with chlorite, as local

euhedral porphyroblasts, and as i1nclusions in the actinolite.

5.4.7 Whate Micas

Muscovite occurs in the psammite as small laths (<0.05mm
across) and flakes intergrown with biotite and chlorite, with local
larger crystals (>0.15mm across). In the pelitic rocks, especially
the deformed ones, thick layers of sericite alternating with
chloritic layers are present. In addition, fine flakes of muscovite
and occasional large tabular idioblastic crystals are also common in
the pelitic rocks. White micas form inclusions in the feldspar, and

in places are replaced by the growing sulphide porphyrablasts (Plate
5.13).

In the epidiorites, white micas are very rare or completely

absent.
5.4.8 Carbonate

Carbonate as calcite constitutes a minor compaonent in the
metasediments, and occurs in anhedral, untwinned grains either
replacing quartz (locally as patches in the quartzitic rocks) or
interstitial to it. In a few cases thin carbonate layers alternate

with quartizitic layers. Less commonly, carbonate occurs partly 1in
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200 am

Plate 5.13 : Photomicrograph (in transmitted xed polars) of a growing
idiomorphic pyrite (PY) porphyroblast replacing muscovite crystal in
epidotised quartzite. Specimen No. HMMI 53, B.G.S, BH.1, 32.6m.

200 Am

Plate 5.14 : Photomicrograph (in plane reflected light) of a fracture
filled with calcite (CC) matrix with ilmenite grains (ILM) partially
altered to sphene in feldspathic schist. Specimen No. HMMI 25, B.G.S,

BH.1, 2.0m.
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brown patches, probably dolomite, associated with sericite and
chlorite i1n the deformed rocks. It 1s present in relatively large
amounts 1n veins and veinlets with or without quartz. Here it
occurs 1n coarse, twinned crystals, 1in places full of epidote
inclusions and hosting the ore minerals. In the relatively
calcareous rocks with (>20%) carbonate, it occurs in very large
lenses of calcite with dolomite. It forms an essential mineral in

the metamorphosed limestones (HMM 53, with 60% carbonate).

In the epidiorites, carbonate (principally calcite) is of
widespread occurrence and may assume the status of a major
rock-forming mineral within some rocks. It occurs in relatively
fine grains with 1interstitial habit and in very coarse, twinned
crystals with or without quartz filling veinlets, fractures and

veins that host the ore minerals.

5.4.9 Minor Non-Opaque Minerals

These minerals include sphene, zircon and apatite. Sphene is
present 1in both the epidiorites and the metasediments as an
accessory mineral, usually (<5%), but locally enriched up to 10%
(HMMI 25). It occurs 1in dark brown, very fine aggregates forming
stringers or patches distributed in the rock. In the chloritic and
sericitised rocks 1t forms very fine grains sieving the sericite
layers. Sphene also forms a —core to the large garnet
porphyroblasts. It 1s less common in the epidote and actinolite.
In places 1t replaces 1lmenite and in some rocks, carbonate
infi1lling fractures is full of ilmenite, crystals showing

replacement to sphene (Plate 5.14).

Apatite, a less common accessory mineral, is present as

rounded, sometimes elongated prismatic grains.

Zircon is also found 1n minor amounts with well developed

egg-shaped form.
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5.4.10 Sulphides

(a) Pyrite

In the Knapdale Pyrite Horizon, pyrite occurs as disseminations
which texturally exhibit a considerable variation in both size and
shape. Pyrite commonly forms single euhedral crystals ranging from
0.1-5mm across with cubic habit with or without inclusions. It also
occurs as large subhedral to anhedral porphyroblasts (>2mm across)
full of inclusions. In the deformed rocks elongated anhedral pyrite

grains and trails are either parallel to the foliation or follow

minor folds.

In the Abhainn Srathain copper mineralisation, despite the
presence of chalcopyrite enrichment, pyrite 1s still the principal

sulphide mineral and 1t 1s present in various styles.

The pyrite occurs 1n disseminations, both in the epidiorites
and the metasediments, either as separate 1individual grains
scattered 1n the rock or as scattered aggregates of grains. The
disseminated grains are highly variable 1in both size and shape. The
diameter of pyrite 1n polished sections averages 1mm, with maximum
of 3mm and the local pyrite patches reach up to a few centimetres.
Grain shape 1s variable; disseminated pyrite grains occur as
idiomorphic crystals with common metamorphic cube form, mostly free
of i1nclusions. The large disseminated pyrite grains or aggregates
of grains occur 1n euhedral, subhedral and anhedral forms most
commonly with opaque and gangue 1nclusions. In places they are
highly fractured and cataclased and are replaced by chalcopyrite and
rare sphalerite. In one polished section, a large pyrite
porphyroblast containing a small veinlet of gold was noted (Hall

1984, pers. comm.), (Plate 5.15).

Another common style of pyrite occurrence 1in both the

epidiorites and the metasediments 1s as large porphyroblasts
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embedded 1n quartz and/or carbonate veins. These porphyroblasts are
subhedral to anhedral, a few centimeters across, highly fractured
and cataclased and sieved with 1inclusions. These  large
porphyroblasts are found either 1intergrown with the metamorphic

minerals or engulfing them (Plate 5.11).

Pyrite 1s also found, especially in the metasediments as
massive disseminated laminations or layers, and in the deformed
samples, these laminations or layers are cofolded along with the

host rocks (Plate 5.3).

Pyrite shows replacement by chalcopyrite along fractures and
near the edges. The large porphyroblasts are altered to a complex
mineral assemblage of marcasite, hematite, magnetite and others
(Plate 5.9). Elongated and fragmented pyrite parallel to the rock

foliation 1s also present.

Stratiform layers of pyrite and chalcopyrite are common, mostly
parallel to the compositional layering of the rocks. These layers
are continuous/discontinuous, ranging from fine laminae (0.6mm)
thick to 1layers (>4mm) thick and in places are associated with
quartz and/or carbonate veins. In one sample alternating stratiform

pyrite and sphalerite was noted (Plate 5.1).

(b) Chalcopyrite

Traces of chalcopyrite are associated with the Knapdale Pyrite
Horizon, either as minute trails parallel to the foliation or as
anhedral fine grains intergrown with the pyrite or replacing it.

Chalcopyrite inclusions in the pyrite are also common.

In the Abhainn Srathain area, chalcopyrite is abundant and has
a different mode of occurrence. It occurs as alternating stratiform
layers up to 4mm thick (Plate 5.2) and on the scale of a microscopic

section either continuous or discontinuous. These layers are
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Plate 5.15 : Photomicrograph (in plane reflected light) of pyrite (PY)
porphyroblast with gold (Au) vein from Meall Mér.

400 AmM

Plate 5.16 : Photomicrograph (in plane reflected light) of sphalerite
layers (SPH) with chalcopyrite inclusions in epidotised quartzite
from the Abhainn Srathain mieralisation, unlocated sample.
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composed of anhedral to subhedral chalcopyrite grains and in places

are intergrown with pyrite.

Most commonly, 1t occurs as very large porphyroblasts up to 5cm
across, with or without pyrite, usually embedded 1n gquartz and/or
carbonate veins. In these veins the sulphide minerals are
intergrown with each other and with the magnetite (rimmed with
hematite) and the silicate minerals (Plate 5.10). Like the pyrite
porphyroblasts, chalcopyrite porphyroblasts are replaced near the

edges by marcasite, magnetite, hematite and other minerals.

Disseminated chalcopyrite is also present and the disseminated
grains, like the disseminated pyrite, bhave variable sizes and

shapes.

In the deformed rocks, chalcopyrite exhibits mobilisation
through gangue minerals and migration of the chalcopyrite is noticed

on the microscopic scale.

Replacement of chalcopyrite by chalcocite, bornite and
covellite along veinlets and fractures is common. Inclusions of
pyrite, bornite and transparent minerals are very common. Rare
magnetite inclusions were also noted. In a few slides, stratiform

chalcopyrite was replaced by sphalerite (Plate 5.16).
(c) Sphalerite

Generally, sphalerite is only present in small amounts, either
filling the ainterstices between pyrite and/or chalcopyrite or
replacing them along edges, fractures and veinlets. Sphalerite is
found as an 1nclusion 1in pyrite and chalcopyrite. In places
sphalerite is more common and occurring either in alternating
stratiform lamination with pyrite (Plate 5.1) or in stratiform
layers replacing chalcopyrite (Plate 5.16). In places the

sphalerite is full of chalcopyrite inclusions, chalcopyrite disease,
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Plate 5.17 : Phototomicrograph of magnetite (MT) partially oxidised
to hematite (HM) in contact with sphalerite (SPH) with chalcopyrite
disease. Epidotised epidiorite, Specimen No. HMM 10, Abhainn Srathain
mine (NR 836 737).

200 AIm
—

Plate 5.18 : Photomicrograph (in plane reflected light) of chalco-
pyrite (CPY) replaced by bornite (BN) and surrounded by magnetite
(MT)partially oxidised to hematite in epidiorite rock. Specimen No.
H¥MI 16, B.G.S, BH.3, 10.2m.
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(Plate 5.17).

(d) pyrrhotite

Although pyrrhotite 1s not so common among most of the examined

sections, 1t 1s worth mentioning that it has been noticed in one

section.
(e) Marcasite

Marcasite 1s only present in minor quantities replacing pyrite

and chalcopyrite along margins (Plate 5.9).

(F) Other Cu-Fe sulphides

These include bornite, chalcocite and covellite. Trace bornite
1s found either as inclusions in the pyrite and chalcopyrite or
replacing them (Plate 5.18). Blue iron-copper sulphides (chalcocite
and covellite) are found 1in cracks and along boundaries of
chalcopyrite grains. Secondary stratiform chalcocite and covellite

are found replacing the stratiform chalcopyrite.

5.4.11 Oxades

(a) Magnetite

Magnetite 1s more prominant in the epidiorites compared to the
melasediments, particularly in the epidotised rocks. They occur 1n
idiomorphic disseminations either 1individually distributed or
intergrown with the sulphide (Plate 5. 10). Locally they form
massive lenses or patches (Plate 5.19). The magnetite
porphyroblasts are euhedral polygonal of, variable size averging
(>2mm) across, mostly free of 1inclusions and in places with
chalcopyrite inclusions. They are extensively replaced by hematite

1n fractures and along the margins.
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(b) Hematite

Minor hematite 1s present, principally rimming magnetite and
replacing 1t (Plate 5.19). It 1s also found with marcasite
replacing the pyrite and chalcopyrite porphyroblasts (Plate 5.9) and
as bladed laths in sulphide (Plate 5.20) and/or infilling veinlets

1n sulphides.

(c) Rutale

Ruti1le occurs 1n accessory amounts, preferentially in the
metasediments either as fine granular spongy grains (<0.1mm across)
or as trails parallel to the foliation. It also occurs as elongated

grains up to O0.1mm across. In places rutile coexists with ilmenite

and traces of magnetaite.

(d) Ilmenite

Ilmenite occurs as subhedral to anhedral grains, usually
tabular and elongated ranging 1in size from 0.01-2mm across. In

places 1t shows alteration to sphene, but 1lmenite forms separate

grains coexlsting with sphene.

5.5 CHEMICAL COMPOSITION OF THE MINERALS

5.5.1 The Analytical Method

The analyses were performed on a Cambridge Instruments
Microscan Mark Five microanalyser, at the Grant Institute of
Geology, University of Edinburgh, under the guidance of Dr. Peter
Hill. The techniques used are both Energy Dispersive Spectrometry
(EDS), and Wave Dispersive (Crystal Spectrometry; WDS).
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Plate 5.19 : Photomicrograph (in plane reflected light) of massive
magnetite (MT) rimmed with hematite in epidiorite from the Abhainn
Srathain mine (HMM 5, NR 836 737).

400 AIM
—_—

Plate 5.20 : Photomicrograph (in plane reflected light) of pyrite
euhedral (PY) and hematite (HM) in epidotised quartzite to the south
of the mine (HMM 17, NR 8355 7350).

106



Flat, well polished, and ultrasonically clean polished blocks
and thin sections (with a dimension of 48x25mm) were prepared for
this analysis. Before analysis, the samples and standards were
coated (under vacuum) with a thin film of carbon to enable the probe
current to flow to earth. During all analyses performed using (EDS)
technique, the accelerating potential was 20 Kv, the specimen
current was 6 wmA, the electron beam diameter was 1 um, and the
counting time 100 seconds. When using (WDS) technique, the
accelerating poential was 20Kv, the probe current was 0.03 uA,
collecting time was 4x10s for peaks and 2x10s for backgrounds, and

the spot size was 1 um.

Pure metals, simple oxides and silicates were used as the
standards. The intensity data of the standards for all elements
analysed are stored in the EDS programme. The values were monitored
every few hours by measuring a Co standard, since the intensity

ratios of Co to other elements are known.

Normally three grains of each mineral per slide and three spots
on each single grain were analysed. Spots from both the centre and
the margin were analysed to detect any zoning. As a rule, we

accepted analyses varying in sum between 99.0 and 101.5 wti%.

The microprobe techniques used 1n the analyses have been
reviewed and described 1in detail by Reed (1975), Statham (1975),
Smith (1976), Sweatman and Long (1966), and Long (1977). In brief,
the (EDS) technique 1involves production of an x-ray beam equivalent
to elements present 1n the samples as a result of electron
bombardment . The generated x-ray photons are detected by a solad
state detector and are transferred into electrical pulses that are
proportional to the incident radiation. These pulses are translated
into a horizontal linear energy scale which contain 1024 channels.
Thus, a correlation 1s built between the various x-ray energies
(representing elements) and the counts (representing intensities)

for a definite period of time.
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The (WDS) technique 1involves electron bombardment by focussing
a fine electron beam under high vacuum into a small area (1 um).
This results 1n the emission of x-rays with wavelengths and
intensities characteristic of the elements present 1in the specimen
and their concentrations. This radiation 1s resolved into the
continuous x-ray spectrum by analysing crystals in Bragg
Spectrometers and the intensity of the x-ray line characteristic of
each element 1s measured by gas flow proportional counters, and

recorded as the number of counts over a certain analytical period.

Data processing of the collected spectrum was performed by an
on-line computer (EMAS, Edinburgh Computing System). This involves
the calculation of the apparent concentrations of elements present
from the ratio of the unknown counts to the standard counts. This
was followed by compositional corrections for dead-time, escape peak
and peak-overlapping, atomic number effect, secondary adsorption and
secondary fluoresence to produce weight percent values. These

weight percent data are calculated to atomic percent values.

5.5.2 Chemical Composition of the Minerals

Nineteen mineral phases including silicates, oxides and
sulphides were analysed using the electron microprobe at the Grant
Institute of Geology, Edinburgh University. For each analysis a
structural formula was calculated and presented together with the
result of the probe analysis in Tables (5.1-5.14) and Appendix (A.
5.3-A.5.8). In the case of hydrous minerals, since the structural
water was not determined, all the formulae were calculated on an

anhydrous basis.

The electron microprobe permits determination only of total
iron, here expressed as FeO0. Although most of the published mineral
analyses by electron microprobe were presented by assuming all the
iron as FeO for calculating the structural formulae of the minerals,

the writer finds this inaccurate and gives deviations in the number
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of cations from the theoretical values. Also, this assumption
cannot be acceptable for minerals that contain a considerable value
of Fe,0, (e.g. garnet, amphibole, epidote, etc.). So an attempt to
assign part of the FeO as Fe,0; for each analysis was carried out
using a computer programme (Bowes 1982, pers. comm.), and following
procedures given by Vieten and Hamm (1971), Stout (1972), Papike et
al. (1974), Laird and Albee (1981) and McDowell and Elders (1980),
with some modifications. The value of Fe, 0, presented in each
analysis (Tables 5.1-5.10, except for epidote ), is the value that

gives the best stoichiometric formula.

In calculating the structural formulae of the minerals that
contain significant Fe,0; , two structural formulae were calculated
for each phase, one by assuming all iron as FeO (except for epidote,
where the total iron was assumed as Fe20s), and the other one by
assigning part of the total iron as Ffe, 0; consistent with
stoichiometry as mentioned above. The writer prefers representation

by the latter calculation (Tables 5.1-5.10).

The reported analyses in this chapter are average and/or
individual analyses of up to four grains per phase in each slide,
and three analyses in each grain. The problem of deciding whether
or not a given analysis is of acceptable accuracy is judged from the
total summation. The writer accepted analyses, in the case of

anhydrous minerals, varying in sum between 99.0 and 101.5 wt%.

5.5.3 Amphibole
Fourteen microprobe analyses of calciferous amphibole in both

epidiorites (n=13) and metasediments (n=1) are presented in Table

(5.1) and in Appendix (A.5.3).
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Recalculation of the analyses

The amphibole analyses have been recalculated both on the basis
of 23 oxygen atoms and on a fixed numbers of cations (Table 5.1).
In Appendix (A.5.3), the analyses are calculated to stoichiometric
formulae assuming all the iron as Fe0, which 1is undoubtedly
incorrect for calcic amphiboles (Robinson and Jaffe 1969),
especially 1n the metamorphic rocks where amphibole may have as much
as 50% of the total iron 1in the ferric state (Deer et al. 1963).

In a typical calcic amphibole of the general formulae A1B2CsTg022
(OH,F,Cl)2 , the cation sites are distributed as follows (Stout
1972).

8 tetrahedral sites (T-site) occupied by Si+Al4 ¢

5 octahedral sites (C-site) occupied by Mg+Fe+Al+Mn+(Ti)

2 large octahedral sites (B-site) occupied by Ca+Na+excess
(Fe+Mg+Mn)

1 (A-site) occupied by Na+K.

A persistent defeciency in the occupancy of the B-sites (<2),
matched by a complementery surplus in the occupancy of the C-sites
(>5), was formed when assuming all the iron as FeO (Appendix
A.5.3). This 1s probably because some of the iron is present as
Fe,0, in the calcic amphiboles. However different schemes and
methods have been constructed to give a rough estimate of the
Fe-content of the amphiboles (e.g. Papike et al. 1974 and Stout

1972) from microprobe data.

In this study , a recalculation of the analysed calcic
amphiboles (Table 5.1), was based on a rough estimate of the
3
Fe-content consistent with the stoichiometry. Assuming no cation or

oxygen vacancies in the structure and no higher oxidation states of
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metals other than Fe{+the amount of oxygen required to bring the sum
to 23 1s a measure of that amount of oxygen compounded as fe,O0,.
Cation vacancies are important only in the A-sites of the calcic
amphiboles and as the analysed amphiboles are very poor 1in K
(0-0.05, except Specimens HMMI 23 & 31), 1t was assumed that the
A-site 1s empty and the analyses total 15 cations, which requires
maximum oxidation (Stout 1972). This was done by assigning part of
the total 1iron as Fe,0, such that a C-site occupancy of (5) and
B-site occupancy of (2) were achieved. In case of Specimens HMMI
23&31, which contain significant K, 1t was assumed that the A-site
1s not empty and hence recalculation of the analyses to 15 cations
excluding Na+K was accomplished by forcing all Na to enter the

A-site.

Nomenclature

In the calculation of the standard amphibole formulae, a
recommended calculation procedure constructed by Leake (1978) was
used. This permitted application of the proposed names of
amphiboles by the same author to the analysed samples. In his
scheme, he classified the amphibole first into four principal groups
namely 1ron-maganesium-manganese, calcic, sodic-calcic, and alkali
amphiboles, on the basis of the number of (Ca+Na) and Na 1n the
B-site. Then each of these groups was treated separately and
subdivided into different end-members represented 1in a two
dimensional diagram on the basis of the number of Si atoms and the

ratio Mg/ (Mg+fe).

The analysed amphiboles fall into the calcic amphibole group in
which (Ca+Na)g21.34 and Nag<0.67 and generally Cag>1.34 atom per 23
(0) formula. Using the two dimensional diagram of Leake (1978), the
analysed amphiboles hosted by the epidiorites fall within the
actinolitic field (Fig. 5.3), while the pelitic amphiboles fall

within the field of ferro-hornblende.
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Chemlstrz

The chemistry of the calciferous amphiboles 1s notoriously
complex, all the major rock forming elements ocecurring in
significant abundance and showing appreciable variation. While a
variely of 1onic substitutions are possible within the amphibole
lattice, chemical variation within the analysed amphiboles may be
desribed to a first approximation by three basic substitutions

within the basic tremolite formula :

2
Fe s Mg
NaAl*z S1 edenite substitution
MgSi = Al A1 tschemarkite substitution

and combination of the latter substitution derives the paragasite

molecule.

Chemical variation 1s represented diagramatically in Fig.
(5.4a-d) where the inter relationships of Mg, Al: Ali Si, and alkali
contents 1s discussed. Fig. (5.4 a&b) reflects the interdependence
of Mg and Al, in which the analysed amphiboles are Mg rich and Al
poor. F1g. 15.4c) shows that the high Si is accompanied by low Alﬁ
while Fig. (5.4d) shows that the Na+K content depends on the Al,
especially Al A considerable amount of MnO (0.2-1.54 MnO wt%) with
a mean of 0.93 wt% and a standard deviation of 0.36 1s present (Fig.
5.9). In Fags. (5.3 & 5.4d), a distinct chemical variation between
amphibole hosted by epidiorites and that hosted by metasediments is
apparent. The latter are more alkali and closer to paragasite than

to actinolite.

Variation 1n the amphibole chemistry could be related to bulk
rock chemistry. The wide range of amphibole Mg/Mg+fe (Fig. 5.5) is
related to the rock Mg/Mg+Fe variations.
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Amphibole MgO/MgO+MnO+FeO (motl)

0.8
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———— Rock Mg0O/MgO+MnO+FeO
(mol)

Fig. 5.5 : The relation between rock Mg0/MgO+MnO+Fe0 and the amphibole
Mg0/Mg0+Mn0+Fe0.
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5.5.4 Garnet

Fifteen microprobe analyses of garnets from both epidiorites
(n=9) and from metasediments (n=6) are presented 1in Table (5.2),
together with their recalculated stoichiometry. The presented
end-member composition 1s recalculated following the procedure given

by Rickwood (1968).

Recalculation of the analysis

On calculating to stoichiometric molecules by assuming all iron
as Fe0 (Appendix A.5.4), it is found that a persistent defeciency in
the occupancy of the Y-site in the garnet molecule (X6Y4 Z, 024) is
matched by a complementry surplus in the X-site. This is because of
the presence of Fg+ in the garnet molecule which would enter the
Y-site. This problem was overcome by assigning part of the total

iron as Fe, 0, such that a Y-site occupancy of 4, X-site of 6 and

3

Z-site of 6 1s achieved (Table 5.2).

Chemlstrx

Variation within single grain

Comparison of analyses of several spots in a single garnet
grain reveals that they are slightly i1nhomogeneous especially with
Mn0, Fe0, Ca0, and Mg0 wt%. In most cases MnO wt% content decreases
and Mg0 and FeO wt% content increases towards the rim of the grain.
Ca0 wt% behaviour 1s not consistent, sometimes similar to MnO wt%
and sometimes 1t shows an opposite pattern. Various compositional
zoning 1n garnets from the Dalradian and from elsewhere, was
reported and studied by many authors (e.g. Atherton 1968, Graham
1973, Sivaprakash 1981 and Tyler and Ashworth 1981).
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Chemical variation within garnet

The analysed garnets show a considerable variation in terms of
total Fe0, Mn0, and Ca0 wt%. In Fig. (5.6) a linear variation of
(Fe0 + Mg0 wt%) against (MnO + Ca0 wt%) 1s noted. Decreasing (Mg0 +
Fe0 wt%) 1s accompanied by increasing (Ca0 + MnO wt%) and this can
be consistently presented by the relation of Fe and Mn atoms (Fig.
5.7). However this linear relationship between (Ca0 + Mn0 wt%) and
(Fe0 + Mg0 wt%) was observed by Miyashiro (1953) and Sturt (1962)
between garnet from different grades of metamorphism, and they
relate this variation to increasing grade of metamorphism which
cannot be applied to Meall Mor garnets as they belong to one grade

(Barrovian garnet zone).

Calculation of the garnet end-member composition, shows that
they are far from being of constant composition, and that
spessartine, grossular, and almandine are the principal molecules in

the garnets and are present in variable proportions (Table 5.2).

Figure (5.8a) represents the variation 1n the garnet
end-members. Two groupings are distinguished, one close to the
almandine end-member and representing garnets from metasediments,

and the other close to the spessartine end-memeber and representing

garnets from epidiorites.

Variation among different grains

The distinct optical variation between garnets hosted by
epidiorites and those hosted by the metasediments (Section 5.4.4) is
again documented here by their chemical variation. Garnets hosted
by the metasediments are almandine rich (Fig. 5.8a), but with
significant amounts of spessartine and grossular and little pyrope
and andradite. The almandine content ranges from 38.64 to 58.31 %
(x=50.85, 0=6.75), grossular from 18.8 to 25 % (%=22.99, ¢=2.8 ),
and spessartine from 15.29 to 32.91 % (%=22.46, 0=6.97).
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Fig. 5.7 The molecular relation of Mn and Fe in

the analysed garnets.
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Almandine Spessartine
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Almandine ¥

Spessartine

Fig. 5.8 : (a) The triangulac compesitional variation of the
present analysed garnets from Meall Mar. (b) Com-
parison of the Meall MOr epidiorite garnets with
other Dalradian epidiorite garnets.e: metabasite
garnets from SW-Highlands(Graham 1973); o: meta-
basite garnets from Perthshire; g: metabasite garnet
garnet,garnet zone, SWw-Highlands (Wiseman 1934);
#;: metabasite garnet from Ben vrackie, Perthshire
(Pantin 1956). (c)'Comparison of the metasediment
garnets of Meall Mor with other analysed garnets
from pelites from Dalradian and Moines rocks
(Atherton 1965).

122



Garnets hosted by the metasediments are spessartine rich with
significant and variable amounts of grossular and almandine, while
pyrope 1s almost absent. The andradite content is very high
compared to the garnets hosted by the metasediments, ranging from
2.32 to 17.9 % (X=10.94, 0=4.39) while Spessartine ranges from 26.5
to 42.2 % (x=33.59, o0=4.63), grossular from 20.7 to 49.67 %
(%=30.09, 0=8.03) and almandine from 11.7 to 31 % (%=25.21,
0=5.47).

Manganese content of the analysed garnets

The garnets are notably manganese bearing. Fifteen analyses of
garnet from the mineralised area give values of Mn0 wt% ranging from
6.86 to 18.41, with a mean (%=12.52) and a standard deviation

0=3.31 . The manganese is prefentially concentrated 1in garnets
compared with the other manganese-bearing minerals (Fig. 5.9).
Garnet analyses from the Dalradian rocks from the garnet zone and
from elsewhere by many authors are presented in Fig. (5.8 b&c). The
present analysed garnets from epidiorites i1n Meall Mor are compared
with other Dalradian epidiorite garnets (Fig. 5.8b), and 1t 1s clear
that the garnets from the studied area are richer 1in spessartine and
grossular molecules. Although the analysed garnets from the
Dalradian represent garnets from different grades of metamorphism,
they all plotted into one scatter close to the almandine

end-member. This comparison reveals that :

(1) Meall Mor garnets from the garnet zone are richer in spessartine
and grossular molecules than the metabasite garnets from the same

zone 1n the Southwest Highlands analysed by Graham (1973).

(2) All the analysed Dalradian garnets plot close to the almandine
composition irrespective of their location and grade of
metamorphism, while the Meall Mor garnets form a distinct group
closer to the spessartine end-member, and with higher grossular

content, exhibiting a wide range of variation within themselves.
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The same observation is also clear 1in Fig. (5.8¢c) when
comparing the analysed garnets hosted by metasediments of Meall Mor

with others from the Dalradian and Moinian metasediments.

Factors controlling manganese 1in garnet

The dependence of the manganese-content of garnet upon
temperature and pressure, chemistry of the parent rocks, and oxygen
fugacity was discussed by Miller and Schneider (1971). For the
present analysed garnets, as they belong to one metamorphic grade
(garnet zone) temperature and pressure variations cannot be applied

as a factor controlling their manganese content.

Oxygen fugacity

Sensitivity of Mn-content of garnet to oxygen fugacity was
studied by (Chinner 1960, Eugster and Wones 1962, and Hsu 1968).
They concluded that manganese-content of garnets increases at given
temperature and/or pressure with 1ncreasing oxygen fugacity. In
Fig. (5.10), although only very few analyses are presented, an
increase 1n the manganese-content of garnet as a result of
increasing rock oxidation ratio 1s noted but the correlation 1is

weak.

Parent rock composition

Studies on the effect of different metamorphic conditions on
the manganese content of garnets in the Dalradian by Atherton (1964
and 1965) has resulted in the conclusion that parent rock
composition 1s the sensitive factor controlling the Mn-content of
the garnets. Matkovskiy (1971) described the manganese-rich garnets
from Ukrainian Carpathians as a characteristic of wunusual Mn-rich
rocks. In the present analysed garnets, the rock manganese-content
seems to play a factor in controlling their manganese-content (Fig.

5.11).
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5.5.5 Epidote

Sixteen microprobe analyses of epidote from both epidiorites
(n=8) and from metasediments (n=8) are presented i1n Table (5.3).
All the analyses are recalculated to stoichiometric formulae on the

basis of 13(0) and assuming all Fe as Fe,0,.

Chemical variation

The analysed epidotes show a slight variation in the Fe content
and was represented 1n terms of pistachite (Ps %) content ranging
between 23-32 Ps %, where the pistacite percentage 1is given as
octahedral Fe37 Fe31 Alﬁ

Two factors may be of important in controlling the composition
of epidote; oxygen fugacity and bulk rock composition. In the
present study, only a very limited number of epidote-bearing rocks
were analysed, insufficient to establish the relationship between
epidote and bulk rock composition. But as a preliminary
interpretation, 1t seems that rocks rich in aluminium have abundant
epidote with low 1ron content, while rocks poor in aluminium have

less epidote with higher 1iron content.
5.5.6 Chlorite

Chlorite analyses of twenty samples 1n both metasediments
(n=16) and 1in epidiorites (n=4) are set 1in Table (5.4). The
analyses are recalculated to stoichiometric molecules on the basis
of 28(0) atoms and on a fixed number of cations with some of the
total iron as Fe,0, consistent with stoichiometry. For comparison
Appendix (A.5.5) represents calculation of the chlorite

stoichiometric formulae assuming all the iron as FeO.

Chlorite chemistry and classification have been reviewed by Hey

(1954) and Foster (1962). Two series of ionic replacements are

127



Table 5.3 :

8) epidiorites
VAR. / ID.

5i0,
Alzﬁ,
T10,
c:,u,
Fea0y

FeO

MnO

Mg0

Ca0

Nn!D

Kq0

TOTAL wt %

S1

Total
at
LFY

Cr
Fe
Totsl

Total

Pistacite %

Electron microprobe analysis of epidote.

by assuming the total iron as Fe,04.

HMM 8

37.45
21.70
0.00
0.00
15.54
0.00
0.22
0.00
23.33
0.00
0.00
96.24

3.12
0.00
3.12
2.13
0.00
0.00
0.98
3.11
0.00
0.02
0.00
2.08
0.00
0.00
2.10

31.50

(b) metasediments

VAR. ID.

Si0
Al20y
T10g
Cl‘zD‘
foaly
Fel

Cal

Na20

K90

TOTAL  wt%)

Sa,
Al
Tots)
IV
Ta
Cr
Fe,’
Total
fe M

Total

Pistacate %

HMMI 23

38.99
22.81
0.06
0.00
13.37
0.00
0.12
0.07
22.28
0.27
0.00
97.97

3.2
0.00
3.2
2.22
0.00
0.00
G.83
3.05
0.00
0.01
0.01
1.97
0.04
0.00
2.03

27.20

HMM 11 HMM 12 HMM 14 HHI 1 HHML 3

36.96 37.22 37.03 37.42 37.97
22.09 21,92 2]1.42 21.12 21.92

0.00 0.00 0.00 0.04 0.00
0.12 0.00 0.03 0.00 0.00
14.65 15.45 15.78 15.73 15.64
0.00 0.00 0.00 0.00 0.00
0.00 0.15 0.39 0.26 0.19
0.00 0.00 0.15 0.03 0.00
23.23 23.39 22.91 22.88 23.64
0.00 0.00 0.00 D.02 0.00
0.00 0.00 0.00 0.00 0.00

97.05 98.13 97.711 97.50 99.36

NUMBER OF IONS ON BASIS OF 13 (0)

3.11 3.1 3.1 3.18 3.13
0.00 0.00 0.00 0.00 0.00
3.1 3.1 3.11 3.1a 3.13
2.19 2.16 2.12 2.09 2.13
0.00 0.00 0.00 0.00 0.00
0.01 0.00 0.00 0.00 0.00
0.93 0.97 1.00 0.99 0.97
3.13 3.13 3.12 3.08 3.10
0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.03 0.02 0.01
0.00 0.00 0.02 0.00 0.00
2.09 2.09 2.06 2.06 2.09
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
2.09 2.10 2.11 2.08 2.18

29.80 31.00 32.10 32.10 31.29

HMML 25  HMMI 35  HMMI 42 HMMISE HMI 47

26.52 36.46 36.63 38.08 37.03
17.52 23.91 23.72 23.28 23.99

0.08 0.11 0.10 0.00 0.02
0.00 0.00 0.00 0.12 0.00
35.93 13.04 12.87 12.31 11.55
0.00 0.00 0.00 0.00 0.00
0.23 0.26 0.23 0.32 0.13
0.08 0.49 0.1a 0.00 0.02
10.57 20.79 22.39 23.17 22.96
0.00 0.01 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

90.89 95.07 96.08 98.20 95.70

NUMBER OF IONS ON BASIS OF 13 (0)

2.53 3.09 3.09 3.13 3.12
0.47 0.00 0.00 0.00 0.00
3.00 3.09 3.09 3.13 3.12
1.50 2.39 2.36 2.35 2.38
0.01 0.01 c.01 0.00 0.00
0.00 0.00 0.00 0.01 0.00
2.58 0.83 0.82 0.76 0.73
4.09 3.23 3.19 3.12 3.1
0.00 0.00 0.00 0.00 0.00
0.02 0.02 0.02 0.02 0.01
0.01 0.06 0.02 0.00 0.00
1.08 1.89 2.02 2.08 2.07
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
l.11 1.97 2.06 2.06 2.08

63.00 25.80 25.80 24.36 23.50
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Recalculation 1s made

Hl 19

37.27
23.55
0.23
0.1z
13.41
0.00
0.55
0.00
22.89
0.00
0.08
98.10

3.09
0.00
3.09
2.30
0.01
0.01
0.84
3.16
0.00
0.04
0.00
2.03
0.00
0.01
2.08

26.58

HMMI 55

43.26
24.33
0.00
0.00
9.07
0.00
0.00
0.00
19.63
0.00
0.00
96.29

3.50
0.00
3.50
2.32
0.00
.00
0.55
2.87
0.00
0.00
0.00
1.70
0.00
0.00
1.70

19.16

HMMI 31

37.56
24.55
0.00
0.00
12.08
0.00
0.20
0.00
22.97
0.00
0.00
97.36

3.1
0.00
3.11
2.40
0.00
0.00
0.75
3.15
0.00
0.01
0.00
2.06
0.00
0.00
2.05

23.81



important 1n the chlorite chemistry:

L A4
SiMg _. AlAl

2+

Fe' —— Mg

—

A classification scheme (Foster 1962) for chlorites based on
these two series of replacements was followed and 1s represented in
Fig. (5.12). The majority of the analysed chlorites are
ripidolites, others are brunsvigite (n=2), diabantite (n=3), and
clinochlore (n=1). An exception 1s the chlorite in Specimen HMMI

31A which has excess silica.

Chemical variation of the analysed chlorites includes variation
in the major constituents; FeO, Mg0, and Al,0,, and are represented
in the compositional triangle (Fig. 5.13). The degree of Mg = Fe
replacement 1s large, while the Al,0, variation 1s limited. Of the
minor constiuents, chlorite shows variable enrichment in the MnO wt%
content (Fig. 5.9) ranging from 0.0 to 1.51 wt%, with a mean
(%x=0.48) and a standard deviation (0=0.32).

5.5.7 Biot1ite

Twenty-one analyses of biotite of both metasediments and
epirdiorites are presented 1in Table (5.5). The analyses are
recalculated to stoichiometric molecules on the anhydrous basis of
22 (0) atoms. All the analysed biotites (except in Spec. HMMI 97)
have total number of octahedral cations between 5.15 and 5.95,
rather than the theoretical number 6, and therefore no attempt was
made to assign part of the total iron as fe ,0,. Only biotite in
Spec. HMMI 97 has total number of octahedral cations ( 6é), probably
as a result of assuming all the iron as Fe0 and therefore
recalculation 1s made by assigning part of the total iron as Fe,0,
to bring the total down to 6. The deficiency i1n the total number of
octahedral cations, could be explained partly by analytical

procedure and partly by real vacancies 1in the octahedral site
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(Guidotti 1984). The total atoms for alkalis appear to be less than
the 1deal 2 atoms for a formula based on 22 oxygens, with the
majority between 1.8 and 1.95, only four analyses having values less
than 1.8 and one more than 2. This defeciency i1n the alkali site of

the mica has been reported by many authors and will be discussed

later in Section (5.5.8).

Classification

Most of the compositional variation in the trioctahedral dark

micas can be related to the following ionic replacements (Faoster

1960)
ka1' S1
W
MgS1 AA1
Fel+ Mg

and can be described in terms of the end-members presented 1in Fig.
(5.14). The type of mica i1n the phlogopite-biotite compositional
field depends on 1ts Mg : Fe ratio (Gribble and Hall 1985). thus;

Phlogopite 1s a mica with Mg between 100 & 70%
Biotite 1s a mica with Mg between 60 & 20%

and accordingly all the analysed trioctahedral micas fall within the

biotite field (Fig. 5.14).

Chemical variataion

The observed chemical variations within the analysed biotites
(Figs. 5.14 & 5.15) seem to be restricted to the variation in the
fe:Mg ratio, ranging between 0.31 and 0.62 which 1in turn 1is
controlled by the rock Mg : Fe ratio. Variation in the Al : Si

ratio 1s not saignificant and 1s generally constant.
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Fig. S.14 : Plot of the analysed biotite in the biotite-phlogopite
compositional fields. The boundary is chosen to be where
Mg:Fe = 2:1 (Deer et _al. 1966).
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5.5.8 White mica

Recalculation of the analyses

Nine white mica analyses from metasediments have been listed in
Table (5.6) and 1in Appendix (A.5.6). All analyses have been
recalculated to stoichiometric molecules on the basis of 22 (0)
atoms (Appendix A.5.6) and on fixed number of cations that permit
assigning part of the total iron as Fe,0, (Table 5.6). In Appendix
(A.5.6) by assuming all the iron as Fe0, the total number of the
cations 1n the octahedral site 1is slightly greater than the
theoretical 4 atoms per formulae. Therefore, recalculation is made
by assigning some of the total iron as Fe,0, to bring the total down
to around 4 (Table 5.6). However various authors (e.g. Brown 1967,
McDowell and Elders 1980, and Zen 1981) have attempted to devise
methods by which one could calculate in an approximate fashion the
amount of Fe? and Fe?in white micas from microprobe data. Some of
these schemes involve charge balance, others involve a fixed number
of total cations 1n certain sites. Zen (1981) concluded that the
oxldation states of iron from microprobe data of white micas remain

unsolved.

The total number of the cations assigned to the
12-coordinated-site 1s less than the theoretical 2 atoms per 22(0).
The majority range from 1.84 -1.91, only one is less than 1.84.
This defeciency was considered by some workers to be real rather
than due to analytical error (Lambert 1959 and Zen 1981).

This defeciency might be due to vacancies resulting from

several substitutions in this site including :

(1) Substitution of K by H,O+ (Brown and Norrish 1952, and White
and Burns 1963), normally up to 5% only (Miyashiro 1973). Although
no one has yet demonstrated that H,O*is present in metamorphic
muscovite (Gudotti 1984).
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(2) Ca substitution 1n this site.
(3) Ba sustitution 1in this site.

(4) Isomorphous series substitution between dioctahedral and

trioctahedral micas.

Other authors (Hoffer 1978) considered this defeciency to be as
a result of some evaporation of alkalis during probe analysis.
However, Gudotti (1984) pointed to the presence of this defeciency
1n both probe and wet chemical analyses, and therefore he questioned
the possibility of volatilisation of alkalis by the probe beam as a

factor causing thas defeciency.

Nomenclature and chemical variation

Chemical variations of the white micas i1n metamorphic rocks 1s
most easily discussed 1in terms of the end-members; muscovite,
paragonite, margarite, and celadonite in the muscovite celadonite
series of Schaller (1950) and Foster (1956). Intermediate in
composition between these two end-members are the phengite micas
(Michel 1953 and Ernst 1963), which represent muscovite with Sl:Af

rati1o more than 3.

The chemical compositions of the analysed white mica suggest
that they are phengites with the atomic ratio Si:Af. more than 3.

The amount of Na,0 present, between 0.0 to 0.67 wtX%, corresponds to

about 0.0 to 9.5 % paragonite.

5.5.9 Feldspar
F1fteen microprobe analyses of feldspars from both epidiorites

(n=3) and metasediments (n=12), together with the stoichiometric

molecules based on 32(0) and their-end member composition are
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presented in Table (5.7)

Chemistry

All the analysed feldspars are plagioclase close to the albite
end-member. They contain small amounts of anorthite ranging between
0.0 to 4.69 mole% and orthoclase ranging between 0.00 to 0.74 molf%.
Only Specimen HMMI 68 represents orthoclase with 5.77 mol%

anorthite.

Minor elements are present in the analysed plagioclase in very
limited amounts 1including, BaO0 (0-1.51 wt%), FeO (0-0.53 wt%,
excluding HMMI 68 with 5.74 wt%), and Mg0 (0-1.73 wt%). These
elements are considered to replace Ca, and contribute to the

anorthite molecule (Deer et al. 1963).

5.5.10 Minor Non-Opaque Minerals

(a) Sphene

Five sphene analyses are given in Table (5.8), where they have
been recalculated on the basis of 20(0,0H,F) per unit cell. The
titanium 1s partly replaced by aluminium and ferrous iron. In the

fifth analysis, there 1s a substitution of calcium by sodium.

(b) Apatate

Microprobe analyses of four apatite grains are given in Table
(5.8), where they have been calculated on the basis of 25(0). The
analyses showed that the sum of Ca0O, P,0s, Si0,, and Fe0 was always
less than 100 wt%, i1ndicating the possible presence of Cl, F, and
co,.
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(c) Zircon

Two zircon analyses are given in Table (5.8), where they have
been recalculated on the basis of 16(0) per unit cell. The analyses
showed that the sum of Si0,, Zr0,, and Fe0 was less than 100 wt%,

indicating the presence of other elements (not determined).

5.5.11 Oxides
(a) Rutile

Nine microprobe analyses of rutile were calculated on the basis
of 2(0) and by assigning part of the total iron as fe,0,, consistent
with best stoichiometry, are represented together in Table (5.9).
The titanium content of the rutile ranges between 95.89-99.55 wt%,
except Specimen HMMI 55 with T10,=85.73 wt%. Trace amounts of Cr,0,
and MnO0 less than 0.1 wt% are present and higher Si0, and Al,0,

which 1s questionable.
(b) Ilmenite

Thirteen microprobe analyses of 1lmenite with their calculated
stoichiometry are presented 1in Table (5.10). The analyses were
recalculated on the basis of 6(0) and on assuming part of the total
iron as Fe,0,, consistent with stoichiometry. The analysed
1lmenites have a variable amount of Ti10, ranging between 50.25-68.33
wt%. Al,0,, Cr,0,, Mg0, and Ca0 are present in trace amounts and a

relatively large amount of Mn0 (0-5.66 wt%) is present.

(c) Magnetite

Ten microprobe analyses of magnetite with their calculated
stoichiometry are presented in Table (5.11). In the recalculation
of magnetite stoichiometric formulae, some workers had assumed a

constant percentage of total iron as Fe,0, (Buddington and Lindsley
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Table 5.8 : Electron microprobe analysis of the accessory non-opaque minerals.

s) Sphene
VAR. / 1D. HMM 57 HML 3 HMMI 26 HMMI 47 HMML 55
510, 31.28 35.15 30.66 30.13 48.07
Al;0; 2.16 3.76 2,51 1.40 10.45
110, 38.14 31.68 37.65 39.23 19.45
Cr,0; 0.00 0.00 0.01 0.00 0.00
Fed 0.40 0.39 0.32 0.30 0.32
Mo 0.00 0.00 0.00 0.02 0.00
Mg0 D0.00 0.00 0.02 0.02 0.00
Cs0 28.51 27.22 28.76 28.52 15.07
Ns ;0 0.00 0.00 0.00 0.00 6.20

TOTAL WT %) 100.50 98.15 99.93 99.63 99.88

NUMBER OF IONS ON BASIS OF 20 (0)

Si 4.05 4.56 3.99 3.95 5.78
Al 0.00 0.00 0.01 0.05 0.00
Total 4.05 4.56 4.00 4.00 5.78
Al 0.33 0.58 0.38 0.17 1.48
i 3.1 3.01 3.69 3.87 1.76
Ce 0.00 0.00 0.00 0.00 0.00
Fe 0.04 0.04 0.08 0.03 0.03
Total 4.08 3.71 4.11 4.07 3.27
" 0.00 0.00 0.00 0.00 0.00
] 0.00 0.00 0.00 0.00 0.00
Ca 3.95 3.79 4.01 4.01 1.94
Na 0.00 0.00 0.00 0.00 1.45
Total 3.95 3.79 4.01 4.01 3.39
(b)  Apatite

VAR. / 10. Hl 33 HMI 46 HMMI 68 HMMI 78

$10, 0.00 0.28 0.30 0.00

1] 0.13 0.00 0.00 0.00

Cal0 54.78 55.76 54.85 54,16

P,0¢ 42.42 42.39 41.78 41.53

TOTAL (wt %) 97.33 98.43 96.93 95.69

NUMBER OF IONS ON BASIS OF 25 (0)

Si 0.00 0.05 0.05 0.00
Fe 0.02 0.00 0.00 0.00
Ca 9.88 9.96 9.94 9.94
Total 9.90 10.01 9.99 9.9
P 6.08 5.98 5.98 6.02
(¢) Zircon

VAR. ID. Wl 9% HMI 103

$i0, 32.75 32.39

Fel 0.00 0.15

r0 60.29 61.45

TOTAL (wt X) 93.05 93.99

NUMBER OF IONS ON BASIS OF 16 (0)

Si 4.22 4.15
Fe 0.00 0.02
Ir 3.79 3.84
Totsl 8.01 8.01
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1964), while others assumed a theoretical molecular ratio of 1:1
(Mohamad 1980). However, in this study recalculation is made by
assuming part of the total iron as Fe,0, consistent with best
stoichiometry. The magnetites contain trace amounts of Si, Al, Ti,
Cr, Mn, Mg, and Ca. A notable amount of zinc ranges between

0.00-2.46 wt% and averages 0.36 wt%.

5.5.12 Sulphides

(a) Pyrite

Twenty-eight microprobe analyses of Ppyrite are presented in
Table (5.12), together with their calculated stoichiometric
formulae. Almost all the analyses show S:(Fe+...... Zn)<2. This
nonstoichiometry was observed in pyrite analyses from other deposits
and was attributed to the S-vacancies in the pyrite structure as a

result of low sulphur fugacity (Scott 1974).

Pyrites were analysed for their major elements Fe and 5, and
for trace elements such as Cu, Zn, and Pb. The minor elements
determined 1nclude Co, Ni, and Se because of their use in the
quantitative interpretation of environment of mineralisation.
Arsenic, antimony, silver, and cadimium were also determined because
they can be accomodated 1in the pyrite lattice (Vaughan and Craig
1978). Bismuth and tin were not determined and Se was not
detected. Minor-element concentrations are generally low, many are
near or below the detection limits. However, a considerable amount
of cobalt 1s present ranging between 0-1.07 wt% and averaging about

0.25 wt%.

In metamorphosed terrain the origin of pyrite may be more
reliably determined using minor elements and sulphur isotopes as a
tracer. Many workers have used the ratios Co:Ni and S:Se as a means
of distinguishing between sulphides of a sedimentary origin and

those derived from igneous and hydrothermal processes (Hegemann
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1943, Fleischer 1955, Loftus-Hills and Solomon 1967, Cambel and
Jarkovsky 1969, Price 1972, Mercer 1976, Vaughan 1976, Weissburg et
al. 1979 and Bralia et al. 1979). Sedimentary and diagenetic
pyrites have a Co:Ni ratio less than wunity and a S5:Se ratio
40,000:1, while igneous and hydrothermal pyrites have a Co:Ni ratio
greater than unity and a S:Se ratio>10,000:1 (Price 1972). Cobalt
and nickel were considered to substitute for iron while selenium

substitutes for sulphur in the pyrite structure (Vaughan 1976).

In this study, the selenium concentrations are less than the
microprobe detection limt (i.e.<0.005 at%), and accordingly the
S:Se ratios are >10,000:1. The cobalt concentrations are variable
ranging between 0-1.07 wt% with an average of 0.25 wt%; nickel
ranges between 0-0.29 wt% and averages 0.02 wt% and together they
give an average Co:N1 ratio of around 12.5:1. However, as the
levels of minor elements in the analysed pyrite grains are very low
and the Se concentrations are below the detection limit there is
less chance to rely on their application as was suggested above 1in

the literature.

(b) Chalcopyrite

Fifteen microprobe analyses of chalcopyrite are presented in
Table (5.13) together with their calculated stoichiometric
formulae. Most of the analyses show nonstoichiometry with
S/(Cu+.......Zn)<1.00. The chalcopyrites were analysed for major
elements 1ron, copper, and sulphur and for trace and minor elements
including cobalt, nickel, silver, cadmium, antimony, silver,
arsenic, and zinc. The concentrations of most of the minor and
trace elements are generally very low. Only cobalt and zinc are
present in relatively considerable amounts. Cobalt concentrations
range between 0-0.29 wt% and average 0.1 wt%, while nickel ranges
between 0-0.29 wt%, and averages 0.02 wt%, giving an average Co:Ni
ratio of 33.3:1. However, Farkas (1973) has pointed to the ability

of chalcopyrite to 1incorporate nickel rather than cobalt in its
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structure and he related high Co:Ni ratios in chalcopyrite (greater

than unity) to the high Co:Ni ratio of the ore fluid.

(c) Minor-Sulphide Phases

Sphalerite

Seven microprobe analyses of sphalerite and their calculated
stoichiometry are presented 1in Table (5.14). Sphalerites were
analysed for the major elements zinc and sulphur and also for iron,
copper, and manganese. As for pyrite and chalcopyrite, S-vacancies
due to low sulphur fugacity may bhave resulted in the observed
nonstoichiometry. The analysed sphalerites show very low 1iron

concentrations ranging between 0.008-0.166 wt% and averaging 0.1

wth%.

Pzrrhotlte

Only one pyrrhotite analysis 1s presented in Table (5.14)

containing trace amounts of nickel 0.42 wtk.

Covellaite

Three microprobe analyses of covellite are presented i1n Table
(5.14). They contain appreciable amounts of silver ranging between
0-4 wt%. Their low total values (<100) 1s probably due to the

presence of certain minor and trace elements which are not

determined.

Bornite

Only one bornite analysis 1s presented in Table (5.14). The

analysis showed that minor concentrations of Ni, Co, Ag, Cd, Sb, and

As are present.
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Table 5.14 :

A) Sphalerite

Electron microprobe analysis of the minor sulphides.

VAR. / ID. HMM 4 HMM 8 HMM 10 HMM 1] HMM 12
In 61.23 57.98 57.40 58.06 59.36
Fe S5.44 7.39 9.60 4.76 8.09
Cu 0.28 0.57 0.65 4.77 0.36
Mn 0.1a 0.00 0.00 0.00 0.00
S 32.89 33.09 33.31 32.82 33.13
TOTAL (WT%) 99.98 99.04 100.96 100.42 100.93
NUMBER OF ATOMS ON BASIS OF 1 (S)
In 0.913 0.860 0.845 0.868 0.879
Fe 0.095 0.128 0.166 0.083 0.140
Cu 0.004 0.009 0.010 0.074 0.005
Mn 0.003 0.0C0 0.000 0.000 0.000
Total 1.015 0.996 1.020 1.025 1.024
S Ine..Mn 0.985 1.008 0.980 0.980 0.976
B) Pyrthotite
VAR. 10, HMM 57+
fe 59.80
Ni 0.42
S 38.73
TOTAL  WT%) 98.95
NUMBER OF ATOMS ON BASIS OF 1 (S)
fe 0.887
N1 0.006
Total 0.892
S/FescN2) 1.121
C) Covellate
VAR.  ID. weal om0 Her eoe
fe 3.20 1.39 3.03
N1 0.00 0.13 0.00
Ag 2.20 n.d 0.00
Cu 63.41 64.20 44.98
In 0.00 0.00 7.23
S 29.86 30.38 27.25
TOTAL WI%) 98.63 96.11 B82.44
(D) Bornite
VAR. / 10. HMML 16
Fe 12.11
Ni 0.11
Co 0.11
A 0.04
Cd 0.15
Sb 0.03
As 0.22
Cu 61.34
S 12.11
TOTAL (wWTX) 99.51

¢  Phases in metssediments.

/ contains

4% Ag
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HMM 17*

60.20
4.61
2.25
0.00

32.90

99.96

0.898
0.080
0.035
0.000

1.013

0.988

HMM 29+

66.87
0.44
0.34
0.06

32.86

100.57

0.998
0.008
0.005
0.001

1.012

0.988



5.6 DISSCUSION AND SUMMARY ON THE TEXTURE OF THE OPAQUE MINERALS

Metamorphic textures are widespread in the studied opaque
minerals on the microscopic scale, indicating that these minerals
share with their host rocks a greenschist facies metamorphism and
deformation., Metamorphism has resulted in the recrystallisation,
deformation, and limited mobilisation of the opaque minerals.
However, comparison between metamorphic and nonmetamorphic sulphides
in several studies has pointed to the fact that sulphides are more
chemically reactive and respond more readily to deformation and
metamorphism than the associated silicates in a manner that masks
their original features. This 1n turn makes it difficult to
distinguish between premetamorphic and metamorphic sulphide
textures. In the studied mineralisation, the stratiform fabric and
possibly the fine compositional layering could be considered as

original premetamorphic textures.

The observed metamorphic textures are similar to those
described 1n metamorphosed sulphide deposits from greenschist and
amphibolite facies terrains. These include the Scandinavian
deposits 1n Norway (Waltham 1968, Vokes 1968, 1976), Sweden (Juve
1974 and Hutchinson and Scott 1980), and Greenland (Pedersen 1980);
Appalachian Caledonides deposits in Virginia (Henry et al. 1979 and
Pavlides et al. 1982), Carolina (Indrof 1981), and India (Deb 1980);
the Archaean deposits 1n Canada (Rockingham and Hutchinson 1980 and
Campbell and Etheir 1974), Spain (Cardellich 1982), east Carpathians
(Krautner 1984), Yugoslavia (Tufar and Strucl 1984) and Australia
(Frater 1985 a&b).

Among the metamorphic textures observed in the studied area are

those due to recrystalisation, deformation, and limited mobilisation

and wi1ll be discussed in the following sections.
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5.6.1 Recrystallisation Textures

All the opaque-mineral assemblages have recrystallised during
metamorphism. Minerals of high form energy (i.e. pyrite and
magnetite) occur 1n grains with proper crystallographic shape;
normally as cubes in the case of pyrite (Plates 5.6, 5.12, and 5.13)
and 1diomorphic crystals i1n the case of magnetite. Minerals of low
form energy (1.e. chalcopyrite, bornite, covellite, and sphalerite)
occur in anhedral grains (Plate 5.18). Recrystallisation had also
resulted in the formation of very large grains, usually as
porphyroblasts in places full of other mineral inclusions, a process

by which mineral grains grow at the expense of others (plates 5.11
and 5.13).

5.6.2 Deformed Textures

Some of the metamorphic textures observed in the studied
mineral assemblages are textures demonstrating their response to
deformation during metamorphism. A few pyrite grains deformed in a
brittle manner by elongation parallel with the aeneral trend of
schistosity and 1n places are associated with rupturing
perpendicular to the direction of elongation. Ductile minerals,
examples are chalcopyrite and sphalerite, are deformed plastically
by flowing and filling cracks and veins of other minerals. Another
clear effect of deformation is the folding of the thin sulphide

laminations and layers (Plate 5.3)

5.6.3 Mobilisation Textures

Mobilisation of minerals in sulphide ore bodies which have
undergone deformation and metamorphism has been studied and reviewed
by many authors (Kalliokoski 1965, McDonald 1967, Vokes 1969 and
1971, Mookherjee 1976 and Pedersen 1980) who concluded that
sulphides can migrate over distances perhaps ranging between a few

milimetres and a few metres during metamorphism. But the mechanism
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of the process of such mobilisation 1s poorly understood.

However, limited mobilisation of the studied sulphides 1is
noted. The mobilised minerals are generally coarse porphyroblasts
up to Scm across either disseminated through the rocks or present
associated with quartz and/or calcite veins (Plates 5.2 and 5.4).
On a microscopic scale the mobility of chalcopyrite is evident by
its presence 1n fractures and veins of pyrite. The ore minerals and
the silicates, quartz, and calcite are also found as veinlets
following a variety of cooling or deformational cracks and
fractures. Large mobilised and growing porphyroblasts are replacing
other minerals (Plate 5.11). In rocks with folded schistosity
relatively large pyrite crystals at the apex and hinge of the minor
folds 1s noted (Plate 5.6).

5.7 DISCUSSION AND SUMMARY ON THE CHEMISTRY OF MINERALS

5.7.1 Non-Opaque Minerals

Petrographic study of the host rocks reveals the presence of
localised development of metamorphic mineral assemblages; e.g.
garnet, epidote, chlorite, quartz and calcite etc., which perhaps
have a genetic relation with the ore formation. Microprobe analysis
of these minerals reveals the presence of variable chemical

compositions.

The amphiboles are actinolite in composition with Mg/Mg+Fez4
ratio between 0.5-0.9 (Fig. 5.3) controlled by the rock Mg/Mg+Fe ©
(Fig. 5.5).

Garnets have variable spessartine, grossular, and almandine
molecular proportions. The important feature demonstrated by the
microprobe is the high manganese content of these garnets ranging
between 6.86-18.41 Mn0 wt% with a mean of (%=12.52) and a standard
deviation of (o=3.31), (Fig. 5.9). The manganese content 1is
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preferentially enriched 1n garnets hosted by epidiorites compared to
the metasediments (Figs. 5.6, 5.7 and 5.8). Similar
manganese-bearing garnets have been described from other ore
enviroments, for example, Cape Province, S. Africa (Stumpfl 1976
&1979); Broken Hill deposits, New South Wales (Stanton 1976a-d, 1979
and 1982, Plimer 1977, Stanton and Williams 1978 and Stanton and
Vaughan 1979); Eastern Alps deposits (Tischler 1979) and Skorovas
Norwegian Caledonides (Ferriday et al. 1981). This manganese
enrichment 1s thought to accompany ore formation and it was
transported by the same hydrothermal fluid. Later during
metamorphism the Mn preferentially entered the garnet structure.
Manganese 1s also present 1in other minerals (1lmenite, calcite,

actinolite, and chlorite).

The composition of epidotes ranges between 23-32 Ps% (where
pistacite % 1s the octahedral F37F31Af). The chlorites are
ripidolites with Fo/R%tatios between 0.25-0.75 (Fig. 5.12). The
white micas are phengites 1n composition (with 51:A1§3). Feldspar

are albite 1n composition.

5.7.2 Opaque Minerals

(a) Oxides

Of the oxide minerals, titanium-poor magnetite 1s the common
mineral 1n the highly oxidised rocks especially the epidiorites.
Compositionally they contain notable amounts of zinc (0-2.46 wt%).
Rutile and 1lmenite are preferentially developed within the
metasedimentary rocks and compositionally, the 1lmenite contains

managanese (0-5.66 wt%).

(b) Sulphide minerals

Analyses of sulphide minerals reveal that they are

nonstoichiometric. Their minor element contents are very low and in
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good agreement with other analysed Dalradian sulphides (Willan and
Hall 1980). The analysed pyrites have an average Co:Ni ratio =
12.5:1, suggestive of hydrothermal origin. However, Itoh and
Kanehira (1967), Itoh (1971 a&b) and Loftus-Hills and Solomon (1967)
have studied the Co:Ni ratios of pyrite from several cupriferous
pyrite deposits and have pointed to the fact that their ratios are
always greater than unity. The high S:Se ratio (>10,000:1) is not
reliable as the Se content 1s not detected. Of the minor sulphide
phases present, sphalerite contains very low iron values, and
covellite contains up to 4 wt% silver. A trace of gold was noted as

a veinlet in a porphyroblast pyrite.

5.8 EFFECT OF METAMORPHISM ON THE MINERALISATION

Metamorphism to greenschist facies at a pressure of 8-10 kb and
temperature  of  410-530°C  (Graham 198341985), caused
recrystallisation, deformation, and limited mobilisation of the

opaque minerals.

Two types of veins are observed 1in the rocks; one type 1is
mainly composed of quartz and/or calcite with oxide and sulphide
mwnerals. In places they respond to deformation by thinning,
flattening, and segmentation and they are believed to be associated
with the premetamorphic ore formation process. The second type is
comparatively thinner and criss-crosses the whole sample and in
places displaces the older veins (Plate 5.8). The major minerals
forming this type of vein and veinlets are in decreasing order of
abundance : quartz, calcite, garnet, epidote, oxide, amphibole and
chlorite with or without sulphide minerals. This latter type of
vein and veinlet 1s thought to be perhaps of metamorphic origin
probably resulting from late metamorphic fluids which circulate

along fractures and cracks.

The presence of water during metamorphism, indicated by the

formation of various hydrous minerals, helped to promote limited
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replacement reactions during cooling. These include the alteration
of pyrite and/or chalcopyrite porphyroblasts near the margin to a
complex 1intergrowth of marcasite, magnetite, hematite, and
sphalerite (Plate 5.9). Replacement of chalcopyrite by covellite
and chalcocite along fractures and veinlets and perhaps replacement
of chalcopyrite by pyrite and bornite (Plate 5.18). The rimming and
replacement of magnetite by hematite (Plates 5.18 & 5.19).

This hydrous metamorphism 1s also believed to be responsible
for the limited mobilisation of copper minerals and other sulphides,
the mobilisation of quartz and calcite to form metamorphic veins and
veinlets, and finally the mobilisation of some silicate minerals,
e.g garnet, epidote and actinolite 1into large porphyroblasts

associated with the ore and/or into thin veinlets

In specimens with accessory sphalerite content, although not so
common, numerous chalcopyrite 1inclusions (chalcopyrite disease)
sieving the sphalerite grains 1s noted (Plate 5.17). This texture
has been observed i1n many ore deposits and different mechanisms have
been suggested for its origin (Barton 1978, Henry et al. 1979, Craig
et al. 1979, Wiggins and Craig 1980, Hutchinson and scott 1980 &
1981 and De Waad and Johnson 1981). However, the case present in
Plate (5.17) 1s believed to be due recrystallisation of chalcopyrite

and sphalerite intergrowth.
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CHAPTER 6
GEOCHEMISTRY OF THE HOST ROCKS

6.1 INTRODUCTION

It was shown earlier in Chapter Five that the host rocks to the
Abhainn Srathain copper mineralisation are characterised by the
local development of certain metamorphic minerals such as epidote,
garnet, micas, chlorite, quartz and carbonate indicating the
possibility of premetamorphic alteration of the host rocks probably
during the ore formation. One of the tasks of this chapter is
therefore to i1nvestigate the chemistry of the host rocks in order to
trace any premetamorphic chemical variations that had resulted from
such alteration. However, the present chemistry of the
metasedimentary rocks of the Upper Erins Quartzite is controlled by
many factors: the nature of the original sediments and their
sedimentary enviroments; the effect of volcanic activity; the effect
of the proposed hydrothermal activity; the influence of the
subsequent diagenetic processes and the effect of metamorphism. The
present chemical composition of the epidiorites 1s the product of:
the nature of the mother magma; changes which accompanied the
intrusion; changes during the hydrothermal alteration and the

process of mineralisation and the effect of metamorphism.

It 1s considered in this chapter that the study of the chemical
composition of these rocks can help in distinguishing between these
effects and deciding what was caused by the proposed hydrothermal
alteration. Once the approximate premetamorphic chemical
composition of these rocks 1s achieved, what was added and what was
subtracted during this alteration can be assumed by visual

comparison of these rocks with their unaltered equivalents and/or

similar rocks.
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Sixty-five selected samples were analysed for major, minor and
trace elements and presented in Tables (6.1 a,b & 6.2). The results
were obtained by X-ray fluorescence analysis performed at the
Department of Geology, Glasgow University. The locations of the
analysed samples are shown on Figs. (5.1 & 5.2B) and their

mineralogical summary 1s presented 1n Appendix (A.5.2).
Brief summary on the methods of analysis, assesment of analysis

and statistical treatment of the results will be given in the next

secti1ons before discussing the chemistry of the host rocks.

6.2 ANALYTICAL METHODS

The concentrations of the elements present in the analysed
rocks were obtained by X-ray fluorescence using PW 1450 Instrument
of the Geology Department, Glasgow University, except for ferrous
iron, water and carbon dioxide which were determined by traditional
methods 1n the wet chemistry laboratory of the above department.
Loss on 1gnition was not determined but, ignoring the volatile
components, the sum of water and carbon dioxide can be regarded as a

close approximation to the loss on ignition.

6.2.1 Major Elements

(A) Preparation

The major elements are defined as Si0,, TiO,, Al,0,, total 1iron
as Fe, 0, , MnO, Mg0, Ca0, Na,0, K,0 and P,0s. FeQ was determined
using a standard wet chemical analysis. Water and carbon dioxide

were determined simultaneously.

Samples for analysis were prepared as glass discs according to
the method of Harvey et al. (1973), in which 0.47 gm of sample was
diluted by fusing with 2.5 gms of spectroflux 105. This flux

contains high purity lithium tetraborate (LlBOA), lithium carbonate
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(L2€0, ) and the heavy absorber lanthanium oxide (La0). The latter
reduces the absorption and enhancement effects to give simple linear
calibrations over a wide range of composition, with only a small
correction required for interelement effects. The full procedure of

fused beads (glass discs) preparation is given in Appendix (A.6.1).

Taking 1nto consideration the variation of the copper content
of the analysed samples which ranges between traces and a few weight
percent, samples with high copper values might cause etching of the
Pt/Ag crucible. To avoid this, fused discs of the samples with more
than 1 wt% copper were prepared in a slightly modified procedure
(Lawsie 1982, pers. comm.). Lawsie's modification involves dilution
of 0.15 gm of the rock with 1.92 gms of the flux and then adding 0.3
gn of NaNO, to the mixture. The other important modified factor 1s
the temperature of the hot plates. This varies with composition, a
temperature of 160°C 1s used with basic and ultrabasic rocks and

temperatures between 180-200°C with other compositions 1s used.

B) Analysis and instrumental conditions

All the major elements were analysed using the chromium tube.

Appendix (A.6.2) gives details of the instrumental parameters during

analysais.

The peak and background counting times have been calculated
using the optimum-time split method of Jenkins and De Vries (1967)
to give count rate errors of better than 1%, but with a maximum

count time of 40 seconds (see Appendix A.6.3).

The calibration coefficients are established routinely using
freshly made discs of the Glasgow standards supplemented by
synthetic standards to 1increase the range of certain elements
(Appendix A.6.4). Initially the composition of the Glasgow
standards was determined by wet chemical analysis and on the XRF by

calibrating against eleven International Standards (Appendix
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A.6.4).

In brief, the analysis of a particular element 1involves
construction of a calibration curve using the International
Standards. This 1s done by plotting measured fluorescence
intensities  against concentration. Measured fluorescence
intensities of samples are directly compared to this calibration to
give their apparent concentrations. For the major elements a
combination of matrix dilution and a mathematical correction is
used. All calculations including corrections in the process are

done by the computer.

(C) Accuracy

The International Standards were analysed as unknowns and the
results are compared with the recommended values. These results
therefore give a measure of the accuracy of the X-ray fluorescence
analysis (Appendix A.6.4). The USGS III Standards were analysed
with a more restricted calibration range than is now in operation.
The results are for one run on one glass disc whereas the French

Standards were analysed 1n duplicate on two glass discs.

(D) Precision

Appendix (A.6.5) gives details of replicate analyses of some of

the Glasgow standards. All measurments were carried out on the same

disc.

(E) Detection limits

The figures given in Appendix (A.6.3) are the average of values

from each of the Glasgow standards.
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(F) Ferrous 1iron determination

The determination of FeO 1n all the specimens analysed was
performed at the Department of Geology, University of Glasgow using
a wet chemical analysis by titration with standard potassium
dichromate solution, see Appendix (A.6.6) for the complete procedure

of the analysis.

Each sample was analysed in duplicate, and the average values
being reported 1f the deviation of the average from the individual
result 1s less than 3% relative. A third determination was made if
the two determinations differed significantly. An average of two or
three measurements 1s taken after considering the deviation.

Normally duplicate analyses are sufficient.

The precision of the ferrous iron determination 1s high. A
standard rock, schistose amphibolite (BL 3570) was analysed by a
number of workers, on different days, 1in the laboratory of this
department; the average of the eight replicate analyses i1s 7.55 +
0.17%. If this average 1s regarded as close to the true value
(7.82%) as reported by Leake et al. (1969), this means that the

analysis for this study are accurate to 0.4% relative.

(G) Water and carbon dioxide determination

Water and carbon dioxide are simultaneously determined 1in all
the specimens analysed using apparatus of the Department of Geology,
University of Glasgow. About 0.5 gm of dried powder is weighed into
a previously ignited alumina boat. The boat with the sample is then
inserted 1n a combustion tube. The water and carbon dioxide
produced are removed with a current of nitrogen, absorbed and
determined gravimetrically. A blank sample (empty alumina boat) is
processed i1n a similar manner and the value is subtracted from the
respective weights of water and carbon dioxide. For the complete

procedure of this analysis see Appendix (A.6.7).

166



6.2.2 Trace Elements

(A) Preparation

The trace elements are analysed using pressed powder pellets
prepared according to the method of Leake et al. (1969). A pellet
consisting of six parts rock to one part binder enables elements to
be determined down to levels of a few parts per million (ppm) which
1s not possible with a glass disc where the rock is diluted 1:5 with
flux. The detail procedure of preparing pressed powder pellets is

presented 1n Appendix (A.6.8).

(B) Analysis and instrumental conditions

All the trace elements are analysed or determined using the
molybdenum tube, except for Nb and S which will be discussed later
separately. Appendix (A.6.9) gives details of the instrumental

parameters used for trace element determination.

The peak and background counting times have been calculated
using the optimum-time split method of Jenkins and De Vries (1967),

but with a maximum peak or background count time of 100 seconds.

Two International Standards were used in constructing the
calibration curves; they are granite (G-GR 7500) and tholeiite (G-TH
7530). Appendix (A.6.10) explains the associated error e% with the

upper limit of calibration in ppm.

(C) Accuracy

Appendix (A.6.10), column two gives an estimate of the accuracy
of each calibration expressed as the standard error in the estaimate
of concentration. Column three gives the upper limit for which the

calabration 1s marked by an asterisk and no confidence level on
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accuracy can be placed on values which grossly exceed the upper

lamit.
(D) Precision
Two International Standards, granite (G-GR) and tholeiite
(G-TH), were analysed nine times and the details of precision of

these replicate analyses are given in Appendix (A.6.11).

(E) S and Nb determination

As mentioned before all trace elements were determined using
the molybdenum tube, except Nb and S which were determined using the
chromium tube and using uncorrected counts for the calibration
graphs, as the Cr compton peak ratios do not correlate with the
calculated absorption ratios. Good results are obtained for Nb over
a wide range, however S 1s much less accurate. This is due to a
lack of good standards and the problem of contamination from the
vacuum pump o1l which affects standards that are repeatedly analysed
over a number of years. For best results a series of spiked rocks
of appropriate composition should be made and used to calibrate
spec1fic groups of rocks. Appendix (A.6.11) gives the detailed

instrumental conditions for determining Nb and S using the Cr-tube.

(F) Detection limit

The detection limits of the analysed trace elements are
reported 1n Appendix (A.6.12). These values represent the average
of the detection 1limits calculated from each of the Glasgow

standards.

6.3 THE RESULTS

The results of the chemical analyses of the metasedimentary

rocks (n=49) and the epidiorites (n=16) that host the Abhainn
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Table 6.1a : Chemical analyses of the Upper Erins Quartzite pelites.

VAR. / ID. HMM 24 HMM 25 HMMI 7 HMMI 9 HMMI 10 HMMI 13
Si0, 68.60 42.57 41.18 66.01 52.82 63.31
Ti0: 0.29 0.68 0.57 0.61 0.62 0.61
Al.05 8.47 19.01 17.06 15.31 15.95 14.45
Fe,05 3.66 3.85 3.50 1.69 1.13 1.45
Fe0 9.81 12.58 6.92 2.82 4.84 3.24
MnO 0.40 0.58 0.34 0.11 0.21 0.15
Mgo 1.99 3.28 7.77 1.98 5.56 2.22
Ca0 0.67 0.81 10.10 2.46 4.74 3.65
Na,0 0.03 1.43 0.00 3.97 4.71 5.08
K,0 1.35 7.10 1.29 1.81 0.66 1.09
P,0, 0.03 0.11 0.08 0.11 0.09 0.14
H,0 2.94 3.58 3.37 1.71 3.75 1.28
co, 0.47 2.76 2.92 1.61 3.50 2.27
Total 99.66 98.96 95.29 100.76 98.71 99.07
Ba 550 4901 363 1072 336 631
Ce 38 77 66 96 84 90
Co 35 6 21 8 11 9
Cr 163 106 97 60 92 61
Cu 1372 37 13 10 3 16
Ga 12 28 23 16 14 14
La 26 55 44 55 48 49
N1 16 35 47 15 30 16
Pb 4 5 14 8 3 5
Rb 34 159 27 52 16 32
S 6634 421 140 3807 71 258
Sr 18 94 721 159 198 165
Th 2 11 12 17 11 12
Y 28 27 28 38 27 36
Zn 358 93 157 42 184 52
ir 161 131 157 213 153 203
s1 329.3 115.8 98.0 283.1 160.8 250.6
ta 1.0 l.4 1.0 2.0 1.4 1.8
P 0.1 0.1 0.1 0.2 0.1 0.2
al 23.9 30.4 23.9 38.6 28.6 33.6
fm 68.4 51.1 48.4 28.6 40.8 28.7
c 3.4 2.4 25.8 11.3 15.5 15.5
alk 4.3 16.1 2.0 21.4 15.2 22.2
k 1.0 0.8 2.0 0.2 0.1 g.1
mg 0.2 0.3 0.6 0.4 0.6 0.5
w 25.1 21.6 31.3 35.0 17.4 28.7
al-alk 19.6 14.3 21.9 17.2 13.4 11.4
al-alf 23.8 26.6 23.9 22.2 14.7 14.2
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Table 6.1la :

Cont inued.

VAR. / ID. HMMI 29 HMMI 30 HMML 37  HMMI 38  HMMI 39  HMMI 41
5i04 65.11 52.14 58.08 47.46 49.60 65.57
110, 0.51 0.68 0.94 1.23 1.15 0.49
Al ;05 11.66 13.44 13.51 17.71 14.56 11.85
Fels 3.86 2.55 3.62 3.79 2.64 2.85
FeO 4.96 10.40 6.25 7.18 9.74 5.59
MnO 0.13 0.43 0.31 0.24 0.39 0.11
Mg0 3.13 7.77 4.07 8.21 6.78 2.79
Ca0 0.72 1.80 4.23 4,44 6.28 0.66
Na,0 1.61 0.25 2.27 2.51 2.92 4.28
K,0 0.45 1.66 0.35 0.30 0.65 0.33
P,0s 0.09 0.09 0.11 0.09 0.10 0.07
H,0 2.58 3.66 2.34 0.99 0.11 2.17
co, 0.97 1.17 0.42 3.92 4.16 0.97
Total 98.02 96.31 97.37 99.72 99.49 99.65
Ba 91 873 428 275 1235 222
Ce 71 78 30 3 0 47
Co 22 16 11 27 46 18
Cr 46 184 250 368 339 189
Cu 916 8 138 85 103 95
Ca 11 25 15 19 16 19
La 34 49 23 9 9 30
Ni 11 28 57 129 98 13
Pb 0 5 1 4 5 4
Rb 10 55 10 8 29 10
5 19040 613 7023 7040 1757 29813
Sr 49 203 296 216 216 151
Th 10 13 4 0 1 4
Y 28 30 47 24 20 64
Zn 59 212 113 240 135 92
Zr 212 341 245 91 72 336
s1 305.6 154.6 199.0 121.3 126.8 283.8
ti 1.8 1.5 2.4 2.4 2.2 1.6
P 0.2 0.1 0.2 0.1 0.1 0.1
al 32.2 23.4 27.2 26.6 21.9 30.2
fm 55.5 67.0 49.0 54.5 52.6 47.9
c 3.6 5.7 15.5 12.2 17.2 3.1
alk 8.7 3.9 8.3 6.7 8.3 18.8
k 0.2 0.8 0.1 0.1 0.1 0.0
mg 0.4 0.5 0.4 0.6 0.5 0.4
w 41.2 18.1 34,3 32.3 19.6 31.5
al-alk 23.5 19.6 18.9 19.9 13.6 11.3
al-alf 24.9 22.7 19.7 20.4 14.7 12.3
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Table 6.la : Continued.

VAR. / ID. HMMI 42 HMMI 43  HMMI 45 HMMI 56 HMMI 65 HMMI 66 HMMI 69
Si0; 59.37 53.90 62.55 46.95 64.63 39.98 37.76
110, 1.33 1.03 1.05 2.51 0.43 1.23 0.79
Al,0, 13,53 12.38 12.50 14.04 12.43 22.74 16.28
Fe,04 4.86 6.71 5.56 3.03 3.20 4.51 8.42
FeO 4.79 6.61 4.05 11.10 3.80 10.42 7.11
Mn0 0.17 0.12 0.11 0.14 0.27 0.13 0.39
Mg0 2,32 2.99 1.28 5.81 2.26 4.70 3.83
Ca0 4.56 3.10 2.26 2.27 1.13 0.05 2.98
Na, 0 4.00 3.65 4.15 2.38 3.53 2.41 0.53
K,0 0.47 0.76 1.56 2.22 3.45 9.35 6.94
P, 0, 0.15 0.11 0.14 0.28 0.10 0.05 0.10
H,0 0.43 2.27 1.13 3.08 0.95 3.47 2.89
co, 0.79 1.82 0.91 2.16 2.10 0.82 6.29
Total 98.25 100.18 100.27 96.16 99.11 100.90 99.05
Ba 251 575 2143 614 2552 7307 6916
Ce 54 56 74 36 52 174 83
Co 21 33 15 31 7 24 34
Cr 147 67 80 85 74 117 139
Cu 120 5932 122 56 66 51 7542
Ga 24 15 19 21 18 36 23
La 31 33 43 24 33 83 41
N1 12 24 13 33 26 46 52
Pb 8 0 4 8 10 S5 10
Rb 10 17 27 55 76 210 165
S 12181 37283 24748 355 4900 1645 29050
Sr 348 169 123 64 145 82 264
Th S 5 4 0 é 29 12
Y 64 55 63 44 30 45 29
In 89 259 84 216 79 220 261
ir 325 308 371 215 188 293 154
sl 210.0 181.2 256.9 135.0 277.1 97.6 104.8
ti 3.5 2.6 3.2 5.4 1.4 2.3 1.6
P 0.2 0.2 0.2 3.0 0.2 0.1 0.1
al 28.1 24.5 30.2 23.8 31.3 32.7 26.6
fm 39.8 50.9 39.3 58.5 39.4 46.9 50.8
c 17.3 11.2 9.9 7.0 5.2 0.1 8.9
alk 14.8 13.5 20.6 10.7 24.1 20.3 13.7
k 0.1 0.1 0.2 0.4 0.4 0.7 0.9
mg 0.3 0.3 0.2 0.4 0.4 0.4 0.3
w 47.7 47.7 55.3 19.7 43.1 28.0 51.6
al-alk 13.4 11.0 9.6 13.1 7.3 12.4 12.9
al-alf 14.4 12.6 13.7 17.2 16.7 27.0 25.2
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Table 6.1b : Chemical analyses of the Upper Erins Quartzite semipelitic
and psammitic rocks.

VAR. / ID. HMM 1 HMM 2 HMM 16 HMM 17 HMM 18 HMM 20
5i0, 72.36 76.12 83.42 73.40 90.63 74.43
Ti0, 0.55 0.36 0.19 0.12 0.19 0.30
AL, 0, 13.15 7.82 5.85 4.80 4.89 7.53
Fe,0, 1.48 0.01 2.63 5.79 1.87 3.57
Fed 2.57 2.48 0.55 1.64 0.34 1.15
MnG 0.06 0.10 0.08 0.05 0.01 0.02
MgO 1.48 1.82 0.35 0.00 0.29 0.20
Ca0 0.11 3.17 4.21 0.39 0.05 3.90
Na,0 0.65 1.41 0.00 1.31 0.00 0.14
K,0 4.07 1.36 0.39 0.29 0.45 1.41
P,0s 0.07 0.04 0.02 0.00 0.02 0.00
H,0 2.00 0.40 0.87 2.30 1.25 1.17
co, 0.52 4.32 0.49 1.30 0.06 0.95
Total 99.33  99.51 99.88  95.60  100.27  100.38
Ba 677 299 232 163 182 191
Ce 77 40 16 11 13 12
Co 4 3 3 26 0 26
Cr 68 45 49 268 126 42
Cu 14 0 3062 151 1120 176
Ga 17 8 10 8 6 9
La 45 24 11 0 7 7
N1 15 0 3 20 0 26
Pb 7 12 5 3 2 0
Rb 143 41 14 10 12 11
S 1120 156 4800 41092 546 55165
St 44 46 377 14 16 151
Th 9 7 3 0 1 2
Y 20 18 9 7 6 9
Zn 67 26 26 151 17 176
Ir 244 278 217 138 189 136
s1 435.8 503.5 743.2 702.7  1695.1 547.0
ti 2.5 1.8 1.3 0.9 2.7 1.7
P 0.2 0.1 0.1 0.0 0.2 0.0
al 46.6 30.4 30.7 27.0 53.8 32.6
fm 33.3 32.3 26.9 55.1 39.8 29.1
c 0.7 22.5 40.2 4.0 1.0 30.7
alk 19.4 14.8 2.2 13.9 5.4 7.6
k 0.8 0.4 1.0 0.1 1.0 0.9
mg 0.4 0.6 0.2 0.0 0.2 0.1
W 34.1 0.4 8l.1 76.1 83.2 73.6
al-alk 27.2 15.7 28.4 13.1 48.4 25.0
al-alf 42.8 21.4 30.7 14.9 53.8 31.6
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Table 6.1b : Continued.

VAR. / 1D. HMM 21 HMM 22 HMM 23 HMM 26 HMM 29 HMM 32
Si0, 86.92 75.63 87.14 80.31 83.87 79.98
Ti0, 0.28 0.29 0.16 0.39 0.06 0.40
Al.0, 5.54 7.82 5.51 9.08 3.89 9.10
Fe203 1.93 4.43 1.99 1.11 0.27 0.84
Fe0 0.54 0.44 1.06 2.17 3.41 1.80
MnO 0.08 0.08 0.06 0.05 0.01 0.06
Mg0 0.19 0.18 0.65 0.83 0.06 1.15
Ca0 0.38 3.97 0.42 0.10 0.20 0.57
Na.0 0.28 0.94 0.41 0.98 1.75 1.81
K20 0.47 1.37 0.41 2.50 0.31 1.58
P20g 0.02 0.00 0.02 0.05 0.00 0.05
H20 2.55 0.51 1.52 1.40 1.00 1.68
€02 0.82 1.87 0.42 0.66 1.02 1.70
Total 100.54 100.06 100. 38 99.84 100.35 100.89
Ba 180 804 63 1320 174 402
Ce 22 44 19 39 15 38
Co 0 3 2 3 177 6
Cr 36 57 33 57 32 57
Cu 2560 7572 2660 38 12968 12
Ga 8 16 7 11 2 10
La 18 30 11 34 5 22
Ni 0 11 5 5 4 8
Pb 3 4 15 3 28 77
Rb 15 37 13 63 11 60
S 2018 16155 3060 175 28282 500
Sr 51 306 35 40 21 70
Th 2 1 3 6 1 8
Y 10 13 7 15 10 16
In 34 72 38 42 466 52
Ir 410 199 151 242 251 323
si 1339.9 515.7 1124.2 673.7 1112.8 633.3
ta 3.2 1.5 1.5 2.5 0.6 2.4
p 0.1 0.0 g.1 0.2 0.0 0.2
al 50.2 31.4 41.8 44.8 30.4 42.4
fm 34.7 27.5 43.9 33.0 41.7 30.9
c 6.3 29.0 5.8 0.9 2.8 4.8
alk 8.8 12.2 8.5 21.3 25.1 21.9
k 0.5 0.5 0.4 0.6 0.1 0.4
mg 0.1 0.1 0.3 0.3 0.0 0.4
w 76.3 90.1 62.8 31.5 6.7 29.6
al-alk 41.4 19.2 33.3 23.5 5.3 20.5
al-alf 46.0 25.2 36.7 36.9 7.9 28.5

173



Table 6.1b : Continued.

VAR. / ID. HMMI 5 HMMI 6 HMMI 11  HMMI 14  HMMI 24  HMMI 51
510, 83.40 88.84 83.22 72.18 76.71 89.16
110, 0.27 0.19 0.24 0.45 0.47 0.22
Al, 05 5.40 3.90 6.47 9.86 10.39 5.22
Fe2 03 1.38 1.29 1.13 3.82 0.84 0.12
Fel 1.65 0.70 1.54 1.17 1.67 0.82
MnO 0.11 0.07 0.06 0.12 0.05 0.00
Mg0 2.34 0.88 1.68 0.69 1.04 0.70
Cal 3.10 2.86 1.08 7.71 1.21 0.45
Na; 0 0.00 0.00 2.21 0.69 3.91 1.37
K20 0.25 0.22 0.71 0.34 1.27 0.81
P20g 0.02 0.02 0.05 0.09 0.08 0.03
Hz 0 1.96 0.64 1.30 0.64 1.33 0.42
CO2 0.25 0.13 0.52 1.02 0.51 0.82
Total 100.16 99.85 100.50 99.01 99.61 100.24
Ba 13 14 501 108 645 391
Ce 22 15 21 56 56 21
Co 3 0 2 1 4 0
Cr 28 175 229 104 70 114
Cu 9 34 1 235 7 0
Ga 7 6 6 14 10 5
La 19 10 15 25 27 19
Ni 4 0 0 6 3 0
Pb 1 2 0 5 4 0
Rb 9 9 17 13 30 13
S 345 241 1735 746 93 147
Sr 278 273 71 678 55 31
Th 3 0 1 10 13 3
Y 13 9 12 26 28 10
In 47 27 35 29 24 28
ir 423 278 274 259 255 213
si 658.2 1054.0 679.0 366.3 490.9 1235.1
t1 1.6 1.7 1.5 1.7 2.3 2.3
P 0.1 c.1l 0.2 0.7 0.2 0.2
al 25.1 27.2 31.1 29.4 39.1 42.5
fm 47.5 34.8 38.4 25.3 23.2 25.3
c 26.2 36.4 9.4 41.9 8.3 6.7
alk 1.3 1.7 21.1 3.4 29.4 25.5
k 1.0 1.0 0.2 0.0 0.2 0.3
mg 0.6 0.5 0.5 0.2 0.4 0.6
w 42.9 62.4 39.8 74.6 31.2 11.6
al-alk 23.8 25.6 9.9 26.0 9.7 17.0
al-alf 25.1 27.2 13.7 26.8 14.9 24.2
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Table 6.1b : Continued.

VAR. / ID. HMMI 60 HMMI 62 HMMI 63 HMMI 64 HMMI 67 HMMI 73
Si0, 86.57 69.53 88.40 88.70 74,58 82.27
Ti0, 0.26 0.47 0.23 0.24 0.29 0.31
Al, 0, 5.54 12.57 5.36 5.16 9.34 6.61
Fe, 0, 0.28 1.79 0.52 0.49 3.04 0.94
FeD 1.09 4.60 0.57 0.37 1.36 1.20
MnO 0.05 0.16 0.07 0.04 0.09 0.07
Mg0 1.04 2.00 0.35 0.00 1.05 0.39
Ca0 0.56 0.35 0.45 0.41 1.09 0.95
Na,0 1.61 2.84 2.58 2.62 2.32 1.99
K,0 0.63 2.85 0.56 0.51 2.28 2.05
P,0s 0.04 0.09 0.05 0.05 0.00 0.06

H,0 0.10 1.46 0.18 0.21 1.15 1.94
co, 1.58 0.67 0.72 0.69 1.93 0.42
Total 99.45 100.00 100.26 99.63 99.78 99.60
Ba 230 2499 424 410 1351 749
Ce 22 72 26 22 32 22
Co 1 22 0 0 14 1
Cr 38 77 67 19 147 18
Cu 6 619 76 15 89 29
Ga 3 12 4 2 12 6
La 13 41 14 10 18 12
N1 0 23 8 0 7 2
Pb 3 16 5 2 3 10
Rb 18 64 13 10 44 40
S 101 2394 1072 576 9617 2617
Sr 44 69 48 43 120 87
Th 3 9 4 4 2 4
Y 11 25 11 10 15 17
Zn 21 66 9 4 22 58
ir 412 212 290 259 218 339
si 1013.7 336.7 1113.6 1259.0 483.4 786.3
ti 2.3 1.7 2.2 2.6 1.4 2.2
P 0.2 0.2 0.3 0.3 0.0 0.2
al 38.2 35.8 39.7 43.1 35.6 37.1
fm 31.9 40.3 18.3 10.1 32.8 22.4
c 7.0 1.8 6.1 6.2 7.6 9.7
alk 23.0 22.1 36.0 40.6 24.0 30.8
k 0.2 0.4 0.1 0.1 0.4 0.4
mg 0.6 0.4 0.4 0.0 0.3 0.2
w 18.8 25.9 45.1 54.4 66.8 41.3
al-alk 15.2 13.7 3.8 2.5 11.6 6.2
al-alf 19.9 22.5 8.2 7.1 21.0 18.7
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Table 6.1b : Continued.

VAR. / ID. HMMI 76 HMMI 77 HMMI 81 HMMI 83 HMMI 91 HMMI 93
Si0, 84.21 68.82 76.61 76.37 78.22 73.84
T10, 0.27 0.17 0.20 0.22 0.30 0.33
Al,05 5.90 3.99 9.05 6.09 6.56 7.66
Fe,0s 1.09 5.48 3.51 6.98 2.22 4.66
Fe0 0.70 2.27 0.22 0.35 2.10 2.24
MnO 0.06 0.09 0.03 0.03 0.09 0.08
Mg0 0.41 1.95 0.21 0.78 0.86 0.90
Cad 0.79 4.62 0.33 0.65 0.98 0.45
Na,0 1.47 1.20 0.90 1.20 2.86 1.45
K20 1.74 1.06 1.59 1.59 1.60 1.82
P20s 0.05 0.00 0.00 0.00 0.06 0.01
H20 1.44 0.72 0.55 0.45 2.63 1.30
€02 0.76 5.14 1.00 1.42 0.57 1.77
Total 99.35 99.72  100.69  100.33 99.61  100.22
Ba 941 1104 674 811 184 1297
Ce 27 53 16 35 30 38
Co 0 4 0 9 7 16
Cr 15 46 54 14 50 72
Cu 29 27 27 251 333 9756
Ga 5 2 4 6 10 10
La 14 14 8 17 14 21
N1 0 11 9 3 6 17
Pb 20 695 39 12 205 8
Rb a5 29 26 37 30 43
S 3276 37367 61521 37921 4229 24984
St 297 355 47 61 69 43
Th 2 6 1 1 4 3
Y 13 1 10 23 10 20
n 21 25 5 59 128 319
Zr 378 210 274 303 267 278
si 944.4 379.4 714.7 579.6 580.3 519.5
ti 2.3 0.7 1.4 1.3 1.7 1.7
p 0.2 0.0 0.0 0.0 0.2 0.0
al 38.9 12.9 49.7 27.2 28.6 30.9
fm 23.2 49.6 29.4 51.0 35.5 47.7
c 9.5 27.3 3.3 5.3 7.8 3.4
alk 28.4 10.1 17.6 16.5 28.1 18.0
k 0.4 0.4 0.5 0.5 0.3 0.5
mg 0.3 0.3 0.1 0.2 0.3 0.2
w 58.4 68.5 93.5 94.7 48.8 65.2
al-alk 10.5 2.8 32.1 10.7 0.5 12.8
al-alf 23.0 6.5 41.6 18.4 8.1 21.1
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Table 6.2 : Chemical analyses of the epidiorites associated with
Upper Erins Quartzite Formation.

VAR. / ID. HMM 4 HMM 5 HMM 8 HMM 9  HMM 10  HWM 12
$i0, 42.39 38.19 45.81 43.53 40.64 48.66
1i0, 0.16 0.09 0.15 0.39 0.31 0.17
Al,0, 3.79 3.46 3.50 10.49 9.50 4.92
Fe,05 5.37 8.01 4.07 7.00 8.62 4.55
Fe0 7.89 7.28 6.45 4.26 5.51 4.21
MnO 1.87 1.52 1.04 1.70 1.65 0.52
MgO 5.51 4.90 7.90 3.08 3.78 3.38
Cad 18.90 20.20 16.92 20.86 20.98 18.86
Na ;0 0.00 0.35 0.90 0.00 0.31 0.40
K ,0 0.13 0.15 0.12 0.14 0.12 0.14
P,0s 0.07 0.00 0.01 0.05 0.07 0.00
H,0 1.61 1.12 0.79 1.48 1.28 1.89
co, 11.96 11.74 5.85 6.52 3.02 9.17
Total 100.60 99.86 98.05 99.81 96.87  100.03
Ba 28 6 27 25 23 5
Ce 22 13 9 43 16 14
Co 20 31 7 7 15 17
Cr 30 28 51 71 78 54
Cu 2072 5166 19718 377 3220 12792
Ga 6 6 5 16 16 4
La 17 3 14 32 13 7
Ni 5 15 23 12 22 12
Pb 5 7 2 13 6 6
Rb 4 5 4 6 5 3
S 4854 19878 22710 1006 6068 16507
Sr 273 306 346 1129 964 330
Th 4 2 0 10 4 3
Y 9 6 8 18 12 8
In 2060 422 323 178 244 250
Zr 53 37 45 126 120 41
s1 98.6 85.2 108.3 100.1 87.3 135.1
ti 0.3 0.2 0.3 0.7 0.5 0.4
p 0.1 0.0 0.0 0.0 0.1 0.0
al 5.2 4.5 4.9 14.2 12.0 8.0
fm 47.5 46.2 50.0 34.2 38.9 34.5
c 47.1 48.3 42.9 S51.4 48.3 56.1
alk 0.2 1.0 2.2 0.2 0.8 1.3
k 1.0 0.2 0.1 1.0 0.2 0.2
mg 0.4 0.4 0.6 0.3 0.3 0.4
w 38.0 49.8 36.2 59.7 58.5 49.3
al-alk 5.0 3.6 2.6 14.0 11.2 6.7
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Table 6.2 : Continued.

VAR. / ID. HMM 13 HMM 30  HMMI 2 HMMI 12 HMMI 16  HMMI 18
510, 42.62 49.92 49.23 43.95 43.30 48.46
Ti0, 0.08 1.84 0.48 0.11 0.10 0.15
Al,0, 1.82 13.49 13.75 2.60 3.32 4.00
Fe,0, 5.41 3.80 5.80 2.15 8.59 3.82
Fe0 7.00 8.22 2.34 9.75 8.00 10.49
MnO 1.65 0.17 0.47 1.16 1.56 1.84
MgO 5.79 5.82 7.10 7.25 6.64 9.23
Cal 19.43 8.81 18.14 20.58 21.81 19.00
Na,0 1.27 3.48 0.00 0.02 0.06 0.33
K,0 0.10 0.26 0.10 0.12 0.13 0.11
P,0, 0.05 0.13 0.06 0.05 0.04 0.01
H,0 1.37 3.19 2.69 1.62 1.22 0.96
co, 11.53 0.50 0.57 9.15 2.77 0.64
Total 99.15 99.74  100.94 98.80 97.91  100.29
Ba 7 51 23 8 27 34
Ce 14 18 61 6 9 16
Co 4 36 8 11 16 31
Cr 51 163 206 204 53 47
Cu 2684 52 59 658 1202 1515
Ga 11 20 22 5 6 5
La 11 14 37 16 20 13
N1 7 42 37 0 16 24
Pb 8 2 8 0 4 11
Rb 7 6 4 4 5 3
S 6678 167 179 1573 1835 9232
Sr 567 183 1061 235 315 243
Th 3 0 9 1 3 4
Y 9 40 24 5 7 8
Zn 216 103 149 127 170 314
Zr 53 153 171 39 41 45
si 98.8 126.4 109.6 97.1 86.9 96.7
t1 0.1 3.5 0.8 0.2 0.2 0.2
p 0.0 0.1 0.1 0.0 0.0 0.0
al 2.5 20.1 18.0 3.4 3.9 4.7
fm 46.3 47.0 38.6 47.7 48.9 53.9
c 48.2 23.9 43.3 48.7 46.9 40.6
alk 3.0 9.0 0.1 0.2 0.3 0.8
k 0.0 0.0 1.0 0.8 0.6 0.2
mg 0.4 0.5 0.6 0.5 0.4 0.5
w 41.0 29.4 69.0 16.6 29.1 24.7
al-alk 0.5 11.1 17.9 3.2 3.6 3.9
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Table 6.2 : Continued.

VAR. / ID. HMMI 20 HMMI 21  HMMI 27 HMMI 49
5io0, 43,11 43.88 49.18 48,93
Tio, 0.35 0.23 3.26 1.08
Al .0, 9.44 5.59 12.12 14.39
Fe,0y 5.75 2.85 4.92 5.38
FeO 6.63 B8.84 9.92 6.54
MnO 1.17 1.54 0.24 0.38
Mg0 6.67 7.69 4.56 7.14
Cal 19.10 19.08 8.58 7.77
Na,0 0.00 0.10 1.43 3.69
K,0 0.19 0.13 0.70 0.68
P,0s 0.10 0.09 0.39 0.10
H,0 4,22 1.12 2.24 1.97
({1 P 2.92 7.86 0.68 1.06
Total 100.01 99.45 98.47 99.48
Ba 69 27 355 316
Ce 49 29 50 17
Co 18 18 41 17
Cr 222 45 96 240
Cu 576 1424 273 42
Ga 13 9 19 17
La 30 19 27 S
N1 27 21 48 93
Pb 10 1 [3 8
Rb 6 S5 25 11
S 1103 2072 753 2306
Sr 874 448 290 325
Th () 3 4 0
Y 20 11 54 28
In 240 243 148 169
ir 121 82 286 120
s1 91.8 94.9 132.4 118.4
ti 0.6 0.4 6.6 2.0
p 0.1 0.1 0.4 0.1
al 11.8 7.1 19.2 20.5
fm 44.4 48.3 51.1 49.7
c 43.6 44.2 24.7 20.2
alk 0.3 0.4 4.9 9.7
k 1.0 0.5 0.2 0.1
mg 0.5 0.5 0.4 0.5
w 43.8 22.5 30.9 42,5
al-alk 11.6 6.7 14.3 10.8
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Srathain copper mineralisation and the Knapdale Pyrite Horizon are

presented 1n Tables (6.1 a,b & 6.2) respectively. They were

analysed for thirteen major and minor oxides and sixteen trace and

rare earth elements.

6.3.1 Total and the Estimation of the Quality of the Analysis

The reported totals in Tables (6.1 a,b & 6.2) represent the sum
of all the analysed major, minor and trace elements. Analyses are
generally accepted when the total lies between 99-101 wtf%.
Accordingly, of the sixty-five rock analyses; fifty-one analyses
have a reasonable totals ranging between 99-101 wt% and are
considered here as '"good"; fourteen analyses are "fairly good"

represent totals ranging from 98-99 wt% (n=7) and 95-98 wt% (n=7).

6.3.2 Statistical Analysis of the Results

When dealing with any geochemical data, the first step, 1s to
establish the nature of their frequency distribution (i.e. normal,
lognormal or non-normal) 1in order to apply the basic statistical
parameters (mean, standard deviation, correlation coefficient etc.)
in the ainterpretation. Data were checked for normality using
kurtosis and skewness tests described by Jones (1969) and the
coefficient of variation (C:-gl) described by Shaw (1961), Koch and

Link (1971) and Beus and Grigorian (1977).

The data were also transformed into logs to examine observation
with lognormal distribution. The Statistical Package for the Social
Sciences (SPPS) Studies on EMAS, was used to compute the statistical
parameters for both arithmetic and log-transformed data. Pearson
correlation coefficients of each analysed oxide/element against each
of the other are also computed. This can help to score the
correlative elements which might suggest detrital, hydrothermal or

metamorphic origin.

180



A Frequency distribution

Metasedimentary rocks

For the metasedlmentagy rocks (n=49), the results of the tests
are summarised in Tables (6.3 a&b) and the frequency distributions
of their major oxides and trace elements are presented in figure
(6.1). Only a few elements are normally distributed, the majority
are lognormally distributed and others are not normal. Among the
major oxides; S10,,A1,0,, Fe,0,, Na,0 and H,0 have a normal but
polymodal distributions; the remaining are lognormally distributed.
Among the trace elements only Ga and Zr are normally dis ributed; Ce,
La, Pb and Y shew non-normal distribution; the remaining have non-
normal Lo lognormal distribution.

The lack of regular distribution for some major oxides can be
explained by the sporadic occurrence of certain mnerals, for
example, calcite (for Ca0 & CO,), sphene and apatite (for Cal, Ti0,
and P,0s) etc. The irregularity i1n the distribution of some of the

trace elements 1s 1n correspondance with the distribution of their

geochemically coherent major oxides, example, Ca0 & Sr, K,0 & Rb, Ba

etec.
Epidiorites

The epidiorites were also tested for normality and the results
are tabulated 1in Tables (6.4 a&b) and plotted in Figure (6.2) as
frequency distributions. The results are more or less similar to

the observations noticed 1n the metasedimentary rocks that were

described above.

(B) Pearson correlation

Metasedimentary rocks

Construction of a Pearson correlation matrix revealed a
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considerable number of element pairs with positive or negative
correlation coefficients greater than + 0.5. Scatter plots of each
element pair with a Pearson correlation coefficient greater than +
0.5 are produced to avoid any induced apparent strong correlation
resulting from the outlying few samples with values different from

the usual values and a selection is shown in Figure (6.3).

Significant negative correlation between $5i0, and Al,0,, FeO0,
Mg0, Mn0O, and T10, and to a lesser extent P,05, CO,, H,0, Fe,0, and
K,0 1s noticed among the major oxides (Table 6.5a). Also some of
the Traces correlate negatively with S10,; significant negative
correlation exists between S10, and Ga and N1 and a weaker

correlation between S10, and La, Y, Ce, Ba and Th (Table 6.5c).

The strong positive correlation between Al.0, and FeO, Mg0 and
Mn0 accompanied by the strong positive correlation between Fe0, Mg0
and MnO suggest that these components occur in garnet. Some of the
Fe0 and Mg0 can form biotite and chlorite and this can explain the
positive correlation between FeO, Mg0 and H,O. The positive
correlation between Al,0,, K,0 and H,0 can be explained by the
presence of muscovate. Al.,0, correlates positively with P,05 and
710, which are low i1n concentration and both correlate positively
with each other and with Fe0 and Mg0 and therefore probably occur as
wmpurities 1n the biotate and chlorite. However, the strong
correlation between Ti0, and FeO (0.7) suggests that the large
fraction of Ti0, 1s present as accessory iron titanium oxides. It 1s
surprising that no good correlation exists between AI.0, and Na,O
(0.40), despite the presence of albite that was confirmed
petrographically and analysed chemically. This might be due to the
low concentrations of Na,0 (only a few albite-bearing specimens were
analysed) and the fact that Al,0, 1s distributed between a large
number of Al-bearing silicates. The same sort of explanation can be
applied to the absence of good correlations between Cal and Fe,0,;
Ca0 and CO,; Ca0 and P,0s; and Ca0 and TiO, despite the presence of

epidote, calcite, apatite and sphene respectively in the analysed
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rocks.

From the previous discussion 1t can be assumed that most of the
Fe,0, (total) 1s in biotite, chlorite, garnet; K,0 1n muscovite and
traces in feldspar; Ca0 in carbonate, epidote and garnet; MnO 1n
garnet mainly and traces in calcite and chlorite; Na,0 in albite and
Al,0, distributed between these phases (excluding Fe-oxade,
FeTi-oxides, and iron sulphides). Accordingly,correlations between
traces, and between majors and traces, which are represented in

Tables (6.5 b&c respectively) can be more easily studied.

The positive good correlation between Ba and Rb (0.88) and to a
lesser extent between Ba and Ce (0.65) and Ba and Th (0.59) together
with the positive correlations between Ba and Al,0,, K,0; Ce and
Al,0,, K,0 and H,0; Rb and A1,0, and K,0; Th and Al,0, and K,O
strengthen the connection between Al,0,, K,0 and H,0 which represent
muscovite as discussed previously and suggest that these trace
elements might be present i1n the muscovite. However, although of
these elements, Ba and Rb are the most common elements to be hosted
by muscovite, Th and Ce might also be present within the muscovite
lattice (Atherton and Brotherton 1979). Also correlation between Th
and Ce with the muscovite group of elements might probably result

from the presence of carbon inclusions in muscovite (Willan 1983).

Applying this approach, the following conclusions can be
added. Part of Ni and Ga 1s present 1in garnet; Cr and part of Ni
and Ga in chlorite; Y, La and part of Ga in the micas; Sr 1in calcite

only; and finally Co, Cu, Zn and part of iron in the sulphides.
Epadiorites
Correlations between majors, traces and between majors and
traces for the epidiorites are documented in Tables (6.6a, b and c

respectively) and a scatter plot of selective correlative element

pairs 1s presented in Figure (6.4). Unlike the metasedimentary
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rocks, the negative correlation between Si0, and the other major
oxides 1s limited. S10, correlates negatively with Mn0, Ca0, CO,
and Fe,0, only, and positively with TiO,, Al,0, and Na,0. No
significant negative correlation between S5i0, and trace elements
exist, except with N1 and with Y. This 1s not surprising because 1n
the epidiorites the majority of the Si10, 1s present in the silicate

minerals and only a minor quantity forms free quartz grains and

quartz 1in veins.

By applying the same approach used previously for the
metasedimentary rocks to relate correlative major oxides to
mineralogy, good positive correlations between FeO, Mg0 and CaO;
Fe0, MnO, Ca0 and Mg0; and Fe,0, and Ca0 are expected because these
are the groups that represent amphibole, garnet and epidote
respectively which form the main constituents of the epidiorites
(Sections 5.3.8 & 5.3.9). The results of the correlations between
the major oxides (Table 6.6a) showed that this is not the case; the
only significant correlations consistent with the mineralogy are the
positive correlations between CaO and CO,; Al,0,, K,0 and Na,0 Two
groups of correlative major oxides can be distinguished from Table
(6.6a); the first group includes S10,, Al,0,, Mg0, Na,0, K,0, TiO,
and P,0; which correlate positively with each other and negatively
with the second group. The second group includes Ca0, Mn0 and CO,

and Fe,0,.

Among the correlations between majors and traces (Table 6.6c)
are highly significant positive correlations between Al,0, and Ga,
Zr, Y and N1. Sagnificant correlations betwéen Al,0; and Cr, Ce and
Ba exist. Also Al,0, correlates negatively with S. Mg0 and Fe,0,
do not show any significant correlations with trace elements.
Nevertheless, Fe,0, correlates weakly with Pb (0.43) and with Sr
(0.45). Mn0 correlates negatively with the majority of the trace
elements; highly significant negative correlation between MnO and Y
and significant negative correlation between MnO and Ni, Zr, Cr, Ba

and Ga exist. Also Ca0 correlates negatively with the majority of
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the trace elements, except with Th (0.39) and with Sr (0.36) where a
weak positive correlations exist. Highly significant negative
correlations between Cal and Y, N1 and Ba and significant negative
correlation between Ca0 and Rb, Zr, Ga and Co exist. Na, O
correlates positively with Ni, Y and Ba and negatively with Th.
Highly significant positive correlations between KZU and Ba, Rb, N1
and Y and significant positive correlation between K 0 and Ir
extst. P,0s and T10, which represent minor oxides in the rock show
highly significant positive correlations with Ba, Rb, Y and Zr on
one hand and highly significant positive correlation with K, 0 and to

3 lesser extent with Al,05 on the other hand.

However, only a few of these correlations can be explained 1n
terms of enrichment of certain traces in certain mineral phases while
the majority represent unusual associations. An example is the good
correlation between K, 0 and Al 0 on the one hand and between K,O
and Ba, Rb, Ni, Y, Zr, TiO, and P,0g on the other hand. Of these
traces, Ba, Rb and possibly Y, can substitute for K in the feldspar
while the remainder does not and therefore their good positive
correlations with K 0 and Al 0  might be due to another reason as

w1ll be discussed below.

After careful examination of the above mentioned correlations
between the majors and traces, the following picture emerges. The
majority of the trace elements including Ba, Ce, Cr, Ga, Ni, Rb, Y
and Zr correlate positively with Al 0 , K ,0, Na,0, T10, and P, 0s and
with each other. The same trace element group shows negative
correlation with Ca0, MnO and COz. Trace elements that have weak
negative correlations with Al O, K 0, Na 0, T10, and P,0s have weak
positive correlations with Ca0, MnO, Fe, 0 and co, . These include
Cu, S, Sr, Th, Pb and Zn. This strengthens the connection between
Ca0, MnO, Fe,0, and CO, as one group and between Al,0,, K,0, Na,Q0,
1.0, and P,05 as another group. Accordingly two general groups can
be distinguished among the majors and traces. The first group
includes 510, , Al,0 , K, O, Na 0, TiO,, P 05, Ba, Ce, Cr, Ga, Ni, Rb,
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Y, and Zr. The second group includes Ca0, MnO, Fe,O0,, CO,, Cu, S,
Sr, Th, Pb, and Zn. FeO and Mg0 do not show any clear correlation
and therefore 1t 1s tricky to decide to which group they must be

added. It might be possible that these two oxides might represent

another group.

As was mentioned earlier in Section (5.3.9), these rocks are
highly altered and mineralised epidiorites and therefore the above
correlations between the majors, traces and between the majors and
traces might be explained in terms of the hydrothermal alteration
that accompanied the mineralisation. The rocks with lowest Al,0,
values are the most altered and at the same time the most highly
mineralised. This is reflected in the negative correlation between
A1,0, and S (-0.53) and the comparatively weaker negative
correlations between Al,0, and the base metals Cu and Zn (-0.41 and
-0.29 respectively). During this hydrothermal alteration, probably
si0,, Al,0,, K,0, Na,0, P,05, T10,, Ba, Ce, Cr, Ga, Ni, Rb, Y and Zr
were removed or diluted and Ca0, MnO, Fe,0,, CO,, Cu, S, Zn, Pb, Sr
and Th were added. Thas will be discussed later in more detail in
Section (6.7.2) when considering the average composition of the

epidiorites.

6.4 THE CHEMICAL COMPOSITION OF THE METASEDIMENTARY ROCKS

The present chemistry of the metasedimentary rocks was
controlled by many factors. These include, the original sediment
composition which 1s controlled in turn by the environment of
deposition, the subsequent diagenetic processes, the effect of the
assumed hydrothermal activaity, the effect of metamorphism and

finally their weathering history.

Great chemical variations between the analysed metasedimentary
rocks exist reflecting various 1lithologies. Gradation from
orthoquartzite with up to 90.63 wt% S10, to highly chloritic schist

with 37.76 wtl% S10, exist. These host rocks are assumed to
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represent metamorphosed argillaceous and arenaceous sediments which
are referred to as, pelites and psammites respectively. Therefore a
distinction between the two groups seems necessary to simplify their

chemical study in order to find their premetamorphic precursors.

Pelites are very variable in composition and some authors
consider a quartz content of 50 percent is roughly the upper limit
of pelites (see Winkler 1976); others consider the Si10, content of
pelites to range from 56.9 to 66.2 wt% and average 61.54 wt% (Shaw
1956). Psammites contain a higher amount of quartz (generally over
70 percent). Semi1-pelites are intermediate in composition between
pelites and psammites. Mohamad (1980) used Niggli si1 and al-alk as
useful 1ndicies to separate pelites from psammites of Glen Esk
metasedimentary rocks. Before applying any of the above criteria on
the studied rocks, a brief summary on the Niggli Numbers will be

given i1n the next section.

6.4.1 Ni1ggli Numbers

In many studies, Niggli values were used as useful criteria to
study the nature of the sedimentary precursor of metasedimentary
rocks, to examine the effect of metamorphism on the bulk chemistry
of the rocks, to distinguish between pelites and psammites and to
distinguish metamorphosed basic magmatic rocks from the

metasedimentary rocks (see Wilson and Leake 1972 for the last

usage).

For the purposes mentioned above, for each analysis Niggli
Numbers were calculated (Tables 6.1 a&b and 6.2), following
procedures described by Niggli (1954), Barth (1962) and Cox et al.
(1979) and summarised 1in Appendix (A.6.13) together with the
explanation of the terms used. Tests for normality were also
performed on Niggli Numbers using the same criteria described
earlier 1n Section (6.3.2). The results of tests are summarised in

Tables (6.7 a&b). The results show that they are either normally or
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log-normally distributed.

6.4.2 Pelitic and Psammitic Rocks

For the studied metasedimentary rocks and as a preliminary
separation, distinction between pelitic and psammitic rocks is held
using the S10, wt% and the Niggli si values as limitations (pelite
with <70 wt% S10, and si < 300). However, petrographic study of
these rocks had showed that these rocks contain quartz veins and
this ruled out the possibility of relying on the S10. wt% and si
alone as a criteria to distinguish between pelitic and psammitic
lathologaes. This can be overcome by using another supplement

Niggli Number calculated irrespective of the silica content of the

rocks.

The parameter si1 versus al-alk (Fig. 6.6) which was used
successfully to distinguish pelite from psammite in Glen Esk
(Mohamad 1980) 1s not applicable in the studied area. This might be
due to allocating all the K.0 as K-feldspar, while petrographic
study had showed that very rare K-feldspar is present but sericite %
muscovite are abundant in some of the pelitic and psammitic rocks.
Accordingly the clay mineral fraction cannot be defined by the
parameter al-alk. Instead the molecular number Al.0s; — Na.0 rather
than Al1,0, - (Na,0 + K,0) 1s a better 1index of the Al-bearing
metamorphic minerals excluding feldspars. By doing so, no clear
separation between pelitic and psammitic rocks 1s obtained (Fig.
6.6) probably because of the presence of various Al-bearing
metamorphic minerals. An attempt was made to find another suitable
Niggli Number or parameter to distinguish between the two groups.
Among the calculated Niggli Numbers, Niggli fm together with si
seems the most reliable criterion for this purpose. The plot of si
versus fm (Fig. 6.6) separates the analysed metasedimentary rocks
into two groups through two imaginary lines of s1=300 and fm=40.
The first group 1s characterised by low si (<300) and high fm (>40)

values and represents pelites. The second group is characterised by
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high s1 (>300) and low fm (<40) values and represents psammites.
Only Samples Number HMMI 9 and HMMI 13 are pelites with low fm (28.6
and 28.7 respectively) values possibly as a result of their high
Na,0 content. Among the psammites, Samples Number HMM 17, HMMI 5,
HMMI 77, HMMI 83 and HMMI 93, have high fm values and plotted
outside the psammite field. The reason for this 1s probably

because these rocks are either epidotised and/or calcareous.

6.4.3 The Average Chemical Composition of the Pelites

The average chemical composition of nineteen pelites from the
studied area 1s presented in Table (6.8a) in comparison with similar
rock averages. In Table (6.8b) the unmetamorphosed equivalent of
these averages were recalculated i1n a volatile-free basis to remove
the effect of dehydration and redox reactions caused by metamorphism
in order to enable direct comparison of the element concentrations
between the averages. The Meall Mor pelites have slightly lower
S10,, A1,0, and K,0 values and higher Fe,0, (total), Mg0, Ca0 and
Na 0 values than the world average pelite. The standard deviations
of most of the oxides of Meall Mor pelites are high reflecting their

wide range of compositional variation.

Meall Mor average pelite 1s close 1n 1ts major oxide chemistry
to shale analysis (Tables 6.8 a&b) but with higher Fe,0, (total),

Mg0 and Na,0 values and comparatively lower Al,0, and K,0 values.

In comparison with other Dalradian pelites, Meall Mor average
pelite 1s poorer in Al,0, and K,0 and richer in Fe O, (total), MqO,
Ca0 and Na,0.

The average trace element contents of the analysed pelites 1s
presented 1n Table (6.8c) together with the average trace element
abundances of similar rocks. It is clear that Meall Mor average
pelite 1s highly enriched in Cu, S and Ba and to a lesser extent in

Cry Zn and Zr and comparatively depleted in Ni, Rb, Pb, and Sr
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compared to the trace element contents of shale. Ce, Co and Ga are
about comparable. Although a distinctly high Ba concentration
hosted by muscovite had been observed among some of the analysed

samples with high values reaching up to 7307 ppm, the absolute
quantities of barium are still 1insufficient to form Ba-bearing

silicates like in Aberfeldy for example.

6.4.4 The Average Chemical Composition of the Psammites

The average analysis of thirty psammitic rocks from the studied
area 1s presented in Table (6.9a) and 1s compared with average
analyses of unmetamorphosed sandstones and with some Dalradian
quartzites and greywackes. The analyses are recalculated on a
volatile-free basis (Table 6.9b). The results showed that Meall Mor
average 1s comparable in chemical composition with arkose analysis
more than with orthoquartzite. Nevertheless, individual analyses
showed that similarity to both rock types, orthoquartzite and arkose
exist. Specimens Number HMM 2, HMM 26, HMM 32 HMMI 73, HMMI 81 and
HMMI 93, for example have chemical compositions approaching arkose.
Specimens Number HMM 16, HMM 18, HMM 20, HMM 22, HMM 23 etc.,
although having lower 510, wt% values for orthoquartzite, are
comparable with orthoquartzite chemistry but with higher Al,0,,
Fe,0, (total) and Ca0 values reflecting their epidote content.
Others are intermediate 1n composition between orthoquartzite and
arkose. This suggests that the premetamorphic precursor to the

Meall Mdr psammitic rocks could be a mixture of quartz arenites,

arkose and subarkose.

Comparison of the average analysis of Meall Mor psammites with
other similar Dalradian rocks is presented i1n Table (6.9b). The

information provided by this table can be summarised as follows:

(1) Comparison with the Middle Dalradian Carn Mairg Quartzite of
Aberfeldy showed that Meall Mor is richer in Al,0,, Fe.0, (total),
Mg0 and Ca0 and slightly poorer in Si0,. Ti0,, MnO, Na,0, K.0 and
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P,0; are about comparable.

(2) The same observations are noticed when comparing with the Lower

Dalradian quartzites, except that Meall Mdr is richer in Na,O.

(3) Comparison with the Upper Dalradian quartzites and greywackes
showed that Meall Mdr average 1s poorer in TiO,, Al,0,, MgO, Na,O
and K,0 and richer in Ca0 compared to the SW-Highland greywackes.
The Fe,0, (total), MnO and P,0s averages are comparable. Compared
with Glen Esk psammite, Meall Mor 1s richer 1n 510, only and poorer

in Al,0,, Na,0, K,0, Mg0 and T10,. Total Fe,0,, MnO, Ca0 and P.0g¢

averages are comparable.,

The variations in Fe,0, (total), MgO, Na,0 and K,0 of the Upper
Erins Quartzite psammites of Meall Mdr 1s represented in a
compositional triangle with the above mentioned rocks (Fig. 6.5).
Meall MOr psammites span the fields of both the ferromagnesian
potassic and the sodic sandstones. However, the average Meall Mor
analysis together with the mean of the Southern Highlands Group
psammites plot within the field of the ferromagnesian potassic
sandstone 1llustrating their Fe and Mg rich nature in comparison
with the potassic Carn Mairg Quartzite and Appin Group Quartzite

which fall within the potassic sandstone field.

The average trace element contents of Meall MOr psammites 1s
presented 1n Table (6.9c). With Cu, Pb, S and Zr as exceptions,
trace element concentrations are lower in the psammites than in
pelites. Meall Mdr average psammite is highly enriched in Cu and S
compared to all other Dalradian quartzites and psammites with higher
In, Pb, Cr, Ce, Sr and Zr compared to the Lower Dalradian quartzites
and higher Ba, Pb, Sr, Zn and Zr compared to the Middle Dalradian
Carn Mairg Quartzite and higher Pb but lower Ni compared with

similar Upper Dalradian rocks.
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Fe,0;+Mg0O

Ferromagnesian
Potassic
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1 Mean for Meall MOr psammites
O Mean for Southern Highland Group grits
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A Mean for Appin Group Quartzite

Fig. 6.5 : The compositional diagram for the Meall Mor
psammites illustrating their ferromagnesian
potassic nature.
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6.4.5 Mineralogical Variations of the Metasedimentary Rocks in

Relation to Increasing Quartz Content

It has been shown 1in Sections (6.4.3 & 6.4.4) that the studied
metasedimentary rocks represent two groups, pelites and psammites,
with some semipelitic rocks whose chemical compositions are compared
to shale, arkose and orthoquartzite. In most studied metamorphosed
arenaceous and argillaceous sedimentary rocks, increasing Niggli si
value 1s accompanied by a systematic mineralogical variation
indicating that metamorphism does not alter their chemical
sedimentary trends. Of these variations are the main negative
correlation between quartz and clay minerals; a positive correlation
between quartz and feldspars; and a negative correlation between
quartz and the clay mineral to feldspar ratio. Construction of a
Pearson correlation matrix between the Niggli Numbers 1s presented
in Table (6.10) and scatter plots of Niggli si against other Niggli
Numbers are presented in Figure (6.6). The correlation results show
that there 1s a positive correlation between s1 and al (0.64); a
negative correlation between si and fm (-0.51); Niggli ti, p, c, k
and alk do not correlate with si; Niggli w, al-alk and al-alf have a
very weak positive correlation (<0.3); Niggli mg has a weak

negative correlation (-0.32).

In summary, assuming that metamorphism of the studied rocks was
1sochemical, there are no systematic mineralogical variations nor
any sedimentary compositional trends with increasing quartz content
of the rocks. The unexpected mineralogical variations, especially
the variation of the clay mineral contents, which 1instead of
decreasing with 1increasing quartz content show either independent
distribution with (s1>400) or weak positive correlation with (si<
400). This together with the absence of any correlation between
trace element concentrations and clay mineral contents (Section
6.4.6 and Fig. 6.7) suggest that bulk chemistry of these rocks and
their present trace element distributions are not controlled by

their sedimentary environment only and that any enrichment or
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depletion in the concentrations might be explained, with other

evidence by a premetamorphic alteration probably during the ore

formation (Section 6.8).

6.4.6 Trace Element Variations 1in Relation to Clay Minerals

Assuming that Niggli al-alk 1s an approximate i1ndex to the clay
mineral content, the distribution of the trace and minor elements in
relation to 1ncreasing clay mineral content is presented in Figure
(6.7) and Pearson correlation coefficients between al-alk and the
trace elements are presented in Table (6.5 b) respectively. None of
the trace elements show a clear correlation with 1increasing clay
mineral contents. Instead, they all have the same pattern of
distribution showing a gradual 1increase with 1increasing Niggli
al-alk values with the maximum values corresponding to
(10<al-alk<25) above which the element concentrations decrease with

increasing clay mineral contents.

Before reaching any conclusion from the above observations, it
1s worth checking the validity of using Niggla al-alk as a clay
mineral 1index for the studied rocks. Al,0, is shared by clay
minerals, micas, chlorite and feldspars; alkalis (Na,0 and K,0) are
largely contained 1in the feldspars. So the actual Al,0, confined to
the sheet minerals 1s the alumina left after allocation to feldspars
(1.e. Niggli al-alk). However, in the studied rocks the so derived
Niggli al-alk could give an underestimated value for the clay
mineral contents. This is due to the fact that petrographic study
in the previous chapter had revealed that potassium is contained in
muscovitic micas and that only trace K-feldspar is recognised. To
overcome this problem, only sodium is allocated to feldspars and
accordingly the alumina present in the Al-bearing minerals except
feldspar wi1ll be represented by Al-(Na) instead of Al-(Na+K). The
new derived parameter 1s termed al-alf and corresponds to all

Al-bearing minerals excluding feldspars.
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The relationships between the element concentrations and the
derived al-alf parameter are presented 1in Figure (6.8). The
information provided by the figure are: no clear correlation 1s
present among all the examined elements; and they all show the same
pattern of distribution similar to their distributions in Figure
(6.7). This suggests that the underestimation of the clay mineral
contents that resulted from applying Niggli al-alk as an 1index of
clay mineral content 1s not the factor that influenced the
distribution of the trace elements neither does it cause the absence

of good correlations of trace elements with clay mineral content.

To summarise, no simple correlation between trace element
variations with i1ncreasing al-alk nor with increasing al-alf exast.
All the examined elements in Figures (6.7 & 6.8) have the same
pattern of distribution and that 1s increase with increasing clay
minerals up to (10<al-alk<25) and (10<al-alf<30). Above this the
element  concentrations decrease with 1ncreasing clay mineral
contents. However, many studies have shown that the bulk chemical
composition of the rock does not change when subjected to
progressive regional metamorphism, except the decrease in H,0, CO.,
Fe,0, Fe0 ratio and probably some volatiles (Shaw 1956, Miyashiro
and Seki 1958, Engel and Engel 1958 & 1962, Vallance 1960, Ronov et
al. 1977 and Winkler 1976). There are also indications of a limited
mobility of trace elements during regional metamorphism (Youth and
Tan 1975, Ronov et al. 1977 and Senior and Leake 1978). Bearing
this 1n mind, the 1information obtained from Figures (6.7 & 6.8)
suggest that the observed trace element variations 1n the studied
rocks must represent their premetamorphic trace element chemistry

and that these variations cannot be related to increasing clay

mineral content. Therefore such variations might be the result of
the assumed hydrothermal alteration that accompained the ore
formation. However, 1n case of Zr, Ti0O. and P,0s, the presence of
detrital phases such as zircon, rutile,ilmenite and apatite might
cause absence of correlation between these traces and the clay

mineral content.
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6.5 THE DISTINCTION BETWEEN EPIDIORITES AND METASEDIMENTARY ROCKS
USING NIGGLI NUMBERS

The host rocks to the copper mineralisation consist of
epirdiorites and metasedimentary rocks. Distinction between the two
groups was very easy and clear for the majority of the specimens
from the rock description and from their mineral assemblages under
the microscope. However in the mine area the sampled boreholes
contain several epidiorites interlayered with metasedimentary rocks
and accordingly specimens taken at the contact between the two rock
types are problematic. Bearing 1in mind that both rock types had
undergone premetamorphic alteration, it was difficult for a few
specimens, especially the highly chloritised and/or epidotised ones
with few amphibole grains per slide, to decide to which rock type

they belonged by using microscopic description only.

Detailed examination of the chemical characteristics of the
metasedimentary rocks was discussed earlier in Section (6.4) and
that of the epidiorites will be discussed in the next section. In
this section an attempt 1s made to identify the rock type of the
"problematic" rocks using distinctive chemical criteria and
distinctive Niggli Numbers. Ni1ggli Numbers are used here as
criteria for this examination because these numbers were calculated
independently of the rock 5102 wt% contents (except si) which
eliminates the effect of S510: mobilisation during metamorphism.
Besides, Niggli Numbers were used successfully to distinguish

Dalradian metamorphosed basic magmatic rocks from the Dalradian

metasedimentary rocks in the Tayvallich Peninsula (Wilson and Leake

1972).

All the examined epidiorites give lower Niggli si (<150), al
(<20), alk (<5) values and higher Niggli ¢ (>40) values compared to
the metasedimentary rocks with Niggli si usually (>150), al (>20),
alk usually (>5) and ¢ (<40) values. Also, the metasedimentary
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on the whole have lower MnO values ranging between 0-0.58 and
averaging 0.14 wt% and higher Ba content ranging between 13-7307 and
averaging 987 compared to the epidiorites with MnO0 ranging between
0.17-1.87 and averaging 1.28 wt% and Ba ranging between 5-60 and
averaging 26 ppm excluding Specimen Numbers HMMI 7, HMMI 27, HMMI 42

and HMMI 49.

On the plot of Niggli si against al (Fig. 6.9a), the
epirdiorites cluster in a narrow field occupying the lower left
corner of the figure while the majority of the metasedimentary rocks

fall 1n a separate field spanning the upper half of the figure.

Also the al against c¢ plot (Fig. 6.9b) separates the two rock

types. However 1in both figures complete separation is not

achieved. The pelitic rocks which represent chlorite and/or mica

schist have low s1 values placing them at the edge of the

metasedimentary field within a third distinct field on the s1

against al plot and these are clearly plotted within the

metasedimentary field on the al against c plot (Fig. 6.9b). The

same holds for the calcareous and epidotised metasedimentary rocks
plotted higher on the al against c plot approaching the
the

which are
epidiorite field but these are clearly separated within

metasedimentary field on the si1 against al plot.

Having established that Niggli si, al and c together with the
Mn0 and Ba contents of the rocks can give fairly good separation of
the epidiorites from the metasedimentary rocks, it 1is now
appropriate to look at the four petrographically indistinguishable
(problematic) rocks after discussing the positions of the chloritic,
epidotised and calcareous rocks on the two plots. The problematic
rocks 1nclude Specimen Numbers HMMI 7, HMMI 27, HMMI 42 and HMMI

49.

On the plot of Niggli si against al the two fields, epidiorites
and metasedimentary rocks, are separated by two lines; si~150 and

al ~ 20. A third field 1s distinct in the figure including sixteen
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samples and the four problematic rocks are among them. However,

Sample Numbers HMM 25, HMMI 10, HMMI 30, HMMI 38, HMMI 39, HMMI 43,
HMMI 56, HMMI 66 and HMMI 69 are petrographically pelites but have

relatively low s1 values for metasedimentary rocks and therefore

plotted at the edge of the metasedimentary field. They have low MnO

below 0.58 and high Ba greater than 300 ppm (Table 6.1a); features

most compatible with the metasedimentary rocks. They also have high

al>20 and low c<40 and therefore plotted clearly within the field of

the metasedimentary rocks on the plot of al against ¢ (Fig. 6.9b).

HMMI 77 1s the only one with al<20 and 1s plotted

Sample Number
al

outside the field of the metasedimentary rocks on the si against
plot. This 1s because 1t represents an epidotised psammitic rock
and 1s plotted within the Ca-bearing metasedimentary rocks on the al
against c plot. Sample Number HMMI 2, although plotted at the edge

field within the third field as a result of its
Also, it

of the epidiorite
relatively high al value 1s petrographically epidiorite.
has high c¢ (>40) and low Ba (23) content (Table 6.2) and 1s plotted
clearly wathin the epidiorite field on the al against c plot. Also,
Sample Number HMM 30 1s petrographically epidiorite with 1low S1i0,

<50 wt%, low Niggli s1 <150 and low Ba values (51 ppm), features

shared with the epidiorites. However, like Specimen HMMI 2, 1its

Niggli al value (20.1) places i1t at the upper edge of the epidiorite
field but wunlike Specimen HMMI 2, its Niggli c value is not high
enough to place 1t within the epidiorite field on the al against ¢
plot and 1instead 1t plots within the metasedimentary field. This is
because Specimen HMM 30 1s weakly-altered epidiorite rock with very

lattle epidote and carbonate and accordingly has a low ¢ value for

an epidiorite, the majority of which are altered rocks. The same

approach can be wused for the problematic petrographically
indistinguishable Specimens, HMMI 27 and HMMI 49, that were plotted
at the upper edge of the epidiorite field on the si against al plot

and within the metasedimentary field on the al against c plot. Both

have few characteristics shared with epidiorites; they

Specimens
other hand

have 510,<50 wt% and Niggli si less than 150. On the
they contain 0.24 & 0.38 wt% MnO and 355 & 316 ppm Ba values
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respectively and give Niggli c values below 40, all characteristics
shared with metasedimentary rocks. Again like Specimen HMM 30,
these might be considered as unaltered epidiorite with relatively
high Niggli al and low c. Their low MnO content probably resulted
from their low- or free-garnet nature and their comparatively high

Ba content 1s accompanied by their relatively high K,O.

Specimen HMMI 42, which was petrographically indistinguishable
has high silica for an epidiorite (59.37 wt% S10,) and high Niggli
s1 value of 210; it has also al>20, c<40, Mn0=0.17 wt% and Ba=251
ppm, all features that classify 1t as a pelitic rock. Its position
near the edge of the metasedimentary rock field on the si against al
plot results from its Niggli si value of 210 but its relatively low

c groups 1t with the metasedimentary rock field on the al against c

plot.

Specimen HMMI 7, which 1s petrographically indistinguishable,
1s also chemically inseparable. It falls within the intermediate
field shared by both the epidiorites and metasedimentary rocks on
the s1 against al plot and within the calcareous group of the
metasedimentary rocks on the al against c plot. It might represent
therefore either Ca-bearing metasedimentary rock or an unaltered
epidiorite. However 1ts low MnO content of 0.34 wt% and high Ba of
363 ppm together with its high Al,0, (17.06 wt%) and H,0 (3.37) rule
out the possibility of it being epidiorite and 1t is therefore

classified as pelite (Table 6.1a).

6.6 THE SIGNIFICANCE OF THE PRESENCE OF AMPHIBOLE, ALBITE AND
CHLORITE RICH METASEDIMENTARY ROCKS

In the previous section 1t was suggested that the highly
chloritic schists represent metamorphosed pelitic rocks of Mg-rich
origin. However, shale with high Mg0 content may be formed as a
result of biotitic and chlorititic detrital input. Also, Mg-rich

shale might result from the presence of 1gneous material either as a
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detrital or as coeval tuffaceous material within the sedimentary

pile.

Both pelitic and psammitic units of the Upper Erins Quartzite
in the studied area contain considerable amounts of albite.
Texturally, the majority of the albite grains are untwinned and
difficult to distinguished from quartz grains. Some of the albite
grains are porphyroblasts, twinned and contain various inclusions
(Section 5.4.2). This suggests that it can be either detrital or
metamorphic i1n origin. However, Na-rich shales might result also
from either precipitation in highly saline seawater or as the result

of coeval tuffaceous material input during sedimentation.

Anyway, the presence of many epidiorite bodies that represent
metamorphosed basic 1gneous rocks within the Upper Erins Quartzite
Formation as a whole and their maximum development within the copper
mineralisation zone in particular support the possibility of the Mg
and Na enrichment being a result of coeval igneous activaty. This

does not rule out the possibility of the existence of some detrital

chloraite, biotite and albite.

The mean T10, content in the studied pelitic unit of the Upper
Erins Quartzite 1s about 0.88 wt% reaching a maximum of 2.5 wt% and
the mean Co:Ni1 ratio of the analysed pyrite 1s 12.5:1. These
figures and the presence of amphibole-bearing metasedimentary rocks
are further evidence to support the possibility of the existence of
coeval tuffaceous material. In support of this is also the good

correlation between Mg0 and N1 in the chloritic schists (Fig. 6.3).

6.7 THE CHEMICAL COMPOSITION OF THE EPIDIORITES

The results of the chemical analyses of sixteen epidiorite
samples are presented 1in Table (6.2). The epidiorites are both
chemically and mineralogically variable. The data presented in

Table (6.4a) demonstrate the great variation in their major oxides
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content. The analysed epidiorites have values ranging between;
38.19-49.92 wt% S10,; 1.82-14.39 wt% Al,0,; 3.08-9.23 wi% MgO;
2.15-8.62 wt% Fe, 0,; 2.34-10.49 wi% FeO; 7.77-21.81 wt% Ca0; 0-3.69
wt% Na,0; 0.08-3.26 wt% Ti0,; 0.17-1.87 wt% MnO; 0.1-0.7 wt% K,0;
0.79-4.22 wt% H,0 and 0.5-11.96 wt% CO,. In addition great
variations 1n their trace element contents also exist. Such
variations cannot be related to variations in magmatic compositions
nor to metamorphic redistribution. This together with the
mineralogical evidence described earlier in Sections (5.3.8 & 5.3.9)

suggests that some of the analysed epidiorite samples, especially

the epidotised ones from the mine area, have been subjected to

premetamorphic hydrothermal alteration either during their intrusion

within the sediments or during the sulphide mineralisation.

Having established the possibility of the existence of

hydrothermal alteration, 1t 1s necessary therefore to investigate

the nature of such alteration in an attempt to relate it to the

mineralisation. The first step is to find the composition of the

premetamorphic 1gneous equivalent of the unaltered rocks and
secondly to estimate the average composition of the altered ones in

order to compare prealteration and altered compositions.

6.7.1 The Average Composition of the Unaltered to Weakly Altered

Epidiorites

Representative analyses of the three unaltered ( or very weakly
altered) epidiorite specimens (HMM 30, HMMI 27 and HMMI 49) are
presented 1n Table (6.2) and their average 1s reported in Table
(6.11a). On the 1niti1al assumption that metamorphism has been
1sochemical except for the introduction of H,0, CO, and some
volatiles, the average composition of these unaltered rocks 1s
recalculated on a volatile-free basis in order that likely

premetamorphic composition of these rocks may be examined and

compared with averages of some common similar igneous rocks from the

literature. Meall Mor average shows a close similarity with
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VAR. / ID. Min. Max. Mean St. Dev.

5i0, 48.93  49.92  49.34 0.51
Ti0, 1.08 3.26 2.06 1.11
AL, 0, 12,12 14,39 13.33 1.14
Fe,0, 3.80 5.38 4.70 0.81
FeO 6.54 9.92 8.23 1.69
Mn0 0.17 0.38 0.26 0.11
Mg0 4.56 7.14 5.84 1.29
Ca0 7.77 8.81 8.39 0.55
Na, 0 1.43 3.69 2.87 1.25
K,0 0.26 0.70 0.55 0.25
P05 0.10 0.39 0.21 0.16
H,0 1.97 3.19 2.47 0.64
co, 0.50 1.06 0.75 0.29
Ba 51 355 240 165
Ce 17 50 28 19
Co 17 41 31 13
Cr 96 240 166 72
Cu 42 273 122 131
Ga 17 20 19 2
La 5 27 15 11
N 42 93 61 18
Pb 2 8 5 3
Rb 6 25 14 10
S 167 2306 1075 1105
Sr 183 325 266 74
Th 0 4 1 2
Y 28 S4 41 13
Zn 103 169 140 34
Zr 120 286 186 88

Table 6.11a : The average chemical composition of the three unaltered to very

weakly altered epidiorites of Meall Mdr.
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Meall Mor

VAR. / ID. (unaltered) 1 2 3 4 5 6
Volatile-free
5i0; 51.51 50.18 49.12 49.90 51.25 49.85 50.86
Ti02 2.15 1.14 2.18 2.98 3.50 2.32 3.09
Al,0, 13.92 15.26 14.48 14.12 13.57 16.90 12.16
Fe,0, 4,91 2.86 1.94 2.92 1.75 1.74 1.91
FeO 8.59 8.05 11.13 11.55 13.72 11.16 13.34
MnO 0.27 0.19 0.23 0.27 0.35 0.30 0.22
MgO0 6.10 6.78 6.47 5.74 3.11 3.93 4.91
Ca0 8.76 9.24 10.82 B8.69 8.10 8.72 8.97
Na,0 3.00 2.56 2.54 2.69 1.94 3.45 2.75
K,0 0.57 1.04 0.41 0.62 1.20 0.31 0.68
P,0s 0.22 0.27 0.28 0.52 0.63 0.27 0.41
H,0 0.00 2.50 0.00 0.00 0.80 1.00 0.00
Cco, 0.00 0.18 0.00 0.00 0.00 0.00 0.00
QZ 0.16 1.40 0.81 2.88 8.52 -_— 2.99
ORC 2.90 6.12 2.46 3.67 8.34 1.67 4.04
AB 31.70 21.63 20.74 22.73 16.24 28.82 23.28
IR 0.02 -
AN 21.47 27.12 24.42 24.59 23.91 30.02 18.86
DIOP 6.36 12.89 20.86 12.52 10.90 10.27 19.37
W0 6.49
HY 18.27 20.93 14.77 22.35 20.72 21.13 21.07
oL 5.93 -—— 6.36 1.54
MT 3.52 4.15 1.72 4.23 2.32 2.55 2.00
ILM 0.89 2.67 4.16 5.66 6.69 4.4) 5.86
AP 0.28 0.63 0.66 1.23 1.34 0.34 0.97

1: typical dolerate composition (Cox et al. 1979), 2: average of seven Dalradian
metadolerites, Perthshire recalculted on volatile-free basis (Graham and Bradbury
1981 , 3: average of 32 Scottish epidiorites (Van de kamp 1970), 4: garnet-biotite-
clinozoisite-albite amphibolite (Wiseman 1934), 5: biotite-epidote-albite amphibolite
(Wiseman 1934), 6: average of three ferrodolerites from the garnet isograd in South

Knapadale (Graham 1976).

Table 6.11b : Comparison of the average chemical analysis of the unaltered to weakly

altered epidiorites of Meall MOr with some averages of similar rocks.
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dolerite except for somewhat lower Si0,, Al,0,, Mg0, Ca0 and K,0 and
higher Fe,0,, Mn0O, T10,, and P,05 (Table 6.11b).

The bulk chemical analyses allow calculation of the normative
mineralogical composition "CIPW" of the analysed epidiorites. This

was done using a computer program and following the precedure
given by (Cox et al. 1979). The analysed epidiorites contain
significant CO, which 1s normally allocated as calcite 1n
calculating CIPW norms and accordingly removing some Ca0 that would
otherwise form normative diopside or anorthite. This 1s because
CaC0, 1s assumed to be additional to the original igneous
composition. For the same reason the iron in pyrite, chalcopyrite
and sphalerite has been subtracted. Also the ratio FeO/Fe,0, has
been arbitrarily adjusted to 10:1, a figure appropriate to dolerite
and basalt composition (Cann 1971 and Graham and Bradbury 1981).

The remaining oxides have been recalculated to 100 wt% total.

The results presented in Table (6.13) give unusual CIPW norms
for the altered epidiorites which will be discussed later in the
next section. However, the CIPW norms results for two of the three
unaltered epidiorites suggest that they were originally close to

pyroxene- hypersthene normative dolerite.

6.7.2 The Average Composition of the Altered Epidiorite

The second distinguished epidiorite group 1s characterised by
low Al,0, ranging between 1.82-5.59 wt% and averaging 3.67 wiX
compared to normal dolerite with up to 15 wt% Al.0, Only nine
specimens that contain less than 6 wt% Al,0, are grouped here as
highly altered epidiorites and as mentioned earlier only three
samples with Al,0, >12 wt% were considered unaltered in the previous
section. The remaining samples contain Al,0, values ranging between

9-11 wi% and are considered to be moderately altered.
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VAR. / ID. Min. Max . Mean (a) St.Dev. Mean (b) 1 2
5i0, 38.19 48.66 44,14 3.23 49.84 41.38 49.00
Ti0, 0.08 0.23 0.14 0.05 0.16 1.79 1.50
Al,0, 1.82 5.59 3.67 1.13 4.14 18.46 15.40
Fe,05 2.15 8.59 4.98 2.16 5.62 7.83 4.10
FeO 4,21 10.49 7.77 1.86 8.77 5.92 6.10
MnO 0.52 1.87 1.41 0.43 1.59 0.19 0.18
Mg0 3.38 9.23 6.48 1.77 7.32 5.15 5.30
Ca0 16.92 21.81 19.42 1.36 21.92 18.03 7.60
Na,0 0.00 1.27 0.38 0.44 0.43 0.57 4.10
K20 0.10 0.15 0.13 0.02 0.15 0.23 1.10
P,0 0.00 0.09 0.04 0.03 0.05 0.00 0.30
H,0 0.79 1.89 1.30 0.35 0.00 0.00 3.20
Co, 0.64 11.96 7.85 4.26 0.00 0.45 2.40
Ba 5.00 34.00 19.00 12.00

Ce 6.00 29.00 15.00 7.00

Co 4.00 31.00 17.00 9.00

Cr 28.00 204.00 63.00 54.00

Cu 658.00 19718.00 5248.00 6605.00

Ga 4.00 11.00 6.00 2.00

La 3.00 20.00 13.00 6.00

Ni 0.00 24.00 14.00 8.00

Pb 0.00 11.00 5.00 4.00

Rb 3.00 7.00 4.00 1.00

S 1573.00 22710.00 9482.00 8198.00

Sr 235.00 567.00 340.00 106.00

Th 0.00 4.00 3.00 1.00

Y 5.00 11.00 8.00 2.00

Zn 127.00 2060.00 458.00 607.00

Ir 0.00 0.00 0.00 0.00

(a) mean for nine altered epidiorites of Meall Mdr.

(b) the above mean recalculated on a volatile-free basis.

1 average of five SW-Highland epidotites (Graham 1976).

2 average of 225 rocks described as spilites (Vallance 1969).

Table 6.12 : Comparison and the average chemical composition of the studied
altered epidiorites.
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Representative 1ndividual analyses of these rocks are given 1n
Table (6.2) and their average major oxide composition is presented
in Table (6.12) while their calculated CIPW norms are summarised in
Table (6.13). It 1s clear from Tables (6.11 a&b and 6.12) that the
major oxide compositions of these rocks are far too different to be
considered as normal metamorphosed dolerite equivalents. Comparison
of major and trace element compositions of these rocks with their
metamorphosed unaltered equivalent (Section 6.7.1) reveal that these
rocks had much lower values of Al,0,, Si0,, Mg0, TiO,, Na,0 and K,O
and higher Mn0O, Ca0, Fe,0, and CO, values.

The results of the calculated CIPW norms for these rocks are
quite different from the common normative dolerite (Table 6.13) and
again suggest that these rocks have suffered alteration before they
were subjected to metamorphism. During this alteration their
composition 1s modified as a result of loss, gain, dilution and
redistraibution of their components. The normative anorthite 1is
remarkably low being between 0-17 compared to the doleritic
normative anorthite of 23-30. This 1is so despite the high Ca0
content of these rocks with a minimum value of 16.92 wt% Ca0 which
1s 1n 1tself twice the average Ca0 content found in typical dolerite
(9.24 wt% Ca0, Table 6.11b). This indicates that the normative
anorthite 1s 1limited by the available alumina which was diluted
during this alteration and not by the available lime. Likewise the
normative albite 1s also very low as a result of low alumina and
alkaly values. Excess free silica or up to 36 CIPW norm is
probably produced from this hydrothermal alteration and was

redeposited i1nto quartz veins.

6.7.3 Relationship with Spilites

Spilite 1s a term used for a group of igneous rocks both
extrusive and intrusive that are characterised chemically by high
soda concentration coupled with variable depletion in CaO. Despite

the controversy between the various studies that have discussed the
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basis of recognition and of genesis of spilites (e.g. Amstutz 1968,
Smith 1968, Cann 1969, Vallance 1969 and Hughes 1972), they all
emphasise the redistribution of chemical components during reaction
with  hydrous fluid probably under hydrothermal or burial
metamorphism. This reaction 1nvolves the replacement of calcic
plagioclase by albite and the fixation of the librated Ca0 as
epidote and/or calcite such that the modal plagioclase remains
essentially constant. Also, Smith (1968) has demonstrated a
chemical, mineralogical and genetic relationship between sodic
spilite and associated epidotites (epidote-rich rocks). Graham
(1976) concluded a spilitic affinity for some of the SW-Highland

metabasites and epidotites of both extrusive and intrusive type.

Chemical analyses of the studied epidiorites show that

nonepidot1sed epidiorites have Ca0 and Na.0 wt%, normative albite

and normative anorthite which are comparable with doleritic
composition with neither Ca0 loss nor Na,0 gain. On the other hand,
the epidotised rocks are enriched with Ca0 and other oxides and

elements and depleted in Al.0,, Na.0, K.0 and other oxides (Section
6.7.2) and associated wih a large loss 1in the amount of the
normative plagioclase (Table 6.13). This together with the high
copper enrichment within these epidiorites and chloratisation,
epidotisation and sericitisation of the associated metasedimentary
rocks suggests that epidotisation of some of the studied epidiorites
might not be the result of spilitic alteration but it might be the
result of the interaction between these rocks (both epidiorites and
metasedimentary) and a hydrothermal fluid generated from a local

hydrothermal cell driven by the intruded sills (see Chapter Eight).

6.8 HYDROTHERMAL ALTERATION

Local epidotisation, carbonation, chloritisation,
sericitisation and to a lesser extent spessartisation that
characterise the host rocks of the Abhainn Srathain copper

mineralisation 1s used here as mineralogical evidence of the
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presence of a premetamorphic hydrothermal alteration. This is

supported by the observed chemical evidence that will be discussed

below.

In case of the epidiorite rocks, the presence of a few
metamorphosed unaltered or very weakly altered rocks in the area,
permits the determination of their original doleritic composition on
one hand and strengthens the possiblity of the presence of the
postulated premetamorphic hydrothermal alteration on the other
hand. In order to give a measure and hence an idea of the behaviour
of the major oxides, trace and base elements during this alteration,
the ratio Al1l,0,/510, 1s considered here as a measure of the degree
of alteration and against this all the elements are plotted (Fig.
6.10) 1n comparison with the typical dolerite composition. The
information provided from the figure suggests that a clear decrease
in Mg0, Ti0,, Na,0, K,0, Cr, Ga, Ni, Rb, Y, and Zr with increasing
degree of alteration exist. CaO, MnO, CO,, Fe,0,, S, Cu and Zn
increase with i1ncreasing degree of alteration. Ba, Co, La, Sr, and
Th have no clear trend but they all show a slight decrease towards
the altered rocks. These obeservations are supported by the visual
comparison of the premetamorphic equivalents of the averages of both

the altered and the unaltered rocks (Table 6.11b and 6.12).

Unlike the epidiorite rocks, separation between altered and
unaltered metasediments 1s very difficult due to variations in the
original  sediments that resulted 1n various lithologies.
Nevertheless, 1t was shown earlier in Sections (6.4.5 and 6.4.6)
through Ni1ggli Numbers that the great chemical and mineralogical
variations of the metasedimentary rocks within the mineralised area
cannot be related to regular changes in the clastic components as
they lack any sedimentary trends nor can they be the result of
metamorphic redistribution because mineralogical and petrographic
study of these rocks in Chapter Five had shown that there has been
no major mobilisation during metamorphism apart from local grain

growth and some silica and carbonate segregation. Besides, many
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studies have shown that metamorphism up to the amphibolite facies 1s
1sochemical apart from H,0, CO0,, oxidation ratio and some
volatiles. Therefore, it 1s suggested that these variations are
premetamorphic and might be the result of 1local hydrothermal
alteration that produced epirdotisation, chloritisation,
sericitisation, carbonation and silicification of these rocks. In

addition to all these 1s the clear premetamorphic alteration of the

associated epidiorites.

Although the B.G.S had reported that epidotisation is
restricted to a zone 250m wide which extends along strike 400m
north-northeast and 1300m south-southwest of the Abhainn Srathain
mine (Section 4.6.3), the si1ze and the shape of the altered zone is
very difficult to ascertain because of the 1lack of outcrops, the
restricted borehole sites and the structural complexity of the mine
area. But 1t 1s quite clear that the highly altered rocks occur in

the 1mmediate vicinity of the copper mineralisation centred on the

epidiorite bodies.

Such hydrothermal alteration could have happened either during
the 1ntrusion of the doleratic sills if intrusion had postdated the
mineralisation or during the mineralisation that might either
postdate the doleritic intrusions or be associated with it. The

latter possibility 1s more likely as will be discussed later in

Chapter Eight.

6.8.1 Element Variations of the Host Rocks in Relation to

Increasing Oxidation Ratio of the Rocks (w)

An attempt is made to study the variations of the major and
trace element concentrations in relation to the oxidation ratio of
the rocks (w), expressed as (2Fe,0,x100/2Fe,0,+Fe0) in moles.
However, assuming that metamorphism is 1sochemical a decrease in the
Fe,0, / FeO ratio during regional metamorphism was reported in many

studies as was mentioned earlier in Section (6.4.6). However, even
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1f this 1s the case, the present variations in the values of the
oxidation ratios of these rocks can still be assumed to be inherited
from their premetamorphic variations. The average oxidation ratio
for the analysed epidiorites is 40.06. This value 1s close to the
normal oxidation ratio of dolerite (Table 6.11b) and therefore 1t is
assumed that this oxidation state 1s inherited and not modified by
metamorphism. The highest MnO, Cu and Co values that might be
expected to be associated with the highly oxidised rocks are present
1n the reduced rock as well (Fig. 6.11). A1, 0 and Mg0 are as
expected highly concentrated in the more reduced rocks. This
suggests that MnO, Co and Cu with other elements were added to these
rocks and therefore support the possibility of the presence of a

premetamorphic hydrothermal alteration.

6.8.2 Chemical Variation of the Host Rock 1n Relation to

Increasing Sulphur Content

It 1s now necessary to relate this postulated premetamorphic
hydrothermal alteration to the presence of the sulphide minerals.
Of course the best way to get such information is by examining
certain chemical trends in cross-sections through the  host rocks
and across the mineralised zone as was demonstrated at Broken Hill
for example (Plimer 1979) and elsewhere. Unfortunately this cannot
be achieved 1in the Abhainn Srathain area because of the limited
number of exposures and boreholes on the one hand and because of the
structural complexity of the area on the other hand. Instead
element variations against 1increasing sulphur content are examined.
The data obtained by constructing Pearson correlation coefficients
of sulphur with each of the major oxides for the metasedimentary
rocks (Table 6.5c) showed that only one value greater than 0.5
exists between S and Fe, 0, (0.6); all the other oxides have very
weak correlations of <0.3. Also S has a very weak correlation with
other trace elements (Table 6.5b). No correlation coefficients
greater than 0.5 exist. The highest positive correlation values
are between S and Cu (0.3); S and Co (0.27); S and Zn (0.26) and S
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and Pb (0.23). Th correlates very weakly and negatively with S

(-0.25) and so does La (-0.23). Similar observations are noticed

correlation coefficients of sulphur with other major

among Pearson
in

and trace elements (Tables 6.6 b&c) and was discussed earlier
Also, Figure (6.12) shows that there 1s no simple

Section (6.3.2).
This is due to the

distinct trends with increasing sulphur content.
of sulphides, garnet, chlorite, epidotes,

All the elements show a slight increase with
up to 0.1 wt% S, above which the highly

sporadic occurrence
calcite and quartz.

increasing sulphur
mineralised rocks show variable concentrations.

6.9 SUMMARY AND CONCLUSIONS

Chemical analyses of the studied Upper Erins Quartzite

Formation that hosts the mineralisation show that
The pelites represent the

it is mainly

composed of pelitic and psammitic units,
metamorphosed equivalent of shale but with higher Fe,0, (total), Mg0
and K,0 values compared to the world

and Na,0 and lower Al,0,
The high Mg0, T10,

average pelite and with other Dalradian pelites.
with the presence of amphibole-bearing

and Na,0 values together
and

pelite, the good correlation between the high Mg0 values and Ni

the mean Co:N1 ratio of 12.5:1 for the analysed pyrite indicate the

presence of coeval tuffaceous material within the sedimentary pile.

On the basis of trace elements, these pelites are highly enriched in

Cup, S and to a lesser extent Ba. The premetamorphic precursor to

the analysed Meall Mdr Psammitic
arenite, arkose and subarkose of ferromagnesian potassic nature.

rocks 1s a mixture of quartz

The analyses of the epidotised and nonepidotised epidiorites

suggest a premetamorphic dolerite composition for the nonepidotised
epirdiorites and infer a premetamorphic alteration for the epidotised
ones.
Na,0, K,0 and other elements and gained Ca0, MnO, Fe,0,, CO,, S, Cu
Their Al,0,-content 1s diluted as a result of the additive

During this alteration these rocks lost MgO0, FeO, Si0,, TiO,,

and Zn.

elements.
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Using Niggli Numbers and some chemical trends it is possible to
distinguish between the studied metamorphosed basic igneous rocks
and the studied metasedimentary rocks. Such criteria might be

invaluable for identifying similar rocks.

There 1is no systematic mineralogical variation with increasing
quartz content nor any correlation between element distribution and
increasing clay minerals content for the metasedimentary rocks.
This with the absence of correlation between MnO, Cu and Co and the
oxidation ratio of these rocks suggest that the bulk chemistry of
these rocks was not controlled by their sedimentary environment only
and therefore enrichment and depletion in their chemistry might have

accompanied the sulphide mineralisation.

It is concluded therefore, that the metasedimentary rocks and
the epidiorites that host the mineralisation have undergone local
premetamorphic alteration during the process of mineralisation.
During this alteration Ca0, Fe.0,, CO0O,, MnO, Cu, S and to less
extent Ba and other elements were added. Al,0, was diluted and
Mg0, FeO0 and some of the alkalis and trace elements are subtracted.
The epidiorites are more altered and epidotised than the associated
metasedimentary rocks with the highest MnO, Ca0O, Fe,0, and CO, being

contained within the epidiorites due to their more reactive nature.
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CHAPTER 7
SULPHUR ISOTOPE STUDY

7.1 INTRODUCTION

Thirty-nine sulphide samples (pyrite and chalcopyrite) from
both the Knapdale Pyrite Horizon in the area and from the Abhainn
Srathain copper mineralisation were analysed for sulphur 1sotope
composition. The analyses were carried out on a 602C mass
spectrometer at the Isotope Geology Unit of the British Geological

Survey in London.

In this chapter I have tried to obtain all of the possible
information on the sulphur 1sotopic composition of the hydrothermal
fluind, which together with previously discussed geological,
mineralogical and geochemical 1information, can contribute to the
understanding of the source of sulphur and metals and of the genesis
of the Meall Mor sulphide mineralisation. Where possible closely
coexisting pyrite and chalcopyrite were sampled to provide evidence
for 1sotopic equilibrium or disequilibrium. Also, this chapter

discusses the behaviour of sulphides on metamorphism.

A brief summary on the significance of sulphur 1sotope
determination and on the sampling techniques used will be given 1n

the next sections before discussing the results.

7.2 THE SIGNIFICANCE OF SULPHUR ISOTOPE DETERMINATION

The princaple and the applications of sulphur isotope study has
been reviewed by Jensen (1967), Rye and Ohmoto (1974), Sangster
(1976), Faure (1977), Coleman (1977), Nielsen (1978 & 1979), Ohmoto
and Rye (1979), Hoefs (1980) and Valley et al. (1986). Sulphur

1sotopes and fluid inclusions studies have been very extensively
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used 1n most recent studies of ore deposits. This is because these
techniques can provide us with all the information that are required
for constructing genetical model for any deposit. This 1information
includes the source of metals and sulphur, the nature and origin of
the transporting fluid and the physiochemical conditions of ore
deposition. Fluid 1nclusion studies in ore and gangue minerals of
some ancient unmetamorphosed deposits, such as Cyprus, Kuroko and
the Irish deposits (Ohmoto and Rye 1974, Spooner and Bray 1977 and
Samson 1983), were used successfully to obtain much of the
information about the ore formation. However, for deposits that are
metamorphosed such as the Dalradian mineralisations, application of
fluid 1nclusion study might be difficult because no feeder system or
stockwork has yet been discovered. Therefore, the sulphur 1sotope
rat1os and variations 1n the 1sotopic composition of sulphide and
sulphate minerals can provide us with much of the information

concerning the ore formation.

Sulphur 1sotope analyses of baryte have the power to
discriminate between certain hypotheses of ore genesis and in this
may be 1important 1n mineral exploration. Baryte has been
successfully used 1n sulphur isotopic studies of the Irish
base-metal deposits and gives sulphur isotopic values the same as
Lower Carboniferous seawater supporting a synsedimentary origin for
these deposits and reveals seawater sulphur as the sulphide source.
Also, more recently Willan and Coleman (1983) 1in studying the
sulphur 1sotopic composition of the Dalradian Mineralisation confirm
the derivation of the Aberfeldy baryte sulphate from contemporaneous

Vendian seawater and support a synsedimentary hydrothermal nature

for the ore deposits.

In the present sulphur i1sotope study no baryte 1s associated
with the mineralisation and therefore sulphur isotopic determination
was carried out on sulphide mineral species only. However, the
source of the sulphide sulphur is more difficult to establish. Many

studies showed that the source of sulphur may be either from
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bacterial reduction of seawater sulphate, from reduced sulphur

carried in hydrothermal solution or mixture of both (Ohmoto and Rye

1979).

7.3 SAMPLING AND ANALYTICAL TECHNIQUES

Thirty-nine sulphide mineral samples representing the three
styles of mineralisation (stratiform, disseminated and
porphyroblasts in cross-cutting veins) were taken from different
lithologies at the Abhainn Srathain copper mineralisation and from
the Knapdale Pyrite Horizon. Most samples were taken from B.G.S.
boreholes 1, 2 and 3 (Figs. 7.3 to 7.5). Nine samples were
collected 1n the field along a track across the strike of the

Knapdale Pyrite Horizon and from the spoil heaps of the old Abhainn
Srathain mine (Fig. 7.2).

For all samples polished sections and /or polished thin
secti1ons were made for petrographic descriptions and their summaries
are presented 1in Table (7.1) and were also included 1n Appendix
(A.5.2). The sulphide minerals were separated by crushing followed
by hand-picking. Only two samples (HMM 7 & 12) were obtained using
a dental drill on polished sections. Each sulphide phase was then
confirmed by powder X-ray diffraction (smear mounts) and an
estimation of the purity was obtained by comparing XRD peaks.

Samples were found to be mostly monomineralic (Table 7.3).

All the 1sotopic analyses were carried out on a modified
Micromass 602C mass spectrometer at the Isotope Geology Unit of the
Institute of Geological Sciences, London. Sulphur dioxide from
sulphides was extracted for analysis by oxidation with cuprous oxide
at 1070°C, using the method described by Robinson and Kusakabe
(1975). The SO, yields were run on a VG Micromass double collector

spectrometer, using SO, extracted from a chalcopyrite standard as a

reference gas.
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The results were corrected for isobaric interference and
instrumental crosstalk following the procedure by Coleman (1980).
Analytical precision was estimated from duplicate analyses to be
about +0.2 per mil. The methods of SO0, extraction, 6345 measurment

and the raw data corrections are summarised in Appendix (A.7.1).

All data are reported in del per mil difference relative to the

Canon Diablo troilite (C.D.T.) standard.

34 32
34 5/ Ssample
§7°S =[ - 1] x 1000
sample 34 39
S/°°s standard
Where the >%5A2s = 0.0450045 (Jensen and Nakai 1963).
standard

The difference in &%S between two coexisting phases (pyrite
and chalcopyrite) is approximated and expressed as :

34 34 34 .
yA

& Schppy™  Schp~ Spy
7.4 RESULTS

All isotopic compositions of the thirty-nine mineral separates,
both pyrite (n=31) and chalcopyrite (n=8) together with the
description of the analysed samples are presented in Table (7.1) and
plotted in Figure (7.1). They show a range of + 4.4 to + 12.8 per
mil with a mean of +7.4 per mil. The distribution of these results
is unimodal ( o = +1.67), with a slight skew to heavier values.
Most samples are falling in the range + 6 to +9 per mil (n = 29).
Excluding four isotopically light values (4 - 6 %) and six heavy
values (9- 13 %), the mean &4 S (n = 29) value is 7.2 ( o = 0.77).

The mean isotopic value for pyrite (n=31) 1s +7.6 % (0=1.71)

and for chalcopyrite (n=8) 1s +6.4 % (0=1.05). Excluding eight

samples falling out of the range +6 to +9%, the mean (n=23) is +7.2
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Fig. 7.1 : The distribution of the sulphur isotope data of the
sulphides from both the Abhainn Srathain copper min-
eralisation, Meall Mor and from the Knapdale Pyrite

Horizon.
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per m], 0 = 0.81.

Five sulphide mineral samples taken from the Abhainn Srathain
copper mineralisation and through the Knapdale Pyrite Horizon
including both pyrite (n=3) and chalcopyrite (n=2) were analysed by
Willan and Coleman (1983) and give similar isotopic results. Four
of the five analyses have 6345 values ranges between 4.2-9.2 3,
falling within the observed values in this study, Only one
analysis of pyrite hasavery low value of 1.3 %. Description and
results of these five analyses are also included in Table (7.1) and

plotted in Figure (7.1).

7.4.1 Variation of & 34S along the Knapdale Pyrite Horizon

Figure (7.2) shows the distribution and the variation of §34s
sulphide within the Knapdale Pyrite Horizon presented by samples
taken from the few outcrops through the horizon. It appears from

the data that the variations in the 5345 pyrite values along the
mineralised horizon are similar to the variation of &S pyrite at

the Abhainn Strathain copper mineralisation and that 8345

becomes heavier to the north of the Abhainn Srathain site.

pyrite

7.4.2 Variation of 6345 with Depth

It is extremely difficult to determine which is the way up in
the sampled B.G.S. boreholes. This will need detailed surface
mapping and more drilling to unravel the structure. As a tentative
guess to the structure, Willan (1983) suggested that the sequence is
inverted in places and that each borehole is younging downward (see
Figs. 5.2 A&B). However, it is still worth checking the variation
in the sulphur isotopic ratio in these boreholes vertically no

matter which way up they are.

Figure (7.3) shows the variation of S“‘s . in borehole 1
pyrite

in which only the upper part of the section was available for
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sampling. An increase in 575 pyrite upwards is evident. The same
relation is obtained for borehole 2 (Fig. 7.4) while in borehole 3
(Fig. 7.5) the lower part of the section shows a nearly constant

34
875 pyrite
information from these figures (Figs. 7.3 to 7.5) shows that no

value with variable values in the upper part. Also,

clear relationship of 6345 to copper content is present, but

pyrite
it is worth pointing out that in some parts of the sections, the

s pyrite Decomes heavier with increase in copper content.

7.4.3 Variation of & >5 with Lithology

The variation of 8°*S ;e with lithology is tested using
both surface samples and samples taken from B.G.S. boreholes 1, 2
and 3. No consistent variation in 634 S pyrite %as observed in
different lithologies (Fig. 7.6). The distribution of §°%S oyrite
in both epidiorites and metasediments (quartzites,
micaceous-quartzites and schists) 1s unimodal with nearly the same
mean, The same pattern is also noticed for the 63a5

(Fig. 7.7).

chalcopyrite

s o . s . 34
No significant variation in 6 'S sulphide €an be seen between

disseminated, stratiform or vein mineralisation.
7.5 DISCUSSION

34
7.5.1 The § 7S variations in Metamorphosed Deposits and Isotopic

Geothermometry

Detailed studies on metamorphosed stratiform deposits (Lusk
1972, Mauger 1972, Rye and Ohmoto 1974 and Willan and Coleman 1981 &
1983) led to the conclusion that during metamorphism up to
amphibolite facies large scale premetamorphic 6345 variations are
generally preserved while small scale sulphur isotopic changes are
in many cases superimposed upon the original distributions. Lusk

and Crocket (1969) pointed out that isotopic reequilibration usually
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Fig. 7.6 : Summary of the variation of 85, .\
and its mean in different lithologies.
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Fig. 7.7 : Summary of the variation of &S of chalco-
pyrite in different lithologies.
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was not complete at metamorphic conditions below upper amphibolite
facies unless there was a change in mineralogy. Recently Willan and
Coleman (1981 & 1983) presented the first sulphur isotopic data from
the Dalradian mineralization, and they concluded that
sulphur-bearing minerals have not reequilibrated over a distance of
~1cm during greenschist to lower amphibolite facies metamorphism
and therefore, variations in the 6345 must be due to variation at
source and/or variation of the kinetic and equilibrium processes

operating during ore formation.

Sakai (1968), Gavelin et al. (1960), friedlich et al. (1964)
and Yamamoto (1967) reported that in many polymetallic deposits a
reqgular trend of isotopic fractionation exists among coexisting

sulphide minerals and the order of enrichment in s ys is :
Pyrite > Sphalerite > Chalcopyrite > Galena

Fractionation factors, 6345 for different mineral pairs have
been calibrated as geothermometers (Smith et al. 1978, Friedman and
0'Neil 1977). Figure (7.8) and Table (7.2) are taken from Ohmoto
and Rye (1979), showing the best experimental fractionation factors

and the theoretical equations between sulphur compounds relative to

H,S.

The measured isotopic fractionation data of eight pairs of
coexisiting pyrite and chalcopyrite from the mineralised area are
given in Table (7.3) together with the corresponding temperatures
calculated using experimentally derived equations (Table 7.2) dgiven
by Ohmoto and Rye (1979). These authors show that the sensitivity
of the pyrite-chalcopyrite pair, caused from a typical analytical
uncertainty of + 0.2 for thea s value is 40°C (Table 7.2). It is
imperative to examine mineral pairs for impurities since apparent
disequilibrium relationships may be due to impure separates, for
example a sphalerite-galena pair formed in equilibrium at 145°C

34
(87°524.0 %) would show an apparent 8 34S value of 2.9 and hence an
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Uncertainties®

Equation
Mineral Pair (T in Kelvin; A = §*'Ss — 6*Sp) 1 2
.85 x 10°
Sulfates-chalcopyrite T = 285 X100 T3 (T >400°C)  +28° + 5
(axl
2.30 x 10°
= S0° + +
T 3-6205)¢ (T < 350°C) 10 +5
2.76 x 10°
. : - ° + 983 + 53
Sulfates-pyrite T T (T >400°C) £25 5
2.16 x 10°
= ° + +
T B-6205)° (T < 350°C) 10 £S5
.01 + 0.04) X 10°
Pyrite-galena Tr= 1.0t 2,014) 10 *25 +20
.85 + 0. X 103
Sphalerite (pyrrhotite) T = 0.8 -(\)l023 1 x 10 +20 *25
-galena
.67 + 0.04) X 10°
Pyrite-chalcopyrite T= 0.6 3,0:) 10 *35 +40
.55 + 0.04) x 10°
Pyrite-pyrrhotite T= (0.55 + 0.04) X 10 +40 +55

12
(sphalerite) 3

*1 = uncertainty in the calculated temperature due to the uncertainty in the equation
(at T = 300°C); 2 = uncentainty in the calculated temperature due to the analytical
uncertainty of * .2°0 for A values tat T = 300°C): 3 uncertainties in the

calculated temperature at T = 450°C.

Table 7.2 : A summary of the best equations relating
§%s and temperature for sulphur-bearing
mineral pairs (from Ohmoto and Rye 1979).
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Fig. 7.8 : Equilabrium 1sotopic fractionation factors among
sulphur compounds relative to H,S. Solid lines—
experimentally determined. Dashed lines--extra-
polated or theoretically calculated. The figure
18 taken from Ohmoto and Rye 1979.
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apparent temperature of 21518, if each of the mineral separates
contained 10 vol % of the other mineral phase (Ohmoto and Rye
1979). 0On the other hand Coomer and Robinson (1976) reported that
the presence of calcite in the mineral separates gave no significant
variation in 8>S value. For example 100 % pyrite gives a §°S
value of -33.8 + 0.9 per mil, while a mixture of 50 % pyrite and 50%
of calcite by volume gives a 5 %% value of -33.5 + 0.8 per mil. The
above two examples indicate that the A:u% of the eight mineral pairs
of this study which may contain up to 1% sulphide impurities and 2%
calcite impurity are not affected to the extent of being incorrect

because of impurities.

A34
The S py-chp

variation from -0.8 to +5.1 %, . This variation may be due to

for eight mineral pairs show considerable

differences in temperature of formation or may reflect
disequilibrium conditions. Most of the isotopic fractionation data
for the analysed pyrite-chalcopyrite pairs indicate either
fractionation factors deviating from isotopic equilibrium (negative
a 3%) (e.g. Samples HMM 12 & HMMI 92 or isotopic temperatures which
seem to have no geological meaning. Very high temperatures are
calculated for Samples HMM 60, HMMI 39 and HMMI 1 (11140C, 580°C and
1025 C respectively) while very low temperature is calculated for
Sample HMM 63 (25°C). Samples HMM 7 & HMMI 69 give apparent
temperatures 146.& 240°C respectively which are very low for the
estimated (410 - 530°C) temperatures of garnet amphibolite facies
metamorphism in the SW-Highlands (Graham 1985). However, although
the pyrite-chalcopyrite pairs are the less reliable pair among the
sulphides (Ohmoto and Rye 1979), studies on the sulphur isotopic
fractionation between coexisting pyrite and chalcopyrite minerals
for Kuroko deposits in Japan by Kajiwara and Date (1971) gave a

34 R
uniform distribution with 4 7S values ranging from + 1.3 to + 1.6

per mil and this in turn gave reasonable isotope temperatures
ranging between ZSd to 300°C implying the possibility of using the
coexisting pyrite-chalcopyrite pair as a good reliable

geothermometer. Nevertheless, sulphur  isotopic fractionation
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studies between pyrite and chalcopyrite 1n regionally metamorphosed
deposits (e.g. Runnells 1969, Lusk and Crocket 1969, Bachinski 1977,
Ripley and Ohmoto 1977 and Yamamoto et al. 1983) showed that there

1s no normal fractionation between most mineral pairs 1n such

deposats.

Therefore, the 1isotopic fractionation data between the eight
pyrite- chalcopyrite pairs of Meall Mor (-0.8 to +5.1%) and the
accordingly calculated apparent temperatures (25 to 1,114°C) suggest
that they were not deposited i1n isotopic equilibrium nor were they
reequillibrated during greenschist to lower amphibolite facies
metamorphism. The 1latter suggestion 1s 1in keeping with other
1sotopic evidence on the lack of reequilibration for other Dalradian
mineralisations at Aberfeldy (Willan and Coleman 1983 and Fisk 1986)
and at Auchtertyre Fisk 1986 and Scott 1987). Although Moles (1983
& 1985 arqued for equilibration during metamorphism of the

Aberfeldy deposit on the basis of both 1sotopic and silicate

equilibrium evidence.

Abnormal sulphur 1sotopic temperatures can be obtained if
chal opyrite and pyrite are naot contemporaneous (Ohmoto and Rye
1979 . This 1s because pyrite tends to precipitate over a much
longer period of the paragenesis than chalcopyrite allowing less
chance for the minerals to precipitate under identical conditions.
On the other hand, the sulphur 1isotopic composition of the fluid and

the temperature may not be wuniform enough to give wuseful

temperatures.

Accordingly, the present 1sotopic fractionation data of the
Meall Mor pyrite-chalcopyrite pairs 1s regarded as the original
depositional values. These original variations amply a
disequilibrium condition during sulphide precipitation. Pyrite and
chalcopyrite do not necessarily reach isotopic equilibrium under
normal hydrothermal conditions Ohmoto and Rye 1979 because
formation of pyrite and chalcopyrite from iron and copper complexes
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in the solution 1nvolve redox reaction that requires both H,5 and

S0Z according o the following reactions (taken from Ohmoto and Rye

1979):
4Fe® + TH,S + SO ———> 4FeS, + 4H,0 + 6H"

8Cu’+ BFe® + 15H,S + S0 ——————5 BCuFeS,+ 4H,0 + 22H’

Pyrite and chalcopyrite formed in suchadisequilibrium system may

inherit the 834S values of H,S and SO. in such manner as:

$ 345 py = 7 8 8345 H.S+ 1/8 3345 sqQz2”
d 345 chp = 15/16 5345_“5-!- 1/16 §34S so0z”

7.5.2 Variation of &8 3455,1phide @nd the Source of Sulphur

It 1s i1mpossible to elucidate the source of the sulphur from
the 1sotopic data alone since sulphides of the same genesis may
exhibit different & 3% distribution and those of different genesis
may have similar § 345 values and show similar & 34 distributions.
The sulphide sulphur i1n many base metal deposits is thought to have
a dual origin, being carried as reduced sulphur in the mineralising
solutions and mixed sulphide formed by reduction of seawater
sulphate Ohmoto and Rye 1979 and Brock 1980). Reduced sulphur
could originate by bacterial sulphate reduction at low temperature
with large fractionation; or from sulphide contained in the
sedimentary pile; and or sulphate reduced to H,S by abiological
reaction with organic matter equation (1), Dhannoun and Fyfe 1972,
Toland 1960 and Kiyosu 1980) or ferrous iron (equation (2), Hajash
1975, M ttl et al. 1979 and Seyfried and Dibble 1980) at

temperatures greater than 250°C.

2 CH,0 + S0} ——— 2C0, +2H,0 + S* 1)
BFe™ + 8H + SO —————> BFe® + 4H,0 + S™ (2)

Thas lalter process would lead to H,S with an isotopic

c mposition of up to 25 % lower than the original $345 of the
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sulphate depending on temperature (Ohmoto et al. 1976 and Ohmoto and
Rye 1979).

The present study shows that sulphur 1sotope compositions of

pyrite and chalcopyrite from the studied area 1s 1in the range +4.43
to +12.76 per ml (Fig. 7.1). [Isotopic composition of Late
Precambrian-Lower Cambrian seawater sulphate (Fig. 7.9) measured
from evaporitic sequences i1n Siberia, Australia and North America
ranges from +24 to +35 per mil with a mean of +30 per mil (Claypool
et al. 1980). An 1sotopic composition of +355 has been suggested
for the Dalradian seawater 1n restricted basins such as 1n Aberfeldy
by Willan and Coleman (1983). Assuming the same value of 35% for
Meall Mor, this leads to at:BAst _sg from 22.2 {to 30.6 for the

present samples Fig. 7.10).

Simi1lar 1sotopic compositions were reported by Willan and
Coleman 1981 & 1983 for sulphides from some Dalradian stratiform
mineralisations and from Auchtertyre mineralisation with average of
+6.3 and +7.2 per m1l resulting 1n average ABASS, _ssvalues of 28.7
and 27.8 per ml respectively. The source of sulphur 1in these
deposits was considered to be a bacteriogenically reduced seawater
sulphate. Accordingly, the 1sotopic composition of the Meall Mor
sulphides might suggest a bacterial reduction of seawater sulphate
as a source for the sulphur 1in the sulphides. However Rye and
Ohmoto 1974 pointed out that a deposit cannot be proven to be
bacteriogenic 1n origin on the basis of the range or statistical
distribution of 5% values alone. Caution 1s required because some
deposits previously considered bacteriogenic on this basis have been
shown, on reexamination with careful attention to geological and
geochemical details to have resulted from 1inorganic processes.
Bearing this 1n mind, the consistent 6345 of the present analysed
sulphides, their narrow range of variation with the majority (n=29)
having 5% ranging from 6 to 9 per mal and the lack of 1sotopic
equilibrium between the pyrite and chalcopyrite suggest that the
sulphur in the sulphides was not produced by bacterial reduction of
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(0)
(E)

(F)
(G)
(H)

0 *10

A34s

Bacteriogenic sulphide precipitated in an environment open to influxes of sulphate
and removal of sulphide, in which the rate of reduction of sulphate is slow, e.g.
deep water euxinic enviroments and some shallow water enviroments.

Bacteriogenic sulphide and residual seawater sulphate in an enviroment closed to
influxes of fresh sulphate, e.g. enclosed marine basins and lagoons and beneath

basal brine layers or the sediment/water interface.

As for (B), except closed to the removal of sulphide. .
H,S derived from the thermal decomposition of organic compounds above 50 C.

H,S derived from seawater sulphate reduced by reaction with carbonaceous material

above 250 C (Kiyosu 1980). ]
H,S derived from seawater sulphate by reaction with ferrous minerals above 250 C.

The isotopic spread in volcanic-hosted deposits.
The isotopic spread in sediment-hosted deposits (Sasaki and Kajiwara 1971).

The 5 345 distribution of Meall Mor sulphide (MM) in the
Dalradian plotted as A 3% belween seawater and sulphide,
compared with 434S values of sulphide and sulphate when
sulphate 1s reduced by various mechanisms tg sulphide
from Ohmoto and Rye 1979). Baryte (hollow dastribution)
and sulphide (solid distribution). SW=parental-.sea-water
sulphate. The arrows 1ndicate the trends with time.

Fig. 7.10 :
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the seawater sulphate. Therefore, 1n this section an attempt 1s
made to elucidate carefully the possible source for the sulphide
sulphur after considering the previously discussed geological,

textural, mineralogical and geochemical evidence.

The presence of local premetamorphic hydrothermal alteration
expressed by the local development of epidote, spessartine garnet
and cross-cutting quartz and/or calcite veins bearing sulphide
porphyroblasts, together with the unimodal distribution of Meall Mor
6>%s sulphides (F1g. 7.1), the similarity of the distribution and
mean values of both pyrite and chalcopyrite, the very low variance
0=1.67 , the lack of 1sotopic equilibrium between pyrite and
chalcopyrite and the similarity of disseminated, vein and stratiform
sulphides suggest that sulphur carried 1in hydrothermal fluaid
together with Cu, Mn, Fe, CO,, Ca, Au and Ag 1s the main source for
the Meall Mor sulphides. Oxygen 1sotope analyses of two quartzitic
samples from Meall Mor yielded values of around 8%. suggesting a

mixture of detrital and hydrothermal components (Fisk 1986).

Sulphur carried 1in hydrothermal fluid could originate from
sulphur leached from sulphides contained within the sedimentary
pile, ulphur leached from the epidiorite rocks, 1inorganic reduction
of seawater sulphate or a combination of these. The obtained
1sol pic comp sit1 ns of Meall MOr sulphides with 6)AS values
ranging from +4.4 to 12.8 per mil suggest that sulphur leached from
epid1r rites 1s not the only source and that sulpbur from seawater
sulphate 1s also i1n orporated into the formation of Lhe sulphides.
But the la k of 1 ol pic equilibrium between the analysed pyrite and
chalcopyrite could possibly reflect a disequilibrium condition
between H,S and SO, carried by the hydrothermal fluid (see Sakai et
al. 1980 . Accordingly 1t 1s very difficult to quantify the
relative contribution of sulphur from the basalt and that from
seawater sulphate. The evidence for the presence of sulphur as SOA
or H,S 1in the hydrothermal fluid 1s difficult to resolve. It was
concluded earlier on the basis of mineralogical and geochemical
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evidence that the hydrothermal fluid 1s capable of carrying sulphur

together with Cu, Mn, Ca, S10,, CQ,, Fe, Co, N1, Ag and Au.

The geochemical conditions of the hydrothermal fluid
responsible for this hydrothermal alteration and ore mineralisation
1s not well understood at this stage due to the lack of sufficient
1sotopic data. Information concerning the chemistry of the trapped
flurd might be obtained later from the results of fluid inclusion
work on calcite and quartz bearing sulphide veins from the Abhainn
Srathain copper mineralisation. Therefore delineation of the
chemical parameters of the hydrothermal fluid at this stage 1s
considerably difficult. However 1t still possible to suggest
approximate limits on some of the chemical parameters, such as
temperature, oxygen fugacity, sulphur fugacity and pH for the
mineralising fluid, based on published equilibrium thermodynamic

data and on mineral assemblages present in the area.

Styrt et al. 1981) have shown that deposits with copper are
associated with solutions existing at temperatures close to 350'C on
the East Pacific Rase. This association i1s 1n keeping with the
experimental data of Crerar and Barnes (1976) who found a rapid
decrease 1n the solubility of chalcopyrite i1n NaCl solutions between
350 and 250°C. Assuming a temperature between 250°C and 350°C for
the Meall Mdr fluid and applying the calculated equilibraum
thermodynamic data presented by Hayba et al. (1985, Figs. 7.18 &
7.19 for the Summitville ores, the pH of the hydrothermal fluid
might be between 4.5 & 6 based on the occurrence of muscovite rather
than K-feldspar. Also the presence of pyrite as the major
iron-bearing species with chalcopyrite, magnetite and hematite set
the 1limits of Log aS, and Log a0, at between -10 to -11 and -33 to
-35 respectively. Under these conditions, sulphur carried 1in the

hydrothermal fluid 1s in the form of H,S and S0, .
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From the above discussion 1t can be assumed that i1norganically
reduced Dalradian seawater sulphate together with some sulphur from
the enclosed basaltic rocks 1s the source of sulphur for the
sulphides. This 1s 1n contrast with the stratiform nature of the
mineralisation 1n which part of the reduced sulphur is expected to
be bacteriogenically reduced Dalradian seawater sulphate. However
the 5°%S for the analysed pyrite sampled through the Knapdale Pyrite
Horizon has values close to 8°%S of the analysed sulphides at the
site of the Abhainn Srathain copper mineralisation suggesting that
the local sulphur values for the sulphides by bacteriogenic
reduction has an average of +7% on one hand and making 1t difficult

to differentiate between bacteriogenic and hydrothermal sulphides on

the other hand.

7.6 SUMMARY AND CONCLUSION

The 6?45 values of the analysed sulphides are very consistent
ranging between +4.4 and 12.8 per mil and averaging around +7.4 per
ml 0=1.67 . The majority of the analyses (n=29) have 45 ranging
between +6 and +9 and averaging +7.2 per ml (0=0.77). The mean
1 t pic value for pyrite 1s +7.6 per ml (o = 1.71) and for
chalc pyrite 1s +6.4 per m1l 0=1.05 .

The unimodal distribution of the sulphur 1sotope ratios, their
narr w range of variation, their consistent values regardless of
p sit1 n, depth, lithology and style of mineralisation, the lack of
equilibrium between pyrite and chalcopyrite are all evidence
ind1 ating that sulphides originating by bacterial reduction 1s a
le s likely mechanism and suggesting that a single source of sulphur
was a tive 1n the formation of the different styles of
mineralisation. Sulphur carried 1in hydrothermal solution with Cu,
Mn, Fe, CO,, Ca, Ag and Au 1s the source of sulphur for the
sulphide. This 1s supported by the presence of local premetamorphic
hydr thermal alteration of the host rocks. The sulphur carried 1in
the hydrothermal fluid i1s a mixture of 1norganically reduced
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Dalradian seawater sulphate and sulphur leached from the enclosed

basaltic rocks.

Testing the applicability of the isotopic geothermometry of the
pyrite-chalcopyrite pair, indicate disequilibrium situations in this
deposit which underwent upper greenschist to lower amphibolite
facies metamorphism. This supports the view that no equilibration
has occurred during metamorphism and that original values are
preserved through metamorphism. This lack of equilibrium also means
that no major remobilisation of the disseminated sulphides by late
metamorphic fluids and redeposition in cross-cutting veins as

proposed by Smith et al. (1978) has taken place.
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CHAPTER 8
A MODEL FOR THE MEALL MOR COPPER MINERALISATION

8.1 INTRODUCTION

In this concluding chapter, an attempt is made to construct a
possible geometrical model for the Abhainn  Srathain copper
mineralisation based on evidence from the published information on
the geologic setting summarised in Chapter 3, characteristics of the
mineralisation 1in relation to the other stratiform Dalradian
Chapters 2 and 4 and on the present

1sotopic studies of this thesis

mineralisation summarised 1n

mineralogical, geochemical and
discussed 1n Chapters 5, 6 and 7 respectively. The evidence form

Sections 8.2 to 8.6, while Section 8.7 describes a geometrical model

of the events that led to the formation of the Abhainn Srathain

copper mineralisation. Some suggestions for more research i1n the

area constitute Section 8.8 of this chapter.

8.2 CONCLUSIONS REGARDING THE EVOLUTION OF THE DALRADIAN BASIN
PARTICULARLY IN THE STUDIED AREA

The Dalradian Supergroup was deposited in a basin undergoing
subsidence as a result of lithosphere stretching. During the late
Riphean, gentle subsidence to the south resulted in the deposition
of the Grampian and Appin Groups consisting of thin sands, muds and
stromatolitic limestones and dolomites which accumulated 1n shallow
water tidal flats and intra-cratonic shelves. This was followed
during early Vendian time by an increase in instability resulting 1n
the formation of major syndepositional faulting characterising the
time of deposition of the Argyll Group. By mid-Vendian time (during
the deposition of the Easdale and Crinan Grits Subgroups), the
Dalradian terrain underwent major rifting and was broken 1into a
series of fault-bounded marginal shelves depositing shallow water
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evaporitic sediments and deep second-order basins depositing thick
sedimentary sequences of arenites and subarkoses. This was also
accompanied by pretectonic 1gneous activity, especially 1in the
Islay-Loch Awe area, expressed by progressive sill intrusions from
bottom to top. Each si1ll was injected at a shallower depth 1into
soft sediments, a process similar to the present day Gulf of
California. Further increase i1n the crustal tension led by the end

of the Precambrian or early 1in the Cambrian (~600 Ma) to the

extrusion of the tholeiitic Tayvallich Volcanics.

During the Argyll Group depositional time, several subsidence
episodes took place as a result of increasing extension and thinning
of the basement marked by several sedimentary turning points. This
was highly extensive during the Easdale and Crinan Grits Subgroups,
and 1n places was accompanied by hydrothermal activity as a result
of high geothermal gradient caused by 1increasing extension and

thinning of the basement permitting percolation of Dalradian

seawater down 1nto the hot sedimentary pile.

8.3 CONCLUSIONS REGARDING THE FIELD CHARACTERISTICS OF THE
MINERALISATION AND ITS AGE IN RELATION TO OTHER STRATIFORM
DALRADIAN MINERALISATIONS

The Meall Mor copper mineralisation forms one of several
mineralised localities within the Dalradian Supergroup of the
Grampian Highlands of Scotland. It 1s contained within a 2zone of
weak pyritic enrichment consisting mainly of orthoquartzites and
quartz-mica schists of the Upper Erins Quartzite. A zone of weak
stratiform pyrite enrichment, traceable for about 190km from
Knapdale to Glenshee through the Ben Lawers and the equivalent
formation ( Ardrishaig phyllite and the ?Upper Erins Quartzite) was
delineated by B.G.S. workers and implies that the Perthshire Pyrite
Horizon and the Knapdale Pyrite horizon are of the same age.
However, lithostratigraphic correlations described earlaer in

Section (3.3.1) correlate the Lower Erins Quartzite to the
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Ardrishaig Phyllite; the Stronchullin Phyllite to the St.
Catherine's Graphitic Schist and the Upper Erins Quartzite to the
Crinan Grits, suggesting that the Knapdale Pyrite Horizon 1s a
younger development of pyritic enrichment rather than an
along-strike extension of the Perthshire Pyrite Horizon. Whatever
the stratigraphic position 1s, the weak pyritic enrichment of the
Knapdale Pyrite Horizon 1s the result of weak exhalative activity
accompanying the deposition of the Upper Erins Quartzite Formation
probably at about the time of the major sedimentary turning point
from the calcareous muds of the Ardrishaig Phyllite and 1its
equivalent Lower Erins Quartzite to the pebbly feldspathic sands of

the Crinan Grits and the laterally equivalent the Upper Erins

Quartzite.

Throughout the Knapdale Pyrite Horizon, pyrite occurs 1in fine
disseminated grains and in trails parallel to the bedding and early
schistosity with small quantities of chalcopyrite and sphalerite
distributed sporadically. It also occurs in stratiform laminations
and 1n stratiform blebs and trails. In places the quartzitic rocks
contain alternating thin pyrite and sphalerite laminations

indicating the stratiform exhalative nature of this horizon.

In the area between Meall Mor summit and the Abhainn Srathain
reqion and still within the Knapdale Pyrite Horizon, the amount of
chalcopyrite together with pyrite increases towards the south with
the maxamum development being around the area where several
epirdioritic bodies exist near the site of the old mine workings and
where the host rocks, both epidiorites and metasediments, are being
epirdotised and carbonated. The sulphides, both pyrite and
chalcopyrite, show contrasting styles of mineralisation. They occur
as fine disseminations, stratiform layers and laminations and as
large porphyroblasts up to S5cm across in quartz and/or calcite veins

that are either parallel to the compositional layering or

cross-cutting it.
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8.4 CONCLUSIONS REGARDING THE TEXTURES, MINERAL ASSEMBLAGES AND
MINERAL CHEMISTRY OF BOTH THE ORE MINERALS AND THE HOST ROCKS

The occurrence of weak disseminated pyrite enrichment with
small amounts of chalcopyrite and sphalerite in the quartzitic rocks
of the Upper Erins Quartzite with 1local stratiform sulphides in
alternating laminations classify, with no doubt, the Knapdale Pyrite
Horizon as of syngenetic exhalative nature. On the other hand, the
Abhainn Srathain copper mineralisation displays complex microscopic
textures implying a bimodality 1in their interpretation which at the
outset, make the mineralisation look epigenetic but also provide

evidence of originally syngenetic deposition.

The Abhain Srathain copper mineralisation has some textural
characteristics considered to be syngenetic implying that the
mineralisation and the Knapdale Pyrite Horizon formed as a result of
the same hydrothermal activity. The most important of these, 1s the
stratiform thin layers or laminations that are parallel to the
compositional layering in both the epidiorites and the metasediments

quartzites and schists). Although 1in the schistose host rocks 1t
1s difficult to ascertain whether such textures are pramary
sedimentary features, the presence of deformed (folded) sulphide
laminations 1n quartzitic rocks demonstrates their premetamorphic
nature. On the other bhand, the presence of 1large sulphide
porphyroblasts in  cross-cutting veins together with the
epadotisation and carbonation of the host rock were considered by
some workers as evidence for epigenetic origin of the cross-cutting
copper mineralisation and were interpreted to be formed as a result
of mobilisation either during regional metamorphism (Smath et al.
1978) or during sill intrusions (Willan 1983). However, the
presence of discontinuous stratiform chalcopyrite layers and
laminations within the epidiorites themselves, together with the
alternating banded nature of the epidotised and nonepidotised
epirdiorites, which 1locally show very fine alternating contrast
laminations, suggest that sill intrusion very shortly predated the
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cross-cutting copper mineralisation. Also, the strongly developed

fabrics expressed by recrystallisation, deformation and

metamorphic
assemblages

local mobilisation of the ore minerals and the host
together with the presence of a few deformed quartz and/or calcite

veins 1ndicate with a greater degree of confidence that the

cross-cutting copper mineralisation predated the metamorphism.

Variable chemical compositions of the analysed minerals within

one microscopic section exist, suggesting that equilibrium during

metamorphism was not attained on the scale of microscopic section

and therefore there 1s less chance that major mobilisation had

occurred.

The presence of Mn-rich garnets preferentially within the site
of cross-cutting mineralisation and to a lesser extent Mn-bearing
gold-bearing pyrite and silver-bearing

1lmenite and chlorite,
Au, and Ag were present 1n the

covellite 1ndicate that Mn,
The sporadic occurrence of garnet 1s related

hydrothermal solution.
The lack

to the presence or absence of sedimentary Mn-enrichment.
of baryte or any celsian rocks within the mineralisation could

probably be interpreted as indicating the primary absence of barium

in the hydrothermal solution.

8.5 CONCLUSIONS  REGARDING THE  PREMETAMORPHIC  HYDROTHERMAL

ALTERATION OF THE HOST ROCKS

Chemical analysis of the host rocks revealed the presence of

coeval tuffaceous material during the time of the deposition of the

Upper Erins Quartzite and indicated the 1local premetamorphic

hydrothermal alteration of the host rocks during ore formation.
the argillaceous and arenaceous sediments

During thas process,
partially altered either to

together with the sill bodies were
epidote, quartz, calcite, chlorite, K-mica, spessartine-rich garnet,

sulphides and minor oxides or to their premetamorphic precursors.

Similar hydrothermal mineral assemblages have been recognised 1in

299



several present active geothermal systems and may also occur 1n

regional low-grade metamorphic rocks. But the strong association

between these locally diverse metamorphic
cross-cutting copper mineralisation in the area suggests that they

minerals and the

are not the product of regional low-grade metamorphism of normal

sediments.

Hydrothermal alteration 1n active geothermal fields has been
reviewed and described recently by Browne (1978) who concluded that

temperature, pressure, rock type and permeability are the main

factors controlling the formation of hydrothermal minerals which
importance from field to field. McKibben (1979)

vary 1n relative
including pyrite,

focussed on the genesis of hydrothermal ores

hematite, sphalerite, chalcopyrite, pyrrhotite, marcasite and

galena. These sulphides occur as (1) synsedimentary/diagenetic
below 250°C, (2) metamorphic sulphides above 250°C or (3) as

sulphide-dominated vein mineral assemblages below 750m depth.

There are similarities, 1n terms of petrological, mineralogical
and textural characteristics between the proposed hydrothermal
alteration associated with the cross-cutting copper mineralisation

and the active geothermal system, East Mesa i1n the Salton Trough of

California Elders 1981 where original Plio-Pleistocene deltaic

sediments are altered to quartz + epidote + chlorite + albite +
phengite + calcite + actinolite + sphene assemblages at above 300.8

(McDowell and Elders 1980).

However, 1in the studied area, as the rocks were later

reqgionally metamorphosed to greenschist facies 1t 1s very difficult
to assume what were the originally-formed hydrothermal minerals.
Anyway, 1f the present mineral assemblages are the recrystallised
equivalents of the original hydrothermal minerals or the metamorphic

equivalents of their precursors 1t 18 evident from their
mineralogical and textural <characteristics that ascending

metalliferous hot water at >250.C and at a shallow depth bhad reacted
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with the wet, wunlithified sands, shales and arkoses and the
epidiorite body and caused silicification of the porous sandy
lithology and the epidiorite body. Also, at this stage of
alteration, the phyllosilicates and other detritals were altered to
epidote, quartz, chlorite, K-mica, Mn-rich garnet, actinolite,
sphene, pyrite and chalcopyrite. This was followed by a second stage
where descending cold seawater reacted with the hot rocks and
dissolved silica and precipitated calcite with minor oxides 1n
hydrothermal cycles similar to what was suggested for the Salton

Trough geothermal systems (Elders 1981, Muffler and White 1969 and
McDowell and Elders 1979).

8.6 CONCLUSIONS REGARDING THE SOURCE OF SULPHUR

Disseminated and stratiform pyrites of the Knapdale Pyrite
Horizon give isotopic values ranging between +4.5 to 12.8 per mil
and averaging 8.7 per ml, representing local sulphur values for
sulphides formed as a result of bacteriogenically reduced Dalradian
seawater sulphate 1n the area. Similar 1sotopic values are obtained
for sulphides from the Abhainn Srathain copper mineralisation
ranging between +4.4 to 12.8 per mil and averaging around +7.4 per
ml and were interpreted with the textural, mineralogical and
geochemical data to be inherited from sulphur values within the
hydrothermal solution formed by a mixture of 1inorganically reduced
d wnward percolating Dalradian seawater sulphate and sulphur leached

from the 1gneous rocks within the sedimentary pile.

Unfortunately, from the obtained sulphur 1sotope compositions
it 1s very difficult to differentiate between bacteriogenic and

hydrothermal sulphides 1in terms of their sulphur isotopic values.

Isotopic geothermometry of the pyrite-chalcopyrite pairs
indicates disequilibrium conditions during the regional metamorphism
and therefore precludes the possibility that the cross-cutting

Abhainn Srathain copper mineralisation was formed by remobilisation
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of copper from the Knapdale Pyrite Horizon during metamorphism.

8.7 MODEL FOR THE FORMATION OF THE ABHAINN SRATHAIN COPPER

MINERALISATION

On the basis of the preceding discussion it 1s possible to

construct a geometrical model summarising the event that led to the

formation of the Abhainn Srathain copper mineralisation (Fig. 8.1).
The nature, source and chemistry of the hydrothermal solution 1s not
such parameters are very difficult to
Instead 1t 1s assumed therefore

considered here because

examine 1n a metamorphic terrain.

that a hydrothermal solution capable of carrying the metals and

depositing them when possible 1s the required

sulphur and
An outline of the proposed geometrical model

hydrothermal solution.
will be summarised below and although 1t might not be the only one,

I believe 1t 1s a suitable model that explains the data.

1. Arenaceous and argillaceous sediments of the Upper Erins

Quartzite have been deposited 1n an evolvaing unstable Dalradian

into a series of blocks and basins bounded by
Deposition of the Upper Erins Quartzite

basin broken
synsedimentary faulting.
and the underlying formation,

associated with pretectonic 1gneous
stretching expressed by the coeval

the Lower Erins Quartzite, was

activity as a result of

increasing thinming and
tuffaceous materials and by the shallow 1intrusion of sill bodies.

2. Intrusion of the sill bodies at shallow depth into the wet and

unlithified porous sediments of the Lower Erins Quartzite and part

of the Upper Erins Quartzite together with increasing thinning of

the crust resulted in the shallow convection of the seawater.

3. The descending seawater 1s then heated through 1its percolation

down the high geothermal gradient and changes 1ts chemistry by

losing Mg, Na and S0, and gaining Si1, Fe, Ca, Al, K, T1, Mn, S, CGC:,
Cu, Ag, Au, Zn and other elements leached from the sedimentary pile
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Fig. 8.1 : Schematic diagram for the formation of the Abhainn
Srathain, Meall Mdr, copper mineralisation and the
Knapdale Pyrite Horizon. (A) early stage, (B) late

stage.
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(Seyfried and Mottl 1982).

4. This modified seawater is then carried upwards and the initial
stage 1is expressed by weak exhalation during mid-time deposition of

the Upper Erins Quartzite to form the Knapdale Pyrite Horizon.

5. Increasing intensity of this exhalative activity resulted in the
creation of geothermal systems. It is believed that one of these
geothermal systems was centred at the site of the present Abhainn
Srathain copper mineralisation and possibly shortly after the

intrusion of the epidiorite sills in the area.

6. The ascending hot modified seawater (5250°C) reacted with the
arenaceous and argillaceous sediments and the epidiorite rocks at
shallow depth and precipitated pyrite and chalcopyrite as
disseminations, thin layers parallel to the 1lithological layering
and as coarser grains in cross-cutting quartz veins. Also, at this
stage silicification of the porous sandy lithologies, transformation
of the sediments into quartz, phengite, epidote, chlorite, K-mica,
albite, Mn-rich garnet and the epidiorites into epidote, actinolite,

quartz and Mn-rich garnet assemblages took place.

7. At the same time, descending cold water into these hot rocks
resulting from the shallow intrusion of the sills in the area caused
another stage of alteration by dissolving silica and precipitating
calcite and minor oxides both as free calcite grains and

cross-cutting veins.

8. The hydrothermal system then started to die and this was marked
by very weak exhalation and deposition of pyrite with traces of

chalcopyrite and sphalerite at distal places.

9. Later all the rocks and the ore minerals underwent polyphase
deformation and regional metamorphism during Lower Ordovician time.

Some of the stratiform textures are preserved but the majority of
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the original textures were destroyed and replaced by metamorphic

fabrics.

8.8 SUGGESTIONS FOR MORE RESEARCH IN THE AREA

This study shows that in the Meall Mor area there are some

problems that are still needed to be solved in order to understand

the mineralisation 1n more detail. Stratigraphic work 18 needed to

formations outcroping in this area

ascertain correlations between
to

and their lateral equivalents in the Central Highlands in order

understand the age relationship between the Knapdale Pyrite Horizon

and the Perthshire Pyrite Horizon. Detailed surface mapping and

needed to unravel the complex structure at the

more drilling are
Also, more

mine area in order to know which way up the rocks are.

structural 1nvestigations are needed i1n the area 200-300m to the NW

of Meall Mor where another zone 39-70m wide with pyritic enrichment

exists Fi1g. 3.8 1n an attempt to examine the possibility of this

being a tectonic repetition of the main zone.

No Sb-bearing mineral was identified in this study but the

strong anomalous distribution of Sb shown by the 8.G.S. geochemical

drainage survey and the similarity in the distribution of Sb and Cu

1s worth 1nvestigation. Also, the presence of thin alternating

pyrite and sphalerite laminations 1n quartzitic rocks could be a

promising target for sphalerite mineralisation 1n the area.

Much work needs to be concentrated on the quartz and/or calcite
inclusion study 1n order to get some

veins especially a fluid
which these wminerals

information about the solution from
crystallised and the temperature at which crystallisation took

place.

The presence of highly localised metamorphic minerals, Mn-rich

garnets and epidiorite bodies are all clues that can be used in
exploring for similar mineralisation within the Knapdale Pyrite

Horizon and within the Dalradian as a whole.
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Appendix (A.5.1): Preparation of petrographic sections.

In the Department of Applied Geology where this work is undertaken, different
types of sections can be prepared using conventional techniques by the technical
staff, These include thin section, polished block, polished-thin section, and
The polished wafers are used to study fluid inclusions trapped in

polished wafers.
Only three types of sections were used in this study,

minerals during their growth.

for petrographic and microprobe analysis purposes, and the procedure for their

preparation will be outlined briefly.

(A) Thin Section

Thin sections are prepared by cementing thin slice of rock to glass, followed by
hand grinding to 30 micron, using 400 to 600 mesh carborundum and water on glass.
Finally a cover slip is cemented on top of the layer of rock using Canada Balsam.

(B) Polished Blocks

Polished blocks are used to study opaque minerals under the reflected light

microscope and for microprobe analysis also. It represents a rock fragment set in

resin and polished. There are many different procedures for the preparation of a flat
polished surface free of relief and scratches, depending on the nature of the rock,

polishing materials, and equipment available (e.g. Lister 1978).

(1) Cutting

Rocks were cut into pieces measuring 2cm x 2cm x 0.5cm with a diamond saw and were

cleaned ultrasonically for three minutes, dried and labelled.

(2) Mounting

back upwards, containing 35g of

The cleaned sample was placed in a mould,
Yacuum

Fazaplas 105 resin, premixed with 2 drops accelerator and 6 drops catalyst.
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pumping were used to avoid air bubbles. The sample with the resin is left over about
12-24 hours to harden. It was then trimmed to a thickness of 14mm to produce parallel
sides and a hole is drilled in the back surface.

(3) Grinding

Each block was ground by Logitech machine using 400 mesh carborundum and water as
lubricant. This was followed by three stages of hand-grinding using 600, 800, and
1000 mesh carborundum and water. Each grinding stage lasted approximately ten

minutes. The block should be cleaned ultrasonically inbetween stages.

(4) Polishing

Prior to polishing, each block was examined under reflected light binocular
microscope (x 100 magnification) to make sure that the specimen is free from pits and
scratches. Specimen was polished on Engis Kent Mark 2R machine, on P.S.U Pellon cloth
laps, and using 6, 3, 1, and 1/4 mesh diamond paste as abrasive and Hyprez lubricant.
Slow polishing speeds ( 100 rev/min, and polishing load of 0.5-1.5kg) were used. The
time required for each polishing stage ranges between 10-45 minutes depending on the

nature of the rock.

(5) Buffing

The specimen is then polished briefly ( 2 min ) using gamma alumina on relatively
soft cloth laps as abrasive and water as lubricant. The finished block has a diameter
of 3.5 cm and is 1.4 cm thick.

(C) Polished-Thin Section

They are thin sections with polished surface required for special purpose such as
electron microprobe analysis. Preparation of polished-thin section involves
combination of the two procedures used for thin section and polished block.
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(1) Cutting

Rock slices measuring 44mm x 25mm were cut with a diamond saw and cleaned

ultrasonically in detegent, carbon tetrachloride, and water. The time required in

each cleaning stage is three minutes and the sample is then dried.

(2) Mounting

The mounting is the same as in the ordinary thin sections. The sample is mounted

on a glass slide, using Petroxy 154 resin and hardener (10:1). The sample is then

trimmed to 200 micron on a Logitech machine.

(3) Grinding

The specimen is hand ground on a glass plate using 600, 800, and 1000 mesh

carborundum and water, a procedure similar to that of the polished blocks. the

pre-polishing thickness, however, depends on the rock type. Soft rocks such as

carbonates and phyllites were ground down to 45 micron and the hard rocks such as

quartzites were ground down to 30 micron.

(8) Poli hing

The section is polished up to 174 micron diamond paste for oxides and silicates,

and gamma alumina for sulphide species.
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Appendix (A.6.1) : Preparation of fused beads.

The procedure for fused peads preparation that was used and practised at the

Department of Geology, Glasgow University will be outlined below.

Equipment

1. Furnace - 1000 C.
Hotplate I with plunger assembly - 225 C + 10.

Hotplate II with hard asbestos rings and blocks - 2CD°C + 10.

Meka or blast burners, tripods with vitrosil triangles.

. Crucibles and lids - Pt/5%Ag.

. Platinum tipped tongs.

. Nickel shovel.

8. Flux - SPECTROFLUX 105 containing lithium carbonate, lithium tetraborate and

lanthanum oxide.
Method
1. Samples should be crushed to at least 100 mesh and dried for 24 hours.

2. Switch on furnace at ICIIJ'C, hotplate I at 225.(: and hotplate II at 200°c and let
them stabilise for approximately one day before use.

3. Make sure that all the equipment needed is clean.

4. Weigh 0.46875 gm of rock powder and 2.5 gm of flux into a crucible and mix. Record
the total weight, crucible number and sample number.

5. Place the crucible in the furnace with a lid for 15 minutes, then remove and allow

to cool on aluminium surface, (keep 1id on).

6. Reweigh and record.
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7. Every 5-10 samples a 'blank' should be run to determine the weight loss on the

flux.

8. After reweighing, the rock-flux mixture is remelted over a blast burner, slowly at
first or other wise the glass will crack and jump out. Any undissolved powder or
droplets of melt on the sides of the crucible should be incorporated into the melt and
the whole mixed by swirling the melt around in the crucible. An attempt should be

made to remove any bubbles that are precent. The melt should be at a dull red heat

prior to pressing, not bright orange.

9. Form bead by raising plunger and quickly pouring the melt into the centre of the
platten. Then lower the plunger firmly, raise again and transfer the platten and bead
(if successful) onto the second hotplate using the nickel shovel. Any melt that
clings to the lip of the crucible can be removed by touching the melt on the platten
with the lip of the crucible.

10. The platten and bead are placed in the centre of the asbestos ring between two
asbestos blocks. Mark the top of the block with sample number and crucible number in

pencil. 0ld numbers will rub off with a tissue.

11. Leave bead on the second hotplate for 30 minutes, then remove still enclosed

within asbestos blocks and allow to cool on the bench.

12. When cool remove the bead. Do not use any metal implement as this will damage
the platten. If difficulty is experienced in removing the bead warm the bead and the

platten on the hotplate for a short time.

13. Trim off any burrs from the bead and label the undersurface (bevelled) using a
self adhesive label. Record the sample number, flux batch and weight loss correction

factor.

14. When the crucible is cool tap it gently on a steel plate to remove any glass left
in it. Soak in warm 50/50 HCl for 10-15 minutes to remove any remaining traces of

glass, rinse in distilled water and dry.
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Cleaning the platinum crucibles

Any pieces of fused rock remaining in a crucible after use must removed by the
finger nail only. Never use a scalpel or any metal implement which will scratch the
surface of the crucible. Scratches cause fused rock to adhere to the crucibles.

Therefore the crucibles should be cleaned as follows:

1. Heat some sodium carbonate (Na,CO,) in the crucible on a tripod above a bunsen

until molten.

2. Swirl the liquid around the sides of the crucible to dissolve any remaining fused

rock.
3. Allow to cool and then drop gently into a 10% HNO, solution.

4. After the reaction has ceased, boil until the Na,CO, and fused rock has been

dissolved.

5. Wash thoroughly in warm water, followed by distilled water and dry in the oven at

0
100 C.

Care of the platinum tipped tongs

1. Never allow Na,CO, to come into contact with the platinum tips, as it will attack

the platinum,

2. Always place the tongs with tips uppermost on the bench, to avoid contamination.

3. Never use the tongs for inserting crucibles into any liquid, or heat the tips in a

bunsen flame.

Bead failure-some answers

1. Bubbles in the bead, especially near the edges:
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plunger hotplate too hot, burner too hot.

2. Bead sticks to plunger when raised: burner too hot prior to forming of bead.,

attempt to raise plunger too quickly after forming the bead.

3. Bead cracks: plunger hotplate too cool, melt too cool.
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Appendix (A.6.2) : Instrumental parameters for the major elements analysis using Glasgow
PW 1450 X-ray Fluorescence Spectrometer.

Sample holder| X-ray tube target Crystal PHS
32 mm Cr -
Pos. Type Pos. L.L. W | Pos. L.L. W
Diaphragm Generator manual
28 mm setting: 1 LIF 200 M 5 400 300
------------- kv = 40, mA = 20
Monitor 2 GE 1 50 1000 | 6 300 400
3570/02
------------- 3 PE 2 150 600 | 7 400 400
B2am path
VAC 4 TLAP 3 200 500 | 8 350 400
5 LIF 220 4 200 600 | 9 300 500
Spectrometer Settings
Element Line X-tal Angle Det. Coll. Filter PHS kV mA
Ca N Kot 1 113. 11 F f NO 1 40 10
12 1 124.31 F f NO 1 40 10
TH 9 K 1 86.12 F f NO 6 60 20
10 1 84.00 F f NJ 6 60 20
Fe 1 Ko< 1 57.53 F f NO 1 60 20
2 1 55.30 F f NO 1 60 20
3 Ko< 5 95.35 F c YE 2 60 45
4 5 98.90 F c YE 2 60 45
Na 25 Kok 4 55.18 F c NO 8 50 60
25 4 61.00 F c NO 8 50 60
Mg 23 Kot 4 45.11 F f NO 5 50 &0
24 4 48.00 F f NO 5 50 &0
Al 21 K 3 144.90 F c NO 9 50 45
22 3 139.00 F c NO 9 50 45
si 19 Ko< 3 109.02 F c NO 8 50 45
20 3 112.00 F c NO 8 50 45
P 17 KX 2 141.00 F c NO 8 50 45
18 2 143.00 F c NO 8 50 &5
K 13 Ke 1 136.69 F f NO 1 60 20
14 1 140.00 F f NO 1 60 20

Abbreviations :
X-tal = crystal

Det. = detector

Coll. = collimator

F = flow detector

c = coarse primary collimator
f = fine primary collimator
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Appendix (A.6.6) : Determination of the ferrous oxide.

This procedure was also carried out at the Geology Department, University of Glasgow.

Ferrous iron is determined by titration with standard dichromate solution after the

rock has been attacked by sulphuriec and hydrofluoric acids.

Reagents

Hydrofluoric acid.

-t
.

Sulphuric acid, 50% (vol./vol.).
Phosphoric acid, 85% (wt/vol.).

Boric acid.
Standard potassium dichromate.
dichromate A.R. (dried at 130°C) and dissolve in water.

w o weoNn

weigh out accurately 2.73 gms of potassium
Dilute to 2 litres.

This solution contains 2 mgs per ml. equivalent ferrous iron.
6. Diphenylamine-sulphate indicator. Prepare a 0.2% solution of sodium dipheny-

lamine sulphonate in distilled water.

Procedure

weigh out accurately about 0.5 gm of sample into a platinum crucible with a tight
1lid. Moisten with water and add 10 ml. 50% sulphuric acid from a tilt measure. Place

on the hot plate for about five minutes (dial at 3.5) until almost boiling. Add 5 ml
The 1id should

of hydrofluoric acid and heat for ten minutes (till puffing starts).
whilst the

be kept on the crucible during heating to prevent oxidation by the air.
sample is being attacked, prepare the following solutions:

Half fill a 600 ml. beaker with fresh distilled water and add:

10ml 50% sulphuric acid

loml syrupy phosphoric acid
10g boric acid (approximately)
10 drops indicator solution
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when the sample has been decomposed, transfer to the beaker with the 1id on

until the crucible is completely below the surfaace and stir and titrate rapidly with
standard dichromate to apurple end point lasting for at least thirty seconds. The

solution will turn green before the end point.

Calculation

volume of standard dichromate x 0.2

%e0 =
weight of sample
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Appendix (A.6.7) : Determination of water and carbon dioxide.

Using the method practised at the Geology Department , University of Glasgow,

water and carbon dioxide are simultaneously determined in the rocks. The water and

carbon dioxide produced are removed with a current of nitrogen, absorbed and

determined gravimetrically.

Apparatus

A simplified schematic diagram of the apparatus used is presented in Fig.

(A.6.7.1). The nitrogen gas from a cylinder is passed via a multistage regulator and

needle valve, through a bubble counter containing concentrated sulphuric acid. It is

purified by passage through tubes containing fused calcium chloride soda asbestos and

finally anhydrous magnesium perchlorate. The gas enters the combustion tube in which

is placed the rock sample. The combustion tube is supported inside the high

temperature furnace and is made of mullite. The gas plus water and carbon dioxide

enter the "copper" tube so that sulphur compounds and oxides of nitrogen can be

removed. This tube is also supported in a furnace and is packed with alternate layers

of copper wire and silver pumice.

water is removed, which is filled with anhydrous magnesium perchlorate and then a
This bubbler

The gases enter the water absorption tube, where

bubbler containing saturated chromium trioxide in phosphoric acid.

removes sulphur dioxide in any rocks with a high sulphur content. The gases enter

another tube with magnesium perchlorate and finally the carbon dioxide absorption

tube, where carbon dioxide is removed, which is packed with soda asbestos with a small

amount of anhydrous magnesium perchlorate at the end.

Procedure

For the majority of rock samples, the main furnace should be run at 100°c. The

flow of nitrogen should be regulated to about three litres per hour. Each day before

use, allow nitrogen to pass through the apparatus and absorption tubes for about 20
minutes. The absorption tubes, which are cleared and refilled each day, are wiped

carefully and weighed to five decimal places. About 0.5 gm. of dried powder is
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weighed into a previously ignited alumina boat. The boat is inserted into the end of

the combustion tube and nitrogen is allowed to flush air out of the apparatus for
about one minute. The weighed absorption tubes are then connected and the boat is
pushed into the middle of the furnace by means of a stainless steel rod. After
heating for 30 minutes, the absorption tubes are removed, wiped and reweighed to 5
decimal places. A blank sample (empty alumina boat) is carried out in a similar

manner. After each determination the spent boat is removed ready for the next sample

and the same absorption tubes are used all day. The blank is subtracted from the

respective weights of water and carbon dioxide.

Calculations

Wt of H,0 obtained x 100

% H,0

Wt of sample taken

Wt of CO, obtained x 100

X Co,
Wt of samole taken
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Appendix (A.6.8): Preparation of pressed powder pellets.

1. 30 ton press.

2. Stainless steel plattens.

3. Spexmixer.

4, Polishing lap with paper laps and diamond paste.
5. Nickel spatula

6. Polythene vials and lids.

7. Glass balls.

8. RO 214.1 resin-phenol formaldehyde

9. Oven at 110°C.

Method

Weigh out 6 gms. of rock (3 decimal places) and 1 gm. of resin into a clean vial,

1.
Add one glass bead and replace the cap. Label

(use the tare facility if possible).
with sample number using a chinagraph pencil (vials can then be reused).

2. Mix powder using the spexmixer for 30 minutes-3 or 4 can be mixed at the same time

3. After mixing pour out the contents onto glossy paper and use the spatula to

retrieve the glass ball.
or it will damage the plattens, resulting in many hours work repolishing.

Great care must be taken not to leave the ball in the powder

4. Assemble the plattens and former casing. Ensure that all the surfaces are clean-

use acetone if powder is difficult to remove.

(a) Place base plate of former in position and drop bottom platten into position

(Fig. A.6.8.1a,b).

(b) Pour in the powder and tap the former casing to level the surface of the

powder (Fig. A.6.8.1c).

(c) Put the upper platten into the former followed by plunger, Fig. (A.6.8.1d).
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(d) Place the complete former assembly centrally on the press platform and align

the top of the plunger with the press plunger (Fig. A.6.8.1e).

5. Ralse the pressure to 30 tons and leave for about one minute, then slowly release

the pressure. Turn the valve handle anticlockwise to release.

6. To remove the pellet:

(a) Remove the base plate of the former.

(b) Stand the remainder of the former on the plastic cylinder in the press. Take

care to ensure that the plastic cylinder does not obstruct the free fall of

the pellet.

Pump the press until the pellet falls out of the former casing. If the lower

(c)
platten comes out before this last step it should be placed face up on the

foam in the plastic ecylinder.

7. Label the pellet on the side with a fine felt tip pen - keep your fingers clear of

the surfaces.

8. Place the pellet on a clean glass plate and when half a dozen or so have been made

put the plate onto an asbestos block in the oven for 20-25 minutes to cure the resin.
9. Allow to cool and store in tissue in a labelled pill box.

10. Clean vials in ultrasonic cleaner.

Na,0 contamination

Remember that Na,0 is determined on the pellets, therefore keep fingers away from
the inside of the former casing, the surfaces of the plattens and the surfaces of the

finished pellets.

Repolishing the plattens

After 10-12 pellets have been made from a pair of plattens, they must be
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repolished, Remember that repolishing will not remove scratches of indentations
caused by leaving the glass ball in the powder; these have to be removed by grinding
01 600 grade carborundum,
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Appendix (A.6.9) : Instrumental parameters for the trace elements analysis using Glasgow
PW 1450 X-ray Fluorescence Spectrometer.

Sample holder|X-ray tube targetI Crystal PHS
32 mm Mo
Pos. Type Pos. L.L. W Pos. L.L. W
Diaphragm Generator manual
28 mm setting: 1 LIF 200 M 150 1000 | 5 400 300
------------- kv = 40, mA = 20
Monitor 2 GE 1 50 1000 | 6 300 400
G-SL 7570
------------- 3 PE 2 150 600 |7 400 400
Beam path
VAC 4 TLAP 3 200 500 | 8 350 400
5 LIF 220 4 200 600 |9 300 500

Spectrometer Settings

Element Line X-tal Angle Det. Coll. Filter PHS kv mA
M1 Mo Kp 5 26.80 S F NO 9 70 30
Y1 5 K=x-1.0 S F NO 4 70 30
Y K 5 33.83 S F NO 4 70 30
Y2 5 Kx+0.9 S F NO 4 70 30
Sr Kex 5 35.83 S F NO 4 70 30
S2 5 Ke+0.8 S F NO 4 70 30
u Lo 5 37.30 S F NO 4 70 35
Rb Koe 5 37.93 S F NO 4 70 35
R2 5 Kx+0.67 S F NO 4 70 30
Th Lo 5 39.22 S F NO 4 70 30
Pb Lp 5 40.40 S F NO 4 70 30
P2 5 Lf+0.52 S F NO 4 70 30
G1 5 kx-0.75 Fs F NO 4 70 30
Ga Kee 5 56.15 Fs F NO 4 70 30
G2 5 K=+0.7 Fs F NO 4 70 30
Zn K< 5 60.50 Fs F NO 9 70 30
22 5 K%+1.0 Fs F NO 9 70 30
1 5 K<-0.5 Fs F NO 4 70 30
Cu Kos 5 65.53 Fs F NO 4 70 30
c2 5 Kx+0.6 Fs F NO 4 70 30
N1 5 Kx-1.0 Fs F NO 3 70 30
Ni Kex 5 71.24 Fs F NO 3 70 30
3 5 Kx-0.45 S F NO 4 70 30
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Appendix (A.6.9) : Continued.

Zr K 5 32.05
Fe K 1 57.49
F1 1 Kx-2.23
c3 5 K -0.6
Co K 5 77.50
C4 S Ke+0.6
cs 1

Cr K 1 69.30
cé 1

c7 1 L#-1.0
Ce Lp 1 71.55
c8 1 LB+3.0
Ti K 1 86.08
T 1 Kx+2.0
Ba LP 5 128.92
B1 5 43.30
L1 5 Lp-2.0
La L 5 138.94
M2 Mo KP S 26.80

Abbreviations :
X-tal = crystal

Det. = detector

Coll. = collimator

F = flow detector

(o = coarse primary collimator
f = fine primary collimator

S = scintillation detector
Fs = flow-scintillation detector

S
F
F
Fs
Fs
Fs
Fs
Fs

Fs
Fs

WM MM T
»w »n
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Appendix (A.6.11) : Operating conditions for the Nb and S (Cr—tube).

Sample holder|X-ray tube target Crystal PHS
32 mm Cr
Pos. Type Pos. L.L. W Pos. L.L. W
Diaphragm Generator manual
28 mm setting: 1 LIF 200 | M 5 400 300
------------- kv = 40, mA = 20
Monitor 2 GE 1 50 1000 | 6 300 400
G-SL 7570
............ 3 PE 2 150 600 {7 400 400
Beam path
VAC 4 TLAP 3 200 500 | 8 350 400
5 LIF 220 4 200 600 |9 300 500
Spectrometer Settings
Element Line X-tal Angle Det. Coll. Filter PHS kv mA
S 15 Ko< 3 75.80 F C NO 4 50 60
S1 16 -2.9 3 72.90 F C NO 4 50 60
N2 32 1.0 5 29.35 S f NO 4 70 30
N3 33 Ke 5 30.35 S f NJ 4 70 30
N3 34 +2.6 5 32.95 S f NO 4 70 30
Abbreviations:
X-tal = crystal
Det. = detector
Coll. = collimator
F = flow detector
c = coarse primary collimator
f = fine primary collimator
S = scintillation detector
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Appendix (A.6.12) : Detection limits for trace elements.

Element Detection Limit
ppm
Ir 2.7
Y 1.4
Sr 1.5
u 9.4
Rb 1.7
Th 11.5
Pb 11.6
Ga 2.4
In 1.8
Cu 4.4
N1 4.8
Co 3.2
Cr 1.9
Ce 3.2
Ba 12.3
La 3.9
S 7.1
Nb 7.3
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Appendix (A.6.13) : Niggli Numbers.

Niggli Numbers are a series of molecular proportions of the major and minor

The grouping of the oxides is such that each number represents 3a
The calculation of the

oxides in a rock.

relative proportion among a mineral or a group of minerals.

Niggli Numbers, except si, is independent of the Sio, wt% of the rocks and that

eliminates the effect of Si0, mobilisation during metamorphism.

The following Niggli Numbers are used with their representative minerals or

groups of minerals:

si = quartz (and minor feldspars)

al = clay minerals, feldspars, micas and chlorite

fm = chlorite, iron oxides, clay minerals and (sulphides)
alk = feldspars (and micas)

c = carbonate (and possibly minor ca-plagioclase)

ti = rutile and clay mineral

1] = phosphorous oxides

al-alk = clay minerals (and possibly minor ca-plagioclase)

Niggli Numbers are calculated from the chemical analysis of the rocks. The
chemical analysis of the rocks usually expresses the oxides in weight percentages.

The procedure of calculating these numbers is as follow:

(1) Calculate the molecular proportions of the several oxides of the rock by dividing

the weight percentage of each oxide by its corresponding molecular weight.

(2) Multiply each of the above molecular proportion values by 1000 to get the

corresponding molecular numbers.

(3) Convert the molecular number of Fg, O to the equivalent FeQ by multiplying by 2

and then add it to FeO.
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(4) In order to use the Niggli terms mentioned above, the molecular numbers of the

oxides should be grouped as follow:

GP1 = Na,0 + K,0 (including rare alkali earths)

GP2 = Ca0 + Sr + Ba
GP3 = Fe0 + Mn0O + Mg0 + Ca0 + Ni
GP4 = A1,0, + Cr + rare earths

(5) Calculate the sum of the four groups and let it be (T).
(6) Recalculate the above total (T) to 100 and assign these groups to the

corresponding Niggli Numbers:

3l = e

GP2 x 100

GP1 x 100
alk = ————eev

Thus a8l + fm + c + alk = 100.

(7) To obtain Niggli si, ti and P, divide their corresponding molecular numbers by the
total (T) of step (5), i.e :
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Molecular Number of Si0, x 100

si =
T
Molecular Number of TiOz x 100
ti =
T
Molecular number of P,0s x 100
p =

(8) The Niggli values obtained in step (7) represent the most important chemical
constituents of the rock. However, it is desirable to indicate the ratio of the
equivalent value of K20 to that of the sum of the alkalis and also to establish what
proportion of the femic oxides is Mg0. This can be achieved by calculating the two

parameters k and mg, respectively.

Molecular Number of K,0

GP1 (in step &)

Molecular Number of MgO

GP3 (in step 4)

The oxidation ratio of the rock can be also calculated using this formula:

Fe,0; x 100

w (mol. prop.) =
(ZFe:O) + FeO)
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Appendix (A.7.1): Sulphur isotope analysis of sulphides.

The methods of converting sulphide minerals to SO, gas and the isotopic
determination of the 34 values that will be outlined below were practised in the
Isotope Geology Unit of the Institute of Geological Sciences, London.

Extraction of SO, gas

For any isotopic analysis, care must be taken to ensure a complete yield at this
stage in order to avoid possibility of kinetic fractionation during extraction.
Therefore the method of Robinson and Kusakabe (1975) is being used in the extraction
of S0, gas in this Iinstitute. This method minimises the production of sulphur
trioxide, the sulphate and the other contaminant gases, particularly (':(3»2 . The full

procedure used in the extraction is as follow:

(1) weigh accurately 10mg of pyrite or chalcopyrite concentrate (enough to produce

~3ml SO, gas sufficient to run on the mass spectrometer) using a Cahn 26

microbalance.

(2) Add to it -~ 200mg of freshly prepared cuprous oxide (Cu2 0) as an oxidant and mix

in micromill for three minutes to homogenise the mixture.

(3) Carefully transfer the homogenised mixture to a silica tube two centimeters long

and put silica wool plugs on both ends. The sample now is ready for extraction.

(4) Put the sample in the unheated part of the furnace tube. Evacuate the system and

then heat the furnace to 1070°C.

(5) Isolate the section of the extraction line (Fig. A.7.1.1, below) from the main
furnace to valve (1) from the vacuum system. Push the sample into the hot part of the

furna e using the external magnet.
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furnace

CO, -acetone -
n-pentane

Fig.A.7.1.1 : Extraction line. Each section of the line has independent
access to roughing and high vacuum via valves which, for
simplicity, are not shown (the main furnace has rough pumping

only); and similarly each section except the manometer has a

thermocouple vacuum gauge. Taken from Coleman and Moore (1978).

(6) Apply the solid CO,/acetone to the coil trap and the 1liquid nitrogen to the
n-pentane trap.

(7) After 15 minutes heating, isolate the section as far as valve (3) from the vacuum

and then open valve (1).

(8) wait till all the evolved gas is frozen into the nitrogen cooled trap and all
water vapour trapped in the coil. This usually takes 10-15 minutes and is indicated

by the recovery of the vacuum to about 10. Torr on the thermocouple gauges.

(9) Close valve (2) and pump out the furnace and the coil section. Switch off the

main furnace in preparation for running the next sample.

(10) Lower the liquid nitrogen so that the collected gas sublimes and recondenses in
the part of the trap surrounded by n-pentane.

(11) Pump out the noncondensable gases and separate CO, gas by fractional sublimation

352



at -131°C (0ana and Ishikawa 1966).
(12) Collect the remaining pure SO, gas by deposition under vacuum in a gas bottles.
(13) Prepare using the same method SO, gas extracted from the laboratory standard.

(14) Prepare a batch of S0, samples sufficient for one day work on the mass

spectrometer with at least two of the laboratory standard.

It is very important to measure the SO, yield for each run as incomplete

combustion or insufficient separation of CO, from SQ, can cause fractionation of32 s

and 5%,

number (ml) of SO, extracted

X S0, yield
mg of concentrate x theoretical soz yield

63" S measurement

The four natural isotopes of sulphur have atomic masses 32, 33, 34 and 36. Their
approximate abundances are 94.9, 0.75, 4.3 and 0.02 % respectively (MacNamara and
Thode 1950). In sulphur isotopic studies, the ratio of the most abundant trace
isotope (3%) against the major isotope (3%) is measured as follow:

The analysis is made with 8 double-collector mass spectrometer where signals from
the ion beams of 3%0, and 3%0, are measured at the same time and produce a ratio.

The mass spectrometer measurement is repeatedly standarised against gas of known

isotopic ratio (reference gas), using the method introduced by Murphey (1947). The

reference gas is calibrated against the internmal laboratory standard at the begining

and at the end of each day so that instrumental drift is monitored. The parameter

measured from the mass spectrometer is in the form of the ratio (R34 sample/R3“
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reference) where R34 is the ratio 34s/32s.

The obtained R 34ample/R*4 reference ratios from the mass spectrometer is then

corrected for inlet valve and crosstalk and isobaric interference following the

procedure of Deines (1970) and then converted to 84S values with respect to the

international Canon Diablo Triolite.

§ s / sample = ——mememmmemo -1
345325  standard

x1000

where38 S/385 of sandard = 0.0450045 (Jensen and Nakai 1963).

The calculations are performed by a programmable calculator at the Isotope

Geology Unit of the Institute of Geological Sciences,
Coleman (1980).
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