
UNIVERSITY OF STRATHCLYDE

Enhancing Livestock and Human Health

Monitoring via Analysis of Electronic

Sensor Data

by

Shikha Sarkar

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering

Department of Electronic and Electrical Engineering

June 2018

University Web Site URL Here (include http://www.strath.ac.uk)
shikha.sarkar@strath.ac.uk
http://www.strath.ac.uk/engineering/
http://www.strath.ac.uk/eee/

Declaration of Authorship

I, Shikha Sarkar, declare that this thesis titled ‘Enhancing Livestock and Human Health Mon-

itoring via Analysis of Electronic Sensor Data’ and the work presented in it are my own. I

confirm that:

� This work was done wholly or mainly while in candidature for a research degree at this

University.

� Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly attributed.

� Where I have quoted from the work of others, the source is always given. With the exception

of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

iii

UNIVERSITY OF STRATHCLYDE

Abstract

Faculty of Engineering

Department of Electronic and Electrical Engineering

Doctor of Philosophy

by Shikha Sarkar

This thesis presents a body of work involving novel algorithms for enhancing the effectiveness

of low-cost sensors in monitoring applications. A holistic approach has been taken in this work

in that modelling, simulation, and monitoring tools have been developed from scratch with a

number of novel ideas. As its first contribution, the thesis presents a new simulation tool,

WSNSIM - a tool for performance analysis of wireless sensor networks (WSN) formed by sensor

nodes deployed on farm animals for monitoring of health and oestrus. In this application of

wireless sensor networks, the mobility and herding patterns are modelled using statistical tools

such as the Gamma density function, mean index of adequacy (MIA), exponential distribution, K-

means clustering etc. to give rise to network simulation that is based on accurate herd behaviour.

The simulation results are used in evaluation of novel protocol ideas customized to the needs of

farm monitoring. The paper [153] presents a new simulation tool for performance analysis of

wireless sensor networks (WSN) deployed on farm animals.

The second and third key contributions of the thesis investigate monitoring of human body

joints for the purpose of gait and upper limb motion assessment. Unlike the standard approach

of marker-based joint monitoring for motion assessment, this work investigates the viability of

the Kinect sensor for joint motion monitoring. To this end, two novel tools are developed that

incorporate statistical, image processing and computer vision algorithms. The first tool GLSKEL

is an intuitive 3D interface and kinematics model for continuous motion capture and analysis of

human gait that can be useful for clinical practitioners. The second tool, JAFAKEC helps with

tracking and calculation of joint angles based on point cloud data. This functionality can be

very helpful for monitoring of the gait and arm motions of mobility-impaired patients using the

Kinect sensor. This thesis also details the mathematical methods and algorithms applied on the

point cloud to improve accuracy of the joint angle calculation.

University Web Site URL Here (include http://www.strath.ac.uk)
http://www.strath.ac.uk/engineering/
http://www.strath.ac.uk/eee/
shikha.sarkar@strath.ac.uk

Acknowledgements

I would like to take this opportunity to express my deepest gratitude to my supervisor Dr.

Lina Stankovic without whose continuous support and guidance my work would not have been

possible. Besides her direction and advice, her keen interest and motivation has helped me stay

motivated and focused over the years of my research.

I am also deeply grateful to my co-supervisor Prof. Ivan Andonovic, for his support. Among

other faculty advisers, Prof. Philip Rowe and Dr. Vladimir Stankovic were extremely crucial.

Dr. Vladimir Stankovic provided vital technical advice and Prof. Philip Rowe made it possible

to use Bioengineering Laboratory for comparative studies that form the backbone of my research.

Among Bioenginering laboratory members, my sincerest gratitude goes to Dr. Andrew Kerr,

Dr. Bruce Carse, and Dr. Ukadike Ugbolue for helping me with the VICON requirements and

settings in the bioengineering laboratory experiments.

I would also like to profusely thank my fellow doctoral students Cheng Yang and Minxiang Ye

for their help and cooperation in the bioengineering laboratory experiments, being the subjects

and of course for their friendship. I would like to thank my fellow researchers Dr. Jing Liao,

Yihan and Jie for enthusiastically participating in the experiments.

I would also like to thank senior researcher Dr. Bruce Stephen and fellow doctoral student Di

Cao for providing me the cattle monitoring datasets.

I am grateful for the funding source that allowed me to pursue my doctoral studies, the Strath-

clyde University Studentship.

Finally, I thank my family and friends for being supportive and patient.

v

Contents

Declaration of Authorship iii

Abstract iv

Acknowledgements v

List of Figures xi

List of Tables xv

Abbreviations xvii

1 Introduction 1

1.1 Background . 1

1.2 Application of Wireless Sensor Network for herd monitoring 2

1.3 Application of Microsoft Kinect in Healthcare . 2

1.4 Evaluation of Microsoft Kinect for Gait Analysis 4

1.5 Evaluation of Microsoft Kinect for Upper Limb Motion Analysis 4

1.6 Summary and Main Contributions . 6

1.7 Publications . 7

1.8 An overview of the thesis . 8

2 Performance Modelling of Wireless Sensor Networks for Dynamic Assets 9

2.1 Introduction . 9

2.2 Related work on WSN modelling . 12

2.2.1 Related work on WSN Protocol Designs 12

2.2.2 Related work on Network Simulators . 13

2.2.3 Related work on Mobility Models from Animal Behaviour 15

2.3 The WSNSIM Simulation Model . 16

2.4 Internal Details of the WSNSIM Simulator . 18

2.5 Energy Depletion Model . 24

2.6 Statistical Model of Spatial Distribution . 25

2.7 Statistical Model of Cattle Mobility . 27

2.8 Statistical Model for Heading Direction . 29

2.9 Modelling of Spatial Regions . 32

2.10 Directional Antennae . 33

2.11 Novel Protocols designed using WSNSIM . 34

2.12 Protocol Design . 35

2.12.1 Modified LEACH . 35

vii

Contents viii

2.13 Simulation of LEACH vs Modified LEACH . 36

2.14 A Novel Protocol Design - LEMSYP . 37

2.15 CSMA based version of LEMSYP (Low Energy Multi-hop Synchronized Protocol) 39

2.16 TDMA based variant of LEMSYP (T-LEMSYP) 41

2.17 Energy Depletion Comparison between CSMA based LEMSYP and LEACH . . . 44

2.18 Energy Depletion Comparison between CSMA vs TDMA based LEMSYP 46

2.19 Verification and Validation . 48

2.19.1 Verification of mobility behaviour with more data 49

2.20 Conclusion . 51

3 Data Acquisition for Human Motion Analysis 53

3.1 Introduction . 53

3.2 Known Challenges of Microsoft Kinect . 54

3.3 Literature Review . 55

3.4 Microsoft Kinect . 57

3.5 Kinect for Xbox 360 and Kinect for Windows V1.8 Joint Positions 59

3.6 Kinect V2 Joint Positions . 60

3.7 Depth Data Processing in Microsoft Kinect . 63

3.8 Some more mass-market depth sensors . 66

3.9 VICON MX System . 69

3.9.1 VICON Nexux software . 69

3.9.2 Drawbacks of VICON Nexux Software . 70

3.10 Precision of Microsoft Kinect - Depth measurement accuracy: 71

3.10.1 Precision Calculation of Microsoft Kinect V2 Depth Sensor 78

3.11 Kinect 1 Recorder . 81

3.12 Kinect 2 Recorder . 82

3.13 The Kinematics Model . 83

3.14 Interactive Measurement in 3D . 89

3.15 Validation of GLSKEL . 90

3.15.1 Validation of Skeletal Forward Kinematics 90

3.15.2 Validation of Inverse Kinematics . 90

3.15.3 Validation of Point Cloud Processing . 90

3.15.4 Validation of Interactive Measurement . 90

3.16 Conclusion . 91

4 Algorithms for Processing 3D Depth Image Data 93

4.1 Introduction . 93

4.2 Defining a Topology on the Point Cloud . 94

4.3 Geometric Graphs . 94

4.3.1 Closest Pairs . 96

4.3.2 Nearest Neighbours Graph . 97

4.3.3 Euclidean Minimum Spanning Tree . 97

4.3.4 Infinite Strip Graph . 98

4.3.5 Sphere of Influence Graph . 98

4.3.6 Relative Neighbourhood Graph . 98

4.3.7 Gabriel Graph . 99

4.3.8 Convex Hull . 99

4.3.9 Geometric Graph using a Distance Threshold 99

4.4 Estimating Normals at the Cloud Points . 101

4.5 Estimating Curvatures at the Cloud Points . 104

4.6 Geodesic Distance . 104

4.7 Geodesic Centroid on Geometric Graph . 105

4.8 Geodesic or Graph Based Clusters . 107

Contents ix

4.9 Bayesian Framework for Combining Limb Labels 109

4.10 Conclusion . 110

5 Gait Monitoring Using Kinect Sensor 113

5.1 Clinical Gait Monitoring . 113

5.2 Literature Review . 117

5.2.1 Previous work on applications of Kinect for human lower limb and gait in
healthcare . 117

5.2.2 Previous work on algorithms for gait capture 118

5.2.3 Previous work on gait feature representation and gait recognition 119

5.3 JAFAKEC-G for Gait System Overview . 120

5.4 Algorithms for Gait Capture from Depth Image 120

5.4.1 Algorithm : Medial Axis from Binary image 120

5.4.2 Algorithm : Sectioning the 3D point cloud 122

5.4.3 Algorithm : Least Squares Line Fitting 124

5.4.4 Algorithm : Convex Polyhedron Fitting 126

5.4.5 Algorithm : Calculating Average of Nearly Aligned Polyhedral Outlines. . 128

5.4.6 Algorithm : Use of Geodesic distance for Limb Labelling 129

5.5 Kinect-based lower limb motion analysis - Methods 133

5.6 Results . 134

5.7 Conclusion and Discussion . 145

6 Upper Limb Motion Analysis 147

6.1 Introduction . 147

6.2 Gesture Design and hand tracking . 147

6.3 Literature Review . 148

6.4 Arm Motion Monitoring . 151

6.5 Experimental Methodology . 151

6.6 JAFAKEC for Upperlimb Methods . 154

6.7 Algorithmic Methodology . 154

6.7.1 Normal Estimation . 154

6.7.2 Geodesic Distance Labelling . 155

6.7.3 Segmenting the point cloud . 156

6.7.4 Graph from Geodesic Clusters . 159

6.8 Results . 161

6.8.1 Arm angle results of Kinect and VICON 163

6.9 Conclusion and Discussion . 175

7 Conclusion 177

Appendices 179

A Cattle Motion Measurements 181

List of Figures

1.1 Public expenditures on healthcare U.K . 3

2.1 WSMSIM architecture. Satellite image c©2011 Google, DigitalGlobe 18

2.2 Algorithm for obtaining cattle spread data from satellite images. Satellite image
c©2011 Google, DigitalGlobe . 19

2.3 WSNSIM general event and its derived event types 21

2.4 Probability density functions describing the composition of cattle herds 26

2.5 Number of speed modes or clusters plotted against MIA 28

2.6 Speed distribution in the resting state . 29

2.7 Speed distribution in the grazing and shifting states 29

2.8 CDFs and state transition probabilities . 30

2.9 Heading Direction . 30

2.10 Transition probabilities of some heading directions 31

2.11 Modelling Spatial Regions.Satellite image c©2011 Google, DigitalGlobe 32

2.12 Directional Antennae . 33

2.13 LEACH vs. Modified LEACH . 34

2.14 Number of Clusterheads in LEACH and Modified LEACH. Satellite image c©2011
Google, DigitalGlobe . 37

2.15 State diagram of the CSMA LEMSYP protocol 38

2.16 State diagram of the TDMA LEMSYP protocol 43

2.17 Total Energy Consumption in LEACH and LEMSYP after one hour of simulation.
Satellite image c©2011 Google, DigitalGlobe . 44

2.18 Comparison of energy consumption by LEACH and LEMSYP 44

2.19 Total Energy Consumption in LEACH and LEMSYP after one hour of simulation
- using data from previous work [170]. Satellite image c©2011 Google, DigitalGlobe 45

2.20 Comparison of energy consumption by LEACH and LEMSYP 45

2.21 Comparison of power consumption of node 46 . 46

2.22 Comparison of power consumption of node 28 . 47

2.23 Comparison of total (i.e. network-wide) power depletion between T-LEMSYP and
C-LEMSYP . 47

2.24 Synthetic herd round trip test . 48

2.26 GPS fixes . 49

2.25 Filtered GPS fixes for a single cow recorded over 7 days 50

3.1 Kinect V1 for Xbox 360 . 57

3.2 Kinect for Windows V1.8 . 58

3.3 Kinect for windows V2 . 58

3.4 Kinect for Xbox and V1.8 Joint Positions . 60

3.5 Kinect V2 Joint Positions . 62

3.6 The mechanism used by Kinect V1 ([1]) . 63

3.7 Microsoft Kinect V2 Internals [113] . 64

3.8 Operating Principle of a ToF System . 65

3.9 Creative Senz3D . 66

xi

List of Figures xii

3.10 Intel RealSense Camera F200 . 66

3.11 Intel RealSense SR300 Camera . 67

3.12 Apple primesense Carmine1.09 . 67

3.13 Structure Sensor . 68

3.14 Leap Motion . 68

3.15 Gait Model constructed using VICON Nexus 2.1.1 software 69

3.16 Upper limb model constructed using VICON Nexus 2.1.1 software 70

3.17 Frames captured for the gym-ball . 72

3.18 Point cloud for the gym-ball and its best-fit sphere 73

3.19 Position error as a function of distance from the Kinect sensor 73

3.20 Angular error defined in terms of the position error E 76

3.21 Limb’s angular error vs. distance from the Kinect. Any distance ≤ 3.5m would
satisfy the Bioengineering requirement. 76

3.22 Frames captured for the square flat surface . 78

3.23 3D representation of point cloud with normals estimated 79

3.24 Position error as a function of distance from Kinect V2 sensor 79

3.25 Single subject using Kinect V1 . 81

3.26 Single subject Kinect V1 and point cloud viewer 81

3.27 Depth images using Kinect2 . 82

3.28 Near and far modes using Kinect2 . 82

3.29 Reference planes used in describing joint motions 84

3.30 Abduction/adduction and flexion/extension angles 85

3.31 The Pose controller Widget in GLSKEL - Forward Kinematics of GLSKEL . . . 85

3.32 Left hip and right hip extension angles - Inverse Kinematics of GLSKEL 86

3.33 Screenshots from the Gait capture tools . 86

3.34 Kinematic model, point cloud, and SDK joints from Kinect 1.0 displayed on
GLSKEL . 87

3.35 Kinematic model, point cloud and SDK joints from Kinect 1.8 displayed on GLSKEL 89

5.1 Human Walk Cycle [82] . 115

5.2 Knee flexion and extension angles of gait cycles [90] 116

5.3 Knee flexion angle curves of normal subjects (blue) and osteo-arthritis patients
(red) (Source: [38]) . 116

5.4 Depth frame converted into grey scale . 122

5.5 Binarized frames representing the region around a knee 122

5.6 Medial axis skeleton from the depth image . 123

5.7 Medial lines detected on binarized images in Figure 5.5 123

5.8 Automatically placed markers obtaining sections of the point cloud 124

5.9 Point cloud segmented by planes perpendicular to the limb’s medial axis 125

5.10 A screenshot showing the labelled point cloud and the fitted limb axes 125

5.11 A point distribution and its convex hull. 127

5.12 Volume Integral Calculation . 128

5.13 Convex Polyhedron Fitting . 129

5.14 Geodesic distance based labelling . 131

5.15 Multiple geodesic distance based labelling to improve classification of cloud points 131

5.16 Flowchart for JAFAKEC-G gait algorithm . 132

5.17 Normal person slow walk . 135

5.18 Normal slow walk, Left leg . 136

5.19 Patient type walk . 136

5.20 Error Distribution using Kinect 1.0, SDK Skeletal data and Least Square Method 137

5.21 Normal slow walk, (Geodesic) . 138

5.22 Patient type walk - Left leg, (Geodesic) . 139

5.23 Patient type walk - Right leg, (Geodesic) . 139

List of Figures xiii

5.24 Error Distribution using Kinect 1.0, Geodesic Distance, Point Cloud data only . 140

5.25 Healthy person, Subject 1 - Normal walk . 141

5.26 Healthy person, Subject 2 - Normal walk . 142

5.27 Healthy person - Normal walk, Left leg . 142

5.28 Error Distribution using Kinect 1.8, JAFAKEC-G, Point cloud data only 143

5.29 Error Distribution using Kinect 1.8, JAFAKEC-G, best result-set 144

6.1 Kinect Recording Algorithm . 152

6.2 Depth map captured for upper limb . 152

6.3 Flowchart for JAFAKEC upper limb algorithm 153

6.4 Point cloud with normals . 155

6.5 The cup-holding hand identified using geodesic distance 156

6.6 Geodesic Distance Bands with head as Source . 157

6.7 Geodesic Distance Bands with Waist as Source 157

6.8 A distance discriminant based on geodesic distance 158

6.9 Demonstrating second order geodesic distance labelling 158

6.10 Arm motion monitoring . 159

6.11 Segmenting the Point Cloud . 159

6.12 Super nodes obtained from graph based clustering 160

6.13 Connectivity graph for super nodes . 160

6.14 Kalman filter applied to eliminate added Gaussian noise 161

6.15 Unfiltered and Butterworth filtered plots of elbow angle 162

6.16 Upper body joint trajectories . 162

6.17 Elbow angle of healthy subject 1, healthy subject 2 (trial 1), Right upperlimb . . 165

6.18 Elbow angle (trial 2, trial 3) of healthy subject 2, Right upperlimb 165

6.19 Elbow angle of healthy subject2, (trial 4) Right upperlimb 166

6.20 Error Distribution using Kinect V2, JAFAKEC-U, Healthy Male 167

6.21 Error Distribution using Kinect V2, JAFAKEC-U, best result-set 168

6.22 Elbow angle of healthy subject3, (trial 1) Right upperlimb 170

6.23 Elbow angle of healthy subject3, (trial 2 and trial 3) Right upperlimb 170

6.24 Error Distribution using Kinect V2, JAFAKEC-U, Healthy Female 171

6.25 Error Distribution using Kinect V2, JAFAKEC-U, best result-set 172

6.26 Elbow angle of mock patient . 173

6.27 Error Distribution using Kinect V2, JAFAKEC-U, Mock Patient 174

A.1 Speed Distribution of Cow 11 over 7 days . 182

A.2 Movement Pattern for Cow 11 over 7 days . 182

A.3 Speed Distribution of Cow 13 over 7 days . 183

A.4 Movement Pattern for Cow 13 over 7 days . 183

A.5 Speed Distribution of Cow 14 over 7 days . 184

A.6 Movement Pattern for Cow 14 over 7 days . 184

A.7 Speed Distribution of Cow 15 over 7 days . 185

A.8 Movement Pattern for Cow 15 over 7 days . 185

A.9 Speed Distribution of Cow 16 over 7 days . 186

A.10 Movement Pattern for Cow 16 over 7 days . 186

A.11 Speed Distribution of Cow 17 over 7 days . 187

A.12 Movement Pattern for Cow 17 over 7 days . 187

A.13 Speed Distribution of Cow 18 over 7 days . 188

A.14 Movement Pattern for Cow 18 over 7 days . 188

A.15 Speed Distribution of Cow 19 over 7 days . 189

A.16 Movement Pattern for Cow 19 over 7 days . 189

A.17 Speed Distribution of Cow 20 over 7 days . 190

A.18 Movement Pattern for Cow 20 over 7 days . 190

List of Figures xiv

A.19 Speed Distribution of Cow 21 over 7 days . 191

A.20 Movement Pattern for Cow 21 over 7 days . 191

A.21 Speed Distribution of Cow 22 over 7 days . 192

A.22 Movement Pattern for Cow 22 over 7 days . 192

A.23 Speed Distribution of Cow 23 over 7 days . 193

A.24 Movement Pattern for Cow 23 over 7 days . 193

A.25 Speed Distribution of Cow 24 over 7 days . 194

A.26 Movement Pattern for Cow 24 over 7 days . 194

List of Tables

2.1 Results of simulation for the large herd (N= 166) 36

2.2 Results of simulation for the small herd (N= 58) 36

3.1 Kinect for Xbox and V1.8 Joint Labels . 59

3.2 Kinect V2 Joint Labels . 61

3.3 Feature summary of mass-market depth sensors 68

3.4 Joint Variables . 83

5.1 Algorithms used in the JAFAKEC-G for gait system 133

6.1 Algorithms used in the JAFAKEC Upperlimb system 154

A.1 Cow 11 Speed Data . 182

A.2 Cow 13 Speed Data . 183

A.3 Cow 14 Speed Data . 184

A.4 Cow 15 Speed Data . 185

A.5 Cow 16 Speed Data . 186

A.6 Cow 17 Speed Data . 187

A.7 Cow 18 Speed Data . 188

A.8 Cow 19 Speed Data . 189

A.9 Cow 20 Speed Data . 190

A.10 Cow 21 Speed Data . 191

A.11 Cow 22 Speed Data . 192

A.12 Cow 23 Speed Data . 193

A.13 Cow 24 Speed Data . 194

xv

Abbreviations

WSNSIM The Wireless Sensor Network Simulator developed for this study.

WSN Wireless Sensor Network

GPS Global Positioning System

BS Base Station

LEMSYP The Low Energy Multihop Synchronized Protocol developed for this study.

CSMA Carrier Sense Multiple Access

TDMA Time Division Multiple Access

C-LEMSYP The CSMA based variant of Low Energy Multihop Synchronized Protocol

developed for this study.

T-LEMSYP The TDMA based variant of Low Energy Multihop Synchronized Protocol

proposed for this study.

GUI Graphical User Interface

GLSKEL The OpenGL based Skeletal motions viewer developed for this study.

JAFAKEC-G The Joint Angle from Frames Acquired using KinECt for Gait monitoring

developed for this study.

JAFAKEC-U The Joint Angle from Frames Acquired using KinECt for Upperlimb monitoring

developed for this study.

xvii

To my loving family and friends. . .

xix

Chapter 1

Introduction

1.1 Background

Sensor technology has been going through some big advances in the recent years. The main

strands of its progress are - (a) tiny radio transceivers are enabling ubiquitous monitoring of

spatially distributed parameters, (b) new microelectronic sensing devices enabling precise mea-

surement/detection of new parameters, (c) cheap scanning and imaging sensors are democratising

dynamic capture of shape and form. In view of these developments, this work aims at enhanc-

ing data processing methods towards greater exploitation of sensor technologies. The explosive

growth in data-acquisition and storage capabilities has resulted in what is called the big data

revolution. The term big data broadly refers to analytic processing of vast amounts of data

collected from multiple sources in order to enable intelligent decisions. This has given rise to a

field of study called data science that develops and uses ideas from such diverse fields as statis-

tics, mathematical modelling, signal processing, functional analysis, algorithms, etc. in order to

apply them in processing of vast amounts of data. This work is a contribution to the field of data

science, as it explores algorithms for dealing with collection, recording and processing of sensor

data. In particular two application contexts were explored in this work - (a) that of monitoring

livestock using wearable sensor-transceiver nodes, and (b) that of monitoring gait, hand tremor

and dexterity of mobility challenged patients without the inconvenience of body mounted sensors

or markers. The specialized systems traditionally used in the above applications involve high

capital expenditure, running into tens of thousands of dollars. This work has progressed towards

achieving a similar level of effectiveness at a much lower cost. The goal of this work was to

enable livestock companies, hospitals, and care homes to benefit from inexpensive technologies

for sensing, networking, and monitoring.

1

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 2

1.2 Application of Wireless Sensor Network for herd mon-

itoring

Using industrial grade wireless sensor nodes in farm monitoring has many challenges. There

are physical design problems to deal with harsh outdoor conditions like sun, rain and snow, but

such problems can be addressed by the design of a protective casing. This work addresses the

challenge of protocol design to take advantage of herding behaviour in order to drive down the

power consumption and thus enhance battery life. Performance analysis of WSNs for cattle mon-

itoring are supported by the simulation model developed in this thesis WSNSIM that captures

the behaviour of the farm-area network and animal mobility to the level of detail required for

accurate analysis.

The paper Protocol Design for Farm Animal Monitoring using Simulation, has been published

in ADHOC-NOW July 2012 international conference and in Lecture Notes in Computer Science,

LNCS 7363. Monitoring health and estrus (the period of sexual receptivity) of cattle in large

herds is quite labor intensive and its efficiency can be much enhanced by WSN deployed on the

cattle. Cattle herds have their own characteristic peculiarity in the spatial spread of nodes and

their mobility patterns. The electronic sensor in this application is cow collar, transceiver on

collar-band. A novel discrete event based network simulator, WSNSIM, has been developed for

performance analysis of this class of wireless networks, and used for evaluation of new protocol

ideas for cattle herd monitoring. Chapter 2 describes this contribution in detail.

1.3 Application of Microsoft Kinect in Healthcare

The average age of the global population is reaching unprecedented high levels. The people are

living longer than ever before, and the number of people living far past their retirement age is

increasing rapidly. The population over the age of 65 years is expected to be more than double

that of the 1990s levels by 2030 [53]. The retired/senior population will profoundly affect na-

tional economy and business productivity of the UK (As shown in figure 1.1). With this steady

increase of life expectancy and a steady growth in the senior population, there is a need for

innovations towards cost reduction in healthcare. One of the active areas of research in this di-

rection involves the use of consumer grade electronic devices towards health monitoring. Smart

phone and its peripherals are being used for monitoring heart rate [99], blood pressure [17], sleep

quality, hand tremor [36] and so on. Nintendo Wii sensors have been used in physical therapy

[24], stroke rehabilitation [152] and balance feedback [28], [11].

Substantial effort is being made to deploy information technologies into the clinical space - such

as administrative technologies (information integration systems, patient record systems, etc.),

high tech hospital equipment such as surgical robot, Computerised Tomography(CT), Magnetic

Resonance Imaging (MRI), etc. Deployment of technology at home care has the potential to

reduce the cost and the pressure of the hospital resources. Advances in technology will make it

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 3

Figure 1.1: Public expenditures on healthcare U.K

possible for people to play a greater role in maintaining and monitoring their own health [45],

[69].

With an aging population, there are a growing number of people suffering from mobility im-

pairment due to such conditions as stroke, arthritis, rheumatism, osteoporosis, etc. This places

enormous demands on healthcare systems, both acute hospital care and also routine monitoring

and health maintenance at massive scale. Such patients need to be monitored during the course

of treatment to assess their progression and response to their medication and therapy. There

are hospital facilities to enable such monitoring but these are extremely expensive and require

skilled staff to operate. With improvement in the body tracking technology in the rehabilitation

scenerios such as the interactive capabilities, body movements can be captured and measured in

greater number of ways. Singh et al. [165] have developed rehabilitative treatment interventions

that personalise physical activity sessions and provide feedback to a patient based on relevant

body motion to facilitate the awareness and understanding of their movement. With improve-

ments in technology, the body movements can be measured and captured which can be applied

in a broader scope of application in the healthcare domain. One of the goals of this study is

to enable monitoring of patients using inexpensive 3D imaging sensors. The patients can be

monitored in home or in care homes by using the highly affordable and portable Kinect sensor,

which can capture gait and arm motions without inflicting any inconvenience.

Gait analysis is frequently used in clinical decision-making [77]. Improved measurement and

analysis of gait information has significant clinical, diagnostic and therapeutic value. In the

second and third year of research different versions of Kinect were studied, numerous algorithms

and developed novel toolsets (called JAFAKEC-G and JAFAKEC-U) and various algorithms to

help with the analysis of gait and tremor in hand captured by the Kinect sensor which can be

used for monitoring the gait and arm tremor in home and care homes. Most optical kinematics

solutions require large facilities with multiple cameras. Some portable systems with analytical

tool-kits have recently been developed [201], [203] use markers on the subject’s body. A lot of

research has been done in marker-less motion capture systems [124] and various methods have

been proposed in the surveys of Moselund et al. [123], Turaga et al. [186] and Aggarwal and Ryoo

[3] for human motion capture and analysis. Most of these systems position multiple sensors in

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 4

a big workspace, typically a large laboratory setting, and requiring elaborate calibration. These

are thus unsuitable for in-home use. The proposed systems provide a marker-less, non-intrusive

option for gait and upper limb analysis and monitoring at home or at care homes for the elderly

and the infirm.

1.4 Evaluation of Microsoft Kinect for Gait Analysis

The paper Kinect-based lower limb motion analysis published in the International Symposium

on Biomechanics, July 2015 investigates the viability of using the Kinect sensor for the pur-

poses of gait analysis in patients recovering from stroke. The Kinect sensor is a 3D scanning

device that operates at 30 frames per second, capturing depth and RGB data. Use of Kinect

has been studied, with little success, for recording of clinical data using analysis [49],[161]. Pos-

ture, gait, and mobility data can be produced from 3D point cloud sequence. Physiotherapy

programs based on optical movement analysis systems are the norm, and they require large fa-

cilities and expensive installations comprising several cameras such as the VICON. The proposed

Kinect based solution, JAFAKEC-G system, provides a marker-less inexpensive alternative for

gait analysis at home or at care homes. Capture of human movements is the primary appli-

cation of the Kinect but the Kinect SDK does a quick and approximate computation of joint

positions, which are not accurate enough for clinical gait monitoring. Chapter 5 presents the

paper, which described the gait monitoring system JAFAKEC-G. This paper details the math-

ematical algorithms applied on the point cloud to improve accuracy of the joint angle calculation.

1.5 Evaluation of Microsoft Kinect for Upper LimbMotion

Analysis

Gesture recognition, particularly for the arms and hands has attracted substantial attention

and as a result various approaches have been invented. Trackable gloves and various wearable

devices have been used for gesture recognition, but vision-based approaches (i.e. approaches that

can capture hand gestures without requiring wearable devices) tend to be more convenient and

natural to use. The applications of gesture recognition include Human-Computer Interaction

(HCI) in which gestures are used to represent the input to a computer. It allows for a more

intuitive interface for manipulation of virtual reality 3D scenes and augmented reality games.

In robotics gestures can be used to control and interact with robots in a more intuitive way.

There are applications where medical robots are used with gesture tracking and tactile feedback

to allow minimally invasive surgery using a probe inserted through a small incision. There has

been attempts to replace mouse interactions with gesture based interactions for common usage

like enlarging images, launching and closing an application, zoom-in/zoom-out, icon selection,

drawing etc. Wearable virtual reality systems often use gesture for 3D navigation. Another major

application of gesture recognition is computer gaming, where Microsoft Kinect has introduced

gesture based interaction to the mass market. Human upper-limb gesture recognition can be

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 5

applied in the healthcare to allow for acquisition of diagnostic data as well as control of surgical

devices. Human upper-limb is a complex and articulated organ consisting of many connected

bones and joints. It is estimated that after a stroke, 50-75 % of patients suffer loss of neurological

and motor control on their upper limb [128]. Video game controllers have been used in therapy

and assessment of stroke survivors [106].

The research work carried out during the third year included monitoring of human hand and

arm motions, and development of a new Kinect based solution - JAFAKEC-U using Microsoft

Kinect V2. Chapter 6 presents the said upper limb motion analysis work in detail.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 6

1.6 Summary and Main Contributions

This thesis explores three core application areas. Each of these application areas have strong

influence on how monitoring using electronic sensors can be utilized. The first contribution pre-

sented in Chapter 2 looks at monitoring livestock using wearable sensor nodes. In this work a

novel discrete event simulator (WSNSIM) is presented, which is designed to evaluate protocol

alternatives for performance modelling of wireless sensor networks aimed at livestock monitor-

ing. It has many novel aspects like -(a) a synthetic herd generation module based on statistical

modelling from satellite images and GPS data, (b) a new stochastic mobility model, (c) shape

annotations (polygonal, lines, etc.) for representing prohibited zones, obstacles, and (d) range

of directional antennas, (e) a sophisticated power consumption model. Novel image processing

techniques has been implemented in WSNSIM for automatic detection of cattle positions from

satellite images. New protocols - viz. modified-LEACH and LEMSYP were proposed and eval-

uated using WSNSIM with good improvement over the state of the art with regard to farm

requirements. A novel protocol (called LEMSYP) has been designed and evaluated to address

low power reliable data gathering from dynamic nodes.

For the second contribution presented in Chapter 5, Microsoft Kinect sensor (versions 1.0 and

1.8) have been used for monitoring human gait without using any wearable equipment. A

novel monitoring tool JAFAKEC for gait (JAFAKEC-G) has been developed for visualising and

analysing gait data using depth data as captured by the Kinect sensor. JAFAKEC-G uses a

suite of customised mathematical algorithms like geodesic distance labelling, principal axis, least

squares fitting, convex hull etc. that enable marker-less gait capture for healthy and post-stroke

patients. It is inexpensive, has a graphical interface, and can be used in home application sce-

narios. JAFAKEC-G may be used at patient’s home, care homes, and at doctors’ clinics. A

novel kinematic model of human body joints (presented in section 3.13), called GLSKEL, has

been developed in order to map joint co-ordinates captured from Kinect into a realistic 3D visu-

alisation of the motions. The key scientific contribution of GLSKEL is that it enables continuous

motion capture (as opposed to measurement of aggregate characteristics) in an interactive 3D

environment. The intuitive interface of GLSKEL can help bridge the gap between a research

prototype and a novel product that can be used by clinical practitioners.

The third thesis contribution (presented in Chapter 6) shifts emphasis to consider these tech-

nologies in the context of upper limb motion analysis and monitoring. A novel system (called

JAFAKEC-U) for upper limb motion monitoring has been developed which is also marker-less

and is suitable for home-based monitoring. This system uses Microsoft Kinect 2 sensor for mon-

itoring human arm and hand motion. JAFAKEC-U also uses a suite of mathematical algorithms

like graph based clustering, geometric feature extraction, geodesic labelling etc. to enable arm

angle capture.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 7

1.7 Publications

1. [153] Shikha Sarkar, Lina Stankovic, and Ivan Andonovic. Protocol design for farm animal

monitoring using simulation. In Ad-hoc, Mobile, and Wireless Networks, Belgrade, Serbia,

pages 126-138. Springer, 2012.

2. [154] Shikha Sarkar, Lina Stankovic, Andy Kerr, and Philip Rowe. Kinect-based lower

limb motion analysis. In XXV Congress International Society of Biomechanics, Glasgow,

UK, 2015.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 8

1.8 An overview of the thesis

In presenting the systems and algorithms mentioned above, this thesis is organized into the fol-

lowing chapters.

Chapter 2 discusses the Performance Modelling of Wireless Sensor Networks. It includes detailed

description of a novel simulation model, WSNSIM, for herd monitoring, literature review, novel

protocol design, spatial distribution models, energy depletion comparison and mobility models.

Chapter 3 discusses data acquisition for human motion analysis. Microsoft Kinect sensor along

with other inexpensive depth sensor technologies, and VICON MX system have been discussed.

This chapter also includes the literature review on limitations and applications of Kinect and

other state-of-the-art sensors. It presents an experimental and mathematical analysis of preci-

sion limits of Kinect V1 and Kinect V2 sensors. Development of the Kinect data recorders (for

both V1 and V2) is discussed in this chapter, along with a description of the novel Kinematic

Model (GLSKEL) for interactive 3D animation of joint angles.

Chapter 4 discusses different Point Cloud Algorithms that are used in the literature and in the

subsequent two contribution chapters.

Chapter 5 introduces the novel gait monitoring system JAFAKEC-G. It also includes a survey of

relevant literature pertaining specifically to the use of Kinect sensors for gait analysis. It presents

methodologies, detailed description of the JAFAKEC-G algorithms, and results obtained from

Kinect sensors.

Chapter 6 discusses the novel JAFAKEC-U for upper-limb monitoring system that uses Kinect

V2. The chapter also includes a survey of the previous works pertaining specifically to the use of

Kinect sensors for upper-limb analysis, and goes on to present the novel JAFAKEC-U algorithms

and methodology used for calculating arm joint angles from depth frames captured by Kinect

sensor.

Chapter 7 presents the conclusion and the future work.

Chapter 2

Performance Modelling of

Wireless Sensor Networks for

Dynamic Assets

2.1 Introduction

The primary advantage of Wireless Sensor Networks (WSNs) is that its ad-hoc and wire-free de-

ployment offers low-cost monitoring of large facilities and sites. Freedom from wiring also makes

it robust with respect to failure modes involving wire-line disconnection. However it comes with

a few challenges that wired networks do not have. These emanate from additional considera-

tions such as interference, lower bandwidth, antenna range limitations, power consumption etc.

Among them the challenge of power consumption is of paramount importance because being

not tethered to an unlimited power supply, the wireless nodes have to carry their own limited

battery power, which imposes a strong constraint on their operation [46]. A successful sensor

network should be able to run for years without requiring maintenance. This is a challenge that

requires taking advantage of every last opportunity of the application. The primary source of

battery optimisation is minimization of the number and range of transmissions by WSN nodes

and the duration of active listening by the nodes. This entails that the protocol design (which

determines the transmission and active listening patterns) has to be customized according to

the application at hand. Planning based on simulated performance models can help with the

said optimisation process. The objective of this contribution is to develop a performance model

for wireless sensor networks deployed on mobile assets. Designing WSNs for mobile assets is

much more challenging than that for static assets because the network topology is changing as

the hosts move. There are four aspects that must be modelled for the simulator to accurately

compute performance parameters relevant to design.

1. Spatial distribution and mobility of hosts.

9

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 10

2. Physical phenomena - radio propagation (noise, error rates, collision), and power consump-

tion.

3. The protocol (the algorithm and heuristics by which the hosts carry out the communica-

tion).

4. The traffic patterns (the pattern of need for communication).

The objective of the research is to develop a performance model that simulates the aforemen-

tioned aspects of a dynamic WSN and computes the following performance parameters as a

by-product of the simulation process:

1. Power consumption efficiency of the network.

2. Latency of the communication.

3. Reachability of hosts.

4. Reliability of communication.

Animal rearing is a profitable but challenging business. On the one hand, owing to the overlap

with public health and epidemiological concerns, its practice is highly regulated, and on the

other hand owing to its fungible and perishable products, these businesses always remain under

tight economic competition. Any technological advance that can enhance safety and competi-

tiveness would be readily embraced by this industry. Monitoring health and estrus of cattle in

large herds is quite labor intensive and its efficiency can be much enhanced by WSN deployed

on the cattle. Sarkar [153] presents a simulation model for performance analysis of large scale

deployments of this application of WSN. Cattle herds have their own characteristic peculiarity

in the spatial spread of nodes and their mobility patterns. This fact ensures that the commonly

used spread and mobility models [192] are not directly applicable in performance modeling spe-

cific to this application. A simulation model tailored for this application must also allow for: (i)

directional signal propagation from WSN nodes mounted on cow-collars due to RF absorption

by the cow’s body, (ii) movement limitations in a typical farm such as fences, water bodies

like ponds or pools, etc. (iii) model augmentation using herd behavior captured from satellite

images and GPS tracked data. We noted that these custom features were not readily imple-

mentable on the existing network simulators (surveyed in [176]). Based on these requirements,

a novel discrete event based network simulator called WSNSIM was developed for performance

analysis of this class of wireless networks, and used it to evaluate new protocol ideas for cattle

herd monitoring. WSN applications have to address additional design constraints that must be

taken into account in the optimisation process, some of which are - (a) limited bandwidth of

unlicensed bands used for WSNs (b) possible high node density due to large number of hosts

in a confined area (c) rugged environments characterised by high RF noise and host failures (d)

possible time-correlated traffic leading to bursty overcrowding of the channel. The presence of

these multiple constraints and performance metrics that vary greatly across application scenar-

ios entail that WSNs must be tuned to application scenarios at multiple layers. In TCP/IP the

application layer can assume a high-level end-to-end communication model, whereas the routing

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 11

details may be taken for granted. In WSN, however, the routing needs to be tuned by appli-

cation to achieve the necessary optimality. Thus, unlike other protocol stacks, WSN protocol

stacks require customisation interface or application programming interface encompassing lower

layers. This additional exposure of complexity can make it quite challenging to develop appli-

cations. One of the objectives of this research is to simplify the interface by which one specifies

the low-level behaviour in the protocol. This objective is planned to be achieved by the simu-

lation model through a clearly isolated interface for specifying protocol behaviour which would

represent the application development interface to a WSN (could be identical to it, except for

syntactic differences). Discrete event simulator like TOSSIM [108] is quite limiting as it is bound

to the TinyOS and does not allow simulation beyond that of TinyOS motes. Simulator ATMEU

[139] is specific to the MICA2 platform and hence it is not suitable for general freeform protocol

research. The main limitation of the Java based discrete event simulator NetTopo [163] is that

it is not an event based simulator. MIXIM [97] and Castalia [18] are two WSN simulators based

on OMNET++ framework [187] framework that involves programming in the low level message-

handler interface. WSNSIM introduces a simpler programming interface which is much more

compact and easier to understand. The simplicity and efficacy of this simulator interface would

directly entail simplicity and efficacy of the WSN application programming interface (API) of

the platform that the simulated hosts represent. The main novelty of WSNSIM is in the low

complexity of the specification interface and its value-added mobility models derived for farm

scenarios.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 12

2.2 Related work on WSN modelling

This section will outline the state of the art that this work builds on. There are three branches

of predecessors of this work (i) that of WSN protocols (ii) that of WSN simulators and (iii) that

of farm animal behaviour relevant to WSN performance. So the following subsections survey

related past work on these three aspects.

2.2.1 Related work on WSN Protocol Designs

The LEACH (Low Energy Adaptive Clustering Hierarchy) protocol [72] is one of the most cited

protocols as this work led to a whole family of protocols that were based on LEACH in some way.

The idea of LEACH is that it is a fully decentralized algorithm that works on simple nodes. Some

of the nodes randomly self-elected as cluster-heads (and there is a rule not to self-elect too often),

and the other nodes subscribe to their nearest cluster-head (the nearest node is estimated by

the signal strength of the cluster-head advertisement packet). Then the cluster-head coordinates

a TDMA (Time Division Multiple Access) schedule for a data transmission phase when the

nodes transmit their sensor data to the nearest cluster-head, which then transmits collected

data to the base station. LEACH meant a big improvement over direct transmission because

the TDMA phase entails sleep scheduling, and because the two-hop transmission entails reduced

transmission length (though not always) and possibility of data compression by the cluster-head.

Another reason why this paper is often cited is that it gives mathematical formulae for power

consumption in transmission and reception. These formulae have been used by many subsequent

works, including this work. An improvement to LEACH [72] is proposed by the DAC algorithm

[71], which seeks to improve the spatial spread of cluster-heads by asynchronous pre-emptive

cluster election. The key idea is that there is a designated time interval for nodes to self-elect,

during which nodes keep their receivers on so that if it hears of a nearby cluster-head, it gives

up on its own possibility to self-elect. When a node decides to self-elect (given that it has not

heard from any nearby self-elected cluster-head) it immediately advertises itself so that it pre-

empts to discourage all nearby wannabe cluster-heads. This paper was useful in one other way,

in that it introduces a metric for efficacy of a routing, expressed in terms the ratio of clustered

transmission length to the transmission length of direct communication to the base station. This

ratio represents the power efficiency of the network topology used for transmission. This metric

was useful during a phase when the calculation of power estimation in the simulator, WSNSIM,

was incomplete. The paper [136] introduces a protocol called KMMDA (K-Means like Minimum

Mean Distance Algorithm) which seeks to improve LEACH by improving the spatial clustering.

Since LEACH’s cluster-head election does not take into account node positions, it might lead to

much skewed spatial spread of cluster-heads. KMMDA makes some big demands on the node

sophistication, in that each node is assumed to have a GPS receiver, and all the nodes get to

know the positions of other nodes within their range using a TDMA. Firstly, having a GPS

receiver significantly increases the cost and energy demand of a node, and the cost of spreading

the position information to other nodes is glossed over. So while this protocol does demonstrate

lower transmission lengths due to better spatial distribution of cluster-heads, it requires more

expensive and energy demanding hardware. The protocol presented in [178] is quite similar to

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 13

KMMDA. The PEGASIS (Power-effcient GAthering in Sensor Information Systems) protocol

[110] presents another improvement over the LEACH protocol. In PEGASIS, the nodes form

chains from sensor nodes so that each node transmits and receives from a neighbouring node, and

each member of the chain backbone has a designated next-forwarder. The gathered data move

along the chain backbone and aggregated at each step, eventually reaching the base station. The

STEM protocol presented in [157] proposes the key idea of a low duty-cycle periodic wakeup

interspersed by long sleep (a low energy non-radio-listening state) intervals. A STEM node is

woken up either by a continuous tone or a series of frames in two different variants of STEM. In

STEM, the data channel is different from the wakeup channel. The MR-MAC protocol is similar

protocol to STEM, but it uses two different channels of widely different frequency bands - a low

data-rate, low frequency channel for exchange of wakeup and control packets (when the traffic

is calm) and a high frequency (high energy) channel when the traffic gets busy.

2.2.2 Related work on Network Simulators

The first simulator evaluated was TOSSIM [108]. TOSSIM is a discrete event simulator for

TinyOS networks. It is very efficient and has support for direct connection to hardware. It is

tightly bound to the TinyOS capabilities and does not allow simulation of platform capabilities

beyond that of TinyOS motes. This fact was quite limiting because the transmit function of

TinyOS was not parameterised by the transmission range, nor did the receive functionality seem

to record the received signal strength (at the time of evaluation, which may have since been

addressed). Manipulating the transmission range and reading reception range programmatically

are two key features needed for testing low-level protocol variations. The absence of these fea-

tures at the time of evaluation (as of 2011) made TinyOS appear unsuitable for the intended

investigation. Newer version of TinyOS may have addressed these shortcomings.

TOSSIM was a practical tool for specifically deploying TinyOS motes in applications, but looked

like a wrong choice for general protocol research because its deployment is limited to a partic-

ular board (motes), and does not comply with open standards. Among the network simulators

surveyed, OMNET++ [187] seemed to have the best look and feel among open source tools.

It defines a general simulation framework with no inherent ontological commitment to the do-

main of network simulation. It can be used in a wide variety of simulation applications like

manufacturing simulation, shop floor modelling etc. In OMNET++ the basic unit of structure

is a module. Modules are connected together and have parameters to control their behaviour.

Modules can be hierarchically defined and instantiated. The basic unit of behaviour in OM-

NET++ are messages. Messages are generated and consumed by modules. Primitive modules

are implemented as C++ classes derived from the class CSimpleModule. Messages are also C++

classes derived from the class CMessage. The simulation kernel delivers messages to the virtual

method CSimpleModule::handleMessage(CMessage*) for handling of messages. The module

authors override this virtual method to define node behaviour. The entire behaviour of a module

is encoded as a huge set of if branches in the handle message function to check various types of

messages and act accordingly (usually sending more messages). Likewise, messages are special-

ized by sub-classing from an existing message type or from the root type CMessage. The entire

protocol has to be modelled in terms of the aforementioned primitives. Besides, OMNET++

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 14

supports a domain specific language (DSL) to describe connections and structural composition.

There are two frameworks built on the top of OMNET++ that target WSN applications -

MIXIM [97] and Castalia [18]. These frameworks implement channel characteristics and radio

models. MIXIM has many good qualities, in that it has a library of protocols built in, to make

it easier for researchers to compare their ideas with existing protocols. The extension interface

of Castalia and MIXIM remains the same as that of OMNET++, which is more complex than

it needs to be. The proposed lambda based behaviour specification is much more compact an

easier to understand than the message handler call-back method of Omnet++. The simulator

NS3 [73] is a pure C++ library with Python bindings for which the simulation scenario is imple-

mented as a ’main’ function. The tool GTNetS [146] also supports the same method of usage,

i.e., the simulation user writes the scenario as a main function using the facilities of C++ class

library. These libraries have classes representing nodes, links, traffic, probability distributions,

etc. When the simulation file is written, it is compiled into an executable which runs the sim-

ulation. As the simulation runs it saves one or more text files to log the data generated by the

simulation which can then be analysed to estimate the network performance. So it might involve

quite a substantial effort to write a WSN simulator using these libraries. This method of user

interfacing is not very user friendly for a WSN. In WSN simulator it is best if some part of the

input (especially the spatial node distribution) is defined graphically. It is also very useful if it is

possible to visualise the mobility of nodes and network transmissions through an animation. It

appears that NS3 and GTNetS are quite specialised on internet protocols (TCP/IP, UDP, WIFI,

P2P, etc.). The simulation for NS3 and GTNetS runs primarily in non-interactive batch mode,

i.e., define the input and let it run. In order to evaluate strategies like data gathering using

a mobile collector node, it is useful to support interactive simulation - one in which the user

can control simulation entities (e.g., the collector node) as the simulator runs. GTNetS, NS3,

OMNET++ all have restrictions for commercial use, while academic use is free. Commercial

licensing can be expensive. Another widely used simulator NS2 [117] is the precursor of NS3,

and has the same usage model as NS3. It is still the most widely used simulator due to its long

history of adoption. It too was primarily designed for the TCP/IP stack, and it supports only

two wireless MAC protocols - 802.11, and a single-hop TDMA protocol. It has a stiff learning

curve and requires advanced skills to perform meaningful simulations. It is difficult to customize

it for WSN modelling. The paper [163] presents a Java-based WSN simulator, NetTopo, that

provides both simulation and visualization functions to assist the investigation of algorithms in

WSNs. NetTopo provides a common virtual WSN for the purpose of interaction between sensor

devices and simulated virtual nodes. It supports the simulation of extremely large scale network

and is useful for rapid prototyping of an algorithm. The main features of NetTopo are that –

it is platform independent, extensible, flexible and practical. Users can define their own virtual

sensor nodes with expected attributes, own algorithms and functions, customise sensor network

topology layout, can create different device-based wrappers for visualization. NetTopo consists

of several software modules such as node module, topology module, algorithms module, GUI

module, painter, main control etc. The node module adopts factory method pattern that deals

with the problem of creating objects without specifying the exact class of object that will be

created. The algorithm module allows users to create their own algorithm that can be routing,

clustering, controlling, scheduling, etc. which can be applied in the virtual WSN. The topology

interface is used to define several basic methods representing actions of network topology. The

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 15

painter module interacts with Virtual WSN, node and GUI modules and is responsible for paint-

ing all kinds of symbols on the canvas. The GUI module displays a canvas, provides a tool bar

and menu bar for action performances. The main limitation of the Net-Topo simulator is that

it is not an event based simulator. So the timing characteristics and collision behaviour are not

modelled by it. Such simulators are good for evaluating initial ideas, but for accurate estimation

of protocol performance, one has to model the protocol at event level. The paper [139] presents

the design and implementation of a WSN simulator called ATEMU. ATEMU provides simula-

tion along with hardware emulation at a very low level. This simulator is specific to the MICA2

platform. It uses an XML based configuration interface. The ATEMU emulator can simulate

arbitrary number of nodes, each of which can be configured to run a different sensor networking

application. This simulator too is quite tightly bound to a particular platform (MICA2), and

did not appear suitable for protocol research.

The WSN simulators surveyed above do not comprise an exhaustive list. The paper [176] presents

an excellent survey of simulators available for WSN modelling. It presents 14 different simulation

tools and points out their key features and limitations. This paper describes the key functional

components of WSN simulators and presents comparisons of the available simulators with regard

to these functional components.

2.2.3 Related work on Mobility Models from Animal Behaviour

The paper [66] reports a body of work in which sizable cattle herds were recorded using navigation

equipment and a probabilistic mobility model was made from the recorded data. The model

was used to predict spatial distribution of cattle. The proposed approach in this thesis also

follows a probabilistic mobility model based on the cattle motions data recorded by [170], and

based on satellite images obtained from Google-maps web service. A statistical model for herds

was obtained by analysing cattle positions tracked in a number of satellite images. The image

processing techniques used in extracting cattle positions from the image data are available in [19],

[182]. Herd mobility and distribution seems to lend itself to statistical models, but it is possible

to have more sophisticated rule-based motion models as in [114]. Majumder [114] presents a rule

based motion model involving various kinds of vehicles within a port facility. If there is a need

to repurpose the simulator into tracking of vehicular assets in an industrial compound (airport,

large factory etc.), it would be necessary to utilise similar kinematics and rule based scriptable

mobility models. The paper [170] analyses the movement patterns in an experimental herd to

determine the connectivity of the network for various radio ranges. For each tracked cow, the

minimum distance from its nearest base station, and the minimum distance to its nearest cow

were analysed for viability of single hop and multi hop communication. The paper presents a

situation where there is a base station outside the field, and one at a water trough, since it is a

well-known congregation points. It was observed that the cattle gather close to the water trough

over a specific two hours in the afternoon. A Depth First Search (DFS) was used to determine

the connectivity for a given herd distribution and given radio range. The nodes visited by the

DFS were identified as reachable by multi-hop communication. Regularity was noted about the

time of the day and the network connectivity, which indicates that behavioural routine could

be used to predict viable connection times allowing node energy to be conserved at all other

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 16

times. The paper [100] suggest implementation of protocols for herd management. It proposes

duty cycles for transmission that is necessary to let the base station pick up data messages when

the cattle briefly comes in its proximity. It proposes putting the base station at a well-known

congregation point (the water trough) radically new ideas like using a mobile data collector

(e.g. mounted on a dog, or on a farmer’s tractor, to make occasional rounds of the field to

collect the data. The key idea of this protocol is to take advantage of a special point-of-interest

and the time an individual cow spends in its proximity, in order to design a transmission duty

cycle accordingly. Two measures of network availability are defined (1) Connection availability

(CA) - the fraction of time ’t’ during which the wireless sensor node on cow ’i’ is able to

communicate with a base station. (2) Connection duration (CD) the time interval during which

the connection between a sensor node ’i ’and the base station remains uninterrupted. This paper

also suggests a Gaussian kernel based distribution of cattle. In summary, the paper introduces

the communication challenge posed by short radio range, and cattle mobility. The paper does

not implement a concrete protocol per se but proposes ideas and issues for protocol design. The

paper [44] reports experimental results from evaluation of two data gathering methods : (a) a

routing based data gathering and (b) a moving collector based data gathering. The key feature is

that the transmission range is fixed and short, so that while the power consumption per transmit

is low, the network might be quite disconnected and fragmented much of the time. A novel data

collector scheme is proposed in which the data collector is not battery constrained, i.e., it has

a high gain antenna and a large battery pack and can undergo frequent battery change. The

collector moves around the field, ideally scans the field to pick up short range signals of the

WSN nodes. The paper [170] presents a mathematical model of cattle herd behaviour using a

formalism called Markov Random Field. This model takes as input the GPS tracked positions

of cattle and tries to identify social and local preferences in cattle behaviour inferable from the

dataset. The paper [89] describes the modelling of cow behaviour using stochastic automata

with the aim of detecting lameness. Three different stochastic automaton models are proposed

for describing cow activity. These models describe the cows’ activity in the two behavioural

scenarios, non-lame and lame. The transition probabilities of the fault model reveal that the

probability of the measured data sequence belonging to either of the fault models has to be

very low before a transition becomes probable. Diagnosis algorithms for the three approaches

are implemented and tested using the real data measurements. The paper [88] has made a

statistical model of Oestrus probability by correlating behaviour data with successful bovine

pregnancies by artificial insemination. If it is feasible to implement such statistical models on

embedded processors on the WSN nodes, it won’t be necessary to transmit every reading - some

analysis can be done locally on the node and transmission would be done only when the change

warrants intervention from the staff. Similarly with lameness, if the intelligence of detecting an

abnormality can be embedded on the nodes, it would be possible to reduce the communication

overhead significantly.

2.3 The WSNSIM Simulation Model

The architecture of WSNSIM is shown in Figure 2.1 in terms of its functional components. The

core of WSNSIM is written in C++ and the graphic user interface (GUI) is written in a popular

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 17

scripting language called Tcl/Tk [129]. The simulation scenario is captured interactively from

user inputs, in a data format called “.sim”. The modeled scenario captured in the sim file includes

such items as - the geometric shape of the rearing space (fences, prohibited regions etc.), initial

herd configuration, directional antenna range, protocol parameters etc.

WSNSIM uses image processing techniques to extract cattle positions from satellite photographs

and uses statistical methods of distribution fitting to create a probabilistic model for generation

of herd scenarios.

WSNSIM supports definition of obstacles and fences (forbidden regions) in a two stage manner.

Firstly one can define region annotations in the form of polygons. The orientation of the polygon

is used to represent whether it bounds its inside or outside. The screenshot embedded in Figure.

2.1 shows the boundaries of a farm represented in WSNSIM. Previous investigation [170] has

shown directional radio propagation properties for cow-collar transmitters. The antenna lies

on one side of the cow’s neck, which casts an electromagnetic shadow on the other side of the

cow. Moreover, electromagnetic waves are primarily dipole radiations, so the wave propagation

consists of lobes. In the presence of such directionality of transmitters, the simulator must

take into account the shape of the directional range, in order to be accurate about receptions

and interference. WSNSIM supports polygonal definition of antenna ranges, in addition to the

default circular ranges.

A Markov chain (i.e. probabilistic state transition) based model of node mobility is superposed

in WSNSIM with a discrete event simulation of network events to allow modeling of protocols.

Radio models, packet loss models, and power depletion models are invoked alongside the discrete

event simulation of the protocol activities.

WSNSIM implements discrete event simulation kernel in C++. There is a queue of future events,

which is unsurprisingly called the event queue of the simulator. Every event has a stipulated time

of occurrence. Events are executed one after another by popping them from the event queue, so

that their execution order is the same as the order of their stipulated time of occurrence. The

time in the simulated world jumps between the times of consecutive events. If there is a big gap

between the times of two consecutive events, the simulation time makes a big jump, whereas

when event times occur densely the simulation progresses in small steps. The simulator core is

a small piece of code that pops one event after another from event queue and executes them.

The events are modelled by a C++ class hierarchy whose root class is general event. The

event queue is a queue of general event pointers, and the framework calls a particular function

(called occur) on the general event pointer. This function is a virtual function, so that the

resulting executed code is that of the occur method of the true class of the object pointed by

the general event pointer. As the events execute new events get scheduled (for example, when

a transmit start event executes, a corresponding transmit end event is scheduled depending

on the bit-rate and the packet size. The simulation progresses as one event leads to another.

These events are at a particular layer of the simulator, which is largely hidden to the protocol

specification interface.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 18

Figure 2.1: WSMSIM architecture. Satellite image c© 2011 Google, DigitalGlobe

2.4 Internal Details of the WSNSIM Simulator

Following is a list of protocol aspects that needs to be assessed and customise in order to optimize

performance in relation to a specific application of WSN. Essentially it needs to be able to

simulate and compute protocol performance, reliability, and energy expenditure.

• CSMA MAC parameters and algorithms.

• Radio channel characteristics. These may be characterised by error rates and attenuation

functions.

• Energy expenditure rates for each individual type of action as a function of relevant pa-

rameters. These may be characterised experimentally for particular node types.

• Node mobility and spatial distribution patterns.

• TDMA and sleep scheduling.

• Clock skew and its bearing on length of TDMA and sleep schedules.

There are a few fundamentally different approaches to simulation in terms of level of detail. On

one end of the range there are 3D field models based on partial differential equations (Maxwell’s)

governing electronic flow and electromagnetic fields and waves. The next level of simulation is

that of circuit level models based on ordinary differential equations (e.g. SPICE). The next level

is that of discrete event simulation, followed by discrete time and cycle accurate simulation. Dis-

crete event simulation can model the delays of all significant internal operations within the pro-

tocol and can help identify timing conflicts and collisions. Any coarser model (e.g. cycle-accurate

or round-accurate simulation) glosses over the timing and power consumption characteristics of

low level events, and hence misses out crucial details. Detailed timing computation is very im-

portant in WSN energy performance evaluation because the timing of each energisation level has

a strong bearing on power consumption, and on the efficacy of transmission and reception. For

example, a LEACH advertisement packet lost due to collision might imply that a node selects

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 19

Step 1. Initialise k clusters to represent k
widely different colours that appear in such
images. Each pixel is augmented with a data
field called ’tag’ to represent the cluster asso-
ciated with the pixel (these are initially set to
some invalid default that won’t be confused
with a cluster identifier).
Step 2. Tag all the pixels by the cluster whose
colour is closest to the colour of the respective
pixel. If none of the pixels change their previ-
ously assigned tag, go to step 5.
Step 3. Re-compute the colour of each clus-
ter as the mean (or centroid) of colours of all
the pixels that has the respective cluster as its
tag.
Step 4. Go to step 2
Step 5. Set pixels tagged with background-
like clusters as white and those with cattle-
like clusters as black. This might produce
several fragmented pixel chunks for each cow,
which can be fixed using the morphologi-
cal closure operator [182] (as shown below)

Step 6. Finally detect the central position of

each connected black region (blob).

Figure 2.2: Algorithm for obtaining cattle spread data from satellite images. Satellite image
c© 2011 Google, DigitalGlobe

a far-away cluster-head as its cluster-head, and thereby leading to higher energy of subsequent

transmission.

Discrete event simulation is the dominant method for network simulation, and in fact almost all

of the current network simulation environments use discrete-event simulation methods to sim-

ulate the behaviour of a network. The use of discrete event model entails that the simulation

progresses through occurrence of instantaneous events at discrete points in time, and the network

state can be safely ignored between those discrete instants. The effect of continuous-time phe-

nomena such as power dissipation can be lumped or accumulated at the discrete event instants.

A key technical effort involved in designing a discrete event model is to identify events of inter-

est. For example, while the act of a node transmitting a packet in a wireless network can be a

complicated sequence of tasks (e.g. encoding individual bits into a waveform, calculating error

control codes, symbol detection at the receiving end, decoding, and populating shift registers),

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 20

the simulation may model it as a few events such as (1) start of transmission (2) end of trans-

mission. If the propagation delay is significant (which is not the case for the localised nature

of sensor networks) then the start and end of reception might be significant events too, with

timing characteristics dependent not only on the transmission time but also on the distance.

Such events occur in increasing order of their time. The simulation model maintains an ordered

list (or so it appears) of events, from which the very immediate event is picked up and executed

at each step of simulation progress. As an event is executed, new events might get registered

and existing scheduled events might get withdrawn depending on the semantics of the currently

executed event. When a new event is registered, it is scheduled with a time of occurrence and

the ordered list of future events is readjusted so that events occurs in the right order. The

simulation has a current time, which is the timestamp of the current or the most recent event

that occurred. The single step of progress for the simulation is as follows.

1. Remove the earliest pending event from the list of future events.

2. Set the current simulation time to the timestamp of the just removed event.

3. Carry out the state changes that occur due to the event action.

These state changes might include the creation of one or more additional events. For example, if

the current event is that of a node sensing the carrier (as in CSMA) for transmitting a packet and

if it finds the carrier busy, it would lead to creation of another carrier sense event for the same

packet at a later time. This is the essence of the event processing step, which could be executed

in an infinite loop. However, since the simulation needs to coexist with a GUI toolkit, the event

processing function is invoked repeatedly from the event-loop of the GUI toolkit (the GUI has

a separate event loop for processing of user interaction events such as mouse-clicks, keystrokes

etc.). The aforementioned simulation event processing step process single event and invoke it

from the idle handler of the GUI library. The key architectural aspects of the WSNSIM model

are described as follows. The simulation is implemented in C++ and there are a few classes

to model the various aspects of the protocol. The global aspects of a simulation instance are

modelled by the class called simulation. The simulation has a process single event method,

which gets called, to progress the simulation by a single event. Besides the simulation class,

there are classes to represent various event types, nodes and packets. The essential code of the

process single event is listed below. There are extra code in the actual program to implement

pausing (preventing simulation progress beyond the pause time), and the optional real-time

behaviour (preventing progression of simulation beyond progress of wall-clock time), however

the following describes the essence.

void simulation::process_single_event()

{

general_event * next_event = _future_events.top(); // Get the next event

double evt_time = next_event->get_time(); // Get its timestamp

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 21

_time = evt_time; // Set the simulation time as that timestamp

_future_events.pop(); // Remove the event from the future events queue

next_event->occur(); // Execute the event

}

The event queue is implemented using std::priority queue of the standard C++ library, which

is essentially a max-heap data structure, which can be made to behave as a min-heap using

an appropriate comparison operator. In our case, the declaration of future events (a data

member of simulation) is as follows:

std::priority_queue<general_event*,std::vector<general_event*>,

event_ordering_operator> _future_events;

It contains pointers to general event and maintains them in such a way that the top() method

gets the element (i.e. event) with the smallest value of time, and the pop() method removes

that element. The class general event serves as a base class for all types of events that can

occur in this simulation. There is a virtual method called occur that is overridden by all classes

derived from general event. The following figure 2.3 from Visual Studio Class View shows the

classes derived so far from general event. The aforementioned process single event calls

Figure 2.3: WSNSIM general event and its derived event types

the virtual function occur on the general event pointers, but these pointers point to instances

(i.e. objects) of more specific event types, and as such the actual method invoked by the above

virtual call depends on what type the object actually is. If the current event pointed to by the

general event pointer is actually a carrier sense and transmit object, then the C++ virtual

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 22

function mechanism ensures that the function carrier sense and transmit::occur is called.

The manner in which the same method name gets specialized definitions based on object’s type

called polymorphism. Following is a description of some of the aforementioned event types.

The carrier sense and transmit event represents the act of transmission attempt with carrier

sensing. This event captured on the node that is doing the carrier sensing and the packet that is

being attempted to be sent. When this event takes place, its occur method checks if the node in

question is within the range of a transmission that is currently taking place (i.e. whether there

is a nearby transmission whose transmit start has occurred but transmit end has not yet

occurred). If so, it schedules another carrier sense and transmit event to occur at a later

time. If the carrier is not found busy, it schedules a transmit start event with the packet in

question at a time determined by the latency of the carrier sensing operation turnaround. The

transmit start event represents the start of transmission of a packet. It changes the status of

the node to transmitting and registers the node as one of the currently transmitting nodes within

the simulation object. This registration was not strictly necessary, as a global computation could

check the transmitting status of the node, but is rather an optimisation to avoid having to search

through all nodes to determine which nodes transfer it. With this orientation only the currently

transmitting nodes must be searched. Its occur method schedules a transmit end event after a

time interval determined by the packet length and the bit-rate of transmission. In order to detect

collisions, when a new transmit event is registered, the simulator goes through all the currently

active transmissions, and if there are any nodes within the intersection region of space (i.e. the

region of overlap between the new and existing transmissions), all those (transmission, receiver)

pairs are marked as collided. For these collided receivers, the pair (the new transmission, receiver)

is also marked as collided (i.e. not-only the ongoing transmissions are garbled, the new one is also

garbled due to collision with pre-existing transmissions). It may be possible to further refine the

collision behaviour by considering relative signal strengths (since a sufficiently weak reception

when colliding against strong reception may not garble it), however WSNSIM currently does not

simulate such behaviour. If two receptions overlap in time, they are simply taken as collided,

irrespective of signal strength. Following is the algorithm of collision detection in pseudo-code

form
ALGORITHM COLLISION DETECTION

Data: A new transmission of duration δt starting at time t and position x and with range r

Data: Existing on-going transmissions starting at positions xi and range ri

Data: Receiving node positions zk

foreach receiving node n with position zk do

if zk is within the overlap region of ranges r and any of ri for i = 0, 1, . . . , then

Mark the new transmission reception for the node at zk as collided;

Mark the pre-existing on-going transmissions for node at zk as collided.;

end

end

Algorithm 1: Collision detection algorithm used in WSNSIM

The transmit end represents the end of a transmission and its occur method has many ac-

counting tasks. Firstly, it deregisters the node from currently transmitting list, and changes its

status from transmitting to non-transmitting (i.e. idle). It also ensures that all the nodes within

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 23

the range of the transmission, for which there were no collisions, gets the packet in their packet

buffer. For a receiving node, a collision is defined by two or more transmissions received by it

simultaneously.

The occur method should also take care of accumulating the transmission energy expenditure of

the transmitting node, and the reception energy expenditure of the nodes that were within the

range of the transmission.

The listen start event marks the beginning of passive listening for a node. The listen end

method marks the end of passive listening mode. When a sleep is scheduled, a listen end event

is scheduled followed by a listen start (i.e. a timed wake-up). These events serve to track the

passive listening energy expenditure, and can also reveal, for example, if the sleep schedule made

a node miss packets unexpectedly.

The aforementioned class hierarchy shows events named after a protocol (e.g. leach self election,

cluster member registration etc.) however, as the program’s architecture evolved, it was no

longer necessary to define protocol-specific event types. This is facilitated by a category of events

broadly called lambda events. These are events that take a so called lambda expression as input.

In C++ (and in many other programming languages), a lambda is an anonymous function object

that can be scheduled for later execution. A relatively new C++ language specification (known

as C++0x or C++11) published in June 2011 introduced this language feature that offers a

convenient notation for network simulation. With the lambda notation one can embed blocks of

code within a body of code, so as to treat the embedded block as a function object, which in turn

can be scheduled for later execution. To illustrate the use of lambda, the following line within

a function can now ensure that the block of code passed as the final argument is treated like

an argument, which can be scheduled to be executed periodically along with other simulation

events.

node_do_periodic(node, start_time, period, {block_of_code});

Before the c++0x specification, the 4th argument (or parameter) passed to node do periodic

could be a function pointer or an object (e.g. - an instance of a subclass of general event on

which a virtual method would be called by the framework. With C++0x, the code object can

be embedded, thereby significantly increasing the clarity.

One might argue that when the same code needs to be repeated due to embedded lambdas,

then it reduces clarity, but the counter-argument to that position is that repeating blocks of

code would indicate a misuse. One can always replace a lambda with a named function when

a behaviour is reused in two places. That idiom is supported naturally by the framework of

callable function objects.

Similarly to the above periodic action, a packet reception handler may be specified using em-

bedded action syntax as follows:

node_on_message_rcv(node, msg_filter, {block_of_code});

Similarly, msg filter would be yet another lambda expression whose job would be to specify the

criterion under which the message would be handled by this particular handler.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 24

One could argue that the filter could have been a conditional (if-then-else) statement within

the handler block, but having a separate place for the filter criterion brings more clarity to the

protocol specification.

Thus, using the aforementioned generic primitives, it would be possible to replace the otherwise

hard-coded event behaviour leach self election with the following periodic action lambda:

node_do_periodic(node, 0.0, leach_cycle_length, {

// Code to perform probabilistic self-election

// Transmit advertisement frame

});

The principle of layer separation will be as follows:

The MAC and PHY services (e.g. carrier sense and transmit) are encapsulated as functions

callable at routing layer. The MAC and PHY phenomena (e.g. radio, energy) is hidden under-

neath the implementation of the MAC and PHY services. The routing layer is the target layer

where protocols are being designed, so this layer is implemented in terms of nodal programs.

These nodal programs are bodies of code meant to represent the behaviour of nodes in terms of

transmitting, receiving, and forwarding packets.

2.5 Energy Depletion Model

WSNSIM considers four modes of energy depletion :

1. Node transmitting data.

2. Node actively receiving data.

3. Node listening but not actively receiving data.

4. Node in non-listening sleep mode.

The first two are the dominant modes of energy expenditure. The transmission expenditure is a

function of the amount of transmission (expressed in terms of the number of bits transferred),

and the range of transmission (expressed as a distance beyond which attenuation makes the

transmission signal undetectable). The reception expenditure on the other hand is a function of

the number of bits received. The exact equations describing the expenditure would depend on

the electrical design of the physical node and thus would vary between node architectures, but it

seems reasonable to adopt the model presented in a heavily cited work [72]. WSNSIM adopted

the expenditure model presented in [72], the key equations of which are as follows:

Transmission Energy Expenditure = Etx ∗ k + εamp ∗ k ∗ d2

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 25

Reception Energy Expenditure = Erx ∗ k

Where k is the number of bits transferred, d is the transmission range, and Etx, Erx, εamp are

coefficients capturing power consumption characteristics of the node. As in [72], the values of

these coefficients used by WSNSIM are as follows:

Etx = Erx = 50nJ/bit

εamp = 100pJ/bit/m2

The expenditure model for idle listening (in which the node is listening for data but there is no

data in the channel) is taken as the following.

Idle Listening Energy Expenditure = Eidle ∗∆t

Where ∆t is the time spent in the said mode, and Eidle is a device-specific coefficient, set as 5

µJ/s by default. If the Mica mote with a reception power of 1mW is taken as the model for radio

power, it has to be converted into the Erx specification described above in conjunction with the

data rate. Erx, data rate, and receive power are related by the following equation.

Receive power in W = (Receive data rate in bit/s) ∗ (Erx in Joules/bit)

By this account, a specified receive power of 1 mW in conjunction with a data rate of 20 kbits/s

corresponds to Erx = 50 nJ/bit. The aforementioned coefficients can be modified for a simulation

scenario in WSNSIM if the intention is to compare two node designs with different radio power

characteristics, or if the intention is to evaluate a single node architecture under different radio

power settings.

2.6 Statistical Model of Spatial Distribution

The spatial distribution of nodes has a strong influence on the protocol performance and thus an

accurate model of the spatial distribution would improve the accuracy of protocol assessment.

Researchers usually assume a uniformly random distribution of nodes in a rectangular region

connected like a torus [192].

Here a more rigorous approach has been taken for modelling the spatial spread of nodes. In this

approach statistical models have been produced from cattle herds recorded in satellite images

(from Google maps) and from an experiment conducted by Strathclyde researchers in which cows

were tracked using geospatial positioning. A statistical probability distribution was fitted to the

recorded distance of each cow from its four nearest neighbors in the herd. The best fit distribution

was found to be the Gamma distribution. Normal, Gamma, and Weibull distributions were fitted

using a maximum-likelihood estimator available in the statistical package R, and the distribution

with lowest fit-error was chosen. Following is the density function for the gamma distribution:

βα

Γ(α)
xα−1e−βx

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 26

(Here α, β are parameters defining the distribution, and in the normalizing denominator is the

Gamma function). For the estimated best fit, the Gamma function parameters are: α=2.208

(the shape parameter) and β=0.231 (the spread parameter). Figure 2.4 shows a plot of the

observed PDF alongside the density function of the best-fit gamma distribution. A structural

The fitted Gamma density function compared
with the observed density function and the
banded histogram.

Cumulative distribution of a cow’s distance
from four nearest cows.

Figure 2.4: Probability density functions describing the composition of cattle herds

recursion based growth algorithm was used for generating synthetic herds by sampling deviates

from the fitted distribution. An intuitive view of that algorithm is to view the herd growth as a

crystal growth scenario with atoms that can form up to four bonds with other atoms, but unlike

atomic bonds, the cattle are not uniformly separated in angles. The 360o angle around a cow

is divided into four 90o sectors; the herd is grown as new cows join the neighbourhood of an

existing cow in one of the unfilled 90o sectors at a distance sampled from the aforementioned

fitted distribution. Following is an outline of the said algorithm:

Step 1. Start with one or more initial cows (seed cows).

Step 2. Choose a cow at random from the current herd which still has an empty neighbourhood

sector.

Step 3. Sample a distance from the said gamma distribution.

Step 4. Place a new cow at that distance in the unoccupied sector at a random angle between

zero and 90 degrees within the sector and mark that sector of the chosen existing cow as occu-

pied. Reject the new placement if it goes beyond the farm boundary.

Step 5. If the total required herd size is not reached, go to step 2, else the work is done.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 27

2.7 Statistical Model of Cattle Mobility

The satellite images are static snapshots of herds, and they serve to suggest and corroborate

models of spatial spread and formations occurring in herds, but they do not reveal anything about

the patterns of mobility. In order to discover and study the patterns of mobility, timed position

data have been recorded using GPS devices mounted on cattle collars. The movement behaviour

of cattle was modelled as a finite state machine with states defined in terms of speed and direction.

Within each state the speed or direction follows a continuous probability distribution fitted from

experimental data [170]. The speed was partitioned into three states. The speed states were

named as resting, grazing, and shifting - and experimental speed values were snapped to each of

the three cluster centres formed by k-means clustering in speed values. The three states were

chosen based on subjective observation of the herd and on expert opinion. Resting is the phase

in which the cow is completely immobile; grazing is the state in which the cow is very slowly

mobile and in the process of feeding from the grass patches. Shifting is the state in which the

cow moves from one place to another in a relative haste.

The mobility model is implemented as a Markov process (i.e. a stochastic process in which

the probabilistic transitions are dependent on the current state). The states and the transition

probabilities are deduced by statistical analysis of GPS traces. The traces comes in the form

of time series in node positions, the time series in the raw dataset is not uniformly spaced (i.e.

time intervals between consecutive GPS fixes is not of a fixed duration). Thus, in order to derive

simulation model from such raw datasets, the following workflow is used:

Motions Time Series → [An interpolator]→[Evenly spaced motions time series] → Speeds and

directions → Clustering → Maximum likelihood fitting of statistical distributions.

As stated earlier, the speed distribution was modelled to cluster around three modes or states

in the space of speed. There are statistical measures of the quality of a cluster partition. One

such measure is called the Mean Index of Adequacy (MIA). The lower the MIA value the more

compact (and hence of better quality) is the clustering.

MIA was calculated based on the speeds computed from GPS datasets for a range of values

for number of modes or clusters (denoted by the symbol k). Figure 2.5 presents MIA values

for various values of k. Although k = 2 produced a slightly lower MIA than k = 3, that was

probably because grazing speeds formed a smooth continuum of speeds all the way to the shifting

speed. The value k = 3 is chosen based on subjective perception of the three modes mentioned

earlier - i.e. shifting, grazing, and resting.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 28

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0 1 2 3 4 5 6 7 8

M
e

a
n

 I
n

d
e

x
 o

f
A

d
e

q
u

a
cy

 (
M

IA
)

Number of Clusters (k)

Figure 2.5: Number of speed modes or clusters plotted against MIA

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 29

Statistical distributions were fitted to speeds within each cluster. Fig. 2.6 shows the speed

distribution in the resting state (the lowest speed cluster). A piecewise linear equation was used

to approximate the inverse function of its CDF (as shown in light gray).

Histogram of lowest-speed cluster in speeds
data

CDF of lowest speed cluster in speeds data,
along with the fitted piecewise linear CDF.

Figure 2.6: Speed distribution in the resting state

The speeds in the two other states are modeled as shifted Gamma distributions. The density

plots with statistical estimates and the best-fit curve are given in Fig. 2.7. Another important

aspect of the model is the amount of time spent in each speed state. The speed at each trace was

computed using finite difference and speed state categorization was assigned to each position.

This would show long runs of each speed state. For a given cow the time until transition to

a different speed state is taken to be the time spent in the current speed-state. Exponential

distributions were found to be good fits for these variables. Fig. 2.8 shows plots of the dataset

and of the best-fit exponential distributions. State transition probabilities are computed as

statistical conditional probabilities derived from the transitions data (the values are shown in

the bottom right panel of Fig.2.8).

Distribution of grazing state speed Distribution of shifting state speed

Figure 2.7: Speed distribution in the grazing and shifting states

2.8 Statistical Model for Heading Direction

Speed and the direction transitions are modelled from the GPS tracked herd data using the

state transition probabilities. For this, the task was to derive a statistical model of directional

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 30

CDF of time spent in resting state CDF of time spent in grazing state

CDF of time spent in shifting state State transition probabilities

Figure 2.8: CDFs and state transition probabilities

changes in cattle motion. There are two aspects to this. Firstly there has to be a model for

initial distribution of heading directions, and then there has to be a model for when and how

the headings change. The initial heading directions were classified into 8 absolute directions as

shown in the following diagram:

Figure 2.9: Heading Direction

Heading directions were lumped into the eight directional states (viz. East, North-East (i.e.

45 degree north of east), North, North-West, West, South-West, South, and South-East) and

the transition probabilities were obtained from the GPS tracked dataset. Fig. 2.10 shows the

probabilities of direction transition, in which the arrow direction represents the direction of the

state transition, with the probability of the transition noted alongside the arrow. The relative

frequencies of these 8 directions, as noted from the GPS tracked experiment were as follows.

The overwhelming majority of west heading are probably explained by the fact that the readings

were taken during an afternoon and that the cows probably have an affinity towards the sun

(i.e. they seem to like to face towards the sunny direction). WEST: 546, EAST: 119, NORTH:

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 31

66, SOUTH: 92, SOUTH EAST: 64, NORTH EAST: 36, SOUTH WEST: 91, NORTH WEST:

66 The aforementioned directions samples were directly taken from the experimental dataset.

Next a denser set of directions was sampled from the interpolated motion dataset, and noted the

changes in direction to find the conditional probabilities of directional transition. The transition

probabilities were calculated based on the GPS dataset used in [100] with a simple conditional

probability calculation. The probability of transition between to state S2 given that current

state is S1 is calculated as:

P (S2|S1) =
N(S1, S2)∑
k

N(S1, Sk)

where N(Si, Sj) stands for the number of times the GPS dataset had a transition from Si to Sj .

Based on the interpolated data, following are some of the conditional probabilities for change

of directions. In the following pictures the direction of the arrow represents the direction of the

state transition, with the probability of the transition noted alongside the arrow.

Transition Probabilities from Heading North Transition Probabilities from Heading South

Transition Probabilities from Heading East Transition Probabilities from Heading West

Figure 2.10: Transition probabilities of some heading directions

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 32

2.9 Modelling of Spatial Regions

Motion models in most simulators use a rectangular arena in which the nodes are free to roam

about using various algorithms/models for movement. In some of these the rectangle is assumed

to have topological seam connecting two opposite sides (so that the surface is connected to itself

like a torus). However real enclosures come in many more shapes and also there are enclosed

internal regions that are not accessible to the cattle, e.g. a fenced area, a pond, buildings, etc.

WSNSIM has an improved simulation model in which the enclosure can be of any polygonal

shape and can have any number of internal inaccessible regions. The geometric shapes defined

for the simulation can represent more than just obstacles and fences. For example, one can make

the shape annotations represent regions of high affinity for nodes and paths for data collector,

or range of directional antenna. The orientation of the polygon is used to represent whether it

bounds its inside or its outside. The orientation is defined by the order of the points. If the

points are given in anti-clockwise order then it bounds the inside and if given in clockwise order

it bounds outside.

Figure 2.11: Modelling Spatial Regions.Satellite image c© 2011 Google, DigitalGlobe

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 33

2.10 Directional Antennae

Previous investigations [170] has shown directional radio propagation properties for cow-collar

transmitters. The antenna lies on one side of the cow’s neck, which casts an electromagnetic

shadow on the other side of the cow. Moreover, electromagnetic waves are primarily dipole

radiations, so the wave propagation consists of lobes. In the presence of such directionality of

transmitters, the simulator must take into account the shape of the directional range, in order to

be accurate about receptions and interference. The facility for polygonal definition of antenna

ranges has been implemented in addition to the default omnidirectional ranges. For example, the

following directional propagation lobes may be approximated by the polygonal approximation

shown in the following diagram: The polygonal range is defined with reference to the position

Directional Antennae Lobes (in metres) Approximated Polygonal Range (in meters)

Figure 2.12: Directional Antennae

and heading of the node. A node falling within the range and with its receiver turned on will

actually receive the transmitted packets. It is possible to write antenna ranges defined in terms

of mathematical equations. To do that, one needs to derive a subclass of the region class and

override the contains method according to the mathematical equation. For a polar equation

r = f(θ) of the range, the condition for containment of a Cartesian point (x, y) in that range

would be :

x2 + y2 < (f(arctan(y/x)))2 (2.1)

The equation form of range representation is an alternative to the polygon form of representation.

The computational aspect of range that matters to WSN simulation is the query that - whether

a given receiver position is inside or outside the range. For polygon representation, the inside-

outside test is carried out using a crossing-number algorithm, whereas the inequality in Eqn 2.1

is used for the function representation. Attenuation due to the bodies of neighbouring cows is

not currently supported and it is expected that such influences are relatively minor for radio

waves.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 34

2.11 Novel Protocols designed using WSNSIM

Most WSN protocols are data centric, in which the network transmits sensor readings to data-

sink nodes or base stations. Ideas have been borrowed here from such data centric protocols as

LEACH [72] and STEM [157] and evaluated a protocol that addresses the shortcomings of either

taken in isolation. LEACH has the shortcoming that there is nothing in the protocol to ensure

spatial spread of cluster centers. As a result, often the distributions of cluster-heads get skewed

leaving a large number of nodes un-reachable (and un-listened-to). The proposed modification

of LEACH involves inference of spatial clusters through the first few communication rounds so

that each node re-calibrates its self-election probability according the estimated size of its local

neighbourhood. The self-election probability is corrected to 1/ (size of local neighbourhood),

so that small isolated sub-herds in space do not get frequently excommunicated due to spatial

isolation. Figure 2.13 shows the results on evaluating this LEACH variant using WSNSIM. The

number of excommunicated nodes reduces dramatically without compromising on the power

consumption. In the result plotted below, the number of excommunicated nodes in LEACH

reaches upto 45 whereas in Modified LEACH the maximum number is 4 (the other factors being

constant - i.e. the mobility and the herd scenarios being the same between the two cases).

Comparison of the number of excommuni-
cated nodes in LEACH and the Modified
LEACH

Comparison of the total power factors in
LEACH and the Modified LEACH

Figure 2.13: LEACH vs. Modified LEACH

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 35

2.12 Protocol Design

Papers on protocols like [71], [110], [136], [178], etc. were studied in order to gain some insight

on the key ideas behind WSN protocol design. In LEACH [72] during the start of each round,

cluster heads were selected in a centralized or distributed way which were rotated to ensure

the energy dissipation across the sensors is balanced. Cluster head selection algorithm could be

improved to reduce energy consumptions which can increase the lifetime of the sensor network.

2.12.1 Modified LEACH

Modified LEACH is a change to the LEACH protocol that takes advantage of the knowledge

of spatial clustering of the nodes to modify the threshold function used for Cluster Hear (CH)

self-election. The key is to modify the threshold function such that the following is satisfied:

Threshold(n) = max

(
1

sc(n)
, ThresholdLEACH(n)

)

Where, ThresholdLEACH(n) is the self election threshold for the node as exactly as calculated

in the LEACH protocol. Here sc(n) is the number of nodes in the spatial cluster containing the

node n. The knowledge of sc(n) is not initially available but it becomes available as the network

topology and the information on spatial neighbourhood emerges with the rounds of execution

of the protocol. This change was inspired by the k-means routing protocol [196] and takes into

account spatial distribution of nodes. Two measures of performance were used to assess WSNs:

(a) power expenditure, (b) the average number of excommunicated nodes. When a non-cluster-

head node lies outside the range of all cluster-head’s advertisement transmissions, it will not be

able to communicate its readings during that round - a non-desirable occurrence. Such nodes are

termed as excommunicated nodes for that round. The measure of power is implemented based

on [71]. This measure is an approximate metric representation of power efficiency obtained due

to indirect routing of messages, compared with direct transmission by every node to the base

station and is defined as the ratio between two transmission powers as follows:

PowerFactor =
Transmit power consumption with indirect routing

Transmit power consumption with direct power to BS

This is a dimensionless quantity and both the numerator and the denominator may be approx-

imated by adding the squares of the relevant transmission distances (based on a simple open

space radio model). Different farms with varied sizes of herds and from different locations were

chosen for experimenting and simulation. Results shown here are for a representative herd in

Argentina with 166 cows, chosen to represent a fairly large farm.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 36

2.13 Simulation of LEACH vs Modified LEACH

This section reports the results of a comparison made between LEACH and the proposed modi-

fied LEACH. The study was conducted with herd configurations observed in real satellite images

of herds. They key protocol parameter for LEACH-like algorithms is the number of cluster-

heads, for which the symbol k is used. Two different values of k were used viz. k = 4 and k = 6.

The position of the base station (BS) was also varied across simulation scenarios. The results

from these scenario combinations is summarized in table 2.1. The results show the expected

trend that the clustering protocols offer greater relative advantage when the herd is further away

from the base station. This is the expected result because when the base station is far away,

the distance from the base station becomes the dominant distance (i.e. much greater than the

distances within the herd). So the relative efficiency derived from clustering protocol is greater.

The power factor represents exactly this measure of performance (i.e. relative efficiency of the

multi-hop protocol over a direct all-nodes-to-base-station protocol).

Figure 2.13 shows the relative power factors of modified LEACH versus LEACH varying over

communication rounds assuming a far-away location of the base station to the east of the

herd. The modified LEACH protocol is modified in that the cluster-heads are selected from

pre-computed spatial clusters (i.e. the clusters being computed using a k−means clustering al-

gorithm), and not randomly self-elected from all nodes. The simulation result shows that spatial

clustering does help in reducing the power expenditure for periodic data gathering. The pro-

posed modified LEACH outperformed classical LEACH in terms of power efficiency.

Tables 2.1 and 2.2 show the variation in number of excommunicated nodes per communication

round for both protocols. The improved spatial spreading of cluster-heads in the modified pro-

tocol ensures that there are fewer nodes that fail to reach the base station. The plot in figure

2.14 shows a comparison between the number of cluster-heads between LEACH and the modified

version. It demonstrates that the reduction in excommunicated nodes is achieved without any

significant change in the number of cluster-heads.

Base Station Coordinate LEACH Modified LEACH (K=6)
Average power reduction At north-west corner 7.6197 6.94177

Outside, far away (west) 7.1974 6.71775
Inside, at the herd centre 20.249 18.8245

Excommunicated nodes 3.103 0.689

Table 2.1: Results of simulation for the large herd (N= 166)

Base Station Coordinate LEACH Modified LEACH (K=4)
Average power reduction Outside, far away (north) 14.707 14.502

At north-west corner 13.102 13.104
Inside, at the herd centre 30.425 29.963

Excommunicated nodes 2.724 2.05

Table 2.2: Results of simulation for the small herd (N= 58)

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 37

WSNSIM GUI showing cows identified from
satellite image, protocol clusters are shown us-
ing arrows towards CHs.

Comparison of CHs in LEACH and Modified
LEACH.

Figure 2.14: Number of Clusterheads in LEACH and Modified LEACH. Satellite image
c© 2011 Google, DigitalGlobe

2.14 A Novel Protocol Design - LEMSYP

In LEACH, the nodes wake-up from low-power state to high-power state based on clocked timers.

The assumption here is that although there is clock drift, the differences between clock rates is

not so high that the nodes would miss an entire round. This assumption is reasonable because

the nodes get an opportunity to synchronize their clocks in each round of communication with

the base station.

By the nature of the application (i.e. that of animal monitoring), it is adequate to get a snapshot

of the herd condition every several minutes. So a low-energy STEM-like protocol was developed

(and named LEMSYP) that uses an idle duty-cycle to monitor the channel for a wakeup signal.

The wakeup signal is a train of small packets broadcast with high power from a non-power-

constrained central transmitter. In this protocol the nodes will normally stay in a low duty-cycle

(LDC) periodic-listening idle phase, from which nodes may be awakened by a train of beacons

from the base station. The train is long enough to accommodate at least one listening phase of

a duty cycle, and each node’s subsequent wake-up time would be synchronized according to the

serial number of the received wakeup packet. Thus LEMSYP manages to synchronize just fine

despite having a much longer time between data collection rounds, thereby reducing the power

consumption dramatically. Figure 2.15 shows the state diagram of the LEMSYP protocol.

For mobile assets monitoring, it is necessary to assume that there is no prior information about

the topology of the network other than general statistical property of their spatial distribution.

So the topology has to be inferred on the fly. Simultaneity and synchronicity of the node

clocks can not be assumed because clocks on inexpensive microcontrollers are not accurately

synchronized and so are skewed with respect to one another. So, one of the foremost functions

of the protocol is to synchronize node clocks (otherwise subsequent timed operations will fail

due to accumulated asynchrony). It is assumed in the protocol description that the base station

(BS) is not battery constrained and may make long range transmissions to cover the entire area

containing the WSN nodes. The unconstrained transmission from the base station (BS) covers

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 38

Figure 2.15: State diagram of the CSMA LEMSYP protocol

only one direction of communication. The sensor data originates at the constrained nodes. So

the direction of communication for the sensor data needs to use an energy efficient routing.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 39

2.15 CSMA based version of LEMSYP (Low Energy Multi-

hop Synchronized Protocol)

In this protocol the nodes will normally have a small duty-cycle periodic listening phase, from

which nodes may be awakened by a train of beacons from the base station. After such a synchro-

nised wakeup, there would be a brief multi-hop transmission phase by nodes to pass the data to

the base station. This protocol is quite low on energy expenditure. The protocol has five phases:

1. Idle duty cycle

2. Synchronized wakeup

3. Topology discovery

4. Sensor data delivery

5. Acknowledgement

The Idle-duty cycle phase:

The default state of the WSN nodes is a very low energy execution state that includes a very

small duty cycle of periodically turning on the receiver circuit. In this duty cycle the time over

which the receiver is on is much smaller than the off times. This periodic reception is meant for

picking up possible wakeup packets sent by the BS. It is the BS’s responsibility to wake up the

network occasionally using a dense sequence of wakeup packets. The length of the sequence of

the wakeup packets has to be sufficient to ensure that all of the nodes have received a wakeup

packet during their short periodic reception span.

The synchronized wakeup phase:

The second phase starts for a node when it happens to receive a wakeup packet from the base

station. The wakeup packets contain one very important piece of information - a time span till

the scheduled wakeup. If the synchronised wakeup time is scheduled to be ts and the time at

which the nth wakeup packet is sent is tn, then the wakeup packet specifies tn = ts − tn as the

time till synchronised wakeup. The recipient node is then expected to make transition to a new

state where it sleeps and schedules a one off timer to wake up after time tn. So, by design every

node wakes up almost simultaneously since the clock skew over the short span tn is not very

significant. Although the clocks of the nodes may have skewed substantially during the time

before the wakeup, the drift is corrected every time a synchronised wakeup is coordinated by the

base station.

The topology discovery phase:

The third phase of the protocol is that of topology discovery. Recall that in the second phase,

the nodes have received a wakeup packet from the BS. So, the nodes have an estimate of their

respective distances from the BS based on received signal strength index (RSSI) calculation. In

the third phase, the nodes try to inform the other nodes within their range about their mutual

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 40

distance and their distance from the BS. So the nodes transmit short packets with a fixed transmit

power and using CSMA at randomised times. If there are no collisions, then one transmit per

node is enough to inform all neighbours but in the presence of collisions more transmit might

be necessary. Discrete event simulation can inform about the number of transmissions necessary

to make it extremely improbable that a node is not discovered by its neighbours. The topology

discovery packets also contain residual battery energy of the transmitting nodes. At the end of

this phase, each node gets to know its neighbourhood and can make routing decisions based on

this information for subsequent communications.

The sensor data delivery phase:

In the fourth phase, the nodes actually transmit and forward sensor readings towards BS in

multi-hop manner. The energy expended during this phase is strongly dependent on the amount

of data that gets sent to the BS and a primary source of optimization in this phase is to not

transmit what is not important to the application. This is not something that the protocol itself

can handle and it may be achieved by having much of the intelligence in the nodes’ processor.

For example, sophisticated diagnostic algorithms can be implemented to run as embedded code

in the node so that the decision to transmit is made only when a condition of interest is detected.

However the protocol can achieve much efficiency through energy optimal routing. Hence the

third phase of our protocol tries to route packets in a manner that tries to minimise energy

expenditure.

After the fourth phase starts, a node that needs to send a detected reading or condition, broad-

casts a data packet but mentions within the packet a preferred recipient. This choice of preferred

recipient is made based on a heuristic algorithm working on the local topology information gath-

ered by each node in phase three. The data delivery phase is multi-hop, so the nodes try to

forward their message through other nodes that are well placed to make the forwarding fruitful

and efficient. This is primarily done through a metric that serves as the probability of selecting

a particular node as a forwarding neighbour. For each neighbour known during the topology

discovery phase, a metric is calculated on the basis of their distances from the BS, their residual

battery charge and their proximity from the node in question. This metric is almost zero if the

neighbour is worse placed than the current node, and there are other neighbours that are better

placed than the current node. However if there are no other nodes that are better placed than

the current node, then the packet may be sent to one of the worst placed nodes as a spread-back

packet with the hope that a better route may eventually be found or the node will eventually

move closer to the base station or to other better placed nodes.

In this protocol variant, a node transmits using CSMA and at a randomised time in two circum-

stances:

1. It is the originator of the data, i.e., its processor has detected a condition that needs to be

reported.

2. It is forwarding a message originated by another node.

When a node is an originator, depending on the severity of the condition it might generate two

packets (or more) to different neighbours to make it less likely to get lost. When a node is closer

to the BS than all its neighbours, then it would normally be the responsibility of this node to

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 41

transmit directly to the BS. In case that BS is outside its normal transmission range, it will hold

on to the packet and spread it back to its neighbours with the additional information that it is a

spread back packet so that there will be multiple nodes that would try to transmit these packets

to the BS in a later cycle. The objective of the spread back process would be to ensure that

there are several nodes relatively close to the BS that would try to pass the message to the BS

in a later cycle.

The acknowledgement phase:

The final phase of the protocol is that of acknowledgement by the BS. Since the BS is not energy

constraint, there is no need for a multi-hop propagation and the acknowledgement message is

sent directly by BS using high strength transmission. Every message has a unique identifier that

gets mentioned in the acknowledgement packet after the message is received by the BS. When

the originator and spread back message bearers receive an acknowledgement for the packet, they

internally make it as sent and make so further attempts to send the same message in a later

cycle. Similarly if a message is not acknowledged, it is attempted to send in a subsequent cycle.

2.16 TDMA based variant of LEMSYP (T-LEMSYP)

Version 2: TDMA based variant of LEMSYP (T-LEMSYP) The carrier sensing capabil-

ity is very useful for sharing a communication medium between multiple transmitters in that it

allows a transmitter to know when the medium is already in use. The usual behavior/algorithm

used by transmitters is to back off when the medium is found busy and an attempt the trans-

mission latter on. This approach however is only a heuristic and neither guarantees prevention

of collision nor ensures efficient use of bandwidth. These deficiencies are illustrated by two well

known problems :

1. Hidden node problem

2. Exposed node problem

The hidden node problem is that of an unavoidable collision. This happens when a node receives

garbled message due to two transmitters within its range transmitting simultaneously but the

two transmitters are sufficiently far apart to not detect each other’s transmission. The exposed

node problem refers to the situation in which a node A intends to transmit to another node

B, but backs off because of carrier-sensing (i.e. detecting) a transmission from node C, whilst

B’s location is outside C’s range. Unlike the hidden node problem, the exposed node problem

does not garble data but wastes bandwith. These problems can be remedied by a protocol

that schedules transmissions in such a way that collisions don’t happen. A schedule is made by

dividing up the available time into slots for each potential transmitter. This approach is called

time division multiple access (TDMA). After the synchronised wakeup phase of C-LEMSYP,

the nodes are fairly well synchronised with respect to each other. This is an ideal situation for

carrying out TDMA communication for the subsequent phases. One possibility is to have the

base station transmit a schedule for the subsequent TDMA, however, that is not really necessary

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 42

because the nodes can work out a TDMA schedule based on their unique IDs. The nodes may

be initialised with serial numbers 1, 2, . . . , n. This initialisation can be a one off assignment that

need not change until a major overhaul of nodes. These serial numbers can be used by the nodes

to work out a TDMA slotting autonomously (e.g., the node with serial number j will schedule its

topology discovery packet at time j ∗ δt from the synchronised wakeup time. The node receivers

have to be kept on during the topology discovery phase because the relative distances between the

nodes are still not known. However, during the data delivery phase, the nodes know which other

nodes are within their range. So the nodes can keep their receivers on only during the TDMA

slots of the nodes within their range. Thus based on the above idea, the T-LEMSYP is specified

primarily as a TDMA based protocol during the topology discovery and the data delivery phases.

The main challenge of TDMA based protocols is to keep the nodes synchronised as WSN node

clocks will naturally drift away from each other over time due to manufacturing uncertainties

in the crystals and the dependence of clock rate on voltage and temperature. This phenomenon

is called clock skew. Therefore the T-LEMSYP uses centralised synchronization mechanism by

which the nodes synchronise themselves. Further mutual synchronisation is possible during the

data delivery phase if each node sends out its local time in the data packets.

The protocol phases of the TDMA based LEMSYP are described as follows (only the parts that

are different from C-LEMSYP are mentioned here):

The topology discovery phase:

The third phase of the protocol is that of topology discovery. The nodes have their serial

numbers 1, 2, . . . , n. So they can autonomously compute their TDMA slots according to their

serial numbers. All nodes keep their receivers on during this phase. The next question that

arises is about the duration over which this phase is carried out. The necessary time is obviously

determined by the total number of nodes and the nodes have to be informed of this number

somehow. This information may be embedded in the firmware; however a more flexible approach

would involve an initialisation packet from the base station to inform this number before the

topology discovery phase.

The sensor data delivery phase:

In the fourth phase, the nodes transmit and forward sensor readings towards BS in multi-hop

manner. Each node carries out its transmission within its TDMA slot. The TDMA slots are

allocated in periodic cycles adding each cycle a node gets two delivery slots. The slots are

allocated as follows: In the first half of the cycle, the node serial numbers are incremented by

one for each slot, (i.e., it goes like - slot for node 1 followed by slot for node 2 followed by slot

for node 3 and so on). In the second half of a periodic cycle, the serial numbers are counted

down (n, n− 1, n− 2 . . . so on). This is to ensure that a node does not need to skip a full cycle

on forwarding a packet just because its TDMA slot happened to be before the sender’s slot. By

virtue of the topology discovery phase, each node knows as to which nodes are within its range,

so the nodes can choose to tune in during the TDMA slots of only those nodes.

The acknowledgement phase:

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 43

The acknowledgement by BS is identical to that of C-LEMSYP, however since the data delivery

phase is carried out by TDMA; it is possible to significantly increase the reliability of the multi-

hop links by scheduling an acknowledgement packet from multi-hop recipients immediately after

receipt of the packet.

Figure 2.16 shows the state diagram of the TDMA based variant of the LEMSYP protocol.

Figure 2.16: State diagram of the TDMA LEMSYP protocol

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 44

2.17 Energy Depletion Comparison between CSMA based

LEMSYP and LEACH

Two different herd scenarios were modelled in WSNSIM for both LEACH and LEMSYP based

data gathering. The results of these scenarios are presented in this section. The first herd was

obtained by algorithmic cattle detection from satellite image. The second herd was obtained

from a measurement exercise where cattle positions were recorded using GPS receivers mounted

on collar bands.

Total Energy depletion in LEMSYP after 1
hour of simulation

Total Energy depletion in LEACH after 1 hour
of simulation

Figure 2.17: Total Energy Consumption in LEACH and LEMSYP after one hour of simula-
tion. Satellite image c© 2011 Google, DigitalGlobe

The results of simulation comparing the power performance of LEACH and LEMSYP are shown

in figure 2.17. This scenario was based on a herd captured from a satellite image.

Figure 2.18 shows plots of energy depletion for LEACH and LEMSYP for the first herd (i.e. the

one obtained from satellite image). These results were recorded after one hour of simulation.

Figure 2.18: Comparison of energy consumption by LEACH and LEMSYP

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 45

Modelled and tested using WSNSIM the farm where the cow-collar experiment was carried out,

using samples of initial distribution obtained from the dataset. This was using the mobility

model [153]. Energy depletion comparison between LEACH and LEMSYP for the second herd

Total Energy depletion in LEMSYP after 1
hour of simulation

Total Energy depletion in LEACH after 1 hour
of simulation

Figure 2.19: Total Energy Consumption in LEACH and LEMSYP after one hour of simula-
tion - using data from previous work [170]. Satellite image c© 2011 Google, DigitalGlobe

(i.e. the one recorded from the GPS based measurement exercise) is shown in figure 2.20. These

results were also recorded after one hour of simulation.

Figure 2.20: Comparison of energy consumption by LEACH and LEMSYP

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 46

2.18 Energy Depletion Comparison between CSMA vs TDMA

based LEMSYP

The TDMA based variant of LEMSYP primarily differs from the CSMA based variant in that it

designates certain time slots for message transmission. The time slots may be pre-programmed

(e.g. computed based on the node ID) or a schedule may be communicated by the base station.

WSNSIM provides both these options. A comparison study was carried out between the two

variants. The CSMA variant has the advantage that it doesn’t involve any prior arrangement

necessary for creating time division schedules, and that it can scale fairly unboundedly without

imposing constraint on the number of nodes. However despite carrier sensing, CSMA can run

into collisions due to the hidden node problem described earlier. On running the CSMA LEM-

SYP simulation on a typical herd scenario for several hours, an average collision rate of 1.6 per

round was noted. TDMA does not suffer from this problem because collisions are excluded by

scheduling, but then TDMA requires more careful configuration according to the network size.

TDMA has the additional avantage in terms of low power consumption because the nodes can

switch off receiver circuits except during designated TDMA slots. Figures 2.21 and 2.22 present

the power consumption comparison between CSMA and TDMA variants for two randomly se-

lected nodes. Figure 2.23 presents a similar comparison for the full network.

This shows that T-LEMSYP is superior to C-LEMSYP both in terms of collision avoidance and

power consumption.

Power consumption of a node in C-LEMSYP Power consumption of the same node in T-
LEMSYP

Figure 2.21: Comparison of power consumption of node 46

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 47

Power consumption of a node in C-LEMSYP Power consumption of the same node in T-
LEMSYP

Figure 2.22: Comparison of power consumption of node 28

Figure 2.23: Comparison of total (i.e. network-wide) power depletion between T-LEMSYP
and C-LEMSYP

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 48

2.19 Verification and Validation

The WSNSIM simulator was verified using a set of tests representing well understood and sim-

ple scenarios for which certain aspects of the results are known by analytical calculation. To

facilitate this, R [142] bindings were written for the elementary units of WSNSIM functionality.

The unit-tests are Tcl and R scripts that can be executed and report a failure if the understood

outcome is not met. Some tests make randomized and periodic transmissions from static nodes

for which the packet collision rate can be estimated without simulation. There are some tests for

which the output is a stream of random variates that are fed into R as a data-vector and its dis-

tribution fitted and compared against the expected distribution parameter. For example, there

is a test script that generates herd positions using the structural recursion algorithm described

earlier in this chapter. The generated herd positions are taken and the distances between each

generated node and its four nearest neighbors recorded. This data is then fed into R to verify

that the distribution agrees with the parameters obtained from satellite images.

Round trip verification of the synthetic herd model was done as follows:

• WSNSIM generates synthetic herd.

• Record the inter-cow distances and fit distribution on R’s fitdistr function.

• Check if the fitted distribution parameter matches with the distribution found from ob-

served herd data (as described in figure 2.24).

Figure 2.24: Synthetic herd round trip test

Round trip verification of statistical models was done as follows:

• WSNSIM generates random deviates from its C++ code.

• Feed these deviates into R’s distribution fit function and check if the fitted parameter

matches with the deviate generator’s parameters.

• To do this, the WSNSIM was built as a DLL and integrated into the R process.

• Following is an example of how calls are made into WSNSIM (shown in RED) from R:

ex <-Expondev(0.2, 1)

expdev <- NULL

x <- 1:1000;

for (i in seq(along=x)) {

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 49

expdev <- c(expdev, Expondev_dev(ex))

}

fitdistr(expdev, "exponential")

2.19.1 Verification of mobility behaviour with more data

The initial mobility model was based on a subset of a larger set of mobility data acquired

continuously from a week long measurement exercise involving more than a dozen cows. This

larger dataset is presented in appendix A. The said sub-set was the dataset selected for a previous

study [170]. This subset data-set had 1400 positions recorded on a single day. This dataset was

already pre-processed and cleaned up for the purposes of a previous publication. At that time

the full dataset seemed to be missing. It was later on that the full dataset could be retrieved.

This was a much larger set containing 1.1 million GPS tracked positions. At a first glance the

raw form of the full-dataset seemed corrupted. Often the position changed by several kilo-meters

within a second. A particular snapshot of this data is shown in figure 2.26. It turned out to

be the systemic noise of the GPS reception process. The said noise could be removed using a

Butterworth filter. Figure 2.25 shows a plot of GPS fixes recorded for one of the cows over 7

days.

The full dataset comprising all GPS fixes is presented in appendix A. The spatial distribution

from the larger dataset was found to be in agreement with the initial model.

GPS positions from Charlie’s dataset (X and y cords are in meters)

Figure 2.26: GPS fixes

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 50

Figure 2.25: Filtered GPS fixes for a single cow recorded over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 51

2.20 Conclusion

WSNSIM is a novel discrete events based simulator for WSN simulation, developed with the goal

of producing a value-added specialized interface for specifying protocol and mobility behaviours

for analysis and evaluation in the domain of farm monitoring. A key novel aspect of this simulator

is the compactness and intuitiveness of its protocol specification interface. In this tool it is

possible to specify an entire protocol in about 400 lines of modelling code that sits on the top

of the simulator framework. The tool incorporates statistical models of spatial distribution and

movements of livestock, so that the node mobility is accurately modelled separately from protocol

specification. In a general purpose simulator, the mobility and protocol specifications often

become entangled thereby making the model overly complex. Application experiments performed

with WSNSIM indicate that this tool can be easily applied in comparing the key performance

aspects of data gathering WSN protocols. New protocols were proposed and evaluated using

WSNSIM that show low power-consumption characteristics regard to farm requirements.

A variant of the LEACH [72] protocol (modified LEACH) has been proposed, implemented in

WSNSIM and evaluated with the goal of reducing unreachable nodes in real herd distributions,

without compromising on the power consumption aspect.

A new protocol, called LEMSYP, with two variants have been designed and evaluated using

WSNSIM with the goal of having a low-power reliable protocol suitable for farm monitoring.

It is a multi-hop protocol that uses short duty cycle to reduce active listening by nodes, and

uses a centralised wakeup mechanism similar to the STEM protocol [157]. The two said variants

are based on using (1) TDMA and (2) CSMA for the bulk of the data transfer phase. A

comparison study demonstrates the low-power nature of both variants, and that the TDMA

variant is a bit superior to the CSMA variant. These novel protocol variants address low-power

and reliable data gathering requirements in a farm scenario.

The said protocols have been modelled and evaluated successfully using synthetic herd data,

satellite image data, and real-time GPS data.

Besides, modelling features described above, image processing techniques have been used within

the WSNSIM tool-chain for automatic detection of cattle positions from satellite images. A

novel synthetic herd generation module based on statistical models was implemented for quick

generation of simulated herd scenarios.

Polygonal and other shape annotation tools have been added to the simulator for representing

obstacles, prohibited zones, and ranges of directional antennas.

A new probabilistic mobility model has been developed from GPS tracked herd data collected

previously towards [170]. The new mobility model is more amenable to discrete event simulation

than the model created in [170].

A work-flow has been developed by which similar mobility models can be populated from mobility

data on other dynamic assets, e.g. other animals. This work-flow involves inferring speed states,

heading directions, time between transitions, and transition probabilities from raw experimental

time series of tracked positions.

The novelty aspects of WSNSIM are enumerated as follows:

1. Development of a purpose built WSN simulator for farm applications

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 52

2. Succinct protocol modelling specification using a new feature of C++

3. A work-flow for designing mobility models from raw GPS time series

4. A tool for extracting herd positions from satellite image of cattle herds

5. A statistical model based generator of synthetic herds for quick generation of simulation

scenarios

Chapter 3

Data Acquisition for Human

Motion Analysis

3.1 Introduction

Kinect sensor is a 3D scanning device that operates at 30 frames per second and has democratised

3D scanning and many exciting applications are coming up alongside its primary market of

gaming interactivity. This work explores the use of Kinect for recording of clinical data using

analysis of the point cloud captured by it. Posture, gait, and mobility data can be produced from

3D point cloud sequence that the Kinect is able to produce. Kinect’s 3D capture capability could

be useful to a variety of applications. Primarily Kinect is a device for video games applications. It

is a device with a low resolution depth scanner with a limited range developed by the PrimeSense

Company in collaboration with Microsoft. It provides features such as full body 3D motion

capture, facial recognition, skeletal tracking, depth sensor to capture depth data, colour camera,

etc. It uses a structured lighting based sensor to capture of the depth field of objects within its

range, and this depth field is used by algorithms to infer gestures of the player. The Kinect device

comes with a software component called the Kinect SDK that provides a high level programming

interface to the Kinect’s capabilities.

The Kinect sensor returns the depth stream data as a collection of frames. The data is represented

in a XYZ frame. A key functionality of the Kinect SDK is to detect the pose of players very

quickly but the accuracy of this skeletal pose is quite rough and ready. It uses a statistical

learning algorithm to detect the pose, which produces an approximate detection of skeletal

parameters, which manifests as unrealistic oscillations in joint angles in the animation replay.

This inaccuracy is a trade-off made in favour of performance because accuracy of the gesture

capture is less important than computational performance in gaming applications, as games can

always snap a perceived gesture to a lattice of gesture intents. This lack of accuracy comes in the

way of potential applications that require measurement of pose parameters more precisely. The

main assumption of this work is that the depth frame is much more accurate than the skeletal

53

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 54

capture provided by the Microsoft SDK, and it is possible to use better estimation methods to

get a more accurate set of skeletal coordinates.

The Kinect recorder that was used in this work is based on Microsoft SDK that has an auto-

matically separating the background from the point cloud feature. The encoding of each pixel

in the depth frame in Kinect 1 is represented by a 16 bit short integer. The most significant

13 bits in that frame represents the depth in mm. That allows a range of 0 to 8k mm with

1mm depth resolution. However the actual resolution and the range is below that maximum

allowed by the representation. According to the technical specification, the allowed depth range

is between 0.8 m and 4m from the Kinect, and the resolution is greater than 10 mm. The three

Least Significant Bits (LSB) are used to represent any person detected by the SDK’s skeleton

engine. This allows for an easy way of classifying the pixels that belong to the person. Kinect is

well supported for exploring different applications through software availability. Device drivers

and programming libraries are available in all platforms. C++ (various open source libraries)

and Tcl/Tk has been used as technology primitives for the 3D interface.

There is a huge market for efficient, portable and affordable monitoring devices meant for health-

care applications, and it seems that the Kinect could serve that market with much utility. In this

work a Kinect based system and algorithms has been explored towards reducing the cost of gait

monitoring while meeting the accuracy requirements of the application. Kinect V2 was released

in July 2014. It has higher resolution of the point cloud (twice that of V1.8). Accuracy of Kinect

V1 limits its use for collecting data for the hand and fingers, whereas Kinect V2 captures the

finger data in greater detail allowing to do the upper limb monitoring presented in this work.

3.2 Known Challenges of Microsoft Kinect

Automatic detection of human limbs is a difficult pattern recognition problem, which is com-

pounded by the relatively low resolution of Kinect. As a result the systems reported in the

literature so far has only claimed to identify broad-brush features of gait, rather than fine

grained motion capture data. In this context fine-grained motion-capture refers to assessing

joint angles as a continuous function of time. Whereas the systems reported in the literature

and presented in Section 3.3 usually deal with assessment of average stride length, gait cycle

time etc. As the Kinect is a novel piece of hardware, application have not been able to fully

reach its exploitation potential. This is not a problem with the device but with the inadequacy

of the algorithms applied on the captured frames. For example, classifying a scattered set of

points accurately into individual limbs or sub-limbs is hard to achieve, especially in a robust way

that it works for all configurations. The Kinect sensor requires to be fixed to a specific location

in home environment and its range of capture is approximately ten meters for Kinect V1. This

limitation states that events like fall must occur directly in front of the physical location of

Kinect. Occlusion (by household objects, non-target individuals, pets etc.) is also a problem

for home-based continuous monitoring. Kinect cannot capture the fine movements of the foot

and thus currently the clinical gait diagnostic potential is limited to gross movements. Xu et al.

[198] stated that the accuracy levels of Kinect SDK skeletal data for both V1 and V2 are joint

dependent and posture dependent, varies over a very large range. Their results show that the

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 55

upper body joints were more accurate than the lower body joints. By their measurements the

lower joints (below hip) were off by more than 10cm. Clark et al. [29] found that the Kinect

system has the inability to assess internal/external joint rotations in the peripheral limbs which

cannot be performed accurately as Kinect is unable to accurately determine a non-joint center.

This is a constraint in joint data measurements which limits the angular data for the peripheral

joints to abduction/adduction and flexion/extension.

3.3 Literature Review

The Microsoft Kinect incorporates infra-red light and a video camera to create a 3D map of the

area in front of it [118] and uses a randomized decision forest algorithm to automatically deter-

mine anatomical landmarks on the body, such as joint centers, in close to real time [162]. The

results of previous studies are promising, and have shown that the depth sensor itself is accurate

for assessing 3D position in a workplace environment [49] and that joint centers derived from the

Microsoft Kinect can be used to classify dance gestures [145]. While inexpensive devices such

as the Nintendo Wii Balance Board, a clinically feasible alternative to a force platform [28], can

provide postural control information related to function [141], it cannot accurately differentiate

joint movements. This is most commonly achieved using systems that require multiple cameras

and tracking markers placed on the skin, making them cumbersome to house and transport, ex-

pensive and requiring extensive technical expertise to operate and interpret. However, the recent

development of Microsoft Kinect in computer gaming technology is inexpensive, portable and

does not require markers to determine anatomical landmarks. Consequently it may overcome

the limitations associated with laboratory-based movement analysis systems. Another study

demonstrated the Kinect sensor validity for postural assessment and control [30]. Their exper-

imental results validated Kinect to accurately assess postural control tests which are a lateral

reach, a forward reach and a one leg standing balance test. The subject tries to stand in some

landmark poses (e.g. one leg up) and the Kinect detects whether and how long that pose is

sustained. They provided detailed quantitative joint-by-joint results and found that Kinect was

successful to assess the kinematics strategies of postural control. Dutta [49] presents an evalua-

tion of Kinect for clinical applications. This is a somewhat pessimistic result. The analysis finds

that the accuracy is much lower than that of biomedical grade systems (e.g. VICON). Stone et

al. [171] uses a machine learning method called randomized decision tree, trained using about

900k depth images. It does not need markers to identify body-parts and infers the labelling

from pure depth data and prior knowledge of configurations. In their work, Kinect is used to

estimate overall Gait characteristics (e.g. stride length, stride time) but not instantaneous time

series of joint angles. The work [161] uses a Bayesian machine learning approach to estimate

limb orientations from Kinect’s depth image in real time. Orientations are approximate and is

highly inaccurate for walking frames. Cole et al. [33] presents a joint coordinate system for the

representation of 3D positions and orientation of human limbs. Biomechanical Validation is done

by a detailed comparison of the Kinect with a VICON system of upper-body and lower-body

joint movements of Kinect motion capture data for rehabilitation treatments [55]. Bonnechere

et al. [16] concluded that the evidence so far suggests that Kinect is appropriate for functional

ability assessment of motion in healthy people.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 56

Kinect has been applied to many areas of physical evaluation such as gait assessment [173], [62],

[58], [169], balance tests for stroke patients [31], Timed Up and Go [189], [96], tests for fall

prevention in clinical and at home [50], [147], exercise game for elderly people [93], [151], [150],

etc. but the validity for general movements or postures using Kinect has yet to be established

[198], [127]. Stone and Skubic [173] applied Kinect in continuous in-home gait analysis. In this

paper the use of the inexpensive Microsoft Kinect for obtaining measurements of temporal and

spatial gait parameters has been compared to an existing web-camera based system, along with

a VICON motion capture system for ground truth. It presents an investigation of the Kinect

as a technique for acquiring spatial and temporal gait parameters from the depth data of the

Kinect. Two different Kinects placed in two different locations have been used for a single person

simultaneously. In a coaching context of elderly people, the joint centre positions obtained from

Kinect were found to have a variability of 10 cm [127], but the joint angles were not evaluated.

Llorens et al. [194] developed a game for estimating chronic stroke patients foot locations and

found that virtual training had a significant time effect in the recovery of balance condition in

stroke patients. Sadihov et al. [150] developed three rehabilitation mini-games application of

motor tasks and game play which are 1) a rope pulling game, 2) a table wiping game and 3) a

meteor deflection game using Kinect. The implemented games were presented to stroke patients

and the therapists received positive feedback. Mastrokaris et al. [115] used Kinect to detect

backward, forward and sideways falls accurately. Zhang et al. [206] used Kinect to detect fall

from chair and fall from standing with 94% accuracy. Dutta et al. [49] found that the Kinect

V1 depth sensor had an accuracy level with an average error of 14.1 mm to 34.8 mm in different

directions and locations. Xu et al. [197] demonstrated that the error in the skeletal tracking

of Kinect V1 and V2 sensor struggles in sitting postures and is very large as the joint tracking

algorithm was designed for subjects in standing positions in front of the sensor and was not de-

signed for awkward postures. They also found that although Kinect V2 has improved resolution

and better depth sensor than Kinect V1, the accuracy of joint centre location identification is

not substantially improved.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 57

3.4 Microsoft Kinect

Microsoft Kinect (Figure 3.1) is a sensor device introduced to the mass market primarily for

gaming interactivity. It uses a structured lighting based sensor to capture of the depth field of

objects within its range, and this depth field is used by algorithms to infer gestures of the player

or the subject. It emits a structured pattern of infra-red laser and has a camera to capture

reflections of the laser beams from the objects in front. The captured image of the reflected

infra-red pattern is then processed by a processor inside the Kinect to work out a depth map

of the scene. The distance and the spatial orientation of the surfaces in the surrounding scene

decides how the laser dots are reflected, which in turn gets captured by the infra-red camera.

Subsequent processing produces a set of 3D points representing the scene. The 3D depth field can

then be processed in a computer to identify or register objects of interest. The pose computed

by the Kinect SDK in the view field is quite crude but effective and does not provide accurate

results [169]. It can be used to measure general trends of human motion and movements in

rehabilitation [127].

Figure 3.1: Kinect V1 for Xbox 360

The first version is Kinect for Xbox, Figure 3.1, consists of one colour camera, one infrared

camera that captures the depth data and one laser light source. Depth data have an 11 bit

resolution with values ranging from 0 to 2047 and the produced data streams have a resolution

of 640x480 at 30 Hz. It was built to track players that are up to 12 feet (4.0 meters) away from

the sensor. But it fails to track objects that are very close (80 cm), and there might be a need

to track objects at a very close range for different applications. Kinect for windows has a new

firmware which enables near mode tracking. Near Mode allows the Kinect to be more sensitive to

closer objects ranging from 40cm to 200cm and the default mode range is from 80cm to 400cm.

Kinect for Windows, Figure 3.2 is a developing device and is not for gaming applications. It is a

specially designed PC-centric sensor that helps developers to write their own code and develop

real-life applications with human gestures and body motions. The main components of a Kinect

device are its color sensor, IR depth sensors, IR emitter, microphone arrays, and a stepper motor

that can be tilted to change the Kinect camera angles.

The latest version is Kinect for windows V2, Figure 3.3. It is based on Time-of-flight technology

and supports skeletal tracking up to six complete skeletons compared to two with the Kinect

for Xbox and Kinect 1.8 and tracking 25 joint positions per individual compared to 20 joints

detected by earlier versions. Also infrared data stream can be accessed using Kinect 2. The raw

color data stream is at 1920x1020 resolution. All versions of Kinect support capturing data at

the rate of 30 frames per second.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 58

Figure 3.2: Kinect for Windows V1.8

Figure 3.3: Kinect for windows V2

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 59

3.5 Kinect for Xbox 360 and Kinect for Windows V1.8

Joint Positions

Kinect V1 tracks upto 20 joints per person as shown in Figure 3.4, Table 3.1 and tracks upto

2 bodies together in the same frame. Kinect provides two methods for representing the skeletal

joints. In the first method, (x,y,z) co-ordinates of all the joints are returned. In the second

method, the bone orientations are returned. The bone orientations are given as quaternions

defined by the angular displacement that would bring the bones from a standardized orientation

to its current orientation. The standard bone orientation is that aligned with the vertical axis.

The first method is used for investigating the skeleton data as for Kinect V1 API did not provide

any bone angle data.

Joint Name Value Description
HIP CENTER 1 Hip centre
SPINE 2 Spine
SHOULDER CENTER 3 Shoulder centre
HEAD 4 Head
SHOULDER LEFT 5 Left shoulder
ELBOW LEFT 6 Left elbow
WRIST LEFT 7 Left wrist
HAND LEFT 8 Hand left
SHOULDER RIGHT 9 Right shoulder
ELBOW RIGHT 10 Right elbow
WRIST RIGHT 11 Right wrist
HAND RIGHT 12 Right hand
HIP LEFT 13 Left hip
KNEE LEFT 14 Left knee
ANKLE LEFT 15 Left ankle
FOOT LEFT 16 Left foot
HIP RIGHT 17 Right hip
KNEE RIGHT 18 Right knee
ANKLE RIGHT 19 Right ankle
FOOT RIGHT 20 Right foot

Table 3.1: Kinect for Xbox and V1.8 Joint Labels

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 60

Figure 3.4: Kinect for Xbox and V1.8 Joint Positions

3.6 Kinect V2 Joint Positions

Kinect V2 tracks upto 25 joints per individual, shown in Figure 3.5 and Table 3.2 with hand

state tracking for two persons. It can track upto 6 bodies simultaneously.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 61

Joint Name Value Description
AnkleLeft 14 Left ankle
AnkleRight 18 Right ankle
ElbowLeft 5 Left elbow
ElbowRight 9 Right elbow
FootLeft 15 Left foot
FootRight 19 Right foot
HandLeft 7 Left hand
HandRight 11 Right hand
HandTipLeft 21 Tip of the left hand
HandTipRight 23 Tip of the right hand
Head 3 Head
HipLeft 12 Left hip
HipRight 16 Right hip
KneeLeft 13 Left knee
KneeRight 17 Right knee
Neck 2 Neck
ShoulderLeft 4 Left shoulder
ShoulderRight 8 Right shoulder
SpineBase 0 Base of the spine
SpineMid 1 Middle of the spine
SpineShoulder 20 Spine at the shoulder
ThumbLeft 22 Left thumb
ThumbRight 24 Right thumb
WristLeft 6 Left wrist
WristRight 10 Right wrist

Table 3.2: Kinect V2 Joint Labels

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 62

Figure 3.5: Kinect V2 Joint Positions

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 63

3.7 Depth Data Processing in Microsoft Kinect

The Kinect sensor beams a structured illumination pattern using infra-red laser, and captures

the corresponding reflections from the scene as a monochrome image of the patterns. A CMOS

(Complementary Metal-Oxide Semiconductor) sensor array samples the image, which then is

processed by a system-on-chip microprocessor to create a map of distances of reflecting surfaces

from the Kinect. This distance map is processed further in software according to the needs of

the application.

Figure 3.6 shows the physical components of the Kinect V1.

Figure 3.6: The mechanism used by Kinect V1 ([1])

The sequence of the operations is as follows. Whenever a capture event is triggered, the Prime-

sense System-on-Chip (SoC) processor sends a signal to the infra-red emitter to turn on the

infra-red light, and sends another signal to the monochrome camera to initiate capture of the

reflected image. The IR emitter meanwhile starts sending an infrared light invisible to human

eyes to the objects in front of the device, and the infra-red camera takes a snapshot of it in a

frame-buffer. The Primesense SoC processes this frame-buffer and translates the image into a

depth-map.

The Kinect 360 sensor was built to track people that are up to 12 feet (4.0 meters) away from

the sensor and it fails to track objects that are very close (closer than 80 cm). The Kinect

for Windows sensor has newer firmware which enables Near Mode tracking. Using near mode,

Kinect for Windows supports tracking of objects as close as 40 cm in front of the device. In

terms of full range and resolution, both the sensors behave the same way. The next generation

Kinect 2, has shifted from a structured light approach to a time-of-flight camera. This shift has

enabled a quicker response time and a single-camera implementation. The new Kinect systems

can obtain the same resolution at distance approaching 6 meters and accommodate more people

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 64

in the frame, and supports recognition of several more anatomical features. The Kinect 2 sys-

tem has a field of view of 70 degrees horizontally and 60 degrees vertically, a 920x1080 camera

changing from 24-bit RGB color to 16-bit YUV and the depth camera can capture data in the

range between 0.50 and 4.50 m. The video, depth frame and recognized skeletal data, streams at

30 fps. The depth resolution has improved dramatically for Kinect 2 from a 320x240 to 512x424.

In addition to the RGB stream and the depth frame, the new Kinect can also stream the IR

frames. The IR frame can be used as a night vision device, which can take images in darkness or

low light. The internal details of Kinect V2 is shown in Figure 3.7. Since this version supports

USB 3.0, the data transfer speed is much improved. The 3D resolution of the depth frame de-

pends upon the position of an object with respect to the sensor. The best compromise between

resolution and captured region size depends on the application. For the gait capture application,

the best distance seems to be about 2.5 m from the sensor, discussed in Section 3.10.

Figure 3.7: Microsoft Kinect V2 Internals [113]

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 65

Figure 3.8: Operating Principle of a ToF System

Time-of-Flight depth sensor in Kinect 2 uses laser-inducing light to illuminate the scene and

uses the actual reflected light to compute the depth and uses multiple modulation frequencies

(10-130 MHz). Bamji et al. [9] found that the depth measurement of Kinect 2 is in the range

0.8-4.2 m with the accuracy of the measured range at 0.5%. The operating principle of a ToF

system is described in the Figure 3.8. ToF sensors can measure depth by estimating the time

delay from the light emission to the light detection. Each light pulse is varied in frequency,

and this variation makes each pulse identifiable on detection. So, on detecting a pulse that was

emitted recently and reflected back from a surface, it can determine as to which pulse it was and

thereby the time spent by the pulse in flight. Considering the travel time of the light pulse, i.e.,

the time of flight, the distance between a single spot or pixel in the scene and the depth sensor

can be calculated. Breuer et al. [22] presents the mechanism and mathematical theory behind

time-of-flight imaging. The basic idea is that the illumination is done using a pulsed beams of

light and each pixel sensor produces a correlation signal (which in turn is a convolution-type

integral computed over a time window) made from the reflected incident pulse and the known

source pulse. The distance from the reflection point determines the correlation value, and thereby

gives a measure of the distance. Increasing the pulse frequency improves accuracy but limits

the range over which the correlation unambiguously represents distance. Time-of-flight imaging

systems of this type need to strike a trade-off between accuracy and range. Kinect V2 being a

packaged product, presents a particular choice of the trade-off point. An interesting investigation

tool might be one that did not fix a trade-off option and give programmatic control over these

parameters.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 66

3.8 Some more mass-market depth sensors

Creative Senz3D

Creative Senz3D Figure 3.9 is a Depth and Gesture Recognition Camera for Personal Computers.

It costs $140. This device captures point cloud information. This device is an earlier version of

Intel RealSense Figure 3.11 and is not as good as Kinect. The Senz3D is rated for 0.5ft to 3.25ft

which is a much shorter range than the Kinect.

Figure 3.9: Creative Senz3D

Intel RealSense Camera F200 The RealSense camera F200 shown in Figure 3.10 is a stand-

alone camera that can be attached to a desktop or laptop. It is designed for the range of 0.2m

to 1.2m while the Kinect V2 is optimized to the range between 0.5m and 4.5m. Kinect V2 could

capture the full body actions with all joints while the RealSense is for a desktop usage to capture

faces and gestures.

Figure 3.10: Intel RealSense Camera F200

Intel RealSense SR300

Intel RealSense SR300 shown in Figure 3.11 is the latest version of Intel RealSense F200 which

is used as gesture recognition camera. Intel RealSense technology provides a platform for imple-

menting gesture-based human interaction technique with computer. The current price is £190

for one unit. RealSense camera can be used to capture finger gestures and faces in desktop usage

but Kinect can capture the full body actions with all body joints. The effective distance range of

RealSense is optimized to 0.2m to 1.2m whereas the range of Kinect V2 is 0.5m to 4.5m. Alyuz et

al. [5] used RealSense camera F200, Figure 3.10, for feature extraction like appearance features

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 67

Figure 3.11: Intel RealSense SR300 Camera

to locate head position and facial expressions. Vasquez et al. [188] have used Intel RealSense

SDK for voice and face recognition in their multi-modal recognition application. The device they

used was an earlier version of RealSense, Creative Sense 3D Figure 3.9 and Microsoft Kinect.

Apple Primesense Carmine 1.09

Apple Primesense Carmine 1.09 shown in Figure 3.12 is a short-range RGB 3D webcam sensor for

point cloud acquisition and its main functions are facial scanning, eye and movement tracking,

gesture control, 3D scanning and 3D modeling, 3D mapping, 3D rendering, industrial automation

and user extraction. It costs $325. Galbally et al. [60] have used PrimeSense Carmine 1.09

sensor and Microsoft Kinect for 3D face spoofing and interoperability experiments of 3D and

2.5D systems.

Figure 3.12: Apple primesense Carmine1.09

Structure sensor

The Structure Sensor is the first 3D sensor for mobile devices that is compatible with the 4th

generation iPad and the iPad mini with Retina Display. It is a cable-free range imaging device

that provides depth data for 3D imaging which has great potential for 3D mapping and gaming

and costs £379. Kilgus et al. [95] used structure sensor for visualizing complex 3D anatomy and

proposed that it can be used for medical and forensic studies.

Leap motion controller

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 68

Figure 3.13: Structure Sensor

Figure 3.14: Leap Motion

Leap Motion is a device for hand gesture control. It returns only some hand pose features and

a set of relevant hand points but does not return a complete depth map. Leap motion sensor

is not always able to recognize all the fingers [193]. Vikram et al. [190] uses Leap motion for

handwriting and gesture recognition applications. It costs £50.

Feature ↓ Device → Kinect for Kinect for Microsoft Leap Motion Intel RealSense Structure
Xbox 1.0 Windows 1.8 Kinect V2 Controller SR300 Sensor

Technology Structured Light Structured Light Time-of-Flight Stereo Cameras Time-of-Flight Structured light
RGB camera 640x480 @ 30fps 640x480 @ 30fps 1920x1080 @ 30fps undisclosed 1280x720 @ 60fps 640x480 @ 30/60fps
Depth Sensors 320x240 @ 30fps 640x480 @ 30fps 512x424 @ 30fps undisclosed 640x480 @ 60fps 640x480 @ 30/60fps
Microphone Voice-array Quad-array Quad-array - Dual-array -
Horizontal Field
of View (FOV) 57 degrees 57 degrees 70 degrees 150 degrees 70 degrees 58 degrees
Vertical FOV 43 degrees 43 degrees 60 degrees 120 degrees 43 degrees 45 degrees
Range 1.2 m to 3.5 m 0.4 m to 4.5 m 0.5 m to 4.5 m 0.03 m to 0.6 m 0.2 m to 1.2 m 0.4 m to 3.5 m
USB 1.0 2.0 3.0 3.0 3.0 2.0
Skeletons Tracked 2 2 6 - - -
Body Joints 20 20 25 - - -
Portability No No No Yes Yes Yes
Gestures Tracking Yes Yes Yes Yes Yes Yes
SDK Yes Yes Yes Yes Yes Yes
Price £30 £199 £199 £50 £190 £379

Table 3.3: Feature summary of mass-market depth sensors

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 69

3.9 VICON MX System

The VICON motion capture system (VICON MX, Oxford Metrics Ltd, Oxford, UK) is a state-

of-the-art infra-red marker-tracking system that offers millimeter resolution of 3D spatial dis-

placements. It is the golden standard and the benchmark for the proposed system to compare

against. The VICON system consists of twelve cameras outfitted with an array of IR LEDs, IR

optical filters and a set of reflective dots. The VICON raw data is quite noisy and has gaps.

These are addressed by gap filling and a combination of various filters which are chosen using

a graphic user interface for VICON, which applies tools like 6-th order Butterworth filter and

Woltring filter, in order to produce the smoothed data.

3.9.1 VICON Nexux software

In the VICON software, a three-dimensional model is constructed which is the representation of

the original markers placed on the subject. Figure 3.15 is a screenshot of a gait model and 3.16

is a screenshot of an upper limb model using VICON Nexus 2.1.1 software in the Bioengineering

VICON laboratory. The VICON knee angle data and the VICON elbow angle data are simulated

and computed for the gait and upper limb experiments for the comparison with Kinect results.

Figure 3.15: Gait Model constructed using VICON Nexus 2.1.1 software

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 70

Figure 3.16: Upper limb model constructed using VICON Nexus 2.1.1 software

3.9.2 Drawbacks of VICON Nexux Software

The VICON Plug-in-Gait model in VICON/Nexus software was developed two decades ago and

has several drawbacks such as overlapping trajectories and ghost markers [2]. It is extremely

sensitive to errors in location and orientation of the knee-joint axis, and considerable care and

practice was needed. It does not allow consistant musculoskeletal analysis, it uses limited number

of markers, the regression equation used to estimate the hip joint centre is not the best. Also it

does not allow to customize models.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 71

3.10 Precision of Microsoft Kinect - Depth measurement

accuracy:

The following calibration procedure was carried out to estimate the error of Kinect V1. In

this experiment a sufficiently inflated gym ball was used. The Kinect V1 sensor was located

statically and was used as the reference plane. The gym-ball was placed at various distances

from the Kinect i.e., it was progressively moved towards Kinect V1 from 4.0 m to 0.8 m with

average regular steps of approximately 40 cm during data collection and its depth frames were

recorded as shown in Figure 3.17. Pagliari et al. [130] used a plane wall as the reference point

and progressively moved the sensor Kinect V1 at various distances from 0.8 m to 4.0 m for error

estimation of Kinect V1. Khoshelham [94] also used a planar wall as a reference object and used

plane fitting residues as a measure of accuracy. Both of these studies found that the Kinect

V1 error is about 0.01 m for 3.0 m distance. This matches almost exactly with our estimates.

They (i.e. [94], [130]) have used precise measurement of distance to specify the reference values,

whereas the current work used a spherical object as reference so that precise measurement is

not necessary. The deviation from spherical shape is taken as the difference from reference (i.e.

the error). In this experiment an inflatable exercise ball (often called a gym-ball) was used as

the said spherical reference. When fully inflated, the gym-ball assumes a fairly perfect spherical

shape. The gym-ball was placed at various distances from the Kinect and its depth frames were

recorded. The point cloud corresponding to the gym-ball was isolated from the rest of the scene

for a number of depth-frames and a least-squares sphere was fitted to the point-cloud. The mean

deviation of the points from the least-squares fitted sphere was taken as the error measure.

Figure 3.18 shows the points in a particular frame’s point-cloud (shown in red) displayed along

with the best-fit sphere (shown in green).

In Figure 3.18, some points can be seen to be outside the green sphere whereas there are some

inside. The overall deviation from the best-fit sphere is plotted against the distance to show

the trend of position errors. The point cloud corresponding to the gym-ball was isolated from

the rest of the scene for a number of depth-frames and a least-squares sphere was fitted to the

point-cloud. The mean deviation of the points from the least-squares fitted sphere was taken as

the error measure. Figure 3.19 shows a plot of the least squares error function. The following

error formula represents the mean of the actual Euclidean distance of the sample points from

the surface of the least squares fitted sphere:

err =
1

N

N∑
i=1

|
√
(xi − xc)2 + (yi − yc)2 + (zi − zc)2 −R|

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 72

Gym Ball very far away from Kinect Gym Ball at approx. 3.5 m from Kinect

Gym Ball at approx. 3 m from Kinect Gym Ball at approx. 2.5 m from Kinect

Figure 3.17: Frames captured for the gym-ball

Let the point cloud be represented by the set (xi, yi, zi) : i = 1, . . . , N . For ease of analysis, the

transformed coordinates (ui, vi, wi) : i = 1, . . . , N are defined as follows so that their sum van-

ishes.

Let ui = xi − x̄ , vi = yi − ȳ , wi = zi − z̄

where

x̄ =
1

N

N∑
i=1

xi , ȳ =
1

N

N∑
i=1

yi , z̄ =
1

N

N∑
i=1

zi

This change of variables only makes a translation transform w.r.t. the original variables. So

when a Least Squares sphere is computed in (u, v, w) coordinates, the coordinates in (x, y, z)

spaces can be computed by shifting back by (x̄, ȳ, z̄). The error function can be formulated as

follows,

S =

N∑
i=1

(g(ui, vi, wi))
2

where,

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 73

Figure 3.18: Point cloud for the gym-ball and its best-fit sphere

Figure 3.19: Position error as a function of distance from the Kinect sensor

g(u, v, w) = (u− uc)
2 + (v − vc)

2 + (w − wc)
2 −R2

R is the radius of the sphere and (uc, vc, wc) is the centre of the sphere in u− v − w space.

Let α denote R2, so ∂g
∂α = −1, which is used as follows.

∂S

∂α
= 2

N∑
i=1

g(ui, vi, wi)
∂g(ui, vi, wi)

∂α

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 74

= −2
N∑
i=1

g(ui, vi, wi)

for S to be minimum,
∂S

∂α
= 0

Thus,
N∑
i=1

g(ui, vi, wi) = 0 (3.1)

∂S

∂uc
= 2

N∑
i=1

g(ui, vi, wi)
∂g(ui, vi, wi)

∂uc

= 2

N∑
i=1

(−2(ui − uc)g(ui, vi, wi))

= −4
N∑
i=1

uig(ui, vi, wi) + 4uc

N∑
i=1

g(ui, vi, wi)

By 3.1,

∂S

∂uc
= −4

N∑
i=1

uig(ui, vi, wi)

For minimum, ∂S
∂uc

= 0 gives,
N∑
i=1

uig(ui, vi, wi) = 0

Similarly,

∂S
∂vc

= 0 gives,
N∑
i=1

vig(ui, vi, wi) = 0

and ∂S
∂wc

= 0 gives,
N∑
i=1

wig(ui, vi, wi) = 0

Next, expanding the equation
N∑
i=1

uig(ui, vi, wi) = 0 leads to the following :

N∑
i=1

ui(u
2
i − 2uiuc + u2

c + v2i − 2vivc + v2c + w2
i − 2wiwc + w2

c − α) = 0

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 75

u3
i − 2uc

N∑
i=1

u2
i + u2

c

N∑
i=1

ui +

N∑
i=1

v2i ui − 2vc

N∑
i=1

uivi + v2c

N∑
i=1

ui

+

N∑
i=1

w2
i ui − 2wc

N∑
i=1

uiwi + w2
c

N∑
i=1

ui − α

N∑
i=1

ui = 0 (3.2)

Let,

N∑
i=1

ui = Su,

N∑
i=1

u2
i = Suu,

N∑
i=1

u3
i = Suuu,

N∑
i=1

v2i ui = Svvu,

N∑
i=1

uivi − Suv, etc.

Thus,

Suuu − 2ucSuu + u2
cSu + Svvu − 2vcSuv + v2cSu + Swwu − 2wcSuw + w2

cSu − αSu = 0

But Su = 0

So,

2[uc(Suu) + vc(Suv) + wc(Suw)] = Suuu + Svvw + Swwu

i.e.,

ucSuu + vcSuv + wcSuw =
1

2
(Suuu + Svvu + Swwu)

Similarly, from
N∑
i=1

vig(ui, vi, wi) = 0 and
N∑
i=1

wig(ui, vi, wi) = 0 the following equations are

obtained:

ucSuv + vcSvv + wcSvw =
1

2
(Suuv + Svvv + Swwv)

ucSwu + vcSwv + wcSww =
1

2
(Suuw + Svvw + Swww)

This gives three linear equations in uc, vc and wc which can be solved to determine the values

of uc, vc and wc.

Expanding 3.1 to find α ,
N∑
i=1

g(ui, vi, wi) = 0

N∑
i=1

(u2
i − 2uiuc + u2

c + v2i − 2vivc + v2c + w2
i − 2wiwc + w2

c − α) = 0

Suu + Svv + Sww +N(u2
c + v2c + w2

c) = Nα

α = u2
c + v2c + w2

c +
Suu + Svv + Sww

N

Once the values of α, uc, vc, wc are found, the precision estimate would be:

Error =
1

R2

√√√√ 1

N

N∑
i=1

(g(ui, vi, wi))2

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 76

Algorithm 2 presents the aforementioned sphere-fitting formulation in pseudo-code form. In this

pseudo-code notation, the arrays are shown in boldface. Arithmetic operations involving arrays

are defined to be elelemt-wise (e.g. the product v∗w is an array whose ith element is the product

of the ith element of u and the ith element of v. Similarly the arithmetic operation involving

an array and a non-array as in x − xavg is an array whose ith element is the corresponding

element of x minus the non-array (i.e. scalar) xavg. Position error leads to angular error in

the determination of limb orientation. Consider that the limb’s orientation is being defined in

terms of its two end points in 3D. The perceived end points might have error according to the

aforementioned position error trend. The worst angular deviation configuration is given in Figure

3.20.

Figure 3.20: Angular error defined in terms of the position error E

The Figure 3.20 shows that angular error is arcsin(2EL) where L is the length of the limb and E

is the position error. As the position error varies with distance from the Kinect sensor, so does

the limb angle error.

Figure 3.21: Limb’s angular error vs. distance from the Kinect. Any distance ≤ 3.5m would
satisfy the Bioengineering requirement.

The result in Figure 3.21 shows that with a properly designed algorithm it is possible to achieve

an angular accuracy of 3 degrees when the subject is about 3m away from the Kinect camera.

In bioengineering application the maximum acceptable error is 5 degrees. So the subject was

placed at about 2.5m (minimum) from the Kinect camera for the best compromise between the

accuracy and frame span.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 77

ALGORITHM SPHERE FIT
Data: A set of N 3D points onto which a sphere is fitted.The array of x,y, and z coordinates

are denoted by x, y, and z
Result: A sphere fitted on the given points

xavg ← 1
N

N∑
i=1

x;

yavg ← 1
N

N∑
i=1

y;

zavg ← 1
N

N∑
i=1

z;

u← x− xavg; v← y − yavg; w← z− zavg;

Suu ←
N∑
i=1

u ∗ u;

Svu ←
N∑
i=1

u ∗ v;

Suw ←
N∑
i=1

u ∗w;

Sww ←
N∑
i=1

w ∗w;

Svv ←
N∑
i=1

v ∗ v;

Svw ←
N∑
i=1

v ∗w;

Suuu ←
N∑
i=1

u ∗ u ∗ u;

Suuv ←
N∑
i=1

u ∗ u ∗ v;

Suuw ←
N∑
i=1

u ∗ u ∗w;

Svvu ←
N∑
i=1

v ∗ v ∗ u;

Svvv ←
N∑
i=1

v ∗ v ∗ v;

Svvw ←
N∑
i=1

v ∗ v ∗w;

Swwu ←
N∑
i=1

w ∗w ∗ u;

Swwv ←
N∑
i=1

w ∗w ∗ v;

Swww ←
N∑
i=1

w ∗w ∗w;

A←

Suu Svu Suw
Svu Svv Svw
Suw Svw Sww

;

B ← 1
2

 Suuu + Svvu + Swwu

Suuv + Svvv + Swwv

Suuw + Svvw + Swww

;

Solve the linear system Ax = B. Let the solution be

uc

vc
wc

;

α← u2
c + v2c + w2

c + (Suu+ Svv + Sww)/N ;
R←

√
α;

xc ← uc + xavg;
yc ← vc + yavg;
zc ← wc + zavg;

Fitting error ← 1
N

N∑
i=1

∣∣∣√(x− xc)2 + (y − yc)2 + (z− zc)2 −R
∣∣∣;

Return the sphere centred at xc, yc, zc with radius R;
Algorithm 2: Finding the bet-fit sphere for a set of points

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 78

3.10.1 Precision Calculation of Microsoft Kinect V2 Depth Sensor

A planar reference object was chosen for estimating the error in the depth frame of Kinect V2.

A plane was fitted using least squares method and this plane was taken to be the reference

geometry. Any deviation of the sampled points from the reference plane was taken as error.

The average error was noted for several positions of the reference object starting from about 4.0

metres and slowly bringing it closer to the Kinect 2 sensor upto 0.8 metres as shown in Figure

3.22.

Square flat surface very far away (3.82 m) from
Kinect

Square flat surface at 1.92 m from Kinect

Square flat surface at 1.174 m from Kinect Square flat surface at 0.81 m from Kinect

Figure 3.22: Frames captured for the square flat surface

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 79

Figure 3.23 shows the 3D representation of point cloud with normals estimated. In this figure,

the normals are not explicitly shown as arrows but in the form of shading that normals facilitate.

Figure 3.23: 3D representation of point cloud with normals estimated

The average deviation from the fitted plane was plotted against distance between the reference

object and the Kinect is shown in Figure 3.24.

Figure 3.24: Position error as a function of distance from Kinect V2 sensor

The mathematical derivation of the plane fitting formulation is the same as that of normal esti-

mation as given in Section 4.4. After all, normals are estimated by locally fitting a plane with

points sampled from the topological neighbourhood of each point. In the normal estimation

method, each call to plane fitting receives a small number of points whereas in this error estima-

tion exercise, a large number of points sampled on the reference object’s depth image were fitted

using the least squares method. Algorithm 3 presents the plane fitting calculation in pseudo-code

form. As in Algorithm 2, here bold-faced symbols represent arrays, and arithmetic on arrays is

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 80

defined to be element-wise.

ALGORITHM PLANE FIT

Data: A set of N 3D points onto which a plane is fitted. The arrays of x,y, and z coordinates

of the points are denoted by x, y, and z

Result: A plane fitted on the given points

Sxx ←
∑

x ∗ x;
Syy ←

∑
y ∗ y;

Szz ←
∑

z ∗ z;
Sxy ←

∑
x ∗ y;

Syz ←
∑

y ∗ z;
Szx ←

∑
z ∗ x;

Sx ←
∑

x;

Sy ←
∑

y;

Sz ←
∑

z;

xavg ← Sx

N ;

yavg ← Sy

N ;

zavg ← Sz

N ;

A11 ← Sxx − 2 ∗ xavg ∗ Sx +N ∗ xavg ∗ xavg;

A22 ← Syy − 2 ∗ yavg ∗ Sy +N ∗ yavg ∗ yavg;
A33 ← Szz − 2 ∗ zavg ∗ Sz +N ∗ zavg ∗ zavg;
A21 ← A12 ← Sxy − xavg ∗ Sy − yavg ∗ Sx +N ∗ xavg ∗ yavg;
A31 ← A13 ← Szx − xavg ∗ Sz − zavg ∗ Sx +N ∗ xavg ∗ zavg;
A23 ← A32 ← Syz − zavg ∗ Sy − yavg ∗ Sz +N ∗ zavg ∗ yavg;

A←


A11 A12 A13

A21 A22 A23

A31 A32 A33

;

Perform eigenvalue decomposition of A;

Let


nx

ny

nz

 be the eigenvector of A that corresponds to the smallest eigenvalue of A;

Return the plane passing through the point (xavg, yavg, zavg) with normal (nx, ny, nz);

Algorithm 3: Algorithm for computation of best-fit plane for a set of points

Yang et al. in [202] presents a study in which the accuracy of Kinect 2 is presented as a

spatial function over vertical and horizontal planes (assuming that the kinect’s base is placed

horizontally). Instead of showing a continuous map of accuracy on these planes, some broad

contours have been shown. The contour representing an accuracy of upto 2mm on both vertical

and horizontal planes ends at a distance of 3 m from the Kinect. This measurement is in perfect

agreement with the estimated accuracy. This is shown by the trend-line in Figure 3.24, which

crosses 2 mm error level for a distance of 3m.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 81

3.11 Kinect 1 Recorder

The Kinect SDK returns a frame buffer of depth values which is a rectangular array of integers

representing the distance at which a ray from the Kinect sensor goes through the corresponding

pixel and hits a surface. There is a calculation procedure by which the array element position

and the depth values can be combined to give the x, y, z co-ordinates of a point. Many such

points put together to make a cloud of points in 3D space. A Kinect recorder was developed

specifically for capturing and storing the recorded depth data from Kinect V1 at the rate of

30fps because the skeletal data generated directly by the Kinect SDK was unsuitable. To view

the point cloud of the subject in isolation, the background has been separated using a special

bitmap provided by the Kinect SDK. Some recorded images are shown in Figure 3.25 and 3.26.

Testing single subject recording Kinect V1 Kinect V1 depth frame and its
in office environment corresponding skeletal pose of a single subject

Figure 3.25: Single subject using Kinect V1

Single subject recorded using Kinect V1 recorder and the point
cloud viewer after the background was separated.

Figure 3.26: Single subject Kinect V1 and point cloud viewer

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 82

3.12 Kinect 2 Recorder

A Kinect 2 recorder has been developed which captures and stores the recorded data at the rate

of 30fps with background removal being done using a special bit-map returned by the Kinect

SDK while recording. Unlike the Kinect 1 recorded, the background was removed during the

recording phase to reduce the space requirements as the image resolution is much higher for V2.

The Kinect 2 recorder has been tested and it detects single and multiple people. Following are

some screenshots of the frames captured using the Kinect2 recorder described in Figure 3.27.

Single subject Kinect2 Multiple subjects Kinect2

Figure 3.27: Depth images using Kinect2

It was observed that the hands detection in near mode is not good sometimes but in far mode

is quite reliable which is described in Figure 3.28.

Hands near mode using Kinect2 Hands far mode using Kinect2

Figure 3.28: Near and far modes using Kinect2

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 83

3.13 The Kinematics Model

In human skeletal tracking, Kinect SDK provides 3D position of 20 joints and limb ends but the

positions are observed to oscillate for no reason (i.e. even when the subject is perfectly still).

Also when the subject moves rapidly, quite garbled positions are returned by the skeletal SDK.

As a first step towards addressing these garbled reqults, a new graphical gait visualization and

analysis tool called GLSKEL has been developed within this work. The tool has an interactive

measurement interface that is useful for getting joint parameters for individual frames of the

captured 3D frames. Although interactive measurement does not scale to allow measurement of

thousands of frames, it was useful in analysing selected poses and configurations. The skeletal

model in GLSKEL is a tree-structured hierarchical representation of the bones and each bone in

the hierarchy has a parent joint node and a child joint node. Every joint can be a parent and a

child joint unless it is a leaf joint, such as hand right, head, etc. In the skeletal hierarchy, parent

joint nodes are always above the child joint node. The 20 joints estimated by Kinect 1 or Kinect

1.8 SDK are described in 3.1 and 25 joints obtained from Kinect 2 SDK in 3.2.

The data from Kinect is to fit a kinematics model.

Forward kinematics: Given the joint variables, render the skeletal model for visualising the

posture defined by a given assignment of values of those variables.

Inverse kinematics: Deriving the values of the joint variables from 3D position data acquired

from Kinect SDK.

The forward kinematics was implemented as a set of hierarchical transforms applied on the skele-

tal joints. This made it possible to control the skeleton using GUI (slider widgets) representing

each joint variable to create any pose of interest. The transforms were implemented as successive

rotations applied for each joint variable. The joint variables implemented are listed in Table 3.4.

Joint Variable Names used in Forward Kinematics
left knee flexion right knee flexion
left hip abduction right hip abduction
left hip extension right hip extension
left shoulder extension right shoulder extension
left shoulder abduction right shoulder abduction
left elbow extension right elbow extension
neck extension neck abduction
neck transverse rotation waist extension
waist transverse rotation waist abduction
left ankle extension right ankle extension

Table 3.4: Joint Variables

These names of joint variables can be understood with respect to the reference planes used in

biomechanics literature. Figure 3.29 shows the names of these planes. The limb rotations made

in a transverse plane are named with the suffix ’transverse rotation’. The limb rotations made in

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 84

a sagittal plane are named with suffix ’flexion’ or ’extension’ according as whether the rotation

brings the limb backward or forward respectively. For a limb that can go both forward and

backward, the naming is a matter of sign. When such a variable is named with suffix ’flexion’,

the backward direction is taken as positive, and when named with suffix ’extension’ the forward

direction is taken as positive. Likewise, the angles in the frontal plane are named with the suffix

’abduction’. Figure 3.30 shows a few extension and abduction angles associated with human

gait.

Figure 3.29: Reference planes used in describing joint motions

In GLSKEL, there is a panel where a realistic skeleton is rendered with specified joint angles.

The captured joint angles can be displayed as 3D animation on the skeleton. Figure 3.33 shows

a few screenshots of the software interface. The skeletal animation screen also supports a pose

creation interface using set of sliders to control the joint angles. The screenshot (Figure 3.31)

shows that tool in action. Right now the forward kinematics is not directly used along with joint

angles obtained from the new algorithms. It would be easy to feed the joint variables of the new

algorithm to the skeleton.

The kinematics model of an articulated human body was implemented as a hierarchy of trans-

forms - mostly rotational transforms. The hierarchical structure arises from the fact that with

reference to a chosen body frame fixed with the hip, superior joint motions bodily transform their

subordinate joint positions but the sub-ordinate joint motions do not cause bodily displacement

to their superior joint motions. For example, the shoulder joint motion would displace the elbow,

wrist, and finger joints, but a finger or wrist joint motion does not cause displacement of the

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 85

Figure 3.30: Abduction/adduction and flexion/extension angles

Figure 3.31: The Pose controller Widget in GLSKEL - Forward Kinematics of GLSKEL

shoulder position. Hence is the hierarchy - it is as if the subordinate joints are embedded within

the coordinate system of the their relatively superior joints, but not the other way round.

In computer graphics, rigid motions are usually implemented as transformation matrices. Trans-

lation, rotation, scaling, mirroring, shearing etc. are various transformations that can be rep-

resented by such matrices. The visual model of a skeleton has two main components - meshes

(usually made of triangles) to represent the shape, and matrices to implement motions. Rota-

tion and translation transforms describe how the meshes are oriented and positioned in space

at any given time. The hierarchy of motions is implemented using a stack of transformation

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 86

Figure 3.32: Left hip and right hip extension angles - Inverse Kinematics of GLSKEL

Figure 3.33: Screenshots from the Gait capture tools

matrices. As stated in the previous paragraph, a motion can have its subordinate and superior

motions. In a computer implementation, the transformation matrix for a subordinate motion

is higher up in the matrix stack, than the superior motion. This stack is maintained in such

a way that the superior motion matrices apply to the subordinate limbs, but the sub-ordinate

motion does not apply body parts that are outside its motional realm (e.g. ankle motion must

not have any effect on the waist). The computer graphics libraries provide a way of editing the

matrix stack using the push matrix and pop matrix calls. Motions are generally parenthesized

(or sandwiched) between calls to push and pop matrix. Pushing a matrix creates an additional

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 87

Figure 3.34: Kinematic model, point cloud, and SDK joints from Kinect 1.0 displayed on
GLSKEL

layer of matrix on the matrix stack. This matrix is identity matrix when just pushed. At any

time during the graphics scene preparation, the net transformation that applies to any mesh

rendered at that point is the product of all the matrices on the stack. So as the transformation

matrices corresponding to the superior motions are lower down the stack, they will apply to all

the subsequent stack states that push on the top of it. The subordinate motions are withdrawn

from the matrix stack once the part that were strictly under their motion are drawn. Algorithm

4 shows how the program applies the transforms while drawing an animated 3D skeleton.

Inverse Kinematics is to calculate the joint angles from the obtained 3D joint data. Figure 3.32

shows the calculated angles of left hip extension and the right hip extension using the GLSKEL

inverse kinematics. It shows the plot of two complementary joint variables, one from the left hip

and the other from the right hip, as obtained by the inverse kinematics calculation during a few

walk cycles. Ideally these two cycles should have looked perfectly periodic and complementary

(i.e. the two plots should have been identical with a phase separation of half the period). It

appears that the machine learning algorithm used by Kinect V1 is optimised for speed (can

process over 200 frames per second) but makes substantial compromise on accuracy. A continual

flicker was noted in lower joint positions (knees, feet etc.) in the captured frames even when the

subject only moved the arms and kept the lower limbs still.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 88

Data: A set of 3D meshes representing the body parts (from Kinect)
Data: Joint motion data (from Kinect)
Result: 3D graphical rendering of the whole body
Insert a new identity matrix to the top of stack;
Draw Mesh (“Hip”);

Insert a new identity matrix to the top of stack;
waist motion();
Draw Mesh (“Abdomen”);
Draw Mesh (“Chest”);
Draw Mesh (“Left Collar”);
Draw Mesh (“Right Colllar”);

Insert a new identity matrix to the top of stack;
neck motion();
Draw Mesh (“Neck”);
Draw Mesh (“Jaw”);
Draw Mesh (“Head”);
Remove the topmost matrix from the stack;
Insert a new identity matrix to the top of stack;
left shoulder motion();
Draw Mesh (“Left Shoulder”);

Insert a new identity matrix to the top of stack;
left elbow motion();
Draw Mesh (“Left Forearm”);

Insert a new identity matrix to the top of stack;
Draw Mesh (“Left Hand”);
Remove the topmost matrix from the stack;

Remove the topmost matrix from the stack;
Remove the topmost matrix from the stack;
Insert a new identity matrix to the top of stack;
right shoulder motion();
Draw Mesh (“Right Shoulder”);

Insert a new identity matrix to the top of stack;
right elbow motion();
Draw Mesh (“Right Forearm”);

Insert a new identity matrix to the top of stack;
Draw Mesh (“Right Hand”);
Remove the topmost matrix from the stack;

Remove the topmost matrix from the stack;
Remove the topmost matrix from the stack;

Remove the topmost matrix from the stack;
Insert a new identity matrix to the top of stack;
left hip motion();
Draw Mesh (“Left Thigh”);

Insert a new identity matrix to the top of stack;
left knee motion();
Draw Mesh (“Left Shin”);

Insert a new identity matrix to the top of stack;
left ankle motion();
Draw Mesh (“Left Foot”);
Remove the topmost matrix from the stack;

Remove the topmost matrix from the stack;
Remove the topmost matrix from the stack;
Insert a new identity matrix to the top of stack;
right hip motion();
Draw Mesh (“Right Thigh”);

Insert a new identity matrix to the top of stack;
right knee motion();
Draw Mesh (“Right Shin”);

Insert a new identity matrix to the top of stack;
right ankle motion();
Draw Mesh (“Right Foot”);
Remove the topmost matrix from the stack;

Remove the topmost matrix from the stack;
Remove the topmost matrix from the stack;

Remove the topmost matrix from the stack;
Algorithm 4: Skeletal Animation using 3D Graphics

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 89

Figure 3.35: Kinematic model, point cloud and SDK joints from Kinect 1.8 displayed on
GLSKEL

3.14 Interactive Measurement in 3D

The point cloud derived from Kinect depth frame is plotted using 3D computer graphics which

allows turning around, spinning, moving, zooming etc. The 3D interaction window is shown

in Figures 3.34 and 3.35. Such an intuitive interaction interface may be useful to a clinician

assessing the motion or posture. A doctor or expert might pause the animation (i.e. freeze a

frame) and take measurements on it. GLSKEL allows the user to measure angles and lengths

on the 3D point cloud using mouse clicks. For length measurement on the depth frame, the

user can choose two points on the point cloud. The points are chosen by double-clicking on

the 3D view. The mouse-click corresponds to a 3D ray in model space. The point nearest to

the projection centre whose neighbourhood intersects the ray is taken to be the selected point.

Visual feedback is given to the user about the selection by enclosing the selected point in a

small but clearly visible cubical block. When two points are chosen, GLSKEL not only shows

the distance but also various geometric measurements like coordinates, angle with horizontal,

angle with vertical, projected angle on the horizontal plane etc. Three points may be selected

to explicitly measure the angle subtended at the second point by the first and the third selected

point. These features are helpful for manual measurements; the automated angle estimation

algorithms will be presented in chapter 5.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 90

3.15 Validation of GLSKEL

The following validation steps were carried out in order to verify correctness of GLSKEL.

3.15.1 Validation of Skeletal Forward Kinematics

Some interactive widgets were used for testing if the joint angle kinematics (in particular the

forward kinematics, i.e. calculation of pose from the joint angles) was implemented correctly.

These interactive widgets consisted of slider buttons that could be moved continuously by drag-

ging the mouse in pressed position. There is one such slider per hinge-type joint (like the elbow

or knee) and two such sliders for each ball and socket joint (like shoulder and hip) to capture the

additional degree of freedom. The verification task involve producing some target poses using

the required joint motions invoked using the slider. The key was to observe the skeleton motion

along with the slider motion to see that there were no unexpected motions (e.g. wrong joints

moving, non-smooth/jerky movements, hierarchy violation etc.).

3.15.2 Validation of Inverse Kinematics

This step involved verification of calculation of joint angles from joint-positions. This was

achieved through a round-trip calculation through forward kinematics. First joint angles were

used in forward-kinematics to compute joint positions. These positions were passed to inverse

kinematics to compute joint angles. These joint angles were compared against the original joint

angles used for producing the pose in the first place. Although this merely verifies consistency

between forward and inverse kinematics, this is a useful measure of correctness because forward

kinematics part of the calculation was validated separately as described in the previous section.

3.15.3 Validation of Point Cloud Processing

The processing of Kinect’s depth frame goes through several steps. Starting with recording

frames on disk, through limb labelling, to joint angle calculation. Intermediate steps involved

such steps as least squares fitting, convex hull, and principal axis calculation. Each step was

tested in isolation. For example, the first part of the processing pipeline could be verified by

inspecting and measuring the animated 3D view of the point cloud in an OpenGL based viewer.

The convex hull could be verified by rendering the hull polyhedron along with the points. The

principal axis could also be verified by visually rendering the axis as a coloured line.

3.15.4 Validation of Interactive Measurement

Point-sets with pre-defined mutual distances and mutual angles were loaded into GLSKEL. The

point coordinates, and mutual distances and angles were measured within the tool and compared

against the original pre-defined values. Additional glyphs were introduced at the coordinates as

measured. It was visually inspected that the glyph positions coincided with the points.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 91

3.16 Conclusion

The contribution of this chapter was to evaluate the state of the art in inexpensive 3D depth

capture and evaluation of Microsoft Kinect from the perspective of accuracy. The skeletal joints

captured by Kinect SDK are found to be inadequate for clinical use. The joint angles calculated

from 3D joint positions are only approximate and observed to move a lot even when the subject

is actually standstill. However, the point cloud accuracy as shown in Figure 3.19 is adequate

for precise determination of joint angles. The forward and inverse kinematics method presented

in this chapter is an exact calculation (i.e., not an approximation). Thus the real problem lies

in the inaccuracy of the algorithm that computes the joint positions from the point cloud. The

Microsoft SDK is known to use local features and Markov decision forest algorithm for labelling

limbs. While this method is fast, it is evidently not accurate enough and it is possible to improve

the accuracy by sacrificing the speed of processing. The joint coordinates from the Kinect v1.8

driver was observed to have relatively low flickering oscillations compared to v1.0. Kinect v2

joint coordinates were similar in accuracy and oscillation to 1.8. This shows that the developers

at Microsoft are making some improvements to the joint recognition algorithms but they are

not quite accurate enough for clinical monitoring. The following chapters 5 and 6 present new

algorithms that enhance the accuracy of the limb detection using geometric and graph-theoretic

methods. Kinect’s internal algorithms are proprietary and unavailable for improvisation. There

have been several attempts to overcome this limitation through calibration (e.g. [74]). The

algorithmic development takes a similar approach towards estimating joint angles - in improving

the accuracy based on raw data produced by Kinect. The main novelty of GLSKEL is that it

enables continuous motion gait capture in an interactive 3D environment. Its intuitive interface

can help bridge the gap between a research prototype and a product that can be used by clinical

practitioners.

Chapter 4

Algorithms for Processing 3D

Depth Image Data

4.1 Introduction

Chapter 3 shows how point-clouds and textured meshes are becoming a common media type

with the democratisation of 3D scanning. In the coming years, as 3D scanners make their way

into smart phones and tablets, such media are expected to become nearly as ubiquitous as image

and video. Until the novelty wears off and algorithms become standardized for such media, it is

going to be a golden age for innovations in software aimed at manipulating and analysing such

media [134],[109]. A point cloud is a useful representation in its own right, but post-processing

algorithms can extract substantial additional information hidden in the point-cloud. This chapter

discusses in detail the algorithm of JAFAKEC-G framework for gait analysis, as discussed in

Chapter 5 and in the JAFAKEC-U framework, as discussed in Chapter 6.

Point cloud is a very raw representation of the scanned surface. A bunch of point coordinates (i.e.

x, y, z values) are all there is to it. Think of this as a raw material that has to go through a number

of processing stages in order to become more meaningful and useful. The individual stages may

be seen as addition of annotations on the point-cloud but a stage might as well introduce an

entirely new representation of the underlying surface. It is known that the point-cloud comes

from points sampled on one or more distinct surfaces of the scanned scene, so it would seem

useful to group the points as belonging to individual surfaces. Once such a segmentation is done,

it would be possible to label the individual segments more meaningfully than one could label

individual points. The problem of segmenting the point clouds arises in the field of Computer

Aided Design (CAD) where low level geometric features can be used to determine whether the

surface is developable, planar, cylindrical, spherical and so on. The problem of segmentation of

human limbs is more involved because the local morphology is dominated by non-mathematical

features of biological and textile origin. The best way to see the following sections is to see them

as description of a processing pipeline that deals with assigning meanings and representations

to raw point clouds.

93

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 94

4.2 Defining a Topology on the Point Cloud

This section presents the key definitions of Defining a Topology on the Point Cloud as used in a

geometric contexts. A brief outline would be presented here. The following texts present a more

detailed discourse: [135], [43], [26], [103], [70].

Topology deals with properties of connectivity and neighbourhood between points and point-sets.

The scanned points are discrete and isolated but it is possible to define a topology involving them

using proximity relationships. We can say that points that are closer than a certain given distance

are connected by a neighbourhood relation. Such pairwise relationships have the structure of

binary relations, which is covered by a field called Graph theory. The main definitions of graph

theory are presented in section 4.3. When the neighbourhood is constructed relationship as a

graph, a vast array of tools and algorithms can be used available in graph theory.

There are multiple ways of constructing the graph. A simple neighbourhood relationship may

be defined using a fixed sized ball. If two points are within a fixed sized ball of diameter d, an

edge is connected between the points. This definition of neighbourhood requires the specification

of an appropriately chosen distance threshold. An alternative approach that does not require

the choice of a distance threshold is that of a relative neighbourhood graph in which two points

are connected by an edge if the lune (to be elaborated next) formed by them does not contain

any other point. If the distance between the two points is d, then the lune between the two

points is the region of intersection of two spheres centred at each point with radius d. There is

another criterion similar to the relative neighbourhood graph in which two points are connected

with an edge if the smallest sphere containing the two points has no other point in it. The key

difference here is that the lune is replaced by the sphere centred at the mid-point of the two

points, with diameter equal to the distance between the points. It should be noted that one can

trim the neighbourhood graph by deleting edges and nodes based on additional criteria when

more information becomes available. The graph structure will prove useful in several ways and

let us start with a first application.

4.3 Geometric Graphs

This section presents the key definitions of graphs as used in a geometric contexts. A brief

outline would be presented here. The following texts present a more detailed discourse : [104],

[54], [42], [21], [15].

A graph is a structure commonly used for representing the existence of a relation between objects.

A graph is defined as follows:

DEFINITION: A graph G is a pair (V,E) where V is a set of Nv distinct objects v0, . . . , vNv−1,

and E is a set of pairs (vi, vj), 0 ≤ i, j ≤ Nv− 1, i 6= j. The elements of V are called vertices and

the elements of E are called edges. The vertices might correspond to entities with a varied set

of properties and identities but insofar as the graph structure is concerned, they are uniformly

treated as distinct entities without any further ontological commitment. An edge (vi, vj) is

denoted as vivj . An edge vivj represents a binary relation between vi and vj . Depending on

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 95

the application, vivj and vjvi may or may not mean the same edge. If the order of the pair of

vertices defining an edge is significant, the edge and the graph containing it are called directed.

If the edges are unordered pairs (i.e. if for any given edge vivj , the re-ordering vi and vj is

immaterial to the identity of the edge) then the edges and the graph as a whole are called

undirected. An undirected graph represents a symmetric binary relation between vertices. The

current application deals with a mutually symmetric adjacency relationships between points -

therefore it is sufficient to deal with only undirected graphs for the purposes of this work.

If vivj ∈ E the vertices vi and vj are said to be incident on the edge. Under the same condition

vi and vj are said to be adjacent or neighbours to each other. Two edges vi, vj and vm, vn are

adjacent if either vi ∈ {vm, vn} or vj ∈ {vm, vn}. In a spanning graph the edges cover all the

vertices. A graph G = (V,E) is called empty if E = φ, and complete if E is the set of all possible

edges. A graph G′ = (V ′, E′) is called a sub-graph of G if V ′ ⊆ V and E′ ⊆ E. A sub-graph

G′ = (V ′, E′) of a graph G = (V,E) which contains all such vertices and edges of G that are

reachable through edge traversals from any vertex in V ′, is called a connected component.

A path is a sequence of vertices vi0 . . . vij , such that each pair of consecutive vertices is an edge

in the graph. We say that such a path is between vi0 and vij . A closed path is a sequence of

vertices vi0 . . . vij such that vi0 . . . vij , is a path and vi0vij is an edge in the graph. A closed path

is a cycle if all its vertices are distinct. A Hamiltonian cycle is a cycle containing all vertices of

the graph.

The union of graphs (V,E) and (W,F) is (V,E)
⋃
(W,F) = (V

⋃
W,E

⋃
F).

A graph is connected if there is a path between every pair of distinct vertices. A graph is n-

connected if there are n different paths between any two distinct vertices, or equivalently, if the

removal of any (n − 1) vertices leaves the graph connected. A graph without cycles is a forest.

A tree is a connected graph without cycles. One vertex of the tree can be denoted as the root.

A graph is called a geometric graph if the vertices represent points in a Euclidean space and

the edges represent some geometric relation between the vertices. The length of an edge of a

geometric graph is the Euclidean distance between its two vertices. The length of a geometric

graph is the sum of the lengths of all edges and the length of a path is the sum of the lengths of

the edges in that path. A hypergraph is a generalization of graph which extends the definition

of edges beyond binary relations. The edges of a hypergraph are called hyperedges that could be

tuples of vertices (i.e. not just pairs). Following is a formal definition.

DEFINITION (based on [42]) A hypergraph G is a pair (V,E) where V is a non-empty finite set

of distinct elements, and E is a subset of P (V)−V, φ, where P (V) is the power-set of the vertices.

The power-set P (V) (also often denoted by the notation 2V) is the set of all possible subsets of V .

Let v0, . . . , vNv
be vertices in an Euclidean space. A polyline is a finite ordered sequence of

line segments vi0vi1 , vi1vi2 , . . . , vin−1
vin such that vij = vik if and only if j = k. A polyline of

consecutive line segments vi0vi1 , . . . , vin−1vin is denoted by vi0 . . . vin . A polygon vi0 . . . vin is a

polyline vi0 . . . vin that is closed by segment vinvi0 .

Polylines and polygons can be uniquely represented by a graph (V,E) where V is the set of

vertices of that polyline or polygon and E the set of edges vivj that are the line segments. A

polyline of Nv vertices has Nv − 1 edges; a polygon has Nv edges. Since every vertex is shared

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 96

by one or two edges, there is a unique ordering of edges in a polyline or polygon vi0 . . . vin . A

triangle is the unique polygon of three non-collinear vertices, that is, there is only one set of

three edges joining the three vertices.

A closed polyhedron is a 3D shape formed by plane polygons (called faces) such that every line

segment of a polygon is shared by exactly one other polygon and no subset of polygons has the

same property. An open polyhedron is a connected subset of polygons of a closed polyhedron.

A polyhedron is simple if there is no pair of non-adjacent polygons sharing a point.

In the restricted case that the polygon has no through-passages, i.e. it is topologically equiva-

lent to a sphere, Euler’s formula applies: Nv − Ne + Nt = 2. Since for a closed triangulation

3Nt = 2Ne, it follows that for a polyhedron of triangles without through-passages Nt = 2Nv − 4

holds. A polyhedron of triangles can be uniquely represented by a hyper-graph (V, T) where V

is the set of vertices and T the set of triangles vivjvk of the polyhedron. A tetrahedron is the

unique polyhedron of four non-coplanar vertices, that is, there is only one set of four triangles

joining the four vertices.

A simplex or k-simplex is the unique kD structure of k + 1 vertices not lying in a (k − 1)D

hyper-plane that joins its vertices by k+1 (k− 1)-simplices; a 1-simplex of two vertices is a line

segment between these vertices. So, a 2-simplex is a triangle and a 3-simplex is a tetrahedron,

and so on. A simplex represents the simplest non-degenerate closed shape formed by flat seg-

ments of one lower dimension.

The geometric graph concepts are crucial in JAFAKEC because the raw data in a depth/range

image comes in the form of scattered discrete points and it becomes necessary to introduce

some topology on it artificially using geometric criteria. Topology describes how discrete objects

are connected to each other and thereby allows one to define algorithms that can analyse global

structure using local traversals. The following subsections provide definitions of operations useful

for analysis of geometric graphs.

4.3.1 Closest Pairs

This sub-section presents the definition of closest pairs as used in a geometric contexts. A brief

formal definition is given here. [92] and [12] present a more detailed discussion. DEFINITION

(CLOSEST PAIRS (CP)) Let V be a set of vertices in k dimensional space. The closest pair in

a set vertices V (with Nv elements) is the pair of vertices whose distance is shortest among all

possible pairs of vertices. There can be more than one pair whose distance is equal to the closest

distance, in which case one of the tied pairs can be arbitrarily be chosen as the closest pair.

In a brute force implementation one might think of choosing the shortest from among the Nv×Nv

possible pairs. However with a divide-and-conquer algorithm, the closest pair can be found in

O(NvlogNv) time. Following is a rough sketch of the divide-and-conquer algorithm:

1. Sort the points along some spatial direction.

2. Choose a middle (median) point along the sorted direction. Divide the array into two parts

as split by the hyperplane perpendicular to the sorting direction and passing through the

median point.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 97

3. Recursively find the closest pair in both split parts. Compare the two closest pairs from

the two split half-spaces and return the closer one.

The closest pair algorithm may be used as a sub-routine in order to finding a connectivity graph,

by consecutively adding edges corresponding to closest pairs from the remaining vertices.

4.3.2 Nearest Neighbours Graph

This section presents the key definitions of Nearest Neighbours Graph as used in a geometric

contexts. A brief outline would be presented here. The following texts present a more detailed

discourse : [92],[167],[41]

DEFINITION (NEAREST NEIGHBOURS GRAPH (NNG)) Let V be Nv vertices in k dimen-

sions. The Nearest Neighbours Graph of V is the graph (V,E) with E as the edges that join

each vertex vi with one vj satisfying d(vi, vj) ≤ d(vi, vk) for all vk 6= vi.

Note that the Nearest Neighbours Graph is not unique if there is more than one vj such that

d(vi, vj) ≤ d(vi, vk) for all vk 6= vj . The Nearest Neighbours Graph is generally disconnected.

Since all the pairs of vertices that are each other’s nearest neighbour contain the pairs with

the smallest distance of all, CP ⊆ NNG. The Nearest Neighbours Graph in k dimensions can

be constructed in O(Nv(logNv)k−1) time [12], provided that the maximum number of vertices

joined to each vertex is independent of Nv.

4.3.3 Euclidean Minimum Spanning Tree

This section presents a brief definition of Euclidean Minimum Spanning Tree as used in geomet-

ric contexts. The following texts present the idea in greater detail: [159],[52]

DEFINITION (EUCLIDEAN MINIMUM SPANNING TREE (EMST)) Let V be a set of ver-

tices in k dimensions. A Euclidean Minimum Spanning Tree of V is a spanning tree (i.e. a tree

covering all vertices) of minimum length.

The EMST of a set of vertices is generally not unique. In an EMST, each vertex must be

joined to its nearest vertex and thus NNG ⊆ EMST. In the event that NNG and EMST are not

unique, this can be interpreted as - there exists an NNG that is a subset of the EMST. Each

NNG actually is a minimum spanning forest (i.e. there is no requirement of being a connected

structure). In the special cases where the NNG is connected it is equivalent to an EMST. EMST

can be computed in O(NvlogNv) time [159], which is optimal. EMST is a bit different from the

minimum spanning tree algorithms for graphs. On a graph-based MST. In a graph-based MST

algorithm, the input is a graph and its edge weights. By contrast, in EMST the input is a set

of points in space and a distance function to compute the distance between any pair. If a graph

is made by putting edges between nearby points, graph based MST algorithms like Prim’s and

Kruskal’s algorithm ([34], [167]) can be used for approximating an EMST.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 98

4.3.4 Infinite Strip Graph

This section presents a brief definition of the Infinite Strip Graph as used in a geometric problems.

[41] provides a more detailed discussion on the topic. The Infinite Strip Graph (∞-SG) joins

two vertices if and only if the associated infinite strip is empty [41].

DEFINITION (INFINITE STRIP) Let v1 and v2 be two vertices in k dimensional space. The

infinite strip is the open space bounded by two parallel (k − 1) dimensional planes through v1

and v2 perpendicular to the direction joining v1 and v2.

This is yet another definition of neighbourhood graph, although in this case the neighbourhood

size is infinite. This and the other neighbourhood graph definitions specify different criteria for

which pairs of vertices are to have edges between them (or in other words which pairs are not to

have edges between them). The objective of such criteria is to not end up with too many edges

and yet capturing the essential structure of the connectivity between the points. For infinite

strip neighbourhood, the neighbour may well be infinite but the criterion still implies locality in

the sense that the neighbourhood depends only on two vertices.

If no two infinite strips for different pairs of vertices coincide, the Euclidean Minimum Spanning

Tree must join a pair of vertices whose infinite strip is empty. So in non-degenerate cases ∞-SG

⊆ EMST. Therefore, one can examine each of the Nv − 1 edges in the Euclidean Minimum

Spanning Tree and check if any vertex lies in the corresponding infinite strip. So the Infinite

Strip Graph can be constructed in O(N2
v) time.

4.3.5 Sphere of Influence Graph

This section presents a brief definition of the Sphere of Influence graph in the context of geometric

problems. [41] and [184] provide a more detailed discussion of the idea.

DEFINITION (SPHERE OF INFLUENCE GRAPH (SIG)) Let V be a set of vertices in kD.

For each vertex vi, let rvi be the distance to its closest vertex. The Sphere of Influence Graph

joins two vertices v1 and v2, if and only if the sphere centered at v1 with radius rv1 , and the

sphere centered at v2 with radius rv2 , intersect in more than one point.

The SIG may be a disconnected graph. Each vertex in a SIG is joined with its nearest neighbour,

so that NNG ⊆ SIG. The Sphere of Influence Graph can be constructed optimally in O(NvlogNv)

time [184].

So, SIG is yet another approach of inducing a topology to a set of scattered points.

4.3.6 Relative Neighbourhood Graph

This section presents a brief definition of the Relative Neighbourhood Graph. More detailed de-

scription may be found in [105], [41], [183], [86]. The Relative Neighbourhood Graph (RNG)

joins two vertices if and only if their relative neighbourhood (as defined below) is empty.

DEFINITION (RELATIVE NEIGHBOURHOOD (RN)) Let v1, v2 be two vertices in k dimen-

sional space. The associated relative neighbourhood is the interior of the intersection of the two

k-D balls centered at v1 and v2 with radius d(v1, v2).

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 99

Two vertices v1 and v2 with an empty RN are considered relatively close, i.e. if d(v1, v2) ≤
maxd(v1, vi), d(v2, vi), for all vi 6= v1, v2. The RNG can be constructed in O(NvlogNv) time for

2D points [86]. In the general number of dimensions, it can be computed in O(N3
v) time [183].

4.3.7 Gabriel Graph

This section presents a brief definition of the Gabriel Graph. More detailed description may be

found in [59], [105], and [116] The Gabriel Graph (GG), named after its originator [59], joins

two vertices if and only if their Gabriel neighbourhood (as defined below) is empty.

DEFINITION (GABRIEL NEIGHBOURHOOD) Let v1, v2 be two vertices in k dimensions. The

Gabriel neighbourhood associated with v1 and v2 is the interior of the smallest k dimensional

ball touching v1 and v2.

The Gabriel neighbourhood sphere has radius d(v1, v2)/2. Since the Gabriel neighbourhood is a

spatial region that is fully enclosed within the RNG neighbourhood, it is empty when the latter

is empty. So RNG ⊆ GG. The Gabriel was originally used in analysis of geographic data but

is a general tool in the context of inducing topology to a set of scattered points. The Gabriel

Graph in 2D can be computed optimally in O(NvlogNv) (as in [116]).

4.3.8 Convex Hull

This section presents a brief definition of the convex hull. [167] provides a detailed discussion of

the subject. Barber et al. [10] presents an efficient convex hull algorithm. The convex hull of a

set of points is the minimal convex region that encloses a given set of scattered points.

DEFINITION (CONVEX HULL (CH)) Suppose that V is a set of vertices in k dimensional

space. The Convex Hull of V is the hypergraph (V, F) where F is the set of (k − 1)-simplices

vi0 . . . vik such that no other vertices lie in the half-space on one side of the hyper-plane through

vi0 . . . vik , nor inside nor on simplex vi0 . . . vik . That is, all of the other vertices lie entirely on

one side of the hyper-plane containing each simplex.

The Convex Hull is the smallest convex polyhedron containing all the vertices of V . [140] presents

the optimal 2-D and 3-D Convex Hull algorithms that can construct the structure in O(NvlogNv)

time.

This concludes the list of sub-sections that present methods from the literature for inducing

a topology on a set of scattered points. Once a neighbourhood structure is inferred from points

in a depth/range image, further calculations may be carried out on it for local and global analysis

towards feature detection.

4.3.9 Geometric Graph using a Distance Threshold

In the preceding subsections, the geometric graph induction algorithms were scale-free - i.e. the

same algorithm could work irrespective of the scale of distances involved. Such algorithms have

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 100

great intellectual appeal because it does not involve any problem-specific choice of parameters.

It is however possible to have a simpler graph induction algorithm if one allows the algorithm

to be parametrized by a problem-specific factor. Following is one such algorithm in which edges

are connected based on a specified distance threshold. If the distance between two 3D points in

the point-cloud is less than a distance Dmax then the two points are said to be neighbours (i.e.

a graph edge is formed between them).

Algoritm for Geometric Graph creation using distance threshold;
Data: Set of 3D points P
Result: A graph G derived from distance relationship
Create an index for fast neighbourhood query;
Create an empty graph G with V = Φ and E = Φ;
foreach point p in P do

Create a node v(p) with geometric position p;
V ← V

⋃
{v(p)};

end
foreach vertex v(p) in V do

foreach nearest Nmax neighbouring points q of p do
if |p− q| < Dmax then

Create edge epq = (v(p), v(q));
E ← E

⋃
{epq};

Adj(v(p))← Adj(v(p))
⋃
{v(q)};

Adj(v(q))← Adj(v(q))
⋃
{v(p)};

end

end

end
Algorithm 5: Distance Threshold based Geometric Graph Creation

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 101

4.4 Estimating Normals at the Cloud Points

This section describes the method of estimating normals from a local neighbourhood of scattered

points. The following texts present a more detailed discourse: , [65],[32], [122], [143].

It is useful to compute local surface properties (like normal, curvature, etc.) from the point

cloud because these properties can serve as features to feed into classification algorithms.

A fundamental local property of a surface is its normal. Normal is the spatial direction that

is perpendicular to the surface. Smooth surfaces can be flat or curvy and even when they are

curvy, they look flat when one looks closely enough into any local neighbourhood on the surface.

That is, when one zooms enough on smooth differentiable surfaces, the curved nature fades (or

flattens) away and all that remains is (locally) geometrically equivalent to a plane that would

be tangential to the surface at that point. The direction perpendicular to this locally tangential

plane is the normal to the surface at that point. Of course the normal keeps changing as one

moves along the surface (unless the surface is actually planar). At a given point the rate at

which the normal direction changes is called its curvature - which is another local property of

interest. The higher the curvature at a point the more curvy/contorted is the surface is at that

point. The lower the curvature magnitude, the flatter and more plane-like is the surface at that

point.

When the surface is represented by a point cloud (as is the case here), the normal at a given

point can not be computed just from the point itself but it can be estimated from the point and

its neighbouring points. Recall that a smooth surface is locally planar (i.e. if one zooms close

enough to it, the surface looks like a flat plane). Due to this phenomenon the earth appears

flat from the common everyday experience despite its spherical shape. This means that if a

small neighbourhood of points is sampled from a point-cloud, these points should approximately

belong to a plane that could serve as a localised approximation of the surface and hence the

normal to this plane would represent the normal to the surface.

The neighbourhood graph helps in this computation by giving the points in the neighbourhood

of the point in question. Next comes the sub-problem of finding a plane that approximately

contains a given set of points. It is an elementary result from coordinate geometry that three

points exactly determine a plane in 3D space. So, one possible approach would be to take three-

point-planes obtained from each three-at-a-time choice of points in the neighbourhood and then

take their average plane as the estimate. This would involve nC3 three-point-plane calculations

followed by the averaging calculation. This is feasible solution but has the following disadvan-

tages : (i) it is computationally much more expensive than it needs to be (ii) it doesn’t make

any guarantee on optimality of the solution.

This solution is usually sub-optimal, especially in the presence of noise. There is a less expensive

and more robust way of fitting an approximate plane through n given points, using what is called

the least squares fitting method.

The least squares method is a general method of solving overdetermined systems of equations,

i.e. where there are more equations than variables. When faced with an overdetermined system

of equations (i.e. equations of the form f1 = 0, f2 = 0, . . . , fn = 0, where much fewer than n

variables are involved in the equations, instead of the likely futile task of trying to find the vari-

able assignments that make all of f1, f2, f3 etc. vanish, it is feasible to find a variable assignment

that brings an appropriate aggregate of f1, f2, f3, . . . , fn as close to zero as possible.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 102

The popularly chosen aggregate is the sum of squares, because squaring cancels (i.e. makes

positive) the sign of individual terms, so that by bringing the aggregate close to zero couldn’t

possibly mean that terms with opposite signs conspire to bring the aggregate close to zero but

each term is individually substantially different from zero. Taking the absolute value function

instead of squaring would also have dropped the sign, but the absolute-value function introduces

non-differentiability in the aggregate function, thereby making it unsuitable to most mathemati-

cal function minimisation procedures. A higher even-power (e.g. the 4th power) could potentially

be used instead of the square but the square is simpler and square’s derivative is linear (which

in turn allows for efficient computational solution procedure) and the squared error term has

solid theoretical underpinnings (e.g. Gauss proved that least squares solution is equivalent to

maximum likelihood estimation if the fit-error is assumed to be normally distributed).

So, back to the problem of fitting a plane through a set of points. There is an easy but slightly

fragile way and a complicated but more robust way. The easy way is to assume that the plane is

described in the form where z is expressed as a function of x and y, say f(x, y) = Ax+By+C.

Thus the equations are: Ax1+By1+C−z1 = 0, Ax2+By2+C−z2 = 0, . . . , Axn+Byn+C−zn = 0

(and please note that A,B, and C are the variables to solve for). Thus it is possible to express

the aggregate error function as the sum of squares of the left-hand-side expressions of these

equations. This function is quadratic in A, B and C, which means that it is a parabolic hyper-

surface in a 4d space. When the function is quadratic in its variables it has exactly one optimum

and this can be found by solving a system of linear equations. In this case the system of equa-

tions can be obtained by a simple calculus result - that the derivative vanishes at the optimum

point. So if partial derivatives are taken of the sum of squared error function and equated to

zero, then one gets exactly three linear equations which one can solve to obtain the best fit

A,B, and C. This works but has the disadvantage that when the points are approximately on

a vertical plane (i.e. approximately on a plane perpendicular to the x-y plane), the assumption

that z can be expressed as Ax + By + C breaks down. This leads to numerical instability and

potentially singularity of the system of equations. This difficulty is merely due to singularity

of the parametrization and not an intrinsic geometric singularity. This can be avoided using

what is called geometric least squares or orthogonal regression. In this method, instead of the

taking the difference between the modelled and datum z values in the error function, one could

take the orthogonal distance of the points from the plane as the error terms. In essence, the

geometric least squares process involves finding the plane for which the sum of squared distances

of the points from the plane is as low as possible. Let’s say the plane is defined by the equation

a ∗ x+ b ∗ y + c ∗ z + d = 0, where the normal (a, b, c) is normalized (i.e. a2 + b2 + c2 = 1), the

distance of a point (xi, yi, zi) from the plane is given by :

D(xi, yi, zi) = (a ∗ xi + b ∗ yi + c ∗ zi + d)

The sum of squares of all such distances, the sum being taken over each neighbourhood point is

an error function that is needed to be minimized in order to find the best a, b, c, and d that fits

the points. Given a set of n points, the squared error function is the sum

E =

n∑
i=1

(D(xi, yi, zi))
2

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 103

Derivatives vanish at the stationary point, therefore:

∂E

∂a
=

n∑
i=1

2xi(axi + byi + czi − d) = 0

∂E

∂b
=

n∑
i=1

2yi(axi + byi + czi − d) = 0

∂E

∂c
=

n∑
i=1

2zi(axi + byi + czi − d) = 0

∂E

∂d
=

n∑
i=1

−(axi + byi + czi − d) = 0

The last of these equations gives:

d = a

∑n
i=1 xi

n
+ b

∑n
i=1 yi
n

+ c

∑n
i=1 zi
n

This geometrically means that the best fit plane passes through the centroid of the points. If

one solves the first three equations in a coordinate system centred at the centroid, it can be seen

that the constant term d vanishes in that system. Thus if the new coordinates are called x′, y′, z′

(i.e. with the definitions x′
i = xi −

∑n
k=1 xk

n , y′i = yi −
∑n

k=1 yk

n , z′i = zi −
∑n

k=1 zk
n), the following

set of equations are obtained.

n∑
i=1

2x′
i(ax

′
i + by′i + cz′i) = 0

n∑
i=1

2y′i(ax
′
i + by′i + cz′i) = 0

n∑
i=1

2z′i(ax
′
i + by′i + cz′i) = 0

or

a

n∑
i=1

(x′
i)

2 + b

n∑
i=1

x′
iy

′
i + c

n∑
i=1

x′
iz

′
i = 0

a

n∑
i=1

x′
iy

′
i + b

n∑
i=1

(y′i)
2 + c

n∑
i=1

y′iz
′
i = 0

a

n∑
i=1

x′
iz

′
i + b

n∑
i=1

y′iz
′
i + c

n∑
i=1

(z′i)
2 = 0

This has a trivial solution a = 0, b = 0, c = 0 but that solution is useless and it violates the

requirement that (a, b, c) is a normalized vector. On taking into account the normalisation

condition a2 + b2 + c2 = 1, this reduces to an Eigenvalue problem for the following matrix.
∑n

i=1(x
′
i)

2
∑n

i=1 x
′
iy

′
i

∑n
i=1 x

′
iz

′
i∑n

i=1 x
′
iy

′
i

∑n
i=1(y

′
i)

2
∑n

i=1 y
′
iz

′
i∑n

i=1 x
′
iz

′
i

∑n
i=1 y

′
iz

′
i

∑n
i=1(z

′
i)

2



Enhancing Livestock and Human Health Monitoring using Electronic Sensors 104

The Eigenvalues correspond to the sum of squares of distance and the corresponding Eigenvectors

are the associated values of a, b, and c. The least squares solution then corresponds to the small-

est Eigenvalue. The above method is a 3-dimensional special case of the general k-dimensional

method given in [156]. A pseudo-code form of this calculation is given in Algorithm 3 of chapter

3. In that chapter the best-fit plane fitted to a point-cloud scanned on a planar board was used

as reference for estimation of Kinect’s accuracy.

4.5 Estimating Curvatures at the Cloud Points

This section presents the key definitions of Estimating Curvatures at the Cloud Points as used

in a geometric contexts. A brief outline would be presented here. The following texts present a

more detailed discourse: [122],[143]

Curvature is a measure of how curved or contorted the surface is at a given point. It is useful as

a local feature for classifying the point clouds. Curvature at a point on a surface is the rate at

which the normal direction changes as one moves away from the point. This definition implies

that curvature is directional, in that it would depend on the direction chosen in moving away

from the point. Among all the possible directions there is a specific direction along which the

curvature is the highest. This is called the principal curvature direction - it arises from the

intrinsic geometry of the surface and does not depend on the coordinates or parametrization of

the surface. The principal curvature direction, along with the curvature value can serve as a

useful feature in classifying the surface points. There are actually two directions called principal

curvature directions, one direction along which the surface curves the fastest (i.e. the normal

vector changes at highest rate) and another direction perpendicular to it. Patterns of surface

curvature is classified into (A) ellipsoid-like - for which the surface curves away on the same side

of the tangent plane along both principal directions, (B) cylinder-like for which the normal does

not change locally along one of the principal directions and (C) hyperboloid-like - for which the

surface curves away on opposite sides of the tangent plane along the two principal directions.

Such classification is characterised by the product of the two signed principal curvature values

and this product is called Gaussian curvature. Curvature values are local properties and could

depend on small features like creases and kinks, however, if one applies a smoothing filter on the

normals prior to curvature calculation, that helps with reducing the overly localised curvature

variations. There are two ways of estimating curvature - (i) estimation by discrete points and

(ii) using multivariate calculus on an approximated algebraic surface.

4.6 Geodesic Distance

This section presents the key definitions of Geodesic Distance as used in geometric contexts. A

brief outline would be presented here. The following texts present a more detailed discourse:

[168],[181]

Geodesic lines represent shortest paths between points on a surface such that the paths are

confined to the surface. Calculus of variations provides a toolkit for calculation of geodesics on

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 105

analytic surfaces, but such a treatment would require the entire surface to be approximated by a

single differentiable analytic form. This would be hard to achieve for a discrete definition derived

from point-clouds, so the approach that has been taken is that of approximating the geodesics

as shortest paths on the surface-like graphs discussed in the section 4.2.

The nodes in such graphs are points sampled on the imaged surface, and as such the distances

between sampled points may be annotated on the graph edges as weights to allow shortest-path

algorithms to work. The shortest paths on such graphs approximately correspond to the geodesic

paths on the surface. Since at each node the directional resolution is limited, it can be argued

that the approximation is too crude to be considered equivalent to the true surface geodesics.

Irrespective of whether the graph-based geodesics correspond to true surface geodesics, it does

provide a very useful feature for limb classification. Algorithm 6 presents the pseudocode form

of the geodesic distance labelling process.

Geodesic distance labelling Algorithm;

Data: Geometric graph G

Data: A set of distinguished vertices Vs ⊂ V of G, called the source vertices

Result: A distance labelling D(v(p)) of each vertex v(p)

foreach vertex v(p) in V do

if v(p) ∈ Vs then
Initialise D(v(p)) to 0

end

else if Adj(v(p))
⋂
Vs 6= Φ then

Initialise D(v(p)) to infq{|p− q| : v(q) ∈ Adj(v(p))
⋂

Vs};
end

else

Initialise D(v) to ∞;

end

end

while V/Vs 6= Φ do

foreach v(p) ∈ {v(p) : D(v(p)) = infq{D(v(q)) : v(q) ∈ V/Vs} do
foreach v(q) ∈ Adj(v(q)) do

D(v(q))← D(v(p)) + |p− q|;
end

Vs ← Vs

⋂
v(p);

end

end

Algorithm 6: Geodesic distance labelling

4.7 Geodesic Centroid on Geometric Graph

As previously discussed, graph-based geodesics are used for defining features on the scanned

points. Such features are defined with reference to certain special points. For example, the

lowest and highest points in the vertical direction can serve as start point for geodesic distance

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 106

labelling. Similar special points can serve as start and end points for Graph-Cut and Max-Flow

algorithms. It is often useful to find the most central point in a sub-region of the point-cloud to

serve as a similar special point for an algorithm. The geometric centroid of the scanned points is

not useful in this context because the geometric centroid could lie outside the region for a non-

convex point-set. The centroid we need is a central point on the surface segment in question.

The notion of centrality in a graph needs to be clarified. Following are two ways of defining a

central node.

• Two extremities of the minimum spanning tree are defined using two traversals - start with

an arbitrary node and go to the farthest reachable node. That would be the first extremity.

Next start from the first extremity and go to the farthest reachable node and that would

be the second extremity. The point that lies halfway on the shortest path between the two

extremities is a central node.

• A central node could be defined by finding the root node that best balances the minimum

spanning tree of the graph.

A pseudocode implementation based on the firse definition is given in Algorithm 7.

Algorithm for Geodesic Centroid;
Data: Geometric graph G
Result: A graph based geodesic centroid of G
Initialise EMST to Φ;
foreach vertex v(p) ∈ V (G) do

root(v(p))← v(p);
end
foreach edge epq ∈ E(G) in increasing order of |p− q| do

if root∗(v(p)) 6= root∗(v(q)) then
EMST ← EMST

⋂
epq;

root(v(p))← root(v(q));

end

end
Now there is a spanning tree represented as a set of edges EMST ;
Choose an arbitrary vertex v(p) ∈ V (G); Find the vertex v(q) farthest from v(p) through edges
of EMST ;
Find the vertex v(r) farthest from v(q) through edges of EMST ;
Find the vertex v(r) that is halfway between v(r) and v(q) through edges of EMST ;
Return v(r) as the graph-based geodesic centroid

Algorithm 7: Algorithm for Geodesic Centroid of a Geometric Graph

In algorithm 7 , root∗(v(p)) refers to the transitive terminus through the root function. Intu-

itively, it is the vertex you converge on if you keep applying the root function iteratively from

v(p). It may be written as a recursive function as follows :

The root∗ value for a vertex identifies its connected component in the partially constructed MST

graph. So the if statement in the above algorithm checks if the edge epq connects two distinct

components of the partially constructed MST graphs.

The geodesic distance between two points in the point cloud is conflated with the graph distance

between their corresponding vertices in the geometric graph. Thus, equipped with the centroid

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 107

Function root∗;
Data: A vertex v(p) of the geometric graph G
Result: The transitive terminus of v(p)
if root(v(p)) = v(p) then

return v(p)
end
else

return root∗(root(v(p)))
end

Algorithm 8: Function to compute terminal root of a vertex

and distance function, one can execute a clustering algorithm on the lines of k-means clustering

in Euclidean space. The k-means clustering algorithm is described in algorithm 9.

Graph based K-means clustering;
Data: A geometric graph G, and the number k
Result: A partition of the vertices of G
Randomly choose k distinct vertices from G and call it the set CC;
Create an empty set and call it CCprevious; while CC 6= CCprevious do

CCprevious ← CC;
Assign to each vertex of G, cluster(v(p))← Geodesically nearest vertex in CC;
Divide the vertices of G into k partitions so that each partition is identified by equality of
cluster assignment;

Recompute the graph based centroid of each subgraph formed by vertices in each partition;
Assign CC ← the set of centroids of the partitioned subgraphs;

end
Algorithm 9: Algorithm to segment the point cloud into geodesic clusters

Algorithm 7 is a crucial tool for finding a central location that is guaranteed to stay on the surface.

Contrast this with the euclidean centroid that would generally lie away from the surface. This

can be used in a surface-constrained clustering algorithm. If the k-means clustering were to be

applied on the points based on euclidean distance and Euclidean centroids, points that are distant

in geodesic sense, but closer in space would tend to stick together in the same cluster. Since it

is desirable to segment the surface into segments, it is not desirable to have two topologically

distant regions to form the same cluster due to proximity in euclidean space. For example, when

the cup is close to the mouth, it would become a challenging task for the labelling stage if the

cup and the mouth formed a cluster. It is essentially a k-means clustering algorithm based on

distances measured along the surface.

4.8 Geodesic or Graph Based Clusters

This section presents the key definitions of Graph Theoretic Clusters as used in a geometric

contexts. A brief outline would be presented here. The following texts present a more detailed

discourse: [85],[195], [8]

Clustering is the process of grouping a set of points into several groups based on some similarity

or proximity criterion. A common clustering algorithm is the k-means algorithm. In k-means

algorithm, the data-points are grouped into clusters by iteratively re-defining the cluster or group

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 108

assignments. In each step of the iteration the cluster means are recomputed and the data-points

are re-assigned to the nearest re-computed mean. The initial values of the cluster means are set

arbitrarily and after a number of iterations the assignments converge a certain best clustered

state. It can be proved that the convergence is always reached.

The two steps that get iterated alternately are called the assignment step and the update step.

In the assignment step each data-point is assigned as group member of its nearest mean and the

update step calculates the new mean for the data points assigned to the same group.

In the k-means algorithm, the ’mean’ is a point in the space of the data points and the mean

is calculated as the centroid of the data-points. Accordingly, the assignments are made based

on the lowest Euclidean distance criterion. We can generalize the notion of ’mean’ in k-means

algorithm so that it represents something different from the centroid of its cluster members.

The ’mean’ need not necessarily be a point. For example, one could say that a cluster centre

represents a line in space of the data points and a point is assigned to the line to which its

orthogonal distance is lowest. Likewise the line itself is the best-fit line of its cluster members.

In that case the algorithm would be as described below.

Initially k lines are initialised randomly or according to a fairly arbitrary procedure. Let the set

of these lines be called L. Carry out the following two steps repeatedly until the assignment step

stops changing the point-to-line assignments.

Assignment step: Assign each point to the line that is closest to the point. The distance is

just the length of the perpendicular dropped from the point to the line. Halt the algorithm if

none of the assignments change.

Update step: Update the geometry (i.e equation) of each line as the least squares fit line that

approximates the assigned points. the new means to be the centroids of the observations in the

new clusters. �

Theorem: The k-lines algorithm converges.

Proof: It would be sufficient to show that the algorithm is a monotonic coordinate descent

over a positive definite function. Consider the following positive definite function:

E =
∑
λ∈L

∑
p∈M(λ)

D2(p, λ)

Here L is the set of lines. For a given line λ, M(λ) is the set of points assigned to the line. For

a given point p and a given line λ, D2(p, λ) is the square of the distance between the line and

the point. In both the assignment step and the update step the above function either reduces

or remains the same. The e-step reduces the above function my minimising over the point-to-

line assignments. In the update step the function reduces by minimising the over the possible

geometries of the lines.�

In the above it became clear how a new coordinate-descent algorithm is formed by generalizing

the notion of the cluster. It is desirable to similarly generalize the clustering to a graph based

definition of clusters. The key difference here is in the following two aspects:

• The centre of the cluster is taken to be the geodesic or graph-constrained centroid of the

cluster.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 109

• Geodesic proximity is taken to be the criterion of assignment of points to its cluster, i.e.

every point gets assigned to the cluster centre of minimum geodesic distance.

4.9 Bayesian Framework for Combining Limb Labels

This section presents the key definitions of Bayesian Framework for Combining Limb Labels

as used in a geometric contexts. A brief outline would be presented here. The following texts

present a more detailed discourse: [208], [149]

In a Bayesian framework [149] there are rules to attribute belief on a given outcome in response

to given sets of possible observations. The main objective is to combine such beliefs to compute

the updated belief in response to actual observations. Beliefs can be treated like probabilities and

combined using Bayes’ theorem (see [149]). If the first observation implies a belief p1 and a second

observation implies a belief p2 on a given outcome and the two observations are independent of

each other, the combined belief on the same outcome is given by the following :

Pcombined =
p1p2

p1p2 + (1− p1)(1− p2)
(4.1)

Similarly if there are n independent observations implying a belief of p1, p2, . . . pn on the specific

outcome, then the combined belief is given as follows :

Pcombined =

n∏
i=1

pi

n∏
i=1

pi +
n∏

i=1

(1− pi)
(4.2)

To understand how this works consider the two possibilities in question. One possibility is that

the outcome is true and the other is that it is false. The suggestion that the ith observation

indicates the outcome with probability pi can be seen as an indicator of the outcome with

confidence level pi. This means that the indicator is randomly correct about the outcome pi-

fraction (or 100pi %) of the time. In the first possibility, all the indications are correct and in

the second possibility all of the indications are wrong. So, what is the probability that the first

possibility holds in light of all those partially reliable indicators indicating the outcome? In the

absence of any further information, the best estimate would be to split the probability between

the two possibilities in the ratio of probabilities of the two combinations of indications that are

associated with each possibility. In other words, the probability of a possibility is proportional to

the probability of the combination of indicators that indicate that possibility. This quantity, i.e.

the probability of the combination of indicators that amount to a given possibility is called its (i.e.

the possibility’s) likelihood. The likelihood is what the possibility’s probability is proportional

to, but is not equal to. Instead, the probability of the possibility is determined by normalising

its likelihood using the likelihoods of all the possibilities spanned by the indicators.

In the above situation there are two possibilities - (1) the outcome is true and (2) the outcome

is false. If the likelihood function is denoted as L then the probability of the outcome is given

as follows :

P (outcome is true) =
L(outcome is true)

L(outcome is true) + L(outcome is false)
(4.3)

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 110

If there are N possibilities spanned by the indicators, then the Bayesian probability of a given

possibility is as follows:

P (possibilityi) =
L(possibilityi)

N∑
j=1

L(possibilityj)

(4.4)

In the original setting, the indicators are mutually independent, so the likelihood of the first

possibility (i.e. all the indicators are correct) is the product of the individual pi values. Likewise

the likelihood of the second possibility (i.e. all the indicators are incorrect) is the product of all

the (1− pi) values. Thus one gets equations 4.1 and 4.2.

The general framework presented in equation 4.4 is more widely applicable and does not require

the indicators to be independent. When two or more indicators are not independent of each

other, it becomes necessary to know the indication-level implied by each joint combination of

the said indicators. For example, if indicators I1 and I2 are not independent, then the proba-

bility of both being correct is not the product of their individual probabilities p1 and p2. For

such cases the combination-specific probabilities would have to be specified in tables known as

joint-distribution tables and/or conditional probability tables. In a joint distribution table, the

probability of each conjunctive combination of indicators is given explicitly. In a conditional

distribution table, one needs to specify the conditional probability of correctness of one indicator

given the other. The objective of either table is to specify combined probabilities of mutually

dependent indicators.

Bayesian belief network (BBN) is a tool that allows specification of such dependences using a

graphical notation and tabular input of conditional/joint distributions. It may be useful to sim-

plify matters by flattening or expanding the dependent combinations and treat each combination

as a separate indicator. This simplification allows belief-propagation work according to equation

4.2. This approach can be used in corroborating evidence from multiple indicators and would

form the basis of a probabilistic rule-base for updating reliability functions from measurements.

A special status is given to a particular indicator called the prior, which represents the a-priori

knowledge about the probability of the outcomes in the absence of any transient observations.

This distinction is useful in eliciting a base-line for the uncertainty.

So far a very special case was being considered in which a Bayesian framework can be used. It

is special (i.e. not general enough) in more than one way. Firstly it is being applyied to a single

proposition, i.e. there is just one hypothesis whose probability is sought to be computed from

some indicators. It is more common to try and estimate a probability distribution over a range

of hypotheses.

4.10 Conclusion

A depth image captured by the Kinect sensor is a very crude representation of a 3D scene. The

depth frame consists of tens of thousands of points sampled on the surfaces that were in front

of the Kinect when the frame was captured. To get from this raw representation to detection

of limb angles involves multiple stages of processing. A substantial body of research and explo-

ration has been done towards each processing stage. This chapter presented the mathematical

and algorithmic tools that were explored and found useful in processing and annotation of 3D

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 111

depth image data.

The chapter started with methods of defining connectivity/neighbourhood/adjacency relation-

ships between individual sampled points. It was shown how neighbourhood graphs and polyhe-

drons could be inferred from scattered points. Subsequently it was shown how local geometric

properties like normal and curvature could be estimated from the points and their neighbourhood

graphs using geometric least squares method. This was followed by some algorithms that were

based on a geodesic distance function defined on the approximated surface model represented by

the said neighbourhood graphs. The geodesic distance function is extremely useful in defining

recognizable features in the point cloud. It is using the geodesic-distance based features that the

limbs are detected and thereby calculate angles between limbs. Novel concepts of graph-theoretic

centroid and graph-theoretic clustering were introduced next. These algorithms play a crucial

role in limb detection. The chapter ended with a section on how to use a Bayesian method for

combining beliefs on any specific labelling.

Chapter 5

Gait Monitoring Using Kinect

Sensor

5.1 Clinical Gait Monitoring

Afflictions of the brain and the nervous system, such as stroke, cerebral palsy, multiple sclerosis,

Parkinson’s syndrome etc. cause degradation of patient’s motor functions. Such conditions can

impair balance, walking gait and get in the way of doing everyday tasks, such as eating, drinking,

picking things up etc. The severity and patterns of difficulty varies from patient to patient and

often change with progress from healing and regress from deterioration. It is important to

assess and track such variations to help with medical diagnosis. A variety of interventions and

therapies have been developed to relieve symptoms of such mobility conditions. The ability to

measure and quantify a patient’s motor performance parameters is extremely valuable to clinical

intervention processes. It serves as a feedback in the investigative aspects of therapy as well

as helps with the choice of therapeutic alternatives. It helps with classification of types, stage,

and severity of a patient’s condition and makes it possible to unambiguously communicate such

information. Gait monitoring is particularly useful for clinical study of patients with mobility

problems caused by orthopaedic, rheumatic, and neurological disorders. There are high precision

measurement facilities (Gait laboratories) but such facilities are expensive and rare. Also, results

from such laboratories do not translate well to clinicians in practical terms [164]. As a result,

in many areas of clinical practice, motor ability continues to be measured through the use of

standardized rating scales based on an expert opinion. These classification scales include the

Expanded Disability Status Scale (EDSS) [98], the Gross Motor Function Classification System

[131], the Unified Parkinson’s Disease Rating Scale (UPDRS) and the Movement Disorder Society

sponsored UPDRS (MDS-UPDRS) [63]. These scales involve clinical tests in the presence of

experts. The patients are asked to perform certain functional movements - such as walking,

turning keys, picking up a small object, feeding oneself with a spoon, touching the finger to

nose etc. The actions are observed by the expert who then grades them on an ordinal scale

for each action. These scores are then combined and summarized into aggregates for certain

113

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 114

categories and an overall score. The general score and individual scores are then combined and

summarized into system scores and/or a global score which may be used to characterize patients

and judge specific treatments. Despite careful design, standardised rating scales have inherent

issues of sensitivity and reliability [76]. The apparatus for classifying and articulating these

assessments in a meaningfully quantifiable way are arguably somewhat blunt. Such examinations

and assessments uses standardized rating scale such as Gait Assessment Rating Scale (GARS)

for gait analysis. It takes about 1 hour of neurologist’s time and hence are very expensive.

Figure 5.1 shows the phases of a gait cycle that can be characterised primarily by how the knee

angle varies along the periodic cycle. The gait cycle of a person with mobility or coordination

problem is usually quite different from that of a healthy person. Figure 5.3 shows plots of knee

angles along the gait cycle, with the blue traces for a normal healthy person, and the red traces

corresponding to the gait of people with osteoarthritis. It is very useful monitor the progression

of the disorder and the effect of medication through gait monitoring. Such monitoring currently

requires expensive facilities (e.g. VICON) that cost in excess of tens of thousands of pounds.

This high cost limits the availability and frequency of such monitoring sessions. On the one hand,

the gait analysis laboratories offer opportunities for more accurate, reliable and precise motion

tracking but their practical requirements and cost place huge restrictions across different poten-

tial sites. On the other hand, the various movement classification scales may be limited in their

precision and reliability but do have the benefit of being more widely deployable across a range of

different healthcare contexts. These factors have motivated keen interest in recent development

in sensor technology and robust wireless data transfer. The automated sensor assessment could

reduce the cost of gait analysis. A gaming console device, the Microsoft Kinect sensor, (that costs

under £100) can be used for such gait monitoring in the comfort of the patients’ own home and

care-homes. Its 3D imaging capabilities have been described as inadequate [49] for healthcare

applications with the primary objection been its lack of accuracy. The previous rehabilitation

monitoring application of Kinect has worked around the low accuracy and not addressed it (e.g.

by way of monitoring aggregated characteristics rather than full motion capture). This work

develops a set of algorithms which enhance the accuracy and demonstrate the efficacy of Kinect

as an inexpensive alternative to elaborate setups like VICON. The developed algorithms have

been encapsulated in a gait monitoring system software, Joint Angle from Frames Acquired using

KinECt (JAFAKEC) [154].

Understanding the walk cycle is an important aspect for gait modelling. The walk cycle can

be broken down into various phases [23] that are based on the sequence of feet to the point of

contact to the ground. The left stance phase of a stride starts with right foot on the ground and

the left heel starting to strike the ground. In this phase the body is supported by both feet until

the right foot starts to move up and the right toe leaves the ground. Then the right foot leaves

the ground and starts swinging forward. The right heel strikes the ground and both the feet are

on the ground again. Next the left toe leaves the ground and the left stance phase is completed.

The period in which right toe leaves the ground, the right leg swings forward and the right heel

strikes the ground is the right swing phase which is a subinterval of the left stance phase. The

right stance phase is initiated by the right swing phase. The analogous phases proceeds with the

roles of the right leg and the left leg switched. The walking cycle [82] is defined by alternating

periods of single and double support as shown in Figure 5.1. Kadaba et al. [90] introduced a

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 115

Figure 5.1: Human Walk Cycle [82]

statistical method for lower limb gait analysis and calculated the joint angle data. They [91]

have used the 6-camera 50Hz VICON system to collect lower limb joint kinematics data and

used VICON Clinical Manager software to calculate the joint angles. Figure 5.2 shows a plot

of the knee flexion angle for a typical gait cycle. Such a plot can be of diagnostic value, as the

pattern of the plot could reveal the nature and intensity of the disorder. For example, Figure 5.3

shows the knee flexion angle over gait cycles for a normal person (the blue trace) and a person

with osteoarthritis (the red trace).

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 116

Figure 5.2: Knee flexion and extension angles of gait cycles [90]

Figure 5.3: Knee flexion angle curves of normal subjects (blue) and osteo-arthritis patients
(red) (Source: [38])

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 117

5.2 Literature Review

The surveyed papers may be classified into three categories: (a) papers on applications of Kinect

for human lower limb and gait in healthcare (b) papers on gait feature representation and gait

recognition (c) papers on algorithms for gait capture. Following is a survey of papers reviewed.

5.2.1 Previous work on applications of Kinect for human lower limb

and gait in healthcare

The gait analysis laboratories offer highly precise, reliable and accurate motion capture but

their high cost and large facility requirements make their deployment hard to afford for frequent

monitoring. Infrequent use reduces the scope of continuous tracking and fine-tuning of clinical

interventions. On the other hand, low cost consumer-grade sensors and depth sensing cameras

like Microsoft Kinect have the potential to produce more cost effective and easy-to-use systems.

Motion frames captured by Kinect has been used in the context of clinical applications by many

researchers in the last few years. The evidence so far suggests that Kinect is appropriate for

functional ability assessment of motion in healthy people [16]. Stone and Skubic [174], [171] have

worked using Kinect motion data in order to detect feet touching the ground. Their system au-

tomatically generated alerts to clinicians in response to specific gait patterns of patients residing

monitored continuously at their homes. Mentiplay [119] have focussed on specific characteristics

such as static foot pressure. Stone and Skubic [173] applied Kinect in continuous in-home gait

analysis. Ning and Guo [126] have used Kinect depth data for assessing spinal loading. Stone

and Skubic [172] efficiently used Kinect in the context of Parkinson Disease (PD). Parajuli et al.

[133] developed a senior health monitoring system using the Kinect to analyze gait, performed

posture recognition and transitions between sitting and standing and also compared normal ver-

sus abnormal walking to help prevent falls of elderly people at home. Wearable, mobile device

sensors and biomarkers have been used for patients with PD to quantify gait and tremor [51],

[132], [80] but many older people are reluctant and sometimes strongly opposed to the use wear-

able devices because of inconvenience [39]. Remote health monitoring and activity tracking using

wireless devices [6] can be used to assess recovery progress and streamline the communication

between the patient and doctor. Geerse et al. [62] extracted human gait features using the

skeletal joint data using multiple Kinect with 10-meter walking test. Kinect has been used by

Dolatabadi et al. [47] in patients’ home to monitor changes in spatio-temporal gait parameters

like step length, stride length, stance time and cadence during the recovery period. Pfister et

al. [138] measured stride timings using Kinect, compared with VICON and stated that Kinect

requires adjustments to accepted as a clinical tool for gait monitoring purposes.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 118

5.2.2 Previous work on algorithms for gait capture

Human identification by gait has been done by Goffredo et al. [64] using Kinect using mark-

erless feature extraction method by implementing the K-nearest neighbour (KNN) algorithm.

A recognition rate of 73.6% is achieved using the KNN classifier with k=5. Cunado et al. [35]

extracted gait signature from a sequence of walking using the KNN classification to Fourier series

components to represent the motion of the upper leg. For more accurate lower body segmented

parts associated with the most important body motion, the human leg motion is modelled as a

pendulum [35]. Cippitelli et al. [27] proposes a low complexity algorithm which is applied to

extract data from Kinect in real time and computes joint trajectories in scanned human motion

from a side view. The joint extraction is used to analyse gait for the “Get Up and Go Test”.

Rimminen et al. [147] used near-field imaging floor sensors for fall detection. Two-state Markov

chain was used for fall classification (falling, getting up) and pose estimation was implemented

using Bayesian filtering. Gabel et al. [58] developed a method of full body gait analysis through

the use of Kinect-based data and a multiple additive regression tree algorithm [57], [56]. The

system monitored the time of the stride, stance and swing phases of a gait cycle, as well as an-

gular velocities of arm movements; however, measurements of lower limb angular velocities and

core posture were also noted to be possible. Xue et al. [199] applied the wavelet decomposition

of Gait Energy Image (GEI) and obtained skeleton parameters to distinguish between different

types of gaits like normal walk, walking with volleyball etc. Support Vector Machine (SVM) has

been used as classifier for different gaits. Lopez et al. [111] also used SVM for classification of

gait data. Tsanas [185] presents a novel speech signal processing algorithms for high-accuracy

classification of Parkinsons Disease. Schnabel [155] measured geodesic distances of human body

parts using graph-based representation of the Kinect depth data and tracked various full-body

movements for 3D pose estimation using efficient RANSAC algorithm for point cloud shape

detection. Shotton et al. [161] uses a Bayesian machine learning approach to estimate limb

orientations from Kinect’s depth image in real time. Schwarz et al. [158] measured geodesic

distances of human body parts using graph-based representation of the Kinect depth data and

tracked various full-body movements for 3D pose estimation.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 119

5.2.3 Previous work on gait feature representation and gait recognition

Gait recognition techniques can be broadly classified into model based methods [64], [177], [199]

and appearance based [200], [166] methods. Model based methods usually extract the motion

features, fits various kinds of stick figures through tracking the body parts and measures the pa-

rameters using fitted models. Appearance based methods characterize the whole motion pattern

of the human body and are vulnerable to illumination, variation in clothing, etc.

Various gait recognition methods have been proposed to address multiple covariates such as

variation in clothing, load carrying, walking speed, occlusion and unconstrained paths. Lopez-

Fernandez et al. [111] presented a rotation invariant gait descriptor for multi-view recognition on

in-constrained paths using support vector machine (SVM) classification. Hofmann et al. [78] im-

plemented Principal Component Analysis and Linear Discriminant Analysis (PCA+LDA). Also

for classification, nearest-neighbor classification has been used in depth based gait recognition

technique from Kinect data. Sivapalan et al. [166] developed a frontal gait recognition system,

Gait Energy Volume (GEV), using appearance-based techniques and Kinect depth data. Tang

et al. [179] proposed a Multi-View Synthesizing Method (MVSM) for gait view angle estimation

using depth data from Kinect. In their system, Gaussian curvature and mean curvature are

used to extract 3D gait features. The method could be used for practical surveillance applica-

tions. Goffredo et el. [64] implemented a marker-less model-based approach for gait biometrics

for self-calibrating view-independent gait feature representation and estimated the poses of the

lower limbs based on marker-less motion estimation. They have presented a marker-less view-

independent gait analysis algorithm in which the extraction of gait features are invariant to

change in view.

The present contribution (JAFAKEC-G) is in principle on the lines of [64] in that it also esti-

mates joint coordinates based on image features. However, in terms of algorithmic details, the

proposed approach is quite different. Goffredo [64] uses coordinates and Euclidean distances in

2D pixel space for defining features, whereas the current work uses coordinates in 3D space and

defines features in terms of geodesic distance.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 120

5.3 JAFAKEC-G for Gait System Overview

As introduced in the introduction section, JAFAKEC-G is a tool developed for visualising and

analysing gait data as captured by the Kinect sensor. It uses the depth field image captured

using an infrared laser array projection. Making it based on the depth field image alone offers

the advantage that it can operate without requiring the patient to wear additional objects like

reflecting markers or sensors. The setup required is minimal, so that the system could be used in

GP’s or nurses’ chambers, rather than specialized body tracking laboratories. The time typically

allocated per patient in a GP or nurse appointment is only a few minutes, and an elaborate setup

process (e.g. changing clothes, wearing markers/sensors) would not be practical in such scenarios.

A table mounted kinect sensor and a 3 meters of walking space would be adequate to capture the

required depth image. JAFAKEC-G system consists of the following software components: 1. A

3D point cloud viewer to render the depth frame as directly captured by the Kinect. For each

frame captured by Kinect the depth values for each captured pixel is stored. The display method

of the viewer goes through the pixels and renders 3D glyphs for each pixel that belongs to the

person (patient) detected in the frame. The point cloud animation is rendered in real time and

allows the user to interact with the 3D view for obtaining the coordinates of any point selected

using mouse clicks. 2. A kinematics skeleton model viewer that renders a realistic skeleton

according to a given set of joint coordinates. This skeleton can be controlled by a stream of joint

coordinated computed from the Kinect data. 3. JAFAKEC-G has set of functions dedicated for

automatic measurement of knee angle based on the point cloud data.

5.4 Algorithms for Gait Capture from Depth Image

The following algorithms were implemented and tested within JAFAKEC-G to capture an accu-

rate time-series of joint angles from the depth image captured by the Kinect sensor.

5.4.1 Algorithm : Medial Axis from Binary image

The depth frames are converted into grey-levels as shown in Figure 5.4, which is then converted

into a two-level bit-map (binary image), shown in Figure 5.5 to keep only the leg that is closer to

the Kinect. Next a thinning algorithm or a medial-axis algorithm is used for computing a set of

skeletal line segments that represent the central line going through the middle of the silhouette

of the binary image.

Following is the outline of a thinning algorithm based on [67].

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 121

Binary image thinning algorithm;

Data: A binary image given as a doubly indexed array P (i, j) of pixel values

Result: A skeletal image formed by thinning of the original image

iteration ← 0 continue ← true; while continue do

continue ← false; foreach pixel position P (i, j) do

P1 ← P (i, j);

P2 ← P (i, j − 1);

P3 ← P (i+ 1, j − 1);

P4 ← P (i+ 1, j);

P5 ← P (i+ 1, j + 1);

P6 ← P (i, j + 1);

P7 ← P (i− 1, j + 1);

P8 ← P (i− 1, j);

P9 ← P (i− 1, j − 1) ;

C1 ← ¬P2&(P3|P4) + ¬P4&(P5|P6) + ¬P6&(P7|P8) + ¬P8&(P1|P2);

N1 ← (P9|P2) + (P3|P4) + (P5|P6) + (P7|P8);

N3 ← (P2|P3) + (P4|P5) + (P6|P7) + (P8|P9);

N ← min(N1, N2);

iteration ← iteration + 1;

if (C == 1&2 ≤ N ≤ 3) then

if iteration ≡ 0 (mod 2) then

Q← ¬((P2|P3|¬P5)&P4);

end

else

Q← ¬((P6|P7|¬P9)&P8);

end

end

if Q then

Delete pixel P (i, j);

continue ← true;;

end

end

end

Algorithm 10: Binary image thinning algorithm

Hough transform is used to get canonical parameters of straight lines containing the medial axis

segments. These Hough transformed points are then grouped into clusters using the k-means

clustering method.

The medial axis algorithm frequently produced nice straight line segments as shown in Figure

5.6 but almost equally often produced branching lines and loops that led to difficulty of telling

apart the actual skeletal segments from branches and loops. It turned out that such branches

and loops are unavoidable in medial axis algorithms. Figure 5.7 shows the skeletal segments as

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 122

Figure 5.4: Depth frame converted into grey scale

Figure 5.5: Binarized frames representing the region around a knee

computed by Algorithm 10 corresponding to the binary leg segments shown in Figure 5.5. It can

be seen that many of the images ended up with undesirable branches. Small bumps and dents

on the boundary of the binary image can give rise to new branches in the medial axis. This

approach is thus unsuitable for the proposed application.

5.4.2 Algorithm : Sectioning the 3D point cloud

A new algorithm was developed for estimation of angle of the knee closer to the Kinect (Figure

5.8). The leg closer to the Kinect is isolated by dissecting the point cloud using a sagittal plane.

A few thin slices are taken from the point-cloud corresponding to the leg nearer to the camera.

These are somewhat semi-circular point-sets, representing the leg’s sections at various heights.

Two pairs of such slices are chosen to represent the femur and tibia each. The longitudinal

axial points of the limb section is estimated as the centre of the best fit semi-circle running

through the sample points on the section, and the line through these axial points is taken as the

geometric idealisation of the limbs. It was found that the best fit semi-circle is not always the

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 123

Figure 5.6: Medial axis skeleton from the depth image

Figure 5.7: Medial lines detected on binarized images in Figure 5.5

best measure of centre of the limb cross-section. The sectional rim centroids work better (i.e.

in better agreement with the VICON data) than the centre of the best-fit semi-circles. Despite

the improvement, the accuracy of the angle results were lower than the desired level and it was

not possible to improve on it by changing the parameters. So it was decided to adopt a new

approach.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 124

Figure 5.8: Automatically placed markers obtaining sections of the point cloud

5.4.3 Algorithm : Least Squares Line Fitting

The entire problem of gait capture could be broken down into a few stages. The first stage is that

of foreground vs. background separation. This is done using subtraction of an empty background

frame. The next step is that of limb labelling, which refers to assigning limb labels on parts of

the point cloud. The next step involves determination of medial or skeletal lines corresponding

to the limbs. These skeletal lines are geometric idealizations of the limbs much like the lines

going through the markers. The algorithm for calculating these medial lines is the processing

stage that this work investigates. The limb labelling process gives rise to designated segments

of point clouds that could each represent a limb. The method previously used in GLSKEL

involved taking two sections of the limb’s point cloud at the upper and the lower ends and join

a line through the centres of those sections. This works with partial success and is particularly

inaccurate in some configurations. In the subsequently improved method, several sections (i.e.

not just two, unlike the previous method) were taken and a line was fitted through the centres.

This modification improved improved it partially. In a further improvement all the points (i.e.

not just sections) from the labelled limb’s point cloud were used for fitting a line such that the

sum of square of distances of the line from the points is minimised.

The method boils down to determination of eigenvectors of the covariance matrix of x, y, and z

components of the points. The points on fema and tibia are approximately on a semi cylindrical

surface. A line that minimizes the distance from all of those points would be the axis of the

cylinder. So an error function was constructed that represents the sum of squares of the distances

from the line expressed as a function of line parameters. Then the partial derivatives of the said

error function w.r.t. the line parameters can be equated to zero to give rise to a system of linear

equations whose solution represents the best fit line.

The labelling of fema and tibia points was done by sectioning it using horizontal planes but when

the limbs make a non-zero angle with the vertical axis, the horizontal planes intersect the limbs

obliquely. This effect creates an axial asymmetry in the parts near the top and bottom of the

limbs. Ideally the segmentation should be done using planes that are perpendicular to the limbs.

However in order to compute such planes it is necessary to find the angle that the limbs make

with a vertical reference plane. This is a case of cyclic dependency. This problem was solved by

successive refinement of the sectional planes. This is illustrated in Figure 5.9.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 125

Figure 5.9: Point cloud segmented by planes perpendicular to the limb’s medial axis

Figure 5.10: A screenshot showing the labelled point cloud and the fitted limb axes

This works quite well in most cases (Figure 5.10) but some special problems have been identi-

fied. This method substantially improves the agreement with VICON measurements. Earlier

single sections are used which were more prone to inaccuracy than this new method which takes

into account much larger number of points at a time. Despite the improvement, this method is

sensitive to small asymmetries formed by non-uniform distribution of points and partial obscu-

ration of the fema by the swinging hand. This problem was overcome by (1) fitting a surface

and resampling points from the surface, and by (2) changing the aforementioned least square

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 126

function so as to fit an elliptical frustum through the points. An elliptical frustum would have

a few more degrees of freedom and therefore expected to produce a tighter fit of the points.

In summary, this stage of development have the following workflow in JAFAKEC-G for capturing

gait in terms of knee angles.

1. Recording the frames coming from the Kinect device (a) using a compressive CODEC, and

(b) taking advantage of the foreground vs. background separation supported by the Kinect

SDK library.

2. The depth frame is loaded and displayed in 3D as a point-cloud.

3. The leg closer to the camera is isolated by dissecting the point cloud using a sagittal plane.

4. A few thin slices are taken from the point-cloud corresponding to the leg nearer to the cam-

era. These are somewhat semi-circular point sets representing the leg at various heights.

5. Two pairs of such slices are chosen to represent the tibia and fema each. The longitudinal

axial points of the limb section is estimated as the centre of the best fit semi-circle running

through the sample points on the section and the line through these axial points is taken

as the geometric idealisation of the limbs.

6. Segments of the point cloud are labelled for each limb, which is then used to fit a 3D medial

axis by least squares.

5.4.4 Algorithm : Convex Polyhedron Fitting

Algorithm 3 has the shortcoming that when the swinging hand obscures a part of the fema,

the point-distribution gets quite distorted even after discarding the points corresponding to the

hand, as it casts a shadow on the femur, thereby producing a hole (i.e., marked by absence of

points) in the femur’s point cloud. The hole is healed by a new algorithm that fits a convex

polyhedron on the femur using the convex hull algorithm [10]. There are multiple algorithms

for computing the convex hull. An intricate but efficient algorithm is present in the CGAL

library [75]. For completeness a simplified version of convex hull computation is is presented in

algorithm 11.

Algorithm 11 has quadratic (O(N2)) cost but the CGAL algorithm [75] uses a hierarchical

decomposition scheme to reduce the cost to O(N log(N)). The convex hull thus computed is the

minimal convex polyhedron containing all the points on the fema, and when the swinging hand

casts a shadow on the fema, the convex hull produces triangular facets to fill in the concave

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 127

ALGORITHM CONVEX HULL
Data: A set of N 3D points whose convex hull is being requested
Result: A set of triangular facets representing the convex hull boundary
Project the points on a plane (say the xy plane);
Find a pair of points that would be an edge on the hull;
(This can be done using the projected points as if it was the first step of 2d convex hull
algorithm - i.e. choose the topmost point and then choose a second point so that all other
points lie on one side of the line joining the two points).
The corresponding pair of 3D points serve as the initial seed for growing the 3D convex hull.
Find a third point in 3D such that all other points lie entirely on one side of the plane passing
through the first three points.;
These three points constitute the first triangular facet of the convex hull.;
For each edge on triangle, find another point to build a new triangle that satisfies the same
property that all other points lie entirely on one side of the plane of the triangle. ;
Each triangle gives rise to new edges on which one builds triangles in the same manner as
described above;
Repeat this process until there are no open edges left (where an open edge refers to an edge
that is adjacent to just one face).;
Ultimately a closed volume will be formed by the incrementally added triangles.
Return this closed volume as the convex hull;

Algorithm 11: A 3D convex hull algorithm

cavity formed by the shadow cast by the swinging hand. The convex hull polyhedron has the

added advantage in that the inertia matrix can be calculated irrespective of the point-density.

Figure 5.11: A point distribution and its convex hull.

Consider Figure 5.11 in which the point cloud is shown using the orange coloured dots and the

convex hull using the outlines. If the inertia tensor is calculated purely from the (scattered)

points, it would pull the principal axis towards the region where the density of points is higher

(as the points get treated as point masses), whereas the convex-hull polyhedron’s inertia tensor

would implicitly assume homogeneous mass distribution over the whole volume. Point sample

density would have no impact on the inertia tensor.

A mathematical algorithm (as in [121]) can be used to compute the moment of inertia from

the facets of the convex hull polyhedron. Figure 5.12 broadly describes the mathematical idea

behind such a computation. The moment of inertia is a volume integral, which gets reduced to

a surface integrals by Gauss’ divergence theorem. Then the surface integrals are projected onto

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 128

planes of convenience, and these are reduced into line integrals by Green’s theorem, from which

the integral values can be readily computed per facet, which then can be assembled back into

the target volume integral.

Volume integral of the inertia tensor is reduced to a line integral and finally evaluated

Figure 5.12: Volume Integral Calculation

ALGORITHM: COMPUTE PRINCIPAL AXIS;
Data: A polyhedron P defined by its edges E and faces F
Result: Its principal axis
Compute inertia matrix of the polyhedron using [121];
Compute the eigenvalues and corresponding eigenvectors of the inertia matrix;
Let A be the eigenvector corresponding to the largest eigenvalue;
Normalise A into a unit vector;
Return A;

Algorithm 12: Algorithm for computing principal axis from a limb

5.4.5 Algorithm : Calculating Average of Nearly Aligned Polyhedral

Outlines.

There is a phase in which the swinging hand partially eclipses the fema in such a way that it

does not make a cavity that can be filled by the convex hull, but it chips away a corner of the

fema so that the point-set envelope is nearly convex. Such a configuration is shown in Figure

5.13.

In such case it becomes necessary to use a different approach because the convex hull’s principal

axis would incorporate the asymmetry introduced by the corner of the fema getting chipped

away. So a method was developed based on an algorithm to average out the selected outlines

of the convex polyhedron as seen from the Kinect’s view. The outline edges are the edges

that bound the silhouette of the polyhedron. Outline edges are selected that are approximately

aligned with the principal axis. This method improves over the volume principal axis because

the limbs are slender objects and their silhouette edges that run along the principal direction

further corroborates the principal direction. Algorithm 13 presents this refinement process in

pseudo-code notation.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 129

The solid coloured cyan and yellow regions are the convex polyhe-
drons fitted to the fema and tibia respectively. In this snapshot,
the swinging hand obscures a corner of the fema and thereby dis-
torts the polyhedron.

Figure 5.13: Convex Polyhedron Fitting

5.4.6 Algorithm : Use of Geodesic distance for Limb Labelling

This is a key algorithm in the current JAFAKEC-G framework. Geodesic distance is the shortest

distance between two points on a surface, as measured on the surface. Geodesic distance labelling

plays a convenient role in labelling the point-cloud. Initially the Microsoft Kinect SDK is used

as a source of hint for labelling the point-cloud. This soon turned out to be a bad choice due

to its inaccuracies leading to incorrect labelling. Geodesic distance was used as an alternative

labelling mechanism. To facilitate calculation of geodesic distance, a local neighbourhood graph

is formed from the point cloud, and single-source shortest path distances are calculated based

on local distance metrics on the neighbourhood graph. An example of this is the method of

labelling leg points. In this case the points above the waist are labelled as distance = 0, and let

Dijkstra algorithm run in order to populate the rest of the points with the shortest distance from

the points above the waist. If the distances are normalised by dividing the distance labels by the

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 130

ALGORITHM: REFINE PRINCIPAL AXIS;
Data: A polyhedron P defined by its edges E and faces F
Data: The kinect’s view direction as a 3D cartesian unit vector d
Data: The principal’s axis direction as a 3D cartesian unit vector a
Result: A refined principal axis
S ←[] /* initially empty list of silhouette edges */
foreach edge e in E do

F1, F2 ← The faces adjacent to edge e. n1, n2 ← unit normals to F1, F2 respecively
if n1.d ∗ n2.d ≤ 0.0 then

Add e to S;
end

end
Lmax ← 0
foreach edge e in S do

Let η(e) be the unit vector along edge e;
alignment(e)← |η.a|;
Lmax ← Lmax+ length of e;

end
Sort S in the decreasing order of alignment(e);
L← 0;

A← 3D zero vector

0
0
0

;

foreach edge e in sorted S do
if L < Lmax

2 then
λ(e)← length of e;
L← L+ λ(e);
A← A+ λ(e)η(e);

end

end
Normalise A into a unit vector;
Return A;
Algorithm 13: Algorithm for refining principal axis direction using nearly aligned silhouette
edges

maximum distance, the stratification by such normalised distance can give classification of the

points into such features as fema, knee, tibia, ankle etc., irrespective of the scale and absolute

position of the point-cloud.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 131

Screenshot showing fema
and tibia polyhedra. The
heatmap on the lower
limbs show the geodesic
distance from the mid
body.

Figure 5.14: Geodesic distance based labelling

Figure 5.15: Multiple geodesic distance based labelling to improve classification of cloud
points

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 132

The following Figure 5.16 describes the flowchart of the novel JAFAKEC-G system for gait.

Infer/create a graph from the foreground point cloud
(According to Algorithm 5)

Calculate centroid of the graph. It represents
points that lie in the tummy region (Figure 5.10)

Apply single source shortest path algorithm with the cen-
troid region as source to label points with geodesic distance
from the centroid region, using Algorithm 6 (Figure 5.15)

Label all nodes with the ratio of the dis-
tance to the maximum distance (Figure 5.10)

Define ranges of distance ratio that corre-
spond to fema and tibia points and hence la-
bel such points as fema and tibia (Figure 5.13)

Use 3D convex hull algorithm to produce con-
vex polyhedron that most tightly fits the

fema points using Algorithm 11 (Figure 5.13)

Similarly, use 3D convex hull algorithm for
tibia points to produce tibia convex poly-
hedron using Algorithm 11 (Figure 5.13)

Calculate the principal axes of the above poly-
hedrons using Algorithm 12 (Figure 5.10)

Calculate the angle between the two principal axes

Figure 5.16: Flowchart for JAFAKEC-G gait algorithm

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 133

5.5 Kinect-based lower limb motion analysis - Methods

The proposed approach starts with an investigation of the achievable accuracy and suggests using

some low-complexity algorithms, such as shortest path algorithm, least squares line fitting, 3D

convex hull algorithm, multiple geodesic distance labelling, etc. (table 5.1) to improve the

accuracy of joint positions. The captured depth frame from the Kinect recorder is compressed

via run length encoding to allow storage of more frames in a limited memory. The stored point

cloud is then used to perform body part labelling and pattern recognition in order to detect the

limbs of interest. This process is followed by feature extraction via multiple geodesic distance

labelling, shortest path algorithm and model fitting on specific subsets of points once the geodesic

distances are attached to the points.

Algorithm Application in JAFAKEC-G
Geodesic distance labelling Forming a mesh representing the surface
Shortest path algorithm Defining features of points for limb classification
3D Convex hull Assembling the classified points for a single limb into a polyhedron

so that point-density does not have an effect on axis calculation
Least-square line fitting Determining the principal direction of an oblong polyhedron

or point-set corresponding to the limbs of interest.
Sectioning of point cloud Segmenting into sub regions such as for specifying source

regions for shortest path and for feature definition.

Table 5.1: Algorithms used in the JAFAKEC-G for gait system

With these features attached to each point, points are classified in the space of the features as

belonging to specific limbs. Finally, the principal axes of the limbs are computed and the joint

angles are calculated as angles between the principal axes. Experiments: Two different healthy

males and one female were invited for recording using Kinect for a few gait trials. Participants

were instructed to walk across a 10 meter walkway in the laboratory for the recording using

the Kinect at different speeds (fast, moderate or casual walk, slow) for the gait data capture of

both the left and right legs for approximately 1 to 2 minutes for each trial. Spatiotemporal data

were collected simultaneously using a 12 camera VICON system with reflective markers placed

according to the VICON requirement.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 134

5.6 Results

Experiments were performed to evaluate the proposed system, and results are benchmarked with

the state-of-the-art VICON optical movement analysis system.

Several experiments were performed and recorded in the University Biomechanics laboratory

using different versions of Kinect sensor viz, Kinect 1.0 and Kinect 1.8 and were compared with

VICON data simultaneously collected. Subjects were instructed to walk on the 10 metre walk-

way for approximately 1 to 2 minutes for each trial.

These results, using a range of algorithms discussed in Chapter 4, Chapter 5 and under different

walking conditions are shown in Figures 5.26, 5.25, 5.27 shows that the results obtained using

the Kinect version 1.8 are a good match with the VICON results.

Some more Kinect and VICON results are shown in Figures 5.17, 5.18, 5.19, 5.21, 5.22, 5.23.

The results are grouped in three categories. Category 1 data are collected using Kinect V1.0

sensor, uses the Least Squares Line Fitting Method and Microsoft SDK skeleton for labelling.

Category 2 data are collected using Kinect V1.0 sensor, the Geodesic Distance based labelling

method and using only depth data. Category 3 data are collected using Kinect V1.8 sensor, uses

the JAFAKEC-G method and using only depth data.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 135

Experiment Category 1

Sensor used: Kinect V1.0

Point cloud data of a healthy person and mock patient was collected using Microsoft Kinect V1.0

sensor. Data were simultaneously collected using the VICON system. During the experiment,

the person walked 10 metres distance (right leg or left leg facing the Kinect) in moderate to slow

speed.

Methods: Knee joint angles were calculated using the Least Squares Line Fitting Method

and Microsoft SDK skeleton for labelling. The knee joint angle was compared with the VICON

results. The reference convention is such that when the knee is not flexed at all, the angle is zero

or close to zero (as opposed to 180 degrees), and it increases as the knee flexes.

Observation: The following plots show comparison of the knee angle as reported by Kinect

against VICON results. The knee angle is the flexion angle made between the tibia and the

fema. There are some jitters in the experiments 5.1, 5.4, 5.5 plots using Kinect. The Kinect

sensor did not capture the first few frames that captured the initial few steps in the experiment

5.2 plot because the subject was out of range.

Experiment 5.1. Normal person slow walk (Right leg)

Experiment 5.2. Normal person slow walk (Left leg)

Kinect 1.0 vs VICON, Normal person slow
walk - Right leg

Kinect 1.0 vs VICON, Normal person slow
walk - Left leg

Figure 5.17: Normal person slow walk

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 136

Experiment 5.3. Normal person slow walk(Left leg) - Subject 2

Kinect 1.0 vs VICON, Normal person slow walk - Left leg

Figure 5.18: Normal slow walk, Left leg

Experiment 5.4. Patient type walk (Right leg)

Experiment 5.5. Patient type walk (Left leg)

Kinect 1.0 vs VICON, Patient type walk -
Right leg

Kinect 1.0 vs VICON, Patient type walk - Left
leg

Figure 5.19: Patient type walk

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 137

Statistical Results:

Average angle error for this set-up (i.e. using Kinect 1.0 with Least Square line fitting from

skeletal data) is 6.765 degrees, using data from experiments 5.1, 5.2, 5.3, 5.4, 5.5. The error

distribution (as probability density function) is given in Figure 5.20.

0 5 10 15 20 25 30 35

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Error distribution using Least Square,
 skeletal data (SDK), Kinect 1.0

Knee angle error (degrees)

D
is

tr
ib

ut
io

n
de

ns
ity

 (
pr

ob
ab

ili
ty

/d
eg

re
e)

Figure 5.20: Error Distribution using Kinect 1.0, SDK Skeletal data and Least Square
Method

Conclusion:

These are not good results. The calculated average knee joint angle error is 6.765 degrees.

All the above experiments exhibited over 5 degree difference with respect to the gold standard

VICON. This shows that the Least Squares Line Fitting Method together with Microsoft SDK

skeleton for labelling are not sufficient to accurately infer joint angles. In particular the labelling

inaccuracy is the biggest source of error. The fitting/principal-axis algorithm works pretty well,

but the labelling (i.e. limb classification) errors is what causes the long tail of the error distri-

bution.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 138

Experiment Category 2: Using Kinect point cloud data only, not using the Kinect SDK

skeletal data.

Sensor used: Kinect V1.0

Using the point cloud data collected in experiments 5.1, 5.2, 5.5, 5.4 (Point cloud data of healthy

person and mock patient) and using different method for Kinect data processing.

During the experiments, the person walked 10 metres distance (right leg or left leg facing the

Kinect) in moderate to slow speed. Kinect data were compared with VICON data that were

simultaneously collected.

Methods: Knee joint angles were calculated using the Geodesic Distance based labelling, using

only depth data. The knee joint angle was compared with the VICON results. The reference

convention is such that when the knee is not flexed at all, the angle is zero or close to zero (as

opposed to 180 degrees), and it increases as the knee flexes.

Observation: The following plots show comparison of the knee angle as reported by Kinect

against VICON results. The knee angle is the flexion angle made between the tibia and the

fema. There are some jitters in the experiments 5.6, 5.8, 5.9 plots using Kinect. The Kinect

sensor did not capture the first few frames that captured the initial few steps in the experiment

5.8 plot because the subject was out of range.

Experiment 5.6. Normal person slow walk (Right leg)

Experiment 5.7. Normal person slow walk (Left leg)

Kinect 1.0 vs VICON, Normal person slow
walk - Right leg

Kinect 1.0 vs VICON, Normal person slow
walk - Left leg

Figure 5.21: Normal slow walk, (Geodesic)

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 139

Experiment 5.8. Patient type walk (Left leg)

Kinect 1.0 vs VICON, Patient type walk - Left leg

Figure 5.22: Patient type walk - Left leg, (Geodesic)

Experiment 5.9. Patient type walk (Right leg)

Kinect 1.0 vs VICON, Patient type walk - Right leg

Figure 5.23: Patient type walk - Right leg, (Geodesic)

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 140

Statistical Results:

Average angle error using Kinect 1.0, Geodesic Distance and the point cloud data only (not

the skeletal data) is 5.46 degrees, using data from experiments 5.7, 5.6, 5.8, 5.9. The error

distribution (as probability density function) is given in Figure 5.24.

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

0.
12

Error distribution using Geodesic,
 Point cloud only, Kinect 1.0

Knee angle error (degrees)

D
is

tr
ib

ut
io

n
de

ns
ity

 (
pr

ob
ab

ili
ty

/d
eg

re
e)

Figure 5.24: Error Distribution using Kinect 1.0, Geodesic Distance, Point Cloud data only

Conclusion:

The Kinect based angles have improved over the previous experiment due to the introduction

of Geodesic distance based labelling of the depth data (i.e. ignoring the Kinect SDK skeleton).

The calculated average knee joint angle error, 5.46 degrees, is much better than the Kinect

skeleton based method used in experiments 5.17 and 5.19. The average has improved from 6.765

degrees to 5.46 degrees. This new method shows a significant relative improvement over the

method used in Category 1, but are not really good results, especially if one examines the error

distribution shown in Figure 5.24. All the above experiments exhibited over 5 degree difference

with respect to the gold standard VICON. This shows that the Geodesic distance based labelling

is not sufficient to accurately infer joint angles.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 141

Experiment Category 3

Sensor used: Kinect V1.8

Point cloud data of a few healthy people (male) were collected using Microsoft Kinect V1.8 sen-

sor. Data were simultaneously collected using the VICON system. During the experiment, the

person walked 10 metres distance (right leg or left leg facing the Kinect) in moderate to slow

speed.

Methods: Knee joint angles were calculated using the JAFAKEC-G for Gait system, described

in flowchart 5.16. The algorithms used were a combination of Geodesic distance based labelling,

shortest path algorithm, 3D convex hull, Least-square line fitting and Sectioning of point cloud

5.1. The knee joint angle was compared with the VICON results. The reference convention is

such that when the knee is not flexed at all, the angle is zero or close to zero (as opposed to 180

degrees), and it increases as the knee flexes.

Observation: The following plots show comparison of the knee angle as reported by Kinect

V1.8 against VICON results. The knee angle is the flexion angle made between the tibia and

the fema. Kinect did not capture the first few frames that captured the initial few steps in the

right leg plot because the subject was out of range.

Experiment 5.10. Healthy person (Subject 1) normal walk (Right leg)

Experiment 5.11. Healthy person (Subject 1) normal walk (Left leg)

0

10

20

30

40

50

60

8 8.5 9 9.5 10 10.5 11 11.5 12

K
n

e
e

 a
n

g
le

 (
d

e
g

re
e

s)

Time (seconds)

Normal_Walk_Male_Knee _Angles

Kinect_1.8_Left

Vicon_Left

0

5

10

15

20

25

30

35

40

45

50

20 20.5 21 21.5 22 22.5 23 23.5 24

K
n

e
e

 a
n

g
le

s
(d

e
g

re
e

s)

Time (seconds)

Normal_Walk_Male_Knee _Angles

Kinect_1.8_Right

Vicon_Right

Kinect 1.8 vs VICON, Normal person normal
walk - Left leg

Kinect 1.8 vs VICON, Healthy person Normal
walk - Right leg

Figure 5.25: Healthy person, Subject 1 - Normal walk

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 142

Experiment 5.12. Healthy person (Subject 2) normal walk (Right leg)

Experiment 5.13. Healthy person (Subject 2) normal walk (Left leg)

Kinect 1.8 vs VICON, Healthy person normal
walk - Right leg

Kinect 1.8 vs VICON, Healthy person normal
walk - Left leg

Figure 5.26: Healthy person, Subject 2 - Normal walk

Experiment 5.14. Healthy person (Subject 3) normal walk (Left leg)

Kinect 1.8 vs VICON, Normal person normal walk - Left leg

Figure 5.27: Healthy person - Normal walk, Left leg

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 143

Statistical Results:

Average angle error using Kinect V1.8, JAFAKEC-G and the point cloud data only (not the

skeletal data) is 4.974 degrees, using data from experiments 5.10, 5.11, 5.12, 5.13, 5.14. The

error distribution (as probability density function) is given in Figure 5.28.

0 5 10 15 20 25

0.
00

0.
04

0.
08

0.
12

Error distribution using JAFAKEC-G,
 point cloud data only, Kinect 1.8

Knee angle error (degrees)

D
is

tr
ib

ut
io

n
de

ns
ity

 (
pr

ob
ab

ili
ty

/d
eg

re
e)

Figure 5.28: Error Distribution using Kinect 1.8, JAFAKEC-G, Point cloud data only

Conclusion:

JAFAKEC-G made some algorithmic improvements and as a result it was possible to get a

smoother gait angle curve, and the average error was reduced to just under 5 degrees. Firstly

JAFAKEC-G uses a point-cloud of higher resolution as compared to Kinect V1.0 which was used

for previous experiments (described in Section 3.4 and table 3.3). Although there is a large tail

in the error distribution due to labelling errors, the main hump in the distribution is centered

around 3 degrees. This is promising because if the the labelling errors can be eradicated, the

remaining error distribution would be well below 5 degrees.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 144

Experiment Category: Best case, Experiment 5.14

Sensor used: Kinect V1.8

Statistical Results:

Average angle error using Kinect V1.8, JAFAKEC-G and the point cloud data only (not the

skeletal data) of the best case, experiment 5.14, is 3.811 degrees. The error distribution (as

probability density function) is given in Figure 5.29.

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

Error distribution using JAFAKEC-G,
 best result-set, Kinect 1.8

Knee angle error (degrees)

D
is

tr
ib

ut
io

n
de

ns
ity

 (
pr

ob
ab

ili
ty

/d
eg

re
e)

Figure 5.29: Error Distribution using Kinect 1.8, JAFAKEC-G, best result-set

Conclusion:

The previous results were arbitrarily chosen from a recording session, however this particular

result was obtained by choosing the best case from the JAFAKEC-G recordings. The algorithms

remain the same as the previous one, but due to low incidence of labelling errors, the average

angle error was about 3.811 degrees. This shows that if the limb labelling errors can be re-

duced, the JAFAKEC-G using Kinect V1.8 sensor can measure knee angles within the required

accuracy level.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 145

5.7 Conclusion and Discussion

The joint angles obtained from the skeleton computed by Microsoft Kinect SDK were too inac-

curate for clinical use, but the depth frame is shown to achieve better accuracy in capturing the

gait cycle of a subject walking at a distance of about 3m from the Kinect sensor. An assortment

of geometric algorithms have been used to improve the accuracy of gait capture. The VICON

system, on the other hand, uses markers and captures the reflection from markers to works out

the joint angles. Figure 5.25 shows that the accuracy of Kinect 1.8 results using the proposed

JAFAKEC-G for gait system is within a range of 5 degrees from the angle computed by VICON.

The error in measurement is mainly because of Kinect sensors inability to properly capture the

extension and flexion peak amplitudes due to slower and constantly fluctuating sampling fre-

quency between 30 to 37 Hz and could not be stabilized. Kinect missed 8 to 18% of the steps on

average recording and appeared to be difficult when the knees are crossed. Fern’ndez et al.[55]

found that the knee angular errors in Kinect ranges between 6.78 degrees and 8.98 degrees when

compared with VICON. Kinect based algorithms in the current state of the art can be used

to measure general trends and parameters of gait or posture but not for clinical-grade contin-

uous motion capture [127, 169]. Xu et al. [197] also presents a similar pessimistic result that

Kinect-based tracking struggles to obtain accuracy of joint angles and that although Kinect V2

improves substantially over V1 in terms of resolution, the joint angle tracking is not improved

significantly.

The aforementioned pessimistic results were based on Kinect SDK’s joint detection process,

whereas JAFAKEC-G takes a fresh approach - using a new suite of mathematical algorithms

for marker-less gait capture. Using the proposed algorithms, the joint angles so calculated in

JAFAKEC-G are significantly better than that of Microsoft SDK. During the swing phase knee

angles in the gait cycle are getting computed accurately but during the stance phase there still

some room for improvement. The Kinect V2 device has the potential to be implemented in the

clinical setting as a tool to measure human gait accurately after future improvements [169] and

establishment of standardised methods are required.

This chapter demonstrated the potential of low-cost ubiquitous sensing technologies in assess-

ment of human gait problems arising from neurological issues. This work explores the feasibility

of Kinect for clinical assessments, but there is need for further improvements before full clinical

adoption can be attempted. To make a transition from a research project to a full-blown clinical

application, it would be necessary to organize collaborative work involving imaging technologists

and clinicians. That would help understand the salient features sought by clinicians and establish

a new vocabulary of features afforded by the new technologies. There is a continuum between

completely objective measurements and purely subjective opinions. Objective measurements are

hard to develop, but once fully developed, has the advantage of being robust, accurate and fast.

Whereas subjective assessment by a clinical expert aligns better with the traditional clinical

practice. A collaborative approach should be directed towards establishing a mix or middle-

ground between these two extremes, so that some aspects are measured as numerical values on

which the subsequent assessment is based. Imaging is one area in which clinician community has

fast embraced latest technology, because of the immense efficiency boost (i.e. speed-up) it had to

offer. In the past X-ray and tomography plates used to take weeks to pass through the radiology

departments due to the time consuming manual assessment involved. With the advent of digital

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 146

image processing systems, the assessment is heavily assisted by computer algorithms. On the

one hand while this has dramatically reduced the assessment time, on the other hand it has

transformed the profession of clinical radiology. Previously a radiologist would be expected to

have a full mental model of the case, which they would discuss with surgeons and diagonosticians

but nowadays this very human exchange is replaced by quickly produced robotic specification.

As a result, the overall human attention given to each individual case has reduced to much lower

levels, which has its downsides. Being a more economical arrangement its advent is unstoppable,

but it has made the clinical practice quite a bit less soulful. If a system like JAFAKEC-G

achieves full-blown adoption in clinical practice, it would be important to observe the long term

effects it has on the practice. Large data volume, and speed of processing is not necessarily the

best direction when it comes to matters of healthcare. It always has to be weighed against the

downside arising from shallower human involvement. In the present healthcare infrastructure,

gait assessment is primarily a clinic based or lab based procedure. This entails that the patient

has to be physically present in the clinic or hospital for the assessment to take place. If the novel

technologies could surmount this barrier and enable continuous, real-time monitoring at the pa-

tient’s home or care-home facilities, that would allow for much better situational awareness. In

such an arrangement, the patients or their carers can check for any deterioration as an everyday

routine rather than requiring expensive hospital appointments just for the assessment. Clinical

intervention may be scheduled only when some instability is noted in the continuous monitoring

outcomes. The low cost of Kinect devices is a key enabler of this vision to become the reality

one day, and hopefully the work presented in this chapter would be a useful stepping stone on

the way to that goal.

Chapter 6

Upper Limb Motion Analysis

6.1 Introduction

Depth perception has greatly advanced the state of the art for several image recognition problems

- including pose [160], object recognition [101] and hand tracking [81]. Hand tracking is used for

recognizing and tracking objects, detecting hand-object interactions such as grasp and release,

and recognizing actions using the intervals given by the hand events, detecting tremor, etc.

The Kinect sensor provides a rich point cloud out of which a discrete set of gestures are recognized

in real time for gaming interactions. This work aims at a more continuous capture of hand

motions towards enabling monitoring rehabilitation of patients at care homes or GP surgeries.

While in principle monitoring of the hand is is very similar to gait monitoring, in practice the

nature of the motion is very different. The gait has a rapid cyclic/periodic pattern of motion

whereas hand motions are relatively one-off and can be much more varied than gait. A wide

variety of motions are relevant to everyday tasks - like opening a jar, pouring out liquid, sipping

a drink, locking a door, waving etc. This additional complexity made the upper-limb motion

monitoring more challenging than gait. This called for a fresh approach to upper-limb motions

- i.e. gait algorithms could not be re-used/re-purposed for upper limb.

This chapter evaluates the suitability of a suite of algorithms within the novel JAFAKEC-U

framework that could operate on point cloud data captured by the Kinect sensor for the purpose

of upper limb motion analysis. This will help to support clinicians in assessing if a particular

treatment plan is progressing well, monitoring if the patient is able to perform everyday tasks

like drinking a cup of tea, which might be difficult for stroke impaired patients.

6.2 Gesture Design and hand tracking

Recent version of Kinect (Kinect 2) sensor is now enabling greater fidelity in terms of hand and

finger motions. Also in Kinect 2, the higher resolution allows one to place the subject further

away, and hence allows a greater field of view. Kinect 2 has high sample density on the surfaces

which means that surface normal vectors can be estimated at each sampled point with higher

147

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 148

accuracy and normal vectors help with additional feature computation.

The registered point cloud has some scattered isolated points and small clusters in several frames.

This is an undesirable artefact, and was absent in previous versions. Algorithms take longer to

run due to the larger point-sets and use more RAM. Markers (used for VICON) are creating

large holes and local distortions in the point cloud. This is causing incorrect normal vectors

getting calculated near the markers.

6.3 Literature Review

An important aspect of motion assessment is to study how the body motions needs to coordinate

in order to achieve adequate level of control required for performing everyday tasks. R. Munoz-

Salinas et al. [125] evaluated the influence of depth information in the motion assessment process.

They proposed the concept of depth silhouette as a mechanism to incorporate depth information

for motion assessment using Hidden Markov Models (HMM), silhouette compression and con-

cluded that use of depth silhouettes increases the recognition accuracy significantly. Dominio et

al. [48] proposed an algorithm to combine multiple depth-based descriptors for hand (fingers and

palm) motion assessment. They have implemented different features extracted from the depth

data for capturing relevant properties of the hand gestures. Classical tracking approaches can be

adopted if gestures in the lexicon only carry trajectory information,i.e., if the shape of hand does

not convey extra information. The systems CONDENSATION [83] and CAMSHIFT [20] have

been shown to successfully track gestures but these systems are susceptible to lose the tracked

objects when the scene illumination changes or when occluded by new objects. Hand gesture

is a sequence of hand postures connected by continuous motions. One of the most widely used

techniques for motion assessment is HMM [13],[207], [120]. Ramamoorthy et al.[144] developed a

HMM based real time dynamic motion assessment system with a static shape recognition system.

They used a Kalman filter based hand contour tracker which uses both hand shape and motion

pattern of the gesture for recognition. The algorithm has the ability to detect the start and end

points of gesture sequences. Issues and drawbacks with HMM approach consist of trajectory

spotting for gesture temporal segmentation and finding the optimal parameters set like initial

probabilities. Derpanis [40] reviews Human Computer Interaction (HCI) vision-based hand ges-

tures and concludes that feature extraction, classification method, and gesture representation

should be improved to facilitate HCI. Hand location, angle and velocity features are combined in

[205] using HMM. Hand is localized by skin-color analysis and tracked by connecting the centroid

of moving hand regions. They compared the utility of the three features; location, angle, and

velocity features for motion assessment, which are obtained from the coordinates in a gesture

trajectory. It concluded that angular features are most effective, location and velocity features

are ranked second and third respectively. Another widely used technique for object tracking

is particle filters [7] where they have used algorithm with re-sampling and recursive filtering

process. Particle filters [84] are very popular due to their ability to closely approximate complex

real-world multimodal posterior densities using sets of weighted random samples. Black and

Jepson [14] proposed a particle filter approach and CONDENSATION-based trajectory motion

assessment algorithm. Perez et al. [137] have integrated a particle filter for color histogram

tracking and enhanced tracking under complex background and occlusion, and then applied the

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 149

particle filter framework to multiple objects tracking. Oikonomidis et al. [81] have proposed a

markerless model for tracking two interacting hands without objects. They have used Kinect

sensor and achieved accurate and robust 3D hand tracking at 15Hz. Jiang et al. [87] suggested a

number of heuristics for selecting Kinect-based gesture patterns specific to patients with upper

extremity impairments. Optical flow, edges and shading information have been implemented

together in [112] for articulated hand tracking. Romero et al. [148] presented a real-time non-

parametric method that compares observed hand poses to a large database containing objects

in the hand such as a cup or a ball. The method estimates hand pose against large occlusion of

the hand from object and segmentation errors.

One of the common methods for hand segmentation without the use of depth information is the

skin color maps where skin color-based segmentation suffers significantly when there are lighting

changes. Oikonomidis [81] and Tang [180] combined skin color detector on the RGB image and

clustering on the depth threshold to achieve better hand segmentation. They used Microsoft

Kinect to overcome the ambiguities of color images. Tang [180] was able to recognize ’grasp’ and

’drop’ gestures with very high accuracy using Microsoft Kinect to capture images, depth data and

a Support Vector Machine (SVM) that performed training and testing on the images and their

corresponding features. Wachs et al. [191] discusses methods using generic algorithms, artificial

neural network etc. in designing and modelling the hand motion assessment. They found that

their motion assessment algorithm depends on the application domain, and environment of the

user and gets effective results where there is uncertainty in the exact positions of fingers and

hand. The article also discusses different applications controllable by hand gestures. Suk et

al. [175] proposed a new method for recognizing isolated hand gestures and continuous hand

gestures using a continuous video stream implementing a Dynamic Bayesian Network (DBN)

model. The features utilized are direction codes for hand motion, the positional relation between

face and hands and the positional relation between the two hands. Spatio-temporal position of

continuous stream of hand motion is extracted and hand gesture data are temporally segmented

into subsequences and modelled using a Finite State Machine (FSM) in [204]. The hand motion

profile for each gesture was constructed to estimate the dominant motion from an image sequence

that can be used as input to a robot to repeat the intended operations of the hand gestures.

Davis and Shah [37] developed a Finite State Machine (FSM) model-based approach to recognize

human-hand gestures. The FSM was used to decompose gestures into four qualitatively distinct

phases of a hand gesture that occurs in a fixed order which were represented as a list of gesture

vectors. The vector list was matched with the stored gesture vector models.

Lange et al. [102] proposed a Kinect-based interactive game-based rehabilitation tool for people

with balance impairment. Lei et al. [107] used Microsoft Kinect depth data to detect and track

hand and kitchen objects to recognize a set of seven kitchen activities like place, move, chop,

mix, pour, spoon and scoop. Their system works well both in tracking objects and determining

the start and end of actions and does the action recognition almost perfectly. Chang et al. [24]

applied Kinect for physical rehabilitation. They developed a 3D virtual environment system

called Kinerehab that assist therapists in their work with two young adult students with motor

impairments. Instructions were given to the participants to perform a number of motions such as

lifting arms upwards, to the front and sides. These motions were repeated several times using the

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 150

Kinerehab and without using it. The results shows that Kinerehab improve participants’ motor

functionalities significantly. Chang et al. [25] used Kinect for Cerebral Palsy (CP) rehabilitation.

They showed that two adolescent participants with CP demonstrated high motivations for ex-

ercising with Kinect and significantly improved their performance for upper limb rehabilitation

during the intervention phases. Hondori et al. [79] developed a system to spot and monitor

patients at home settings of specific activities of daily living (ADL) with eating and drinking

problems using sensor fusion (Microsoft Kinect and Sensor Fusion). Altanis et al. [4] proposed

an approach called Kinems based on their study on a game called ’Uni Paca Girl’ developed

using Kinect. Experiment was conducted with two students suffering from gross motor skills

problems and motor impairments. The students with motor disabilities were asked to perform

some basic body motions in a therapeutic session and to repeat the same motions playing the

game. They found that both the students enjoyed doing the exercises while playing the game and

their performance of doing exercise improved remarkably. Gallo et al. [61] explored the benefits

of contact-less technologies in a medical context such as in hospitals where sterility is extremely

important. They have developed a user interface that allows users to navigate and visualize 3D

medical images without touching a mouse or a keyboard. Microsoft Kinect was used to capture

the gesture data and enabled for remote medical image exploration. They represented the hand

as a point cloud. Hand and arm gestures were used to translate gesture into action.

While the aforementioned applications of the Kinect sensor attempt to use the device vari-

ously in the context of clinical applications, none of them take on the harder problem of actually

calculating the joint angles from point cloud data. The presented contribution (JAFAKEC-U)

aimed to do just that - i.e. calculate upper limb motion in terms of a time-history of joint-angles,

from the depth frame sequence captured by Kinect.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 151

6.4 Arm Motion Monitoring

The objective of this part of the work is to develop algorithms for monitoring hand dexterity of

patients with partial motion impairment, using Kinect V2.

During the course of the doctoral project, the Kinect technology went through improvement in

resolution and a change of its underlying physics. By the time the upper-limb monitoring system

was being developed, the Kinect 2 sensors had superseded the Kinect version 1.x series. It was

clear from the big improvement in the resolution that the previous versions (Kinect 1) would

soon be discontinued. Therefore despite already having developed a toolset (i.e., recorder, codec,

etc.), it seemed wise to move on to the newer version i.e. Kinect V2.

For the upper-limb experiments, the typical frequency of hand tremor is 5-6 Hz, and can go up

to a maximum of 9Hz [68]. Kinect 2 frame rate is 30 FPS, so in theory it is possible to pick up

hand-tremors using Kinect 2. However, the approach taken in this work is to track the motion

of the arm. In order to bring this tool to clinical practice, it would be necessary to define a

baseline band against which deviations would be interpreted as degree of abnormality.

In sub-acute stroke patients, often the upper limb coordination gets disrupted, and it becomes

important to monitor its progression of recovery through a regime of physiotherapy and med-

ication. The proposed Kinect based tool could be used to monitor a typical everyday task of

drinking from a cup. The Kinect SDK has a built-in game-quality (i.e. low quality) skeletal

coordinate interface, and the objective, as with the gait monitoring tool, is to try clinical quality

motion capture. The starting point for this computation is therefore the depth frame or point

cloud, rather than the skeleton frame.

6.5 Experimental Methodology

A cylindrical cup was used in the experiment. The subject was required to lift the cup and carry

it to his/her mouth, as if for sipping some tea. The cup and the arm would be labelled (i.e.

registered) in the recorded frames. Depth images of healthy person were recorded using Kinect

and VICON simultaneously in the bioengineering laboratory. The JAFAKEC for upperlimb

(JAFAKEC-U) system is then used for visualising and analysing the gait from the depth frames

captured by Kinect.

The first stage of JAFAKEC-U is a recorder that stores a series of depth frames on computer’s

secondary storage (i.e. hard disk or SSD drive). This is shown in Figure 6.1.

The raw depth frames thus recorded encodes a set of 3D points sampled on the objects in front

of the Kinect device. If the points were visualized on their own, they would predominantly

look linke silhouettes with a hint of depth, as shown in Figure 6.2. This form of point-clouds is

processed further and annotated with the results of the processing.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 152

Figure 6.1: Kinect Recording Algorithm

Figure 6.2: Depth map captured for upper limb

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 153

The following Figure 6.3 describes the flowchart of the novel JAFAKEC system for upper limb.

Infer/create a graph from the foreground point cloud
(According to Algorithm 5)

Estimate local surface features like normals and
curvatures (According to section 4.4) (Figure 6.4)

Segmenting the point cloud using graph based k-
means clustering using Algorithm 9 (Figure 6.11)

Segmenting the graph into super-nodes and then cal-
culate the centroid of the super-nodes (Figure 6.12)

Connecting the super-nodes to cre-
ate skeletal graph (Figure 6.13)

Apply single source shortest path algorithm (i.e. Algorithm
6) with the centroid region as source to label points with

geodesic distance from the centroid region (Figure 6.8, 6.9)

Compute geodesic distance (using Algorithm
6) from head and waist to define more fea-
tures in the point cloud (Figure 6.6, 6.7)

Label nodes as forearm and upper
arm using features described above

Calculate the principal axis (using Algo-
rithm 12) of the upper arm and the forearm

Calculate the angle between the two principal axes

Figure 6.3: Flowchart for JAFAKEC upper limb algorithm

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 154

6.6 JAFAKEC for Upperlimb Methods

The proposed approach starts with an investigation of the achievable accuracy and suggests using

some low-complexity algorithms, such as shortest path algorithm, K-lines clustering algorithm

(described in section 6.7), least squares line fitting, segmenting the point cloud (described in

section 6.7.3), and multiple geodesic distance labelling (described in Algorithm 6), (as listed in

table 6.1) to improve the accuracy of joint positions. The captured depth frame from the Kinect

recorder is compressed via run length encoding to allow storage of more frames in a limited

memory. The stored point cloud is then used to perform hand-arm part labelling and pattern

recognition in order to detect the limbs of interest. This process is followed by feature extraction

via multiple geodesic distance labelling, shortest path algorithm and model fitting on specific

subsets of points once the geodesic distances are attached to the points. A graph based clustering

algorithm was used to segment and label the point cloud.

Algorithm Application in JAFAKEC-U
Geometric Graph Creation Deciding the neighbourhood relationship

treating each point as a graph node
Geodesic distance labelling Forming a mesh representing the surface
Shortest path algorithm Defining features of points for limb classification
Graph based geodesic distance Labelling the point cloud with several Geodesic Distances
Graph based K-means clustering Clustering the geometric graphs into sub-graphs
Segmenting the point cloud Determining the key positions

or point-set corresponding to the arm of interest.
Least-square line fitting Determining the principal direction of

a point-set corresponding to the limbs of interest.
Sectioning of point cloud Segmenting into sub regions such as for specifying source

regions for shortest path and for feature definition.

Table 6.1: Algorithms used in the JAFAKEC Upperlimb system

With these features attached to each point, points were classified in the space of the features as

belonging to the specific limb. Finally, the principal axes of the upper-limb was computed and

the joint angles were calculated as angle between the principal axes.

6.7 Algorithmic Methodology

The sub-sections of this section describe the algorithmic methods used in upper-limb motion

capture.

6.7.1 Normal Estimation

Normals computed using methods described in section 4.4 were useful in multiple ways. Firstly

the normals were used in approximation of curvature on an edge, and the curvature in turn was

used in modifying the edge-length function with the aim of snipping the graph at highly curved

points. Normal values were also used shading the 3D rendering of the depth-frames.

The least-squares fitting process leaves a choice between two opposing directions for the estimated

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 155

normal (as mathematically expected). This ambiguity is resolved by the fact that the normal

should not make an obtuse angle with the vector from the original point to the camera (or else

the point wouldnt have been visible).

Figure 6.4 demonstrates the obvious effect of normal estimation - in that the point cloud could

be shaded using a diffuse shading model.

Figure 6.4: Point cloud with normals

6.7.2 Geodesic Distance Labelling

Labelling points with geodesic distances from designated sub-regions is useful in identifying key

areas of the point-cloud. Once the following three key positions are identified, it becomes trivial

to compute the joint angle in question.

(a) wrist position

(b) elbow position

(c) shoulder joint position.

Easiest of the three is to classify the wrist and the cup based on geodesic distance. It is enough

to use a simple linear classifier in the space of geodesic distance. For example, the heatmaps in

Figure 6.5 shows geodesic distance measured from a few algorithmically specified regions. It can

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 156

Figure 6.5: The cup-holding hand identified using geodesic distance

be seen that the hand sticks out unambiguously as the most distant entity from the specified

sources. In the case of Figure 6.5 the chosen source region-set was the union of (a) the geodesic

centroid, (b) lower half and (c) a small top slice of the head. Alternately the entire back side

of the subject may be specified as the source to yield a similar linear classification of hand and

cup.

Details of the geodesic distance labelling algorithm is given in section 4.6

Figures 6.6 and 6.7 show contour bands based on geodesic distance iso-lines. The boundaries

between coloured bands in these figures are lines of constant geodesic distance from a source

region. It should be noted how the distance flows along the surface form. The euclidean distance

contours would not follow the surface shape and would be a family of concentric spheres centred

at the source region.

Figures 6.8, 6.9 and 6.10 show some more cases of labelling parts of the upper-body with geodesic

distance values.

6.7.3 Segmenting the point cloud

The upper-body point-cloud was segmented into geodesic clusters using the algorithm described

in section 4.8. The segmentation follows the general schema of a k-means clustering algorithm

except that the centroid computation and the proximity computation required in the clustering

steps are based on measuring the distance along the edges, i.e. along the surface represented by

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 157

Figure 6.6: Geodesic Distance Bands with head as Source

Figure 6.7: Geodesic Distance Bands with Waist as Source

the graph.

The clusters are then used for identification of certain designated clusters - i.e. shoulder, elbow,

and hand. Figure 6.11 shows such a segmented depth-image, in which each cluster is given a

different colour to help with visual inspection.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 158

Figure 6.8: A distance discriminant based on geodesic distance

Figure 6.9: Demonstrating second order geodesic distance labelling

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 159

Figure 6.10: Arm motion monitoring

Figure 6.11: Segmenting the Point Cloud

6.7.4 Graph from Geodesic Clusters

The geodesic clusters have mutual neighbourhood relationships by bordering points being ad-

jacent. Each cluster may be treated as a super-node in a high-level graph structure (as shown

in Figure 6.12. Based on adjacency between clusters, one could then form a graph by joining

supernodes corresponding to adjacent clusters (as shown in Figure 6.13).

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 160

Figure 6.12: Super nodes obtained from graph based clustering

Figure 6.13: Connectivity graph for super nodes

Such a graph would be much smaller than the original geometric graph representing the sur-

face and yet represent the overall topology of the object. This structure is amenable to further

analysis.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 161

6.8 Results

Angle measurements were found to have some noise in it. This noise originates from the noises in

point cloud capture and artefacts of the algorithms used for measurement and feature extraction.

The prevalent approach adopted for eliminating such noise is that of filtering. Kalman filters are

commonly used for elimination of random uncorrelated noise. However, Kalman filtering did not

make any difference to the quality of the results. Initially the suspicion was on incorrect imple-

mentation of the Kalman filter, but then the same Kalman filter code did work well to eliminate

artificially added Gaussian noise (as shown in Figure 6.14). This suggests that the nature of

the noise present in these results must not have been uncorrelated -like the additive Gaussian

noise. These noise probably arises from configuration dependent artefacts of the capture and

processing algorithms, and therefore bears some correlation with the measured signal. The noise

was in the form of high frequency flickers, so low pass filtering seemed to be an option. A high

(6th) order Butterworth filter was thus used for filtering as is used for VICON systems. Figure

6.15 shows a plot of the said Butterworth filtered elbow angle alongside the original noisy signal.

An artefact of this filter is that the filtered signal has a lagging phase-shift, but that is not a

problem as the absolute phase is not of any interest.

5 10 15 20 25

0
50

15
0

25
0

time

rig
ht
_e
lb
ow
_a
ng
le

Figure 6.14: Kalman filter applied to eliminate added Gaussian noise

For clinical assessments, plots of joint angles against time may or may not be the best format for

presenting the motion. Time-vs-variable plots are popular in engineering and physical sciences

for motions but it is entirely possible that clinicians assess more effectively based on an animated

representations, as is common in cardiac and foetal imaging. There is a wide range of formats

in which the animation can be presented.

One way to represent/visualize the results would be in the form of a stick figure or a 3D skeleton

model. Figure 6.16 shows such a stick-figure representation in which the joints are represented

as spheres, that leave a trail of positions as the motion progresses, showing the trajectory taken

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 162

5 10 15 20 25

60
12
0

time

rig
ht
_e
lb
ow
_a
ng
le

Figure 6.15: Unfiltered and Butterworth filtered plots of elbow angle

by the joint position in 3D space.

On the other hand, the animation could be that of a shaded point-cloud faithfully representing

the shape, form, and motion of the patient without making it personally identifiable. The point

cloud’s image of the face can be made completely unidentifiable by applying a Laplace smoother

on the face region.

It is important that such an animated view is not a passive video but an interactive 3D view

that can be rotated, zoomed, paused, and measured.

Figure 6.16: Upper body joint trajectories

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 163

6.8.1 Arm angle results of Kinect and VICON

As described earlier, VICON is an established clinical-grade motion capture system. It is based

on tracking marker positions recorded using multiple video cameras. Reflecting markers are

on the limbs of interest, and the motion is captured by VICON as video streams recorded by

multiple digital video cameras. The post-processing software accurately estimates and tracks

marker positions in 3D space. The post-processing software is agnostic as to what each marker

is attached to. It is up to the user to specify a topology (i.e. connectivity structure) for the

markers. Once the marker positions are captured, one can define joint labels thereby connecting

the dots between the marker positions. The VICON cameras capture hundreds of frames per

second, and the redundant array of multiple cameras help estimate the positions and hence angles

extremely accurately. VICON is a very expensive piece of kit, but it can provide a standard

to measure against. Some typical upper limb operation cycles using both VICON and Kinect

V2 were recorded and plotted the corresponding joint angles estimated by the two devices on

the same plots as separate data series. Some of such plots are given in Figure 6.17, 6.18, 6.19,

6.22, 6.23, 6.26. These combined plots show that the results of processing with JAFAKEC-U on

Kinect sensor V2 point cloud data are in close agreement with that from VICON.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 164

Experiment Category - Healthy Male

Sensor used: Kinect V2

Five different experiments were carried out of two healthy males and Point cloud data of the

healthy person’s right arm motion were collected using Microsoft Kinect V2 sensor. Data were

simultaneously collected using the VICON system. During the experiments, the subject lifted a

cylindrical cup and carried it to his mouth, as if drinking some juice or sipping some tea. The

right upperlimb was facing the Kinect, in moderate speed.

Methods: Elbow joint angles were calculated using the JAFAKEC for Upperlimb system,

described in flowchart 6.3. The algorithms used were a combination of geometric graph creation,

geodesic distance based labelling, shortest path algorithm, graph based K-means clustering, seg-

menting the point cloud, least-square line fitting and sectioning of point cloud 6.1. The upperlimb

joint angle was compared with the VICON results. The reference convention is such that when

the elbow is not flexed at all, the angle is zero or close to zero (as opposed to 180 degrees), and

it increases as the elbow flexes.

Observation: Figure 6.1, 6.2, 6.3, 6.4, 6.5 shows comparison of the right elbow angle as re-

ported by Kinect against VICON results. The elbow angle is the flexion angle made between

the upper arm and the forearm. In experiment 6.4, Kinect V2 failed to detect the subject in the

range from 3.62 second and 5.00 second. This has caused the JAFAKEC-U to have a smooth

but deviated pattern that does not match with the corresponding VICON data. So, the Kinect

V2 point cloud data in the range 1.02 seconds to 3.62 seconds and the range from 5.00 seconds

to 8.39 seconds should be considered for matching with VICON data.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 165

Experiment 6.1. Healthy male (Subject 1) drinking from a cup - trial 1

Experiment 6.2. Healthy male (Subject 2) drinking from a cup - trial 1

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18

El
b

o
w

 A
n

gl
e

 (
d

e
gr

e
e

s)

Time (sec)

Right Elbow Angle Subject 1.2

Kinect_Elbow_Right

VICON_Elbow_Right

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9

E
lb

o
w

 A
n

g
le

 (
d

e
g

re
e

s)

Time (sec)

Right Elbow Angle Subject 2.4

Kinect Right Elbow

VICON Right Elbow

Kinect 2 vs VICON, Healthy subject 1 drink-
ing from a cup - right upperlimb, trial 1

Kinect 2 vs VICON, Healthy subject 1 drink-
ing from a cup - right upperlimb, trial 1

Figure 6.17: Elbow angle of healthy subject 1, healthy subject 2 (trial 1), Right upperlimb

Experiment 6.3. Healthy male (Subject 2) drinking from a cup - trial 2

Experiment 6.4. Healthy male (Subject 2) drinking from a cup - trial 3

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10

E
lb

o
w

 A
n

g
le

 (
d

e
g

re
e

s)

Time (sec)

Right Elbow Angle Subject 2.3

Kinect_Right_Elbow

VICON_Right_Elbow

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9

E
lb

o
w

 A
n

g
le

 (
d

e
g

re
e

s)

Time (sec)

Right Elbow Angle Subject 2.6

Kinect_Right_Elbow

Vicon_Right_Elbow

Kinect 2 vs VICON, Healthy subject 2 drink-
ing from a cup - right upperlimb, trial 2

Kinect 2 vs VICON, Healthy subject 2 drink-
ing from a cup - right upperlimb, trial 3

Figure 6.18: Elbow angle (trial 2, trial 3) of healthy subject 2, Right upperlimb

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 166

Experiment 6.5. Healthy male (Subject 2) drinking from a cup - trial 4

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10

E
lb

o
w

 A
n

g
le

 (
d

e
g

re
e

s)

Time (sec)

Right Elbow Angle Subject 2.5

Kinect_Right_Elbow

VICON_Right_Elbow

Kinect 2 vs VICON, Right elbow angle of healthy subject2, (trial
4)

Figure 6.19: Elbow angle of healthy subject2, (trial 4) Right upperlimb

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 167

Statistical Results: Healthy Male

Average angle error using Kinect V2, JAFAKEC-U and the point cloud data is 6.14 degrees,

using data from experiments 6.1, 6.2, 6.3, 6.5. The error distribution (as probability density

function) is given in Figure 6.20.

0 5 10 15 20 25

0.
00

0.
04

0.
08

0.
12

Error distribution using JAFAKEC-U,
 Healthy Male, Kinect V2

Elbow angle error (degrees)

D
is

tr
ib

ut
io

n
de

ns
ity

 (
pr

ob
ab

ili
ty

/d
eg

re
e)

Figure 6.20: Error Distribution using Kinect V2, JAFAKEC-U, Healthy Male

Conclusion:

In this case the average error for the elbow angle was 6.14 degrees - about 1 degree more than

the desirable bound of 5 degrees. The error is defined to be the difference between JAFAKEC-U

and VICON results. The average error is only slightly above the desired margin, but the error

distribution plot shows a substantial tail region running well above 10 degrees. This shows that

the labelling algorithms need further work. The precision analysis in sections 3.10 and 3.10.1

promised much lower errors but that analysis focussed on the errors entailed by the point cloud’s

intrinsic accuracy and that of least-squares fitting algorithms. What it does not take into ac-

count is errors arising from incorrect labelling of points. Despite high resolution of the point

cloud and a mathematically optimal fitting algorithm, it is possible to get bad results due to

errors in classifying points. It was not possible to analyse precision bounds for labelling errors.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 168

Experiment Category: Best case - Male, Experiment 6.5

Sensor used: Kinect V2

Statistical Results:

Average angle error using Kinect V2, JAFAKEC-U and the point cloud data only of the best

case, experiment 6.5, is 4.651 degrees. The error distribution (as probability density function)

is given in Figure 6.21.

0 5 10 15

0.
00

0.
05

0.
10

0.
15

Error distribution using JAFAKEC-U,
 Best result-set, Kinect V2

Elbow angle error (degrees)

D
is

tr
ib

ut
io

n
de

ns
ity

 (
pr

ob
ab

ili
ty

/d
eg

re
e)

Figure 6.21: Error Distribution using Kinect V2, JAFAKEC-U, best result-set

Conclusion:

In this case the average error (4.651 degrees) was well within the desirable margin. The cor-

responding time-series plots show close agreement between JAFAKEC-U and VICON results.

There is a tail region in the error distribution plot which is mainly attributable to labelling

errors, indicating that the labelling algorithm needs further improvement.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 169

Experiment Category - Healthy Female

Sensor used: Kinect V2

Three different experiments were carried out and Point cloud data of the healthy person’s right

arm motion were collected using Microsoft Kinect V2 sensor. Data were simultaneously collected

using the VICON system. During the experiments, the subject lifted a cylindrical cup and car-

ried it to his mouth, as if drinking some juice or sipping some tea. The right upperlimb was

facing the Kinect, in moderate speed.

Methods: Elbow joint angles were calculated using the JAFAKEC for Upperlimb system,

described in flowchart 6.3. The algorithms used were a combination of geometric graph creation,

geodesic distance based labelling, shortest path algorithm, graph based K-means clustering, seg-

menting the point cloud, least-square line fitting and sectioning of point cloud 6.1. The upperlimb

joint angle was compared with the VICON results. The reference convention is such that when

the elbow is not flexed at all, the angle is zero or close to zero (as opposed to 180 degrees), and

it increases as the elbow flexes.

Observation: Figure 6.6, 6.7, 6.8 shows comparison of the right elbow angle as reported by

Kinect against VICON results. The elbow angle is the flexion angle made between the upper

arm and the forearm. In experiment 6.6, VICON fails to detect few data points in the initial

phase of recording.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 170

Experiment 6.6. Healthy female (Subject 3) drinking from a cup - trial 1

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18

E
lb

o
w

 A
n

g
le

 (
d

e
g

re
e

s)

Time (Sec)

Right Elbow Angle Subject 3.1

Kinect_Right_Elbow

VICON_Right_Elbow

Kinect 2 vs VICON, Right elbow angle of healthy subject3, (trial
1)

Figure 6.22: Elbow angle of healthy subject3, (trial 1) Right upperlimb

Experiment 6.7. Healthy female (Subject 3) drinking from a cup - trial 2

Experiment 6.8. Healthy female (Subject 3) drinking from a cup - trial 3

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13

E
lb

o
w

 A
n

g
le

 (
d

e
g

re
e

s)

Time (sec)

Right Elbow Angle Subject 3.2

Kinect_Right_Elbow

VICON_Right_Elbow

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

E
lb

o
w

 A
n

g
le

 (
d

e
g

re
e

s)

Time (sec)

Right Elbow Angle Subject 2.4

Kinect_Right_Elbow

VICON_Right_Elbow

Kinect 2 vs VICON, Healthy subject 3 drink-
ing from a cup - right upperlimb, trial 2

Kinect 2 vs VICON, Healthy subject 3 drink-
ing from a cup - right upperlimb, trial 3

Figure 6.23: Elbow angle of healthy subject3, (trial 2 and trial 3) Right upperlimb

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 171

Statistical Results: Healthy Female

Average angle error using Kinect V2, JAFAKEC-U and the point cloud data is 5.18 degrees,

using data from experiments 6.6, 6.7, 6.8. The error distribution (as probability density func-

tion) is given in Figure 6.24.

0 5 10

0.
00

0.
05

0.
10

0.
15

Error distribution using JAFAKEC-U,
 Healthy Female, Kinect V2

Elbow angle error (degrees)

D
is

tr
ib

ut
io

n
de

ns
ity

 (
pr

ob
ab

ili
ty

/d
eg

re
e)

Figure 6.24: Error Distribution using Kinect V2, JAFAKEC-U, Healthy Female

Conclusion:

In this case the average error is 5.18 degrees, which is only just above the desirable margin.

The error distribution plot shows a long tail, which suggests that the labelling algorithms of

JAFAKEC-U needs further improvement.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 172

Experiment Category: Best case - Female, Experiment 6.6

Sensor used: Kinect V2

Statistical Results:

Average angle error using Kinect V2, JAFAKEC-U and the point cloud data only of the best

case, experiment 6.6, is 4.43 degrees. The error distribution (as probability density function)

is given in Figure 6.25.

0 5 10

0.
00

0.
05

0.
10

0.
15

Error distribution using JAFAKEC-U,
 Best case (Female), Kinect V2

Elbow angle error (degrees)

D
is

tr
ib

ut
io

n
de

ns
ity

 (
pr

ob
ab

ili
ty

/d
eg

re
e)

Figure 6.25: Error Distribution using Kinect V2, JAFAKEC-U, best result-set

Conclusion:

In this case the average error (i.e. difference between VICON and JAFAKEC-U) for the elbow

angle is 4.43 degrees, which is well within the desirable margin. The corresponding time-domain

plot also shows very good agreement between JAFAKEC-U and VICON. This case is very promis-

ing and shows that JAFAKEC-U is capable of meeting the accuracy requirement. It would still

be advisable to further improve the labelling algorithms.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 173

Experiment Category - Patient type motion

Sensor used: Kinect V2

Point cloud data of a mock patient was collected using Microsoft Kinect V2 sensor. The subject’s

upperlimb motion was similar to a stroke patient and the data were simultaneously collected us-

ing the VICON system. During the experiment, the subject lifted a cylindrical cup and carried

it to his mouth, as if drinking some juice or sipping some tea. The right arm and hand were

facing the Kinect, in slow speed.

Methods: Elbow joint angles were calculated using the JAFAKEC for Upperlimb system,

described in flowchart 6.3. The algorithms used were a combination of geometric graph creation,

geodesic distance based labelling, shortest path algorithm, graph based K-means clustering, seg-

menting the point cloud, least-square line fitting and sectioning of point cloud 6.1. The upperlimb

joint angle was compared with the VICON results. The reference convention is such that when

the elbow is not flexed at all, the angle is zero or close to zero (as opposed to 180 degrees), and

it increases as the elbow flexes.

Observation: Figure 6.26 show comparison of the right elbow angle as reported by Kinect

against VICON results. The elbow angle is the flexion angle made between the upper arm and

the forearm.

Experiment 6.9. Mock Patient drinking from a cup - trial 1

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

E
lb

o
w

 A
n

g
le

 (
d

e
g

re
e

s)

Time (sec)

Right Elbow Angle Subject 3.3

Kinect_Right_Elbow

VICON_Right_Elbow

Kinect 2 vs VICON, Mock patient elbow angle

Figure 6.26: Elbow angle of mock patient

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 174

Statistical Results: Patient type motion

Average angle error using Kinect V2, JAFAKEC-U and the point cloud data is 4.8 degrees,

using data from the experiment 6.9. The error distribution (as probability density function) is

given in Figure 6.27.

0 5 10 15

0.
00

0.
05

0.
10

0.
15

Error distribution using JAFAKEC-U,
 Mock Patient, Kinect V2

Elbow angle error (degrees)

D
is

tr
ib

ut
io

n
de

ns
ity

 (
pr

ob
ab

ili
ty

/d
eg

re
e)

Figure 6.27: Error Distribution using Kinect V2, JAFAKEC-U, Mock Patient

Conclusion:

This patient-type motion produced a good average error (4.8 degrees) which is within the re-

quired bounds. This and the other experiments show that JAFAKEC-U is able to meet the

average error criterion in a majority of the cases. However, there is a concern about the long tail

in the error distribution which manifests as intermittent flickers of inaccurate angles. A closer

look suggests that these are caused by partly incorrect labelling of points. Further research into

the labelling algorithms could serve to tighten up the accuracy.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 175

6.9 Conclusion and Discussion

The depth frame data from the Kinect sensor have been used to calculate the human arm

angle which might be used to monitor human tremors for patients with neurological conditions

like stroke, parkinson’s disease, etc. An assortment of geometric algorithms have been used

to improve the accuracy of arm angle capture. VICON, on the other hand, uses markers and

captures the reflection from markers and works out the joint angles. The VICON raw data is

quite noisy and has gaps. These are addressed by gap filling and a combination of various filters

which are chosen using a graphic user interface for VICON, (6-th order Butterworth filter and

Woltring with predefined parameters) to produce the smoothed data. The results presented in

this chapter using the proposed JAFAKEC-U system shows the comparison with the VICON

data. JAFAKEC-U, using a suite of customised mathematical algorithms, enables marker-less

arm angle capture for healthy and post-stroke patients, inexpensive in home application, easy

to use GUI and fast. Using the proposed algorithms, arm angles are getting computed relatively

accurately.

Xu et al. [197] reports that both Kinect V1 and V2 sensors struggles to achieve accuracy in sitting

postures as the algorithm was designed for subjects in standing positions. [55] found that the

shoulder angle errors measured using Kinect ranges between 7.19 degrees to 13.19 degrees when

compared to VICON. The elbow angle difference between JAFAKEC-U (using Kinect V2) and

VICON system is mostly less than 5 degrees but occasionally the difference spikes upto 7 degrees.

The higher difference usually happens for maximally flexed elbow configuration. Shoulder angles

using the JAFAKEC-U ranges JAFAKEC for upperlimb (arm and hand) application is fully

automatic and works by the real-time tracking of the hand positions, the cup and the recognition

of the gestures. It works well even in the presence of background clutter. The system works

reasonably well with healthy males and females.

This chapter explored the algorithmic methods of utilising inexpensive Kinect sensor devices in

the study of upper limb impairments. The advantage of using Kinect in such applications is

that it can enable affordable continuous monitoring. It can complement, or perhaps eventually

substitute expensive monitoring facilities. So the purported novelty of the JAFAKEC tool for

upper-limb monitoring is that it , carers or clinicians and can be deployed at every site where

upper-limb monitoring can be useful. The marker-less motion assessment technologies discussed

here provide inexpensive and faster ways of doing the same information access in real time.

Chapter 7

Conclusion

This work presents novel methods, techniques and algorithms for dealing with collection, record-

ing, and processing of sensor data. Three different areas of work were explored and discussed in

this thesis.

The first contribution presented in Chapter 2 is that of monitoring livestock using wearable sensor

nodes. In this work, a novel discrete event simulator, WSNSIM, was presented in order to design

protocol for performance modelling of wireless sensor networks. New protocols - viz. modified-

LEACH and LEMSYP were proposed and evaluated using WSNSIM with good improvement

over the state of the art with regard to farm requirements. The new protocol, modified-LEACH,

was implemented in WSNSIM and evaluated with the goal of reducing unreachable nodes in

real herd distributions, without compromising on power consumption. Another new protocol

called LEMSYP with two variants were designed and evaluated with the goal of reducing power

consumption. LEMSYP achieves low power reliable data gathering from dynamic nodes using

a low duty cycle operation. Two variants of LEMSYP were modelled and their performance

compared. The first variant is called C-LEMSYP and is based on using CSMA during the data

transfer phase. The second variant is called T-LEMSYP and is based predominantly on TDMA.

The comparative study revealed that both the variants had low power consumption, with the

T-LEMSYP being significantly more efficient than C-LEMSYP.

The simulations were done in WSNSIM against herd scenarios derived from satellite image data,

synthetic herd data and real time GPS data. A novel synthetic herd generation module based on

statistical modelling from satellite images was developed and implemented. Automatic detection

of cattle positions from satellite images was implemented in WSNSIM using image processing

techniques. Also a probabilistic and statistical mobility model has been developed from GPS

tracked herd data.

In addition to the above research on sensor networking protocols, a mass-market 3D depth sen-

sor called Kinect was used in development of a novel human motion monitoring toolkit. A 3D

motion visualization and analysis tool called GLSKEL was developed in Chapter 3 which was

developed further into a marker-less approach to monitoring of human gait and human upper

limb. A snapshot of the current state-of-art of depth sensor technology is presented to under-

stand the new development opportunities and possibilities, as well as the constraints on the

kind of systems that can be explored. Data capture accuracy has the central impact on how

177

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 178

the monitoring system responds, as it can serve as a direct measure of how far movements like

gait or hand and arm movements can be recorded and analysed for clinical use. A kinematic

model of human body joints was developed within GLSKEL in order to map joint co-ordinates

captured from Kinect into a realistic 3D visualisation of the motion. The output of this model is

a rendered 3D skeleton that can replicate the movements captured by Kinect. The same virtual

skeleton can be interactively posed and manipulated using mouse based and graphical widgets

like sliders. The key scientific contribution of GLSKEL is that it enables continuous motion

capture (as opposed to measurement of aggregate characteristics) in an interactive 3D environ-

ment. GLSKEL’s intuitive interface can help bridge the gap between a research prototype and

a product that can be used by clinical practitioners.

The second contribution (presented in Chapter 5) and the third contribution (presented in Chap-

ter 6) are monitoring human gait and upper limb using Microsoft Kinect sensor without using

any wearable equipment or markers. A key message from these two bodies of work is that

the development of these systems and applications should depend on multidisciplinary aspects

and would consider design, technical, clinical and social concerns. Novel monitoring tools viz.

JAFAKEC-G, for human gait and JAFAKEC-U for human upper limb monitoring have been

developed using a wide range of computational algorithms. JAFAKEC-G, using a suite of cus-

tomised mathematical algorithms, enables marker-less gait capture for healthy and post-stroke

patients which is inexpensive in home application scenarios. The joint angles were compared

against corresponding angles measured using the VICON system. The accuracy of Kinect 1.8

results using the JAFAKEC-G system is on an average within 5 degrees from the angle computed

by VICON.

JAFAKEC-U for upper-limb (arm and hand) enables elbow angle capture for healthy and post-

stroke patients. This novel system is also marker-less, enables easy to use GUI and is amenable

to inexpensive in-home application which might be used by patients, caregivers, or clinicians

to facilitate continuous and remote monitoring. JAFAKEC-U targets the Kinect V2 sensor to

capture data for healthy people and for the post-stroke patients for monitoring. The accuracy

of Kinect V2 results using this novel system was compared with VICON data. The geometric

methods for limb axis determination is accurate enough but it seems that the limb labelling

algorithm needs further research.

Besides the aforementioned algorithms for automated joint motion capture, GLSKEL, JAFAKEC-

G and JAFAKEC-U systems allow for interactive measurement of motion and limb parameters.

Recorded depth frames allow for interactive 3D measurements and play-back of the motions

from various angles and view-points. It is hoped that these systems can be helpful to doctors,

care-givers and mobility impaired patients in reducing the cost of motion monitoring.

Appendices

179

Appendix A

Cattle Motion Measurements

Spatio-temporal distributions of node-mobility and inter-node distance decides several key pa-

rameters with respect to short-range wireless transmissions. For multi-hop protocols, the spatial

spread determines the shortest range of transmission that would still make it highly probable

for the messages to be delivered to the base station. Range of transmission crucially determines

battery life. So the objective of protocol design is to minimise transmission range while making

it sufficient for message delivery. Thus in order to facilitate efficient protocol design, the simu-

lation tool must model spatial spread and motion of nodes. And in order to model the mobility

and spatial spread behaviour, it was important to collect statistical information from multiple

sources. Satellite images of ranches and farms provided static glimpses of herds, and dynamic be-

haviour was based on recording cattle movements continuously over an extended period (7 days)

for cows in a Scottish farm. In this exercise, 15 cows were given GPS receiver collar-bands but 2

of them malfunctioned and did not produce datasets. The other 13 produced dynamic datasets

that enabled determination of distributions of cattle mobility in terms of speed and change in

directions. The following figures present plots of this dynamic dataset that WSNSIM’s mobility

model is based on. Figures A.2, A.4, A.6, A.8, A.10, A.12, A.14, A.16, A.18, A.20, A.22, A.24,

A.26 show plots of positions of cows with speeds displayed as a heat-map. It can be seen from

the heat-map that the cattle spend most of the time stagnating and grazing at very low speeds,

and occasionally shifting from one place to another at relatively high pace. This trend is explic-

itly seen in distribution plots shown in figures A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15, A.17,

A.19, A.21, A.23, A.25. Descriptive statistics (mean, median, range and quartiles) on speed are

presented in the tables A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.12, A.13.

181

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 182

Table A.1: Cow 11 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0002659 0.0223900 0.0583300 0.1206000 0.1202000 0.9999000

Cow 11

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20
0

40
0

60
0

80
0

12
00

Figure A.1: Speed Distribution of Cow 11 over 7 days

Figure A.2: Movement Pattern for Cow 11 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 183

Table A.2: Cow 13 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000045 0.014630 0.035750 0.065040 0.076890 0.998000

Cow 13

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20
0

40
0

60
0

80
0

12
00

Figure A.3: Speed Distribution of Cow 13 over 7 days

Figure A.4: Movement Pattern for Cow 13 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 184

Table A.3: Cow 14 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000869 0.0165100 0.0363100 0.0700700 0.0776200 0.9995000

Cow 14

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

Figure A.5: Speed Distribution of Cow 14 over 7 days

Figure A.6: Movement Pattern for Cow 14 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 185

Table A.4: Cow 15 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000511 0.0188900 0.0417400 0.0781400 0.0934800 0.9986000

Cow 15

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

Figure A.7: Speed Distribution of Cow 15 over 7 days

Figure A.8: Movement Pattern for Cow 15 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 186

Table A.5: Cow 16 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000259 0.0182300 0.0427200 0.0766300 0.0926800 0.9998000

Cow 16

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

Figure A.9: Speed Distribution of Cow 16 over 7 days

Figure A.10: Movement Pattern for Cow 16 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 187

Table A.6: Cow 17 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000391 0.0198700 0.0506500 0.0901200 0.1082000 0.9980000

Cow 17

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10
0

20
0

30
0

40
0

Figure A.11: Speed Distribution of Cow 17 over 7 days

Figure A.12: Movement Pattern for Cow 17 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 188

Table A.7: Cow 18 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000563 0.0215000 0.0473700 0.0881400 0.1043000 1.0000000

Cow 18

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20
0

60
0

10
00

14
00

Figure A.13: Speed Distribution of Cow 18 over 7 days

Figure A.14: Movement Pattern for Cow 18 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 189

Table A.8: Cow 19 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0001986 0.0232300 0.0537100 0.0907200 0.1084000 1.0000000

Cow 19

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20
0

60
0

10
00

Figure A.15: Speed Distribution of Cow 19 over 7 days

Figure A.16: Movement Pattern for Cow 19 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 190

Table A.9: Cow 20 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000684 0.0173900 0.0417300 0.0874400 0.0952200 0.9995000

Cow 20

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

Figure A.17: Speed Distribution of Cow 20 over 7 days

Figure A.18: Movement Pattern for Cow 20 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 191

Table A.10: Cow 21 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000942 0.0198000 0.0408900 0.0766700 0.0869100 0.9997000

Cow 21

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

Figure A.19: Speed Distribution of Cow 21 over 7 days

Figure A.20: Movement Pattern for Cow 21 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 192

Table A.11: Cow 22 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000334 0.0197700 0.0472500 0.0888700 0.1063000 0.9992000

Cow 22

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

Figure A.21: Speed Distribution of Cow 22 over 7 days

Figure A.22: Movement Pattern for Cow 22 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 193

Table A.12: Cow 23 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000454 0.0162600 0.0368800 0.0739200 0.0827900 0.9999000

Cow 23

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

20
00

Figure A.23: Speed Distribution of Cow 23 over 7 days

Figure A.24: Movement Pattern for Cow 23 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 194

Table A.13: Cow 24 Speed Data

Cattle Movement Speed in m/s
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000708 0.0215200 0.0482400 0.0900400 0.1069000 0.9977000

Cow 24

speeds

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10
0

20
0

30
0

40
0

50
0

60
0

Figure A.25: Speed Distribution of Cow 24 over 7 days

Figure A.26: Movement Pattern for Cow 24 over 7 days

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 195

A subset of this mobility dataset was selected for modelling as a Markov Random Field (MRF) in

[170]. The same subset of data was used in this work for fitting decoupled univariate distributions

for speed and heading. Subsequently the full dataset was used in validating the model. This

modelling approach is described in the following section.

References

[1] How the kinect works. http://www.depthbiomechanics.co.uk/?p=100. Accessed: 2018-

03-10.

[2] Vicon nexus reference guide. https://docs.vicon.com/download/attachments/

42696722/Vicon%20Nexus%20Reference%20Guide.pdf. Accessed: 2018-03-09.

[3] Jake K Aggarwal and Michael S Ryoo. Human activity analysis: A review. ACM Com-

puting Surveys (CSUR), 43(3):16, 2011.

[4] Giannis Altanis, Michalis Boloudakis, Symeon Retalis, and Nikos Nikou. Children with

motor impairments play a kinect learning game: first findings from a pilot case in an

authentic classroom environment. J Interact Design Architect, 19:91–104, 2013.

[5] Nese Alyuz, Eda Okur, Ece Oktay, Utku Genc, Sinem Aslan, Sinem Emine Mete, David

Stanhill, Bert Arnrich, and Asli Arslan Esme. Towards an emotional engagement model:

Can affective states of a learner be automatically detected in a 1: 1 learning scenario. In

Proceedings of the 6th Workshop on Personalization Approaches in Learning Environments

(PALE 2016). 24th conference on User Modeling, Adaptation, and Personalization (UMAP

2016), CEUR workshop proceedings, this volume, 2016.

[6] Geoff Appelboom, Annie H Yang, Brandon R Christophe, Eliza M Bruce, Justine Slomian,

Olivier Bruyère, Samuel S Bruce, Brad E Zacharia, Jean-Yves Reginster, and E Sander

Connolly. The promise of wearable activity sensors to define patient recovery. Journal of

Clinical Neuroscience, 21(7):1089–1093, 2014.

[7] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on

particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on

signal processing, 50(2):174–188, 2002.

[8] J Gary Augustson and Jack Minker. An analysis of some graph theoretical cluster tech-

niques. Journal of the ACM (JACM), 17(4):571–588, 1970.

[9] Cyrus S Bamji, Patrick O’Connor, Tamer Elkhatib, Swati Mehta, Barry Thompson,

Lawrence A Prather, Dane Snow, Onur Can Akkaya, Andy Daniel, Andrew D Payne,

et al. A 0.13 µm cmos system-on-chip for a 512× 424 time-of-flight image sensor with

multi-frequency photo-demodulation up to 130 mhz and 2 gs/s adc. IEEE Journal of

Solid-State Circuits, 50(1):303–319, 2015.

197

http://www.depthbiomechanics.co.uk/?p=100
https://docs.vicon.com/download/attachments/42696722/Vicon%20Nexus%20Reference%20Guide.pdf
https://docs.vicon.com/download/attachments/42696722/Vicon%20Nexus%20Reference%20Guide.pdf

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 198

[10] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm

for convex hulls. ACM Trans. Math. Softw., 22(4):469–483, December 1996.

[11] Hamid Bateni. Changes in balance in older adults based on use of physical therapy vs the

wii fit gaming system: a preliminary study. Physiotherapy, 98(3):211–216, 2012.

[12] Jon Louis Bentley and Michael Ian Shamos. Divide-and-conquer in multidimensional

space. In Proceedings of the eighth annual ACM symposium on Theory of computing,

pages 220–230. ACM, 1976.

[13] Sara Bilal, Rini Akmeliawati, Amir A. Shafie, and Momoh Jimoh E. Salami. Hidden markov

model for human to computer interaction: a study on human hand gesture recognition.

Artificial Intelligence Review, 40(4):495–516, 2013.

[14] Michael J Black and Allan D Jepson. A probabilistic framework for matching temporal

trajectories: Condensation-based recognition of gestures and expressions. In European

conference on computer vision, pages 909–924. Springer, 1998.

[15] Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business Media,

2013.

[16] Bruno Bonnechere, Bart Jansen, P Salvia, H Bouzahouene, L Omelina, Fedor Moiseev,

Victor Sholukha, Jan Cornelis, Marcel Rooze, and S Van Sint Jan. Validity and reliability

of the kinect within functional assessment activities: comparison with standard stereopho-

togrammetry. Gait & posture, 39(1):593–598, 2014.

[17] Judit Bort-Roig, Nicholas D Gilson, Anna Puig-Ribera, Ruth S Contreras, and Stewart G

Trost. Measuring and influencing physical activity with smartphone technology: a system-

atic review. Sports Medicine, 44(5):671–686, 2014.

[18] Athanassios Boulis et al. Castalia: A simulator for wireless sensor networks and body area

networks. National ICT Australia Ltd, Australia, 2009.

[19] Alan C Bovik. Handbook of image and video processing. Academic Press, 2010.

[20] Gary R. Bradski. Computer vision face tracking for use in a perceptual user interface,

1998.

[21] A. Brandstdt, V. Le, and J. Spinrad. Graph Classes: A Survey. Society for Industrial and

Applied Mathematics, 1999.

[22] Timo Breuer, Christoph Bodensteiner, and Michael Arens. Low-cost commodity depth sen-

sor comparison and accuracy analysis. In SPIE Security+ Defence, pages 92500G–92500G.

International Society for Optics and Photonics, 2014.

[23] Armin Bruderlin and Thomas W Calvert. Goal-directed, dynamic animation of human

walking. In ACM SIGGRAPH Computer Graphics, volume 23, pages 233–242. ACM,

1989.

[24] Yao-Jen Chang, Shu-Fang Chen, and Jun-Da Huang. A kinect-based system for phys-

ical rehabilitation: A pilot study for young adults with motor disabilities. Research in

developmental disabilities, 32(6):2566–2570, 2011.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 199

[25] Yao-Jen Chang, Wen-Ying Han, and Yu-Chi Tsai. A kinect-based upper limb rehabilita-

tion system to assist people with cerebral palsy. Research in Developmental Disabilities,

34(11):3654 – 3659, 2013.

[26] S.W. Cheng, T.K. Dey, and J. Shewchuk. Delaunay Mesh Generation. Chapman & Hal-

l/CRC Computer and Information Science Series. Taylor & Francis, 2012.

[27] Enea Cippitelli, Samuele Gasparrini, Susanna Spinsante, and Ennio Gambi. Kinect as a

tool for gait analysis: validation of a real-time joint extraction algorithm working in side

view. Sensors, 15(1):1417–1434, 2015.

[28] Ross A Clark, Adam L Bryant, Yonghao Pua, Paul McCrory, Kim Bennell, and Michael

Hunt. Validity and reliability of the nintendo wii balance board for assessment of standing

balance. Gait & posture, 31(3):307–310, 2010.

[29] Ross A Clark, Yong-Hao Pua, Karine Fortin, Callan Ritchie, Kate E Webster, Linda

Denehy, and Adam L Bryant. Validity of the microsoft kinect for assessment of postural

control. Gait & posture, 36(3):372–377, 2012.

[30] Ross A. Clark, Yong-Hao Pua, Karine Fortin, Callan Ritchie, Kate E. Webster, Linda

Denehy, and Adam L. Bryant. Validity of the microsoft kinect for assessment of postural

control. Gait & Posture, 36(3):372 – 377, 2012.

[31] Ross A Clark, Stephanie Vernon, Benjamin F Mentiplay, Kimberly J Miller, Jennifer L

McGinley, Yong Hao Pua, Kade Paterson, and Kelly J Bower. Instrumenting gait assess-

ment using the kinect in people living with stroke: reliability and association with balance

tests. Journal of neuroengineering and rehabilitation, 12(1):15, 2015.

[32] Daniel Cohen-Or, Chen Greif, Tao Ju, Niloy J Mitra, Ariel Shamir, Olga Sorkine-Hornung,

and Hao Richard Zhang. A sampler of useful computational tools for applied geometry,

computer graphics, and image processing. AK Peters/CRC Press, 2015.

[33] G. K. Cole, B. M. Nigg, J. L. Ronsky, and M. R. Yeadon. Application of the joint coordinate

system to three-dimensional joint attitude and movement representation: A standardiza-

tion proposal. 115(4):344–349.

[34] T.H. Cormen. Introduction to Algorithms. Computer science. MIT Press, 2009.

[35] David Cunado, Mark S Nixon, and John N Carter. Automatic extraction and description of

human gait models for recognition purposes. Computer Vision and Image Understanding,

90(1):1–41, 2003.

[36] Jean-François Daneault, Benoit Carignan, Carl Éric Codère, Abbas F Sadikot, and Chris-

tian Duval. Using a smart phone as a standalone platform for detection and monitoring of

pathological tremors. Frontiers in human neuroscience, 6:357, 2013.

[37] James Davis and Mubarak Shah. Recognizing hand gestures. In European Conference on

Computer Vision, pages 331–340. Springer, 1994.

[38] Kevin Deluzio. Waveform data analysis techniques. http://my.me.queensu.ca/People/

Deluzio/DataAnalysis.html. Accessed: 2017-02-12.

http://my.me.queensu.ca/People/Deluzio/DataAnalysis.html
http://my.me.queensu.ca/People/Deluzio/DataAnalysis.html

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 200

[39] George Demiris, Marilyn J Rantz, Myra A Aud, Karen D Marek, Harry W Tyrer, Mar-

jorie Skubic, and Ali A Hussam. Older adults’ attitudes towards and perceptions of

smart hometechnologies: a pilot study. Medical informatics and the Internet in medicine,

29(2):87–94, 2004.

[40] Konstantinos G Derpanis. A review of vision-based hand gestures. Unpublished. Feb, 2004.

[41] Luc Devroye. The expected size of some graphs in computational geometry. Computers &

mathematics with applications, 15(1):53–64, 1988.

[42] T. K. Dey and J. Pach. Extremal problems for geometric hypergraphs. Discrete & Com-

putational Geometry, 19(4):473–484, 1998.

[43] T.K. Dey. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis.

Cambridge Monographs on Applied and Computational Mathematics. Cambridge Univer-

sity Press, 2011.

[44] Cao Di, Tsung Wu, Hock Guan Goh, Bruce Stephen, Kaehsiang Kwong, Craig Michie, and

Ivan Andonovic. Exploitation of wireless telemetry for livestock condition monitoring. In

Canadian Society for Bioengineering, CIGR, Quebec City, Canada, June 2010.

[45] Eric Dishman. Inventing wellness systems for aging in place. Computer, 37(5):34–41, 2004.

[46] L Doherty, BA Warneke, BE Boser, and KSJ Pister. Energy and performance consid-

erations for smart dust. International Journal of Parallel and Distributed Systems and

Networks, 4(3):121–133, 2001.

[47] Elham Dolatabadi, Babak Taati, Gemma S Parra-Dominguez, and Alex Mihailidis. A

markerless motion tracking approach to understand changes in gait and balance: A case

study. In Proceedings of the Rehabilitation Engineering and Assistive Technology Society

of North America Annual Conference, pages 20–24, 2013.

[48] Fabio Dominio, Mauro Donadeo, and Pietro Zanuttigh. Combining multiple depth-based

descriptors for hand gesture recognition. Pattern Recognition Letters, 50:101 – 111, 2014.

Depth Image Analysis.

[49] Tilak Dutta. Evaluation of the kinect sensor for 3-d kinematic measurement in the work-

place. Applied Ergonomics, 43(4):645 – 649, 2012.

[50] Andreas Ejupi, Matthew Brodie, Yves J Gschwind, Stephen R Lord, Wolfgang L Zagler,

and Kim Delbaere. Kinect-based five-times-sit-to-stand test for clinical and in-home as-

sessment of fall risk in older people. Gerontology, 62(1):118–124, 2015.

[51] Mahmoud El-Gohary, Sean Pearson, James McNames, Martina Mancini, Fay Horak,

Sabato Mellone, and Lorenzo Chiari. Continuous monitoring of turning in patients with

movement disability. Sensors, 14(1):356–369, 2013.

[52] David Eppstein. Dynamic euclidean minimum spanning trees and extrema of binary func-

tions. Discrete & Computational Geometry, 13(1):111–122, 1995.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 201

[53] EUROSTAT. Population structure and ageing. http://ec.europa.eu/eurostat/

statistics-explained/index.php/Population_structure_and_ageing. Accessed:

2017-02-23.

[54] Stefan Felsner. Geometric graphs and arrangements: some chapters from combinatorial

geometry. Springer Science & Business Media, 2012.

[55] A. Fern’ndez-Baena, A. Susin, and X. Lligadas. Biomechanical validation of upper-body

and lower-body joint movements of kinect motion capture data for rehabilitation treat-

ments. In Intelligent Networking and Collaborative Systems (INCoS), 2012 4th Interna-

tional Conference on, pages 656–661, Sept 2012.

[56] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals

of statistics, pages 1189–1232, 2001.

[57] Jerome H Friedman. Stochastic gradient boosting. Computational Statistics & Data Anal-

ysis, 38(4):367–378, 2002.

[58] Moshe Gabel, Ran Gilad-Bachrach, Erin Renshaw, and Assaf Schuster. Full body gait

analysis with kinect. In 2012 Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, pages 1964–1967. IEEE, 2012.

[59] K. Ruben Gabriel and Robert R. Sokal. A new statistical approach to geographic variation

analysis. Systematic Biology, 18(3):259–278, 1969.

[60] Javier Galbally and Riccardo Satta. Three-dimensional and two-and-a-half-dimensional

face recognition spoofing using three-dimensional printed models. IET Biometrics,

5(2):83–91, 2016.

[61] Luigi Gallo, Alessio Pierluigi Placitelli, and Mario Ciampi. Controller-free exploration of

medical image data: Experiencing the kinect. In Computer-based medical systems (CBMS),

2011 24th international symposium on, pages 1–6. IEEE, 2011.

[62] Daphne J Geerse, Bert H Coolen, and Melvyn Roerdink. Kinematic validation of a multi-

kinect v2 instrumented 10-meter walkway for quantitative gait assessments. PloS one,

10(10):e0139913, 2015.

[63] Christopher G Goetz, Barbara C Tilley, Stephanie R Shaftman, Glenn T Stebbins, Stan-

ley Fahn, Pablo Martinez-Martin, Werner Poewe, Cristina Sampaio, Matthew B Stern,

Richard Dodel, et al. Movement disorder society-sponsored revision of the unified parkin-

son’s disease rating scale (mds-updrs): Scale presentation and clinimetric testing results.

Movement disorders, 23(15):2129–2170, 2008.

[64] Michela Goffredo, Imed Bouchrika, John N Carter, and Mark S Nixon. Self-calibrating

view-invariant gait biometrics. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 40(4):997–1008, 2010.

[65] Markus Gross and Hanspeter Pfister. Point-based graphics. Morgan Kaufmann, 2011.

http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_structure_and_ageing
http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_structure_and_ageing

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 202

[66] Ying Guo, Geoff Poulton, Peter Corke, GJ Bishop-Hurley, Tim Wark, and David L Swain.

Using accelerometer, high sample rate gps and magnetometer data to develop a cattle

movement and behaviour model. Ecological Modelling, 220(17):2068–2075, 2009.

[67] Zicheng Guo and Richard W Hall. Parallel thinning with two-subiteration algorithms.

Communications of the ACM, 32(3):359–373, 1989.

[68] DM Halliday, BA Conway, SF Farmer, U Shahani, AJC Russell, and JR Rosenberg. Co-

herence between low-frequency activation of the motor cortex and tremor in patients with

essential tremor. The Lancet, 355(9210):1149–1153, 2000.

[69] Jungong Han, Ling Shao, Dong Xu, and Jamie Shotton. Enhanced computer vision with

microsoft kinect sensor: A review. IEEE transactions on cybernetics, 43(5):1318–1334,

2013.

[70] Charles D. Hansen and Chris R. Johnson, editors. Visualization Handbook. Butterworth-

Heinemann, Burlington, 2005.

[71] Peter Hebden and Adrian R Pearce. Distributed asynchronous clustering for self-

organisation of wireless sensor networks. In Intelligent Sensing and Information Processing,

2006. ICISIP 2006. Fourth International Conference on, pages 37–42. IEEE, 2006.

[72] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication

protocol for wireless microsensor networks. In System Sciences, 2000. Proceedings of the

33rd Annual Hawaii International Conference on, pages 10 pp. vol.2–, Jan 2000.

[73] Thomas R Henderson, Mathieu Lacage, George F Riley, C Dowell, and JB Kopena. Net-

work simulations with the ns-3 simulator. SIGCOMM demonstration, 2008.

[74] Daniel Herrera, Juho Kannala, and Janne Heikkilä. Joint depth and color camera cali-

bration with distortion correction. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 34(10):2058–2064, 2012.

[75] Susan Hert and Stefan Schirra. 3D convex hulls. In CGAL User and Reference Manual.

CGAL Editorial Board, 4.11.1 edition, 2018.

[76] Jeremy C Hobart, Stefan J Cano, John P Zajicek, and Alan J Thompson. Rating scales

as outcome measures for clinical trials in neurology: problems, solutions, and recommen-

dations. The Lancet Neurology, 6(12):1094–1105, 2007.

[77] Diana HODGINS. The importance of measuring human gait. Medical Device Technology,

19(5), 2008.

[78] Martin Hofmann, Sebastian Bachmann, and Gerhard Rigoll. 2.5 d gait biometrics using the

depth gradient histogram energy image. In Biometrics: Theory, Applications and Systems

(BTAS), 2012 IEEE Fifth International Conference on, pages 399–403. IEEE, 2012.

[79] Hossein Mousavi Hondori, Maryam Khademi, and Cristina V Lopes. Monitoring intake

gestures using sensor fusion (microsoft kinect and inertial sensors) for smart home tele-

rehab setting. In 2012 1st Annual IEEE Healthcare Innovation Conference, 2012.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 203

[80] Fay B Horak and Martina Mancini. Objective biomarkers of balance and gait for parkin-

son’s disease using body-worn sensors. Movement Disorders, 28(11):1544–1551, 2013.

[81] Nikolaos Kyriazis Iason Oikonomidis and Antonis Argyros. Efficient model-based 3d track-

ing of hand articulations using kinect. In Proceedings of the British Machine Vision Con-

ference, pages 101.1–101.11. BMVA Press, 2011. http://dx.doi.org/10.5244/C.25.101.

[82] Verne Thompson Inman, Henry James Ralston, and Frank Todd. Human walking. Williams

& Wilkins, 1981.

[83] Michael Isard and Andrew Blake. Condensation—conditional density propagation for vi-

sual tracking. International Journal of Computer Vision, 29(1):5–28, 1998.

[84] Michael Isard and Andrew Blake. Condensationconditional density propagation for visual

tracking. International journal of computer vision, 29(1):5–28, 1998.

[85] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters,

31(8):651–666, 2010.

[86] Jerzy W. Jaromczyk and Mirosaw Kowaluk. Constructing the relative neighborhood graph

in 3-dimensional euclidean space. Discrete Applied Mathematics, 31(2):181 – 191, 1991.

[87] Hairong Jiang, Juan P Wachs, and Bradley S Duerstock. Facilitated gesture recognition

based interfaces for people with upper extremity physical impairments. In Iberoamerican

Congress on Pattern Recognition, pages 228–235. Springer, 2012.

[88] Ragnar Jónsson, Mogens Blanke, Niels Kjølstad Poulsen, Fabio Caponetti, and Søren

Højsgaard. Oestrus detection in dairy cows from activity and lying data using on-line

individual models. Computers and Electronics in Agriculture, 76(1):6–15, 2011.

[89] Ragnar Ingi Jónsson. Modelling cow behaviour using stochastic automata. Technical

report, Ruhr-Universität Bochum, 2010.

[90] MP Kadaba, HK Ramakrishnan, ME Wootten, J Gainey, G Gorton, and GVB Cochran.

Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. Jour-

nal of Orthopaedic Research, 7(6):849–860, 1989.

[91] Mrn P Kadaba, HK Ramakrishnan, and ME Wootten. Measurement of lower extremity

kinematics during level walking. Journal of orthopaedic research, 8(3):383–392, 1990.

[92] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: Hierarchical clustering

using dynamic modeling. Computer, 32(8):68–75, 1999.

[93] Hiroki Kayama, Kazuya Okamoto, Shu Nishiguchi, Minoru Yamada, Tomohiro Kuroda,

and Tomoki Aoyama. Effect of a kinect-based exercise game on improving executive cog-

nitive performance in community-dwelling elderly: case control study. Journal of medical

Internet research, 16(2):e61, 2014.

[94] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and resolution of kinect depth

data for indoor mapping applications. Sensors, 12(2):1437–1454, 2012.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 204

[95] T Kilgus, R Bux, AM Franz, W Johnen, E Heim, M Fangerau, M Müller, K Yen, and

L Maier-Hein. Structure sensor for mobile markerless augmented reality. In SPIE Medical

Imaging, pages 97861L–97861L. International Society for Optics and Photonics, 2016.

[96] Naofumi Kitsunezaki, Eijiro Adachi, Takashi Masuda, and Jun-ichi Mizusawa. Kinect

applications for the physical rehabilitation. In Medical Measurements and Applications

Proceedings (MeMeA), 2013 IEEE International Symposium on, pages 294–299. IEEE,

2013.

[97] Andreas Köpke, Michael Swigulski, Karl Wessel, Daniel Willkomm, PT Haneveld, Tom EV

Parker, Otto W Visser, Hermann S Lichte, and Stefan Valentin. Simulating wireless and

mobile networks in omnet++ the mixim vision. In Proceedings of the 1st international

conference on Simulation tools and techniques for communications, networks and systems

& workshops, page 71. ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), 2008.

[98] John F Kurtzke. Rating neurologic impairment in multiple sclerosis an expanded disability

status scale (edss). Neurology, 33(11):1444–1444, 1983.

[99] Sungjun Kwon, Hyunseok Kim, and Kwang Suk Park. Validation of heart rate extrac-

tion using video imaging on a built-in camera system of a smartphone. In Engineering

in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the

IEEE, pages 2174–2177. IEEE, 2012.

[100] Kae Hsiang Kwong, Tsung Wu, Hock Guan Goh, Konstantinos Sasloglou, Bruce Stephen,

Ian Glover, Chong Shen, Wencai Du, Craig Michie, and Ivan Andonovic. Practical con-

siderations for wireless sensor networks in cattle monitoring applications. Computers and

Electronics in Agriculture, 81:33–44, 2012.

[101] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A scalable tree-based approach for

joint object and pose recognition. In Proceedings of the Twenty-Fifth AAAI Conference

on Artificial Intelligence, AAAI’11, pages 1474–1480. AAAI Press, 2011.

[102] Belinda Lange, Chien-Yen Chang, Evan Suma, Bradley Newman, Albert Skip Rizzo, and

Mark Bolas. Development and evaluation of low cost game-based balance rehabilitation

tool using the microsoft kinect sensor. In 2011 Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, pages 1831–1834. IEEE, 2011.

[103] E. Langetepe and G. Zachmann. Geometric Data Structures for Computer Graphics. Ak

Peters Series. Taylor & Francis, 2006.

[104] Elmar Langetepe and Gabriel Zachmann. Geometric Data Structures for Computer Graph-

ics. AK Peters, 1 edition, 2006.

[105] Philip M. Lankford. Regionalization: Theory and alternative algorithms. Geographical

Analysis, 1(2):196–212, 1969.

[106] R.S. Leder, G. Azcarate, R. Savage, S. Savage, L.E. Sucar, D. Reinkensmeyer, C. Toxtli,

E. Roth, and A. Molina. Nintendo wii remote for computer simulated arm and wrist

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 205

therapy in stroke survivors with upper extremity hemipariesis. In Virtual Rehabilitation,

2008, pages 74–74, Aug 2008.

[107] Jinna Lei, Xiaofeng Ren, and Dieter Fox. Fine-grained kitchen activity recognition us-

ing rgb-d. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pages

208–211. ACM, 2012.

[108] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: Accurate and scalable

simulation of entire tinyos applications. In Proceedings of the 1st international conference

on Embedded networked sensor systems, pages 126–137. ACM, 2003.

[109] Olivier Lézoray and Leo Grady. Image processing and analysis with graphs: theory and

practice. CRC Press, 2012.

[110] Stephanie Lindsey and Cauligi S Raghavendra. Pegasis: Power-efficient gathering in sensor

information systems. In Aerospace conference proceedings, 2002. IEEE, volume 3, pages

3–1125. IEEE, 2002.

[111] D López-Fernández, FJ Madrid-Cuevas, A Carmona-Poyato, R Muñoz-Salinas, and

R Medina-Carnicer. A new approach for multi-view gait recognition on unconstrained

paths. Journal of Visual Communication and Image Representation, 38:396–406, 2016.

[112] Shan Lu, D. Metaxas, D. Samaras, and J. Oliensis. Using multiple cues for hand tracking

and model refinement. In 2003 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2003. Proceedings., volume 2, pages II–443–50 vol.2, June 2003.

[113] Thomas Maier. Distance sensors: Sound, light and vision. https://tams.informatik.

uni-hamburg.de/lehre/2016ws/seminar/ir/doc/slides/ThomasMaier-Distance_

Sensors_Sound_Light_and_Vision.pdf. Accessed: 2018-03-10.

[114] Jayanta Majumder, Dracos Vassalos, Shikha Sarkar, Hyunseok Kim, Luis Guarin, Anthony

York, and Terje Dahlberg. Simulation based planning of ferry terminal operations. In Pro-

ceedings 6th International Conference on Computer and IT Applications in the Maritime

Industries (COMPIT 2007), Cortona, 2007.

[115] Georgios Mastorakis and Dimitrios Makris. Fall detection system using kinects infrared

sensor. Journal of Real-Time Image Processing, 9(4):635–646, 2014.

[116] D. W. Matula and R. R. Sokal. Properties Of Gabriel Graphs Relevant To Geographic

Variation Research And The Clustering Of Points In The Plane. Geographical Analysis,

12:205–222, 1980.

[117] S. Mccanne, S. Floyd, and K. Fall. ns2 (network simulator 2). http://www-nrg.ee.lbl.gov-

/ns/.

[118] Fabio Menna, Fabio Remondino, Roberto Battisti, and Erica Nocerino. Geometric inves-

tigation of a gaming active device, 2011.

[119] Benjamin F Mentiplay, Ross A Clark, Alexandra Mullins, Adam L Bryant, Simon Bartold,

and Kade Paterson. Reliability and validity of the microsoft kinect for evaluating static

foot posture. Journal of foot and ankle research, 6(1):1, 2013.

https://tams.informatik.uni-hamburg.de/lehre/2016ws/seminar/ir/doc/slides/ThomasMaier-Distance_Sensors_Sound_Light_and_Vision.pdf
https://tams.informatik.uni-hamburg.de/lehre/2016ws/seminar/ir/doc/slides/ThomasMaier-Distance_Sensors_Sound_Light_and_Vision.pdf
https://tams.informatik.uni-hamburg.de/lehre/2016ws/seminar/ir/doc/slides/ThomasMaier-Distance_Sensors_Sound_Light_and_Vision.pdf

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 206

[120] B. W. Miners, O. A. Basir, and M. S. Kamel. Understanding hand gestures using approx-

imate graph matching. IEEE Transactions on Systems, Man, and Cybernetics - Part A:

Systems and Humans, 35(2):239–248, March 2005.

[121] Brian Mirtich. Fast and accurate computation of polyhedral mass properties. Journal of

Graphics Tools, 1(2):31–50, 1996.

[122] Niloy J Mitra and An Nguyen. Estimating surface normals in noisy point cloud data.

In Proceedings of the nineteenth annual symposium on Computational geometry, pages

322–328. ACM, 2003.

[123] Thomas B. Moeslund and Erik Granum. A survey of computer vision-based human motion

capture. Computer Vision and Image Understanding, 81(3):231 – 268, 2001.

[124] Thomas B Moeslund, Adrian Hilton, and Volker Krüger. A survey of advances in vision-

based human motion capture and analysis. Computer vision and image understanding,

104(2):90–126, 2006.

[125] Rafael Munoz-Salinas, R. Medina-Carnicer, F.J. Madrid-Cuevas, and A. Carmona-Poyato.

Depth silhouettes for gesture recognition. Pattern Recognition Letters, 29(3):319 – 329,

2008.

[126] Xiaopeng Ning and Guodong Guo. Assessing spinal loading using the kinect depth sensor:

a feasibility study. Sensors J, 13(4):1139–1140, 2013.

[127] Štěpán Obdržálek, Gregorij Kurillo, Ferda Ofli, Ruzena Bajcsy, Edmund Seto, Holly Jimi-

son, and Michael Pavel. Accuracy and robustness of kinect pose estimation in the context

of coaching of elderly population. In Engineering in medicine and biology society (EMBC),

2012 annual international conference of the IEEE, pages 1188–1193. IEEE, 2012.

[128] Tom Skyh0j Olsen. Arm and leg paresis as outcome predictors in stroke rehabilitation.

Stroke, 21(2):247–251, 1990.

[129] John K. Ousterhout, Ken Jones, Eric Foster-Johnson, Donal Fellows, Brian Griffin, and

David Welton. Tcl and the Tk Toolkit. Addision-Wesley Professional Computing Series.

Addison-Wesley, Upper Saddle River, New Jersey, 2 edition, 2010.

[130] Diana Pagliari and Livio Pinto. Calibration of kinect for xbox one and comparison between

the two generations of microsoft sensors. Sensors, 15(11):27569–27589, 2015.

[131] Robert J Palisano, Peter Rosenbaum, Doreen Bartlett, and Michael H Livingston. Content

validity of the expanded and revised gross motor function classification system. Develop-

mental Medicine & Child Neurology, 50(10):744–750, 2008.

[132] Alexandros Pantelopoulos and Nikolaos G Bourbakis. A survey on wearable sensor-based

systems for health monitoring and prognosis. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 40(1):1–12, 2010.

[133] Monish Parajuli, Dat Tran, Wanli Ma, and Dharmendra Sharma. Senior health monitor-

ing using kinect. In Communications and Electronics (ICCE), 2012 Fourth International

Conference on, pages 309–312. IEEE, 2012.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 207

[134] Rick Parent. Computer animation: algorithms and techniques. Newnes, 2012.

[135] Valerio Pascucci, Xavier Tricoche, Hans Hagen, and Julien Tierny. Topological Methods in

Data Analysis and Visualization: theory, algorithms, and applications. Springer Science &

Business Media, 2010.

[136] Wei Peng and David J Edwards. K-means like minimum mean distance algorithm for

wireless sensor networks. In Computer Engineering and Technology (ICCET), 2010 2nd

International Conference on, volume 1, pages V1–120. IEEE, 2010.

[137] Patrick Pérez, Carine Hue, Jaco Vermaak, and Michel Gangnet. Color-based probabilistic

tracking. In European Conference on Computer Vision, pages 661–675. Springer, 2002.

[138] Alexandra Pfister, Alexandre M West, Shaw Bronner, and Jack Adam Noah. Comparative

abilities of microsoft kinect and vicon 3d motion capture for gait analysis. Journal of

medical engineering & technology, 38(5):274–280, 2014.

[139] Jonathan Polley, Dionysus Blazakis, Jonathan McGee, Daniel Rusk, and John S Baras.

Atemu: a fine-grained sensor network simulator. In Sensor and Ad Hoc Communications

and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications So-

ciety Conference on, pages 145–152. IEEE, 2004.

[140] F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three

dimensions. Commun. ACM, 20(2):87–93, February 1977.

[141] Yong-Hao Pua, Zhiqi Liang, Peck-Hoon Ong, Adam L Bryant, Ngai-Nung Lo, and Ross A

Clark. Associations of knee extensor strength and standing balance with physical function

in knee osteoarthritis. Arthritis care & research, 63(12):1706–1714, 2011.

[142] R Development Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.

[143] Tahir Rabbani. Automatic reconstruction of industrial installations using point clouds and

images. Publications on Geodesy, 62, 2017.

[144] Aditya Ramamoorthy, Namrata Vaswani, Santanu Chaudhury, and Subhashis Banerjee.

Recognition of dynamic hand gestures. Pattern Recognition, 36(9):2069–2081, 2003.

[145] Michalis Raptis, Darko Kirovski, and Hugues Hoppe. Real-time classification of dance ges-

tures from skeleton animation. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics

symposium on computer animation, pages 147–156. ACM, 2011.

[146] George F Riley. The georgia tech network simulator. In Proceedings of the ACM SIGCOMM

workshop on Models, methods and tools for reproducible network research, pages 5–12.

ACM, 2003.

[147] Henry Rimminen, Juha Lindström, Matti Linnavuo, and Raimo Sepponen. Detection of

falls among the elderly by a floor sensor using the electric near field. IEEE Transactions

on Information Technology in Biomedicine, 14(6):1475–1476, 2010.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 208

[148] Javier Romero, Hedvig Kjellström, and Danica Kragic. Hands in action: real-time 3d

reconstruction of hands in interaction with objects. In Robotics and Automation (ICRA),

2010 IEEE International Conference on, pages 458–463. IEEE, 2010.

[149] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall

series in artificial intelligence. Prentice Hall, 2010.

[150] Davud Sadihov, Bastian Migge, Roger Gassert, and Yeongmi Kim. Prototype of a vr

upper-limb rehabilitation system enhanced with motion-based tactile feedback. In World

Haptics Conference (WHC), 2013, pages 449–454. IEEE, 2013.

[151] Sanjay Saini, Dayang Rohaya Awang Rambli, Suziah Sulaiman, Mohamed Nordin Zakaria,

and Siti Rohkmah Mohd Shukri. A low-cost game framework for a home-based stroke

rehabilitation system. In Computer & Information Science (ICCIS), 2012 International

Conference on, volume 1, pages 55–60. IEEE, 2012.

[152] Gustavo Saposnik, Robert Teasell, Muhammad Mamdani, Judith Hall, William McIl-

roy, Donna Cheung, Kevin E Thorpe, Leonardo G Cohen, Mark Bayley, et al. Effec-

tiveness of virtual reality using wii gaming technology in stroke rehabilitation. Stroke,

41(7):1477–1484, 2010.

[153] Shikha Sarkar, Lina Stankovic, and Ivan Andonovic. Protocol design for farm animal

monitoring using simulation. In Ad-hoc, Mobile, and Wireless Networks, pages 126–138.

Springer, 2012.

[154] Shikha Sarkar, Lina Stankovic, Andy Kerr, and Philip Rowe. Kinect-based lower limb

motion analysis. In XXV Congress International Society of Biomechanics, 2015.

[155] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient ransac for point-cloud shape

detection. In Computer graphics forum, volume 26, pages 214–226. Wiley Online Library,

2007.

[156] Philip J. Schneider and David Eberly. Geometric Tools for Computer Graphics. Elsevier

Science Inc., New York, NY, USA, 2002.

[157] Curt Schurgers, Vlasios Tsiatsis, Saurabh Ganeriwal, and Mani Srivastava. Optimizing

sensor networks in the energy-latency-density design space. Mobile Computing, IEEE

Transactions on, 1(1):70–80, 2002.

[158] Loren Arthur Schwarz, Artashes Mkhitaryan, Diana Mateus, and Nassir Navab. Human

skeleton tracking from depth data using geodesic distances and optical flow. Image and

Vision Computing, 30(3):217–226, 2012.

[159] Michael Ian Shamos and Dan Hoey. Closest-point problems. In Foundations of Computer

Science, 1975., 16th Annual Symposium on, pages 151–162. IEEE, 1975.

[160] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,

and A. Blake. Real-time human pose recognition in parts from single depth images. In

Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR ’11, pages 1297–1304, Washington, DC, USA, 2011. IEEE Computer Society.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 209

[161] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, Andrew

Blake, Mat Cook, and Richard Moore. Real-time human pose recognition in parts from

single depth images. Commun. ACM, 56(1):116–124, January 2013.

[162] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, Andrew

Blake, Mat Cook, and Richard Moore. Real-time human pose recognition in parts from

single depth images. Communications of the ACM, 56(1):116–124, 2013.

[163] Lei Shu, Manfred Hauswirth, Han-Chieh Chao, Min Chen, and Yan Zhang. Nettopo: A

framework of simulation and visualization for wireless sensor networks. Ad Hoc Networks,

9(5):799–820, 2011.

[164] Sheldon R Simon. Quantification of human motion: gait analysisbenefits and limitations

to its application to clinical problems. Journal of biomechanics, 37(12):1869–1880, 2004.

[165] Aneesha Singh, Annina Klapper, Jinni Jia, Antonio Fidalgo, Ana Tajadura-Jiménez, Na-

talie Kanakam, Nadia Bianchi-Berthouze, and Amanda Williams. Motivating people with

chronic pain to do physical activity: opportunities for technology design. In Proceed-

ings of the 32nd annual ACM conference on Human factors in computing systems, pages

2803–2812. ACM, 2014.

[166] Sabesan Sivapalan, Daniel Chen, Simon Denman, Sridha Sridharan, and Clinton Fookes.

Gait energy volumes and frontal gait recognition using depth images. In Biometrics (IJCB),

2011 International Joint Conference on, pages 1–6. IEEE, 2011.

[167] Steven S Skiena. The algorithm design manual: Text, volume 1. Springer Science &

Business Media, 1998.

[168] Pierre Soille. Morphological image analysis: principles and applications. Springer Science

& Business Media, 2013.

[169] Shmuel Springer and Galit Yogev Seligmann. Validity of the kinect for gait assessment: A

focused review. Sensors, 16(2):194, 2016.

[170] Bruce Stephen, Cathy Dwyer, Jimmy Hyslop, Matthew Bell, David Ross, Kae Hsiang

Kwong, Craig Michie, and Ivan Andonovic. Statistical interaction modeling of bovine

herd behaviors. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, 41(6):820–829, 2011.

[171] E.E. Stone and M. Skubic. Evaluation of an inexpensive depth camera for passive in-

home fall risk assessment. In Pervasive Computing Technologies for Healthcare (Perva-

siveHealth), 2011 5th International Conference on, pages 71–77, May 2011.

[172] Erik E Stone and Marjorie Skubic. Passive in-home measurement of stride-to-stride gait

variability comparing vision and kinect sensing. In 2011 Annual international conference

of the IEEE engineering in medicine and biology society, pages 6491–6494. IEEE, 2011.

[173] Erik E Stone and Marjorie Skubic. Unobtrusive, continuous, in-home gait measurement us-

ing the microsoft kinect. IEEE Transactions on Biomedical Engineering, 60(10):2925–2932,

2013.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 210

[174] Erik E Stone, Marjorie Skubic, and Jessica Back. Automated health alerts from kinect-

based in-home gait measurements. In 2014 36th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, pages 2961–2964. IEEE, 2014.

[175] Heung-Il Suk, Bong-Kee Sin, and Seong-Whan Lee. Hand gesture recognition based on

dynamic bayesian network framework. Pattern Recognition, 43(9):3059–3072, 2010.

[176] Harsh Sundani, Haoyue Li, Vijay Devabhaktuni, Mansoor Alam, and Prabir Bhattacharya.

Wireless sensor network simulators a survey and comparisons. International Journal of

Computer Networks, 2(5):249–265, 2011.

[177] Faezeh Tafazzoli and Reza Safabakhsh. Model-based human gait recognition using leg and

arm movements. Engineering applications of artificial intelligence, 23(8):1237–1246, 2010.

[178] Liansheng Tan, Yanlin Gong, and Gong Chen. A balanced parallel clustering protocol

for wireless sensor networks using k-means techniques. In Sensor Technologies and Ap-

plications, 2008. SENSORCOMM’08. Second International Conference on, pages 300–305.

IEEE, 2008.

[179] Jin Tang, Jian Luo, Tardi Tjahjadi, and Yan Gao. 2.5 d multi-view gait recognition based

on point cloud registration. Sensors, 14(4):6124–6143, 2014.

[180] Matthew Tang. Recognizing hand gestures with microsofts kinect. Palo Alto: Department

of Electrical Engineering of Stanford University:[sn], 2011.

[181] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework

for nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

[182] Karl Tombre and Bart Lamiroy. Graphics recognition-from re-engineering to retrieval.

In 2013 12th International Conference on Document Analysis and Recognition, volume 1,

pages 148–148. IEEE Computer Society, 2003.

[183] Godfried T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern

Recognition, 12:261–268, 1980.

[184] Godfried T Toussaint. A graph-theoretical primal sketch. MacGill University. School of

Computer Science, 1986.

[185] A. Tsanas, M.A. Little, P.E. McSharry, J. Spielman, and L.O. Ramig. Novel speech signal

processing algorithms for high-accuracy classification of parkinsons disease. Biomedical

Engineering, IEEE Transactions on, 59(5):1264–1271, May 2012.

[186] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea. Machine recognition of

human activities: A survey. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 18(11):1473–1488, Nov 2008.

[187] András Varga et al. The omnet++ discrete event simulation system. In Proceedings of the

European Simulation Multiconference (ESM-2001), volume 9, page 185. sn, 2001.

[188] Harold Vasquez, Hector Simon Vargas, and Luis Enrique Sucar. Using gestures to interact

with a service robot using kinect 2. Research in Computing Science, 96:85–93, 2015.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 211

[189] Stephanie Vernon, Kade Paterson, Kelly Bower, Jennifer McGinley, Kimberly Miller, Yong-

Hao Pua, and Ross A Clark. Quantifying individual components of the timed up and

go using the kinect in people living with stroke. Neurorehabilitation and neural repair,

29(1):48–53, 2015.

[190] Sharad Vikram, Lei Li, and Stuart Russell. Handwriting and gestures in the air, recognizing

on the fly. In Proceedings of the CHI, volume 13, pages 1179–1184, 2013.

[191] Juan Pablo Wachs, Mathias Kölsch, Helman Stern, and Yael Edan. Vision-based hand-

gesture applications. Commun. ACM, 54(2):60–71, February 2011.

[192] Klaus Wehrle, Mesut Günes, and James Gross. Modeling and tools for network simulation.

Springer Science & Business Media, 2010.

[193] Frank Weichert, Daniel Bachmann, Bartholomäus Rudak, and Denis Fisseler. Analysis of

the accuracy and robustness of the leap motion controller. Sensors, 13(5):6380–6393, 2013.

[194] B Wiederhold and G Riva. Balance recovery through virtual stepping exercises using

kinect skeleton tracking: a follow-up study with chronic stroke patients. Annual Review

of Cybertherapy and Telemedicine 2012: Advanced Technologies in the Behavioral, Social

and Neurosciences, 181:108–112, 2012.

[195] Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data clustering:

Theory and its application to image segmentation. IEEE transactions on pattern analysis

and machine intelligence, 15(11):1101–1113, 1993.

[196] Kaixin Xu and Mario Gerla. A heterogeneous routing protocol based on a new stable

clustering scheme. In MILCOM 2002. Proceedings, volume 2, pages 838–843. IEEE, 2002.

[197] Xu Xu and Raymond W McGorry. The validity of the first and second generation microsoft

kinect for identifying joint center locations during static postures. Applied ergonomics,

49:47–54, 2015.

[198] Xu Xu, Raymond WMcGorry, Li-Shan Chou, Jia-hua Lin, and Chien-chi Chang. Accuracy

of the microsoft kinect for measuring gait parameters during treadmill walking. Gait &

posture, 42(2):145–151, 2015.

[199] Zhaojun Xue, Dong Ming, Wei Song, Baikun Wan, and Shijiu Jin. Infrared gait recog-

nition based on wavelet transform and support vector machine. Pattern recognition,

43(8):2904–2910, 2010.

[200] Yan Yan, Hanzi Wang, Si Chen, Xiaochun Cao, and David Zhang. Quadratic projection

based feature extraction with its application to biometric recognition. Pattern Recognition,

56:40–49, 2016.

[201] Cheng Yang, Ukadike C Ugbolue, Andrew Kerr, Vladimir Stankovic, Lina Stankovic, Bruce

Carse, Konstantinos T Kaliarntas, and Philip J Rowe. Autonomous gait event detection

with portable single-camera gait kinematics analysis system. Journal of Sensors, 2016,

2016.

Enhancing Livestock and Human Health Monitoring using Electronic Sensors 212

[202] Lin Yang, Longyu Zhang, Haiwei Dong, Abdulhameed Alelaiwi, and Abdulmotaleb El Sad-

dik. Evaluating and improving the depth accuracy of kinect for windows v2. IEEE Sensors

Journal, 15(8):4275–4285, 2015.

[203] Minxiang Ye, Cheng Yang, Vladimir Stankovic, Lina Stankovic, and Andrew Kerr. Kine-

matics analysis multimedia system for rehabilitation. In International Conference on Image

Analysis and Processing, pages 571–579. Springer, 2015.

[204] Mohammed Yeasin and Subhasis Chaudhuri. Visual understanding of dynamic hand ges-

tures. Pattern Recognition, 33(11):1805–1817, 2000.

[205] Ho-Sub Yoon, Jung Soh, Younglae J Bae, and Hyun Seung Yang. Hand gesture recog-

nition using combined features of location, angle and velocity. Pattern recognition,

34(7):1491–1501, 2001.

[206] Chenyang Zhang, Yingli Tian, and Elizabeth Capezuti. Privacy preserving automatic fall

detection for elderly using rgbd cameras. In International Conference on Computers for

Handicapped Persons, pages 625–633. Springer, 2012.

[207] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, and J. Yang. A framework for hand gesture

recognition based on accelerometer and emg sensors. IEEE Transactions on Systems, Man,

and Cybernetics - Part A: Systems and Humans, 41(6):1064–1076, Nov 2011.

[208] Ziheng Zhou, Adam Prugel-Bennett, and Robert I Damper. A bayesian framework for ex-

tracting human gait using strong prior knowledge. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 28(11):1738–1752, 2006.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.2 Application of Wireless Sensor Network for herd monitoring
	1.3 Application of Microsoft Kinect in Healthcare
	1.4 Evaluation of Microsoft Kinect for Gait Analysis
	1.5 Evaluation of Microsoft Kinect for Upper Limb Motion Analysis
	1.6 Summary and Main Contributions
	1.7 Publications
	1.8 An overview of the thesis

	2 Performance Modelling of Wireless Sensor Networks for Dynamic Assets
	2.1 Introduction
	2.2 Related work on WSN modelling
	2.2.1 Related work on WSN Protocol Designs
	2.2.2 Related work on Network Simulators
	2.2.3 Related work on Mobility Models from Animal Behaviour

	2.3 The WSNSIM Simulation Model
	2.4 Internal Details of the WSNSIM Simulator
	2.5 Energy Depletion Model
	2.6 Statistical Model of Spatial Distribution
	2.7 Statistical Model of Cattle Mobility
	2.8 Statistical Model for Heading Direction
	2.9 Modelling of Spatial Regions
	2.10 Directional Antennae
	2.11 Novel Protocols designed using WSNSIM
	2.12 Protocol Design
	2.12.1 Modified LEACH

	2.13 Simulation of LEACH vs Modified LEACH
	2.14 A Novel Protocol Design - LEMSYP
	2.15 CSMA based version of LEMSYP (Low Energy Multi-hop Synchronized Protocol)
	2.16 TDMA based variant of LEMSYP (T-LEMSYP)
	2.17 Energy Depletion Comparison between CSMA based LEMSYP and LEACH
	2.18 Energy Depletion Comparison between CSMA vs TDMA based LEMSYP
	2.19 Verification and Validation
	2.19.1 Verification of mobility behaviour with more data

	2.20 Conclusion

	3 Data Acquisition for Human Motion Analysis
	3.1 Introduction
	3.2 Known Challenges of Microsoft Kinect
	3.3 Literature Review
	3.4 Microsoft Kinect
	3.5 Kinect for Xbox 360 and Kinect for Windows V1.8 Joint Positions
	3.6 Kinect V2 Joint Positions
	3.7 Depth Data Processing in Microsoft Kinect
	3.8 Some more mass-market depth sensors
	3.9 VICON MX System
	3.9.1 VICON Nexux software
	3.9.2 Drawbacks of VICON Nexux Software

	3.10 Precision of Microsoft Kinect - Depth measurement accuracy:
	3.10.1 Precision Calculation of Microsoft Kinect V2 Depth Sensor

	3.11 Kinect 1 Recorder
	3.12 Kinect 2 Recorder
	3.13 The Kinematics Model
	3.14 Interactive Measurement in 3D
	3.15 Validation of GLSKEL
	3.15.1 Validation of Skeletal Forward Kinematics
	3.15.2 Validation of Inverse Kinematics
	3.15.3 Validation of Point Cloud Processing
	3.15.4 Validation of Interactive Measurement

	3.16 Conclusion

	4 Algorithms for Processing 3D Depth Image Data
	4.1 Introduction
	4.2 Defining a Topology on the Point Cloud
	4.3 Geometric Graphs
	4.3.1 Closest Pairs
	4.3.2 Nearest Neighbours Graph
	4.3.3 Euclidean Minimum Spanning Tree
	4.3.4 Infinite Strip Graph
	4.3.5 Sphere of Influence Graph
	4.3.6 Relative Neighbourhood Graph
	4.3.7 Gabriel Graph
	4.3.8 Convex Hull
	4.3.9 Geometric Graph using a Distance Threshold

	4.4 Estimating Normals at the Cloud Points
	4.5 Estimating Curvatures at the Cloud Points
	4.6 Geodesic Distance
	4.7 Geodesic Centroid on Geometric Graph
	4.8 Geodesic or Graph Based Clusters
	4.9 Bayesian Framework for Combining Limb Labels
	4.10 Conclusion

	5 Gait Monitoring Using Kinect Sensor
	5.1 Clinical Gait Monitoring
	5.2 Literature Review
	5.2.1 Previous work on applications of Kinect for human lower limb and gait in healthcare
	5.2.2 Previous work on algorithms for gait capture
	5.2.3 Previous work on gait feature representation and gait recognition

	5.3 JAFAKEC-G for Gait System Overview
	5.4 Algorithms for Gait Capture from Depth Image
	5.4.1 Algorithm : Medial Axis from Binary image
	5.4.2 Algorithm : Sectioning the 3D point cloud
	5.4.3 Algorithm : Least Squares Line Fitting
	5.4.4 Algorithm : Convex Polyhedron Fitting
	5.4.5 Algorithm : Calculating Average of Nearly Aligned Polyhedral Outlines.
	5.4.6 Algorithm : Use of Geodesic distance for Limb Labelling

	5.5 Kinect-based lower limb motion analysis - Methods
	5.6 Results
	5.7 Conclusion and Discussion

	6 Upper Limb Motion Analysis
	6.1 Introduction
	6.2 Gesture Design and hand tracking
	6.3 Literature Review
	6.4 Arm Motion Monitoring
	6.5 Experimental Methodology
	6.6 JAFAKEC for Upperlimb Methods
	6.7 Algorithmic Methodology
	6.7.1 Normal Estimation
	6.7.2 Geodesic Distance Labelling
	6.7.3 Segmenting the point cloud
	6.7.4 Graph from Geodesic Clusters

	6.8 Results
	6.8.1 Arm angle results of Kinect and VICON

	6.9 Conclusion and Discussion

	7 Conclusion
	Appendices
	A Cattle Motion Measurements

