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ABSTRACT

One of the complexities in designing WDN is evaluation of network performance.
The accurate network performance measures such as reliability or failure tolerance are
very time consuming calculations, thus surrogate measures are used for water
distribution network (WDN) design optimization. Entropy is particularly advantageous
since it involves only the flow in the pipe and the demands at the nodes.

This thesis developed efficient new computational methods based on the maximum
entropy formalism for the optimization of water distribution systems. Thus the
maximum entropy based design approach has been extended here to include multiple
operation conditions. Also, the path-related properties of the flow entropy have been
exploited to develop a new self-adaptive approach for solution space reduction in
multiobjective evolutionary optimization of water distribution systems that resulted in a
significant reduction in the number of function evaluations required to find optimal and
near optimal solutions.

The novelty and originality of the current research are presented next.

A new penalty-free multi-objective evolutionary optimization approach for the design of
WDNs has been developed. It combines genetic algorithm with least cost design and
maximum entropy. The approach can handle single operating conditions (SOC) as well
as multiple operating conditions (MOC) for any given network. Previously, most of the
work has been done for single loading patterns and it was assumed that nodal demands
are constant. In reality nodal demand vary over the time so network designed to satisfy
one operating condition might not be able to satisfy other loading patterns (i.e. pressure
constraints might not be meet). The model has been applied to three well known water
distribution networks. The approach has also been implemented on a large real-world
network in the literature. Three different methods of designing for multiple loading
patterns were investigated. Extensive testing proved that MOC outperform SOC in terms
of hydraulic feasibility, pipe size distribution and reliability. The approach is
computationally efficient and robust.
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The above mentioned penalty-free approach has been extended to form a module that
would improve the convergence criteria of the GA by reducing its search space. For
large real-world network GA might require extremely large number of function
evaluations which could lead to delayed convergence. By reducing the search space, the
GA’s effectiveness and efficiency will increase as the algorithm will identify the
solutions in smaller number of function evaluations. The search space reduction method
presented herein is based on entropy and uses the importance of every path through
network, which is an inherent property of the entropy function. The developed algorithm
is dynamic, self-adaptive and does not require pre-defining the reduced sets of candidate
diameters for each pipe. The method has been applied to a large network from the
literature. Two cases were studied, one based on full search space and one for reduce
search space (RSS) approach. Rapid stabilization was observed for the results obtained
using RSS.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

Every human being has the right to have access to clean water as it is one of the basic

components necessary for life. For that reason, the water distribution networks (WDNs)

are extremely important infrastructure. In order to provide drinking water to each

household many different factors needs to be satisfied. Delivered water has to be at

adequate pressure, which is demand dependent and vary over time. Drinking water has

to have suitable disinfection level, which is also dependent on water pressure and

demand. Water storages needs to provide adequate capacity for firefighting purposes etc.

All this makes designing WDN as a multi-criterion and highly complex problem, called

as NP-hard problem (non-deterministic polynomial-time hard problem).

Evolutionary algorithms (EAs) have been used to solve complex, multi-objective

problems for more than two decades. They are capable of finding pareto-optimal

solutions in single run and proved to be well suited for such problems. However, the

major disadvantage related to multi-objective EA is the inability to directly handle

constraints. Widely used method for constraints handling is to penalize infeasible

solutions, which could obstruct the search capabilities and direct to suboptimal solutions.

The penalty parameters are usually obtained by a trial and error, require tunings and
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calibration, thus making the whole process extremely time consuming and case

sensitive.

Apart from being highly complex to design, the WDNs are also one of the most

expensive infrastructure systems. Therefore, the cost minimization is extremely

important objective when designing the network.  For decades researchers concentrated

on minimization of the network cost, which has inevitable influence on network

reliability (i.e. cheapest design is not satisfactory in terms of reliability). Nevertheless,

the reliability of WDN is equally important as network cost, as the optimal design is the

cheapest design that will also satisfy demands under normal and abnormal conditions.

Since the estimation of reliability is extremely time-consuming calculation; researchers

have been looking for surrogate measures, comparably easier to estimate. Statistical

entropy (Tanyimboh and Templeman, 1993), resilience index (Todini, 2000), network

resilience (Prasad and Park, 2004), pipe index vector (Vaabel et al. 2006) and modified

resilience index (Jayaram and Srinivasan, 2008) are known as reliability indicator.

Entropy is particularly advantageous since it involves only the flow in the pipe and the

demands at the nodes that are normally given. Over the years, the entropy has been

incorporated and tested on many different benchmark networks. Results published in

literature suggest that an increase in entropy value corresponds to a better network

performance as measured by reliability. Strong positive correlation between entropy and

reliability has been demonstrated in many publications.

Water networks are very often designed as systems in which all components are working

under normal conditions and are in service. It is also common practice to assume that

nodal demands are constant and use steady state modelling when designing WDN.

However in reality demands vary with the time of the day and there are many different

loading patterns that have to be satisfied by the network. It has been pointed out by few

researchers (Alperovits and Shamir, 1977; Prasad 2010) that not one, but few operating

conditions should be considered. Moreover, it is already well known, that even if

network will satisfy one loading patterns it does not mean that other operating condition
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will also be satisfied, simply because the pressure constraints may not be satisfied. Most

of the work published so far on entropy has been done for single operating condition

(SOC), usually maximum daily demand.

Another major problem related to genetic algorithms (GA) is the search space. The size

of the search space is highly dependent on parameters such as number of links (i.e. size

of the network) and number of commercially available pipe sizes. Therefore, the number

of function evaluations required to identify optimal solution can be extremely large. For

large, real life networks, with hundreds of pipes and many network components, it can

be extremely time consuming process as the algorithm might require even millions of

function evaluations. Few researchers made attempts for search space reduction,

however none of published so far method would in reality be used for real size system

with network components. Vairavamoorthy and Ali (2005) proposed method in which

the importance of a pipe is established in relation to the network as a whole. This is done

in a few separate steps. Firstly, pipe index is calculated for all pipes in the network.

Secondly, lower and upper bound are established in order to reduce the search space

before the GA even starts. Therefore, the process requires human analysis, ideally

experienced engineering judgement. Moreover, this method requires repeated

calculations of pipe index vector, thus making the whole process unnecessary complex.

Kadu et al. (2008) used a ‘path concepts’ by converting the loop network into branch

and classifying links. The method follows the assumption that the cheapest way of

transporting water is along the shortest path. Nevertheless this method is very limited as

it is unsuitable for real world networks with multiple loading patterns and networks

components like pumps. Therefore, developing robust and efficient methodology for

WDN optimization with reduced search space has become an important problem.
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1.2 SCOPE OF THE PRESENT RESEARCH

The purpose of this study is to develop a useful and versatile approach able to identify

the cost-entropy optimal solutions in one integrated process. The overall aim is to

translate the wealth of entropy-based research into large, real world WDNs and therefore

demonstrate the advantages of using the entropy-based method to design and optimize

WDNs. The research tackles three challenging and complex research aspects related to

WDN optimization: 1) identifying the most reliable, cost efficient optimal design of the

WDN; 2) incorporating multiple operating conditions into the entropy-based WDN

optimization process; 3) to speed up the optimization process by reducing the size of the

search space with the use of properties of entropy.

1.3 OBJECTIVE OF THE RESEARCH

The objectives of the present research are as follow:

1) To develop a robust, penalty free EA model capable of identifying diverse

solutions in cost-reliability Pareto optimal front (POF). Majority of methods proposed in

literature concentrate on looking for cost efficient designs while neglecting hydraulic

reliability, which in reality is almost equally important objective.

2) To extend the entropy based EA optimization method of WDN to be able to

work under multiple operating conditions. The motivation for this objective is to enable

the algorithm to handle more realistic situations when the demands vary with the time of

the day, thus to include loading patterns like minimum demand, average demand, fire

flow, etc.

3) To test the practical capability, robustness and consistency of the above

mentioned model by applying it to hypothetical and real-life networks.
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4) To employ the property of entropy function in order to reduce the search space.

Doing so will allow the algorithm to look for solutions on feasibility boundary and

improve the convergence properties of GA, thus speed up the optimization process.

1.4 A BRIEF DESCRIPTION OF THE METHODOLOGY

This thesis presents innovative penalty-free multi-objective evolutionary algorithm for

the optimization of WDNs. The model does not require any constraint handling

procedures or penalty functions as the hydraulic feasibility has been incorporated as

objective function. The approach is composed of three interactive primary modules: the

flow direction handling module was established as part of presented research; hydraulic

simulator EPANET 2 and multi-objective evolutionary algorithm NSGA II. All modules

are fully integrated and automated, thus no manual intervention is needed. Moreover,

apart from identification of initial input data (i.e. population size, crossover and mutation

rate) it does not require time consuming calibration and no high-level experience is

needed to apply the algorithm to WDN. The algorithm is capable of identifying the set

of cost – reliability optimal solutions. Additionally, the algorithm has been modified in

order to be able to handle SOC as well as MOC. Furthermore, the search space reduction

method has been incorporated into the approach. Entropy maximization is used to reduce

the algorithm searching space by limit number available pipe diameters.

1.5 LAYOUT OF THE THESIS

The thesis contains six chapters in total. Following the introduction presented herein, the

thesis is organized as follows:

Chapter 2 describes GA optimization technique, its advantages and drawbacks. Various

multi-objective algorithms employed in WDNs optimization are also reviewed. Basic
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principles of hydraulics in WDNs are presented in the literature review chapter for

completeness. Finally, the chapter also addresses different measures for reliability

assessment of WDN.

Chapter 3 introduce new penalty-free, maximum entropy based multi-objective

optimization approach for WDNs that is capable to work under multiple operating

conditions (MOC). Three different methods of designing for MOC (i.e. entropy

approaches) are investigated. The methodology is explained in detail and applied to

three well-known benchmark networks. Comparison of results for single operating

condition (SOC) and MOC with identification of the best MOC approach is

demonstrated. Moreover, novel technique for identifying POF with diversely spread

feasible solutions is presented.

Chapter 4 demonstrates the robustness of reliability based multi-objective GA proposed

in previous chapter. A case study based on real life network from Italy is used. Novel

technique for identifying POF described in Chapter 3 is also employed and its

effectiveness is highlighted. The GA performance analysis is presented.

Chapter 5 proposes novel search space reduction method to improve the convergence of

GA based on the entropy function. The methodology is presented in detail and applied to

hypothetical network as a case study. Algorithm performance is analysed to demonstrate

its robustness, consistency and efficiency.

Chapter 6 presents the conclusions from the present research and provides suggestions

for future studies.
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CHAPTER TWO

HYDRAULIC MODELLING AND DESIGN OPTIMIZATION OF

WATER DISTRIBUTION NETWORKS

2.1 INTRODUCTION

Water distribution networks (WDNs) consist various components such as pipes, pumps,

valves, water supply and tanks. All components are necessary for real world WDNs.

Their location and operation is dependent on the type of the network, layout topography

and distribution of demand nodes. Moreover, the WDNs need to be reliable systems in

order to satisfy current and future water demand at sufficient pressure and quantity.

There are many various situations that have and influence on networks performance.

This includes different loading patterns, pipe burst, network maintenance, valve

closures, pump breakage etc. For that reason, hydraulic performance of the system is

crucial for WDN design and operation. With the use of formulations of mathematical

equations, the hydraulic simulations models are carried out. They replicate the operation

of real WDN and provide information of network performance under normal and

abnormal operating conditions (i.e. fire flows, network failure or maintenance). Such

predictions are highly valuable information that assists the engineers in decision making

process.

Two different methods for WDN analysis are identified in the literature. The first one,

called demand driven analysis (DDA) is the conventional approach based on nodal
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flows. It is assumed that nodal demands are fixed and always fully satisfied at all nodes

regardless of the nodal pressures. This type of analysis provides accurate results only for

situations with sufficient pressure. In case of any pressure shortfall, which may occur

due to pump or pipe breakage, the DDA may lead to misleading nodal head demands. In

such situations, the head dependent analysis (HDA) that is based on nodal heads would

provide realistic results.

There are two types of hydraulics simulations: steady state simulation (SSS) and

extended period simulation (EPS). SSS assumes that nodal demands are constant which

is extremely unreal as demands vary with the time of the day and there are many

different loading patterns that have to be satisfied by the network. It is common practice

to use maximum daily demand, often with the fire event when designing WDNs.

Nevertheless, designing WDN based on single operating condition, even the one with

the highest possible water demand, does not ensure that other operating conditions (i.e.

pressure constraints or loading patterns) will be satisfied. EPS is more realistic in

evaluating system performance over 24h cycle as this type of simulation takes into

consideration various operating conditions and nodal demands, pumps operation, tanks

filling and emptying.

Proper evaluation of WDN capability is essential for the network to be able to supply

required amount of water despite the circumstances. Spare capacity needs to be included

while designing the WDN in order for the network to perform well under both normal

and abnormal operating conditions. As a result, the methods for network performance

assessment were developed. They can be divided into two groups: accurate measures

and surrogate measures. Hydraulic reliability and failure tolerance (Tanyimboh and

Templeman, 1998) belongs to accurate measures that determine the ability of the

network to satisfy demands. Informational entropy (Tanyimboh, 1993), resilience index

(Todini, 2000), network resilience (Prasad and Park, 2004) are examples of surrogate

measures proposed in the literature.
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Optimization of WDN design is an extremely complex problem, usually multi-criterion

called in literature as NP-hard.  DeNeufville et al. (1971) were one of the first

researchers who recognised that water design system involves at least two conflicting

objectives (i.e. cost and network performance). For many years, conflicting objectives

were often approached by aggregating the objectives into a scalar function and solving

them as single-objective optimization problem. Presently, evolutionary algorithms (EAs)

are employed for optimization of real world NP-hard problems. EAs are stochastic

search methods and well suited for such problems as they search for set of points rather

than single point (Goldberg, 1989). Through different EAs, the genetic algorithms (GAs)

are well known and widely used. GAs has been extensively employed for solving WDN

optimization problem and proved to be robust and efficient.

Due to stochastic nature of GA, the number of evaluation required to identify optimal

solution can be enormous. For the large networks, with hundreds of pipes and many

network components, it can be extremely time consuming process as the GA might

require even millions of evaluation functions. It is therefore desirable to reduce the

search space in order to speed up the optimization process.

This chapter provides a literature review for all aspects relevant to research presented

herein. Firstly, the GA optimization technique is described in detail as it has been

employed for this study. Conventional GA procedure, various processes involved and

major advantages are outlined. Several constraint handling techniques and search space

reduction methods are presented and their drawbacks highlighted. Different multi-

objective algorithms employed by researchers in WDNs optimization are reviewed.

Secondly, the fundamentals of hydraulics in WDNs are presented. Demand driven

analysis and head dependent analysis are described with shortcomings listed. Two types

of network analysis, such as steady state simulation and extended period simulation are

discussed alongside with description of different operating condition. Finally, accurate

and surrogate network performance measures are presented. Since the entropy is

employed in presented study as a network performance method, it has been described
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with more details. Several studies with correlation between hydraulic reliability and

entropy are included and discussed.

2.2 GENETIC ALGORITHMS IN WATER DISTRIBUTION

NETWORKS

Evolutionary algorithms are stochastic search techniques well suited for identifying

Pareto optimal front in multi-objective, complex optimization problems. General

principle of EAs search techniques is to mimic natural selection and genetics in order to

survive. In contrast to conventional methods such as linear programming or gradient

search EAs possesses the ability of solving non-convex, discontinuous, nonlinear

problems with discrete variables. The population of solutions is used in each iteration

rather than in single run, thus providing population of solution as outcome. Alike other

population based techniques, EAs are capable of searching different regions of solution

space simultaneously, hence increasing the possibility of finding a diverse set of

solutions. For contradicting, multi-objective problems (i.e. cost and reliability in WDN

optimization) identification of multiple optimal solutions in final population is

indispensable in WDN planning or management.

For the last decade many population based optimization techniques have been proposed

and employed for WDN design optimization. The main categories include genetic

algorithm (Holland, 1975; Dandy et al., 1996; Savic and Walters, 1997; Wu and

Simpson, 2001; Vairavamoorthy and Ali, 2005; Kadu et al., 2008 and many more),

differential evolution (Storn, and Price, 1997; Vasan and Simonovic, 2010), particle

swarm optimization algorithm (Kennedy and Eberhart, 1995; Montalvo et al., 2008), ant

colony optimization techniques (Dorigo et al., 1999; Maier et al., 2003), harmony search

(Geem et al., 2001; Mahdavi et al. (2007), shuffled frog leaping algorithm (Eusuff and

Lansey, 2003).
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Among all EAs techniques, the genetic algorithm is the best known and widely

employed for WDNs design optimization. Results published in literature prove that GAs

are efficient and capable of finding optimal or near optimal solution (Dandy et al., 1996;

Savic and Walters, 1997; Wu and Simpson, 2001; Vairavamoorthy and Ali, 2005; Kadu

et al., 2008). GAs were also applied for network design and rehabilitation (Dandy and

Engelhard, 2001), pump operation scheduling (Goldberg and Kuo, 1987), tank sitting

and sizing (Prasad, 2010) and water quality optimization (Munavalli and Kumar, 2003).

The research carried out for this thesis involved implementation of GA, therefore only

this EA technique is described in following subsections.

2.2.1 Conventional Genetic Algorithm Procedure

Genetic Algorithm (GA) is an adaptive heuristic search optimization technique that finds

approximate solutions to NP-hard problems. The GA concept was introduced by

Holland (1975) and is inspired by Charles Darwin’s natural theory of evolution. In

nature, the strongest and fittest individuals have higher chance to survive and pass their

genes in the reproduction process to the next generation. The weakest individuals extinct

in evolution process. It is expected that the population in new generation is better than

the old one. Similar rules apply to GAs.

In GA the entire process begins by creating random sets of solutions called population.

This is usually done by the user by defining random seed. Solutions, also known as

individuals, are encoded as chromosomes. Each chromosome is built from genes, which

are design variables (i.e. pipe sizes in WDN optimization). At each generation, the

chromosomes from parent population are evaluated in relation to optimization aims (i.e.

objective functions). Individuals are assigned fitness values that allow to assess how

close the chromosome is from achieving the aim. Then, the solutions are chosen for

mating pool where the reproduction phase follows. Individuals with better fitness value

have higher chances to be chosen for reproduction. Genetic crossover is applied first to
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produce offspring, which is based on genetic material from selected parents. Afterwards,

small part of offspring individuals undergo genetic mutation to preserve diversity within

population. In the next step, the individuals from offspring population are assigned

fitness value. Finally, according to their fitness, individuals are selected for the

upcoming generation and the whole cycle is repeated. The process continues until

termination condition is meet (i.e. usually when specified number of generation is

reached). The operation of a simple GA is illustrated on Figure 2.1.
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Figure 2.1 Flow chart of a simple genetic algorithm

Start

Randomly generate initial
population

Termination
condition met?

Stop
NO

YES

Evaluate fitness of initial
solutions

Select best individual
solutions for mating pool

Create offspring population
via crossover and mutation

Evaluate fitness of
offspring population

Select solutions to survive
for the next generation



Chapter 2: Hydraulic Modelling and Design Optimization
of Water Distribution Networks

14

2.2.2 Advantages of using Genetic Algorithms

Genetic algorithms have been widely used to solve real problems in various disciplines

as can solve non-continuous, multi-dimensional and non-differential problems.  Any

optimization problem, which can be described with chromosome encoding, can be

solved by genetic algorithms. As the whole concept is based on natural evolution, it is

easy to understand and does not require any information about the structure of the

function or advanced mathematical knowledge. The GA works with points of population

in parallel. Therefore, it has ability to perform a global search and reduce the chances of

being trapped in local optimal solutions. Using population based algorithm has

additional advantage as the work required to reach optimal solutions and computational

effort are reduced (i.e. optimal solutions is easier to found within the population rather

than applying the algorithm many times). Moreover, using reproductive operators (i.e.

crossover and mutation) leads to creating offspring population based on successful

parent population while the selection operator eliminates reproduction of weak solutions.

Finally, as previous studies showed, the GA has adaptability to hybridize with other

techniques to solve specific and complex optimization problem.

2.2.3 Solution Representation

Genetic algorithms works on two type of spaces, such as phenotype space (i.e. solution

space) and genotype space (i.e. coding space). Encoding is the transformation between

phenotype and genotype, while decoding means transformation from genotype to

phenotype. Chromosome encoding is the first issue that has to be addressed when the

GA is used as optimization tool. It mainly depends on the type of the problem.

Originally, the simplest binary encoding was used to represents individuals. Over the

time, different encoding methods have been developed to suit various GA optimization

problems. Based on type of symbols used to represent the values of genes, the encoding
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methods can be divided into four groups: binary encoding, real encoding, general data

structure encoding and integer permutation encoding (Gen et al., 2008).

Binary encoding is the most common, mainly because it is the most straightforward

method. Chromosomes are represented by a combination of bits 0 and 1. The binary

coding is well suited for optimization problems with discrete values as decision

variables (i.e. predefined pipe size in WDN optimization), therefore it has been used for

research presented in this thesis. Table 2.1 presents the binary code representation of

eight available pipe sizes.

Table 2.1 Available pipe sizes, corresponding binary code and gray code representation

Pipe size (mm) Binary coding Gray coding

100 000 000

200 001 001

300 011 010

400 010 011

500 110 100

600 111 101

700 101 110

800 100 111

There are two drawbacks related to binary coding in GA. The main one is the existence

of redundant codes (Herrara et al. 1998) which occur if the number of decision variables

is different than multiplier of number two. For example, for network with 6 available

pipe diameter sizes, 3-bit substring would need to be used providing 8 substring (i.e.

2^3). Therefore, 6 substrings would be assigned to decision variable while remaining 2

substring would be redundant. Besley et al. (1993) identified three different possibilities

for handling the redundant codes. First two options would be to either discard the
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redundant codes or to assign the low fitness values. Nevertheless, both methods may

lead to poor GA behaviour by losing important genetic material (Herrara et al. 1998).

Another possibility is to link the redundant codes with existing ones. This could be done

by random or fixed remapping. At random remapping the redundant codes are randomly

assigned to the valid codes. It is bias free (Eshelman et al., 1989) but there is a

possibility that less information could be passed from parents to offspring. With fixed

remapping the redundant codes are allocated to valid codes based on usually predefined

pattern. For example, the codes could be assigned to the decision variable at extreme

sides (i.e. lowest and highest decision variable), to the central decision variables or

uniformly spread to available decision variables (i.e. to every Xth decision variable,

depending on number of redundant codes and number of decision variables).

Another disadvantage related to binary encoding is the existence of Hamming cliff. The

Hamming cliff describes the situation when completely different genotypes (binary

code) represent neighbouring phenotypes (pipe sizes). For example, pipe sizes with

400mm and 500mm are assigned values of 011 and 100 in the binary code (Table 3.1).

Therefore in the phenotype domain they are neighbours whilst require three successful

bit flips in the genotype domain. Since the mutation probability is rather low, there is

small chance that all three bits will be changed at once. An effective way to solve the

Hamming cliff problem is to use gray coding, where two neighbouring substrings vary

only in one bit (Table 2.1).

In real coding, the genes are represented directly by the real numbers with unique

values. Radcliffe (1992) suggested that differentiation between phenotype and genotype

is not required for evolution, which is applicable in real coding. Since phenotype space

and genotype space have the same topological structures there is no need for encoding

on decoding process (Gen et al., 2008). Real coding is ideal for optimization problems

with continuous search space and problems with large number of decision variables,

which in binary coding would be represented by lengthy chromosomes. Real coding

GAs have been widely employed into WDN optimization. McCormick et al. (1972) and



Chapter 2: Hydraulic Modelling and Design Optimization
of Water Distribution Networks

17

Eshelman and Schaffer (1993) proved that real coding is more powerful than binary

coding for constrained problems optimization. Michalewicz and colleagues (Janikow et

al., 1991; Michalewicz, 1992) highlighted advantages in relation to GA efficiency based

on comparison between real coded and binary coded GAs. Despite the advantages of

employing real coded GA, the decision whether choose real or binary coding should be

made by the user as each of the method is appropriate and well suited for different type

of fitness functions (Goldberg, 1991 and Eshelman et al., 1993).

2.2.4 Genetic Operators

Genetic operators are key elements of GA convergence and performance as they

introduce diversity in searching the solution space. Three components, such as

crossover, mutation and selection constitute the genetic operators. Mutation and

crossover allow the GA to make changes within chromosomes from one generation to

the next one and provide better exploration and exploitation of the searching space. The

selection operator leads the search into areas with better solutions.

2.2.4.1 Genetic Crossover

Crossover is the principal operator in reproduction phase. It leads the population to

converge on the best solutions found, thus exploiting and concentrating on specific point

or direction. Crossover involves the exchange of genetic material of two parents to form

two new offspring individuals. Among all chromosomes within population parents with

preference towards fitness are chosen. By doing so, it is expected that the new offspring

will retain the good genes from their parents. The simplest and basic crossover, called

single point crossover takes place when one point is selected and the binary string up to

the crossover point is copied from one parent while the rest of the chromosome is taken

from second parent. Single point crossover is illustrated in Figure 2.2. Analogously, two
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point or multiple point crossover could be applied. There are also many different

crossover operators. For example, uniform crossover where fixed mixing ration is used

between the parents or arithmetic crossover where some arithmetic operations need to be

performed in order to make offspring. For the research presented herein single point

crossover has been used.

Crossover point

1 0 1 1 0 1

Parent string

1 1 0 1 1 0

1 0 1 1 1 0

Offspring

1 1 0 1 0 1

Figure. 2.2 Operation of single point crossover

The number of chromosomes that undergo crossover depend on the ratio of amount of

new chromosomes produced (i.e. offspring) to the population size and is called

crossover probability. Higher crossover probability allows exchanging more

chromosomes thus the GA can explore more of the solution space. Moreover, it reduces

the chances of being trapped in local optima.

2.2.4.2 Genetic mutation

Unlike the crossover, the role of mutation is to widen exploring space by introducing

random change within chromosome at the gene level. This reintroduces genetic

diversity, allows the algorithm to look in different directions and protects it from being

trapped at local optima. Number of genes that undergo mutation depend on chromosome

length and is usually very low value. Too high mutation probability will lead to random

process and hold back the algorithm from quick convergence. Different kind of

mutations can be performed, such as inversion mutation, displacement mutation,
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directional mutation etc. Figure 2.3 illustrates single point mutation where single bit is

randomly flipped within the chromosome.

Selected bit Mutated bit

1 0 1 1 0 1 1 0 1 0 0 1

Figure 2.3 Operation of the single point mutation

2.2.4.3 Genetic Selection

The genetic selection is a process to determine which solutions are to be preserved and

allowed to reproduce and which should be eliminated. The main objective of selection

operator is to emphasise the good solutions and exclude the bad solutions in the

population, while keeping the same number of individuals within population. Hence, it

directs the GA search towards promising region in search space. The process is

dependent on the selection pressure defined as degree to which the better solutions are

favoured (Back et al., 2000). The GA convergence is highly dependent by selection

pressure as higher selection pressure reflects in quicker convergence. To avoid

premature convergence the lower selection pressure is desirable at the early stage of

genetic search, in order to widely explore the search space and keep diversity in the

population. At the end of the genetic search, the higher selection pressure is preferred to

narrow the searching space. Application of appropriate selection pressure allows

preserving a good balance between exploration and exploitation necessary for

optimization problem (Goldberg and Deb, 1991). There are few different techniques to

implement the selection operator into GA however, the roulette wheel selection and

tournament selection are the most common and widely used.

Holland (1975) proposed the roulette wheel selection, also known as proportional

selection. Each individual in the population has the specified surface on the roulette



Chapter 2: Hydraulic Modelling and Design Optimization
of Water Distribution Networks

20

wheel. The area occupied by solution is proportional to its fitness, so individuals with

better fitness have larger area, thus higher chance for selection. Number of rotation of

roulette wheel will be equal to the number of individuals in the population. Goldberg

and Deb (1991) pointed out that this method increases the chance of losing genetic

diversity within population, thus making the algorithm to converge prematurely.

The tournament selection has been developed by Goldberg and Deb (1991). Specified

number of solutions are randomly chosen among the population. Their fitness is

compared and the best individuals (i.e. highest fitness value) are selected for mating

pool. The tournament process continues until the mating pool is sufficiently filled. Major

advantage of using tournament selection is its flexibility, as the selection pressure can be

easily adjust by changing the tournament size. Smaller tournament size increase the

possibility of choosing the individuals with lower fitness value whilst higher tournament

size results in a mating pool consisting higher number of fitter individuals.

2.2.5 Constraints Handling Techniques

Evolutionary algorithms are unable to distinguish feasible and unfeasible solutions

simply because those optimization techniques were designed to deal with unconstraint

problems. For that reason GAs are incapable of handling the constraints directly. Since

majority of optimization issues are constraints problems, few different methods has been

identified to convert the constraint problem into unconstraint. Michalewicz (1995)

grouped existing techniques into four strategies: repairing strategy, modifying strategy,

rejecting strategy and penalizing strategy. The most common practice is to penalize

infeasible solutions in order to reduce their fitness. Penalizing strategy require

incorporating penalty cost applied to the actual cost of WDN for the infeasible solution

(Savic and Walters, 1997). The penalty cost is a function of constraint violation and

penalty multiplier. Greater constraint violation reflects in higher penalty cost, thus

higher chance that solution will be rejected in the next generation. However too high
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penalty cost restrict the search to the feasible region whilst completely avoiding region

with infeasible solutions. It is not desirable as searching through feasible and infeasible

regions improves the GA efficiency and identify better solutions than searching through

feasible regions only (Glover and Greenberg, 1989). Moreover searching through

feasible region only will result in very expensive solutions. On the other hand, low

penalty cost will mislead algorithm to rank with similar fitness value the feasible and

infeasible solution, thus the search could be confined toward infeasibility region.

Adjustment of suitable penalty parameters is complicated task and require extensive

fine-tuning before it can be efficiently incorporated into the algorithm.

Researchers endeavour to address the issue related to penalty function. Deb (2000), also

Prasad and Park (2004) incorporated method for constraints handling in which the

penalty coefficient is not required. This method employs the tournament selection

operator wherein feasible solutions are favoured over infeasible. In case of infeasible

designs the one with smaller constraint violation is chosen, whilst for two feasible

individuals the one with better fitness value is selected. Major drawback of this approach

is that the solutions with high cost will be preferred over cost effective, slightly

infeasible designs that could be satisfactory in practice.

Farmani et al. (2005) developed self-adaptive method that involve application of two-

stage penalty but does not require any parameter calibration. Firstly, the highly

infeasible solution is assigned penalty cost equal or higher to the cost-efficient feasible

design. Then, the penalty cost of that infeasible solution is further increased to the cost

of the most expensive design. Penalty costs for remaining infeasible solutions are

calculated exponentially in proportion to their infeasibility. This approach can lead to

situation when the search will direct to infeasible region, as the low-cost infeasible

solutions might be selected over feasible designs with higher cost.

Wu and colleagues (Wu and Simpson, 2002; Wu and Walski, 2005) developed self-

adaptive penalty method that lead the GA to search the boundary of feasibility.
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Nevertheless, several additional parameters have to be calibrated in advance in order for

the approach to be implemented.

Khu and Keedwell (2005) avoid function penalizing by converting the nodal pressure

constraint into objective function. Such method imposes unnecessary complications,

calculations and computational burden, which will increase with the increasing number

of nodes.

2.2.6 Search Space Reduction

The population size, genetic operators, encoding type and other parameters have direct

impact on GA performance. However, there is no doubt that number of commercially

available pipes and the size of the network have the greatest influence on GA search, its

productivity and efficiency. Larger network with more candidate pipe sizes reflect in

wider searching space, thus increase computation time required to achieve convergence

and reduce the chances for reaching global optimum. For the real world networks, with

hundreds of pipes and many network components, it can be extremely time consuming

process as the GA might require even millions of evaluation functions. By limiting the

number of candidate pipe sizes the search space can be greatly reduced. For example,

the hypothetical Six-Loop network (Tanyimboh and Sheahan, 2002) that consist  17

pipes and 12 candidate pipe diameters have a search space of (12)17 or 2.218×1018.

Eliminating one candidate pipe diameter gives a search space of (11)17 or 5.054×1017,

thus reduce it by over 77%. Nevertheless, reduction of candidate pipe diameters has to

be done in very careful manner as selection of unsuitable candidate pipes may reflect in

locating in sub-optimal solutions.

Vairavamoorthy and Ali (2005) presented search space reduction methodology by

eliminating candidate pipe diameters based on pipe index (PI). The index is used to

measure the impact of the pipe on the hydraulic performance and the importance of the
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pipe in relation to the whole network. Based on the PI, tighter bound constraints are

applied, thus unnecessary sections with infeasible designs can be excluded from the

search space. The process is divided into few steps. Firstly, the PI is calculated for each

pipe in the network. Secondly, based on PI, the pipes are ranked and divided into groups.

Then the initial population is generated.  During the GA search, the entire process of

calculating PI has to be repeated many times. Since it is highly complex calculation that

involve system of linear equations with right hand term it could impose unnecessary

computational burden, especially if large network is considered.

Kadu et al. (2008) highly reduced GA search space by using critical path concept for the

design of WDN (Bhave, 1978). The method is rely on assumption that the cheapest

option to deliver water from the source to the demand node is through the shortest path.

The looped network is converted into branched network and continuous pipe diameters

are obtained for each link of the network. Then, based on the continuous pipe size the

closest available commercial pipe size is selected. Subsequently, additional two nearest

pipes with higher diameters and two nearest pipes with lower diameters are added thus

giving five pipe diameters in total. Employing critical path method allow to reduce the

search space substantially, however determining the shortest path may be complex

problem itself, especially if the network considered is highly looped with multiple

sources and many pipes. More importantly, presented path concept is very limited, as it

is unsuitable for networks with components like pumps and tanks, or for network

working under multiple operating conditions.

Haghighi et al. (2011) proposed hybrid optimization scheme by connecting the GA with

Integer-Linear Programming (ILP). The approach requires transforming looped network

into quasi branched, in order to define a path from a source to each demand node.

Hereby, a single pipe from each loop is excluded and called as ignored pipe. The ignored

pipes are optimized by GA whilst ILP optimize all other pipes (i.e. the pipes that are part

of branch network). Afterwards, the ILP returns the optimal pipe diameters to the GA

and the evolution process in carried on until reaching termination criteria. The approach



Chapter 2: Hydraulic Modelling and Design Optimization
of Water Distribution Networks

24

has been applied to two networks from literature. In both cases great search space

reduction has been recognised. Nevertheless, the approach has been applied to the

network with single demand operating condition.

2.2.7 Review of Multi-Objective Genetic Algorithms used in Water

Distribution Networks

The genetic algorithm belongs to population based search techniques, hence they are

capable of searching different regions of solution space simultaneously. This feature

makes them are well suited for complex multi-objective optimization problems. Several

various multi-objective evolutionary algorithms (MOEA) have been developed in last

two decades. Few different classification of MOEA can be found in the literature. Gen et

al. (2008) grouped algorithms based on fitness assignment while Deb (2001) classified

the MOEA as non-elitist and elitist. Elitism is the extremely important feature that

favours the best solutions of a population by keeping them intact for next generation.

Therefore, the fittest candidates will not be lost in optimization process even if found at

early stage and helps in achieving better convergence (Zitzler et al., 2000). Vector

Evaluated Genetic Algorithm (Schaffer, 1985), Vector-Optimized Evolution Strategy

(Kursawe, 1990) Multi-Objective Genetic Algorithm (Fonesca and Fleming, 1993),

Weight-Based Genetic Algorithm (Hajela and Lin, 1992), Non-Dominated Sorting

Genetic Algorithm (Srinivas and Deb, 1994) belongs to non-elitist evolutionary

algorithm. Examples of elitism MOEAs include Elitist Non-Dominated Sorting Genetic

Algorithm (Deb et al. 2002), Distance based Pareto Genetic Algorithm (Osyczka and

Kundu, 1995), Strength Pareto Evolutionary Algorithm (Zitzler and Thiele, 1998),

Pareto-Archive Evolution Strategy (Knowles and Corne, 2000).  Few MOEA, widely

used in WDN were chosen and described below in more details.
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2.2.7.1 Vector Evaluated Genetic Algorithm

Schaffer (1985) proposed the first real implantation of MOEA called Vector Evaluated

Genetic Algorithm (VEGA). It is the most straightforward and simplest extension of

single objective evolutionary optimization. VEGA is based on vector evaluation, with

each element of the vector describing each objective function. In each generation, the

population is divided randomly into equal subpopulation. The number of subpopulation

is equal to number of objective functions and individuals in particular subpopulation are

assigned fitness based on corresponding objective function. The mating of subpopulation

is performed by applying crossover and mutation. The major drawback of this MOEA is

that each solution is evaluated and tested only for one objective function. Whereby the

method is capable of identifying Pareto optimal solutions but does not maintain diversity

of solutions in Pareto optimal front.

2.2.7.2 Strength Pareto Evolutionary Algorithm

Strength Pareto Evolutionary Algorithm (SPEA) has been developed by Zitzler and

Thiele (1998). The elitism function is introduced by preserving the non-dominated

solutions in external population. The fixed number of non-dominated solution is stored

from the beginning of the simulation run. After each generation newly chosen non-

dominated solutions are compared with stored solutions in order to identify the overall

non-dominated designs that later are preserved. Moreover, solutions kept in external

population are also engaged in genetic operators alongside with solutions from current

population. In order to maintain elitism functionality and direct the search towards

global optimum there has to be good balance between number of solutions in current and

external populations. If the external population will be too small in relation to current

population, the elitism may be lost. Whilst having too large external population could

hold back the algorithm from converging to the Pareto optimal front.
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2.2.7.4 Elitist Non-Dominated Sorting Genetic Algorithm

Deb et al. (2002) proposed Elitist Non-Dominated Sorting Genetic Algorithm (NSGA

II). The NSGA II not only includes elitism functionality but also mechanism that

preserves diversity among Pareto optimal solutions. Firstly, the random parent

population is generated. To create offspring population the mutation and crossover are

applied. The offspring and parent populations are combined together and undergo non-

dominated sorting. This step ensures elitism by preserving previous and current best

individuals. Non-dominated sorting involves dividing results into different fronts and

assigning fitness values (i.e. ranks). The first front is non-dominated with the highest

fitness value. The second front has assigned second best fitness value and its individuals

are dominated by individuals from first front. This goes on until all results have

designated fitness values. In addition, the crowding distance is calculated in the

objective space for each solution. Crowding distance is a measure of distance between

neighbouring individual. High crowding distance means that individual is from less

crowded area, thus having such solutions results in better diversity. Based on fitness

values and crowding distance of the last front, the best individuals are chosen. The next

generation is formed by selecting non-dominated with the highest rank and then

subsequent non-dominated fronts in order of their ranking. In case if last accepted front

has more results than required, the individuals are chosen based on crowding distance

(i.e. results with higher crowding distance will be selected). Therefore, created

population include best possible individuals ensuring diversity among solutions.  The

process is repeated in subsequent generations until reaching termination criteria.

Many researchers in various disciplines employed the NSGA II for solving the

optimization problems. Comparisons of NSGA II and other evolutionary techniques can

also be found in the literature. Deb et al. (2002) has tested NSGA II, PAES and SPEA

on nine difficult problems. NSGA II outperforms other methods by achieving better

convergence and the most diverse spread of solutions in POF. Farmani et al. (2003)
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applied SPEA and NSGA II into two hypothetical and one real world WDN. The results

indicate that both method are capable of identifying Pareto sets.

In WDN optimization the NSGA II is one of the most popular multi-objective

evolutionary algorithm. Majority of the WDN research that employ NSGA II relates to

design optimization through pipe sizing. However, different measures for network

reliability are sometimes included into optimization as objective function (Prasad and

Park, 2004; Farmani et al., 2006; Saleh and Tanyimboh, 2013, 2014). Farmani et al.

(2006), Prasad (2010), Siew and Tanyimboh (2011) employed NSGA II to optimize the

design and upgrade the complex benchmark network called “Anytown”. The problem

involved pump scheduling, tank sitting and sizing and multi-operating conditions.

Farmani et al. (2006) additionally included water quality, whilst Siew and Tanyimboh

(2011) introduced boundary search techniques to focus the search on feasibility region.

Optimal design and rehabilitation of WDN by minimization of network whole life cost

and maximization of network performance was presented by Jayarama and Srinivasan

(2008). Siew and Tanyimboh (2012) proposed penalty-free multi-objective evolutionary

approach with head dependent analysis (HDA). Moreover, Siew et al. (2014) extended

the approach for the whole life design and rehabilitation. The model took into

consideration initial cost, rehabilitation, upgrading cost, repairs and pipe failures as well

as deterioration over time. In the area of water drinking safety, Preis and Ostfeld (2008)

and Weickgenannt et al. (2010) concentrated on contamination detection in WDN by

optimizing sensor placements, whilst Jeong and Abraham (2006) focused on

minimization strategy of the consequences of intended attack on WDN. Very recently,

Salah and Tanyimboh (2013, 2014) proposed multi-objective optimization algorithm for

layout, design and reliability optimization of WDN. The approach combines three

models: NSGA II as optimization algorithm, hydraulic simulator and algorithm

developed for topology confirmation. Barlow and Tanyimboh (2014) presented memetic

algorithm that consist NSGA II hybridised with local and cultural improvement

operators.



Chapter 2: Hydraulic Modelling and Design Optimization
of Water Distribution Networks

28

Based on many different and difficult test problems associated with WDN, it can be

concluded that NSGA II is robust, efficient and effective multi-objective evolutionary

method. For that reason, the NSGA II was chosen as the optimization algorithm for

research presented in this thesis.

2.3 HYDRAULIC ANALYSIS OF WATER DISTRIBUTION

NETWORKS

2.3.1 Governing Hydraulic Equations

Primarily principles related to hydraulic analysis in WDN is the conservation of mass

and energy. Principle of conservation of mass leads to continuity equation. For steady

flow process the nodal inflow equals nodal outflow. The equation can be written as

j
Njoutij

ij
Njinij

ij QQQ 



)()(

Nj ,...,1 (2.1)

where is N the number of nodes on the network, Qij is the inflow for )(Njinij and

outflow for )(Njoutij at node j; jQ is demand supply at node j.

Head loss equation arises from conservation of energy principle. For the looped

network, the head loss in pipes composing one loop has to be equal to zero. Thus, the

head loss equation can be formulated as follows:

0
 lpIJij

ijh Nllp ,...,1 (2.2)
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where IJlp stand for a loop of closed pipe cycle; hij the head loss in pipe ij and Nl is the

number of loops in the network and can be received from subsequent equation

1 NnNNl (2.3)

where N represents number of links in the network, while Nn is the number of nodes.

The total head loss for path in WDN must be equal to the difference in heads between

starting nodes and ending nodes. The equation can be described as follows:

ji
IJij

ij HnHnh
p




IJij (2.4)

where Hi and Hj are the hydraulic gradient level at nodes i and j respectively; IJ is the set

of all links in path p.

The pipe head loss can be expressed in various empirical formulae. In reality, three are

mainly used to calculate the head loss presented in Eq.2.2 (Bhave and Gupta 2006). The

widely known are Darcy-Weisbach equation, Hazen-Williams equation and Chezy-

Manning equation are presented in Eq. 2.5, Eq. 2.6 and Eq. 2.7 respectively
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where fij is the Darcy-Weisbach friction factor in pipe ij; Lij, hij, Dij are respectively

length in meters, head loss in meters and diameters in meters for pipe ij; Qij is the flow
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rate in pipe ij in cubic meters per second; g is gravitational acceleration; ƞHW and ƞChM

stands for Hazen-Williams dimensionless conversion factors (10.67 in SI unit) and

Chezy-Manning dimensionless conversion factor (10.29 in SI units), respectively; CHW

and CChM are Hazen-Williams roughness coefficient and Chezy-Manning roughness

coefficient respectively.

The head loss hij could also be expressed using pipe resistance coefficient for pipe ij and

described as

nf
ijijij QKh  ij (2.8)

where Kij is the pipe resistance coefficient for pipe ij; nf is the flow exponent equal to

1.852 for Hazen-Williams and 2 for Darcy-Weisbach and Chezy-Manning.

2.3.1.1 Formulation of Hydraulic Equations

Basic hydraulic equations (i.e. constitutive equations) can be defined in various ways. In

general, there are three unknown variables: pipe flow rates, nodal heads and loop-flow

corrections. Hydraulic equations with pipe flow rates as unknown variable are also

described as q-equations (Bhave, 1991). Equation representing the flow continuity

(Eq.2.1) and the head loss equation (Eq. 2.2) can represents the q-equations.

Hydraulic equations with nodal heads as unknown variable, also known as H-equations

(Bhave, 1991) can be presented by rewriting the continuity equation (Eq. 2.1)
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where Nj stands for the nodes connected to node j. In case of H-equations, the loop or

path equations are not needed. However, there number of continuity equations will be

equal to the number of unknown nodal heads, whilst one nodal head will be known (i.e.

usually fixed head at source node).

Hydraulic equations with loop-flow correction as unknown variable (Qij) are also

described as ∆Q-equations (Bhave, 1991). Firstly, it is assumed that initial pipe flow

satisfy the flow rate continuity formulation presented in equation 2.1. Then, pipe flow

rates are adjusted iteratively by correcting the loop-flow at each loop based on equation

expressed as




 
ijll

k
l

k
ij

k
ij QQQ 1 lij (2.10)

where Qk
ij is the corrected flow rate; Q ij

k-1 is the estimated flow rate; ∆Ql
k is the loop-

flow correction used for all pipes from loop l; ∑∆Ql
k is the total correction of all loops

with pipe ij; lij means number of loops sharing link ij.

Having loop-flow correction (∆Ql
k) unknown, with the use of head loss equation (Eq.

2.2), the ∆Q-equations can be presented
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where IJl represents all the pipes in loop l and Nl is the total number of loops in the

network. The ∆Q-equations can be solved at the same time using repetitive scheme.
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2.3.2 Demand Driven Networks Analysis

Demand driven analysis (DDA) method assumes that nodal demands are fixed and

always fully satisfied at all nodes regardless of the nodal pressures. In reality, nodal

outflows are actually dependent on nodal pressure. If the nodal pressure gets lower than

minimum required level, the flow will be reduced, thus nodal demands may not be

satisfied in full. Therefore, the DDA method is capable of analysing WDN only under

normal conditions. In case of any pressure shortfall (i.e. pipe or pump breakage, fire

flow conditions, network maintenance), the DDA may lead to inaccurate and misleading

nodal head results. In such situations, the relationship between pressure and outflow

should be taken into consideration and the analysis where nodal demands are dependent

on nodal pressure (i.e. head dependent analysis), would be more practical. Nevertheless,

due to simplicity of using the DDA method, it is still widely used in water industry.

There are four different methods for solving the DDA, such as: Hardy-Cross method

(Cross, 1936), Newton-Raphson method (Martin and Peters, 1963), Linear Theory

method (Wood and Charles, 1972) and Global Gradient method (Todini and Pilati,

1988). Detailed explanations and equations of those methods can be found in textbooks,

however the Global Gradient method in presented herein for completeness.

2.3.2.4 Global Gradient Method

Todini and Pilati (1988) proposed Global Gradient Method (GGM) that simultaneously

obtain values of nodal heads and pipe flow rates. Additionally, the gradient method

directly obtains amended values of nodal heads and pipe flow rates in the head loss

formula, i.e. k
i

k
i

k
i HHH 1 and k

ij
k
ij

k
ij QQQ 1 respectively. Moreover, like in

other linear theory method, the GGM does not need satisfying the continuity equations

at all nodes in order to start the process. The pipe flow rates and nodal heads are the

unknown for the Q-H equations. Taylor’s series are used to linearize the non-linear

functions. Thus, the non-linear head loss equation for the kth iteration can be presented as
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Rewriting and rearranging the above equation (Eq. 2.12) for the corrected nodal heads

Hi
k+1 and Hj

k+1 leads to
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Substituting corrected pipe flow rate Qij
k+1 to Qij

k+∆ Qij
k in Eq. 2.13 yields to system of

linear equations that combine the corrected values of nodal heads and pipe flow rates

and could be described as

    ff nk
ijijf
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k
i QKnQQKnHH 

 1
111 ij (2.16)

Linear continuity equation can be presented in terms of corrected pipe flow rates as

follows:

0


j
jij

k
ij QQ 1,...,1  Nj (2.17)

Corrected nodal heads and pipe flow rates can be obtained by solving Eq. 2.16 and

Eq. 2.17 simultaneously. The pipe flow rates Qij
k can be set to unity or randomly chosen

value. With the progression of iteration, the variations in values for nodal heads and pipe

flow rates become negligible.



Chapter 2: Hydraulic Modelling and Design Optimization
of Water Distribution Networks

34

Global gradient method proposed by Todini and Pilati (1988) is incorporated in

hydraulic simulation software called EPANET 2 (Rossman, 2000). EPANET 2 is well

known and widely used in designing water distribution piping system. It is DDA

simulator that can handle any size of the network and carry out steady state analysis as

well as extended period simulation. EPANET 2 computes friction head loss along the

pipes by using one of the three common formulas (i.e. Hazen-Williams, Chezy-Manning

or Darcy-Weisbach). In addition, minor head losses for bends and fittings are included in

the software engine. EPANET 2 computes pumping energy and cost. The pumps are

modelled using a head-flow curve. It is capable of modelling several types of different

pumps, and with a constant or variable speed. It has also capabilities for modelling

different types of valves and pressure-dependent flow at sprinkles. Tank sizing

functionality (i.e. diameter depending on the tank height) is also included in EPANET 2.

Apart from hydraulic modelling, the EPANET 2 provides also wide range of water

quality modelling capabilities. It allows user to monitor the age of water through a

system and analyse the movement of non-reactive material through the network as well

as reactive materials that spreads in the system through the time. Global reaction rate

coefficient that can be modified on pipe-by-pipe basis is also included. EPANET 2

engine provide opportunity to track percentage of flow from given node reaching others

nodes through time and allows growth or decay reactions to proceed up to limiting

concentration. Recently, Siew and Tanyimboh (2012) proposed a pressure dependent

analysis extension, called as EPANET-PDX. It is based on EPANET 2 model with all its

functionality (i.e. hydraulics, extended period simulation, water quality, demand driven

analysis). EPANET-PDX has a logit pressure dependent function (Tanyimboh and

Templeman, 2004 and 2010) that provides realistic results for network simulations with

pressure shortfall. Tanyimboh and Templeman (2004, 2010) logit function is described

in details in subsection 2.3.3.

EPANET 2 is available as an external stand-alone software as well as an open-source

Programmer Toolkit. The toolkit is a dynamic link library (DLL) with more than 50



Chapter 2: Hydraulic Modelling and Design Optimization
of Water Distribution Networks

35

functions that allows researcher to customize EPANET for their own needs. For

purposes of research presented in this thesis, the EPANET toolkit has been used.

2.3.3 Head Dependent Analysis

Head dependent analysis (HDA) method takes into account the pressure-dependent

nature of flows. Relationship between nodal head and nodal outflow is considered which

imply realistic representation of network deficiency. The greatest advantage of using

HDA over DDA is its ability to identify the pressure deficient nodes in which the nodal

demand is not fully satisfied. Therefore, unlike the DDA, the HDA will provide real

nodal heads values in pressure deficiency situations. Over the years, several functions

have been proposed for pressure dependency of nodal consumption.  All of the functions

are based on pressure-outflow relationship concept that nodal demand is satisfied if the

nodal head is equal or higher than nodal required head. Few of the HDA functions are

presented below.

Wagner et al. (1988) and Chandapillai (1991) proposed parabolic function of nodal

outflow and pressure that can be expressed as

  enreq
ii

des
i QRHH  min (2.18)

where Ri represents the resistance coefficient, ne is an exponent parameter which value

can vary from 1.5 to 2 (Gupta and Bhave, 1996). Therefore
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0iQ min
ii HH  (2.21)

where Qi is available outflow that can be delivered by the system at node i; Qi
req is the

require demand or supply at node i; Hi is the actual head at node i; Hi
min is the nodal

head at node i below which the outflow is zero (i.e. in practice Hi
min is usually take as

nodal elevation); Hi
req is the required head at node i for fully satisfying the demand.

Germanopoulos (1985) proposed approximation of nodal flow for a pressure deficient

network according to the following equation
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where Pri is the available pressure at node i; Pri
* is the pressure at which proportion of

the required demand of node i is satisfied; bi and ci are coefficient which need to be

calibrated for node i. For the situation when the field data are not available, bi and ci are

taken as 10 and 5 respectively, while Pri
* is taken as a head to satisfy 93,2% of the

required nodal demand. Eq.2.22 has disadvantages as Qi≠0 for Hi=Hi
min and Qi≠ Qi

req for

Hi= Hi
req.

Gupta and Bhave (1996) proposed an improved version of Eq.2.22 that satisfies above-

mentioned disadvantages. Their equation can be presented as
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Fujiwara and Ganesharajah (1993) suggested method where pressure dependent outflow

is considered. The function has a complex form but is capable to analyse any WDN and

can be presented as follows:



Chapter 2: Hydraulic Modelling and Design Optimization
of Water Distribution Networks

37

  
  





 req

i

i

i

i

H

H

req
ii

H

H

req
ii

req
ii

dHHHHH

dHHHHH
QQ

min

min

min

min

req
iii HHH min (2.24)

Tanyimboh and Templeman (2004, 2010) proposed nodal outflow function, which is

based on a Logit function. Tanyimboh function provides smooth transition between zero

and partial nodal outflow and between and partial and full demand satisfaction.

Therefore, there are no discontinuities in the function or derivatives, which is enormous

advantage if compared with other head-outflow functions. Tanyimboh and Templeman

equation (2004, 2010) can be described as
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where αi and βi are essential parameters in determining the flow and need calibration

from field data. Those two parameters determine the shape of the function curve.

Therefore, if the field data are not available, Tanyimboh and Templeman (2010) advised

substituting the demand satisfaction ratio (DSR) value with 0.01 for situation when

Hi<Hi
min and 0.999 if Hi= Hi

req.

When rearranged, Eq. 2.25 can also be presented as
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where Qi/Qi
req is the nodal demand satisfaction ratio and can have value between zero

and 1.0. The relationship between DSR value and nodal head can be presented as

follows:

req
ii HH  if 1DSR (2.27)

min
ii HH  if 0DSR (2.28)
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req
iii HHH min if 10  DSR (2.29)

In other words, if the DSR equals 1.0 the nodal demand is fully satisfied. When DSR

value is between 1 and 0 then nodal demand is partially satisfied and for DSR equals

zero there is no nodal outflow.

Tanyimboh and Templeman (2010) developed prototype FORTRAN computer program,

which is based on pressure dependent analysis methodology. Program for the Realistic

Analysis of the Availability of Water in Distribution Systems (PRAAWDS) generate

simulations that are more realistic for pressure deficiency scenarios than DDA simulator.

PRAAWDS provides a choice of four different head-outflow relationships functions for

running HDA simulation. These include Germanopoulos-Gupta- Bhave (Gupta and

Bhave, 1996), Wagner et al. (1988), Fujiwara and Ganeshrajah (1993) and Tanyimboh

and Templeman (2004). Apart from running HDA, there is also possibility to run

conventional DDA simulation. Moreover, there is built-in feasibility evaluation feature

that allows to verify the results achieved by using HDA simulator. PRAAWDS has been

tested in several studies where the network performance measures (i.e. hydraulic

reliability and failure tolerance) that require HDA were employed. Published results

(Setiadi et al., 2005, Tanyimboh and Setiadi, 2008a and 2008b) prove that it is very

robust and provide accurate results. PRAAWDS has been employed for research

presented in this thesis in order to calculate hydraulic reliability and failure tolerance.

2.3.4 Types of Hydraulic Simulations

2.3.4.1 Steady State Simulation

Steady state simulation refers to a condition of the system whose water demands,

reservoir and tanks levels remain constant. In other words, it could be compared to

snapshot taken over the 24h period. This type of analysis does not reflects the real
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network operation through the day as demands, water levels in tanks or pump cycling

will change over the time. Steady state simulations are widely used for designing WDN

as do not require too many data and can identify required network layout and pipes

sizes. However there are numerous cases when steady state modelling is rather limited

(i.e. checking tank volumes, valves operation, analysing energy consumption), thus

simulating WDNs over the time period is necessary.

2.3.4.2 Extended Period Simulation

Extended period simulation (EPS) can be done by linking steady state simulations. It

allows keeping track of demand fluctuations, pump operation or tank water level. EPS

can be launched for any duration of time, depending of the type of analysis required. In

majority of cases, the EPS is run for 24h period, mostly because substantial fluctuations

in demands vary on daily pattern. However, for water quality evaluation, longer period,

such as few days will probably be used. Relevant expression related to EPS is the

hydraulic time step (i.e. time interval). The time step is the length between steady state

simulations. It usually varies between 10 minutes to 1 hour. It is assumed, that between

the time steps the nodal demands remain constant while water level in tank can change.

An EPS is more realistic than steady state simulation and provide better understanding

of WDN behaviour (i.e. how water demand vary through the day and how the tank water

level changes over the time). Moreover, the optimization of pump scheduling or tank

sizing and sitting cannot be done without EPS.

2.3.5 Loading Conditions

2.3.5.1 Single Loading Patterns

Most of the work done so far is based on single operating condition, usually maximum

daily demand. For many years it was thought that if network satisfy highest daily
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demand it will satisfy other conditions as well. Alperovits and Shamir (1977) suggested

that when designing the WDN, not only maximum daily demand and fire flow should be

included, but also the minimum demand periods have to be considered. Vamvakeridou-

Lyroudia et al. (2005) stated that any solution, which will work well for peak loading,

should also be good enough for normal day operating, thus there is no need to check the

minimum pressure constraint for normal loading. Prasad (2010) proved that pressure

constraints have to be considered for all loading patterns. He showed that even if the

solution satisfy pressure at peak loading and emergency conditions, the tank could

remain empty causing pressure deficiency at demand nodes.

2.3.5.2 Multiple Loading Patterns

Predominantly considered loading patterns are as follows:

(a) Maximum daily demand – the highest demand over 24h period. Quite often

referred as critical demand, as it is largest demand to be supplied without

using storage.

(b) Peak hour demand – very important loading for large WDN. Maximum day

demand usually occurs in the evening of the maximum day.

(c) Average daily demand – the average rate of demand for average day.

(d) Minimum daily demand – called also replenishment simulation. Minimum

loading pattern is the situation when water consumption is at its lowest level

and the tanks are filled.

(e) Fire flows – depend on type of community (i.e. industrial estate would

require higher supply than rural area).

(f) Emergency conditions – unplanned situations (i.e. major pipe breakage or

power failure) and maintenance activities.
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In most cases, either the peak demand or maximum day demand is treated as primary

operating condition. Based on this demand and applying demand multiplier or peaking

factor, other loading patterns could be calculated.

2.4 PERFORMANCE ASSESSMENT OF WATER DISTRIBUTION

NETWORK

The primary objective considered whilst designing the water distribution network

(WDN) is the cost minimization alongside with ensuring enough water at required

pressure at demand nodes. Chosen solution would have the cheapest possible pipe sizes

while satisfying consumers demand. However, it refers to situation when all network

components are considered as available, so there is no disruption or failure. In reality,

there is high chance that some networks elements will be unavailable due to breakage or

deterioration over time (i.e. pipe breakage, pump failure). In such case, the network with

smallest and cheapest pipe sizes will most probably not be able to meet required criteria

in terms of demand or pressure. Therefore, some spare capacity need to be included

while designing the WDN in order for the network to perform well under both, normal

and abnormal operating conditions. For that reason, network performance assessment

has become equally important as the cost reduction. The methods for performance

assessment of WDN can be classified into two groups: accurate performance measures

and surrogate performance measures.

2.4.1 Accurate Performance Measures

Hydraulic reliability and failure tolerance are considered to be correct measures of

robustness of the design as they determine the ability of network to satisfy demands

under normal and abnormal conditions.



Chapter 2: Hydraulic Modelling and Design Optimization
of Water Distribution Networks

42

2.4.1.1 Hydraulic Reliability

Since there is no general or commonly agreed definition of reliability, the reliability

definition used in this thesis is adopted from Tanyimboh and Templeman (2000) and it

is defined as the ability of the system to fulfil on average the required nodal demands at

adequate pressure whilst considering both normal and abnormal operating. The equation

is usually applied to peak or critical loading conditions when demands are constant and

can be written as
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where R represents the hydraulic reliability; M is the number of links in the system i.e.

pipes, pumps and valves; p(0)=a1a2a3…am stands for the probability that all links are in

service; am is the probability that link m is in service at any given time; pm=p(0)(um/am)

is the probability that only link m is not in service; um=1-am is the probability that link

m is unavailable; p(m,n)=p(0)(um/am)(un/an) is the probability that only links m and n are

not in service; T is the sum of the nodal demands; T(0) means that total flows supplied

with all links are in service; T(m) is for the situation when only link m unavailable and

T(m,n) when links m and n out of service.

The pipe availability am can be calculated using several formulae from literature.

However for the results presented in this thesis formula developed by Cullinane et al.

(1992) was used.
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where Dm is diameter of pipe m in inches.
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Eq. 2.30 contains two main parts (i.e. the two pairs in large parentheses). The first part

indicates total demand that is satisfied on average. However, in reality, it is impractical

and time consuming to calculate all possible compositions of components failure. Thus,

the calculation of first part of Eq. 2.30 underestimates the actual reliability. The second

part of Eq. 2.30 corrects the underestimation from first part. Moreover, since the cases

with two links out of service are unlikely to happen, thus such scenarios are usually not

computed. Likewise, results presented herein are based on situations when only one pipe

is out of service at any given moment.

2.4.1.2 Failure Tolerance

The pipe failure tolerance measure (Tanyimboh and Templeman, 1998) provides an

estimate of the total demand the WDN is capable of satisfying when some components

are out of service. Redundancy represents only spare capacity of the network, as

situations when all link are available is not included in the measurement. It has been

remarked by Tanyimboh et al. (2001) that redundancy could be better measure for

supply disruption for a system with failure than the reliability for similar stable system.

Tanyimboh and Kalungi (2008, 2009) emphasize the importance of including the

redundancy measure alongside with hydraulic reliability for a better WDN performance.

The equation for failure tolerance is defined as
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 (2.32)

where FT is the failure tolerance. The failure tolerance calculation is usually carried out

once the hydraulic reliability is estimated. Having R and p(0) makes the redundancy

calculation very easy and straightforward.
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2.4.2 Surrogate Performance Measures

Due to high computation burden associated with WDN reliability calculation, along with

no universal reliability definition, researchers have been looking for alternative

measures. Few different surrogate measures of reliability have been proposed over the

last decade. The greatest advantage of using such measures is that they are very simple

to calculate and do not require repetitive simulations. Moreover, majority of surrogate

measures are calculated based on nodal heads or pipe flow rates obtained from WDN

modelling. Therefore, they could easily be incorporated in WDN optimization

techniques.

2.4.2.1 Informational Entropy

Shannon (1948) used the fact there is some uncertainty related to every probabilistic

scheme and introduced informational entropy as a quantitative measure of the quantity

of information included in a finite probability distribution. Shannon’s informational

entropy function can be presented as follows:
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where S represents the entropy; K is the arbitrary positive constant usually taken as 1.0;

pi is the probability related to the ith event. The probabilities represent the finite scheme

(i.e. probabilities are exhaustive and independent mutually exclusive), thus

1...21  nppp (2.34)
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2.4.2.1.1 Entropy in Water Distribution Networks

The idea of using Shannon’s informational entropy function for WDNs was first

introduced by Awumah et al. (1990). Using the flow rates in a probabilistic way to

obtain the network entropy values, they showed that the performance of water

distribution networks can be measured comparatively.

Tanyimboh and Templeman (1993a, 1993b) were the first to propose the correct

definition of the entropy function for WDNs by using the conditional entropy formula of

Khinchin (1953) and the multiple probability space model to formulate entropy function

for general looped WDNs. Knowing the pipe flow rates, the Tanyimboh equation

(Tanyimboh and Templeman 1993a) can be presented as follows:
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where S is the WDN entropy; Si is the entropy of node i; Pi is the fraction of total flow

through the system that reach node i and can be described as ratio Ti/T; Ti is the total

flow reaching node i; T is the sum of nodal demands; N is the number of nodes in the

system; S0 is the entropy of the source supplies and can be expressed as
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where Q0i stands for external inflow while I is the set of the source nodes. The entropy

of the nodes can be expressed analogously
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where Qi0 is the demand at node i; Qij is the pipe flow between node i and j; out(Ni) is

the set of all pipes from node i. Comparison of entropy function proposed by Awumah et

al. (1990) and the model developed by Tanyimboh and Templeman (1993a, 1993b,

1993c) is available in Tanyimboh (1993).

Tanyimboh and Templeman (1993a, 1993b) developed non-iterative path-based method

for calculating the maximum entropy flows for single source network. Methodology is

based on fact that in single source systems all flow paths supplying the nodes start from

supply node. A node-weighting technique is used for the path-based method. The single

source algorithm was generalised by Yassin-Kassab et al. (1999) to the non-iterative

method for calculating the maximum entropy flow in multiple source networks.

Published results proved that that the method is rigorous and instead involving the

solution of a nonlinear optimization problem solves a nonlinear system of equations.

Tanyimboh and Setiadi (2007) incorporate the application of maximum entropy

approach to the optimum designs of WDNs with discrete pipe diameters. Genetic

algorithm was employed in the optimization process. The approach used in this study

was capable of identifying the maximum entropy design with optimum set of flow

directions.  Prasad and Tanyimboh (2008) also employed maximum entropy approach

into optimal designs obtained after solving the well-known, complex “Anytown”

benchmark problem.

Czajkowska and Tanyimboh (2012) used entropy maximization method as a surrogate

reliability measure and incorporated it as one of the objective functions in the

optimization process. The approach is a penalty-free multi objective optimization

involving real discrete pipe diameters. Moreover, Czajkowska and Tanyimboh (2012,

2013) extended the entropy based approach into networks capable to handle multiple

demand patterns. Designs achieved using multiple operating conditions (MOC) and

single operating conditions (SOC) were presented and compared. In both publications

(Czajkowska and Tanyimboh; 2012, 2013) was highlighted that designs based on MOC
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outperform solutions obtained using SOC in terms of feasibility, pipe size distribution

and network reliability. Detailed analysis and further relevant results are presented in

Chapter 4 of this thesis.

2.4.2.1.2 Correlation between Reliability and Entropy in Water Distribution

Networks

Over the years, the entropy has been incorporated into many different benchmark

networks and the relationship between this surrogate measure and reliability was tested.

The relationship between entropy and reliability of WDNs has been investigated by

Tanyimboh and colleagues (Tanyimboh and Templeman 2000, 1993c, Tanyimboh and

Setiadi 2008b, Tanyimboh et al. 2011, Czajkowska and Tanyimboh 2012). The research

proved that the distribution networks that are designed to carry the maximum entropy

flows are reliable and that an increase in entropy value corresponds to a better network

performance as measured by reliability. It also has been shown that relationship between

reliability and entropy is very strong and the reliability of a distribution network

improves as the entropy value of the network increases. The evidence suggests that

higher entropy values increase the uniformity of the pipe diameters (Awumah et al,

1991; Tanyimboh and Templeman, 1993; Czajkowska and Tanyimboh, 2012a) which

therefore increases the reliability.

Tanyimboh and Shehan (2002) stated that for different layouts with identical maximum

entropy values designs can be expected to be hydraulically similar in general. Research

carried out by Setiadi et al. (2005) demonstrates that the correlation between entropy

and reliability is even stronger when the analysis is done using head-dependent analysis,

in comparison to demand-driven analysis.

Tanyimboh et al. (2010) analysed the correlation of surrogate reliability measures (i.e.

entropy, resilience index, network resilience index, modified resilience index) in relation
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to the reliability and redundancy. Results proved that entropy outperform other surrogate

reliability measures. Another comparison of different reliability surrogate measures was

presented in Czajkowska and Tanyimboh (2012b). Entropy correlated well with

hydraulic reliability and failure tolerance while plots of other surrogate measures against

reliability or redundancy had a lot of scatter. It was also found that designs that have

identical maximum entropy values are generally similar with regard to their energy

dissipation rates. This supports the hypothesis that entropy can be used as a surrogate

measure for reliability in order to evaluate WDNs performance.

2.4.2.2 Resilience Index

Todini (2000) introduced the resilience index as a ratio of the actual power dissipated in

the network to the power dissipated in order to meet the required nodal demands and

heads of the network. The resilience index can be defined as (Todini, 2000)
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(2.38)

where RI represents resilience index; Qi
req is the nodal demand; Hi is the head at demand

node i; Hi
req is the demand node head above which the demand is satisfied; Qk and Hk are

the supply and head of reservoir k, respectively; Pj is the power introduced to the

network by pump j; γ is the specific weight of water; nn, nr and npu are the number of

demand nodes, number of reservoirs and number of pumps, respectively.
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2.4.2.3 Modified Resilience Index

Jayaram and Srinivasan (2008) queried ability of resilience index (Todini 2000) to

handle uncertainties for networks with multiple source systems. They proposed modified

resilience index, which is altered version of the resilience index, and measure the surplus

power as a percentage of the power required at the nodes. Modified resilience index is

defined as follow
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where MRI stands for modified resilience index.

2.4.2.4 Network Resilience

Prasad and Park (2004) extended the resilience index formulation by including the effect

of reliable loops. They introduced the node uniformity coefficient to quantify the

uniformity of the diameters of the pipes connected to the node. The node uniformity

coefficient was defined as the ratio of average diameter to the maximum pipe diameter.

The network resilience equation can be expressed as (Prasad and Park, 2004)
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where NR is the network resilience and Cui is the uniformity coefficient of node i.



Chapter 2: Hydraulic Modelling and Design Optimization
of Water Distribution Networks

50

2.4.2.5 Surplus Power Factor

Vaabel et al. (2006) introduced the surplus power factor, which is based on energy

transmission of flow and hydraulic power. The surplus power factor has an advantage

over other network resilience measures since the pressure heads at the outlet of WDS do

not need to be known. The surplus power factor can be defined as (Vaabel et al. 2006)
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where s represents surplus power factor and can vary from 0 to 1 (i.e. s = 1 indicates that

the system works on its maximum hydraulic capacity), a is the flow exponent dependent

on the head loss equation used; Qin is the inflow of the pipe; Qmax is the flow that gives

the maximum hydraulic power at the outlet of the pipe.

2.4.2.6 Energy Dissipation

Rowell and Barnes (1982) suggested that the efficiency of a pipe can be measured from

the rate at which it dissipates energy. For the same rate of flow, the more the energy

dissipated by the network the higher the stress levels experienced by the network.

Following this approach, Tanyimboh and Templeman (1993) compared alternative

designs for water distribution systems. For a given set of flows, the total energy

dissipated can be calculated using the following function (Rowell and Barnes, 1982)





IJij

ijij hqgE  (2.42)

where E represents energy dissipated, ρ is the density of water; g is the gravitational

acceleration; qij and hij are the flow rate and head loss in link ij, respectively; and IJ

represents the set of links in the network.
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2.3 CONCLUSION

Optimization of water distribution network belongs to NP-hard problems that require

employing efficient and reliable optimization methods. Classical optimization

techniques have many restrictions and are actually unable to solve effectively multi-

objective, highly constrained non-linear problems. Genetic algorithm (GA) appears to be

efficient in searching discontinues decision spaces and solving complex, multi-objective

optimization problems. General GA procedure, alongside with operators involved, have

been described in detail. Additional attention was paid to search space reduction

methods and constraint handling techniques reported in the literature. The limitation of

those procedures has been highlighted. Several commonly employed in WDN multi-

objective GA were described.

Second part of the chapter presents fundamentals for WDN modelling. Governing

equation and the formulation of a system of non-linear hydraulic equations has been

included alongside with several methods for solving them. Restrictions of steady state

simulation have been emphasized reference to extended period simulation. Two analysis

method were presented. The limitation of conventional demand driven analysis (DDA),

unable to simulate system under pressure deficient conditions was highlighted in

comparison to head dependent analysis (HDA). Importance of using multiple operating

conditions (MOC) over single operating conditions (SOC) has been pointed out.

There is high chance that WDN will be subjected to pressure deficient situation in which

some components could unavailable (i.e. pipe burst, pump failure, system maintenance).

Therefore, network performance assessment is crucial to estimate the ability of the

system to meet required demand under these circumstances. Two accurate performance

assessment parameters such as hydraulic reliability and failure tolerance were described

in details. Reliability evaluates network performance under normal and abnormal

operating condition whilst failure tolerance measure the redundancy available in the

network. Due to high computation burden associated with WDN reliability calculation
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several surrogate measures presented in the literature has also been explained in this

chapter. Statistical entropy was described in detail as it is employed in research

presented herein. Also correlations between hydraulic reliability versus entropy and

reliability vs other surrogate measures has were compared.
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CHAPTER THREE

MAXIMUM ENTROPY DESIGN OF WATER DISTRIBUTION

NETWORKS UNDER MULTIPLE OPERATING CONDITIONS

3.1 INTRODUCTION

As reviewed earlier in Chapter 2 the entropy formulation was tested on many different

networks over the years. Results published in the literature prove that statistical entropy

function developed by Tanyimboh and Templeman (1993a) is excellent candidate as a

surrogate measure for reliability. Nevertheless, most of the work has been done for

single operating condition (SOC), usually referred to as steady-state simulation, which

assumes that nodal demands are constant. It is common practice to use maximum daily

demand and steady state modelling in designing WDN. However in reality demands

vary with the time of the day and there are many different loading patterns that have to

be satisfied by the network.

Alperovits and Shamir (1977) suggested that when designing the WDN, not only

maximum daily demand and fire flow should be included, but also the minimum demand

periods have to be considered. In addition, Prasad (2010) proved that even if a network

satisfies peak demands it does not follow that other operating conditions will be

satisfied, as the pressure constraints might not be satisfied. Prasad (2010) also

demonstrated that designs obtained using multiple operating conditions (MOC) are more

reliable than the ones achieved using SOC.
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This chapter presents multi-objective genetic algorithm that can work under multiple

operating conditions for any given network. The model is applied to three well-known

WDNs. The results achieved show that solutions obtained using MOC outperform the

solutions based on SOC in terms of hydraulic feasibility, pipe size distribution and

reliability. Moreover, the investigation of three different methods for handling the

entropy for multiple loading patterns is demonstrated.

3.2 PROBLEM FORMULATION

The optimization of the WDN design is extremely difficult, since it involves multiple

objectives that are usually conflicting with each other. For example, minimization of

cost and maximization of flows are contradicting. Therefore, there is no single, ideal

result since design that is very good for one objective could be bad for others.

Another important problem associated with multi-objective genetic algorithm is the poor

ability to handle constraints that are mainly carried out by penalizing infeasible

solutions. Therefore, it could obstruct the search capabilities and may direct to

suboptimal designs. To ensure that achieved design is optimal or near optimal, the

approach does not assign any penalties (i.e. constraint violation penalties are not used in

the present approach).

The objectives considered in proposed approach are minimization of the network’s

initial construction cost, subject to ensuring adequate pressures at all nodes and

maximization of entropy. The overall problem formulation can be summarized as

follows.

Minimize initial cost: f1 = 


np

i
iii LDC

1

),( (3.1)
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where Ci (Di, Li) is the cost of the pipe i with diameter Di and length Li; np represents

number of pipes in the system. Above formulation is subject to following constraints:

1. Nodal mass balance (Eq. 2.1, Chapter 2) and energy conservation (Eq. 2.2,

Chapter 2), that are satisfied externally by EPANET 2 hydraulic solver (Rossman

2000);

2. Discrete pipe sizes selected from a set of commercially available sizes which are

included within NSGA II code; and

3. Minimum pressure at critical node must be greater than or equal to the desired

pressure at that node in order for the design to be feasible. This hydraulic

feasibility constraint was introduced as the objective function and stated below.

Minimize infeasibility: f2 = i
des
i HH  ; des

ii HH  (3.2)

where i is the critical node; iH is the available head at node i; and i; des
iH is the desired

head at node i. The desired head is the nodal head above which the demand is satisfied

in full and the critical node is the node with the lowest pressure within the network.

Maximize Entropy: f3= S (3.3)

where S is the entropy.

3.3 PROBLEM SOLUTION AND METHODOLOGY

The non-dominated sorting genetic algorithm (NSGA II) developed by Deb et al. (2002)

was chosen for this research as a multi-objective optimization tool. The NSGA II has

been widely used by many researchers in various disciplines since it is an efficient

evolutionary algorithm based on pareto-rank sorting and elitism approach. The general

binary coded NSGA II written in C++ language was modified in this research for the
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WDN purposes and coupled with hydraulic simulation software, EPANET 2 (Rossman,

2000) to enable the approach to handle the various system components in the design and

optimization process.

In order to achieve cost efficient and reliable solutions, the network performance

measure needed to be include within the algorithm. As mentioned earlier, entropy has

been chosen as surrogate measure of reliability. Therefore, the external program, that

can calculate entropy for any given layout, was developed and tested. Subsequently the

subroutine was integrated with NSGA II and EPANET 2. Finally, certain changes within

the code were performed allowing the algorithm to handle SOC as well as MOC.

Created genetic algorithm can work under any number of operating conditions for any

network layout solving multiple objective problems.

The NSGA II is an algorithm that directs the search into objective minimization.

Therefore, the objective functions implemented within the code have to satisfy such

requirement. Cost minimization is the most straightforward objective, as it only requires

implementation of the equation used. In terms of deficit (i.e. hydraulic infeasibility), all

values for pressure shortfall are converted into positive values, whilst surplus heads

(positive value in reality) are assigned zero value. In such way, the algorithm

concentrates on achieving feasible solutions. In case of the entropy, the positive entropy

value is converted into negative value. Therefore directing the search to objective

minimization leads in reality to entropy maximization.

The procedure of algorithm used in this study is illustrated in Figure 3.1. Initially, a

random parent population of size N is generated. To create offspring population of size

N, the mutation and crossover are applied. The offspring and parent populations are

combined together forming population of size 2N which undergoes non-dominated

sorting. This step ensures elitism by preserving previous and current best individuals.

Non-dominated sorting involves dividing results into different fronts and assigning

fitness values (i.e. ranks). The first front is non-dominated with assigned fitness value of

1. The second front has assigned fitness value 2 and its individuals are dominated by
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individuals from first front. This goes on until all results have designated fitness values.

In addition, the crowding distance is calculated for each solution. Crowding distance is a

measure of distance between neighbouring individual. High crowding distance means

that individual is from less crowded area, thus having such solutions results in better

diversity. Based on fitness values and crowding distance of the last front, the best N

individuals are chosen. The new generation is filled by each front subsequently until the

number of individuals exceeds the population size N. If that happens when results from

front i were added, then the individuals from front i are chosen based on crowding

distance (i.e. results with higher crowding distance will be selected). Therefore, created

population include best possible individuals ensuring diversity among solutions.  Then

the process is repeated in subsequent generations.

All designs (i.e. initial parent population and child population) go through hydraulic

simulations performed by EPANET 2. Depending on the number of loading patterns

involved, each operating condition of each design undergoes nodal pressure and pipe

flow evaluation (i.e. in case of three operating conditions, one design goes through

EPANET 2 three times), as it is necessary to ensure that pressure constraints are satisfied

for all loading patterns. In other words, the hydraulic calculation is repeated until the

value representing the actual operating condition (OP) is not lower than the value

representing maximum operating condition (MaxOP). As a result, each objective

function ended up having several values (i.e. depending on the number of operating

conditions). Then, to reduce several values (i.e. each representing one loading pattern)

into one value for each objective function, different methods have been employed and

applied as follows. In case of node pressure deficit, the algorithm chooses the maximum

deficit, so if nodal pressure for any loading pattern is lower than desired pressure, the

design is treated as infeasible. The cost does not require further analysis, as each

operating condition has identical cost for the particular design (i.e. the same set of pipe

diameters). For the entropy, three different scenarios were chosen and explained later in

paragraph related to MOC entropy approaches (Section 3.5). All three cases were

investigated and results presented in the examples (Section 3.6).
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Figure 3.1 Flow chart of presented algorithm
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It was observed that the final set of solutions (i.e. last generation) provided by NSGA II

in output file is not the same as the feasible set of cost-entropy non-dominated solutions.

In other words, there are many infeasible designs in final POF. This may be because the

optimization model involves three objectives that are contradicting with each other (i.e.

capital cost minimization, statistical entropy maximization and critical node pressure

deficit minimization). Moreover, the algorithm does not prioritize any objective function

and handle them with equal importance. Thus, even infeasible solutions with low cost

and high entropy are treated as valuable; hence they appear in final POF (i.e. last

generation). This could be beneficial for the decision maker if infeasible solution with

insignificant deficit would be accepted due to low budget level or other cause.

Nevertheless, presented research relies mostly on feasible designs, which occur in a

small number in the final POF generated by the algorithm. This could be not enough to

represent the entire range of possible entropy values for particular network. Thus, the

whole analysis process would be more difficult and misleading to drawn proper

conclusions.

In order to gather many feasible, non-dominated solutions, the supplementary method to

identify such designs was developed. The external software was written in Perl

language. Firstly, the feasible designs were selected from entire history of solutions (i.e.

feasible designs were picked up from 200,000 results for a GA run with termination

criteria set to 200,000 evaluation functions). Then, feasible designs were sorted

according to cost and entropy and only non-dominated solutions were chosen. Also the

repetitive designs were rejected. This approach provided a good range of candidate

solutions for further consideration via keeping the designs that would be rejected by the

algorithm.

Entire process of selecting the cost-entropy non-dominated designs over the entire range

of solutions is completely automated process and very quick as for a network with 8

pipes simulated for 200,000 function evaluations it requires only about 20 seconds on

a PC with the following configuration: Intel Core i3, 2.4GHz, 3GB RAM and Windows

XP operating system. It should be highlighted that, unless otherwise stated, all POF
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presented herein are based on cost-entropy non-dominated screening for the entire

history of results.

Finally, the solutions obtained in this way underwent pipe failure simulations to evaluate

hydraulic reliability and pipe failure tolerance. The pressure dependent WDN analysis

program PRAAWDS (Program for the Realistic Analysis of the Availability of Water in

Distribution Systems) has been used. PRAAWDS is a prototype FORTRAN computer

program developed by Tanyimboh and Templeman (2004). Since it is based on head

dependent analysis approach, it creates realistic simulations for all pressure regimes.

There is possibility to choose between four head-outflow relationships, out of which one

is the Tanyimboh and Templeman (2004) function. Moreover, the conventional, demand

driven simulation is also included as an option. In addition, it offers a built-in feasibility

procedure to evaluate the accuracy of results obtained from pressure dependent analysis.

The PRAAWDS program is very easy to use and provides accurate results.  Extensive

testing has shown that PRAAWDS is efficient and robust (e.g. Setiadi et al, 2005;

Tanyimboh and Setiadi, 2008a). Nevertheless, since the PRAAWDS depends on the

number of pipes, it requires running the program for numerous times for each design.

Single run of PRAAWDS provide the output where only one pipe is closed. For

example, if network has 20 pipes, the program needs to be run 20 times producing 20

output files. Then all the values need to be gathered together in order to calculate

hydraulic reliability or failure tolerance. It is very time consuming, especially if this

needs to be done for many designs with large number of pipes (i.e. hundreds of even

thousands). To speed up the process, PRAAWDS extension written in Perl language was

developed in this project. The extension makes the process more automated as it

replaces the value responsible for pipe closing. In other words, external program forces

the PRAAWDS to change the pipe that is closed and to simulate. The process is repeated

automatically depending on the number of pipes in network. What is more, all output

data are gathered in one external file. Successive steps of the whole procedure (i.e.

starting from GA runs and finishing on reliability and failure tolerance calculations) for

identification of cost-entropy non-dominated solutions chosen from entire history of

results are illustrated on Figure 3.2
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Figure 3.2 Flow chart of successive steps for identification of
cost-entropy non-dominated solution chosen from entire history of results
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failure tolerance measure provides an estimate of the total demand the WDN is capable

of satisfying when some components are out of service.

Cost-entropy non-dominated
sorting methodology

Single GA run (as presented
on Fig. 3.1)

Identification of hydraulically
feasible solutions from entire

history of solutions from single
run

Rejection of repetitive designs

Identification of cost-entropy
non-dominated solutions from

single run

Combining cost-entropy non-
dominated solutions from all

random runs

Identification of cost-entropy
non-dominated solutions from

merged cost-entropy non-
dominated results

Performing pipe failure
simulations (PRAAWDS) to

evaluate hydraulic reliability and
failure tolerance
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3.4 SENSITIVITY ANALYSIS

Implementation of MOC approach required many changes within the original NSGA II

code. In order to assess the robustness of created algorithm, the sensitivity analysis was

performed before comparing SOC and MOC approaches. Sensitivity analysis was also

used to identify the input data, such as population size, mutation rate and crossover point

which led to the best results and uniform distribution of solutions in POF. It should be

mentioned that sensitivity analysis was carried out for SOC only.

The well-known, hypothetical Two-Loop network (Figure 3.3) was chosen for

sensitivity analysis. This single source network was first presented by Alperovits and

Shamir (1977) and consists of 8 pipes of length 1000m and 6 demand nodes. The

minimum pressure requirement for all nodes is defined as 30m. A Hazen-Williams

roughness coefficient of 130 is used for new pipes. The details of 14 discrete pipe size

used, as well as cost of these pipes and nodal data can be found in Appendix A. It should

be mentioned that for sensitivity analysis only columns with node number, elevation and

demand pattern 1 (i.e. data that corresponds to peak demand used in literature for Two-

Loop network) were used.

Figure. 3.3 Layout for Network 1
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For this network 10 random runs were performed for each case (i.e. each POF presented

on graphs is made from 10 random runs). Initial testing showed that for such small

network even single run gives quite uniform spread of results in POF. However, for

completeness, 10 random runs were initialized. Considering the fact that mutation rate,

crossover point and other parameters were investigated; around 180 GA runs were

performed. A total of 200 000 function evaluations (i.e. a population size of 200 for 1

000 generations) were allowed for most of the runs. Only the GA runs where the

different sizes of population were examined (Figure 3.4), have function evaluations that

vary from 100 000 to 500 000 (i.e. number of generations remain the same and was set

to 1 000). Unless otherwise stated the probability of crossover and mutation were set to

1.0 and 0.03125 respectively. A 4-bit binary substring was used, thus giving 16

substrings (i.e. 24). Having 14 pipe sizes left 2 substrings redundant. Those redundant

codes were uniformly allocated to available pipe sizes (i.e. pipes with diameter 152.4mm

and 406.4mm were doubled). However, for GA runs where allocation of redundant

codes is tested, the 2 redundant substrings were allocated to the lowest pipe size, thus

pipe with diameter 25.4mm was tripled. The solution space for this network comprises

148=1.48109. Average CPU time required for single GA run was about 10 minutes on

a PC with the following configuration: Intel Core i3, 2.4GHz, 3GB RAM and Windows

XP operating system. Only the GA runs with different population sizes (Figure 3.4) have

different CPU times that depend how large the population size was.
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Figure 3.4 Entropy - cost POFs for different population sizes

Comparison of POFs achieved for various population sizes is presented on Figure 3.4.

As mentioned earlier, each POF is based on cost-entropy non-dominated solutions

chosen from entire history of results for 10 randomly initialized GA runs. It is easy to

notice that majority of results overlaps. Only the POF based on population size 100 has

small deviation from other POFs. Few individual solutions have higher cost for similar

entropy value than the solutions achieved using population size 200 or more. Therefore,

if all five POFs would be merged together the results achieved with population size 100,

would be dominated. It is also worth to mention that GA with population size 500

generated solution with insignificant increase in entropy value and unnecessary growth

in capital cost. The POF achieved using population size of 200 is equally good as POFs

obtained with higher population sizes. Moreover, the POF obtained using population

size of 200 has more non-dominated solutions than any other POFs. Therefore, it has

been decided that there is no point to use value higher than 200, especially that the time

length for single GA run increase with the increase of population size (i.e. GA run with

population size of 200 takes about twice longer than GA run with population size of 100,

etc.).
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Figure 3.5 Entropy – cost POFs for different mutation rates

For this particular network, the mutation probability is 1/ng = 1/32 (i.e. where ng is the

chromosome length), thus the highest value for mutation is 0.03125. To identify the

most efficient mutation rate, different values were tested, starting from the very low such

as 0.001 (i.e. 0.1% chance that any single bit would mutate) and finishing on 0.03125

(i.e. 3.125% chance that any single bit would mutate). Achieved POFs were gathered

together and presented on Figure 3.5. It is easy to observe that despite the mutation rate,

the results produce essentially one front with only two solutions located outside this

front. Those outliers belong to GA runs with mutation rates set to 0.001 and 0.02. It has

also been noticed that higher mutation rate used, the more non-dominated solutions in

POF. Thus, using 0.001 as mutation rate led to 22 solutions; 0.005 - 25 solutions; 0.01 -

27 solutions; 0.02 - 28 solutions and 0.03125 - 35 solutions). Therefore it is worth to use

the highest allowed mutation rate in order to achieve more feasible, non-dominated

solutions in POF.
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Figure 3.6 Entropy – cost POFs for different crossovers

In order to analyse different crossover rates, single-point crossover operator was used to

produce two offspring from two parents. Six different cases were studied with crossover

rate varying from 0.5 to 1.0 and the outcome presented on Figure 3.6. Before merging all

POFs it has been noticed that the GA runs with crossover rate set to 1.0 produced front

with most uniform spread of results. Moreover, using 1.0 as crossover rate led to the

largest number of designs in cost-entropy non-dominated POF.
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Figure 3.7 Entropy – cost POFs for differently allocated redundant codes

Figure 3.7 present two POFs obtained with the use of the same input parameters (i.e.

mutation rate, crossover, random seeds) but different allocation of redundant codes. As

mentioned earlier, having 14 pipe sizes left 2 substrings redundant (i.e. 24 =16). In first

case (i.e. blue squares on the plot), the redundant codes were allocated to lowest pipe

size, thus pipe with diameter 25.4mm was tripled. In second case (i.e. red triangles), 2

redundant substrings were uniformly allocated to available pipe sizes (i.e. pipes with

diameter 152.4mm and 406.4mm were doubled). It can be noticed on Figure 3.7 that

results of both cases mostly overlaps creating uniform front. POF obtained from runs

where lowest pipe was tripled has more low cost, low entropy solutions. It seems logical

as allocating three codes to lowest pipe caused that algorithm favour solutions with

small pipe diameters. However, such situation should be avoided and the redundant

codes should be allocated uniformly.

Based on two loop network and presented results it has been decided that for all three

network layouts presented in this chapter, the input parameters will be kept the same. It

is no doubt that the best values for mutation rate, crossover and population size could
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slightly vary for different networks. However, all examples of networks presented here

are quite small networks, so it is though that the differences in the best input data for

particular network would be insignificant.

3.5 FORMULATION OF ENTROPY APPROACH FOR MULTIPLE

OPERATING CONDITIONS

As explained earlier, the number of entropy values achieved depends on number of

multiple operating conditions. Hence, having three operating conditions leads to three

different entropy values for a single design. In order to determine the best design

criterion, a number of alternatives may be considered, including:

(a) Maximizing the maximum entropy;

(b) Maximizing the minimum entropy;

(c) Maximizing the total entropy.

3.5.1 Maximizing the Maximum Entropy

To maximize the maximum entropy, the highest entropy value is chosen through all

entropies for specific design. Such case seems ideal from logical point of view, as the

main aim of using statistical entropy is to maximize its value as a measure of reliability.

Nevertheless, GA maximize the best possible entropy value, regardless the values for

other operating conditions. In other words, the algorithm tries to find solutions which are

very good for particular operating condition while disregarding rest. Thus, the solution

with very high entropy value for one operating condition and low entropies for other

operating conditions would dominate the solution with slightly lower entropy even if the

entropy remain similar for all operating conditions.
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3.5.2 Maximizing the Minimum Entropy

In this case, GA maximizes the lowest entropy value among all operating conditions. It

eliminates possibility that the best entropy value will be chosen regardless values in

other operating conditions. Moreover, the minimum entropy approach ensures that the

results for any operating condition will not be lower than the selected one. However, it

does not take into consideration operating conditions with entropies higher than the

lowest entropy value. Therefore, it underestimates the designs with low entropy value

for one operating conditions and high for the rest.

3.5.3 Maximizing the Total Entropy

Maximization of total entropy approach links all entropy values, instead of choosing

extremes. In order to achieve the total entropy value, the individual values are added

together within the algorithm. This reflects the possibility that different designs can have

the same entropy value for some of the operating conditions. It is thought that the more

the number of operating conditions involved the lower the chances that all

corresponding entropy values will be identical for two different designs. What is more,

when using total entropy approach, all entropy values are taken into consideration. Thus,

the designs selected should perform reasonably for all operating conditions.

3.6 APPLICATION OF MULTIPLE OPERATING CONDITION

APPROACH

To investigate the MOC entropy approaches, three standard WDS layouts documented

in the literature were employed. The network presented in sensitivity analysis paragraph,

the Two-Loop network (Fig. 3.3), was used as first benchmark. As a second example the

Six-Loop network (Fig. 3.8) was chosen. It is no doubt that this network is also quite

simple and does not reflect problems of real WDNs. Nevertheless, this benchmark is
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well known from previous entropy studies and has quite large number of loops as for its

size (i.e. the greater the number of loops the more different flow paths possibilities, thus

different entropies). The third example is the network with only three loops (Figure

3.17) but two reservoirs and three different demand patterns with associated minimum

nodal heads that must be satisfied. Comparison of results achieved by using MOC with

different entropy approaches and SOC were carried out and the outcome presented and

discussed.

3.6.1 Example 1

The first example, shown in Fig. 3.3 is the simple Two-Loop network used earlier for

sensitivity analysis. As this network has only data for one loading pattern, additional

operating conditions were calculated based on different networks from literature. Thus,

the basic demands for the Two-Loop network have been treated as peak demand and

were used to calculate other 2 operating conditions, i.e. average demand and minimum

demand. Demand multiplier for average demand was taken as 0.8 and obtained from

Surendran et al. (2005). To achieve minimum demand, the average demand was

multiplied by 0.6 as in well known “Anytown” network (Walski et al., 1987). Both

demand multipliers were applied to all nodes, so the demands change with the same

ratio. Nodal demands for all operating conditions can be found in Appendix A (Table A-

1)

The termination criterion for the GA was taken as 200,000 function evaluations (i.e.

1000 generations for a population size of 200) for all four cases (i.e. SOC and three

different entropy approaches for MOC). 10 randomly generated GA runs were

performed for each case, giving 40 GA runs in total. The probability of crossover and

mutation were set to 1.0 and 0.03125 respectively. The redundant codes were uniformly

allocated. Average CPU time required for one operating condition was about 11 minutes

and 23 minutes for three operating conditions, on PC with following configuration: Intel

Core i3 @ 2,4GHz and RAM 3GB.
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It should be mentioned that the entropy value for the results obtained using total entropy

approach were 3 times higher than the other cases (i.e. maximum entropy approach,

minimum entropy approach and SOC), simply because the entropy values have been

added together within the GA in the case of MOC. However, to facilitate the comparison

of solutions obtained using SOC and MOC entropy approaches, the entropy values

achieved using total entropy approach have been divided by 3 before analysis. This

applies to all three examples presented in this chapter.
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for whole range of results
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Figure 3.8b Entropy-cost POFs based on entire history of results
for results up to the ESP

Figure 3.8a illustrates POFs of cost versus entropy for SOC and three entropy

approaches for MOC, while Fig 3.8b presents the same results but only up to the point

beyond which the entropy improvements become very insignificant. There is quite a lot

results that have very minor increase in entropy value while high increase in cost. Those

designs will always appear in optimization process due to nature of NSGA II that

maximizes objective functions. Therefore, the GA tries to reach to the highest entropy

value, which will not vary much once near global maximum entropy value is achieved.

Since the cost-entropy non-dominated screening is performed on entire history of results

and outside the GA, all solutions with increasing entropy value (i.e. as long as are non-

dominated) are kept despite the low improvements in entropy. As a result of that, the

Entropy Stagnation Point (ESP) was identified as the point beyond which the

improvements in entropy value become insignificant. For presented Two-Loop network

ESP is the 99% of maximum entropy value achieved.

It can be observed on Fig. 3.8a and Fig. 3.8b that designs based on MOC are very close

to SOC solutions in terms of entropy value. Only few solutions achieved using minimum

and total entropy approach are located slightly below POFs, thus those designs would be
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dominated if all POFs would be merged. Nevertheless, the minimum, maximum and

total entropy approaches satisfy 3 loading patterns, whilst the designs based on SOC

would generally be infeasible for MOC.

Table 3.1 Coefficient of determination of entropy versus other network
performance indicators for Example 1

Measure SOC
MOC

Total Entropy Max Entropy Min Entropy

Coefficient of determination of entropy vs average pipe diameter

100% 0.842 0.794 0.835 0.966

99% 0.893 0.899 0.904 0.918

Coefficient of determination of pipe size distribution

100% 0.663 0.714 0.674 0.773

99% 0.874 0.892 0.875 0.922

Coefficient of determination of reliability vs entropy

100% 0.813 0.821 0.819 0.826

99% 0.885 0.890 0.892 0.870

Table 3.1 presents coefficient of determination of entropy versus average pipe diameter,

pipe size distribution and reliability, illustrated on Fig. 3.9, 3.10 and 3.11, respectively.

100% represent coefficient of determination for whole range of results, while 99%

correspond to correlation for solutions up to ESP (i.e. 99% of maximum entropy value).

As expected, the coefficients of determination are generally higher for results up to 99%

of ME value. This reinforces the hypothesis that results beyond ESP are not necessary

and should be removed for analysis purposes. Therefore, remainder of this thesis focuses

on results up to the ESP.
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Figure 3.9 Effect of entropy on average pipe size for results up to
99% of the maximum entropy value

Figure 3.9 demonstrate relationship between entropy and average pipe diameter. Entropy

increases as the pipes sizes increase, which appears to contribute to the growth of the

network reliability, simply because larger pipes have lower breakage rates than the

smaller ones (Tanyimboh and Templeman, 1993c; Tanyimboh and Setiadi, 2008b).

What is more important, coefficients of determination (Table 3.1) are higher for three

operating conditions. It strengthens previous assumption that using multiple operating

conditions leads to more uniform pipe sizes. As it is already known, the more uniform

pipe sizes result from more uniform flows, which yield higher hydraulic reliability

(Awumah et al, 1991; Tanyimboh and Templeman, 1993c).
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Figure 3.10 Effect of entropy on pipe size distribution for results up to ESP

A comparison of the correlation between pipe size distribution and entropy is shown in

Figure 3.10. Pipe size distribution in other words means the coefficient of variation of

the diameters - all the pipes have the same length - which measures the uniformity of the

pipe diameters. It has been chosen to present the results as previously it has been

demonstrated to be simple but very efficient way to show the best solution (Tanyimboh

and Setiadi, 2008b). Higher positive correlations for designs achieved using MOC

approaches (Table 3.1) suggest that solutions based on MOC outperform the ones

obtained by SOC.
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Figure 3.11 Reliability versus entropy for results up to 99% of the maximum entropy value

Figure 3.11 presents relationship between reliability and entropy for SOC and three

MOC approaches. PRAAWDS, the head-dependent analysis software, was employed to

calculate hydraulic reliability with peak demands used as an input data. Strong positive

correlations between entropy and reliability can be observed for all MOC entropy

approach as well as SOC (Table 3.1). Nevertheless, designs based on SOC produced less

correlation than the ones obtained using MOC entropy approaches (Fig. 3.11 and Table

3.1). This clearly confirms that the approach based on MOC produces designs that are

more reliable. Having stated previously that SOC solutions can be infeasible under

MOCs, the remainder of this thesis focuses MOC and particularly on selecting the best

MOC entropy approach.

As it can be seen from Table 3.1 the maximization of minimum entropy value produce

results with stronger relationships between entropy vs. average pipe diameter and

coefficients of variation of diameters. However, for the results up to the ESP (i.e. 99%),

the maximization of total entropy value has the strongest correlation for reliability vs.

entropy. Since there is no clear indication which entropy approach is the best, additional

network should be analysed before the conclusion could be made. Moreover, the Two-
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Loop network is a small network with very limited possibilities for different flow paths,

thus network with higher number of loops should be used.

3.6.2 Example 2

The second example illustrated in Figure 3.12 is a hypothetical Six-Loop network. This

network was extensively used in entropy studies (Tanyimboh and Sheahan, 2002;

Setiadi et al. 2005; Tanyimboh and Setiadi, 2008b; Czajkowska and Tanyimboh, 2012)

as despite small number of nodes it has considerable number of loops. Therefore, it has

many possibilities for flow paths, thus different entropy values. It was first presented by

Awumah et al. (1991) and consists of 12 nodes, 17 pipes and single source with total

head at 100m. The elevation and required head at all demand nodes are 0m and 30m,

respectively. All pipes are 1000m long and have a Hazen-Williams roughness

coefficient of 130. A set of 12 commercially available pipe sizes in the range of 100mm

to 600mm was used (100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600).

Having 17 different pipes with 12 possible pipe diameters gives a search space of (12)17

or 2.218×1018. A 4-bit binary substring was used, thus giving 16 substrings (i.e. 24).

Having 12 pipe sizes left 4 substrings redundant. Those redundant codes were uniformly

allocated to available pipe sizes (i.e. pipes with diameter 125mm, 250mm, 400mm and

550mm were doubled). The termination criterion for the GA was taken as 200 000

function evaluations (i.e. 1 000 generations for a population size of 200) for all three

MOC entropy approaches. 30 randomly generated GA runs were performed for each

case, giving 90 GA runs in total. A single-point crossover operator was used to produce

two offspring from two parents. 1.0 was used as a crossover probability. A bitwise

mutation operator was used to change the bit from 0 to 1 or vice versa. Since the

mutation probability was 1/ng = 1/68 (i.e. 68 is the chromosome length), the mutation

rate was set to 0.0147 (i.e. there were 1.47% chances that any single bit would mutate).

The average CPU time required for single run was about 28 minutes, on PC with

following configuration: Intel Core i3 @ 2,4GHz and RAM 3GB.
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Figure. 3.12 Network layout for Example 2

As in previous network example, also for this layout the nodal demands were treated as

peak demands and were used to calculate the demands for other two operating

conditions, i.e. the average demand and minimum demand. Since the Six-Loop network

is not much bigger than Two-Loop network, the same demands multipliers were used

and applied to all nodes. Nodal demands for all operating conditions can be found in

Appendix B. Also the entropy values achieved using total entropy approach has been

divided by three to facilitate comparison of results.
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Figure 3.13b Entropy-cost POFs based on entire history of result for results up to ESP

Figure 3.13a presents cost-entropy non-dominated designs for whole range of results

generated by GA. It can be noticed that improvement in entropy value become very

minor around cost £1.78x106. This point correspond to 99% of ME value, as in previous



Chapter 3: Maximum Entropy Design of Water Distribution Networks
under Multiple Operating Conditions

80

network example. Therefore, 99% of ME value was treated as ESP and solutions up to

the ESP are presented in Fig. 3.13b. Once the results beyond EPS were rejected the

graph got much clearer and it is easier to notice that few designs obtained using max

entropy approach have perceptibly higher entropy value for the same cost than designs

achieved using min or total entropy approaches. Nevertheless, there is a gap with no

results in max entropy POF between costs £1.4x106 and £1.5x106. Moreover, above cost

£1.5x106 there is few results obtained using max entropy approach with lower entropy

value for the same cost than designs achieved with remaining entropy approaches. Those

fluctuations causes that max entropy POF is not smooth or consistent as expected. It also

has some scatter, which is not desired.
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Figure 3.14 Effect of entropy on average pipe size

Figure 3.14 shows the correlation between average pipe diameter and entropy for MOC

entropy approaches. There is not much scatter in POFs which reflects in very high

coefficient correlations (Table 3.2). Few results obtained using max entropy approach

are little bit outside the other two fronts, nonetheless this is not reflected on the

relationship between average pipe size and entropy. The coefficient values are very
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similar, however the relationship achieved when using total entropy approach is slightly

stronger than other two, with extremely high value of 0.957 (Table 3.2).

Table. 3.2 Coefficient of determination for network performance indicators for Example 2

Measure
Total

Entropy
Max

Entropy
Min

Entropy

Coefficient of determination of entropy vs
average pipe diameter

0.957 0.949 0.942

Coefficient of determination of entropy vs
reliability

0.605 0.601 0.554

Coefficient of determination of reliability vs
failure tolerance

0.699 0.672 0.622

Finally, using enhanced version of PRAAWDS with additional subroutine, the solutions

underwent pipe failure simulations. For this network, not only the reliability was

calculated, but also the failure tolerance. The importance of including failure tolerance

in addition to reliability for a better representation of the network performance has been

demonstrated in Tanyimboh and Kalungi (2009). As in previous example, the peak

demands were used.
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Figure 3.15 Reliability versus entropy
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Figure 3.15 and Figure 3.16 present reliability and failure tolerance versus entropy. It

can be noticed that the results are very dispersed for all entropy approaches, especially

on the graph that represents hydraulic reliability (Figure 3.15). The dispersion of results

reflects on lower than expected coefficient of determinations of entropy vs. hydraulic

reliability/failure tolerance (Table. 4.2). Nevertheless, for both comparisons (i.e.

reliability and failure tolerance) the relationships are higher for results achieved using

total entropy approach. Therefore, the total entropy approach is suggested as a possible

candidate for handling multiple entropies in MOC approach.

3.6.3 Example 3

The third example is based on Simpson et al. (1994). This particular network (Figure

3.17) was chosen as it has three different demand patterns and associated required nodal

heads that must be satisfied. The three operating conditions considered represents peak

demand pattern and two fire-loading demand patterns. Each fire-loading operating

condition has fire flow added to one specified node, while demands at other nodes

remain the same as for peak conditions. Therefore, in contrast to previous examples, the

nodal demands do not change with the same ratio. Moreover, the minimum nodal head is

different for peak demands, fire flows conditions or fire flow node (Appendix B, Table

B-4). The minimal nodal head is lower for fire flow conditions, which is similar to the

real fire flow requirements. The original design problem was to determine the required

pipe sizes for an expansion and upgrading of existing WDN. However, for purposes of

simplicity, the network was used for initial design with all pipes to be sized. The

network consist 10 demand nodes, 14 pipes and 2 reservoirs. All pipes are assumed to

have Hazen-Williams roughness coefficient of 120. Further details of the network such

as available pipe diameters, pipe lengths, nodal elevations, demand patterns and required

heads can be found in Appendix B.
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Figure 3.17 Layout for Network 3

There are 8 candidate pipe diameters, so the solution search space for this example

comprises (8)14 or 4.3981012 infeasible and feasible solutions. A 3-bit binary substring

was used, giving 8 substrings (23). Therefore, there were no redundant codes for this

network. The termination criterion for the GA was taken as 200 000 function evaluations

(i.e. 1 000 generations for a population size of 200) for all three MOC entropy

approaches. 30 randomly generated GA runs were performed for each case, giving 90

GA runs in total. A single-point crossover operator was used to produce two offspring

from two parents. 1.0 was used as a crossover probability. A bitwise mutation operator

was used to change the bit from 0 to 1 or vice versa. Since the mutation probability was

1/ng = 1/42 (i.e. 42 is the chromosome length), the mutation rate was set to 0.0238 (i.e.

there were 2.38% chances that any single bit would mutate). The average CPU time

required for single run was about 17 minutes, on PC with following configuration: Intel

Core 2 Duo @ 3,5GHz and RAM 3GB.
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Figure 3.18b Entropy-cost POFs based on entire history of results for results up to ESP
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It is noticeable that the entropy approaches have diverse ranges of entropy values in

POFs. Also the POFs curves have slightly different shapes and would not overlap if

brought to the same entropy range. This is completely expected outcome as a

consequence of having three operating conditions with completely different demands

(i.e. the demands does not change with the same ratio). It did not happen in the previous

two examples. However, similarly to previous networks, the entropy values achieved

using total entropy approach has been divided by three. This caused that POF obtained

using total entropy approach is located between other two fronts. Once again, it is easy

to notice that there is no need to analyse the entire range of results, as a vast number of

solutions has high increase in cost with insignificant improvements in entropy.

Therefore, the ESP has been set up to 99% of ME and applied to the network. However,

the solution with highest entropy, likewise cost, differ much for each POF. Hence, the

99% has been calculated for each entropy approach separately which reflects in shorter

(i.e. max entropy approach) or longer (min entropy approach) POFs (Fig. 3.18b)

The next step was to calculate the average pipe diameter and its relationship with

entropy. As expected, the correlations are high for all approaches with the highest value

for total entropy approach (Table 3.3).

Table 3.3 Coefficient of determination for network performance indicators for Example 3

Measure
Total

Entropy
Max Entropy

Min
Entropy

Coefficient of determination of entropy
vs average pipe diameter

0.952 0.857 0.872

Coefficient of determination of reliability vs entropy for:

CEND 0.651 0.599 0.007

CRND 0.825 0.660 0.832

CFTND 0.898 0.814 0.832

Number of all feasible designs 1894 1364 2057

Number of designs in POF:

CEND 53 41 73

CRND 10 5 8

CFTND 5 4 8
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Figure 3.19a Reliability versus entropy for total entropy approach
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Figure 3.19b Reliability versus entropy for max entropy approach
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Figure 3.19c Reliability versus entropy for min entropy approach

Figure 3.19 present hydraulic reliability against entropy for cost-entropy non-dominated

(CEND) solutions up to the ESP. To take the analysis step further additional cost vs

reliability (CRND) and cost-failure tolerance (CFTND) filtering were performed on

CEND and CRND, respectively. Related coefficients of determination are gathered in

Table 3.3. It should be mentioned, that the peak demands were used to calculate

hydraulic reliability and failure tolerance. Unlike the fire flows that are extreme

situations, the peak loading is expected to occur on daily basis. Nevertheless, since each

designs presented here satisfy all operating conditions, the solutions are also feasible for

fire flow loadings.

It is noticeable on Figure 3.19, that all approaches have clusters of results located around

highest entropy value. Like it was mentioned before, this happens due to nature of

NSGA II that maximizes objective functions and despite using solutions up to ESP, at

least half fall into the region of highest entropy (Fig 3.18). This has influence on

reliability-entropy relationship by lowering value of coefficient of determination.

Only few solutions in each entropy approach were non-dominated for all aspects (i.e.

cost, entropy, reliability and failure tolerance). Those designs remain to choose from.
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For example, for the total entropy approach there are 53 CEND solutions (Table 3.3).

The 53 CEND solutions represent only 2.8% of all the 1,894 feasible solutions generated

by the GA across all generations for all random runs (i.e. 30 random runs for 200 000

function evaluations each). More importantly, the CEND solutions represent only

0.013% of the 6 000,000 candidate designs considered by the GA runs. Furthermore, it

can be observed on the total entropy approach that the correlation between reliability and

entropy increases from R2 = 0.651 for CEND (Table 3.3) to R2 = 0.825 for CRND and to

R2 = 0.898 for CFTND. These results appear to reinforce the hypothesis that, for cost-

effective solutions, there is strong positive correlation between entropy and

reliability/failure tolerance (Tanyimboh and Templeman, 2000; Tanyimboh and Setiadi,

2008).

In terms of max entropy approach, there are 41 CEND solutions that represent 3.00% of

all the 1.364 feasible solutions generated by GA. Then, there are 5 CRND designs and

only 4 CFTND solutions. The reliability vs. entropy coefficients of determination

increase from R2 = 0.599 for CEND (Table 3.3) to R2 = 0.660 for CRND and to

R2 = 0.814 for CFTND. Nevertheless, the values are lower than the entropy-reliability

relationships when using total entropy approach.

The min entropy approach generates the largest number of 2,057 feasible designs. This

reflects on high value of 73 CEND solutions and 8 solutions for CRND as well as

CFTND. Nevertheless the coefficient of determination of entropy vs. reliability for

CEND is only 0.007. Therefore there is nearly no correlation at all. It can be noticed that

between entropy value of 2.7 and 3.0 hydraulic reliability seems to decrease with

increase of entropy. It could be case specific and treated as the outlier if the analysis

would depend on single run. However, for this network 30 random runs were performed

so there is a possibility that maximization of minimum entropy value does not lead to

best (i.e. most reliable) solutions and it is not the ideal entropy approach for presented

GA.
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Despite which entropy approach was used, it can be seen that the method of identifying

CEND designs with additional CRND and CFTND filtering used in this example

determines the best (i.e. the most reliable) designs while reducing the computational

burden. Nevertheless, the maximization of total entropy seems the most efficient and

reliable to use. This reinforces the previous hypothesis that it is important to take

entropy values from all operating conditions into consideration.

3.7 CONLCUSIONS

In this chapter, the formulation of a new penalty-free reliability based multi-objective

optimization approach for WDNs has been presented. The approach combines multi-

objective evolutionary algorithm with least cost design and maximum entropy. The

novelty of this research in the context of entropy maximization is that the GA can work

under many loading patterns for any given network and can handle discrete pipe sizes.

Moreover, three different methods of designing for multiple loading pattern (i.e. entropy

approaches) has been investigated.

Sensitivity analysis was carried out in order to assess the robustness of created penalty-

free reliability based algorithm and to identify the input data (i.e. population size,

mutation rate and crossover point) that increase the chances to achieve the best results

and uniform spread of solutions in POF.

The algorithm has been applied to three well-known benchmark networks and the results

have been compared in detail. Four cases were studied, one with SOC and three

considering different MOC entropy approaches. It is known that designs based on SOC

are generally infeasible for MOC, however all four sets of solutions were presented to

demonstrate that MOC approach is competitive. In all cases, the proposed model found

comparable entropy values for similar cost. However, designs based on any MOC

entropy approach clearly outperform solutions obtained by SOC in terms of feasibility,

pipe size distribution and reliability. Maximization of total entropy approach produced



Chapter 3: Maximum Entropy Design of Water Distribution Networks
under Multiple Operating Conditions

91

the best solutions. The significant advantage of total entropy approach over other two

approaches is that it takes into consideration entropy values from all operating

conditions. Therefore even if any operating condition has extreme values (i.e. minimal

or maximal) that is highly dissimilar to other values, it does not have considerably

adverse influence on the algorithm process.

Moreover, the total entropy approach seems to be the best choice as it confirms Jaynes’

maximum entropy formalism (Jaynes, 1957). Jaynes stated that probability distribution

which leaves the largest uncertainty (i.e. the maximum entropy, subject to whatever is

known) should be used. In such case, any additional arbitrary assumptions or biases are

not included. Therefore, for the different MOC entropy approaches only the total

entropy seems to satisfy the maximum entropy principle. Maximization of maximum

entropy value for MOC or maximization of minimum entropy value do not include

everything or whatever is known (i.e. all provided data).

New method for identifying uniformly spread POF with feasible designs only has been

presented. The subroutine for identifying cost-entropy non-dominated solutions over the

entire range of results has been tested and proved to be robust and efficient. The biggest

advantage of this method it that it allows gathering all best solutions (i.e. cost-entropy

non-dominated) in POF, herein producing the front with wide range and nice spread of

results. Also, the ESP (i.e. entropy stagnation point) has been proposed. ESP is the point

beyond which the improvement in entropy becomes insignificant with high increase in

cost. By applying and analysing results up to the ESP, the superfluous results are

disregarded, thus leaving the most reliable and cost-effective designs for the decision

maker to choose from.
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CHAPTER FOUR

MAXIMUM ENTROPY BASED DESIGN OF REAL LIFE

NETWORK WITH MULTIPLE OPERATING CONDITIONS

4.1 INTRODUCTION

In previous chapter, the formulation of new penalty-free reliability based multi-objective

optimization approach for WDNs has been investigated. Based on three different

networks, three entropy approaches for MOC (i.e. maximum, minimum or total entropy)

were investigated. The results were analysed and it has been decided that the total

entropy approach seems not only most logical but also the best to use since it takes into

consideration values from all operating conditions. In addition, the new method for

selecting feasible non-dominated solutions from entire range of results (i.e. from all

generations up to and including the final Pareto-optimal front) was successfully

introduced in previous chapter. The external screening method provides a good range of

feasible non-dominated solutions.

In this chapter, the reliability based multi-objective GA developed in this research is

applied to a real life WDN. Such network has many more pipes than hypothetical

layouts used earlier which makes it harder to design (i.e. more difficult to find feasible,

reliable design). Thus, the aim of this chapter is to demonstrate its practicality and

capability in integrated optimization process. The total entropy approach is used to

confirm that the maximization of total entropy is the most appropriate to handle multiple
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values of entropy. Furthermore, comparison of POF originally generated by the

algorithm and the solutions obtained from entire history was performed and results

presented in order to strengthen additional positive aspects of using external screening

method of selecting results. Also the GA performance is analysed in order to assess

whether the algorithm is efficient, consistent and stable.

4.2 MODEL APPLICATION TO A REAL LIFE NETWORK

4.2.1 Description of the Network and Design Data

The total entropy MOC approach was applied to the WDS serving a zone of the city of

Ferrara in Italy. The skeletonized network shown on Figure 4.1 was previously

presented by Creaco et al (2010, 2012). It consists of 49 nodes, out of which two are the

reservoirs (node 1 and node 49), 76 pipes and 29 loops. Under normal conditions (i.e.

the basic demands for presented network) reservoirs supply a total demand of 367 l/s.

Both reservoirs have the heads set at 30m above sea level. All pipes have Manning

roughness coefficient of 0.015 and the total length of the pipes is about 25.2 km. The

elevation, minimum head and required head at all demand nodes are set at 0m, 5m and

30m respectively. Further details of the network such as available pipe diameters and the

costs, pipe lengths and nodal demands can be found in Appendix C.
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Figure 4.1 Layout of the Ferrara network (numbers in square brackets
correspond to pipe numbers)

As this network has only data for one loading pattern, additional operating conditions

were calculated based on Example 3 presented in Chapter 3. Example 3 has three

operating conditions (peak demand pattern and two fire-loading demand patterns) and

associated minimum nodal heads that must be satisfied. Each fire-loading operating

condition has fire flow added to one specified node, while demands at other nodes

remain the same as for peak conditions. Moreover, the minimum nodal head is different

for peak demands, fire flows conditions or fire flow node. Since Example 3 is relatively

smaller than network based on city of Ferrara (i.e. presented in this chapter) nodal
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demands and required heads for additional operating conditions were calculated based

on percentage ratio from Example 3. For example, the percentage of increase of required

demand for fire flow node was estimated based on Example 3, thus applied to network

presented here. All nodal demands for three operating conditions and associated

minimum nodal heads can be found in Appendix C.

There are 8 candidate pipe diameters, so the solution search space for this example

comprises (8)76 or 4.313x1068 infeasible and feasible solutions. A 3-bit binary substring

was used, giving 8 substrings (23). Therefore, there were no redundant codes for this

network. The optimization was carried out using NSGA II. The termination criterion for

the GA was taken as 500 000 function evaluations (i.e. 1 000 generations for

a population size of 500) and 30 randomly generated GA runs were performed. A single-

point crossover operator was used to produce two offspring from two parents. 1.0 was

used as a crossover probability. A bitwise mutation operator was used to change the bit

from 0 to 1 or vice versa. Since the mutation probability was 1/ng = 1/228 (i.e. 228 is the

chromosome length), the mutation rate was set to 0.004 (i.e.  0.4% chance that any

single bit would mutate). The average CPU time required for single run was about 1

hour and 30 minutes, on PC with following configuration: Intel Core 2 Duo @ 3.5GHz

and RAM 3GB.

4.2.2 Results and Discussion

4.2.2.1 Comparison of novel screening method for non-dominated designs with

POF originally generated by GA

The new method for selecting feasible non-dominated solutions from entire range of

results was successfully introduced in Chapter 3. The external screening method

provides a good range of feasible non-dominated solutions. Thus, the same approach

was applied to network presented herein. Moreover, to strengthen additional positive

aspects of using this novel method of selecting results, comparison of POF originally
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generated by the algorithm and the solutions obtained from entire history was performed

and results presented below.

Similarly like in Chapter 3, majority of results presented herein are obtained by merging

non-dominated solutions from numerous runs. POFs based on multiple runs have

considerably more solutions than there would be when considering only single run. This

happens as different runs have slightly different POFs, therefore merging and choosing

non-dominated solutions causes that the gaps between solutions are filled with designs

from different runs. Nevertheless, for comparison purposes, POFs for single runs are

also presented below.
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Figure 4.2 Entropy versus cost POFs based on solutions from entire history
of results and solutions from the last generation

Figure 4.2 illustrates entropy versus cost POFs based on 30 random runs. Feasible non-

dominated solutions chosen from entire history of results are distributed to a span of

€2.034 million in cost and 6.148 in entropy, while the solutions from last generation are

spread over the span of €1.745 million in cost and 3.935 in entropy. It is also easy to

notice from Figure 4.2 that the feasible designs from last generation do not represent the
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entire range of entropy values that could be achieved for this network. It is completely

expected outcome since the role of GA is to maximize entropy as one of the objective

functions, thus designs with low entropy value are not kept through the generations.

Nevertheless, from practical point of view, the feasible solutions with low entropy value

and considerably low cost are valuable and could be chosen by decision maker. More

importantly, the majority of solutions in the POF made from last generation are

dominated by the results chosen using external screening (i.e. over the entire history of

results). In other words, for the same cost, the solutions chosen with the new screening

method have higher entropy value, thus reliability, than the ones provided in the last

generation. Such case is possible, since despite the elitism used in the NSGA II, there

are situations when the valuable solutions are lost. For example, when the population

size is smaller than number of good non-dominated solutions, the excess of solutions

will not be kept as a consequence of the application of the crowding distance operator.

As mentioned earlier, it has been decided that results for two single runs should be

presented. The first run (Figure 4.3a) represents the case with the highest number of

feasible solutions among all runs, while the second run (Figure 4.3b) is the opposite (i.e.

case with the smallest number of feasible solutions).
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Figure 4.3a Entropy versus cost POFs for one single run (Case 1) based on solutions from entire
history of results and solutions from the last generation
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Figure 4.3b Entropy versus cost POFs for one single run (Case 2) based on solutions from entire
history of results and solutions from the last generation
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As expected, there is less results in POFs when single runs are analysed (Figure 5.3a and

Figure 5.3b) for both method of obtaining feasible non-dominated solutions.

Nevertheless, the difference in number of designs POF is much greater for solutions

provided in last generation. For example, there are 41 feasible non-dominated designs in

POF merged from 30 random runs (Figure 5.2). Once the single run is analysed, number

of feasible non-dominated solutions drops down to 28 for the first case (Figure 5.3a) and

to only 9 feasible results for the second case (Figure 5.3b). It can also be noticed on

Figure 5.3a that the solutions obtained from last generation are mostly located between

entropy values of 20.0 and 21.0, so around the highest achieved entropy value.

Moreover, those solutions, due to insignificant increase in entropy but high increase in

cost are not the most valuable solutions and will probably not be chosen by decision

maker. As explained in Chapter 3, this happens due to nature of NSGA II that

maximizes objective functions. Such situation is not observed on Figure 4.3b mostly due

to very low number of feasible solutions obtained in this run in the last generation.

Difference in number of feasible solutions between multiple runs and single run is much

smaller for proposed new method of screening results. This is mostly due to the fact that

solutions are chosen over the entire history so covers whole range of entropy values,

thus providing many more feasible solutions than the last generation. For example, there

are 74 feasible non-dominated designs in POF merged from 30 random runs (Figure

4.2). Once the single run is analysed, number of feasible non-dominated solutions

chosen over entire history of results drops down to 64 for the first case (Figure 4.3a) and

to 52 results for the second case (Figure 4.3b). Therefore, for the second case (Figure

4.3b) the solutions obtained from last generation represent only 17% of the 52 results

chosen over entire history. This proves that new method of selecting feasible non-

dominated solutions is even more important and valuable when only single run or small

number of runs can be performed.
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Figure 4.4 Effect of entropy on average pipe size for designs from
last generation and designs from entire history of results

Figure 4.4 demonstrates relationship between entropy and average pipe diameter for

feasible non-dominated solutions from last generation and feasible non-dominated

designs chosen from entire history of results. As expected, the pipe sizes increase as the

entropy increases. The coefficients of determination for both cases are extremely high

with values of 0.982 for results from last generation and 0.991 for solutions obtained by

new screening method.
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Figure 4.5a and 4.5b demonstrate how the number of feasible solutions changes over the

GA progression. It can be noticed on both graphs, that there is the highest number of

feasible solutions in the first few generations. Nevertheless, those solutions are

extremely expensive designs. Therefore in the upcoming generations the GA reduces the

cost, thus produce far less feasible designs than earlier. Then, as presented on Figure

4.5a, there is slow increase in number of feasible solutions until the termination criteria

are achieved with 11 feasible solutions on average. More fluctuations can be observed

on Figure 4.5b, where single runs are presented. Obviously the number of feasible

solutions varies for different random runs. Nonetheless in both cases there are quite few

generations with higher number of feasible designs than in the last generation. For

example, for Case 2, there are high peaks with 17 and 16 feasible designs around

function evaluation number 300 and 600 respectively. On the other hand there are only 6

feasible solutions just before the last generation). It leads to conclusion that those

feasible solutions identified earlier in the optimization process are not necessarily

retained from generation to generation, thus do not appear in final POF. Obviously this

could happen because such solutions are too expensive, thus not important or because

achieved entropy values are too low. Nevertheless, from the practical point of view it is

better to have more solutions that are feasible and choose the ones that are case of

interests (i.e. non-dominated) rather than having only few designs. Furthermore, with the

use of the new screening procedure presented, there is no possibility that any good and

valuable solutions will be lost. As explained in previous chapter, presented method of

selecting feasible non-dominated designs over the entire range of solutions is quick and

very straightforward. What is more, for such big network as presented in this chapter,

simulated for 500 000 function evaluations, the screening procedure takes only about

one minute on a PC with following configuration: Intel Core 2 Duo @ 3,5GHz and

RAM 3GB.
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4.2.2.2 Total entropy based MOC approach

Three entropy approaches (i.e. maximum, minimum or total entropy) were investigated

in Chapter 3. Based on results from different network it has been decided that the total

entropy approach is the most appropriate to use. The decision was made based on final

entropy values provided by GA (i.e. the sum of all entropies for total entropy approach,

the highest entropy value for maximum entropy approach etc.). Nevertheless the detailed

analyse based on particular entropy values from operating conditions has not been

conducted yet. Therefore, for network presented in this chapter, individual entropy

values for different loading patterns were analysed and presented below in Figure 4.6

and Table 4.1. It should also be reminded, that only the maximization of total entropy

was used in this chapter.
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Figure 4.6 POFs of entropy versus cost for individual operating conditions

On both, Figure 4.6 and Table 4.1 can be noticed that there is not one operating

condition that would have the highest entropy value for all designs. In case of expensive

designs (i.e. starting from €8.5 million in cost) the 2nd fire-loading pattern seems to have
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the highest entropy value while the 1st fire flows condition the lowest. Nevertheless,

when considering the cheaper designs (i.e. up to the €8.5 million in cost) there is no

trend suggesting that any operating condition would always have the highest or the

lowest entropies. This reinforces conclusion from Chapter 3, that the total entropy

approach is the most appropriate to use for MOC optimization, as it takes into

consideration all operating conditions. As stated earlier, if maximum or minimum

entropy approach would be used, the GA process would depend on only one operating

condition. What is more, the operating condition that GA would rely on (i.e. individual

entropy value used for objective function evaluation) would probably change from

generation to generation. In other words, there would not be any leading operating

condition for all loading patterns. That could possibly make the algorithm less stable and

less efficient. It should also be highlighted that for this network the entropy values for

different operating conditions do not vary much between each other. Nonetheless, it all

depends on the nodal demand and other initial data so there could be networks where

entropies for individual loading patterns would have significant differences.

Table 4.1 Achieved feasible non-dominated designs for Example 2 with the highest
entropy highlighted in bold red and lowest in bold blue

Design
Cost

(€106)

Critical Surplus Head (m) Entropy
Total

EntropyPeak
demand

1st Fire
Flow

2nd Fire
Flow

Peak
demand

1st Fire
Flow

2nd Fire
Flow

1 8.074 0.030 13.619 13.828 5.125 5.033 5.134 15.292

2 8.150 0.030 13.768 13.528 5.175 5.205 5.171 15.551

3 8.155 0.066 13.632 13.422 5.214 5.140 5.277 15.631

4 8.168 0.087 13.279 13.872 5.247 5.342 5.267 15.856

5 8.193 0.010 13.479 13.914 5.277 5.341 5.248 15.866

6 8.215 0.106 13.596 14.007 5.322 5.372 5.286 15.980

7 8.253 0.173 13.857 13.771 5.316 5.366 5.337 16.019

8 8.288 0.048 13.484 11.647 5.413 5.487 5.410 16.310

9 8.319 0.064 13.761 13.636 5.521 5.515 5.504 16.540

10 8.335 0.104 13.722 13.898 5.586 5.537 5.606 16.729

11 8.355 0.054 13.788 11.609 5.612 5.579 5.596 16.787

12 8.362 0.006 13.583 13.423 5.660 5.639 5.737 17.036
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13 8.408 0.123 13.798 13.295 5.942 5.917 5.952 17.811

14 8.464 0.007 13.637 13.474 5.935 5.905 6.004 17.844

15 8.473 0.037 13.711 13.555 6.034 6.021 6.104 18.159

16 8.492 0.050 13.797 12.840 6.181 6.150 6.180 18.511

17 8.509 0.007 13.697 13.418 6.232 6.207 6.295 18.734

18 8.561 0.025 13.737 13.042 6.259 6.231 6.311 18.801

19 8.583 0.044 13.729 13.517 6.270 6.234 6.346 18.850

20 8.610 0.019 13.701 13.507 6.301 6.267 6.368 18.936

21 8.619 0.019 13.676 13.555 6.334 6.278 6.402 19.014

22 8.642 0.002 13.683 13.521 6.358 6.317 6.411 19.086

23 8.668 0.039 13.720 13.544 6.400 6.355 6.468 19.223

24 8.684 0.022 13.699 13.506 6.414 6.370 6.486 19.270

25 8.686 0.032 13.770 13.617 6.438 6.392 6.506 19.336

26 8.718 0.024 13.714 13.533 6.433 6.408 6.534 19.375

27 8.744 0.030 13.724 13.492 6.456 6.428 6.537 19.421

28 8.750 0.010 13.711 13.515 6.485 6.454 6.539 19.478

29 8.755 0.015 13.666 13.660 6.496 6.453 6.571 19.520

30 8.776 0.039 13.707 13.510 6.508 6.452 6.577 19.537

31 8.793 0.022 13.709 13.498 6.513 6.464 6.574 19.551

32 8.803 0.006 13.663 13.456 6.522 6.488 6.591 19.601

33 8.809 0.021 13.697 13.486 6.541 6.522 6.616 19.679

34 8.825 0.005 13.681 13.470 6.566 6.548 6.631 19.745

35 8.841 0.027 13.711 13.625 6.569 6.544 6.646 19.759

36 8.856 0.016 13.687 13.613 6.606 6.550 6.679 19.835

37 8.862 0.028 13.704 13.664 6.598 6.567 6.676 19.841

38 8.867 0.013 13.701 13.637 6.627 6.570 6.699 19.896

39 8.872 0.006 13.704 13.383 6.644 6.602 6.703 19.949

40 8.901 0.014 13.668 13.512 6.643 6.610 6.719 19.972

41 8.905 0.044 13.744 13.635 6.658 6.602 6.732 19.992
42 8.910 0.067 13.744 13.555 6.660 6.626 6.736 20.022
43 8.937 0.001 13.646 13.389 6.669 6.625 6.763 20.057
44 8.961 0.019 13.669 13.644 6.689 6.644 6.772 20.105
45 8.982 0.001 13.671 13.278 6.705 6.653 6.795 20.153
46 9.016 0.021 13.698 13.307 6.711 6.657 6.807 20.175
47 9.019 0.001 13.676 13.284 6.721 6.665 6.815 20.201
48 9.041 0.003 13.674 13.408 6.727 6.669 6.832 20.228
49 9.048 0.020 13.693 13.427 6.730 6.672 6.835 20.237
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50 9.067 0.033 13.708 13.440 6.733 6.676 6.838 20.247
51 9.100 0.001 13.727 13.519 6.768 6.715 6.837 20.320
52 9.159 0.000* 13.743 13.058 6.862 6.799 6.903 20.564
53 9.170 0.011 13.756 13.071 6.870 6.806 6.912 20.588
54 9.211 0.015 13.721 13.695 6.892 6.826 6.949 20.667
55 9.284 0.032 13.712 13.695 6.906 6.812 6.970 20.688
56 9.332 0.003 13.700 13.590 6.901 6.844 7.005 20.750
57 9.420 0.005 13.705 13.594 6.925 6.869 7.030 20.824
58 9.458 0.006 13.638 13.453 6.930 6.897 7.013 20.840
59 9.522 0.003 13.682 13.762 6.970 6.900 7.032 20.902
60 9.536 0.011 13.692 13.705 6.970 6.900 7.056 20.926
61 9.578 0.027 13.646 13.607 6.953 6.916 7.069 20.938
62 9.624 0.009 13.690 13.705 6.982 6.610 7.068 20.960
63 9.629 0.059 13.672 13.769 6.961 6.922 7.085 20.968
64 9.641 0.039 13.727 13.740 6.990 6.916 7.076 20.982
65 9.691 0.026 13.651 13.764 7.003 6.969 7.099 21.071
66 9.747 0.000** 13.659 13.690 7.010 6.959 7.123 21.092
67 9.804 0.002 13.656 13.727 7.038 6.984 7.156 21.178
68 9.832 0.005 13.663 13.716 7.052 6.995 7.168 21.215
69 9.872 0.008 13.670 13.721 7.070 7.016 7.186 21.272
70 9.919 0.002 13.665 13.694 7.103 7.046 7.218 21.367
71 9.945 0.010 13.672 13.724 7.104 7.048 7.221 21.373
72 10.013 0.006 13.662 13.728 7.111 7.055 7.229 21.395
73 10.037 0.016 13.678 13.731 7.119 7.060 7.237 21.416
74 10.108 0.009 13.667 13.724 7.127 7.069 7.244 21.440

*The actual surplus head at critical node is 0.00013m
**The actual surplus head at critical node is 0.000002m

In addition to investigation of relationship between entropy and cost, also the correlation

between actual surplus head and cost or entropy was examined and presented on Figure

4.7a and 4.7b respectively. For both graphs, the surplus heads from peak demand were

used since for every single feasible design this operating condition has the lowest value

of actual surplus head (Table 4.1). In other words, the peak demand was critical

operating condition and once it becomes feasible, the other two patterns were also

feasible. It was thought that with the increase of entropy the actual surplus head at
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critical node will increase as well. Nevertheless, as it can be noticed, there is no

correlation between surplus head and entropy (Figure 4.7b) or between surplus head and

cost (Figure 4.7a). Therefore, it can be concluded that presented GA with such

implemented deficit seems ideal, as once the algorithm achieves feasibility it can

concentrate on minimizing the cost and maximizing the entropy (i.e. all feasible

solutions, regardless of the actual amount of surplus head are considered equal with

respect to feasibility). If the feasible design would have actual value instead of zero the

GA would maximize it equally to cost minimization and entropy maximization. Since

there is no correlation between increasing entropy or cost and surplus head, the

maximization of surplus head would contradict with other two objective functions.

Consequently, more time and higher number of function evaluations would be necessary

to achieve good trade-off between cost and reliability.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

8.00E+06 8.40E+06 8.80E+06 9.20E+06 9.60E+06 1.00E+07 1.04E+07
Cost [€]

S
ur

pl
us

 H
ea

d 
[m

]

Figure 4.7a Surplus head versus cost for feasible non-dominated solutions from 30 random runs
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Figure 4.7b Surplus head versus entropy for feasible non-dominated solutions
from 30 random runs

4.2.2.3 Algorithm performance

Any changes within GA could reflect in algorithm performance by making it less

efficient or unstable. Therefore, it is necessary to ensure that the GA is consistent,

converges quickly enough and performs well on all runs despite the initial data (i.e. the

randomly generated initial population).

In order to investigate the consistency and performance of GA with such big network

simulated for 30 random runs with 500 000 function evaluations in each run, additional

software was used. For this purposes, the external software written in Perl language was

developed and employed. The software identifies the highest, lowest and average value

among 500 population size starting from 1st generation, then for every 20 generations

and finishing on the very last one. This could be done for feasible and infeasible

solutions or for feasible designs only, depending what data are required for further

analysis. Afterwards, data from 30 random runs are gathered together in Excel
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spreadsheet and maximum, minimum and average values are recognized among all runs.

In terms of cost, the external software identified the lowest value, since the aim of the

optimization process is to minimize the cost. It should be mentioned that evolution and

convergence characteristics for cost are based on feasible and infeasible solutions. For

the deficit, the average value among all populations was used as it takes into

consideration both infeasible solutions that have the actual deficit value and feasible

solutions which have deficit of zero. In terms of entropy, external software identified the

highest value, as maximization of the entropy is the purpose of the optimization. More

importantly, only the feasible designs were taken into consideration, since only the

feasible solutions have realistic or meaningful entropy value. In other words, the entropy

value does not represent the proper reliability of the network if the network condition

(i.e. feasibility) is not satisfied. Such acquired data were gathered together and presented

on Figures 4.8 to 4.10.
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Figure 4.8 Evolution and convergence characteristics for minimum cost based on
feasible and infeasible solutions for 30 GA runs
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The results presented confirm that the GA proposed in this study is stable and efficient.

All objective functions behave according to the predictions and expectations. The

quickest stabilization can be observed in terms of cost (Figure 4.8) with only 200 000

function evaluations (i.e. 400 generations and population of 500) needed to converge.

The evolution and convergence characteristic for entropy is presented on Figure 4.9. The

average of maximum entropy increases rapidly within the first generations, then the

increase is much slower. There are not many fluctuations on Figure 4.9, although it

should be highlighted that some imbalance is likely to appear in evolution and

convergence characteristic for entropy. Entropy, in contrast to cost is more sensitive to

changes. Once the decision regarding pipe sizes is made, the cost remains the same

despite other circumstances with changes like flow paths or nodal heads. Entropy,

however, highly depend on flow paths, flow directions and flow rates, so any changes in

flow directions or even flow rates will have influence on entropy value. Therefore, for

the same pipe sizes but different flows the entropy values can be extremely different.

The average deficit (Figure 4.10) increases with the GA progression that is consistent

with previously presented results (Figure 4.5). As explained earlier there are many

feasible but highly expensive solutions in the first generations causing that the deficit

value is fairly low at the early stage. With the cost minimization the number of feasible

solutions gets lower, thus giving higher value of average deficit. It should also not be

forgotten that all feasible designs have zero deficit in nodal head, while infeasible

solutions have positive values. Therefore there are no values that could balance or lower

the deficit as feasible solutions are neutral in this context. In addition, since the GA tries

to compromise all objective functions, it also generates designs that are very cheap with

potentially high but unrealistic entropy values that are highly infeasible, thus increasing

the average deficit value.
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4.3 CONCLUSIONS

The penalty-free multi-objective genetic algorithm developed has been applied the real

life network to illustrate its applicability to water distribution networks in general.

Maximization of total entropy value was used for MOC approach. Individual entropy

values for different loading patterns were presented and analysed to demonstrate that

total entropy approach is the most suitable to employ for MOC optimization. As in

previous chapter, the external screening method was used in order to identify the

feasible non-dominated solutions from entire history of results. Comparison of POF

originally generated by the algorithm and the solutions obtained from entire history was

performed and results presented. Overall, it was demonstrated that the screening

procedure is extremely efficient and robust with the capability of providing a good

improved front with wide range and nice spread of results. Moreover, the analysis of the

GA performance strongly suggests that presented algorithm is robust with quick

convergence rate.
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CHAPTER FIVE

SELF ADAPTIVE SEARCH SPACE REDUCTION METHOD

BASED ON MAXIMUM ENTROPY

5.1 INTRODUCTION

It has already been observed in this thesis that evolutionary techniques such as GA have

been successfully used in WDNs optimization. Over the last few years many different

benchmark networks were used and published results proved that GAs are efficient and

capable of finding desired solution (i.e. minimum cost, maximum entropy etc.).

However, the size of the search space is highly dependent on parameters such as number

of links (i.e. size of the network) and number of commercially available pipe sizes.

Therefore, the number of function evaluations required to identify optimal solution can

be extremely large. Very simple, theoretical 2 loop network with only 8 pipes and 14

possible pipes diameters has a search space of (14)8 or 1.475x109. For large, real life

networks, with hundreds of pipes and many network components, it can be extremely

time consuming process as the GA might require even millions of function evaluations.

It is therefore desirable to reduce the search space in order to speed up the optimization

process.  Hitherto, not much work with valuable results has been done in this aspect and

only handful publications present methods for reducing the GA search space.

GA with reduced search space (RSS) approach presented in this chapter is based on

entropy. Using the importance of every path through network, which is included in the

entropy function, the number of candidate diameters for each pipe was reduced. The



Chapter 5: Self-Adaptive Search Space Reduction
Method Based on Maximum Entropy

114

method does not involve pre-defining the diameters, which very often happens in

different RSS approaches published in literature (Vairavamoorthy and Ali, 2005; Kadu

et al. 2008 and Haghighi et al. 2011). The RSS GA developed here is self-adaptive and

dynamic. It allows reducing the search space, thus the number of function evaluations

required to identify optimal solutions while producing cheaper designs for the same

entropy value than conventional GA based on full search space. The method has been

tested on network previously used in search space reduction studies.

5.2 PROBLEM FORMULATION

Likewise in previous chapters, the objectives considered herein are minimization of the

network’s initial construction cost, subject to ensuring adequate pressures at all nodes

and maximization of entropy. The overall problem formulation can be summarised as

follows.

Minimize initial cost: f1 = 


np

i
iii LDC

1

),( (5.1)

where Ci (Di, Li) is the cost of the pipe i with diameter Di and length Li; np represents

number of pipes in the system. Above formulation is subject to constraints such as nodal

mass balance (Eq. 2.1, Chapter 2) and energy conservation (Eq. 2.2, Chapter 2) that are

satisfied externally by EPANET 2 hydraulic solver (Rossman 2000).

Minimize infeasibility: f2 = i
des
i HH  ; des

ii HH  (5.2)

where i is the critical node; iH is the available head at node i; and i; des
iH is the desired

head at node i. The desired head is the nodal head above which the demand is satisfied

in full and the critical node is the node with the lowest pressure within the network.

Maximize Entropy: f3= S (5.3)
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where S is the entropy.

5.3 PROBLEM SOLUTION AND METHODOLOGY

The binary coded genetic algorithm NSGA II (Deb et al. 2002) was modified for WDN

purposes and combined with hydraulic simulation software EPANET 2 (Rossman,

2000). Entropy subroutine capable of calculating entropy value for any given network

layout was incorporated within the code as a surrogate measure of reliability.

As mentioned earlier, the NSGA II directs the search into objective minimization.

Therefore, cost equation remains unchanged, as cost minimization is the objective

function. In terms of deficit (i.e. hydraulic infeasibility), all values for pressure shortfall

are converted into positive values, whilst surplus heads (positive value in reality) are

assigned zero value. In such way, the algorithm concentrates on achieving feasible

solutions. In case of the entropy, the positive entropy value is converted into negative

value. Therefore directing the search to objective minimization leads in reality to

entropy maximization.

The procedure of algorithm used herein can be illustrated as in Figure 5.1. Initially, a

random parent population of size N is generated. To create offspring population of size

N, the mutation and crossover are applied. The offspring and parent populations are

combined together forming population of size 2N which undergoes non-dominated

sorting. This step ensures elitism by preserving previous and current best individuals.

Non-dominated sorting involves dividing results into different fronts and assigning

fitness values (i.e. ranks). The first front is non-dominated with assigned fitness value of

1. The second front has assigned fitness value 2 and its individuals are dominated by

individuals from first front. This goes on until all results have designated fitness values.

In addition, the crowding distance is calculated for each solution. Crowding distance is a

measure of distance between neighbouring individual. High crowding distance means
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that individual is from less crowded area, thus having such solutions results in better

diversity. Based on fitness values and crowding distance of the last front, the best N

individuals are chosen. Among best N individuals, the feasible solution with ME value

or slightly lower than ME value (i.e. depending on the percentage of ME used) is

identified as ‘basic design’. Such solution is used to enforce search space reduction by

reducing number of available pipe sizes (i.e. 14 pipe sizes in case of network presented

herein) to required number of pipes (i.e. 5 pipes in this study). In order to identify what

pipe sizes should be chosen for particular link, (i.e. each link may have different sets of

pipe sizes), the algorithm identify the closest pipe sizes to the pipes from ‘basic design’.

In other words, the pipe already allocated in ‘basic design’ is treated as ‘middle pipe’.

Subsequently, additional two nearest pipes with higher diameters and two nearest pipes

with lower diameters are added thus giving 5 pipe diameters in total. If the ‘middle pipe’

appears to be the biggest or smallest available pipe size, it is tripled (i.e. it repeats three

times increasing the chances that it will be chosen). Similar situation happens if the

‘middle pipe’ appears to be the next to the biggest or smallest. In this case, the biggest or

smallest pipe size is doubled. Therefore, for next generation, the algorithm is searching

for solutions through 5 pipe sizes allocated to each link. The process is repeated in

subsequent generations until reaches termination condition.

For purposes of this study, that RSS GA was tested on 5 pipe sizes since 5 pipe sizes

were used in previous publications for this particular network design considered (Kadu

et al. 2008 and Haghighi et al. 2011). Nevertheless, number of available pipe sizes can

be easily changed to any odd number required.

It should also be highlighted that the search space reductions are only enforced once the

feasible solution is identified. Until then, the RSS GA works exactly the same as FSS

GA. Therefore, if the first feasible solution or feasible solutions will appear in, for

example, generation 8, the results until generation 8 will be the same for both cases (i.e.

RSS and FSS) as long as the simulations were based on the same initial data and random

seed.
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Figure 5.1 Flow chart of proposed approach
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5.3.1 Formulation of Search Space Reduction Approaches

Previous studies and results presented in Chapter 3 (Figure 3.7, Figure 3.12 and Figure

3.17) has shown that maximization of entropy leads to numerous solutions with

insignificant increase in entropy value but high increase in cost. Since the RSS method is

based on entropy maximization it was thought that choosing the solution with ME within

each generation, could result in assigning unnecessary big pipe diameters, thus

neglecting cheaper solutions with lower entropy. Therefore, it has been decided that not

only design with ME value should be used to identify 5 pipe diameters for next

generation, but also solutions with slightly lower entropy value than ME for particular

generation. Different percentage values of ME were tested and achieved results showed

that three percentage approaches proposed herein identify the best solutions, fulfil the

gaps between each other and present nearly entire range of possible entropy values for

particular network. Single GA run allows using one percentage of ME value. Therefore,

depending on required results (i.e. cheap solutions with lower entropy or the most

reliable designs with highest entropy) one percentage approach could be employed.

Nevertheless to achieve solutions covering the entire range of possible entropy values all

three percentage approaches should be used in three separate GA runs. The proposed

percentage approaches are as follows.

5.3.1.1 100% of Maximum Entropy

GA with 100% of maximum entropy reduce search space approach (100% MERSS)

identify the solution with highest entropy value among all feasible designs for particular

generation. Based on that solution, the algorithm allocates pipe sizes for the next

generation. Overall, the aim of 100% MERSS is to identify the most reliable solutions.
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5.3.1.2 99% of Maximum Entropy

Algorithm with 99% of maximum entropy reduce search space approach (99% MERSS)

also identify the highest entropy value among all feasible designs for particular

generation. Then, the 99% of this ME is calculated and the solution with closest entropy

value (i.e. either lower or higher) is used to allocate pipe sizes for next generation. The

99% MERSS will most probably not be able to find the designs with highest entropy

value. Nevertheless, extensive testing has shown that this percentage approach can fill

possible gap between results achieved using 100% MERSS and 98% MERSS.

5.3.1.3 98% of Maximum Entropy

GA with 98% of maximum entropy reduce search space approach (98% MERSS) works

on similar basis as the 99% MERSS approach. The only difference is that the solution

closest to 98% of the highest entropy value is used to allocate pipe sizes for the next

generation. Because of that, the GA is able to identify the solutions from the other end of

entropy range (i.e. designs with lowest entropies and lowest cost). It should be

highlighted that those low cost, lower entropy were not identified by GA based on FSS.

Moreover, those solutions are important from engineering point of view as they could be

chosen by the decision maker (i.e. depending on the budget level).

5.4 APPLICATION OF SEARCH SPACE REDUCTION APPROACH

5.4.1 Description of the Network and Design Data

To present the potential of proposed approach the network previously introduced by

Kadu et al (2008) was used. This network represents a substantial challenge as despite

its medium size (i.e. number of pipes) it has large number of decision variables, thus
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resulting in large solutions space. It has not been widely studied, however all previous

publications relate to search space reduction. Therefore, this network is ideal to present

novel self-adaptive search space reduction method. The skeletonised network shown on

Figure 5.2 consist 26 nodes, 34 pipes and 9 loops. Two reservoirs are labelled 1 and 2

with the heads set at 100 and 95m above sea level, respectively. All pipes have Hazen-

Williams roughness coefficient of 130. Nodal demands in m3/min, as well as nodes and

pipe numbers are shown in the Figure 5.2. Further details of the network such as

available pipe diameters and its cost, pipe lengths and minimum HGL can be found in

Appendix D.

Figure 5.2 Network layout
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Presented network has 14 candidate pipe diameters, so the solution search space for this

example comprises (14)34 or 9.3x1038 infeasible and feasible solutions. A 4-bit binary

substring was used, giving 16 substrings (i.e. 24). Having 14 decision variables left 2

substrings redundant. Those redundant codes were uniformly allocated to available pipe

sizes. Uniform allocation means that the redundant codes are assigned to every ith

number of pipe preserving the same space at the beginning, end and between pipes that

are doubled. Therefore, in case of 14 pipes and 2 redundant codes, pipe fifth and tenth

are doubled. Once the reduction in available pipe sizes takes place (i.e. the most

appropriate feasible solution is found and number of decision variables from 14 for each

pipe is reduced to 5), the number of redundant codes increases and is automatically

uniformly allocated to available pipe sizes. In other words, when design that is the basis

for another generation is identified, the nearest pipe sizes (i.e. two smaller and two larger

sizes) for this particular link are identified and redundant codes are allocated among

them. Such allocation of redundant code is dependent what pipe sizes for particular links

had chosen design. Therefore, each link may have different pipe sizes. The whole

process is fully dynamic and does not require any manual interference.

The termination criterion for the GA was taken as 100 000 function evaluations (i.e.

1 000 generations for a population size of 100) and 50 randomly generated GA runs

were performed. A bitwise mutation operator was used to change the bit from 0 to 1 or

vice versa. Since the mutation probability was 1/ng = 1/136 (i.e. 136 is the chromosome

length), the mutation rate was set to 0.007 (i.e. there was a 0.7% chance that any single

bit would mutate). A single-point crossover operator was used to produce two offspring

from two parents and 1.0 was used as a crossover probability. The average CPU time

required for single run is almost the same for all four cases (i.e. FSS, 100%MERSS,

99%MERSS, 98%MERSS) and it takes between 217 and 220 seconds for the full GA

run of 100,000 function evaluations (Table 5.1), on PC with following configuration:

Intel Core 2 Duo @ 3.5GHz and RAM 3GB.
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5.4.2 Results and Discussion

The methodology for selecting feasible non-dominated solutions from entire range of

results was successfully introduced in Chapter 3 and Chapter 4. Presented results proved

that the external screening method provides a good range of feasible non-dominated

solutions and ensures that all valuable solutions are kept. Therefore, the same approach

was applied to network presented herein. Firstly, the feasible, cost-entropy non-

dominated designs for each run were identified. Later, cost-entropy non-dominated

solutions from 50 runs were merged together in order to identify final POF. The process

was repeated four times, for each POF separately (i.e. FSS, 100%MERSS, 99%MERSS

and 98%MERSS). Comparison of all POFs is presented in Figure 5.3a. It can be noticed

that RSS POFs supplement each other and even overlap. Therefore, the non-dominated

solutions for all three RSS POFs were merged and screened for final cost-entropy non-

dominated designs. Such achieved POF is presented alongside with FSS POF on Figure

5.3b. It can be observed on Figure 5.3a and 5.3b that FSS POF is dominated by RSS

POFs almost on the entire length. In other words, the solutions obtained using RSS have

higher entropy, thus reliability for similar cost and vice versa, for the same entropy

value, the RSS solutions are cheaper. What is more, the RSS method identifies cheap

solutions with lower entropy (i.e. between 3.1 and 3.3 entropy value) that are not

recognised by FSS. FSS on the other hand produce solutions with the highest entropy

value, which are not identified by RSS. This small limitation occurs because the SSR

presented herein is based on 5 pipe diameters. So for this particular network, 14

available pipe sizes are automatically reduced to 5 once the feasible solution is achieved.

Having 5 pipe diameters instead the full range makes the algorithm progressing faster

but it may get harder to achieve the near global maximum entropy value. Nevertheless, it

should be highlighted that there are very low chances that design with near global

maximum entropy value would be chosen by decision maker due to very high cost.

Solutions with slightly lower entropy value and lower cost are in practice more valuable

since the solutions near global entropy value are usually highly expensive. For example,

the solution with highest entropy, identified by FSS approach, has an entropy value of
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4.373 and a cost of 4.66x108 Rupees. Whereas the design with highest entropy produced

by 100%MERSS has an entropy value of 4.330 and cost of 4.5x108 Rupees. Therefore,

the increase in entropy between 100%MERSS and FSS is marginal and smaller than 1%,

whilst the increase in cost is nearly 3.4%. Hence, it is not worth to pay this extra cost

with so low increase in entropy, thus reliability. In order to identify where exactly the

FSS solutions are not dominated by RSS designs, the FSS POF was merged with RSS

POF and cost-entropy non-dominated solutions were identified and presented on Figure

5.3c. It can be noticed that only very small fraction of the plot is covered by solutions

obtained using FSS. In much larger part of the plot, solutions identified by RSS

approaches has higher entropy for similar cost, thus dominate FSS designs. Moreover,

there are as little as 23 solutions identified by FSS that if considered without RSS

solutions, would not be enough for the decision maker to choose from. Whereas the RSS

approaches produced 124 cost-entropy non-dominated solutions (47 designs identified

by 100%MERSS, 62 by 99%MERSS and 15 by 98%MERSS).
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Figure 5.3a Entropy versus cost POFs for FSS, 100%MERSS, 99%MERSS, 98%MERSS
based on entire history of results from 50 runs
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Figure 5.3b Entropy versus cost POFs for FSS and merged MERSS based on
entire history of results from 50 runs

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

1.4E+08 1.9E+08 2.4E+08 2.9E+08 3.4E+08 3.9E+08 4.4E+08 4.9E+08
Cost (Rupees)

E
nt

ro
py

FSS
100% MERSS
99% MERSS
98% MERSS

Figure 5.3c Entropy versus cost POFs for merged FSS and MERSS based on
entire history of results from 50 runs
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In addition to final merged POF presented on Figure 5.3, further analysis was also

performed on individual cost-entropy non-dominated POFs for 50 randomly generated

runs. However, due to space limitation all 50 GA runs were gathered and attached in

Appendix D. The entropy and cost scales were kept the same for all 50 graphs for ease

of comparison. Despite the fact, whether it is FSS or RSS POF, the graphs can vary

much between each other (i.e. plot from one run could be completely dominated by plot

from other run). This is absolutely normal since the initial population depend on initial

data thus random seed. Therefore it is important to have multiple runs instead single run

in order to assess not only the GA performance but also in case of designing actual

network since the single run may produce the best or worst POF and be misleading.

Even a quick look at individual plots is enough to identify that majority of RSS POFs

outperforms FSS POFs in terms cost and entropy. Nevertheless, all 50 runs were divided

into four subcategories in order to identify number of runs with the best and worst RSS

POFs in comparison to FSS POFs. Such data are presented in Figure 5.4

0

2

4

6

8

10

12

14

16

18

20

RSS>>FSS RSS>FSS RSS=FSS RSS<FSS

N
um

be
r o

f r
un

s

Figure 5.4 Comparison of performance of RSS POFs and FSS POFs for individual runs
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First column (i.e. RSS>>FSS) represents runs where RSS approaches produced POFs

with not only cheaper solutions for similar entropy value, but also higher or at least the

same maximum entropy value. Good example of this category would be run 1, 6, 13, 19,

20, 21, etc. (Appendix D). Second column (i.e. RSS>FSS) correspond to runs where

POFs based on RSS have cheaper design for similar entropy value, however the FSS

approach produce designs with highest entropy value. This group of results is the biggest

among all four. Third column (i.e. RSS=FSS) stands for runs where RSS solutions

dominate the FSS designs, but the maximum entropy values for designs achieved using

RSS are considerably lower than highest entropies obtained using FSS. For example run

2, 5, 7, 18, etc. (Appendix D) would belong to this category. As mentioned earlier, the

limitation in entropy range (i.e. actually in high entropy values) is the results of pipe

sizes reduction (i.e. FSS is based on 14 pipe size diameters while RSS approach on 5

pipe size diameters). The last column (i.e. RSS<FSS) corresponds to runs when FSS

POFs would dominate the RSS POFs. It has to be highlighted that only 2 runs (run 10

and 43) belongs to this category, which in comparison to total number of all 50 runs is

relatively small number.

Even though it has been proved that the novel method of selecting non-dominated

feasible designs from entire range of results is superior to originally generated POF (i.e.

last generation) there are high chances that in some cases only this POF will be used.

Therefore, additional comparison of POFs originally generated by GA, were presented

on Figure 5.5a and Figure 5.5b. Once again, Figure 5.5a presents four separate POFs

(i.e. FSS, 100%MERSS, 99%MERSS and 98%MERSS) obtained after merging 50

random runs. Whilst Figure 5.5b shows two POFs; one for FSS and one for RSS, which

represents final cost-entropy non-dominated designs for three RSS approaches. It can be

noticed, the only difference between Figure 5.3a and 5.5a, also 5.3b and 5.5b is that the

POF obtained from last generation (Figure 5.5a and Figure 5.5b) has less designs than

POF made with the use of entire history of solutions (Figure 5.3a and Figure 5.3b).

Overall conclusion that can be drawn is that the results achieved using SSR outperform
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FSS solutions with higher entropy for the same cost and vice versa, lower cost for the

same entropy value.
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Figure 5.5a Entropy versus cost POFs for FSS, 100%MERSS, 99%MERSS, 98%MERSS based
on results from last generation from 50 GA runs
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Figure 5.5b Entropy versus cost POFs for FSS and merged MERSSs based on
results from last generation from 50 GA runs
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In order to investigate the consistency and performance of presented GA with such big

network simulated for 50 random runs with 100 000 function evaluations in each run,

the additional software had to be used. For these purposes, the external software written

in Perl language that has already been described in Chapter 4 was modified and

employed. As mentioned before, the software identifies the highest, lowest and average

value among  population of size 100 starting from 1st generation, then for every 20

generations and finishing on the very last one. This was done for feasible and infeasible

solutions as well as for feasible designs only. Afterwards, data from 50 random runs

were gathered together in excel spreadsheet and maximum, minimum and average

values were recognized among all runs. Such acquired data were gathered together and

presented on Figures 5.6 to 5.9. In terms of cost, the external software identified the

lowest value, since the aim of the optimization process is to minimize the cost. Two

cases were analysed; one for feasible and infeasible solutions (Figure 5.6) and another

one for feasible designs only (Figure 5.7). For the deficit (Figure 5.9), the average value

among all population was used as it takes into consideration both infeasible solutions

that have the actual value and feasible solutions which are equal to zero. In terms of

entropy (Figure 5.8), external software identified the highest value, as maximization of

the entropy is the purpose of the optimization. Similarly as in previous chapter, only the

feasible designs were taken into consideration, since only the feasible solutions have

realistic entropy value.
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Figure 5.6a Search performance of FSS GA based on feasible and infeasible
designs from 50 GA runs
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Figure 5.6b Search performance of 100%MERSS GA based on feasible
and infeasible designs from 50 GA runs
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Figure 5.6c Search performance of 99%MERSS GA based on feasible
and infeasible designs from 50 GA runs
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Figure 5.6d Search performance of 98%MERSS GA based on feasible
and infeasible designs from 50 GA runs
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Figure 5.6 demonstrates GA performance in terms of cost for FSS and three cases of

RSS. It should be mentioned, that the scale for cost was kept the same for all Figures

(5.6a, 5.6b, 5.6c and 5.6d), so it is easy to identify differences between the costs for FSS

and RSS, which will be explained later in this paragraph.

It can be noticed that RSS converged extremely quickly in comparison to FSS approach.

For all three cases of RSS stabilization can be observed with only 2 000 function

evaluations (i.e. 20 generations and population of 100) needed to converge. This rapid

stabilization is the result of reducing the number of candidate pipe sizes once the GA

with RSS reaches feasible solution. This leads to a reduction in the size of the solution

space that corresponds to (5/14)34 = 6.3×10-16. In other words the solution space is

reduced to a fraction of 6.3×10-16 or 1/1.60×1015 of the full solution space. Therefore,

the full range of 14 pipes diameters is reduced to 5 pipe diameters which makes the

algorithm progress much faster. In the case of FSS about 40 000 function evaluations

(i.e. 400 generations) are needed to converge. This leads to a conclusion that all three

RSS cases (i.e. 100%MERSS, 99%MERSS and 98%MERSS) could be performed

within the same or even lower number of function evaluations that is required for the

FSS to converge. Moreover, simulating three RSS cases would not take more time than

simulating FSS. This way, not only wider range of available entropy values could be

achieved (Figure 5.3) but also cheaper solutions with the same entropy would be

identified, as presented in Figure 5.3.

As pointed out earlier, there is some difference in values of costs between FSS and RSS.

Algorithm based on FSS produce cheaper designs than solutions generated with RSS

method. Nevertheless, it should be remembered that those very cheap designs obtained

using FSS are also highly infeasible, which makes them useless. Whereas, the RSS

method produce solutions located mostly at the boundary between feasible and

infeasible region, thus making the cost higher. For that reason, it has been decided that

GA performance in terms of cost should also be performed on feasible designs only.

This should clarify and prove that the actual cost of feasible solutions is lower for

designs achieved using RSS approaches. Those results were presented in Figure 5.7.
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Figure 5.7a Search performance of FSS GA based on feasible designs from 50 GA runs
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Figure 5.7b Search performance of 100%MERSS GA based on feasible
designs from 50 GA runs
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Figure 5.7c Search performance of 99%MERSS GA based on designs from 50 GA runs
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Figure 5.7d Search performance of 98%MERSS GA based on feasible designs
from 50 GA runs
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It is easy to notice on Figure 5.7 that for all RSS cases the cost decrease with the

increase of function evaluations, so exactly the same way as when the feasible and

infeasible solutions were taken into consideration (Figure 5.6). Nevertheless, it does not

happen for FSS approach, as it is clear from the Figure 5.7a that the minimum cost

decrease at the very beginning and then slowly increases with increasing number of

function evaluation. This is expected outcome as apart from cost minimization the FSS

GA also try to reach the global maximum entropy value, that as explained earlier in this

chapter, raises the cost significantly and disproportionately to the increase of entropy.

Therefore, when considering the feasible designs only, the cost and entropy get higher

with the increase of number of function evaluations. Obviously the aim of RSS GA is

the same as FSS GA (i.e. reaching for the highest possible entropy value, while

minimizing the cost and achieving feasibility), but since the RSS method is based on

reduced search space (i.e. lower number of pipe diameters), there is less possibilities for

different pipe diameters configurations. Therefore the RSS GA search mostly the space

at feasibility boundary, thus there is more chances to find feasible designs with high

entropy and considerably low cost.  Moreover, it is noticeable on Figure 5.6 that all three

RSS cases achieve lower minimum cost for feasible solutions than the FSS. This goes

along with previous results presented on Figure 5.3 that RSS method allows to identify

cheaper feasible deigns than FSS method. Some fluctuations can be observed on all four

graphs. Such imbalance is an expected outcome as presented results are based on

feasible solutions only, thus it is not like proper GA performance regarding stabilisation

and convergence. Nevertheless, the RSS has fewer fluctuations and seems to converge

far quicker.
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Figure 5.8a Search performance of FSS GA based on feasible designs from 50 GA runs
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Figure 5.8b Search performance of 100%MERSS GA based on feasible designs
from 50 GA runs
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Figure 5.8c Search performance of 99%MERSS GA based on designs from 50 GA runs
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Figure 5.8d Search performance of 98%MERSS GA based on feasible designs
from 50 GA runs
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The evolution and convergence characteristic for entropy is presented on Figure 5.8.

Only feasible solutions were considered. Similarly to results showed in Figure 5.7,

analysed objective (i.e. entropy in this case) increase and stabilise far quicker for RSS

approaches than FSS method. For the RSS approaches (Figure 5.8b, Figure 5.8c and

Figure 5.8d) the entropy value seems to be boosted rapidly within first few generations,

and then the increase is much slower, nearly insignificant. This rapid stabilization is the

result of reducing the number of decision variables once the GA with RSS reaches

feasible solution. Having 5 pipe diameters instead the full range of 14, makes the

algorithm progress faster and reach to the maximum possible entropy value (i.e. highest

for particular set of reduced pipe diameters) within fewer generations. For the FSS

approach (Figure 5.8a), the entropy has also the quickest growth in the first generations,

however it does not seems to stabilise but slowly increases until the GA termination.

Moreover, quite a few fluctuations can be observed for results based on FSS approach,

especially when the minimum of highest entropy is considered.

It is also easy to notice from Figure 5.8 that the GA based on FSS produces results with

slightly higher entropy value than the RSS approaches. Obviously the percentage of ME

value used is of great importance. It is not even expected that GA will identify highest

entropy value when 98% MERSS or 99%MERSS are used since the main role of those

percentage approaches is to identify cheaper solutions, thus lower entropy values.

Nevertheless, the maximum of highest entropy value for 100% MERSS is 4.329 while

the maximum of highest entropy value for FSS is 4.370. The small difference equals to

0.041 between those entropy values is the limitation that occurs because the RSS is

based on restricted number of pipe sizes. Detailed explanations have been presented

earlier in this chapter when Figure 5.3 was analysed.
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Figure 5.9 Search performance of GA based on feasible and infeasible designs
from 50 GA runs

Figure 5.9 demonstrates GA performance in terms of deficit for FSS and three cases of

RSS. For the FSS, the average deficit increases with the GA progression which is

consistent with results presented in previous chapter (Figure 4.10). As explained in

Chapter 4, there are many feasible but highly expensive solutions in the first generations

causing that the deficit value is fairly low at the early stage. With the cost minimization

the number of feasible solutions gets lower, thus giving higher value of average deficit.

The situation is completely different for all RSS approaches as the average deficit

decreases to the level close to 0m (i.e. lower than 100m of deficit) and remains stable

until the GA termination. The lowest average deficit occurs for 99%MERSS and is

around 58m (65m for 98%MERSS and 73m for 100%MERSS). Obviously, the value of

average deficit will never be equal to zero since some infeasible solutions will always

occur. It should also not be forgotten that all feasible designs are treated as neutral (i.e.

zero value is assigned to feasible solutions despite the actual surplus head, while

infeasible solutions have positive values). Therefore there are no values that could

balance or lower the deficit. Nevertheless, the FSS approach has the average deficit

value around 4 162m just before the GA termination. Hence, the average deficit below
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100m for the RSS approaches is extremely small. This highly desirable attribute of

identifying the solutions at the boundary of feasibility is achieved due to reduction of all

set of possible pipe. Using ME based RSS approaches allows narrowing the entire

search space to boundary between feasible and infeasible regions. As Kadu et al. (2008)

highlighted, the optimal (i.e. cost effective) designs are located at the boundary of

feasible and infeasible solutions. Siew and Tanyimboh (2012) proved that algorithm

with boundary search techniques is able to locate optimal solution in considerably lower

number of function evaluations required. Presented GA with RSS approaches reinforce

above statements.

Table 5.1 Convergence and consistency statistics based on 50 random GA runs

Measure Minimum Mean Median Maximum
Standard
deviation

CPU time (for entire 100,000 FEs) [s]:

FSS 210 217 216 227 4.693

100% MERSS 210 219 220 227 2.968

99% MERSS 214 220 221 229 3.557

98% MERSS 212 219 218 227 3.443

Number of feasible designs per run:

FSS 2336 3985 3984 5750 945.831

100% MERSS 6990 11831 11362 18389 2540.812

99% MERSS 4737 10363 10172 16831 2613.134

98% MERSS 4939 10183 9571 16597 3099.759

Function evaluations for convergence in terms of entropya (3% tolerance used as convergence
criterion)

FSS 4.3*10-35 39.8*10-35 32.3*10-35 107.5*10-35 b 31.269

100% MERSS 4.3*10-35 11.2*10-35 4.3*10-35 107.5*10-35 b 22.396

99% MERSS 4.3*10-35 9.3*10-35 4.3*10-35 81.7*10-35 13.780

98% MERSS 4.3*10-35 7.8*10-35 4.3*10-35 25.8*10-35 6.683
a Point beyond which the improvements become very insignificant.
b Evaluation function at which the GA run was terminated (i.e. last evaluation function).

Table 5.1 presents convergence and consistency statistics based on 50 random GA runs.

It can be noticed that the CPU time is nearly the same for all three approaches based on

100,000 FEs. Therefore, the RSS approach (i.e. identification of design with ME and
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recognition of set of 5 pipe sizes that could change from generation to generation) does

not slow down the GA process significantly. Furthermore, considering that RSS requires

far fewer function evaluations to converge, the 3 different RSS approaches could be

performed within the same time as one full FSS simulation. It is also clear from Table

5.1 that RSS approach produces more feasible solutions than FSS. On average, there are

approximately three times more feasible solutions per single run when using any of the

RSS approaches. Therefore, there are more alternative solutions to consider for any

additional in depth analyses, for example reliability and failure tolerance. Consequently,

more solutions will remain for the decision maker to choose from. Similar conclusions

were drawn based on results presented on Figures 5.3 and Figure 5.5.

Function evaluations (FEs) for convergence in terms of entropy (Table 5.1) means the

ratio of average FEs to achieve convergence to total size of solution space. Since the

search space for this particular network is extremely large (i.e. 14^34) rates for

convergence are coming out as low values. Based on initial analysis for all 50 random

runs it has been decided that improvements in entropy becomes insignificant if is lower

than 3% between neighbouring generations. Therefore, the last generation that has

increase in entropy equal or lower than 3% in comparison to previous generation is

treated as final generation required to achieve convergence. Obviously all generations

afterwards must also have increase in entropy equal or lower than 3%.

It can be noticed that minimum rate for convergence is the same for all approaches (i.e.

FSS and three RSS approaches). Nevertheless, it should be mentioned that in case of

FSS it is only one such case, while for all RSS approaches it happens more often. The

values of median prove that for the RSS approaches the minimum rate for convergence

occurs very often as for those cases median is equal to minimum value. The same

applies to maximum rate for convergence for FSS and 100%MERSS. Therefore, the

minimum and maximum rate for convergence should be treated more like guidance

rather than proper measures. Mean and median are more appropriate measures for this

case. In terms of mean, the values for RSS approaches are significantly lower than for
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FSS method. This confirms the fact that GA with RSS approach converges far quicker

than GA based on FSS method. It is also noticeable that the lower percentage of ME for

RSS, the smaller number of FEs required achieving convergence.

5.5 CONCLUSIONS

In this chapter, the formulation of efficient reliability-based search space reduction for

WDNs has been presented. The approach is based on entropy and uses the importance of

every path through network, which is included in the entropy function. The novelty of

this research in the context of GAs is that the developed algorithm is dynamic, self-

adaptive and does not require any initial testing or pre-defining the diameters. Moreover,

three different percentage values of ME have been integrated in the procedure.

The algorithm has been applied to network previously used in search space reduction

studies. Full search space method and reduced search space approach with three near

ME values were studied. For the FSS the GA used all 14 pipe sizes, while for RSS only

5 pipe sizes were employed once the first feasible solution was identified. Sufficient

number i.e. 50 randomly generated GA runs was performed for each case (i.e. FSS and

RSS approaches). Detailed comparison for merged POFs based on FSS and merged

POFs obtained using RSS has been presented alongside with analysis for single POFs of

all 50 GA runs. It has been showed that different percentage approaches of ME proposed

fill the gaps between each other and present nearly entire range of possible entropy

values for particular network. Moreover, solutions obtained using RSS dominate and

clearly outperform designs based on FSS in terms of cheaper cost for similar entropy

value. Another significant advantage of any RSS approach over other FSS method is that

it allows narrowing the entire search space to boundary between feasible and infeasible

regions.
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The consistency and performance of presented GA has been investigated for all

objective functions (i.e. cost, entropy and deficit). It is evident that in case of RSS

approach much smaller number of function evaluations is required for the GA to

converge. This leads to conclusion that three near ME RSS simulations (i.e. three

percentages of ME) could be performed within time required for single FSS simulation.

That would provide not only better solutions (i.e. cheaper cost for similar entropy) but

also wider range of entropy values and more solutions to choose from.
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CHAPTER SIX

CONCLUSION

6.1 INTRODUCTION

Water distribution networks (WDNs) are one of the most expensive infrastructure

systems. That makes the cost minimization as extremely important objective when

designing the network. For many years researchers concentrated on minimization of the

network cost. It has inevitable influence on network reliability, as the cheapest design is

not satisfactory in terms of reliability. Then, it was recognized that the reliability of

WDN is equally important as network cost, as the optimal design is the cheapest one that

will satisfy demands under normal and abnormal conditions. Nevertheless, the

estimation of reliability is extremely time-consuming calculation as requires simulating

the WDN a very large number of times. This encouraged researchers to look for

surrogate measures, comparably easier to estimate than reliability.

Statistical entropy is one of few existing reliability indicator.  Entropy is particularly

advantageous since it involves only the flow in the pipe and the demands at the nodes

that are normally given. Over the years, the entropy has been incorporated and tested on

many different benchmark networks. Results presented in literature suggest that an

increase in entropy value corresponds to a better network performance as measured by

reliability. Strong positive correlation between entropy and reliability has been

demonstrated in many publications.
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For more than decade, different evolutionary algorithms (EA) have been used to solve

complex, multiobjective problems, mostly because they are capable of finding multiple

pareto-optimal solutions in single optimization run. Nevertheless, the immense problem

related to multi-objective EA is the poor ability to handle constraints. The constraints are

mainly carried out by penalizing infeasible solutions, thus it could obstruct the search

capabilities and may direct to suboptimal designs. Moreover, the penalty parameters are

usually obtained by a trial and error making the whole process unnecessary time

consuming and dependent on the parameters chosen.

The goal of this research was to develop a useful and versatile tool able to identify the

cost-entropy optimal solutions in one integrated process and thereby to demonstrate the

advantages of using the entropy-based method in WDN optimization. The foremost

challenge solved herein was employing the entropy as an indicator for reducing the

search space without having negative impact on network performance. The research

investigated the problem with proper manner and developed a consistent,

straightforward and robust optimization tool. The approach does not require any initial

testing or time consuming calibration and no experience is needed to apply the algorithm

to WDN.

Both approaches (i.e. MOC and RSS) presented in this thesis are referred as penalty-free

multi-objective optimization algorithms and have been developed by incorporating few

separate models. Two main tools employed for the research were borrowed from

literature. The fast, elitist multi-objective genetic algorithm NSGA II was employed to

solve optimization problem and coupled with hydraulic simulation software EPANET 2.

Moreover, the model capable of identifying pipe flow directions and calculating entropy

for any given network has been developed and coupled with above-mentioned

algorithm. Both approaches have been successfully applied. The MOC model was used

to optimize problems such as design, reliability and multiple loading patterns, as detailed

in Chapter 4 and Chapter 5. The RSS model has been applied to optimize issues

involving design, reliability and algorithm search space, as detailed in Chapter 6. This
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chapter concentrates on overall summary and conclusion for presented research with

several suggestions for future work.

6.2 SUMMARY AND CONCLUSION

6.2.1 Multiple Operating Conditions and Maximum Entropy Based Design

The MOC ME approach has been formulated to demonstrate the advantages of using the

entropy-based method to design and optimize WDNs and extend the optimization

method to multiple loading patterns (i.e. minimum demand, average demand, fire flow

etc.) as detailed in Chapter 3. The approach is based on three primary models: a new

algorithm developed to calculate entropy for any given network, hydraulic simulation

software, EPANET 2 and the fast non-dominated sorting elitist multiobjective genetic

algorithm, NSGA II.

The approach involves three objectives. The first objective is to minimize network initial

cost, which is dependent on pipe diameter and length. The second objective is to ensure

that all nodal demands are fully satisfied. In order for the design to be feasible, the

minimum pressure at critical node must be greater or equal to the desired pressure at that

node. Third objective is to maximise entropy function as a measure of reliability.

In Chapter 3, the entropy based MOC approach has been applied to three well-known

benchmark networks, i.e. the Two-loop network, the Six-loop network and network with

three different demand patterns (Simpson et al. 2004). Four cases were studied, one with

SOC and three considering MOC entropy approaches. All three MOC cases succeeded

in obtaining competitive designs to the SOC method in terms of cost and entropy.

Moreover, solutions obtained using MOC outperform designs obtained by SOC in terms

of feasibility, pipe size distribution and reliability. Maximization of total entropy

approach produced the best solutions. The significant advantage of total entropy
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approach over other two approaches (i.e. maximization of maximum entropy and

maximization of minimum entropy) is that it takes into consideration entropy values

from all operating conditions.

In Chapter 4, the maximum entropy MOC approach has been applied the real life

network to illustrate its practicality and capability in integrated optimization process.

Presented network has many more pipes than hypothetical layouts used earlier which

makes it harder to design (i.e. more difficult to find feasible, reliable design).

Maximization of total entropy value was used for MOC approach. Individual entropy

values for different loading patterns were analysed to demonstrate that total entropy

approach is the most suitable to employ for MOC optimization.

The MOC approach was tested on significant number of network layouts (i.e. three

hypothetical and one real world) for two reasons: to identify the best entropy approach

for MOC and to verify the algorithm for its consistency, accuracy and robustness.

Multiple random runs were performed for each network, with the number of runs

depending on network size. In case of six-loop network (Example 2 from Chapter 3) and

Example 3 from Chapter 3, 30 random runs were performed for each ME approach, thus

giving 90 random runs for each network (i.e. 30 runs for maximum entropy, 30 runs for

minimum entropy and 30 runs for total entropy). For the real world network presented in

Chapter 4, 30 random runs were performed. All those random runs generated result that

are consistent and prove that the algorithm is robust and stable. It should also be

highlighted that for publication purposes, the researchers usually use no more than 30

random runs for large networks, as it seem to be sufficient to verify the algorithm

robustness. Nevertheless, sensitivity analysis was carried out in order to assess the

robustness of created algorithm. Moreover, additional algorithm performance analysis

was performed based on real world network. Presented results prove that algorithm is

consistent with quick convergence rate and reliable solutions.
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6.2.2 Search Space Reduction Method

Search space reduction approach has been formulated to improve convergence criteria of

the GA. The method is based on entropy and uses the importance of every path through

network, which is included in the entropy function. Developed algorithm is dynamic,

self-adaptive and does not require any initial testing or pre-defining the diameters. Three

different percentage values of ME have been integrated in the procedure ensuring much

better reliability and robustness of the algorithm. The search space reductions are only

enforced once the feasible design is identified, then the process of identifying reduced

number of pipe sizes is repeated from generation to generation. Available pipe diameters

can be reduced to any odd number.

The approach is based on three primary models: a new algorithm developed to calculate

entropy for any given network, hydraulic simulation software, EPANET 2 and the fast

non-dominated sorting elitist multiobjective genetic algorithm, NSGA II. The objectives

considered are minimization of the network’s initial cost, while ensuring network

feasibility and maximization of entropy. In order to avoid penalizing infeasible solution,

hydraulic feasibility has been incorporated into the approach as objective function. As

such, three entities are evaluated for each proposed design: cost, entropy and network

feasibility.

The algorithm has been applied to WDN previously introduced by Kadu et al (2008).

The network represents substantial challenge due to large number of decision variables,

thus resulting in large solution space. It is known in literature from search space

reduction studies. Two cases were studied: one based on FSS and one RSS approach.

RSS run include three near-ME values (i.e. three different percentage of ME value).

Using three near-ME values allows identifying nearly entire range of entropy values for

particular network. Detailed comparison for merged POFs based on FSS and merged

POFs obtained using RSS has proved that solutions obtained using RSS dominate and

clearly outperform designs based on FSS in terms of cheaper cost for similar entropy

value. Another significant advantage of any RSS approach over other FSS method is that
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it allows narrowing the entire search space to boundary between feasible and infeasible

regions. Therefore, there are more chances to find feasible design with high entropy and

considerably low cost.

Search space reduction methods presented in the literature (Vairavamoorthy and Ali,

2005; Kadu et al. 2008) concentrate only on cost minimization (i.e. reliability

optimization in not included) and are not self-adaptive methods. Therefore, the work

presented in this thesis is completely novel and nothing as such exists in the literature.

For that reason, the algorithm was verified for its consistency and robustness. Firstly,

network previously used for search space reduction (Kadu et al. 2008) has been

implemented in this study. Great number of 50 random runs was performed for each

approach (i.e. one FSS and three different ME approaches), thus giving 200 random runs

in total. Results for all approaches from all random runs were presented herein in

Appendix D. Those results are consistent and demonstrate the algorithm’s robustness.

Moreover, the consistency and performance of presented algorithm has also been

investigated for each of the objective functions. Feasible and infeasible solutions were

used for the cost examination. Rapid stabilization was observed for the results obtained

using RSS in comparison to FSS approach. In terms of entropy, only the feasible

solutions were considered. Once again, the entropy value seems to be boosted quickly

within the first few generations. Such rapid stabilization is the result of reducing the

number of decision variables. It is evident that in case of RSS approach much smaller

number of function evaluations is required for the GA to converge.

6.2.3 Cost-Entropy Non-Dominated Sorting Module and Genetic Algorithm

Performance Module

During the work on research it has been found that additional software is required for

analysis purposes. Two external modules have been developed. The aim of first one is to

identify the cost-entropy non-dominated solutions over the entire history of results in

order to provide good range of feasible candidate solutions. Second module was
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developed for reassurance of GA consistency and performance as the algorithm changes

that were performed could reflect in making the GA less efficient and stable.

The external screening method was used in all research chapters. Comparison of POF

originally generated by the algorithm and the solutions obtained from entire history was

performed and results presented. Overall, it was demonstrated that the screening

procedure is extremely efficient and robust with the capability of providing a good

improved front with wide range and nice spread of results.

The GA performance module was employed in Chapter 4 and Chapter 5. Presented

results ensure that the GA is consistent, converges quickly enough and performs well on

all runs despite the initial data (i.e. the randomly generated initial population).

6.3 SUGGESTIONS FOR FUTURE WORKS

The research presented herein has addressed a broad scope and challenging issues

related to WDN optimization. Nevertheless, there is more room for additional problems

that have been revealed while solving issues presented in this thesis. Moreover, some

ideas, that could possibly be carried out to improve and complete present research even

further, has arisen.

Implementation of MOC in penalty-free reliability based multi-objective approach for

WDNs has been an immense step as most of the work has been done for SOC, which

assumes that nodal demands are constant. Nevertheless the networks used for this phase

of research were fairly simple layouts with only pipes and reservoirs included.

Therefore, good suggestion would be to extend the existing MOC approach to include

other network components, such as valves, storage tanks and pumps and to cover longer

period of time using extended period simulation. Additionally, water quality could be

incorporated within presented study. Hydraulic model EPANET 2, employed in

developed approach, has capability to model water age, thus predict chlorine residuals
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within water distribution systems. Therefore, it would be beneficial and straightforward

to implement water quality within present study.

A very good suggestion would be to employ more realistic hydraulic analysis model.

The present study is based on demand driven analysis (DDA). DDA assumes that all

nodal demands are satisfied at all times so it works accurately for a network performing

under normal operating conditions. In case of any pressure deficient scenarios, the DDA

may leads to unrealistic nodal pressures. To avoid such misleading situations the head

dependent analysis (HDA) could be employed. The HDA considers the relationship

between pressure and outflow. Thus, replacing the DDA model with HDA model

incorporated in Epanet-PDX (Siew and Tanyimboh, 2011) is worth considering.

A good suggestion would be to investigate new method for handling redundant codes in

binary coded genetic algorithm. Performance of presented approach should be compared

with other remapping and bias free methods proposed in literature.

Successfully used novel method for identifying uniformly spread POF with feasible

designs strongly suggest that the technique should be employed inside the algorithm (i.e.

as a part of GA single run) in order to avoid running any additional programmes. There

are few different techniques to incorporate such subroutine. The easiest way would be to

implement the method after the last generation but before closing the program.

Nevertheless, it would not be much different from existing method. Therefore, it would

not interfere with the GA process and results. More complicated with possible impact on

GA process would be to identify feasible non-dominated solutions after specified

number of generations. Then, with the use of elitism, the best results would have to be

kept for another generations with the whole process repeated until the GA stopping

criteria.

Another alternative, that could possibly lead to required results (i.e. feasible, cost-

entropy non-dominated), would be to prioritise objective functions like cost and entropy

while taking into account feasible solutions only. However, such strategy should be
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implemented carefully and wisely as penalizing infeasible solutions could obstruct the

search capabilities and may lead to suboptimal solutions.

Implementation of ME based RSS method had enormous effect in designing WDN. The

success of RSS approach applied to SOC strongly suggests extending the method to

cover MOC. The next step would be to widen the method to cover longer period of time

using extended period simulation and to include other network components, such as

pumps, valves and storage tanks. Additionally, achieved approach would need to be

tested for calibrating on real world distribution networks.

It would also be interesting to validate the developed algorithm by comparing the results

with solutions obtained from other search space reduction approaches. Nevertheless, to

do so, the additional approaches involved would also have to have the reliability

performance indicator included. So far, it is impossible to make such comparison, as

alternative solutions where cost and network reliability are optimized are not available

elsewhere.

RSS approach used in this study has been tested on reduced 5 pipe diameters; however

any number of pipe sizes could be used. It would be interesting to analyse results

achieved if different number of pipe sizes would be employed. It is thought that the

smaller number of reduced pipe sizes the smaller number of function evaluations

required for GA to converge, but harder to achieve near global maximum entropy value.

A good suggestion would be to increase number of reduced pipe sizes (i.e. from 5 to 7,

from 7 to 9 etc.) when the highest achieved entropy reach stagnation point. It could

prevent the GA of being trapped in local optimum. Moreover, it would allow the

algorithm to widen explore regions of search spaces with good potential solutions. Even

if the GA would finally reach the highest number of available pipe diameters (i.e. full

search space), the optimal design should still be identified in lower number of function

evaluations than it would happen if FSS would be applied for entire GA run.
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APPENDIX A

INPUT DATA AND ADDITIONAL RESULTS FOR NETWORK

USED FOR SENSITIVITY ANALYSIS PRESENTED IN CHAPTER

THREE

Table A-1. Node data for network used for sensitivity analysis

Node No. Elevation (m) Demand (l/s) Hmin (m)

2 150 27.78 30

3 160 27.78 30

4 155 33.33 30

5 150 75.00 30

6 165 91.66 30

7 160 55.56 30

Table A-2. Reservoir data for network used for sensitivity analysis

Reservoir No. Total Head (m)

1 210.00

Table A-3. Available pipe diameters and unit costs for network used for sensitivity

analysis

Diameter (mm) Cost (units)

25.4 2

50.8 5
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76.2 8

101.6 11

152.4 16

203.2 23

254.0 32

304.8 50

355.6 60

406.4 90

457.2 130

508.0 170

558.8 300

609.6 500

Table: A-4. CPU time for different populations

Population Size Average CPU time [s]

100 289

200 604

300 932

400 1252

500 1460

Table A-5. Number of CEND solutions depending on mutation rate

Mutation Rate
Number of CEND designs
(for all 10 random runs)

0.0010 22

0.0050 25

0.0100 27

0.0200 28

0.03125 35
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APPENDIX B

INPUT DATA FOR EXAMPLES IN CHAPTER THREE

Table B-1: Node data for network in Example 1

Node
No.

Elevation
(m)

Demand Pattern 1 Demand Pattern 2 Demand Pattern 3

Demand
(l/s)

Hmin (m)
Demand

(l/s)
Hmin (m)

Demand
(l/s)

Hmin (m)

2 150 27.78 30 22.22 30 13.33 30

3 160 27.78 30 22.22 30 13.33 30

4 155 33.33 30 26.66 30 16.00 30

5 150 75.00 30 60.00 30 36.00 30

6 165 91.66 30 73.33 30 44.00 30

7 160 55.56 30 44.45 30 26.67 30

Table B-2. Node data for network in Example 2

Node No.
Demand Pattern 1 Demand Pattern 2 Demand Pattern 3

Demand
(l/s)

Hmin (m)
Demand

(l/s)
Hmin (m)

Demand
(l/s)

Hmin (m)

2 27.8 30 22.24 30 13.34 30

3 41.7 30 33.36 30 20.02 30

4 41.7 30 33.36 30 20.02 30

5 41.7 30 33.36 30 20.02 30

6 27.8 30 22.24 30 13.34 30

7 55.5 30 44.40 30 26.64 30

8 55.5 30 44.40 30 26.64 30

9 55.5 30 44.40 30 26.64 30

10 27.8 30 22.24 30 13.34 30

11 41.7 30 33.26 30 20.02 30

12 27.8 30 22.24 30 13.34 30
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Table B-3. Reservoir data for network in Example 2

Reservoir No. Total Head (m)

1 100.00

Table B-4. Node data for network in Example 3

Node No.
Elevation

(m)

Demand Pattern 1 Demand Pattern 2 Demand Pattern 3

Demand
(l/s)

Hmin (m)
Demand

(l/s)
Hmin (m)

Demand
(l/s)

Hmin (m)

2 320.04 12.62 28.18 12.62 14.09 12.62 14.09

3 326.14 12.62 17.61 12.62 14.09 12.62 14.09

4 332.23 0 17.61 0 14.09 0 14.09

6 298.70 18.93 35.22 18.93 14.09 18.93 14.09

7 295.66 18.93 35.22 82.03 10.57 18.93 14.09

8 292.61 18.93 35.22 18.93 14.09 18.93 14.09

9 289.56 12.62 35.22 12.62 14.09 12.62 14.09

10 289.56 18.93 35.22 18.93 14.09 18.93 14.09

11 292.61 18.93 35.22 18.93 14.09 18.93 14.09

12 289.56 12.62 35.22 12.62 14.09 50.48 10.57

Table B-5. Reservoir data for network in Example 3

Reservoir No. Total Head (m)

1 365.76

5 371.86

Table B-6. Pipe data for network in Example 3

Pipe No. Start Node End Node Length (m)

1 1 2 4828

2 2 3 1609

3 3 4 1609

4 4 5 6437
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5 2 6 1609

6 4 8 1609

7 6 7 1609

8 7 8 1609

9 6 9 1609

10 7 10 1609

11 8 11 1609

12 9 10 1609

13 10 11 1609

14 11 12 1609

Table B-7. Available pipe diameters and unit costs for network in Example 3

Diameter (mm) Pipe Cost ($/m)

152 49.5

203 63.3

254 94.8

305 132.9

356 170.9

406 194.9

457 231.3

508 262.5
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APPENDIX C

INPUT DATA FOR EXAMPLE IN CHAPTER FOUR

Table C-1: Nodal demand for network in chapter four

Node
No.

Elevation
(m)

Demand Pattern 1 Demand Pattern 2 Demand Pattern 3

Demand
(l/s)

Hmin (m)
Demand

(l/s)
Hmin (m)

Demand
(l/s)

Hmin (m)

2 0 5 28 5 14 5 14

3 0 3 28 3 14 3 14

4 0 6.5 28 6.5 14 6.5 14

5 0 10.5 28 10.5 14 10.5 14

6 0 9.5 28 9.5 14 9.5 14

7 0 6.5 28 6.5 14 6.5 14

8 0 8.5 28 8.5 14 8.5 14

9 0 9.5 28 9.5 14 9.5 14

10 0 10 28 10 14 10 14

11 0 4.5 28 4.5 14 18 8.4

12 0 5.5 28 5.5 14 5.5 14

13 0 3.5 28 3.5 14 3.5 14

14 0 4 28 4 14 4 14

15 0 5 28 5 14 5 14

16 0 4 28 4 14 4 14

17 0 8 28 8 14 8 14

18 0 6.5 28 6.5 14 6.5 14

19 0 7.5 28 7.5 14 7.5 14

20 0 6 28 6 14 6 14

21 0 8 28 8 14 8 14

22 0 8.5 28 8.5 14 8.5 14

23 0 2.5 28 2.5 14 2.5 14

24 0 4.5 28 4.5 14 4.5 14

25 0 4.5 28 4.5 14 4.5 14
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26 0 7.5 28 7.5 14 7.5 14

27 0 6 28 6 14 6 14

28 0 6 28 6 14 6 14

29 0 8 28 8 14 8 14

30 0 7.125 28 7.125 14 7.125 14

31 0 9 28 39 8.4 9 14

32 0 8.625 28 8.625 14 8.625 14

33 0 5 28 5 14 5 14

34 0 11.5 28 11.5 14 11.5 14

Table C-2. Pipe data for network in chapter four

Pipe No. Length (m) Pipe No. Length (m)

1 1 39 239.08

2 1 40 404.28

3 260 41 367.51

4 600 42 391.18

5 1200 43 229.78

6 600 44 404.76

7 800 45 215.2

8 200 46 575.37

9 500 47 210.89

10 2100 48 257.55

11 500 49 277.95

12 1000 50 48.1

13 304.16 51 309.11

14 341.16 52 150.25

15 210.5 53 174.42

16 422.28 54 396.55

17 529.66 55 169.47

18 254 56 178.62

19 252.9 57 339.77

20 230.65 58 98.51

21 159.46 59 458.41

22 456.91 60 386.4
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23 313.99 61 135.01

24 73.8 62 559.91

25 192.73 63 319.1

26 176.53 64 193.48

27 124.94 65 393.04

28 478.71 66 60

29 282.03 67 243.45

30 262.9 68 646.8

31 202.43 69 236.22

32 52.91 70 422.08

33 154.54 71 244.93

34 352.16 72 5

35 165.08 73 31.84

36 325.05 74 258.71

37 377.94 75 154.7

38 275.39 76 229.87

Table C-3. Available pipe diameters and unit costs for network in chapter four

Diameter (mm) Pipe Cost (€/m)

150 271.94

200 299.43

250 328.01

300 359.54

350 399.03

400 438.63

450 461.34

500 502.78
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APPENDIX D

INPUT DATA AND ADDITIONAL RESULTS FOR NETWORK

PRESENTED IN CHAPTER FIVE

Table D-1. Pipe and node details for example from chapter five

Pipe details Node details

Pipe No. Length (m) Node No.
Minimum HGL

(m)
Demand
(m3/min)

1 300 1 100 -

2 820 2 95 -

3 940 3 85 18.4

4 730 4 85 4.5

5 1 620 5 85 6.5

6 600 6 85 4.2

7 800 7 82 3.1

8 1 400 8 82 6.2

9 1 175 9 85 8.5

10 750 10 85 11.5

11 210 11 85 8.2

12 700 12 85 13.6

13 310 13 82 14.8

14 500 14 82 10.6

15 1 960 15 85 10.5

16 900 16 82 9.0

17 850 17 82 6.8

18 650 18 85 3.4

19 760 19 82 4.6

20 1 100 20 82 10.6

21 660 21 82 12.6

22 1 170 22 80 5.4

23 980 23 82 2.0
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24 670 24 80 4.5

25 1 080 25 80 3.5

26 750 26 80 2.2

27 900

28 650

29 1 540

30 730

31 1 170

32 1 650

33 1 320

34 3 250

Table D-2. Available pipe diameters and unit costs for example from chapter five

Diameter (mm) Unit cost (rupees)

150 1 115

200 1 600

250 2 154

300 2 780

350 3 475

400 4 255

450 5 172

500 6 092

600 8 189

700 10 670

750 11 874

800 13 261

900 16 151

1 000 19 395
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Figure D-1. Individual cost-entropy non-dominated POFs for 50 randomly generated
runs
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