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ABSTRACT

The interaction%between floor slabs and*the vertical

elements in a tall building structure results in a more
efficient lateral load resisting systemn. The study
examines the structural behaviour of the floor slab in

the following situations:
(1) Slab coupling a pair of shear walls in a
cross-wall structure under cantilever bending
action.

(11) Slab in composite action with a lintel beam
connecting a pair of shear walls,

(iii) Slab restraining a centre core against
torsional warping. |

(iv) Slab coupling a centre core to a peripheral
framed tube in a hull-core structure under

cantilever bending action.
(v) Slab connecting a row of columns in a flat-

plate frame structure under lateral loading.

The resistance of the floor slab against the

deformation of the vertical elements, and the actions
induced in the slab in the various situations are determined
by finite element and influence coefficient techniques.

The finite element technique idealises the slab-wall
structure as an assembly of plate and shell elements and
uses an established stiffness analysis to determine the
displacements, forces and stress resultants in the slab.
The influence coefficient technique approximates the
interaction forces between the slab and walls as a system
of discrete nodal forces which are determined from the

solution of compatibility equations written in terms of

plate influence coefficients and prescribed wall
displacements.

The results of parameter studies are preseunted in a
series of design curves and tables to enable the effective
slab stiffness and slab actions to be readily determined
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for a wide range of structural configurationms.
Experimental tests on small-scale shear wall-slab

models are carried out to substantiate the general
accuracy of the theoretical methods of analysis.



NOTATION

The principal symbols used in various chapters are

listed below.

Other subsidiary symbols are defined where

they appear locally in the text.

CHAPTER 2

(1) Plate Theory

D
X

Mo Mgy Moy

Qe Q
Vx, Vy
a, b

t
X, ¥

Z

%
O'X ’ G-y

Txy? Txz? Tyz

Plate flexural rigidity

Young 's modulus
Bending and twisting moments per unit width

of plate
Shearing forces per unit width of plate
Kirchhoff's supplemented shears

Plate dimensions

Plate thickness

Co-ordinate axes
Distance from neutral plane
Poisson's ratio
Normal stresses

Shear stresses

(ii) Vlasov's Theory

<

Bimoment at distance z from origin
shear modulus

Sectorial moment of inertia

St. Venant torsional moment of inertia
Concentrated in-plane and out-of-plane
bending moments

Concentrated axial force

Sectorial static moment
Applied torque

ot. Venant torsional moment
Flexural torsional moment
Wall thickness

Longitudinal displacement

Longitudinal and tangential co-ordinate axes
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t(z) Intensity of distributed torque
p(s) Intensity of distributed axial load
W Sectorial co-ordinate

e Torsional rotation

o, T Normal and shear stresses

(iii) Finite Element Theory

u, v, W Displacements in X, y, Zz directions
X, ¥V, Z Orthogonal co-ordinate axes

(B} Strain matrix

[C] Matrix relating generalised parameters to

nodal displacements

[D] Elasticity matrix

[ K] Structure stiffness matrix

[N ] Matrix of interpolation functions

[ P] Matrix of displacement functions

[S] Stress matrix

[k ] Element stiffness matrix

[kq] Generalised element stiffness matrix
{F} Element nodal forces

{L] Consistent element nodal loads

{R] Complete nodal force vector

{q} Distributed loads

{u} Internal displacements

{4} Complete displacement vector

{ ] Generalised displacement parameters (constants)
{6 ] Element nodal displacements

{e} Element 'strains’

{0}

Element 'stresses'

(iv) Influence Coefficient Theory

D Plate flexural rigidity:

H Distance between axes of rotation of
coupled walls

K Coupling stiffness of slab

L Clear opening between walls

M Wall moment
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M_s» M&i Concentrated moments in x and y directions
at node 1
Pi Concentrated force at node 1

Length of wall
Total length of floor slab

W

X

Y Bay width of floor slab

Y Effective coupling width of floor slab
Z

° Width of wall flange

a,b Plate dimensions
w Transverse slab deflection

X,y - Co-ordinate axes
(frs)ij Influence coefficient
[F] Flexibility matrix
(R} Unknown nodal forces'
{6} Nodal displacements

CHAPTERS 3, 4 AND 5

B Core opening width
C Slab overhang width
D Plate flexural rigidity

D' Core lintel depth

E Young 's modulus

F 1 Storey height

H Overall height of shear wall

K Rotational coupling stiffness of slab

K¢ Translational coupling stiffness of slab

Ka Double area under curve of bending moment
factor

Kq - Shear modification factor

K* Coupling stiffness of slab with 'flexible' walls

K' Coupling stiffness of slab with crack

L Clear opening width between walls or corridor
width ”

L* Flexible span of connecting beam corrected for

junction flexibility
Wall moment

Bending and twisting moments per unit width
of slab

M, M,

Moo M, M,
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Bending moment factors of slab

Averaged bending moment per unit width of
slabs

Shear force in coupling beam

Shearing forces per unit width of slab
Shearing force factor of slab

Average shearing force per unit width of slab
Positive shear at critical section for punching
shear

Positive shear in effective shear Zzone
Critical design shear

Length of cross wall

Length of slab panel or depth of cross wall
building

Width of slab panel or bay width
Effective coupling width of slab

Effective coupling width of slab with flexible
walls

wWidth of wall flange or box core

Effective flange width of 'flexible' flanged
walls

Half length of slab panel
Half width of slab panel
Effective depth of slab

Effective span extension for slab coupling
flexible walls

Wall thickness
Slab thickness

Critical peripheral distance for punching shear

Design and permissible punching shear stress
respectively

Transverse deflection of slab

Slopes in x and y directions respectively

Curvatures and twist in slab
Co—-ordinate axes

Characteristic stiffness
coupling medium

parameter of
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Y O'B Maximum fibre stresses at bottom of shear
wall
V Poisson's ratio
e wWall rotation
[ Relative rotations of ends of coupling beam
at inner wall edges
A Length of crack in slab
CHAPTER 6
A¥* Effective shear area of coupling beam
Aw Cross section area of web of composite

coupling beam
D Plate flexural rigidity
E Young 's modulus
G Shear modulus
H Overall height of coupled shear walls

I, Ix* Actual and reduced second moments of area (M.I.)
Ic’ Ig Actual and reduced composite M.I. of coupling
beam
Iw’ I% Actual and reduced M,I. of web of composite
coupling beam
K Coupling stiffness of composite coupling beam
L Clear span of coupling beam
L* Effective flexible span of coupling beam
L, Distance between centroidal axes of coupled
walls
M Wall moment
Mk, M& Bending moments per unit width of slab
Nﬁ,Ny,ny Membrane and shear stresses in slab
Q Vertical reaction or lintel shear
W Wall length
Y Width of slab or bay width
Y, Effective flange width of composite coupling
beam
b Width of lintel beam
d Depth of lintel beam
e Eccentricity between lintel and slab neutral

axes



Slab thickness

Displacements in X,y,z directions respectively
Co-ordinate axes

Characteristic coupling stiffness parameter

Relatlive axial displacements of coupled walls
Wall rotation

Rotations about x, y and z axes respectively
Nodal displacement vector

Standard and eccentric space frame stiffness
matrices

Eccentric transformation matrix
Eccentric transformation sub=matrix

Cross—-sectional area of connecting beam
Width of core ‘

Bimoment resultant

Bimoment at bottom of core

- Depth of core

Plate flexural rigidity

Young 's modulus
Shear modulus

Overall height of core structure
Sectorial moment of inertia of core

Moment of inertia of connecting beam
Oot. Venant torsional moment of inertia of core

Warping stiffness of slab
Width of core opening

In-plane and out-of-plane concentrated moments
respectively

Concentrated torque at top of core
Concentrated axial force in core

Slab width from core wall to facade

Length of slab panel in cross-wall structure
Width of slab panel in cross-wall structure
Effective width of slab

Depth of connecting beam



h Storey height
m Intensity of uniformly distributed torque
n Maximum intensity of triangular distributed
torque
q(z) Intensity of distributed shear in continuous
medium at helight =z
t (z) Intensity of distributed torque at height =z
Z Vertical axis of core
x Characteristic torsional coupling stiffness
parameter
o Torsional rotation of core
o' Rate of twist or torsional warping (= do/dz)
Y Polisson's ratio
W Sectorial co-ordinate
JV Double core area (=2BD)
CHAPTER 8
Ac Cross-sectional area of frame column
Cor Frame panel flexural stiffness parameter
D Plate flexural rigidity
E Young's modulus
Ec’ E Young's moduli for column and slab materials
respectively
H Storey height
I Second moment of area
I, IS Second moments of area of column and unit slab
strip respectively
Jc Torsional constant of spandrel beam
K Rotational stiffness of slab
L Slab span from core wall to frame panel
M Wall moment .
M#’My Bending moments per unit width of slab
S Column spacing
Vx,Vy Distributed reactions per unit width of slab
Y Overall width of slab
Y Effective width of slab
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a Half depth of core

b Half width of core

t Slab thickness
X,y Co—-ordinate axes

§ Structural parameter

V Poisson's ratio

6 Rotation of core cross-section

ka,li,lj Relative axial, flexural and torsional
stiffness parameters of frame panel
CHAPTER 9 _
A Length of slab panel

B Width of slab panel

B, Effective width of slab

D Plate flexural rigidity

K Rotational stiffness of slab
M Column moment
U Column depth
Vv Column width
a Half length of slab
b Half width of slab

X,Y Co-ordinate axes

14 Poisson's ratio
CHAPTER 10

D Plate flexural rigidity
E Young 's modulus
K Coupling stiffness of slab
L Clear opening width between walls
Ml Applied wall moment

Mi’Me Internal and external bending moments

Applied load
Length of wall section

Width of slab
Effective slab width

Width of wall flange

Distance between centroid axes of walls
Slab thickness

o+ 0O tqmﬁlrd =
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Poisson's ratio
Wall rotation

Surface strains in x and y directions respect-
ively
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CHAPTER 1

INTRODUCTION

1.1 STRUCTURAL SYSTEMS

In recent years, with increasing costs of land in
city centres, architectural trends have changed towards
high-rise construction to meet the growing demand for office
space and housing generated by industrial and population
growths. The challenge of building upwards has been met
by the development of new structural systems and
construction techniques which have contributed to the
rapid increase in the number of tall buildings throughout
the world. The continuing demand for the construction of

tall buildings in the face of rising material and labour
costs has made it increasingly more important to achieve
a more efficient design for the tall building through a
better understanding of the behaviour of the structure and
its components. 4

A major problem in the design of a tall building is
the provision of adequate strength and stiffness to resist
the lateral loads which may arise due to wind, seismic or
blast effects. The provision of adequate strength in the
structure is, of course, a fundamental requirement as it
ensures the stability and safety of the building. The
stiffness requirement is intended to limit the buillding's
deflection and oscillatory motion produced by lateral
forces to acceptable levels to ensure the servicibility
of the building. Excessive lateral deflection affects
the stability of the structure and causes cracking of non-
structural partitions and glazing which may lead to serious
maintenance problems. Perceptible oscillatory motion
causes discomfort to occupants and may affect the
usefulness or rental value of the building.

The lateral stiffness of a tall building may bé
provided by two basic types of structural units, nanely
the rigid frame and the shear wall. The rigid frame
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derives its lateral stiffness from the rigidlity of 1its

joints, and is relatively flexible compared with a shear
wall. For the structure to be economical, the frames and

shear walls must be arranged to perform a dual function of
supporting vertical as well as lateral loads. Shear

walls should also be arranged to perform a non-structural
function, that of partitioning or enclosing space. Ideally
the structural system designed for vertical loads should
not require extra strengthening for it to function
adequately also as a lateral load resisting system for the
building.

In current sfructural systems™ the rigid frame unit
and the shear wall unit are used in various forms and
combinations. Frame buildings and shear wall buildings
generally use respectively the rigid frame unit and the
shear wall unit in parallel assemblies. The core-supported
structure and the framed tube structure are examples 1in
which shear walls and rigid-frames are used in tubular
assemblies. In the framed tube structure, the frame
panels consist of closely spaced columns tied by deep
spandrel beams to form an exterior grid. Structural
systems produced using frame and shear wall units in
combinations are the shear wall-frame system consisting of
parallel assemblies of frames and shear walls, and the
hull-core or tube-in-tube system consisting of a central

shear core within an exterior framed tube.

1

1.2 INTERACTION BETWEEN COMPONENTS

The vertical elements in a building structure are
connected together through the floor slabs which serve
primarily to collect and distribute vertical and lateral
loads to the vertical elements which eventually transfer
the loads down to the foupqations. The slab, however,
also performs j less Obvious but important function of
coupling the vertical elements and forcing them to interact

thereb r
y P Oducing all Overall lateral load response of

greater stif
Iness than the aggregate response provided by
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independent actions. A more efficient structural system

can therefore be obtained by considering the coupling action
of the slab.

An efficient structural system which derives much of
- its lateral stiffness from the coupling action of the floor
slab is the cross-wall structure, which has found

considerable favour among planners for the construction of
multi-storeyed apartment bulldings. The system consists
of continuous one-way slabs spanning between parallel
assemblies of load bearing walls which resist lateral as
well as gravity loads. Architectural planning often
produces plan forms with apartments laid out on both sides
of a central corridor along the length of the building.
The cross—-wall structure resists the lateral loads by
the cantilever actions of the shear walls, which result in
rotations of wall cross-sections. The free bending of a

pair of in-line shear walls is resisted by the slab, which
is forced to bend out-of-plane under the differential
vertical shearing action imposed by the pair of walls
across the corridor. The reaction of the slab induces
opposite axial forces into the walls thereby reducing
greatly the wind moments and resultant stresses and
deflections in the walls. A more efficient design can
therefore be achieved by considering the coupling action
of the slab.

Another structural system in which the interaction
between the slab and the vertical elements results in a
more efficient structure is the centre core structure which
has become popular for the construction of nulti-storeyed
office buildings. In this system, the shear walls are
arranged in the form of a core, enclosing lifts, stairs,
utilities and other services grouped together in a central
area in the building. The centre core may serve alone in
supporting the floor system and in resisting lateral loads,

as 1n a suspension or cantilevered core structure, or may
act in conjunction with peripheral columns as in a hull-

core structure. In reinforced concrete systems, the floor



slab may be of flat slab, waffle slab or ribbed slab

construction, depending on floor span and type of building.
The practical layout of services in a centre-core
building often result in a box-shaped core made up of a
number of independent shear walls connected together by
‘lintel beams or floor slabs across the wall openings. When
resisting lateral loads which produce a pure bending action,

the various core walls undergo a parallel rotation of cross-
sections at the same level. The .parallel rotation of a
pair of walls which produces a differential vertical
shearing action across the wall opening 1is resisted by the
connecting slab as in a cross-wall structure. In the
hull-core system, however, coupling occurs also between the
centre core and the exterior frames. Apart from
constraining the core and the exterior framed tube to

deflect equally, resulting in a sharing of lateral loads,
the slab also restrains the core against the cantilever

bending action which produces bending and differential
shearing across the floor span. The coupling action induces
in the normal frame panels vertical axial forces which

reduce the shear lag effect in column loads produced by
framed tube action, and also increase the moment of
resistance of the structure due to the large lever-arm
effect.

Under torsional loading the centre core behaves as a
thin-walled tube of open section, and undergoes warping of
cross-sections, which results in differential vertical wall
displacements across an opening. The floor slab restrains
the warping by being forced to deform out-of-plane where
it connects rigidly to the core. The restraining action
stiffens the core against torsional rotations and reduces
the longitudinal warping deformations and base stresses in
the core walls. As in the case of pure bending action,
when external frames are present, torsional coupling' occurs

further between the core and the exterior frames and
results in a structure of greater stiffness.

In the cross-wall and centre-core structures, although
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the lateral stiffness is increased considerably by the

interaction between the slab and shear walls, the essential

lateral stability of the structure 1is derived from the
inherent flexural stiffness of the shear walls. A

structural system which relies solely on the interaction
between the slab and the vertical elements to provide the

lateral stability 1s the flat plate structure frequently
used for multi-storeyed office buildings of medium height

(10 to 15 storeys). The system consists of orthogonal
rows of columns connected by flat slabs. The slab in this

case provides the portal bracing which forces individual
columns to act as members of a rigid frame. The flat
plate structure comes under the general classification of

frame buildings which include systems with waffle slab and
joist-slab floors.

The structural analysis and design of a slab coupled
shear wall, centre core or frame system may readily be
performed using the techniques developed for beam-coupled
systems, provided that the equivalent width of the slab
which acts effectively as a wide coupling beam, or its
corresponding structural stiffness can be assessed.
Unlike a beam however, the coupling stresses are not
uniform across the width of a slab. Heavy shearing actions
are induced in the coupling slab giving rise to severe
stress concentrations around the inner edges of the
restrained wall or column. In order to design the slab
safely, the magnitude and distribution of these stresses
must be known. The interactive shearing forces at the
slab-wall or slab-column junction must also be accurately

known to allow the local detailing of highly stressed
regions in the vertical element.

1.3 PREVIOUS WORK

It is only relatively recently that systematic studies
have been made of the nature of the interaction between

laterally loaded walls and floor slabs and of the relative

importance of the various parameters affecting stresses and
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deformations. The first theoretical investigation on

the coupling of cross—-walls by floor slabs was carried out

by Qadeer and Stafford Smith® who used a finite difference

technique to evaluate the bending stiffness of a slab panel

coupling a pair of plane walls. The bending stiffness was
evaluated essentially by imposing on the slab at the wall
positions transverse deflections produced by an assumed

unit parallel wall rotation, and evaluating the slab
reactions and hence the resultant wall moment by a plate

analysis. Values of bending stiffness and effective width
were obtained for a range of slab proportions and wall
opening widths and tests were conducted on small-scale
models to support the theoretical results. The distribution
of coupling actions in the slab was also evaluated by the
same investigators.3 Values of stress resultants were
presented for various locations on the slab, but
unfortunately the results cannot be interpreted sensibly
because the vital distances have not been normalised and
units have not been given for then. A similar investig-
ation was carried out by Chang4 who has presented curves
showing the sectional variation of bending moments in a
non-dimensional form for various slab proportions.

The coupling of plane walls by floor slabs was
investigated by a finite element technique by Petersson.5
A 'mixed' type of rectangular bending element with corner
deflections and side bending-moments as variables was
employed for the finite element analysis. Small-scale
models were tested to support the theoretical results.

The above mentioned investigations were restricted to
plane walls of zero thickness. The influence of finite
wall thickness on the bending stiffness of the slab was
investigated by Black, Pulmano and Kabaila6 using a

conforming quadrilateral bending element developed by
Veubeke34 for the finite element analysis of the slab.

More recently the influence of orthogonal walls
acting as flanges in tee-shaped, ell-shaped and box-shaped
walls has been examined experimentally by Coull and El Hag'
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and by El-Buluk.8 Slab stresses were measured both by

the Moire interference technique and directly by strain
gauges. A finite element study on the influence of flange
walls was reported by Tso and Mahmoud9 very recently since
the completion of a similar study by the author.10

Very little lnvestigation appears to have been carried
out on the warping interaction between floor slabs and
shear cores. The only investigation known to the author
was carried out by Stafford Smith and Taranath;l'ls
showed how the warping stiffness of a slab could be

evaluated by a finite element technique i1n a torsional

who

analysis of a slab-coupled core structure. The warping
stiffness was evaluated in an essentially similar manner
to the evaluation of bending stiffness for a slab in a
cross-wall structure. Transverse displacements produced
by a unit torsional warping (defined as the rate of twist
in the core and considered as a generalised displacement
term), and assumed to vary according to Vlasov's law of

14

sectorial areas were imposed on the slab. The slab

reactions and resultant bimoment (a generalised force term
corresponding to the torsional warping displacement term)
were evaluated by a finite element analysis of the slab to
give the warping stiffness of the slab.

Although the coupling action of a slab in a flat
plate frame is very similar to that in a cross-wall
structure, since a shear wall is, in essence, a very deep
column, past investigations for the two structural systems
have been pursued independently, and by different
investigators. The earliest investigation on the relative

influence of various structural parameters on the bending

stiffness of a slab in a flat plate frame was carried out

by Khan and Sbarounis.15 The rotational stiffness and

effective width of slab were evaluated for a range of
column and slab proportions by small-scale model tests in
conjunction with approximate slab analyses using a beam-
grid analogy. Since the experimental and theoretical
techniques employed were relatively unsophisticated, the



results obtained are of limited accuracy.
The relative influence of column stiffness, boundary
conditions and relative column-slab sizes on the rotational

stiffness of a slab panel was evaluated by Aalamil6 using
a finite difference technique, and subsequently by Mehrain
and Aalamil7 using a finite element technique. The

results are limited to square columns and square slab panels.

The effective width of a slab was evaluated for a wide
range of geometrical ratios by P'ecknold18 and by Allen and
Darvalllg’20 using a closed form series solution which,

unfortunately, does not account properly for the important
column-slab boundary conditions in the plate analysis.21

1.4 SCOPE OF WORK

The work described in this thesis is concerned with
the evaluation of effective width, bending or warping

stiffness and stress distribution for slabs interacting
with the vertical elements (walls or columns) in cross-wall,
centre-core and flat-plate-frame structures. The finite
element technique and an influence coefficient technique

are employed in the investigation to obtain the relevant
design information. The finite element technique uses
established element formulations, but the influence
coefficient technique is developed here for the first time.
A paper on the latter technique has been accepted for
publication in a forthcoming ACI symposium volume.81

Elastic behaviour of the structure is assumed throughout
the investigation.

In Chapter 2 of this thesis, the fundamentals in the
theories for plate bending and warping torsion in open-
section thin-walled beams are summarized so that reference
to other texts 1is uhnecessary. The general procedure of
the finite element method and special features of the
established element formulations are briefly described.

The influence coefficient technique is developed and

influence functions are derived by the classical plate
Levy method of solution.
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The influence of various structural parameters on
the interaction between the slab and shear walls in the

cross wall structure is investigated by the finite element
method in Chapter 3. Plane walls, flanged walls and box
cores are considered. Design curves and empirical
equations are presented to enable the rapid evaluation of
effective width or slab stiffness for lateral load analysis
in practical situations. Curves are also presented to

enable the calculation of slab stresses for the slab
design.

In Chapter 4, the influence coefficient technique is
applied to the analysis of the slab in the cross wall
structure. The convergence characteristics, accuracy,
and computing efficiency of the technique are evaluated by

comparing the results obtained by the technique with the
theoretical and experimental results avalilable in the

literature and those obtained by the finite element method
in Chapter 3.

In Chapter 5, the effects of local elastic wall
deformation on the coupling performance of the slab are
evaluated by a finite element technique for a range of
wall configurations. Curves are presented to enable the
flexibility effects to be included in the evaluation of
slab stiffness.

In Chapter 6, the influence of a slab on the hending
stiffness of a lintel beam coupling a pair of plane walls
i1s examined. The problem is of interest since in
practical shear wall structures, walls are frequently
coupled by lintel beams monolithic with a floor slab. A
finite element technique is employed to evaluate the
effective flange width of a lintel beam for various wall,
slab and lintel geometrical ratios.

The relative influence of various structural
parameters on the warping stiffness of a slab enclosing a
centre core is investigated in Chapter 7. Box cores with
single and double openings are considered. A finite

element technique is employed to evaluate the slab
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stiffness. Curves are presented to enable the effective

width for an equivalent beam to be rapidly evaluated for
the torsional analysis of a core structure.

In Chapter 8, the bending stiffness of a slab
coupling a centre core to'an exterior frame is investigated.
Finite element and influence coefficient techniques are
employed in the investigation. Tables are presented to
enable the bending stiffness and effective width of slab
to be rapidly evaluated for various geometrical ratios.

The influence of various structural parameters on the
rotational stiffness and effective width of slab in a

flat plate frame is investigated by the influence coeffic-
lent technique in Chapter 9. A comprehensive set of
Tables is presented to enable the rapid evaluation of
rotational stiffness. or effective width of slab for frame
analysis in practical situations.

An experimental investigation carried out to support
the theoretical investigations on slabs coupling cross-
walls is described in Chapter 1O. Effective widths and
slab stresses are obtained in the tests using small-scale
perspex models,

Aspects of computing and salient features of the
computer programs written during the course of the work
are described in- Chapter 11l.

The closing chapter summarizes the main conclusions

reached in this thesis and indicates possible areas for
future investigation.



CHAPTER 2

THEORY

2.1 INTRODUCTION

Shear walls and floor slabs consist essentially of

two-dimensional plane elements. When resisting lateral
loads in a cross-wall structure, shear walls undergo in-
plane bending and floor slabs undergo out-of-plane bending.
Since the thickness of the wall is small, in comparison
with the wall height or depth, the wall 1s subjected to a
state of plane stress, in bending. However, as the depth
of the wall is small in'relation to its total height, the

overall wall behaviour may be approximately described by
ordinary beam theory. The thickness of the floor slab is
small compared to the floor span. The transverse
displacement, induced in the slab are small compared to
the slab thickness, and in-plane strains in the slab are
generally negligible. The bending action of the floor

slab may therefore be described by small deflection thin
plate theory.

Shear cores consist essentially of thin open-section
box-shaped shear walls, Under torsional loading, a shear

core undergoes warping of its cross sections. Vlasov's
theory of thin walled beams which accounts for warping
torsion may be used to describe the torsional behaviour of
a shear core.

In this chapter, the fundamentals in the theory of
plate bending and in Vlasov's theory of warping torsion are
briefly described mainly to introduce the terminologies
and important mathematical relationships which will be
referred to later in the thesis. The finite element
procedure and the influence coefficient technique, which

are the analytical tools employed throughout the
investigation of slab-wall interaction, are then described.

2.2 THEORY OF PLATE BENDING

The basic theory of plates is fully treated in the
standard text by Timoshenko and Woinowsky_Krieger.22 The
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salient features of the theory, applicable to the bending
of thin elastic isotropic plates with small deflection are
here briefly reviewed.

2.2.1 FUNDAMENTAL ASSUMPTIONS

The fundamental assumptions made in the development

of the theory are as follows:

1, Plane sections of the plate-before bending remain plane
after bending.

2. The middle surface of the plate remains a neutral plane
(i.e. unstrained) during bending.

3. The normal stresses in the direction transverse to the
plate can be disregarded.

2.2.2 DEFLECTION, SLOPES AND CURVATURES

The displacement of a bent plate is uniquely described
by the transverse deflection w at all points on the middle
surface of the plate. Taking the x-y plane as the middle
plane of the plate before bending, the slopes of the middle
surface in the x- and y-directions are given respectively
by

- OV = OV
ix ¥ and iy 3V

The curvatures of the middle surface in the x- and

y-directions are given respectively by

L. ozy g Loz
?
Tx 3 X Ty Yy
and the twist of the middle surface is given by
1 azw
rxy dX3Yy

2.2.3 STRESS RESULTANTS

The bending moments per unit length, Mk and M_, and
the twisting moments per unit length, Mxy and M&x (Fig.
2.1(a)) are related to the curvatures and twist by



13

M = -D (azw + ¥ -a-?-?-
X axﬁ ay2
2 2
0°w 0 W
M = o« D ( + V )
y dy2 3%
azw
M =« M =D -V) (2.1)
Xy yX dX Y

where Vv 1is the Poisson's ratio and D is the flexural

rigidity of the plate, defined by

E t3

D -_____2_.
12 (1-v“©)

in which E is the modulus of elasticity, and t is the
plate thickness.

The transverse shearing forces per unit length, Qx and
Qy, (Fig. 2.1(a)) are given by

oM oM 2 2
- yX Xy o _ d (Qw  37w
Qx ( Ay M ax) D X (axz ';;50
oM oM 2
- __zm__é_xv -_ D2 _,z“' 2.2

The Kirchhoff supplemented shearing forces per unit
length, vx and Vy’ at the plate edges are given by

oM
X
Vv, = (Qx--Tyl) = - D
Vy- (Qy.. 6x):.'.Im-..Di....-n.--.--r (2.3)

2.2.4 STRESSES

The normal stresses and shearing stresses (Fig. 2.1(b))

at a transverse distance z from the middle surface can be
obtained from the stress resultants by the following
expressions



14

UY - 12 M&-:s

Tyy = 12 M }'25 (2.4)
Txz -% '?{'E 1 - ’4%;)

T, =3 -Qg-’- <1-iz-;) (2.5)

2.2.5 STRAIN ENERGY

The strain energy in a plate due to bending and
twisting is given by

2 2 o 2 2 2 o
D 0 W d W 0 W d W 0 W
2 f'[ {(ax T ayg) ( ‘ [ax 0y (axay ]}dxdy

(2.6)
where the integration is performed over the area of the

plate.

2.2.6 GOVERNING PLATE EQUATION

In a piate’bent by a uniformly distributed lateral
load of intensity q, considerations of compatibility,

equilibrium and material properties of a small element ,
leads to the governing biharmonic equation for the plate

deflection

a4w + 9 a4w + a4w - g | (2.7)
% x2ey>  ayr D

A solution of the governing equation satisfying the known
boundary conditions provides a complete solution for the
plate bending problen.

2.2.7 BOUNDARY CONDITIONS

Boundary conditions in terms of displacements or

stress resultants are usually known at edge supports or
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along lines of symmetry or antisymmetry (inflexion). The

commonly encountered boundary conditions are briefly
discussed.

(a) Simply Supported Edge

Along the simply supported edge X = a, the deflection
and bending moment M& are both zero. The reduced boundary
conditions are, since w/ayz = 0,

W - ()

azw at x = a (2.8)
—_—r - O

0X

(b) Clamped Edge

Along the clamped edge x = a the deflection and normal
slope are both zero, and the boundary conditions are

W = (0

oW at x = a (2.9)
X -

(c) Free Edge

Along the free edge x = a the moment Mk and the
supplemented shear Vx are both zero. The boundary

conditions are

2 2
d W 4y 0 W _ 0
0X 6y2

at X = a
3 3

—-3- + (2—V)

¥ =0 (2.10)
0X3y

(d) Line of Symmetry (or Continuous Edge)

Along the line of symmetry x = a, the normal slope
and supplemented shear V are'both Zero. The reduced
boundary conditions are, since d w/(axay ) = 0,

o
=

= 0

X
at x = a

Olm
W o
=
|
-

o
e

(2.11)
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(e) The Line of Antisymmetry (or inflexion) -

The boundary conditions are identical to those of the
simply supported edge.

2.2.8 THEORETICAL METHODS OF SOLUTION

There 1is no known general method by which the governing
plate equation (2.7) can be solved directly. All known

methods 1introduce some form of approximation to obtain an
indirect solution. Classical_method522
form of solution which may be expressed in terms of

polynomial or transcendental series containing unknown

constants or functions. The unknown constants or functions
are then determined to satisfy the governing plate equation
and the known boundary conditions. Classical solutions

are restricted to plates with simple geometry and regular
boundary conditions; but, being of closed form, they

yield accurate results with relatively little computational
effort, and also allow the solution of other problems by
superposition.

assume a plausible

Numerical techniques may be used to solve complicated
plate problems which cannot be handled by classical methods.
Available techniques approximate either the mathematical
solution of the plate equation or the physical behaviour
of the plate through a discretisation process yielding a
large set of simultaneous linear algebraic equations which

normally require a computer for solution. The finite
difference24’25 and finite element mc—:-thods%i"27 are the

best-known numerical techniques under these two categories.

2.3 TORSION OF THIN-WALLED OPEN SECTIONS

A thin-walled beam of open section subjected to
torsion undergoes twisting.about its axis and warping of
its cross-sections. The warping arises from differences
in the longitudinal displacements of points on the contour

of the section. Any axial constraint which prevents the
free warping of the section induces longitudinal stresses
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in the bean. The rate of twist along the beam becomes

non-uniform. Since St. Venant's theory does not allow

for longitudinal stresses and is applicable only for uniform
torsion, it becomes inadequate for describing the behaviour

of the thin-walled open section under non-uniform or
restrained torsion.

A suitable theory which accounts for non-uniform
torsion is Vlasov's theory of thin walled beams. Since the

development of the theory is fully described in the standard

text23 only the salient features of the theory will be

described in this section.

2.3.1 WARPING DISPLACEMENTS

In Vlasov's theory, it is assumed that the cross-
sectional shape of the section cannot distort and that the
shear strain of the middle surface of the section is
negligible. By considering the kinematics of rigid
contour displacements of cross-sections, and the condition
of zero shear strain in an element of the middle surface,
it can be shown that the longitudinal displacement of a
point P(z,s), (Fig. 2.2(a)) is given by

(2.12)

where do/dz is the rate of twist and IU is the sectorial

co-ordinate of the point P. The quantity do/dz = © (Z),
which serves as a measure of the warping of the section
may be considered as a generalised displacement quantity
referred to simply as the torsional warping.

2.3.2 WARPING STRESSES

The stresses at a section are assumed to consist only
of longitudinal direct stresses and tangential shear
stresses. By considering the stress-strain relationship

described by Hooke's law, the longitudinal direct stress

at point P(z,s) can be shown to be given by

2

d-o
g = - L ux (2.13)
Z,S 1 d22
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where E1 = E/ (1 -i’z), and E and v are respectively
Young 's modulus and Poisson's ratio.

The tangential shear stress distribution across the
wall thickness is assumed to be obtained by the super-
position of a uniform membrane shear stress distribution
on a linear St. Venant shear stress distribution (Fig. 2.2

(b)). By considering the equilibrium of a shell element,

the membrane shear stress at the point P(z,s) can be shown
to be given by

tZ,S =2 El -—-3 (2.14)

where hS is the wall thickness, and S, o is the sectorial

static moment given by ’

S
O

with dA = h ds.

2.3.3 WARPING STRESS RESULTANTS

The longitudinal direct stresses Gé at a cross-
section at z give rise to a generalised stress-resultant

termed the bimoment B, which may be derived by virtual work
as

B, = fA O-Z,s UJS dA (2.15)

Substituting for Gi . from equation (2.13), B, can be
expressed as

d%0 J
BZ = - E]. IUJ —d—z—g (2-16)

where I 1s the sectorial moment of inertia defined by
I - f w? ga
A

Using equations (2.13) and (2.16) the longitudinal direct

stress Uﬁ < may be expressed in terms of the bimoment BZ
]
as,
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B

Z
2,8 = T, Vs * (2.17)

The membrane shear stresses 'tz at the section at
z give rise to a flexural torsional moment T, about the

shear centre given by

T, ™ fA(‘EZ’S hs) r_ ds = .{; (tz, hs) dw
(2.18)

where rS is the normal distance from the centre of

rotation to the tangential line at the point (z,s).
Substituting for T, . given by equation (2.14), T, may

’

S

be expressed as

3
d o
T[u = El Iw '1 (2;19)
dz
The membrane shear stress ‘Cz g WAy be expressed in terms
] .
of the flexural torsional moment T, by
T S
W w, S
=B o 2-20
Tz, s T, '—H:- ( )

The St. Venant torsional moment TV is given by

do
—— 1 S—— .1
T, =G J 52 (2.21)

where G is the shear modulus, given by

G = T
and J is the St. Venant moment of inertia given by

J=w3b h°

where b and h are respectively the width and thickness of
the individual plates which make up the beam and a« is a
coefficient close to unity.

The St. Venant shear stress is zero at the middle
surface and has a maxXimum value at the external surface
given by T

Ty =Th (2.22)
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2.3.4 GOVERNING DIFFERENTIAL EQUATION

For torsional equilibrium, the sum of the flexural

torque T, and the St. Venant torque Tv is equal to the
applied torque T at a section, 1i.e.

T, + T, =T

By substituting equations (2.19) and (2.21) in the above
equilibrium equation and differentiating once with respect

to z, the governing differential equation for torsion is
given

4 2
d Q8 d“0
E. I _—Z_GJ__Z“t(Z) (2.23)
1 "w dz dz

where t(z) is the intensity of the applied torque at
position =z. The solution of the above fourth order

governing differential equation satisfying the boundary

conditions at the ends of the beam provides a complete
solution for the torsional analysis of the beamn.

2.3.5 BIMOMENT RESULTANT OF EXTERNAL LOADS

The bimoment resultant of longitudinal forces acting
on a section of the beam may be obtained by two theorems:

(a) "A bimoment caused by an external force in a direction
parallel to the axis of a beam is equal to the product

of this force and the principal sectorial co-ordinate
of the point of its application."

(b) A bimoment caused by a bending moment acting in a
plane parallel to the longitudinal axis of the beam is

equal to the product of this moment and distance of
its plane from the shear centre of the beam."

The mathematical expressions for the bimoment result-
ants for various forms of loading are as follows:

(2) Distributed load of intensity p(s), (Fig. 2.2(c))
The bimoment is given by

B, = | PU ds (2.24)
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(b) Concentrated forcePZ at point s = k, (Fig. 2.2(d))
The bimoment is given by

B, =P, W, (2.25)

(c) Concentrated in-plane moment MS at point s = Kk,
(Fig. 2.2 (e)) /
The bimoment is given by

dW

where dW/ds is the rate of change in the tangential
direction s of the sectorial co-ordinate function.

(d) Concentrated out-of-plane M_ at point s = Kk,

(Fig., 2.2(f))
The bimoment is given by

dWw
BUJ = Mn(a—-n)k (2.27)

where dWJ)/dn is the rate of change in the normal direction
n of the sectorial co-ordinate function.

2.4 THE FINITE ELEMENT METHOD

2.4.1 GENERAL PROCEDURE

In the general procedure of the finite element method,
the continuous plate is divided into a number of small
elements, usually triangular, rectangular or quadrilateral
in shape (Fig. 2.3(a)). These elements are inter-
connected together at their corners or nodal points, and,
at these points, continuity of displacements and equilibrium
- mst be established.

Consider a typical quadrilateral element e with nodal
points i, j, k and 1 (Fig. 2.3(b)). Various degrees of
freedom may be associated with each nodal point. These
degrees of freedom consist usually of independent
displacement components and their derivatives (u, v, w,

o u OV oW

5% ' 3% T% ©tc.). Denoting the 'm' nodal displacements

of node i as a vector
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6, = |-

6; (2.28)

the displacements of the element e can be referred to as

Corresponding to each nodal 'displacement' 6;, there

exists a generalised 'force' f;. Again denoting the nodal

forces at node i as

(2.29)

the nodal forces of the element may be referred to simply

asS

(7l - s

1

j

The nodal forces may be related to the nodal
displacements by

e e e
[F]® = [k] {6} , (2.30)
where [k]e represents a stiffness matrix of element e.
This matrix is composed of 1 x 1 sub-matrices [kii]’
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[kij]’ .o [kll]’ each of m X m terms. |

Once the stiffness matrices of the elements are
established, the formulation of the whole problem can be
easily completed.

Consider a joint 1 to which p elements are connected.
If at this joint external forces [Ri} are acting, a set
of equilibrium equations can be written for the joint as

1 2 D P e e
{Ri} - {r,} + {7} + ... {7} = Z[kij] {6}
e=1
| (2.31)
Establishing equilibrium at all the joints in the structure

leads to a system of equations which may be represented

simply as
{rR} = [x][a!} (2.32)
in which
8y
{I%} - ) lists all the external nodal forces,
61
*{A:} = . lists all the nodal displacements,

and [K] ils the structure stiffness matrix built up by
adding the stiffnesses of elements adjacent to each node.
The system of equations can be solved once the known
support displacements have been substituted.

The internal stresses in an element can be related
to the nodal displacements. These will be given as

e e e |
o} = [s] {&} (2.33)
where ..[S]e is the element stress matrix. The solution of

the problem is seen to hinge on the determination of the
element stiffness matrix [k]° and the stress matrix [S]C.
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2.4.2 DERIVATION OF ELEMENT CHARACTERISTICS

(a) Stiffness and Stress Matrices

In order that the finite element idealisation may

provide a reasonable representation of the actual continuum.
each element must be required to deform similarly to the
deformation developed in the corresponding region of the
continuum. This can be accomplished by specifyiné for

each element suitable deformation patterns which will
provide internal compatibility within the element and at

the same time achieve full compatibility of displacements
along element boundaries. The deformation patterns may

be assumed in the form of polynomial functions with
unknown constants which can be regarded as generalised

co-ordinates. The number of independent functions
specified must agree with the number of nodal degrees of
freedom for the element. The internal displacements {u}

may be expressed in terms of the displacement functions [P]
thus,

{u} = [P] {a\- (2.34)

where {al is a column of constants. By substituting the
co-ordinates of each nodal point in turn, the nodal

displacements {6}e are evaluated in terms of the nodal
constants, thus:

(6}¢ = [c] {«} (2.35)
in which [C] is a square matrix simply written in terms

of the co-ordinates of the nodes. The unknown constants

can then be evaluated in terms of the nodal displacements
as

{a} = eyt {61¢ (2.36)

This allows the internal displacéments to be related to
the nodal displacements thus

-1
(u} = [P} [eI”" {&}® = [N] {O6}° (2.3D
where [N] now contains interpolation functions.

The element strains {e] may be evaluated from the



25

appropriate derivatives in the displacement functions and

expressed as |
(e} = [B] {a«} ={[B] Cink (6}° (2.38)

The element stresses [0'} are related to the element
strains by

(o} =[p] f{e} =[D][B] [c]™" {&}° (2.39)

where [D] is the elasticity matrix written in terms of the
elastic material propertlies of the element. The product

matrix ([D] [B] [CT_l) ls seen to represent the stress
matrix [S]°.

The element stiffness matrix may now be established
by applying the principle of virtual work. During virtual
displacements fg]e, the external work done by the nodal
forces is

Wy = C[5]9)T {r}° (2.40a)

The internal work done is given by the product of the
actual stresses {o] and the internal virtual strains
{€] thus

T
W, = 3 o}l d (2.40b)
1= [ {E e} e

where {e} = [B] [C]-l [S}e
and dv is the differential volume of the element.
Equating the external work to the internal work gives
- p— T -
BT {71 = ({8197 [ am) e DT {o] av
vol
As this relationship is valid for any value of virtual

displacement, the equality of the multipliers must exist.
Substituting Eq. (2.39) then gives

(F]° = [ 8] leTHT [p] [B] [cI™t {6}° av
vol ,
- [der®T { | te1Tio) telav) tert] fsye
vol
(2.41)
The whole expression within the square bracket can

then be interpreted as the element stiffness matrix [k]e.
The central portion under the integral is commonly referred
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to as the generalised stiffness matrix [kd]ea The

integration required to evaluate [ka']e has to be performed
over the entire volume of the element.

For certain simple elements, the stiffness and stress
matrices may be evaluated explicitly. In general it is

more convenient to perform the various matrix operations
and integration numerically on a computer.

(b) Consistent Load Vector

In the formulation of the general finite element
procedure, it was assumed that the external loads applied
to the plate were concentrated at the nodes. With loads
which are distributed over the volume of the element, a
consistent method of assigning these loads to the respective
nodal points may be established using virtual work.

During any displacement, the work done by the assigned
nodal loads 1is equal to the corresponding work done by the

actual distributed loading. The work done by a set of
nodal loads [L} during virtual displacements {6} © is

W, = ( {E} eyt {L]| (2.42a)

and the corresponding work done by the distributed loading
(a} is

Wg = {8}" {a}av = f

vol

(p] et {615 {q) av
| (2.42b)

On equating the two expressions, and considering unit
virtual displacement,

o a1y T T |
(L} = cl™ /vollpl fa} dv (2.43)

2.4.3 PLATE BENDING AND PLANE STRESS ELEMENT CHARACTERISTICS

The procedure for deriving the element stiffness and
Stress matrices and the consistent load vector has been

described in general terms and is applicable to any class
of elastic continum problems such as plane stress and
pPlane strain, plate bending, shells and solids. The
application of the general procedure to plate bending and
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Plane stress problems will now be shown in more specific

detail, where features unique to a particular class of
problem are involved.

In the following sections, a subscript comma after a
displacement notation is taken to indicate partial
differentiation of the displacement function with respect
to the subscript variables following the comma ; for example,

L oW - W

Yx "% Yy T3
w - azw * W = azw * W = azw : etc
XX 520 T,xy TSRy ' ,¥Y  Gg2 '

(a) Plate Bending Element

The deformation of a plate, under the usual thin plate

theory, is uniquely defined by the transverse deflection w
at all points on the middle surface. The deformation
pattern for the element can be written in the form of

Eq. (2.34) as
w = [P] {a}

in which [{P] is a row vector of co-ordinate functions and
{a} is a column of constants.

The nodal displacement parameters in Eq. (2.28)
consist essentially of the deflection w and two slopes,

w _ and w and may include higher derivatives of w, if

’
maﬁe than’{hree degrees of freedom are considered at each
node. The total number of degrees of freedom for the
element must of course match the number of unknown constants
in {«} .

The actual strains in the plate can be defined in
terms of the middle-plane curvatures, by the usual

assumption of linear strain variation across the plate
thickness. Similarly the actual stresses can be found in
terms of the moment stress-resultants (cf. Eq.(2.4)). For

the purpose of analysis, the generalised ‘'strains' in
Eq. (2.38) may be represented by



28

- W
, XX

(e} - Y yy

2
wer

and the generalised 'stresses' in Eq. (2.39) by
loh = 1Y

since the product of the appropriate components in {€} and
{aﬂ gives the correct internal work done across the plate
thickness.

The bending moments are related to the curvatures by

Eq. (2.1), for an isotropic plate. The. elasticity matrix
in Eq. (2.39) is then defined by

1 V 0
3
[D] = __EE_.Z_ v 1 O
12 (1-v“) (1= )
O 0 —3—

in which t is the plate thickness, E is.the modulus of
elasticity, and V 1is Poisson's ratio.

The integration required for the evaluation of the
generalised stiffness matrix in Eq. (2.41l) is now
performed over the area of the element, thus

[kq] = [ [B)T [D](B] dx dy
(b) Plane Stress Element

In a plane-stressed continvum the displacement field

is given uniquely by the u and v displacements in the x
and y cartesian co-ordinate directions. Thé deformation

pattern for the element can then be written in the form of

Eq. (2.34) thus,
u |
-

\'4

in which [P] is a matrix of co-ordinate functions and {«)
is a column of unknown constants.
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The nodal displacement parameters in Eq. (2.28)
consist of the two essential displacement components u
and v and may include first and second derivatives of u
and v depending on the number of degrees of freedom
considered for each node.

The state of strain at any point is defined by three

straln components ¢€_, & and Vo and these are related to

y y’
the displacements by
E u
X X
- \'

°y Y
1] u + Vv
Xy y Y y X

The state of stress, similarly 1is described by three
stress components, thus

Txy

The stress-strain relationships expressed in Eq. (2.39)
then provides the definition of the elasticity matrix thus,

1V 0

(D] = 'E—z v 1 0
1-v (1-7)
0 0 7

The generalised stiffness matrix [k f:x] is now evaluated

by integrating the infinitesimal internal work done, over
the volume of the element, thus

(ke] = [[B)T [D] [B] t dxdy

2.4.4 SPECIFIC ELEMENT FORMULATIONS

For a particular class of problem, the element
characteristics are dictated by the choice of the element
shape, nodal displacement parameters and displacement

functions, which allow an endless number of possibilities.
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The formulation of the established elements which have
been used for the present study will now be described.

2.4.4.1 Rectangular Bending Element RB1l2

This plate bending element, commonly referred to as
the ACM (Adini-Clough-Melosh) rectangle,28 has three

kinematic degrees of freedom, consisting of the transverse
deflection w and two rotations Qx and Oy, at each corner

node, The displacement field for the element is assumed
in the form of an incomplete 4th order polynomial

expansion in x and y containing 12 unknown constants thus

w-[lxyx‘?'....xyzysxsyxys] axy

F——————’—————J «,

10 complete 3rd order
polynomial terms

: (a)
%12

The displacement field chosen ensures continuity of
deflections, b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>