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AB STRAGT 

The interaction between floor slabs and the vertical 

elements in a tall building structure results in a more 

efficient lateral load resisting system. The study 

examines the structural behaviour of the floor slab in 

the following situations: 
(i) Slab coupling a pair of shear walls in a 

cross-wall structure under cantilever bending 

action. 
(ii) Slab in composite action with a lintel beam 

connecting a pair of shear walls. 
(iii) Slab restraining a centre core against 

torsional warping. 
(iv) Slab coupling a centre core to a peripheral 

framed tube in a hull-core structure under 

cantilever bending action. 
(v) Slab connecting a row of columns in a flat- 

-plate frame structure under lateral loading. 

The resistance of the floor slab against the 

deformation of the vertical elements, and the actions 
induced in the slab in the various situations are determined 

by finite element and influence coefficient techniques. 

The finite element technique idealises the slab-wall 

structure as an assembly of plate and shell elements and 

uses an established stiffness analysis to determine the 

displacements, forces and stress resultants in the slab. 
The influence coefficient technique approximates the 
interaction forces between the slab and walls as a system 

of discrete nodal forces which are determined from the 

solution of compatibility equations written in terms of 

plate influence coefficients and prescribed wall 
displacements. 

The results of parameter studies are presented in a 

series of design curves and tables to enable, the effective 

slab stiffness and slab actions to be readily determined 
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for a wide range of structural configurations. 
Experimental tests on small-scale shear wall-slab 

models are carried out to substantiate the general 

accuracy of the theoretical methods of analysis. 
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NOTATION 

The principal symbols used in various chapters are 

listed below. Other subsidiary symbols are defined where 
they appear locally in the text. 

CHAPTER 2 

(i) Plate Theory 

D Plate flexural rigidity 
Young's modulus 
Bending and twisting moments per unit width 

of plate 
Shearing forces per unit width of plate 
Kirchhoff Is supplemented shears 

Plate dimensions 

Plate thickness 

Co-ordinate axes 
Distance from neutral plane 
Poisson's ratio 
Normal stresses 
Shear stresses 

E 
MX 

f My MxY I 

@X, @y 
vX' vy 
a, b 

t 

x, y 
Z 

v 
6x' 6y 

Txy' Txz' 'Cyz 

(ii) Vlasov's Theory 

Bz Bimoment at distance z from origin 
G Shear modulus 
Iw Sectorial moment of inertia 

i St. Venant torsional moment of inertia 

Ms, Mn Concentrated in-plane and out-of-plane 
bending moments 

P Concentrated axial force 

SW Sectorial static moment 
T Applied torque 

Tv St. Venant torsional moment 
TW Flexural torsional moment 
hs Wall thickness 

u Longitudinal displacement 

z, s Longitudinal and tangential co-ordinate axes 
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t (z) Intensity of distributed torque 

p(s) Intensity of distributed axial load 

W Sectorial co-ordinate 

0 Torsional rotation 

6, 'C Normal and shear stresses 

(iii) Finite Element Theory 

U0 v, w Displacements in x, y, z directions 

x, y, z Orthogonal co-ordinate axes 

[B] Strain matrix 
[C] Matrix relating generalised parameters to 

nodal displacements 

[D) Elasticity matrix 
[K] Structure stiffness matrix 
[N] Matrix of interpolation functions 

[P] Matrix of displacement functions 

[S] Stress matrix 
[k] Element stiffness matrix 
[ka] Generalised element stiffness matrix 
{F{ Element nodal forces 
{L} Consistent element nodal loads 
{R}' Complete nodal force vector 
{q1 Distributed loads 
{ul Internal displacements 

J, & } Complete displacement vector 
{a} Generalised displacement parameters (constants) 

161 Element nodal displacements 

{e} Element 'strains' 

{ ß-1 Element 'stresses' 

(iv) Influence Coefficient Theory 

D Plate flexural rigidity 
H Distance between axes of rotation of 

coupled walls 
K Coupling stiffness of slab 
L Clear opening between walls 
Ma Wall moment 
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M .. M_: Concentrated moments in x and y' directions 
X1' yl 

at node i 

Pi Concentrated force at node i 

W Length of wall 
X Total length of floor slab 

Y Bay width of floor slab 

Ye Effective coupling width of floor slab 

Z Width of wall flange 

a, b Plate dimensions 

w Transverse slab deflection 

x, y Co-ordinate axes 
(frs)ij Influence coefficient 
[F] Flexibility matrix 
{R} Unknown nodal forces 
(61 Nodal displacements 

CHAPTERS 3,4 AND 5 

B Core opening width 
C Slab overhang width 
D Plate flexural rigidity 
D' Core lintel depth 

E Young's modulus 
F Storey height 

H Overall height of shear wall 
K Rotational coupling stiffness of slab 

K6 Translational coupling stiffness of slab 
Ka Double area under curve of bending moment 

factor 

Kq Shear modification factor 

K* Coupling stiffness of slab with 'flexible' walls 
K' Coupling stiffness of slab with crack 
L Clear opening width between walls or corridor 

width 
L* Flexible span of connecting beam corrected for 

junction flexibility 

M, Mo Wall moment 
Mx, MyIM 

XY 
Bending and twisting moments per unit width 

of slab 
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TIX, iý 
Ma 

Q, Qo 

_Qx 
'Y 

. 
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Qa 

Q1 

Q3 

QC 

W 

x 

Y 

Ye 

y 
e 

Z 

Z* 

a 
b 

d 

e 

h 

t 

u 

v, vc 

w 
wýw 

,x ,y 
w, 

xx' w, yy > 
wfxy 
X, y 

a 

Bending moment factors of slab 
Averaged bending moment per unit width of 

slabs 
Shear force in coupling beam 

Shearing forces per unit width of slab 
Shearing force factor of slab 
Average shearing force per unit width of slab 
Positive shear at critical section for punching 

shear 
Positive shear in effective shear zone 
Critical design shear 
Length of cross wall 
Length of slab panel or depth of cross wall 
building 

Width of slab panel or bay width 
Effective coupling width of slab 
Effective coupling width of slab with flexible 

walls 
Width of wall flange or box core 
Effective flange width of 'flexible' flanged 

walls 
Half length of slab panel 
Half width of slab panel 
Effective depth of slab 
Effective span extension for slab coupling 
'flexible' walls 
Wall thickness 

Slab thickness 
Critical peripheral distance for punching shear 
Design and permissible punching shear stress 
respectively 
Transverse deflection of slab 
Slopes in x and y directions respectively 

Curvatures and twist in slab 
Co-ordinate axes 
Characteristic stiffness parameter of 
coupling medium 
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CHAPTER 6 

A* 

Aw 

D 

E 

G 

H 

I, I* 
* Ic' Ic 

I 
w' 

I*w 

K 

L 

L* 

La 

M 

MX' MY 

NX' NY' NXY 

Q 
W 
Y 

Ye 

b 

d 

e 

Maximum fibre stresses at bottom of shear 

wall 
Poisson's ratio 
Wall rotation 
Relative rotations of ends of coupling beam 

at inner wall edges 
Length of crack in slab 

Effective shear area of coupling beam 

Cross section area of web of composite 

coupling beam 

Plate flexural rigidity 
Young's modulus 
Shear modulus 
Overall height of coupled shear walls 
Actual and reduced second moments of area (M. I. ) 

Actual and reduced composite M. I. of coupling 
beam 

Actual and reduced M. I. of web of composite 

coupling beam 

Coupling stiffness of composite coupling beam 

Clear span of coupling beam 
Effective flexible span of coupling beam 

Distance between centroidal axes of coupled 

walls 
Wall moment 
Bending moments per unit width of slab 
Membrane and shear stresses in slab 
Vertical reaction or lintel shear 
Wall length 

Width of slab or bay width 
Effective flange width of composite coupling 
beam 

Width of lintel beam 
Depth of lintel beam 
Eccentricity between lintel and slab neutral 
axes 
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t 

u, v, w 
x, Y, Z 

a 
5 

e 

Ax, 8Y, AZ 

[KB), [KS) 

[T] 
[Z] 

CHAPTER 7 

--b 
B 

Bw 

Bo 

D 

D* 

E 

G 

H 

Iw 

Ib 

J 

LW 

L 
Ms il Mn i 

p 

pi 

S 

X 

Y 

Ye 

d 

Slab thickness 

Displacements in x, y, z directions respectively 
Co-ordinate axes 
Characteristic coupling stiffness parameter 
Relative axial displacements of coupled walls 
Wall rotation 
Rotations about x, y and z axes respectively 
Nodal displacement vector 
Standard and eccentric space frame stiffness 

matrices 
Eccentric transformation matrix 
Eccentric transformation sub-matrix 

Cross-sectional area of connecting beam 

Width of core 
Bimoment resultant 
Bimoment at bottom of core 
Depth of core 
Plate flexural rigidity 
Young's modulus 
Shear modulus 
Overall height of core structure 
Sectorial moment of inertia of core 
Moment of inertia of connecting beam 
St. Venant torsional moment of inertia of core 
Warping stiffness of slab 
Width of core opening 
In-plane and out-of-plane concentrated moments 
respectively 
Concentrated torque at top of core 
Concentrated axial force in core 
Slab width from core wall to facade 
Length of slab panel in cross-wall structure 
Width of slab panel in cross-wall structure 
Effective width of slab 
Depth of connecting beam 
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CHAPTER 8 

Ac 

Cw. 

D 

E 

Ec' Es 

H 

I 

Ic) Is 

Jc 

K 

L 

M 

xý My 

S 

VX' Vy 

Y 

Ye 

Storey height 

Intensity of uniformly distributed torque 

Maximum intensity of triangular distributed 
torque 

Intensity of distributed shear in continuous 
medium at height z 
Intensity of distributed torque at height z 
Vertical axis of core 
Characteristic torsional coupling stiffness 

parameter 

Torsional rotation of core 
Rate of twist or torsional warping (- dA/dz) 

Poisson's ratio 
Sectorial co-ordinate 
Double core area (-2BD) 

Cross-sectional area of frame column 
Frame panel flexural stiffness parameter 
Plate flexural rigidity 
Young's modulus 
Young's moduli for column and slab materials 
respectively 
Storey height 

Second moment of area 
Second moments of area of column and unit slab 
strip respectively 
Torsional constant of spandrel beam 
Rotational stiffness of slab 
Slab span from core wall to frame panel 
Wall moment . 
Bending moments per unit width of slab 
Column spacing 
Distributed reactions per unit width of slab 
Overall width of slab 
Effective width of slab 
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CHAPTER 9 
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Be 
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CHAPTER 10 

D 

E 

K 

L 

M1 

Mi' Me 

p 

W 

Y 

Ye 

z 

C 

t 

Half depth of core 
Half width of core 
Slab thickness 

Co-ordinate axes 
Structural parameter 
Poisson's ratio 
Rotation of core cross-section 
Relative axial, flexural and torsional 
stiffness parameters of frame panel 

Length of slab panel 
Width of slab panel 
Effective width of slab 
Plate flexural rigidity 
Rotational stiffness of slab 
Column moment 
Column depth 

Column width 
Half length of slab 
Half width of slab 
Co-ordinate axes 
Poisson's ratio 

Plate flexural rigidity 
Young's modulus 
Coupling stiffness of slab 
Clear opening width between walls 
Applied wall moment 
Internal and external bending moments 
Applied load 

Length of wall section 
Width of slab 
Effective slab width 
Width of wall flange 

Distance between centroid axes of walls 
Slab thickness 



xiii 
v Poisson's ratio 

gl Wall rotation 

ex, ey Surface strains in x and y directions respect- 
ively 
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CHAPTER 1 

INTRODUCTION 

1.1 STRUCTURAL SYSTEMS 

0 

In recent years, with increasing costs of land in 

city centres, architectural trends have changed towards 
high-rise construction to meet the growing demand for office 
space and housing generated by industrial and population 

growths. The challenge of building upwards has been met 
by the development of new structural systems and 

construction techniques which have contributed to the 

rapid increase in the number of tall buildings throughout 

the world. The continuing demand for the construction of 
tall buildings in the face of rising material and labour 

costs has made it increasingly more important to achieve 

a more efficient design for the tall building through a 
better understanding of the behaviour of the structure and 
its components. 

A major problem in the design of a tall building is 

the provision of adequate strength and stiffness to resist 
the lateral loads which may arise due to wind, seismic or 

blast effects. The provision of adequate strength in the 

structure is, of course, a fundamental requirement as it 

ensures the stability and safety of the building. The 

stiffness requirement is intended to limit the building's 

deflection and oscillatory motion produced by lateral 

forces to acceptable levels to ensure the servicibility 

of the building. Excessive lateral deflection affects 
the stability of the structure and causes cracking of non- 
structural partitions and glazing which may lead to serious 
maintenance problems. Perceptible oscillatory motion 
causes discomfort to occupants and may affect the 
usefulness or rental value of the building. 

The lateral stiffness of a tall building may be 
provided by two basic types of structural units, namely 
the rigid frame and the shear wall. The rigid frame 
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derives its lateral stiffness from the rigidity of its 

joints, and is relatively flexible compared with a shear 
wall. For the structure to be economical, the frames and 

shear walls must be arranged to perform a dual function of 
supporting vertical as well as lateral loads. Shear 

walls should also be arranged to perform a non-structural 
function, that of partitioning or enclosing space. Ideally 

the structural system designed for vertical loads should 
not require extra strengthening for it to function 

adequately also as a lateral load resisting system for the 
building. 

In current structural systems1 the rigid frame unit 
and the shear wall unit are used in various forms and 
combinations. Frame buildings and shear wall buildings 

generally use respectively the rigid frame unit and the 

shear wall unit in parallel assemblies. The core-supported 
structure and the framed tube structure are examples in 

which shear walls and rigid-frames are used in tubular 

assemblies. In the framed tube structure, the frame 

panels consist of closely spaced columns tied by deep 

spandrel beams to form an exterior grid. Structural 

systems produced using frame and shear wall units in 

combinations are the shear wall-frame system consisting of 
parallel assemblies of frames and shear walls, and the 
hull-core or tube-in-tube system consisting of a central 
shear core within an exterior framed tube. 

1.2 INTERACTION BETWEEN COMPONENTS 

The vertical elements in a building structure are 
connected together through the floor slabs which serve 
primarily to collect and distribute vertical and lateral 
loads to the vertical elements which eventually transfer 
the loads down to the foundations. The slab, however, 
also performs a less obvious but important function of 
coupling the vertical elements and forcing them to interact 
thereby producing an overall lateral load response of 
greater stiffness than the aggregate response provided by 
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independent actions. A more efficient structural system 

can therefore be obtained by considering the coupling action 

of the slab. 
An efficient structural system which derives much of 

its lateral stiffness from the coupling action of the floor 

slab is the cross-wall structure, which has found 

considerable favour among planners for the construction of 

multi-storeyed apartment buildings. The system consists 

of continuous one-way slabs spanning between parallel 

assemblies of load bearing walls which resist lateral as 

well as gravity loads. Architectural planning often 

produces plan forms with apartments laid out on both sides 

of a central corridor along the length of the building. 

The cross-wall structure resists the lateral loads by 

the cantilever actions of the shear walls, which result in 

rotations of wall cross-sections. The free bending of a 

pair of in-line shear walls is resisted by the slab, which 
is forced to bend out-of-plane under the differential 

vertical shearing action imposed by the pair of walls 

across the corridor. The reaction of the slab induces 

opposite axial forces into the walls thereby reducing 

greatly the wind moments and resultant stresses and 
deflections in the walls. A more efficient design can 

therefore be achieved by considering the coupling action 

of the slab. 
Another structural system in which the interaction 

between the slab and the vertical elements results in a 

more efficient structure is the centre core structure which 
has become popular for the construction of multi-storeyed 

office buildings. In this system, the shear walls are 
arranged in the form of a core, enclosing lifts, stairs, 
utilities and other services grouped together in a central 
area in the building. The centre core may serve alone in 

supporting the floor system and in resisting lateral loads, 

as in a suspension or cantilevered core structure, or may 
act in conjunction with peripheral columns as in a hull- 
core structure. In reinforced concrete systems, the floor 
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slab may be of flat slab, waffle slab or ribbed slab 

construction, depending on floor span and type of building. 

The practical layout of services in a centre-core 

building often result in a box-shaped core made up of a 

number of independent shear walls connected together by 

'lintel beams or floor slabs across the wall openings. When 

resisting lateral loads which produce a pure bending action, 

the various core walls undergo a parallel rotation of cross- 

sections at the same level. The parallel rotation of a 

pair of walls which produces a differential vertical 

shearing action across the wall opening is resisted by the 

connecting slab as in a cross-wall structure. In the 

hull-core system, however, coupling occurs also between the 

centre core and the exterior frames. Apart from 

constraining the core and the exterior framed tube to 

deflect equally, resulting in a sharing of lateral loads, 

the slab also restrains the core against the cantilever 

bending action which produces bending and differential 

shearing across the floor span. The coupling action induces 

in the normal frame panels vertical axial forces which 

reduce the shear lag effect in column loads produced by 

framed tube action, and also increase the moment of 

resistance of the structure due to the large lever-arm 

effect. 
Under torsional loading the centre core behaves as a 

thin-walled tube of open section, and undergoes warping of 

cross-sections, which results in differential vertical wall 

displacements across an opening. The floor slab restrains 

the warping by being forced to deform out-of-plane where 

it connects rigidly to the core. The restraining action 

stiffens the core against torsional rotations and reduces 

the longitudinal warping deformations and base stresses in 

the core walls. As in the case of pure bending action, 

when external frames are present, torsional coupling-occurs 
further between the core and the exterior frames and 

results in a structure of greater stiffness. 
In the cross-wall and centre-core structures, although 
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the lateral stiffness is increased considerably by the 

interaction between the slab and shear walls, the essential 
lateral stability of the structure is derived from the 
inherent flexural stiffness of the shear walls. A 

structural system which relies solely on the interaction 
between the slab and the vertical elements to provide the 
lateral stability is the flat plate structure frequently 

used for multi-storeyed office buildings of medium height' 
(10 to 15 storeys). The system consists of orthogonal 
rows of columns connected by flat slabs. The slab in this 

case provides the portal bracing which forces individual 

columns to act as members of a rigid frame. The flat 

plate structure comes under the general classification of 
frame buildings which include systems with waffle slab and 
joist-slab floors. 

The structural analysis and design of a slab coupled 

shear wall, centre core or frame system may readily be 

performed using the techniques developed for beam-coupled 

systems, provided that the equivalent width of the slab 

which acts effectively as a wide coupling beam, or its 

corresponding structural stiffness can be assessed. 
Unlike a beam however, the coupling stresses are not 

uniform across the width of a slab. Heavy shearing actions 

are induced in the coupling slab giving rise to severe 

stress concentrations around the inner edges of the 

restrained wall or column. In order to design the slab 

safely, the magnitude and distribution of these stresses 
must be known. The interactive shearing forces at the 

slab-wall or slab-column junction must also be accurately 
known to allow the local detailing of highly stressed 
regions in the vertical element. 

1.3 PREVIOUS WORK 

It is only relatively recently that systematic studies 
have been made of the nature of the interaction between 
laterally loaded walls and floor slabs and of the relative 
importance of the various parameters affecting stresses and 
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deformations. The first theoretical investigation on 
the coupling of cross-walls by floor slabs was carried out 
by Qadeer and Stafford Smith2 who used a finite difference 
technique to evaluate the bending stiffness of a slab panel 
coupling a pair of plane walls. The bending stiffness was 
evaluated essentially by imposing on the slab at the wall 
positions transverse deflections produced by an assumed 
unit parallel wall rotation, and evaluating the slab 
reactions and hence the resultant wall moment by a plate 
analysis. Values of bending stiffness and effective width 
were obtained for a range of slab proportions and wall 

opening widths and tests were conducted on small-scale 
models to support the theoretical results. The distribution 

of coupling actions in the slab was also evaluated by the 

same investigators. 3 Values of stress resultants were 

presented for various locations on the slab, but 

unfortunately the results cannot be interpreted sensibly 
because the vital distances have not been normalised and 
units have not been given for them. A similar investig- 

ation was carried out by Chang4 who has presented curves 

showing the sectional variation of bending moments in a 

non-dimensional form for various slab proportions. 
The coupling of plane walls by floor slabs was 

investigated by a finite element technique by Petersson. 5 

A 'mixed' type of rectangular bending element with corner 
deflections and side bending-moments as variables was 
employed for the finite element analysis. Small-scale 

models were tested to support the theoretical results. 
The above mentioned investigations were restricted to 

plane walls of zero thickness. The influence of finite 
wall thickness on the bending stiffness of the slab was 
investigated by Black, Pulmano and Kabaila6 using a 
conforming quadrilateral bending element developed by 
Veubeke34 for the finite element analysis of the slab. 

More recently the influence of orthogonal walls 
acting as flanges in tee-shaped, ell-shaped and box-shaped 
walls has been examined experimentally by Coull and El Hag? 
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and by E1-Buluk. 8 Slab stresses were measured both by 

the Moire interference technique and directly by strain 

gauges. A finite element study on the influence of flange 

walls was reported by Tso and Mahmoud9 very recently since 
the completion of a similar study by the author 0 

10 

Very little investigation appears to have been carried 
out on the warping interaction between floor slabs and 
shear cores. The only investigation known to the author 
was carried out by Stafford Smith and Taranath11-13 who 
showed how the warping stiffness of a slab could be 

evaluated by a finite element technique in a torsional 

analysis of a slab-coupled core structure. The warping 

stiffness was evaluated in an essentially similar manner 
to the evaluation of bending stiffness for a slab in a 

cross-wall structure. Transverse displacements produced 
by a unit torsional warping (defined as the rate of twist 

in the core and considered as a generalised displacement 

term), and assumed to vary according to Vlasov's law of 

sectorial areas14 were imposed on the slab. The slab 

reactions and resultant bimoment (a generalised force term 

corresponding to the torsional warping displacement term) 

were evaluated by a finite element analysis of the slab to 

give the warping stiffness of the slab. 
Although the coupling action of a slab in a flat 

plate frame is very similar to that in a cross-wall 

structure, since a shear wall is, in essence, a very deep 

column, past investigations for the two structural systems 
have been pursued independently, and by different 

investigators. The earliest investigation on the relative 
influence of various structural parameters on the bending 

stiffness of a slab in a flat plate frame was carried out 
by Khan and Sbarounis. 15 

The rotational stiffness and 
effective width of slab were evaluated for a range of 
column and slab proportions by small-scale model tests in 

conjunction with approximate slab analyses using a beam- 
grid analogy. Since the experimental and theoretical 
techniques employed were relatively unsophisticated, the 
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results obtained are of limited accuracy. 
The relative influence of column stiffness, boundary 

conditions and relative column-slab sizes on the rotational 

stiffness of a slab panel was evaluated by Aalami16 using 

a finite difference technique, and subsequently by Mehrain 

and Aalami 
17 

using a finite element technique. The 

results are limited to square columns and square slab panels. 
The effective width of a slab was evaluated for a wide 

range of geometrical ratios by Pecknold18 and by Allen and 
Darvall19,20 using a closed form series solution which, 

unfortunately, does not account properly for the important 

column-slab boundary conditions in the plate analysis. 
21 

1.4 SCOPE OF WORK 

The work described in this thesis is concerned with 

the evaluation of effective width, bending or warping 

stiffness and stress distribution for slabs interacting 

with the vertical elements (walls or columns) in cross-wall, 

centre-core and flat-plate-frame structures. The finite 

element technique and an influence coefficient technique 

are employed in the investigation to obtain the relevant 
design information. The finite element technique uses 

established element formulations, but the influence 

coefficient technique is developed here for the first time. 

A paper on the latter technique has been accepted for 

publication in a forthcoming ACI symposium volume. 
81 

Elastic behaviour of the structure is assumed throughout 

the investigation. 

In Chapter 2 of this thesis, the fundamentals in the 

theories for plate bending and warping torsion in open- 
section thin-walled beams are summarized so that reference 
to other texts is unnecessary. The general procedure of 
the finite element method and special features of the 

established element formulations are briefly described. 
The influence coefficient technique is developed and 
influence functions are derived by the classical plate 
Levy method of solution. 



9 

The influence of various structural parameters on 
the interaction between the slab and shear walls in the 

cross wall structure is investigated by the finite element 
method in Chapter 3. Plane walls, flanged walls and box 

cores are considered. Design curves and empirical 
equations are presented to enable the rapid evaluation of 
effective width or slab stiffness for lateral load analysis 
in practical situations. Curves are also presented to 

enable the calculation of slab stresses for the slab 
design. 

In Chapter 4, the influence coefficient technique is 

applied to the analysis of the slab in the cross wall 

structure. The convergence characteristics, accuracy, 

and computing efficiency of the technique are evaluated by 

comparing the results obtained by the technique with the 

theoretical and experimental results available in the 

literature and those obtained by the finite element method 
in Chapter 3. 

In Chapter 5, the effects of local elastic wall 
deformation on the coupling performance of the slab are 

evaluated by a finite element technique for a range of 

wall configurations. Curves are presented to enable the 

flexibility effects to be included in the evaluation of 

slab stiffness. 
In Chapter 6, the influence of a slab on the bending 

stiffness of a lintel beam coupling a pair of plane walls 
is examined. The problem is of interest since in 

practical shear wall structures, walls are frequently 

coupled by lintel beams monolithic with a floor slab. A 
finite element technique is employed to evaluate the 

effective flange width of a lintel beam for various wall, 
slab and lintel geometrical ratios. 

The relative influence of various structural 
parameters on the warping stiffness of a slab enclosing a 
centre core is investigated in Chapter 7. Box cores with 
single and double openings are considered. A finite 

element technique is employed to evaluate the slab 
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stiffness. Curves are presented to enable the effective 

width for an equivalent beam to be rapidly evaluated for 

the torsional analysis of a core structure. 
In Chapter 8, the bending stiffness of a slab 

coupling a centre core to, an exterior frame is investigated. 

Finite element and influence coefficient techniques are 

employed in the investigation. Tables are presented to 

enable the bending stiffness and effective width of slab 
to be rapidly evaluated for various geometrical ratios. 

The influence of various structural parameters on the 

rotational stiffness and effective width. of slab in a 
flat plate frame is investigated by the influence coeffic- 
ient technique in Chapter 9. A comprehensive set of 
Tables is presented to enable the rapid evaluation of 

rotational stiffness, or effective width of slab for frame 

analysis-in practical situations. - 
An experimental investigation carried out to support 

the theoretical investigations on slabs coupling cross- 

walls is described in Chapter 10. Effective widths and 

slab stresses are obtained in the tests using small-scale 

perspex models. 
Aspects of computing and salient features of the 

computer programs written during the course of the work 

are described in- Chapter 11. 

The closing chapter summarizes the main conclusions 

reached in this thesis and indicates possible areas for 

future investigation. 



CHAPTER 2 

THEORY 

2.1 INTRODUCTION 

Shear walls and floor slabs consist essentially of 
two-dimensional plane elements. When resisting lateral 

loads in a cross-wall structure, shear walls undergo in- 

plane bending and floor slabs undergo out-of-plane bending. 

Since the thickness of the wall is small, in comparison 

with the wall height or depth, 
, 
the wall is subjected to a 

state of plane stress, in bending. However, as the depth 

of the wall is small in-relation to its total height, the 

overall wall behaviour may be approximately described by 

ordinary beam theory. The thickness of the floor slab is 

small compared to the floor span. The transverse 

displacement, induced in the slab are small compared to 

the slab thickness, and in-plane strains in the slab are 

generally negligible. The bending action of the floor 

slab may therefore be described by small deflection thin 

plate theory. 

Shear cores consist essentially of thin open-section 
box-shaped shear walls. Under torsional loading, a shear 

core undergoes warping of its cross sections. Vlasov's 

theory of thin walled beams which accounts for warping 

torsion may be used to describe the torsional behaviour of 

a shear core. 
In this chapter, the fundamentals in the theory of 

plate bending and in Vlasov's theory of warping torsion are 

briefly described mainly to introduce the terminologies 

and important mathematical relationships which will be 

referred to later in the thesis. The finite element 
procedure and the influence coefficient technique, which 
are the analytical tools employed throughout the 
investigation of slab-wall interaction, are then described. 

2.2 THEORY OF PLATE BENDING 

The basic theory of plates is fully treated in the 

standard text by Timoshenko and Woinowsky-Krieger. 
22 

The 
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salient features of the theory, applicable to the bending 

of thin elastic isotropic plates with small deflection are 
here briefly reviewed. 

2.2.1 FUNDAMENTAL ASSUMPTIONS 

The fundamental assumptions made in the development 

of the theory are as follows: 

1. Plane sections of the plate-before bending remain plane 

after bending. 
2. The middle surface of the plate remains a neutral plane 

(i. e. unstrained) during bending. 

3. The normal stresses in the direction transverse to the 

plate can be disregarded. 

2.2.2 DEFLECTION, SLOPES AND CURVATURES 

The displacement of a bent plate is uniquely described 

by the transverse deflection w at all points on the middle 

surface of the plate. Taking the x-y plane as the middle 

plane of the plate before bending, the slopes of the middle 

surface in the x- and y-directions are given respectively 
by 

,. 
aw and a 

aw ix 
aX 

iy 
ay 

The curvatures of the middle surface in the x- and 

y-directions are given respectively by 

1 -a2w and 
1 -ö2w rx 

ax 
ry ay'2 

and the twist of the middle surface is given by 

1 a2w 
rxy axay 

2.2.3 STRESS RESULTANTS 

The bending moments per unit length, M and My, and 
the twisting moments per unit length, MXy and Myx (Fig. 
2.1(a)) are related to the curvatures and twist by 
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22 
MaDa w+yý) 

ay x2 ax 

22 
MDa w+ Vaw 
y ýy 7x 

M °- M °D(1-y) 

the plate edges are given by 

_-xy yx -- ax ay 

122 

where V is the Poisson's ratio and D is the flexural 

rigidity of the plate, defined by 

E t3 
U .. 

in which E is the modulus of elasticity, and t is the 

plate thickness. 

The transverse shearing forces per 

Qy, (Fig. 2.1(a)) are 

aM am 
ý yx x Qx ý 

ay + ýaxý 

_( 
am y ý, 

aMXyý 
Qy ay --ý 

length, 

a 

given by 

nax 
2 

(= ö 
2w) 

2 ax ay 

Dö (a2W + 
a2W) 

ay ax by 
ý_ 

unit 

(2.1) 

Qx 

(2.2) 

and 

The Kirchhoff supplemented shearing forces per unit 

VX and Vy, at 

am 
vX (Qx - x) _-n ay 

vy (Q - 
a=) 

yy ax 

a2w 

221 
ä -8-x- + ý 

22ý 

y[ --ý + (2-V) 2 
ay aX 

(2.3) 

2.2.4 STRESSES 

The normal stresses and shearing stresses (Fig. 2.1(b)) 

at a transverse distance z from the middle surface can be 

obtained from the stress resultants by the following 

expressions 

length, 
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Mý Z cry = 12 
-y 

Lxy - 12 Mxy ý 
t 

3 Qx 
txz -ý -ý- (1- 

t3 
@y 

i1- 
z y 

4z2 
t'Z 

4z2 
t'2 

2.2.5 STRAIN ENERGY 

(2.4) 

(2.5) 

The strain energy in a plate due to bending and 

twisting is given by 

D fJ ý( 
a2w + a2w)2 - 2(1- a22"a -(--=)2 dxdy U-ýy ""ý ýa 

ax ay 
ý 

l ax ay ax 
(2.6) 

where the integration is performed over the area of the 

plate. 

2.2.6 GOVERNING PLATE EQUATION 

In a plate bent by a uniformly distributed lateral 

load of intensity q, considerations of compatibility, 

equilibrium and material properties of a small element 
leads to the governing biharmonic equation for the plate 

deflect ion 

a4w+2 4w 
+a4w öa2D 

x ay ay 
(2.7) 

A solution of the governing equation satisfying the known 

boundary conditions provides a complete solution for the 

plate bending problem. 

2.2.7 BOUNDARY CONDITIONS 

Boundary conditions in terms of displacements or 
stress resultants are usually known at edge supports or 
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along lines of symmetry or antisymmetry (inflexion) . The 

commonly encountered boundary conditions are briefly 

discussed. 

(a) Simply Supported Edge 

Along the simply supported edge xma, the deflection 

and bending moment Mx are both zero. The reduced boundary 

conditions are, since 6 2Way 2'0, 

w-O 
2W 

_O 
ax 

(b) Clamped Edge 

at xaa (2.8) 

Along the clamped edge x-a the deflection and normal 

slope are both zero, and the boundary conditions are 

w 

öw ý- =0 ax 

(c) Free Edge 

at xaa (2.9) 

Along the free edge xaa the moment MX and the 

supplemented shear VX are both zero. The boundary 

conditions are 
2 

+2 20 
ax ay 
33 =a+ (2-v)==10 

ax axay 

at Xaa 

(2.10) 

(d) Line of Symmetry (or Continuous Edge) 

Along the line of symmetry x=a, the normal slope 

and supplemented shear Vx are both zero. The reduced 
boundary conditions are, since 63w/(axay2) = o, 

aw 
o .. ýý a 

a3wa0 
ax 

at x-a 
(2.11) 



16 

(e) The Line of Antisymmetry (or inflexion) - 

The boundary conditions are identical to those of the 

simply supported edge. 

2.2.8 THEORETICAL METHODS OF SOLUTION 

There is no known general method by which the governing 
plate equation (2.7) can be solved directly. All known 

methods introduce some form of approximation to obtain an 
indirect solution. Classical methods22 assume a plausible 
form of solution which may be expressed in terms of 
polynomial or transcendental series containing unknown 

constants or functions. The unknown constants or functions 

are then determined to satisfy the governing plate equation 

and the known boundary conditions. Classical solutions 

are restricted to plates with simple geometry and regular 
boundary conditions; but, being of closed form, they 

yield accurate results with relatively little computational 

effort, and also allow the solution of other problems by 

superposition. 
Numerical techniques may be used to solve complicated 

plate problems which cannot be handled by classical methods. 
Available techniques approximate either the mathematical 

solution of the plate equation or the physical behaviour 

of the plate through a discretisation process yielding a 
large set of simultaneous linear algebraic equations which 
normally require a computer for solution. The finite 
difference 24,25 

and finite element methods26,27 are the 
best-known numerical techniques under these two categories. 

2.3 TORSION OF THIN-WALLED OPEN SECTIONS 

A thin-walled beam of open section subjected to 
torsion undergoes twisting-about its axis and warping of 
its cross-sections. The warping arises from differences 
in the longitudinal displacements of points on the contour 
of the section. Any axial constraint which prevents the 
free warping of the section induces longitudinal stresses 
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in the beam. The rate of twist along the beam becomes 

non-uniform. Since St. Venant's theory does not allow 
for longitudinal stresses and is applicable only for uniform 
torsion, it becomes inadequate for describing the behaviour 

of the thin-walled open section under non-uniform or 

restrained torsion. 
A suitable theory which accounts for non-uniform 

torsion is Vlasov's theory of thin walled beams. Since the 

development of the theory is fully described in the standard 

text23 only the salient features of the theory will be 

described in this section. 

2.3.1 WARPING DISPLACEMENTS 

In Vlasov's theory, it is assumed that the cross- 

sectional shape of the section cannot distort and that the 

shear strain of the middle surface of the section is 

negligible. By considering the kinematics of rigid 

contour displacements of cross-sections, and the condition 

of zero shear strain in an element of the middle surface, 

it can be shown that the longitudinal displacement of a 

point P(z, s), (Fig. 2.2(a)) is given by 

_ 
d6 

uz, s dz ws (2.12) 

where dA/dz is the rate of twist and Ws is the sectorial 
I 

co-ordinate of the point P. ' The quantity dQ/dz -A (z), 

which serves as a measure of the warping of the section 

may be considered as a generalised displacement quantity 

referred to simply as the torsional warping. 

2.3.2 WARPING STRESSES 

The stresses at a section are assumed to consist only 

of longitudinal direct stresses and tangential shear 

stresses. By considering the stress-strain relationship 
described by Hooke's law, the longitudinal direct stress 

at point P(z, s) can be shown to be given by 
2 

Q'z 
s 

E1 d2 WS (2.13) 
dz 
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where E1 - E/(1 -V 
2), 

and E and ' are respectively 
Young's modulus and Poisson's ratio. 

The tangential shear stress distribution across the 
wall thickness is assumed to be obtained by the super- 
position of a uniform membrane shear stress distribution 
on a linear St. Venant shear stress distribution (Fig. 2.2 
(b)). By considering the equilibrium of a shell element, 
the membrane shear stress at the point P(z, s) can be shown 
to be given by 

E1 d38 Sw 
s tz, sý dzý ý (2.14) 

where hs is the wall thickness, and SW 
s 

is the sectorial 

static moment given by 

S 
W, s= 

tlº dA 
0 

with dA -h ds. 

2.3.3 WARPING STRESS RESULTANTS 

The longitudinal direct stresses 6z at a cross- 

section at z give rise to a generalised stress-resultant 
termed the bimoment Bz which may be derived by virtual work 

as 
BzI Cr 

sWS 
dA 

AI 
(2.15) 

Substituting for 0' 
s 

from equation (2.13), BZ can be 

expressed as 

BZ a_ E1 Iw d28 

dz 
(2.16) 

where I. is the sectorial moment of inertia defined by 

IW -f W2 dA 
A 

Using equations (2.13) and (2.16) the longitudinal direct 

stress 0'zf 
s may be expressed in terms of the bimoment BZ 

as, 

S 



Bz 
Ü_o . ýý z, S iW 

WS 

f 
('L h) dW 

A z, ss 

The membrane shear stresses Tz at the section at 

z give rise to a flexural torsional moment TW about the 

shear centre given by 

TW - 
fA 

( Ic 
z's 

hs) rs ds - 

where r is the normal distance 
s 

rotation to the tangential line 

Substituting for Ts given by 

be expressed as 

TW -- E1 Iw d3A 
dz (2.19) 

The membrane shear stress Ts may be expressed in terms 

of the flexural torsional moment T. by - 
T 

T 
ttt 

Sm 
c 

Zo saý hs 

The St. Venant torsional moment Tv 

TV =GJdz 

where G is the shear modulus, given by 

GE - 

2L+') 

(2.21) 

and J is the St. Venant moment of inertia given by 

Zb h J =ij 
3 

where b and h are respectively the width and thickness of 

the individual plates which make up the beam and a is a 

coefficient close to unity. 
The St. Venant shear stress is zero at the middle 

surface and has a maximum value at the external surface 
given by TV 

'C 
Vm7h 

1... 

19 

(2.17) 

(2.18) 

from the centre of 

at the point (z, s) . 
equation (2.14), Tw may 

(2.20) 

is given by 

(2.22) 



20 

2.3.4 GOVERNING DIFFERENTIAL EQUATION 

For torsional equilibrium, the sum of the flexural 

torque TW and the St. Venant torque Tv is equal to the 

applied torque T at a section, i. e. 

TW +Tv=T 

By substituting equations (2.19) and (2.21) in the above 

equilibrium equation and differentiating once with respect 
to z, the governing differential equation for torsion is 

given 

EIwd 
4 

GJý 
2t(z) 

dz dz 
(2.23) 

where t (z) is the intensity of the applied torque at 

position z. The solution of the above fourth order 

governing differential equation satisfying the boundary 

conditions at the ends of the beam provides a complete 

solution for the torsional analysis of the beam. 

2.3.5 BIMOMENT RESULTANT OF EXTERNAL LOAD S 

The bimoment resultant of longitudinal forces acting 

on a section of the beam may be obtained by two theorems: 

(a) "A bimoment caused by an external force in a direction 

parallel to the axis of a beam is equal to the product 

of this force and the principal sectorial co-ordinate 

of the point of its application. " 

(b) "A bimoment caused by a bending moment acting in a 

plane parallel to the longitudinal axis of the beam is 

equal to the product of this moment and distance of 
its plane from the shear centre of the beam. " 

The mathematical expressions for the bimoment result- 

ants for various forms of loading are as follows: 

(a) Distributed load of intensity p(s), (Fig. 2.2(c)) 

The bimoment is given by 

Bw =fpWds (2.24) 
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(b) Concentrated force PZ at point s-k, (Fig. 2.2(d)) 

The bimoment is given by 

Bw a Pz Wk (2.25) 

(c) Concentrated in-plane moment Ms at point s-k, 
(Fig. 2.2(e)) 

The bimoment is given by 

Bw a Ms (ds) 

r 

(2.26) 

where dW/ds is the rate of change in the tangential 

direction s of the sectorial co-ordinate function. 

(d) Concentrated out-of-plane Mn at point s 
(Fig. 2.2(f)) 

The bimoment is given by 

BW= dW Mn(n 

m ký 

(2.27) 

where dW/dn is the rate of change in the normal direction 

n of the sectorial co-ordinate function. 

2.4 THE FINITE ELEMENT METHOD 

2.4.1 GENERAL PROCEDURE 

In the general procedure of the finite element method, 
the continuous plate is divided into a number of small 

elements, usually triangular, rectangular or quadrilateral 
in shape (Fig. 2.3(a)). These elements are inter- 

connected together at their corners or nodal points, and, 

at these points, continuity of displacements and equilibrium 

rust be established. 
Consider a typical quadrilateral element e with nodal 

points i, j, k and 1 (Fig. 2.3(b)). Various degrees of 
freedom may be associated with each nodal point. These 
degrees of freedom consist usually of independent 
displacement components and their derivatives (u, v, w, 
au av aw 
3-x ' dx' dx' etc. ). Denoting the 'm' nodal displacements 
of node i as a vector 
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{b0 

U 
b2 

i bý (2.28) 

the displacements of the element e can be referred to as 

bi 
bj 
bk 
61 

b; 

{aý°- i8k 
Corresponding to each nodal 'displacement' S1, there 

exists a generalised 'force' fý. Again denoting the nodal 
forces at node i as 

I FiJ in 

61 

{ 
fl 

f2 

fm (2.29) 

the nodal forces of the element may be referred to simply 

as 

{F)e a 

Fi 

F. 
J 

Fk 

F1 

The nodal forces may be related to the nodal 
displacements by 

[F ]e s [k]e { b}e, (2.30) 

where [k]e represents a stiffness matrix of element e. 
This matrix is composed of 1x1 sub-matrices [ ii], 
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[kij], "' [kll], each of mxm terms. 

Once the stiffness matrices of the elements are 
established, the formulation of the whole problem can be 

easily completed. 
Consider a joint i to which p elements are connected. 

If at this joint external forces iRi} are acting, a set 
of equilibrium equations can be written for the joint as 

{Ri} 
_ {F111 + LFiJy + .... 

{FiIN - 2-- Ckij JG {s} 
P 1r 12 r -1 

Aý 

e-1 
(2.31) 

Establishing equilibrium at all the joints in the structure 
leads to a system of equations which may be represented 

simply as 
{R1 

° CKý [, &I (2.32) 

in which 

{R} 

{o} 

us 

a 

I 
R1 

0 
0 
0 
a 

bl 
0 
0 
0 
0 

lists all the external nodal forces, 

lists all the nodal displacements, 

and [K] is the structure stiffness matrix built up by 

adding the stiffnesses of elements adjacent to each node. 
The system of equations can be solved once the known 

support displacements have been substituted. 
The internal stresses in an element can be related 

to the nodal displacements. These will be given as 

{,. }e 
= [S]e je 

(2.33) 

where . 
[S]e is the element stress matrix. The solution of 

the problem is seen to hinge on the determination of the 
element stiffness matrix [k ]e and the stress matrix [S ]e. 
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2.4.2 DERIVATION OF ELEMENT CHARACTERISTICS 

(a) Stiffness and Stress Matrices 

In order that the finite element idealisation may 
provide a reasonable representation of the actual continuumm" 
each element must be required to deform similarly to the 
deformation developed in the corresponding region of the 

continuum. This can be accomplished by specifying for 

each element suitable deformation patterns which will 
provide internal compatibility within the element and at 
the same time achieve full compatibility of displacements 

along element boundaries. The deformation patterns may 
be assumed in the form of polynomial functions with 

unknown constants which can be regarded as generalised 

co-ordinates. The number of independent functions 

specified must agree with the number of nodal degrees of 
freedom for the element. The internal displacements Jul 

may be expressed in terms of the displacement functions [P] 

thus, 

{u' - [P] (a'l (2.34) 

where {a} is a column of constants. By substituting the 

co-ordinates of each nodal point in turn, the nodal 
displacements 16e are evaluated in terms of the nodal 

constants, thus: 

{o1e°tc]{ I (2.35) 

in which [C] is a square matrix simply written in terms 

of the co-ordinates of the nodes. The unknown constants 

can then be evaluated in terms of the nodal displacements 

as 

{al - [c]-1 Ible (2.36) 

This allows the internal displacements to be related to 

the nodal displacements thus 

(UI _ [P]- [C]-1 161 e [N] {bý e (2.37) 

where [N] now contains interpolation functions. 

The element strains {E' may be evaluated from the 
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appropriate derivatives in the displacement functions and 

expressed as 

{ý }ý [BJ {ac} s [B] [C]-1 { býe (2.38) 

The element stresses j cr} are related to the element 
strains by 

{Q'} - [D] {E - [D] [B] [C]-1 {b}e (2.39) 

where [D] is the elasticity matrix written in terms of the 

elastic material properties of the element. The product 

matrix ([D] [B] [C]-1) is seen to represent the stress 

matrix [S]e. 

The element stiffness matrix may now be established 
by applying the principle of virtual work. During virtual 
displacements 161e, the external work done by the nodal 
forces is 

v( 
jble)T 1Fle We 11j (2.40a) 

The internal work done is given by the product of the 

actual stresses {c} and the internal virtual strains 
{e} thus 

wi °f {ý}Tk} 
vol 

dv (2.40b) 

where {E [B] [C]-l {be 
and dv is the differential volume of the element. 

Equating the external work to the internal work gives 

( fble)T {F}e 
a( 

lbfe)T f 

vol 
i[B] [C] 1)T { 

Tj dv 

As this relationship is valid for any value of virtual 
displacement, the equality of the multipliers must exist. 
Substituting Eq. (2.39) then gives 

IF1e 
-J vol 

([B] [c] 1)T [Dl [B] [c]-1 { b}e dv 
[([cr1)T { fvol [B]T[D] [B]dv1 [c]-11 Ib} e 

(2.41) 
The whole expression within the square bracket can 

then be interpreted as the element stiffness matrix [k ]e. 

The central portion under the integral is commonly referred 
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to as the generalised stiffness matrix [ka] e-. The 
integration required to evaluate [ k] e has to be performed 

over the entire volume of the element. 
For certain simple elements, the stiffness and stress 

matrices may be evaluated explicitly. In general it is 

more convenient to perform the various matrix operations 
and integration numerically on a computer. 

(b) Consistent Load Vector 

In the formulation of the general finite element 
procedure, it was assumed that the external loads applied 
to the plate were concentrated at the nodes. With loads 

which are distributed over the volume of the element, a 

consistent method of assigning these loads to the respective 

nodal points may be established using virtual work. 
During any displacement, the work done by the assigned 

nodal loads is equal to the corresponding work done by the 

actual distributed loading. The work done by a set of 

nodal loads I L} during virtual displacements {b}e is 

Wn -( {ble)T IL} (2.42a) 

and the corresponding work done by the distributed loading 

jqj is 

Wd -{ ü}T jg}dv -J 
volCtp1 

[CI-l ý b}e)Tjg} 
. 

dv 
,,, 

A. 

I (2.42b) 

On equating the two expressions, and considering unit 

virtual displacement, 

I L} an i[CJ-1)T Ivol t P1T j q} dv (2.43) 

2.4.3 PLATE BENDING AND PLANE STRESS ELEMENT CHARACTERISTICS 

The procedure for deriving the element stiffness and 
stress matrices and the consistent load vector has been 
described in general terms and is applicable to any class 
of elastic continum problems such as plane stress and 
plane strain, plate bending, shells and solids. The 
application of the general procedure to plate bending and 



27 

plane stress problems will now be shown in more specific 
detail, where features unique to a particular class of 

problem are involved. 

In the following sections, a subscript comma after a 
displacement notation is taken to indicate partial 
differentiation of the displacement function with respect 
to the subscript variables following the comma ; for example, 

wý 
öw 

I x ax w .. 
aw ý 

,y ay 
222 

W' =ýö Xý 
; w, XY dYw lYY 

ýýý etc. 

(a) Plate Bending Element 

The deformation of a plate, under the usual thin plate 
theory, is uniquely defined by the transverse deflection w 

at all points on the middle surface. The deformation 

pattern for the element can be written in the form of 
Eq. (2.34) as 

w° [p] (a} 

in which (P] is a row vector of co-ordinate functions and 
{ a) is a column of constants. 

The nodal displacement parameters in Eq. (2.28) 

consist essentially of the deflection w and two slopes, 

w 
YX 

and w, y, and may include higher derivatives of w, if 

more than three degrees of freedom are considered at each 

node. The total number of degrees of freedom for the 

element must of course match the number of unknown constants 
in [a) 

The actual strains in the plate can be defined in 

terms of the middle-plane curvatures, by the usual 

assumption of linear strain variation across the plate 
thickness. Similarly the actual stresses can be found in 
terms of the moment stress-resultants (cf. Eq. (2.4)). For 
the purpose of analysis, the generalised 'strains' in 
Eq. (2.38) may be represented by 
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{EI 
t 

a 

- w, xx 

-w fJ 
py 

2wOxy 
0 yy 

, xy 
and the generalised 'stresses' in Eq. (2.39) by 

ý 

M 

Mx MY 

M 
xy 

since the product of the appropriate components in (E} and 
la-} gives the correct internal work done across the plate 
thickness. 

The bending moments are related to the curvatures by 

Eq. (2.1), for an isotropic plate. The. elasticity matrix 
in Eq. (2.39) is then defined by 

Et3 
12 (1-v 

1vO 

V1 

Lo 0 

0 

(1-V) 

1 

in which t is the plate thickness, E is-the modulus of 

elasticity, and ' is Poisson's ratio. 
The integration required for the evaluation of the 

generalised stiffness matrix in Eq. (2.41) is now 

performed over the area of the element, thus 

[ ka] °J [B ]T [D] [B] dx dy 

(b) Plane Stress Element 

In a plane-stressed continugm the displacement field 

is given uniquely by the u and v displacements in the x 

and y cartesian co-ordinate directions. The deformation 

pattern for the element can then be written in the form of 
Eq. (2.34) thus, 

Jul 
- [p] {a1 1 

v 

-W 

2w 

in which [P] is a matrix of co-ordinate functions and {a} 
is a column of unknown constants. 
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The nodal displacement parameters in Eq. (2.28) 

consist of the two essential displacement components u 

and v and may include first and second derivatives of u 

and v depending on the number of degrees of freedom 

considered for each node. 
The state of strain at any point is defined by three 

strain components EX, ey and rxy, and these are related to 

the displacements by 

eX u 
e .. V 

iC y- 
IXy 

Y 2 

X 9 

lu 
, y+°, 

The state of stress, similarly is described by three 

stress components, thus 

ý {(YI 
0"X 

6y 

TxY 

The stress-strain relationships expressed in Eq. (2.39) 

then provides the definition of the elasticity matrix thus, 

1v0 

[D] E 
a 

1- ' 
V10 

00 
(1- v) 

The generalised stiffness matrix [k 
a] is now evaluated 

by integrating the infinitesimal internal work done, over 
the volume of the element, thus 

[ka] =J [B ]T [D] [B] t dxdy 

2.4.4 SPECIFIC ELEMENT FORMULATIONS 

For a particular class of problem, the element 
characteristics are dictated by the choice of the element 
shape, nodal displacement parameters and displacement 

functions, which allow an endless number of possibilities. 
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The formulation of the established elements which have 

been used for the present study will now be described. 

2.4.4.1 Rectangular Bending Element RB12 

This plate bending element, commonly referred to as 
the ACM (Adini-Clough-Melosh) rectangle, 

28 has three 
kinematic degrees of freedom, consisting of the transverse 
deflection w and two rotations Ax and Ay, at each corner 
node. The displacement field for the element is assumed 
in the form of an incomplete 4th order polynomial 
expansion in x and y containing 12 unknown constants thus 

Xy X2 .... Xy2 y3 X3y Xy3 ] 
ý---- 

10 complete 3rd order 
in nI Io in nvn4 of+ ftv vnc 0 
s. v-j uvaNa64y a. G+ auý 1"1I.. \ 

a 12 
ldJ 

The displacement field chosen ensures continuity of 
deflections, but not of normal slopes, along inter-element 
boundaries. The derivation of the element stiffness and 
'stress' matrices and element load vector follows the 

standard procedure. The explicit forms of these matrices 

are given in Ref. 26. 

In plate bending problems, the shear stress resultants 
Qx andQy (and sometimes the Kirchoff supplemented shear 
Vx and Vy) often have to be evaluated, particularly in 

regions of concentrated loading. To enable the calculation 
of these quantities, a shear 'stress' matrix may be 
derived along similar lines to those followed in the 
derivation of the bending 'stress' matrix. If the shear 
stress resultants are listed as 

Qx 

QY 

and third derivatives of w listed as 

l, ul - 

, xxx 

YYY 

xyy 

, xxy 
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the expressions for shear stress resultants in Eq. (2.2) 

can be written simply as 

IIUI 

in which 

[D] a 
Et 3 

12(1-V ) 

1O1O 

L0101 
for isotropic material. The derivatives in j'u1 can be 

evaluated directly from the displacement functions in 
Eq. (a) in the form 

{ul - [B ] {a} 

The coefficient vector ja 1, by the standard procedure, 
is evaluated in terms of the nodal displacement vector 
{b} e in the form 

I aI ° [C]-1 161 e 

The shearing forces can then be evaluated in terms of the 

nodal displacements thus, 

{r} e ([D] [s] [c] l) {6Ie 
where the product matrix within the brackets represents 
the shear 'stress' matrix. To obtain the 'stress' matrix 
for calculating the Kirchhoff supplemented shears Vx and 

Vy, it is only necessary to re-define the matrix [D] as 

[D] Et 310 (2-v) 0 

12(]. _V45 010 (2-V ) 

2.4.4.2 Triangular Bending Element TB9 

This plate bending element, introduced by Bazeley, 

Cheung, Irons and Zienkiewicz, 29 is one of the first 

successful triangular element with the three basic 
kinematic degrees of freedom w, 8x and Ay, at each corner 
node. The displacement field chosen for the element is 

expressed in area co-ordinates in a form containing 9 

unknown constants thus, 

W - filýl + Ii2ý2 + ß3ý3 + ß4iý2ý1 

f3 9(qý3 
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The 9 independent functions for the displacement field 

are terms from a complete linear polynomial expansion, 
plus a combination of terms from an incomplete cubic 
polynomial expansion, in area co-ordinates. The 
displacement field adopted ensures continuity of w but 

not of normal slopes along element boundaries. 

The area co-ordinates (ýl, c 2' ý 3) are an alternative 
system of intrinsic co-ordinates which are used to locate 

a point P, relative to the triangle, by specifying the 
three areas Al, A2 and A3 (Fig. 2.5), as ratios of the 

area of the triangle, A, thus 

ý1 - Al/A, ý2 - A2/A and ý3 - A3/A 

The area co-ordinates are related to the cartesian x-y 
system by the following expressions: 

333 

x -I ixi, y=1 ciyi and 1= 7 

where (xi, yi) are nodal cartesian co-ordinates. 
The derivation of the element stiffness and 'stress' 

matrices and the element load vector follows the standard 

procedure, but, in the process, cartesian derivatives 

and area integrals are evaluated using the following 

rules: 

a rr,.. to ,. 111ý. af r- II lL.. L. 
dx L -, 1" 02> i ; j- ., ZA i-i _1 dýi 

3 

77 
ýf (ý1, ý 2, 

ý 
3) 1aM ai 

a 
ýf 

i-1 i 

and 
Jf 

ý1ý2ý3 dxdy 

where ai . xk - xi 
bia yj - yk 

1! m: n: 
_ 2A "i'l+m+n : 

and A- area of triangle ijk 

The explicit forms for the element stiffness and 
'stress' matrices are given in Ref. 30. 
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2.4.4.3 Refined Rectangular Bending Element RB24 

This is a refined version of a rectangular bending 

element proposed by Wegmuller. 31 Six degrees of freedom 

are chosen at each corner node for the element (Fig. 2.6). 
In addition to the usual deflection w and two slopes wx 
and wy commonly adopted in simple elements, three curvature 
terms w1xx; wfyy and wIxy are introduced as nodal para- 
meters resulting in a 24-degree. -of-freedom element which 
permits the choice of a higher-order polynomial for better 

approximation of the displacement field. The chosen 
displacement functions consist of 24 terms of an incomplete 
6th order polynomial and the element is not a fully 

compatible element. The displacement field is represented 
as 

w(x, y) -[1n ý2 
...... 

t4n , )5 ý5n ý31)3 1)5 ] al 

a2 
21 complete 5th order 
polynomial terms X24 

in which x/a and r- y/b. 
The 24 unknown constants al - a24 can be evaluated 

in terms of the nodal displacement components in the 

usual way, but the matrix [C] (Eq. (2.35)) is difficult to 
invert explicitly. The generation and subsequent inversion 

of this matrix, however', can easily be performed numerically 
on the computer. Following the standard procedure, the 

element stiffness matrix may be evaluated in the form 

[k] - ([C]-1)T [ka] [C] 1 (b) 

The generalised element stiffness matrix [ka] can be 

evaluated explicitly using the simple integration formula 

+1 +1 

jJ xiyj dA - a. b 
1f 

1j dý do 
A -1 -1 

4ab 
if i and (i+1) j+1 j are both even, 

10 otherwise 
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The explicit form is given in Appendix A2.1 for easy 
reference, since this was not included in the literature. 

Since curvature terms are included as nodal 
displacement parameters, the bending and twisting moments 
at the nodal points can be evaluated directly using the 

moment-curvature relationship in Eq. (2.1), and there is no 
need to evaluate the usual 'stress' matrix, unless the 

stress resultants at other points are required, in which 
case, a 'stress' matrix may be evaluated in accordance 
with Eq. (2.39) . 

2.4.4.4 Ref ined Triangular Bending Element TB18 

This is a refined fully compatible triangular plate 
bending element developed by Bell. 

32 
The element has at 

each corner node six degrees of freedom consisting of the 

transverse deflection w, the two slopes w 
,x 

and w 
,y 

and 
three curvatures w, xx, wý xy and w, yy 

(Fig. 2.7(a)). The 

18-degree-of-freedom element is derived from a 21-degree- 

of-freedom element (Fig. 2.7(b)) by eliminating three 

degrees of freedom associated with normal slopes at three 

mid-side nodes. 
The displacement field assumed for the 21-degree-of_ 

freedom element is based on a complete 21-term fifth- 

order polynomial expansion in x and y, which ensures 

complete inter-element displacement and slope compatibility. 
With the origin of the co-ordinate system at the centroid 

of the element, the displacement field is written in terms 

of 21 unknown constants as 

w- xy x2 .... x2y3 xy4 

21 Terms 

Y5 l al 

a2 

: 
a21 

The 21 constants a1 to a21 can be determined in terms 

4 be 
of the 21 degrees of freedom given by 161 b in which 

Ts 
ll I boil a [w w, x w, y , xx 

wIXy wyyy]1-1,2,3 
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at the three corner nodes and 6sml T-Ew 
nom 456 at 

the three mid-side nodes. 
Following the standard procedure, the stiffness matrix 

for the 21-degree-of-freedom element can be evaluated in 
the form 

[k21] ([C] 1) T [ka] [C]-1 
in which the generalised stiffness matrix [ka] may be 

evaluated explicitly33 and the generation and inversion 

of [C] performed numerically by computer. 
The presence of mid-side nodes in the 21-degree-of- 

freedom element results in a disproportionately large 

increase in the bandwidth of the structure stiffness 

matrix. In order to obtain a more efficient element, the 

three mid-side nodes are eliminated by imposing a cubic 

variation of the edge normal slope which maintains inter- 

element displacement compatibility, and allows the mid- 

side nodal displacements J6s} to be expressed in terms 

of the corner displacements { bc} in the form 

lösl " [A] t6cl 

The stiffness matrix for the 18 d. o. f. element is 

then obtained by the following transformation 

[k18] [I18-1 H] [k211 118 

H 

where [I18 ] is an 18 x 18 unit matrix. 

2.4.4.5 Quadrilateral Bending Element QB16 

This is a conforming quadrilateral plate bending 

element developed by Veubeke. 
34 

The element has 16 

degrees of freedom consisting of the deflection and two 

slopes at each corner node and an edge normal slope at 
each mid-side node (Fig. 2.8(b)). The displacement field 
for the complete element is built up from complete cubic 
deflection fields in four triangular regions delimited by 
the edges of the quadrilateral and its diagonals which 
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serve as oblique co-ordinate axes for assembling the 

fields (Fig. 2.8(a)). 

The complete cubic deflection field for the first, 

triangular region with vertices 1,2 and 0 is written as 

w- al + a2x + a3y + a4x2 + 2a5xy + a6y2 +4 (a, 7x3 + 

a8x2y + a9xy2 + alpy3) 

The ten coefficients al - a10 can be determined in terms 

of the displacement components for the region, which are 

(w 
0 

00 W0w1 o1 W1 w2 02 W2 012) ° lffg1j 
T 

where 0- 6w/6x and W- aw/a y. 
The bending strain energy involving curvature terms and 

area integration can be evaluated from the deflection 

field explicitly in the form 

Ul -I {q11 T[ K1] 1 q1j 

in which the matrix [Kl] represents the stiffness matrix 

of the first field. 

For the second region with vertices 2,3 and 0, the 

coefficients a1, a2, a3, a5, a6, a9 and a10 from the 

first field are retained to preserve continuity of w, 

6w/ay and aw/ax along the interface x=0, and new values 

cc I, a7 and a8 introduced for the remaining coefficients. 
The ten coefficients and the stiffness matrix [K2], 

expressed in terms of the displacement vector of the 

second field, which is 
T 

(wo Oo tpo W3 03 'v 3 w2 02 02 023 )at g21 2 

are readily evaluated from the results of the first field 

by simply replacing the co-ordinates and displacement 

parameters of node 1 with values for node 3 and replacing 
012 with 923' 

For the third region with vertices 1,4 and 0, 
identity of deflection and slopes with field 1 along the 
interface y=O is obtained by retaining the coefficients 
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al, a2, a3, a4, a5, a7 and a8, and introducing new 

coefficients a6, a9 and aid, The ten coefficients and 
the stiffness matrix [K3], now related to the displacement 

vector 

(w 
0 

0o y0 Wl 01ý1 W4 04 ý4 041 im1 q3 1T0 

are again easily evaluated from results of the first field 

with appropriate changes in co-ordinates and displacement 

parameters. 
Finally for the fourth region with vertices, 3,4 and 

0, the coefficients al, a2, a3, a4, a5, a6'a7' a8' a9 

and cj0 are adopted so that field 4 conforms with fields 

2 and 3 at the interfaces. With displacement parameters 

(wo Oo go W3 03 413 W4 04 g4 034) m{ q4 IT, 

the coefficients and the stiffness matrix[K4]are evaluated 
from results of field 1 by parameter changes between node 
1 and node 3, between node 2 and node 4 and between 012 

and 034' 

The four partial stiffness matrices [Kl] - [K4] are 

combined into a single matrix [J] referred to the 19 

displacement parameters 

(woOoVo "" 012 023 034 041) s ip1T 
' 

by direct energy addition. 
The 19 displacement parameters in { p}, however, are 

not independent since they depend on 16 coefficients 

°Ci (1,2,3... 10)' ai (4,6,7,8,9,10)' The three displace- 

ment parameters w0,00 go for the internal node can be 

evaluated in terms of displacements for other nodes, and 
the 16 coefficients expressed in terms of the 16 external 
displacement parameters 

(wl 01wl*0**** 012 023 034 041) Q jq1T 

On expressing (w 
0 

00 41O) in terms of 1 qj, 

NO 00 90)T = (M] {qj, 

1P I is related to {q j by 
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ip1 
M 

I16 {qI 

where [I16] is a 16 x 16 unit matrix. 
The matrix [] can now be transformed into a proper 
stiffness matrix given by 

[K] - (N ]T [J] [N] 
where [N] 

I! 

ý_] 

16 

The oblique slopes 0 and w in the displacement vector 

are inconvenient for the assembly of different elements. 
At corner nodes, slopes should be referred to a common 

cartesian reference frame and at mid-side nodes it is 

convenient to refer to the edge normal slope. The new 

set of cartesian displacement components 

{r IT 
° (w1 Y)1 ý1 W2 1)2 ý2""""n 

12 n 23 n 34 n 41 
)' 

can be related to the original set of oblique displacements 

by a transformation given by 

lq1°[P]1rt 

in which [P1 is evaluated from the geometry of the element. 

The final operational stiffness matrix is then obtained by 

an orthogonal transformation of [K], thus 

[R] a [p]T [K] [P] 
The relevant matrices required for the construction of the 

stiffness matrix for the element have been evaluated 

explicitly in Ref. 34. The construction of the 'stress' 

matrix, however, is not mentioned in this reference. The 

author's derivation of the 'stress' matrix is presented in 

Appendix A2.2. 

2.4.4.6 Triangular Plane Stress Element TP6 

This element first introduced by Turner et al. 
35 is 

commonly referred to as the constant strain triangle. Two 
basic degrees of freedom, consisting of displacements u 



39 

and v in the x and y directions respectively, are associated 
with each corner node resulting in a6 degree-of-freedom 

element. The displacement functions assumed for the 

element consist of linear polynomials given by 

u- a1 + a2x + a3y 

vý a4+ a5x+ a6Y 

The linear deformation patterns ensure inter-element 
displacement compatibility. The derivation of element 
properties is fairly straightforward and follows the 

standard procedure described. The stiffness and stress 
matrices are given in explicit form in most text books on 
the finite element method. 

2.4.4.7 Rectangular Plane Stress Element RP8 

This plane stress element has 8 degrees of freedom 

consisting of plane displacements u and v in the x and y 
directions respectively, at its four corner nodes. The 

derivation of element properties as first presented by 

Cheung36 contained an error in the displacement functions, 

which was subsequently corrected by Marshall. 
37 The 

corrected version shows improved accuracy in practical 

applications. 
The displacement functions are assumed initially in 

the forms involving 10 unknown constants, thus 

u (x, y) °a1+a2x+ a3y + a4xy + a9y2 

v (x, y) we a5+a 6x +a 7y + a8xy +a 10x2 

Then, by making use of equilibrium conditions within the 

element, the constants a9 and a10 are expressed in terms 

of a8 and a4, as, 
1+ v 

a9 a- "27I_v5 a8 

1+ v a10 2(1-v) a4 

The displacement functions are now written in terms of 
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8 constants, namely, 

u(x, y) -a 1+ a 2x +a 3y + a4xy - 2 (1- 
1ý. 

a 8y2 

v (x, y) a5+a 6x +a 7y + a8xy - . +. 
(1 )a 4x2 2 

The derivation of the stiffness matrix from here onwards 
follows the standard procedure and the explicit forms for 
the stiffness and stress matrices can be found in Ref. 37. 

2.4.4.8 Rectangular Flat Shell Element RS24 

This element is obtained by combining the bending 

element RB12 with the plane stress element RP8 so that the 
flexural as well as the membrane characteristics are 
incorporated in the same element, which can then be used 
in a general spatial situation. Since the bending and 
membrane actions in a flat element are uncoupled, when 
local deformations are small, the stiffness matrix for the 
flat shell element can be built up from the constituent 
bending and membrane stiffnesses in a relatively straight- 
f orward manner. 

(a) Stiffness Matrix Assembly 

In the plane stress element the nodal displacements and 

corresponding nodal forces are defined respectively by 

1Ui' fFui\ 
and 

JFPJ 

vi Fvi 

and in the bending element by 

w ij1 
and aF wi 

exi 1 Mxi 

10 
yi 

Myi 

Combining the plane stress element with the bending element 
then results in an element with five degrees of freedom 
at each node. A sixth kinematic degree of freedom 
possible in a general spatial element consists of the in- 
plane rotation AZ, which in practice is very small and may 
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be entirely left out of the element nodal description, as 
in the case of the plane stress element. However, for 

convenience in subsequent matrix operations, it is 
desirable to include AZ in the nodal displacement vector, 
as a fictitious rotational degree of freedom, associated 
with a fictitious couple M. 

Now, if the nodal displacements and nodal forces in 

the shell element are defined respectively as 

lb iý '! 
I -_- 

i 

Iui Fui 

lvi F 

w, 
and i1F..,, 

vi I I. rvi 

exi 

Aý 1 

6z i 

and I Fiý Fwi 

Mxi 

m 

Mz i 

then the stiffness matrix of the shell element consists 

of sub-matrices which are assembled from the plane stress 

and bending stiffness submatrices as follows 

[ kij l s 

[kijp] ''0 000 

(2x2 )0 000 
---------------------------- Iº 

001i0 
l b0 

00 [k 
ij 

0 0( W)0 
---------------------------- i 

00 11 000 11 kij 

in which [k 
ij 

P] is the plane stress element stiffness 
sub-matrix 

[kijb] is the bending element stiffness 

sub-matrix 

and kijf is a fictitious in-plane rotational 

stiffness coefficient 

(b) Fictitious Stiffness Coefficients 

The fictitious stiffness coefficients, strictly, 

should be set to zero, but since this will lead to 
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numerical difficulties in the solution when 'adjoining 

elements are co-planar, the set of fictitious stiffness 

coefficients are given finite values, defined arbitrarily 
by a stiffness relationship which preserves local 

equilibrium thus, 

Mzi 1.5 -0.5 -0.5 -0.5 9zi 

Mzi 1.5 -0.5 -0.5 ezj 
aEtA 

Mzk 1.5 -0.5 6zk 

Mzm Symmetric 1.5 Azm 

where E is the elasticity modulus, t and A are the 

element thickness and area, and cz is some coefficient 

which can be judiciously chosen to ensure that results 

are not significantly affected by the fictitious stiffness 
introduced, when elements are not co-planar. A value of 
a. io 6 

was found to be satisfactory for the author's 

solutions for wall/slab interaction problems. 

(c) Co-ordinate Transformation 

The stiffness matrix just assembled is based on a 
local co-ordinate system which has been used for the 

derivation of the plane stress and bending components. 

For the assembly of elements and solution of the equili- 

brium equations, the co-ordinates have to be transformed 

to a global system. Denoting global quantities by a bar 

over the symbol, the displacements and forces at a node 
transform from global to local system by a matrix [L] as 
follows: 

Ibil 

in which 

M_. I I 1.5 -0.5 -0.5 7.1 
"J l-nV 4- A 

Mzk 111.5 -0.5 11 8zk 

MII Symmetric 1.5 110 
wwI1-ý '-'" - -- ---'-11' 7I1 
4G1U J 'ý .+l f+W 

o `a ri L. L'1 

° IL] ibi} 

ý j, ýa 

I 

and I Fil ° [L] JFj} 

ýo 
oa2 

I 

[A] being a matrix of direction cosines given by 
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XX CXy CXZ 

CyX CyY CYZ 

CZX CZy CZZ 

where C- denotes the cosine of the angle between the x 

and x axes, etc. 
The transformation of the complete displacement and 

load vectors for a rectangular element can therefore be 

written as 

tb 
1e n [T]tb}e and IFle = [T] {F}e 

in which 

[T] ° 

L000 

0L00 

00L0 

000L 

By the rules of orthogonal transformation, the stiff- 

ness matrix for the shell element in the global system is 

then given by 

(k] - [T ]T [k] [T] 
which may be evaluated simply by operating on the (3 x 3) 

sub-matrices [krs] thus 

I kr sI 
[A ]T [krs] [X] 

, (r=1,2, .. 8), (s=1,2... 8) 

(d) Direction Cosines 

The direction cosines need to be established in terms 

of the global nodal co-ordinates. With the local x-axis 

directed along the element side ik (Fig. 2.9), the 

direction cosines of the x-axis are defined by the unit 

vector 

I 

c- YX 

c- 
Xy 

c- 
XZ 

a 1 
ý ýik 

Xki 

yki 

Zki 

yki 

Zki 
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with 

and 

2 -2 lik 
[3-i-2ki 

+ yki + Zki 

x ki - xk -xi, etc. 

Similarly, the direction cosines of y-axis are defined by 

Cyx xji 

VY1l 'C'1 yji 

CyZ zji 

with lji - 
FXj2 2i+ 

yji + Zji 

The z-axis is normal to the plane of the element, 
defined by the sides ik and ij, and the direction cosines 

are defined by the vector cross-product 

i m 

CZX 
I 

{ CzY 

Czz i 
n i VX1 X IVYI sm 

1 

iT 

ykiZj i- Zkiyj i ý_ l zkixj i- xkizji 

X, _ýYss - Y. _sx_: Xkiyji - ykiXjiJ 

The solution of the equilibrium equations yields nodal 

displacements in the global directions. These have to be 

transformed back to the local co-ordinate system, to 

allow the calculation of stresses, using the stress 

matrices derived for the plane stress and bending elements. 

2.4.4.9 Triangular Flat Shell Element TS1S 

This triangular flat shell element is derived by 

combining the non-conforming bending element TB9 with the 

constant strain triangle TP6. Previous studies38 have 

reported the satisfactory performance of this element in 

many practical situations. 
The stiffness matrix for the element is built up 

from the membrane and bending components in a similar 

manner to that described for the rectangular flat shell 

element. In this case the fictitious stiffness 

coefficients are defined by the stiffness relationship 
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Mz i 
Mzj 

M 
zm 

s aE tA 

1 -0.5 -0.5 

1 -0.5 

symm. 1 

AZi 

eZj 

ýZm 

The co-ordinate transformation described for the 

rectangular element is also applicable to the triangular 

element, but here the direction cosines are evaluated in 

the following manner: 
Assuming that the local x-axis is directed along the 

element side ij (Fig. 2.10), the direction cosines for the 

x-axis are, as before, given by the unit vector 

t vx I- 
tvij} a 

C- 
xx 

cxY 

Cxz 

1 
ý 

ij 

with liý ýJ xý 
i+ yý i+ 

zý 
i 

ji 

The plane of the triangle is defined by 

ij and im. The unit vector for the side im 

Xmi 
1 { vim} ' im ymi 

2 
mi 

3i2 2 lim a mi + ymi + Zmi 

The z-axis is normal to the plane 

the sides 

is given by 

of the triangle 

its direction cosines are defined by the vector cross 

product 

( czx 1I yj izmi - zj iymi 
I 

ZI 
a Iv iji X {vim} an c 

zY 
Czz 1 

and 

Zj iXmi - Xj iZmi 

Xjiymi - yjiXmi 
with A= area of triangle ijm 

The y-axis is normal to the x and z axes, and its 
direction cosines are given by the vector cross product 

Xj i 
yji 

Zi i 
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cYx cZycxZ -C ZZcxy 
VYI lVz1 x lVxl 

CYY 
IC 

- CzxCxz 

CYZ CzxCxy - Czy cxx 

2.5 THE SERIES INFLUENCE COEFFICIENT METHOD 

Finite difference3'4 and finite element methods5,6,9 

have been used to solve the complicated plate problem 

posed by a floor slab interacting with a pair of shear 

walls. These numerical methods are characterised by 

relatively complicated computer programming, tedious data 

preparation, large computer core requirements and lengthy 

computing time, which make their use in a normal design 

office unattractive or even impractical. An alternative 

approach based on an influence coefficient method which 

offers a distinct advantage in terms of computational 

effort is presented in this section. 

2.5.1 METHOD OF ANALYSIS 

2.5.1.1 Idealisation 

A typical layout of a segment of a shear wall-slab 

building is shown in Fig. 2.10. When a pair of coupled 

walls undergo parallel rotation when bending under lateral 

loading, the floor slab, which is rigidly connected to 

the walls, is forced to bend out of plane, resisting the 

independent bending of the walls. The transverse 

deflection of the slab and the displacement of the wall 

must be equal where the two members interconnect. If 

plane sections of the wall remain plane in bending, the 

deflection of the slab at points along the wall connection 
is known from the rotation of the wall. The transfer of 

moment from wall to slab gives rise to continuously 
distributed interaction forces along the connection. In 

order to study its interaction with the wall, the slab 

can be considered in isolation with an unknown distribution 

of reactive pressure which produces a known deflection 
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pattern at the wall position, the determination of this 

reactive pressure providing the necessary force/ 
displacement relationship to give a measure of the slab 
coupling stiffness and effective width. 

The exact distribution of reactive pressure on the 

slab cannot be readily determined, and it is necessary to 
introduce simplifying assumptions to render the problem 
amenable to solution. In common with the finite element 
solution, the distributed reactive pressure is replaced 
by a system of concentrated forces and moments acting at a 
discrete set of nodes as shown in Fig. 2.11. It is 

intuitively expected that a progressively more accurate 

representation of the actual continuous pressure occurs 

as the number of nodes is increased. 
In order to simplify the problem further, the panel 

of floor slab to be analysed is assumed to be simply 

supported along the two edges normal to the direction of 
bending. In a slab coupling a series of internal shear 

walls (or columns in more common situations), the simply 

supported edges correspond directly to the line of 
inflection passing through the axes of rotation of the 

walls (or columns) and also along the line of contraflexure 

at mid-span. In a slab coupling only two shear walls, 
the slab edges, if terminated on spandrel girders, as is 

frequently the case, can be considered simply supported. 
Even without the spandrel girder, association of the free 

edge with conditions of a simply supported one need not 
introduce any significant error in the analysis since very 
little bending of the slab occurs in the portion remote 
from the corridor area and its immediate neighbourhood, as 
indicated by previous theoretical and experimental 
studies. 

3,4,8140 
A slightly better and more convenient 

location for the assumed simply supported edges for this 

case, however, appears to be at the positions of the wall 

centroidal axes, since very little deflection occurs along 

a slab section at this position (cf. Fig. 2.12). The 

remaining two slab edges parallel to the direction of 
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bending can be continuous, free, simply supported or 

clamped, as applicable to the real situation. 

2.5.1.2 Solution Method 

Consider now the slab simply supported along two 

opposite edges and arbitrarily supported along the remaining 
two edges, and subjected to the system of unknown 

concentrated forces acting at a set of discrete wall nodes 

as shown in Fig. 2.13. For generality, the two walls are 
assumed to be dissimilar. The forces JR1i at a node 'i' 

in general consist of a point load Pi and two moments Mxi 

and yi.. The displacements 1611 then consist of the 

transverse deflection wi and two rotations wxi and wyi to 

provide the necessary correspondence between forces and 
displacements. The influence coefficient (frs)ij' which 
defines the displacement component si at node 'i' due to 

a unit force component rj at node 'j', allows the net 
displacement at any node 'i' due to the complete system of 

loading to be evaluated by superposition, thus, 

l 
R1 

1 61 is 
IFi1 F12 F13 ..... Fin l R2 (2.44) 

. 

LRnI 

in which [Fij] is a3x3 flexibility submatrix containing 

the influence coefficients (frs)ij' These influence 

coefficients may readily be evaluated from influence 

functions derived from classical plate theory. The 

establishment of compatibility between the displacement 

produced by the system of unknown forces and the linear 

displacements imposed by an assumed arbitrary parallel 

wall rotation leads to a system of simultaneous equations, 

tFý {R} ° {b} (2.45) 

which may be solved for the unknown forces, to give, 

{R} _ [F]-1 {61 (2.46) 

The set of calculated forces at the wall nodes constitutes 
a resultant wall moment about the centroidal axis. Thus, 
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referring to Fig. 2.14- 

n 
Ma (pi xi + 

i=1 

and the slope 0 becomes 

0a wxa + wxb +H (wa - wb) 

(1 

The coupling stiffness of the slab K is then defined as 
M+M 

Kab (2.49) 

in which D is the flexural rigidity for the plate. 
By equating the stiffness of the coupling slab to the 

stiffness of an equivalent coupling beam of uniform 

effective width, and having a depth equal to the slab 
thickness, the effective width Ye of the slab may be shown 
to be, in non-dimensional terms, 

Y 

Although the method of analysis has been described 

for slabs coupling walls which are undergoing parallel 

rotation, it is equally applicable to slabs coupling walls 

undergoing differential axial displacements due to axial 
forces, since both forms of related movement are identical 

(cf. Fig. 2.15). 

2.5.2 DERIVATION OF INFLUENCE COEFFICIENTS: GENERAL 

PROCEDURE 

2.5.2.1 Green's Function For Plate 

The solution of the governing plate equation (2.7) 

for a rectangular plate simply supported on'two opposite 

edges is most conveniently obtained following Levy's 

method. 
22 If the supported edges are defined by xmo 

and x-a, the deflection function for the plate is taken 
in the form of an infinite harmonic series, 

GO 

(2.47) 

(2.48) 

no -=r, (i) (Y) (2.50) 

M=l 
Ym sin m IT x 

a 
(2.51) 
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in which the coefficients Ym are functions only of the 

coordinate 'y'. The series satisfies automatically the 
boundary conditions at the simply supported edges. The 
functions Ym can be chosen in a form to satisfy the 
differential equation, containing four unknown constants 
which are chosen to satisfy the remaining boundary 

conditions on the other panel edges. The solution may 
then be obtained to any level of accuracy by summing up 

enough terms in the series solution. 
The various influence functions required for the 

evaluation of the influence coefficients and stresses can 
be obtained from the single Green's function G(x, y, ý 

, '7 ) 

which defines the deflect ion at a point (x, y) due to the 

influence of a unit load at another point (ý , n) on the 

plate. In deriving the Green's function for a plate, it 

is necessary to deal with loading in the form of a single 

point load. When using the Levy technique, a single point 

load P can be represented 
21 

as a sinusoidal line load along 

the line y -n in the form, 

CO 
Pa Em sin 

_ (2.52) 

M-1 

in which E is a constant which can be evaluated for the 

particular 
mloading 

position using Fourier analysis- 
39 

The line load divides the plate into two parts, each 

having no distributed surface loading q; the deflection 

of each part satisfies the governing differential 

equation (2.7) with the right hand side equal to zero. 

The deflection functions for the two segments 1 and 2 may 

be expressed in the form 
E 

w=m (=)3 A chm y+B m--ash -211-1 1 
M-1 

' (iii { 
in amaa 

miry mny m1Ty 1 sin\mý + Cm sh -+ Dm 
a 

ch -- ja 

(y <_ )) 
(2,53) 

and 
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w-ý 
Em 

(=)3 ch m! + Qm m=a 
a sh m= 

2 
m=l 

m 'mn 
ýma 

+Rm shm --=+ Smm=chm-= sin m= 

(y >r) (2.54) 

where sh and ch are used to denote the hyperbolic functions 

sinh and cosh. 
Considering the mth harmonic, the eight constants 

Am - Dm, and Pm - Sm, may be determined from the four 
known boundary conditions at the edges y-o and y-b, 
and another four from the continuity conditions at the 
load line y -1). The continuity conditions are given by 

the continuity of the deflection, normal slope and normal 
curvature across the load line, and a discontinuity in the 

shear force equal to the applied line loading given by 

equation (2.52). The solution is a standard procedure 
in classical plate theory. 22 Substitution of the 

constants evaluated in terms of the coordinates (� 
, Y) ) 

of the point load into equations (2.53) and (2.54) allows 
the deflection function to be expressed in the form 

wp a P. G(x, y, ý, n) (2.55) 

2.5.2.2 Deflection Influence Functions for Concentrated 

Moments Mx and My 

The concentrated moment Mx acting at the point (ý 
, 'o ) 

may be replaced by a couple consisting of a pair of point 
loads of magnitude M fix, acting at the points (ý 

,) 
and (ý + Ax, l)). The deflection function for the 

combined point loading may be obtained by superposition 
from equation (2.55) to give 

M 
wmx a-[G (x, y, ý+Ax, 1) )-G (x, y, ý2 1) ) 

In the limit, as Ax approaches zero, the loading reduces 
to that of a concentrated moment and the deflection 
function is given by 
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wmx xM"a 'G (x, y, ,q) 
Proceeding in the same manner, the deflection 
a concentrated moment y is givenby 

a wmy 'yäG (x, y, ,i) 

(2.56) 

function for 

(2.57) 

2.5.2.3 Rotation Influence Functions 

The influence functions for rotations in the x- and 

y-directions at a point (x, y) due to a concentrated load 

or moment at another point (ý , r1) are obtained by taking 

derivatives with respect to 'x' or 'y' of the deflection 
influence functions for the loading considered. The 

rotation functions are then given by the following 

expressions, 

Concentrated load P: - 
WP' 

X 
an öX wp -p 

ý`x G (x, Y, t, 'I 

an a. 
sra ýý.. .. r P2Y ä y"'p - r17Y .a%. n, y2 5 

Concentrated moment 

wea D]Xl x 

vi1 a 
mx, y 

-a w 

Ql 

öy .. mx 

an 

a 

Concentrated moment 

Wmy, x'3x wmy 

wý my, y 
a 
sy 

wmy 

a 

O 

DX "- 

, 1) ) 

x a2 
3xa G(x, YP ýý ý) ) 

2 
G (x, Yýýý0) Mx Ty17 

M :- 

(2.59) 

(2.60) 

(2.61) 

2 
MS, aG (X, Yt (2.62) 

x'7ný 

2 

My'ýan'G(x, Y9 99 ') ) (2.63) 

The general form of the flexibility submatrix [ FijI of 

equation (2.44) is assembled from the displacement functions 

of equations (2.55) to (2.63) as 

(2.58) 
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[Fij] 

wp wmx wmy 

ww pi x mx, x wmy, x 

wP, Y wmx, Y wmY, Y 

with unit values of P, M and My, and with x- xi, 
Y MYi, ý°xj, r)aYj. 

With the flexibility submatrix in this form, the 
complete flexibility matrix [F] in equation (2.45) is 
easily built up by entering the coordinates of the nodes 
taken in pairs by permutation. With the reciprocal 
properties of Green's function, only the upper triangular 
half of the flexibility matrix [F] need be evaluated, the 
lower half being reproduced from symmetry. 

2.5.2.4 Stress Influence Functions 

Once the deflection functions are established, the 
general functions for calculating plate moments and 
stresses due to the various forms of concentrated loading 
may be obtained from the standard stress resultant-curvature 
relationships (Equations (2.1)- (2.5)). The curvatures 
and twists may be obtained by double differentiation of 
the deflection functions. 

2.5.3 DERIVATION OF INFLUENCE FUNCTIONS FOR SPECIFIC 

CASES 

2.5.3.1 Influence Functions for a Plate with Two 

Continuous Edges 

The derivation of the various displacement influence 
functions in explicit form is illustrated for the 
particular case of a plate with two continuous edges. 
The-plate may thus be used to represent the most common 
practical situation of a typical internal panel of a 
coupling slab, or its symmetric half or quadrant in a 
regular cross-wall structure. 
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(a) Continuous Edges at y-o and y-b 

Proceeding in the manner described earlier, the load 

function Em of equation (2.52) is found by Fourier 

analysis to be, 

Em .. 
2a 

sin m- (2.64) 

The boundary conditions at the continuous edges are, 

awl a3 w1 
- 09 -3 -0 at y-o, 

ay 
3 

aw2 w2 
-ý O, ý-0 at y-b (2.65) 

ay 
The continuity conditions of deflection, slope, and 

curvature, and the change in shear force across the load 

line ys 

wl ° w2 1 

and 
3w1 

ay 

are given by 

awl awl 

ay äy 

ý3w1 

-2-ý ax ay 

cha chß 
s_ 

q 
15 

(2.66) 

On substituting equations (2.53) and (2.54) into (2.65) 

and (2.66), equating corresponding harmonics, and solving, 

the eight constants are found to be, 

A= 
m 

11a chß 
sTý sf ä 

r"h(n_nl B0_ vaa \- IJ/- ýJý 

m 
º7Ll ý. l 

Cm ° Dm °0 

ps 

in 

ý 

1a chß 
s hac 1s 

w-, 

Rs 
m 

ä2w1 

äy2 
ä2w2 

a y2 

a3 w2 ä3w2 
(---3 + a-ý-2 - 

+ß sh(aC - ß) + ch(a -ß)ý 

- f9 ch a shß + ch a chfi I 

fishfj - chf9 

Sm = chf3 
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where aa in 
a "T' 

I7 
- 

in ýý 
I) - 

Considering only the portion of the plate defined` by y 
for illustration, the influence functions defined in 
equations (2.55) to (2.63) become, 

2 I'D 
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in which, for simplicity, the functions introduced 
are 

defined as, 
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Sm -shm= c 
mm chm= ýam=y 

a 

and the constants Am and Bm"are the derivatives of 'Am 

and Bm with respect to Y) , given by, 

Aý 
m 

BT m 

-ß ch(a -ß) -] 

Analogous expressions may readily be derived for the plate 

region defined by y> 1). 

(b) Continuous Edges at y-± b/2 

When an interior floor panel is required to be 

represented as its full width, it may be more convenient 

to locate the x-axis along the centre-line of the plate, in 

which case, the continuous edges are now at y-± b/2. 

With a transfer of axis, the eight constants Am - Sm then 

become 

Aý 
m 

m 
1ra shß 

sh a sh ä 

.. sh(a -ß) 
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ß+ fi sh (a' 
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in which a a mTrb 

2a 
I 

2.5.3.2 Influence Functions For plates with Other Edge 

Supports 

The integration constants for other forms of support 
at the edges y-o, y-b, are given for completeness in 
Appendix A2.3. 
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(a) 

X 

'ryz 

(b) 

Fig. 2.1 (a) Stress-Resultants and (b) Plate Stresses 
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(a) An Open Section Thin Walled Beam 

tz T tw 

Zý 
CEO + 1= 

(b) Tangential Shear Stresses 

(c) Distributed Load 

(e) In-plane Moment 

(d) Concentrated Force 

(f) Out-of-plane Moment 

Fig. 2.2 An Open Section Thin-Walled Beam, Stresses 
and Forms of Longitudinal Loading 
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(a) (b) 

Fig. 2.3 (a) Finite Element Discretisation of Continum, and 
(b) A Typical Element 

ey, (Fay) 

(b) 

Fig. 2.4 (a) The Simple Rectangular Bending Element and 
(b) The Nodal Displacements and Forces 

1 (x1, y1) 

yl 

2 (xz, y2) Ai +A2 +A3 =A 

X 

Fig. 2.5 Area Co-ordinates Fig. 2.6 The Refined 
Bending Element 
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(a) 

W 
Wx 
WY 
M(xx 
wxy 
wyy 

(b) 

Fig. 2.7 The Refined Triangular Bending Element. 
(a) 18 D. O. F. Version (b) 21 D. O. F. Version 

Y 

Enl (b) 

Fig. 2.8 The Quadrilateral Bending Element and 
Displacement Parameters in (a) Oblique Co-ordinate 
System, and . 

(b) Cartesian Co-ordinate System 

Z 

Fig. 2.9 Local and Global Co-ordinate Axes for 
(a) Rectangular Flat Shell Element, and (b) Triangular Flat Shell Element 
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Fig. 2.10 Typical Floor Plan of- Cross-Wall Structure 
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DISTRIBUTED 
PRESSURE 
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Fig. 2.11 Representation of Moment Transfer Between 
Wall and Slab by Discrete Forces 
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EDGES ARE FREE 

IDEALISED S. S. EDGES IF EXTERIOR 

i 

IDEALISED S. S. 
EDGE IF SPANDREL 
GIRDER PRESENT 

IDEALISED S. S. 
EDGE IF WALLS 
ARE IDENTICAL 

Fig. 2.12 Typical Floor plan with Dissimilar Coupled Walls 

Fig. 2.13 Idealised Slab with Concentrated Forces 
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Fig. 2.14 Forces and Displacements in Coupling Slab 

(a) 

(b) 

Fig. 2.15 Similarity of Action of Slabs Undergoing 
(a) Parallel Rotation, and (b) Differential 
Axial Displacements 
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CHAPTER 3 

INTERACTION BETWEEN FLOOR SLABS AND SHEAR WALLS 

IN CROSS WALL STRUCTURES 
(Investigation By Finite Element Method) 

3.1 INTRODUCTION 

The cross-wall structure is a popular form of 

construction for multi-storeyed apartment buildings. Fig. 

3.1 shows a typical floor plan of a slab block in which 
self-contained apartment units are arranged side by side 

along the length of the building. This arrangement 

naturally results in parallel assemblies of division walls 

running perpendicular to the face of the building, with 
intersecting longitudinal walls along the corridor and 
facade enclosing the living spaces. The cross-walls are 

employed as load bearing walls in addition to serving 

architectural requirements, since their disposition favours 

an efficient distribution of both gravity and lateral loads 

to the structural elements. The longitudinal corridor and 
facade walls are provided with openings for access to the 

living areas and balconies, and for window framing. If 

they are also designed to be load bearing, these longitud- 

inal walls act effectively as flanges for . the primary 

cross-walls. In addition to the structural partition 

walls, shear walls are used to enclose lift shafts and 

stair wells to form the open section box structures which 

act as strong points in the building. Thus in practice, 

shear walls of various shapes, planar, flanged or box- 

shaped, may be coupled together by floor slabs in cross- 

wall structures. 
In this Chapter the finite element method is employed 

to establish the slab coupling stiffness and effective 
width, and the distribution of bending moments and shearing 
forces in the slab for a range of shear wall structures, 
with combinations of plane, T-shaped, L-shaped and box 
shaped wall elements (Fig. 3.3, (a) - (k)). 
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3.2 SHEAR WALL/SLAB INTERACTION 

Fig. 3.2(a) shows a segment of an idealised floor plan 
of a cross-wall structure consisting of regularly spaced 
pairs of shear walls connected through the floor slab. A 
typical interior slab panel bounded by lines of symmetry 
located mid-way between wall panels is considered in the 
study of the wall/slab interaction. The end panel with 
the gable walls contains only half the slab in an interior 
panel and is considered a special case in the study. 

The shear walls resist the lateral loads on the 
structure, due to wind or earthquake, by cantilever bending 

action, in which the inplane bending of the walls results 
in rotations of wall cross-sections. The free bending of 
a pair of shear walls is resisted by the floor slab which 
is forced to rotate and bend out of plane where it connects 
rigidly to the shear walls (Fig. 3.2(b)). Due to the 
large wall depth considerable differential shearing action 
is imposed on the connecting slab which develops transverse 

reactions to resist the wall deformation. The effect of 
the wall slab interaction is to reduce the lateral 
deflections and stresses in the walls below those which 
would exist if the walls behave as independent cantilevers. 

Another situation in which the slab interacts with the 

pair of shear walls arises due to vertical wall movements 
which result from unequal loading on the walls or from 
differential foundation settlement. The effect on the 

slab produced by the relative vertical movement is however 

similar to that produced by the parallel wall rotation as 
shown in Fig. 3.2(c). 

3.2.1 COUPLING STIFFNESS OF SLAB 

The resistance of the floor slab against the displace- 
ments imposed by the shear walls is a measure of its coupling 
stiffness, which has to be determined in order to study 
the behaviour of the coupled shear walls. The coupling 
stiffness of the slab can be defined in terms of the 
displacements at its ends and the forces producing them. 
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Thus referring to Fig. 3.2, (d) and (e), the stiffness of 
the slab may be defined as a rotational stiffness M/A or 
as a translational stiffness Q/b since both stiffnesses 
are related. Due to non-uniform bending across the slab 
width, the force-displacement relationship can only be 

evaluated from a two-dimensional plate-bending analysis. 
For convenience, the rotational and translational slab 
stiffnesses may be evaluated in the form of non- 
dimensional stiffness factors given by 

KýM 
DQ 

and Kb a .ýQ 
L2 

b'D 

(3. la) 

(3.1b) 

where K and K6 are respectively the rotational and 
translational stiffness factors and D is the plate rigidity. 

3.2.2 EFFECTIVE WIDTH OF SLAB 

For the purpose of overall analysis, it is convenient 
to assume that a strip of slab acts effectively as a beam 

in coupling a pair of walls. The effective stiffness of 
the slab can then be defined simply in terms of the 

geometric and material characteristics of the equivalent 
beam. The effective width of slab can be established by 

equating the rotational or translational stiffness of the 

slab to that of the equivalent beam. Using area-moment 

principles, the rotational and translational stiffnesses 
of the equivalent beam can be written respectively as 

6EI 2 (L + W) 
L 

and 
Qs 12EI 
bý 

(3.2a) 

(3.2b) 

where L and W are respectively the corridor width and 
wall length, and In Yeti/12 in which Ye is the effective 
slab width and t is the slab thickness. 

The effective width can then be expressed in terms of 
the rotational or translational stiffness factors in non- 
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dimensional form as 

Ye K 
._a Y 

or 

6 (1-v2 

Ye K 

Y 12 il-v2) 

2 

iY) irý+Wý (3.3a) 

(3.3b) 

where Y is the full width of the slab panel and V is 

Poisson's ratio. 

3.2.3 FINITE ELEMENT ANALYSIS OF SLAB 

The study of wall/slab interaction involves basically 

the analysis of ' slab actions in resisting the deformation 

imposed by the pair of shear walls undergoing parallel 

wall rotation or differential vertical movement. The 

finite element method is used in this study to analyse 

the slab actions. For analysis the slab is assumed to 

be homogeneous, isotropic and linearly elastic and plane 

sections of the walls are assumed to remain plane where 

the slab interacts with the walls. 
In the finite element analysis the slab is discretised 

into an assembly of plate bending elements following a 

suitable mesh pattern which has been shown by a convergence 

study to yield accurate results. The mesh is generally 

graded such that the region close to the inner edge of the 

wall, where stress gradients are expected to be high, is 

sub-divided more finely than other parts of the slab. 
Depending on the element type, the mesh may be rectangular 

or triangular, the latter being conveniently obtained by 

sub-dividing a rectangular mesh along a diagonal. 

Conditions of symmetry and anti-symmetry in respect of 
displacement patterns may be used to reduce the 

computational effort. In a typical interior slab panel 
with identical coupled walls for instance, the displace- 

ments are symmetric about the longitudinal centreline and 
anti-symmetric about the transverse centreline, in which 
case, the actual analysis may be performed for a typical 
quadrant of the slab panel. Fig. 3.4 shows a typical 
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finite element idealisation of the slab coupling a pair 

of plane walls. The element nodes are numbered 

consecutively in one direction along the set of mesh 
lines with the smaller number of sub-divisions, commencing 
from an edge of the slab. The numbering scheme adopted 
facilitates data generation and also ensures that the 

band-width of the assembled structure stiffness matrix is 

minimised for an efficient solution. 
The element stiffness matrices are generated from 

geometric and material data and are assembled into an 

overall structure stiffness matrix forming a set of 

equilibrium equations which may be solved for the unknown 

nodal displacements once the boundary conditions are 

prescribed. The prescribed boundary conditions consist 

of known displacements at the slab edges or lines of 

symmetry and anti-symmetry and at the wall nodes. Since 

only those displacement components which correspond to the 

nodal displacement parameters for the particular element 

can be incorporated in the solution, when using lower 

order elements (RB12, TB9 and QB16) only known values of 

the deflection w and slopes w, x and w1 Y are prescribed, 

whereas when using refined elements (RB24 and TB18) known 

curvatures w, XX, w, Xy and w, yy are also prescribed in 

addition to the deflection and slopes. At the longitudinal 

slab edges, which are lines of symmetry, the transverse 

slope w, y and twist w, ,y 
are zero. At the corridor edge, 

which is a line of anti-symmetry, the deflection w, the 

transverse slope w, y and the curvatures w, xx and w, yy are 

zero. The displacements prescribed for the wall nodes 

can be due either to a unit parallel wall rotation or to 

a unit relative vertical wall movement since in each case 
the slab is subjected to the same form of deformation 

relative to the walls. If parallel wall rotation is 

prescribed, then the löngitudinal slope w, x 
is of unit 

value at all the wall nodes and the deflection w varies 
linearly with distance x from the centre of rotation. On 
the other hand, if relative vertical wall movement is 
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prescribed, the deflection w is of constant-value and 
the longitudinal slope w, x 

is zero at the wall nodes. In 

each case, the transverse slope w, y 
is zero at all the 

wall nodes and the curvature w, xx 
is zero at only the 

interior wall nodes. The boundary conditions for the 

typical slab coupling a pair of plane walls undergoing 

unit parallel rotation are shown in Fig. 3.4. The 

bracketed items shown are applicable to refined elements 

only. 
The equilibrium equations are solved by a Gaussian 

elimination scheme to yield the unknown nodal displace- 

ments. Once the nodal displacements have been calculated, 

the stress resultants may be computed from the stress 

matrix relationship (Equation (2.33)) while the reactions 

at the restrained nodes may be computed from the element 

stiffness relationship (Equation (2.30)). The reactions 

at a set of wall nodes provide the static equivalent wall 

moment M and shear force Q transferred from the wall to 

the slab when the wall undergoes the relative displace- 

ments assumed in the slab analysis. Evaluation of the 

appropriate force-displacement relationship gives the 

coupling stiffness of the slab, from which the effective 

width of the slab may be calculated from equation (3.3a) 

or (3.3b). 

3.3 ELEMENT EVALUATION 

Various plate bending elements which have been 

successfully developed can be used in the finite element 

analysis of the floor slab. The performance of an element, 

as measured by the accuracy of results obtainable with a 

particular computational effort, however, varies from 

element to element depending on the sophistication of the 

element formulation and on the type of slab problem being 

solved. Since a comprehensive parameter study of floor 

slabs coupling shear walls requires an extensive use of 
finite element analysis, it is necessary to select from 
the vast repetoire of elements available an efficient 
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element for implementation to ensure that results can be 

obtained to an acceptable level of accuracy with minimal 

computational effort. The relative performance of 

various elements is evaluated to assist in the selection 

of the best element for the parameter study. 

3.3.1 STANDARD CONVERGENCE RESULTS 

The relative efficiency of various elements has often 

been evaluated on the basis of convergence results for a 
test problem involving a simply supported or clamped plate 

under uniform or central point loading. Fig. 3.5, (a) and 
(b), show the comparison of convergence results obtained 

by a number of elements described in the literature. 
26,41 

The elements compared have been designated with the 

numerals indicating the total number of degrees of freedom 

for the element. TB18 and RB24 are higher order or 

refined triangular and rectangular elements proposed 

respectively by Bell32 and Wegmuller31 These two 

elements contain curvature terms in their nodal degrees 

of freedom. QB16 and QB19 are conforming or compatible 

quadrilateral elements assembled from triangular sub- 

elements and have been developed respectively by Veubeke34 

and by Clough and °Felippa. 
42 HCT9 and RB16 are compatible 

triangular and rectangular elements developed respectively 

by Hsieh, Clough and Tocher43 and by Bogner, Fox and 

Schmidt, 8 
while TB9 and RB12 are incompatible triangular 

and rectangular elements described by Zienkiewicz and 
Cheung. 45,30 The convergence results obtained by the 

various elements have been compared on the basis of equal 

numbers of rectangular divisions of the half edge for the 

plate. The results for elements TB18 and RB24 for the 

case of the clamped plate have been obtained by the author 

as these could not be found in the literature available 
to the author. The rest of the results have been 

reproduced from various published sources. 
It is seen from the comparison of convergence results 

that generally the more sophisticated elements give the 
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better results in both cases of simply and clamped plates. 
The results obtained by the refined triangular and 

rectangular elements TB18 and RB24 and by the compatible 

rectangular element RB16 are remarkably accurate even 

with a very coarse mesh division. The results obtained 
by the quadrilateral elements QB16 and QB19 are less 

accurate than the results obtained by the first three 

elements but are more accurate than the results obtained 
by the three simpler elements, HCT9, TB9 and RB12. QB16 

appears to give better results, compared to QB19. The 

results obtained by the compatible triangular element 
HCT9 are worst in both cases. 

3.3.2 CONVERGENCE RESULTS FOR COUPLING SLAB PROBLEM 

The choice of a suitable element to be used for the 

parameter study of the coupling slab could apparently be 

made on the basis of the convergence results just discussed. 

However it is recognised that the same order of perfor- 

mance indicated for the various elements under the ideal 

conditions of the test problem may not necessarily be 

reproduced in more complex situations. - It appears 
logical to base the selection of the desirable element 
on the element performance under similar conditions 

associated with the actual parameter study. Towards this 

end, five of the more attractive elements, viz. TB18, 
RB24, QB16, TB9 and RB12 are selected for evaluation of 
their relative performance in the slab coupling problem. 
The computer programs for the implementation of the first 
four elements were written by the author. The program 
for the last element was modified from a finite element 
program suite in the Department of Civil Engineering, 
Strathclyde University. 

Two typical cases of slab coupling have been considered 
for the element evaluation. In the first case, the slab 
couples plane walls, and in the second case it couples 
flanged (T-shaped) walls. The four patterns of mesh 
division of the slab for convergence study are shown in 
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Fig. 3.6. The mesh refinement adopted follows a 
monotonic sequence. The mesh for the triangular elements 
is obtained by sub-dividing the rectangular mesh along a 
diagonal. The walls were assumed to be of zero thickness 
in the discretisation of the slab. Due to double 

symmetry of the problem, only a quarter of the slab panel 

was considered in the analysis. 
The numerical results for the effective width Ye/Y 

obtained by the various elements are shown graphically 
in Fig. 3.5, (c) and (d). The rectangular mesh division 

along the shorter side of the slab quadrant has been used 

as the common base for comparing the results obtained by 

various elements so that the presentation is consistent 

with that for the square plate problem. 
When discussing relative accuracies of various finite 

element solutions, the 'exact' theoretical solution should 
be available as a reference datum for comparing various 
results. Unlike the case of a square plate, an 'exact' 

solution for the present problem of a coupling slab does 

not exist. However, the 'true' result may. be extrapolated 
from the sets of finite element approximations using 
Richardson's extrapolation 

46 
provided the nature of the 

approximation error is known. 
The principal error in the finite element solution 

arises from the discretisation process. For the Adini- 
Clough-Melosh rectangular element (RB12) under uniformly 
distributed loading, Waltz et al. 

47 have shown that the 

principal discretisation error in deflections is of order 
h2 and errors in slopes are of order h4 where h is the 

characteristic mesh length. Ramstad33 has applied the 
Richardson h2-extrapolation to the case of a simply 
supported square plate under uniform loading and obtained 
remarkably accurate and consistent 'true' values of 
deflections and stresses, by extrapolating between any 
two sets of finite element results obtained for various 
mesh sizes of this particular element. 

For the slab coupling problem, the h2-extrapolation 
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failed to give a consistent value of the effective width 
Y/Y when different mesh combinations were tried for each 
of the element type. This is not too surprising since the 
distributed loading which is essential for the type of 

error approximation assumed in the h2-extrapolation is not 
involved in the present situation. When the discretisation 

error in the calculation of Ye/Y for the coupling slab 

problem was assumed to be of order h and the Richardson 
(h, h2)-extrapolation (Appendix A3.1) was used, very 
consistent 'true' values of Ye/Y were obtained by extra- 

polating between any three mesh combinations for each 
element type. The extrapolated 'true' values of Ye/Y 

based on (2,4,8) mesh combinations are shown in the last 

comumns of Tables 3.1, (a) and (b), for the plane wall and 
flanged wall cases. The discrepancy between the highest 

and lowest extrapolated 'true' value of Ye/Y does not 

exceed 0.2% for the plane wall configuration and 0.35% for 

the flanged wall configuration. The mean extrapolated 
'true' values of Ye/Y for both cases have been marked in 

Fig. 3.5, (a) and (b), to give a better indication of the 

accuracy and convergence of the various elements. The 

extrapolated-values in both cases are seen to be consistent 

with. the graphical trend of results, providing a further 

indication of the validity of the method of extrapolation 

adopted. 

3.3.3 DISCUSSION OF CONVERGENCE RESULTS 

The results of this convergence study indicate a 
number of interesting points. Contrary to expectation, 
the results obtained by both the refined elements TB18 and 
RB24 are rather poor compared to the results obtained by the 

simpler elements. The accuracy of results obtained by the 
two simplest incompatible elements TB9 and RB12, even with 
the coarsest mesh, is remarkable. There appears to be 
little difference between the performance of elements TB9 
and RB12, both of which gave the best results in each case. 
The results obtained by the quadrilateral element QB16 are 
nearly as accurate as that obtained by TB9 or RB12 for the 
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case of flanged walls, but for the case of plane walls, 
the results of QB16 are substantially less accurate than 

the results of TB9 or RB12. The trend of results 
indicating improved element performance with sophistication 
in element formulation, shown by the standard square plate 

convergence study, appears to be completely reversed in 

this convergence study on a coupling slab. The results 

obtained by the various elements converge to the 'true' 

values of Ye/Y for each case from above. 
Another desirable characteristic to be evaluated for 

the different elements is their relative efficiency in 

terms of computer time required for the analysis. Tables 

3.2, (a) and (b), show the computing times in seconds, 

clocked for the various operations in the finite-element 

program-runs on the ICL 1904S computer, for the plane wall 

problem with mesh 3 and mesh 4 discretisations. The 

superiority of the simple elements over the refined 

elements is even more striking in this comparison. The 

refined elements TB18 and RB24 both take more than five 

times the amount of total computing time required by their 

simpler counterparts TB9 and RB12. The break down of 
the total run-times indicates that the refined elements, 

when compared with the simple elements, consume a very 
large amount of computer time in the element stiffness 
matrix generation and in the solution of the equilibrium 
equations. The quadrilateral element QB16 takes nearly 
three times more total computing time than the rectangular 
element RB12, which is marginally more efficient than the 
triangular element TB9. The higher time clocked by QB16 

arises from the solution of a larger number of equilibrium 
equations compared to RB12. 

The convergence study indicates that among the five 
bending elements considered, the two simplest elements 
RB12 and TB9 are the better elements to be used for the 
study of slabs coupling shear walls. The triangular 

element TB9 is seen to be marginally less efficient than 
the rectangular element RB12 in terms of convergence and 
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computing time. In stress calculations, TB9 is generally 
less accurate than RB12 due to lower order of displacement 

function assumed in its formulation. Other considerations 
in favour of RB12 include the simple data preparation for 

the computer run, as well as the ease with which this 

element could be combined with a satisfactory plane-stress 

element to form a spatial or flat shell element suitable 
for use in the study of local elastic deformation effects 
in shear walls coupled by the floor slab. 

3.4 PLANAR WALL CONFIGURATION 

The planar wall configuration, consisting of a pair 

of plane walls coupled in-plane by the floor slab, is most 

commonly encountered in cross-wall buildings built on the 

double loaded corridor scheme. Common architectural 

layouts result in building depths of 12 to 18 m (40 to 60 

ft) and bay sizes of 3 to 9m (10 to 30 ft). Wall 

thicknesses range from 150 to 380 mm (6 to 15 in. ) and 

floor depths from 140 to 250 mm (51 to 10 in. ). In 

certain layouts, the floor slab extends beyond the facade 

line. The slab overhang in most cases is unlikely to 

exceed about 2m (6 ft). 

The factors which have an influence on the effective 

width of the coupling slab have, in previous theoretical 

and experimental studies, been identified as the overhang 

width C, the wall length W, the wall opening or corridor 

width L, the slab width Y and the wall thickness h. 

Although the influence of these factors have been examined 
theoretically by the finite difference 2-4 

and finite 

element5'6 methods, a similar study using the finite 

element method is conducted as a part of a more extensive 

programme of investigation into various aspects of shear 

wall-slab interaction. Since Qadeer's results2 differ 

considerably (in some cases up to 30% difference) from 

the results obtained by Black et al., 
6 the results obtained 

from the present study could serve as a check on the 

reliability of previous results. 
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Following the method of analysis outlined in Section 
3.2.3, results have been obtained showing the influence of 

various parameters on the coupling stiffness or effective 
width of slab for an interior bay bounded by lines of 
symmetry located mid-way between wall assemblies. The 
finite element analyses were performed using mesh patterns 
with between 88 and 104 element sub-divisions, depending 

on the slab geometry. As indicated by the convergence 
results described in Section 3.3.2, the mesh patterns 

adopted should yield relatively accurate results. A 

typical mesh pattern adopted has been shown in Fig. 3.4. 

Although the final results are expressed in non-dimensional 
forms to be of general application, in the parameter study, 

a slab thickness of 228.6 mm (9 in. ) was assumed throughout. 

The slab panel length (a building depth) was generally 
taken as 15.25 m (50 ft), with other dimensions varied as 

required for parameter study. Young's modulus and 
Poisson's ratio for concrete were assumed as 2.07 x 107 
kN/m2 (4.32 x 105 kip/ft2) and 0.15 respectively. The 

numerical results obtained are discussed in the following 

sections. 

3.4.1 NUMERICAL RESULTS FOR EFFECTIVE WIDTH 

3.4.1.1 Effect of Slab Overhang 

Values of slab stiffness factor K and effective width 
Ye/Y obtained from the finite element analyses are shown 
in Table 3.3 (a) for slabs having a fixed aspect ratio Y/X 

of 0.4 and in Table 3.3 (b) for slabs having a fixed wall- 
opening ratio L/X of 0.6. It is seen from the results 
that increasing the overhang ratio for a slab increases 

marginally the slab's coupling stiffness. This effect is 

relatively more significant for slabs with larger values 
of the ratios L/X and Y/X. Nevertheless, the influence 

of slab overhang is generally so small that for practical 
purpose it may be neglected. Neglecting the effects of 
the ratio C/X in the worst case examined (L/X a 0.6, 
Y/X = 0.8), is seen to result in an underestimation of the 
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slab stiffness of less than 5%. 

The general trend of results obtained appears consis- 
tent with Qadeer's2 and El-Hag's40 results. In view of 
its insignificant influence, the slab overhang is 
disregarded in further investigations of slab-wall coupling. 

3.4.1.2 Effect of Wall Length 

In examining the influence of wall length on the 

effective coupling by the floor slab, two of the other 

variables, namely, the wall opening L and the slab width Y, 

are kept constant while the wall length W is varied. As 

a result of varying W, the floor length X is varied 
accordingly. Since the rotational stiffness-of the 

equivalent beam, as defined, is affected directly by the 

change in the lever arm distance between wall centres as the 

wall length is varied, the results for the stiffness factor 

K will not give a clear picture of the actual influence of 

wall length on the effective coupling slab width. 
Therefore in order to assess more succinctly the influence 

of wall length, reference is made only to the results 

obtained for the effective width Ye/Y. 

The variation of Ye/Y with the ratio of wall length 

to wall opening, W/L, is shown in Fig. 3.7 for the two 

ratios L/Y examined. The trend of results is seen to be 

very similar for both cases, for L/Y a 0.5 and L/Y ,. 1.5. 

The effective width increases with the increase in wall 
length. The variation of Ye/Y is rapid for W/L less than 

0.3 but becomes insignificant when W/L is larger than 0.5. 
Since in practical cross-wall structures W/L is unlikely 
to be less than 0.5, it appears that in most cases the 

effect of variation in wall length may be disregarded in 
the evaluation of effective slab width, as long as the 
influence of the ratio L/Y is considered. Similarly, the 

effect of dissimilar wall lengths in a pair of coupled walls 
may also be disregarded if the ratio of the shorter wall 
length to the wall opening is greater than 0.5. 
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3.4.1.3 Effect of Slab Width 

To illustrate the influence of slab width more 

clearly, the effective width Ye and the slab width Y are 

normalised with respect to the standard panel length X. 

Fig. 3.8 shows graphically the variation of Ye/X as a 

function of Y/X for various wall opening ratios L/X. The 

effective width is seen to increase with the slab width, 

as expected, since a wider slab should provide a greater 

restraint than a narrower slab against bending induced by 

the coupled walls. The influence of slab width is strongly 

felt when the slab width Y/X is smaller than the wall 

opening width L/X (i. e. when Y/L < 1), but when Y/X is 

larger than L/X the influence of slab width diminishes 

rapidly. Increasing the slab width beyond a value of 

three times the wall opening width appears to have 

practically no effect on the effective slab width for a 

particular wall opening width. 

3.4.1.4 Effect of Wall-opening Width 

The results discussed in the preceding section are 

re-plotted in Fig. 3.9 to show the variation of effective 

width Ye/X as a function of the wall opening width L/X for 

various slab widths Y/X. By comparing Fig. 3.9 with Fig. 

3.8, it becomes immediately obvious that the two sets of 

curves are practically similar for the range of variables 

considered. The influence of L/X on Ye/X for a 

particular value of Y/X is seen to be practically identical 

to the influence of Y/X on Ye/X for the same value of L/X. 

This reciprocal influence of L and Y can also be noted by 

referring to the numerical results in Table 3.4, which 
show that the values of L and Y may be interchanged without 

affecting practically the effective width Ye (c. f. Note the 

symmetry of the tabulated results about the diagonal 

L/Y - 1). This interesting reciprocal relationship between 

L and Y will be exploited in the presentation of simple 
design curves and empirical equations in a later section 
(3.4.1.7). 
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3.4.1.5 Design Curves for Effective Width 

To enable the rapid calculation of effective widths 
to be achieved, curves are presented in Fig. 3.10(a) showing 
the variation of effective width Ye/Y as a function of wall 
opening ratio L/X for various slab aspect ratios Y/X. The 

numerical results from which the curves have been drawn 

are given in Appendix A3.2 for further reference. The 

results presented have been obtained assuming zero wall 
thickness in the analysis. The finite wall thickness in 

actual structures will influence the stiffness and 

effective width of the slab to an extent depending on the 

relative wall and slab dimensions. For relatively thin 

walls, the effective slab widths obtained from the curves 
in Fig. 3.10(a) should prove sufficiently accurate for 

practical purpose. For walls with appreciable thickness, 

the effective slab widths can still be evaluated 

satisfactorily from the same set of curves, with certain 

modifications, as will be shown in a subsequent section 
(3.4.1.9). 

The curves account for the influence of slab width, 

wall opening width and wall length. The curves for various 

slab aspect ratios Y/X have been spaced at rather close 
intervals to facilitate accurate visual interpolation where 

necessary when the actual value of Y/X for the particular 

problem falls between any two curves. However, inter- 

polation between curves is not strictly necessary. As 

shown in Section 3.4.1.2, the influence of variations in 

wall length can practically be disregarded when the wall 
length ratio W/L is larger than 0.5, or, alternatively, 
when L/X is less than 0.5. Therefore the value of the 

slab length X for the particular problem can be 

arbitrarily adjusted so that the new value of Y/X 

corresponds to the value for the nearest curve, and the 

correct effective width Ye/Y is given by this curve 
at the new value of L/X. 

The effective width values have been evaluated 
assuming a value of Poisson's ratio of 0.15 for concrete. 
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The slab stiffness factor K is not sensitive to small 
differences in values of Poisson's ratio. The effective 

width Ye/Y is however influenced by the value of J as can 
be seen from equations (3.3a) and (3.3b). If desired, the 

value of Ye/Y obtained from the design curves may be 

approximately corrected for the actual value of V by 

multiplying by a factor (1 - 0.152)/(1 -v 
2). 

3.4.1.6 Generalised Design Curve for Effective Width 

Although the presentation of design curves in the 

usual form shown in Fig. 3.10(a) already allows a fairly 

rapid evaluation of the effective-width for any practical 
floor slab coupling a pair of plane walls, it is possible 
to simplify further the presentation of design information 

to allow an even more rapid evaluation of the effective 

width. As was first suggested by Michael48 and is shown 
by the results in Section 3.4.1.4, the effective width 
Ye/Y is essentially a function of the wall-opening to slab- 

width ratio L/Y only. The series of design curves 

presented in Fig. 3.10(a) can therefore be approximated 
by a single generalised curve of Ye/Y versus L/Y' as shown in 

Fig. 3.11(a). This generalised curve is fairly accurate 
for practical purpose. With slab and wall proportions 

such that (L/X + Y/X) < 1, which covers most practical 

cases, values of Ye/Y obtained by the generalised curve and 
by the more accurate series of design curves are practically 
identical. For such cases the generalised curve should 

prove more convenient to use than the previous series of 
curves. In exceptional cases where (L/X + Y/X) >1 and 
L/X is also larger than 0.4, the effective widths Ye/Y 

evaluated-by the generalised curve are overestimated, 
generally by less than 10%. For such cases, if a more 
accurate estimate of Ye/Y is required, this could be 

obtained from the more accurate series of design curves in 
Fig. 3.10(a). 
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3.4.1.7 Empirical Design Equation for Effective Width 

The generalised design curve in Fig. 3.11(a) can be 

separated into two distinct sections defined by the limits 
0< L/Y <_ 1 and 1< L/Y <. Values of Ye/Y given by 
the second section of the generalised curve, which may be 
termed the reciprocal section, can in fact be obtained from 

the first section of the generalised curve, which may be 

termed the normal section, by making use of the reciprocal 
relationship between L and Y. As shown by the numerical 
results discussed in Section 3.4.1.4, values of L and Y 

may be interchanged without sensibly affecting the value 
of Ye for the slab. - Therefore when the ratio L/Y exceeds 
unity, the reciprocal of this ratio can be used to evaluate 
the effective width ratio Ye/L for the reciprocal section, 
from the normal section of the generalised curve. If the 

normal section of the curve is represented by the equation 
Ye/Y - F(L/Y), where F denotes a function, the reciprocal 

section will be represented correspondingly by 

Y 
e/L -F (Y/L) . 

The normal section of the curve can be represented 
to an acceptable level of accuracy by the simple empirical 

relationship, 

Y 

Y- Y '.. - .,. z Y, , ., =Y-_ý... ý, 
es Lfl 

_nd 
L1 n :fL<1 f3 dl 

The reciprocal section is then represented, simply by 
interchanging L and Y, by the equation 

-ý -1 (1- 0.41), 0551<_1 LLL (3.5) 

Multiplying equation (3.5) by y, the reciprocal equation 
becomes simply 

ý= 1- 0.4(YL)-1 
21-Y <_cc (3.6) 

Equations (3.4) and (3.6) now represent the 
generalised design curve over the complete range 
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0< L/Y <_ cc . The value of Ye/Y given by the reciprocal 

equation approaches unity when L/Y becomes infinitely large. 

This is consistent with the fact that a long narrow strip 

of slab will behave essentially as a beam. 

In order to illustrate the accuracy of the empirical 
representation of the generalised design curve, the 

empirical curve given by equations (3.4) and (3.6) is 

compared with the generalised design curve in Fig. 3.11(b). 

It can be seen that the empirical curve gives an almost 

perfect fit to the generalised design curve. By comparing 

numerical values of Ye/Y obtained by the empirical 

equations with the corresponding accurate values taken 

from Appendix A3.2 discrepancies are seen to be generally 
less than 4% for the range of L/Y from 0.1 to 6.0 which is 

covered by the finite element results. 

3.4.1.8 Effect of Finite Wall Thickness 

Fig. 3.12, (a) and (b), show the variation of 

effective width Ye/Y as a function of wall thickness 

ratio h/Y for a range of wall opening ratios L/X and slab 

aspect ratios Y/X. The numerical results. from which the 

curves have been drawn are given in Appendix A3.3 for 

further reference. 
It is seen from the curves of Ye/Y that the thickness 

of the wall has a considerable stiffening effect on the 

slab. For the range of h/Y less than 0.5, Ye/Y increases 

almost linearly with the increase in h/Y. The influence 

of wall thickness is seen to be relatively more significant 

with smaller wall opening ratios L/X. With slabs in which 
the wall opening is small compared to the slab width 
(L/Y < 1/4), an increase in the wall thickness produces an 
equal increase in the effective width generally when h/Y 
is less than 0.5. 

The results presented in this Section are also 
applicable to the case of coupled box-cores without openings 
on the inner edges, since the displacements imposed on the 

slab by a thick solid wall and by a box-core of the same 
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peripheral dimensions are identical. 

3.4.1.9 Empirical Method to Account for Influence of 
Wall Thickness 

It has been suggested by Michael48 that the influence 

of wall thickness may be accounted for simply by including 

an additional slab width equal to the wall thickness in 

the effective width calculated for zero wall thickness. 

This simple procedure is seen to be valid generally for 

L/Y < 1/4 and h/Y < 1/2. With larger ratios of 'L/Y, this 

procedure overestimates the stiffening effect of the wall 
thickness considerably when the walls are thick in relation 
to the slab width. A more general procedure is suggested 
here to account for the influence of wall thickness in the 

evaluation of effective width. As illustrated in Fig. 
3.13 (below), the slab of width Y coupling a pair of walls 

with wall thickness h is assumed to be made up of an 

effective wall strip of width h and a reduced slab panel 

of width Y' Q (Y-h) coupling a pair of walls of zero 
thickness. The effective width Ye' is obtained for the 

reduced slab panel and the effective wall strip is added 
to give the effective width Ye for the actual slab. 

Y 
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Fig. 3.13 
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3.4.1.9.1 Numerical Examples 

In order to illustrate the application of the 

suggested empirical method and to indicate the relative 

accuracy of the approximation, two numerical examples are 

considered. 

Example No. 1: 

It is required to evaluate the effective width of a 

slab of aspect ratio Y/X - 0.4 coupling a pair of thick 

walls with thickness ratio h/Y - 0.5 and wall opening ratio 
L/X - 0.4. 

The reduced slab width Y'/Y - 1-h/Y - 0.5 

The reduced span/width ratio L/Y' - 0.4/(0.4x0.5) - 2.0 

From the generalised design curve in Fig. 3.11(a), 

Ye'/Y' - 0.79 

The effective width Ye/Y - 0.79 x 0.5 - 0.395 

The effective wall strip h/Y - 0.500 

The total effective width Ye/Y Ye/Y + h/Y 0.895 

Comparing this value with the accurate value of 0.911 from 

Appendix A3.3, the relative error is seen to be -1.8%. 
Using Michael's procedure the effective width Ye%Y would 

be evaluated as 0.61 + 0.5 - 1.11 which is 22% in error. 

Example No. 2: 

The relative proportions of the slab and wall for this 

example are Y/X - 0.4, L/X - 0.2, h/Y 0.125. 

The reduced slab width Y'/Y -1-0.125 - 0.875 

The reduced span/width ratio L/Y' - 0.2/ (0.4x0.875) - 0.57 

From Fig. 3.11(a) the effective width Y'/Y' - 0.43 

. The effective width Ye/Y 0.43 x 0.875 - 0.376 
The effective wall strip h/Y - 0.125 

. The total effective width 'e"Y-0.501 

Comparing this value with the accurate value of 0.507 
given in Appendix A3.3 the relative error is seen to be 

-1.2%. Using Michael's procedure the effective width YIY 
would be evaluated as 0.39 + 0.125 - 0.515 which is +1.60o 
in error. 
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It is seen from the worked examples that results 

obtained by the suggested method are accurate to within 
2% in both cases. Although only two examples are shown in 

this Section, the range of variables covered in the examples 
is sufficiently wide to provide a convincing check on the 

general accuracy of the suggested method. 

3.4.1.10 Empirical Design Equations which Account for 

Finite Wall Thickness 

The empirical equations (3.4) and (3.6) representing 
the generalised design curves for evaluating the effective 

widths Ye/Y for slabs with walls of zero thickness may be 

modified to include the influence of finite wall thickness. 

In accordance with the simple procedure suggested to 

account for the influence of finite wall thickness, the 

effective width Ye of the actual slab panel may be 

considered as being made up of an effective wall strip of 

width h plus the effective width Ye of a reduced slab 

panel of width Y', the effective width Ye/Y can then be 

expressed as 
Ye 

°h+Y 
Ye) 

(3.7) 

The effective width Ye/Y' of the reduced slab panel may 
be represented by the empirical equations (3.4) and (3.6) 

with Ye and Y' in place of Ye and Y respectively. There- 

fore equation (3.7) may be written as 

YhY" °YL-r[1- 0.4Y j 0<_ <_1 (3.8) 

and .. 
h+Y.. [1 - 0.4 (L]1 <_ LT <_ co (3.9) 

YY 

In order to demonstrate the accuracy of the empirical 
equations, values of Ye/Y obtained by the empirical 
equations and by the finite element method (Results in 
Appendix A3.3) are compared for a slab of aspect ratio 
Y/X - 0.4, with various wall thickness ratios h/Y and two 
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wall opening ratios L/X of 0.1 and 0.4, in Table 3.5 which 

also shows the relevant quantities Y'/Y and L/Y' required 
in the empirical equations. The results obtained by the 

simple empirical equations are seen to have been evaluated 
to within 3% of the accurate finite element results for 

walls of finite thickness. The results being compared 

cover a wide range of ratios L/X and h/Y. The general 

accuracy of the empirical equations however is unaffected 
by the range of variables considered. 

3.4.1.11 End-Bay Results 

The end bay occurs at the two gable ends of the 

building block where the gable walls are coupled by the 

floor slab on one side of the wall only (Fig. 3.2(a)). 

With the asymmetric coupling of the slab, gable walls will 

generally undergo some out-of-plane bending which will 

affect the coupling stiffness of the slab to some extent 
depending on the wall stiffness. The edge of the slab 

across the wall opening is free. Since the gable edge of 
the slab is less restrained against transverse rotation 

than a continuous edge, the coupling stiffness of the end- 
bay slab can be expected to be less than half the stiffness 

of the internal-bay slab. 
In evaluating the coupling stiffness and effective 

width of the end-bay slab, two cases of wall stiffness are 

considered. The' first case assumes that the gable walls 

are so stiff that they do not bend out-of-plane. The. 

second case considers the finite stiffness of a wall of 
304.8 mm (12 in. ) thickness. The flexural stiffness of 
the wall is incorporated in the finite element analysis 
as a rotational spring stiffness for each wall node. In 
the discretisation of the slab, the wall connection is, as 
usual, represented as a line connection. 

The numerical results for the effective width Y/Y 
for end bays of various proportions are shown in Table 
3.6. It is seen from the results that the assumption of 
infinitely stiff walls overestimates the effective width 
of the slab, but in the worst case considered (L/X - 0.1 
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and Y/X - 0.2) the effective width is overestimated by only 

about 7%. It appears that for practical purpose the out- 
of-plane flexibility of the gable walls could be disregarded 
in the calculation of effective width or stiffness of the 

end-bay slab. The effective width for the case of rigid 
gable walls have been plotted in Fig. 3.10(b) as design 

curves. Comparing the results for an end bay and an 
interior bay, it is seen that the effective width for an 

end bay varies between 44% and 47% of the effective width 
for an interior bay, depending on the configuration. The 

corresponding figure obtained by Qadeer and Smith2 was 42%. 

As a convenient rule, the effective width for the end bay 

may be assumed as 45% of the effective width for the 
interior bay. 

3.4.2 NUMERICAL RESULTS FOR STRESS RESULTANTS 

3.4.2.1 General Distribution Pattern 

Fig. 3.14, (a) to (e), show in perspective the general 
distribution of bending and twisting moments and shearing 
forces in a typical quadrant of a slab coupling a pair of 

plane walls of zero thickness undergoing unit rotation as 

shown in Fig. 3.14(f). The coupling action of the slab 

results in a distribution of stress resultants with large 

variations in values throughout the slab. Very large 

moments and shears are induced in the slab around the 

coupled end of the wall, but away from this critical region, 
the stress resultants diminish rapidly in both the 
longitudinal (x) and transverse (y) directions. The 

significant coupling actions are induced mainly in the 

corridor area. The portion of the slab some distance away 
from the corridor remains practically unstressed, or 
unaffected by the coupling action. This explains why an 
increase in wall length beyond a certain range does not 
affect significantly the coupling stiffness of the slab 
(Section 3.4.1.2). 
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3.4.2.2 Problem of Singular Stress Resultants 

The presence of severe stress concentrations calls for 

careful interpretation of calculated critical stress- 
resultant values. If the calculated stress-resultant 

values are to be used directly for the design of the slab 

section, it is obviously necessary to ensure that the, 

calculated peak stress-resultants are theoretically finite 

and have been evaluated with sufficient accuracy in the 

numerical solution -of the slab problem. The results of 
the convergence study reported in Section 3.3.2 are there- 

fore re-examined with particular attention to the 

convergence of calculated critical stress resultants 

around the coupled end of the, wall in the slab. 
Fig. 3.15(a) shows quantitatively the variations of 

bending moment Mx along a critical transverse slab section 

passing through the inner edge of . 
the wall which have 

been evaluated using various element mesh-division of the 

slab. The results were obtained with the element RB12 

which has been used throughout the parameter study. It 

can be seen from the comparison of various results that 

whereas values of Mx calculated at other points converge 

to definite finite values, the bending moment calculated 

at the tip of wall diverges with mesh refinement. It may 
be concluded from the calculation of extremely large and 
divergent bending moment values that a theoretical stress 

singularity exists in the slab at the coupled end of the 

wall. The presence of the stress singularity in the 

coupling slab may also be inferred from the results of 

various investigations into similar mixed boundary-value 

plate-bending problems such as bending of cracked plates 
49 

plates partially supported along an edge50 or plates with 
an internal line support51, which show that the bending 

moments and shearing forces become singular, or 
theoretically infinite, at the point where there is an 
abrupt change of boundary conditions. 

The finite width of the wall has not been represented 
in the discretisation of the slab on which the convergence 
results are based. With the finite width of the wall 
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correctly represented, the results of a convergence study, 

though they are not shown here, indicate that large 

divergent stress resultants now are obtained in the slab at 

the corners of the coupled wall-end. That the stress 

resultants at these points are singular can again be 

inferred from analytical results for similar problems such 

as the bending of a slab supported by a rigid column of 

finite width22, or the bending of a slab with a rectangular 

opening. 
52 

It should be obvious from the results of various other 

mathematically similar 'singular' plate problems that the 

singular stress resultants are predicted in the slab at 
the coupled end (corners) of the wall as a consequence of 
the use of thin-plate theory and boundary conditions 

associated with an infinitely rigid wall-support for the 

solution of the problem. Since the stress resultants in 

the coupling slab at the singular points are theoretically 

unbounded, any finite stress-resultant values furnished at 
these points by a numerical solution based on thin-plate 

theory must be considered incorrect or meaningless. 
Previous investigators 314 

who used the finite difference 

technique to study the coupling slab actions have not 

commented on this important fact, and have presented finite 

stress-resultant values which were supposed to be correct 

at the theoretically singular points. 

3.4.2.3 Interpretation of Results at the Singular Points 

The problem of stress singularity and the apparent 
difficulty of obtaining meaningful results at the singular 
points in the coupling slab are not of great practical 
consequence, for while the stress concentration in slabs 
may be a physical reality, the existence of infinite stresses 
at a point is obviously a mathematical fiction. The 
infinitely large stresses predicted in the coupling slab, in 
practice, will be limited by local elastic deformation, 
material yielding or stress redistribution in the critically 
stressed areas in the wall and slab. It is therefore more 
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practical to consider the net distributed forces in a 
finite slab strip, rather than the extremely large stresses 

at a point, as a basis for the design of the slab section. 
With this approach to slab design, it is possible to 

interpret more meaningfully the finite element results for 

stress resultants in the critical region. 
It has been mentioned that the peak critical 

longitudinal bending moment Mx in the coupling slab 

evaluated in the finite element analysis has no apparent 

meaning. This is so only if the calculated peak bending- 

moment stress-resultant is considered by itself. However, 

when considered together with calculated bending-moment 

stress-resultant values at other points along a transverse 

section, it gives a correct statical balance between the 

integrated internal bending moment and the external applied 

moment at the section. The integrated bending moment 

evaluated in the critical zone using calculated bending- 

moment stress-resultant values is therefore correct although 
the peak stress-resultant value by itself is not. The 

calculated peak bending moment Mx at the critical node 

should therefore only be used in conjunction with the 

calculated bending-moment value at the adjacent node to 

give an estimate of the net bending moment distributed in 

the critical strip bounded by the nodes. 
The peak critical transverse bending moment My is also 

evaluated in the finite element analysis as a finite value 

which provides equilibrium between the internal transverse 
bending moment and the external bending moment, at the 

critical longitudinal slab section, and should therefore be 
interpreted in the same manner as that suggested for the 

critical bending moment Mx. 

3.4.2.4 Calculation of Stress-Resultant Factors 

The coupling-slab stress resultants calculated for the 

arbitrary unit wall displacements assumed in the slab 
analysis may be expressed in the form of non-dimensional 
stress-resultant factors to facilitate the calculation of 
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stress resultants due to any other wall displacements. 

These factors define the coupling stress resultants in a 
slab of unit corridor (or wall-opening) width L and unit 
flexural rigidity D. induced either by a unit relative 
wall rotation 0 at the coupled wall end or by a unit 
relative axial wall displacement 6 (Fig. 3.16). If Mi 

and Qi represent respectively the calculated bending 

moments and shearing forces in the slab analysis, then the 

stress-resultant factors Mi and Qi are given by 

Mi LQi L2 Mi ° -7,0 and Qi - . B- . ý. 

or bii a -$ 
L2 

and Qi - 
Qi L3 

6 ff- 7 

Fig. 3.16 

(3.10a) 

(3.10b) 

ý 

6 

T 

The stress-resultant factors may be expressed in a 
form involving the effective width Ye and the wall reaction 
or lintel shear Q. It can be shown that for the 
equivalent beam, 

0 Q L2 

12 (1-V2)D Ye 

Therefore the stress-resultant factors may be expressed as 
12 (1-v2)y Mý _e I Mi and Qi 

12 (1-V2 )ye 

.=Q Q @L 

(3.11) 
Observing that QL/ (2Ye) and Q/Ye represent respectively the maximum average bending moment Ma and 
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the average shearing force Qa in the equivalent beam, 

expressions (3.11) may be re-written as 

9 M; _9Q; Mi =6 (1-v") Ta = and Qi a 12 (1-V") 'Ta (3.12) 

It is seen from expressions (3.11) and (3.12) that 

once the stress-resultant factors Mi and Qi for the slab 

are known, the actual stress resultants (Mx, Qx, etc. ) 

produced by the system of forces calculated in a coupled 

wall analysis may be easily determined. In the slab- 

coupled wall analysis using the continuous connection 
technique, for instance, the lintel shear Q is calculated 
directly from established equations or design curves. 
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The slab stress resultants, Mx and Qx, for instance, can 
then be easily calculated using expression (3.11) thus, 

) Mx QL. M and QX mQ" ýx (3.13 
12 (1-v )Ye 12 (1_y )Ye 

3.4.2.5 Design Stress-Resultant Contour-Diagrams 

In Section 3.4.1.2 it was shown that provided the 

wall length to wall opening ratio W/L is greater than 0.5 

the effective slab width is practically unaffected by 

variations in wall length. Considering the form of 
distribution of stress resultants in the slab discussed 
in Section (3.4.2.1), it is obvious that the stress- 

resultant factors which are of significant values are like- 

wise unaffected by variations in wall length. Therefore, 

when evaluating stress-resultant factors for practical 
coupling-slabs it is necessary to consider only the 
influence of the wall-opening to slab-width ratio L/Y. 

Fig. 3.17 to 3.21 show the contours of bending-moment 
factors DX and NIy for slabs with practical ratios Y/L 

ranging from 1 to 4 and with a wall thickness ratio h/L 
of 0.1. The contours in each diagram are shown over a 
typical quadrant of the slab, and these have been reproduced 
from the computer plots of the finite element results 
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obtained with a very fine mesh in the region of stress 

concentration (Fig. 3.22). The contours of stress- 
resultant factors allow a rapid and accurate evaluation 
of bending moments MX and My at any point-on the slab, 
induced by any coupled-wall action, and may be used during 

the final design stage for the design or detailing of the 

slab reinforcement. 
In all the contour diagrams, the stress-resultant value 

at the critical wall corner. has been indicated. Since the 

stress resultant at this point is theoretically infinite, 

the value indicated in each diagram should be interpreted 

in the manner described in Section 3.4.2.3. In measuring 

off distances to the respective contours, it should be 

noted, from the definition of stress-resultant factors, 

that the wall-opening width L is represented as a unit 
distance in the contour diagrams. 

3.4.2.6 Generalised Curve For Critical Bending Moments 

In the early stages of design or feasibility study of 
the structural system it is the stresses at critical slab 

sections which are of immediate interest to the designer 

who is required to establish fairly quickly realistic member 

sizes for the structure. A knowledge of the approximate 

variation of longitudinal bending moment Mx at a critical 
transverse slab section is usually sufficient to allow the 

adequacy of the chosen slab thickness to be established. 
Fig. 3.23 shows, for slabs of various normalised 

widths Y/L, the variation of bending-moment factor MX 

along the critical transverse slab section through the 
inner edge of the plane wall (zero thickness). - It can be 

seen from the curves for various ratios of Y/L that the 

variation of Mx within a distance given approximately by 

y/L a 0.25 from the wall is practically unaffected by 

variations in the slab width. Outside this critical 
region, the variation of N is influenced by the slab 
width but the bending-moment factors are so small compared 
to values in the critical region that the influence of 
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slab width becomes of little practical significance. For 

practical purposes, the bending-moment curves for various 
ratios of Y/L may be approximated by a generalised curve 
shown by the broken line in Fig. 3.23. This generalised 
bending-moment curve allows the variation of k to be 

obtained conveniently for any slab by truncating the tail 

of the curve at the limit of the slab width. The 

generalised curve for 
x 

is presented in better detail in 

Fig. 3.24. Values of ordinates at various non-dimensional 
distances , (- y/L) have been inserted along the curve for 

convenience in the evaluation of I.. The value of I& at 
0, which is given as 20.0 should only be used in 

conjunction with the adjacent values shown to give an 

estimate of the bending moment in the most critically 

stressed slab-strip as explained in Section 3.4.2.3. The 
integrated bending moments at various slab strips,. pý , 
have been evaluated and tabulated below the curve of N to 
facilitate the calculation of steel ratios, if required, 
for the slab. 

The generalised curve of may also be used to 

evaluate approximately the effective width of any slab for 

checking purposes. Since the integration of the bending 

stress resultant Mx at the transverse section must equal 
the value of the external moment, the area under the curve 

of MX may be evaluated to obtain the moment-rotation 

relationship leading to the calculation of effective slab 

width. If the double-area under the truncated curve of 
Mx for the slab of width Y is Ka, then it can be shown 
using expression (3.12) that 

= 12 (g) Ka (3 . 14 ) 
6 (1-v ) 

To facilitate the calculation of effective width in this 
way, the curve for Ka has been included in Fig. 3.24 with 
the generalised curve for Nix. 

In order to illustrate the use of the curve for Ka 
for the calculation of effective widths an example is now 
shown. 
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Example: 

It is required to evaluate the effective width for a 

slab with the following data: 

Xa 15.25 m (50 ft), Y-6.1 m (20 ft), L-1.525 m (5 ft) 

The limit of the curve Ka is ý-0.5 Y/L m 2.0. 

The ordinate of the curve Ka at this point is 5.1. 

Therefore the effective width 
Ye 

�1x5x5.1 
6 (1 ,p 15 ) 

00 

- 0.217 

Comparing this figure with the accurate value of 0.218 

from Appendix A3.2 the effective width is seen to be 

underestimated by only 1%. 

3.4.2.7 Shear Transfer Between Wall and Slab 

The general distribution of shearing forces QX and Qy 

throughout the slab induced by coupling action has been 

shown in Fig. 3.14, (d) and (e). The shearing force 

distribution in the vicinity of the wall boundary is now 

examined in more detail. 

Fig. 3.25, (b) and (c), show respectively the variations 

of the shearing forces (stress resultants) Qy and QX along 

two perpendicular sections A and B passing through the toe 

of the wall (Fig. 3.25(a)). The numerical values of the 

shearing forces have been evaluated at the nodal points in 

a finite element analysis. The shearing forces Qy along 

the wall boundary apparently represent the continuously 

distributed shear transferred from the wall to the slab, 

which in the finite element analysis has been discretised 

as nodal point reactions. It is seen from Fig. 3.25(b) 

that the distribution of Qy is consistent with the 

distribution of nodal reactions. Obviously, for equili- 
brium, the integration of Qy over the length of the wall 

must equal the sum of the nodal reactions. 
The shearing forces QX and Qy at the inner edge of the 

wall are theoretically infinite, but have been evaluated as 

arbitrary finite values which vary according to the finite 
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element discretisation of the slab. While it is possible, 
as has been shown, to make use of similarly arbitrary 
values of bending moments Mx and 

Y 
to provide a valid 

estimate of the integrated bending moments disposed around 
the singular point, it is not possible in this case to get 
from the calculated values of QX and Qa meaningful 
estimate of the shear forces disposed 

yin 
the critical 

region because of the discontinuity in the shear distri- 

bution at a point between the singular and adjacent nodes. 
The convergence study has shown that the shear discontinuity 

always exists between the singular and the adjacent node, 
and that the calculated positive and negative shearing 

stress-resultants at the respective nodes are divergent 
(apparently to maintain equilibrium) with refinement of 

element mesh around the singular point. The shearing 
stress resultants are arbitrarily calculated not only at 
the node at the critical end of the wall, but also at 
adjacent nodes in the slab, and the apparent finite width 
over which the critical positive shearing forces are 
distributed is also arbitrary because in the limit of mesh 

refinement this will be reduced to a point. With these 

limitations on the calculated shear distribution, it is 

not possible to evaluate quantitatively the actual form 

of shear transfer between wall and slab, though we may 
conclude from the form of shear distribution indicated that 
the shear transfer must be effected essentially as a very 
large reaction distributed, in practice, over a finite wall 
length at the inner edge of the wall, together with much 
smaller opposite reactions distributed over the rest of 
the wall. This form of shear transfer is consistent with 
observed punching shear failures in coupling slabs. 
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3.4.2.8 Critical Peripheral Slab Section For Shear 

Fortunately, for design purpose it is not absolutely 
essential to know the exact values of shearing forces at 
points in the slab very close to the wall since at these 
points the shear forces are carried primarily by a strut 
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and tie action of the concrete and steel with the shear 

resistance of the slab acting only as a secondary load 

carrying medium (Fig. 3.25(d)). The critical slab section 

which has to be checked or designed against shear failure 

is located at some critical distance u from the face of 
the wall where frame action in carrying shear is no longer 

possible. At such sections in the coupling slab, the 

shearing forces predicted by thin-plate theory are finite 

and values calculated by the finite element method using 

sufficiently fine mesh divisions are quite satisfactory 
for design purpose. 

Recommendations for the location of the critical 

section for shear near column supports in flat slab struct- 

ures are given in various design Codes, 55,56 
and these 

recommendations are assumed applicable for shear wall-slab 

structures since both types of structure involve the same 
form of punching shear failure in the slab. The critical 
distance u for ultimate strength design is usually given 
in terms of the-effective depth d or the overall depth t 

of the slab depending on the code in use, and the shear at 
failure is assumed uniformly distributed over a peripheral 

section located at this critical distance from the face 

of the support. 

3.4.2.9 Shear Distribution at a Typical Peripheral Section 

Fig. 3.26 shows the distribution of normalised 

shearing forces or shearing-force factors Qx and Qy along 

a peripheral section located at a distance of u/L a 0.1 
from the face of the wall in a slab of normalised width 
Y/L a 2. This distance represents a practical location 
for the critical shear section required by most codes when 
applied to the design of cross wall-slab structures. To 

show that the shear stress distributions obtained from the 
finite element analysis are accurate, a check is made of 
the equilibrium relationship between internal stress- 
resultants around the peripheral section and the external 
forces applied by the wall. The distributions of 
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normalised bending and twisting moments x and yX along 
the peripheral section have been included for this purpose. 
The equilibrium with respect to shears and moments at the 

wall axis for. a symmetric half panel (Fig. 3.27) are 

established by the following relationships: 
b 

0 
and 

$ý dn + 1ä 'OY 
dý a $o (3.15a) 

bab 

o 
TVixdj + 

oydý 
+c. 

oQxdn 
a 

+ ýy 
.d 

TA 
0 

(3.15b) 

where Qo and Mo refer to the external shear force and 

moment applied by the wall and a, b, c, n and ý are non- 

dimensional distances normalised with respect to the 

corridor width L. The numerical results for the various 

terms in the above equilibrium equations are shown in Fig. 

3.27 from which it can be seen that the equilibrium of 

shears and moments are established to an acceptable degree 

of accuracy at the peripheral section. 

The equilibrium check at the peripheral section 

provides simultaneously- an insight into the relative 

significance of various slab actions in resisting the 

applied wall moment. As shown in equation (3.15b) the 

applied wall moment is resisted at the peripheral section 
by a combination of bending, twisting and shearing forces. 

The results of the equilibrium check indicate that the 

applied wall moment is resisted at the typical peripheral 

section primarily by vertical shearing action (more than 
80%) and very little by the bending and twisting actions. 

3.4.2.10 Dimensions of Critical Shear Section 

It will be obvious from the shearing force distri- 
bution that the design of the slab section against possible 
shear failure will be critically governed by the 
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substantially higher positive shear distributed over a 

relatively small section at the front of the peripheral 

section. For the purpose of design it is convenient to 

assume that the critical shear at failure is uniformly 
distributed over a critical section. With the shear 
distribution shown in Fig. 3.26 an obvious choice of the 

critical section is to consider the whole U-shaped section 

acted on by the positive shearing forces around the inner 

edge of the wall as the critical section. Depending on 
the design Code adopted in practice, the corners of the 

U-shaped critical section may be taken as square or rounded 
(Fig. 3.26) to be consistent with similar provisions for 

flat-slab design. The rounded corners, in this instance, 

provide a more realistic approximation of uniform shear 
distribution, since an approximately radial dispersion of 
the critical shear is indicated by the shape of the actual 

shear distribution curve. The open ends of the U-shaped 

section in either case can be extended to the point where 
the calculated shearing force changes sign. This point is 

at a distance of approximately 0.5 u measured back from the 

front (inner) edge of the wall, and so the length of each 
leg of the U-shaped section may be taken as 1.5 u. As 

shown by the shear distributions for various peripheral 

sections (Fig. 3.28) and for various slab widths Y/L (Fig. 

3.29), this convenient side-length for the critical section 
is consistent for all possible locations of the critical 

section. The overall length of the critical section can 
therefore be generally taken as h+5u for the square- 
cornered critical section and h+(1+ lr)u for the round- 

cornered section, h being the wall thickness. 

3.4.2.11 Shear Modification Factors 

The positive shear force developed in the critical 
shear section as shown by the various shear distribution 

curves in Fig. 3.28 and 3.29 is substantially greater than 
the applied shear force and varies in value with the 
location of the peripheral section and with the slab width 
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Y/L. The ratio of the critical positive shear force Q1 

to the applied shear force Qo, which may be considered as 

a shear modification factor, has been calculated for 

various locations of the peripheral section in slabs of 

normalised widths Y/L - 1,2 and 4 for walls of zero 
thickness. The curves showing the variation of the shear 
modification factor Kq with the peripheral distance u/L are 

presented in Fig. 3.30, and-may be used conveniently as 
design curves for evaluating the critical shear at any 
location of the critical section. 

3.4.2.12 Influence of Finite Wall Thickness on Shear 

Distribution 

The shearing force distributions on which the derivation 

of the critical shear section and the shear modification 
factors have been based do not account for the influence of 
finite wall thickness. To illustrate the influence of 

wall thickness, the shear distribution for a wall of zero 

thickness and for a wall with a thickness ratio h/L - 0.1, 

are compared at a peripheral section at u/L - 0.1 in Fig. 

3.31. It can be seen from the comparison that the 

distributions of Qy along the sides of the peripheral 

section for the two cases are almost identical, while the 

distributions of Qx along the front end of the peripheral 

section show some significant differences between absolute 

values. The effect of considering the wall thickness and 

a wider peripheral section is seen to result in lower 

shearing forces in front of the wall. The total positive 

shear force distributed over the front ends of the two 

peripheral sections however do not show much significant 
difference in the comparison of areas under the shear 
distribution curves. A comparison of shear modification 
factors which are of more relevance for practical shear 
strength design shows a difference of approximately 6%, 

with the value for the wall of zero thickness on the higher 

side. Since neglecting the effects of wall thickness in 
the calculation of shear modification factors will result 
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in a slightly conservative estimate of the critical design 

shear force in the slab, the design curve for shear 

modification factors presented in. Fig. 3.30 should be 

quite satisfactory for design purpose when walls are not 

exceptionally thick (say h< u). 

3.4.2.12.1 Application of Critical Section and Stress 

Modification Factor 

To illustrate the application of the critical section 

and the shear modification factor, typical punching shear 

calculations consistent with the design Codes CP11O and 
ACI 318-71 are now shown. 

Example: 
I 

The floor slab coupling a pair of'plane walls in a 

20-storeyed, 52 m (170 ft) high cross-wall structure which 
has been analysed separately for wind effects is considered. 

The typical dimensions of the slab are 

Y-6m (20 ft), X- 15.25 m (50 ft), La1.525 m (5 ft) 

The wall thickness h and the slab thickness t are both 

200 mm (8 in. ). 

The effective depth of the s lab d is 170 mm (6.75 in. ) 

The maximum lintel shear at an ultimate wind load of 
1.68 kN/m2 (35 lb/ft2) has been calculated as Qo = 67.5 kN 

(15.2 kip). 

(a) Design to CP110: 

The critical section is located at u-1.5 t from the 

face of the wall and corners for the critical section are 

rounded. The length of the critical section is therefore 
h+ (1 +TT) 1.5 t, and the shear area is [h + (1+IT)1.5 t]d. 

The critical distance u/L - 1.5 x 0.2/1.5 - 0.2 
The slab width ratio Y/L - 4.0 

The shear modification factor Kq from Fig. 3.30 is 
Kq - 1.25 

The critical shear stress is then 



103 

Kq X Qo 
s. 

1.25 x 67.5 x 103 

[h + (1+TT)1.5t] d [200 + 4.14 x 1.5 x 200] 170 

2 0.34 N/ mm = 

This value should not exceed the permissible shear stress 

determined in accordance with Cl. 3.4.5 (CP110) and Tables 

5 and 14 (CP110). Assuming a Grade 25 concrete and 0.25% 

steel area the permissible shear stress is given by 

is vc - 1.10 x 0.35 - 0.39 N/mm2 

which is 1.15 times the design shear stress. 

(b) Design to ACI 318-71: 

The critical section is located at u-0.5d and the 

corners of the critical section are square. The shear 

area is then (h + 2.5d)d. 

Working in fps units, 
The critical distance u/L - 0.5 x 6.75/60 - 0.06 

The shear modification factor from Fig. 3.30 is Kq °' 1.92 

The critical shear stress is then 

v 
1.92 x 15.2 x 103 

a 173.8 lbfin2 
(8+2.5x6.75)6.75 

This should not exceed the permissible ultimate shear 

stress of 4 Ji 
, otherwise special provision has to be made 

to increase the shear capacity of the slab. 

Assuming the same Grade of concrete as above, and 

taking the cylinder crushing strength fc as 0.78 times the 

cube strength of concrete, 

f' - 0.78 x 25 x 145 - 2827 lb/in2 

The permissible ultimate shear stress is then 

vc - 4Tfc - 4F2827 - 212.7 lb/in2 

which is 1.22 times the design shear stress. 

It is seen from the above calculations that although 
the shape and location of the critical shear section 

assumed in accordance with CP110 are distinctly different 
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from those assumed in accordance with ACI 318-71 the 

ratios of design ultimate shear stress to permissible 
ultimate shear stress from the two different calculations 
are not substantially different. 

3.5 FLANGED WALL CONFIGURATION 

Flanged shear walls occur frequently in cross-wall 

structures as a result of making the corridor or facade 

longitudinal walls of similar construction to the cross 

walls to satisfy the need for additional load bearing area 

or. simply for the purpose of convenience in building 

construction. Depending on planning requirements, various 

arrangements of flanged walls may be encountered-in cross- 

wall structures. 

3.5.1 NUMERICAL RESULTS FOR EFFECTIVE WIDTH 

3.5.1.1 Coupled Flanged Walls with External Flanges 

In this wall configuration the flanges are at the 

exterior or facade ends of the cross-walls (Fig. 3.3 (c)). 

Since the slab actions induced by the coupled walls are 

mainly confined to the corridor area and its immediate 

vicinity, the external wall flanges are not expected to 

have much influence on the coupling stiffness of the slab. 
Table 3.7 shows the effective width Ye/Y, obtained 

for slabs with external flanged walls, compared with the 

corresponding results for plane walls. The effective 

width Ye/Y for the slab with a small aspect ratio Y/X - 0.2 
is seen to be unaffected by the presence of the external 
wall flanges. For the slab with a larger aspect ratio 
Y/X - 0.4, the effective width increases marginally with 
the increase in the flange width ratio Z/Y. In, the 

extreme case considered (Y/X - 0.6, L/X - 0.6 and Z/Y - 
0.75), the presence of the external wall-flanges increases 
the effective width of the slab by less than 4%. For 
practical purposes, therefore, the influence of external 
wall-flanges can be safely disregarded. 
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3.5.1.2 Coupled Flanged Walls with Internal 'Flanges 

(T-Shaped Walls) 

The wall flanges for this configuration are at the 

coupled (corridor) ends of the cross-walls. The pair of 

walls considered in a typical slab panel are identical and 

symmetrical with respect to the panel centrelines 

(Fig. 3.3(d)). Since in plane-wall configurations the 

finite wall thickness has a considerable influence on the 

stiffness of the coupling slab, the width of the internal 

wall-flanges can be expected to have a strong influence on 

the effective width of the slab. 
Fig. 3.32, (a) to (d), show the variation of effective 

width Ye/Y as a function of the wall opening ratio L/X for 

various flange-width ratios Z/Y. The numerical results 
for drawing these curves are given in Appendix A3.4. It is 

seen from the curves that the flange width has a consider- 

able influence on the effective width of the slab. To 

illustrate the influence of flange width more clearly, the 

results have been re-plotted in Fig. 3.33, (a) to (d), to 

show the variation of y 
e/Y as a function of Z/Y for various 

ratios of L/X. By comparing these curves with the curves 

presented in Fig. 3.12, (a) and (b), for slabs coupling 
thick walls, it is seen that the influence of the flange 

width and the influence of the wall thickness are practically 
identical. This can also be seen by comparing Appendix 
A3.4 with Appendix A3.3, which shows more clearly that the 

effective slab width for flanged walls is marginally less 
than that for plane walls, where the flange width and the 
wall thickness are equal. 

The curves presented in Fig. 3.32, (a) to (d), or the 
curves presented in Fig. 3.33, (a) to (d), may be used as 
design curves for the rapid evaluation of effective widths. 
In using these curves, the need to interpolate between 
values of y/X can again be avoided by arbitrarily adjusting 
the value of X for the particular slab so that the adjusted 
value of Y/X coincides with the nearest value of a set of 
curves, as suggested in section 3.4.1.5. 
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3.5.1.3 Generalised Design Curves 

The four sets of curves presented in Fig. 3.32, (a) 

to (d), may be generalised into a more convenient set 

of design curves by disregarding the negligibly small 
influence of wall length in the evaluation of effective 

slab widths. The generalised set of curves showing the 

variation of effective width Ye /Y as a function of L/Y 

for various flange width ratios Z/Y is presented in 

Fig. 3.34. The generalised curves are accurate compared 

to the curves which account for the influence of wall 
length, when the wall and slab proportions are such that 
[L/X + (Y-Z)/X] 1 which is obtained in most practical 

cases. In unusual cases where [L/X + (Y-Z)/X] is greater 

than unity and L/X is also greater than 0.4, the effective 

widths obtained by the generalised curves are over- 

estimated, generally less than 10%, compared to values 

obtained by the more accurate sets of curves. 
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3.5.1.4 Empirical Method to Account For the Influence 

of Flange Width 

Since the influence of the flange width and the 
influence of finite wall thickness are practically 
identical, the simple method suggested in Section 3.4.1.9, 
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to account for the influence of wall thickness, is also 

applicable to the case of the flange wall to account for 

the corresponding influence of flange width, using the 
basic design curves presented for plane walls of zero 
thickness. As shown in Fig. 3.35 the effective slab 

width Ye is assumed to be made up of an effective wall 

strip equal in width to the flange width Z, plus the 

effective width Ye of a reduced slab panel with plane 

walls of zero thickness. 
As an illustration of the application of the proposed 

method of evaluating the effective slab width for flanged 

wall configurations, an example is shown. 

Example: 

It is required to find the effective width of a slab 

of aspect ratio Y/X n 0.6 coupling a pair of flanged walls 

with flange width ratio Z/Y a 0.75 and wall-opening ratio 
L/X a 0.2. 

The reduced slab width Y'/Y - 1-Z/Y - 0.25 

The reduced span/width ratio L/Y' - 0.2/0.6/0.25 - 1.33 

From Fig. 3.34, the effective width Ye/Y'- 0.69 

The effective width Ye/Y - 0.69 x 0.25 - 0.173. 

The effective wall strip - 0.750 

The total effective width Ye/Y - 0.923 

Comparing this value with the accurate value of 0.939 

from Appendix A3.4 or from Fig. 3.32(c), the relative error 
is seen to be -1.7%. Using Michael's procedure, the 

effective Ye/Y would be evaluated as 0.28 + 0.75 - 1.03 

which is +9.7% in error. 

3.5.1.5 Empirical Equations For Evaluat ing * the Effective 
Slab Width 

The empirical equations (3.8) and (3.9) presented in 
Section 3.4.1.10 for the coupled thick planar wall 
configuration are also applicable to the flanged wall 
configuration, with a change of the variable h with the 
new variable Z. The empirical equations for the flanged 
wall configuration can then be written as 



108 

y 
--Y -ý+ý 

L[ 1- 0.4ý ], 0<Y Si (3.16) 

and 
Ye 

ýY+_[1- 0.4 (' )-1 I'1. <ý 5 C0 (3.17) 

In order to illustrate the accuracy of the empirical 

equations when applied to the flanged wall configuration, 
the empirical results previously compared with 'thick wall' 
finite element results in Table 3.5 are now compared in 

Table 3.8 with the finite element results obtained for 

flanged wall configurations. The empirical results are 

seen to have been evaluated to within 2j% accuracy in 

relation to the accurate finite element results. 

3.5.2 NUMERICAL RESULTS FOR STRESS RESULTANTS (FLANGED 

WALL CONFIGURATION) 

3.5.2.1 General Distribution Pattern 

Fig. 3.36, (a) to (e), show in perspective the 

typical variation of bending, twisting and shearing stress 

resultants throughout a symmetric quadrant of a floor slab 

coupling a pair of flanged walls subjected-to unit rotation 

as shown in Fig. 3.36(f). The corresponding stress- 

resultant contours are shown in Fig. 3.37, (a) to (e), with 
the typical element discretisation of the slab in Fig. 

3.37(f). These two sets of diagrams have been presented 
to give a general picture of the overall distribution of 

stress resultants in the slab and to indicate critical 

areas of high. stress concentration which require detailed 

examination. In the perspective and contour presentations, 

each stress-resultant component has been multiplied by a 

separate scaling factor which reduces the stress-resultant 

values to a convenient range for plotting. Therefore 

when comparing visually the relative magnitudes of bending 

or shear stress resultants in the two orthogonal directions, 
the scaling factors must be taken into account. 

It can be seen from the diagrams that a large portion 
of the slab some distance back from the corridor edge is 

practically free of bending and shearing actions. The 



109 

significant coupling actions arise mainly in the corridor 

area with high concentrations of bending moments and 

shearing forces occurring around the tips of the flange. 

The bending moments MX and y and the longitudinal shearing 
force QX are higher in the strip of corridor slab directly 

coupling the wall flanges than elsewhere outside this 

region. The twisting moment MXy and the transverse shear 
force Qy, on the other hand, arise mainly in the area 

outside the direct coupling strip. Comparing peak values, 
it can be seen that the transverse bending moment y and 

shearing force Qy are much less significant than the 

longitudinal stress resultants MX and Q. 

3.5.2.2 Stress-Resultant Singularity 

The possibility of a stress-resultant singularity 

occurring in the slab at the tip of the wall flange is now 

examined by referring, in particular, to the distribution 

of longitudinal bending moment along the critical trans- 

verse slab section at the inner edge of the flange wall. 
Fig. 3.15(b) shows the variation of Mx obtained using 

various mesh divisions of the slab in the convergence study 
(Section 3.3.2). The results clearly show that whereas 

values of Mx calculated at other points converge to finite 

values, the value of Mx calculated at the critical point 

on the flange tip diverges with mesh refinement, indicating 

the possibility of stress-resultant singularity at this 

point. The stress-resultant values around the flange tip 

should therefore be interpreted in the manner described in 

Section 3.4.2.3 for plane walls. 

3.5.2.3 Design Curves For Critical Bending Moment Factors 

Curves showing the variation of the longitudinal 
bending moment factor TA 

x along the critical transverse slab 

section at the inner edge of the flange-wall (x - -0.5L) 
for slabs with various wall-opening to slab-width ratios 
L/Y and flange width ratios Z/Y are presented in Fig. 3.38, 
(a) to M. The six sets of curves have been drawn with- 
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distances normalised with respect to the half panel width 
(ý - y/(O. 5Y)). On comparing each set, it can be seen 
that the curves for various flange width ratios are very 
similar in form. If the curves were re-drawn with the, 
tip of the flange as the origin for the c -axis, all the 

curves in a set would practically coincide over the greater 

part of the curve. For the first- five sets of curves 

with L/Y less than 1, Nix generally remains constant for 

each curve at a value of 6.0 along the flange until close 
to the flange tip where it increases rapidly, reaching a 

peak at the flange tip. Beyond the end of the flange, E 

decreases very rapidly to a relatively low value a short 
distance from the flange tip and thereafter the decrease 

in Mx is very gradual. For the last set of curves with 
L/Y - 1, values of Ný along the flange are generally higher 

than 6.0 when the flange width ratio Z/Y is small. The 

peak values of NIx for each set of curves are also higher 

with smaller ratios of Z/Y. Comparing values of Nix at 

corresponding points in the slabs with different corridor 

or wall-opening widths L. it can be seen that at points 

outside the flange area Ný is higher for larger ratios of 

LJY. 

3.5.2.4 Generalised Curve for Critical Bending Moment 

Factor Mx 

The six sets of curves for and similar curves 

which can be drawn for other ratios of L/Y (which, for 

conciseness are not included), may be used as design curves 
if desired, to evaluate relatively accurately the critical 
bending moments which may influence the design of the floor 

slab. However, because of the large number of individual 

curves involved and the need to interpolate between them 

at times, these curves become less suitable to use when 
critical bending moments have to be evaluated rapidly, but 

only approximately in the preliminary stages of design. 
Since the curves of 11 

x 
for various ratios of L/Y and Z/Y 

are very similar in form, particularly when they are plotted 
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with the flange tip as origin and the distances are 
normalised with respect to L instead of O. 5Y, it is 

possible to approximate the whole series of curves by a 
single generalised curve which is applicable, for practical 
purposes, to slabs with any normal ratios of L/Y and Z/Y, 

and is therefore more convenient to use. The generalised 
design curve which shows the variation of N with the 

normalised distances ý (t - y/L) from-the flange tip is 

presented in Fig. 3.39. To obtain the distribution of 
for a slab of width Y with flange width Z and wall 

opening L, the generalised curve is simply truncated at 
the points ýl0.5Z/L and ý2-0.5 (Y-Z)/L corresponding 

respectively to the centreline and an edge of the slab. 
The peak value of at the origin of the generalised 

design curve has been taken as 8.5, this being the 

approximate average for the range of slabs considered. 
Although this value may appear to differ considerably from 

individually calculated peaks in some cases, it must be 

remembered that any such calculated peak on its own is 

quite arbitrary in absolute value because of the stress 

singularity. The average peak value of 8.5, when used 
in conjunction with the adjacent values indicated on the 

generalised curve, however gives an accurate estimate of 
the total moment in the region of the stress concentration. 

The generalised design curve for Mx can also be used 
for the evaluation of effective slab width following the 

procedure outlined in Section 3.4.2.6. For this purpose, 
the segmental areas b1x. Aý have been tabulated beneath 

each segment of the curve of N, and these may be easily 
summed over the appropriate length of the curve for the 

particular slab. The. area integrals Kal -2 f0 oX dý 

and Ka2 =2 f(2 
0Xd, 

evaluated numerically from the 

summation of segmental areas have been plotted as 
supplementary design curves along with the generalised 
curve. 

To illustrate the use of the design curves presented 
in Fig. 3.39 a numerical example is now shown. 
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Example: 

It is required to evaluate approximately the effective 

width and critical bending moments for a slab with the 

following dimensions: 

L-1.525 m (5 ft), Y-6.1 m. (20 ft) and z-1.525m (5 ft) 

The normalised distances from the flange tip to the slab 

centreline and to the slab edge are respectively 

1- -0.5 and ý2- +1.5 

The area integrals at these points of the curves of Ka are 

Kal - 6.3 and Ka2 - 4.3 

From equation (3.14) the effective slab width is therefore 

. 
ea 1 

x, x (6.3 + 4.3) - 0.452 
6 (1-0.15 ) 

Comparing this figure with the accurate value of 0.460 

given in Appendix A3.4, the discrepancy is seen to be 

-1.74%. 
The generalised curve of Dix truncated at the points 

-0.5 and +1.5 gives the distribution of k for the 

slab. 

3.5.2.5 Critical Shear Distribution 

In Section 3.5.2.1 it was shown that concentrations 

of shearing forces are developed in the slab around the 

interior edges of the wall flanges. Although these 

shearing forces may not under normal circumstances lead to 

dramatic punching shear failures in the slab, since this 

type of failure has seldom been reported, it is desirable 

as a matter of precaution to ascertain the level of stress 

which may arise at areas of stress concentration under 

working or ultimate load conditions. A convenient design 

procedure is suggested in this section for punching shear 

calculation for the slab coupling flanged-walls, using the 

same concept of a critical section and shear modification 
factors suggested for slabs coupling plane-walls. 
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3.5.2.6 The Shear Distribution at a Peripheral Section 

Fig. 3.40 shows the normalised shearing force (shearing- 

force factor) distribution at various peripheral slab 
sections encompassing a flanged wall with a normalised 
flange width of Z/L - 1, the slab being considered, having 

a normalised slab width of Y/L - 2. Referring, for 

illustration, to the shear distribution curve for. u/L - 
0.05 it can be observed that the highest positive shearing 
forces ýx and Qy for the particular peripheral section are 

confined within a small region at the corner of the 

peripheral section. Over a considerable length of the 

peripheral section in front of the flange, the positive 
shearing force Qx remains relatively low, at an approximate 

value of 12.4), this value being incidentally the value of 
the effective shearing force obtained by distributing the 

applied shear uniformly over the effective slab width (see 

equation 3.12). Around the corner and along the side of 
the peripheral section, the critical positive shearing 
force Qy changes to a negative shearing force at a point 

approximately 1.25 u from the corner. 

3.5.2.7 Dimensions of the Critical Shear Section 

For the purpose of design it is convenient to assume 
that the positive shear in each half of the slab is 

uniformly distributed in two distinct zones instead of 
being distributed according to the theoretical' shear 
distribution curve. The critical design shearing forces 

can be assured uniformly distributed over a critical 
Section near the end of the flange. The shearing force 
in the remaining front portion of the peripheral section 
can be assumed at a value equal to the effective shearing 
force, i. e. at a value of 12(1-V 2). The critical shear 
section can be taken as L-shaped with maximum dimensions 

of 2u x 1.5u (Fig. 3.40). These recommended dimensions, 
it will be observed, are consistent for Other peripheral 
sections. The corner of the L-shaped critical section 
may be taken as square or rounded to be consistent with 
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similar recommendations for flat slab or flat plate 

structures given by the design Codes. 

3.5.2.8 Influence of Slab Width and Flange Width on 
Shear Distribution 

The critical section suggested for shear design has 

been derived by considering the shear distribution at 

peripheral sections in a slab with a particular slab width 

ratio Y/L and a flange width ratio Z/L. To illustrate the 

influence of slab width and flange width on the shear 
distribution at a peripheral section, the peripheral shear 
distribution curves defined by u/L - 0.1 for slabs with 
different half flange-width ratios ýl - 0.5Z/L and flange- 

opening ratios '2 - 0.5 (Y-Z)/L are compared in Fig. 3.41. 

By comparing the shear distribution for the case of 
ýl - 0.25 and 2-0.5 with the shear distribution for 

the case of - 0.5 and ý2-0.5, it is seen that chang- 
ing the flange width ratio 1 merely changes the length 

of the shear distribution curve for Q, 
x over the uniform 

effective shearing-force region, the shear distribution 

curve for the critical shearing force region remaining 

practically unaffected by the change in the flange width. 
By comparing the case of ýl-0.5 and ý2-0.5 with the 

case of ý1-0.5 and ý2-1.0, on the other hand, it is 

seen that increasing the slab width increases substantially 
the positive shearing forces in the critical section. The 
form of shear distribution and the shape of the critical 
shear distribution curve in all three cases are however 

very similar, indicating that the critical design shear 
section suggested in Section 3.5.2.7 is quite. general and 
is applicable to slabs of any width with walls of any 
flange width Z which is not smaller than twice the critical 
peripheral distance u. 

3.5.2.9 Shear Modification Factors 

The total positive shear at the peripheral section is 
in excess of the applied shear and only a portion of the 
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positive shear is distributed over the critical section. 
In order to facilitate the calculation of critical shears 
for design, shear modification factors may be calculated 
for various locations of the critical section using the 

peripheral shear distribution curves. It has been shown 
that along the middle front portion of the peripheral 

section, the positive shearing forces are sensibly 

uniformly distributed, with a value approximately equal, to 

the effective shearing force. Since this portion of the 

slab is fully effective in coupling the flanges, a change 
in the flange width produces a change only in the positive 

shear in this "effective shear zone", equal in value to the 

change in the applied shear, force required to induce unit 

wall displacements. The positive shear in the "critical 

shear zone" remains practically unchanged as long as the 

flange is sufficiently wide (Z > 2u). Therefore if the 

critical shear is expressed in terms of the portion of the 

applied shear with which it is associated, the resulting 

shear modification factor will be less influenced by the 

flange width. 
Denoting the shear in the "effective shear zone" as 

Q3, the shear modification factor Kq can be expressed as 

Kq ° (Ql - Q3)i(Qo - Q3) 

where Ql and Qo, as before, represent respectively the 

total positive shear in the peripheral section and the total 

external applied shear. 
In the calculation of shear modification factors Q1 

is obtained from the numerical integration of the positive 
areas under the actual curves of k and (y for a peripheral 
section, and Q3 is obtained simply from the idealised 

effective shear distribution. 

The shear modification factors evaluated for various 
peripheral sections in slabs with flange opening width 
ratios ý2 = 0.25,0.5 and 1 are presented in Fig. 3.42. 
The shear modification factor is seen to be influenced by 
the flange opening width '2 relatively more with smaller 
peripheral distances u/L. Although results are not shown, 
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the influence of flange width ratio ýl has been found to 
be negligible in the evaluation of shear modification 
factors. 

3.5.2.10 Application of Critical Section and Shear 
Modification Factor 

In order to illustrate the application of the critical 

shear section and the shear modification factors, typical 

punching shear calculations consistent with the requirements 
of the British and American Codes, CP11O and ACI 318-71, 

are now shown for the slab coupling a pair of flanged walls 
in a 30-storeyed, 78 m (255 ft) high cross-wall structure 
which has been separately analysed for wind load effects. 

The characteristic dimensions for the slab are 

L- 1.525 m (5 ft), Y-6.1m (20 ft), X- 15.25m (50 ft) 

and Z-3.05m (10 ft). 

The walls are 200 mm (8 in. ) thick throughout. 

The effective slab width Ye is 4.2 m (14 ft), (cf. Fig. 
3.32(b)). 

The overall and effective depth of slab are 
t- 200 mm (8 in. ) and d- 170 mm (6.75 in. ) 

The calculated maximum lintel shear under an ultimate 

wind load of 1.68 kN/m2 (35 lb/ft2) is Qo a 136.6 kN 
(30.73 kip). 

(a) Design to CP110: 

The critical shear section is located at um1.5t 
0.3 m. The shear in the effective shear zone is 

Q3 m (Z. -2u)Qo/Ye m (3 -2x0.3) x 136.6/4.2 m 78.06 kN. 

The normalised critical distance u/L 0.3/1.5 - 0.2 
The flange opening ratio ý21.0 

From Fig. 3.42, the shear modification factor Kq - 1.1 
The critical design shear is therefore 

QC = 1.1 x (136.6 - 78.1) - 64.35 kN 

The length of the critical section on one half of the slab 
is 
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p aý(3 + 11' ) mý x (3 + if )a0.92 m 

The critical punching shear stress is then 

v 
64.35 x 103 

ý. 0.21 Nf mm2 2x 920 x 170 

which is only about half the value of the permissible 

ultimate shear stress for a Grade 25 concrete and 0.25% 

steel area (cf. Section 3.4.2.12.1). 

(b) Design to ACI 318-71: 

The critical section for shear is located at 

u-0.5d - 0.5 x 6.75 - 3.375 in. 

00 
3.38 

Z°-60 °0. U6 

The shear in the effective shear zone is 

Q3 - (10 -2x0.281) x 30.73/14 - 20.72 kip 

The flange opening ratio ý2-1.0 

From Fig. 3.42, the shear modification factor Kq - 1.70. 

The critical design shear is therefore 

Qc = 1.7 x (30.73 - 20.72) - 17.02 kip 

The length of the critical section is 3.5u - 11.81 in. 

The critical shear stress is then 

v- 
17.02. x 103 

- 106.8 lb/in2 
X 1191 x 6.75 

which again is about half the value of the permissible 

ultimate shear stress of 4 Fý for a grade 25 concrete. 
It would appear from the above example calculations 

that under normal circumstances the possibility of punching 

shear failure in slabs coupling flanged walls is quite 
remote. 

3.6 COUPLED PLANAR-FLANGED (T-SHAPED) WALL CONFIGURATION 

The slab in this configuration couples a plane wall 
to a flanged wall having an internal flange (Fig. 3.3(e)). 
Since the walls being coupled are dissimilar, the 

rotational stiffnesses of the slab evaluated at its ends 
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will not be equal. For the substitution of the slab by 

a uniform equivalent beam, the averaged rotational stiff- 
ness is taken to be the effective value. 

The stiffness of the slab will no doubt be influenced 

by the width of the wall flange and by the finite thickness 

of the plane wall. For the investigation described in 

this section the plane wall is assumed to be of zero 
thickness. However, as will be shown in a subsequent 

section, the influence of the planar wall thickness can 
be accounted for by a simple procedure similar to that 

described for symmetrically coupled thick planar walls 
(Section 3.4.1.9). 

3.6.1 NUMERICAL RESULTS FOR EFFECTIVE WIDTH 

3.6.1.1 Design Curves for Effective Width 

The numerical results obtained for the effective width 
Ye/Y for a wide range of slab aspect ratios Y/X, wall 

opening ratios L/X and flange width ratios Z/Y are 

presented in Fig. 3.43, (a) to (d), as design curves. 
Tabulated results are given in Appendix A3.5 for further 

reference. The design curves show the variation of Ye/Y 

as a function of L/X for various ratios of Z/Y and Y/X. 

To illustrate more clearly the influence of the flange 

width ratio Z/Y, the results have also been plotted in the 

form shown in Fig. 3.44, (a) and (b). It can be seen 
from these curves that increasing the flange width ratio 
Z/Y increases the effective width ratio Ye/Y, the 
influence of flange width diminishing with larger flange 

width ratios. With small wall opening ratios L/X, 
increasing the value of Z/Y beyond a certain critical 

width does not produce any further increase in Ye/Y. 

3.6.1.2 Generalised Design Curves 

The generalised set of design curves showing the 

variation of Ye /Y as a function of L/Y for various ratios 
Z/Y is presented in Fig. 3.45. 
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The curves approach a zero value for Ye/Y when L/Y 

reduces to zero and are asymptotic to the line Ye/Y s 1. 

On comparing these curves with the corresponding set in 

Fig. 3.34 for the configuration with two flanged walls, it 

is seen that the omission of one flange from a wall results 
in a disproportionately large reduction in the effective 

width of the slab when the ratio L/Y is small. 
The generalised curves are accurate compared to the 

design curves which account for the influence of wall 
length, presented in Fig. 3.43, (a) to (d), when the slab 

and wall proportions are such that (L/X + Y/X) < 1. 

Where the sum of (L/X + Y/X) exceeds 1.0, and L/X is also 

greater than 0.4, the effective widths defined by the 

generalised curves are generally higher than the values 

obtained from the more accurate sets of curves, but in 

the worst case discrepancies are not likely to exceed 10%. 

In most practical cases, the wall opening ratio is 

unlikely to exceed 0.4 and the generalised set of design 

curves should then prove more convenient to use than the 

previous sets of curves. 

3.6.2 NUMERICAL RESULTS FOR STRESS RESULTANTS 

3.6.2.1 General Distribution Pattern 

The general distribution of bending moments and 

shearing forces in a slab coupling a plane with a flanged 

wall (T-shaped) is illustrated in Fig. 3.46. The contours 

show that large bending moments and shearing forces are 

concentrated around the coupled end of the plane wall. The 

stress resultants on the flanged-wall side of the slab are 

comparatively low. The longitudinal bending moment Mx 
decreases gradually along the flange wall away from the 

panel centreline (or longitudinal axis), as coupling of 
the flange becomes less effective. It is seen from the 

zero-value contour for x that the line of inflexion does 

not deviate significantly from the mid-span position over 
the portion of the slab where coupling is most effective. 
Hence the assumption of a uniform equivalent beam with a 
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mid-span point of contraflexure for the analysis of the 

walls coupled by the slab would not appear to be 

unreasonable, although the actual width of slab effectively 
stressed varies considerably across the wall opening. 

3.6.2.2 Critical Bending Moment Factor MX 

The curves showing the variation of longitudinal 

bending moment factors MX along two critical transverse 

sections passing through the coupled ends of the plane wall 
and flanged wall are presented in Fig. 3.47, (a) to (f), 
for slabs with various ratios L/Y. The distribution of 
MX along the critical section on the side of the plane wall 
is seen to be affected very little by the variation of 
flange width on the opposite wall. For walls with small 
flange width ratios, a distinct peak is observed in the 
bending moment distribution curve at the tip of the flange. 

Since it is likely that the bending moments at this point 
and also at the tip of the plane wall are theoretically 
infinite, it would be logical to interpret the peak bending 

moment values in the manner described in Section 3.4.2.3. 

3.6.2.3 Generalised Design Curves for Critical Bending 

Moment Factors 

The curves described in the above section may be used 
for the design of the critical slab sections, but they are 
not convenient to use because of the large number of curves 
involved. Since the bending moment distribution in the 

most effective coupling zone of the slab is practically 
unaffected by variations in slab width, the six sets of 
curves for various ratios L/Y may be generalised by a 
single set of curves which is applicable for all ratios 
L/Y provided that these ratios are not greater than 1.0. 
The generalised set of curves showing the variation of 
critical bending moment D with normalised distance 
ý (° y/L) for various flange width ratios Z/L are presented 
in Fig. 3.48. To obtain the approximate distribution of 
MX for any slab, the tail of the. generalised curve for the 
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appropriate flange width ratio is simply truncated at the 

point corresponding to the actual limit of the slab width. 

3.7 COUPLED FLANGED WALLS WITH UNEQUAL FLANGES (T-SHAPED) 

In this configuration the slab couples two flanged 

walls with internal flanges of unequal width (Fig. 3.3(f)). 

Only a limited amount of numerical results have been 

obtained for this configuration of walls using the finite 

element method since the effective slab width, it will be 

shown, can easily be obtained quite accurately from the 

results presented for the planar-flanged wall configuration 

using a similar approach suggested for the coupled thick 

wall configuration. 

3.7.1 NUMERICAL RESULTS FOR EFFECTIVE WIDTH 

Table 3.9 shows the values of effective width Ye/Y, 

obtained by the finite element method, for a slab of 

aspect ratio Y/X a 0.6 coupling flanged walls with a fixed 

opening ratio L/X a 0.4 and with various combinations of 

flange widths Zl/Y and Z2/Y. These results have been 

presented essentially to provide a measure of the accuracy 

of an empirical procedure suggested to account for the 

influence of unequal flange widths. 

3.7.1.1 Empirical Method to Account for Unequal Flanges 

The effective width Ye of the slab coupling a pair of 
flange walls with flange widths Z1 and Z2 is assumed to 

be made up of an effective wall strip equal in width to 

the smaller flange width Zl, plus the effective width Ye 

evaluated for a slab panel with a reduced width Y'- (Y-Zl) 

coupling a plane wall to a flanged wall of reduced flange 

width Z' a (Z2-ZI), as shown in Fig. 3.49 (next page). 
The effective width Ye for the reduced slab panel 

can be directly obtained from the generalised design 

curves presented in Fig. 3.45. An example is presented 
to illustrate the application of the method. 
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Example: 

It is required to evaluate the effective slab width 

for a structure with the following geometrical ratios: 

Y/X - 0.6, L/X - 0.4,. Z1/Y - 0.167, Z2/Y - 0.333. 

The reduced slab width Y% Y-1- Z1/Y 0.833. 

The reduced flange width Z'/Y - 0.333 - 0.167 - 0.167 

The reduced flange width ratio Z'/Y' = 0.167/0.833 - 0.20 

The reduced span width ratio L/Y' - 0.4 xÖx0. 

0.80 

From Fig. 3.45 the effective width Ye/Y' a 0.61 

The effective width Ye/Y m 0.61 x 0.833 a 0.508 

The effective wall strip Z1/Y a 0.167 

.. The total effective width Ye/Y 0.675 

Comparing this figure with the accurate value of 

0.670 from Table 3.9, the relative error is seen to be 

+0.75%. 
To illustrate the general accuracy of the empirical 

method, values of Ye/Y for various flange combinations 

obtained by the empirical method are compared, in Table 

3.10, with the accurate results from Table 3.9. It is 

seen from the comparison that using the empirical method 
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in conjunction with the generalised design curves for 

planar-flanged wall configurations, the effective widths 
Ye/Y are evaluated to within 1% of the accurate finite 

element results. Since the influence of finite wall 
thickness in plane walls and the influence of flange width 
are essentially similar, the suggested empirical method is 

also applicable to configurations consisting of coupled 

plane walls of unequal thickness (Fig. 3.3(g)) or a plane 

wall of finite thickness coupled to a flanged wall (Fig. 

3.3(h)). 

3.8 COUPLED L- SHAPED FLANGED WALL CONFIGURATION 

The L-shaped flanged walls may be coupled in three 

different configurations. In the configuration shown in 

Fig. 3.3(1) the cross walls or web walls are coupled in- 

line with opposing flanges while in the configuration shown 
in Fig. 3.3(j) the webs are coupled off-line with opposing 
flanges. The effective widths of the slabs in these two 

configurations may be obtained directly from the results 

presented for coupled T-shaped flanged walls or from the 

results presented for coupled thick planar walls or box 

cores since both sets of results are essentially similar. 
In the third L-shaped wall configuration shown in Fig. 
3.3(k), the webs are coupled in-line but the flanges are 

off-set or skew coupled. The investigation which has been 

carried out is concerned only with this arrangement of 

walls. 

3.8.1 NUMERICAL RESULTS FOR EFFECTIVE WIDTH 

3.8.1.1 Design Curves for Effective Width 

The numerical results obtained for the effective 
width Ye/Y for slabs with various aspect ratiosY/X, wall 
opening ratios L/X and flange width ratios Z/Y are 
presented in Fig. 3.50, (a) to (c), as design curves and 
are also tabulated in Appendix A3.6 for further reference. 
The design curves show the variation of Ye/Y as a function 
of L/X for various ratios Z/Y and Y/X. Fig. 3.51, (a) to 
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(c), show the numerical results plotted in a different 

form to illustrate the influence of flange width more 
clearly. It is seen that although the flanges are not 
directly cross-coupled they still have a considerable 
influence on the coupling stiffness of the slab. By 

comparing the results obtained for the L-shaped wall 
configuration with the results for the planar-flanged wall 

configuration (Section 3.6.1.1), an interesting feature is 

revealed. It is seen that with the same total flange 

width in the coupled walls, the effective slab widths in 

the coupled L-shaped wall configuration and in the planar- 
flanged wall configuration are practically identical for 

any set of ratios L/X, Y/X and Z/Y. Therefore the 
, 

generalised design curves presented for the planar-flanged 

wall configuration may also be used to evaluate the 

effective slab widths for L-shaped wall configurations if 

the flange width ratios Z/Y indicated on the curves are 
halved to correspond to the flange width of the L-shaped 

walls. 

3.8.2 NUMERICAL RESULTS FOR STRESS RESULTANTS 

3.8.2.1 General Distribution Pattern 

Fig. 3.52, (a) to (e), 'show the contours of bending 

moments and shearing forces in a typical floor slab 
coupling a pair of Ir-shaped flanged walls subjected to a 
differential axial wall displacement. The contours 
indicate clearly that large coupling actions are 
concentrated around the junction between the flange wall 
and the web wall on each side of the corridor. At the 

ends of the wall flanges, the slab actions are lower. 
These results are in contrast to those obtained for the 

coupled T-shaped wall configuration described in Section 
3.5.2.1, which show concentrations of slab actions at the 
tip of the flange wall but not at the junction of the 
walls. The lower slab actions induced near the ends of 
the flanges in the L-shaped walls reflect the lack of 
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direct flange wall coupling across the corridor or wall 

opening. The contours indicate that as usual the 

significant coupling actions are induced in the corridor 

area with some actions spreading back a small distance from 

the corridor edge. 

3.8.2.2 Curves For Bending Moment Factor D+c 

To facilitate the calculation of the critical bending 

moments required for the design of the slab section, curves 

showing the variation of bending moment factors TAx along 
the critical transverse slab section immediately in front 

of the flange wall are presented in Fig. 3.53, (a) to (h), 

for various slab-width and flange-width ratios. It can 
be seen from the curves that the bending moment distribution 

on the half of the critical section defined by ' positive 
is practically unaffected by the variation of flange width 

when the ratio L/Y is less than 1.0. Two distinct peaks 

can be seen in each curve and these occur at the ends of 

the flange wall. The bending moments at these points are 
likely to be theoretically singular judging from the shape 
of the curve, and from the results presented earlier for 

other flanged wall configurations. By comparing the 

various sets of curves it is seen that with a constant slab 

width Y the bending moment factors b1x are higher with 
larger wall opening widths L. 

3.8.2.3 Generalised Design Curve For Critical Bending 

Moment Factors 

With a small degree of approximation, the 8 sets of 

curves for Mx presented in Fig. 3.53 may be generalised 
to a more convenient set of curves shown in Fig. 3.54. The 

generalised curves show the variation of Nix with the 

normalised distance ' (- y/L) for various flange width 
ratios Z/L and may be used to obtain the distribution of 
Mx in a slab of any width by truncating the tail of the 

appropriate generalised curve at the points corresponding 
to the actual limits of the slab width. 
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The generalised set of curves may also be used 

indirectly to evaluate the effective width of the slab as 

a check against the value obtained directly from the 

design curves for Ye/Y presented earlier. To illustrate 

the use of the generalised curve for this secondary purpose, 

a numerical example is now shown. 

Example: 

It is required to evaluate the effective width of a 

slab with the following typical dimensions 

Y-6.1m (20 ft), L-3.05m (10 ft) and X- 15.25m (50 ft) 

The flange width ratio Z/L - 0.5 

The limits of the slab width are ý1- 
-1.0 and ý2 = +1.0 

The ordinates of the generalised curve for Z/L - 0.5 from 

- -1.0 to ý- +1.0 are tabulated below 

! ý, 0 0"06 013 0"25 0"36 0"50 0"63 0"75 0"88 1"0 

10.8 6.7 5.7 4.7 4.4 4.7 2.6 1.8 1.2 0.8 

MX(+ý) 10.8 6.6 4.4 2.9 2.0 1.5 1.2 1.0 0.8 0.6 

The area under the curve evaluated from the above results 

using the trapezoidal rule is, Ka - 6.14. 

The effective slab width from equation (3.14) is then 

Y 
e 

y -ý xýx6.14 a 0.523 
6 (1-v ) 

The accurate value of Ye/Y obtained from the design curve 
in Fig. 3.50 is 0.524. 

3.9 COUPLED BOX CORE CONFIGURATION 

3.9.1 COMPARISON OF RESULTS WITH THICK WALL CONFIGURATION 

AND FLANGED WALL CONFIGURATION 

The slab in this configuration couples a pair of 

closed box-shaped core walls (Fig. 3.3(b)). Since the 
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assumption of beam theory to describe the behaviour of the 

core disallows local elastic out-of-plane bending of the 

core walls, the assumed displacements imposed on the 

coupling slab by a hollow core and a solid wall of similar 

peripheral dimensions are identical. The coupling 

stiffness of the slab in each case is therefore similar 

and the results presented for the thick coupled plane wall 

configuration in Section 3.4.1.8 are also applicable to 

the coupled box-core configuration. The design curves 

and empirical equations presented for the coupled flanged 

wall (T-shaped) configuration discussed in Sections 3.5.1.2 

to 3.5.1.5 may similarly be used for the coupled box-core 

configuration since the influence of flange width and 
finite plane-wall thickness or box-core width, have been 

shown to be essentially similar in' the evaluation of the 

effective slab widths. 

3.9.1.1 Influence of Core Opening 

Box-cores, particularly those serving as lift shafts, 

are provided with large openings for access into the core. 
The presence of large corridor access openings alters the 

core to an open section with a connecting lintel at each 
floor. The stiffness of the coupling slab can be expected 
to be influenced by the core opening to a certain extent 
depending on the location and size of the opening and on 
the flexibility of the connecting lintels. It may be 

expected from the similarity of results obtained for the 

coupled thick planar wall configuration and for the coupled 
flanged wall configuration that the core opening located 
in a side wall (or web wall) will not have any significant 
influence on the coupling stiffness of the slab. The 
influence of the core opening in the corridor wall (or 
flange wall) is investigated in this study. 

In the analysis of the slab-wall interaction, it is 

assumed that the core walls are infinitely rigid in 

relation to the slab and lintel. Although the lintel is 
in fact a part of the core wall, in the analysis it is 
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considered as an integral part of the floor slab connected 
to the core. In order to keep the finite element analysis 

of the slab as simple as possible, the lintel is 

represented by prismatic beam elements which are connected 
to the plate elements for the slab along their centroidal 

axes. Although the actual eccentric connection between 

lintel and slab is not being represented in this way, this 

should not affect the results for the slab significantly 

as the action of the slab on the beam is mainly a 
torsional action in this case. 

Values of effective width Ye/Y have been evaluated 
for slabs of various aspect ratios Y/X, coupling a pair of 

square cores with various core opening ratios B/Z and 
lintel depth ratios D%Z and with fixed ratios L/X and 
Z/X. The numerical results which are tabulated in 

Appendix A3.7 are presented graphically in Fig. 3.55, (a) 

to (c). These Figures show the variation of Ye/Y as a 
function of B/Z for various ratios D%Z and Y/X. It is 

seen from the curves that the effective slab width reduces 

as thecore opening size, defined by B/Z and D/Z, is 

increased. The influence of core opening is relatively 

more significant with larger core width ratios Z/Y and 
is not significant when the core opening width B/Z is less 

than 0.5. At this value of B/Z the reduction of effective 

width in the slab due to a full height core opening (D/Z = 0) 

is seen to be less than 6% in the worst affected case 
(Y/X - 0.4). The influence of core opening becomes 
increasingly more significant when B/Z increases beyond 

0.5. With a full core opening (B/Z = 1, D/Z = 0) the 

effective width of the worst affected slab is seen to be 

reduced by about 25% by the presence of the core opening. 

3.9.2 DISTRIBUTION OF STRESS RESULTANTS 

Fig. 3.56, (a) to (f), and 3.57, (a) to (f), show the 
distributions of stress resultants in a slab coupling a 
pair of box cores undergoing unit rotation. By comparing 
these two sets of diagrams with the corresponding sets for 
the T-shaped flanged wall configuration, presented in 
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Section 3.5.2.1 it can be seen that the general patterns 
of stress-resultant distribution are very similar in the 
two different configurations, though minor differences 
between absolute values of stress resultants may be observed 
from the different scaling factors (or multipliers) for 

corresponding perspective diagrams. Hence the numerical 
results for slab actions which have been presented for the 

coupled T-shaped flanged wall configuration may also be 

applied in the case of the coupled box-core configuration 
for practical purposes. 

3.10 EFFECT OF ORTHOTROPIC SLAB PROPERTIES 

In the elastic analysis of slab coupling, it has been 

usual practice to regard the floor slab as an isotropic 

plate. In a practical concrete floor slab, the different 

steel ratios in two directions impart orthotropic properties 
to the slab. In other less usual forms of floor 

construction such as voided slabs, ribbed slabs or pseudo 

slabs (consisting of precast beams and in situ concrete 
infill), the orthotropic properties of the floor arise 

principally from differences in structural geometry of the 
floor cross-sections. The results which have been 

obtained assuming isotropic slab properties are, strictly, 
incorrect when applied to an orthotropic slab. The degree 

of approximation involved in the application of isotropic 

slab results to actual floor slabs will depend on the 
degree of orthotropy present in the slab. An investig- 

ation is thus carried out to assess the influence of 
orthotropic properties on the stiffness and effective width 
of a coupling slab. 

3.10.1 METHOD OF ANALY SI S 

The flexural behaviour of an orthotropic plate is 
governed by four constants D., Dy, Dl and Dxy, representing 
the flexural rigidities in two orthogonal directions, the 
cross coupling rigidity and the torsional rigidity. 

22 In 
practical cases, these constants can be evaluated 
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approximately in terms of the material and geometric 

properties of the orthotropic plate. In applying the 

finite element method to the analysis of the orthotropic 

plate, the constants are simply incorporated in the 

elasticity matrix [D] in the element stiffness calculation 

and in the stress calculation (cf. Section 2.4.3). 

The influence of orthotropic slab properties on the 

effective coupling slab width is investigated for a slab 

of aspect ratio Y/X - 0.4, with various wall opening ratios 

in a plane wall configuration. In the analysis, the 

flexural rigidity DX in the direction of wall bending is 

kept at a constant value of 2.7 x 104 kN-m (2 x 104 kip-ft), 

corresponding to E-2.07 x 107 kN/m2 (4.32 x 105 kip/ft2), 

0.15 and t-0.25 m (0.8159 ft), while the flexural 

rigidity Dy is varied to give ratios of Dy/Dx ranging from 

1/8 to 8. For reinforced concrete, the cross coupling 

and torsional rigidities D1 and Dxy may be evaluated in 

terms of DX and Dy as22 

D1 V DDXy and 
1-V 

Dxy a2 nXny 

These expressions are strictly valid only for solid slabs, 

the usual form of floor construction in cross wall 

buildings, but serve the present purpose of assessing the 

effects of orthotropy. 

3.10.2 DISCUSSION OF RESULTS 

The effective widths Ye/Y obtained from the finite 

element analyses for the various cases are shown in Table 

3.11. The effective width Ye/Y is seen to increase with 

the ratio of transverse to longitudinal flexural rigidity 

Dy/Dx. The influence of orthotropy is more significant 

with smaller wall opening ratios. 
In order to appreciate the significance of the 

results obtained, it is necessary to have an idea of the 

likely range of flexural rigidity ratios found in practice. 
Fig. 3.58 shows approximate values of Dx/Dy for four 

common forms of orthotropic slab with various geometric 
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proportions. These values have been evaluated using 

approximate formulae given in various references. 
22p57,58 

When calculating Dy for the solid slab, the transverse 

steel (distribution steel) has been neglected for 

convenience. For the other three cases, the effects of 

steel reinforcements have been completely disregarded in 

the calculation of DX and Dy. 

It is seen that for solid slabs and voided slabs, 

Dx/Dy is unlikely to exceed a value of 1.5, and for such 

cases the results in Table 3.11 indicate that the effective 

widths calculated assuming isotropic and orthotropic 

properties will not differ by more than 10%. For pseudo- 

slabs, the likely range of DX/Dy is from 2 to 5. The 

effective widths calculated assuming isotropic behaviour 

for such slabs could be underestimated or overestimated by 

10 to 40% depending on the direction of orthotropy and the 

geometric proportions of the slab. For one-way ribbed 

slabs, the ratio of Dx/Dy is unlikely to be less than 10. 

Errors in the calculation of effective widths for such 

cases could thus be quite large if isotropic slab 

behaviour is assumed. 
Errors in the calculation of effective width usually 

result in much smaller errors in the estimation of the 

lateral stiffness of the coupled wall system. With the 

usual form of solid slab construction for cross-wall 

structures, it appears that the effects of orthotropy due 

to different steel ratios in the principal directions, 

could be safely disregarded in the calculation of effective 

slab width. In unusual cases where effects of orthotropy 

are likely to be significant in the calculation of 

effective widths, Table 3.11 could be used in conjunction 

with results obtained for isotropic slabs, to give a 
better estimate of the correct effective widths. 

3.11 EFFECT OF A CRITICAL TRANSVERSE CRACK IN SLAB 

COUPLING A PAIR OF PLANE WALLS 

Elastic studies of wall slab interaction have shown 

a severe concentration of slab stresses, induced by 



132 

coupling action, around the coupled ends of-plane walls. 
Unless the slab has been adequately reinforced locally, 

these extremely -large stresses will result in local 

cracking of the concrete with yielding or complete failure 

of the reinforcing steel. This will lead to a significant 
reduction in the overall coupling stiffness of the slab, 

since flexural resistance is lost at the most effective 

part of the slab. Cracking, on the other hand, may cause 

a re-distribution of coupling actionto other parts of the 

slab and bring into active participation those areas that 

were previously ineffective, and so there may be some 

compensating effect on the loss of coupling stiffness at 
the crack. In this section, the influence of a transverse 

crack on the coupling performance of a slab in a plane 

wall configuration is investigated. The crack in the 

slab is assumed to be located at the inner edge of the 

wall. 

3.11.1 METHOD OF ANALYSIS 

The crack in a plate can be represented in the finite 

element discretisation by assigning two nodes to each mesh 

point on the line of the crack to define the dislocated 

element edges on either side of the crack. When the 

crack extends over a part of the coupling slab panel the 

nodal representation of the crack results in an irregular 

nodal numbering pattern over part of the slab. This means 
that every time the length of crack is changed, a different 

nodal pattern is created requiring a substantially 
different set of input data for the computer analysis. In 

a parameter study concerned about the effects of various 
crack lengths on the slab performance, the amount of 
effort required to prepare and verify new input data for 

every case analysed would be substantial. To minimise 
the amount of data preparation required for the 
investigation, the crack was imagined initially to extend 
across the whole slab width so that the nodal definition 
of imaginary crack resulted in a regular nodal numbering 
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pattern throughout the plate being discretised. Then 

by introducing a fictitious link element to connect each 
pair of nodes across the imaginary crack and by giving 
the fictitious link elements either a zero stiffness or 
a very large stiffness, a cracked or an uncracked section 

could be simulated at the link position. 
The stiffness properties of the fictitious link 

element was defined by the element stiffness matrix 

[kl] m 

kw 00 -kw 00 

kx 00- kX 0 

ky 00 -k 

kw 00 

symmetric kX 0 

ky 

in which kw, kX and ky are arbitrary stiffness terms set 

either to zero or to large number to prevent or to allow 
force transfer across the imaginary crack. It , was 

recognised that using too large a number for the stiffness 
terms for the rigid link could lead to numerical instability 

in the finite element solution, while by using an 
insufficiently large number, the full rigid connection may 

not be effectively simulated at an uncracked section. It 

was found by comparing results obtained using fictitious 

link elements against results obtained without the use of 
link elements that the smallest number required for the 

stiffness terms in [kl] to simulate an uncracked section 
was 106. It was also found that using a number as large 

as 1012 for the rigid link stiffness terms did not cause 
any numerical difficulty, with the solution. For the 
parameter study a value of 1010 was used for the stiffness 
terms to simulate a rigid link. 

3.11.2 DISCUSSION OF RESULTS 

The influence of crack length ratio a/Y on the 
coupling stiffness and effective width of slab has been 
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investigated for a slab with an aspect ratio Y/X - 0.4 

and various wall opening ratios. The results obtained 

are given in Appendix A3.8. Values of rotational 

stiffness- factor K' for the cracked slab have been 

expressed as a ratio of the 'uncracked' value K and are 

plotted in Fig. 3.59(a) against the crack length ratio A/Y. 

It is seen from the results that the reduction in slab 

stiffness due to the presence of a crack is more significant 
for slabs with smaller wall opening ratios. The 

extension of the crack produces a larger loss of slab 

stiffness in the earlier stages. At the stage where the 

crack extends over 101% of the slab width (A/Y - 0.1), the 

stiffness of the slab with L/X - 0.1 has been reduced by 

40%. For the slab with L/X - 0.4 the corresponding 

reduction is only 15%. 

The influence of a crack on the distribution of 
longitudinal bending moment factor Mx at the critical, 

transverse section is illustrated in Fig. 3.59(b) for the 

slab with Y/X - 0.4 and L/X - 0.2. The curves fo r 

various crack length ratios show clearly the 

concentration of bending action around the crack tip. It 

is a well known fact that the bending stress resultant at 

the crack tip in the plate is theoretically infinite, but 

in the finite element solution this stress resultant has 

been evaluated to a finite value which has to be 

interpreted in the manner discussed in section 3.4.2.3. 

It is seen from the curves that the distribution of Mx in 

the uncracked portion of the slab is affected very little 

by the presence of a crack except around the crack tip. 

3.12 COMPARISON OF RESULTS 

In this section the theoretical results obtained by 

the author are compared with various theoretical and 
experimental results obtained by other investigators. 
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3.12.1 COMPARISON BETWEEN THEORETICAL RESULTS 

3.12.1.1 Effective Slab Width in Plane Wall Configuration 

The results for the effective slab width obtained by 

the author using the finite element method (RB12 element) 
and the empirical equations are compared, in Fig. 3.60(a) 

and (b), with the results obtained by other investigators 

using finite element and finite difference techniques. 
All the results being compared are based on coupled plane 

walls of zero thickness. 
The results of Black, Pulmano and Kabaila6 were 

obtained using Veubeke's conforming quadrilateral element34 
(QB16). Peterssods results5 were obtained using a 'mixed' 

rectangular finite element with corner deflection and edge 
moments as unknown variables. The results of Tso and 
Mahmoud9 were obtained using a partially conforming 
triangular element with deflections and slopes as corner 
variables. Qadeer and Stafford Smith's results2 were 
obtained by a finite difference solution. 

It can be seen from the comparison that the author's 
empirical and finite element results lie between Petersson's 
results and the results of Black et al. Tso and Mahmoud's 
results, which are available only for the case of Y/X 
0.25, are in close agreement with the author's results. 
The finite difference results appear to underestimate the 
effective widths, given by the various finite element 
results. In extreme cases, the finite difference results 
are as much as 30% below the author's finite element results. 
One possible explanation for the significantly lower finite 
difference results is that in the finite difference 
solution, compatibility of slope in the direction of wall 
rotation, at the wall/slab junction, has not been enforced 
and this could result in additional flexibility at the 
coupled edges of the wall. 

3.12.1.2 Effective Slab Width in Flanged Wall Configuration 
The author's finite element results for the effective width of slabs coupling walls with two flanges, one flange 
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and no flanges are compared in Fig. 3.61 with the 

corresponding results interpolated from the design curves 

presented by Tso and Mahmoud. 
9 

The results being compared 

are based on configurations with slab aspect ratio Y/X - 

0.4, flange width ratio Z/Y - 0.5 and wall thickness ratio 

h/Y - 0.05. It is seen from the curves that the author's 

results are in close agreement with Tso and Mahmoud 's 

results for all three cases considered. 
In fig. 3.62, (a)-(c), the author's empirical results 

for flanged wall configurations with various flange width 

ratios are compared with the results of Tso and Mahmoud. 

The plane wall configuration has been included as the 

limiting case of the flanged wall configuration when the 

flange width is reduced to the thickness of the cross-wall. 

It can be seen from the curves that the empirical results 

are generally in very close agreement with the results of 

Tso and Mahmoud in all cases. Where discrepancies 

between the empirical and the finite element results are 

largest (Y/X a 0.3, L/X - 0.05, Z/X - 0.2 and 0.1), Tso 

and Mahmoud's results are seen to be more suspect than the 

empirical results because when L/X is reduced to zero the 

effective slab width should reduce to the width of the 

wall flange, which is shown by the empirical results but 

not so by Tso and Mahmoud's results. The cases considered 

cover a very wide range of wall and slab geometric ratios, 

but the accuracy of the empirical equations is shown to 

be consistent throughout. 

3.12.1.3 Effective Slab Width in Thick Wall or Box Core 

Configurations 

Values of effective width calculated by the empirical 

equations for slabs which couple plane walls of finite 

thickness or box cores are compared with the finite element 

results obtained by Black, Pulmano and Habaila, 6 in Fig. 

3.63, (a)-(c). It is seen that the empirical results are 
in reasonably close agreement with the finite element 
results, but are generally lower. The latter results can 
be expected to overestimate the correct effective widths 
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by a few per cent due to the use of rather coarse meshes 
for the discretisation of the slabs. For the particular 
case of Y/X - 0.5, Z/W '- 0.5, and L/X - 0.2, which has 
been analysed by the author, as a check,, using the same 
element that was used by Black et al. , but with a very 
fine element sub-division of the slab (120 elements, 695 
degrees of freedom), the result given by Black et al. was 
found to be 4j% higher than the author's finite element 
result (shown by a cross in Fig. 3.63(a)). The empirical 
result for this case is about 3% below the more accurate 
finite element result. 

3.12.2 COMPARISON BETWEEN FINITE ELEMENT RESULTS AND 

EXPERIMENTAL RESULTS 

3.12.2.1 Effective Slab Width in Plane Wall Configuration 

Fig. 3.64(a) shows a comparison of the theoretical 

values of effective slab width in plane wall configuration, 

with experimental results obtained by Petersson, 
5 El-Hag, 40 

El-Buluk8 and by the author. All the experimental results 

were obtained from tests on' small scale perspex slab 

models with steel sections attached to simulate the coupled 

walls. The method of loading the slab model and 

monitoring the response, however, differed between various 
investigations. In El-Hag's and El-Buluk's tests the 

slab was attached to the tops of the wall sections which 
were pivoted at their bases. When the slab was displaced 

horizontally by an applied load the walls rotated about 
their bases and induced bending in the slab (Fig. 3.64(b)). 
In Petersson's tests a pair of slabs were sandwiched 
between steel wall-pieces at their ends which were displaced 

axially by applying opposite co-axial forces to the wall 
sections (Fig. 3.64(c)). , In the author's tests, which 
are described more fully in` Chapter 10, the half slab 
section to which a steel wall section was attached, was 
simply supported at the external edge of the wall and at 
the slab edge corresponding to the corridor centre-line. 
The wall section was rotated about its supported end by 
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an applied vertical load at its inner edge (Fig. 3.64(d)). 

The material constants for the perspex in Petersson's 

models were E- 2500 N/mm2 and V-0.36, while those for 

the other investigations were E- 2900 N/mm2 and V-0.35. 

The latter sets of values were also used in the finite 

element analysis from whic1i the theoretical results were 
obtained. 

The wall thickness to slab width ratio, h/Y, varied 
between 0.05 and 0.2 in Petersson's models, but in the 

other models this ratio was kept at a constant value of 
0.025. For the theoretical investigation, the effect of 
finite wall thickness was disregarded. 

It is seen from the comparison that Petersson's and 
the author's experimental results are in close agreement 

with the theoretical results, but 
. 
El-Hag's and El-Buluk's 

experimental results are significantly lower than the 

theoretical results, especially with small L/Y ratios. 
If the influence of finite wall thickness were considered 
in the theoretical analyses, all the experimental results 

would appear to be lower than the theoretical results. 
With large L/Y ratios, Petersson's and the author's 

experimental results are slightly higher than the 

theoretical results, indicating the stiffening effect of 
finite wall thickness not included in the theoretical 

results, but with very small ratios L/Y, the experimental 

results are lower than the theoretical results, and may 
be due to the flexibility effects produced by transverse 

shear deformation and local elastic deformation of the 

slab under the heavily loaded wall tip. In the case of 
El-Hag's and El-Buluk's results, additional flexibility 

effects could be produced by slackness of joints in the 

apparatus and the difficulty of achieving a tight fit of 
the slab between the steel wall shapes. Within the 
limits of experimental errors, reasonably good agreement 
is obtained between the theoretical and experimental 
results, generally. 
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3.12.2.2 Distribution of Slab Moments in Plane Wall 

Conf igurat ion 

The distributions of bending stresses in a slab 
coupling a pair of plane walls, evaluated by the finite 

element method are compared with the experimental results 
obtained by El-Buluk, 8 in Fig. 3.65, (a) and (b). The 

experimental results were evaluated by strain measurements 
on a small scale perspex slab model attached to steel 
sections which simulated the coupled walls. The 
theoretical results were obtained using the RB12 element 
for the finite element analysis. The finite thickness 

of the wall was disregarded and the wall represented as a 
line of nodes in the idealisation of the slab. 

It can be seen from the comparison that the theoretical 

and experimental results for Mx and y are generally in 

good agreement except at points close to the tip' of the 

wall where significant differences between the two results 

can be observed. The theoretical distribution of Mx shows 
two distinct peaks in the bending moment curve a small 
distance on either side of the wall line. The location 

of the strain gauges unfortunately did not permit the 

evaluation of bending moments at these critical positions 
for comparison with the theoretical results. However, 

accepting that the experimental values do not vary 
abruptly between gauge points, reasonably good agreement 
is obtained between theoretical and experimental results, 
in respect of the nett moment distributed* over the middle 
portion of the slab section. 

The theoretical distribution of the transverse bending 

moment My shows a significantly higher peak in the bending 

moment curve than the experimental results, at the point 
on the wall line. This discrepancy arises principally 
through the idealisation of the wall as a line in the 
theoretical analysis. The finite wall thickness, in 

effect, provides a certain amount of transverse stiffening 
to the slab and so the transverse bending moment measured 
at the point in question is expected to be lower than the 
theoretical value. 
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3.12.2.3 Distribution of Slab Moments in L-Shaped 

Wall Configuration 

The comparison between the author's finite element 

results with El-Buluk's experimental results for bending 

moment distributions in a slab coupling a pair of L-shaped 

flanged walls, is shown by Fig. 3.66, (a) and (b). The 

experimental results were evaluated by the same procedure 

described for the plane wall configuration. 
It is seen that the theoretical and experimental 

results for the longitudinal and transverse bending moments, 

Mx and My respectively generally agree reasonably well. 

The experimental moments on the side of the slab without 

the wall flange (Y-negative side) are in very close agree- 

ment with the theoretical values, but at certain points 

in front of the flange on the other side of the slab, the 

experimental moments are distinctly lower than the 

theoretical results and appear to be influenced by the 

flexibility of the wall flange in the model. 

3.12.2.4 Slab Displacement Patterns 

Fig. 3.67, ((a)-(c)) to 3.70 ((a)-(c)) show contours 

of deflection and slopes in slabs coupling walls of 

various shapes. The contours were produced by computer 

from results evaluated by the finite element method. The 

contours of slopes Ax and 0y for the various wall 

configurations have been compared with Moire fringe 

patterns obtained by El-Hag40 from experiments on perspex 

models, and a close resemblance between the theoretical 

and experimental contour patterns has been noted in every 

case. The relevant Moire fringe patterns can be found in 

El-Hag's thesis 
40 (pages 169-172). 

3.13 EFFECT OF SLAB COUPLING ON OVERALL BEHAVIOUR 

The-lateral load behaviour of a pair of shear walls 

coupled by floor slabs can be conveniently assessed using 
the continuous connection method of. analysis, which has 

been produced by assuming that the discrete system of 

connections formed by lintel beams or floor slabs may be 
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replaced by an equivalent continuous medium. Based on 
this theory, explicit expressions for evaluating the 
deflections and stresses in a coupled wall system, subjected 
to standard forms of loading, have been derived. 59,60 

These expressions are characterised by the parameter aH, 
which has been found useful for describing the overall 
behaviour of the coupled-wall system. A -study by 
Marshall61 has indicated that when mH exceeds 13, the 

walls are effectively coupled and behave essentially as a 
homogeneous solid cantilever. When aH is less than 0.8 

coupling is ineffective and the walls behave as two 
independent cantilevers. For mH between these limits, 

the behaviour of the coupled walls depends on the stiffness 
of the connecting medium. 

Fig. 3.71, (a) to (d), show the variation of the 

characteristic parameter aH with the wall opening ratio 
L/X, for four wall configurations. In order to illustrate 

the effectiveness of slab coupling, critical wall 
deflections and stresses, based on an effective width of 

slab acting as the coupling medium, have been expressed as 

ratios of corresponding quantities calculated assuming 
that the walls behave as independent cantilevers. The 

variations of the coupled/uncoupled ratios for the maximum 
deflection 6 at the top, and maximum tensile and 
compressive stresses, CrA and c' B, at the bottom of the 

walls, with the wall opening ratios L/X, have been included 
in the Figures to illustrate the correspondence between 
these ratios and mH. All the results shown are based on 
a 20-storeyed building of 61 m (200 ft) height and 15.25 m 
(50 ft) depth with cross walls at 6.1 m (20 ft) centres. 

The wall flanges are of 3.05 m (10 ft) width, and wall and 
slab thicknesses are 305 mm (12 in. ) and 228 mm (9 in. ) 

respectively. The wind loading on the structure is 

assumed to be uniformly distributed. 

It is seen from the various diagrams that the 
effectiveness of slab coupling varies with the shape of 
the walls, coupling being relatively more effective with 
plane walls than with flanged walls. The value of aH 
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is seen to be less than 3 when L/X is larger than 0.2 and 

varies between 5 and 6 when L/X is 0.1, generally. Pearce 

and Matthews, 
62 in a report to the Department of the 

Environment, have suggested that when aH is less than 4, 

coupling could be ignored and the walls designed as 

separate walls. The results from the examples considered 

in this section certainly do not substantiate this 

contention, for with aH slightly less than 4, the 

coupling effect is seen to reduce the maximum deflection & 

and the maximum stress Q'B at the inner edge of the wall 

by 60 to 70 per cent, depending on wall configuration. 
Even with a much smaller value of aH, say aH - 1.5, the 

results in Fig. 3.71, (a) to (d), indicate that the maximum 

wall deflection b is reduced by at least 40 per cent and 

the maximum wall stress TB by at least 30 per cent in 

any of the buildings considered. It is seen that 

throughout the range of wall-opening ratios considered, 

significant coupling of the walls is provided by the floor 

slab. 

3.14 CONCLUSIONS 

A numerical investigation based on the finite element 

method has been carried out to determine the variation of 

effective slab width'and distribution of stress resultants 

with various structural parameters. The slab overhang, 

the absolute wall length and the external wall flanges 

have been shown to have negligible effect on the effective 

slab widths for practical cross-wall structures. The 

effective slab width is influenced essentially by the 

corridor to slab width ratio and also by the wall thickness 

to slab width ratio in the case of plane walls, or the 

flange width to slab width ratio in the case of flanged 

walls (including box cores). 
Design curves have been presented to enable the rapid 

evaluation of effective slab widths in practical situations. 
Simple empirical equations have also been suggested for 

this purpose when the walls being coupled are similar in 

shape. Contour diagrams and curves showing the sectional 
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variation of critical bending moment factors have been 

presented to enable the rapid evaluation of slab stresses 
induced by coupling action. A design method has been 

suggested for checking against punching shear failure in 

the coupling slab. 
The accuracy of the numerical results have been 

confirmed by comparing them with theoretical and experi- 

mental results from other investigations. 

The influence of orthotropic slab properties on the 

coupling stiffness of the slab has been assessed. The 

usual assumption of isotropic properties for reinforced 
concrete coupling slabs is not likely to result in 

significant errors in the evaluation of slab stiffness or 

effective width. 
The presence of slab cracks across the inner ends 

of the coupled wall has been shown to result in a 

substantial reduction in the coupling stiffness of the 

slab, especially when the wall opening ratio is small. 
The effectiveness of slab coupling on the overall 

performance of the coupled wall system has been shown by 

worked examples on typical cross-wall buildings. 
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TABLE 3.1 CONVERGENCE CHARACTERISTICS OF DIFFERENT 

ELEMENTS 

(a) Slab Coupling Plane Walls 

(L/X - 0.4p Y/X - 0.4) 

El nt 
Effective Width YIY 

eme 
Type Mesh 1 Mesh 2 Mesh 3 Mesh 4 Richardson's 

(1 x 2) (2 x 4) (4 x 8) (8 x 16) Extrapol- 
ation 
(2,4,8) 

TB9 0.6418 0.6322 0.6158 0.6111 0.6087 

RB12 0.6636 0.6279 0.6160 0.6122 0.6098 

QB16 0.7327 0.6663 0.6374 0.6234 0.6097 

TB18 0.9225 0.7563 0.6780 0.6427 0.6100 

RB24 0.8485 0.7164 0.6603 0.6344 0.6099 

(b) Slab Coupling Flanged Walls 
(L/X - 0.42 Y/X a 0.42 Z/Y - 0.5) 

El t 
Effective Width Ye/Y 

emen 
Type Mesh 1 Mesh 2 Mesh 3 Mesh 4 Richardson's 

(1 x 2) (2 x 4) (4 x 8) (8 x 16) Extrapol- 
ation 
(2,4,8) 

TB9 0.9308 0.9149 0.9035 0.8898 

RB12 0.9227 0.9053 0.8975 0.8903 

QB16 0.9349 0.9119 0.9014 0.8916 
TB18 1.0565 0.9743 0.9335 0.8929 
RB24 / 1.0178 0.9547 0.9236 0.8928 

ý1 
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TABLE 3.2 COMPUTING TIMES IN SECONDS FOR DIFFERENT 

ELEMENT TYPES IN ANALYSIS OF SLAB COUPLING 

PLANE WALLS 

(a) Mesh 3- (4 x8 mesh) 

Program Element Type 

Function TB9 RB12 QB16 TB18 RB24 

Input Data 2 1 2 2 2 

Form Elem. 
Stiff. Mat. 1 1 5 52 35 

Assem. Struct. 
Stiff. Mat. 2 1 2 3 3 

Solve 
Equations 3 3 7 16 16 

Calculate 
Stresses 4 3 8 8 6 

Total Time 12 9 24 81 62 (sec) 

(b) Mesh 4- (8 x 16 mesh) 

Element Type 
Pro ram g 
Function TB9 RB12 QB16 

7 
TB18 RB24 

Input Data 4 2 4 4 3 

Form Elem. 
Stiff. Mat. 1 1 5 51 35 

Assem. Struct . Stiff. Mat. 5 5 10 16 15 

Solve 
Equations 21 22 69 146 146 
Calculate 
Stresses 12 8 14 19 16 

Total Time 
(s ec ) 

43 38 102 236 215 

Mill Time on ICL 1904S Computer 
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TABLE 3.3 EFFECT OF OVERHANG RATIO C/X ON STIFFNESS 

FACTOR K AND EFFECTIVE WIDTH Ye/Y 

(a) Y/ X-0.4 

C/X 
L/X 

0.0 0.04 0.08 0.12 

0.2 K 41.6170 41.6188 41.6194 41.6196 

Ye/Y 0.3942 0.3942 0.3942 0.3942 

0.4 K 11.0338 11.0385 11.0404 11.0412 

Ye/Y 0.6143 0.6146 0.6147 0.6147 

0.6 K 5.0187 5.0305 5.0375 5.0404 

Ye/Y 0.7220 0.7237 0.7247 0.7251 

(b) L%X- 0.6 

c/x 
Y/X 

0.0 0.04 0.08 0.12 

0.4 K 5.0187 5.0305 5.0375 5.0404 

Ye/Y 0.7220 0.7237 0.7247 0.7251 

0.5 K 6.2011 6.3116 6.3524 6.3723 
Ye/Y 0.5947 0.6053 0.6092 0.6112 

0.8 K 6.8263 7.0059 7.0965 7.1435 
Ye/Y 0.4910 0.5039 0.5105 0.5138 
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TABLE 3.4 EFFECT OF SLAB WIDTH Y/X ON EFFECTIVE SLAB 

WIDTH Ye/X 

Effective Width Ye/X 

L/ X 
Y/X 0.1 0.2 0.3 0.4 0.5 0.6 

0.1 0.06161 0.0788 0.0851 0.0893 0.0914 0.0935 

0.2 0.0781 0.1216 0.1437 0.1567 0.1648 0.1710 

0.3 0.0840 0.1447 0.1829 0.2075 0.2238 0.2358 

0.4 0.0870 0.1569 0.2080 0.2440 0.2696 0.2879 

0.5 0.0891 0.1641 0.2240 0.2697 0.3039 0.3280 

0.6 0.0907 0.1687 0.2345 0.2874 0.3284 0.3572 

0.7 0.0921 0.1719 0.2414 0.2993 0.3453 0.3774 

0.8 0.0934 0.1742 0.2463 0.3077 0.3572 0.3918 

1.0 0.0936 0.1757 0.2504 0.3154 0.3688 0.4061 
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TABLE 3.5 COMPARISON BETWEEN EMPIRICAL AND FINITE 

ELEMENT RESULTS FOR THICK WALL CONFIGURATION 

L/X h/Y Y'/Y L/Y' Y /Y 
Empirical 

YY 
F. lement 

Percentage 
Difference 

0.000 1.000 0.250 0.2250 0.2175 +3.45% 

0.125 0.875 0.286 0.3464 0.3405 +1.73% 

0.1 0.250 0.750 0.333 0.4667 0.4656 +0.24% 

0.375 0.625 0.400 0.5850 0.5891 -0.70% 
0.500 0.500 0.500 0.7000 0.7099 -1.39% 
0.750 I 0.250 1.000 0.9000 

I 
0.9271 -2.92% 

0.000 1.000 1.000 0.6000 0.6101 -1.66% 
0.125 0.875 1.143 0.6938 0.7031 -1.32% 

0.4 0.250 0.750 1.333 0.7750 0.7825 -0.96% 
0.375 0.625 1.600 0.8438 0.8523 -1.00% 
0.500 0.500 2.000 0.9000 0.9109 -1.20% 
0.750 0.250 4.000 0.9750 0.9955 -2.06% 
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TABLE 3.6 EFFECTIVE WIDTH OF SLAB FOR END BAY OF 

COUPLED PLANE WALL CONFIGURATION 

. 
Effective Width Ye%Y Wall 

L/X 
St if f- 

YfX 0.1 0.2 0.4 0.6 ness 

0.2 0.1780 0.2807 0.3699 0.4024 

0.4 0.0987 0.1764 0.2764 0.3298 Infinite 

0.6 0.0692 0.1259 0.2131 0.2654 
' 

Stiffness 

0.8 0.0542 0.0978 0.1699 0.2151 

0.2 0.1653 0.2708 0.3608 0.4006 305 mm 
0.4 0.0921 0.1685 0.2663 0.3208 (12 in. ) 

0.6 0.0651 0.1204 0.2046 0.2568 thick 
wall 

0.8 0.0514 0.0937 0.1630 0.2027 
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TABLE 3.7 COMPARI SON OF EFFECTIVE WIDTHS Y/Y 

BETWEEN EXTERNAL FLANGED WALL CONFIGURATION 

AND PLANE WALL CONFIGURATION 

Plane External Flanged 
Walls -Walls 

Y/X 
Z/Y 

0.000 0.375 0.750 
L%X 

0.1 0.3903 0.3903 0.3903 

0.2 0.6082 0.6082 0.6082 

0.2 0.4 0.7836 0.7836 0.7836 

0.6 0.8550 0.8550 0.8552 

0.1 0.1511 0.1511 0.1512 

0.6 0.2 0.2812 0.2817 0.2819 

0.4 0.4790 0.4836 0.4849 

0.6 0.5953 0.6149 0.6189 
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TABLE 3.8 COMPARISON BETWEEN EMPIRICAL AND FINITE 

ELEMENT RESULTS FOR FLANGED WALL CONFIGURATION 

L/X Z/Y Y JY 
Emp r. ical 

Yý�Y 
F. Element 

Percentage 
Difference 

0.125 0.3464 0.3388 +2.24 
0.250 0.4667 0.4603 +1.39 

0.1 0.375 0.5850 0.5804 +0.79 
0.500 0.7000 0.6985 +0.21 
0.750 0.9000 0.9176 -1.92 

0.125 0.6938 0.6950 -0.17 
0.250 0.7750 0.7666 +1.10 

0.4 0.375 0.8438 0.8325 +1.36 
0.500 0.9000 0.8918 +0.92 

0.750 0.9750 0.9906 -1.57 
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TABLE 3.9 EFFECTIVE WIDTH OF SLAB FOR COUPLED FLANGED 

WALLS WITH UNEQUAL FLANGES 

Y/X - 0.6, L/X ® 0.4 

Z1/Y 
Z2 fy 

0 0.083 0.167 0.250 0.333 

0 0.4790 

0.083 0.5089 0.5462 

0.167 0.5362 0.5773 0.6112 

0.250 0.5609 0.6048 0.6413 0.6732 

0.333 0.5793 0.6321 0.6696 0.7024 0.7312 

TABLE 3.10 COMPARISON BETWEEN EMPIRICAL AND FINITE 

ELEMENT RESULTS FOR COUPLED FLANGED WALLS 

WITH UNEQUAL FLANGES 

Y/X a 0.6, L/X a 0.4 

Z 1/Y 

0.083 

0.083 

0.083 

0.167 

0.167 

0.250 

Z2/Y 

0.16 7 

0.250 

0.333 

0.250 

0.333 

0.333 

Values of Y�/Y 

Empirical Finite 
Method Element 

0.578 

0.606 

0.633 

0.642 

0.675 

0.700 

0.577 

0.605 

0.632 

0.641 

0.670 

0.702 

Percentage 
Difference 

+0.17 

+0.17 

+0.16 

+0.16 

+0.75 

-0.28 
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Fig. 3.2 Structural Actions of Coupled Shear 
Wall-Slab Structure 
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t 

Fig. 3.22 Typical Finite Element Mesh for 
Contour Diagrams 
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Fig. 3.28 Shearing Force Distributions at Various 
Peripheral Sections 
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NOTE: The term 'STRESS' is used in the context of a stress resultant 
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NOTE: The term 'STRESS' is used in the context of a stress resultant. 
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NOTE: The term , STRESS 'is used in the mntext of a stress resultant. 
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CHAPTER 4 

INVESTIGATION OF FLEXURAL INTERACTION BETWEEN 

FLOOR SLABS AND SHEAR WALLS BY THE INFLUENCE 

COEFFICIENT METHOD 

4.1 INTRODUCTION 

The influence coefficient technique for the analysis 

of the interaction between floor slabs and shear walls in 

cross-wall structures was developed in Chapter 2. The 

practical application of the technique requires an 
investigation of such aspects as the number of nodes 

required, the influence of moments as well as direct loads 

in the representation of the distributed interactions, and 
the number of terms required for satisfactory convergence 

of the infinite series. This has been carried out as part 

of an investigation of the accuracy of the technique, which 

has been achieved by comparing the results obtained with 

those available in the published literature. Using the 

technique, a comprehensive parameter study on wall-slab 

interaction has been carried out as a confirmation of an 

earlier investigation based on the finite element method, 

and as further proof of the accuracy and versatility of the 

technique. The numerical results obtained are discussed 

in this Chapter. 

4.2 CONVERGENCE STUDY 

The influence functions have been expressed in the 

form of an infinite harmonic series which may be truncated 

after a relatively small number of terms since the series 

converge rapidly. In order to examine the influence of 

series truncation on the convergence of the solution, 

numerical studies were performed on two representative 

examples of a flexible and a stiff continuous slab (that is, 

one with widely spaced and closely spaced walls 
respectively) coupling a pair of plane walls. 

The influence on the convergence of the form of 
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discretisation of the continuous wall-slab moment transfer 

with various discrete force components and number of nodal 
points was also examined, for both plane wall and flanged 

wall configuration. 
In the analysis, only a quadrant of the floor panel 

was considered on account of symmetry. The idealised 

simply supported edge replacing the actual free edge was 
located along the section through the axis of rotation of 
the plane wall, whilst the set of nodes for a wall section 

were always evenly spaced, with a node at the critical 

node tip (cf. Fig. 4.15(a)). The other two edges were 

continuous. 
Fig. 4.1(a) and 4.1(b) illustrate the convergence 

characteristics of the solution by showing the variation 

of the effective coupling width with the number of terms 

used in the influence series, for the flexible slab, 

whilst Fig. 4.1(c) and 4.1(d) show the corresponding 

results for the stiff slab. The results in Fig. 4.1(b) 

and 4.1(d) were obtained using only interacting vertical 

point loads to simulate the wall/slab interactions, whilst 
those in Fig. 4.1(a) and 4.1(c) were obtained with 

concentrated moments included with the discrete point 
loads. 

The results of an accurate finite element analysis 
have been included to provide a relative measure of the 

accuracy of the influence coefficient solution. Two 
different elements, the Adini-Clough-Melosh rectangular 

element (RB12) and the Veubeke quadrilateral element (QB16), 

were used, but the results differed by less than 1%. 
The results indicate that when only interacting point 

loads are used in the solution, convergence to a stable 
solution is very rapid if a small number of nodes is 

employed. The converged result for the flexible slab 
using only two nodes (i. e. two unknowns in the solution) 
is only 5% below the accurate finite element result. 
However, for the stiff slab associated with a much larger 

wall and narrower corridor opening, the converged result 
using two nodes is 22% below the accurate value. Even 
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when 16 nodes are used, the result has not improved to 
better than 5% below the finite element result. 

There is a remarkable improvement in convergence to 

a more accurate solution, though at a less rapid rate, when 
concentrated moments are included with the interacting 

point loads. Considering the more critical case of a 
stiff slab, the nearly stable results using 40 harmonics 

and with only one node (i. e. two unknowns) is just 5% 
below the finite element value; with two nodes (four 

unknowns) the result has improved to 2j% below the finite 

element value. Thereafter, an increase in the number of 
nodes does not produce any significant difference in the 

result (Fig., 4.2) . For the more flexible slab, which 

shows less rapid convergence with regard to series 
truncation, the use of two nodes with point loads and 
moments gives results obtained when using 40 and 100 

harmonics which do not differ by more than 1%. 

On the other hand, if more nodes are used than are 
strictly necessary, numerical instability in the solution 

could be encountered unless a large number of terms in the 

infinite series is taken to give a more accurate 

evaluation of the influence coefficients. 
For practical purposes, it appears that the use of 

one node, and including both interacting forces and moments, 

and taking 20 harmonics, should prove sufficiently accurate 
for analysing most slabs coupling plane walls. 

Fig. 4.3 shows the influence of the number of nodes 
used for the web and flange sections of the coupled wall 
on the convergence of the solution. In defining web and 
flange nodes for a tee-shaped wall section, the node at 
the flange/web junction is considered a web node, whilst 
the number of web and flange nodes is that included in 
the quadrant of the floor panel analysed (cf. Fig. 4.15(c)). 
In this study, 40 terms of the infinite series were used 
to calculate the influence coefficients, and at each node 
three force components, consisting of a point load and two 
point moments Mx and MY, were considered for the equivalent 
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discrete interactive forces. The results from a finite 

element analysis were again used as a relative measure of 
the accuracy attained by the series solution. 

The results indicate that the number of flange nodes 

used has a much greater influence on the accuracy of the 

results than do web nodes. For the particular flange- 

panel width considered, the use of at least 4 flange nodes 

was necessary to obtain a result within 5% of the finite 

element value. With 8 flange nodes, the series solution 

gave a result 1% higher than the finite element value. 
Provided that a sufficient number of flange nodes are 
included, it appears that the use of just one web node, at 
the web/flange junction will give satisfactory accuracy. 

The effect of neglecting the less significant moment 

component My in the discretised nodal forces, thereby 

relaxing the enforcement of slope compatibility in the 

direction normal to the main direction of bending, was also 

examined. The results obtained, using various numbers of 
flange nodes, indicated that in the worst case omission of 

the moment component My resulted in the reduction in the 

calculated effective width of only 1%. For practical 

purposes, therefore, only the point loads and point moments 
bIx need be considered for the discretised nodal forces in 

order to reduce the number of unknowns in the solution. 

4.3 COMPARI SON BETWEEN RESULTS OBTAINED BY SERIES SOLUTION 

AND BY OTHER INVESTIGATIONS 

(a) Plane walls. 

The results for the effective coupling width obtained 

using the present method have been compared in Fig. 4.4 

with those from a number of other theoretical investigations, 

using the finite element and finite difference techniques, 
for slabs coupling plane walls. The results of Black, 
Pulmano and Kabaila6 were obtained using a conforming 
quadrilateral element and the solution of some 200 finite 

element equations for each analysis. 
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Petersson's results5 were obtained using a "mixed" 
finite element with corner deflections and side moments 
as unknown variables, approximately 500 equations being 

solved for each analysis. The author's finite element 
results were obtained using the rectangular element RB12 

and a solution of roughly 320 equations. Qadeer and 
Stafford Smith's results2 were obtained using the finite 
difference technique and a mesh division involving the 

solution of approximately 320 equations. In contrast, the 

results obtained using the present method were based on 
4 discrete nodes with 8 unknown forces, using 40 harmonics 
for the evaluation of the influence coefficients. 

It can be seen that the results from the present 

method agree well with the finite element solutions, lying 

between the two extremes. The finite difference results 

appear to underestimate the effective width, and this may 
be due to the fact that complete compatibility of slope 
in the critical direction of bending has not been enforced 

at the wall-slab intersection. This is similar to the 

effect of using only interacting point loads without 

point moments in the present method. 

(b) Flanged walls. 

Calculated values of the effective widths of slabs 

coupling flanged walls are compared in Fig. 4.5 with the 

corresponding results obtained by Tso and Mahmoud, 9 
and 

by the author from the finite element method. The 

results of Tso and Mahmoud for the particular slab of 
aspect ratio Y/X m 0.4 were interpolated from their design 

curves for aspect ratios of 0.3,0.5 and 0.7 using 
Lagrangian interpolation. It appears that Tso and 
Mahmoud's finite element results were obtained from a 
solution of 100 to 200 equations, and the author's 
results from 300 to 400 equations, depending on the 
parameters involved. In contrast, the results obtained 
by the present method required the solution of between 8 

and 24 equations. 
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The curves indicate that the results obtained from 

the present method agree closely with both finite element 
solutions for the three cases of coupled walls without 
flanges, with one flange, and with two flanges. 

(c) Walls of finite thickness, and box cores 

The previous results were obtained from analyses which 

assumed that the walls could be treated as line elements of 
zero thickness. This is generally satisfactory for 

practical purposes, but it is of interest to examine the 
influence of the finite thickness of the wall. If the 

walls are very thick, the analysis will yield results 

equivalent to that for coupled box cores. Fig. 4.6 shows 
the comparison between the present results and those 

obtained by Black, Pulmano and Kabaila6 using various 
finite element divisions requiring the solution of between 

50 and 200 equations. The present results were obtained 

using 2 web nodes and 4 flange nodes, the "flange" being 

assumed to act along the inner edge of the wall. Inter- 

acting point loads and moments in the two orthogonal 
directions were considered at each node in order to enforce 
deflection and slope compatibility in both the main bending 

and transverse directions. 

It is seen that the present results agree very well 

with those from the finite element method, but are 
generally lower. In the worst case, the discrepancy is 
less than 8%. However, it was observed by Black, Pulmano 

and Kabaila that their results could generally be expected 
to contain errors of up to 4%, and the maximum error may 
be much less. As a check, the author performed an 
analysis using the same element used by Black et al., with 
a very fine mesh (120 elements and 695 degrees of freedom) 
and obtained a value of effective. width less than 1% 

higher than the influence coefficient solution, and 4% 
lower than Black's result for the particular case of a 
slab defined by Y/X = 0.5, L/X - 0.2 and h/W a 0.5. 
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(d) Slab moments. 

Fig. 4.7 shows a comparison of the critical bending 

moments in the slab along a transverse section through the 

inner (corridor) edge of the wall with the values obtained 

by Chang4 using a finite difference solution. Good 

agreement is reached between the more important bending 

moments Mx in the main direction of bending, except at the 

critical tip of the wall where a theoretical stress 

singularity exists for a wall of zero thickness. For the 

less important transverse moment My, although the absolute 

agreement between the two solutions is not nearly as good, 

the general shapes of the stress distribution are similar. 

Fig. 4.8 shows a comparison of the bending moment 

distribution along the longitudinal centre line of a slab 

coupling a pair of plane walls of finite thickness with 

the results obtained by Black, Pulmano and Kabaila6 using 

the finite element method. The series solution was 

obtained using three nodes and 40 harmonics. The results 

obtained by the two different methods are practically 

identical along almost the whole section, except at the 

wall face where the moment distribution is discontinuous. 

Since the series solution approximates the discontinuous 

moment distribution by a continuous curve the bending 

moment value calculated at the wall face should be 

interpreted as the average of the values on either side of 

the wall face. Therefore, if this average value is 

doubled to obtain the bending moment immediately outside 

the wall, then the series solution and finite element 

solution will be in excellent agreement. 

(e) Comparison with experimental results. 

Tests have been carried out on perspex slabs with 

steel inserts to simulate the wall cross-sectional shapes 
by Petersson, 5 El-Hag40 and El-Buluk. 8 Fig. 4.9 shows 
the comparison of effective width values determined by the 

series solution and by Petersson's experiments. The series 

solutions were obtained using four nodes and 40 harmonics, 
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the finite width of the steel inserts being disregarded. 

The agreement between the theoretical and experimental 
results is generally good. With a small wall opening 
ratio L/% of 0.125, the transverse shear deformation in 
the slab and the flexibility of the wall-slab connection 
are expected to have an appreciable influence on the 

experimental results, and consequently the experimental 
results are slightly lower than the theoretical results. 
With a larger wall opening ratio of 0.25 these flexibility 

effects are less significant, and the stiffening effect of 
the finite wall thickness begins to show up. In this case 
the experimental results are slightly higher than the 

theoretical results. 
Fig. 4.10 shows the comparison of theoretical 

longitudinal and transverse bending moments at a specific 

section with the experimental results obtained by El-Buluk. 8 

The series' solution was again obtained using four nodes 

and 40 harmonics, and the finite width of the wall inserts 

was disregarded. Very close agreement is obtained 
between the theoretical and experimental values of the 

transverse moments y throughout the section. The 

correspondence between theoretical and experimental values 

of longitudinal moments M appears less good at points 

close to the wall. The double peaks in the bending moment 
curve have also been shown by the finite element results 
(Fig. 3.65), but unfortunately the location of the strain 
gauges in El-Buluk's experiments does not permit a direct 

comparison of moments at critical points, Nevertheless 
the trend of results indicates reasonably good agreement 
between theory and experiment in respect of the integrated 

moment in the critical region near the wall. 

4.4 PARAMETER STUDY ON WALL-SLAB INTERACTION 

The simple data preparation and modest computer 
requirements for carrying out a series solution have 
allowed a fairly comprehensive parameter study on wall- 
slab interaction to be completed relatively easily. The 



231 

numerical results from the study are given in Appendices 

A4.1-A4.5. The main results are summarised in Fig. 4.11 

to 4.14. 

Fig. 4.11(a) shows the variation of effective width 

ye/Y with wall opening'ratio L/X for various slab aspect 

ratios Y/X. The results are based on coupled plane walls 

of zero thickness. The corresponding results for walls 

with a relative wall thickness h/X of 1/50 are shown in 

Fig. 4.11(b). Both sets of results were evaluated using 

four nodes and 40 harmonics in the series solution (Fig. 

4.15, (a) and (b)). 

The above curves are applicable to cases where the 

coupled walls are relatively thin. The effective width 

values for thick walls or box cores with no corridor 

access openings are practically identical to those for 

coupled T-shaped flanged walls presented in Fig. 4.12(a-d). 

These results were evaluated using two web nodes and 

between one and six flange nodes depending on the flange 

width, and taking 40 harmonics for the series solution 

performed on a symmetric slab quadrant. (Fig. 4.15, (c) and 

(d)). 

Fig. 4.13 (a-d) show the results for coupled planar- 

flanged wall configurations. The analysis of coupling 

action was performed on a symmetric half of the slab panel. 

The plane wall was represented by four nodes and the 

flanged wall by two web nodes and between one and six 
flange nodes depending on the flange width (Fig. 4.15(e)). 

The influence coefficients were evaluated to 60 harmonics 

in anticipation of the slower convergence associated with 

a smaller aspect ratio b/a and with a more acute 
displacement pattern when both walls are considered. 

The curves for effective widths for slabs coupling a 

pair of L-shaped flanged walls with interior flanges on 

opposite sides of the wall line are shown in Fig. 4.14(a-c). 

Due 
, 
to the absence of symmetry conditions in the principal 

directions, the analysis of the slab was performed on a 
full panel. Each wall was represented by four web nodes 
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and between one and four flange nodes (Fig. 4.15(f)). 

Again 60 harmonics were taken for the evaluation of 
influence coefficients. 

4.4.1 COMPARISON BETWEEN SERIES SOLUTION AND FINITE ELEMENT 

SOLUTION 

(a) Effective Widths 

The curves-presented in Fig. 4.11-4.14 are very 

similar to the design curves evaluated by the finite 

element method in Chapter 3 (cf. Fig. 3.10,3.32,3.43 and 
3.50). - Effective width values given by the two sets of 

curves generally differ by less than 10%. The comparison 

of typical curves for various wall configurations is 

illustrated in Fig. 4.16. It is seen that generally the 

effective width values obtained by the series solution are 

slightly higher 
. than the finite element results. 

(b) Stress Resultants 

Fig. 4.17 shows a comparison of the bending moments 
in the slab along a transverse section through the inner 

edge of the wall evaluated by the series solution and by 

the finite element solution. The bending moments have 

been expressed in the non-dimensional form of moment 
factors defined in Chapter 3 (Section 3.4.2.4). The 

results are based on walls of zero thickness, and four 

nodes and 40 harmonics were used in the series solution. 
It is seen that except at points very close to the tip of 
the wall where the bending moments are theoretically 

infinite, the agreement between the two solutions is very 
close and the two curves are almost indistinguishable 

throughout most of the range. Although results have been 

shown only for one section across the slab, the results 
for other sections and other slab proportions have been 
found to yield the same degree of accuracy. 

Fig. 4.18, (a) to (e), illustrate the comparison 
between the series solution and the finite element solution 
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for distributions of bending and twisting moments and 

shearing forces at various longitudinal sections through 

a slab coupling a pair of plane walls with finite wall 
thickness. Four nodes and 40 harmonics were again used 
for the series solution. The finite element solution 
used a relatively refined mesh pattern consisting of 270 

elements. Close agreement is achieved between the two 

solutions for all the stress resultants at various sections. 
The close approximation of the discontinuous distribution 

of Mx at the section y/b -0 (Fig. 4.18(a)) by a 

continuous curve evaluated by the series solution is worth 

noting in particular. 

4.5 CONCLUSIONS 

The influence coefficient method has been tested for 

both convergence and accuracy against available data and 
has been shown to furnish accurate results for both slab 

stiffness and stress resultants with a considerable saving 

on computational effort. When evaluating influence 

coefficients from the infinite harmonic series some 20 to 

40 terms are adequate for practical purposes. When 

modelling the interaction forces between slab and wall 

greater accuracy is obtained when both point loads and 

point moments are included. Results of sufficient 

accuracy can be obtained using a very small number of nodes 
to represent the wall. A parameter study carried out by 

the influence coefficient method not only establishes the 

versatility of the technique but also confirms the results 
of an earlier investigation by the finite element method. 
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CHAPTER 5 

EFFECTS OF LOCAL ELASTIC WALL DEFORMATION ON THE 
INTERACTION BETWEEN FLOOR SLABS AND SHEAR WALLS 

5.1 INTRODUCTION 

Methods of coupled wall analysis commonly use the 

engineer's theory of bending to describe the behaviour of 

wall sections under the action of lateral loads and 
coupling forces. The theory assumes that plane sections 
of the wall remain plane in bending, which implies that 

local deformations and stress concentrations do not arise 
in the wall. Following this simplifying assumption, the 

axial displacement of points on the wall/slab junction 

can be readily calculated from a knowledge of the wall 
rotation. This has allowed the analysis of wall/slab 
interaction to be conveniently carried out by considering 

only the slab in the analysis as described in Chapter 3. 

The results thus obtained have shown the presence of 
highly concentrated reactions at the coupled edges of the 

shear walls, due to the coupling action of the slab. In 

practice, such concentration of forces must lead to local 

elastic deformation in the wall. In coupled plane-walls, 
the local elastic deformations consist of only in-plane 

deformations. With coupled flanged walls, in addition 
to local in-plane deformation, out-of-plane bending of 
the relatively flexible wall flanges must also occur. 

The flexibility of the slab/wall junction produced 
by the local elastic wall deformation reduces the coupling 
action of the slab. This would lead to higher cantilever 
wall stresses and deflections compared to values calculated 
assuming no local wall deformation. Therefore, 

neglecting the effects of local wall deformation when 
evaluating the coupling stiffness of the floor slab can 
lead to results which err on the unsafe side for the wall 
system. Also, by overestimating the coupling action of 
the floor slab, the design of the slab section, if 
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controlled by lateral load effects, may become too 

conservative, resulting in a wasteful use of materials, 

which can contribute significantly to the overall building 

cost since the wastage is repeated at a large number of 

floors in a multistorey building. It is therefore 

important to be able to evaluate the effects of local 

elastic wall deformation and to account for these effects 

in the calculation of the slab stiffness and slab stresses. 

In this chapter the numerical results, obtained by 

the finite element method, showing the relative influence 

of various structural parameters on the wall/slab junction 

flexibility and on the coupling action of the slab are 

discussed. Design curves which allow the rapid evaluation 

of effective slab width and critical bending moment 

distribution for slabs coupling plane walls, T-section 

flanged walls and box cores, taking into account the 

effects of local elastic wall deformation, are presented. 

The significance of local elastic wall deformation effects 

in the design of the structure is illustrated by worked 

examples for typical cross-wall multistoreyed buildings. 

5.2 METHOD OF ANALYSIS 

The study of the wall-slab. interaction which takes 

into account the effects of local elastic wall deformation 

can only be satisfactorily carried out by considering the 

wall and slab components together as an integral unit in the 

analysis. By assuming that the most significant elastic 

wall deformations due to the coupling action of the slab 

are localised in an area close to the wall slab junction, 

it is sufficient to consider only a section of each wall 

extending approximately one floor height above and below 

the floor slab in the analysis. The finite element 

method is again used to analyse the wall-slab interaction. 

Because of the spatial nature of the wall slab assembly it 

is necessary to use for the finite element analysis flat 

shell elements capable of representing in-plane as well 

as bending deformations which arise due to the interaction 



258 

of the various plate components. By taking advantage of 
the symmetry and anti-symmetry conditions which exist in 

the plan configuration, the actual analysis for the 

complete interior wall/slab panel can be reduced to the 

analysis of a typical quarter-panel as shown in Fig. 
5.1(a). By further taking advantage of the anti-symmetry 
condition with respect to wall deformation above and below 
the floor slab, one section of the wall can be omitted by 
doubling the stiffness of the other wall section and by 

restraining the slab against horizontal translation (Fig. 

5.1(b)). 

To evaluate the coupling stiffness of the slab against 
unit wall rotation, an arbitrary vertical deflection b is 

imposed at the slab edge representing the line of inflexion 

at the centre of the corridor, while the remote ends of the 

wall are fully restrained (Fig. 5.1(c)) . The reaction Q at 
this edge is evaluated in the finite element analysis and 
the resultant moment of this reaction about the wall axis 
is calculated as 

ý°Q la 

where la- (L + W)/2, and L and W" are respectively the 

corridor width and wall length. Neglecting the effects 

of overall wall axial deformation and overall wall bending 

rotation at the wall-slab junction, which are found to be 

negligibly small in relation to the displacements in the 

slab, the effective slab rotation 0 is calculated simply 
as 

0a6 Jla 

The slab stiffness factor K is then expressed as 

K* M 
e ßý 

and the effective slab width Ye*/Y is, from equation (3.3a), 

* Ye K* Lý Lý2 
Ya 6( 'Y L+W 

(5.1) 

where Y is the full slab width and v is Poisson's ratio. 
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In order to `provide a measure of the flexibility 

produced by local elastic wall deformation, the corresponding 
results for the case of a 'rigid wall' (no local elastic 
wall deformation) have to be evaluated. This can be done 

simply by re-analysing the same wall/slab panel with 
additional fixity conditions prescribed at the wall/slab 
junction, or more economically, by a separate analysis of 
the slab using only plate bending elements, as described 
in Chapter 3. If K-and Ye are respectively the slab 

stiffness factor and effective slab width evaluated for 

the case of a'rigid wall', then the junction flexibility 

may be conveniently measured by the stiffness ratio K*/K 
Ye*/Ye) . 

The slab stiffness factor K 
or K refersto relative 

rotations of the ends of the equivalent-beam, measured at 
the centre-line of the cross-wall. With an asymmetric 

wall section, for instance a T-section, the centre line 

of the cross-wall does not coincide with the' centroidal 

axis of the whole section. The slab stiffness, referred 
to the centroidal axes, may be obtained from the results, 

referred to the centre line axes, simply by the relation- 

ship 
* Kc- 

ý (ý, 2 
7 (5.2) 

where lc is the distance from the centre of the corridor 
to the centroidal axis of the wall, and K* is the slab 

stiffness referred to the centroidal axes. 

5.3 ELEMENT EVALUATION 

Two simple flat shell elements which have been 

successfully used for the analysis of various spatial or 
shell structures are examined in this study to assess their 
suitability for the present investigation on elastic wall! 
slab interaction allowing for local elastic wall 
deformation effects. Element RS24, which is built up 
from the rectangular bending element RB12 and the plane- 
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stress element RP8, has been used by Zienkiewicz and 
Cheung26 in the analysis of arch dams and by Rockey and 
Evans63 in the analysis of folded plate structures. The 

second element, TS18, formed by combining the triangular 
bending element TB9 with the constant-strain triangular 

plane-stress element TP6, has been used successfully in 

the analysis of various shell structures, by Parekh. 38 

The desirable convergence characteristics of the 

bending elements RB12 and TB9, and their superior 

performance over more refined elements, for the study of 

slab coupling, have been demonstrated in Chapter 3. The 

convergence characteristics of the plane stress elements 
RP8 and TP6, when used in the standard cantilever beam 

problem, have been reported in the literature. The 

superior performance of the rectangular element over the 

triangular element is generally accepted. In the present 
investigation on wall/slab interaction, the plane-stress 

element is to be used in a situation quite different from 

the standard beam problem. The element is now required 

to model the state of deformation in an elastic continuum 

subjected to concentrated loads applied within the 

continuum. The performance of the two plane-stress 

elements have therefore to be evaluated under the present 

conditions. In order to simplify the computation of 

exact values of deformation and stresses against which the 

finite element results could be compared, a standard 

problem of a half-plane subjected to a unit tangential 

point load at the straight edge is considered for the 

evaluation of the elements. This problem is considered 

reasonably representative of the slab-coupled plane-wall 

problem, where the most significant slab reaction on the 

wall consists of a concentrated force at the inner edge 
of the wall. 

For the finite element analysis of the half-plane, a 
finite rectangular area enclosing the load point is 

considered. The boundaries of the area considered are 
assumed sufficiently remote from the influence of the point 
load such that deformations along the boundaries are 
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negligible. Two different mesh divisions are considered 
to give an indication of the convergence of the finite 

element solution. The two mesh divisions are shown 
together in Fig. 5.2. By taking advantage of the skew 
symmetry with regard to deformation or stresses above and 
below the normal axis y, only one half of the area above 
or below the y-axis is actually analysed. The influence 

of the other half is represented by doubling the values 

of the element stiffness matrices for the first half and 
by restraining points on the y-axis against horizontal 

displacements. 

To check the relative accuracy of various finite elem- 

ent results, the distribution of displacements and stresses 

at a number of sections, evaluated by the finite element 

method, are compared with results from an elasticity 

solution. 
64 Fig. 5.2 shows the comparison of results for 

the vertical displacement bx 
xao along the y-axis, the 

horizontal displacement Öy, 
y'=o along the free edge, the 

vertical stress C'x, x--2.5 along a horizontal section at 

xs -2.5, and the vertical stress Q 
x, y=o 

along the free 

edge. 
In the elasticity solution, 

64the 
stresses are 

calculated according to the equation 

Q X *r (x +y ) 

where P is the point load. 

The displacements are calculated from the expressions 

6 

and 6 

x, X, O °ý 
j (1+y) - (1-y) z+2 log ä 

mp (1 
(. = 

-X) y, y-O E2d 

which are derived by assuming a point on the x-axis at 
distance d from the origin to be fully restrained from 
displacements in the x and y directions. 64 E and ' in 
the above expressions are respectively Young's modulus and 
Poisson's ratio. 

2P x3 a- 
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It is seen from Fig. 5.2 that the numerical values 
of displacements and stresses obtained with both elements 

converge towards the elasticity solution, as the mesh 
size is reduced. Values of the displacements bx 

xa0 
and bY, 

Y. at all points except the singular point O 
beneath the load, calculated with the fine mesh rectangular 

element, agree very well with the elasticity solution. 
Corresponding values of stresses "x 

x--2.5 
and Cr O 

, Y" 
obtained by these two solutions also agree reasonably well. 
In the case of the fine mesh triangular element, it is 

seen that although the finite element values of bx 
x=O 

agree very well with the elasticity solution, values of 
by' 

y-O, especially near the point load, show rather poor 

agreement with the results from the elasticity solution. 

The stress x, y, =0 
obtained by the triangular element show 

very poor agreement with the elasticity solution near the 

point load, but elsewhere good agreement is obtained 
between the two'results. 

It can be seen that, generally, the rectangular 

element RP8 gives a better performance than the triangular 

element TP6. When a reasonably fine mesh is used in the 

discretisation of the continuum, the rectangular element 

can give reasonably accurate results for displacements 

as well as for stresses, and is therefore suitable for use, 

when combined with the bending element RB12, in the 

investigation of local elastic wall deformation effects in 

slab-coupled. wall systems. 
For the numerical investigations described in the 

following sections, the rectangular shell element RS24 is 

used as the primary element in the finite element analysis. 
The triangular element TS18 is used as a secondary element 
where required to provide a transition between fine and 
coarse rectangular element mesh patterns. 
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5.4 COUPLED PLANE-WALL CONFIGURATION 

5.4.1 VARIABLES TO BE CONSIDERED 

The local elastic deformation in plane walls, due to 
the coupling action of floor slabs, consist only of in- 

plane deformations. Since for a unit wall rotation, the 

magnitude of the reaction, transferred, from the slab to 
the wall, depends on the slab thickness, and the amount 

of wall deformation under load is dependent on wall 

. 
thickness, the relative slab and wall thicknesses must 
have an important influence on the extent of local elastic 

wall deformation and on the effective coupling stiffness 

of the slab. The wall dimensions, viz., the height and 
length, can be expected to have some influence on the 

coupling stiffness of the slab, since the wall-slab 
junction deformation is affected to a certain extent by 

the proximity of the wall boundaries. The corridor 

opening width and the slab width both influence strongly 

the coupling stiffness of the slab as shown -in the 

previous Chapter. The effect of local elastic wall 
deformation can be expected to vary for different corridor 

opening ratios and slab aspect ratios. 

5.4.2 CONVERGENCE WITH MESH DIVISION 

In order to provide some guidance on the choice of 

suitable mesh divisions for the parameter study, three 

different mesh divisions ranging from coarse to fine, -as 
reflected in the 

, 
sub-division of the wall, are considered 

for the discretisation of the wall/slab panel having the 

. 
characteristic ratios L/X - 0.2, Y/X - 0.4 and F/W - 0.5. 
The wall and slab thicknesses are taken as h- 305 mm 
(12 in. ) and t- 229 mm (9 in. ) respectively, with the 
building width X- 15.25 m (50 ft. ). The three element 
mesh divisions for the wall/slab panel analysed are shown 
in Fig. 5.3. For Mesh 2 and Mesh 3; the sub-division of 
the wall is varied in mesh size, with the finest mesh in 
the region where the slab reaction is most highly 

concentrated. 
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Values of slab stiffness factor K*, and effective 
width Ye Y, obtained from the finite element analyses are Ye 

shown in Table 5.1, from which it can be seen that the 

results for the three different mesh divisions are almost 
identical. It may be noted that the results obtained do 

not indicate monotonic convergence with respect to mesh 
size. This often happens when non-conforming elements 
are used for the finite element analysis. Since the 

results for the three mesh divisions are in very close 
agreement, it is unlikely that further mesh refinement 

will produce any substantial change in the results. It 

appears clear that there is not much point in sub-dividing 
the wall more finely than in Mesh 2. Although the results 
obtained from Mesh 1 are as good as the results for the 
finer meshes, the sub-division of the wall appears 
disproportionately coarse in comparison with the sub- 
division of the slab. Mesh 2, on the other hand, gives a 
more balanced sub-division of the wall and slab and also 
has reasonable computer requirements. Mesh patterns 
similar to Mesh 2 will therefore be used in the parameter 
study.. 

5.4.3 COMPARISON OF RESULTS OBTAINED BY RECTANGULAR AND 

TRIANGULAR ELEMENTS 

In order to provide a check on the convergence results 
obtained by the rectangular elements an analysis of the 

wall/slab panel is performed using the triangular shell 
element TS18. The triangular mesh division of the wall/ 
slab panel corresponds to Mesh 2 in the convergence study, 
with the sub-division of the rectangular mesh into two 
triangles along a diagonal. Values of K and Y 

e/Y 
obtained by the two different elements are compared below: 

Element Type Y*/Y 
e 

Rectangular Element RS24 34.071 0.3227 
Triangular Element TS18 34.466 0.3264 

It is seen from the comparison that the results for the 
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triangular element are just over 1% higher than the results 
for the rectangular element. The close agreement between 

the results obtained by two different elements may be 

taken as an indication of the reliability of the results. 

5.4.4 INFLUENCE OF STOREY HEIGHT 

In this investigation, three storey heights defined 

by F/X - 0.1,0.2 and 0.3 are considered for a wall/slab 
configuration with L/X - 0.2, Y/X - 0.4 and t/h - 0.75, X 

being taken as 15.25 m, (50 ft) and h as 0.305 m (1 ft). 

The slab stiffness factor K* and the effective width Ye* /Y 

evaluated for the three storey-heights are compared in 

Table 5.2 in which is also shown the corresponding results 
for the case of rigid walls. It is seen from the results 
that varying the storey height over the practical range 

considered has very little effect on the coupling stiffness 

of the slab. The difference between values of K* or 
Y/Y for the smallest and largest storey heights is less 

than 1%. The flexible-wall results are approximately 80% 

of the rigid-wall results. 

5.4.5 INFLUENCE OF WALL LENGTH 

In this investigation, three wall lengths with W/L - 
0.5,0.75 and 1.0 are considered for slabs with a constant 

ratio Y/L of unity and with slab to wall thickness 

ratios t/h of 0.5 and 0.75. The corridor opening width L 

and the wall thickness h are respectively taken as 6.10 m 
(20 ft) and 0.305 m (1 ft. ). The results obtained for 

the effective width Ye*/Y for the various cases are shown 
in Table 5.3, in which are also shown the results for the 

case of rigid walls. It can be seen from the results 
that for the range of ratios W/L greater than 0.5, the 
influence of wall length on the effective width is very 
small. The difference between the results for W/L - 0.5 

and W/L - 0.75 is of the order of 11%, the result for W/L- 
1.0 being practically identical to that for W/L - 0.75. 
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5.4.6 INFLUENCE OF WALL AND SLAB THICKNESSES 

The influence of wall thickness and the influence of 
slab thickness on the effective coupling of locally 
deformable walls is investigated for a typical wall/slab 
configuration with L/X - 0.2 and Y/X - 0.4, X being taken 

as 15.25 m (50 ft). The storey height F for the wall is 

taken as 3.05 m (10 ft) in all cases. The wall thickness 

and the slab thickness, expressed respectively as ') - 50h/X 

and ý- 50 t/X for convenience, are varied over the range 

-0.5to2.0and -0.125to2.0tocover all likely 

wall and slab dimensions encountered in practical buildings. 
Four slab/wall thickness ratios given by t/h - 0.25,0.5, 

0.75 and 1.0 are obtained by various combinations of the 

slab and wall thicknesses to enable the influence of this 

parameter to be examined. The finite element discret- 

isation of the wall/slab panel follows Mesh 2 shown in 

Fig. 5.3. 

The numerical values of the slab stiffness factor K* 

and the effective width Ye*/Y evaluated for the various 

cases are shown in Appendix A5.1. Values of the 

stiffness ratio K*/K representing the ratio of 'flexible' 

wall coupling stiffness to the'rigid' wall coupling 

stiffness have also been included in the same Appendix. 

The variation of K*/K as' a function of ') is shown 
graphically in Fig. 5.4(a) for various values of ý and 
t/h. It can be seen from the curves that with a constant 
slab thickness ý, K*/K increases with increasing wall 
thickness , whereas with a constant wall thickness 1), 

K*/K decreases with increasing values of slab thickness 

and slab wall thickness ratio t/h. 

The values of K*/K for all combinations of r) and 
can in fact be plotted on a single curve showing K*/K as 
function of ý /n 1/3 

as shown in Fig. 5.4(b). This follows 
from the fact that the slab reaction varies cubically with 
the slab thickness, and the elastic wall deformation 

varies directly with the slab reaction and inversely with 
the wall thickness. It can be-seen from Fig. 5.4(b) that 
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K*/K decreases with increasing values of ý/, )1/3. 

According to this reasoning, the effects of local elastic 

wall deformation should vanish as the slab thickness 

approaches zero or as the wall thickness becomes infinitely 

large which means that K*/K should approach unity when 
/I) 1/ý 

approaches zero. Although the curve in Fig. 5.4(b) 

indicates this trend most of the way from ý /n1/3 . 1.6 to 

0.5, K*/K approaches a maximum value of approximately 0.92 

instead of unity. This inconsistency may be due to the 

influence of numerical errors introduced into the finite 

element solution when the disparity between the slab 
thickness and wall thickness becomes too large. The 

inconsistent portion of the curve, however, is of no pract- 
ical significance, since in practice the value of ý /nl/3 

is seldom less than 0.5, at which value the effects of 
local elastic wall deformation are practically negligible. 

5.4.7 INFLUENCE OF SLAB WIDTH AND CORRIDOR OPENING WIDTH 

Having established that the stiffness ratio K*/K 

varies with the single parameter ý/Y) 1/3 instead of with 

two independent parameters ý and h for a particular wall 

slab configuration, it is now easier to examine the 

influence of the two remaining parameters, namely, the 

slab aspect ratio Y/X and the corridor opening ratio L/X, 

simultaneously with the variation of ý/nl/3. For this 

investigation, it is convenient to consider unit value of 

,), i. e. 50h/X - 1. The other variables are varied over 

a wide range of values covering most practical situations. 
The building width X and storey height F, are again taken 

as 15.25 m (50 ft) and 3.05 m (10 ft) respectively for 

this investigation. The finite element discretisation of 
the wall/slab panel uses between 159 and 201 nodes 
depending on the structural dimensions. 

The values of the slab stiffness factor K* and the 

effective width Ye*/Y evaluated from the finite element 
analyses are shown in Appendices A5.2, (a) and (b), 

respectively. The corresponding results for the case of 
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rigid walls have also been included in these Appendices 

to provide a measure of the flexibility produced by local 

elastic wall deformation. Curves showing the variation 

of Ye/Y as a function of L/X for various values of 
1/3 

and Y/X are presented in Fig. 5.5(a)- (c). These may be 

used as design curves to evaluate directly the effective 

widths of slabs coupling 'flexible'walls which allow for 

local elastic wall deformation. It can be seen from the 

curves that Ye*/Y decreases almost linearly with the 

increase in the value of ' /1)1/3 for most of the range of 
the ratios L/X and Y/X. 

Values of the stiffness ratio K*/K (evaluated from 

the results of Appendix A5.2 (a) or (b)) are shown in 

Table 5.4 from which it can be seen that K*/K is influenced 

significantly by ý /J/3 and L/X but not by Y/X. The 

variations of K*/K, averaged over the range of ratios Y/X 

considered, as a function of ' /Y)1/3 for various ratios 

L/X, and as a function of L/X for various values 9/y) l/3 

are shown graphically in Fig. 5.6(a). These curves may 

be used in conjunction with the design curves for Ye/Y 

presented for the case of rigid walls in'Chapter 3, to 

evaluate more accurately the effective slab width which 

accounts for the effects of local elastic wall deformation. 

It can be seen from the variation of K*/K with L/X that 

the effects of local elastic wall deformation become more 

significant when the wall-opening ratio becomes smaller. 
With very narrow corridor openings, (i. e., with L/X < 0.2) 

there is asubstantial reduction in the coupling stiffness 

of the slab produced by the local wall deformation. 

5.4.8 DESIGN CURVE FOR STIFFNESS RATIO 

In Fig. 5.6 (a) the variation of K*/K with the various 
parameters has been described by a series of curves. In 

evaluating the 'stiffness ratios for specific slabs, the 

need to interpolate between the curves generally makes the 

use of these curves rather inconvenient. By a proper 
combination of the principal variables which influence the 
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variation of K*/K, it is possible to reduce- the number 

of curves required to describe the variation of K*/K fully 

to just one single curve. If the values of K*/K for 

various combinations t, h and L from Table 5.4 are 

plotted as a function of t/ (L2h)1/3, all the plotted 

points will be seen to lie very close to a single curve 
which is shown in Fig. 5.6(b). This seems to follow from 

the fact that the end reactions of a flexural member 

subjected to a constant end rotation vary inversely as 
the square of the span length and directly as the cube of 
the member thickness, and from the fact that the elastic 

wall deformation varies directly with the slab reaction 

and inversely with the wall thickness. 
The curve of K*/K against t/(L2h)1/3 shown in Fig. 

5.6(b) becomes much more convenient to use as a design 

curve than the previous sets of curves shown in Fig. 

5.6(a). As mentioned previously, K*/K is practically 

unaffected by the variation in slab aspect ratio Y/X. 

Therefore the design curve in Fig. 5.6(b) may be used for 

all practical slab aspect ratios. It may be noted from 

the trend of the curve that K*/K approaches zero when 
t/(L2h)1/3 becomes very large amd K*/K attains a value of 

unity when t/(L2h)1/3 is zero. 

5.4.9 'EFFECTIVE SPAN EXTENSION 

The wall/slab junction flexibility due to the local 

elastic wall deformation may be accounted for in the 

calculation of the lateral stiffness of the coupled wall 
system by evaluating the stiffness of the coupling slab 
either from the 'flexible wall' effective slab width 
given by the curves in Fig. 5.5(a) to (c) or from the 
'rigid wall' effective slab width in conjunction with the 

stiffness ratio given by the curve in Fig. 5.6(b). In 

either case, the actual clear opening between the walls is 

used as the span of the equivalent coupling beam in the 
stiffness calculation. Another convenient way of allowing 
for the additional wall/slab junction flexibility, when 
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the 'rigid wall' effective slab width is used in the 

stiffness calculation for the coupled wall system, is to 

allow an effective extension of the clear span of the 

equivalent coupling beam. For beam-coupled wall systems 
Michael65 and Bhatt66 have shown that the effective span 

extension could be approximately taken as equal to the 

beam depth. Such a simple approximation, it will be 

shown, cannot be applied to the case of slab coupled wall 

systems. 
The effective span extension can be related to the 

stiffness ratio K*/K as follows: - - 
The stiffness factor of the coupling slab is given 

by 

Ka6 (1-V2) z2Ye/L3 

where z- (L+W), the distance between wall centroids. 
With similar values for z and for Ye in both the 'flexible 

wall' and 'rigid wall' cases, the stiffness ratio can be 

expressed as 

K*/K m (L/L* )3 (5.3) 

in which L* is the extended 'flexible' span of the 

equivalent beam, given by 

L* °L+e 

where a is the effective span extension. 

The effective span extension may then be expressed as 

L° (g*)lI3 -1 (5.4) 

The effective span extension is seen to be influenced by 
the clear span L, the wall thickness h and the slab 
thickness t. Since Michael's approximation when applied 
to the coupling slab would apparently consider only the 
influence of the slab thickness t, it is seen to be 
inapplicable in this case. The curve of e/L against 
t/ (L2h)1/3-has been included in Fig. 5.6(b) as a 
supplementary design curve. 
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5.4.10 INFLUENCE OF LOCAL ELASTIC WALL DEFORMATION ON 

CRITICAL BENDING MOMENTS IN SLAB 

Curves showing the distribution of longitudinal 
bending moment factors Mx (cf. Section 3.4.2.4) along the 
critical transverse slab section through the coupled end 
of the wall, for 'flexible' wall configurations with 
various t/h. L/X and Y/X ratios are shown in Fig. 5.7(a) to 
M. The curve for the case of 'rigid' wall has been 
included in each set of curves for the purpose of 
comparison. The curves for various slab/wall thickness 

ratios are based on results obtained assuming a constant 
wall thickness h-0.305 m (1 ft) and a constant slab 
length X .. 15.25 m (50 ft). In the finite element 
analysis for each case, the wall and slab were idealised 

as interconnected along a line of nodes at the intersection 

of their-middle planes. 
It is seen from the various sets of curves that the 

critical bending moment distribution is strongly influenced 

by the slab/wall thickness ratio. With normal slab/wall 
thickness ratios ranging from 0.5 to 1.0, the effects of 

wall/slab junction flexibility result in a substantial 
reduction in the slab moment factors, especially in the 

critical region around the coupled ends of the wall. The 

reduction in critical moment factors is seen to be 

strongly influenced by the corridor opening ratio, but 

not by the slab aspect ratio. This is in agreement-with 
observations on the reduction of slab stiffness due to 
local wall deformation effects. 

The curves for the 'flexible' wall cases may be used 
to evaluate,, more realistically than is possible with 
curves for 'rigid' wall cases, the critical bending 

moments required for the preliminary design of the slab 
section. 

5.5 COUPLED FLANGED WALL (T- SECTION) CONFIGURATION 

5.5.1 VARIABLES TO BE CONSIDERED 

The variables, namely wall thickness, slab thickness, 
slab width and corridor opening width, which have been 
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considered for plane wall configurations must also have 

some influence on the local elastic wall deformation in 

flanged wall configurations. Since out-of-plane bending 

of the wall flanges occurs in addition to in-plane 

deformation when the slab interacts with the wall, the 

relative slab/wall flexural stiffness should have an 
important influence on the flexibility of the slab/wall 
junction. The wall flange becomes more flexible as the 

flange width increases, and therefore the influence of 
flange width ratio must also be considered in addition to 

the slab/flange thickness ratio. The effect of differ- 

ences between web and flange wall thicknesses is not 

expected to be significant in the evaluation of slab/wall 
junction flexibility due to local elastic deformation 

effects, since the slab/wall interaction is effected 

principally at the directly-coupled flanges. Therefore, 

to minimise the number of variables which have to be 

considered, equal web and flange wall thicknesses are 

assumed in this investigation, since most practical flange 

walls are constructed as such. 

5.5.2 FINITE ELEMENT DISCRETISATION 

A typical finite element idealisation of the flanged 

wall/slab panel considered in this investigation is shown 
in Fig. 5.8. Symmetry conditions allow the analysis to 

be performed on the reduced structure shown. Rectangular 

and triangular flat shell elements are used together in 

the same analysis, the triangular elements being introduced 

to allow a transition from a coarse to a fine mesh formed 
by the rectangular elements. The coarsest mesh is used 
in regions where least coupling action is expected (i. e. 
in the wall web and in the slab behind the flange line). 
The finest mesh is used in the areas around the flange/ 

slab junction where large rapidly varying stresses and 
deformations are expected. The use of varied rectangular 
mesh patterns with triangular mesh transitions allows the 

number of elements or nodes for the problem to be kept to 
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a reasonable minimum and eliminates the use-of unduly 

elongated rectangular elements. Throughout the 
investigation, the number of nodes used in the d iscr et is- 

ation varied between 142 and 156 nodes depending on the 

structural dimensions. 

5.5.3 EFFECTIVE FLANGE WIDTH 

The presence of local elastic wall deformation reduces 
the effective width of the floor slab. The reduction in 

the effective slab width may be imagined as being produced 
by an equivalent reduction in the flange width of a rigid 
flanged wall in which no local elastic wall deformation 

occurs. By comparing the value of the 'flexible wall' 

effective slab width with values for 'rigid' walls of 

various flange widths Z, an effective 'rigid' flange width 
Z* can be established for the 'flexible' wall. The use of 

an effective flange width then allows the correct effective 

slab width to be evaluated from design data presented for 

slabs with rigid flanged walls. 

5.5.4 INFLUENCE OF STOREY HEIGHT 

For plane wall configurations it has been shown in 

Section 5.4.4 that the wall/slab junction flexibility due 

to local elastic wall deformation is practically 

unaffected by variations in the storey height. For the 
flanged wall configuration it appears possible that 

variations in storey height may have some significant 
influence on the wall/slab junction flexibility because of 
bending of the wall flanges. In this investigation two 

practical storey heights F/X of 0.2 and 0.3 are assumed 
in the evaluation of the coupling stiffness of a slab in 

a typical flanged wall configuration with Y/X - 0.4, 
L/X - 0.2 and Z/Y - 0.5, X being assumed as 15.25 m 
(50 ft). The wall and slab thicknesses are assumed to 

be respectively 0.305 m (1 ft) and 0.229 m (0.75 ft). The 

numerical results obtained for K*, Ye*/Y and K*/K for the 
two cases are shown in Table 5.5. It is seen that the 
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results for the two different storey heights do not differ 

by more than J°%, indicating once again that the influence 

of storey height may be neglected in the evaluation of 
local elastic wall deformation effects on the coupling slab. 

5.5.5 INFLUENCE OF WALL THICKNESS AND SLAB THICKNESS 

The influence of wall thickness and slab thickness on 

wall/slab junction flexibility is investigated for a 
typical flanged wall configuration with Y/X - 0.4, L/X - 
0.2 and Z/Y - 0.5, X being taken as 15.25 m (50 ft). Two 

slab/wall thickness ratios t/h of 0.5 and 1.0 are 

considered, and these ratios are made up of various 

combinations of slab thickness t and wall thickness h. The 

slab thickness and wall thickness are respectively varied 

over the range, t - 0.153 m (0.5 ft) to 0.305 m (1.0 ft) 

and the range h-0.153 m (0.5 ft) to 0.61 m (2.0 ft), 

covering most practical situations. 
The numerical results obtained for the slab stiffness 

factor K*, the effective width Ye/Y and the stiffness ratio 

K*/K are shown in Table 5.6 for the various wall and slab 

combinations. It is seen from these results that for a 

"fixed slab/wall thickness ratio t/h, increasing the slab 
thickness t and the wall thickness h increases only 

marginally the flexibility of the wall/slab junction, the 

effect being relatively greater for the larger t/h ratio, 

where a 4% difference between the largest and smallest 

values of K*/K is noted. Since for a fixed slab/wall 
thickness ratio t/h, variations in the slab thickness t 

and wall thickness h do not affect the wall/slab junction 
flexibility significantly, compared to the influence of 
the slab/wall thickness ratio itself, only one value of 
the slab thickness t-0.23 m (0.75 ft), will be considered 
when the influence of other parameters is investigated. 

5.5.6 INFLUENCE OF SLAB/WALL THICKNESS RATIO 

The influence of slab/wall thickness ratio t/h on 
wall/slab junction flexibility is investigated by varying 



275 

t/h over a wide range of values from 0.25 to 1.5, in the 

typical configuration described 
_in 

the preceding section. 
Values of K*, Ye/Y, K*/K and Z*/Z evaluated for the various 

cases are given in Appendix A5.3. The variations of 
Ye/Y, K*/K and Z*/Z with t/h are shown graphically in 

Fig. 5.9(a). 

It is seen from the curves that the slab/wall thick- 

ness ratio has a strong influence on junction flexibility; 

increasing the ratio t/h decreases the values of Ye 
* /Y, 

K*/K and Z*/Z. The influence of t/h is relatively more 

significant within the range t/h of 0.5 to 1.0. The 

effective flange width ratio Z*/Z is more sensitive than 

the stiffness ratio K*/K, to variations in the slab/wall 
thickness ratio t/h. 

5.5.7 INFLUENCE OF CORRIDOR OPENING RATIO 

The influence of the corridor- opening ratio L/X on 

wall/slab junction flexibility is investigated for 

configurations with constant values of Y/X - 0.4, Z/Y 

0.5 and t/h a 0.75. The corridor opening ratio L/X is 

varied over the range 0.1 to 0.6 covering most practical 

ratios. Values of K*, Ye /Y, K*/K and Z*/Z evaluated for 

various ratios of L/X are given in Appendix A5.4. Fig'. 

5.9(b) shows the variations of Ye/Y, K*/K and Z*/Z with 
L/X. 

It is seen from the curves that the effects of junction 

flexibility become more significant when the corridor- 

opening ratio is reduced. The effective width Ye/Y and 
the stiffness ratio K*/K decrease substantially when L/X 
is reduced from 0.6 to 0.1, but the effective flange width 
Z*/Z is not affected significantly by the variation of 
L/X over this wide range. 

5.5.8 INFLUENCE OF FLANGE WIDTH RATIO 

The influence of flange width ratio Z/Y on wall/slab 
junction flexibility is investigated in wall/slab 
configurations with constant typical values of Y/X - 0.4, 
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L/X - 0.2 and t/h - 0.75. Three flange width ratios 
Z/Y - 0.25, '0.5 and 0.75 are considered together with the 
limiting case of Z/Y - 0.0 which corresponds to a plane 

wall configuration. The numerical results for the 

quantities K*, Ye/Y, K*/K and Z*/Z are shown in Appendix 

A5.5. The variations of the last three quantities with 
Z/Y are illustrated in Fig. 5.9(c). 

It is seen from the curves that the local elastic wall 
deformation produces larger reductions in the effective 

width of the slab with larger flange width ratios. The 

stiffness ratio K*/K however remains substantially constant 

over the range of flange width ratios considered. The 

effective flange width Z*/Z is also not affected 

significantly by the flange width ratio when Z/Y is larger 

than about 0.25. With smaller ratios Z/Y, the effective 
flange width Z*/Z decreases rapidly with a reduction in 

flange width ratio Z/Y. 

5.5.9 PRESENTATION OF DESIGN CURVES 

It is clear that in evaluating the slab stiffness or 

effective width which accounts for the effects of local 

elastic wall deformation, the influence of the principal 

parameters t/h, L/X, Z/Y and Y/X will have to be 

considered. To enable the production of useful design 

curves for evaluating the correct design information 

rapidly, numerical results for the slab stiffness factor 

K*, - the effective slab width Ye* /Y. the stiffness ratio 
K*/K and the effective flange width Z*/Z have been 

obtained for slab /wall configurations with a reasonably 
wide range of values for the principal parameters involved. 

5.5.9.1 Design Curves For Evaluating the Effective 
Slab Width 

The numerical values of K* and Ye* /Y obtained directly 
from the finite element analyses for the various cases 
investigated are shown in Appendices 5.6, (a) and (b). 
Curves showing the variation of Ye/Y as a function of L/X 
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for various ratios of t/h are presented in Fig. 5.10, (a) 

to (f), for various ratios of Y/X and Z/Y. These six 
sets of curves may be used as design curves for 

evaluating directly the effective slab width, accounting 

automatically for the effects of local elastic wall 
deformation. By comparing the curves for various ratios 
of t/h with the curves for the case of a rigid wall, it is 

seen that for most practical buildings, where t/h 

generally varies between 0.75 and 1.0, the effects of 
local elastic wall deformation can result in a substantial 
reduction in the effective slab width, particularly when 
the corridor-opening ratio or the flange width ratio is 
large. 

5.5.9.2 Generalised Design Curves For Evaluating 

Effective Slab Width 

The curves presented in Fig. 5.10(a) to (f) account 
for the influence of wall length W and slab length X in 

the evaluation of the effective slab width. For most 

practical cases, the influence of these parameters may be 

neglected so that instead of considering Ye /Y as a 
function of L/X and Y/X, it is necessary only to consider 
Ye* /Y as a function of L/Y, when the other variables t/h 

and Z/Y remain constant. The two sets of curves for 

Y/X - 0.4 and 0.6 with the same ratio Z/Y, showing the 

variation of Ye/Y as a function of L/X, can therefore be 

represented by a single generalised set of curves for the 

particular ratio Z/Y, showing Ye/Y as a function of L/Y, for 

various ratios t/h. The three sets of curves in Fig. 
5.10(a), (b) and (c), for the case of Y/X - 0.4, may be 

converted to generalised sets simply by replacing the 
function L/X with the new function L/Y and by changing 
the scale of the horizontal axis in each set. The 
resulting generalised sets of curves are shown in Fig. 
5.11(a), (b) and (c). These curves are now applicable to 
slabs with any normal ratios of Y/X, as can be seen by 
comparing values of Ye*/Y obtained from these curves with 
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values obtained from the curves for Y/X n 0.6 in Fig. 

5.10 (d), (e) and (f). 

5.5.9.3 Design Curves For Evaluating The Stiffness Ratio 

The numerical results for the stiffness ratio K*/K 
(evaluated from the results in Appendices 5.6(a) and (b)), 

are shown in Table 5.7. It is seen from these results 
that with any set of values for L/X, t/h and Z/Y, the 

stiffness ratio K*/K is not affected significantly by the 

slab aspect ratio Y/X. The stiffness ratio is also not 

affected significantly by the flange width ratio Z/Y when 
t/h is 0.75 or less. 

The curves showing the variation of, K*/K with L/X 

and t/h for various Y/X and Z/Y ratios are shown in Fig. 

5.12, (a) to (f). These curves, it will be noted, are 

similar in form to the curves presented in Fig. 5.6(a) for 

plane wall configurations. If desired, these curves may 
be used as design curves for evaluating the wall/slab 
junction flexibility due to the effects of local elastic 

wall deformation. The stiffness ratios evaluated from 

these curves can be used to correct the effective width 

evaluated from the curves presented for the case of rigid 

walls, in order to account for the effects of local elastic 

wall deformation. 

5.5.9.4 Approximate Curves For Evaluating The Stiffness 

Ratio 

In order to reduce the number of curves required to 
describe the variation of K*/K with the various parameters, 
values of K*/K obtained from Table 5.7 and from the curves 
in Fig. 5.12, (a) to (f), are plotted as a function of 
(t/h)/(L/X)l in Fig. 5.13, (a) to (f), for various ratios of 
ZYY and Y/X. It can be seen from each diagram that the 

points plotted for all values of t/h from 0.375 to 1.5 and 
L/X from 0.1 to 0.6 are distributed in a narrow band which 
may be approximated reasonably well by a single curve 
drawn through the middle of the band, the approximation 
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being more accurate with larger flange width ratios. The 

approximate curves of K*/K against (t/h)/ (L/X)l for 

various ratios Z/Y are presented in Fig. 5.14(a) for the 

case of Y/X - 0.4. These curves should prove more 

convenient to use as design curves than the more accurate 

sets of curves presented in Fig. 5.12(a) to (f), since 
interpolation between values of t/h and L/X is unnecessary 

when using the approximate curves to evaluate K*/K. The 

approximate curves are also reasonably accurate, giving 

values of K*/K which are generally within 5% of the 

accurate values given by the more accurate sets of curves. 
Similar approximate curves may be drawn for the case of 
Y/X - 0.6, but these curves will not be significantly 
different from the set presented for the case of Y/X - 0.4, 

since K*/K is not significantly influenced by the slab 

aspect ratio. 
The set of curves for Y/X - 0.4 can be used indirectly 

for evaluating approximately the stiffness ratio for other 

slab aspect ratios. As was shown in Section 5.5.9.2, the 

influence of wall length W or slab length X can be 

neglected in the evaluation of effective slab width, and 

Ye*/Y is essentially a function of L/Y 
, 
when t/h and Z/Y 

are constant. Therefore, with any particular slab, the 

value of X may be arbitrarily adjusted so that the ratio 

Y/X becomes 0.4. Then, if the adjusted value of X is 

used in the calculation of the factor (t/h)/(L/X)I, the 

value of K*/K, obtained from Fig. 5.14(a), gives a 

reasonably good estimate of the stiffness ratio for the 

slab. 

5.5.9.5 Design Curves For Evaluating the Effective 

Flange Width 

The numerical results for the effective flange width 
Z*/Z for the various cases investigated are shown in Table 
5.8. It is seen from these results that Z*/Z is influenced 
largely by the slab/wall thickness ratio and much less by 
the other three variables, L/X, Y/X and Z/Y. The curves 
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showing the variation of Z*/Z as a function of t/h, for 

various L/X and Z/Y ratios are presented in Fig. 5.14(b), 
for the case of Y/X. - 0.4. For clarity, only three 

curves are drawn to represent the series of curves for 

combinations of L/X and Z/Y, since many of the curves 

overlap. These curves may be used as design curves, if 
desired, to evaluate the effective flange width for a pair 

of coupled flanged walls; after which use can be made of 
the design curves presented for the case of rigid walls, 
to evaluate the correct effective slab width. 

Again, the curves of Z*/Z against t/h, if drawn for 

the case of Y/X - 0.6, will not be significantly different 

from the set for Y/X - 0.4. For most practical cases, 
the effective flange width ratio can be evaluated from the 

set of curves for Y/X - 0.4, by disregarding the influence 

of the slab aspect ratio. 

5.5.10 INFLUENCE OF'LOCAL ELASTIC WALL DEFORMATION ON 

CRITICAL BENDING MOMENTS IN THE SLAB 

In order to illustrate the influence of local wall 
deformation on critical bending moments which may control 
the design of the slab section, curves are presented in 

Fig. 5.15, (a) to (i), showing the distribution of 
longitudinal bending moment factors Mx along the critical 
transverse slab section at the inner edge of the flanged 

wall, for configurations with a typical ratio Y/X of 0.4, 
but with various ratios of t/h, L/X and Z/Y. The curve 
for the case of a 'rigid' wall, which should be theoretically 

similar to the case of t/h - 0, has been included with each 
set of curves for 'flexible walls, for the purpose of 
comparison. 

It is seen from the various curves that the effects 
of local wall deformation result in a significant reduction 

An the large bending moment factors in the slab, in front 
of the wall flanges. Since increasing the slab/wall 
thickness ratio increases the wall/slab junction flexibility, 
the reduction in bending moment factors becomes relatively 
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more significant with larger ratios t/h. Also, as the 

flanges are more flexible at the ends than at the centre 

where they are stiffened by the cross wall (web wall), the 

reduction in bending moment factors is relatively larger 

at points near the flange tip than at other points nearer 
the flange centre. The flange becomes more flexible as 
the flange width increases. This is seen to result in a 
larger reduction in bending moment factors near the flange 

tip, with a larger flange width ratio Z/Y. The reduction 
in bending moment factors near the flange centre is however 

unaffected significantly by the flange width ratio, but is 

seen to be significantly influenced by the corridor 

opening ratio L/X. This can be expected since the 

bending moment factors in this part of the slab would be 

influenced primarily by in-plane deformation of the web 

rather than by flexural deformation of the flange. 

By comparing the sets of curves for various corridor 

opening ratios L/X, it is seen that the local wall 
deformation effects produce, at the flange centre position, 

a decrease in the bending-moment factor when L/X is small 
(L/X - 0.1 - 0.2) and an increase in the bending-moment 

factor when L/X is large (L/X - 0.4). This seems to be 

consistent with the fact that as the ends of the flange 

become flexible, the coupling action is redistributed 
towards the stiffer part of the flange at the centre. The 

load redistribution would result in an increase in the 

slab bending-moment factors at the centre of the flange, 

but with small ratios of L/X, this increase would be 

offset by the larger reduction in bending-moment factors 
due to in-plane deformation effects. 

It is seen from the curves that with t/h -1 and 
L/X - 0.1, which are not unusual ratios for certain classes 
of cross-wall structures, the effects of local elastic wall 
deformation could result in as much as 50% reduction in 
the bending moment factors over a considerable portion of 
the slab in front of the wall flanges. The curves 
presented in Fig. 5.15, (a) to (i), may be used to evaluate 
realistically the critical bending moments for the 
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preliminary design of the slab section. 

5.6 COUPLED BOX-CORE CONFIGURATION 

5.6.1 VARIABLES TO BE CONSIDERED 

The slab coupling a pair of box-cores and the slab 
coupling a pair of flanged walls which have the same flange 

width as the box-cores, behave essentially alike, when the 

effects of local elastic wall deformation are disregarded. 

Since the local elastic wall deformations arise 

predominantly in the coupled wall flanges, the coupling 
stiffness of the slab in both configurations will be 

influenced by similar factors, though the relative influence 

of various parameters may not be exactly alike in both 

conf igurat ions. 

5.6.2 FINITE ELEMENT DISCRETISATION 

The discretisation of the core/slab panel for the 

finite element analysis follows a similar strategy described 

for the flanged wall configuration. A typical finite 

element idealisation of the structure considered in the 
investigation is shown in Fig. 5.16. The number of nodes 
used varied between 121 and 125 nodes depending on the 

structural dimensions. 

5.6.3 INFLUENCE OF STOREY HEIGHT 

The influence of storey height on core/slab junction 
flexibility due to local deformation effects is investigated 
by considering two extreme practical storey heights F/X 

of 0.2 and 0.3 for a typical core and slab configuration 
with L/X - 0.2, Y/X m 0.4 and Z/Y - 0.5. Three slab/wall 
thickness ratios t/h - 0.75,1.0 and 1.5 are considered 
with each storey height since the influence of storey height 
is unlikely to be similar with different slab/wall thick- 

ness ratios. 
Values of the stiffness factor K*, the effective slab 

* 
width Ye /Y and the stiffness ratio K*/K obtained for the 
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various cases are shown in Table 5.9. It is seen from 
these results that increasing the storey height F/X from 

0.2 to 0.3 reduces slightly the stiffness ratio K*/K, 
this effect being relatively more pronounced for larger 

slab/wall thickness ratios. However the influence of 
variation in storey height over the range considered is 

generally too small to be of any real practical 
significance. In the worst case considered (t/h - 1.5), 

the numerical results obtained for the two storey heights 
differ by about 4% only. For subsequent investigations 
involving the influence of other parameters, therefore, 

a constant practical storey height of 'F/X - 0.2 only will 
be considered. 

5.6.4 INFLUENCE OF SLAB AND WALL THICKNESSES 

The effects produced by variations in slab and wall 
thicknesses, while maintaining a fixed slab/wall thickness 

ratio, 'is investigated for a typical configuration with 
L/X - 0.2, Y/X - 0.4, Z/Y - 0.5 and X- 15.25 m (50 ft). 

Two slab/wall thickness ratios, t/h of 0.5 and 1.0, which 
are obtained by various combinations of practical slab 

and wall dimensions, are considered. 
Table 5.10 shows the numerical results obtained for 

the important quantities K*, Ye*/Y and K*/K for the 

various cases. It is seen from the results that with a 
fixed ratio t/h, varying the values for t and h over the 

practical range has only a small effect on the results for 

the slab. Increasing the values of t and h has the 

effect of slightly increasing the flexibility of the wall/ 
slab junction or reducing the stiffness of the slab, 
although the effect generally is too small to be of real 
signif icance. 

5.6.5 INFLUENCE OF SLAB/WALL THICKNESS RATIO 

The influence of slab/wall thickness ratio is 
investigated by varying t/h over a wide range of values 
from 0.25 to 1.5 in the typical configuration described 
in the preceding section. The numerical results for the 
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various cases are given in Appendix A5.7. Curves showing 

the variation of Ye*/Y, K*/K and Z*/Z as functions of t/h 

are shown in Fig. 5.17(a). Comparing this figure with 
Fig. 5.9(a) for, the flanged wall configuration, it is seen 

that the trends of the results in both cases are similar. 
Values of K*/K for the box-core configuration are generally 
2 to 3% higher than corresponding values for the flanged 

wall configuration when t/h has a value of 1.0 or less. 

5.6.6 INFLUENCE OF CORRIDOR-OPENING RATIO 

The influence of the corridor-opening ratio on the 

wall/slab junction flexibility is investigated by varying 
L/X over the range of values from 0.1 to 0.6, in a slab 

with t/h - 0.75, Y/X - 0.4 and Z/Y - 0.5. The numerical 

results for the usual quantities evaluated for the various 

cases are given in Appendix A5.8. Fig. 5.17(b) shows the 

variations of Ye*/Y, K*/K and Z*/Z as functions of L/X. 

Again, by referring to the corresponding results presented 

for the case of the flanged wall configuration, it is seen 

that the trends of results are similar in both cases. 

Values of K*/K for the box-core configuration are 

generally 3 to 5% higher than corresponding values for 

the flanged wall configuration, for the range of L/X 

ratios considered. 

5.6.7 PRESENTATION OF DESIGN CURVES 

Design curves, which may be used independently or in 

conjunction with the curves presented for the case of 

rigid walls, may be prepared for evaluating rapidly the 

effective slab width which accounts for local elastic wall 
deformation effects. Numerical results showing the 

variations of the slab stiffness factor K*, the effective 
slab width Ye*/Y, the stiffness ratio K*/K and the effective 
flange width Z*/Z, with the slab/wall thickness ratio t/h 

and the corridor-opening ratio L/X, have been obtained for 

a typical box-core configuration with Y/X - 0.4 and Z/Y ,. 
0.5. The numerical results are given in Appendix A5.9. 
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5.6.7.1 Design Curves for Evaluating the Effective 
Slab Width 

Curves showing the variation of Ye*/Y as a function 

of L/X for various ratios of t/h in the typical 

configuration considered are presented in Fig. 5.18(a). 

These curves are essentially similar to the set of curves 
presented for the. flanged wall configuration in Fig. 

5.10(b). By comparing corresponding values of Ye /Y 

given by both sets of curves, it is seen that discrepancies 

are generally less than 10%. The curves in Fig. 5.18(a) 

may be used as design curves for evaluating the effective 
slab width in a box core configuration with Z/Y - 0.5. 
With other flange width ratios, the effective slab width 

can presumably be approximated from the curves presented 
for flanged wall configurations since results for box-core 

and flanged-wall configurations are not likely to be 

significantly different. 

5.6.7.2 Design Curves for Evaluating the Stiffness Ratio 

Curves showing the variation of K*/K as a function of 
L/X and as a function of t/h for the configuration 

considered are shown in Fig. 5.18(b). These curves are 

seen to be similar to the curves for the flanged wall 
configuration (Fig. 5.12(b)). By plotting values of K*/K 
(Appendix 5.9) as a. function of (t/h)/(L/X) it is seen 
that all the points fall almost exactly on a single curve. 
The curve of K*/K against (t/h)/ (L/X)i is presented in 

Fig. 5.18(c) as a design curve for evaluating rapidly the 

stiffness ratio for the slab. The corresponding curve 
for the case of the flanged wall configuration has been 
included for the purpose of comparison. It is seen that 
the curves for the box-core configuration and for the 
flanged wall configuration are not significantly different, 

except for large values of (t/h)/ (L/X)I. Within the most 
practical range of (t/h)/ (L/X)i from 1 to 3, differences 
between corresponding values of the stiffness ratio K*/K 
given by the two curves generally do not exceed 5%. Again, 
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although the design curve for the box-core configuration 
is directly applicable only for slabs with an aspect ratio 
of Y/X - 0.4, it can be used indirectly for slabs with 
any other ratios of Y/X, if the value of X for the 

particular slab is arbitrarily adjusted to suit the curve, 
as described in Section 5.5.9.4. The design curve is 
however applicable only to configurations with Z/Y - 0.5. 
For other ratios of Z/Y, values of stiffness ratio K*/K 

may be approximated from the curves presented for the 
flanged wall configuration. 

5.6.8 INFLUENCE OF LOCAL ELASTIC WALL DEFORMATION ON 
CRITICAL BENDING MOMENTS IN SLAB 

The influence of local elastic wall deformation on 

critical bending moments in the slab coupling box-cores is 

illustrated in Fig. 5.19, (a) to (c). The curves show, 
for various wall/slab geometric ratios, the distribution 

of longitudinal bending moment factors b'ix (cf. Section 

3.4.2.4) at the critical transverse slab section through 

the coupled end of the core. The curves for the case of 

a rigid wall refer to the results obtained assuming no 
local elastic wall deformation. 

It is seen from the curves that as the core walls 
become flexible, the bending-moment factors in front of 
the core are reduced below the values for the case of a 
rigid wall, to an extent depending on the ratios t/h and 
L/X. The reduction in bending-moment factors is 

relatively larger with a larger ratio t/h and a smaller 
ratio L/X. 

By comparing these sets of curves with the corres- 
ponding sets for T-shaped flanged wall configurations in 
Fig. 5.15, (d) to (f), it is seen that although the 

corresponding curves for the case of a rigid wall are very 
similar, the corresponding 'flexible wall' curves for 

various ratios t/h are quite different. But the results 
shown by the curves for the box-core and for the flanged- 

wall configurations are both consistent with the fact that 
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at points where the wall flange is less stiffened by the 

wall web, the reduction in bending-moment factors is 

relatively more than that at points where the flange is 

stiffened by the web. 
The results presented in Fig. 5.19, (a) to (c), relate 

to a particular ratio Y/X of 0.4 and a particular ratio 
Z/Y of 0.5. The reduction in critical bending-moment 

factors produced by the elastic wall deformation will vary 

according to the ratios Z/Y and Y/X. ' Although results 
have not been obtained to show quantitatively the relative 
influence of these factors, it can be expected that as 
the flange width Z is increased, either by increasing Z/Y 

while keeping Y/X constant, or by increasing Y/X while 
keeping Z/Y constant, the flange will become relatively 

more flexible ýat" the centre, and will therefore produce 

a larger reduction in the bending-moment factors at the 

slab section. 

5.7 RELATIVE INFLUENCE OF IN-PLANE AND OUT-OF-PLANE 

WALL DEFORMATIONS IN FLANGED WALLS AND BOX CORES 

The wall/slab junction flexibility in flanged wall or 
box core configurations is produced by the combined effects 

of local in-plane and out-of-plane wall deformations. To 

assess the relative influence of each mode of wall 
deformation, it is necessary to re-analyse the wall/slab 

panel previously considered, with the walls now restrained 

against one of the two modes of local deformation. This 
is easily achieved in the finite element analysis by 

prescribing zero displacement boundary conditions at the 

wall/slab junction nodes to simulate the necessary 
infinite in-plane or out-of-plane rigidity of the walls. 

Table 5.11 shows the numerical results obtained for 
typical flanged-wall and box-core configurations. The 

results for the case where walls are assumed flexible in- 

plane and out-of-plane are compared with the results for 
the case where walls are assumed infinitely rigid in- 

plane but flexible out-of-plane. The results for the 
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third case where walls are assumed infinitely rigid in- 

plane and out-of-plane have also been included to provide 
a measure of the reduction in coupling slab stiffness due 
to the wall flexibilities. By comparing appropriate 
values of the quantity (1 - K*/K) which gives a measure of 
the reduction in slab stiffness, it can be. seen that the 

out-of-plane flexibility of the walls accounts for 

approximately 94% of the total slab-stiffness reduction 
in all cases considered. The influence of in-plane wall 
deformation is seen to be insignificant compared to the 
influence of out-of-plane wall deformation in the 

configurations considered in which the flange width ratio 
Z/Y has a value of 0.5. With smaller flange width ratios, 
the influence of in-plane wall deformation should become 

relatively more significant. 

5.8 INFLUENCE OF DOOR-OPENINGS IN WALLS ON THE EFFECTIVE 

SLAB WIDTH 

Door openings in walls for internal circulation within 
the apartment are often encountered in cross-wall buildings. 

Such openings are usually small in width, compared to the 
dimensions of the wall, and will not significantly affect 
the overall lateral stiffness of the shear wall. When a 

pair of perforated walls is coupled by floor slabs (Fig. 

5.20(a) and (b) ), each perforated wall may be assumed to 
behave as a composite unit, in the lateral load analysis 
of the structure. If cross sections of the perforated wall 
at the wall/slab junctions are assumed to remain plane 
when the slab interacts with the wall, then the effective 
coupling slab width will be similar to that for unperfor- 
ated coupled walls. When local elastic wall deformation 
is considered, the effective slab width will, to a 
certain extent, be influenced by the presence of the door 
opening, depending on its size and location. This 
influence is investigated in this section, for a typical 
wall/slab configuration. 
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5.8.1 FINITE ELEMENT IDEALISATION 

The finite element idealisation of a quarter of the 

wall/slab panel is shown in Fig. 5.20(c). The wall 
considered extends one storey height above and below the 
floor. slab. The extremities of the wall are assumed fixed 

when the slab edge corresponding to the corridor centreline 
or inflexion line is displaced vertically to produce the 

required relative wall displacement. The wall and slab 

are represented by rectangular flat shell elements. The 
door-opening is represented by elements having a near- 
zero thickness which is equal to 10 4 times the thickness 

of the unperforated wall. This technique allows the size 

and position of the door-opening to be conveniently varied 

without the need to change the element mesh pattern, and 

so reduces considerably the amount of data preparation. 

otherwise required. 

5.8.2 NUMERICAL RESULTS 

In this investigation a typical wall/slab 

configuration with the following characteristic dimensions 

is considered: 

Slab length X- 15.25 m (50 ft) 

Slab width Y-6.10 m (20 ft) 

Corridor width L-3.05 m (10 ft) 

Storey height F-3.05 m (10 ft) 

Slab thickness t-0.23 m(9 in. ) 

Wall thickness h-0.30 m (12 in. ) 

A constant door opening width of 1.14 m (3.75 ft) is assumed 
and the distance 'a' from the inner-edge of the wall to the 

edge of the opening is varied. Two door-opening heights 

are considered. In the first case the opening extends 
over a part of the wall height and a lintel of 0.61 m 
(2 ft) depth remains at each floor. In the second case, 
which is an extreme case, the opening extends over the full 

wall-height and the slab provides the only connection 
across the opening at each floor. 
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The numerical results for the slab stiffness factor 
KP and effective width Ye*fY obtained by the finite 

element analyses for the various cases are shown in Table 
5.12. The slab stiffness factors are all based on the 

unit relative wall rotation referred to the centre of the 

perforated wall. The results for the case of unperforated 
walls has been included for the purpose of comparison. The 

ratios of perforated-wall/unperforated-wall effective slab 
width are also shown in the Table of results. 

It is seen from the results that when the door 

opening-is located within the middle half of the wall 
(a > 1.525 m (5 ft)), the effective slab width is reduced 

by the presence of the opening by not more than 1%. When 

the opening is very near the edge of the wall (a Q 0.381 m 
(1.25ft)), the effective slab width is reduced by about 
6% for the case with the lintel, and by about 13% for the 

other case without the lintel. In most practical cases, 
the door opening is unlikely to be located closer than 

about 1m (3 ft) from the inner edge of the wall. In 

such cases, it is seen from the trend of results obtained 
that the influence of door openings is unlikely to be 

significant in the calculation of effective slab width. 

5.9 SIGNIFICANCE OF LOCAL ELASTIC WALL DEFORMATION 

In order to show the significance of local elastic 
wall deformation effects on design quantities which 
normally control the structural design of the building, 

two typical cross-wall/slab buildings, one with coupled 
plane walls and the other with coupled flanged walls (T- 
Section) are considered. Both structures are of 20 

storeys with storey heights of 3.05 m (10 ft) and building 
depth of 15.25 m (50 ft). The cross-walls are spaced at 
6.1 m (20 ft) centres and wall openings (corridor opening) 
Ave of 1.525 m (5 ft) width in both buildings. Walls and 
slabs are of 228.6 mm (9 in. ) thickness. The width of the 

wall flange is 3.05 m (10 ft. ). The uniform wind loading 
on the structure is taken as 1.2 kN/m2 (25 lb/ft 2) 

throughout the building height. 
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The relevant design quantities considered are the 

maximum lateral deflection 6 at the top of the structure, 
the extreme fibre wall stresses 1A and cr$ at the bottom 

of the shear wall, the maximum lintel shear Qo and the 

critical bending moment in a 0.61 m (2 ft) wide slab-strip. 
The continuous connection method of coupled wall analysis 

as presented by Coull and Choudhury59 and by Coull and 
Irwin53 are used to calculate the relevant design 

quantities. The results evaluated for the case where 
local elastic wall deformation effects are disregarded 
(rigid wall) are compared with the results for the case 

where these effects are included (flexible wall), in 

Tables 5.13, (a) and (b). 

It is seen from the numerical results for the two 

buildings that when the local elastic wall deformation is 

disregarded, in each case the effective slab width is 

overestimated by a large margin (over 60%), but this 

results in the wall deflection and wall stresses being 

underestimated, and the maximum lintel shear being over- 

estimated, by a much smaller margin. The critical slab 

moment however is quite seriously overestimated (more than 

100% in the plane wall building). 

5.10 CONCLUSIONS 

A finite element approach has been described for the 

evaluation of local elastic wall deformation effects in 

shear wall/slab interactions. Numerical results obtained 

showing the relative influence of various structural 

parameters on the flexibility of the wall/slab junction, 

and on the effective coupling of walls by the slab, have 
been presented. 

In plane wall configurations, the slab stiffness ratio 
varies principally with a single parameter t/ (L2h)1/3. 
Design curves have been presented for the rapid evaluation 
of the stiffness ratio or the effective span extension in 

a practical situation. Either of these quantities can be 

used to correct the 'rigid wall' slab stiffness so as to 
include the local elastic wall deformation effects. The 
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presence of normal door- openings has very little effect on 

the stiffness of the slab. 
In 

, 
the T-Section flanged wall and box-core 

configurations, the wall/slab junction flexibility is 

produced mainly by local bending of the wall flanges. The 

stiffness ratio varies approximately as a function of 
(t/h)/(L/X)I. Design curves for evaluating the stiffness 

ratio, for these configurations have also been presented. 
The critical bending moment factors in the slab are 

substantially reduced by the effects of local elastic wall 
deformation, depending primarily on the slab/wall thickness 

ratio. 
When the local elastic wall deformation is disregarded, 

although the effective slab width is considerably over- 

estimated, the resulting errors in the calculation of 

maximum wall deflection and stresses and maximum lintel 

shear are relatively small. The resulting error in the 

calculation of critical slab moments on the other hand can 

be quite large. 
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TABLE 5.1 COUPLED PLANE WALL CONFIGURATION 

(L/X - 0.2, Y/X - 0.4, F/W - 0.5, t/h - 0.075) 

Mesh 1 Mesh 2 Mesh 3 
Coarse Medium Fine 

K* 33.8832 34.0705 33.5573 
fY Y 0.3210 0.3227 0.3178 

e 

TABLE 5.2 INFLUENCE OF STOREY HEIGHT 
Plane Wall Configuration 
(L/X - 0.2, Y/X - 0.4, t/h - 0.75) 

Wall Height F/X Rigid 

0.1 0.2 0.3 
Wall 

K* 34.3219 34.0705 34.0428 40.9695 

YeIY 0.3251 0.3227 0.3196 0.3881 

K*/K 0.8377 0.8315 0.8235 1.0000 

TABLE 5.3 INFLUENCE OF WALL LENGTH 

Plane Wall Configuration (Y/L *1) 
Effective Slab Width Ye*/Y 

W/L 0.5 0.75 1.0 
h 

0.5 0.5821 0.5715 0.5710 
0.75 0.5559 0.5468 0.5490 

Rigid Wall 0.6177 0.6101 0.6124 
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TABLE 5.4 VARIATION OF SLAB STIFFNESS RATIO K*/K WITH 
VARIOUS GEOMETRIC RATIOS 

Plane Wall Configuration 

Stiffness Ratio K*/K 
Y/X 

t/h 
Lf X 0.5 1.0 1.5 2.0 

0.1 0.809 0.585 0.391 0.270 
0.2 0.888 0.757 0.597 0.472 

0.4 0.4 
. 
0.93 7 0.859 0.758 0.665 

0.6 0.956 0.902 0.832 0.766 

0.1 0.793 0.569 0.390 0.275 

0.2 0.878 0.740 0.593 0.475 
0.6 0.4 0.931 0.853 0.752 0.669 

0.6 0.951 0.898 0.829 0.762 

0.1 0.782 0.560 0.386 0.275 

0.2 0.872 0.738 0.598 0.485 
0.8 0.4 0.936 0.859 0.756 0.679 

0.6 0.947 0.878 0.825 0.757 
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TABLE 5.5. INFLUENCE OF STOREY HEIGHT ON SLAB COUPLING 

STIFFNESS 

Flanged Wall Configuration (L/X - 0.2, Y/X - 0.4, 

Z/Y - 0.5) 

F/ X K* y 
e*/Y 

K*/K 

0.2 70.28 0.6657 0.828 

0.3 69.92 0.6623' 0.824 

Rigid 
Wall 84.87 0.8039 

I 
1.000 

TABLE 5.6 INFLUENCE OF WALL AND SLAB THICKNESSES ON SLAB 

COUPLING STIFFNESS 

Flanged Wall Configuration (L/X - 0.2, Y/X - 0.4, 

Z/Y - 0.5) 

t (ft) h (ft) t/h x* Ye*/Y K*/K 

0.50 0.50 1.0 64.60 0.6120 0.76 
0.75 0.75 1.0 62.85 0.5953 0.74 

1.00 1.00 1.0 61.84 0.5858 0.73 

0.50 1.00 0.5 78.45 0.7431 0.92 
0.75 1.50 0.5 77.59 0.7349 0.91 
1.00 2.00 0.5 76 . 82 0.72 76 0.91 
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TABLE 5.7 VARIATION OF SLAB STIFFNESS RATIO K*/K WITH 
VARIOUS GEOMETRIC RATIOS 

Flanged Wall Configuration 
I 

Stiffness Ratio K*/K 
Y! x L /x , t/h 1.5 0.75 0.50 0.375 

Z/Y 

0.25 0.57 0.76 0.86 0.90 
0.1 0.50 0.49 0.72 0.85 0.91 

0.75 0.42 0.68 0.84 0.91 

0.25 0.73 0.86 0.92 0.95 
0.4 0.2 0.50 0.64 0.83 0.91 0.95 

0.75 0.59 0.81 0.92 0.96 

0.25 0.84 0.92 0.96 0.97 
0.4 0.50 0.77, 0.91 0.96 0.98 

0.75 0.72 0.89 0.96 0.98 

0.25 0.53 0.73 0.85 0.90 
0.1 0.50 0.43 0.68 0.83 0.90 

0.75 0.36 0.65 0.83 0.90 

0.25 0.70 0.84 0.91 0.94 
0.6 0.2 0.50 0.58 0.79 0.90 0.94 

0.75 0.51 0.78 0.90 0.95 

0.25 0.81 0.91 0.95 0.97 
0.4 0.50 0.71 0.88 0.95 0.98 

0.75 0.66 0.87 0.95 0.97 
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TABLE 5.8 VARIATION OF EFFECTIVE FLANGE WIDTH Z*/Z WITH 
VARIOUS GEOMETRIC RATIOS 

Flanged Wall Configuration 

Effective Flange Width Z*/Z 
Yjx L/% 

t/h 
1.5 0.75 0.50 0.375 

Z/Y 

0.25 0.18 0.55 0.72 0.80 
0.1 0.50 0.24 0.58 0.78. 0.86 

0.75 0.23 0.57 0.77 0.87 

0.25 0.20 0.58 0.75 0.82 
0.4 0.2 0.50 0.25 0.63 0.81 0.89 

0.75 0.26 0.63 0.81 0.90 

0.25 0.20 0.58 0.78 0.85 
0.4 0.50 0.25 0.65 0.84 0.91 

0.75 0.23 0.63 0.83 0.91 

0.25 0.25 0.58 0.75 0.85 
0.1 0.50 0.25 0.59 0.79 0.88 

0.75 0.23 0.57 0.79 0.87 

0.25 0.30 0.65 0.80 0.88 
0.6 0.2 0.50 0.31 0.65 0.83 0.90 

0.75 0.28 0.65 0.83 0.91 

0.25 0.32 0.65 0.82 0.88 
0.4 0.50 0.30 0.68 0.85 0.93 

0.75 0.27 0.67 0.87 0.92 
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TABLE 5.9 INFLUENCE OF STOREY HEIGHT ON SLAB COUPLING 

STIFFNESS 

Box-Core Configuration (L/X - 0.2, Y/X - 0.4, 
Z/Y 0.5) 

t/h F/% K* Y /Y K*/K 
e 

0.75/0.50 0.2 50.36 0.4770 0.580 

0.3 48.27 0.4573 0.556 

0.75/0.75 0.2 66.99 0.6345 0.771 

0.3 64.87 0.6145 0.747 

0.75/1.00 0.2 75.14 0.7118 0.865 

' 0.3 74.30 0.7038 0.855 

Rigid Wall 86.88 0.8230 1.000 

TABLE 5.10 INFLUENCE OF SLAB AND WALL THICKNESSES ON SLAB 

COUPLING STIFFNESS 

Box-Core Configuration (L/X s 0.2, Y/X m 0.4, 

Z/Y - 0.5) 

t (ft) h (ft) t/h K* Ye*fY K*/K Z*/Z 

0.50 0.50 1.0 68.48 0.6487 0.79 0.56 
0.75 0.75 1.0 66.99 0.6345 0.77 0.54 
1.00 1.00 1.0 65.28 0.6184 0.75 0.50 

0.50 1.00 0.5 82.50 0.7815 0.95 0.89 
0.75 1.50 0.5 81.81 0.7750 0.94 0.88 
1.00 2.00 0.5 80.99 0.7671 0.93 0.85 

Rigid Wall 
T86.88 

0.8230 1.00 1.00 
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TABLE 5.11 RELATIVE INFLUENCE OF IN-PLANE AND OUT-OF- 

PLANE WALL DEFORMATIONS ON SLAB COUPLING 

STIFFNESS 

Flanged Wall Configuration (Y/X a 0.6, L/X a 0.2, 
Z/Y a 0.5) 

Wall Condition K* Y 
*/Y 1-K*/K Slab/Wall 

In-plane Out-of-plane e Thickness 
Ratio t /h 

Flexible Flexible 68.00 0.4294 0.420 

Rigid Flexible 70.96 0.4481 0.395 1.5 

Rigid Rigid 117.23 0.7403 0.000 

Flexible Flexible 93.16 0.5881 0.206 

Rigid Flexible 94.55 0.5971 0.193 0.75 

Rigid Rigid 117.23 0.7403 0.000 

Box Core Configuration (Y/X 0.4, L/X a 0.2, Z/Y s 0.5) 

Flexible Flexible 48.27 0.4573 0.444 

Rigid Flexible 50.36 0.4770 0.420 1.5 

Rigid Rigid 86.88 0.8230 0.000 
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TABLE 5.12 STIFFNESS FACTORS AND EFFECTIVE WIDTHS 

FOR SLABS COUPLING PERFORATED WALLS 

d (ft) a (ft) K* Y* /Y Perforated 
e Unperf orated 

1.25 32.186 0.3049 0.937 

2.50 33.310 0.3155 0.970 

2 3.75 33.753 0.3197 0.983 

6.25 34.011 0.3222 0.990 

10.00 34.313 0.3250 0.999 

1.25 30.004 0.2842 0.874 

0 2.50 32.928 0.3119 0.959 

3.75 33.711 0.3193 0.982 

Unperforated-Wall 34.334 0.3253 

Note: 1 ft. a 0.305 m 
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TABLE 5.13 EFFECT OF LOCAL ELASTIC WALL DEFORMATION ON 

DESIGN QUANTITIES FOR EXAMPLE BUILDINGS 

(a) Building No. 1- Plane Wall Configuration 

Design Quantities Rigid 
Walls 

Flexible 
Walls 

Percentage 
Diff. 

Effective Slab Width Ye (ft) 4.35 2.70 61.11 

Top Deflection b (in. ) 0.478 0.538 -11.15 
Wall Stress 6A (lb/in2) 311.06 329.39 - 5.56 

Wall Stress 6B (lb/in2) -132.82 -164.87 -19.44 

. Max. Lintel Shear Qo (kip) 16.19 14.14 14.52 

Bending Moment in Critical 

2 ft. wide slab strip 
(kip-ft) 24.36 11.25 116.53 

(b) Building No. 2- Flanged Wall Configuration 

Design Quantities Rigid 
Walls 

Flexible 
Walls 

Percentage 
Diff. 

Effective Slab Width Y (ft) 13.8 8.6 60.47 
e 

Top Deflection Ö (in. ) 0.39 0.419 -5.30 
Wall Stress 0A (lb/in2) 260.70 269.48 -3.26 
Wall Stress 6B (lb/in2) -37.14 -49.64 -25.18 
Max. Lintel Shear Q0 (kip) 23.98 20.67 16.01 
Bending Moment in Critical 

2 ft. Wide Slab Strip 

(kip-ft) 8.74 5.89 48.39 

Note-. 1 lb = 0.453 kg, 1 in. - 25.4 mm. 
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CHAPTER 6 

COMPOSITE ACTION OF SLABS AND LINTEL BEAMS 

COUPLING A PAIR OF SHEAR WALLS 

6.1 INTRODUCTION 

Shear walls coupled, by lintel beams monolithic with 
floor slabs are frequently encountered in practical shear 
wall buildings. The usual practice in the analysis of 
such coupled shear walls is to disregard the contribution 

of the slab and assume that the walls are coupled only by 

a prismatic lintel beam. In gravity load design it is 

common practice to include a portion of the slab as a 
flange for the floor beam so that a greater moment of 

resistance is obtained by the composite action. While 

under ultimate load conditions it may be sound practice 
to ignore the contribution of the slab on account of 

cracked flange sections at points of negative bending 

moments, there is no reason why under working load 

conditions in which the structural behaviour is sensibly 
linearly elastic, the beneficial stiffening effect of the 

slab should not be included in the analysis of the coupled 

shear walls. 
In this Chapter the composite behaviour of the 

lintel and slab coupling a pair of shear walls is invest- 
igated by the finite element method. The stiffening 

effect and the effective width of the slab acting as the 
flange of a composite tee-beam are evaluated for a range 
of structural parameters. The significance of composite 
coupling action is assessed with reference to the 

calculation of critical design quantities for a typical 

coupled wall structure. 

6.2 METHOD OF ANALY SI S 

6.2.1 STIFFNESS OF COUPLING BEAM 

Consider the elastic deformation of a coupling beam 

of span L coupling a pair of shear walls with centroidal 
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axes distant La apart, undergoing a parallel rotation A 

under the actions of moments M (Fig. 6.1(a)). It is 

again assumed that plane sections of the wall remain plane 
in bending. The displacement 6 due to the effects of 
flexure and shear deformation can be shown to be given by 

ML3 
+ 

2ML 
'6EI La 

G Aý 
La 

which can be written simply as 
3 

6EI*La 

where I* is the reduced moment of inertia given by 

12EI ý (6.1) 

in which I is the actual moment of inertia and- A* is the 

effective shear area of 'the coupling beam, and E and G are 

respectively the elastic and shear moduli. 
The wall rotation 0 is given by 

0a63 La 
6EI* Lä 

Hence the coupling stiffness of the beam, which may be 

defined in terms of the moment-rotation relationship of 
the wall, is given by 

*L2 
a 

6. ("I. ) (6.2) 
L 

The moment-rotation relationship for a pair of shear 

walls coupled by a lintel monolithic with the floor slab 
can be evaluated by a finite element analysis. Hence the 

effective moment of inertia for the composite coupling 

medium can be obtained using expression (6.2). Expressing 
the effective composite moment of inertia I* as a ratio of 
the reduced moment of inertia of the lintel Iw provides 
a measure of the stiffening effect of the slab. The 

reduced moment of inertia of the lintel IW is given by 

expression (6.1), with 
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I- IWand A* aAw/1.2 

where Iw and Aw are the actual moment of inertia and 

cross-sectional area of the lintel. 

6.2.2 EFFECTIVE FLANGE WIDTH OF COMPOSITE COUPLING BEAM 

In common with gravity load design, a portion of 
the floor slab may be assumed to act as the flange of a 
tee-beam. In order to evaluate the effective flange 

width for the composite coupling beam, the effective shear 

area A* must first be established. Results obtained by 

the finite element analysis indicate that where shear 
deformation is likely to be of some significance, the 

shear induced by coupling action is carried mainly (over 

80%) by the web or lintel portion of the composite 

coupling beam. Hence it may be assumed, for convenience, 

that in the equivalent composite beam the whole of the 

shear is carried by the web, in which case, the shear area 

A* can be taken as AJ1.2. The absolute (un-reduced) 

moment of inertia Ic for the equivalent composite beam 

can then be evaluated from the effective composite moment 

of inertia I* using expression (6.1), after which it is 

a relatively easy matter to obtain the effective flange 

width by a reverse process. It can be shown that the 

effective flange width Ye is, given by 

C+[ C2 + 48t2 Aw(Ic Iw) 
Yeb+ (6.3) 

2t 

where b is the width of the lintel, t is the slab thick- 

ness and Ca 12 (Ic-Iw) - Aw (t2 + 12e2 ), in which e is 

the eccentricity between the centroids of the web and 
flange sections (Fig. 6.1(b)). 

6.2.3 FINITE ELEMENT ANALYSIS OF SLAB AND LINTEL 

, 
The slab monolithic with the lintel beam is subjected 

to membrane, as well as bending effects under composite 
coupling action. In order to model this behaviour 

adequately the slab and lintel beam are represented by 



329 

rectangular flat shell elements (RS24). By exploiting 

the conditions of symmetry and anti-symmetry, the analysis 

of the floor slab in an interior bay of a cross-wall 

structure is reduced to that for a typical slab quadrant. 

Fig. 6.2(a) shows a typical finite element idealisation 

of the slab and lintel beam, and the boundary conditions 

prescribed for the analysis. The wall is assumed rigid, 

and flexibility effects due to local elastic wall 

deformation at the beam-wall junction are disregarded, 

since it is expected that these effects could be allowed 

for in the overall analysis of the shear wall system 

following the procedures suggested for beam coupled shear 

walls. 
65166 

To obtain the moment-rotation relationship the nodes 

at the wall boundary are restrained completely against 

displacement, and the nodes along the corridor edge of 

the slab and beam are given a unit vertical displacement 

(w m 1, Ax 0). The symmetry and anti-symmetry 

displacement boundary conditions are prescribed at the 

appropriate boundary nodes. The resultant vertical 

reaction Q at the deflected edge of the slab is evaluated 

by the finite element analysis. Since the resultant 

moment about the wall axis is given by Q La/2, and the 

effective wall rotation is given by 2/La, the coupling 

stiffness of the composite beam is evaluated simply as 

Q La/4 A. The effective composite moment of inertia and 

the effective flange width of the equivalent tee-beam are 

then calculated according to equations (6.2) and (6.3). 

The finite element analysis also computes the membrane 

stresses and bending stress resultants at all the nodes. 

6.3 EVALUATION OF ELEMENT MESH FOR LINTEL 

In order to determine suitable mesh patterns for the 

discretisation of the lintel, a series of analyses has 

been carried out using various mesh patterns for a test 

problem involving an end-loaded prismatic cantilever beam. 

Two span-depth ratios were considered. The beams were 
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sub-divided along the depth into two and four element 
divisions. Along the span, the shorter and the longer 

beams were sub-divided respectively into five and eight 

element divisions as shown in Fig. 6.2(b). The span 

sub-divisions are considered reasonably fine and approp- 

riate for the discretisation of the floor slab for the 

subsequent parameter study. 
Table 6.1 shows the finite element results for the 

maximum deflection wB at the tip, and the maximum fibre 

stress aA at the root of the cantilever, reduced to 

compare with unit values given by the engineer's beam 

theory, with allowance for shear deformation. The 

results show that by using the 2-element deep sub-division, 

values for the maximum deflection and fibre stress for both 

span-depth ratios are evaluated to within 5% of the values 

given by beam theory. Using the 4-element deep sub- 
division, the values for the maximum deflection are within 
2% of the beam theory value, but the value of the maximum 
fibre stress for the smaller span-depth ratio is about 8% 

higher than the beam theory value. The poorer corres- 

pondence between the stress values in this case is due to 

the 'deep beam effect' which tends to increase the maximum 
fibre stresses beyond the values given by a linear stress 
distribution assumed in beam theory. 

Since reasonably accurate results for deflections 

and stresses can be obtained using the 2-element deep 

sub-division,, this discretisation scheme is employed for 

the lintel coupling beam in the parameter study. 

6.4 PARAMETER STUDY ON COMPOSITE COUPLING ACTION 

The variables which are involved in the structural 
geometry of a typical floor panel coupling a pair of shear 

walls include the slab width Y, the wall opening L, the 

wall length W, the slab thickness t, the lintel width b 

and the lintel depth d. Judging from the results 
obtained for slab-coupled shear walls (Chapters 3-5), the 

wall length W is not expected to have any significant 
influence on the composite action of lintel and slab and 
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therefore has not been considered as a variable in the 

present parameter study. The influences of the other 

variables on the lintel-slab composite coupling action 
have been evaluated with reference to a standard slab 
thickness. The main numerical results of the parameter 
study are given in Appendix A6.1. 

6.4.1 INFLUENCE OF SLAB WIDTH 

Fig. 6.3 (a) shows the variations of composite stiff- 
ness ratio I*/Iw and effective flange width Ye/t with slab 

width Y/t for lintel depths d/t of 3.2 and 7.2 and wall 
opening width L/t of 13.3. The arrows denote to which 

axis the curve refers. It is seen that for the practical 

range of slab width considered, the composite stiffness 

ratio and the effective flange width are affected very 
little by variations in slab width. 

6.4.2 INFLUENCE OF WALL-OPENING WIDTH 

Fig. 6.3(b) illustrates the variations of composite 

stiffness ratio and effective flange width Ye /Y with the 

wall opening width L/t for lintel depths d/t of 3.2 and 
7.2. A lintel width b/t of 1.33 and slab width Y/t of 
26.7 are considered in each case. ' The composite stiffness 

ratio and effective flange width Ye/Y increase substant- 
ially with the wall opening width L/t over the range of 

values considered. The influence of wall opening width 
however tends to become less important with larger values. 

6.4.3 INFLUENCE OF LINTEL WIDTH 

The influence of lintel width on the composite 
stiffness ratio and effective flange width is assessed by 

comparing the results for lintel widths b/t of 1.33 and 
2.67. Wall opening widths L/t of 13.3 and 26.7 are 
considered, and in each case the lintel depth d/t is 5.5 

and the slab width Y/t is 26.7. 
The numerical results given in Table 6.2 indicate 

that for the smaller wall opening width L/t, doubling the 
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width and hence stiffness of the lintel increases the 

effective flange width less than 2% and hence results in 

a reduction of the composite stiffness ratio I*/Iw by 

about 16%. For the larger wall opening width, doubling 

the lintel width produces approximately an 8% increase in 

the effective flange width and a 5% increase in composite 

stiffness ratio. For practical purpose, therefore, the 

effect of variations in lintel width may be disregarded in 

the evaluation of effective flange width. 

6.4.4 INFLUENCE OF LINTEL DEPTH 

Fig. 6.4 shows the variations of composite stiffness 

ratio I*/Iw and effective flange width Ye/Y with lintel 

depth d/t for various wall opening widths L/t and slab 

widths Y/t. The three sets of curves are based on a 

lintel width b/t of 1.33. The results show that the 

composite stiffness ratio decreases with an increase in 

the lintel depth d/t over the whole range of values 

considered. The effective flange width Ye/Y, on the 

other hand, is seen to decrease initially with increasing 

values of d/t, reaching a minimum value when d/t is 

between 3 and 4 generally. Thereafter, the effective 
flange width increases with lintel depth. 

The effective flange width values for the practical 

range of relative lintel depths considered are substant- 

ially lower than the effective width for the limiting case 

of a flat slab floor without the lintel beam (cf. Chapter 

3). The lower ends of the curves for Ye/Y in Fig. 6.4 

are seen to approach the limiting values obtained in 

Chapter 3. The curves may be used as design curves for 

evaluating rapidly the effective flange width or composite 

coupling stiffness in a practical situation. Although 

the curves are based on a particular relative lintel width 
b/t, the effective flange width values for other situations 
may be obtained reasonably accurately from the curves 

presented by disregarding the effect of practical 
differences in lintel widths. 
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6.4.5 DISTRIBUTION OF SHEAR ALONG LINTEL 

For the calculation of effective flange width from 

the finite element results it has been assumed that the 

whole. of the shear at a transverse slab section is carried 
by the web of the composite section. The accuracy of 
this assumption is immaterial so long as the effective 
coupling stiffness required in a shear wall analysis is 

calculated from the effective flange width using the same 

assumption. For the shear design of the lintel however, 

the actual shear carried by the web must be accurately 
known. Fig. 6.5 shows the span-wise variation of the 

percentage of the shear at transverse sectionscarried 
by the web, for two typical lintel depth-span ratios. 
It is seen that for the deeper lintel the percentage shear 

carried by the web is relatively constant along the span 

and is greater than 95% at any section. With the 

shallower lintel the web shear away from the wall support 
is significantly lower than the values close to the wall, 
but is still greater than 85% of the total shear at any 

section. In both cases, the web carries practically the 

full shear at points close to the wall support. Hence 

for shear design it is reasonable to assume that the whole 

of the shear at a transverse section is carried by the 

web alone. 

6.4.6 INFLUENCE OF LOCAL ELASTIC WALL DEFORMATION 

In evaluating the composite stiffness ratio and 

effective flange width in the preceding sections, the 
flexibility effect due to the local elastic wall deformation 

at the lintel and wall junction was disregarded by assuming 
that plane sections of the wall remain plane in bending. 
It has been anticipated that the junction flexibility effect 
could be allowed for in the calculation of composite 
coupling stiffness very simply by extending the flexible 

span of the coupling beam by an equivalent length equal 
to the lintel depth, as suggested by Michael65 for 

prismatic lintel beams. In order to assess the accuracy 
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of the simple procedure, additional analyses-which now 
include a segment of the wall with the lintel and slab in 

the finite element model have been carried out for a 
typical configuration which was considered in the previous 

parameter study. 
Since the boundary conditions associated with the 

wall segment may have some influence on the results, the 

effective composite coupling stiffness of the lintel and 

slab has been evaluated for various assumed boundary 

conditions, as illustrated in Fig. 6.6, (a-d). In case 1 

(Fig. 6.6(a)), the structure is simply supported along the 

corridor edge and at the wall axis at the level of the 

slab, and the wall is rotated by applying horizontal shear 
forces at its ends. The effective wall rotation for the 

calculation of composite coupling stiffness is assumed to 

be given by the chord rotation of the wall axis, and is 

evaluated from the computed horizontal displacements of 
the wall ends. 

In the remaining three cases the walls are restrained 
in various ways and a constant vertical deflection is 

imposed along the corridor edge of the slab and lintel. 

In case 2 (Fig. 6.6(b)), the wall is restrained horizont- 

ally at the ends and vertically at a point on the wall axis 

at the level of the slab. In case 3 (Fig. 6.6 (c)) each 

end of the wall is restrained horizontally along the whole 

edge and vertically only at a point on the wall axis. In 

the last case (Fig. 6.6(d)) the wall is completely clamped 

at its ends. In each of these three cases, the unknown 

resultant reaction at the corridor edge is evaluated by 

the finite element analysis to obtain the effective 

coupling stiffness of the composite coupling beam. 

The configuration considered has a wall opening 

width of 26.67, a wall depth W/t of 13.33, a slab width 
Y/t of 26.67, a lintel width b/t of 1.33 and a lintel 
depth d/t of 5.50. The numerical results for the coupling 
stiffness, evaluated as K -M/(DO), are as follows: 
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Case 1: Ka 108.2 7 

Case 2: Ka 108.15 

Case 3: Ka 108.45 

Case 4: Ko 111.77 

It can be seen that the results are not significantly 
influenced by differences in the assumed boundary conditions 
for the wall. 

In order to assess the accuracy of 'Michael's 

correction' for junction flexibility, the effective 

coupling stiffness for the same configuration has been 

evaluated from the 'rigid wall' results presented in 

Section 6.4.4, assuming an effective flexible span of 
L* -L+d. The calculations have been performed in non- 
dimensional units in the following manner: 

Effective span ratio L*/t - 26.67 + 5.50 a 32.17 

From Fig. 6.4, the composite stiffness ratio = 1.90 

The effective M. I. of the lintel alone is 

given by Iw 
a 

Iw 
+E (L )2 a 17.10 

The effective composite M. I. I*/t4 

1.9 x 17.1 - 32.49 

The coupling stiffness K from equation (6.2) 

2IL2 
is given by Ma 72 (1-v ) (*) a 109.89 

tLL 

This value of K agrees closely with the values obtained 
directly by the finite element analyses. Hence it would 

appear from the limited evidence available at the 'moment 
that 'Michael's correction' for junction flexibility is 

also applicable to the case of a composite coupling beam. 

6.4.7 DISTRIBUTION OF STRESSES INDUCED BY COMPOSITE 
COUPLING ACTION 

In order to illustrate the general distribution of 

stresses in the slab, lintel and wall induced by composite 
coupling action, stresses computed by the finite element 
analysis have been shown graphically in a number of cases. 
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Fig. 6.7, (a-c) show the distributions of membrane 

stresses Nx, Ny and Nxy, and bending stress resultants Mx 

and My in a quadrant of the slab induced by the parallel 

wall rotation shown in Fig. 6.7(h). Different scales 
have been used to plot the various stress components. 
The relative magnitudes of the various stress components 

may be judged from the maximum numerical values indicated 

for each diagram. Fig. 6.7(a) shows clearly the non- 

uniform transverse distributions of longitudinal membrane 

stresses Nx across the slab which account for the effective 
flange width being less than the full slab-width. The 

distribution of transverse membrane stress Ny (Fig. 6.7(b)) 

shows an unexpected existence of stresses at the exterior 
free edge of the slab which are considerably higher than 

the stresses near the inner edge of the wall where the 

coupling actions are expected to be highest. This 

unusual trend of results is not unique to the particular 

case considered, but is found to be a common feature 

with all the cases analysed, flexible and rigid wall cases 
included. The peak transverse stresses at the slab edge 

are much lower than the large longitudinal stresses 
induced around the inner edge of the wall, but may merit 

attention in the design when the stresses are tensile. 

The distributions of bending stress resultants Mx 

and My (Fig. 6.7, (d-e)) show sharp peaks at the inner 

edge of the wall, but in practice the stress concentrations 

are expected to be less severe due to dispersion. Since 

there is a possibility that the critical bending moments 

may be theoretically singular it would be sensible to 

accept the critical finite element values only for the 

purpose of evaluating the integrated moment over a finite 

region, and not as absolute peak values. 
Fig. 6.7, (f) and (g) show the distribution of 

longitudinal (horizontal) stresses Nx and vertical stresses 
Nz in the lintel and wall. The position of maximum lintel 
longitudinal fibre stress appears to be at a small distance 
from the junction with the wall and agrees with the 
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position of the maximum longitudinal membrane stress in 

the flange (Fig. 6.7(a)). Inside the wall, the longitud- 
inal stresses diminish rapidly away from the root of the 
lintel beam, showing clearly that the lintel reaction has 

only a local effect on the wall. 
The distribution of vertical wall stresses NZ shows 

distinct stress concentrations at the lintel-wall junction, 

and non-linear variations of stresses across wall sections 
close to the level of the lintel, but again these are 

essentially local effects. Clearly, special attention 

would be required in the detailing of the wall reinforce- 

ments to cater for the local stress concentrations induced 

by coupling action. 
The local elastic rotation of the lintel-wall 

junction may be observed from the deflected shape of the 

structure illustrated in Fig. 6.7(h). 

6.5 ALTERNATIVE MODELLING TECHNIQUE 

An alternative method of modelling the lintel beam 

in a finite element analysis has been investigated since 
the completion of the work described in the preceding 

sections. In the alternative approach, the lintel is 

represented by space frame elements instead of flat shell 

elements. The slab is represented by flat shell elements 
as before. The space frame element includes axial, 
flexural, torsional and shear deformations. 90 The 

eccentric connection between the beam and slab is 

simulated numerically by relating the centroidal displace- 

ments of the beam to the middle-plane displacements of the 

slab above. 
91,91,92 

Referring to Fig. 6.8 which illustrates 
the displacements of the beam and slab in a composite 
section, the displacement relationships can be written as 

UB o US - eAS Y 
VB =VS -1- eeX 

wB wS 



338 

AB we As 
YY 

0B 00 es 
zz 

or more simply as tuB3 _ 
(ZJ {6S} 

where the displacement vector 
161T 

= 
1u, 

v, w, 6X, Ay, AZ], 

the transformation matrix [Z] is given by 

1000 -e O 
1Oe00 

CZI -1000 
ZEROS 100 

10 
1 r 

and the superscripts B and S associate the displacement 

quantities u, v, w, Ax, Ay and AZ with the beam and slab 

respectively, and e is the eccentricity between the, 

neutral planes of the beam and slab sections. 
The standard space frame element stiffness matrix 

can now be converted into an eccentric space frame element 

stiffness matrix by the orthogonal transformation 

[Ks] -[T ]T [KB] [T] 
where [KBI and [KS] denote the standard and eccentric 

space frame element stiffness matrices respectively, and 

[ T] a 

1zo 
I--+-- 1 

0ýz oiz 
The alternative approach permits a considerable reduction 
in the number of shell elements required for the 
discretisation of the slab and lintel. The approach 
however cannot be used when the effects of local elastic 
wall deformation have to be included in the analysis, 
because the lintel element forces cannot be effectively 
transmitted to the wall elements. 

I 
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6.5.1 VERIFICATION OF ALTERNATIVE MODELLING TECHNIQUE 

In order to verify the accuracy of the alternative 

modelling technique, a standard cantilever tee-beam 

subjected to a point load at its free end has been analysed 

by the technique and the results obtained compared with 
those given by beam theory. Fig. 6.9(a) shows the 

dimensions and finite element idealisation of the canti- 
lever. The width of the flange has been made relatively 

narrow to ensure that reasonably accurate results may be 

obtained by beam theory which assumes a fully effective 

composite section. The flange is represented by 

rectangular flat shell elements in its middle-plane and 

the web by eccentric space frame elements with a depth of 
(d-t/2). Space frame elements with and without shear 

deformation characteristics have been considered in this 

investigation. A separate analysis which idealises the 

flange and web as an assembly of flat shell elements has 

also been carried out for comparison with the other 

results. The shell element idealisation of a symmetric 

half of the cantilever for this analysis is shown in 

Fig. 6.9(b). 

Table 6.3 shows the comparison between the finite 

element results and the beam theory results for the 

maximum deflection at the free end and the extreme fibre 

stresses at the supported end of the cantilever. The 

results have all been reduced to refer to unit values 

given by beam theory. In the calculation of shear 
deflection by beam theory, the shear is assumed to be 

carried by the web alone. Since the flange fibre stress 

evaluated by the finite element analysis at the centre- 
line is slightly higher than the value at the edge of the 

flange, an average value has been assumed for comparison 

with the uniform value given by beam theory. 
The results show that with the space frame 

idealisation of the web, the maximum cantilever deflection 

and the maximum fibre stresses are evaluated respectively 
to within 1% and 6% of the values given by beam theory. 
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With the flat shell idealisation, the maximum deflection 

and stresses are evaluated respectively to within 6% 

and 9% of the beam theory values. 

6.6 COMPARISON OF RESULTS OBTAINED BY SPACE FRAME AND 

FLAT SHELL IDEALISATIONS OF LINTEL 

Results for the composite stiffness ratio and effect- 

ive flange width of a composite coupling beam have been 

obtained using the eccentric space-frame idealisation of 

the lintel for a number of cases for the purpose of 

verifying the previous results obtained by the flat-shell 

idealisation. Table 6.4 shows the comparison of results 

evaluated by' the two techniques for configurations with 

various wall opening widths L/t and lintel depths d/t. 

The values of composite stiffness ratio I*/I* evaluated 

by the. two different techniques agree to within 3% whereas 

the effective flange width values Ye/Y agree to within 10%. 

6.7 SIGNIFICANCE OF COMPOSITE COUPLING ACTION 

In order to assess the significance of composite 

coupling action on the overall behaviour of a coupled wall 

system, a typical 20-storeyed, 60 m high and 15 m deep 

cross wall building is analysed for wind load effects. .A 
typical bay of the structure is assumed to consist of a 

pair of plane walls 230 mm thick coupled by 500 mm deep 

lintel beams monolithic with 150 mm thick floor slabs 5m 

in width. A uniform wind pressure of 1.2 kN/m2 is 

assumed acting on the building. Two wall opening widths, 

2m and 4m, are considered. The effective flange width 
for the composite coupling beam in each case is obtained 
from the curves presented in Fig. 6.4, with due allowance 
for junction flexibility and shear deformation effects. 
The curves presented by Coull and Choudhury, 59 

and Coull 

and Irwin53 are used to evaluate the maximum lateral 

deflections 6max, maximum extreme fibre wall stresses 
QA and TB, and maximum lintel shears Qmax. The design 

quantities evaluated assuming composite coupling action 



341 

are compared with those that disregard the influence of 
the slab, in Table 6.5. The percentage differences are 
shown in brackets in the table. 

It is seen from the results that significant 

reductions in the maximum wall stresses and deflections 

can be achieved by considering composite coupling action, 
when the lintels are flexible (defined by a relative 

stiffness aH less than 3, specified in Reference 59). 

These reductions, however, are gained at the expense of 
increased lintel shears. With stiff lintel beams (aH > 5) 

it is unlikely that any advantage can be gained by 

considering composite coupling action in the analysis and 
design of the wall system. 

6.8 CONCLUSIONS 

The composite action of the lintel and slab coupling 

a pair of shear walls has been investigated by a finite 

element method. The relative influences of a range of 

structural parameters on the composite stiffness and 

effective flange width of the composite coupling beam have 

been evaluated. For the normal range of structural 
dimensions encountered in practice, the slab width, lintel 

width and lintel depth have little influence on the 

effective flange width. The composite stiffness ratio 

and the effective flange width increase significantly with 
the wall opening width. Curves have been presented to 

allow the rapid evaluation of composite stiffness ratio 

or the effective flange width in a practical situation. 
The influence of elastic lintel-wall junction deformation 

may be allowed for in the calculation of the composite 
coupling stiffness by increasing the flexible span of the 
lintel by a length equal to the lintel depth. Significant 

reductions in the wind stresses and deflections in the 

coupled shear walls may be achieved by considering the 

composite action of the slab with the lintel in cases 
where the coupling by the lintel alone is' relatively 
flexible (for instance aH < 3). 
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TABLE 6.1 COMPARISON BETWEEN FINITE ELEMENT SOLUTION 
AND BEAM THEORY FOR PRISMATIC CANTILEVER 

BEAM DISCRETISED BY VARIOUS MESH PATTERNS 

Span/Depth 
Ratio 

2 Element Depth 
Sub-division 

4 Element Depth 
Sub-division 

WB 6A WB 6A 

1.33 0.9510 0.9664 0.9880 1.0832 

2.67 0.9697 0.9656 0.9827 1.0168 

Beam Theory 1.0000 1.0000 1.0000 1.0000 

TABLE 6.2 EFFECT OF LINTEL WIDTH ON COMPOSITE COUPLING 

STIFFNESS 

b/t 
L/t - 13.33 L/t - 26.67 

Icw Ye/Y Y /Y Ic/I 
e w 

1.33 1.440 0.181 1.834 0.239 

2.67 1.205 0.184 1.934 0.257 
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TABLE 6.3 COMPARISON BETWEEN FINITE ELEMENT SOLUTION 
AND BEAM THEORY FOR CANTILEVER TEE-BEAM 

Ideal- Assumed Shear Deformation Shear Def ormat ion 
isation Beam Neglected Included 

of Web Depth w d.. T ß. B w 6T 
B 

Space 
Frame (d-t/2) 0.9985 0.9089 1.0596 0.9993 1.0352 1.0515 
Element 

Flat 
Shell (d-t/2) - - - 0.9560 0.9224 0.9112 
Element 

Beam 
Theory 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TABLE 6.4 COMPARISON BETWEEN RESULTS FOR COMPOSITE 

COUPLING BEAM OBTAINED BY SPACE FRAME AND FLAT 

SHELL IDEALISATIONS OF LINTEL 

Space Frame Model Flat Shell Model 

L/t = 13.33 L/t = 26.67 L/t - 13.33 L/t - 26.67 

d/t I*/I* 
cw y /Y 

e 
I*/I 

cw Y /Y 
e 

I*/I* cw Y /Y 
e 

I*/I* cw Y /Y 
e 

2.5 

5.5 

7.2 

1.961 

1.465 

1.345 

0.184 

0.195 

0.223 

2.411 

1.796 

1.654 

0.267 

0.224 

0.238 

1.928 

1.440 

1.345 

0.175 

0.181 

0.223 

2.446 

1.834 

1.701 

0.279 

0.239 

0.262 
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TABLE 6.5 EFFECT OF COMPOSITE COUPLING ACTION ON 

DESIGN QUANTITIES FOR COUPLED WALL STRUCTURE 

L 
(m) 

ccH 6 
(kN/m2 ) 

6 B 
(kN/m2 ) 

b 
(mm )x 

Q 
max 

(kN) 

Coupling 
Medium 

2 4.04 2045.09 -1163.15 13.38 45.72 Lintel Alone 

5.03 1920.36 - 953.07 12.04 52.10 Lintel with 
Slab 

(25%) (-6%) (-18%) (-10%) (14%) Percentage 
Diff. 

4 2.40 3135.52 -2407.98 29.45 30.67 Lintel Alone 

3.21 2797.49 -1908.28 22.09 36.81 Lintel with 
Slab 

(34%) (-11%) (-21%) (-25%) (20%) Percentage 
Diff. 
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CHAPTER 7 

TORSIONAL COUPLING OF SHEAR CORES BY FLOOR SLABS 

7.1 INTRODUCTION 

In many modern high rise buildings, the lateral 

resistance of the structure against wind or seismic forces 

is provided wholly or partly by a central core which 
houses the lift shaft, stair wells and service bays. The 

centre core consists essentially of open section shear 

walls connected by lintel beams or floor slabs at the 
floor levels to form a perforated thin walled box structure. 
Very often, due to the asymmetric structural layout or 

eccentric disposition of loads, the core is subjected to 

torsion in addition to bending under the action of the 

lateral loads. 

An open section core, in contrast to a closed box 

structure, has a low torsional stiffness and undergoes 
large warping deformations under torsion. The restraint 

against free warping at the rigid base of the core induces 

throughout the height of the core walls axial and shearing 

warping stresses which may be large enough to merit 

consideration in the design. The presence of lintel 

beams or floor slabs, which act effectively as braces, 

stiffens the core against torsional deformations and 
reduces the warping stresses below the level of those 

which would be produced in the unbraced core. 
The torsional behaviour of braced open cores has been 

studied recently by a number of investigators 11-13j6 7- 79 

Various methods of torsional analysis have been presented. 
The majority are based on Vlasov's theory of thin walled 
beams23 for describing the characteristic behaviour of the 

core walls. One popular approach to the torsional 

analysis uses the continuous medium technique whereby the 
discrete connecting lintel beams are replaced by a continuous 
medium of equivalent stiffness, 71-79 This yields closed 
form solutions, but is restricted to cores with uniform 
walls connected by regularly spaced uniform lintels 
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throughout the height of the core. In order to apply 
the continuous medium methods of analysis to cores braced 

by floor slabs, it becomes necessary to replace the slabs 
by an equivalent system of connecting beams at the core 

openings. 
The second approach which is of more general 

application idealises the braced core as an assembly of 
discrete members consisting of beam or plate elements, or 

a combination of both, and uses a matrix formulation and 

computer solution in the analysis. 
11-13,67-70 The 

various available discrete methods of torsional analysis 

are relatively efficient for cores connected by lintel 

beams. But for cores braced all round by the floor slabs, 
the necessary sub-structure analysis of the slab to 

evaluate its' warping stiffness required for the analysis 

of the core involves a considerable amount of computational 

effort. Therefore, if the warping stiffness of the slab 

could be readily evaluated, or if the slab could be 

replaced by an equivalent system of connecting beams, the 

discrete methods of analysis could be used more easily to 

best advantage. 
In this chapter, the slab surrounding a centre core 

is replaced by an equivalent system of lintel beams at 
the core openings such that the torsional behaviour of 
the core remains unaffected by the substitution. The 

finite element method is used to obtain the warping 

stiffness of the slab and hence the effective width for 

the equivalent beams. The core configurations considered 
include single U- or C-shaped cores and twin channel cores 
coupled by floor slabs (Fig. 7.1). The relative influences 

of various structural parameters on the warping stiffness 
and effective width of slab are examined and design curves 
are presented to enable these quantities to be evaluated 
rapidly for the torsional analysis of the core. 

7.2 WARPING STIFFNESS AND EFFECTIVE WIDTH 

7.2.1 WARPING STIFFNESS OF FLOOR SLAB 

Shear cores in tall buildings behave essentially like 
thin wall beams of open sections. Under torsional loading 
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cross-sections of the core which were originally plane 

undergo warping deformation defined by equation (2.12). 

A slab rigidly connected to the core is forced to undergo 
out-of-plane deformation identical to the warping 
deformation of the core at the connection. The out-of- 
plane stiffness of the slab restrains the core against 
warping and induces longitudinal reactions which constitute 
a bimoment on the core. The warping stiffness of the 

slab may be defined in terms of the bimoment that is 

required to induce unit torsional warping (9' ,. 1). The 

slab reactions and resultant bimoment due to unit warping 
displacements can be evaluated only by a plate bending 

analysis, which may be best performed by the finite 

element method. Assuming that the slab reactions are 

evaluated as a system of discrete forces Pi and couples 
Msi and Mni acting respectively in the plane of, ' and 

normal to the plane of, the core wall (Fig. 7.2(a)), the 

bimoment resultants of these forces may be obtained 

using equations (2.25)-(2.27). The warping stiffness of 
the slab is then given by the sum of the bimoment 

resultants, thus 

NNN 

BW - Pi Wi + Msi(ds)i + Mni(dn) (7.1) 
i1i1i 

where N is the number of nodes at which the slab reactions 
on the core are evaluated; Wi is the sectorial 

coordinate, and (dW/ds) i and (dW/dn)i are the rates of 

change of sectorial co-ordinate function in the tangential 

and normal directions respectively. 

7.2.2 WARPING STIFFNESS OF CONNECTING BEAM 

A lintel beam connected at its ends to points on 
the warping core suffers the same warping displacements 
as the core at its ends and induces longitudinal reactions, 
and hence a resultant bimoment, on the core (Fig. 7.2(b)). 
The warping stiffness of the connecting beam may be 
defined in terms of the bimoment that is required to 
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produce unit warping displacements at its ends. These 

warping displacements consist of simultaneous vertical 
and rotational displacements equal respectively to the 

sectorial co-ordinate Wl and its derivative (dW/ds) 
1 at 

each end of the beam. The bimoment resulting from the 
imposed unit warping displacements is given by 

BW -2[ P1W1 + M1(ý)1 ] (7.2) 

The shear force P1 and the moment Ml can be obtained 
from the standard force-displacement relationship for a 
fixed ended beam (Fig. 7.2 (c)) as 

12E1b 2W1 dW P1 ° 
LZ 

[ --r- (ý)1 

6E1b 2W1 WW 
and M1 - _2 1 "Z" + (d s) 1ý 

(7.3) 

where Ib is the second moment of area of the beam, * and L 

is the core opening width. Equation (7.2 ) can therefore 

be written as 
12E I 

BW - 
L3 

=[ 2W1 +L 11 dW )1] 2 (7.4) 
L 

7.2.3 EFFECTIVE WIDTH FOR EQUIVALENT BEAM IN SINGLE 
CORE CONFIGURATION 

The single core configuration considered consists of 

a C-shaped core wall enclosed by the floor slab (Fig. 

7.3(a)). For the purpose of the torsional analysis of 
the core, the slab enclosing the core may be replaced by 

an equivalent lintel beam connected across the core opening. 
If the equivalent beam is assumed to have the same depth t 

as the slab, then an effective width of slab Ye can be 

evaluated for the equivalent beam by equating the warping 
stiffness of the slab to that of the beam. 

The warping stiffness of the beam is given by equation 
(7.4), with the expression within the parenthesis equal to 
twice the area enclosed within the core (i. e. 2BD). 
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Denoting the double core area by JL 

be written simply as 
12E Ilk 4) 

, equation (7.4) may 

Bw (7.5) 
L 

with Ib - Ye t3/12. 

The warping stiffness of the slab may be evaluated 
by the plate bending analysis in the form of a non- 
dimensional warping stiffness factor given by 

Bw 
Kw = D 

dL 
(7.6) 

where Bw is evaluated according to equation (7.1), and D* 

is the plate flexural rigidity. The effective width can 
then be expressed in terms of the warping stiffness factor, 

in non-dimensional form, as 

Ye Ký L2 is) rm 
12(1- v)Z 

(7.7) 

where S is the width of the slab from the core to the 

facade. 

7.2.4 EFFECTIVE WIDTH FOR EQUIVALENT BEAM IN TWIN-CORE 

CONFIGURATION 

The twin-core configuration considered consists of 
two identical channel-section core walls interconnected and 

enclosed by floor slabs (Fig. 7.3(b)). Under torsional 

loading, the slabs constrain the walls to rotate about a 

common axis as a single core unit with unit warping 
displacements as shown in Fig. (7.2(d)). Since two 

equivalent connecting beams are now assumed to replace the 
floor slab, the total bimoment on the core resulting from 

unit warping displacements imposed at the ends of the 

connecting beams is given by 

24E I2 

with the expression within the parenthesis equal to the 
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area within the core. Using the same symbol Jl, to 

denote the double core area (i. e. 2BD), equation (7.8) may 
be written simply as 

6E I 
BW Jb 2 (7.9) 

L 

The effective width for each connecting beam is now given 

by 
Ye 

°RWL26 
(1- v) JL 

7.3 FINITE ELEMENT ANALYSIS OF SLAB 

(7.10) 

The analysis of torsional interaction between shear 

cores and floor slabs is very similar to that of the 

flexural interaction between coupled shear walls and floor 

slabs. Since the rectangular plate bending element RB12 

(the Adini-Clough-Melosh element) has proved to be the 

best element among a large selection of elements evaluated 
for the analysis of shear wall-slab interaction (cf. 

Chapter 3), this element is again chosen for the present 

investigation of core-slab interaction. 

In this investigation it is assumed that the slab is 

homogeneous, isotropic and linearly elastic, and its 

flexural behaviour can be described by thin plate theory. 

It is also assumed that the reaction of the slab on the 

core does not give rise to any local elastic wall 
deformation, i. e. the unit warping displacements of the 

core section remain distributed strictly in accordance 

with the variation of sectorial co-ordinates where the 

slab interacts with the core. 
In the finite element analysis the slab is discretised 

into an assembly of plate bending elements. The element 
sub-division is generally made finer around the core 
opening than elsewhere to cater for the expected more 
severe bending deformation in this particular area. In 

the idealisation of the slab, no consideration is given to 

the finite thickness of the core wall, and the slab is 

considered to be connected to the middle plane of the core 

wall. 
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Conditions of anti-symmetry which exist. in the deformed 

slab are taken into account to reduce the computational 

effort. In the single-core configuration, for instance, 

the warping displacements in the slab are anti-symmetric 

about a principal axis (Y-axis in Fig. 7.17(f)), and only 
half the slab is analysed. In the twin-core arrangement, 
the slab displacements are anti-symmetric about both 

principal axes (Fig. 7.25(f)), and in this case, only a 

quadrant of the slab is analysed. 
The boundary conditions required for the solution of 

the problem are prescribed in terms of known displacements 

along the peripheral slab edges, if they are restrained, and 

along the lines of anti-symmetry and the wall-slab boundary. 

When the slab edges are connected to peripheral framing, 

then depending on the type'of connection and on the 

relative stiffness of the frame members, the slab edges 

may be considered approximately as simply supported, 

clamped or elastically restrained. In the case of a simply 

supported edge, the transverse deflections and the slopes 
in the direction of the supported edge are prescribed as 

zero at the supported nodes. The normal slopes are also 

prescribed as zero in the case of the clamped edge. In 

the case of an elastically restrained edge, axial and 

rotational spring stiffnesses are prescribed at the 

restrained nodes. 
The boundary conditions along the lines of anti- 

symmetry are identical to those of a simply supported edge, 
and zero transverse deflections and slopes in the direction 

of the anti-symmetry line are prescribed at the boundary 

nodes. 
The displacements prescribed for the core-slab boundary 

correspond to a unit torsional warping of the core and. 
consist of transverse deflections and rotations equal in 

magnitude and sense to the sectorial co-ordinates W and 
slopes of the sectorial co-ordinate function, dW/dx and 
dW/dy, at the boundary nodes. 

The sectorial co-ordinate and slope functions for 

single-core and twin-core configurations are shown in 
Fig. 7.4. 
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The equilibrium equations established at the nodes 

are solved by Gaussian elimination to yield the nodal 

displacements from which stresses and 'reactions are 

subsequently computed. The warping stiffness of the slab, 

which is equal to the bimoment defined by equation (7.1), 

is evaluated simply by summing up the products of the 

reaction and displacement vectors for the core-slab 

boundary nodes. The effective width for the equivalent 

connecting beam is then evaluated according to equation 
(7.7) or equation (7.10) depending on the core configuration 

considered. 

7.4 CONVERGENCE STUDY 

In order to determine suitable mesh patterns for the 

discretisation of the slab, a convergence check was carried 

out by comparing the solutions obtained from three 

different mesh patterns. A typical single-core 

configuration with core aspect ratio D/B of 1.0, core 

opening ratio L/B of 0.5 and slab span ratio S/B of 0.75 

was considered for this purpose. Two types of restraint 

conditions were considered for the peripheral slab edges; 
in one case the slab edges were free and in the other they 

were simply supported. In each case the slab was assumed 
rigidly connected to the core. The three mesh patterns 
representing coarse, medium and fine mesh divisions were 
obtained by sub-dividing a half slab panel into 45,88 and 
180 elements respectively (Fig. 7.5). 

The values of warping stiffness factor Kw and 
effective width Ye/S evaluated for the various cases are 
shown in Table 7.1. The results obtained by the coarse 
and medium mesh patterns have been compared with those 
obtained by the fine mesh pattern. The 'coarse mesh' 
results are some 8 to 9% higher, while the 'medium mesh' 
results are 3 to 4% higher than the 'fine mesh' results. 

The fine mesh pattern represents a relatively refined 
discretisation 

scheme and convergence errors in the ensuing 
solution should be very small. The solution however 
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requires a considerably large computational effort. The 
'medium mesh' solution requires much less computational 
effort and the results obtained are reasonably accurate. 
The results obtained using the coarse mesh pattern are 

not very satisfactory although the computer requirements 

are minimal. The 'medium mesh' is considered the most 
suitable scheme and is adopted for subsequent parameter 
studies. 

7.5 PARAMETER STUDY 

Fig. 7.3 shows the idealised typical plan - forms for 

single-core and twin-core configurations. In order to 

reduce the number of variables to a minimum, the slab is 

assumed to have a constant width S from the core wall to 

the peripheral or facade edge all round the centre core. 
The parameters which may influence the warping stiffness 

of the slab may be identified as the core configuration, 
the core aspect ratio D/B, the core opening ratio L/B, the 

slab width ratio S/B, and the support conditions for the 

interior and exterior edges of the slab. In order to 

evaluate the relative influence of the various parameters, 

a series of analyses has been carried out for both core 

configurations with various combinations of ratios D/B, L/B 

and S/B and with various forms of edge supports. The 

numerical results obtained for the warping stiffness factor 

K. and effective width Ye/S are given in Appendix A7.1- 

A7.9. The effective width values are presented in design 

curves. in Fig. 7.6-7.14. Each of these Figures contains 
three sets of curves showing the variation of Ye/S with 
L/B for various ratios S/B. Each set of curves refers to 

a particular set of support conditions for the slab. The 
first set of curves designated "Monolithic/Free" refers to 
the case where the slab is monolithic with the core and is 
free around its external peripheral edges. Such a case 
is applicable to the core-supported cantilevered-floor 
structure. The second set of curves, designated 
"Monolithic/S. Supported", refers to the case where the slab 



361 

is monolithic with the core and is simply supported around 

its periphery, while the last set of curves, designated 

"S. Supported/S. Supported", refers to the case where the 

slab is simply supported at the core and around its 

periphery. These two cases are applicable to hull-core, 

core-frame and core-supported base-cantilever structures 

where it is assumed that the peripheral columns are axially 

rigid and that the external framing does not offer any 

appreciable rotational restraint for the slab edges. As 

will be shown in a later section, these assumptions are 

reasonable for practical purpose. 

Each Figure of three sets of curves refers to a 
particular core-slab configuration. Fig. 7.6-7.8 refer 
to the single-core configurations with core aspect ratios 
D/B of 0.5,0.75 and 1.0. In each of these configurations 
it is assumed that the interior of the core is spanned by 

a strip of slab which forms the lift lobby in a practical 
core layout. The lobby slab is disregarded in similar 
core configurations for the next three Figures (Fig. 7.9- 

7.11). 

Fig. 7.12-7.14 refer to twin-core configurations with 
lobby slabs. Curves have not been presented for similar 

core configurations without lobby slabs, but it will be 

shown later how the effective width values for such cases 
can be obtained approximately from the results presented 
for the other cases. 

It is seen from the various Figures that the effective 
width Ye/S increases considerably due to the peripheral 
slab restraint. The peripheral supports exert a greater 
influence with a larger core-opening to slab-width ratio 
L/S. The moment connection between slab and core 
provides a considerable stiffening effect for the slab. 
By releasing the moment restraint at the core the warping 
stiffness of the slab is reduced generally by between 
30 and 40%. 

For slabs unsupported around the periphery the 
absolute effective width Ye increases with the slab width 
ratio S/B. In the case where the slab is restrained 
around the periphery the absolute effective width decreases 
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with an increase in the slab width S/B. In both cases 
the influence of slab width becomes less significant with 
larger slab width to core opening ratio S/L. With S/L 

greater than unity the influence of slab width is 

relatively insignificant. 

The effective width Ye/S decreases with an increase 

in the core aspect ratio D/B, the effect being relatively 

more significant with smaller core aspect ratios. 
The effective width Ye/S increases significantly with 

the core opening ratio L/B. Among the three geometric 

ratios D/B, L/B and S/B, the core opening ratio L/B has 

the greatest influence on the effective width Ye/S for 

the slab. 
It is seen that in the case where the slab edges are 

free, the effective width values for the single-core 

configurations without lobby slabs vary from 50 to 60% of 
the values for the same core configurations with lobby 

slabs, and in the other cases where the slab edges are 

simply supported, the corresponding percentage figures are 
55 to 65%. The effective width values obtained for a 
limited number of cases for the twin-core configurations 

without lobby slabs when compared with corresponding 

results for similar configurations with lobby slabs (Table 

7.2) appear to follow the same trends shown by the results 
for single-core configurations. Since design curves have 

not been presented for twin-core configurations without 
lobby slabs, it is suggested that the effective width 

values for these cases be obtained by taking 55 or 60% of 
the values for the case with a lobby slab, the value 
taken depending on whether the slab edges are free or 
restrained. 

7.6 DISPLACEMENTS AND STRESS-RESULTANTS INDUCED BY 
WARPING ACTIONS % 

In order to illustrate the warping actions in the 
slab, transverse displacement and stress resultant fields 
induced by a unit torsional warping displacement have been 
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evaluated graphically by computer for typical core-slab 
configurations. The graphical results are presented in 
Fig. 7.15-7.26. 

Fig. 7.15 and 7.16 show displacement contours while 
Fig. 7.17 and 7.18 show stress-resultant contours for a 

slab with free exterior edges and a slab with simply 

supported exterior edges in a typical "single-core without 
lobby" configuration with geometric ratios of D/B - 1.0, 

L/B - 0.5 and S/B - 0.75. To facilitate the interpretation 

of the contour diagrams and also to provide a quick 

qualitative picture of the general displacement and stress 

patterns throughout the slab, a complementary series of 

perspective diagrams have been presented in Figs. 7.19 and 
7.20 for these cases. It is seen from the displacement 

contours and also from the perspective view of the 
deflected shape that the slab in all cases is deformed 

most severely in the area connecting the core-opening, 

giving rise to severe concentrations of bending moments 

and shearing forces in the slab around the coupled lips of 
the core section. The significant warping actions appear 
to be confined to the portion of the slab spanning the 

core opening. The other parts of the slab at the sides 

and back of the core appear to be practically unstressed 

especially when the slab edges are free. When the slab 

edges are restrained, a certain amount of bending is 
induced in these parts of the slab, but these actions 

are insignificant compared to the large actions at the 

core-opening. 
The displacement and stress-resultant contours for 

the corresponding cases with lobby slabs have been 

presented in Fig. 7.21-7.24. It is seen that the lobby 

slab does not affect significantly the displacement and 
stress patterns in the slab outside the core. The 
significant warping actions in the lobby slab are confined 
to an area close to the lips of the core. 

Fig. 7.25 and 7.26 show the stress-resultant contours 
for slabs in the "twin-core with lobby" configuration. 
Like the previous cases, the significant warping actions 
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are seen to be confined to the region around the lips of 
the core. The restraint at the exterior slab edges 
again does not affect the stress patterns significantly. 

7.7 SLABS SUPPORTED BY A SMALL NUMBER OF PERIPHERAL 
COLUMNS 

The previous section has considered the case of the 

slab supported around its periphery by closely spaced 

columns or by deep spandrel beams, whereby for an' analysis 

of the warping action, the slab edges may be idealised as 
being simply supported throughout. Situations arise in 

which the peripheral columns are spaced relatively far 

apart and the slab is connected to the columns without 
spandrel supports. If the columns are assumed axially 

rigid but flexible in bending in comparison with the 
flexural stiffness of the slab, then the slab may be 

considered as point supported at the column positions. 
The warping stiffness of the slab in this case can be 

expected to vary according to the column arrangement but 

its value will lie between those for the two extreme cases 
in which the slab edges are free and simply supported 
throughout. 

In order to illustrate the relative influence of 
discrete column supports on the warping stiffness of the 

slab, a square single-core configuration is considered. 
Two core-opening ratios L/B of 0.5 and 1.0 and three slab- 
width ratios S/B of 0.5,0.75 and 1.0 are considered in 

order to include a reasonable range of variables in the 

evaluation of the slab's performance. Three column 
arrangements consisting of 4,8 and 12 columns arranged 
symmetrically around the per of the slab are 
considered, together with the two extreme cases where the 

slab edges are unsupported and simply supported throughout. 
In all cases, the slab is assumed monolithic with the core 
wall. The lobby slab is assumed non-existent inside the 
core. The values for the warping stiffness factor Kw 
and effective width Ye/S evaluated for the various cases 
are shown in Tables 7.3, (a) and (b). In order to 
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highlight the stiffening effect of the column supports, 

the results for the cases where the slab edges are 

restrained have been compared with those for the case where 

the slab edges are free and the percentage differences have 

been inserted below the effective-width values in the 

Table. 
It is seen from the results that the stiffening effect 

of the peripheral supports increases significantly with 

the ratio of core-opening to slab width, L/S. The 

stiffening effect also increases with the number of 

column supports, but once the slab has been restrained by 

8 columns arranged with pairs of columns in line with the 

core walls, then any further increase in the number of 

columns does not produce much further increase in the 

warping stiffness of the slab. The warping stiffness for 

the slab restrained by the 8-column arrangement is seen to 

differ by less than 10% from the limiting value given by 

the simply supported slab in the cases investigated. For 

practical purposes, the slab in the former case could well 

be assumed simply supported all around the periphery. It 

appears that although the slab is restrained only at a 

limited number of points around its periphery, the 

stiffening effect produced by the point supports is not 

substantially different from that produced by continuous 

simple supports. 

7.8 EFFECT OF FINITE COLUMN STIFFNESS 

The warping stiffness of a slab enclosing a centre 

core and supported by peripheral columns has been evaluated 
in the preceding section by assuming that the columns have 

infinite axial stiffness but zero flexural stiffness. The 

finite stiffness of actual columns will to a certain 

extent influence the warping stiffness of the slab. In 

order to evaluate the relative significance of the 

approximations involved in the previous assumptions, 

realistic column stiffnesses are now considered for two of 
the cases considered in the preceding section. These 
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cases consist of square single-core configurations with 

core-opening ratios L/B of 0.5 and 1.0 and a common slab 

width ratio S/B of 0.75. The slab in each case is 

connected to 12 columns arranged around the periphery. The 

cores are assumed to be 7.32 x 7.32 m (24 x 24 ft) square. 
It is estimated that column sizes will vary from 0.3x0.3 m 
(1 x1 ft) square in the upper floors to 0.61 x 0.61 m 
(2 x2 ft) square in the lower floors in a 60.98 m (200 ft) 

high, 20 storeyed building, with the column arrangement as 

assumed. The wall and slab thicknesses are assumed as 
0.3 m (1 ft) and 0.23 m (0.75 ft. ) respectively. 

In order to simplify the analysis it is assumed that 

the effect of inter-floor interaction of various members 

can be disregarded in the evaluation of the warping 

stiffness for the slab. The columns at each floor can 
then be represented as elastic springs with axial and 

rotational stiffnesses. The axial spring stiffness is 

evaluated assuming a column length equal to the storey 
height. The rotational spring stiffness is evaluated 

assuming points of contraflexure at mid-storey heights. 

Stiffnesses corresponding to the two estimated column 

sizes are considered for the evaluation of warping stiffness 

and effective width for the slab. 
Table 7.4 shows the values of warping stiffness factor 

K. and effective width Ye/S evaluated for the cases which 

account for finite column stiffnesses, compared with the 

results obtained assuming infinite axial and zero flexural 

column stiffnesses. It is seen from the results that the 

assumption of infinite axial column stiffness generally 
over-estimates the warping stiffness of the slab by less 
than one per cent, whereas the assumption of zero flexural 

stiffness under-estimates the warping stiffness by a few 

per cent. In the latter case, the errors may lead to a 
slightly conservative design of the core. Nevertheless, 

considering the possibility of cracking at the slab-column 
joint which tends to reduce the effectiveness of the 
column restraint it would appear reasonable to disregard 
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the rotational restraint of the column in evaluating the 

warping stiffness for the slab. 

7.9 VERIFICATION OF RESULTS 

There appears to be no reliable published data 

against which the results presented in this chapter could 

be compared. Although Stafford Smith and Taranath11-13 

have evaluated the warping stiffness of the slab for a 

limited number of cases using the finite element method, 

the results they obtained appear to be grossly in error, 

as will be shown later, and therefore cannot be used to 

check the author's results. A rigorous check on the 

finite element results by a classical plate solution does 

not appear possible due to the complicated boundary 

conditions presented by the slab cut-out at the core.: 

Therefore, to prove the accuracy of the method of analysis, 

a simpler but rather similar problem of a slab without 

cut-out interacting with the core is considered and the 

results obtained by an influence coefficient method are 

used to verify the results obtained by the finite element 

method. 

Two single-core configurations with opening ratios 

L/B of 0.5 and 1.0, and with a common slab-width ratio 

S/B of 0.75 were considered. The slab was assumed to be 

simply supported around its periphery and rigidly connected 

to the core in each case. Two finite element analyses 

were performed for each case using coarse and fine mesh 

patterns in order to obtain some indication of convergence. 
Similarly, the influence coefficient solutions were 

evaluated to two levels of refinement for each case. 
Seventy and 240 elements were used for the element 
discretisations of the slab. In the influence coefficient 

solutions, 9 nodal points were used for the representation 
of the core in all cases, but the influence coefficients 
were evaluated from 40 and 80 terms of the infinite series. 
In each method of analysis, advantage was taken of the 

anti-symmetry conditions about the Y-axis in the slab to 

reduce the computational effort. 
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The results for the warping stiffness factor K. and 
effective width Ye/S evaluated by the two methods of 
analysis are compared in Table 7.5. It can be seen that 
the finite element solution and influence coefficient 

solution are in good agreement. The minor discrepancies 
between the results evaluated by the two different methods 
are of such orders that they can be attributed to 

convergence errors. Since the accuracy of the finite 

element solution is verified by the influence coefficient 

solution for these test cases it is reasonable to assume 
that the finite element results for the real cases, which 
are essentially similar to the test cases except for the 

openings in the slab, are of similar accuracy. 
The reliability of the finite element results can also 

be checked approximately using results which have been 

presented for slabs coupling shear walls in. cross-wall 

structures. It may be recognised from the displacement 

and stress fields induced in the slab that the primary 

warping action of the slab arises from bending deformation 

produced by differential shearing action across the core 

opening similar to the action in a slab coupling a pair of 

plane walls. Therefore, if in the case where the slab is 

unsupported around its periphery, the portion of the slab 

connecting the side of the core with the opening is 
isolated from the rest of the panel, then the problem could 
be approximated as one similar to the end bay of a slab 

coupled cross wall structure. The results presented in 
Chapter 3 can therefore be used as a rough check to confirm 
that the effective width values evaluated for the core- 
slab structure are of the right order. 

Consider for example the square single-core config- 
uration with core-opening ratio L/B of 0.5 and slab-width 
ratio S/B of 0.75. The approximate 'end bay' equivalent 
will have the relevant ratios L/X of 0.5 and Y/X of 1.5. 
The effective width Ye/Y for the end bay, which may be 
taken as 45% of that for an interior bay (Section 3.4.1.11), 
is evaluated by the empirical equations (3.4) and (3.6) as 
0.130 which gives a value of 0.260 for the effective width 
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Ye/S. This value compares very well with the value of 

0.266 evaluated by the finite element analysis for the 

core-slab structure. The effective width values for 

slabs with other core-opening ratios and slab width ratios 

have also been checked and found to agree well generally 

with the 'end-bay ' results. 
As ', mentioned earlier on, Stafford Smith and Taranath's 

results for the warping stiffness of slab appear grossly 

in error. This can be seen from the results for a 

particular case which was presented in Reference 12. The 

case considered was a perspex model consisting of a 

203 mm (8 in. ) square core with a 102 mm. (4 in. ) wide 

opening on one side, the core being enclosed by 508 mm 

(20 in. ) square, 10 mm (I in. ) thick slabs. The elastic 

modulus and Poisson's ratio for the perspex were given as 

E- 2930 N/mm2 (4.25 x 105 lb/in2) and V-0.35 

respectively. The warping stiffness of the slab was 

obtained as 2686 Nm2 (935,750 lb-in 2) 
. Now this warping 

stiffness will give for an equivalent lintel an effective 

width of only 4.1 mm (0.16 in. ), which is even thinner 

than the wall thickness or slab thickness and appears 

unreasonable. On the other hand, the warping stiffness 
for the same case determined by the author is 26355 Nm2 

(9,180,000 lb-in2) giving an effective width of 40.6 mm 
(1.60 in. ), which is slightly more than four times the 

slab thickness and appears a much more reasonable figure. 

It was found that other cases presented by Taranath in 

Reference 13 show the same order of inaccuracy as the case 

quoted above. 

7.10 EFFECT OF SLAB COUPLING ON OVERALL BEHAVIOUR OF CORE 

The torsional behaviour of a thin-walled open-section 

core, which may or may not be coupled by a continuous 

medium across the core opening, can be described by the 

governing equation 
23,23,75 

d4 0_2 d20 t (z) 

dz4 
a _- 2m -=- (7.11) 
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where a 
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1w 
and ý_ E 
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For an uncoupled core Jul m J, the St. Venant torsional 

moment of inertia. When the core is coupled by uniform 

lintel beams at regular intervals along its height, the 

value of J. is modified to J. - (J + Jd) " In a single 

core configuration 

Jd a 
41 21 
Lh 

(L`G + 
1.2 

tý Ab 

and in a twin core configuration 

(cf . Ref . 75) 

2 
I Jd =1 (cf. Ref. 73- 74 ) 

jL G+1.21 
1 i2Eib" 

where Ib and Ab are the moment of inertia and cross- 

sectional area of the lintel, h is the lintel spacing and 

,A and L are as defined earlier. 
The solutions of the governing equation (7.11) for 

three standard load cases for a core on a rigid foundation 

are given by 73-75 

(a) Concentrated Torque P at the Top: 

3 
AZ - EpZ-. 

H-ä ý- 
sh (aH. ý) +t anh aH[ eh (aH. ý)-1 J 

1W («H) , 

+ (aH. H) 1 (7.12) 

(b) Uniformly Distributed Torque of Intensity m/unit height: 

4 
6Z mH {_xH 

sh(«H. H) + [aH tanh aH + 
chaH 

1 

E1Iw (aH) 

[ ch (aH. Z)-1 ]+ ((xH)2 [a 1 
H- (ý)2 ]} (7.13) 
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(c) Triangular Distributed Torque of Maximum Intensity n/ 
unit height At Top: 

Z 
0 n H4 

ElIW (aH) {-(ý-ý)sh(aH. H) + [(ý-ý)tanhaH 

ý 
(aH. Ä 3 ) 

6 aH 

(aH - 
ý) (acH. ý 

(7.14) 

With the solution for AZ known, the torsional stress- 
resultants and torsional stresses throughout the core can 
be evaluated using equations (2.13)-(2.22). The shear 
force distribution in the connecting medium may be 

obtained by 73-74 

- . _% -G 
Jd 

Li lLJ° 

+c 
la ][ ch (acH.; )-1 ] + 

A 
dg 
az (7.15) 

The overall torsional behaviour of a core structure 
is seen to be characterised by the parameter cH, the 

value of which reflects the coupling effect of the 

connecting beams. The value of aH is large when the 

core is coupled by stiff lintel beams and is small when 
the core is uncoupled. Fig. 7.27 illustrates the effect 
of coupling on two of the quantities which may control 
the torsional design of the core, namely, the maximum 
rotation 0H at the top and the maximum bimoment B0 at the 
base of the core. The percentage reductions in the values 
for 0H and B0 due to coupling effect have been plotted 
against values of aH and lintel depth to storey height 

ratio d/h for two standard load cases consisting of a 
concentrated torque at the top and a uniformly distributed 
torque along the height of the core. The core structure 
considered in the illustration isa7.32 x 7.32 m (24 x 24 ft) 
square core with an opening of 3.61 m (12 ft. ) width 
coupled by lintel beams at 3.05 m (10 ft. ) intervals along 
its total height of 60.96 m (200 ft. ). The core walls 
are 0.30 m (1 ft. ) thick. 

While the curves in Fig. 7.27 are based on a 
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particular core structure, the trend of results they 
illustrate should be typical. It is seen that significant 
reductions in the maximum deflection AH and maximum 
bimoment Bo can be achieved with relatively small values 
of aH associated with relatively flexible coupling beams. 
The design quantities 0H and Bo are not sensitive to aH 

when the coupling beams have appreciable stiffness (aH > 6), 
but when the beams are flexible ( aH < 4), these quantities 
change rapidly with a H, and it is then important to 

evaluate accurately the stiffness of the coupling beams. 

This is particularly important when the core is coupled 
only by floor slabs which are relatively flexible, since a 
small error in the calculation of effective width for the 

equivalent lintel may have a significant effect on the 

behaviour of the core. 
The effective width of slab and the value of aH for 

the core depends among other parameters on the shape of 
the core and on the core opening width L. The effective- 

ness of slab coupling is therefore dependent on these 

parameters. Fig. 7.28 shows values of aH and 'coupled/ 

uncoupled' ratios of 0H and Bo plotted against core opening 

ratios L/B for four core configurations consisting of 

single-cores and twin-cores with aspect ratios D/B of 1.0 

and 0.5 coupled by slabs with a width ratio S/B of 0.75. 

The 'coupled/uncoupled' ratio expresses the value of 8H 

or Bo evaluated assuming the core coupled by an effective 

width of slab, as a ratio of that for an uncoupled core, 
and serves as a measure of the effectiveness of slab 
coupling. The interior of the core in each case is 

assumed to be spanned by a lobby slab and calculations are 
based on a 60.96 m (200 ft. ) high, 20-storeyed core- 
supported structure with a core width B of 7.32 m (24 ft) 

and wall and slab thicknesses of 0.3 m and 0.23 m (12 in. 

and 9 in. ) respectively. 
It is seen from Fig. 7.28 that although the core 

configurations differ considerably, the general trend of 
results showing the variations of aH and effectiveness 
of coupling with core opening ratio in each case is 



373 

similar. Throughout the possible range of . wall opening 

ratios, significant coupling is provided by the slab, 
resulting in substantial reductions in the values of 0H 

and Bo. The coupling effects are relatively more 
significant with smaller core opening ratios. It is seen 
that as the core-opening ratio is reduced from 0.1 to the 
limit, the value of aH increases rapidly to an infinitely 
large value and the core becomes infinitely stiff, which is 

physically not possible. The anomaly is due to the 
limitations of open-section analysis in which some of the 
fundamental assumptions in the torsion theory become 
invalid when the coupling medium is very stiff. However, 
in practice, core-openings are relatively large and the 

situation where the validity of open-section analysis 
becomes questionable is unlikely to arise. 

7.11 SIGNIFICANCE OF ERRORS IN EFFECTIVE WIDTH ON 

OVERALL CORE-PERFORMANCE 

Inevitably, a certain amount of error is introduced 

into the evaluation of the effective width or warping 
stiffness of the-slab due to the various approximations 

which have been assumed in order to simplify the analysis. 
However, errors in the estimation of effective widths for 

the connecting beams usually result in smaller errors in 

the calculation of design quantities associated with the 

overall torsional behaviour of the core-slab system. In 

order to illustrate the relative significance of these 

errors, the torsional behaviour of a 60.96 m (200 ft) high 
20-storeyed core-supported structure is evaluated assuming 
various effective widths for the connecting beams. The 
'correct' effective width is assumed to be given by the 

value obtained from the finite element analysis and 
effective widths which are± 10% and ± 20% different from 
this value are considered for the other cases. Two 
typical core configurations are considered. These consist 
of a square single core with L/B - 0.5 and S/B - 0.75, and 
a square twin core with L/B - 0.33 and S/B n 0.75. The 
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lobby slab is assumed to be present only in the twin-core 

configuration. Both cores are assumed to be 7.32 m 
(24 ft. ) square. Wall and slab thicknesses are assumed 

as 305 mm (12 in. ) and 229 mm (9 in. ) respectively. Two 

load cases are considered, namely, a concentrated torque 

of 1.36 kNm (1 kip-ft) at the top and a uniformly 
distributed torque of 4.45 kNm/m (1 kip-ft/ft). 

The results for the rotation 8H at the top and the 

bimoment Bo at the base of the core for the various cases 

are shown in Table 7.6. The 'errors' in the calculation 

of these quantities due to the respective 'errors' in the 

effective widths Ye have also been shown in the Table. 

It is seen from the results that the errors in the 

calculation of 0H and Bo are smaller than the errors in Ye 

in every case. The negative error in Ye has a larger 

influence on 0H and B0 than the positive error but in the 

former case, 0H and B0 are over-estimated and therefore 

err on the safe side for design. Errors in Ye have a 

greater influence on AH than on Bo and are more significant 
for the concentrated loading case than the distributed 

loading case. 
It is seen from the cases considered that a 20% error 

in the estimation of effective width Ye results in maximum 

error of about 10% in the calculation of bimoment Bo. The 

error in Bo results in a similar order of error in the 

calculation of longitudinal wall stresses induced by 

torsional loading. However, when these stresses are 

considered with the stresses due to gravity. loading for 

design purpose, then the resultant error in the evaluation 
of, critical design stresses will be much smaller than 10%. 

The cores considered here have relatively small opening 

ratios. With larger core-opening ratios, errors in the 

evaluation of effective widths will be less significant 
than the cases considered. It would appear that in most 
practical cases a 20% error in the estimation of the 

effective width is quite acceptable for design stress 
calculat ions. 
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The corresponding error in the calculation of 

torsional rotation AH due to a 20% error in Ye is seen to 

be of the order of 16-17% in more severe cases, and may not 
be acceptable when the design of the core is controlled by 

the lateral stiffness criterion. However, in most 

practical buildings, the design of the core to satisfy 

strength requirements often results in a structure of such 

stiffness that the torsional rotation or lateral drift 

criterion' is easily satisfied, and a 20% error in the 

evaluation of Ye may still be acceptable for stiffness 

calculations. 

7.12 CONCLUSIONS 

A rational method of replacing the slab enclosing a 

centre core by an equivalent system of lintel beams has 

been suggested to facilitate the torsional analysis of the 

core. The absolute effective width for the equivalent 
beam has been shown to be influenced strongly by the 

support conditions of the slab edges and by the core 

opening ratio, and less by the core aspect ratio and slab 

width ratio. Design curves showing the relative influence 

of the various parameters in the effective width have been 

presented to enable the effective width to be readily 

established for the torsional analysis of the core. 
The significant warping actions in the slab have been 

shown to be confined to the area spanning the core opening. 
Severe stress concentrations arise around the coupled lips 

of the core section where special attention may be 

required in detailing the slab. 
Effective coupling of the core walls can be achieved 

even with a relatively flexible slab system, and 

considerable economies may be gained in the design of the 

core by taking into account the contribution of the 

coupling slab. 
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TABLE 7.1 CONVERGENCE RESULTS FOR SINGLE-CORE 

CONFIGURATION (D/B - 1.0, L/B - 0.5, S/B - 0.75) 

Mesh Slab Edges Free Slab Edges S. S. 

Type 
Kw Ye/S R KW Ye/S R 

Coarse Mesh 

45 Elements, 40.147 0.2852 1.094 50.243 0.3569 1.074 

192 DOF 

Medium Mesh 

88 Elements 38.045 0.2703 1.036 48.087 0.3416 1.028 

345 DOF 

Fine Mesh 
180 Elements 36.705 0.2608 1.000 46.780 0.3323 1.000 

651 DOF 

R* - Result normalised with respect to that for fine mesh. 
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TABLE 7.3 (a) EFFECT OF PERIPHERAL COLUMNS ON' SLAB WARPING 

STIFFNESS 

Square Single Core (L/B - 0.5) 

Peripheral Warping Slab Width Ratio SIB 
ort Su Stiff pp - 

Conditions ness and 
Ef f. 0.5 0.75 1.0 
Width 

Kw 34.8767 38.0447 40.3070 

Free Y /S 0.3717 0.2703 0.2148 
Edges e 

D% 0.0% 0.0% 0.0% 

Kw 38.3153 40.6876 42.5428 

4 /S Y 0.4083 0.2891 0.2267 
1. J ý. J Columns e 

Dck +9.86% +6.95% +5.55% 

Kw 50.3482 47.3487 46.8080 

8 Li /S Y 0.5365 0.3369 0.2494 
41 Columns e 

D% +44.36% +24.46% +16.13% 

Kw 50.8744 47.4477 46.8284 
12 /S Y 0.5421 0.3371 0.2495 

LJ Columns e 
D% +45.87% +24.72% +16.18% 

---ý-- -; Kw 53.7696 48.0874 47.1025 
S. S. Y /S 0.5730 0.3416 0.2510 
Edges 

Ton 
D% +54.17% +26.40% +16.86% 

DSO - Percentage difference in relation to case for 
free edges. 



3 79 

TABLE 7.3 (b) EFFECT OF PERIPHERAL COLUMNS ON SLAB 

WARPING STIFFNESS 

Square Single-Core (L/B - 1.0) 

Peripheral Warping Slab Width Ratio S/B 
t Stiff Suppor ness 

Conditions and Eff. 0.5 0.75 1.0 
Width 

Kw 6.5078 7.5244 8.2172 

Free Ye/S 0.5548 0.4276 0.3503 
Edges D% 0.0% 0.0% 0.0% 

Kw 9.0291 9.4144 9.7819 

4 /S Y 0.7697 0.5351 0.4170 
Columns e 

D% +38.74% +25.12% +19.04% 

Kw 15.5857 13.1855 12.2704 

8 Ye/S 1.3287 0.7494 0.5230 
Columns D% +139.45% +75.24% +49.33% 

Kw 15.8084 13.2284 12.2797 

12 Ye/S 1.3477 0.7518 0.5234 
Columns D% +142.91% +75.81% +49.44% 

Kw 17.0364 13.6312 12.4824 

S. S. /S Y 1.4524 0.7747 0.5321 
tJ ; Edges e 

D% +161.78% +81.16% +51.91% 

DSO - Percentage differerre in relation to case for 

free edges 
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TABLE 7.6 SIGNIFICANCE OF ERROR IN EFFECTIVE WIDTH 
(Figures in brackets refer to percentage errors) 

Cor e 
Configur- 
ation 

11 
nfB-1. o 
L/B-0 .5 
S/B -0.75 

[I 

D/B-i. 0 
L/B=0.33 

S/B=0.75 

Effective 
Width 

Ye 
(ft) 

4.870 
(0) 

4.383 
(-10.0) 

5.357 
(+10.0) 

3.896 
(-20.0) 

5.844 
(+20.0) 

5.860 
(0) 

5.274 
(-10. ) 

6.446 
(+10.0) 

4.688 
(-20.0) 

7.032 
(+20.0) 

Conc. Torque at 
Top (1 kip-ft) 

0Hx 1061 Box 1 

(kip-ft2) 

1.559 
(O) 

1.660 
(6.5) 

1.470 
(-5.7) 

1.776 
(13.9) 

1.390 
(-10.8) 

0.933 
(0) 

1.006 
(7.8) 

0.871 
(-6.7) 

1.091 
(16.9) 

0.816 
(-12.6) 

8.530 
(0) 

8.907 
(4.4) 

8.194 
(-3.9) 

9.334 
(9.4) 

7.893 
(-7.5) 

6.813 
(0 ) 

7.151 
(5.0) 

6.517 
(-4.3) 

7.543 
(10.7) 

6.255 
(-8.2) 

Uniformly Dist. 
Torque (1 kip-ft/ 

ft) 

9H 
Ö 

Bo x 10-4 
(kip-ft2) 

1.224 
(0) 

1.299 
(6.1) 

1.158 
(-5.4) 

1.385 
(13.1) 

1.099 
(-10.3) 

0.748 
(0) 

0.802 
(7.3) 

0.700 
(-6.3) 

0.866 
(15.8) 

0.659 
(11.8) 

1.140 
(0) 

1.132 
(3.0) 

1.070 
(-2.7) 

1.168 
(6.3) 

1.043 
(-5.1) 

0.943 
(0) 

0.975 
(3.4) 

0.915 
(-3.0) 

1.011 
(7.2) 

0.890 
(-5.7) 
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S BS 

L 

EQUIVALENT . CORE 
SINGLE-CORE WITH SLAB WITH LINTEL 

S 

0 

'r- 

0 

Y 

N 
B S 

ý[ 
B 

1 ý 

T7 

EQUIVALENT CORE 
TWIN-CORE WITH SLAB WITH LINTEL 

Fig. 7.3 Idealised Plan-Forms for Single-Core and 
Twin-Core Configurations 
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CHAPTER 8 

COUPLING ACTION OF SLABS IN HULL- 

CORE STRUCTURES 

8.1 INTRODUCTION 

The hull-core structure has found considerable favour 

for the construction of tall commercial buildings. 82 This 

efficient structural system consists essentially of 

confining all the utilities, lifts, etc., within a central 

core which acts as the interior support to the floor 

system. The floor system is supported along the exterior 
by a series of columns which are usually closely spaced 

and connected by deep spandrel girders forming an exterior 
framed tube (Fig. 8.1(a)). 

The success of the hull core system lies in the 

utilisation of the inner core and the outer hull to resist 
the lateral loads by tubular bending action. Due to the 

flexibility of the frame members the behaviour of the 

framed tube is strongly influenced by frame racking and 

shear lag effects. 
83-86 The lateral behaviour of the 

centre core is essentially that of a vertical cantilever. 
Due to differences in structural behaviour between core and 
hull, a complex interaction between these two elements is 

effected through the floor slab when the structure is 

subjected to lateral loading. The structural behaviour 

of the composite tubular structure is then influenced by 

the stiffness of the floor system and by the rigidity of 
the connections between the floor and the tube systems. 
If the floors are effectively pin-connected to the core and 
hull, then under lateral loading the floor system transmits 

only horizontal forces between core and hull. A more 
efficient composite system can be achieved by having 

moment connections between core and hull so that axial 
forces are induced in the exterior columns by the canti- 
lever bending of the core. These axial column forces not 
only reduce the shear lag effect but also increase 
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considerably the moment of resistance of the structure 
due to the large lever arm between the frame panels. 

The interaction between the various structural 
components in the hull core structure is relatively 

complicated. An accurate analysis of the composite 
behaviour of the system under lateral loading would require 
a three dimensional finite element analysis of the complete 
structure which is both time consuming and expensive to 

carry out. An approximate analysis can be carried out by 

assuming that the complete behaviour of the structure can 
be built up of two primary component actions, a frame- 
tube action of the exterior hull and an interaction between 
the central core and the normal frame panels. 

84 The 
latter system may be treated as a coupled shear wall system 

with flexible end walls, 
87,88 

or more conveniently, if the 

axial column deformation produced by the interaction forces 

can be neglected, as a vertical cantilever restrained by 

rotational springs at the floor levels. 89 The component 

systems may be analysed by available matrix or continuum 
techniques for plane systems. By using an influence 

coefficient technique 84,84,85 
whereby compatibility of lateral 

deflections and equilibrium of lateral forces between the 

two component systems are enforced at various levels, the 
distribution of lateral loads to each system can be 

evaluated and hence the overall behaviour of the complete 

. structure analysed. 
This Chapter describes an investigation on the 

coupling action of the slab in the hull-core structure, 
using the techniques which have been employed for the 
investigations of shear wall slab interaction in cross- 
wall structures. The rotational stiffness and effective 
width of slab and the distribution of coupling actions, 
which are essential information for the analysis of the 
core-frame sub-system, are evaluated for a range of 
structural parameters. 
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8.2 ROTATIONAL STIFFNESS AND EFFECTIVE WIDTH OF SLAB 

Fig. 8.1(b) shows a segment of a core coupled to the 

windward and leeward frame panels (normal frame panels) in 

a hull-core structure bending under lateral loading. It 

is assumed that plane sections of the core remain plane in 

bending. Since the in-plane stiffness of the floor, slab 

constrains the core and frame panels to deflect equally 
laterally, the frame columns undergo a chord rotation 

equal to the wall rotation 6. The wall rotation induces 

out-of-plane bending in the slab (Fig. 8.1(c)). Due to 

the flexural action of the slab, the relatively flexible 

frame column undergoes a local joint rotation at each 
floor resulting in points of contraflexure occurring in 

the columns generally at mid-storey height. Lines of 

contraflexure also occur in the floor slab at positions 
dependent on the relative column and slab stiffnesses. 

The resistance of the slab against the wall rotation 
is a measure of its rotational stiffness in coupling a 

core with a hull. Thus the rotational stiffness of the 

slab may be defined in terms of the moment that is required 

to induce unit rotation of the core. The rotational 

stiffness may be evaluated, by a plate bending analysis, in 

the form of a non-dimensional stiffness factor K given by 

K ==Ä (8.1) 

where D is the plate flexural rigidity. 
For the purpose of overall analysis of the core sub- 

system, it is convenient to consider the core coupled only 
to the normal frame panels by a uniform width of slab in 

an equivalent wall-frame structure (Fig. 8.1(b)). The 

effective width of the slab can be established by equating 
the rotational stiffness of the slab to that of the beam 
in the equivalent wall-frame structure. 

By an application of slope-deflection equations it 

can be shown that the rotational stiffness of the equivalent 
beam is given by 

14 °L 
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where ra - (1 +71) I 
1+6Ai 1+ 12A ia 
+ 3A i)+(+aiýýý 

in which a is the half depth of the core, L is the slab 

span and Ai is a ratio of column to slab flexural stiff- 

ness given by 

xi a 
Ic Is 

ý/ý 

where Ic and Is are the second moments of area of a column 

and a slab of unit width respectively, S is the column 

spacing and H is the storey height. Writing I, the 

second moment of area of the equivalent beam, as I=Yeti/12, 

where t is the slab thickness, the effective width Ye may 

be expressed in terms of the rotational stiffness factor K 

as 
Ye KL1 
-y- a 

6(1 
vý "Y'ß 

where Y is the overall width of the slab and ' is 

Poisson's ratio. 

8.3 FINITE ELEMENT ANALYSIS OF SLAB 

(8.2) 

The analysis of slab action must include the influence 

of the peripheral-frame column segments isolated by the 

points of contraflexure, since the rotational restraint at 

the slab edges depends largely on the relative column and 

slab flexural stiffnesses. In a straight forward finite 

element idealisation, a column segment can be represented 
by a space-frame element with six kinematic degrees of 
freedom at each end. This representation would require 
the slab to be represented by spatial or flat shell 
elements with nodal degrees of freedom compatible with 
those of the space frame element. The use of the flat 

shell element may be appropriate if the membrane or in- 

plane actions induced by eccentric spandrel edge beams, 

or the flexibility of the core walls have to be considered 
in the analysis; otherwise, the shell element is employed 
inefficiently, with superfluous in-plane degrees of freedom 

where the slab displacements consist of only three out-of- 
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plane degrees of freedom, namely the transverse deflection 

and two orthogonal rotations. In the latter case, a more 
economical but indirect two dimensional analysis can be 

carried out by simulating the action of a vertical column 
by the bending and torsional action of a horizontal beam 
in conjunction with the action of a vertical axial spring 
connected to the column slab junction. The axial spring 

stiffness is made equal to the axial stiffness of the 

column. The torsional stiffness of the beam is adjusted 
to the value of the flexural stiffness of the column in 

the direction normal to the direction of chord rotation 
and the free ends of the beam are restrained against 
torsional rotations. In the direction of chord rotation 
the flexural stiffness of the beam is identical to that of 
the column. The floor slab can then be represented by 

simple plate bending elements and the spandrel girder by 

beam elements. 
In carrying out the finite element analysis, trans- 

verse displacements and slopes produced by a unit rigid 

core rotation are imposed at the interior edges of the 

slab. Simultaneously, the ends of every peripheral 

column (or substitute beam) are deflected to produce a 

unit chord rotation in the same direction as the wall 

rotation. The slab reactions at the wall nodes are 

evaluated by the finite element analysis to give a 

resultant moment about the rotational axis of the core. 
The slab rotational stiffness K -and the effective width 
Ye/Y are then evaluated according to equations (8.1) and 
(8.2). The finite element analysis also calculates the 
displacement and stress resultants at all the nodes in 
the discretised structure. 

As usual, advantage can be taken of the conditions of 
symmetry and anti-symmetry in the structure to reduce the 
computational effort. Since the slab displacements are 
symmetric about the longitudinal centre-line (x-axis) and 
anti-symmetric about the transverse centre-line (y-axis), 

only a quadrant of the slab needs to be analysed. The 
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actions of a column are anti-symmetric about the middle 
plane- of the slab when the spandrel beams are not eccentric 
(i. e. the beam and slab neutral planes are co-incident). 
In carrying out a three-dimensional analysis, either the 

upper or lower column stub may be omitted if the stiffness 

of the remaining column stub is doubled and the connected 

end of the column is restrained against horizontal 

translation. A similar reduction technique, strictly, 

cannot be used in the two-dimensional analysis if the 

performance of the slab is influenced by the axial stiff- 

ness of the column, since the omission of a beam stub 

simulating a column stub will then induce an extra vertical 
force in the axial spring when the end of the remaining 

beam stub is deflected vertically to simulate the column 

chord_rotation. However, the axial stiffness of a 

practical-sized column is usually so large in relation to 

the flexural stiffness of the slab that the performance of 

the slab will not be significantly affected by replacing 

the axial spring support by a rigid support, in which case, 

the anti-symmetric conditions of the column may be 

incorporated' by the reduction technique in the two- 

dimensional analysis without any significant loss of 

accuracy in the modelling. 
Fig. 8.2 shows a typical finite element idealisation 

of the slab considered in a parameter study. The slab is 

modelled by the rectangular flat shell element RS24 in the 

three-dimensional analysis and by the rectangular plate 
bending element RB12 in the two-dimensional analysis. 

8.4 PARAMETER STUDY 

The factors which have to be considered in evaluating 
the coupling action of the slab are those which relate to 
the overall geometry of the hull-core system and those 

which relate to the structural properties of the components. 
The geometry of an idealised hull-core floor system may be 
described by the core dimensions a and b, the floor span 
L, the storey height H and the column spacing S. Since 
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the coupling action of the floor slab induces axial and 
flexural effects in the core and hull, the axial and 
flexural stiffnesses of the core walls and frame panels 
in relation to the flexural stiffness of the floor slab 

are relevant factors to be considered. In practical core 

structures, the core walls are relatively thick and are 

stiffened by a complex arrangement of internal walls 
(Fig. 8.1(a)). In this investigation, the core walls are 
assumed infinitely rigid in relation to the slab. The 
frame panels, on the other hand, are relatively flexible, 

particularly when bending out of plane. The rotational 
restraint that the frame panel offers to the coupling 
action of the slab depends on the relative flexural 

stiffness of the frame columns and on the relative torsional 

stiffness of the spandrels. 
In this investigation, the relative influences of the 

following geometric and structural parameters are 

evaluated: 
(a) Column spacing ratio S/L. 
(b) Column axial stiffness ratio as defined as 

(Ec AC/SH)/(E 
s 

Is/L3), where Acis the cross-sectional 
area of a frame column, Is is the second moment of 

area of a slab strip of unit width, and Ec and Es are 
the elastic moduli of the frame and slab materials. 

(c) Spandrel torsional stiffness ratio A. defined as 
(Ec Jc/S)/(E5 Is/L) where Jc is the torsional 

constant of the spandrel beam. 

(d) Column flexural stiffness ratio ai defined as 
(Ec Ic/SH)/ (Es Is/L) where Ic is the second moment of 
area of a frame column about an axis normal to the 
span direction of the slab. 

(e) Core depth ratio a/L. 
(f) Core width ratio b/L. 

Although the final results are expressed in non- 
dimensional forms, for analysis, the slab is assumed as 
305 mm (12 in. ) thick and spanning 9.15 m (30 ft) between 
core and hull. The storey height is assumed as 3.66 m 
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(12 ft). Other structural dimensions are varied as 

required for parameter studies. Young's modulus and 
Poisson's ratio for the slab are assumed as 2.07 x 107 

kN/m2 (4.32 x 105 kip/ft2) and 0.15 respectively. 

8.4.1 INFLUENCE OF COLUMN SPACING 

The relative influence of column spacing is assessed 

by comparing the values of slab rotational stiffness 

obtained for two practical column spacings S/L of 0.2 and 

0.4 in a hull-core configuration with core ratios a/L and 
b/L of unity. The structural parameters for the frames, 

'a' Xi and N J, which are dependent on the column spacing S, 

are maintained at the same values of 4500,0.42 and 7.90 

respectively when the column spacing is varied. The 

numerical results evaluated by a three-dimensional finite 

element analysis for the two cases are as follows: 

Case 1 

Case 2 

Column Spacing Slab Rotational 
S/L Stiffness K 

0.20 175.41 

0.40 168.89 

The slab rotational stiffness for the wider column 

spacing is less than 4% lower than that for the closer 

column spacing. Since the column spacing of most 

practical hull core or frame tube structures comes within 

or close to the range of values considered, it appears 
that for practical purposes, the influence of column 

spacing may be disregarded. 

8.4.2 INFLUENCE OF COLUMN AXIAL STIFFNESS 

The relative influence of column axial stiffness on 
the rotational stiffness of the slab is assessed by 

comparing the results obtained for a practical column 

stiffness with those for two extreme cases, where the 

column axial stiffness is reduced by a factor of 10 2 
on 

one hand, and made infinitely large on the other. Core 

ratios a/L and b/L of unity, column spacing S/L of 0.4, 

and frame parameters Ni and Ai of 0.20 and 2.0 
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respectively are assumed in each case. The rotational 
stiffness values K evaluated by a three-dimensional 

analysis are as follows: 

Column Axial Slab Rotational 
Stiffness Ratio Stiffness 

Xa K 

Case 1- Practical Column 2250 168.89 

Case 2- Flexible Column 22.5 162.16 

Case 3- Rigid Column CO 168.89 

It is seen from the above results that the axial 

stiffness of a frame column is generally so large in 

relation to the flexural stiffness of the floor slab that 

any practical variations in the column axial stiffness will 

not have any significant effect on the performance of the 

slab. - For the purpose of evaluating the rotational 

stiffness of the slab, therefore, the frame columns may be 

assumed axially rigid. 

8.4.3 INFLUENCE OF SPANDREL TORSIONAL STIFFNESS 

The same slab is analysed for four spandrel beam 
depths which give torsional stiffness ratios Ai ranging 
in values from 0 to 11.24. The frame columns in each 

case are spaced at a distance S/L of 0.2 and have a 
flexural stiffness ratio Xi of 0.42. The values of slab 
rotational stiffness K obtained for the various cases are 
as follows 

Spandrel Torsional Slab Rotational 
Dimens ions Stiffness Ratio Stiffness 

XdK 

00 174.97 
0.3 x 0.6 m 4.57 175.30 
0.3 x 0.9 in 7.90 175.52 

0.3 x 1.2 m 11.24 175.62 

It is seen from the results that the presence of the 

spandrel beam has negligible stiffening effect on the 
rotational stiffness of the slab for the configuration 
considered in which the frame columns are relatively 
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closely spaced. In order to assess the influence of 

spandrel beams for wider column spacings, additional 
results are obtained for a column spacing S/L of 0.4 for 

the two extreme spandrel sizes considered earlier. The 

column flexural stiffness ratio Xi of 0.42 is maintained. 
The numerical results for these cases are as follows: 

Spandrel Torsional Stiffness Slab Rotational 
Size Ratio A3 Stiffness K 

00 160.74 

0.3 x 1.2 m 2.81 168.89 

The spandrel beam in this case increases the 

rotational stiffness of the slab by less than 5%. Since 

the results show that the spandrel beam stiffness is not 

a significant factor in the evaluation of slab rotational 

stiffness, a constant spandrel beam size of 0.3 x 0.9 m 
is generally assumed for further parameter studies. 

8.4.4 INFLUENCE OF COLUMN FLEXURAL STIFFNESS 

The influence of column flexural stiffness is evaluated 
by varying the size of the frame columns from 0.229 x 
0.229m (9 x9 in. ) to 0.61 x 0.61 m (24 x 24 in. ) while 

maintaining a constant column spacing S/L of 0.2, thus 

obtaining values of Ai varying from 0.13 to 6.67. Two 

core depth ratios a/L of 0.6 and 1.0 are considered, but 
the core width ratio b/L is maintained at 1.0 in each 
case. 

Tables 8.1, (a) and (b) show the numerical values of 
the slab rotational stiffness K and effective width Ye/Y 
for various cases analysed by a two-dimensional plate 
analysis. The results for the slab simply supported 
around its external periphery have been included for the 
limiting case in which the frame columns have zero 
flexural stiffness (i. e. Pin-connected to slab). The 
results show that the rotational stiffness of the slab 
is increased considerably by the stiffness of the peripheral 
frame columns. The effective width, on the other hand, 
is reduced by a relatively small margin by increasing the 
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column stiffness. Doubling the column size, from 

0.305 x 0.305 m to 0.61 x 0.61 m for instance, increases 

the rotational stiffness by about 30% but reduces the 

effective width by only about 4% for both core depth 

ratios. 
Fig. 8.3 shows the numerical results for the slab 

rotational stiffness K and the effective width Ye/Y 

plotted in a form convenient for the presentation of the 

design information. The parameter Cw expressed as 
(xi l)/(Oi+l) has been used, in preference to the column 

flexural stiffness ratio ili, as the base for plotting 

the values K and Ye /Y, since Cw gives a better spread of 

data points than Xi for plotting the type of information 

obtained. Further, all values of Xi from zero to 

infinity can be included within a compact range of values 

for Cw from -1 to +1. The curves presented in Fig. 8.3 

may be used as design curves for evaluating rapidly the 

slab rotational stiffness or effective width in a 

practical situation. 

8.4.5 INFLUENCE OF CORE DEPTH 

The rotational stiffness of the slab is expected to 

increase with the core depth ratio a/L partly due 'to the 

increased rigid arm effect in the longitudinal direction 

of bending, and partly due to the increased length of 

side walls interacting with the side frame panels through 

transverse slab bending. The effective ý width of slab, on 

the other hand, is not affected by the rigid arm effect 
if there is no transverse bending, and hence any change 
in the effective width as a result of increasing the core 
depth ratio must reflect the increased effects of trans- 

verse interaction between the core and the side frames. 

Therefore in assessing the significant effects of core 
depth ratio, reference should be made to the effective 
width values rather than the rotational stiffness values. 

As shown by the curves in Fig. 8.3 increasing the 

core depth ratio a/L from 0.6 to 1.0 increases the 
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effective width Ye/Y by a relatively small and fairly 

constant margin over the whole range of column flexural 

stiffness ratios. The variations of effective width 

with core depth ratio for column stiffness ratios Ai of 
0 and 0.42 (Cw ° -1 and -0.4) are shown in Fig. 8.4. The 

variation in each case is practically linear. On the 

basis of these results it appears that in a design situation, 
the effective width value may be interpolated or extra- 

polated linearly from the design curves for core depth 

ratios of 0.6 and 1.0 in Fig. 8.3.1 

8.4.6 INFLUENCE OF CORE WIDTH 

The results presented in the design curves in Fig. 8.3 

are based on a standard core width b/L of unity. Exam- 

ination of slab actions induced by coupling (cf. Section 

8.5) reveals that the portion of the slab panel in front 

of the core wall at a transverse distance of more than 

half the slab span from the ends of the core are practically 

unaffected by the transverse bending of the side panels. 
Therefore a change in the core width b/L should produce an 

almost equal change in the effective width of slab Ye/L 

since the change in the core width affects only the inner 

fully effective portion of the slab if the core width is 

greater than half the slab span. Hence the effective 

width for any core width ratio b/L greater than 0.5 may 
be obtained from the value for the standard core width 

ratio by simply adding on an effective strip of slab equal 
to the difference between the core width under consideration 
and the standard core width. In order to illustrate this 

point, the effective width for a core width ratio b/L of 
1.5 is evaluated from the result for the standard core 
width b/L of unity by the empirical method, and compared 
with the accurate value obtained by a finite element 
analysis. The frame column flexural stiffness ratio Ai 

is taken as 0.42 (0.305 x 0.305 m columns at spacing S/L 

of 0.2), and the core depth a/L is taken as unity. The 

empirical calculations and the comparison of results are 
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performed in the following manner : 

Standard core width b/L - 1.000 
Standard slab width Y/L - 4.000 
Standard effective width Ye/Y (Fig. 8.3 )-0.885 

.. Standard effective width Ye/L - 0.885 x4-3.540 
Increase in core width when 
b/L increases from 1.0 to 1.5 0.5 x2-1.000 
Hence empirical effective width Ye/L - 4.540 
Effective width obtained by finite 

element analysis Ye/L - 4.546 
Percentage difference - -0.13% 
The effective width evaluated empirically from the 
'standard' value is seen to be relatively accurate. 

8.5 SLAB ACTIONS INDUCED BY COUPLING 

The distributions of slab reactions and bending 

moments are examined for a typical hull-core configuration 

with core ratios a/L and b/L of unity and a relative 
column stiffness Xi of 0.132 (0.23 x 0.23 m columns at 

spacing S/L of 0.2) for a unit rotation of the core. 

8.5.1 SLAB REACTIONS 

Fig. 8.5(a) shows the distributed slab reactions VX 

and Vy acting on the normal and side frame panels in a 
typical quadrant of the structure. The results show that 
the interior columns in the normal frame panel opposite 
the core are more heavily loaded than the columns near the 

edge of the panel. The columns opposite the corner of 
the core are also slightly more heavily loaded than the 
rest of the interior columns. Relatively large reactions 
are also induced in the side frame by the transverse 
coupling action, which is expected to increase towards 
the corner of the core as the differential vertical 
displacement between the core and the side frame increases. 
Close to the leeward edge of the side frame the reactions 
act in the opposite direction producing uplift column 
forces. These reactions apparently result from the chord 
rotation imposed on the frame panels. 
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Under framed-tube action, the shear lag-effect 

produced by spandrel flexibility tends to increase the 
loads in the corner columns and reduce the loads in the 
interior columns in the frame panels. The reactions 
induced by coupling action of the slab tend to offset the 

shear lag effect and produce a more efficient distribution 

of column loads under composite hull-core action. 
Fig. 8.5(b) shows the theoretical slab reactions on 

the normal and side walls of the core. The distribution 

of reactions is marked by a high peak at the corner and a 

sharp drop a small distance away. Presumably the corner 

reaction is singular and the numerical values of the 

reactions evaluated at points close to the corner may not 
be absolutely reliable. 

The value of the end reactions for an assumed uniform 

one-way slab strip connecting the normal core and frame 

panels has been indicated in Figs. 8.5, (a) and (b), to 
illustrate the deviation of the slab reactions from the 

uniform value. It is seen that the slab reactions Vx 

approach the uniform value some distance away from the 

corner disturbance. 

8.5.2 SLAB MOMENTS 

Fig. 8.6(a) shows the transverse distributions of 
longitudinal moments Mx along sections located at the 
leeward core face and normal frame panel positions (at 

x-a and x= a+L respectively) due to a unit rotation of 
the core. As discussed in Chapter 3 (Section 3.4.2.2) 
the peak bending moment at the corner of the core is 
theoretically singular, but the peak value evaluated by 
the finite element analysis though arbitrary in absolute 
value may be used in conjunction with adjacent values to 
obtain a valid estimate of the integrated moment in the 
critical region around the corner. Away from the corner 
disturbance, the bending moments at the core face and at 
the columns opposite are sensibly uniform and compare 
closely with the calculated uniform strip values (shown in 
broken line). 
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Fig. 8.6(b) shows the longitudinal distributions of 

transverse bending moments My at the core side wall and 

side frame panel positions (y -b and y= b+L respectively). 
Large transverse moments are induced in a region around 
the corner of the core. Again, although the peak bending 

moment value at the corner of the core is theoretically 

singular the finite element results can be used to 

evaluate the integrated bending moment in the critical 

region. 

8.6 SLAB PIN-CONNECTED TO EXTERIOR FRAME PANELS 

If the peripheral columns are very flexible in bending 

as when they are spaced widely apart, or if the floor slab 
is effectively pin-connected to the peripheral. columns, 
then in the analysis of coupling action the slab may be 

idealised as being point supported around its periphery. 
As shown in section 8.4.2 the axial stiffness of even a 

minimum practical size column is so great in relation to 

the flexural stiffness of the slab that the column may be 

considered axially rigid. Fig. 8.7 shows the effect of 

column spacing on the rotational stiffness of the slab, 
The slab is assumed rigidly connected to the core as before. 

Two cases have been considered. In the first case the 

slab is restrained by columns on the normal and side frame 

panels, and the core ratios are a/L =1 and b/L - 1. In 

the second case only the normal edges of the slab are 

restrained; the side edges are assumed free, and the core 

ratios are a/L - 0.5 and b/L - 1. The curves show that 
for the practical range of column spacing S/L generally 
less than 1, the column spacing has relatively little 
influence on the rotational stiffness of the slab. For 

practical purposes, therefore, the influence of column 
spacing may be disregarded and the slab edges assumed 
continuously simply supported when evaluating the 
rotational stiffness of the slab. 
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8.7 SLAB SIMPLY SUPPORTED AT ITS PERIPHERAL EDGES 

When the slab is assumed simply supported at its edges 
the influence coefficient technique may be employed more 
conveniently than the finite element method to evaluate 
the rotational stiffness and effective width of slab. Fig 
8.8 summarises the numerical results obtained by the 
influence coefficient method for cases in which the normal 
peripheral edges are simply supported and side edges are 

either simply supported or free. A comparison of 
corresponding results for these two cases should show the 

relative importance of transverse and longitudinal coupling 
between the core and the frame panels. Various core 
ratios a/L and b/L have been considered in order to 
illustrate further the influence of these parameters which 
have already been discussed in relation to slabs coupled 
to frames with finite column stiffness. The influence 

coefficient solution uses 6 nodes (2 web nodes and 4 
flange nodes) and 30 harmonics for the configuration with 
b/L - 1, and 8 nodes (2 web nodes and 6 flange nodes) and 
25 harmonics for the other configuration with b/L - 1.5. 

It is seen from the curves that the transverse coupling 
effect accounts for a relatively small proportion of the 

coupling stiffness of the slab which is simply supported 
all round. This proportion varies generally between 3 

and 20% over the range of core ratios considered. When 
the side edges of the slab are unrestrained the effective 
width Ye/Y is practically unaffected by variations in core 
depth ratio a/L. With restrained side edges, the effec- 
tive width of slab increases practically linearly with the 
core depth ratio; but this effect is relatively insig- 

nificant. 

8.8 COMPARISON BETWEEN FINITE ELEMENT AND INFLUENCE 
COEFFICIENT RESULTS 

In order to verify the general accuracy of the finite 
element and influence coefficient results, values of slab 
rotational stiffness K obtained by both techniques are 
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compared for slabs with simply supported peripheral edges 
( aim 0) below. 

a/L b/L Finite Element Influence Coeff. 
Solution Solution 

0.6 0.6 27.80 27.90 
1.01 1.0 95.17 94.11 

The results obtained by the two different techniques 
differ by less than 2%. 

8.9 CONCLUSIONS 

The coupling action of a slab moment-connected to the 

core and peripheral frames in a hull-core structure has 
been investigated by a finite element technique. The 

relative influences of a range of structural parameters 
have been evaluated. The column to slab flexural 

stiffness ratio Xi has a significant influence on the 

rotational stiffness and effective width of the slab. 
With a constant column to slab flexural stiffness ratio, 
the influences of column spacing and spandrel beam 

stiffness are negligible. Practical variations in column 
axial stiffnesses have negligible effects on the rotational 
stiffness of the slab. The effective width of slab 
increases with the relative core width b/L and core depth 

a/L. Curves have been presented to facilitate the 

evaluation of rotational stiffness and effective width of 
slab for practical situations. 

The slab reactions induced by coupling action have 
the effect of increasing the loads in the interior columns 
and reducing the loads in the corner columns in the 
external framed tube, thereby off setting to a certain 
extent the shear lag effect of the basic framed tube action. 

Although not considered in the present investigation, 
the flexibility of the core walls and the presence of 
access openings in a practical core structure have the 
effect of reducing the coupling stiffness of the slab. 
Further parameter studies are required to assess the 
relative influence of these factors. These studies 
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could be carried . out by employing the three-dimensional 

analysis described in this Chapter. If only approximate 
results are required, the influence of core opening and 

wall flexibility may be assessed from similar information 

presented in Chapter 3 (Section 3.9.1.1) and Chapter 5 
for slabs coupling box cores in cross-wall structures. 
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TABLE 8.1- INFLUENCE OF COLUMN FLEXURAL STIFFNESS ON 

STIFFNESS AND EFFECTIVE WIDTH OF SLAB 

(a) Core Ratios a/L a 1, b/L -1 

Column Size Ni K YeiY 

0 0 95.18 1.014 

229 x 229 mm 0.132 136.85 0.931 

305 x 305 mm 0.417 175.41 0.885 
381 x 381 mm 1.017 203.21 0.864 

458 x 458 mm 2.109 219.07 0.856 

610 x 610 mm 6.667 231.78 0.850 

(b) Core Ratios a/L = 0.6, b/L '1 

Column Size Ai K Ye/Y 

0 0 53.94 0.898 
305 x 305 mm 0.417 96.64 0.816 

458 x 458 mm 2.109 119.15 0.790 

610 x 610 mm 6.667 125.77- . 0.785 
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(a) 

Typical floor plan of Brunswick Building. 

(b) 

Fig. 8.1 Hull Core Structure (a) Typical Floor plan, 
(b) Lateral Deformation Characteristics, and (c) Floor Deformation 
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CHAPTER 9 

EFFECTIVE WIDTH OF SLAB IN FLAT PLATE STRUCTURES 

9.1 INTRODUCTION 

A common form of framing for multi-storeyed office 
buildings consists of a regular arrangement of columns 

connected by flat plate floor slabs. Under lateral 

loading, the column-flat plate frame deforms with a 
deflected shape at the column line similar to that produced 
by a conventional column-beam frame, in which points of 

contraflexure generally occur in both beam and column 

segments (Fig. 9.1). The lateral load analysis for the 

column-flat plate frame may be carried out using any of 

the available methods of frame analysis by assuming an 
'effective width' of slab to act as a beam in an equivalent 
frame. Since the lateral stiffness of the frame system 

depends largely upon the flexural stiffness of the beam 

members to develop the necessary 'portal action', it is 

important that the effective width of slab be assessed, 

reasonably accurately, for the frame analysis. 
The effective width may be established by equating the 

rotational stiffness of the slab to that of an equivalent 
beam connected to the same column in a typical frame panel 
bounded by the assumed lines of contraflexure (Fig. 9.2). 

The rotational stiffness of the slab is influenced by the 

stiffening effect of the finite sized column and by the 

restraint along the slab edges. The amount of stiffening 
produced by the column depends on the axial stiffness of 
the column in relation to the bending stiffness of the slab, 
but in most practical cases, the relative column stiffness 
is very high, and so the column may be considered axially 
rigid. 

In this Chapter the influence coefficient technique 
is employed for the analysis of column-slab interaction, 

and is shown to be particularly efficient for this class 
of problem. Values of slab stiffness and effective width, 
obtained by the method for a wide range of column-slab 
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geometrical proportions and slab boundary conditions, are 

presented, and shown to be accurate by comparing with 
results obtained by the finite element method. 

9.2 METHOD OF ANALYSIS 

The slab in a regular flat plate structure deflects 

with transverse lines of inflexion (or anti-symmetry) 
and longitudinal lines of zero slope (or symmetry lines) 

between columns (Fig. 9.3). A typical interior column- 
slab panel isolated by these two sets of lines is shown 
in Fig. 9.4. The slab panel may be considered as simply 
supported at the two transverse edges corresponding to the 
inflexion lines, for the purpose of analysis. 

The moment applied by a column is transferred to the 

slab at points along the column periphery to which the 

slab is connected, in the form of continuously distributed 

unknown forces. These unknown forces are distributed in 

such a manner that the displacements induced in the slab 

are the same as the displacements of the column at the 

column-slab connection. The actual continuous system 
of forces transferred from column to slab cannot be 

exactly determined, but its effective action can be 

approximated to any reasonable degree of accuracy by an 
equivalent discr et ised force system. consisting of point 
forces and moments acting at a discrete number of nodes on 
the column boundary (Fig. 9.5). The slab displacements 
(deflection and slopes) at each node can be written in 
terms of the unknown discrete nodal forces through the use 
of influence coefficients which were derived in Chapter 2. 
When these are equated to the known displacements produced 
by a unit rotation of the rigid column cross-section, the 
unknown nodal forces can be determined, leading to the 
calculation of the column moment M, which is numerically 
equal to the rotational stiffness of the slab. For 
convenience, the rotational slab stiffness may be expressed 
in the form of a non-dimensional stiffness factor K, given 
by 
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aý KM 

where D is the plate flexural rigidity. By equating the 

rotational stiffness of the slab to that of an equivalent 
beam of uniform width, having a depth equal to the slab 

thickness, the effective width Be of the slab may be 

shown to be given, in non-dimensional form, by 

aK )3 19- 
12 (1-v ) 

(9.1) 

where A is the longitudinal slab length (i. e. in direction 

of rotation), or slab span between column centres, B is 

the transverse slab width, U is the column depth, and V 

is the Poisson's ratio. 

The displacements and stress resultants induced in 

the slab by unit column rotation can be calculated at any 

point by substituting the calculated nodal forces into the 

displacement and stress resultant influence functions for 

the slab (cf. Section 2.5.2). 

The displacement pattern in the slab panel is symmetric 

about the x-axis and anti-symmetric about the y-axis (Fig. 

9.4). The actual analysis of the slab can therefore be 

confined to a typical quadrant of the panel, in order to 

reduce the computational effort. 

9.3 CONVERGENCE STUDY 

The accuracy of the influence coefficient solution 
for the column-slab interaction problem is influenced by 

convergence errors introduced by the truncation of the 
infinite harmonic series in the evaluation of influence 

coefficients, and by the discretisation of the continuous 
interaction between column and slab. Since the series 
truncation leads to smaller influence coefficients and 
hence a stiffer slab, while the discretisation of the 

continuous column-slab connection results in a more flexible 

column connection, the truncation errors and discretisation 
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errors compensate to a certain extent. By having a 

proper balance between the number of series terms taken for 

the influence coefficient calculation and the number of 

nodes used to represent the column connection, accurate 

results may be obtained with less effort than would be 

required to obtain a truly convergent solution. 
The convergence study described in Chapter 4 (Section 

4.2) has shown that by taking between 20 and 40 terms of 
the infinite series for the evaluation of influence 

coefficients, sufficiently accurate solutions for shear 

wall-slab problems may be obtained using a very small number 

of discrete nodes (not more than 8 nodes) to represent the 

wall connection. Since a column generally is much smaller 
than a shear wall in cross-sectional dimensions, the number 

of nodes required to represent adequately its connection 
to the slab should be very much smaller than that required 
for the shear wall. A convergence study has been carried 

out to indicate the practical degree of refinement generally 

required in the evaluation of influence coefficients and in 

the representation of the column connection. 
Table 9.1 shows values of the slab stiffness factor K 

and effective width Be/B for a square slab with two relative 

column sizes U/A of 0.1 and 0.2, obtained using various 

numbers of nodes to represent the column-slab connection. 
Three force components P; MX and My were used at each node 
to represent the interaction forces. The influence 

coefficients in each case were evaluated using 40 terms of 
the infinite series. The results obtained from finite 

element analyses using the element RB12 and discretisations 

of the slab quadrant into 36 and 144 elements (Fig. 9.6) 
have been included to provide a measure of the relative 
accuracy of the influence coefficient results. The 

percentage discrepancies between the influence coefficient 
results and the accurate finite element results are shown 
in brackets beneath the values of Be/B. The discrepancy 
between the coarse mesh and fine mesh finite element 
results have also been shown, to give an idea of the 
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accuracy of the finite element results. It is seen that 

for the case of U/A - 0.1, the effective width obtained 
by the influence coefficient solution agrees best with the 
finite element result (-0.08% difference), when only one 

corner node is used to represent the column connection and 
40'series terms are used to evaluate the influence 

coefficients. When more nodes are used, the results 

appear to depart further from the finite element results, 
because truncation errors show up more as the discretisation 

errors are reduced. For the case of U/A - 0.2, which 

represents a relatively large column, it appears that using 

one corner node plus a second node placed half way between 

the column corner and column axis, for the column 

representation, gives a result which agrees best with the 

finite element solution (-0.34% difference). When using 

one corner node alone for this case, the influence 

coefficient result is approximately 31% below the finite 

element result, but is still reasonably accurate for 

practical purpose. 
Having established that at most two nodes would be 

sufficient for the column representation, the convergence 

study is extended to indicate any possible further 

reduction in the computational effort by reducing the 

number of series terms for the influence coefficients and 
by omitting the transverse moment component My from the 
discrete nodal force vector. Table 9.2 shows the 

effective width values obtained using various numbers of 

series terms in combination with one and two column nodes 
with and without the moment My in the force vector. The 
finite element results have again been used to measure the 
relative accuracies of the various influence coefficient 
results. It is seen from the results that the omission 
of the moment IV from the nodal force vector reduces the 

calculated effective width by less than 2%, whereas the 
reduction in the number of series terms from 40 to 20 
terms increases the calculated effective width by less 
than 3%, in all cases. Increasing the number of series 
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terms from 40 to 50 terms reduces the calculated effective 

width less than 1%. Within the range of 20 to 40 series 
terms, the effective widths calculated with various degrees 

of refinement in the column representation are all within 
5% of the accurate finite-element result. With 10 series 
terms, the effective widths are seen to be significantly 

overestimated, but in the worst case, the discrepancy is 

still less than 10%. It appears that for practical 

purposes, the effective slab width may be calculated 

economically, to an acceptable degree of accuracy, using 

the influence coefficient technique with just one corner 

node and two force components, P' and Mx, to represent the 

rigid column connection to the slab, and taking 20 terms 

of the infinite series to evaluate the influence coeff- 

icients. With exceptionally large columns (U/A greater 

than 0.2), it may be desirable to include An additional. node 

to provide a better representation of the column 

connection. 

9.4 TABLES FOR EVALUATING THE EFFECTIVE WIDTH 

The remarkable economy in computation, resulting 
from the use of just one node to represent the column-slab 

connection in an influence coefficient solution, has made 

possible the calculation of effective widths for a wide 
range of parameters, at a fraction of the cost of computing 
one of the finite element results. Values of the slab 
stiffness K, and the effective width Be/B, have been 

obtained for slabs with aspect ratios B/A, ranging from 
0.50 to 2.0, and with column relative sizes, U/A and V/A, 

ranging from 0 to 0.2. Four standard types of edge 
support have been considered for the longitudinal slab 
edges, continuous, free, simply supported and clamped 'edges. 
To ensure that best overall results were obtained, the 
transverse moment component N was included in the nodal 
force vector, and 40 series terms were used for the 
evaluation of influence coefficients throughout the 
computation. The numerical results obtained are presented 
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in Tables 9.3(a-d) to 9.7(a-d). These should enable the 

rapid evaluation of the effective slab width or slab 
stiffness in a practical situation. 

As a matter of interest, the computation of the 

effective widths for 121 cases shown in each table took 

about 42 seconds on the ICL 1904S computer. In contrast, 
the computation for a single case, by the finite element 

method, using a 12 x 12 mesh, takes about 52 seconds. 

9.5 DISCUSSION OF RESULTS 

9.5.1 EFFECT OF SLAB WIDTH AND LONGITUDINAL EDGE SUPPORT 

Fig. 9.7 shows the variation of effective width Be/A 

with slab width B/A for slabs supported in various ways 

along the longitudinal edges (y -± B/2), and connected to 

square columns with a constant relative dimension U/A of 
0.2. It is seen from the results that the effective width 
Be/A is virtually unaffected by the slab width and hence 

the edge supports when B/A is larger than 1.5. When the 

slab width B/A is reduced below a value of 0.75, the 

effective widths for the slabs with simply supported and 

clamped longitudinal edges increase rapidly due to the 

restraining effect of the longitudinal edges. The 

effective widths for the slabs with continuous and free 

longitudinal edges, on the other hand, decrease with the 

slab width. As can be seen from the single curve drawn, 

the results for slabs with continuous and free edges are 
virtually identical, even with very narrow slab widths, 
where longitudinal edge effects . are expected to be more 
strongly felt. It would appear from this observation 
that the slab models frequently tested with free longitudinal 

edges 
l5,15,20 do in fact represent adequately the prototype 

interior slab panel, although it is traditionally believed 
that this may not be so. 

9.5.2 EFFECT OF RELATIVE COLUMN WIDTH 

The numerical results in Tables 9.3(a-d) to 9.7(a-d) 
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indicate clearly that irrespective of the type of 
longitudinal edge support and slab width, the effective 
width Be/B increases significantly with the relative 
column width V/A, when the relative column depth U/A 

remains constant. This trend of results is to be expected, 
since increasing the column width will clearly stiffen the 

slab more against bending. The results obtained by 
Pecknold, 

18 
and Allen and Darvall, 19,20 however, do not 

indicate this trend. Pecknold found that varying the 

column width from half to two times the column depth changes 
the effective width less than 2% and according to Allen 

and Darvall's results (Tables 1 to 4, in Ref. 20), 
increasing the relative column width V/A, in most cases, 
results in a significant reduction in the effective width 
Be/B, which is physically unreasonable, and can only be 

explained by defects in the method of solution used by 

these investigators. 

In Fig. 9.8 are shown the results obtained by Allen 

and Darvall and by the author, showing the variation of 
the effective width Be/B with the relative column width V/A, 

for continuous slabs with three aspect ratios B/A and a 

constant relative column depth U/A of 0.08. The results 
from accurate finite element analyses, using a 12 x 12 

mesh over a quarter panel, have been included to establish 
the relative accuracies of the other results. It is seen 
from the curves that the contradictory trend of Allen and 
Darvall's results is due to a serious overestimation of the 

effective width when the relative column width V/A is 

small. For V/A - 0.03, Allen and Darvall's results appear 
to overestimate the effective width by 40 to 50% depending 

on the slab aspect ratio. On the other hand, the 

author's results obtained by the influence coefficient 
method are within about 4% of the accurate finite element 
results. I 

9.5.3 EFFECT OF RELATIVE COLUMN DEPTH 

The numerical results presented in Tables 9.3(a-d) to 
9.7(a-d) indicate that with any constant value of relative 
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column width V/A, an increase in the relative column depth 

U/A from zero up to a certain limit, has the effect of 
increasing the effective width Be/B, for all slabs. The 

rate at which Be/B increases with U/A gradually diminishes 

until beyond a certain limit of U/A, which varies according 
to the column-slab proportions from 0.1 to 0.3, the 

effective width Be/B begins to decrease with further 

increase in U/A, but the slab stiffness continues to 

increase. The influence of relative column depth on the 

effective width is better illustrated in Fig. 9.9, which 

shows the variation of Be/B with U/A, for three slab aspect 

ratios B/A of 0.5,1.0 and 2.0,. and a constant relative 

column width V/A of 0.08. The same Figure also shows the 

comparison between the influence coefficient results and 
Allen and Darvall's results and the accurate finite element 

results included as a reference. Allen and Darvall's 

results appear to overestimate the effective width 

progressively more as the relative column depth U/A 

increases beyond about 0.06. With U/A - 0.12, these 

results differ from the finite element results by 18 to 22%, 

depending on the slab aspect ratio. The influence 

coefficient results, on the other hand, are within 2% of 

the finite element results. 
Since the influence coefficient method works equally 

well for any wall or column configuration, results have 

been obtained by the method to illustrate the influence of 
the relative column depth U/A over the complete range of 
U/A from zero to unity, thus covering both column and shear 

wall cases. These results are shown graphically in Fig. 
9.10, (a) and (b), for continuous and simply supported slabs 
with aspect ratios of 1.0 and 0.5 and a relative column 
width V/A of 0.05. The influence coefficient solutions 
used between one and five nodes, depending on the relative 
column depth, to represent the column or wall connection, 
and used 40 series terms to evaluate the influence 

coefficients. Accurate finite element results for the 

case of continuous slabs have again been included to verify 
the general accuracy of the influence coefficient results. 
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The curves illustrate clearly the comment made 

earlier that the effective width Be/B increases with the 

relative column depth U/A only up to certain limit, after 
which it decreases with further increase in U/A. The 

second part of the curve, which shows Be/B decreasing with 
larger values of U/A, is consistent with the trend of 

results for the shear wall-slab problem. The influence 

of longitudinal, edge restraint on the effective width for 

the narrow slab (Fig. 9.10(b)) is seen to vary considerably 

over the range of ratios U/A. The finite element results 

again confirm the remarkable accuracy of the influence 

coefficient results and the versatility of the solution 
technique. 

9.6 COMPARISON OF THEORETICAL RESULTS FROM VARIOUS 

INVESTIGATIONS 

The results for the effective width of interior slab 

panels with square columns, obtained by the influence 

coefficient method, are compared in Fig. 9.11 with those 

from an accurace finite element analysis and from published 

sources. Although expressed differently in the original 

sources, the results of other investigators have all been 

reduced to the same form as the influence coefficient 

results for direct comparison. Thus Pecknold's effective 
width results, 

18 
which were originally defined in terms of 

an equivalent beam connected directly to the column axis 

without rigid arm effects, have been reduced by multiplying 
by a factor (1-U/A)3/ (1- V 2) 

, Allen and Darvall's 

effective width values20 were expressed in the same form 

except for having a zero value of Poisson's ratio. The 

reduction here required only a multiplication by the 
factor 11(1-V 2 ). Mehrain and Aalami's finite element 
results17 were given in terms of the rotational stiffness 
K. The corresponding effective widths required for 

comparison were simply calculated using equation (9.1). 
The results obtained by the various methods are seen 

to follow a very similar general trend which indicates 
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that the effective width Be/B increases substantially as 

the relative column size (U/A or V/A) is increased. 

However, significant differences can be observed between 

corresponding values of the effective width obtained from 

the approximate and more accurate methods. The influence 

coefficient results agree very well with the finite element 

results obtained by the author; j, and by Mehrain and Aalami. 

The results obtained by Pecknold and by Allen and Darvall, 

on the other hand, are considerably higher than the finite 

element results, and appear to over-estimate the effective 

widths by 10 to 15% when the relative column dimension U/A 

is larger than 0.05. 

The results presented by Khan and Sbarounis15 have 

not been included in Fig. 9.11 for comparison, since they 

were obtained mainly by experiment. In any case, when 

compared with the accurate finite element results, after 

reduction to the same form, the effective widths obtained 

by Khan and Sbarounis were found to have been seriously 

under-estimated, especially with the larger column sizes, 

where discrepancies of up to 55% were observed. 

9.7 COMPARISON OF RESULTS OBTAINED BY INFLUENCE COEFFICIENT 

METHOD AND FINITE ELEMENT METHOD 

(a) Effective Width 

The accuracy of the influence coefficient method in 

calculating the effective slab width has been shown in the 

previous sections, with particular reference to results 

obtained for slabs with continuous longitudinal edges. In 

order to verify the general accuracy of the method when 
applied to slabs with any other longitudinal edge supports, 
the effective width values obtained by the influence 

coefficient method for a square slab with the four standard 
longitudinal boundary conditions, viz., continuous, free, 

simply supported and clamped edges, are compared in Table 
9.8, with the corresponding results obtained by the finite 

element method. A square column with a relative side 
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dimension U/A of 0.1 is considered for each case. The 

influence coefficient solution used one corner node with 
three force components to represent the column connection, 

and 40 series terms to evaluate the influence coefficients. 
The finite element solution used the element RB12, and a 
12 x 12 variable mesh discretisation (Fig. 9.6). In both 

methods of solution, the plate analysis was performed on a 
typical slab quadrant. It can be seen from the tabulated 

results that the effective widths for the four cases have 

been calculated by the influence coefficient method to 

practically the same order of accuracy. In each case, the 

influence coefficient result is almost in exact agreement 

with the finite element result. 

(b) Deflect ion 

Fig. 9.12(a) shows, more convincingly, the remarkable 

accuracy of the influence coefficient solution, by 

comparing the deflections at a transverse slab section 

calculated by the two different methods, for the four cases 

considered. The agreement between the two sets of 

results is so close that the minute discrepancies are 

undiscernable on the curves plotted. The comparison of 
deflections for longitudinal slab sections has shown equally 

good agreement between the two methods, in all four cases. 
The results for the more usual case, i. e. the continuous 

slab, are shown graphically in Fig. 9.12(b) for illustration. 

(c) Stress Resultants 

The accuracy of the influence coefficient method in 
the evaluation of slab moments induced by the column 
rotation is illustrated in Fig. 9.13(a-c), by comparing 
the bending moments at a number of slab sections, evaluated 
by the method, with the results from an accurate finite 

element analysis. The influence coefficient results 
shown in the Figures were obtained using two nodes for the 

column representation and 40 series terms for the influence 

coefficients. The results obtained using one node are 
slightly less accurate (about 10% lower) than these 
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results, in respect of bending moments evaluated at points 

close to the column, and have not been considered for 

comparison with the finite element results. The finite 

element results were obtained with the usual 12 x 12 mesh 

discretisation. The case considered for this illustration 

refers to a square slab with longitudinal continuous edges, 

with a square column of relative dimension U/A of 0.1. 

It is seen from the Figures that, very good agreement 

is generally obtained between the influence coefficient and 

finite element results. At the two sections located at 

y/b - 0.2 and 0.4, the results obtained by the two methods 

are almost indistinguishable. At the section located at 

y/b - 0, the peak values of the bending moments Mx and My 

obtained by the influence coefficient method are slightly 

lower than the finite element values, but are sufficiently 

accurate for practical purpose. If required, more 

accurate results may be obtained by using a higher level 

of refinement in the solution, at the expense of greater 

computational effort. 

9.8 COMPARISON BETWEEN INFLUENCE COEFFICIENT RESULTS 

AND EXPERIMENTAL RESULTS 

A series of tests have been performed by Allen and 

Darvall20 on steel plate models to evaluate the effective 

width for slabs with various aspect ratios and relative 

column sizes. These experimental values of the effective 

width are compared with the results obtained by the 

influence coefficient method in Fig. 9.14. The influence 

coefficient results were obtained using one corner node 
for the column representation, and 40 series terms for the 

influence coefficients. Poisson's ratio for steel was 

assumed as 0.3 in the calculations. The longitudinal slab 

edges were considered as free edges in the analysis. 
It can be seen from the Figure that reasonably good 

agreement is generally obtained between the theoretical 

and experimental results. 
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9.9 IMPLICATION OF RESULTS 

A number of building Codes (for example, ACI 318-7156) 

permit the entire slab width between bay centre lines to 
be considered effective in an equivalent frame analysis 
for the column-flat plate structure. As is evident from 

the results presented in the preceding sections, the 

effective slab width, is generally less than the full slab 

width and varies according to various structural parameters. 
While for a very narrow slab the effective width may be 

close to the full slab width, for a wide slab the effective 
width is only a fraction of the entire slab width. In 
the latter case, the assumption of an effective full slab 
width will result in a serious over-estimation of the 

stiffness of the equivalent beam or frame. In order to 
illustrate this consequence, the lateral deflection of a 
practical flat plate building calculated assuming a full 

slab width for the equivalent frame is compared with that 

calculated assuming an effective width given by the design 

Tables presented in Section 9.4. The building considered 
(Fig. 9.15(a)) is a 20-storey, four-bay-deep office 

building with a 3.66 m (12 ft) floor height. Columns 

are 0.61 m (2 ft) square throughout the height of the 
building and are arranged in a 6.1m x 6.1m (20 ft x 20 ft) 

grid in plan. The floor slabs are of 254 mm (10 in. ) 
thickness. A uniform static wind pressure of 1.2 kN/m2 
(25 lb/ft2) is assumed acting on the building. Young's 

modulus and Poisson's ratio for concrete are assumed as 
2.07 x 107 kN/m2 (4.32 x 108 lb/ft2) and 0.15 respectively. 
The approximate method of lateral load analysis for multi- 
storey multi-bay frames presented by Chan, Heidebrecht 
and Tso80 is used to calculate the frame deflections. 
This simple hand method has been shown to give accurate 
results when compared with the stiffness matrix method. 

The calculated lateral frame deflections at various 
levels for the two cases are compared in Fig. 9.15(b). It 
is seen from the results that by assuming the full slab 
width as effective, the effective width and stiffness of 
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the equivalent beam are over-estimated by 91% for the 
building in the example, and this results in the deflection 

at the top of the building being under-estimated by 34%. 

9.10 CONCLUSIONS 

The influence coefficient technique has been shown to 
be an efficient method for evaluating the slab stiffness or 

effective width required for the lateral load analysis of 
flat plate structures. Sufficiently accurate results can 
be obtained by the method, using a single node with two 
force components (2 unknowns) to represent the column- 
slab interaction, and taking 20 terms of the infinite 

series to evaluate the influence coefficients. 
Values of the slab stiffness and effective width for 

a wide range of variables have been obtained by the method. 
The accuracy of the results have been confirmed by 

comparing with accurate finite element results and with 

available experimental data. 

The assumption of an effective full slab width, 

allowed by some building Codes, over-estimates considerably 
the effective width, and hence the lateral stiffness of 
the building frame, in most cases. 
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TABLE 9.8 EFFECTIVE WIDTH VALUES FOR SQUARE SLABS WITH 

VARIOUS LONGITUDINAL EDGE SUPPORTS AND A SQUARE 

COLUMN OF RELATIVE DIMENSION U/A OF 0.1 - 
COMPARISON BETWEEN INFLUENCE COEFFICIENT AND 

FINITE ELEMENT RESULTS 

Longitudinal 
es Slab Ed 

Effective Width Be /B Percentage 
Difference g 

I. C. Method F. E. Method 

Continuous 0.5226 0.5230 -0.08% 

Free 0.5204 0.5208 -0.08° 

S. Supported 0.5430 0.5428 +0.04% 

Clamped 0.5710 0.5701 +0.16% 
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CHAPTER 10 

EXPERIMENTAL INVESTIGATION 

10.1 INTRODUCTION 

The accuracy of the numerical results obtained by a 
theoretical method of structural analysis is limited to the 

accuracy of the mathematical modelling of the prototype 

structure and to the accuracy of the method of solution of 
the mathematical problem formulated. The mathematical 
modelling of the shear wall-slab structure involves the 

use of plate and beam theories to describe its structural 
behaviour. The idealisation of prototype behaviour in 

these theories involves a certain amount of approximation 
to the real behaviour of the structure, although experience 
has shown that the approximations involved are reasonable. 
The idealised structural problem has been solved 

numerically either by the finite element method or by the 

influence coefficient method in the author's theoretical 
investigations. The d iscr et isat ion process in the numer- 
ical solution involves a certain degree of approximation 
to the exact mathematical solution for the problem. 
Therefore, it is inevitable that the numerical results 

which have been presented in the previous Chapters will 
contain a certain amount of error, the significance of 
which can only be assessed by prototype or model testing. 

In order to verify the accuracy of the methods of 
analysis and of the numerical results which have been 

presented, tests have been performed on small scale shear 
wall-slab models and the experimental results obtained have 
been compared with the corresponding numerical results 
evaluated by the theoretical methods of analysis. Two 

separate groups of tests have been carried out. The first 

series of tests has been conducted to substantiate the 
methods of analysis employed in Chapters 3 and 4 for 
calculating the slab stiffness or effective width assuming 

that plane sections of the coupled walls remain plane in 

i 
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bending. The second series of tests has been carried 
out to verify the method of analysis which considers the 
local elastic wall deformation effects in the wall-slab 
interaction. The various aspects of the experimental 
investigation are described in this Chapter. 

10.2 CHOICE OF MODEL MATERIAL 

In order to give a good representation of prototype 
behaviour, the model should ideally be constructed of a 
similar material to the prototype structure. . For modelling 
the' shear wall-slab structure, concrete appears to be the 

obvious choice as model material. The concrete model, 
unfortunately, gives a poor response to test loading and 

unless it is constructed to a suitable scale, the 
limitations of the loading and monitoring equipment 
available may well prevent any useful results from being 

obtained from the test. 

Various alternative materials are available for the 

construction of the model, which after all is in this case 
required only to simulate the elastic response of the 

prototype structure to applied loading. The alternative 

material should clearly be chosen so that the deflections 

and strains developed in the model are measurable under 
the test load without overstraining the material. Apart 
from possessing suitable elastic properties, the model 
material should also be inexpensive, readily available 
and easy to fabricate. 

Metals and alloys have often been used for constructing 
slab models. These materials have very consistent and 
practically linear stress/strain elastic properties, and 
test results obtained from the models are generally very 
good. They are, however, expensive for model construction 
and require large test loads to produce the required 
response. To test the model requires large loading 
equipment and strong supports for the model, which may not 
be readily available in the laboratory. 

Various sheet plastics have also been used for model 
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construction. Araldite and perspex, in particular, have 

found favourable use in shear wall and slab models. These 

materials have reasonably linear stress/strain properties 
and low elastic moduli, which give rise to large deflections 

and strains under load. Sheets are readily available in 

a wide range of sizes and thicknesses, and they can be 

easily cut, machined' and fabricated. Araldite exhibits 

negligible creep under stress in the elastic range but is 

expensive. Perspex, on the other hand, is relatively 

cheap, but has the undesirable tendency to creep under load. 

It is also sensitive to humidity and temperature change, 

and sheets of perspex often show anisotropic material 

properties and variation in thickness across the sheet. 
Nevertheless, by making careful measurements of the 

thickness and elastic properties and by adopting a rigorous 

procedure of testing whereby all necessary precautions are 
taken to minimise the adverse effects, reasonably accurate 
test results can be obtained with the use of a perspex 

model. 

10.3 SERIES 1 TESTS 

10.3.1 DESIGN AND CONSTRUCTION OF MODEL: 

Experimental tests have been carried out by Qadeer 

and Stafford Smith2, Coull and El-Hag 7,40 
and El-Buluk8 

using small scale slab-wall models to evaluate directly the 

coupling stiffness and effective width values for slabs 

with various wall configurations. The design of the model 
and the test procedure adopted by these investigators were 
essentially similar. The model consisted essentially of 
a pair of steel wall sections pivoted at their bases and 
rigidly coupled to the slab specimen at the top. By 

applying a horizontal load at the level of the slab, the 

wall rotation induced by the effective wall moment was 
obtained for evaluating the slab stiffness and effective 
width. The experimental results obtained by these 
investigators, unfortunately, do not agree well with 
theoretical results, particularly for configurations with 
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small corridor opening ratios or large flange width ratios. 
In some instances, discrepancies of up to 60% difference 

have been noted between these experimental results and the 

author's finite element results. The poor experimental 
results appear to be due to inherent defects in the model 
and test apparatus. These defects arise from the 

unavoidable slackness in the pivots and possibly in the 
bolted connections between wall -and slab. 

Recognising the shortcomings of the previous 
relatively elaborate yet unreliable test model a simpler 
model which could be more positively loaded and monitored 
was devised for the author's experimental investigation. 
The test set up is illustrated in Fig. 10.1 and Plates 
10.1, (a) and (b). The model was designed to represent a 
typical half of the slab panel since it is known that the 

deformation of the prototype slab panel is anti-symmetric 

about the corridor centre-line. The line of anti- 
symmetry (or line of inflexion) in the prototype was 
simulated by a simply supported slab edge in the model. 

The slab specimen was cut from a 3/16 in. (5 mm) 
(nominal) thick perspex sheet. The connection to a rigid 

wall was simulated by sandwiching the slab between a pair 

of steel pieces ( in. (19.05 mm) deep by I in. (6.35 mm) 
wide), cut to the shape of the wall and-bolted through the 

slab with J in. (3 mm) diameter brass bolts at 1 in. 
(25.4 mm) centres. The slab was supported across an 
opening in a test bench with a rocker bearing at the outer 
end of the wall and a long roller and holding down device 

at the corridor edge of the slab. The holding down 
device consists of a row of needles held on a1 in. 
(25.4 mm) square rectangular hollow section clamped at its 

ends to the test bench. The needles could be individually 

adjusted and locked in position such that the points bear 
on the slab surface directly over the roller support, thus 
preventing possible up-lift due to transverse bending but 
allowing free rotation of the supported slab edge during 
the test. By positioning the roller and holding down 
device at various distances from the inner end of the wall 
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section, coupling slabs with various corridor opening 

ratios could be simulated using the same model. 
'A wall moment could be applied to the model by 

hanging weights at the inner end of the wall section. The 
induced wall rotation could be monitored effectively by 

measuring the deflections at the ends of the wall section 

and at the simply supported slab edge using three dial 

gauges suspended from a dexion frame clamped to the test 
bench. The effective slab width could then be evaluated 
in the following manner: 

Referring to Fig. 10.2 which shows the deflected slab 

model with 51,62 and 63 as the measured deflections, P as 
the applied load, and x1, x2 and x3 as measured distances, 

the effective wall rotation about the supported end is 

given by 

(i. o. 1) 

The applied wall moment about the supported end is given 
by 

Ml = P. x3 (10.2) 

Writing K1 a M1/(D 01), where D is the flexural rigidity 

of the slab, the rotational stiffness factor K for the 

slab coupling a pair of walls rotating about their 

centroidal axes a distance c apart is given by 

KK0.5c)2 ,. 1 

The effective width Ye%Y is then given by 

) 
(Y) (c)2 

6 (1-v ) 

(10.3) 

(10.4) 

where Y is the width of the slab panel, L is the corridor 
width and / is Poisson's ratio for the slab. 

10.3.2 TEST PROGRAMME 

Altogether, 35 wall-slab combinations (Tables lO. la 

and b) were tested. The combinations were obtained by 
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varying the wall length W and the flange width Z from 

3 in. (76.2 mm) to 7 in. (177.8 mm) and the corridor width 
L- from 2 in. (50.8 mm) to 8 in. (203.2 mm). The slab 

width Y was kept at a constant value of 10 in. (254 mm). 
The wall thickness h and the slab overhang width C were 
kept at constant values of j in. (6.4 mm). 

10.3.3 TEST PROCEDURE 

The model was set up with the supports and dial gauges 

at their respective marked positions on the model and with 
the weight hanger on. The loads were applied in five 

increments to a maximum test load of 10 or 15 kg. depending 

on the stiffness of the model. The dial gauges were read 
10 minutes after each load increment to allow time for the 

gauge readings to stabilise. The model was then unloaded 
in equal decrements and gauge readings similarly taken at 

each stage until the model was completely unloaded. The 

complete test was repeated half an hour later to obtain a 

second set of results for averaging. 
To enable the calculation of the flexural rigidity of 

the slab, the average slab thickness was obtained by 

micrometer measurements on the model. The elastic 

constants E and V, were obtained from the perspex 

supplier's specification as the actual values were not 

expected to be significantly different from the recommended 

values. 

10.3.4 EVALUATION OF TEST RESULTS 

The two corresponding sets of gauge readings taken at 
the loading and unloading stages in a test were averaged 
to minimise the effects of creep in the perspex. The 

effective wall rotation and applied wall moment at each 
load stage were calculated from equations (10.1) and (10.2), 

using for the calculations, the distances measured before 
the commencement of the test. A straight line was fitted 
to the moment-rotation relationship by the method of least 

squares and the gradient of the line obtained for the 
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calculation of the coupling stiffness and effective width 

in accordance with equations (10.3) and (10.4). The 

corresponding results from the two tests on the same model 

were averaged for the final results. The processing of 
the experimental data was carried out by computer. 

The experimental results for the various tests are 

shown in Tables 10.1, (a) and (b). 

10.3.5 THEORETICAL RESULTS 

The slab models were analysed theoretically by the 

finite element method and by-the influence coefficient 

method. In the theoretical analysis, the slab edges 

parallel to the direction of bending were treated as free 

edges, and the finite wall thickness was disregarded. The 

material constants, E and V, for the analysis were 
the values assumed for the experiments. The slab thick- 

ness in all cases was taken as the 3/16 in. (5 mm) nominal 
thickness since the theoretical effective width is 

unaffected by the slab thickness. 

The order of refinement adopted for the analysis of 

the model was comparable to that used for the parametric 

studies described in Chapters 3 and 4. The finite element 

analyses used between 72 and 104 elements for the 

discretisation of the slab, depending on the configuration. 
The influence coefficient solutions used four discrete 

nodes for the discretisation of plane walls. For flanged 

walls, two web nodes and between two and six flanged nodes 

were used depending on the flange width. Forty terms of 
the series were used for the evaluation of the influence 

coefficients. 
The effective width values evaluated by the two 

theoretical methods are shown in Tables 10.2-10.3, (a) and 
(b). 

10.3.6 COMPARISON BETWEEN EXPERIMENTAL AND THEORETICAL 
RESULTS 

Values of the effective width Ye/y obtained from the 
tests have been compared with the theoretical results in 
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Fig. 10.3. For the cases with plane walls, the 

experimental results generally agree well with the 

theoretical results. The agreement appears particularly 

good for cases with small ratios L/Y. With the larger 

ratios WY, the experimental results are slightly higher 

than the theoretical results and indicate the possible 

stiffening effect of the finite wall thickness which has 

not been considered in the theoretical analysis. This 

stiffening effect in cases with small ratios L/Y appears 
to have been offset by flexibility effects due to possible 
transverse shear deformation of the slab and unavoidable 

slackness of the wall-slab connection which are expected 
to become more significant when the slab is stiff and 
large loads are used to induce the necessary wall rotation 
in the test. 

The correspondence between the experimental and 
theoretical results for the cases with flanged walls 

appears less good. With walls of small sections (3 x5 in. 

Tee, 5x5 in Tee and 5x3 in. Tee), the experimental 

results agree reasonably well with the theoretical results, 
but with larger wall sections (7 x5 in. Tee and 5x7 in. 

Tee), the experimental results are significantly lower 

than the theoretical results, the discrepancy becoming 

greater as the ratio L/Y is decreased. It appears that 

these experimental results are significantly influenced 

by the flexibility effects. In these flanged wall cases, 
in addition to the effects of transverse shear deformation 

and wall-slab connection flexibility, bending of the wall 

pieces may be a significant contributing factor for the 

poor experimental results. 

10.4 SERIES '2 TESTS - 

10.4.1 DESIGN OF MODEL 

In the first series of tests described, the wall was 
assumed infinitely stiff in comparison with the slab and 
it was possible to simulate the presence of the wall in 
the model by clamping steel pieces cut to the shape of the 
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wall on to the slab. In the second series of tests, 

the wall and slab were modelled as' an integral unit, since 
the influence of wall flexibility on the performance of 
the slab was being considered. For convenience, the case 

of a slab interacting with a pair of walls undergoing 
differential axial movement was considered for the 
investigation. Since it is difficult to reproduce in a 

simple model the continuous boundary conditions of a 
typical interior slab panel, free slab edges were considered 
for the prototype and model, for the purpose of verific- 

ation of the method of analysis. On account of conditions 

of anti-symmetry about the corridor centre-line, -the model 

was designed to represent only one half of the prototype 

wall-slab panel. The line of anti-symmetry in the 

prototype slab panel was simulated by a free edge subjected 
to a constant deflection in the model. The wall was 

assumed fully restrained at the floor levels above and 
below the slab under investigation. 

Six different models were considered for this series 

of tests to provide sufficient variety of the parameters 
for the general accuracy of the method of analysis to be 

verified. The six models (Fig. 10.4) were obtained 

essentially from a single model constructed in stages and 
tested at each stage before some component parts were 
added for the next model. The models illustrated in 

Fig. 10.4 represent, in the order in which they were tested, 

the following configurations: 

(1) Plane wall-slab panel with large corridor opening 
(2) Plane wall-slab panel with small corridor opening 
(3) Flanged wall-slab panel with sma-H corridor opening 
(4) Flanged wall-slab panel with largB corridor opening 
(5) Flanged wall-lintel-slab panel with large corridor 

opening 
(6) Flanged wall-lintel-slab panel with small corridor 

opening. 

The dimensions of the models were chosen from 
preliminary theoretical analyses to ensure that strains 
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and deflections induced by a reasonable test load on the 

model would be large enough to be reliably measured with 
the available apparatus. 

10.4.2 CONSTRUCTION OF MODEL 

The basic model (Fig. 10.5(a)) consisted essentially 

of an intersection of two plates representing the floor 

slab and the plane shear wall. The slab and wall 

components were cut from aJ in. (10 mm) thick perspex 

sheet to approximate dimensions using a band saw. The 

plates were then machined along their edges to the required 
dimensions. A slit was cut in the slab at one end where 
the wall would penetrate. The slit was milled to a width 
1/16 in. (1.6 mm) narrower than the wall thickness. The 

wall was recessed at mid-height to a depth of 1/16 in. 

(1.6 mm) on each face and at the inner edge to provide a 
key for the slab. I. C. I. Tensol Cement No. 7, which has 

properties similar to perspex when cured, was applied to 

the joint surfaces and the wall unit slotted into the slab 

unit. The assembled units were squared and clamped in 

position, and an additional quantity of cement was run in 

to completely fill up the joint. After the cement had 

hardened sufficiently for the model to be handled safely 

any excess cement which had overrun the joint was carefully 

scraped off, and the corners were finished neatly. The 

end-blocks for the wall were built up by cementing on 1in. 

(10 mm) thick perspex pieces. The end blocks were 

eventually drilled to accept three I in. (12.7 mm) 
diameter clamping bolts at each end of the wall. The slab 

was provided with a row of ' in. (6.4 mm) diameter bolt 
holes along the cantilevered edge representing the line of 
anti-symmetry in the prototype, for receiving the stiffening 
and loading unit (Fig. 10.5(c)). This consisted essentially 
of a pair of aluminium angles designed to restrain the 

clamped edge of the slab from transverse bending and at 
the same time transmit the concentrated load applied through 
a hanger attached to the unit, as a distributed shear on 
the slab. 
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The model with a smaller corridor opening was 

obtained by clamping the aluminium angles nearer to the 

wall (Fig. 10.5(b)). To accommodate them, four I in. 

(6.4 mm) diameter bolt holes were drilled through the slab 

when required. These holes were refilled with I. C. I. 

Tensol Cement No. 7 when the aluminium angles were 

repositioned back at the outer edge for the' next model 

having a larger corridor opening. 
The wall flange required for Models 3 and 4 was added 

in the second stage of construction. The flange was 

assembled in four quadrants. The flange pieces were cut 

from the I in. (10 mm) thick Perspex sheet and were 

individually shaped to provide a tight fit between the wall 

and slab when cemented on. 

The lintel beam was added in the last stage of 

construction for Models 5 and 6. The lintel piece was 

also cut from the j in. (10 mm) thick perspex sheet, 

machined to the correct dimensions and cemented to. the 

underside of the slab and to the wall. 
The plane wall and flanged wall models under test are 

shown in Plates 10.2, (a) and (b), respectively. 

10.4.3 STRAIN GAUGES 

Japanese Type PL 10 electrical resistance strain 

gauges were used for measuring the surface strains in the 

model. The gauges were positioned at regular intervals 

along three slab sections and a wall section (Fig. 10.6) 

to enable the strain distributions to be picked up 

accurately. In addition to these regular gauges, a few 

random gauges were positioned at points where strains were 

expected to be similar, on account of symmetry, to those 

monitored by the regular gauges. These served as control 

gauges to enable any possible deviation from symmetry 
during test to be detected. The gauges and terminal 

strips for wire leads were glued on to the model at 
accurately marked positions with M Bond 200 adhesive. The 

lead wires were soldered on to the gauge terminals and 
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the gauges varnished over with M Coat A for insulation and 

protection. The resistance of each gauge was checked with 
a Solarton 4440 Digital Multimeter for fault in the gauge 
and connection before being wired to the monitoring 
equipment. 

Strain gauges attached to disused perspex models were 
used as dummy gauges for compensating for the effects on 

strain measurement produced by humidity and temperature 

changes in the laboratory and by local heating caused by the 

gauge circuit. 

10.4.4 STRAIN MEASUREMENT 

The strain monitoring equipment was made up of Balwin- 
Lima-Hamilton BLH Model 220 switching units connected to- 

a BLH Type 20 strain indicator (Plate 10.2(a)). Each 

switching unit allowed ten strain gauge outputs to be 

monitored in succession on the strain indicator. A number 

of switching units were connected in parallel to enable 
the monitoring of the large number of gauge outputs 
required in the test. Each gauge and its dummy compen- 

sator were wired to one channel of the 10-channel switching 
unit. 

The BLH Portable Type 20 strain indicator used a 
self-contained battery power pack for the gauge circuit. 
For strain measurement, it used a manually operated null- 
balance system with digital readout for fast accurate 
reading. The indicator could be operated over a range of 
0 to ± 30,000 micro-inch per inch strains with a resolution 
of 5 microstrains in the digital readout. Gauges of 
different gauge factors could be accommodated with 
adjustment of a control on the indicator. 

10.4.5 DEFLECTION MEASUREMENT 

John Bull dial gauges Type 2S with a maximum travel 
of 25 mm and a sensitivity of 0.01 mm were used for 
deflection measurements on the model. The dial gauges 
were supported on a light dexion frame clamped to the test 
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stand. The gauges were positioned at points along the 

centreline of the slab (Fig. 10.7) for measuring 
deflections which could be conveniently compared with the 
theoretical results. In addition to these gauges, two 

others were placed at the extremities of the loaded slab 
edge. These together with the one in the centre provided 
a means of checking that the load was symmetrically 
disposed and the edge uniformly deflected. Other gauges 

were placed to monitor possible support movements and 

asymmetric bending in the slab. 

10.4.6 TEST FRAME 

The test frame (Plate lO. 2a) consisted of a pair of 

mounting units set one metre apart, connected by horizontal 

and inclined bracing members to form a stiff self- 

supporting box frame. The end of the frame which was 
intended for supporting the model was further stiffened by 
bracing an additional mounting unit to it at a short 
distance apart. 

Each mounting unit consisted of two vertical legs of 
3x 11 in. (76 x 38 mm) steel channels welded to 6x6 in. 
(152 x 152 mm) base plates and set apart by welding to two 
J in. (12.7 mm) thick by 6 in. (152 mm) wide steel plates. 
These steel plates were provided with a regular array of 
holes for use in fixing the model to the frame and were 
set near the upper ends of the support legs to provide 
adequate clearance below the model to hang the weights. 
The bracing consisted of cut lengths of 2x1 in. (50 x 25 

mm) rectangular hollow sections with welded end plates 
which were tapped for bolting to the mounting units. 

To strengthen the mounting units, I in. (12.7 mm) 
diameter screwed rods and short lengths of hollow sections 
were used to bolt and brace the horizontal steel plates of 
the two adjacent mounting units to make them act together 
more effectively as a unit. 

The mounting plates were originally designed for 
horizontal mounting of the model set into a base plate, 
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and were not suitable for direct vertical mounting of the 

shear wall-slab model. An auxiliary mounting piece was 

connected to the mounting unit to provide a means of 

support for the model shear wall. The auxiliary mounting 

piece consisted of 2x1 in. (50 x 25 mm) RHS horizontal 

arms welded to a3x2 in. (76 x 50 mm) RHS vertical 

trunk'bolted to the mounting plates. The horizontal arms 

were provided with in. (12.7 mm) diameter screwed rods 

with lock nuts and in. (9.5 mm) thick backing plates for 

effective clamping of the end blocks of the model shear 

wall (Fig. 10.5, (d)-(e)). 

10.4.7 TEST PROCEDURE 

The model was set up with the strain gauges wired to 

the monitoring equipment, and the dial gauges and weight 

hanger in position. The three dial gauges in line at the 

loading edge were set to similar or nearly similar initial 

readings so that any uneven deflection of the loaded edge 

could be immediately detected from differences in the gauge 

readings, at all stages of the test. Before commencing 

the actual testing, the model was pre-loaded with the full 

test load for 10 minutes and then unloaded, to take up any 

initial relaxation of the model and supporting parts. The 

actual testing was commenced half an hour later in order 

to-allow the gauges to stabilise for the initial readings 
to be taken. 

The test loads were applied by hanging weights on the 

weight hanger suspended by a cord attached to the mid- 

point of the aluminium stiffening angles. For loading in 

the reversed (upward) direction, the cord was passed over 

an overhead pulley carried on a heavy steel angle clamped 
to the test frame (Plate 10.2 (a)). The loads were applied 
in four or five increments to a maximum test load which 

varied from 5 to 12 kg according to the model tested. The 

maximum test load for each model was predetermined to 

ensure that the strains induced in the model would be large 

enough to be satisfactorily measured but not too large as 
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to cause distress in the model. The strain gauges and 
dial gauges were read in a fixed sequence, commencing 10 

minutes after each load increment, in order to allow the 

gauge readings to settle to reasonably stable values. 
The test was repeated the following day in order to 

allow enough time for the model to recover from creep 

effects. For models 1 to 4, tests were performed with 
upward loading in addition to the tests carried out with 
downward loading to minimise errors due to possible 
asymmetry in material properties, model geometry or fixity 

conditions. The upward loading tests were omitted for 

Models 5 and 6 for fear of damage to the lintel-wall butt 

joint which could be subjected to large tensile forces 

during the test. 

10.4.8 DETERMINATION OF MODULUS OF ELASTICITY AND 

POISSON'S RATIO 

Values of the elastic modulus and Poisson's ratio for 

the model material were required for the theoretical 

analysis of the model. These were determined from tests 

made on specimens cut from the same sheet of perspex used 
to make the models. Two beam specimens measuring 11 in. 

(38.1 mm) wide by 15 in. (381 mm) long were strain-gauged 
in the longitudinal and transverse directions at mid-span. 
The beams were then tested in flexure by supporting them 

over a span of 14.1 in. (360 mm) and applying incremental 
loading at one-third points on the span. A predetermined 
maximum test load of 2.5 kg was used to ensure a maximum 
strain level similar to the model test conditions. In 

addition to strain measurements, mid-span deflections 

were also monitored on the test specimens. Each specimen 
was tested twice and then turned over for two repeat tests 
to minimise errors due to anisotropic tendencies of the 

perspex. 
The thickness of each specimen was measured by a 

micrometer at quarter points for the calculation of cross- 
sectional properties. 
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The averaged values of the elastic constants determined 
from the tests were 

Modulus of elasticity: 
(a) By strain measurement 3138 N/mm2 (4.54 x 105 

lb/in2 ) 
(b) By deflection measurement = 2940 N/mm2 (4.26 x 105 

Average value 

lb/in2 ) 

a 3039 N/mm2 (4.40 x 105 

lb%in2) 

Poisson's ratio 0.375 

10.4.9 EVALUATION OF TEST RESULTS 

The rigorous test routine of incremental loading and 

unloading, test repetition and load reversal had been 

adopted so as to provide sufficient sets of test results 
from which a reliable set could be evaluated statistically. 
In processing the test results, the corresponding strain 

or deflection readings obtained at each gauge station 
during the loading and unloading stages in a test were 
averaged to reduce errors due to creep effects in the 

perspex. A straight line was then fitted by the method 
of least squares through the points which would be obtained 
by plotting the averaged strain or deflection readings 
against the applied load. The gradient of the fitted 

straight line gave the strain or deflection induced at the 

gauge station by a unit shear (1 kg) applied at the 

cantilevered slab edge. The corresponding results from 
the various tests performed on the same model were finally 

averaged for comparison with the theoretical results. Any 

particular result which was suspect on account of its 
large deviation from the normal trend of the other 
corresponding results was disregarded in the averaging 
process. (Faults were actually detected, after the test, 
at some terminals on the switching units to which a number 
of 'suspect' gauges were wired. ) 

Due to the large number of tests performed and the 
enormous number of gauge readings obtained for each test, 
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manual processing of the test results would have been 

extremely time-consuming. The test results were there- 

fore processed on a computer using one of the author's 

programs. The evaluated test results are shown in Tables 

10.4, (a)- (f ), and 10.5, (a)- (f) . 

10.4.10 THEORETICAL ANALY SI S 

In order to provide a comparison between theoretical 

and experimental results, the shear wall-slab models were 

analysed by the finite element method as described in 

Section 5.2. The finite element idealisations for Models 

2,3 and 5 are shown in Fig. 10.8-10.10. The idealisations 

for Models 1,4 and 6 differed from those shown only in 

the sub-division of the corridor slab in the span-wise 
direction. In the idealisation, advantage was taken of 
the symmetry or anti-symmetry conditions where they existed 
to reduce the computational effort. 

In the finite element analysis, the walls were treated 

as fully restrained at the level of the end block. The 

edge of the slab representing the line of anti-symmetry in 

the full slab panel was prescribed with a unit deflection 

and zero transverse slope. The remaining edges of the 

slab were treated as free edges. 
The modulus of elasticity for the finite element 

analysis was assumed as the averaged value determined by 

the strain and deflection measurements in the tests. The 

value of Poisson's ratio determined by the tests was also 

used for the theoretical analysis. The wall and slab 
thickness was assumed as j in. (10 mm) since this nominal 
value was in close agreement with the average value of 
0.377 in. determined by micrometer measurements at a 
number of points on the model. 

In order to allow a direct comparison between 
theoretical and experimental results, surface strains were 
computed from the averaged nodal membrane and bending 

stresses in the finite element analysis. The computed 
strains and deflections at various sections were normalised 
with respect to the applied shear computed from nodal 
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reactions at the deflected slab edge. The theoretical 

results are compared with the test results in Fig. 10.11- 
10.16. 

10.4'. 11 DISCUSSION OF RESULTS 

In comparing results obtained by theoretical analyses 
and model tests it must be appreciated that the degree of 

correspondence obtainable is influenced by errors which 
are present in both sets of results. Good correspondence 
between theoretical and experimental results does not 

necessarily mean that the theory is accurate and the 

experimental technique is sound, unless both sets of 
results are accurate, since good correspondence can also 
be obtained between two erroneous sets of results when 

errors are of similar sense. and order. Poor correspondence, 
on the other hand, may be due to deficiencies in the 

experiments and not due to any inaccuracy of the theory. 

It is important to be able to identify all possible sources 

of errors which may be present in both the theoretical and 

experimental investigations and be able to assess their 

sense and relative importance. if the results are to be 

correctly interpreted. 

Errors arise in any experimental investigation due to 

unavoidable deficiencies in the test equipment. Some of 
these errors may be minimised with a rigorous test 

procedure when their cause and effects are understood, but 

some others remain undetermined. 
The electrical 

, 
resistance strain gauges and strain 

indicator are precision scientific equipment, and provided 
they are in good working order, errors in strain measure- 
ment will be very small. However, through regular use and 
occasional manhandling, defects can develop in the strain 
monitoring equipment which may affect its precision. One 
possible defect which is seldom recognised is due to the 
gauge factor calibrating unit drifting out of correct 
adjustment. This defect which was detected in a strain 
indicator in regular use resulted in errors of up to 30% 
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in the strain readings. But since the strain indicator 

used in the tests had been specifically checked to ensure 
that the calibration control was correctly set this source 

of error can be discounted. Errors in strain measure- 

ments can also arise through defects in some channels of 
the switching units to which the gauges and strain 
indicator are connected. These errors can usually be 

detected during the test by the erratic strain readings or 
by the rapid drift of the null-balance indicator. This 

source of error when it was detected in the test was 

eliminated in the next test by reconnecting the affected 

gauges to other channels which were in good order. The 

affected strain readings were discarded in the averaging 

process when the results were being processed. Therefore 

errors from this source should not be present in the 

processed experimental results unless they are very small 

and have escaped detection during the test. 

The effects of changes in temperature and humidity 

which affect the properties of the perspex were minimised 

by using compensating dummy strain gauges. Nevertheless, 

errors due to these effects could show up in the strain 

readings for the wall which was restrained at its ends 

against movement. These errors, however, are not expected 
to be significant, with the reasonably well controlled 
laboratory atmospheric conditions during the tests. 

The local stiffening effect of the perspex due to the 

presence of the strain gauge and adhesive may, to a certain 

extent, influence the accuracy of the measured strain. 
However, the errors involved should be negligible; with the 

modern construction of the strain gauges. 
Creeping of the perspex under load increases with 

time the deflections and strains in the model. By reading 
the gauges in the same sequence ata fixed time interval 

after each load increment or decrement, and by averaging 
the readings obtained duringthe loading and unloading 
stages, the effects of creep were minimised in the test 

results. 
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Movement in the wall supports, which will tend to make 

measured deflections appear larger but will not affect the 

strain measurements, was just discernable with a very 
sensitive dial gauge (John Bull Type 2U), and will therefore 

not influence the test results noticeably. 
The models were of simple construction with very few 

parts and joints, and could be fabricated to a high 

standard of finish. Nevertheless, dimensional inaccuracy 
due to the inherent thickness variation of the perspex 
sheet could still be a source of error which could 
influence the degree of correspondence between theoretical 

and experimental results. Judging from the micrometer 
measurements of the wall and slab thickness, which 
indicated possible deviations from nominal sheet thickness 

of ± 5%, differences between calculated and observed 
strains up to an order of ± 10% can be expected at some 
points on the model. 

The stiffened edge of the slab which was supposed to 

undergo a constant deflection along its length to simulate 
the line of anti-symmetry in the prototype slab panel was 
deflected by applying a central load. An eccentric 
application of the load with respect to the centre line 

will affect the accuracy of the test results due to 

unsymmetrical bending. However, in all the tests, fairly 

symmetric loading was achieved, as indicated by the control 
dial gauges and strain gauges symmetrically located on the 

slab. The dial gauges 1,2 and 3 (Fig. 10.7) located 

along the loaded edge, showed discrepancies of less than 2% 
in deflection measurements in all the tests. Similarly, 
the symmetrically placed strain gauges 17 and 36 (Fig. 
10.6) indicated differences less than 2% in the 
longitudinal strain measurements in all the tests. Therefore, 
errors due to eccentric loading should be small. 

Inaccuracies associated with the finite element 
analysis arise in the modelling and discretisation 
processes. In idealising the slab as a thin plate, the 
effects of transverse shear deformation are being neglected. 
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This would result in calculated slab deflect ions being 

underestimated to a certain extent depending on the slab 

thickness in relation to its span. In the models 

analysed, the slab was relatively thin and errors from 

this source should be very small. 

A second source of inaccuracy which arises in the 

modelling process is due to the idealisation of the wall 

panels as thin membrane members. The idealisation 

results in the intersection of wall and slab being 

represented as a line, whereas in the actual situation the 

wall and slab intersect through a finite volume of material. 

This means that the wall and slab become more severely 

loaded locally, through mutual interaction, in the 

idealised model than in the real model. Therefore 

theoretical stresses or, strains at points on the wall and 

slab close to the intersection will, to a certain extent, 

be overestimated, depending on the relative wall and slab 

dimensions and on the location of the points where these 

quantities are evaluated. 
The discretisation of the continuum into a finite 

number of elements introduces errors of convergence into 

the numerical results. The nature of these errors depends 

not only on the element mesh division of the structure but 

also on the type of problem being solved and on the 

element characteristics. The finite element analyses for 

the wall-slab models employed the rectangular shell 

element RS24 together with the triangular shell element 

TS18 and used reasonably refined element mesh patterns 
for the discretisation. Convergence studies have indicated 

that under such circumstances, convergence errors will 
tend to make calculated slab deflections appear smaller and 

make calculated slab stresses appear larger than the 'true' 

theoretical results. These errors should be quite small 

at most places in the model except at points of severe 
stress concentration where the errors in the calculated 

stresses or strains could be significantly large. 
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10.4.11.1 Comparison Between Experimental and Theoretical 

Results 

(a) Slab Centre-line Deflections (Fig. 10.6,10.11-10.16) 

The experimental results for the slab centre-line 

deflections for Models 1 to 4 (Fig. 10.11-10.14) generally 

agree very well with the theoretical results, with 
discrepancies in the maximum deflections varying from I to 

5J%. The larger discrepancies are associated with the 

two models having the smaller slab span (corridor width), 
for which, measured deflections at all points are larger 

than the predicted values and appear to reflect the 

influence of shearing deformation and discretisation errors. 

Shearing deformation tends to increase the slab deflection 

and is more significant when the shear span is small. 

Discretisation errors, on the other hand, tend to make 

calculated deflections appear smaller, and in the present 

case these errors are likely to be larger for the slab with 

the smaller span, where the element sub-division of the 

slab, in relation to its span, is coarser than that of the 

slab with the larger span. 
The correspondence between the experimental and 

theoretical deflections for Models 5 and 6 (Fig. 10.15- 

10.16) is poorer than that for the first four models. The 

theoretical results in this case are 9% and 141% lower than 

the experimental results, and again the larger discrepancy 

is associated with the model with the smaller slab span. 
The calculated deflections for these models should be less 

affected by the effects of shearing deformation than the 

previous models because the lintel beam, which carries a 

substantial portion of the shear load, has been modelled 

as plane stress elements capable of undergoing shearing 
deformation. However, discret isat ion errors are likely 

to be more significant here since the lintel beam has been 
discretised using a rather coarse two-element-deep mesh 
sub-division. These last two models have more components 
and joints in their construction than the previous models 
and so the experimental results for these models are more 
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likely to be affected by joint flexibility. The effects 

of various experimental errors also tend to show up more 

significantly when the measured deflections are small, 

which is the case with these last two models. 

(b) Slab Strains at Section A-A (Fig. 10.6,10.11-10.16) 

The measured longitudinal strain Ey in Models 1,4 

and 5, which have the larger slab span, agree very well 

with the theoretical results. At most points along the 

section, the plotted experimental and theoretical results 

almost coincide. In the other three models which have the 

shorter slab span, the experimental strains Ey generally 

agree less well with the theoretical results. In Model 3, 

the experimental strains all lie below the theoretical 

strain curve for Ey (Fig. 10.13), but in Models 2 and 6 

the experimental results straddle the theoretical curves 
(Fig. 10.12 and 10.16). 

The experimental and theoretical transverse strains 

Ex agree reasonably well in all six models. In Models 1 

and 2 which have plane walls and therefore relatively large 

transverse slab strains, the measured strains at most 

points are significantly lower than the calculated values, 
but in the four flanged wall models where transverse slab 

strains are low, the experimental and theoretical strains 

are in better agreement. The discrepancies in the plane 

wall models are to be expected. Since the finite wall 
thickness has not been represented in the discretisation 

of the slab, the transverse bending moments and strains 

would be overestimated to a certain extent along the slab 

centre line (i. e. at section A-A). 

(c) Slab Strain at Section B-B (Fig. 10.6,10.11-10.16) 

The longitudinal strains Ey, measured in Models 1 

and 2 agree fairly well with the theoretical results at 
most points, except where the strains reach peak values. 
The calculated peak strain value in each model is 

approximately 16% higher than the experimental value and 
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is clearly influenced significantly by the discretisation 

errors in the finite element analysis, but the irregular 

strain pattern predicted is reasonably well reflected in 

the experimental results. In the other four models 
(Fig. 10.13 to 10.16) the measured longitudinal strains 

generally agree well with the calculated results. In 

models 3 and 4 the experimental results are generally lower 

than the theoretical results, but in Models 5 and 6, this 

trend is reversed. 
The transverse strains Ex obtained experimentally in 

all six models agree very well with the theoretical results. 

In each case, the peculiar strain pattern predicted is 

accurately picked up by the strain measurements, in spite 

of the fact that the strains at most points are relatively 

small, and therefore more difficult to measure accurately. 
The overall accuracy of the strain measurements may 

be assessed by carrying out a statical check on the 

equilibrium between the internal bending moments and the 

external applied moment at this section. The areas 

under the experimental strain curves for Ex and Ey are 

used together with the sectional and elastic properties 

of the slab to evaluate the internal bending moments at 
the section. The results of the statical check for the 

first four models are shown in Table 10.7. The statical 

check could not be performed for the last two models due 

to insufficient strain measurements required to separate 
the membrane from the bending effects in the measured 

strain. It may be concluded from the results of the 

various statical checks that the strains have generally 
been measured reasonably accurately, probably with a 
maximum error of only 

± 5% in the reading. 

(d) Slab Strains at Section C-C (Fig. 10.6,10.15-10.16) 

In all six models, the experimental and theoretical 
longitudinal strains Ey are generally in good agreement. 
A comparison between the highest measured strain and the 

corresponding theoretical value in each case shows that 
discrepancies are less than 4% for the first three models 
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and varies from 5 to 8% for the remaining models. 

(e) Wall Strains at Section D-D (Fig. 10.6,10.11-10.16) 

In the plane wall models (i. e. Models 1 and 2) the 

correspondence between experimental and theoretical results 
for the vertical wall strains is not as good as that for 

the slab strains already discussed. Although absolute 

experimental and theoretical strain values generally do 

not agree very well, the predicted and observed strain 

patterns indicating severe stress concentration at the 
inner edge of the wall are very similar. The peak 
theoretical compressive strains in the two models are 
substantially higher than the experimental values and 
indicate discrepancies of 15 to 30%. The large discrep- 

ancies may be explained by the presence of not only 
theoretical errors but also experimental errors. As may 
be observed from the results of the convergence study in 

Fig. 5.2 (Chapter 5) the calculated peak strain value at 
the inner edge of the wall is likely to have been affected 
by convergence errors which tend to make it appear larger 

than the correct analytical result. It can also be 

observed in Figs. 10.11 and 10.12 that the positive wall 

strains measured at the inner positions in the wall are 
substantially higher than the predicted values and this 

seems to indicate, from a static check at the section, 
the presence of an axial tension, which may have been 

produced by the restraint of the wall ends. This axial 
tension has the effect of lowering the high compressive 
strains at points near the edge of the wall produced by the 

applied loading on the slab. 
In Models 3 and 4 the experimental strains in the web 

and flange sections agree well with the theoretical 

results, and discrepancies vary from 3 to 7% in respect 
of strains compared near the edge of the flange. In 
Models 5 and 6, although the correspondence between 
experimental and theoretical strains is reasonably good in 
the web section and a larger part of the flange section, 



506 

there appears to be a serious discrepancy between the 

experimental and theoretical strain- distributions in the 

central portion of the flange. In this particular region, 
the theoretical results show a sharp rise in the strain 
distribution which does not appear to be shown by the 

available experimental measurements. In order to find an 
explanation for the apparent discrepancy it is necessary 
to take a closer look at the, way in which the inconsistent 

strains have been calculated. It is observed that the 

large strain value predicted at the centre of the flange 

was produced primarily by bending in the flange at the 

root of the lintel beam. This local bending in the flange 

appears to have been produced as a result of the severe 
local horizontal in plane deformation of the wall web 
induced by the large lintel beam reaction. The local 

bending of the flange can only happen in the theoretical 

model where the flange has been idealised as being 

connected to the middle plane of the web. In the real 

model, what has been idealised as a part of the flange 

which is able to bend is, in fact, a part of the web. 
Therefore, the calculated flexural strains in the flange 

at the centre line of the web is imaginary rather than 

real. 

(f) Lintel Strains at Section E-E (Fig. 10.6,10.11-10.16) 

The longitudinal strains measured at the soffits of 
the lintel-beams in Models 5 and 6 agree extremely well 
with the theoretical results. Discrepancies between 
the experimental and theoretical result's are less than 2% 
in all cases. 

10.5 CONCLUSIONS 

A reasonably wide range of shear wall-slab models has 
been tested. Although the models in the first series of 
tests were relatively unsophisticated, reasonably good 
correspondence between theoretical and test results was 
obtained in most cases where the slab was not excessively 
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stiff. In cases where the slabs were very * stiff, the 

test results appeared to be influenced considerably by 

various secondary effects not considered in the theoretical 

analysis and also by inherent defects in the test 

apparatus. Consequently, in these cases, correspondence 
between theoretical and test results was less satisfactory 

The models in the second series of tests were 

relatively more sophisticated and so was the theoretical 

method of analysis which was intended to be verified. In 

all these cases good agreement was obtained between the 

theoretical and test results for deflections and strains 

at most points on the model. However at certain points 

close to regions of stress concentration, the theoretical 

strains were considerably higher than the measured values 

as a result of the finite element idealisation which 

neglected the effect of finite wall thickness. Clearly, 

in these regions care must be exercised in interpreting 

the finite element results. 
On the whole, the experimental tests provide strong 

evidence to support the validity of the various theoretical 

analyses. 
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TABLE 10.1(a) - EXPERIMENTAL RESULTS FOR SERIES 1 MODELS 

IN PLANE WALL CONFIGURATION 

Plane Wall Effective Width Ye/Y 

W I' 2 in. 3 in. 4 in. 6 in. 8 in. 

3 in. 0.192 0.282 0.379 0.523 0.638 

5 in. 0.196 0.262 0.347 0.556 0.671 

7 in. 0.181. 0.280 0.360 0.500 0.618 

TABLE 10.1(b) - EXPERIMENTAL RESULTS FOR SERIES 1 MODELS 

IN FLANGED WALL CONFIGURATION 

Flanged Wall Effective Width Ye/Y 

L 

W x Z 2 in. 4 in. 6 in. 8 in. 

3 x 5 in. 0.609 0.817 0.949 1.039 

5 x 5 in. 0.583 0.770 0.929 1.006 

7 x 5 in. 0.492 0.703 0.786 0.879 

5 x 3 in. 0.416 0.643 0.754 0.854 
5 x 7 in. 0.676 0.856 0.998 1.063 
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TABLE 10.2 (a) - FINITE ELEMENT RESULTS FOR SERIES 1 MODELS 

IN PLANE WALL CONFIGURATION 

Plane Wall Effective Width Ye/Y 

L 2 in. 3 in. 4 in. 6 in. 8 in. 

3 in. 0.191 0.273 0.347 0.471 0.566 

5 in. 0.194 0.278 0.355 0.485 0.584 

7 in. 0.194 0.279 0.356 0.487 0.587 

TABLE 10.2(b) - FINITE ELEMENT RESULTS FOR SERIES 1 MODELS 

IN FLANGED WALL CONFIGURATION 

Flanged Wall Effective Width Ye/Y 

L 2 in. 4 in. 6 in. 8 in. W x Z 

3 x 5 in. 0.734 0.832 0.894 0.935 
5 x 5 in. 0.739 0.840 0.903 0.943 
7 x 5 in. 0.741 0.844 0.907 0.947 

5 x 3 in. 0.522 0.652 0.745 0.810 
5 x 7 in. 0.943 1.006 1.037 1.053 
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TABLE 10.3(a) - INFLUENCE COEFFICIENT RESULTS FOR SERIES 1 

MODELS IN PLANE WALL CONFIGURATION 

Plane Wall 
' 

Effective Width Ye/Y 
FL 

W 

777 
2 in. 3 in. 4 in. 6 in. 8 in. 

3 in. 0.192 0.269 0.343 0.469 0.574 

5 in. 0.197 0.282 0.362 0.500 0.610 

7 in. 0.202 0.289 0.374 0.519 0.627 

TABLE 10.3(b) - INFLUENCE COEFFICIENT RESULTS FOR SERIES 1 

MODELS IN FLANGED WALL CONFIGURATION 

Flanged Wall Effective Width Ye/Y 

L 

W x Z 2 in. 4 in. 6 in. 8 in. 

3 x 5 in. 0.721 0.855 0.930 0.984 
5 x 5 in. 0.720 0.860 0.932 0.982 

7 x 5 in. 0.726 0.862 0.938 0.986 

5 x 3 in. 0.522 0.675 0.772 0.853 
5 x 7 in. 0.869 0.978 1.017 1.048 
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TABLE 10.4(a) - STRAIN MEASUREMENTS FOR 

PERSPEX MODEL NO. I- (PLANE WALL/FLOOR SLAB INTERACTION) 

SURFACE STRAINS (MICROSTRAIN/KG) 

DOWNWARD LOADING UPWARD LO ADING 
GAUGE TEST 1 TEST 2 TEST 3 TEST 4 AVERAGE 

1 43.74 45.46 -45.54 -44.00 44.69 
2 0.00 9.71 -12.97 -9.. 96 8.16 
3 62.11 67.16 -65.23 -63.69 64.55 
4 9: 51 27.40 -22.54 -20.86 20.08 
5 83.01 102.83 -9 0.63 -85.54 9 0.50 
6 20: 61 32.11 -33.64 -28.34 28.68 
7 103-: 39 109 . 59 -105.56 -103.84 105.59 
8 34.54 44.79 -50.81 -45.66 43.95 
9 141: 39 177.21 -157.30 -146.04 155.48 

10 81.26 94.94 -100.70 -96.30 93.30 
11 171.46 188.31 -192-99 -188.01 185-19 
12 -160: 04 -160: 01 171: 81 174.21 -166.52 
13 -19.47 -10.49 13.11 14.63 -14.43 
14 47.10 50.29 -51.19 -49.93 49.63 
15 170.39 179: 77 -180.81 -178.26 177.31 
16 -19.49 -17: 77 19.29 18.81 -18.84 
17 126: 77 128.89 -134.51 -133.81 130.99 
18 -34: 50 -25: 47 22.76 24.69 -26.85 
19 103: 83 106: 99 -113.46 -113: 36 109.41 
20 -37.10 -24: 49 28.21 29.74 -29.89 
21 96.74 104.83 -103.10 -103.33 102.00 
22 61: 70 67.79 -72.33 -68.20 67.50 
23 102.39 105: 34 -1 10.69 - 110.87 107.32 
24 65.01 67.47 -71.31 -71.76 68.89 
25 14.07 28-'91 -23-93 -22.09 22.25 
26 -63.49 -56.33 49.69 50.59 -55.02 
27 -27.83 -23: 03 28.70 28.29 -26.96 
28 10.61 10: 47 -8.73 -7.71 9.38 
29 11.74 15.06 -15.71 -15.50 14.50 
30 2: 33 15.74 -13.96 -9.83 10.46 
31 -0.63 11.03 -8.86' -6.47 6.43 
32 0.00 4.07 -5.83 -4.83 3.68 
33 7.69 13.13 -9.86 -7.41 9.52 
34 0.00 0.00 0.00 0.00 0.00 
35 41.77 44.04 -44.24 -44.00 43.51 
36 126: 59 128.86 -133.04 -132.33 130.20 
37 19 0: 13 189.66 -187.57 - 167.10 188.62 
38 0.00 0.00 0.00 0.00 0.00 
39 0000 0: 00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 
41 0.00 0.00 0.00 0.00 0.00 
42 0.00 0.00 0.00 0.00 0.00 
43 0: 00 0.00 0.00 0.00 0.00 
44 0.00 0.00 0.00 0.00 0.00 
45 0.00 0.00 0.00 0.00 0.00 
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TABLE 10.4(b) - STRAIN MEASUREMENTS FOR 

PERSPEX MODEL NO. 2 -(PLANE WALLS/ FLOOR SLAB INTERACTION) 

SURFACE STRAINS (MICROSTRAIN/KG) 

DOWNWARD_ LOADING UPWARD LOADING 
GAUGE TEST 1 TEST 2 TEST 3 TEST 4 AVERAGE 

1 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 0.00 
6 5.36 5.54 -6.78 -5.94 5.90 
7 22.9 1 22.54 -21.73 -19 .91 21.77 
8 24.37 24.63 -25.91 -22.64 24.39 
9 58: 53 57.07 -57.59 -47.99 55.29 

10 55.83 55.02 -55.75 -50.59 54.37 
11 85.52 86.11 -86.80 -78.72 84.29 
12 -9 6.49 -96942 106.29 102.31 -100.38 
13 -6.09 -5.90 6.64 8.63 -6.81 
14 32.09 32.06 -32.11 -31.08 31.84 
15 79.69 79.26 -79.92 -76.57 78.86 
16 -6.88 -7.72 7.43 6.69 -7.18 
17 53.47 52.93 -56.39 -54.45 54.31 
18 -9.34 -10.14 10.55 12.75 -10.69 
19 39.71 39.50 -42.26 -40.36 40.46 
20 -10.88 -11.35 11.42 12.97 -11.66 
21 35.34 34; 57 -37.34 -36.41 35.92 
22 0.00 0.00 0.00 0.00 0.00 
23 26.20 25.80 -27.99 -27.18 26.79 
24 33.01 31.86 -33.43 -32.67 32.74 
25 10.39 8.84 -10.94 -5.87 9.01 
26 -32.94 -33.35 27.77 28.31 -30.59 
27 -15.17 -15.81 19.06 18.74 -17.20 
26 3.39 3.50 0.00 -0.42 1.83 
29 6.18 "6.70 -6.51 -6.67 6.51 
30 3.91 3.41 -4.26 -2.29 3.47 
31 1.77 2.36 -2.61 -0.94 1.92 
32, 0.75 0.64 -1.28 -1.55 1.05 
33 5.31 4.80 -3.58 -2.69 4.10 
34 2.81 2.44 -1.16 -0.83 1.81 
35 24.09 23.94 -25.26 -24.08 24.34 
36 52.71 52.51 -54.69 -52.59 53.12 
37 85.89 85.40 -84.96 -82.12 84.59 
38 0.00 0.00 0.00 0.00 0.00 
39 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 
41 0.00 0.00 0.00 0.00 0.00 
42 0.00 0.00 0.00 0.00 0.00 
43 0.00 0.00 0.00 0.00 0.00 
44 0.00 0.00 0.00 0.00 0.00 
45 0.00 0.00 0.00 0.00 0.00 
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TABLE 10.4 (c) - STRAIN MEASUREMENTS FOR 

PERSPEX MODEL N0.3 - (FLANGED WALL/FLOOR SLAB INTERACTION) 

SURFACE STRAINS (MICROSTRAIN/KG) 

DOWNWARD LOADING UPWARD L OADING 
GAUGE TEST 1 TEST 2 TEST 3 TEST 4 AVERAGE 

1 0.00 0.00 0.00 0.00 0.00 
2 0: 00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 0.00 
6 -0: 70 1.03 -4.86 -2.76 1.99 
7 27.42 27.11 -28.75 -28.14 27.86 
8 -2.94 1.64 -11.54 -9.95 5.05 
9 47.98 53.24 -71.04 -65.30 59.39 

10 0': 00 3.40 -110.93 -9.33 6.16 
11 87.12 85.84 -86: 80 -88.06 86.95 
12 -4.97 -4.05 3.34 5.54 -4.47 
13 2: 05 4.35 -8.17 -7.34 5.48 
14 5.62 6.31 -6.74 -6.53 6.30 
15 71: 72 72.41 -76.87 -77.14 74.54 
16 4.37 4.81 -5.66 -4.76 4e90 
17 57.06 56.54 -57.02 -57.50 57.03 
18 -14'" 31 -9.19 -1.09 0.00 -5.60 
19 41.06 40.90 -41.76 -41.84 41.39 
20 -13.13 -10.72 2.02 7.54 -8.35 
21 32.33 32.48 -35.95 -35.83 34.15 
22 0.00 0.00 0.00 0.00 0.00 
23 26.00 25.05 -26.21 -26.22 25.87 
24 13.46 14.57 -18.09 -16.94 15.76 
25 -10"03* 0.00 -22.08* -6.82 4"72* 
26 -5; 08 -5.35 4.13 5.05 -4.90 
27 0.00 1.11 -2.81 -3.50 1.86 
28 5.04 5.29 -6.82 -6.19 5.83 
29 3.71 2.93 -6.09 -5.81 4.64 
30 -1 94 -0.43 -5.08 -4.37 1.77 
31 -2.68 -1.05 -4.27 -2.23 0.69 
32 -1.56 -0.54 -1.76 -1.14 0.20 
33 0ý 00 2.45 -13.94 -5.39 5.45 
34 -5.40 -4.53 4.00 4.85 -4.69 35 6.34 5.91 -6.99 -6.22 6.36 
36 56.41 55.35 -57.44 -56.76 56.49 
37 77.99 77.17 -77.31 -77.66 77.53 
38 -48.79 -48.08 47.16 48.80 -48.21 39 -4.14 -3.27 2., 9 2 3.49 -3.45 
40 -30.20 -28.92 28.44 28.85 -29.10 41 -25.11 -23.94 23.42 25.22 -24.42 42 -18.96 -18.37 18.76 19.36 -18.86 43 -11.57 -10.72 9.71 12.25 -11.06 44 0.00 0.00 0.00 0.00 0.00 
45 0*. 00 0.00 0.00 0.00 0.00 

* Switching Unit Suspect 
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TABLE . 10.4 (d) - STRAIN MEASUREMENTS FOR 

PERSPEX MODEL NO. 4 -(FLANGED WALL/ FLOOR SLAB INTERACTION) 

SURFACE STRAINS (MICROSTRAIN/KG) 

DOWNWARD LOADING UPWARD LO ADING 
GAUGE TEST 1 TEST 2 TEST TEST 4 AVERAGE 

1 44.76 45.99 -44.14 -45.63 45.13 
2 1.79 1.80 -6.63 -3.24 3.36 
3 629'83 64.86 -63.29 -64.14 63.78 
4 0.00 7.33 -6.66 -7.04 5.26 
5 82.37 84: 34 -80.19 -83.44 82.59 
6 12.03 13.86 -16.61 -15.10 14.40 
7 107.53 110; 17 -104.31 -108.96 107.74 
8 5: 90 12.10 -21.97" -16.71 14.17 
9 153.43 149.63 -142.47 -148.10 148.41 

10 0.00 0.00 -18.66 -16.34 8.75 
11 191.03 194.97 -192.47 -193.77 193.06 
12 -9.96 -9.73 12.14 9.63 -10.36 
13 2.34 4.34 -2.10 -5.71 3.63 
14 12.71 13.39 -14.16 -14.51 13.69 
15 168.10 171.54 -168.84 -171.14 169.90 
16 4.00 5.19 0.00 -6.27 3.86 
17 135.04 136-97 -136.14 -137.84 136.50 
18 -29.89 -29.89 18.74 25.04 -25.89 
19 103.26 103; 94 -103.00 -105.49 103-92 
20 -27.71 -26.40 30.13 27.51 -27.94 
21 9 1.9 1 9 3.36 -90-47 -93#36 92-27 
22 61.89 63.46 -64.87. -63.31 63.38 
23 101.71 104.19 -103.06 -104.51 103.37 
24 34.30 35.04 -33.01 -38.07 35.11 
25 8.94 16.16 87.44 * -16.07 -11.57* 
26 -10.97 -10.24 11.70 9.91 -10.71 
27 2.70 6.06 -4.56 -7.10 5.10 
28 12.21 13.07 -12.77 -13.91 12.99 
29 9.37 9 "49 -13.23 -12.74 11-21 
30 2.84 4.20 -3.69 -6.89 4.40 
31 0.00 1.99 0.00 -4.04 1.51 
32 0.40 0.30 . -3.99 -2.99 1.92 
33 0.00 0.00 0.00 0.00 0.00 
34 0.00 0.00 0.00 0.00 0.00 
35 13.00 14.31 -12.54 -13.96 13.45 
36 134: 27 136.00 -134.36 -137.29 135.48 
37 176.30 178.70 -174.67 -177.69 176.84 
38 -11963 -120.31 119.47 116.94 -119.09 39 0.00 0.00 0.00 0.00 0.00 
40 -61.27 -61.44 62.34 59.99 -61.26 
41 -54.07 -53.67 53.69 54.34 -53.94 42 =51.63 -53.93 58.91 54.80 -54.82 43 -14.84 -16.16 14.73 15.13 -15.21 44 0.00 0.00 0.00 0.00 0.00 
45 0.00 0.00 0.00 0.00 0.00 

* Switching Unit Faulty 
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TABLE 10.4(e) - STRAIN MEASUREMENTS FOR 

PERSPEX MODEL NO. 5 -(FLANGED WALL/LINTEL/SLAB/ INTERACTION) 

SURFACE STRAINS (MICROSTRAIN/KG) 

DOWNWARD LOADING 
GAUGE TEST TEST AVERAGE 

1 23.87 24.25 24.06 
2 -3.60 -1.70 -2.65 
3 35.40 35.52 35.46 
4 1.90 1.40 1.65 
5 48.75 49.27 49.01 
6 1.07 0.00 0.54 
7 63.90 63.60 63.75 
8 -3.67 0.00 -1.84 
9 85.50 86: 80 86.15 

10 -11.87 -13.80 -12.84 
11 111.97 111.17 111.57 
12 0.00 0.00 0.00 
13 0; 00 -33.67 * -16.84 
14 -1.93 -1.27 -1.60 
15 83.50 82.80 83.15 
16 0.47 0.72 0.60 
17 64.67 64.65 64.66 
18 -16.12 -12.85 -14.49 
19 49.33 48.80 49.06 
20 -15.07 -14.47 -14.78 
21 42.08 42.15 42.11 
22 32.87 33.25 3306 
23 51; 90 50.62 51.26 
24 20.02 19.82 19 .92 
25 4.03 3.80 3.91 
26 0.00 0.00 0.00 
27 34.00 34.67 34.34 
28 32.33 32.87 32.60 
29 16.20 17.10 16.65 
30 6.60 6.80 6.70 
31 0.00 2.45 1.23 
32 -1.15 0.70 -0.22 
33 0,600 0.00 0.00 
34 0.00 0.00 0.00 
35 12: 60 13.82 13.21 
36 64.17 63.75 63.96 
37 93'. 22 92.53 92.87 
38 -49.30 -47.92 -48.61 
39 . . 0.00 0: 00 0.00 
40- -29.68 -26.62 -28.15 
41 -23.93 -23.07 -23.50 
42 -50; 42* -19.40 -34. '91* 
43 -19.07 -18.85 -18.96 
44 -328.45 -326.57 -327.51 
45 -243.72 -241.37 -242.54 

* Switching Unit Faulty 
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TABLE 10.4 (f) - STRAIN MEASUREMENTS FOR 
PERSPEX MODEL NO. 6 -(FLANGED WALL/LINTEL/SLAB INTERACTION) 

SURFACE STRAINS (MICROSTRAIN/KG) 

DOWNWARD LOADING 
GAUGE TEST 1 TEST 2 AVERAGE 

1 0.00 0.00 0.00 
2 0: 00 0.00 0.00 
3 0.: 00 0.00 0.00 
4 0.00 0.00 0.00 
5 0.00 0.00 0.00 
6 2.22 1: 87 2.04 
7 15.40 15.03 15.22 
8 -1*: 28 -3.78 -2.53 
9 34.48 34.35 34.42 

10 -6.92 -6.27 -6.59 
11 52.10 52.67 52.38 
12 0.00 0.00 0.00 
13 2.87 3.02 2.94 
14 0.00 -0.75 -0.38 
15 35.93 36.20 36.07 
16 2.47 2.23 2.35 
17 26.35 26.87 26.61 
18 -2: 03 -1.92 -1.98 
19 19.30 19.12 19.21 
20 -4'. 65 -5.23 -4.94 
21 15.30 15.42 15.36 
22 0.00 0.00 0.00 
23 12.68 12.73 12.71 
24 10.12 9.60 9.86 
25 2.67 2.63 2.65 
26 0*. 00 0.00 0.00 
27 16.40 15.85 16.12 
28 15'. 12 14.73 14.92 
29 7.90 7.48 7.69 
30 2.72 1.97 2.34 
31 1'. 15 0.45 0.80 
32 0.67 0.00 0.33 
33 0.00 0.00 0.00 
34 0.00 0.00 0*. -00 35 7.07 6.58 6.83 
36 26.22 26: 12 26.17 
37 39.97 41.12 40.54 
38 -19.60 -20.28 -19.94 
39 0.00 0.00 0.00 
40 -13'. 35 -14.05 -13.70 
41 -100,82 -11.15 -10.98 
42 -8.62 -9.67 -9.14 
43 -8.82 -9.28 -9.05 
44 -135: 80 -137.97 -136.89 
45 -60.15 -61.33 -60.74 
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TABLE 10.5(a) - DEFLECTION MEASUREMENTS FOR MODEL NO. 1 

Deflection x 100 (mm) 

Gauge 
Downward Loading 

Test 1 Test 2 

Upward Loading 

Test 3 Test 4 
Average 

1 222.040 223.120 222.510 221.830 222.380 

2 222.630 223.600 222.370 222.060 222.670 

3 223.140 223.980 222.880 222.700 223.180 

4 110.360 110.720 109.370 108.99 109.860 

5 48.943 49.312 48.432 48.139 48.707 

6 7.057 7.236 7.663 7.181 7.284 

7 12.659 12.789 12.835 12.313 12.549 

8 9.914 9.725 10.012 9.554 9.801 

9 7.857 7.614 8.239 7.371 7.770 

10 0.428 0.235 0.345 0.339 0.337 

TABLE 10.5(b) - DEFLECTION MEASUREMENTS FOR MODEL NO. 2 

Deflection x 100 (mm) 

Gauge 
Downward 'Loading Upward Loading 

era e A 
Test 1 Test 2 Test 3 Test 4 

g v 

1 32.779 32.286 32.736 31.471 32.318 
2 32.614 32.400 33.650 32.779 32.861 
3 32.143 32.143 33.307 33.550 32.786 
4 17.950 17.743 18.464 18.007 18.014 
5 8.264 8.164 7.943 7.521 7.973 
6 4.236 4.179 4.457 4.393 4.316 
7 7.686 7.807 8.479 8.300 8.068 
8 7.636 7.736 8.807 8.729 8.227 
9 0.236 0.350 0.736 0.743 0.316 
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TABLE 10.5 (c) - DEFLECTION MEASUREMENTS FOR-MODEL NO. 3 

Deflection x 100 (mm) 

Gau e 
Downward Loading Upward Loading 

Avera e g 
Test 1 Test 2 Test 3 Test 4 

g 

1 23.057 24.593 22.536 22.786 23.243 

2 23.329 25.000 23.093 23.300 23.681 

3 22.814 24.729 22.993 23.229 23.441 

4 11.693 11.514 11.400 11.657 11.566 

5 2.693 2.493 2.464 2.614 2.566 

6 2.321 2.321 2.200 2.271 2.278 

7 3.114 3.107 2.950 2.964 3.034 

8 3.000 2.963 2.850 2.943 2.939 

9 0.129 0.000 0.000 0.000 0.032 

TABLE 10.5(d) - DEFLECTION MEASUREMENTS FOR MODEL NO. ,4 

Deflection x 100 (mm) 

Gauge 
Downward Loading Upward Loading 

Avera 
Test 1 Test 2 Test 3 Test 4 

ge 

1 189.170 191.700 191.160 189.640 190.593 

2 190.710 192.200 191.110 189.570 190.898 
3 190.400 191.940 191.710 189.890 190.985 
4 105.530 106.730 107.340 105.290 106.223 
5 47.586 48.257 48.586 48.143 48.143 
6 1.600 1.857 1.614 1.571 1.661 
7 4.257 4.114 4.271 4.043 4.171 
8 1.857 2.114 1.759 1.786 1.879 
9 0.000 0.428 0.000 0.443 0.218 
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TABLE 10.5 (e) - DEFLECTION MEASUREMENTS FOR MODEL NO. 5 

Deflection x 100 (mm) 

Gauge 
Downward Loading 

Avera e 
Test-1 Test 2 

g 

1 86.325 85.525 85.925 

2 86.425 85.525 85.975 

3 86.300 85.625 85.963 
4 48.200 47.625 47.913 
5 21.775 21.525 21.650 
6 1.075 1.175 1.125 

7 2.200 2.200 2.200 

8 1.275 1.250 1.263 

9 0.125 0.000 0.063 

TABLE 10.5(f) - DEFLECTION MEASUREMENTS FOR MODEL NO. 6 

Deflection x 100 (mm) 

Gauge 
Downward Loading 

A 
Test 1 Test 2 

verage 

1 10.533 10.600 10.567 
2 10.550 10.683 10.617 
3 10.683 10.800 10.742 
4 5.483 5.583 5.533 
5 1.533 1.517 1.525 
6 1.400 1.400 1.400 
7 1.467 1.550 1.509 
8 0.250 0.267 0.259 
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TABLE 10.6 STATICAL CHECK AT SLAB SECTION BB IN 
MODELS 1-4 

Model Number 

1 2 3 4 

jEy dx (in. x 106) 2637 1071 1049 2549 

JEx dx (in. x 106) -189 - 10 - 73 -261 

Do - Et2/ 6(1-V2) (lb) 12053 12053 12053 12053 

Mi - Do( JEydx +YjExdx) 30.93 12.87 12.31 29.53 
(Internal moment) (lb-in. ) 

M (External moment) 30.86 12.50 12.50 30.86 
e (lb-in. ) I 

100 x (Mi Me)/Mi 0.23 2.96 -1.52 -4.30 
(Percentage) 



Plate 10.1(a) Pair of Flanged Wall-Slab Models 
Under Test 
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Plate 10.1(b) Pair of Plane Wall-Slab Models 
Under Test 
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Plate 10.2(a) Plane Wall-Slab Model Under Test 
(Upward Loading) 

Plate 10.2(b) Flanged Wall-Slab Model Under Test (Downward Loading) 
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CI2 - 

Typical Plan 

Load & Deflections 

FIG. 10.2 - TYPICAL PLAN & LOAD - DEFLECTION RELATIONSHIP 
OF SERIES I TEST MODELS 
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CHAPTER 11 

COMPUTER. PROGRAMS 

11.1 INTRODUCTION 

Although the concepts behind the finite element method 

are relatively straightforward, the real application of 

the theory requires a considerable amount of computer 

programming effort. Thus although the author's main 

concern was with the investigation of various structural 

problems, a large portion of the effort was expended in the 

writing of computer programs to get the established finite 

element concepts implemented as a means for attacking the 

structural problem. 
In this Chapter, the more important programs which 

have been used for the investigation of various structural 

problems reported in the preceding Chapters are described. 

Although a number of the programs are modified from an 

existing finite element program suite in the Department 

of Civil Engineering, University of Strathclyde, the 

majority of the programs were written by the author from 

scratch. 

11.2 FINITE ELEMENT PROGRAM SYSTEM 9 

A primary consideration in programming for the finite 

element method is a systematic organisation of the various 

computational and data handling processes. Typically, a 

finite element solution system is composed of a series of 

routine computational processes, typified by data input, 

element stiffness generation, structure stiffness assembly, 

equation solution, stress calculation and output display. 

It is therefore convenient for program development and 

application to build up the complete program system as a 

series of program modules, each performing a distinct 
function. If the interfaces and data structure of the 

modules are sufficiently standardised, it is possible to 

assemble appropriate modules according to the need in a 
given application. 
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The program modules can be written as sub-routines 

which are run by a master driving program, or as a series 

of short programs run by a job description macro and 
interfacing through peripheral data storage. The latter 

system has the important advantage of reduced core 

requirements because the programs can be made relatively 

small. The author's programs are based on the macro 

system and use disc backing store for data storage. 
Tables 11.1, (a) and (b), list in sequential order the 

author's program suites for the implementation of various 
finite element schemes for the analysis of plate structures. 
Except for the equation solving programs, which are 

written in FORTRAN, all the other programs are written in 

ALGOL. The programs are written for implementation in 

the ICL 1904S computer of the University of Strathclyde. 

The source programs (program listings) and operating 
instructions are available from the Department of Civil 

Engineering, University of Strathclyde, and only the 

general features of the various programs will be described. 

11.2.1 BASIC SOLUTION PROGRAMS 

(i) Data Input 

All the input programs listed in Table 11.1(a) perform 

a similar function of reading in the essential data for 

the description of the problem, verifying the data where 

possible, printing out the data supplied or generated and 

storing them on backing store where they can be accessed 
by subsequent programs. The data input consists 
typically of the following information: 

(a) Control data 
(b) Material properties 
(c) Element connections 
(d) Element geometry 
(e) Boundary conditions 
(f) Spring conditions 
(g) Applied loads 
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The control data consist of information on the total 

number of nodes, elements, stiffnesses, boundary conditions, 

etc., and are used for allocating storage spaces for 

various arrays in core as well as on backing store, and 

for the control of cycling of input, output and arithmetic 

operations. 
The programs listed allow for constant isotropic 

material properties defined by Young's modulus and Poisson's 

ratio. In an alternative suite of programs (consisting 

of programs RE01, RE02 and RE05), written for the element 

RB12, allowance is made for any number of orthotropic 

material properties. 
The element connection data list in sequence the nodal 

numbers and the stiffness reference of each element. The 

stiffness reference identifies elements having the same 

stiffness properties. The element connection numbers 

provide the essential reference for the assembly of the 

structure stiffness matrix. The element connection data 

can be either read in element by element, in the case of 

irregular mesh patterns, or automatically generated for 

groups of elements from generation data for regular mesh 

patterns. The data generation reduces not only the data 

preparation effort but also the chances of data input 

error. 
The element geometry data are required for the 

construction of the stiffness matrix for each element 

stiffness reference. For the rectangular bending elements 
(RB12 and RB24), the element geometry is specified by the 

lengths of the element sides and the plate thickness. For 

the other elements, the nodal co-ordinates and the plate 
thickness provide the necessary information for describing 

the geometry and orientation of the element. 
A known boundary condition is identified by the 

boundary node number and the direction and value of the 
known displacement. The displacement direction is 
identified by the sequential order of the displacement 

parameter in the displacement vector for the node. The 
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boundary condition data can be read in node by node or 

generated for strings of regular numbered nodes by the 

input programs. 
An externally connected axial or rotational spring is 

identified by the nodal number of the restrained node and 
the direction and stiffness of the spring. The 

identification of spring direction is similar to that for 

boundary conditions. 
A concentrated load is specified in the data input by 

the nodal number and direction and value of the load. 

With patch loading, the tributary loads are assigned to 

the element nodes as concentrated loads. Loads uniformly 
distributed over the whole plate, however, do not need 
this treatment and require only the specification of the 

intensity of loading. 

(ii) Stiffness Generation 

Although all the stiffness generation programs listed 

in Table 11.1(a) perform the same basic function of 

creating for each stiffness reference an element stiffness 

matrix (and a consistent load vector in the case of plate 
bending elements), the program structure varies consider- 

ably from one program to the other since the element 
stiffness matrix is highly dependent on the mathematical 
formulation of the element. 

In programs REC2 and TRJ2 for the simple plate bending 

elements (RB12 and TB9), the element stiffness matrices are 

constructed using explicit expressions given in References 
30 and 45. 

In program REW2 (element RB24) the generalised stiff- 
ness matrix is constructed using the explicit expressions 
given in Appendix A2.1. The matrix [C] relating the 

generalised parameters to the displacement parameters is 

generated and inverted numerically to obtain the trans- 
formation matrix which transforms the generalised stiff- 
ness matrix into the element stiffness matrix. 

In program TRB2 (element TB18), the generalised 
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stiffness matrix for a 21-degree of freedom element is 

constructed using the explicit expressions given in 
Reference 33. The displacement-parameter transformation 

matrix (CI-1 is obtained in a similar manner to program 
REW2 but in addition to this transformation matrix a 
transformation matrix for eliminating the mid-side nodal 
parameters is also generated. The element stiffness 
matrix for the 18-degree of freedom element is then 

obtained from the generalised matrix through an appropriate 
transformation. 

In program QUB2 (element QB16), the four partial 
stiffness matrices for the four triangular fields are 
constructed using explicit expressions given in Reference 
34, and then assembled into a generalised stiffness matrix 
by direct address. The condensation matrix and the 

co-ordinate transformation matrix are generated and the 

generalised stiffness matrix transformed into the 

operational element stiffness matrix. 
In programs SHE2 and SH12 for the shell elements RS24 

and TS18, the plane stress and plate bending element 
stiffness matrices are constructed using explicit 
expressions 

30,35,37,45 
and then assembled into a shell 

element stiffness matrix in local co-ordinates. The 
direction cosines are generated from the element nodal 
co-ordinates and the local element stiffness matrix 
transformed to a global one. 

(iii) Stiffness Assembly 

The assembly programs assemble the structure stiffness 
matrix and load vector and inserts the boundary conditions. 
Six of the program suites use a common assembly program 
REC3 modified from a departmental program suite. The 
program assembles the banded structure stiffness matrix in 
rectangular form (band-matrix technique). In order to 
conserve core store, the band matrix is assembled and 
modified for any boundary conditions in segments. A 
boundary condition is incorporated by replacing the 
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diagonal stiffness coefficient of the boundary equation 

by a large number (1070) and replacing the corresponding 

load term by the newly formed diagonal coefficient 

multiplied by the value of the prescribed displacement. 

The program REC3 can be used only for elements having 

the same number of nodal parameters at all the element 

nodes. The program QUB3 written by the author is a more 

sophisticated version which can be used for the assembly 

of elements with unequal numbers of parameters at corner 

and side nodes, a well-known problem. 
26 In this program, 

the addressing of the element stiffness coefficients is 

facilitated by reference to a pointer array (generated in 

program QUB1) which registers the nodal degree of freedom 

and equation number for each node. 

The program RES3 differs from REC3 only in that the 

structure stiffness matrix assembled by RES3 can be stored 

in multiple disc files, if required to overcome storage 

capacity problem, whereas in REC3 the structure stiffness 

matrix is stored in one single disc file, the capacity of 

which can be easily exceeded for large problems. 

The program RJS3 is a modified version of RES3 and 

permits the assembly of elements with skewed boundary 

conditions. In this program, the stiffness matrix of any 

element having skew boundary nodes is modified so that the 

boundary degrees of freedom are referred to a local skewed 

direction before the stiffness matrix is assembled. This 

allows the direct application of skewed boundary 

conditions in the assembled boundary equations. 
33 

(iv) Equation Solution 

The equation solver SOV4 is used in most of the author's 

program suites. The program is a modified version of a 

Departmental program and has program steps added by the 

author to omit arithmetic operations on zero coefficients 
in the forward elimination and back substitution processes, 
thus improving considerably the efficiency of the equation 

solver. The solver is based on an out-of-core Gaussian 
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elimination scheme which requires only a portion of the 

band matrix to be in core store during the elimination and 
back substitution processes. The solver handles multiple 
load vectors and operates on data assembled by program 
REC3 or program QUB3. The version RES4 is used when the 

structure stiffness matrix and load vectors are assembled 
by program RES3 or program RJS3. 

(v) 'Stress' Calculation 

Like the stiffness generating programs, the stress 

calculation programs differ considerably from one another 
due to the different mathematical formulations of the 

elements. However all these programs perform the basic 

function of computing the element 'stresses' (plate stress 
resultants and membrane stresses) and printing out the 

results for displacements and stresses at all the nodes. 
Typically, in programs REC5, TRJ5 and QUB5 the element 

'stress' matrix (for plate stress resultants) is constructed 
for each element stiffness reference. The nodal stress 

resultants are computed for each element by multiplying 
the element displacement vector with the appropriate 
'stress' matrix, and the nodal 'stress' values from 

elements connected to a common node are accumulated and 

averaged. 
In programs REW5 and TRB5 for the higher order bending 

elements, the element displacement vectors contain 
curvature terms, and the bending stress resultants are 
computed directly from these values using the standard 
moment-curvature relationships in plate theory. 22 The 

shearing forces and Kirchhoff's supplemented shears are 
computed by first constructing the 'shear stress' matrices 
and then multiplying these with the element displacement 

vector. 
In programs SHE5, SHI5 and RJS5 for the shell elements, 

the bending and the membrane stress matrices are 
constructed separately in local co-ordinate reference. 
For stress calculation the element displacement vector in 



546 

global co-ordinates is first transformed to local 

co-ordinates and then the bending and membrane displace- 

ment components are separated for multiplication by the 

appropriate stress matrices. 

(vi) Reaction Calculation 

The programs compute the nodal reactions by computing 
first the element force vector given by the product of 
the element stiffness matrix and the element displacement 

vector. The element nodal forces from elements connected 
to a common node are accumulated for each node and the 
load vector subtracted from the accumulated force vector 
to obtain the resultant nodal reactions. The nodal 
reactions computed have finite values only at restrained 

nodes. At other nodes the resultant nodal reactions will 
be computed to values close to zero (of the order of 10 10 

to 10 12 times the finite reaction values), reflecting the 

round-off errors. 

11.2.2 GRAPHICAL OUTPUT DISPLAY PROGRAMS 

A major problem faced by the stress analyst using the 
finite element solution is the interpretation and analysis 
of the large volume of numerical results in the computer 
print-out. The use of computer graphics for the display 

of the results alleviates this difficulty to a great 
extent. 

Depending on the intended use of the graphical display, 
the numerical results may be displayed in the form of 
scaled vectors, contour lines or three dimensional 

surfaces in perspective. Any of these forms of display 
should give the analyst an instant overall picture of the 
distribution of stresses throughout the structure analysed, 
and highlight areas requiring special attention. 

Table 11.1(b) lists the programs written by the author 
for plotting by an automatic graph plotter the results 
produced by a finite element solution. The programs use 
the 'GHOST' plotting routines from the ICL computer soft- 
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ware library for the drawing of lines and characters 

dictated by the written programs. 

(i) Nodal Co-ordinates Data Input 

Programs REC20, SHE20 and RJS20 are used for the input 

of absolute global co-ordinates for the nodes of the 

discretised structure. The data can be read in node by 

node, or generated for groups of nodes in regularly sub- 

divided regions. . 
The nodal co-ordinates are stored in the 

disc file containing the finite element results (produced 

by the stress calculation program), for use by subsequent 

plotting programs. 

(ii) Vector Plotting 

Program REC22 computes the principal bending moments 

and directions, and plots these as scaled vectors at the 

nodal points. The program requires for input only the 

specification of the height of the picture, and the 

maximum vector length as a ratio of the picture height. 

The program automatically sets all the other essential 

plotting dimensions in relation to the input data. 

(iii) Contour Plotting 

Program REC23 plots contours of deflection and slopes 

and program REC24 plots contours of stress resultants from 

the results produced by the RECP suite of solution programs. 

Two versions of each of the programs are available. In 

the first version, the program automatically sets the 

contour interval and the number of contours to provide 

between 8 and 15 lines evenly spaced over the complete 

range of nodal values. In the second version, the choice 

of the contours is left to the user. Both versions allow' 

the user a choice of any number of plots for any of the 

displacement and stress functions. 

Program SHE27 allows the plotting of contours for the 

bending stress resultants and membrane stresses evaluated 
by the SHEP suite of programs. Again, versions of the 
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program are available for automatic or user prescribed 

selection of contours for plotting. 

(iv) Perspective plotting 

Each of the programs REC28, SHE28 and RJS28 allows a 

choice of plotting either the finite element mesh or the 

deflected shape of the structure in perspective view. 
A typical program can be used in one run to produce any 

number of displays of the structure viewed from any angle 
or position specified by the user. The plotted 
deformations are exaggerated to accentuate the deflected 

shape. 
The programs REC29 and SHE29 plot the distribution of 

stress resultants in the form of a surface in perspective 

view. Again these programs allow the choice of any number 

of displays of any of the stress functions viewed from 

any angle or position. 

11.2.3 ELEMENT COMBINATION PROGRAMS 

The finite element program system adopted allows 
different element types such as beam and plate elements to 

be combined in the same solution. 

(i) Beam and Plate Elements 

Programs BEA1 and BEA2 enable beam elements to be 

incorporated into the primary solution using plate bending 

elements (RB12 or TB9). In a combined program run, the 

program BEAT is inserted between the stiffness assembly 
and equation solution programs for the primary system. 
The program reads in the beam element data, generates the 
beam stiffnesses and assembles them into the overall 
structure stiffness matrix. The program BEA2 can be 
inserted in the primary solution system at any point after 
the equation solver, and calculates the beam forces. 

(ii) Space Frame and Shell Elements 

Programs SPF1 and SPF2 enable eccentric space frame 
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elements to be combined with flat shell elements (RS24 

or TS18) in a combined program run. - The programs function 

in a similar manner to programs BEAT and BEA2. Mod if ied 

versions of Programs SPF1 and SPF2, which are designated 

as programs SPF1S and SPF2S, include shear deformation in 

the element stiffness formulation. 

(iii) Triangular and Rectangular Elements 

Triangular and rectangular elements are often used 
together to obtain the best discretisation scheme for the 

given situation. With minor modifications to the data 

structure, the programs listed in Table 11.1(a) for the 

triangular and rectangular elements can be easily assembled 
for a combined solution system for such a situation. 

11.3 INFLUENCE COEFFICIENT SOLUTION PROGRAMS 

In addition to the finite element programs described in 

this Chapter, a number of computer programs have been 

written for the influence coefficient method of analysis 
for slabs coupling shear walls. The various programs are 

similar in program structure, and differ only in the 

evaluation of integration constants for different boundary 

conditions. All these programs are written in ALGOL. 

Program SER1 is for the analysis of a typical quadrant 
of a slab panel coupling a pair of symmetrical shear walls 
undergoing parallel rotation. The same program can be 

used for any of the four standard boundary conditions, 

continuous, free, simply supported and clamped conditions, 
at the edges of the slab parallel to the direction of wall 
rotation. The program reads in the bare minimal amount 
of data required to define the problem, generates the 
flexibility matrix and nodal displacement vector, and 
solves the assembled compatibility equations for the 
unknown nodal force vector, by Cholesky decomposition. 
The program then calculates the coupling stiffness and 
effective width of the slab, and proceeds to calculate the 
plate stress-resultants at the points specified by the user. 
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Program SER2 is used for the analysis of a typical 

half of a slab coupling a pair of dissimilar walls 

symmetric about the longitudinal centreline. Program 

SER3 is used for the analysis of a full slab panel coupling 

a pair of shear walls of any individual shape. In their 

present forms, both programs allow for only the most usual 

case of a slab with continuous longitudinal edges, as the 

need to consider other cases did not arise. If required, 
the programs can be easily expanded to include the cases 

of free, simply supported and clamped longitudinal edges. 
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CHAPTER 12 

CONCLUSIONS AND SUGGESTIONS 

FOR FUTURE WORK 

The contribution of floor slabs interacting with the 

vertical structural elements in a variety of tall building 

systems is frequently disregarded, or at best approximated 
by rule of thumb methods, in the lateral load analysis, 
due to lack of understanding of the behaviour of the slab. 
The work described in this thesis not only helps the 

designer achieve a better understanding of the behaviour 

of the slab, but also allows him to use the relatively 

simple existing techniques to analyse the complicated 

slab-coupled structural elements. 

The interaction between the floor slabs and the 

vertical elements in cross-wall, centre core, hull-core 

and flat-plate frame structures under lateral loading has 
been studied using finite element and influence coefficient 
techniques. The general accuracy of these techniques 
has been substantiated by experimental tests on small 

scale shear wall-slab models, and by the comparison of 

results with other investigations reported in the 
literature. The influence coefficient technique yields 
results of comparable accuracy to those given by the 
finite element technique, and has distinct computational 
advantages, but the technique as developed in this thesis 
is restricted to the analysis of regular slabs coupling 
rigid shear walls or columns. The finite element 
technique, on the other hand, is extremely versatile and 
has been used conveniently to analyse slabs with openings 
and slabs integral with floor beams, flexible walls and 
columns, which are beyond the scope of the simple 
influence coefficient technique. 

The finite element technique employed the simple and 
most popular Adini-Clough-Melosh rectangular element for 
modelling plate behaviour. The convergence study for a 
wide range of established simple and refined elements 



554 

used in the analysis of a slab coupling a pair of shear 

walls has shown that this simple element provides the 
best results with the least computational effort. 

The relative influences of a wide range of structural 

parameters on the structural behaviour of the slab 

coupling a pair of rigid (locally non-deformable) shear 

walls in a cross-wall structure have been examined. The 

effective width of slab and the important coupling actions 

are influenced significantly only by the interior 

structural features of the wall and slab. The slab 

overhang, the wall length and the exterior wall flanges 

have very little influence, whereas the wall opening width, 
the interior flange width or wall thickness and the slab 

width have a strong influence on the behaviour of the 

slab. 
The difference in wall shapes between a flanged wall 

and a box core has a negligible effect on the behaviour 

of the slab when the flange width and core width are the 

same. 
The stiffness of the slab in a coupled planar- 

flanged (T-shaped) wall configuration is very similar to 

that in a skew-coupled L-shaped wall configuration when 
the two different configuration have the same overall 
length of wall flanges. The distributions of coupling 

actions are however different in the two configurations. 
Access openings in the corridor core walls reduce 

the coupling stiffness of the slab to an extent dependent 

on the relative size of the core-opening. Access 

openings in the side walls have negligible effect on the 

slab. 
In the orthotropic coupling slab, the effective 

width defined in terms of the longitudinal flexural 

rigidity, increases with the ratio of transverse to 
longitudinal flexural rigidities, but for normal reinforced 
concrete floor slabs the orthotropic effect due to 
reinforcement ratios is insignificant. 

Design curves and simple empirical equations have 
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been presented to enable the effective width and coupling 

stiffness of the slab to be readily obtained for different 

wall configurations. Once the effective stiffness of 
the slab is determined the overall analysis of the 

coupled wall structure may be carried out using an 

equivalent frame or continuum solution. 
The structural design of the slab requires an 

accurate knowledge of the distribution and magnitude of 
slab stresses induced by the coupling action. The 

coupling action results in a non-uniform distribution of 
bending moments and shearing forces in the slab, with 
severe concentrations of slab actions around the 

extremities of the interior wall edges. The bending and 
shearing stress resultants at these critical points are 
likely to be theoretically infinite when the behaviour 

of the slab is modelled by plate theory. The plate 
bending finite element solution yields non-convergent 
values of stress resultants at the critical points. The 

calculated critical nodal values of bending stress 
resultants can however be used for calculating the 
integrated moment across the critical zone. The 

shearing force distribution is discontinuous close to 

the critical points and the critical integrated positive 
and negative shearing forces cannot be determined from 

the divergent calculated nodal shearing stress resultant 
values. The critical punching shear at the critical 

sections located according to code provisions for 

gravity load design however can be evaluated reasonably 
accurately from the calculated nodal shearing force 

values. 
A set of accurate contour diagrams for non- 

dimensional bending moment factors has been presented for 

slabs coupling plane walls. These contours allow the 
bending moments induced by coupling action to be rapidly 
evaluated at any point on the slab in a design situation. 
For other wall configurations only approximate curves 
showing the variation of bending moment factors at the 
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critical sections have been presented. It. would be 

desirable in future studies to produce design contours 
for these configurations, similar to those presented for 

the plane-wall configuration. 
The dimensions and shape of the critical section 

for punching shear design has been recommended, and 
design curves for evaluating rapidly the critical punching 
shear have been presented, for plane wall and flanged wall 

configurations. Punching shear is likely to be important 

for slabs coupling plane walls or flanged walls with 

narrow flanges. 

The interaction between the slab and a coupled wall 

produces local elastic axial wall deformation and local 

bending of wall flanges. The effects of local wall 
deformation reduce the coupling stiffness of the slab and 
influence the distribution of slab actions, to an extent 
dependent on the structural geometry. The flexibility 

effect has been measured by the ratio of flexible wall to 

rigid wall slab stiffness. The relative influences of a 

range of structural parameters on the stiffness ratio 
have been examined for plane wall, flanged wall and box- 

core configurations. The wall length, storey height, 

slab width and flange width have relatively little 

influence on the stiffness ratio, compared to the 
influence of relative wall and slab thicknesses and wall 
opening width. In the plane wall configuration, the 

stiffness ratio varies essentially with a single 

geometrical parameter t/(L2h)1/3; in the flanged wall 
and box-core configurations, the stiffness ratio varies 
approximately as a function of (t/h)/(L/x)l. 

Design curves have been presented to enable the 

stiffness ratio to be rapidly determined for plane wall, 
flanged wall and box-core configurations. Once the 

stiffness ratio is determined, the coupling stiffness 

evaluated from rigid wall design data can be corrected for 

the local elastic wall deformation effect. 
Curves have also been presented for evaluating the 

distribution of bending moments at the critical slab 
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section for the various flexible wall configurations. 
Future work directed at preparing more comprehensive 
design curves in the form of non-dimensional contours for 

evaluating rapidly the stresses induced not only in the 

slab but also in the coupled walls is envisaged. Since 

the actual shear transfer and local stress concentrations 

at the slab-wall junction cannot be satisfactorily 
determined using two dimensional plane elements to model 
the structure, it would be desirable in future studies 
to supplement the overall analysis of the slab wall panel 

modelled by two-dimensional plane elements, with a 
detailed local analysis of the slab-wall junction area 
modelled more accurately by three-dimensional solid 

elements. The actual area of interest and the necessary 
boundary conditions (in terms of displacements or forces) 

for the local analysis could be determined from the 

overall analysis. 
Although normally disregarded, the composite action 

of the floor slab increases considerably the coupling 

stiffness of the lintel beam, and may merit consideration 
in cases where the coupled wal is are relatively flexible. 

The relative influences of a range of geometrical ratios 

on the effective flange width and coupling stiffness of 
the composite lintel beam have been examined. The 

effective flange width, defined in terms of composite 
flexural stiffness rather than membrane stress distribution 

normally favoured for gravity load design, is influenced 
little by the overall slab width and lintel width, but 

more strongly by the lintel depth and wall opening width, 
in relation to the slab thickness. 

Curves have been presented to enable the effective 
flange width and composite coupling stiffness of the 
lintel and slab to be rapidly determined for the analysis 
of the coupled wall system. The curves do not account 
for junction flexibility produced by local elastic wall 
deformation. The limited results available for a 
typical wall configuration indicate that junction 
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flexibility may be satisfactorily allowed for in the 

calculation of composite coupling stiffness by extending 
the clear span of the lintel by a distance equal to the 

lintel depth. Further studies are however required to 

establish the range of wall configurations over which 
this empirical procedure is generally applicable. 

The floor slabs in a centre core structure subjected 
to torsional loading restrain the core against warping 
deformation and torsional rotation. For the overall 
torsional analysis of the core, it is possible to replace 
the slab effectively by an equivalent system of connecting 
beams at the core openings. The influences of a range 

of geometrical ratios and boundary conditions on the 

warping stiffness and effective width of slab have been 

examined for idealised box cores with single and double 

access openings. The warping stiffness and absolute 

effective width of the slab are influenced strongly by 

the core opening ratio and fixity conditions at the slab 

edges, and less by the core aspect ratio and slab width 

ratio. 
Design curves have been presented for various core 

configurations to* enable the warping stiffness of the 

slab or equivalent connecting beams to be readily deter- 

mined for the torsional analysis of the core structure 
using an existing matrix or continuum technique. Although 

the curves are based on idealised box core configurations, 
it is usually possible in a practical design situation to 

disregard the coupling of internal core walls and so 

reduce the complicated core configuration to the simple 
form considered, for evaluating the warping stiffness of 
the slab. The internal core walls should however be 

considered in the calculation of torsional properties of 
the core walls for the overall analysis. 

The significant slab actions induced by warping of 
the core are confined to the portions of-the slab spanning 
the core openings. Large actions are concentrated around 
the coupled lips of the core where considerable local 
deformation of the core wall and redistribution of'slab 
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actions can be expected. Further studies are required 

to examine the effects of local wall deformation as 

well as obtain detailed information on slab and wall 

stresses which are required for the design of the 

structural members. 
In a hull-core structure the coupling of the centre 

core to the peripheral framed tube by the floor slabs 

increases the cantilever bending stiffness of the 

structure. The relative influences of a range of 

geometrical ratios and relative frame to slab stiffness 

ratios on the coupling stiffness of the slab with a rigid 

box core configuration have been examined. The coupling 

stiffness of the slab is influenced significantly by the 

core dimensions in relation to the slab span, and by the 

relative frame panel to slab flexural stiffness ratio. 

The relative frame column spacing, the frame axial to 

slab flexural stiffness ratio and the spandrel torsional 

to slab flexural stiffness ratio have very little influ- 

ence on the coupling stiffness of the slab. 
Curves showing the influence of the significant 

parameters have been presented to enable the coupling 

stiffness of the slab to be readily determined. Further 

work is required to examine the effects of local elastic 

wall deformation and the presence of core access openings 

which are expected to reduce the coupling stiffness of 

the slab. The techniques which were employed for the 

evaluation of such effects in the cross-wall structure 

could be adopted for any future work in this connection. 
In a flat plate frame structure, the effective width 

of slab for the equivalent frame for lateral load analysis 
is only a fraction of the full bay width normally, 

permitted by building codes for gravity load analysis, 

and the effective width varies according to the relative 
column and slab dimensions. An assumption of a fully 

effective bay width can in most practical cases result in 

a considerable overestimation of the lateral stiffness of 
the equivalent frame. A comprehensive set of tables has 
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been presented in this thesis to enable the effective 

width of slab to be readily obtained in a practical design 

situation. The tables are considerably more accurate 
than the design curves and tables presented in a number 

of recent papers on this subject. 

SUGGESTIONS FOR FUTURE WORK 

In addition to the earlier suggestions for future 

work in connection with the problems examined, a number 

of related topics of practical interest deserve examin- 

ation in future studies. In system construction of 

cross wall structures, the precast wall and slab panels 

are connected by in situ concrete joints which have to 

serve the primary function of transmitting shear forces 

between the components. The detailing of the joint is 

often such that the moment connection between the floor 

and wall panels cannot be fully achieved, and the joint 

then provides essentially a pin or elastic connection 
for the slab. The effects of joint flexibility on the 

coupling performance of the slab need to be examined. 
The study on the slab in the cross-wall structure 

has considered only the bending action of the slab coupling 

a pair of in-line shear walls. Torsional deformations of 
the structure due to non uniform lateral loading or 

structural asymmetry produce warping in the floor slabs 
connecting adjacent wall assemblies undergoing differential 

deflections. Since the warping stiffness of the slab 

provides a certain amount of restraint against the 

torsional deformation of the walls it is desirable to 

examine the warping action of the slab and assess its 

contribution to the overall torsional behaviour of the 

structure. 
The structures considered in the present study have 

an orthogonal arrangement of walls and frames most 
commonly encountered in traditional building forms. The 
behaviour of the slabs coupling curved shear walls, 
circular cores and triangular cores require examination, 
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as architectural fancies and aesthetic considerations 

sometimes produce plan forms with these unusual wall 

shapes. 
The present work has been concerned purely with 

linear elastic analysis which is still generally being 

accepted as the basis for the design of the concrete 

structure, although its limitations in this respect are 

well known. Effects of cracking of the concrete section 

and plastic yielding of the steel and concrete are known 

to produce a non-linear structural response and re- 
distribution of actions in the slab. With the increasing 

popularity of the limit state design philosophy and the 

emergence of elasto-plastic methods of shear wall analysis, 
the need for extending the present study to the invest- 

igation of non-linear elasto-plastic slab behaviour is 

apparent. In considering elasto-plastic behaviour, the 

influence of slab reinforcement detailing and the effects 

of gravitational forces, which have not been considered in 

the present study, become important and require due 

examination in future studies. 
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APPENDIX A2.1 

THE GENERALISED ELEMENT STIFFNESS MATRIX [Ka] FOR 

ELEMENT RB24 

The non-zero elements of the generalised element 

stiffness matrix on and above the main diagonal are listed 
below for the case of an isotropic material and constant 
element thickness. For convenience the elements of the 

matrix are denoted only by their row and column indices, 

thus 
(ka)ij ° (i, j) 

The following symbols are used in the expressions: 

Va Poisson's ratio 

u- (1-')/2 

a and b- element dimensions (Fig. 2.6) 

All expressions are to be multiplied by the factor (4abD), 

where D is the flexural rigidity. 
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APPENDIX A2.2 

'STRESS' MATRIX FOR VEUBEKE'S QUADRILATERAL BENDING 

ELEMENT QB16 

This appendix shows the author's derivation of the 
'stress' matrix not included in Veubeke's paper. 

34 The 

original paper should be consulted for the nomenclature 
followed in this Appendix. The general quadrilateral 
element with the local oblique co-ordinate axes x and y, 
and the global cartesian co-ordinate axes X and Y is shown 
in Fig. 2.8(a) and (b). 

The bending stress resultants are related to the 

curvatures, in cartesian co-ordinate directions, by 
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For brevity, we may write 

{Q} =(D](e 

for an isotropic 
material. 

The cartesian derivatives are related to the oblique 
derivatives by the rules of partial differentiation giving 
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or, more concisely, 
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[G] {E} , giving 
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The terms in 

nodal co-ordinates 
we can write 

ax x1o 

a ax 

by Y lo 
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I o} 
G can be easily evaluated from the 

of the quadrilateral. For instance, 
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where xij = xi -xj and yij .. yi - yj . 

Consider triangular field 1, where the deflection 

field is expressed in the form of interpolation functions 

w-[ w0,1 00,1 90,1 Wl, 1 01,1 91,1 w1,2 01,2 91,2 012 1f qlj 

Performing the differentiation with respect to x and 

y, the second derivatives {E011 may be expressed in 

terms of the nodal displacements {ql} 
, as 

1 601} °( Q1] jq1} 

The nodal displacement vector j qlj for field 1 is related 
to the element displacement vector q} by the 
transformation. 

i qlj ° [L1] [N] [P] {q1 

in which [L1] is the localising matrix, 
[N] is the condensation matrix, 

and [p] is the co-ordinate transformation matrix, 
defined in Reference 34. 

The 'stresses' in field 1 can now be expressed as 

{T1} ([D] [G]-1 [Q1] [Ll] [N] [p]){q} 
and the stress matrix for field 1 becomes 

[Sl] ° [D] [G]-1 [Q1] [L1] [N] [P] 
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The 'stress' matrices for triangular regions. 2,3 and 4 

can be similarly evaluated by an appropriate change of 
parameters in [Q1] and [L1]. 
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APPENDIX A2.3 

INTEGRATION CONSTANTS FOR EVALUATION OF INFLUENCE FUNCTIONS 

Expressions for the influence functions for the slab 

were given in Section 2.5.3 for one specific set of 
boundary conditions. The corresponding values of the 
integration constants AID Sm of equations (2.53) and (2.54), 

for other commonly encountered boundary conditions, are 

as follows-. - 

(i) Rectangular slab. Sides x=o, x=a, simply supported, 

side y=o continuous, side y=b free. 

Am ýý 1 13 [(4-, u)sha ch(a_ß) - 2shß ]+ 
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Qm .. -0 (4-, u) sh2cx ch(3 -ýß sh ß+ 2ch (3 } 

Rm -ß shfi - chß 

Sm - ch ß 

where u- (1-v) and d- (4-N)sh a ch a-ua 

(ii) Rectangular slab. Sides xao, x-a, simply 
supported, side ymo continuous, side yab simply 
supported. 

A- 
m 

1 achß 
+ 

cC- 
äTia ßch(a-ß) + sh((x-(3) ] 

sh(a-ß) gm 
ccFa 
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P- 
m 

Qm ý 

Rm - 

S m 

1-a ch(3 
c ha 

ýc 

sha chß 
'c ha 

ßshß - chß 

chß 

-ß sh a shß + sha chß ] 

(iii) Rectangular Plate. Sides x-o, x-a simply 

supported, side y-o continuous, side y-b clamped. 

- -11-- 1 sh a sh (a- ß) +ß sh a ch (a-ß) -a sh ß-a (a-ß )chß J Am 
l 

Bm w 
11C (a-(3)shß - sha sh(oc-ß) ] 

Cm - Dm -O 

Ps 
m 

1C (a2 - sh2a )ch ß+ 
1 

fi sh2a sh ß 

Qm --C sh2 achß+ß sh ß1 

Ro 
m 

ßsh(i - chß 

J 

S-ch fi 
m 

where A1- ch a sh ac +a 

(iv) Rectangular Plate. Sides x-o, xaa, y-o, yab 

simply supported 

Am - Bm = 0 

sh 0 Cm 
sh cx 1s ha + ßch(a-ß) + sh((Y-ß) ] 
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Dý 
m 

sh («- ß) 
s_ 

Pm - shß - ßchß 

Qm ' - sh13 

Rm -1 sTi äý 
a sh f3 

+ß ch a chß - ch a chß ý 
sh a 

cha sh (3 
Sm ý sh a 



581 

APPENDIX A3.1 RICHARD SON'S EXTRAPOLATION : (h, h2) - 
EXTRAPOLATION FORMULA 

The discretisation error series is assumed in the form 

e-c lh +c 2h2 + c3h3 +..... 

in which cl, c2, c3, etc. are constants, and h is the 

mesh size which can be expressed in terms of the number of 

mesh divisions n on one side of the plate thus 

h- b/n 

With three approximations Al, A2, A3 obtained for mesh 
divisions %, n2, n3 the respective approximation errors 

are, neglecting error terms higher than h2, given by 

elm A- Alm clb/nl + c2b2/n1 

e2 - 

I- b -ý 

,, I) ah 
L 

e3-A- A3 clb/n3+c2b`/n3 1``hhh 

Eliminating the unknown constants c1b and c2b2 between 

these three equations and solving for the true value A, we 
obtain the (h, h2 )-extrapolation formula in the form 

A- 

A- A2 - clb/n2 + c2b2/n2 

222 
n1 A1 

- 
n2 A2 

+ 
n3 A3 

rn- 1- n2 n 1- n3 n 1- n2 (n2-n3) n1-n3) n2- 3) 

which may be written in more compact form as 

n2 
A=ý (=) A 

i-1,2,3 nn ij ik 

y 

with nij - (ni -ni), etc, with a cyclic permutation of 
indices. 
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APPENDIX A3.2 EFFECTIVE WIDTH OF SLAB FOR COUPLED 

PLANE WALL CONFIGURATION 

Effective Width Ye/Y 

L/X IY/X 
0.10 0.15 0.20 0.30 0.40 0.50 0.60 

0.10 0.6160 0.7123 0.7879 0.8514 0.8933 0.9137 0.9351 

0.20 0.3903 0.5195 0.6082 0.7187 0.7836 0.8236 0.8550 

0.30 0.2800 0.3929 0.4822 0.6098 0.6915 0.7460 0.7860 

0.40 0.2175 0.3116 0.3923 0.5199 0.6101 0.6740 0.7198 

0.50 0.1781 0.2573 0.3282 0.4480 0.5394 0.6077 0.6559 

0.60 0.1511 0.2189 0.2812 0.3908 0.4790 0.5473 0.5953 

0.70 0.1315 0.1905 0.2455 0.3448 0.4276 0.4933 0.5392 

0.80 0.1168 0.1687 0.2178 0.3079 0.3846 0.4465 0.4898 

1.00 0.0936 0.1356 0.1757 0.2504 0.3154 0.3688 0.4061 
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APPENDIX A3.3 EFFECTIVE WIDTH OF SLAB FOR COUPLED THICK 
WALL OR COUPLED BOX CORE CONFIGURATION 

Effective Width Ye/Y 

Y/X Z/Y 0.000 0.125 0.250 0.375 0.500 0.75 
L/X 

0.1 0.3903 0.5062 0.6178 0.7240 .) 0.8210 1 0.9688 

0.2 0.2 0.6082 0.7025 0.7817 0.8514 0.9106 ý 0.9952 

0.4 0.7836 0.8465 0.8943 0.9334 0.9651 1.0081 
0.6 0.8550 0.9014 0.9354 0.9625 0.984111 

I 
1.0131 

0.1 0.2175 0.3405 0.4656 0.5891 0.7099 0.9271 
0.4 0.2 0.3923 0.5067 0.6182 0.7243 0.8212 0.9703 

0.4 0.6101 0.7031 0.7825 0.8523 0.9109 0.9955 
0.6 0.7198 0.7879 0.8440 0.8947 0.938611 1.0047 

0.1 0.1511 0.2759 0.4030 0.5295 0.6549 0.8950 
0.6 0.2 0.2812 0.4011 0.5227 0.6415 0.7548 0.9482 

0.4 0.4790 0.5868 0.6871 0.7793 0.8596 0.9834 

0.6 0.5953 0.6864 0.7686 0.8424 0.9047 0.9966 

0.1 0.1168 0.2427 0.3703 0.4976 0.6244 0.8726 
0.8 0.2 0.2178 0.3402 0.4653 0.5885 0.7084 0.9281 

0.4 0.3846 0.5000 0.6129 0.7188 0.8136 0.9713 
0.6 0.4898 0.5963 0.6986 0.7921 0.8721 0.9884 
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APPENDIX A3.4 EFFECTIVE WIDTH OF SLAB FOR COUPLED T-SHAPED 

FLANGED WALL CONFIGURATION 

Ef f ect ive Width Ye/Y 

Z/Y 
Y/% 0.000 0.125 0.250 0.375 0.500 0.750 

L/X 

0.1 0.3903 0.5025 0.6080 0.7092 0.8047 0.9627 

0.2 0.2 0.6082 0.6966 0.7711 0.8391 0.9003 0.9934 

0.4 0.7836 0.8396 0.8836 0.9224 0.9566 1.0067 
0.6 0.8550 0.8956 0.9268 0.9542 0.9779 1.0121 

0.1 0.2175 0.3388 0.4603 0.5804 0.6985 0.9176 

0.4 0.2 0.3923 0.5029 0.6080 0.7088 0.8039 0.9636 
0.4 0.6101 0.6950 0.7666 0.8325 0.8918 0.9906 

0.6 0.7198 0.7879 0.8440 0.8947 0.9384 1.0015 

0.1 0.1511 0.2748 0.3998 0.5242 0.6478 0.8871 

0.6 0.2 0.2812 0.3986 0.5154 0.6298 0.7403 0.9393 

0.4 0.4790 0.5802 0.6732 0.7605 0.8388 0.9766 
0.6 0.5953 0.6864 0.7686 0.8424 0.9047 0.9924 

0.1 0.1168 0.2418 0.36 79 0.4938 0.6194 0: 8665 
0.8 0.2 0.2178 0.3383 0.4601 0.5806 0.6981 0.9196 

0.4 0.3846 0.4948 0.6020 0.7036 0.7945 0.9641 
0.6 0.4898 0.5963 0.6986 0.7921 0.8721 0.9841 
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APPENDIX A3.5 EFFECTIVE WIDTH OF SLAB FOR COUPLED 

PLANAR - FLANGED WALL CONFIGURATION 

Effective Width Ye/Y 

Y/X 
Z/Y 0.000 0.125 0.250 0.500 0.750 

L/X 

0.1 0.3903 0.4398 0.4787 0.5324 0.5614 

0.2 0.2 0.6082 0.6476 0.6796 0.7306 0.7642 

0.4 0.7836 0.8104 0.8312 0.8641 0.8858 
0.6 0.8550 0.8746 0.8897 0.9137 0.9292 

0.1 0.2175 0.2659 0.2955 0.3205 0.3283 

0.4 0.2 0.3923 0.4378 0.4761 0.5300 0.5590 

0.4 0.6101 0.6492 0.6808 0.7319 0.7655 

0.6 0.7198 0.7507 0.7754 0.8164 0.8435 

0.1 0.1511 0.1951 0.2137 0.2238 0.2261 

0.6 0.2 0.2812 0.3278 0.3631 0.4017 0.4171 
0.4 0.4790 0.5239 0.5609 0.6185 0.6539 

0.6 0.5953 0.6335 0.6653 0.7200 0.7557 

0.1 0.1168 0.1558 0.1668 0.1712 0.1721 
0.8 0.2 0.2178 0.2637 0.2932 0.3182 0.3259 

0.4 0.3846 0.4317 0.4698 0.5250 0.5551 

0.6 0.4898 0.5318 0.5680 0.6310 0.6703 
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APPENDIX A3.6 EFFECTIVE WIDTH OF SLAB FOR COUPLED 
L- SHAPED FLANGED WALL CONFIGURATION 

Effective Width Ye/Y " 

Z/Y 
Y/X 0.000 0.125 0.250 0.375 

L/X 

0.1 0.3903 0.4771 0.5242 0.5491 
0.2 0.2 0.6082 0.6873 0.7412 0.7756 

0.4 0.7836 0.8370 0.8761 0.9023 
0.6 0.8550 0.8940 0.9230 0.9423 

0.1 0.2175 0.2877 0.3086 0.3153 
0.4 0.2 0.3923 0.4770 0.5239 0.5485 

0.4 0.6101 0.6860 0.7391 0.7732 
0.6 0.7198 0.7815 0.8282 0.8593 

0.1 0.1511 0.2060 0.2148 0.2169 
0.6 0.2 0.2812 0.3586 0.3907 0.4038 

0.4 0.4790 0.5616 0.6149 0.6463 
0.6 0.5953 0.6698 0.72 72 0.763 7 
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APPENDIX A3.7 EFFECTIVE WIDTH OF SLAB FOR COUPLED 
BOX CORES WITH OPENINGS 

L/X - 0.6, W/Z - 1.0 

Effective Width Ye/Y 

Y/X B/Z 0.25 0.50 0.75 1.0 Closed 
D%Z Core 

0.0 0.9388 0.8958 0.8216 0.7074 0.9494 
0.4 0.1 0.9436 0.9132 0.8547 0.7607 

0.3 0.9471 0.9320 0.8974 0.8368 
0.5 0.9481 0.9380 0.9133 0.8701 

0.0 0.8221 0.7919 0.7386 0.6532 0.8297 
0.6 0.1 0.8254 0.8042 0.7626 0.6932 

0.3 0.8278 0.8173 0.7929 0.7488 
0.5 0.8285 0.8215 0.8041 0.7711 

0.0 0.6987 0.6759 0.6350 0.5676 0.7072 
0.8 0.1 0.7012 0.6852 0.6535 0.5993 

0.3 0.7030 0.6951 0.6767 0.6427 
0.5 0.7036 0.6983 0.6852 0.6596 
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APPENDIX A4.1 - EFFECTIVE WIDTH OF SLAB FOR COUPLED PLANE- 

WALL CONFIGURATION EVALUATED BY SERIES 

SOLUTION 

(a) Walls of Zero Thickness 

Effective Width Ye/Y 

Y 
L/X 

/X 0.1 0.15 0.2 0.3 0.4 0.5 0.6 

0.2 0.4049 0.5329 0.6255 0.7401 0.8053 0.8470 0.8776 
0.3 0.2868 0.3983 0.4913 0.6251 0.7110 0.7690 0.8106 
0.4 0.2201 0.3134 0.3972 0.5316 0.6270 0.6938 0.7394 

0.5 0.1780 0.2564 0.3294 0.4542 0.5494 0.6182 0.6642 
0.6 0.1512 0.2182 0.2812 0.3918 0.4806 0.5469 0.5914 

0.7 0.1314 0.1896 0.2442 0.3428 0.4234 0.4848 0.5262 

0.8 0.1165 0.1675 0.2158 0.3029 0.3760 0.4325 0.4708 
1.0 0.0954 0.1366 0.1747 0.2455 0.3051 0.3520 0.3844 

(b) Walls of 12 in. (305 mm) Thickness 

Effective Width Ye/Y 

Y/X 
L/x 0.1 0.15 0.2 0.3 0.4 0.5 0.6 

0.2 0.4895 0.6092 0.6927 0.7917 0.8493 0.8828 0.9076 

0.3 0.3459 0.4546 0.5438 0.6702 0.7482 0.8020 0.8395 

0.4 0.2650 0.3571 0.4391 0.5687 0.6603 0.7247 0.7680 
0.5 0.2141 0.2918 0.3639 0.4868 0.5800 0.6471 0.6920 
0.6 0.1819 0.2483 0.3106 0.4163 0.5158 0.5733 0.6175 
0.7 0.1581 0.2157 0.2697 0.3677 0.4477 0.5087 0.5502 
0.8 0.1402 0.1905 0.2382 0.3201 0.3951 0.4541 0.4926 
1.0 0.1148 0.1551 0.1929 0.2589 0.3203 0.3696 0.4023 
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APPENDIX A4.2 - EFFECTIVE WIDTH OF SLAB FOR-COUPLED THI CK- 

WALL OR BOX-CORE CONFIGURATION EVALUATED 
BY SERIES SOLUTION 

EFFECTIVE WIDTH Ye/Y 

Y/% Z/Y 0.0 0.125 0.25 0.375 0.50 0.75 
L/% - 

0.1 0.4049 0.5059 0.6194 0.7260 0.8240 0.9787 
0.2 0.2 0.6255 0.7035 0.7846 0.8556 0.9166 1.0034 

0.4 0.8053 0.8556 0.9026 0.9416 0.9735 1.0165 

0.6 0.8776 0.9141 0.9458 0.9718 0.9929 1.0204 

0.1 0.2201 0.3498 0.4789 0.6060 0.7299 0.9439 
0.4 0.2 0.3972 0.5094 0.6108 0.7133 0.8070 0.9876 

0.4 0.6239 0.7114 0.7831 0.8501 0.9071 1.0088 

0.6 0.7350 0.8069 0.8613 0.9086 0.9465 1.0161 

0.1 0.1512 0.2768 0.4049 0.5322 0.6584 0.8983 
0.6 0.2 0.2818 0.4028 0.5264 0.6467 0.7616 0.9540 

0.4 0.4809 0.5801 0.6820 0.7714 0.8505 0.9923 

0.6 0.5905 0.6857 0.7727 0.8495 0.9069 1.0123 

0.1 0.1165 0.2400 0.3668 0.4934 0.6193 0.8644 
0.8 0.2 0.2159 0.3365 0.4627 0.5872 0.7080 0.9226 

0.4 0.3761 0.4928 0.6118 0.7247 0.8253 0.9722 
0.6 0.4710 0.5869 0.6984 0.8001 0.8855 0.9930 
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APPENDIX A4.3 - EFFECTIVE WIDTH OF SLAB FOR COUPLED T- SHAPED 

FLANGED WALL CONFIGURATION EVALUATED BY 
SERIES SOLUTION 

Effective Width Ye/Y 

Y/X L/% 
Z/Y 0.0 0.125 0.25 0.375 0.50 0.75 

0.1 0.4049 0.5044 0.6167 0.7227 0.8210 0.9783 
0.2 0.2 0.6255 0.7010 0.7805 0.8512 0.9133 L. 0031 

0.4 0.8053 0.8527 0.8978 0.9368 0.9702 1.0163 

0.6 0.8776 0.9119 0.9420 0.9680 0.9901 1.0202 

0.1 0.2201 0.3491 0.4770 0.6060 0.7247 0.9426 
0.4 0.2 0.3972 0.5070 0.6025 0.6997 0.7907 0.9857 

0.4 0.6239 0.7085 0.7756 0.8398 0.8961 1.0074 

0.6 0.7350 0.8056 0.8583 0.9049 0.9425 1.0152 

0.1 0.1512 0.2764 0.4038 0.5303 0.6553 0.8941 

0.6 0.2 0.2818 0.4021 0.5243 0.6429 0.7556 0.9486 
0.4 0.4809 0.5789 0.6774 0.7662 0.8427 0.9881 
0.6 0.5905 0.6849 0.7705 0.8473 0.9042 1.0037 

0.1 0.1165 0.2396 0.3659 0.4920 0.6175 0.8610 

0.8 0.2 0.2159 0.3358 0.4610 0.5849 0.7050 0.9178 
0.4 0.3761 0.4920 0.6104 0.7229 0.8230 0.9690 
0.6 0.4710 0.5865 0.6979 0.7996 0.8849 0.9920 
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APPENDIX A4.4 - EFFECTIVE WIDTH OF SLAB FOR COUPLED PLANAR- 

FLANGED WALL CONFIGURATION EVALUATED BY 

SERIES SOLUTION 

Effective Width Ye/Y 

Y/X LX 
ZýY 0.0 0.125 0.25 0.50 0.75 

0.1 0.4165 0.4680 0.5095 0.5648 0.5921 
0.2 0.2 0.6395 0.6794 0.7131 0.7657 0.7974 

0.4 0.8151 0.8393 0.8599 0.8925 0.9119 

0.6 0.8965 0.9121 0.9266 0.9489 0.9614 

0.1 0.2259 0.2739 0.3026 0.3259 0.3330 

0.4 0.2 0.4048 0.4532 0.4924 0.5450 0.5721 

0.4 0.6337 0.6727 0.7054 0.7547 0.7851 

0.6 0.7549 0.7869 0.8137 0.8510 0.8727 

0.1 0.1527 0.1931 0.2096 0.2186 0.2208 
0.6 0.2 0.2840 0.3321 0.3664 0.4012 0.4142 

0.4 0.4852 0.5326 0.5723 0.6263 0.6546 
0.6 0.6043 0.6493 0.6878 0.7396 0.7653 

0.1 0.1163 0.1561 0.1594 0.1638 0.1649 
0.8 0.2 0.2159 0.2613 0.2891 0.3113 0.3180 

0.4 0.3770 0.4265 0.4674 0.5181 0.5396 
0.6 0.4795 0.5300 0.5742 0.6340 0.6607 
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APPENDIX A4.5 - EFFECTIVE WIDTH OF SLAB FOR COUPLED 
L-SHAPED FLANGED WALL CONFIGURATION 
EVALUATED BY SERIES SOLUTION 

Effective Width Ye/Y 

Y/X L/X 
Z/Y 0.0 0.125 0.25 0.375 

0.1 0.4165 0.5434 0.5890 0.6035 
0.2 0.2 0.6395 0.7474 0.7998 0.8231 

0.4' 0.8151 0.8837 0.9193 0.9363 
0.6 0.8965 0.9289 0.9546 0.9664 

0.1 0.2259 0.3164 0.3382 0.3393 
0.4 0.2 0.4048 0.5073 0.5583 0.5796 

0.4 0.6337 0.7168 0.7754 0.8071 
0.6 0.7549 0.8140 0.8619 0.8908 

0.1 0.1527 0.2201 0.2235 0.2286 
0.6 0.2 0.2840 0.3741 0.4084 0.4146 

0.4 0.4852 0.5734 0.6392 0.6644 
0.6 0.6043 0.7010 0.7694 0.7997 
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APPENDIX A5.1 INFLUENCE OF WALL THICKNESS, SLAB THICKNESS 
AND WALL/SLAB THICKNESS RATIO ON SLAB 
COUPLING STIFFNESS. 

Plane Wall Configuration (L/X m 0.2, Y/X = 0.4) 

t/h 1) K* Ye*/Y K*/K ýA 1/3 

0.125 0.50 37.71 0.3572 0.920 0.16 

0.188 0.75 37.66 0.3567 0.919 0.21 
0.25 0.25 1.00 37.58 0.3559 0.917 0.25 

0.375 1.50 37.36 0.3539 0.912 0.33 
0.50 2.00 37.07 0.3511 0.905 0.40 

0.25 0.50 37.40 - 0.3543 0.913 0.32 

0.375 0.75 36.98 0.3503 0.903 0.41 
0.50 0.50 1.00 36.41 - 0.3448 0.888 0.50 

0.75 1.50 35.09 0.3324 0.856 0.66 
1.00 2.00 33.56 0.3180 0.819 0.79 

0.375 0.50 36.63 0.3470 0.894 0.47 

0.563 0.75 35.46 0.3359 0.865 0.62 
0.75 0.75 1.00 34.07 0.3227 0.831 0.75 

1.125 1.50 31.21 0.2957 0.762 0.98 
1.50 2.00 28.54 0.2703 0.696 1.19 

0.50 0.50 35.34 0.3347 0.862 0.63 
0.75 0.75 33.19 0.3144 0.810 0.83 

1.00 1.00 1.00 30.99 0.2936 0.757 1.00 

1.50 1.50 27.03 0.2560 0.660 1.31 
2.00 2.00 23.75 0.2251 0.580 1.59 

Rigid Wall Case 40.97 0.3881 1.0 

9m 50t/X, n- 50h/X. 
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APPENDIX A5.2(a) VARIATION OF SLAB STIFFNESS FACTOR K* 

WITH VARIOUS GEOMETRIC RATIOS 

Plane Wall Configuration 

Y/X Stiffness Factor K* Rigid 

t/h Wall 
0.5 1: 0 1.5 2.0 K 

L/X 

0.1 124.56 89.99 60.11 41.59 153.95 

0.4 0.2 36.40 31.00 24.47 19.34 40.97 

0.4 10.27 9.42 8.30 7.29 10.96 

0.6 4.78 . 4.51 4.16 3.84 5.00 

0.1 127.63 91.55 62.70 44.28 160.91 

0.6 0.2 39.03 32.89 26.36 21.12 44.44 

0.4 12.01 11.01 9.71 8.68 12.91 

0.6 5.90 5.57 5.15. 4.73 6.21 

0.1 130.41 93.25 64.30 45.84 166.86 

0.8 0.2 40.70 34.45 27.88 22.59 46.66 

0.4 11.86 11.74 10.45 9.34 13.81 

0.6 6.45 6.07 5.61 5.16 6.81 
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APPENDIX A5.2 (b) VARIATION OF EFFECTIVE SLAB WIDTH Ye %Y 

WITH VARIOUS GEOMETRIC RATIOS 

Plane Wall Configurations 

Effective Width Ye*/Y id Ri Y/X g 
t/h Wall 

Ye/Y 
L/X 0.5 1.0 1.5 2.0 

0.1 0.1755 0.1268. 0.0847 0.0586 0.2169 

0.4 0.2 0.3448 0.2936 0.2318 0.1832 0.3881 
0.4 0.5715 0.5243 0.4622 0.4060 0.610]. 

0.6 0.6879 0.6492 0.5989 0.5517 0.7198 

0.1 0.1199 0.0860 
. 0.0589 0.0416 0.1512 

0.6 0.2 0.2465 0.2076 0.1665 0.1334 0.2806 

0.4 0.4458 0.4086 0.3602 0.3223 0.4790 
0.6 0.5661 0.5345 0.4938 0.4537 0.5953 

0.1 0.0919 0.0657 0.0453 0.0323 0.1174 
0.8 0.2 0.192& 0: 1631 0.1321 0.1071 0.2210 

0.4 0.3568 0.3267 0.2908 0.2600 0.3846 

0.6 0.4640 0.4370 0.4039 0.3709 0.4898 
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APPENDIX A5.3 INFLUENCE OF SLAB/WALL THICKNESS RATIO ON 

SLAB COUPLING STIFFNESS. 

Flanged Wall Configuration (L/X = 0.2, Y/X = 0.4, Z/Y = 0.5) 

t/h K* Ye /Y K*/K Z*/Z 

1.50 54.01 0.5116 0.64 0.25 
1.00 62.85 0.5953 0.74 0.46 

0.75 70.28 0.6657 0.83 0.63 

0.50 77.59 0.7349 0.91 0.81 

0.375 80.65 0.7640 0.95 0.89 

0.25 82.80 0.7843 0.98 0.95 

Rigid 
Wall 84.87 0.8039 1.00 1.00 

APPENDIX A5.4 INFLUENCE OF CORRIDOR OPENING RATIO ON SLAB 

COUPLING STIFFNESS 

Flanged Wall Configuration (Y/X a 0.4, Z/Y - 0.5, t /h o 0.75) 

L/X K* Ye /Y K*/K Z*/Z 

0.1 355.20 0.5005 0.72 0.58 
0.2 70.28 0.6657 0.83 0.63 
0.4 14.50 0.8074 0.91 0.65 

0.6 6.04 0.8687 0.93 0.63 

APPENDIX A5.5 INFLUENCE OF FLANGE WIDTH RATIO ON SLAB 

COUPLING STIFFNESS 
Flanged Wall Configuration (L/X m 0.2, Y/X - 0.4, t/h o 0.75) 

Z/Y K* Ye /Y K*/K Ye/Y 

0.00 34.07 0.3227 0.83 0.3881 
0.25 55.31 0.5239 0.86 0.6080 
0.50 70.28 0.6657 0.83 0.8039 
0.75 82.82 0.7845 0.81 0.9636 
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APPENDIX A5.6 (a) VARIATION OF SLAB STIFFNESS FACTOR K* 

WITH VARIOUS GEOMETRIC RATIOS 

Flanged Wall Configuration 

Stiffness Factor K* Rigid Y/X L/% Wall -- t/h 
Z/Y 1.5 0.75 0.50 0.375 K 

0.25 186.19 248.08 280.11 295.01 326.69 

0.1 0.50 240.61 355.20 420.59 450.32 495.67 

0.75 272.77 445.42 546.72 591.27 651.17 

0.25 47.02 55.31 59.09 60.70 64.18 

0.4 0.2 0.50 54.01 70.28 77.59 80.65 84.87 

0.75 60.11 82.82 93.17 97.17 101.72 

0.25 11.51 12.07 13.16 13.36 13.77 

0.4 0.50 12.31 14.50 15.33 15.68 16.02 

0.75 12.90 15.86 17.01 17.40 17.79 

0.25 225.08 312.33 360.27 382.33 425.54 

0.1 0.50 294.09 469.58 574.76 622.08 689.55 

0.75 341.46 616.14 780.61 851.60 944.31 

0.25 56.78 68.63 74.33 76.71 81.62 
0.6 0.2 0.50 68.00 93.16 105.65 110.63 117.23 

0.75 76.40 115.97 134.22 140.99 148.74 

0.25 14.73 16.49 17.28 17.59 18.14 

0.4 0.50 16.11 19.82 21.44 22.05 22.60 
0.75 17.36 22.89 24.94 25.63 26.31 
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APPENDIX A5.6(b) VARIATION OF EFFECTIVE SLAB WIDTH Ye*/Y 

WITH VARIOUS GEOMETRIC RATIOS 

Flanged Wall Configuration 

Effective Width Y */Y 
Y/X L/X e id Ri g 

t/h Wall 
Z/Y 1.5 0.75 0.50 0.375 Y e/Y 

0.25 0.2624 0.3496 0.3947 0.4157 0.4603 

0.1 0.50 0.3391 0.5005 0.5927 0.6346 0.6985 
0.75 0.3844 0.6276 0.7704 0.8332 0.9176 

0.25 0.4454 0.5239 0.5598 0.5750 0.6080 
0.4 0.2 0.50 0.5116 0.6657 0.7349 0.7640 0.8039 

0.75 0.5694 0.7845 0.8825 0.9204 0.9636 

0.25 0.6409 0.7052 0.7326 0.7436 0.7666 

0.4 0.50 0.6856 0.8074 0.8538 0.8731 0.8918 

0.75 0.7180 0.8832 0.9468 0.9689 0.9906 

0.25 0.2114 0.2934 0.3384 0.3592 0.3998 

0.1 0.50 0.2763 0.4411 0.5399 0.5844 0.6478 
0.75 0.3208 0.5788 0.7333 0.8000 0.8871 

0.25 0.3586 0.4334 0.4694 0.4844 0.5154 
0.6 0.2 0.50 0.4294 0.5881 0.6670 0.6986 0.7403 

0.75 0.4824 0.7323 0.8476 0.8903 0.9393 

0.25 0.5466 0.6119 0.6413 0.6530 0.6732 
0.4 0.50 0.5980 0.7356 0.7959 0.8182 0.8388 

0.75 0.6444 0.8496 0.9256 0.9512 0.9766 
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APPENDIX A5.7 INFLUENCE OF SLAB/WALL THICKNESS RATIO 

ON SLAB COUPLING STIFFNESS 

Box-Core Configuration (L/X a 0.2, Y/X = 0.4, Z/Y - 0.5) 

t/h K* Ye*/Y K*/K Z*/Z 

1.50 48.27 0.4573 0.56 0.14 

1.00 64.87 0.6145 0.75 0.49 

0.75 74.30 0.7038 0.86 0.69 

0.50 81.81 0.7750 
" 

0.94 0.88 

0.375 84.27 
ý 

0.7982 0.97 0.93 

0.25 85.83 0.8130 0.99 0.98 

Rigid 86.88 0.8230 1.00 1.00 
Wall 

APPENDIX A5.8 INFLUENCE OF CORRIDOR OPENING RATIO ON 

SLAB COUPLING STIFFNESS. 

Box-Core Configuration (Y/X - 0.4, Z/Y - 0.5, t/h - 0.75) 

L/X K* Y 
e*/Y 

K*/K Z*/Z 

0.1 380.58 0.5363 0.76 0.64 
0.2 74.30 0.7038 0.86 0.69 
0.4 15.16 0.8440 0.93 0.71 
0.6 6.26 0.9006 0.96 0.75 
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APPENDIX A5.9 INFLUENCE OF CORRIDOR OPENING RATIO AND 

SLAB/WALL THICKNESS RATIO ON SLAB COUPLING 
STIFFNESS 

Box Core Conf igurat ion (Y/X - 0.4, Z/Y - 0.5) 

L/X t/h K* Ye*/Y K*/K Z*/Z ý/ X 

1.50 203.90 0.2873 0.40 0.14 4.74 
1.00 308.67 0.4349 0.61 0.44 3.16 

0.1 0.75 380.58,.. 0.5363 0.76 0.64 2.37 

0.50 447.21 0.6302 0.89 0.83 1.58 

0.375 471.85 0.6649 0.94 0.91 1.19 

Rigid 
Wall 503.79 0.7099 1.00 1.00 - 

1.50 48.27 0.4573 0.56 0.14 3.35 

1.00 64.87 0.6145 0.75 0.49 2.24 

0.2 0.75 74.30 0.7038 0.86 0.69 1.68 

0.50 81.81 0.7750 0.94 0.88 1.12 
0.375 84.27 0.7982 0.97 0.93 0.84 

Rigid 
Wall 86.88 0.8230 1.00 1.00 - 

1.50 12.14 0.6757 0.74 0.16 2.37 
1.00 14.31 0.7969 0.87 0.52 1.58 

0.4 0.75 15.30 0.8520 0.94 0.73 1.19 
0.50 16.00 '0.8908 0.98 0.89 0.79 

0.375 16.22 0.9028 0.99 0.94 0.59 
Rigid 
Wall 16.44 0.9153 1.00 1.00 - 

1.50 5.31 0.7648 0.81 0.16 1.94 
1.00 5.95 0.8557 0.90 0.54 1.29 

0.6 0.75 6.26 0.9006 0.95 0.75 0.97 
0.50 6.49 0.9344 0.98 0.91 0.65 
0.375 . 6.54 0.9411 0.99 0.95 0.48 
Rigid 

L Wall 6.60 0.9496 1.00 1.00 - 
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APPENDIX A6.1 VARIATIONS OF COMPOSITE STIFFNESS RATIO 

c/I* 
AND EFFECTIVE FLANGE WIDTH Ye/Y 

WITH RELATIVE WALL OPENING WIDTH L/t, 
SLAB WIDTH Y/t AND LINTEL DEPTH d/t. 
(FIXED. LINTEL WIDTH b/t = 1.33) 

L/t Y/t d/t 

2.50 3.17- 3.83 5.50 7.17 

26.67 1.928 1.717 1.604 1.440 1.345 /1 1 
c W 

0.175 0.158 0.159 0.181 0.223 Ye /Y 

13.33 40.00 1.983 1.753 1.631 1.457 1.356 Iý/Iý 

0.127 0.112 0.112 0.127 0.156 Ye/y 

53 . 33 2.013 1.780 1.655 1.474 1.369 1 
c/Iw 

0.099 0.088 0.088 0.100 0.125 Ye/Y 

26.67 2.446 2.151 2.017 1.834 1.701 1 w 
C 

0.279 0.232 0.224 0.239 0.262 Ye/Y 

26.67 40.00 2.583 2.221 2.059 1.850 1.709 Iý/Iw 

0.220 0.171 0.159 0.164 0.178 Ye/y 

53.33 2.638 2.254 2.082 1.863 1.719 Iý/Iw 

0.177 0.134 0.123 0.126 0.136 Ye/Y 

26.67 2.628 2.301 ' 2.166 1.985 1.884 I /I 
c w 

0.326 0.263 0.251 0.258 0.286 Ye/Y 

40.00 40.00 2.806 2.393 2.219 2.020 1.892 Iý/IW 

0.267 0.198 0.180 0.181 0.193 ye/y 

53.33 2.880 2.433 2.246 2.035 1.902 Iý/IW 
0.217 0.157 0.140 0.139 0.148 ye/Y 
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APPENDIX A7.1 WARPING STIFFNESS AND EFFECTIVE WIDTH 

VALUES FOR SLABS IN ' SINGLE-CORE-WITS 

LOBBY CONFIGURATION (D/B - 0.5) 

(a) Slab Edges: Monolithic/Free 

Stiffness Factor KW Effective Width Ye/S 

S/B 
L/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 142.90 150.69 159.05 0.3807 0.2676 0.2119 
0.50 36.45 38.48 39.83 0.7768 0.5468 0.4244 

0.75 14.83 16.08 16.86 1.0666 0.7711 0.6064 

(b) Slab Edges: Monolithic/S. Supported 

Stiffness Factor K. Effective Width Yef S 

S/B - 
L/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 156.50 157.70 163-. 71 0.4169 0.2801 0.2181 
0.50 48.13 44.59 43.87 1.0257 0.6335 0.4675 
0.75 24.24 21.14 20.21 1.7433 1.0139 0.7267 

(c) Slab Edges: S. Support ed/S. Supported 

Stiffness Factor KW Effective Width Ye/S 

S/B 
LJB 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 98.89 102.46 108.00 0.2634 0.1820 0.1439 
0.50 31.79 30.24 30.12 0.6776 0.4296 0.3209 
0.75 18.04 16.39 16.01 1.2929 0.7861 0.5758 
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APPENDIX A7.2 WARPING STIFFNESS AND EFFECTIVE WIDTH 

VALUES FOR SLABS IN SINGLE-CORE-WITH- 

LOBBY CONFIGURATION (D/B - 0.75) 

(a) Slab Edges: Monolithic/Free 

Stiffness Factor KW Effective Width Ye/S 

S/B : 

Lý, /B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 221.39 232.11 243.99 0.3932 0.2748 0.2167 
0.50 51.84 54.37 56.01 0.7366 0.5150 0.3979 
0.75 19.73 21.19 22.06 0.9462 0.6776 0.5289 

(b) Slab Edges; Monolithic/S. -Supported 

Stiffness Factor KW Effective Width Ye%S 

L/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 239.37 241.25 250.08 0.4251 0.2857 0.2221 
0.50 67.08 62.27 61.27 0.9531 0.5898 0.4353 
0.75 32.64 27.57 26.32 1.5171 0.8815 0.6311 

(c) Slab Edges: S. Supported/S. Supported 

Stiffness Factor K. Effective Width Yef S 

S/B 

L/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 138.90 145.93 155.21 0.2467 0.1728 0.1378 
0.50 39.73 38.38 38.65 0.5645 0.3635 0.2746 
0.75 21.46 19.83 19.59 1.0291 0.6340 0.4697 
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APPENDIX A7.3 WARPING STIFFNESS AND EFFECTIVE WIDTH 

VALUES FOR SLABS IN SINGLE- CORE-WITH- 

LOBBY CONFIGURATION (D/B - 1.0) 

(a) Slab Edges: Monolithic/Free 

Stiffness Factor Kw Effective Width Ye/S 

S/B 

L/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 313.66 327.29 342.70 0.4178 0.2906 0.2282 

0.50 69.89 72.97 74.93 0.7448 0.5184 0.3992 

0.75 25.62 27.38 28.38 0.9214 0.6566 0.5103 

(b) Slab Edges: Monolithic/S. Supported 

Stiffness Factor KW Effective Width Ye/S 

SIB 
0.50 0.75 1.00 0.50 0.75 1.00 

0.25 337.03 339.19 350.63 0.4489 0.3012 0.2335 
0.50 89.72 83.29 81.83 0.9561 0.5917 0.4360 
0.75 41.13 35.76 34.02 1.4794 0.8573 0.6119 

(c) Slab Edges; S. Supported/S. Supported 

Stiffness Factor KW Effective Width Ye/S 

S/B 
L/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 181.82 192.89 206.38 0.2422 0.1713 0.1375 
0.50 48.82 47.66 48.35 0.5203 0.3386 0.2576 
0.75 25.79 24.15 24.06 0.9275 0.5791 0.4326-, 
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APPENDIX A7.4 WARPING STIFFNESS AND EFFECTIVE WIDTH 

VALUES FOR SLABS IN SINGLE-CORE- WITHOUT- 

LOBBY CONFIGURATION (D/B - 0.5) 

(a) Slab Edges: Monolithic/Free 

Stiffness Factor Kw Effective Width Ye/S 

S/B 0.50 0.75 1.00 0.50 0.75 1.00 
L/B 

0.25 81.35 89.81 98.60 0.2167 0.1595 0.1313 
0.50 18.48 20.35 21.69 0.3939 0.2891 0.2312 

0.75 7.89 8.94 9.63 0.5677 0.4285 0.3463 

1.00 4.10 4.87 5.42 0.6991 0.5531 0.4617 

(b) Slab Edges: Mdnolithic%S. Supported 

Stiffness Factor Kw Effective Width Ye/ S 

S/B 

L/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 94.68 96.76 103.23 0.2523 0.1718 0.1375 

0.50 29.52 26.24 25.63 0.6292 0.3728 0.2731 
0.75 16.43 13.63 12.78 1.1815 0.6538 0.4597 

1.00 10.40 8.47 7.85 1.7734 0.9630 0.6695 

(c) Slab Edges: S. Support ed/S . Supported 

Stiffness Factor KW Effective Width Ye/S 

SIB 
Lý/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 60.77 64.53 70.13 0.1619 0.1146 0.0934 
0.50 17.32 16.44 16.51 0.3692 0.2335 0.1759 
0.75 9.82 8.97 8.85 0.7063 0.4301 0.3185 
1.00 14.48 12.88 12.57 1.2066 0.7153 0.5239 
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APPENDIX A7.5 WARPING STIFFNESS AND EFFECTIVE WIDTH 

VALUES FOR SLABS IN SINGLE-CORE-WITHOUT- 

LOBBY CONFIGURATION (D/B - 0.75) 

(a) Slab Edges: Monolithic/ Free 

Stiffness Factor Kw Effective Width Ye/S 

S/B 
L/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 120.87 133.22 146.16 0.2147 0.1577 0.1298 
0.50 26.59 29.07 30.84 0.3779 0.2753 0.2191 
0.75 10.72 12.03 12.84 0.5163 0.3845 0.3078 
1.00 5.20 6.06 6.66 0.5914 0.4590 0.3784 

(b) Slab Edges; Monolithic/S. Supported 

Stiffness Factor KW Effective Width Ye/S 

S/B 
L/B 

0.50 0.75 1.00 0.50 0.75 1.00 

0.25 138.52 142.30 152.23 0.2460 0.1685 0.1352 
0.50 41.06 36.72 36.00 0.5834 0.3478 0.2557 
0.75 21.77 18.07 16.94 1.0440 0.5777 0.4063 
1.00 13.15 10.62 9.80 1.4946 0.8047 0.5571 

(c) Slab Edges: S. Supported/S. Supported 

Stiffness Factor Kw Effective Width YJS 

S/B 
L/3 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 88.48 94.63 103.21 0.1571 0.1120 0.0917 
0.50 23.56 22.63 22.89 0.3348 0.2144 0.1626 
0.75 12.53 11.57 11.50 0.6009 0.3699 0.2758 
1.00 11.44 10.29 10.13 0.9532 0.5716 0.4222 
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APPENDIX A7.6 WARPING STIFFNESS AND EFFECTIVE WIDTH 

VALUES FOR SLABS IN SINGLE-CORE-WITHOUT- 

LOBBY CONFIGURATION (D/B -s 1.0) 

(a) Slab Edges: Monolithic/Free 

Stiffness Factor KW Effet 

S/B 0.50 0.75 1.00 0.51 
L/B 

0.25 160.54 176.88 194.02 0.21. 
0.50 34.88 38.04 40.31 0.37' 
0.75 13.83 15.39 16.36 0.49 
1.00 6.51 7.52 8.22 0.55, 

(b) Slab Edges: Monolithic/S. Supported 

Stiffness Factor K. Ef fe 

S/B 0.50 0.75 1.00 0.5 
LIB 

0.25 183.50 188.69 201.95 0.2 

0.50 53.77 48.09 47.10 0.5 
0.75 28.28 23.39 21.85 1.0 
1.00 17.04 13.63 12.48 1.4 

(c) Slab Edges: S. Support ed/S. Supported 

Stiffness Factor KW Effective Width Ye/S 

S/B 0.50 0.75 1.00 0.50 0.75 1.00 
L%B 

0.25 160.54 176.88 194.02 0.2139 0.1571 0.1292 
0.50 34.88 38.04 40.31 0.3717 0.2703 0.2148 
0.75 13.83 15.39 16.36 0.4973 0.3690 0.2942 
1.00 6.51 7.52 8.22 0.5548 0.4276 0.3503 

Stiffness Factor K. Effective Width Ye/S 

S/B 0.50 0.75 1.00 0.50 0.75 1.00 
L/B 

0.25 183.50 188.69 201.95 0.2444 0.1676 0.1345 
0.50 53.77 48.09 47.10 0.5730 0.3416 0.2510 
0.75 28.28 23.39 21.85 1.0172 0.5608 0.3929 
1.00 17.04 13.63 12.48 1.4524 0.7747 0.5321 

Stiffness Factor KW Effective Width YeIS 

0.50 0.75 1.00 0.50 0.75 1.00 
L/B 

0.25 116.42 124.97 136.57 0.1551 0.1111 0.0910 
0.50 30.06 29.10 29.56 0.3203 0.2068 0.1575 
0.75 15.54 14.49 14.48 0.5588 0.3475 0.2604 
1.00 10.11 9.20 9.11 0.8619 0.5227 x.. 0.3883 
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APPENDIX A7.7 WARPING STIFFNESS AND EFFECTIVE WIDTH 
VALUES FOR SLABS IN TWIN CORE WITH 
LOBBY CONFIGURATION (D/B - 0.5) 

(a) Slab Edges: Monolithic/Free 

Stiffness Factor Kw Ef f ei 

S/B 
0.50 0.75 1.00 0.51 -'ýj L/B 

0.25 75.90 80.22 84.70 0.40, 

0.50 20.65 21.96 22.83 0.88 

0.75 9.38 10.26 10.83 1.351 

(b) Slab Edges: Monolithic/S. Supported 

Stiffness Factor Kw Effe 

S/B 

L/B 0.50 0.75 1.00 0.5 

0.25 84.02 84.03 87.03 0.44 
0.50 28.40 25.74 25.18 1.21 
0.75 16.50 13.94 13.17 2.37 

(c) Slab Edges: S. Supported/S. Supported 

Stiffness Factor Kw Effective Width Ye/S 

S/B 
0.50 0.75 1.00 0.50 0.75 1.00 

L/B 

0.25 75.90 80.22 84.70 0.4044 0.2849 0.2256 
0.50 20.65 21.96 22.83 0.8801 0.6240 0.4866 
0.75 9.38 10.26 10.83 1.3500 0.9839 0.7792 

Stiffness Factor Kw Effective Width Ye/S 

S/B 

L/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 84.02 84.03 87.03 0.4477 0.2985 0.2318 
0.50 28.40 25.74 25.18 1.2105 0.7314 0.5366 
0.75 16.50 13.94 13.17 2.3739 1.3375 0.9472 

Stiffness Factor KW Effective Width Ye/S 

S%B 
L/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 58.56 59.44 61.83 0.3120 0.2111 0.1647 
0.50 20.89 19.29 18.94 0.8904 0.5482 0.4038 
0.75 13.27 11.63 11.16 1.9087 1.1156 0.8024 
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APPENDIX A7.8 WARPING STIFFNESS AND EFFECTIVE WIDTH 

VALUES FOR SLABS IN TWIN-CORE-WITH- 

LOBBY CONFIGURATION (D/B - 0.75) 

(a) Slab Edges: Monolithic/Free 

Stiffness Factor KW Effective Width YS 

S/B 

14/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 109.67 115.47 121.70 0.3896 0.2734 0.2162 
0.50 26.70 28.19 29.17 0.7588 0.5341 0.4145 
0.75 11.38 12.27 12.83 1.0912 0.7846 0.6151 

(b) Slab Edges: Monolithic/S. Supported 

Stiffness Factor KW Effective Width Ye/S 

S/B 0.50 0.75 1.00 0.50 0.75 1.00 
L/8 

0.25 118.52 119.28 123.95 0.4210 0.2825 0.2201 
0.50 34.94 31.92 31.42 0.9928 0.6048 0.4464 
0.75 18.73 15.86 15.05 1 1.7968 1.0140 0.7218 

(c) Slab Edges: S. Supported/S. Supported 

Stiffness Factor Kw Effective Width Ye/S 

S/B 
L/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 76.91 79.17 83.23 0.2732 0.1875 0.1478 
0.50 23.95 22.29 22.06 0.6808 0.4223 0.3135 
0.75 14.35 12.62 12.19 1.3764 0.8068 0.5844 
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APPENDIX A7.9 WARPING STIFFNESS AND EFFECTIVE WIDTH 

VALUES FOR SLABS IN TWIN-CORE-WITH-LOBBY 

CONFIGURATION (D/B - 1.0) 

(a) Slab Edges: Monolithic/Free 

Stiffness Factor Kw Effective Width Ye/S 

S/8 

1"%8 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 148.12 155.40 163.39 0.3946 0.2760 0.2176 
0.50 33.83 35.58 36.69 0.7209 '0.5055 0.3910 
0.75 13.90 14.91 15.49 0.9999 0.7149 0.5572 

(b) Slab Edges: Monolithic/S. Supported 

Stiffness Factor KW 

L/$ 
S/B 0.50 0.75 1.00 

0.25 

0.50 

0.75 

--I 
157.96 159.35 165.62 

42.84 39.40 38.92 

21.79 18.55 17.69 

Effective Width Ye/S 

0.50 0.75 1.00 
r 

0.4208 0.2830 0.2206 
0.9130 0.5598 0.4147 
1.5676 0.8894 0.6362 

(c) Slab Edges: S. Supported/S. Supported 

Stiffness Factor K. Effective Width Ye/S 

S/B 
14/B 0.50 0.75 1.00 0.50 0.75 1.00 

0.25 96.85 100.63 106.48 0.2580 0.1787 0.1418 
0.50 27.89 26.12 26.01 0.5944 0.3712 0.2771 
0.75 16.14 14.27 13.87 1.1613 0.6843 0.4987 


