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Abstract

Earth observation and land-cover analysis became a reality in the last 2-3 decades

thanks to NASA airborne and spacecrafts such as Landsat. Inclusion of Hyperspectral

Imaging (HSI) technology in some of these platforms has made possible acquiring

large data sets, with high potential in analytical tasks but at the cost of advanced signal

processing. In this thesis, effective/efficient feature extraction methods are proposed.

Initially, contributions are introduced for efficient computation of the covariance

matrix widely used in data reduction methods such as Principal Component Analysis

(PCA). By taking advantage of the cube structure in HSI, onsite and real-time covari-

ance computation is achieved, reducing memory requirements as well. Furthermore,

following the PCA algorithm, a novel method called Folded-PCA (Fd-PCA) is pro-

posed for efficiency while extracting both global and local features within the spectral

pixels, achieved by folding the spectral samples from vector to matrix arrays.

Inspired by Empirical Mode Decomposition (EMD) methods, a recent and promis-

ing algorithm, Singular Spectrum Analysis (SSA), is introduced to hyperspectral re-

mote sensing, performing extraction of features in the spectral (1D-SSA) and also the

spatial (2D-SSA) domain. By successfully suppressing the noise and enhancing the

useful signal, more effective feature extraction and data classification are achieved.

Furthermore, a fast implementation of the SSA methods is also proposed, leading to

reduction of computational complexity. In addition, combination of both spectral- and

spatial-domain exploitation is also included, comprising data reduction.

Finally, promising Deep Learning (DL) approaches are evaluated by the analysis of

Stacked AutoEncoders (SAEs) for feature extraction and data reduction, introducing

a method called Segmented-SAE (S-SAE), working in local regions of the spectral

domain. Preliminary results have validated its great potential in this context.
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Chapter 1

Introduction

1.1 Research Motivation

In recent years, HyperSpectral Imaging (HSI) technology has become increasingly im-

portant, widely extending its applications to many different areas thanks to the spectral

data acquired in hundreds of bands, which provides extremely useful information for

material characterisation, recognition, classification, and many other related tasks. HSI

provides spatial scenes or images in which every pixel is represented by a vector ar-

ray of values acquired at different wavelengths over the spectrum. As a result, due to

the information covered from a wide spectral range, HSI can detect minor difference

of moisture, temperature, and chemical components changes. With such powerful ca-

pability, HSI technology is being introduced and employed in many different fields,

leading to a vast number of applications areas such as food quality inspection [1, 2],

medical diagnosis [3–5], pharmaceutical [6], and forensics [7, 8], among many others.

Nevertheless, remote sensing Earth observation is probably the most remarkable

application that takes advantage of the spectral information provided by the HSI de-

vices [9, 10]. In the last decades there is an increasing interest for remote sensing Earth

observation, which has been translated into several missions and spacecraft launches

from the National Aeronautics and Space Administration (NASA) and similar insti-

tutions such as the European Space Agency (ESA). To this end, HSI technology can

provide inestimable help and solutions in the study of land images, where the high

amount of spectral content available allows more appropriate characterisation of pix-
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els in the image, making feasible the classification of pixels into different predefined

labels according to the elements in nature they are representing.

Given the current context, several Earth observation missions from a few institu-

tions have provided selected HSI data to be commonly used by the HSI research com-

munity worldwide. In order words, the data acquisition along general conditioning

(usually associated with noise, water absorption effects, and different types of cali-

bration) is mostly addressed in the missions, thus the research community focuses on

dealing with the data in the best possible way with the available data sets provided by

these remote sensing projects.

However, the high potentialities of hyperspectral remote sensing come at the cost

of a proper way of Digital Signal Processing (DSP). In the first place, the spectral

content available in HSI results in extremely large data, with related very expensive

computational complexity. Moreover, the most challenging problem for investigation

in hyperspectral remote sensing lies on how to extract appropriate features from the

conditioned data and meet the need for following on data analysis and interpretation.

In summary, with such HSI data, researchers are being challenged by numerous big-

data projects requiring advance DSP, where several key problems can be highlighted

as follows:

1. Most existing feature extraction methods involve considerable computational

complexity, especially for embedded or portable devices and onboard Earth ob-

servation missions. Therefore, embedded systems along with online applications

usually find remarkable restrictions in computational terms, making real-time

operations infeasible, problems which seem aggravated in the case of HSI data.

2. Existing methods used for feature extraction and data reduction are found ac-

tually to provide a limited performance in terms of classification accuracy and

efficiency, due to the failure in extracting the most representative information

from the original data. How to improve the efficacy and efficiency needs to be

addressed.

3. Most existing methods focus on performing the feature extraction in the spec-

tral domain of the HSI data. Nevertheless, the spatial domain in HSI images
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(with spatial correlation among the pixels) can also be employed alternatively to

or to be combined with spectral domain extraction processing. Actually, such

methodologies have been found to achieve better feature extraction and higher

classification accuracy in the context of HSI.

4. Developments of Deep Learning (DL) algorithms in recent years have made this

methodology a really promising tool in many fields. These methods are claimed

to provide high level of abstraction in extracting features, which can lead to al-

ternative perspectives and benefits much different to those from classical meth-

ods such as Principal Component Analysis (PCA). Nevertheless, it is found that

currently few studies and research have been undertaken in DL hyperspectral re-

mote sensing, where algorithms have not been properly assessed yet and further

evaluation is desirable to fully explore its potential in HSI.

As a result, the present thesis is related to DSP and data mining for extracting

features (generally referred to as feature extraction) in hyperspectral remote sensing,

where the main objectives are to investigate and propose solutions in order to address

the abovementioned challenging problems.

1.2 Original Contribution

In this thesis, several new methods for hyperspectral remote sensing feature extrac-

tion are proposed and evaluated. In general, these new methods aim to provide more

effective features for higher classification accuracy and more efficiency in reducing

the computational complexity, leading to potential advances in onboard and embedded

devices. A more specific summary of these contributions can be highlighted in the

following:

1. Methodology proposal for alternative computation of the covariance matrix of

a hyperspectral cube, aiming to reduce the related complexity and allow onsite

and even real-time covariance computation (on-the-fly feature extraction) [11]

for some well-known feature extraction methods such as PCA.
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2. Modification of the conventional PCA method [12], which is widely used for

hyperspectral remote sensing data reduction, to improve its performance in terms

of computational efficiency and data classification accuracy. With the proposed

method [13] more effective feature extraction is achieved while, at the same time,

the computational complexity of the algorithm is much reduced.

3. To propose using the Singular Spectrum Analysis (SSA) algorithm [14] for fea-

ture extraction in exploiting the spectral domain of HSI images. This method

provides enhanced features with noise mitigated, increasing the classification

accuracy, where a fast implementation of the approach is also proposed to fur-

ther improve its efficiency [15, 16].

4. To propose an extended 2-D version of the SSA algorithm where both spatial-

and spectral-domain information is combined for effecive feature extraction,

leading to much improved data classification accuracy [17]. A fast implementa-

tion of the approach is also proposed to further reduce the computational com-

plexity of the algorithm.

5. Introductory evaluation on Stacked AutoEncoders (SAEs) inside the DL method-

ologies, where initial results seem promising and suggest continuing with this

line of investigation.

Most contributions summarised above have been published in peer-reviewed inter-

national journals and conferences, with some of them currently under consideration,

where a complete list is available in Appendix B, along with several coauthored publi-

cations.

1.3 Thesis Organisation

The remainder of the present thesis is divided into the following 7 chapters.

Chapter 2 provides an overview of the background introduction and related work

in hyperspectral remote sensing, including a survey of feature extraction methods and

the experimental conditions in the related research.
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Chapter 3 proposes an alternative implementation for efficient computation of the

covariance matrix from the hyperspectral cube. With this implementation, the whole

covariance matrix can be determined by a group of partial covariance matrices, en-

abling fast and onsite (on-the-fly) feature extraction in accordance with the way the

data is acquired.

Chapter 4 presents a variation of PCA, namely Folded-PCA (Fd-PCA). By folding

the spectral vectors into matrices, the proposed approach can not only improve the

efficiency but also the efficacy of data classification by extracting both global and local

features from the HSI data.

Chapter 5 introduces the 1D-SSA method for feature extraction in HSI, including

a complete description of the algorithm and examples of application. Then, a fast

implementation is also presented, being both evaluated in comprehensive experiments.

From the analysis, some recommendations are suggested in the 1D-SSA application to

HSI data.

Chapter 6 evaluates the extended 2D-SSA method for feature extraction in the spa-

tial domain of HSI, where the concept of 2D-SSA is described in detail along with

an application example. In addition, a fast implementation is also proposed in a way

similar to the 1-D case. The 2D-SSA method is benchmarked against several state-of-

the-art techniques, especially with the 2-D Empirical Mode Decomposition (2D-EMD)

method [18]. From the analysis, it is suggested that 2D-SSA provides similar efficacy

as 2D-EMD but with much reduced complexity.

Chapter 7 briefly describes SAEs within a DL framework for feature extraction and

data reduction. With a modified implementation based on spectral segmentation, both

the efficiency and efficacy of feature extraction have been improved.

Finally, Chapter 8 summarises the contributions of the thesis and also discusses the

future work as how to further improve the proposed approaches and beyond.
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Chapter 2

Background and Related Work

2.1 Introduction

According to the motivation of the present thesis, background and related work in re-

mote sensing Earth observation is introduced in this chapter. The hyperspectral remote

sensing concept is described in Section 2.2, where key applications and the demand in

feature extraction and data reduction are highlighted. A comprehensive description of

the related experimental framework is provided in Section 2.3, including workflow of

the signal processing, experiments design, and performance assessment. Section 2.4

surveys feature extraction methods in HyperSpectral Imaging (HSI), discussing the

existing work. Finally, a brief summary is given in Section 2.5.

2.2 Hyperspectral Remote Sensing Earth Observation

The concept of remote sensing can be defined as the acquisition and study of infor-

mation from an object of interest in the distance, without any physical contact or ma-

nipulation. More particularly, remote sensing refers to the instrument-based technol-

ogy and application area for the detection, classification, and recognition of objects

in Earth [19, 20], other planets, and celestial bodies including Mars [21] or the Moon

[22]. This field has attracted increasing interest since Landsat-1 [23], the first satellite

for Earth observation, was launched by the National Aeronautics and Space Adminis-

tration (NASA) on 23rd July 1972. Nowadays more active exploration can be found,

such as the Sentinel missions [24] from the European Space Agency (ESA).
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2.2.1 The Data Sources

The remote sensing data source is the electromagnetic radiation reflected from the ob-

jects, captured in some conditions by an acquisition device or sensor. Since every ob-

ject possesses unique characteristics, they can be determined by the reflected radiation,

leading to discriminative information allowing accurate classification or recognition of

different objects. This information can be provided in different data types including

optical or radar images, while the sensors are carried by particular vehicles known as

platforms, normally aircrafts or satellites in orbit for visual exploration (see Figure

2.1), providing land locations imagery. These images are subject to diverse analysis,

being really useful for applications such as land use, urban distribution, or agriculture

monitoring, among others.

Fig. 2.1 Examples of remote sensing by different satellites and aircrafts

Advances in technology during recent decades have led to numerous devices and

optical cameras ideal for remote sensing, taking into account technical aspects such as

mechanical considerations, embedding structures for spacecrafts, engineering life, and

atmospheric or geometric calibration. In fact, as long as more information is provided,

higher potential is expected with relation to potential analysis, and that is the reason

why HSI technology is introduced to remote sensing applications.

In contrast to usual Red, Green, and Blue (RGB) images, as an evolution from

multispectral imaging, the HSI technology is able to capture high resolution data in the
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spectral domain, with hundreds of wavelengths covering from visible to (near) infrared

spectrum (see Figure 2.2). Unlike conventional RBG images, the wide spectral content

in HSI is able to identify and characterise minute differences (unnoticeable to the naked

eye) in terms of temperature, chemical composition, or moisture, among others.

Fig. 2.2 From RGB to hyperspectral

From such amount of captured information, HSI technology leads to really pow-

erful capabilities related to classification and recognition, being widely used in re-

mote sensing and other conventional applications such as agriculture, geology, military

surveillance, and astronomy [9, 10]. Thanks to the numerous and contiguous spectral

bands, this technology additionally provides a unique and inestimable solution for an

increasing number of application areas, becoming a research hotspot in recent years,

as it has been successfully applied to emerging lab-based tasks [1–8, 25].

Fig. 2.3 Hyperspectral cube in remote sensing applications

HSI data is captured in a 3-D structure namely hyperspectral cube (Figure 2.3).

With both spatial and spectral information being simultaneously acquired, the poten-

tial in data analysis and mining is greatly enhanced. In remote sensing Earth obser-
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vation tasks, the pixels or samples from the cube are subject to study, where they are

represented by a vector array containing hundreds of elements, i.e., the spectral bands

or features forming each pixel. Therefore, with narrow bands in nm for the spectral

sampling, hyperspectral remote sensing enables high discrimination ability among the

pixels for data classification tasks such as land-cover analysis. However, this potential

comes at the cost of extremely large data sets and expensive computation, leading to a

main drawback of HSI, the high computational complexity.

2.2.2 Processing the Hyperspectral Cube

Data captured by HSI acquisition devices is usually subject to conditioning and other

similar processes, including different types of calibration and noise removal. However,

the conditioned data is still not ready for optimised analytical tasks, especially in the

HSI case, where such large data makes difficult its comprehension and requires appro-

priate mining. Additionally, the original features or spectral values may not lead to

a direct benefit from their use, because such large dimensionality of features usually

masks valuable information contained in the hyperspectral cube.

Furthermore, when the number of pixels used in training classifier models is rela-

tively reduced with relation to the hundreds of spectral features, the curse of dimen-

sionality, also known as the Hughes effect [26], appears in HSI, especially in multi-

class problems as the reduced amount of pixels in every class is not able to provide

enough knowledge to the models for coping with so many features. Although this fact

is somehow addressed by powerful classifiers such as Support Vector Machine (SVM)

[27], adequate signal processing is required. Bearing in mind the considerable redun-

dancy existing between neighbouring spectral bands in hyperspectral cubes, feature

extraction and data reduction methods are feasible and usually crucial for achieving

appropriate performance in the evaluation of HSI data.

The specific signal processing stage by which the main information from an orig-

inal or conditioned data set can be extracted is generally known as feature extraction.

This mining procedure picks up the potentialities contained in the data (see Figure 2.4),

enhancing the significant knowledge while discarding the useless or even confusing

misinformation. This processing and mining leads to resulting features representing
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the data in a much more appropriate way for subsequent analysis. Therefore, better

features allow the achievement of higher accuracy values in classification tasks.

Fig. 2.4 Feature extraction and data mining for HSI

An adequate processing of the HSI cube in remote sensing applications has led to

several feature extraction and data reduction methods available in the literature. These

methods can be divided into groups according to diverse criteria [28]. A classification

in terms of the exploited domain from the HSI cubes can be derived (see Figure 2.5).

Fig. 2.5 Spectral and spatial domains from hyperspectral cubes

Bearing in mind that every pixel in HSI naturally forms a spectral profile or vector,

the early literature has focused on the spectral content of pixels [29], especially because

HSI presents high correlation between contiguous spectral bands, making feasible the

reduction in dimensionality of features (data reduction). Hence, feature extraction in

the spectral domain is emphasized regarding not only more effective features but also

reduction in computational complexity and other considerations such as the curse of

dimensionality problem [26]. In contrast, spatial-domain methods go further and take

advantage of the spatial correlation in HSI images, reporting better results in recent

years [18] whether combined or not with spectral extraction. Both cases are evaluated

in the present thesis.
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2.3 Related Data Processing Framework

For different HSI data sets, a common data processing framework is widely adopted

by most researchers. This is discussed in detail in the following section to show how

the experimental conditions are set for consistent comparisons.

2.3.1 Signal Processing Chain

In order to provide a better understanding of the hyperspectral remote sensing field, a

description of the full processing chain can be summarised into 4 consecutive stages,

i.e., data acquisition, data conditioning, feature extraction, and data classification, as

shown in Figure 2.6. These are further discussed in detail below.

Fig. 2.6 Classical signal processing chain

A. Data Acquisition

This stage involves capturing the data to be processed in subsequent analytical tasks,

which is not covered in this thesis as the existing data sets are used for analysis. As a

result, the concept of data acquisition is replaced by data description, where compre-

hensive information is given for each data set employed in the experiments.

There are few data sets available for worldwide research, especially with corre-

sponding ground truth. This is partly because labelling or assigning an adequate class

to each pixel is extremely demanding, requiring manual and tedious procedures. Nev-

ertheless, this fact ensures that common shared data is used in the vast majority of

publications available in the literature, leading thus to appropriate comparisons.

A well-known acquisition instrument in hyperspectral remote sensing is the Air-

borne Visible/InfraRed Imaging Spectrometer (AVIRIS) [30] (see Figure 2.7), devel-

oped by the Jet Propulsion Laboratory (JPL) [31] at NASA, providing the first spectral
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images around 1986 and becoming a hit in Earth remote sensing applications. It has

provided the most widely used data sets in this field, with over 500 flights and more

than 600 citations in peer-reviewed publications.

Fig. 2.7 AVIRIS acquisition instrument (image credit: JPL-NASA)

Onboard an aircraft at 20 km of altitude and about 700 km/h of velocity, AVIRIS is

able to measure solar reflected spectrum from 400 nm to 2500 nm [30], capturing radi-

ance in 224 contiguous spectral bands at approximately 10 nm intervals, with a spatial

resolution of 20 m. Spectral, spatial, and radiometric calibrations are undertaken in

laboratory and monitored inflight each year [30].

Another important acquisition instrument is the Reflective Optics System Imaging

Spectrometer (ROSIS) [32]. ROSIS is a sensor developed in the German aerospace

centre (DLR) being based on a design for a flight on an ESA platform [33]. The initial

purpose of the ROSIS design was detecting spectral fine structures in coastal and inland

waters [33], however, further application above land has been derived. This instrument

was first tested in 1992 and operated in 1994 on the Falcon Jet from DLR, following

redesign processes.

Based on a 2-D charge couple device, this acquisition sensor is able to provide

spectral information in the range 430 nm - 860 nm, with a resolution of 4 nm, resulting

in a total of 115 spectral channels [32], including related radiometric, spectral, and

geometric corrections. Further information can be found in [32, 33].

Finally, being part of the NASA Earth observation EO-1 mission, and launched

on 21st November 2000, the HYPERION sensor was the first spectrometer acquiring

science-grade data from Earth orbit [34], providing spectral information in the range
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400 nm - 2500 nm, with resolution of 10 nm, and more than 200 spectral bands (up to

242 bands available). Although onboard the EO-1 spacecraft (see Figure 2.8) at 700

km of altitude, a spatial resolution of 30 m is provided.

Fig. 2.8 HYPERION onboard the EO-1 satellite (image credit: NASA)

Similar to the other sensors, correction procedures are again involved in the ac-

quisition stage, but including further considerations such as the prelaunch and in orbit

radiometric calibration.

Several data sets from the abovementioned sensors are used in this thesis. The

92AV3C (Indian Pines), Indian Pines B, and Salinas C images are obtained from the

AVIRIS instrument. On the other hand, the ROSIS sensor has provided the Pavia Uni-

versity A (Pavia UA) and Pavia Centre A (Pavia CA) scenes. Finally, the Botswana A

data set from the HYPERION sensor is also used in the experiments. All the data sets

used in this thesis are described in Appendix A.

B. Data Conditioning

The conditioning is conceived as a preprocessing stage applied after the data acqui-

sition but prior to the feature extraction stage. With calibration and other procedures

already undertaken, the conditioning at research level only involves few considerations,

normally similar among most publications in the literature.

Data conditioning simply consists of removing some noisy spectral bands from the

given hyperspectral cubes. The bands to be removed in each data set are selected ac-

cording to state-of-the-art publications such as [18, 35] and general suggestions [36].
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This proves the conditioning to be adequate in general terms and, moreover, consis-

tency is achieved among the different publications, leading to fair comparisons to the

current literature. Additionally, few particular labelled classes in the ground truth of

some data sets are not included for classification in some experiments. The reason

behind this fact is that some classes present a quite reduced Number of Samples (NoS)

or pixels, so avoiding them is claimed to provide better statistical significance [37].

Information about the conditioning employed for each data set is available in Ap-

pendix A, where particular conditioning carried out for the experiments is described in

the corresponding chapters.

C. Feature Extraction

Once the data is acquired and conditioned, the next stage in the signal processing work-

flow is the feature extraction. The concept of feature extraction, as already introduced

in Section 2.2.2, is based on the idea of mining the main useful information from a

given data set. Therefore, this stage is where the current literature focuses.

Initially, some discussion can be found with relation to the concept and difference

between feature selection and feature extraction. Feature selection may be referred to

discarding some of the original features, while the extraction concept seems related

to some transformation procedure, such as projection or decomposition. Additionally,

feature selection would imply a reduction in the dimensionality of features not always

obtained from the extraction methods. The general concept of feature extraction is

employed in the present dissertation.

On the other hand, methods can also be grouped into supervised, semisupervised,

and unsupervised cases. Supervised (and semisupervised) methods require prior knowl-

edge of the labelled class assigned to the different pixels. Yet this fact may lead to bet-

ter features as these can be computed taking into account the class information from

pixels, it requires prior knowledge not accessible or available most of the times. Ad-

ditionally, even though the supervised case is expected to perform better, the general

improvement is actually limited, and the unsupervised case results straight and easier

to implement. That is the reason why unsupervised feature extraction methods are

much more preferable and, accordingly, the present research is focused on them.
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Different methods for feature extraction and data reduction are compared in the

experiments under the same conditions, in order to evaluate their behaviour and per-

formance on a consistent and comparable basis, according to some criteria (see Section

2.3.3). The contribution methods from the present research are evaluated and compared

to some state-of-the-art methods from the literature, normally including the use of the

original spectral features (Baseline case) as an initial reference for benchmarking.

D. Classification

Finally, in the last stage, testing pixels are allocated into several labelled classes by

a supervised classification model, where the assigned labels are then compared to the

real ones available in the ground truth of the data, resulting in a classification accuracy

to be used for performance assessment. As the experiments are carried out under the

same conditions and classifiers, the difference in classification accuracy is attributed to

the features employed, i.e., the efficacy of the extracted features from the correspond-

ing aproaches.

The current literature suggests the use of machine-learning classifiers such as SVM

[37]. Exploiting a margin-based criterion, SVM seems to be very robust to potential

problems such as the Hughes effect [26]. With results proved to be better than other

classifiers, SVM has been widely used in the HSI area [18, 29, 35, 37]. Furthermore,

there are several accessible libraries supporting multiple functions of SVM, making its

implementation easy even for embedded systems [38, 39]. Therefore, being considered

the most powerful classifier in the HSI context, SVM is selected as the most appropriate

classifier, where considerations for its implementation are available in the next section.

2.3.2 Design of Experiments

The design of experiments is straightforward (see Table 2.1). Some publicly available

data sets with the mentioned conditioning are selected, covering the first 2 stages in the

processing chain. Feature extraction is implemented by those methods to be evaluated,

hence actually it is the classification stage that needs to be particularly designed, in

considering training/testing partitions and configuration of the relevant classifiers, as

described in the following.
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Table 2.1 Workflow in the experiments

Data Description Data sets employed

Data Conditioning Spectral bands removed and
labelled classes obviated if any

Feature Extraction Methods to be evaluated

Classification Training percentage for
building the models

A. Training and Testing

Although all the pixels in a given hyperspectral cube can be included in the unsuper-

vised feature extraction and data reduction, only the labelled ones are employed in

training the classifier model and subsequent testing analysis, since the corresponding

labels are required during the supervised classification process.

The labelled pixels are therefore divided into 2 groups, training and testing parti-

tions, where no sample overlap is allowed, i.e., no pixel can be used in both groups at

the same time. On one hand, the training partition is used to train the classifier, so a

model is eventually achieved, appropriately constructed by dividing at the same time

the training partition for validation purposes. This model is able to classify an inputted

pixel into one of the predefined labelled classes. On the other hand, all pixels inside

the testing partition are individually classified by the previously built model. Since

the label of each testing pixel is known, it is possible to compare the real label to the

predicted one by the classifier, resulting into an accuracy of classification (%) [20] by

which the performance can be easily assessed.

The most common procedure to divide labelled pixels into the training and test-

ing partitions is a stratified random sampling [20, 40] by some percentage (%). This

procedure evidently produces a random selection of samples for a fair analysis, while

at the same time it ensures an equal sample ratio among the labelled classes, i.e., the

training and testing percentages are the same in each individual class. Obviously, the

same training and testing partitions are employed to evaluate all the feature extraction

methods for fair comparisons. Several different percentages can be employed, hence,

the training percentages usually vary from 5% [41] to 35% [18] (with remaining 95%

and 65% for testing, respectively).
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The experiments are normally repeated several times (10 repetitions seems quite

sensible) under the same conditions but employing a different training/testing partition.

Therefore, several different stratified random samplings [20] provide different training

partitions along with their corresponding testing pixels. This particular consideration

makes the experiments time-consuming and resource-demanding, but it avoids sys-

tematic errors and provides adequate statistical significance [42], reporting the mean

values from the repetitions.

B. SVM Implementation

The powerful SVM algorithm is implemented as the classifier by most researchers.

Although initially being a binary classifier, the SVM can perform multiclass classifi-

cation by means of approaches such as one-against-one or one-against-all [43]. To this

end, there are several important libraries allowing an easy use of the SVM in multiclass

tasks, where BSVM [44] and especially LIBSVM [45] are widely used in the current

literature.

The SVM classifier has to be properly implemented in the experiments. In fact,

different configurations can lead to variable performances [37], being a critical step to

be taken into account. In the first place, the kernel type must be selected. Although

there are a few kernel functions such as linear, polynomial, or sigmoid, the Radial

Basis Function (RBF) Gaussian kernel is normally selected in many experiments based

on previous experience and supported by main researchers and publications [18, 29,

35, 37], with some comparisons suggesting that the RBF Gaussian kernel generally

performs better in hyperspectral remote sensing.

Following the RBF kernel selection, 2 key variables, the gamma (γ) and the penalty

(cost) parameters need to be properly tuned. To this end, a grid search procedure

[45, 46] is applied every time, where several values are assigned to these 2 parameters

and the combination providing highest validation accuracy is selected to build the SVM

model. Validation in most of the experiments is carried out by a 5-fold cross-validation

on the training partition [46] (also 2-fold and 10-fold are common cases), with wide

ranges comprising about 0.001-100 and 0.1-1000 for the γ and the cost parameters,

respectively, to ensure an adequate (close to optimum) configuration.
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Finally, other important considerations include the normalisation or scaling proce-

dure applied to the training and testing partitions as required by a proper performance

of SVM [46] [47], and the use of a MEX library [45] available for LIBSVM, allowing

the SVM training and testing from well-known environments such as MATLAB [48].

2.3.3 Performance Assessment

The outcome obtained from the experiments has to be evaluated. This evaluation aims

to differentiate among the feature extraction methods studied, where the assessment

procedure is done on a comparative basis. Some commonly used metrics and criteria

are discussed as follows.

A. Classification Accuracy

In land-cover analysis, with multiple classes defined in the ground truth, several clas-

sification accuracy values are of interest [20, 49]. Probably the most important mea-

surement is the Overall Accuracy (OA), obtained by the accumulation of correctly

classified pixels with relation to all those tested, i.e., OA=Scorrect/Stest , where Stest is

the total number of pixels in the testing partition, while Scorrect is the number of pixels

correctly classified out of Stest . Additionally, it is also possible to obtain the particular

accuracy for a given class in the data set, leading to the Class by Class (CbC) accu-

racy, where CbC=(Scorrect/Stest)|class. These values are useful when some particular

classes are of special importance in the analysis, or when comparing the performance

of a given method among different classes. Finally, by simply averaging the CbC

values from all the classes in the data, the Average Accuracy (AA) is achieved, thus

AA=mean{CbC}. This is a good measurement when global improvements are ex-

pected regardless of the labelled classes or the NoS (pixels) available in each of them.

It is important to remark that there are other similar measurements such as the re-

liability or user’s accuracy [20], where the accuracy or efficacy is measured from a

slightly different point of view. Yet the reliability measurement can be interesting,

OA, CbC, and AA values are much preferred and employed in the current literature,

probably because both indicators are correlated, i.e., higher accuracy generally leads

to higher reliability and vice versa.
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B. Statistical Significance

Apart from the classification accuracy values, complementary indicators providing sta-

tistical significance are commonly employed in land-cover analysis, where the most

used is the McNemar’s test of significance [50]. This test provides statistical signifi-

cance at a confidence level of 95% when |Z |> 1.96, being Z positive when the tech-

nique evaluated beats a given reference method (usually the Baseline case), and nega-

tive in the opposite case. This value is simply defined as Z =(Sab −Sba)/
√

Sab +Sba,

where Sab represents the number of pixels that have been correctly classified by method

’a’ but misclassified by method ’b’ (reference), being Sba the opposite.

There are some different indicators such as the kappa coefficient [20, 49, 50], which

has also achieved considerable diffusion in many publications, yet some recent discus-

sions [51] have suggested that the kappa coefficient may be inadequate in the remote

sensing context, even leading to flawed results, while some other measurements such

as the quantity disagreement and the allocation disagreement components [51] are re-

cently attracting attention of researchers [52, 53].

C. Computational Efficiency

The performance assessment on feature extraction methods consists of not only effi-

cacy but also complementary considerations related to efficiency. In order words, a

given method can be better not because it leads to higher classification accuracy but

because, achieving similar accuracy values, the computational cost required in the im-

plementation is somehow reduced.

The computational cost derived from the algorithms, normally expressed in Mul-

tiply ACcumulates (MACs), gives a straight reference of the methods complexity, es-

pecially with regard to its implementation in digital devices. Therefore, the number of

MACs (alternatively number of multiplications and additions) is normally employed

as efficiency measurement [54].

The computation time is also a good parameter describing the performance of the

feature extraction methods [18]. It is normally associated with the computational com-

plexity, as those methods based in simpler algorithms are usually easier to implement

and faster to compute.
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Finally, the memory requirement, normally expressed in kB, is an additional pa-

rameter to be taken into account for efficiency purposes, especially given the limited

memory capabilities in portable and onboard devices. Additionally, the number of

features (dimensionality of features) can also be an indirect measurement of computa-

tional complexity, where a larger number of features obviously involve more memory

requirement and complexity.

2.4 A Review of Hyperspectral Feature Extraction

Advanced data analysis and mining is crucial for appropriate classification and related

tasks in numerous scientific and engineering applications. After data acquisition and

conditioning, feature extraction becomes vital to extract the useful information from

the hyperspectral cube.

Due to the hyperspectral cube nature in HSI, the methods exploiting information

only from the spectral domain have been much widely used. Spatial-domain infor-

mation is still useful in feature extraction, however, it has been seldom addressed and

few methods have considered it, where a joint combination of spectral-spatial-domain

information is commonly preferred. A survey of feature extraction in hyperspectral

remote sensing is carried out in the following, considering both spectral- and spatial-

domain methods as detailed below.

2.4.1 Spectral-Domain Methods

Initially, the introduction of HSI data has been associated with the use of original fea-

tures or spectral profiles from the cubes as a direct input to the classifier [37]. This

high dimensionality of features is considered powerful as it provides comprehensive

information along the spectral domain, leading to potentially good characterisation.

However, the large number of features in combination with the usually limited num-

ber of samples available in supervised classification training can result in the curse of

dimensionality or Hughes effect [26], where a high number of features requires a vast

number of samples to perform properly, which normally is not the case, and can lead

to insufficient training of the classification models.
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This important drawback can be solved by a simply reduction of features, where

the covariance matrix is widely employed in performing data reduction and projecting

samples into a lower dimensional feature space. To this end, several methods such as

Principal Component Analysis (PCA) [12, 55] consider the covariance matrix compu-

tation in their algorithms. Nevertheless, in the hyperspectral remote sensing context,

HSI data presents high size not only in spectral but also in spatial terms. Therefore,

while the number of features can be in hundreds, the number of samples (pixels) can be

above thousands, leading to complexity in computing the covariance matrix from HSI

images, introducing difficulties in the case of portable devices and embedded systems,

with considerable restrictions in terms of power and/or memory.

Some algorithms and mathematical tricks have been proposed in order to relieve the

covariance computation in HSI [56, 57], based on the employment of smaller partitions

of data to construct the covariance matrix, even in parallel threads. However, these

algorithms have not been associated with the actual acquisition procedure given in

HSI instruments, where the sensors capture smaller partitions of data in a sequential

manner [58, 59]. Therefore, the time between capture steps available in the sensors

can be potentially used for efficiency. Yet the computation of the covariance matrix is

well-known and the related concepts are not new, there is still a gap in applying these

theories to HSI applications, where the tricks can be better applied to the different

acquisition procedures for onboard and real-time feature extraction.

Despite the abovementioned difficulties, PCA has probably been the most widely

used method for feature extraction and data reduction in hyperspectral remote sensing

[12]. When applying PCA, the original data is orthogonally projected by eigenvectors

obtained through EigenValue Decomposition (EVD) applied to the covariance matrix.

The resulting features are sorted by the represented amount of variance, therefore, the

dimensionality of features can be truncated to the first few features, since they already

contain most of the variance from the original data, usually around 90-99%.

Based on PCA, several modified methods have been proposed in the literature,

where the conventional PCA implementation is changed in some degree to achieve

particular benefits dependent on each case. It is possible to find diverse variants,

from simple modifications of the algorithm to more complex alterations, including
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thus the modified-PCA [60], incremental-PCA [61], or the interesting Segmented-PCA

(S-PCA) [62]. In S-PCA, the conventional algorithm is independently applied into dif-

ferent segments of the spectrum, leading to the extraction of local information and be-

coming a reference method. Some more variants are found in recent years, such as the

2-D PCA (2D-PCA) introduced to the field of face recognition [63], which achieved

great popularity and several variations from this particular method, although it is found

to be related to the block-based-PCA [64]. Other remarkable works are related to the

kernel-PCA [65] and the nonlinear-PCA [66] methods.

However, conventional PCA presents a series of drawbacks not only related to

computational complexity, which can be expensive for HSI data, but also in terms of

inefficacy in extracting the adequate information from the large spectral pixels. Most of

the variants present the same problem inside the HSI context, and yet more alternative

implementations have been proposed again for efficiency [67, 68], the tradeoff problem

of extracting adequate features with reduced complexity remains unsolved.

Leaving aside the PCA method, there are several more feature extraction and data

reduction techniques in the literature that have also become current state of the art.

These include some well-known approaches such as the Independent Component Anal-

ysis (ICA) [69, 70], the Maximum Noise Fraction (MNF) [71, 72], and the Nonnegative

Matrix Factorisation (NMF) [73] methods, yet no considerable improvement has been

reported with relation to the classical PCA.

The ICA method [69] considers that several signals, denoted as independent com-

ponents, are mixed in the related samples or pixels. Therefore, ICA separates sources

assuming that the components are non-Gaussian signals statistically independent from

each other, which is not necessarily the case in HSI. A different situation is found

for MNF [71, 72]. This method, also known as Minimum Noise Fraction or noise-

adjusted-PCA, transforms and sorts the features in terms of noise content, so the noisi-

est variables are truncated for noise removal. Finally, the NMF [73] technique imposes

restrictions on positive values during a factorisation procedure, which is claimed to

improve the final features. The performance of these methods seems limited [41] and

inconsistent due to some causes, including the prior noise estimation required in MNF,

and the initial values for iterations in both ICA and NMF, reducing their reliability.
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Some other feature extraction (also feature selection) and data reduction methods

with relative recognition in the research community include projection pursuit [74],

band selection [75], steepest ascent [37], and methods based on machine learning [35]

and sparse representation of data [76, 77], highlighting nonlinear methods such as

kernel-ICA [78, 79], ISOMAP approaches in [80, 81], and locally linear embedding

[82, 83]. Even though the present thesis is focused on unsupervised methodologies, it

is also possible to remark some important and well-known supervised methods includ-

ing the Bhattacharrya and Jeffries-Matusita distances, the well-known spectral angle

mapper, mutual information, the vegetation index or NVDI, linear discriminant analy-

sis [84], decision boundary feature extraction [85], and nonparametric weighted feature

extraction [86].

However, these methods present diverse and several drawbacks, from complexity

in the implementation or unclear methodology, to small improvements in the perfor-

mace. In some cases, the algorithms are quite simple but the efficacy of the features

is not exactly brilliant. In other cases, the methods are remarkably effective but at the

cost of a complex implementation or particular restrictions and limitations. That is

probably the reason why methods such as PCA remain being widely used nowadays.

More information about the main or classical methods can be found in the comparisons

undertaken in [41, 42, 87]. Additionally, a great compilation work on data mining, fea-

ture extraction, and data reduction is available in [28], where the methods are divided

into several groups for easy understanding.

From the wide methodology found in the literature, the decomposition-based ap-

proaches are of high interest and inspiration to the present research. As HSI data is

prone to noise, it is interesting the idea of decomposing the spectral pixels in a way

that the noise can be removed. Therefore, decomposition methods such the discrete

wavelet transform [88], the discrete cosine transform [89], and especially the Empiri-

cal Mode Decomposition (EMD) [90] are found inspiring, presenting ideas of interest.

The basic EMD, being part of the Hilbert Huang Transform (HHT), is used in nonlin-

ear and nonstationary time series analysis [90, 91], where it decomposes a signal into

several few components or subseries namely Intrinsic Mode Functions (IMFs), and has

some reported applications including speech recognition [92].
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The reported results using 1D-EMD in hyperspectral remote sensing [18] are not

good. However, a similar implementation can be applied by the Singular Spectrum

Analysis (SSA) algorithm, a recent technique for time series analysis and forecast-

ing [14, 93]. Being based on the well-known SingularValue Decomposition (SVD),

the 1D-SSA method is expected to provide appropriate decompositions with enhanced

features and reduced complexity, as those methods such as 1D-EMD are really expen-

sive, requiring empirical iterations. The SSA algorithm has been already introduced to

hyperspectral remote sensing, yet the evaluation in [94] is insufficient and, moreover,

no considerations are derived with relation to the computational complexity.

Finally, Deep Learning (DL) methodology has been recently proposed in hyper-

spectral remote sensing, not only for classification including artificial Neural Networks

(NNs) [95, 96], but also for data reduction, highlighting the introduction of Stacked

AutoEncoders (SAEs), where high levels of abstraction are proved to achieve appropri-

ate features [97], with similar works in [98, 99]. Other DL approaches being recently

evaluated are the deep belief networks [100] and the restricted Boltzmann machine

[101].

In this case, yet the ideas are inspiring, the computational cost usually involved

in DL methods is prohibitive, and severe criticism [102] complains about the lack

of theoretical justifications, since most DL methods are usually seen as a black box.

However, there is still a promising potential in the DL context, where further research

and studies are needed to properly assess this brand new topic.

2.4.2 Joint Spatial-Spectral-Domain Methods

After the comprehensive spectral feature extraction review, and bearing in mind the

3-D cube structure, it is clear that although the high resolution is only found in the

1-D spectral domain, there is still a 2-D spatial domain that can be employed for an

effective feature extraction. Indeed, the limited contribution of spectral-domain feature

extraction has been remarked in recent years, especially with relation to the potential

achieved by including spatial information, where the spatial domain can also provide

useful clues. Yet there are some approaches working only in the spatial domain, most

spatial-domain methods actually involve both spectral- and spatial-domain extraction.
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Initially, the spatial postprocessing after undertaking spectral-domain classification

is found of high interest. This option is explored in [42], where morphological fea-

tures are combined with the MNF method, the SVM classifier, and a fuzzy-NN-based

spatial postprocessing. Nevertheless, this evaluation shows limited contributions, sug-

gesting that the exploitation of the spatial domain should be more favorable when

introduced before the classification stage, simply because the models can be more ef-

fectively trained.

More comprehensive analysis is found with relation to mathematical morphology

processing, with opening and closing operators, and the well-known median filter-

ing. Therefore, current state-of-the-art methods include [103], where a morpholog-

ical processing is applied to a particular PCA component from the HSI data. This

method, called Morphological Profile (MP), has attracted attention in hyperspectral

remote sensing, where in [104], the MP method is extended to include several few

PCA components, resulting in the Extended MP (EMP) method. Furthermore, this

EMP approach is later evaluated with SVM as a classifier [105], with excellent re-

sults. However, this methodology has the morphology operators as a main actors,

which means that the EMP performance is highly dependent on the shape and size of

the structuring element associated with the operators. In addition, there are some un-

resolved questions, such as the number of PCA components to use and the optimum

number of opening and closing operations to apply.

Another state-of-the-art approach, the Adaptive Filter (AF) method in [106], im-

plements a spatial median filter in combination with the MNF method applied in the

spectral domain. The kernel size in the median filter is variable, implemented accord-

ing to the Signal-to-Noise Ratios (SNRs) obtained from the MNF method. Therefore,

those transformed bands in which the SNR is adequate are treated by a small kernel

size, while the noisy bands are subject to a higher size in order to mitigate the presence

of noise. This work includes a couple of variants for the AF implementation, where

the AF with Derivative (AFD) seems to achieve slightly higher classification accu-

racy. Although the performance reported is considerable, again the effect of the kernel

size in the median filtering is not clear and probably inconsistent, highly dependent on

neighbourhood pixels.
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There are also some methods considering exclusively the spatial-domain extrac-

tion. For instance, the unsharp filtering [107] has been implemented to enhance high-

frequency content in a 2-D image, boosting the edges of the various elements in the

scene. In [108, 109], wavelet decomposition of 2-D images is employed for a spa-

tial adaptive denoising, resulting in higher HSI classification accuracy. However, the

improvement from these methods seems quite limited.

More recently, in [18], the 2-D extension of the previously cited EMD, the 2D-

EMD method, is introduced for spatial-domain feature extraction in HSI cubes. This

extended 2-D version can be applied to images for extracting edges and local structures

[18, 110, 111]. Therefore, in the HSI context, the application of 2D-EMD to every

spectral scene leads to a potential decomposition and subsequent reconstruction using

the low-order IMFs and discarding the rest, as the spatial structure is captured by these

low-order components while higher-order ones lack this content [18].

The 2D-EMD method has been proved to beat the current state-of-the-art tech-

niques [18], with extremely high classification accuracy reported and international

recognition. On the other hand, however, the 2D-EMD implementation is based on

empirical iterations, involving extremely high computational complexity and endless

computation times, which makes it unfeasible in some situations. The same authors in

[18] suggest a simpler implementation in order to overcome this problem, nevertheless,

the cheaper implementation results on degraded accuracy values.

For that reason, similarly to the 1-D case in the spectral-domain methodology,

the extended 2D-SSA algorithm [112, 113], already introduced to some other fields

[114, 115], can be evaluated in hyperspectral remote sensing for effective and efficient

feature extraction in the spatial domain.

2.5 Summary

This chapter comprises the background and related work on hyperspectral remote sens-

ing Earth observation, providing a survey of the topic. Firstly, the concepts of remote

sensing and hyperspectral technology are described, where 3-D hyperspectral cubes

are the key elements to study.
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Secondly, the experimental framework in hyperspectral remote sensing is intro-

duced, presenting a classical signal processing chain with 4 stages, i.e., data acquisi-

tion, data conditioning, feature extraction, and data classification. The data acquisition

and conditioning is normally addressed by the remote sensing institutions and labo-

ratories (NASA, JPL, DLR, or ESA). Therefore, the research community focuses on

the feature extraction stage, where a posterior classification by SVM is usually em-

ployed for land-cover analysis. To this end, conditioned data is split into the training

and testing partitions, where the performance can be assessed in terms of classification

accuracy, statistical metrics, and computational complexity evaluations.

Finally, a review of feature extraction methods is carried out, where they are di-

vided into 2 main groups, i.e., spectral-domain and joint spatial-spectral-domain meth-

ods. These have motivated the work as presented in this thesis, with contributions

reported in detail in the next 5 chapters.

Background and Related Work 27



Chapter 3

Structured Covariance (SC) for
on-the-Fly Feature Extraction

Numerous feature extraction methods such as Principal Component Analysis (PCA)

[12] usually require the computation of a covariance matrix that contains a valuable

amount of information from a given set of samples. However, obtaining the covari-

ance matrix from data such as HyperSpectral Imaging (HSI) can lead to computational

problems due to the large size of hyperspectral cubes.

Taking advantage of how the spectral data acquisition is carried out in the HSI de-

vices, various Structured Covariance (SC) schemes are proposed, where the covariance

matrix is obtained by computing smaller partitions of the cube. As such schemes have

a low memory requirement, they can be potentially applied for onsite feature extraction

while the data is acquired in a real-time manner, benefiting subsequent tasks in coding,

compression, or transmission of hyperspectral data.

This chapter is organised as follows. Section 3.1 and Section 3.2 introduce the

HSI data acquisition procedures and the conventional way of covariance matrix com-

putation. In Section 3.3, the proposed SC is explained, Section 3.4 discusses detailed

experiments and analysis, followed by the summary of the contributions in Section

3.5. The major contents of this chapter have been published in the OSA Applied Op-

tics journal, being this paper referenced as [11].



3.1 Introduction

3.1 Introduction

In HSI, the acquired data forms a 3-D structure known as hyperspectral cube, with both

spatial and spectral domains of information. This data structure, shown in Figure 3.1,

can be indexed as Nr ×Nc ×Nλ , where the 3 symbols represent dimensions of row,

column, and spectral content of the cube, respectively.

Fig. 3.1 3-D hyperspectral cube acquired by HSI devices

Nevertheless, processing this high amount of data contained in hyperspectral cubes

is actually a demanding task. As the spectral dimension can easily exceed hundreds

of bands, the data processing is similar to video analytics, which are generally time-

consuming and memory-intensive tasks. That is the reason why feature extraction and

data reduction methods are usually applied to hyperspectral cubes.

PCA [12, 55, 116] is probably one of the most widely used algorithms for HSI data

reduction, being a state-of-the-art method in this context. The PCA technique, as well

as other different methods, has to deal with the original cube in order to proceed to its

implementation. As an initial step in these implementations, the spectral covariance

matrix from the overall cube needs to be obtained. Conventional implementations

simply convert the hyperspectral cube into a Nλ ×NrNc matrix to undertake subse-

quent mathematical operations. However, since the NrNc dimension of this matrix

can achieve extremely large values (over 100 kB), its processing needs complex and

powerful requirement, usually resulting in memory and computing problems.

On the other hand, regarding the acquisition procedures in most HSI devices, the

hyperspectral cube acquisition is performed in a sequential manner, where smaller 2-D

data slices are captured as a subspace of the final cube. Moreover, the size of these

subspace partitions is determined by the type of sequential acquisition undertaken in

the device, where the time gap between sequential captures can be employed more
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efficiently. Therefore, considering the nature of the hyperspectral cube, and taking

advantage of the current HSI acquisition technology, the covariance matrix can be

computed more efficiently, sequentially dealing with smaller data partitions and, hence,

partial covariance matrices.

In fact, 4 different implementation schemes are proposed as an alternative to the

conventional covariance computation, with corresponding theoretical explanation and

complete experimental results validating the effectiveness of the SC methodology.

3.2 Data Acquisition and Covariance Computation

Acquisition of the HSI cube is carried out using some procedures, normally in a se-

quential manner. Then, once the HSI data is captured in the hyperspectral cube, the

covariance matrix is usually computed for data reduction and feature extraction meth-

ods by the conventional implementation. In this section, these mentioned aspects are

briefly described.

3.2.1 Data Acquisition in HSI

Devices in HSI have developed diverse technologies for data acquisition. With relation

to these, the devices can be classified into 3 main types, i.e., sequential, simultaneous,

and pseudo-simultaneous [58, 59]. Indeed, the sequential type is the most common

acquisition procedure, from which the present proposal is derived. At the same time,

sequential procedures comprise 2 main groups, scanning and filter-based approaches.

A generic optical scheme from these 2 groups is shown in Figure 3.2.

The scanning procedure consists of acquiring partial and discrete scenes in the

spatial domain but including their whole spectral range, i.e., partial data is sequentially

captured along the spatial domain, where the corresponding spectra are acquired in

one. Simply by repeating the spatial acquisition along the covered spatial size, the

whole cube is finally generated. Hence, depending on the actual spatial size covered,

the scanning methods can be divided in the pixel scanning, where a single pixel is

captured at every step, and the line scanning, usually known as pushbroom, in which a

portion of pixels forming a row or column in the image is captured every time.
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Fig. 3.2 Basic scheme for pushbroom scanning and tuneable filtering

Filter-based procedures, unlike the scanning ones, simply capture the whole spatial

size at once, but just for a unique wavelength in the spectrum. Therefore, a singular

wavelength is added at every step until completing the cube. In addition, 2 types of

filter can be used in these techniques, a passive filter, which captures specific wave-

lengths, and a tuneable filter, prepared for capturing a range and usually preferred.

All in all, the different sequential acquisition procedures in HSI are schematically

represented in Figure 3.3, where it is easy to discern the diverse partitions or subspaces

(pixel, row, column, and band) employed in the sequential capture. Taking advantage

of the time gap between sequential steps in the device, the SC proposal can be im-

plemented for constructing the covariance matrix efficiently, as an alternative to the

conventional case.

3.2.2 Conventional Computation of Covariance Matrix

Diverse methods for feature extraction and data reduction require the computation of

a covariance matrix at a given point. For example, the widely used PCA method [12,

55, 116] is able to transform a large set of correlated features into a smaller set of

uncorrelated ones by orthogonal projection. This projection is carried out thanks to

the information contained in the spectral covariance matrix, to which an EigenValue

Decomposition (EVD) is applied. Therefore, the covariance matrix is the key element

of the method and its implementation.
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Fig. 3.3 Subpartitions in sequential captures of a 3-D hyperspectral cube

In HSI, the initial 3-D cube is reallocated into a 2-D matrix, namely data matrix,

where each row represents the spectral bands or features (Nλ ), while the columns con-

tain the pixels or samples (Ns = Nr ×Nc). This data matrix, shown in Figure 3.4, is

employed to compute the covariance matrix in the conventional way.

Fig. 3.4 Data matrix in conventional implementations

Given a sample or spectral vector pns = [pns(1), pns(2), ... , pns(N
λ
)
]⊤ in the cube, hav-

ing ns ∈ [1, NrNc] as the number of samples and Nλ as the number of features, the

mean sample from the hyperspectral cube is defined as

p̄ =
1

NrNc

Ns

∑
ns=1

pns. (3.1)

The mean-adjustment of all samples in the data matrix is a requirement to compute

the covariance matrix, and this is easily done by subtracting the mean sample as

yns = pns − p̄ ns ∈ [1, Ns], (3.2)
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where yns is the resulting mean-adjusted sample used for the covariance matrix cal-

culation. Consequently, given the matrix Y = [y1,y2, ...,yNs], where all samples are

mean-adjusted, the covariance matrix of P, called C, is formulated as

C = expect
{
(pns − expect{pns}) (pns − expect{pns})⊤

}
≈ expect{ ynsy⊤ns

}

≈ Y Y⊤

, (3.3)

being expect{} the expectation over the pixel dimension, omitting the dividing term

and considering C = Y Y⊤ for simplicity, where Y ∈ RNλ×Ns and C ∈ RNλ×Nλ .

As can be derived from these equations, conventional computation of the covari-

ance matrix in HSI presents 2 main disadvantages. On one hand, it needs the whole

cube (or data matrix) to achieve the mean sample and mean-adjusted data matrix Y,

which removes any possibility of computing covariance in real time simultaneously to

the acquisition. On the other hand, and more importantly, as the mean-adjusted data

matrix Y ∈RNλ×Ns presents extremely large dimensions, calculation of the covariance

matrix by Equation 3.3 can cause contiguous memory problems. In order to address

these disadvantages, the SC proposal is introduced in Section 3.3.

3.3 Proposed Structured Covariance (SC)

Since the covariance matrix computation in HSI presents such problems and, at the

same time, common HSI acquisition procedures are known to be sequential, it is pos-

sible to take advantage of the 3-D hyperspectral cube, where subspace partitions of data

are sequentially captured and accessed, in order to efficiently compute the covariance

matrix for feature extraction and data reduction methods.

Working with subspace partitions, the covariance matrix computation becomes a

sequential implementation in which, at every step, the matrices and multiplications

involved are smaller in size, significantly reducing the memory requirements. More-

over, this sequential implementation also allows real-time computation, although since

subpartitions are initially processed without being mean-adjusted, they require a cor-

rection. This correction step, to be applied for real-time cases, is also derived in this
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section. Additionally, it is worth mentioning that the SC schemes could also be imple-

mented in multiple parallel threads for further efficiency.

The contribution in this chapter provides a total of 4 SC schemes, including pixel-,

row-, column-, and band-based approaches for efficient covariance computation. These

are compared to the conventional case in Figure 3.5 for easy understanding to readers.

The main mathematical notations and symbols employed in the SC methodology and

conventional case are included in Table 3.1. In the following, the different SC schemes

are discussed.

Fig. 3.5 Conventional and SC computations in HSI

Table 3.1 Main notation for conventional and SC computations

Partition Covariance (partial) Covariance (full)
Conventional Y ∈ RNλ×NrNc C = YY⊤ ∈ RNλ×Nλ

Pixel yns ∈ RNλ×1 C(p)
ns = ynsy⊤ns

C(p) = ∑
Ns
ns=1 C(p)

ns

Row Y(r)
nr ∈ RNλ×Nc C(r)

nr = Y(r)
nr (Y

(r)
nr )

⊤ C(r) = ∑
Nr
nr=1 C(r)

nr

Column Y(c)
nc ∈ RNλ×Nr C(c)

nc = Y(c)
nc (Y

(c)
nc )

⊤ C(c) = ∑
Nc
nc=1 C(c)

nc

Band Y(b)
nλ

∈ RNr×Nc C(b)(i, j) = vec{Y(b)
nλ=i}(vec{Y(b)

nλ= j})⊤

3.3.1 Structured Covariance Schemes

Based on the sequential subparitions of the HSI cube, it is possible to derive several

different schemes by which the SC proposal is implemented. These schemes are based

on pixel, row, column, and band partitions, as described in the following.
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A. Pixel-based SC Scheme

In this scheme, only one sample or pixel yns obtained from the pixel scanning proce-

dure is used in order to partially compute the covariance matrix, where ns ∈ [1,Ns] and

yns ∈ RNλ×1. Final covariance matrix C(p) is then obtained by accumulation of partial

covariances C(p)
ns from all the pixels in the hyperspectral cube, as

C(p) =
Ns

∑
ns=1

C(p)
ns , C(p)

ns = ynsy
⊤
ns
. (3.4)

Therefore, the partial covariances are computed simply by the vector yns , with di-

mensions Nλ × 1, much smaller than dimensions Nλ ×NrNc from the conventional

case. On the other hand, the number of partial covariances has now increased to NrNc.

B. Row-based SC Scheme

In this scheme, 2-D partitions of data along the row direction of the cube obtained from

the pushbroom or line scanning procedure are employed. Defining these row partitions

as Y(r)
nr ∈ RNλ×Nc , where nr ∈ [1,Nr], each partition Y(r)

nr is expressed as

Y(r)
nr = [ynr ,ynr+Nr , ...,ynr+(Nc−1)Nr ]. (3.5)

Consequently, the covariance matrix C(r) ∈ RNλ×Nλ can be derived as the summa-

tion of Nr partial covariance matrices C(r)
nr obtained from Y(r)

nr as follows

C(r) =
Nr

∑
nr=1

C(r)
nr , C(r)

nr = Y(r)
nr (Y

(r)
nr )

⊤, (3.6)

where the partial covariances are computed simply by Y(r)
nr , with dimensions Nλ ×Nc

much reduced in comparison to Nλ ×NrNc from the conventional case.

C. Column-based SC Scheme

In this scheme, 2-D partitions of data along the column direction of the hyperspectral

cube obtained as an alternative to the row-based approach in the pushbroom scan-

ning procedure are used. Defining these column partitions as Y(c)
nc ∈ RNλ×Nr , where

nc ∈ [1,Nc], each partition Y(c)
nc is expressed as
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Y(c)
nc = [y1+Nr(nc−1),y2+Nr(nc−1), ...,yNr+Nr(nc−1)]. (3.7)

Consequently, the covariance matrix C(c) ∈ RNλ×Nλ can be derived as the summa-

tion of Nc partial covariance matrices C(c)
nc obtained from Y(c)

nc as follows

C(c) =
Nc

∑
nc=1

C(c)
nc , C(c)

nc = Y(c)
nc (Y

(c)
nc )

⊤, (3.8)

where the partial covariances are again computed simply by Y(c)
nc , with dimensions

Nλ ×Nr reduced in comparison to Nλ ×NrNc from the conventional case.

D. Band-based SC Scheme

Unlike the 3 previous schemes, the band-based case is derived not from scanning pro-

cedures but from the tuneable filtering, capturing all the spatial size for a selected

wavelength at once. In this scheme, 2-D partitions of data along the band direction of

the hyperspectral cube are employed.

Defining these band partitions as Y(b)
nλ

∈RNr×Nc , where nλ ∈ [1,Nλ ], each partition

Y(b)
nλ

can be represented as

Y(b)
nλ

=


y1(n

λ
)

· · · yNr(Nc−1)+1(n
λ
)

... . . . ...

yNr(n
λ
)

· · · yNrNc(n
λ
)

 . (3.9)

It is important to remark that now the selected partition Y(b)
nλ

possesses all spatial

pixels in a unique spectral band, missing the rest of bands. This fundamental difference

makes it impossible to compute and accumulate partial covariances like in the rest of

schemes. For that reason, the sequential covariance computation is based on matrix

elements. Given an element in position (i, j), it can be expressed as

C(b)
(i, j)

= vec{Y(b)
nλ=i}(vec{Y(b)

nλ= j})
⊤, (3.10)

where operator vec{} simply reallocates the 2-D partition Y(b)
nλ

into a vector with di-

mensions 1×NrNc, which multiplication in Equation 3.10 leads to a scalar value.
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Therefore, the final covariance matrix is obtained through progressive incorpora-

tion of elements (i, j) computed from bands i and j, respectively, where vector dimen-

sions of 1×NrNc are remarkably reduced in comparison to conventional Nλ ×NrNc.

3.3.2 Mathematical Equivalencies

The SC proposal aims to efficiently compute the covariance matrix, proposing alter-

native implementations that lead to exactly the same numerical results, i.e. the SC

schemes are equivalent to the conventional case. In this section, it is proved that the

covariance matrix from a SC scheme is just the same as the conventional one.

Following the conventional implementation, covariance matrix C is expressed as

C = YY⊤ ∈ RNλ×Nλ . Hence, every element (i, j) can be simply defined as

C
(i, j) =

NrNc

∑
ns=1

yns(i)yns( j). (3.11)

On the other hand, following the pixel-based SC scheme, from a single pixel parti-

tion, partial covariance is achieved as

C(p)
ns = ynsy

⊤
ns
=


yns(1)yns(1) · · · yns(1)yns(N

λ
)

... . . . ...

yns(N
λ
)
yns(1) · · · yns(N

λ
)
yns(N

λ
)


Nλ×Nλ

. (3.12)

In accordance with Equation 3.4, the covariance matrix is obtained through the

accumulation of these partial covariances as

C(p) =
NrNc
∑

ns=1
C(p)

ns

=


NrNc
∑

ns=1
yns(1)yns(1) · · ·

NrNc
∑

ns=1
yns(1)yns(N

λ
)

... . . . ...
NrNc
∑

ns=1
yns(N

λ
)
yns(1) · · ·

NrNc
∑

ns=1
yns(N

λ
)
yns(N

λ
)


Nλ×Nλ

.
(3.13)

Now, directly comparing Equation 3.11 and Equation 3.13, it is evident that both

matrices are just the same, proving the 2 implementations to be equivalent to each

other. Equivalency to the rest of SC schemes is also proved by similar mechanisms.
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3.3.3 Correction for Real-Time Covariance Computation

It is important to remark that the SC schemes can be simply implemented on the whole

hyperspectral cube once the acquisition process is finished, computing in the first place

the mean-adjustment to the data matrix. By this implementation, the memory require-

ments are highly reduced, with subsequent advantages.

However, the potential of the SC schemes goes beyond relieving memory require-

ments, as the sequential procedures in HSI acquisition allow fast implementations in

real time, without requiring parallel implementation as suggested in [56, 57]. In that

sense, the mean-adjustment step has to be considered for real-time implementations.

During the acquisition process, the sequentially captured partitions of data are ob-

viously not mean-adjusted. Therefore, in place of employing the mentioned partitions

yns , Y(r)
nr , and Y(c)

nc for pixel-, row-, and column-based schemes respectively, now only

the non-mean-adjusted equivalent partitions pns , P(r)
nr , and P(c)

nc can be used. On the

other hand, this is not the case of the band-based scheme, as all pixels from a single

wavelength are captured at the same time, making the mean-adjustment from Equation

3.2 feasible in real time. Therefore, no correction is needed in the band-based scheme.

In order to illustrate the real-time correction solution, the pixel partition is se-

lected again. As already mentioned, the sequentially obtained pixels pns are not mean-

adjusted, unlike required by the conventional implementation. For that reason, a cor-

rection factor CF based on the mean pixel in Equation 3.1 must be applied as

ynsy⊤ns
= pnsp⊤

ns
+CF(p)

ns

CF(p)
ns = p̄p̄⊤−pnsp̄⊤− p̄p⊤

ns

, (3.14)

where it is easy to realise that the correction factor CF(p)
ns ∈ RNλ×Nλ is derived from

the corresponding pixel pns and p̄, with relation to the product of subtracted values

yns(i)yns( j) = (pns(i) − p̄
(i))(pns( j) − p̄

( j))

= pns(i) pns( j) + p̄
(i) p̄( j) − pns(i) p̄( j) − p̄

(i) pns( j)

. (3.15)

Hence, in real-time cases, the pixel-based SC scheme provides the covariance ma-

trix as in Equation 3.4 adding the correction factor at the end of the acquisition
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C(p) =
NrNc

∑
ns=1

pnsp
⊤
ns
+

NrNc

∑
ns=1

CF(p)
ns . (3.16)

Regarding the row-based scheme, similarly to the pixel case, a correction factor

needs to be introduced

Y(r)
nr (Y

(r)
nr )

⊤ = P(r)
nr (P

(r)
nr )

⊤+CF(r)
nr

CF(r)
nr = p̄p̄⊤−P(r)

nr [p̄, · · · , p̄]⊤Nλ×Nc
− [p̄, · · · , p̄]Nλ×Nc(P

(r)
nr )

⊤
, (3.17)

being the correction factor CF(r)
nr ∈ RNλ×Nλ derived from the corresponding partition

P(r)
nr and the mean pixel p̄, where the covariance matrix is now expressed as

C(r) =
Nr

∑
nr=1

P(r)
nr (P

(r)
nr )

⊤+
Nr

∑
nr=1

CF(r)
nr . (3.18)

Analogously to the row case, a correction factor is added in the column-based

scheme in the same terms

Y(c)
nc (Y

(c)
nc )

⊤ = P(c)
nc (P

(c)
nc )

⊤+CF(c)
nc

CF(c)
nc = p̄p̄⊤−P(c)

nc [p̄, · · · , p̄]⊤Nλ×Nr
− [p̄, · · · , p̄]Nλ×Nr(P

(c)
nc )

⊤
, (3.19)

being the correction factor CF(c)
nc ∈ RNλ×Nλ derived from the corresponding partition

P(c)
nc and the mean pixel p̄. Then, a similar expression for covariance matrix is achieved

C(c) =
Nc

∑
nc=1

P(c)
nc (P

(c)
nc )

⊤+
Nc

∑
nc=1

CF(c)
nc . (3.20)

Once developed the mathematical expressions for covariance computation in real

time, it is not difficult to see that the 3 correction factors in Equation 3.16, 3.18, and

3.20 are actually equivalent to each other, so a global correction matrix is defined as

CM =
NrNc
∑

ns=1
CF(p)

ns =
Nr
∑

nr=1
CF(r)

nr =
Nc
∑

nc=1
CF(c)

nc

=
NrNc
∑

ns=1
(p̄p̄⊤−pnsp̄⊤− p̄p⊤

ns
).

. (3.21)

Moreover, it is not necessary to achieve the end of the acquisition process for the

correction matrix to be calculated, as this matrix can be updated sequentially during the
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acquisition. Developing the correction matrix for the pixel-based scheme, an element

in position (i, j) can be expressed as

CM
(i, j) =

NrNc
∑

ns=1
p̄
(i) p̄( j) −

NrNc
∑

ns=1
pns(i) p̄( j) −

NrNc
∑

ns=1
p̄
(i) pns( j)

= NrNc(p̄
(i) p̄( j))− p̄

( j)

NrNc
∑

ns=1
pns(i) − p̄

(i)

NrNc
∑

ns=1
pns( j)

, (3.22)

then, multiplying and dividing the 2nd and 3rd elements in Equation 3.22 by the same

factor NrNc, the following is obtained

p̄
( j)NrNc

1
NrNc

NrNc
∑

ns=1
pns(i) = p̄

( j)NrNc p̄
(i)

p̄
(i)NrNc

1
NrNc

NrNc
∑

ns=1
pns( j) = p̄

(i)NrNc p̄
( j)

. (3.23)

Therefore, it is possible to further express the correction matrix CM as

CM
(i, j) =−NrNc p̄

(i) p̄( j). (3.24)

In the end, the matrix CM can be obtained by

CM
(i, j) =− 1

NrNc

NrNc

∑
ns=1

pns(i)

NrNc

∑
ns=1

pns( j), (3.25)

hence, the different elements (i, j) from the correction matrix can be achieved by the

accumulation of partial values inline with the acquisition process. Finally, the covari-

ance matrices from the SC implementations in real time are defined as

C(p) =
NrNc
∑

ns=1
pnsp⊤

ns
+CM

C(r) =
Nr
∑

nr=1
P(r)

nr (P
(r)
nr )

⊤+CM

C(c) =
Nc
∑

nc=1
P(c)

nc (P
(c)
nc )

⊤+CM

. (3.26)

3.4 Analysis and Evaluation

The SC concept proposed for efficient computation of the covariance matrix in HSI,

comprehensively described in the previous section, is now subject to an appropriate
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analysis by which to prove the actual benefits from this contribution, using MATLAB

[48] environment and with related content also available in [11].

The experimental setup for this particular evaluation is introduced in the following,

where additional information can be found in Chapter 2. The key point of the analysis

is to show the equivalency of the proposed SC implementation in terms of classification

accuracy, while efficiency measurements indicate a reduction in memory requirements

along with the possibility of onsite and even real-time computation.

3.4.1 Experiments

Following the generic setup commonly applied to the present research, it is possible to

divide experiments into the 4 main stages described in Section 2.3.1. Some considera-

tions about these experimental settings are given in the following.

A. Data Description

In this particular chapter, a total of 3 HSI remote sensing data sets are used, where each

of them comes from a different sensor. This proves that the SC implementations work

efficiently regardless of the acquisition source. These data sets are:

1. Indian Pines [36] (Appendix A.1).

2. Pavia UA [36] (Appendix A.4).

3. Botswana A [36] (Appendix A.6).

B. Data Conditioning

Some noisy spectral bands are discarded according to the description available in Ap-

pendix A for each data set, respectively. On the other hand, all labelled classes in the

available ground truth are included in the land-cover analysis.

C. Feature Extraction

In this particular case, attention is focused not only on the resulting features, but also

on the intermediate covariance matrix, which is needed for implementing feature ex-

traction and data reduction methods such as PCA [12, 55, 116].
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Hence, in this stage, the obtained covariance matrix from the conventional imple-

mentation is compared to the ones from the SC proposals. The covariance matrix is

computed from the whole hyperspectral cube in each case, in an unsupervised manner

with relation to the labelled pixels. The different methods evaluated for computing the

covatiance matrix in PCA are:

1. Conventional (Section 3.2.2).

2. SC-Pixel (Section 3.3.1 A).

3. SC-Row (Section 3.3.1 B).

4. SC-Column (Section 3.3.1 C).

5. SC-Band (Section 3.3.1 D).

The main comparisons are made in terms of memory requirements, computational

complexity (number of multiplications and additions), and approximated computation

time for real-time implementation onsite acquisition devices.

D. Classification

The classification analysis here is undertaken in order to prove that resulting features

from the PCA method using the covariance matrix from conventional and SC imple-

mentations are just the same. In order words, alternative implementations lead to the

same covariance matrix, which translates into the same PCA features and, therefore,

the same classification results.

Having the LIBSVM [45] as a classifier, Support Vector Machine (SVM) mod-

els are trained with 30% of the labelled pixels in each class. With random training

and testing partitions, classification accuracy is provided in terms of Overall Accuracy

(OA), presenting the mean values out of 10 repetitions.

3.4.2 Results

Several evaluations are carried out to assess the contributions in the present chapter

[11]. In the first place, (A) accuracy in land-cover classification with PCA is compared
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for the different covariance implementations. Once it is proved that the SC schemes

provide an equivalent covariance matrix leading to the same features, some efficiency

aspects are compared, including (B) memory requirements, (C) computational com-

plexity, and (D) computation time from the different implementations. These compar-

isons are available in the following.

A. Classification Accuracy

Given that the resulting covariance matrix from all the SC schemes is equivalent to the

matrix obtained by the conventional implementation, any of them can be used inside

the PCA method implementation, so the dimensionality of features is equally reduced

to, in this case, F = 10 elements. Then, the new samples with reduced dimensionality

are classified by SVM, achieving some classification OA (%) presented in Table 3.2.

As expected, all the covariance matrices from the SC schemes lead to exactly the same

features and, therefore, same results.

Table 3.2 Mean OA using PCA (F = 10)

Method Indian Pines Pavia UA Botswana A
Conventional 80.24 ± 0.31 96.93 ± 0.20 94.34 ± 1.67

SC-Pixel 80.24 ± 0.31 96.93 ± 0.20 94.34 ± 1.67
SC-Row 80.24 ± 0.31 96.93 ± 0.20 94.34 ± 1.67

SC-Column 80.24 ± 0.31 96.93 ± 0.20 94.34 ± 1.67
SC-Band 80.24 ± 0.31 96.93 ± 0.20 94.34 ± 1.67

Moreover, the PCA method with the different covariance matrices is implemented

for several different number of features, from 1 to 10. By doing this, the classification

accuracy trend with relation to the number of features F is represented in Figure 3.6

for the 3 data sets, where results from conventional and SC schemes are again exactly

the same.

The classification OA tends to increment with more features employed, although

this increment is faster for the Pavia UA and the Botswana A data sets (see F = 1, 2).

In general, when F > 5 the increment is reduced and it stabilises near F = 10 for the

3 data sets. Obviously, these results are the same for any approach employed in the

covariance matrix computation.
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Fig. 3.6 Mean OA using PCA (F = 1 to 10)

B. Memory Requirements

Memory needs in terms of matrices size are compared among the different cases and

data sets in Table 3.3, where MATLAB [48] data format is double (float), which means

8 B for each data value.

Table 3.3 Matrices dimension and size (kB) for SC computations

Method Matrices Indian Pines Pavia UA Botswana A
dimension

Conventional Nλ ×NrNc 33640 18540 26100
SC-Pixel Nλ ×1 1.6 0.83 1.2
SC-Row Nλ ×Nc 232 124 87

SC-Column Nλ ×Nr 232 124 348
SC-Band 1×NrNc 168 180 180

As derived from this table, the conventional case demands massive contiguous

memory when computing the covariance matrix, however, the SC implementations

significantly relieve this requirement, as the memory size is reduced by NrNc, Nr, Nc,

and Nλ factors for pixel, row, column, and band partitions, respectively.

C. Computational Complexity

Complexity in terms of number of multiplications and additions is also evaluated in Ta-

ble 3.4, which presents the values for both conventional and SC implementations. The
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number of multiplications comprises 2 parts, the mean-adjustment and the data matrix

product. Then, the number of additions contains 3 parts, mean-adjustment, partial co-

variance calculation, and partial covariance accumulation. As expected, regardless of

the implementation case, the total number of multiplications and additions is again just

the same, where the only difference resides in the distribution of these operations.

Table 3.4 Computational complexity in SC (offline)

Method Multiplications Additions
Conventional Nλ +N2

λ
NrNc Nλ (2NrNc −1)+N2

λ
(NrNc −1)+0

SC-Pixel Nλ +N2
λ

NrNc Nλ (2NrNc −1)+0+N2
λ
(NrNc −1)

SC-Row Nλ +N2
λ

NrNc Nλ (2NrNc −1)+N2
λ

Nr(Nc −1)+N2
λ
(Nr −1)

SC-Column Nλ +N2
λ

NrNc Nλ (2NrNc −1)+N2
λ
(Nr −1)Nc +N2

λ
(Nc −1)

SC-Band Nλ +N2
λ

NrNc Nλ (2NrNc −1)+N2
λ
(NrNc −1)+0

The computational complexity is evaluated again but for the real-time case. There-

fore, multiplications and additions are now distributed along the sequential steps given

during the acquisition process, as expressed in Table 3.5. According to the SC descrip-

tion, the pixel scheme provides a minimum computation in each step, at the cost of

taking a total of NrNc sequential scans to complete acquisition. Moving through the

different SC schemes, a logical tradeoff between step complexity and number of steps

is found. The global computational complexity is practically the same for all the cases.

Table 3.5 Computational complexity in SC (during acquisition)

Method Step (n) complexity Step After
Multiplications Additions (n) Mult. Add.

SC-Pixel N2
λ

3N2
λ

NrNc 2N2
λ

N2
λ

SC-Row N2
λ

Nc 3N2
λ

Nc Nr 2N2
λ

N2
λ

SC-Column N2
λ

Nr 3N2
λ

Nr Nc 2N2
λ

N2
λ

SC-Band NrNc(2n−1)+1 NrNc(2n+1)−2n Nλ 0 0

Lastly, it is important to remark that the computational cost of all the implementa-

tions can, in turn, be approximately reduced from N2
λ

to Nλ (Nλ + 1)/2 thanks to the

symmetry of the covariance matrix, as suggested in [56]. Nevertheless, this fact as

well as the potential for parallel implementations and/or calibration corrections is not

considered for simplicity.
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D. Computation Time

Finally, a comparison of the computation time is performed for the real-time case.

Figure 3.7 shows the simulated time required for both the conventional case and SC

implementations.
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Fig. 3.7 Approximated computation time after acquisition

Even though the band scheme requires no extra time after acquisition (red line),

the rest of schemes only need a few extra ms to complete the computation of the co-

variance matrix. Therefore, the computation time is clearly reduced, leading to faster

implementations feasible for onboard or embedded devices.

3.5 Summary

Computation of the covariance matrix is a fundamental aspect for feature extraction

and data analysis. However, the conventional computation of the covariance matrix

presents some drawbacks when dealing with HSI remote sensing data, such as large

matrices leading to challenging memory requirements, especially for portable or em-

bedded systems such as those in satellite or spacecraft platforms. In addition, the

acquisition procedures carried out by the HSI devices present a sequential process in

which smaller subspaces or partitions of the hyperspectral cube are progressively cap-
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tured. Therefore, taking into account these considerations, it is actually possible to

benefit from the HSI acquisition procedures in efficient computation of the covariance

matrix onsite and satisfy the requirements of real-time data analysis.

Inline with the hyperspectral cube acquisition process, the proposed SC schemes

can reduce memory and time requirements as an alternative to the offline conventional

implementation. A total of 4 SC schemes are proposed, according to the different

subspaces available in a hyperspectral cube, i.e., pixel-, row-, column-, and band-based

partitions. Each partition has different characteristics and can thus be used for diverse

purposes, leading to interesting potential in more efficient cameras and acquisition

devices.
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Chapter 4

Folded-PCA for Efficient and Effective
Data Reduction

Due to the large dimensionality of features in hyperspectral remote sensing, feature ex-

traction and data reduction methods are usually implemented in subsequent analytical

tasks. Probably the most widely used and well-known method for HyperSpectral Imag-

ing (HSI) data reduction is Principal Component Analysis (PCA) [12], which performs

an orthogonal projection of the original data according to variance distribution.

However, the PCA method applied to HSI data presents some drawbacks, nega-

tively affecting its performance. Because of the hyperspectral cube nature, the applica-

tion of PCA requires high computational complexity, with large memory requirements

and relatively low efficacy in extracting appropriate features from the HSI data. In

order to improve the PCA performance in HSI applications, a PCA variant is proposed

in this chapter, where the spectral vector of pixels is folded into a matrix for a reduc-

tion in computational cost. Additionally, this proposal namely Folded-PCA (Fd-PCA)

leads to an alternative covariance matrix with different properties thanks to the folding

procedure in the PCA workflow, resulting in classification benefits.

With folded samples, the new covariance matrix seems to extract both global and

local structure in the spectral domain, providing enhanced information in the features,

which translates into higher classification accuracy. Moreover, working with folded

samples reduces the computational cost and also the memory requirements in the im-

plementation, as shown from comparisons to PCA [12]. These contributions have been

published [13] in the ISPRS Journal of Photogrammetry and Remote Sensing.



4.1 Introduction

With relation to the layout of this chapter, the context of research and description

of conventional PCA can be found in Section 4.1 and Section 4.2, respectively. Then,

Fd-PCA is explained in Section 4.3, including theoretical comparisons. Subsequent

analysis and results are in Section 4.4, with summarised remarks in Section 4.5.

4.1 Introduction

The high dimensionality of features present in HSI data leads to great potential in

many data analysis problems, but also requires effective feature extraction and data

reduction. Thanks to the correlation among contiguous spectral bands in HSI, some

data reduction methods are usually applied to the spectral domain of hyperspectral

cubes, such as PCA [12, 55, 116], Independent Component Analysis (ICA) [69, 70] or

Maximum Noise Fraction (MNF) [71, 72], forming part of the current state-of-the-art

methods. In fact, PCA is probably the most widely used method for data reduction in

HSI, which can reduce the original number of features from hundreds to only a few,

maintaining a sensible performance in terms of classification accuracy.

Conventional implementation of PCA, as already described in Chapter 3, reallo-

cates the initial 3-D hyperspectral cube in a 2-D data matrix from which the covari-

ance matrix is computed. This point essentially comprises 2 challenges. On one hand,

this computation can lead to problems when the dimensions in the hyperspectral cube

are extremely large, causing even software such as MATLAB [48] to crash because of

contiguous memory management. On the other hand, treating all spectral bands in the

same way to compute the covariance matrix fails to pick up the disparate contributions

arisen from the whole spectrum domain.

In order to solve these disadvantages, a PCA variant called Fd-PCA is proposed.

With this alternative algorithm, the new covariance matrix is achieved by accumulation

of partial covariances, computed through much smaller matrices thanks to the folding

procedure carried out on the spectral pixels or samples. Therefore, using samples not

in a vector form but in a matrix representation makes feasible the achievement of a

new covariance matrix, where the correlation among spectral bands is more effectively

addressed, while at the same time computational burden is much reduced.
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4.2 The Conventional PCA Method

PCA is a well-known unsupervised method for feature extraction and data reduction

[12, 55, 116]. This method can reduce the dimensionality of features removing the

correlation among the original data, by means of an orthogonal projection and posterior

truncation of the transformed features.

In general, the PCA method has a clear mathematical background and its imple-

mentation is usually straightforward. Not surprisingly, PCA has been widely employed

in a vast number of applications, where initial data samples are transformed into a

lower dimensional feature space for effective, efficient, or fast analysis such as those

in coding [117] or classification [41, 118]. In the following, the PCA algorithm is

described and formulated with relevant detail.

4.2.1 Algorithm Description

The conventional implementation of PCA consists of 3 clearly differentiated steps,

i.e., (A) covariance matrix computation, (B) EigenValue Decomposition (EVD), and

(C) data projection. These steps are explained for particular application of PCA to HSI

data reduction.

A. Covariance Matrix Computation

Given a spectral pixel pns = [pns(1), pns(2), ... , pns(N
λ
)
]⊤ in the hyperspectral cube, where

ns ∈ [1,Ns] and Nλ represents the number of spectral bands, the 3-D cube is reallocated

into a 2-D matrix with size Nλ ×Ns, called data matrix, as shown in Figure 4.1.

Fig. 4.1 Data matrix in conventional PCA
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Covariance matrix computation requires a mean-adjustment procedure by which

the mean spectral vector or sample is subtracted to all spectral vectors in the data ma-

trix. In other words, Y = [y1,y2, ...,yNs] is the matrix containing the mean-adjusted

spectral vectors yns achieved by subtracting the mean spectral vector p̄ which is com-

puted from the whole cube as expressed in the following

yns = pns − p̄

p̄ = 1
Ns

Ns
∑

ns=1
pns

. (4.1)

Then, covariance matrix C is obtained by the matrix Y as

C = expect
{
(pns − expect{pns}) (pns − expect{pns})⊤

}
≈ expect{ ynsy⊤ns

}

≈ Y Y⊤

, (4.2)

where Y ∈RNλ×Ns , C ∈RNλ×Nλ , and expect{} is used for denoting mathematical ex-

pectation, applied over the pixel dimension. For simplicity, the dividing term is omitted

and C = Y Y⊤ is considered. In HSI, the size of matrix Y can be extremely large, and

the multiplication performed in Equation 4.2 can be problematic when the resources

are limited, such as in the case of portable or embedded devices.

B. EVD

The information contained in the covariance matrix is effectively exploited by EVD,

where the spectral covariance C is decomposed into a multiplication of diagonal and

orthonormal matrices as in Equation 4.3

C = UΛΛΛU⊤. (4.3)

The matrix ΛΛΛ = diag{λ1,λ2, ...,λNλ
} is diagonal containing the eigenvalues of C,

while U is an orthonormal matrix composed by the related eigenvectors [u1,u2, ...,uNλ
].

The eigenvalues are sorted in a way that λ1 > λ2 > ... > λNλ
, and the smallest ones

(along with their corresponding eigenvectors) are usually discarded for data reduction,

only selecting the first few eigenvalues.
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C. Data Projection

Finally, through the matrix U of eigenvectors, the spectral vector yns can be trans-

formed into an uncorrelated vector qns as

qns
= U⊤yns

=


u
(1,1) u

(1,2) · · · u
(1,N

λ
)

u
(2,1) u

(2,2) · · · u
(2,N

λ
)

...
... . . . ...

u
(N

λ
,1) u

(N
λ
,2) · · · u

(N
λ
,N

λ
)


Nλ×Nλ



yns(1)

yns(2)
...

yns(F)

...

yns(N
λ
)


Nλ×1

. (4.4)

The projected vector qns can be truncated for data reduction, where the dimen-

sionality of features is then reduced to F << Nλ . Since the eigenvalues are sorted in

descent order, the smallest ones (or less representative eigenvalues) can be omitted.

This implies the use of only the first F eigenvectors, expressed as

qt
ns
= trunc{qns

}= [qns(1),qns(2), ...,qns(F)
]⊤

=


u
(1,1) u

(1,2) · · · u
(1,N

λ
)

u
(2,1) u

(2,2) · · · u
(2,N

λ
)

...
... . . . ...

u
(F,1) u

(F,2) · · · u
(F,N

λ
)


F × Nλ



yns(1)

yns(2)
...

yns(F)

...

yns(N
λ
)


Nλ × 1

. (4.5)

4.2.2 Variations of PCA

Due to the wide applications of PCA, several extensions and variations have been pro-

posed. These variants simply aim to improve the efficiency or efficacy of the conven-

tional PCA method. For instance, in [60] a modified-PCA is proposed, by which using

only a selected amount of training data instead of all available samples to compute the

covariance matrix provides some speedup in the implementations. Another example

can be found in [61] with the incremental-PCA technique. This interesting variant
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enables updating of the eigenspace according to previous and new data samples. How-

ever, a different variant proposing segmentation, in this case namely Segmented-PCA

(S-PCA) [62], has attracted most of the attention.

The S-PCA variant basically consists of implementing conventional PCA sepa-

rately into different segments of data along the spectrum. The spectral bands are seg-

mented into several groups in accordance with the correlation between band pairs,

which is claimed to extract local information from the spectral domain achieving en-

hanced analysis in classification and data compression tasks [62]. This variant is of

particular interest for this research, especially with relation to the extraction of local

structures in the spectral domain.

Finally, apart from hyperspectral applications, some other research areas have also

proposed interesting variants, where the 2-D version of PCA (2D-PCA) [63] for face

recognition tasks in computer vision stands out. The 2D-PCA method is a really mo-

tivating approach that reduces the memory requirements along with the computation

time while, at the same time, the reduced samples achieve higher classification accu-

racy. Further discussion about 2D-PCA can be found in [119–121], where in [64] it

is proved that the 2D-PCA variant is a particular case of the already introduced block-

based-PCA.

4.3 Proposed Folded-PCA

Regarding some PCA variants already introduced in the literature, 2 key points have

brought inspiration to propose the Fd-PCA method. On one hand, the spectral segmen-

tation considered by S-PCA highlights the fact that not all the spectral bands contribute

the same to extract useful information from the spectral domain. On the other hand,

the 2D-PCA variant in face recognition applied to 2-D images remarks that spatial cor-

relation of pixels in this particular case can be addressed by computing samples as 2-D

matrices. Merging these 2 concepts together, Fd-PCA is achieved.

While conventional PCA has spectral vectors as inputs, Fd-PCA folds each sample

into a 2-D matrix, enabling a 2D-PCA-style analysis [122, 123]. However, the aim

of this folding would not be to solve the spatial disruption as in 2D-PCA [63], but to
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reduce the computational complexity, while extracting local structures from the spec-

tral domain in a similar way to the S-PCA method [62]. In the following, Fd-PCA is

introduced in more detail.

4.3.1 Algorithm Description

Fd-PCA reallocates each sample or spectral vector into a matrix (Figure 4.2), from

which a partial covariance matrix can be obtained and then accumulated until the final

covariance matrix from all samples in the hyperspectral cube is achieved, to undertake

the subsequent EVD and data projection steps.

Fig. 4.2 Folding procedure from vector to matrix array

Therefore, in the 2-D matrix, each row contains a group of Nw bands, being the

complete set of spectral bands folded into a total of Nh groups or segments. Accord-

ing to this, when Nh = 1, Fd-PCA simply degrades to conventional PCA. In the other

extreme case, when Nh = Nλ , it results in no band grouping being implemented. Ob-

viously, Fd-PCA performance depends on the Nh and therefore Nw parameters, where

the folding scheme determines the additional information that can be extracted with

relation to conventional PCA. Additionally, even though each group or segment can

contain a different number of bands, the main algorithm is derived for an even number

of bands, simply for an easier understanding. Later, Section 4.3.3 explains how this

basic implementation can be extended to the case where uneven bands are used in the

folding procedure.

Taking into account the high correlation and redundancy between spectral bands

in HSI, as well as the grouping or clustering of bands already implemented for band

selection and feature characterisation [124, 125], it is clear that the folding procedure
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with appropriate parameters leads to extract not only global but also local structure,

proving to be better than conventional PCA [41, 116], with higher discrimination abil-

ity and lower computational complexity.

Given a spectral sample yns = [yns(1),yns(2), ... ,yns(N
λ
)
]⊤, Fd-PCA folds it into a ma-

trix with dimensions Nh ×Nw, where Nλ = NhNw. This matrix looks like

Ans =


ans(1)

ans(2)
...

ans(Nh)


Nh×Nw

ans(nh)
= [yns(1+Nw(nh−1)),yns(2+Nw(nh−1)), ...,yns(Nw+Nw(nh−1)) ]

, (4.6)

where nh ∈ [1,Nh] represents the number of band groups or segments, all of them with

Nw bands. Given a matrix Ans , its corresponding partial covariance is obtained as

Cns = A⊤
ns

Ans , Cns ∈ RNw×Nw, (4.7)

and, therefore, the final covariance matrix from all Ns samples in the hyperspectral

cube is achieved by accumulation

CFdPCA =
1
Ns

Ns

∑
ns=1

Cns =
1
Ns

Ns

∑
ns=1

A⊤
ns

Ans. (4.8)

Once the Fd-PCA covariance matrix is obtained, the same methodology in Equa-

tion 4.3 is applied in order to compute the EVD. However, the main difference here

is that CFdPCA has dimensions Nw ×Nw, much smaller in relation to the conventional

case where covariance was sized Nλ ×Nλ , or what is the same, NhNw×NhNw. This fact

directly translates into a lower memory requirement and, even better, reduced compu-

tational complexity during the EVD step.

After the EVD, final data projection is carried out. In the Fd-PCA case, Equation

4.4 and Equation 4.5 used in conventional PCA need some adjustment in order to cope

with the folded 2-D sample, i.e., the matrix Ans ∈RNh×Nw instead of the sample vector

yns . Denoting F as the reduced number of features to be obtained from Fd-PCA, the

matrix of eigenvectors is truncated to F ′ where F = NhF ′ and Ut ∈ RNw×F ′
.
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Therefore, F ′ features are extracted from each row in Ans by multiplying it with

the truncated Ut, expressed as

Bns = AnsUt , Ans ∈ RNh×Nw , Ut ∈ RNw×F ′
. (4.9)

Obviously, this results in a total of F = NhF ′ extracted features, where the prod-

uct of smaller matrices with relation to the conventional PCA method leads to lower

computational cost. The reduced sample is now defined as Bns ∈ RNh×F ′
, still in ma-

trix form. Simply by reallocating the resulting matrix into a vector array, the reduced

sample is ready for subsequent analysis.

4.3.2 Implementation Considerations

In order to further understand the effects of folding vector samples into matrix form,

it is essential to find out the mathematical relationship present between the covariance

matrix obtained by conventional PCA [12], the proposed Fd-PCA approach, and also

the interesting S-PCA [62] method.

Deriving the expression for conventional covariance matrix used in PCA, in terms

of band groups or segments ans(nh)
introduced in Equation 4.6, then

CPCA = 1
Ns

Ns
∑

ns=1
yns

y⊤ns

= 1
Ns

Ns
∑

ns=1


a⊤ns(1)

ans(1) a⊤ns(1)
ans(2)

· · · a⊤ns(1)
ans(Nh)

a⊤ns(2)
ans(1)

a⊤ns(2)
ans(2) · · · a⊤ns(2)

ans(Nh)
...

... . . . ...

a⊤ns(Nh)
ans(1)

a⊤ns(Nh)
ans(2)

· · · a⊤ns(Nh)
ans(Nh)

 .
(4.10)

On the other hand, the covariance matrix achieved by Fd-PCA thanks to the folded

samples can be expressed as

CFdPCA = 1
Ns

Ns
∑

ns=1
A⊤

ns
Ans

= 1
Ns

Ns
∑

ns=1
(a⊤ns(1)

ans(1) +a⊤ns(2)
ans(2) + · · ·+a⊤ns(Nh)

ans(Nh)
).

(4.11)
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Furthermore, given a particular segment nh and assuming for simplicity a segmen-

tation by equally sized partitions, covariance from S-PCA can also be expressed as

CSPCA−nh =
1
Ns

Ns

∑
ns=1

a⊤ns(nh)
ans(nh)

. (4.12)

By paying attention to both expressions in Equation 4.10 and Equation 4.11, it is

easy to realise that the new covariance matrix from the folded samples is constructed by

the accumulation of the Nw ×Nw portions from the main diagonal of the conventional

covariance matrix, the same portions that are achieved, yet computed separately, by

S-PCA. This important fact can be schematically represented by Figure 4.3.

Fig. 4.3 Schematic representation of the covariance matrices

While in the S-PCA method there are as many covariance matrices as band groups

or segments in the partition, with subsequent PCA independent implementations for

each of them, Fd-PCA combines all the locally extracted covariance portions and,

therefore, the following EVD needs to be solved just once, leading to a reduction in

computational complexity.

How to select an appropriate configuration, i.e., values for the parameters Nh (or

Nw) and F (or F ′) is important to achieve a good performance from Fd-PCA. In a

similar way to S-PCA [62], the parameters selection has to be related to the common

distribution of correlation between the spectral bands.

In the HSI cube, contiguous spectral bands present high correlation, which makes

it convenient to group these bands into smaller subsets. From [62], it is derived that

spectral bands are grouped according to the correlation matrix between each pair of

bands. Therefore, a similar criterion must be used when grouping (or folding) the
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spectral samples. Even though the number of bands grouped in each segment can vary,

Fd-PCA is initially proposed with an even number of bands in all segments, which

significantly simplifies the problem but still giving good results. Hence, the number of

bands Nw in the Nh segments are selected based on the common or average size from

the clusters observed in the main diagonal of the correlation matrix. With relation to

the values for F ′, they should be a small portion of Nw, i.e., about 10-25%. This is

because a large number for F ′ may lead to noise extraction.

4.3.3 Extension for Uneven Folding

The Fd-PCA proposal has been introduced considering an even number of bands in

each segment, so the folding process from vector to matrix is straightforward and

sensible for an easier understanding of the method. This can be regarded as a basic

configuration of Fd-PCA, already able to provide interesting benefits.

However, Fd-PCA is not limited to the basic case. Actually, the extraction of local

structures from the spectral domain may be compromised, as the widths of the differ-

ent segments are normally different to each other. Therefore, a more general imple-

mentation of Fd-PCA, with uneven bands, is possible for higher efficacy in extracting

features, which is simply achieved by enlarging every group or segment to match the

width of the largest group, N′
w (see Figure 4.4). This enlargement is simply carried out

by filling in zeros at the end of the corresponding segment. In that sense, the extended

Fd-PCA may lead to a tradeoff between efficiency and efficacy in some data sets, since

a larger value for N′
w may translate into a higher potential in extracting local structures

but, at the same time, less reduction in computational complexity is achieved.

Fig. 4.4 Folding procedure in the extended case
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4.4 Analysis and Evaluation

The main objective of the evaluations in the present chapter [13] is to compare the per-

formance of the conventional PCA method to the proposed Fd-PCA one. Their global

performance is assessed by several measurements, including the classification Over-

all Accuracy (OA) in land-cover analysis, the computational cost (number of required

Multiply ACcumulates (MACs)), and memory requirements (matrices size).

4.4.1 Experiments

The general workflow of the experiments is described here, according to the stages

defined in Section 2.3.1 and including some of the data described in Appendix A. The

MATLAB [48] environment is employed for all the experiments.

A. Data Description

The Indian Pines data set is selected for evaluating the Fd-PCA method, along with the

Indian Pines B, both from the same sensor [30], as they are considered appropriate hy-

perspectral images. Further analysis can be found in the publication derived from this

work [13], where micro-doppler radar data [126] is also included for military remote

sensing applications. The data sets selected for evaluations in this chapter are:

1. Indian Pines [36] (Appendix A.1).

2. Indian Pines B [127] (Appendix A.2).

B. Data Conditioning

Both Indian Pines and Indian Pines B are employed with the resulting 200 spectral

bands after the removal process indicated in Appendix A, where all labelled classes in

the ground truth (16 and 20, respectively) are included for classification.

C. Feature Extraction

A total of 3 different feature extraction methods are considered in the evaluations. In

the first place, the Baseline case (original Nλ spectral features) is considered to be a

useful reference to which compare the rest of methods. Then, the proposed Fd-PCA
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method is compared to conventional PCA and also to S-PCA, a state-of-the-art method

in this context, leading to unavoidable interest in comparisons. The main configura-

tion parameters implemented are Nh = 10 and Nw = 20, determined by the criterion

mentioned in Section 4.3.2 and also empirical evaluations [13]. These parameters are

employed in both Fd-PCA and S-PCA for fair comparisons. The number of reduced

features F is selected from 5 to 30, in steps of 5 [41].

D. Classification

The powerful Support Vector Machine (SVM) is employed as a classifier, where the

multiclass library BSVM [44] is selected in this case (percentage of 30% for training)

with general design of experiments as described in Section 2.3.2.

4.4.2 Results

Comprehensive analysis and results are obtained to evaluate the Fd-PCA method. The

results are divided into different parts, related to (A) configuration of the Fd-PCA

method, (B) classification accuracy, (C) memory requirements, (D) computational

complexity, and (E) classification accuracy for uneven folding. These are described

in the following.

A. Configuration for Fd-PCA

As described in Section 4.3.2, the final performance obtained from the Fd-PCA method

depends on the number of segments to define, i.e., the configuration of parameters Nh

and Nw. To illustrate this fact, Figure 4.5 presents the classification accuracy (OA) for

different values of Nh reducing the data to F = 40 features.

These configuration results evaluate the Fd-PCA performance for different values

of Nh (1, 2, 5, 10, 20, and 40) that lead to an equal number of bands in each segment,

given that Nλ = NhNw. From the trend in Figure 4.5 is clear that the classification

accuracy has its maximum peak when Nh = 10, with the rest of values degrading the

accuracy when they approach 1 or become larger than 40. Actually, the case with

Nh = 10 seems to fulfil the recommendation introduced in Section 4.3.2 about general

distribution of spectral correlation and, therefore, this is the configuration selected in
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the following experiments. In addition, some other considerations must be highlighted,

such as the accuracy degrading to exactly the same value of conventional PCA when

Nh = 1, and the general improvement in all the values implemented for Nh, even for

few (2) or many (40) segments in the folded matrix.
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Fig. 4.5 Mean OA for Indian Pines (F = 40, Nh = 1 to 40)

B. Classification Accuracy

Fd-PCA is compared to the Baseline case, the conventional PCA, and also the S-PCA

method in terms of classification OA, as shown in Figure 4.6 and Figure 4.7, depicting

the global trend and behaviour of accuracy with different number of features F . In

general, with more features extracted in the reduction, more information and better ac-

curacy in the classification tasks is expected, where the Baseline case is not dependent

on F , as it employs the original spectral profiles.

Fd-PCA outperforms PCA when F < 100 approximately, which is 50% of the orig-

inal dimensionality of features. In addition, for F = 20 to 80, Fd-PCA provides higher

accuracy than both Baseline and S-PCA. With relation to the general behaviour, for

conventional PCA, as long as more features are included, better classification accu-

racy is achieved, where the trend is monotonic approaching the Baseline reference.

However, the Fd-PCA can generate improved accuracy even for a reduced number of

features, due to the local spectral information extracted. With more features included,

the accuracy improves until a given limit, degrading then in a nonmonotonic behaviour,

due to the noise contained in the less significant features added.
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Fig. 4.6 Mean OA for Indian Pines (F = 10 to 120)
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Fig. 4.7 Mean OA for Indian Pines B (F = 10 to 120)

C. Memory Requirements

With relation to contiguous memory needs, Table 4.1 shows the dimension of the main

matrices involved in the 3 PCA steps, i.e., data, covariance, and projection matrices.

Minimum savings achieved by Fd-PCA are about N2
h , yet the covariance matrix di-

mension presents a saving factor of Ns, which makes Fd-PCA better than the S-PCA

method, given that Ns >> Nh.

Indeed, a particular configuration with Nh = 10 requires less than 1% of memory

in comparison to the conventional PCA method, and different configurations can be

implemented depending on the case and objective.
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Table 4.1 Matrices dimension for (Fd/S)-PCA computations

Method \ Step Data Covariance Projection
matrix matrix matrix

PCA Ns ×NhNw NhNw ×NhNw NhNw ×F
Fd-PCA Nh ×Nw Nw ×Nw Nw ×F/Nh

Saving factor Ns N2
h N2

h
S-PCA Ns ×Nw Nw ×Nw Nw ×F/Nh

Saving factor Nh N2
h N2

h

D. Computational Complexity

The complexity associated with the PCA approaches, including conventional, Fd-PCA,

and S-PCA, is stated in Table 4.2, being expressed in terms of MACs for the 3 PCA

steps, i.e., covariance matrix computation, EVD, and data projection. The global sav-

ing factor achieved by Fd-PCA is approximately Nh, i.e., the height of the folded ma-

trix, being slightly higher than the saving from S-PCA. Expressing the MACs in num-

bers for the particular case with Nh = 10 and F = 30 (Table 4.3), the computational

complexity is reduced to approximately 10% for both data sets, which means an order

of magnitude less.

Table 4.2 Computational complexity (MACs) in (Fd/S)-PCA

Method \ Step Covariance EVD Data
computation projection

PCA NsN2
h N2

w N3
h N3

w NsNhNwF
Fd-PCA NsNhN2

w N3
w NsNwF

Saving factor Nh N3
h Nh

S-PCA NsNhN2
w NhN3

w NsNwF
Saving factor Nh N2

h Nh

Table 4.3 Number of MACs in (Fd/S)-PCA (F = 30)

Method \ Data set Indian Pines Indian Pines B
PCA 9.752e8 1.043e9

Fd-PCA 9.672e7 1.035e8
Saving factor 10.0827 10.0773

S-PCA 9.679e7 1.036e8
Saving factor 10.0754 10.0676
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E. Classification Accuracy for Uneven Folding

As a final evaluation in the experiments, the Fd-PCA method is now implemented

for the general case in which the Nh segmented regions in the folding procedure are

not the same width (see Section 4.3.3). The new configuration still presents Nh = 10

segments but instead of using a common Nw = 20, it employs an uneven distribution

Nw(nh)
= (15,21,24,16,13,13,21,21,28,28), following correlation criteria, with N′

w =

max{Nw(nh)
}= 28.
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Fig. 4.8 Mean OA in the extended case for Indian Pines (F = 10 to 120)

As shown in Figure 4.8, the new configuration is able to provide good classification

accuracy, similar to the basic configuration with some cases (F = 10 and F = 30)

leading to slightly better results.

4.5 Summary

Large data such as HSI images in remote sensing require the application of feature

extraction and data reduction methods, where PCA is probably the most widely used

method for that purpose. However, the conventional PCA method comprises 3 main

drawbacks, i.e., high computational cost, excessive memory requirements, and poor

efficacy when dealing with HSI data.

In order to solve these disadvantages, a folding procedure is introduced in the im-

plementation of PCA. With appropriate folding in the samples or pixels, the new co-
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variance matrix achieved makes Fd-PCA able to extract local information from the

spectral domain, providing a real added value to the classification tasks. The improve-

ment in classification accuracy seems related to the extraction of local information

from the spectral covariance matrix, which provides features with higher discrimina-

tion ability to the classifier models. Additionally, the computational complexity is

reduced by an order of magnitude, and the memory requirements are relieved as well.

Fd-PCA proves to beat conventional PCA and S-PCA, a similar variant, being also

able to surpass the accuracy obtained from the original spectral profiles, yet Fd-PCA

employs a much reduced dimensionality of features F . In summary, Fd-PCA is clearly

a potential method for efficient and effective data reduction in hyperspectral remote

sensing.
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Chapter 5

Spectral Extraction and Denoising by
1D-SSA

In this chapter, a recent technique for time series analysis and forecasting, Singular

Spectrum Analysis (SSA), is introduced to hyperspectral remote sensing for effective

feature extraction in the spectral domain (1D-SSA). This general algorithm has been

previously applied in several fields including climatic, meteorological, and geophysical

applications as well as generic data mining in social science [128], among others,

reporting increasing interest.

The key point in 1D-SSA is that an original signal can be decomposed into several

components such as varying trends, oscillations, and noise [14]. Therefore, the appli-

cation of 1D-SSA to the spectral profiles from the hyperspectral cubes can decompose

original pixels for a later reconstruction in which, removing noisy components, the

discrimination capability of the resulting features (reconstructed pixels) is much im-

proved, leading to increased classification accuracy in land-cover analysis.

Although 1D-SSA improves the efficacy of feature extraction, its computational

complexity is considerable as in the pixel-based implementation, an individual Singu-

larValue Decomposition (SVD) analysis is needed for each pixel. To solve this draw-

back, a fast implementation is proposed. This implementation, namely Fast-1D-SSA

(F-1D-SSA), only requires a unique SVD applied to a representative pixel, selected as

the mean or the median pixel from the whole hyperspectral cube. The output from this

SVD is a single transform matrix for all samples, leading to similar accuracy values in

classification tasks but with reduced complexity in extracting the features.



5.1 Introduction

In the present chapter, after a background introduction in Section 5.1, 1D-SSA and

F-1D-SSA methods are discussed in Section 5.2 and Section 5.3, respectively. Experi-

mental evaluations and analysis are presented in Section 5.4, with a summary given in

Section 5.5. This research on the proposed 1D-SSA method and its fast implementa-

tion has been published in 2 IEEE journal papers, referenced as [15, 16].

5.1 Introduction

The powerful capabilities of HyperSpectral Imaging (HSI) are based on the hundreds

of spectral bands or features available in each pixel or sample. However, HSI data is

also prone to noise, which on the contrary, can reduce the discrimination ability and the

classification accuracy. To this end, it is desirable to decompose pixels in the spectral

domain such that noise can be removed or mitigated. In this decomposition context,

an inspiring piece of research is found in [18], where the use of the Empirical Mode

Decomposition (EMD) method on the spectral pixels is briefly evaluated.

As the main part of the Hilbert Huang Transform (HHT), an algorithm employed

for nonlinear and nonstationary data analysis [90, 91, 129], the EMD method is able

to decompose 1-D signals into a few components namely Intrinsic Mode Functions

(IMFs) for a posterior reconstruction by only specific IMFs, being used in signal pro-

cessing tasks such as speech recognition [92]. A proper reconstruction of the original

1-D signal by using a few IMFs provides new features from which enhanced properties

are expected. However, a brief application of 1D-EMD in [18] showed not very much

improvement at all, but actually a deterioration of classification accuracy.

In this chapter, the application of 1D-SSA, unlike 1D-EMD, is proved to lead to

increased classification accuracy, as the spectral pixels and corresponding features are

enhanced, becoming a promising methodology for feature extraction in HSI. Addi-

tionally, as 1D-SSA requires a pixel-based implementation with considerable compu-

tational complexity, a fast implementation of SSA in HSI (F-1D-SSA) is proposed,

only requiring a single SVD computation applied to a representative pixel from the

whole cube. This fast implementation provides similar good results as 1D-SSA but

with reduced complexity, as reported by the comprehensive evaluations in Section 5.4.
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5.2 The 1D-SSA Method in HSI

The background of the SSA algorithm is associated with time series analysis and

forecasting, including diverse applications from social science or market research to

generic data mining. Its origins are related to the former Soviet Union, apparently dur-

ing the 80s. Based on earlier works [130, 131], and with subsequent publications in

the last 20 years, SSA has provided important research attracting attention in recent

years [14, 93, 128], including preliminary but insufficient analysis in HSI [94].

In the present section, the SSA concept including mathematical description and

related capabilities is briefly introduced. Furthermore, an application example in HSI

is detailed for a better understanding.

5.2.1 Algorithm Description

Being based on SVD, the main purpose of SSA is to decompose an original series

into several independent components or subseries, where each of them is related to

the eigenvalues from the SVD analysis. These individual components can be grouped

together to produce others, basically interpretable as varying trends, oscillations, or

noise. According to this, the main capabilities of SSA can be summarised as [14]:

1. Extraction of trends and smoothing.

2. Extraction of periodic components.

3. Complex trends and periodicities with varying amplitude.

4. Finding structures in short time series.

5. Envelopes of oscillating signals.

These potential abilities make SSA a promising method, however, how to handle

SSA components, including those related to noise, has not yet been properly assessed

for hyperspectral remote sensing. Mathematical formulation of the algorithm for ap-

plication in HSI is described in the following.

Given a pixel p = [p1, p2, · · · , pNλ
]⊤ ∈ RNλ from the HSI cube, which is actually a

1-D signal, it can be transformed by 1D-SSA according to the next steps.
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A. Embedding

Selecting a window with size L ∈ Z given L ∈ [1,Nλ ], a trajectory matrix X from the

pixel p is constructed as in Equation 5.1, having in each column a lagged vector cvk

expressed as cvk = [pk, pk+1, · · · , pk+L−1]
⊤ ∈RL, where k ∈ [1,K] and K = Nλ −L+1.

X =


p1 p2 · · · pK

p2 p3 · · · pK+1
...

... . . . ...

pL pL+1 · · · pNλ

= [cv1,cv2, · · · ,cvK]. (5.1)

Trajectory matrix X is Hankel type, as its antidiagonals have identical values.

Moreover, the SSA algorithm can be implemented symmetrically in 2 intervals, thanks

to the properties of X [14]. These intervals are defined by L ∈ [1,round{Nλ/2}] and

L ∈ [ceil{(Nλ + 1)/2},Nλ ], where round{} and ceil{} are operators representing the

rounding and ceiling functions in computer science. Therefore, for a given L, an equiv-

alent implementation can be achieved for another L′ = K, with exactly the same out-

put. Finally, an important remark is that selection of the extremes from the interval

L ∈ [1,Nλ ], i.e., L = 1 or L = Nλ , results in the same original pixel.

B. SVD

The SVD of trajectory matrix X can be expressed as in Equation 5.2, where even

though Lrank ≤ L equals to the rank of X and, therefore, the number of available com-

ponents, Lrank = L is considered for simplicity

X = X1 +X2 + · · ·+XL. (5.2)

The SVD of X is actually equivalent to the EigenValue Decomposition (EVD) of

the resulting matrix from XX⊤, with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λL and corresponding

eigenvectors [u1,u2, · · · ,uL]. Following the SVD (or equivalent EVD), matrix X (and

in last terms the pixel p) is decomposed into several matrices Xl|l ∈ [1,L], each of them

known as elementary matrix, related to its corresponding eigenvalue as

Xl =
√

λlulv⊤l , vl =
X⊤ul√

λl
. (5.3)
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The collection (
√

λl,ul,vl) is usually called the lth eigentriple, where matrices

U and V in Equation 5.4 are known as matrix of empirical orthogonal functions and

matrix of principal components, respectively,

U = [u1,u2, · · · ,uL] ∈ RL×L

V = [v1,v2, · · · ,vL] ∈ RK×L
. (5.4)

C. Grouping

This particular step refers to the selection and grouping of all or some of the L compo-

nents obtained from the SVD. In general terms, the set of L components is divided into

M disjointed sets t1, t2, · · · , tM, where ∑ |tm|= L and m ∈ [1,M]. Then, defining one of

the divided sets as t = (l1, l2, · · · , lT ), the corresponding matrix Xt from the group t can

be expressed as Xt = Xl1 +Xl2 + · · ·+XlT . Therefore, the original trajectory matrix X

can also be expressed in grouping terms as

X = Xt1 +Xt2 + · · ·+XtM . (5.5)

For easy understanding, expression in Equation 5.2 corresponds to a basic grouping

where M = L and T = 1, each set being made by an individual component. Finally, the

contribution of a grouping matrix Xt with relation to the original X is derived from its

related eigenvalues as

ηt = ∑
l∈t

λl

/
L

∑
l=1

λl. (5.6)

D. Diagonal Averaging

Resulting matrices Xtm | m ∈ [1,M] from the grouping step are not necessarily Hankel

type as the original trajectory matrix. Nevertheless, they have to be so in order to

project them into 1-D signals.

This hankelisation procedure is carried out by the average in the antidiagonals of

Xtm , as these values contribute to the same element in the derived 1-D vector. Denoting

zm = [zm(1),zm(2), · · · ,zm(N
λ
)
]⊤ ∈ RNλ as the 1-D signal from Xtm , it can be obtained by

the expression in Equation 5.7, where x(i, j) are the elements in Xtm
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zm(n
λ
)
=



1
nλ

nλ

∑
i=1

x(i,nλ−i+1) 1 ≤ nλ ≤ L

1
L

L
∑

i=1
x(i,nλ−i+1) L < nλ < K

1
Nλ−nλ+1

L
∑

i=nλ−K+1
x(i,nλ−i+1) K ≤ nλ ≤ Nλ

. (5.7)

Repeating this in every matrix Xtm , the original pixel p is the expressed as

p = z1 + z2 + · · ·+ zM =
M

∑
m=1

zm. (5.8)

In conclusion, original p can also be reconstructed using only few specific com-

ponents depending on the reconstruction purpose, where discarding components from

small eigenvalues in HSI can lead to the avoidment of noise.

5.2.2 Application Example in HSI

An original pixel or spectral profile in HSI can be decomposed and later be recon-

structed by 1D-SSA. A specific reconstruction based on the main eigenvalue compo-

nents from the SVD, while discarding less representative or noisy ones, leads to an

improved profile or features. In order words, it is feasible to replace the original spec-

tral signature from a pixel by an enhanced profile providing improved discrimination

ability for classification tasks.

How to determine an appropriate 1D-SSA-reconstructed profile is dependent on 2

key parameters. The first parameter is the size L of the embedding window, which

states how many components are extracted during the SVD decomposition. For ex-

ample, given a window size L = 10, a total of 10 components are obtained, one per

each eigenvalue from the SVD. According to the SVD, components related to largest

eigenvalues are much more significant than those related to the rest. Therefore, the

grouping or addition of main components provides a significant reconstruction.

The second parameter, called EigenValue Grouping (EVG), refers to the combi-

nation of extracted components that is selected for the reconstruction. For example,

when the EVG includes all components, the reconstruction is exactly the same as the

original profile. On the other hand, if the components from the smallest eigenvalues
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are discarded by the EVG, then the resulting profile is probably less noisy, since noise

is usually located in the small eigenvalue components. Finally, when the EVG avoids

the component from the largest eigenvalue, the reconstruction is not adequate since it

lacks the main information from the original signal.
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Fig. 5.1 Original and 1D-SSA-reconstructed pixels

An example of 1D-SSA application to a HSI pixel is provided in Figure 5.1, where

an original spectral pixel from the 92AV3C data set [132] and reconstructed ones using

parameter L = 10 with EVG=1st and EVG=1-2nd are plotted. The new profiles pre-

serve the basic trend of the original signal, as the largest components are included in

the reconstruction. Additionally, by avoiding the less representative components, noise

content is potentially reduced, with subsequent better feature extraction and classifica-

tion accuracy, as shown in Section 5.4.2.

5.3 Fast Implementation of 1D-SSA (F-1D-SSA)

The implementation of 1D-SSA in HSI is applied in pixel-based terms, in order words,

1D-SSA is individually applied to all the pixels involved in the classification tasks.

Since the spatial size of HSI cubes in remote sensing can easily achieve tens of thou-

sands, this implies extremely large number of SVD computations, the main step in-

volved in the SSA algorithm.
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Even though enhanced features and better classification accuracy values are ex-

pected from the 1D-SSA method, thus introducing added value to the data analysis,

the high computational complexity derived from the pixel-based SVD requirement is a

considerable drawback to be addressed. To this end, a fast implementation based on a

unique SVD implementation is proposed to further prove the potential of SSA in HSI.

5.3.1 Concept

The proposed application of 1D-SSA to HSI data works individually in every pixel.

Nevertheless, it still employs the same configuration parameters for all transformed

pixels. Therefore, not only the selected components in EVG but also the window size

L is common to all the cases. This consideration allows the F-1D-SSA method.

As the pixels are acquired by the same sensor, presenting same dimensionality

of features (Nλ ), and the embedding process is equal to all of them, the assembly

of lagged vectors in the trajectory matrix (see Section 5.2.1) structure is as well the

same. This common embedding process, applied before the SVD step, leads to similar

transformation matrices (eigenvectors) for every pixel, so eventually a unique matrix

can be commonly applied to all of them. Additionally, the distribution of general,

system, and environmental noise tends to be consistent (even other aspects, such as

water absorption regions) in pixels from the same hyperspectral cube, acquired under

the same conditions. In consequence, a single set of eigenvectors can perfectly project

the spectral samples into reconstructed ones where noise is mitigated.

Therefore, due to the common embedding procedure applied to all pixels, the or-

thonormal basis derived from a single SVD is able to transform all the spectral profiles

in the same terms, where the SVD is applied to a signal representative of the whole

data to transform. A mathematical description of this fast implementation is provided

in the remaining part of the present section.

5.3.2 Algorithm Description

Taking a look at Equation 5.2, the SVD step on the trajectory matrix decomposes it

into different elements according to the eigenvalues. The elements Xl are dependent
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on vl , and are both outputted from the SVD. Then, according to Equation 5.3, it is

possible to substitute vl in the expression defining Xl , so actually the elements from

the SVD can be defined in terms of the trajectory matrix and eigenvectors ul as

Xl =
√

λlul

(
X⊤ul√

λl

)⊤

. (5.9)

Just by rearranging some basic SSA formulation in Equation 5.9, on one hand it is

proved that the F-1D-SSA is mathematically feasible and, on the other hand, it can be

implemented simply by that equation. Therefore, any pixel embedded with the appro-

priate window size L in a trajectory matrix X can be subject to an SSA decomposition

by means of some predefined eigenvectors ul .

This is the central issue allowing the use of a unique set of eigenvectors in order

to transform all the pixels from a given hyperspectral cube. In the following, a further

description of algorithm formulation is included for clarity.

A. Single SVD Analysis

Once it is clear that using a single set of eigenvectors is possible to apply the 1D-SSA

method to all pixels in a given hyperspectral cube, the next question is what signal the

unique SVD has now to be applied to.

With relation to this issue, from the literature it is known that the mean and the me-

dian computations over sets of pixels have been actively employed in HSI related tasks

for feature extraction or data classification [133, 134]. Consequently, it is expected that

both mean and median computations can be used here for achieving a representative

spectral pixel from the whole data set.

Hence, the representative signal to which the unique SVD is applied is computed

as the average (or median) pixel from the total Ns pixels in the hyperspectral cube (see

Figure 5.2). Whether the mean or the median pixel from the whole cube, a unique

signal is introduced, being considered an appropriate input to the SVD. As already

explained, the representative pixel has to be embedded by the same window size L

employed in the conventional analysis, leading thus to the representative trajectory

matrix Xrep to which apply the single SVD analysis.
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Fig. 5.2 HSI cube and its representative pixels

B. Grouping Considerations

The grouping of components is carried out not necessarily by the strict addition of

components individually transformed, but can be implemented by a joint transforma-

tion, where denoting t as the group of selected components, the grouping is achieved

through a single multiplication as

Xt =
√

λlUt

(
X⊤Ut√

λl

)⊤
= Ut(Ut

⊤X)

Ut = [ul1,ul2 , · · · ,ulT ] ∈ RL×T
. (5.10)

C. Workflow of F-1D-SSA

The schematic workflows of both 1D-SSA and F-1D-SSA are clearly shown in Figure

5.3, for easy comparison highlighting their differences. In F-1D-SSA only the embed-

ding, grouping, and diagonal averaging steps are implemented for all the Ns pixels, as

the transformation matrix from the single SVD is commonly employed.

Fig. 5.3 Workflow for (left) 1D-SSA and (right) F-1D-SSA
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By a unique SVD applied to a representative pixel, whether it is the mean or the

median spectral profile from the whole cube, a remarkable reduction in complexity is

achieved in applying F-1D-SSA to HSI data. The corresponding evaluation of compu-

tational cost can be found in Section 5.4.2.

5.4 Analysis and Evaluation

Once both 1D-SSA and its fast implementation, F-1D-SSA, are introduced and de-

scribed, proper analysis is undertaken to prove the enhancement in feature extraction

and data classification, including a comparison to other state-of-the-art methods and

evaluations on the differences between 1D-SSA and F-1D-SSA [15, 16]. According

to the general setup from Section 2.3 and implemented in MATLAB [48], particular

description of the experiments in the present research is available in the following.

5.4.1 Experiments

Considerations in the 4 classical stages (see Section 2.3.1) can be found here, where

comprehensive description is offered with relation to the feature extraction stage.

A. Data Description

A total of 3 data sets are employed to evaluate the 1D-SSA and F-1D-SSA methods, in-

cluding scenes from Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) [30]

and Reflective Optics System Imaging Spectrometer (ROSIS) [32]. These are:

1. 92AV3C [132] (Appendix A.1).

2. Salinas C [36] (Appendix A.3).

3. Pavia CA [36] (Appendix A.5).

B. Data Conditioning

Noise and water absorption bands are removed according to the literature as indicated

in Appendix A for each data set. Regarding the number of labelled classes, the 2 op-

tions in the 92AV3C data set are evaluated, i.e., first the case with the most significant
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9 classes, and later the original case with 16 classes. For the other 2 data sets, all avail-

able classes are considered in the classification analysis.

C. Feature Extraction

The feature extraction stage for the evaluations on both methods (F)-1D-SSA can be

divided into 2 parts for easy understanding and progressive comparisons. Initially, the

conventional 1D-SSA is compared to the Baseline case using original features, and the

inspiring 1D-EMD method. Later, once the performance and behaviour of 1D-SSA

are clear, a further analysis is carried out comparing the fast implementation and other

state-of-the-art methods such as Principal Component Analysis (PCA) [116], Inde-

pendent Component Analysis (ICA) [69], Maximum Noise Fraction (MNF) [71], and

Nonnegative Matrix Factorisation (NMF) [73], under different data and conditions.

In the first place, 1D-SSA is compared to the Baseline and the 1D-EMD methods.

For this purpose, the 92AV3C and Salinas C data sets are employed both including 9

labelled classes, with 10% of samples for training the classifier models. The 1D-EMD

implementation is done by the available code in [135], with the stopping criterion

discussed in [129]. Stopping thresholds θ1, θ2, and α are experimentally determined,

satisfying θ2 = 10θ1 as suggested. The IMF Grouping (IMFG) is configured as in [18],

where combinations of 1st, the 1-2nd, and the 1-3rd IMFs are selected. On the other

hand, the 1D-SSA implementation includes several combinations of window size L (5,

10, 20, and 40) and EVG (1st, 1-2nd, 1-5th, and 1-10th).

In the second place, F-1D-SSA is evaluated by comparisons to classical methods

such as PCA, ICA, MNF, and NMF in a similar context, where some experimental

setups are changed to provide further added value to the analysis. Therefore, the Sali-

nas C data set is replaced by the urban Pavia CA image, 92AV3C now includes all 16

classes, and the percentage of samples to train the classifier is reduced to 5%, in a more

challenging context. The F-1D-SSA method is configured in exactly the same terms as

1D-SSA, for fair comparisons. With relation to the classical methods, the main param-

eter is simply the number of reduced features (F), where MATLAB provides adequate

libraries for PCA, ICA, and NMF, while in the MNF case an implementation based on

the Green’s method [71] is employed.
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The configuration implemented for each method is summarised in Table 5.1. Ad-

ditionally, the 1D-SSA technique is also combined with PCA in some experiments to

prove their compatibility for not only feature extraction but also data reduction.

Table 5.1 Configuration for feature extraction methods in (F)-1D-SSA

Method Parameters Values adopted
Baseline N/A N/A

PCA
Dimensionality
of features (F)

From 5 to original
dimensionality in steps
of 5 features (best one)

ICA
MNF
NMF

1D-EMD
Thresholds θ1,θ2, and α 0.8, 8, and 0.05

IMFG 1st, 1-2nd, 1-3rd

(F)-1D-SSA
Window size L 5, 10, 20, 40

EVG 1st, 1-2nd, 1-5th, 1-10th

D. Classification

Several classification accuracy values in land-cover analysis, i.e., Overall Accuracy

(OA), Class by Class (CbC), and Average Accuracy (AA) values [20, 49] (see Section

2.3.3) are the main performance measurements when comparing the different feature

extraction methods, including McNemar’s test of significance [50] having Baseline as

a reference. Enhanced features are expected to provide better interclass discrimination

ability, so the accuracy achieved by the classifier is higher.

The LIBSVM library [45] for Support Vector Machine (SVM) classifier is selected

with the Radial Basis Function (RBF) Gaussian kernel, reporting the mean values from

10 independent repetitions in each case. As already mentioned above, 2 different con-

texts are implemented in the experiments. Initially, the 92AV3C and Salinas C data

sets with 10% of samples for training and 9 classes each are employed. Later, 92AV3C

includes all the 16 labelled clases, and Salinas C is replaced by the Pavia CA scene (7

classes), both with a reduced 5% of samples for training.

5.4.2 Results

The evaluations provided comprise (A) 1D-SSA comparison to 1D-EMD and the Base-

line case, (B) 1D-SSA behaviour analysis, (C) combination of 1D-SSA with posterior
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PCA, (D) features comparison between 1D-SSA and F-1D-SSA, (E) comparison to

classical state-of-the-art methods, and (F) computational complexity in (F)-1D-SSA.

These are explained in the following.

A. Classification Accuracy

The 1D-SSA method is initially compared to the Baseline case for benchmarking ref-

erence, and also to the inspiring decomposition method 1D-EMD. In Table 5.2 several

results from different configurations prove that the Baseline case can be easily sur-

passed by 1D-SSA, while the analysis supports that the 1D-EMD method decreases

the classification accuracy, as stated in [18].

Table 5.2 Mean OA and McNemar’s test [Z ] (9 classes) (10% training)

Method Parameters 92AV3C Salinas C
Baseline N/A 85.59 [-0.00] 98.61 [-0.00]

1D-EMD
IMFG=1st 56.44 [-44.1] 96.21 [-16.4]

IMFG=1-2nd 65.52 [-33.8] 96.25 [-16.2]
IMFG=1-3rd 75.49 [-20.1] 97.31 [-11.0]

1D-SSA

L=5, EVG=1st 88.78 [+9.24] 98.76 [+2.03]
L=5, EVG=1-2nd 88.02 [+7.47] 98.69 [+1.21]
L=10, EVG=1st 88.68 [+8.87] 98.68 [+0.78]

L=10, EVG=1-2nd 88.49 [+8.57] 98.76 [+2.00]

Complementary accuracy measurements are reported in Table 5.3, in this case for

the Baseline and a 1D-SSA case (L = 5, EVG=1st). From this table, the general im-

provement in all classes it is clearly seen, regardless of the Number of Samples (NoS).

B. 1D-SSA Behavior

Results for 1D-SSA along all possible configurations described in Table 5.1 are plotted

into Figure 5.4 for the 92AV3C data set. From the general behaviour observed (sim-

ilar to the Salinas C case) a reconstruction based on large EVG for small L results in

noise inclusion, which can be understood as a noisy region. On the contrary, having a

small EVG with relation to a large L leads to loss of useful information, stated as lossy

region. Therefore, an optimum performance is achieved by an intermediate or stable

region between the 2 extreme cases.
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Table 5.3 Mean OA, CbC, and AA (10% training)

92AV3C Salinas C
Class NoS Baseline 1D-SSA Class NoS Baseline 1D-SSA

(2) 1434 80.71 84.81 (1) 240 95.32 95.56
(3) 834 72.03 80.99 (2) 3400 99.93 99.92
(5) 497 89.98 92.73 (3) 1957 99.71 99.80
(6) 747 97.23 97.77 (4) 599 99.13 98.42
(8) 489 99.00 99.11 (5) 1155 97.77 98.40
(10) 968 76.83 83.54 (6) 1414 99.99 99.99
(11) 2468 83.99 86.11 (7) 848 99.62 99.65
(12) 614 80.45 84.91 (8) 5890 99.23 99.35
(14) 1294 98.27 98.41 (15) 159 25.52 32.59
AA (%) 86.50 89.82 AA (%) 90.69 91.52
OA (%) 85.59 88.78 OA (%) 98.61 98.76
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Fig. 5.4 Mean OA for 92AV3C (9 classes) (10% training)

These 3 regions described above are indeed clearly identified in Figure 5.4, with

noisy (L = 10, EVG=1-5th), lossy (L = 40, EVG=1st), and stable (L = 5, EVG=1st)

regions. In that sense, the tendency for EVG=1st is going from the stable to the lossy

region when L increases, while the tendency for EVG=1-10th is the opposite, going

from noisy to stable, as the selection of 10 components is large and requires big win-

dows for optimum performance. As a concluding remark, it is important to highlight

that some configurations (L = 5, EVG=1-5th) and (L = 10, EVG=1-10th) achieve the

same accuracy as the Baseline case, simply because the selection of all available com-

ponents leads to the same original features.
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C. Combination of 1D-SSA with Posterior PCA

The introduced 1D-SSA method keeps the original dimensionality of features, i.e., the

resulting samples contain the same number of features (Nλ ), although they are different

from the original ones, leading to enhanced profiles and better classification accuracy

in land-cover analysis.

In order to prove the potential of 1D-SSA, further data reduction can be achieved

from the 1D-SSA method resulting in reduced profiles by using a classical method such

as PCA [116]. In Table 5.4, a basic PCA is applied to both Baseline and the 1D-SSA

method, reducing the number of features to F = 15. Even though the new accuracy

values appear slightly worse than those in Table 5.2, this is simply due to the lower

feature dimension used, where these results actually support the 1D-SSA method, as

significant improvement is achieved again with relation to the Baseline-PCA case, in

the data reduction context.

Table 5.4 Mean OA and McNemar’s test [Z ] (F = 15) (10% training)

Method Parameters 92AV3C Salinas C
Baseline-PCA N/A 84.15 [-0.00] 98.68 [-0.00]

1D-SSA-PCA

L=5, EVG=1st 87.93 [+9.64] 98.92 [+3.06]
L=5, EVG=1-2nd 86.25 [+5.75] 98.92 [+3.22]
L=10, EVG=1st 87.89 [+9.50] 98.86 [+2.49]

L=10, EVG=1-2nd 88.06 [+9.96] 98.96 [+3.73]

D. Comparison of Extracted Features in (F)-1D-SSA

The fast implementation of 1D-SSA is expected to produce similar features and, there-

fore, similar performance in classification accuracy terms, yet with much more reduced

computational complexity in comparison to the conventional implementation.

In the first place, enhanced spectral profiles from conventional 1D-SSA and F-1D-

SSA (using the mean computation for obtaining the representative pixel) are visualised

in Figure 5.5 for a given configuration L = 10, EVG=1-5th, and a randomly selected

pixel from the 92AV3C data set [132]. As expected from the explanations in Section

5.3.1, the resulting profiles are almost identical, being difficult to visually differenci-

ate them for both conventional and fast implementation, whether the mean or median

scheme is employed in F-1D-SSA.
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Fig. 5.5 Difference between original and (F)-1D-SSA-reconstructed pixels

Table 5.5 Mean cosine similarity scores in (F)-1D-SSA for 92AV3C

Conventional 1D-SSA
L \ EVG 1st 1-2nd 1-5th 1-10th

5 99.7514 99.9092 100 N/A
10 99.3228 99.7716 99.9367 100
20 98.4455 99.3706 99.8411 99.9408
40 97.5394 98.4087 99.5434 99.8438

F-1D-SSA (mean)
L \ EVG 1st 1-2nd 1-5th 1-10th

5 99.7513 99.9091 100 N/A
10 99.3228 99.7716 99.9365 100
20 98.4472 99.3732 99.8411 99.9410
40 97.5342 98.3275 99.5489 99.8433

F-1D-SSA (median)
L \ EVG 1st 1-2nd 1-5th 1-10th

5 99.7513 99.9091 100 N/A
10 99.3226 99.7716 99.9362 100
20 98.4469 99.3730 99.8411 99.9412
40 97.5356 98.3392 99.5506 99.8434

To further prove the similarity between 1D-SSA and F-1D-SSA enhanced profiles,

the well-known cosine distance [136] is introduced as a measurement quantifying the

resemblance of (F)-1D-SSA-reconstructed profiles to the original ones. This is done

for every individual pixel in the 92AV3C data set [132], reporting the average value

from all of them, and computed for all possible configurations, as reconstruction is

dependent on the window L and EVG parameters. The cosine similarity scores prove
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that no significant difference is found between conventional and fast 1D-SSA imple-

mentation (see Table 5.5), as the dissimilarity increases with the window size while it

decreases for larger EVG in the same terms for all implementations.

E. Classification Accuracy for (F)-1D-SSA and other Methods

This group of experiments now aims to compare both 1D-SSA [15] and F-1D-SSA

[16] including Baseline, 1D-EMD [18], and also classical methods [28, 41] such as

PCA, ICA, MNF, and NMF. This time, the 92AV3C data set with all 16 classes and the

urban Pavia CA are employed, both with a 5% percentage for training the SVMs.

Firstly, Table 5.6 reports the best OA values obtained by all methods except F-

1D-SSA. As can be seen, the 1D-SSA method outperforms the rest simply with the

configuration L = 10 and EVG=1st, showing again the efficacy of this method. In-

deed, 1D-SSA beats the Baseline accuracy, from 78% to over 82% for the 92AV3C

image, and from an already high 97.1% to over 97.35% for the Pavia CA scene. The

rest of the methods evaluated are surpassed as well, where the classical ones provide

limited accuracy with relation to the SSA methodology. This is also supported by the

McNemar’s tests of significance.

Table 5.6 Mean OA and McNemar’s test [Z ] (best OAs)

Method Parameters 92AV3C Salinas C
Baseline N/A 78.07 [-0.00] 97.10 [-0.00]

PCA F=15 and F=5 77.01 [-2.36] 97.06 [-0.15]
ICA F=20 and F=5 76.90 [-2.61] 96.93 [-0.74]
MNF F=10 and F=5 78.03 [-0.13] 97.16 [+0.12]
NMF F=70 and F=10 78.58 [+1.28] 97.15 [+0.25]

1D-EMD
IMFG=1st 48.33 [-47.2] 68.23 [-40.7]

IMFG=1-2nd 52.28 [-41.8] 79.55 [-30.7]
IMFG=1-3rd 65.40 [-24.2] 90.71 [-16.6]

1D-SSA L=10, EVG=1st 82.13 [+10.9] 97.35 [+1.19]

Moreover, the classical methods comprise some other disadvantages, for example,

ICA and NMF are affected by the initial values in interations, and MNF is highly

dependent on the algorithm used to estimate the noise. On the contrary, the 1D-SSA

method is generally reliable, consistent, and leads to better classification accuracy.
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Table 5.7 Mean OA and McNemar’s test [Z ] in (F)-1D-SSA for 92AV3C

Parameters 1D-SSA F-1D-SSA F-1D-SSA
L EVG (mean) (median)
5 1st 82.15 [+11.1] 82.12 [+11.2] 82.13 [+11.2]
5 1-2nd 80.68 [+7.58] 80.54 [+7.17] 80.54 [+7.16]

10 1st 82.13 [+10.9] 82.19 [+10.9] 82.17 [+11.0]
10 1-2nd 81.67 [+9.78] 81.94 [+10.8] 82.06 [+11.0]
10 1-5th 79.68 [+4.85] 79.85 [+5.50] 79.73 [+5.06]
20 1st 80.82 [+7.40] 80.86 [+7.44] 80.87 [+7.44]
20 1-2nd 82.15 [+10.9] 82.06 [+10.7] 82.05 [+10.5]
20 1-5th 81.67 [+9.86] 81.63 [+9.85] 81.49 [+9.51]
20 1-10th 79.13 [+3.29] 79.47 [+4.39] 79.47 [+4.38]
40 1st 79.46 [+3.74] 78.61 [+1.48] 78.61 [+1.47]
40 1-2nd 80.29 [+5.67] 80.64 [+6.90] 80.65 [+6.82]
40 1-5th 82.56 [+12.0] 82.19 [+11.1] 82.39 [+11.6]
40 1-10th 81.52 [+9.65] 81.14 [+8.58] 81.15 [+8.59]
Global mean 81.07 [+8.21] 81.02 [+8.15] 81.02 [+8.13]

Table 5.8 Mean OA and McNemar’s test [Z ] in (F)-1D-SSA for Pavia CA

Parameters 1D-SSA F-1D-SSA F-1D-SSA
L EVG (mean) (median)
5 1st 97.16 [+0.41] 97.16 [+0.38] 97.16 [+0.36]
5 1-2nd 97.00 [-0.23] 97.01 [-0.47] 97.01 [-0.47]

10 1st 97.35 [+1.19] 97.36 [+1.25] 97.36 [+1.23]
10 1-2nd 97.30 [+0.99] 97.12 [+0.16] 97.12 [+0.15]
10 1-5th 97.22 [+0.61] 97.05 [-0.20] 97.05 [-0.25]
20 1st 97.05 [-0.15] 97.07 [-0.10] 97.06 [-0.12]
20 1-2nd 97.23 [+0.81] 97.38 [+1.60] 97.33 [+1.24]
20 1-5th 97.06 [+0.07] 97.01 [-0.41] 96.92 [-0.81]
20 1-10th 97.10 [+0.04] 97.03 [-0.37] 97.02 [-0.38]
40 1st 96.79 [-1.85] 96.84 [-1.84] 96.85 [-1.82]
40 1-2nd 97.19 [+0.51] 97.09 [-0.49] 97.28 [+0.71]
40 1-5th 97.31 [+1.10] 97.42 [+1.72] 97.40 [+1.64]
40 1-10th 97.05 [-0.09] 97.24 [+0.89] 97.12 [+0.22]
Global mean 97.14 [+0.26] 97.14 [+0.16] 97.13 [+0.13]

On the other hand, the results from all configurations in (F)-1D-SSA are now re-

ported in Table 5.7 and Table 5.8. From these results, it is clearly proved the similarity

of (F)-1D-SSA to each other, whether the mean or the median spectral profile is em-

ployed as a representative sample from the hyperspectral cube. Ocasionally, some

(F)-1D-SSA configurations can degrade the classification accuracy, which indicates
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the importance of an appropriate configuration in accordance with the SSA behaviour

(see Figure 5.4). Finally, the CbC and AA values are reported in Table 5.9 and Table

5.10 for 92AV3C (16 classes) and Pavia CA, respectively, where similar improvements

are achieved in most labelled classes.

Table 5.9 Mean OA, CbC, and AA in (F)-1D-SSA for 92AV3C

Class NoS Baseline 1D-SSA F-1D-SSA F-1D-SSA
(mean) (median)

(1) 54 37.84 75.29 75.29 74.71
(2) 1434 74.71 81.57 81.67 81.28
(3) 834 60.71 69.04 70.03 69.57
(4) 234 54.01 65.09 64.59 64.37
(5) 497 87.25 89.66 89.56 89.34
(6) 747 93.06 93.23 93.30 93.26
(7) 26 57.08 82.08 82.08 82.08
(8) 489 96.88 96.29 96.42 96.42
(9) 20 22.11 44.74 43.68 44.21
(10) 968 66.55 72.71 72.76 72.72
(11) 2468 81.19 82.92 82.94 83.19
(12) 614 68.70 81.87 82.35 82.18
(13) 212 95.27 96.22 96.07 96.12
(14) 1294 94.71 94.84 94.31 94.62
(15) 380 44.68 44.02 43.99 44.27
(16) 95 82.89 84.89 85.22 84.89
AA (%) 69.85 78.40 78.39 78.33
OA (%) 78.07 82.13 82.19 82.17

Table 5.10 Mean OA, CbC, and AA in (F)-1D-SSA for Pavia CA

Class NoS Baseline 1D-SSA F-1D-SSA F-1D-SSA
(mean) (median)

(1) 447 100 100 100 100
(2) 28 23.08 20.77 23.46 23.46
(3) 347 87.42 89.18 87.93 87.93
(4) 1213 95.54 96.04 96.20 96.19
(5) 3512 98.77 98.90 98.93 98.93
(6) 893 97.10 97.11 97.23 97.23
(9) 43 99.75 100 100 100
AA (%) 85.85 86.00 86.25 86.25
OA (%) 97.10 97.35 97.36 97.36
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F. Computational Complexity

From the experimental outcome previously described, it is clear that F-1D-SSA is able

to provide similar features to the ones from 1D-SSA, leading to the same improve-

ment in discrimination ability and, therefore, classification accuracy. However, the fast

implementation aims to reduce the significant complexity involved in 1D-SSA.

In the F-1D-SSA implementation, the unique SVD computation directly translates

into a saving factor of Ns (number of pixels) in the SVD step. Therefore, even though

the rest of steps present the same cost, the global complexity of the algorithm is reduced

given the considerable complexity associated with SVD. In order to show the benefits

from F-1D-SSA, a brief analysis on the 1D-SSA method complexity in accordance

with [54] is described as follows.

Firstly, the embedding step simply reallocates a vector array into a matrix form,

hence, no Multiply ACcumulates (MACs) are associated with the process. Then, the

SVD complexity can vary depending on the implementation proposed. As already

mentioned in Section 5.2.1, even though SVD is normally formulated as in [14], it can

be easily computed through an equivalent EVD applied to XX⊤ (L2K+L3), faster than

the SVD complexity (L2K +LK2 +K3) suggested by [54, 137]. Thirdly, the grouping

step can be implemented by 2 multiplications in Equation 5.10 (2KLT ), and finally,

the diagonal averaging requires Nλ multiplications and LK additions for every pixel,

yet it can be more appropriately approximated by a total of Nλ MACs per pixel.

Table 5.11 Computational complexity (MACs) in (F)-1D-SSA

Step 1D-SSA F-1D-SSA Saving factor
Embedding N/A N/A 1

SVD (L2K +L3)Ns (L2K +L3)1 Ns

Grouping (2KLT )Ns (2KLT )Ns 1
Diagonal Averaging Nλ Ns Nλ Ns 1

Regarding Table 5.11, the different SSA implementations share the complexity

from 3 steps, while the SVD is reduced by a saving factor equal to the number of

pixels transformed. Putting some values to these expressions, the number of MACs

required under different configurations is compared for 92AV3C and Pavia CA in Table

5.12. As expected, saving factors of 3-4 validate the fast implementation. Additionally,
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it is worth remarking that the same analysis with the SVD complexity suggested by

[54, 137] results in much higher saving factors, achieving reductions of even hundreds.

Table 5.12 Number of MACs in (F)-1D-SSA

92AV3C Pavia CA
L 5 40 5 40

EVG 1st 1-10th 1st 1-10th

1D-SSA 1.51e8 9.47e9 8.23e7 4.84e9
F-1D-SSA 4.50e7 2.71e9 2.43e7 1.14e9

Saving factor 3.33 3.49 3.38 4.24

5.5 Summary

The SSA algorithm, being recently evaluated in several and diverse applications, is able

to decompose a 1-D signal into trends, oscillation components, or noise, among others,

which involves great potential in signal processing. Based on the well-known SVD,

1D-SSA allows the decomposition of HSI pixels, where extracted components can be

employed for improved reconstructions with noise content suppressed. An evaluation

of the 1D-SSA behaviour derived from different configurations is carried out, by which

it is feasible to suggest recommendations, as 1D-SSA seems to perform according to

3 different regions, i.e., noisy, stable, and lossy.

Nevertheless, the 1D-SSA method requires an individual SVD for each pixel, lead-

ing to considerable complexity. In order to solve this drawback, a fast implementation

F-1D-SSA is proposed, in which only a single SVD computation is required. Com-

prehensive evaluations conclude that the fast implementation provides almost identical

features and classification accuracy, while the computational complexity has been dra-

matically reduced.

Therefore, the (F)-1D-SSA methods are found to be effective in decomposing HSI

pixels in the spectral domain, avoiding noisy components and achieving higher clas-

sification accuracy in land-cover analysis. (F)-1D-SSA beats several current state-of-

the-art methods such as PCA, ICA, MNF, and NMF, proving to be more effective and

reliable, with further possibilities still to be explored.
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Chapter 6

Spatial Extraction and Denoising by
2D-SSA

Although the 1-D Singular Spectrum Analysis (1D-SSA) method presented in Chapter

5 is able to remove the noise from spectral profiles and increment the classification

accuracy in hyperspectral remote sensing, it only exploits the spectral-domain infor-

mation from hyperspectral cubes. As suggested in the literature that the use of 2-D

spatial information can also increase the performance of features, the introduction of

2D-SSA in HyperSpectral Imaging (HSI) becomes a natural step of extension.

The 2D-SSA method is able to decompose 2-D scenes into several components

for a later reconstruction with local structure extracted and noise highly mitigated,

leading to outstanding classification accuracy in hyperspectral remote sensing. Being

benchmarked against several state-of-the-art methods, and especially 2-D Empirical

Mode Decomposition (2D-EMD) [18], 2D-SSA is proved to achieve the best results

in most cases, only comparable to the 2D-EMD method. However, while 2D-EMD

requires an iterative procedure in its implementation, 2D-SSA is based on the well-

known SingularValue Decomposition (SVD), demanding less complexity and resulting

in faster computation time for extracting the features.

Moreover, similarly to the 1-D case [16], a fast implementation Fast-2D-SSA (F-

2D-SSA) is introduced, where a unique SVD is required, being applied to a representa-

tive spectral scene from the whole cube. F-2D-SSA is able to dramatically reduce the

computational complexity of 2D-SSA, including important reduction in computation

time, leading to potential applications in portable and embedded systems.



6.1 Introduction

The organisation of this chapter is described as follows. The background of the

2D-SSA context is given in Section 6.1, with description in Section 6.2. Then, the F-

2D-SSA method is introduced in Section 6.3, while Section 6.4 and Section 6.5 offer

further discussions and a summary of the contributions, respectively. It is worth noting

that the work on 2D-SSA has been published in IEEE Transactions on Geoscience and

Remote Sensing [17], where its fast implementation is also under consideration by

another journal at the moment this thesis is submitted.

6.1 Introduction

As every pixel in HSI forms a spectral vector, pixel-based analysis [29, 35, 37, 41] is

broadly employed for remote sensing Earth observation. The pixels or samples can be

certainly characterised by their spectral profile, endowing the classifier with hundreds

of features for enhanced discrimination analysis.

However, the limited contribution from the spectral-domain exploitation has been

remarked in recent years, especially when it is compared to new methodologies ex-

ploiting the spatial domain, normally achieving improved accuracy. Feature extraction

methods considering the spatial domain have been introduced with significant results

reported, including the Morphological Profile (MP) [103–105] or the Adaptive Filter

with Derivative (AFD) [106] techniques, among others. In this context, an inspiring

research is derived from the 2D-EMD method [18], with excellent classification accu-

racy but extremely high complexity, as it is based on empirical iterations.

Following the success of 1D-SSA [15, 16] and inspired by the 2D-EMD [18] re-

search, the 2D-SSA method is introduced to hyperspectral remote sensing, covering

the spatial-domain exploitation suggested in the literature. The 2D-SSA method is ex-

pected to provide high classification accuracy similar to the 2D-EMD case, but requir-

ing much lower computational complexity and faster computation time for extracting

the features, as 2D-SSA is based on the well-known SVD while 2D-EMD works with

endless and expensive iterations. In addition, this computational difference is espe-

cially highlighted when a fast implementation (F-2D-SSA) is employed, similarly to

the 1-D case (see Section 5.3).
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6.2 The 2D-SSA Method in HSI

The 2D-SSA algorithm [112, 113] is actually an extension from the original SSA [14],

with few reported evaluations in different fields [114, 115]. In this chapter, 2D-SSA for

effective feature extraction in HSI is introduced, where the 2D-SSA method is detailed

with an application example in HSI given to explain how it works.

6.2.1 Algorithm Description

With the same capabilities as described in Section 5.2.1 in discussing 1D-SSA, the ex-

tended 2D-SSA method aims to extract spatial information through the main eigenval-

ues from the SVD computation, while noise, normally found in the small eigenvalues,

is avoided or mitigated. Indeed, the 2D-SSA application in HSI is similar to the one for

2D-EMD, as they are individually applied to every spectral band in the hyperspectral

cube. One of the main differences is probably that while 2D-SSA works in eigenvalue

terms [112], the 2D-EMD components are related to frequency [18], so the noise mit-

igation in 2D-EMD seems not really feasible, as noise is also contained in the main

Intrinsic Mode Function (IMF) components and related IMF Grouping (IMFG).

Similar to the 1-D case, the 2D-SSA algorithm also has 4 different steps, which

include (A) embedding a 2-D signal, (B) computing SVD on the embedded signal, (C)

grouping selected SVD components for reconstruction, and (D) diagonal averaging to

achieve the reconstructed signal. They are described in detail as follows.

A. Embedding a 2-D Image

Given a 2-D image P2D with dimensions Nr ×Nc expressed as

P2D =


p(1,1) p(1,2) · · · p(1,Nc)

p(2,1) p(2,2) · · · p(2,Nc)
...

... . . . ...

p(Nr,1) p(Nr,2) · · · p(Nr,Nc)

 ∈ RNr×Nc , (6.1)

it is embedded into a 2-D trajectory matrix X2D by means of a 2-D window with size

L2D = Lr × Lc, where Lr ∈ [1,Nr] and Lc ∈ [1,Nc] are integer values. This window,
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required to construct the 2-D trajectory matrix, is represented as in Equation 6.2, where

(i, j) refers to the position of its top-left corner

W(i, j) =


p(i, j) p(i, j+1) · · · p(i, j+Lc−1)

p(i+1, j) p(i+1, j+1) · · · p(i+1, j+Lc−1)
...

... . . . ...

p(i+Lr−1, j) p(i+Lr−1, j+1) · · · p(i+Lr−1, j+Lc−1)

 . (6.2)

The window W(i, j) can also be expressed as in Equation 6.3, for incoming formu-

lation convenience

W(i, j) =


w1(i, j)

w2(i, j)
...

wLr(i, j)

 wl(i, j) =


p(i+l−1, j)

p(i+l−1, j+1)
...

p(i+l−1, j+Lc−1)



⊤

. (6.3)

In order to construct the 2-D trajectory matrix, this window has to be placed all

over the image P2D. Therefore, a raw scanning starting from the top-left to the bottom-

right corner of the image, taking as a reference the element in position (i, j), yields to

a total number of K2D = (Nr − Lr + 1)(Nc − Lc + 1) actual positions of the window,

where i ∈ [1,Nr −Lr + 1] and j ∈ [1,Nc −Lc + 1]. All these positioned windows are

reallocated into a column vector RW as

RW(i, j) =


w⊤

1(i, j)

w⊤
2(i, j)
...

w⊤
Lr(i, j)

=



p(i, j)

p(i, j+1)
...

p(i, j+Lc−1)

p(i+1, j)
...

p(i+Lr−1, j+Lc−1)


∈ RLrLc×1, (6.4)

so the 2-D trajectory matrix X2D ∈RL2D×K2D
from embedding the image P2D is finally

expressed by
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X2D =



RW⊤
(1,1)

RW⊤
(1,2)
...

RW⊤
(1,Nc−Lc+1)

RW⊤
(2,1)
...

RW⊤
(Nr−Lr+1,Nc−Lc+1)



⊤

. (6.5)

This 2-D trajectory matrix X2D, analogously to the 1-D case, has a Hankel-block-

Hankel (HbH) structure, which can be seen as

X2D =


H1 H2 · · · HNr−Lr+1

H2 H3 · · · HNr−Lr+2
...

... . . . ...

HLr HLr+1 · · · HNr


Lr×(Nr−Lr+1)

, (6.6)

being every of the submatrices Hnr Hankel type as expressed in Equation 6.7, thus

making the matrix X2D Hankel type in block terms

Hnr =


p(nr,1) p(nr,2) · · · p(nr,Nc−Lc+1)

p(nr,2) p(nr,3) · · · p(nr,Nc−Lc+2)
...

... . . . ...

p(nr,Lc) p(nr,Lc+1) · · · p(nr,Nc)


Lc×(Nc−Lc+1)

. (6.7)

B. SVD

In the second step, a SVD computation is performed on the matrix X2D. Indeed,

the SVD of X2D is equivalent to the EigenValue Decomposition (EVD) of the ma-

trix obtained from X2D(X2D)
⊤, resulting in λ1 ≥ λ2 ≥ ·· · ≥ λL2D eigenvalues and

U = [u1,u2, · · · ,uL2D] ∈ RL2D×L2D
corresponding eigenvectors from X2D.

According to the SVD (or equivalent EVD), the 2-D trajectory matrix is decom-

posed into the addition of several components X2D = X1 +X2 + · · ·+XL2D , where the

matrices Xl|l ∈ [1,L2D] are related to the corresponding eigenvalues λ1 ≥ λ2 ≥ ·· · ≥

λL2D , being formulated as
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Xl =
√

λlulvT
l , vl =

(X2D)⊤ul√
λl

. (6.8)

C. Grouping

Once the SVD has been applied to the 2-D trajectory matrix, resulting in several com-

ponents, in the grouping step particular components (Xl) are selected for reconstruction

of the image P2D being the remaining ones discarded.

Grouping all L2D components into M disjoint sets denoted as t1, t2, · · · , tM, having

∑ |tm|= L and m ∈ [1,M], let t = (l1, l2, · · · , lT ) be one of the groups. In that case, the

matrix X2D
t related to the t grouping is therefore defined as X2D

t =Xl1 +Xl2 + · · ·+XlT .

On the other hand, original matrix X2D can also be represented as in Equation 6.9 by

the addition of all groups if none component is discarded,

X2D = Xt1 +Xt2 + · · ·+XtM . (6.9)

Accordingly, the particular contribution of each grouping matrix X2D
t related to the

matrix X2D depends on the corresponding eigenvalues, derived as

ηt = ∑
l∈t

λl

/
L2D

∑
l=1

λl. (6.10)

From an implementation point of view, this grouping and selection of components

can be carried out by a simple product of 3 matrices. Taking expressions in Equation

6.8, a single group t containing the selected components can be obtained by

X2D
t = Ut((X2D)⊤Ut)

⊤ = Ut(U⊤
t X2D), (6.11)

where Ut = [ul1,ul2, · · · ,ulT ] is a matrix whose columns are the eigenvectors related to

each of the selected components for reconstruction. As already explained in Section

5.2.2, the parameter used for the selection of components is the EigenValue Grouping

(EVG), i.e., EVG=l1 − lT . Therefore, the resulting matrix X2D
t leads to a reconstruc-

tion of the original signal P2D, in which some components can be avoided. On the

other hand, a selection including the total number of components simply results in the

same original 2-D signal.
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D. Diagonal Averaging

Once the grouping matrix X2D
t is obtained, the inverse procedure to that undertaken

in the embedding step needs to be performed. However, in order to go from grouping

matrix X2D
t to final 2-D image, X2D

t needs to be HbH type. For that reason, a diagonal

averaging similar to the one in Section 5.2.1 is applied to every block in Equation 6.7,

and then applied among the blocks in Equation 6.6 [112]. This is a simple average

procedure along the values contributing to the same element (i, j) in the 2-D image.

Denoting Z2D
m as the resulting image from a particular eigenvalue component, and

M as the total number of components from the SVD, i.e., M = L2D, the original image

P2D can be obtained by the addition of all components

P2D = Z2D
1 +Z2D

2 + · · ·+Z2D
M =

M

∑
m=1

Z2D
m . (6.12)

The application of 2D-SSA in HSI looks for a reconstruction of P2D in which the

main spatial trend and structure is extracted by selecting the main components.

6.2.2 Application Example in HSI

The data acquired in HSI is presented in a 3-D structure known as hyperspectral cube

(see Section 2.2), where the same spatial content is provided for hundreds of different

spectral bands. Therefore, regarding the application of the 2D-SSA method to HSI

cubes, the implementation is carried out in a spectral-based procedure, where every

band presents a 2-D image to which 2D-SSA is applied individually.

Given a randomly selected band (at 667 nm) from the 92AV3C data set [132], the

spectral 2-D scene can be treated by the 2D-SSA method. The original image and

extracted components with Lr = 5, Lc = 5 (L2D = 25) can be found in Figure 6.1,

where detailed spatial structure can be perceived.

The reconstruction by few main components leads therefore to extraction of main

trend and noise avoidance for a particular scene. Hence, if this reconstruction is ap-

plied to every spectral band in the cube, the preserved main trend, local structure, and

mitigated noise provide great potential in the resulting features. Similarly to the 1-D

case, the efficacy of 2D-SSA is dependent on 2 key parameters, the size of the embed-

Spatial Extraction and Denoising by 2D-SSA 94



6.2 The 2D-SSA Method in HSI

ding window (L2D) and the selected components in the reconstruction (EVG), where

again the total number of components available from the SVD is equal to the size of

the window (L2D = Lr ×Lc).

Fig. 6.1 Decomposition of a HSI scene by 2D-SSA

Several reconstruction examples from the same image (at 667 nm) are shown in

Figure 6.2, where Lr = 5 and Lc = 5 (L2D = 25). As long as more components are

selected in the reconstruction, the new image becomes more similar to the original

one, where selection by EVG=1-L2Dth components leads to exactly the same image.

When comparing to the 1D-SSA method (see Section 5.2.2), it is clear that the ex-

tended 2-D version provides the extraction of main trends and local structure in the spa-

tial domain, something unfeasible in the 1D-SSA case, homogenising spatial elements

in the image and increasing the intraclass similarities, which results in higher clas-

sification accuracy. On the other hand, the avoidance of less significant components

results in noise mitigation, which is a common advantage for both 1-D and 2D-SSA

with relation to the EMD methods [18].

Finally, it is important to remark that the configuration parameters used in the 2D-

SSA method are exactly the same for all the spectral bands or scenes in the hyperspec-

tral cube. Therefore, all the spectral scenes are computed in the same terms, similarly

to the 1-D case, in which all pixels are transformed by the same configuration, allowing

the fast implementation proposed in Section 5.3.
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Fig. 6.2 Reconstruction of a HSI scene by 2D-SSA

6.3 Fast Implementation of 2D-SSA (F-2D-SSA)

Even though 2D-SSA is expected to be tremendously effective in feature extraction

and subsequent data classification, it requires a band-level implementation, needing

a complete SVD computation in each spectral band from the hyperspectral cube. In

consequence, the complexity of the method when applied to HSI data, with hundreds

of bands, is considerable.

Bearing in mind the good performance obtained from the 1D-SSA fast implemen-

tation [16], a fast version now for the 2-D case is introduced in this section, where a

unique SVD is implemented for all the spectral bands, leading to reduced costs and

high potential in onboard remote sensing and Earth observation.

6.3.1 Concept

Analogously to the previous 1-D case, the 2D-SSA configuration parameters are com-

mon for all the individual band scenes. As a result, the embedding procedure presents

the same conditions and structure regardless of the spectral band being computed. This

fact allows the proposed fast implementation F-2D-SSA.

As already described in Section 5.3.1, the use of the same configuration parameters

along the whole cube, especially for the embedding procedure, leads to some benefits
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such as the similarity of eigenvectors (and therefore transformation matrix) regardless

of the information inputted to the SVD. Therefore, by embedding a spectral scene in a

particular window with size L2D, the 2D-SSA transformation can be obtained from a

common set of eigenvectors, which are achieved by a unique SVD computation applied

to a representative spectral scene.

6.3.2 Algorithm Description

From Equation 6.11, it is clear that the 2D-SSA extraction is based on a product of

matrices, where the transformation (or eigenvectors) matrix Ut is the key element by

which resulting scenes are obtained. In order words, given an input image, simply by

embedding with an appropriate window L2D, it can be subject to the 2D-SSA algorithm

using a predefined Ut.

In the following, details are given about the single SVD computation that is still

required to obtain the predefined eigenvectors matrix, and about the global implemen-

tation workflow of F-2D-SSA.

A. Representative Scene for a Single SVD

A single SVD computation, leading to the unique set of eigenvectors to be used in the

whole cube reconstruction, demands again a careful determination of the representative

signal, in this case a 2-D image to which the SVD is applied.

Fig. 6.3 HSI cube and its representative scenes

From the experience and good results obtained in the 1-D case [16] (see Section

5.4.2), the representative signal requires the capture of the general characteristics from

those scenes contained in the hyperspectral cube. Given that all the spectral bands in a

cube are acquired by the same instrument and under the same conditions, it is sensible
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to think that an averaged or median image computed from all the spectral bands (Fig-

ure 6.3) may satisfactorily include the properties from the whole data set, becoming an

adequate representative signal.

B. Workflow of F-2D-SSA

In the same terms as in the 1-D case, the difference introduced by the fast implemen-

tation F-2D-SSA is related to the SVD step, keeping the rest of the implementation

workflow the same.

Fig. 6.4 Workflow for (left) 2D-SSA and (right) F-2D-SSA

Hence, the fast implementation (Figure 6.4) only requires a particular SVD com-

putation, while the band-based flow consists of the embedding, grouping, and diagonal

averaging steps. The grouping is carried out with the same set of eigenvectors Ut by

which all spectral scenes are reconstructed.

6.4 Analysis and Evaluation

After the explanation of both proposed methods, 2D-SSA and F-2D-SSA, where spa-

tial domain is exploited for feature extraction, experimental settings are organised in

this section, according to the general framework suggested in Section 2.3.1. Imple-

mented again in the MATLAB [48] environment, several methods are studied and

benchmarked [17], including the fast implementation, using 3 different data sets.
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From this set of experiments, much higher classification accuracy is expected from

both (F)-2D-SSA methods, with similar values to the 2D-EMD case and, therefore,

surpassing the current state-of-the-art methods. On the other hand, the performance

in terms of computational complexity is the key point when comparing 2D-EMD and

2D-SSA, where the fast implementation F-2D-SSA can further reduce the computation

time and complexity, while maintaining the classification accuracy levels.

6.4.1 Experiments

Complete details about (A) data description, (B) data conditioning, (C) feature extrac-

tion methods evaluated, and (D) classifier employed are available in the following. The

global experiments are similar to those undertaken in the 1D-SSA case, although now

they include even more particular cases of study.

A. Data Description

It is found appropriate to employ 3 different HSI images from the 2 main sensors in

this research, the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) [30] and

the Reflective Optics System Imaging Spectrometer (ROSIS) [32], including thus both

natural and urban environments for land-cover classification. These images are:

1. 92AV3C [132] (Appendix A.1).

2. Pavia UA [36] (Appendix A.4).

3. Salinas C [36] (Appendix A.3).

B. Data Conditioning

With relation to the HSI images above, the common conditioning described in Ap-

pendix A is applied again to the different data sets respectively, where some bands are

removed due to noise artifact and other similar issues. Additionally, for a proper bench-

marking with other publications [18, 37], only 9 classes are evaluated in the 92AV3C

data set, as this is claimed to provide more statistical significance. Although it is not

reported in the present dissertation, similar results are also achieved using all the 16

original classes.
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C. Feature Extraction

Several and comprehensive comparisons among many state-of-the-art methods for fea-

ture extraction and also data reduction are included in this stage, in the first place to

clearly show the potential and general performance of the 2D-SSA method, and then,

additionally, to study its fast implementation.

Initially, the main benchmarking includes the Baseline case (original spectral pro-

files), the previous 1D-SSA method [15], the 2D-EMD [18] (code in [138]), which is

the main challenger, and the 2D-SSA proposal. This comparison is made under dif-

ferent conditions, with diverse configurations in each method to ensure a fair analysis

(see Table 6.1), and reduced percentages of 5% and 10% in training the classifier.

Secondly, further benchmarking is carried out including several different state-of-

the-art methods available in the literature to clearly show the advantage of the 2D-SSA

method. This thorough benchmarking now includes methods such as Principal Compo-

nent Analysis (PCA) [116], Independent Component Analysis (ICA) [69], Maximum

Noise Fraction (MNF) [71], Extended MP (EMP) [104], and AFD [106], along with

well-known spatial processing such as median filtering and morphological (opening

and closing) operators, including also a combination with PCA (2D-SSA-PCA).

Table 6.1 Configuration for feature extraction methods in (F)-2D-SSA

Method Parameters Values adopted
Baseline N/A N/A

1D-SSA
Window size L 5 and 10

EVG 1st and 1-2nd

2D-EMD
Stop threshold τ 0.2

IMFG 1st, 1-2nd, 1-3rd, 1-4th

(F)-2D-SSA
Window size L2D 5×5, 10×10, 20×20, 40×40, 60×60

EVG 1st, 1-2nd, 1-5th, 1-10th

Finally, some experiments evaluate the fast implementation (F-2D-SSA) perfor-

mance with relation to the 2D-SSA method under the same conditions. These ex-

periments include a study on features similarity and new classification accuracy re-

sults. Once proved the expected similarity of both (F)-2D-SSA implementations, they

are compared in terms of computational complexity, including Multiply ACcumulates

(MACs) and computation time.
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D. Classification

The classifier stage is performed by Support Vector Machine (SVM) in accordance

with the benchmarking publications. Implemented by means of the LIBSVM library

[45], the SVM models are based on the Radial Basis Function (RBF) kernel, being

trained by 2 different percentages, 5% and 10%, along the experiments.

Classsification results from land-cover analysis are reported for performance com-

parisons, measured by the Overall Accuracy (OA) with standard deviation, and the

McNemar’s test of significance (where the Baseline method is taken as a reference),

reporting the mean values from 10 repetitions. Additionally, Class by Class (CbC) and

Average Accuracy (AA) values are also reported in some cases for further assessment.

On the other hand, the evaluation of 2D-EMD and 2D-SSA under a weaker classi-

fier is also developed in the author’s related publication [17]. A comparison of these

feature extraction methods under a weaker classifier not so powerful as SVM proves

the enhanced features and improved discrimination ability from the proposed 2D-SSA.

6.4.2 Results

Such a promising method as 2D-SSA requires comprehensive and in depth evaluations

to appropriately assess its performance and derived advantages for feature extraction

in hyperspectral remote sensing and Earth observation tasks.

Therefore, the summary of evaluations undertaken in the experimental sessions

from this chapter comprises (A) main benchmarking in classification accuracy, (B)

computation time comparison between 2D-EMD and 2D-SSA, and (C) comparison

to other state-of-the-art methods. Then, following the introduction of the F-2D-SSA

method, further evaluations include (D) features comparison between 2D-SSA and F-

2D-SSA, (E) classification accuracy comparison for (F)-2D-SSA, and finally (F) com-

putational complexity in (F)-2D-SSA. These are developed as follows.

A. Classification Accuracy

The values presented in Table 6.2, 6.3, and 6.4 for 92AV3C, Pavia UA, and Salinas C,

respectively, show the main comparison under different conditions and configurations.

The proposed 2D-SSA significantly beats the original features from the Baseline case
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as well as the ones from the 1D-SSA method exploiting the spectral domain. This

clearly shows that the spatial-domain exploitation leads to enhanced extraction with

spatial structures preserved and noise mitigated. Accordingly, the classification accu-

racy for 92AV3C has massively increased from 81.3% and 85.6% to over 95.7% and

97.6%. For the other data sets, the already high accuracy from the Baseline case is

increased as well, leading to values close to 99-100%, an excellent performance.

When comparing 2D-SSA to its main competitor, the 2D-EMD method, similar ac-

curacy values are seen thanks to the spatial exploitation of hyperspectral cubes. How-

ever, the 2D-SSA method seems to generally provide slightly higher results. In ad-

dition, an important fact is that 2D-EMD appears extremely dependent on the IMFs

components selected in the reconstruction. Actually, selecting only the first IMF leads

to extreme deterioration in the classification accuracy, far below the Baseline values,

which is unacceptable. However, the 2D-SSA improvements look much more reliable,

with a consistent behavior under different conditions.

In fact, most configurations in 2D-SSA lead to high classification accuracy, sur-

passing the Baseline and 1D-SSA methods. Taking a closer look at Table 6.2, 6.3,

and 6.4, the use of small L2D with large number of components selected in EVG may

provide the worst improvement, yet the Baseline case is still beaten. This is simply

because the resulting features become more similar to the original ones, where recon-

struction by all components would lead to the same Baseline results (see Section 5.4.2).

All in all, the key point is to evade large EVG comprising too many components for a

given window size L2D.

Looking for further assessment, some other measurements such as the CbC and

AA accuracy values are shown in Table 6.5, 6.6, and 6.7 for the best OA reached

by every method under a training percentage of 10%. Again, these measurements

support the outstanding results of 2D-SSA, where not only in OA, but also in AA and

CbC accuracy terms performs great regardless of the Number of Samples (NoS) in

each labelled class from the ground truth. With relation to the 2D-EMD method, the

accuracy values are similar although 2D-SSA seems better for 9AV3C and Salinas C,

while 2D-EMD presents higher values for urban Pavia UA. In conclusion, 2D-SSA

and 2D-EMD seem to achieve similar classification results.
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Table 6.2 Mean OA and McNemar’s test [Z ] for 92AV3C

Parameters
OA (%) [Z ]

Training 5% Training 10%

N/A
Baseline

81.26 ± 0.94 [-0.00] 85.59 ± 0.63 [-0.00]
L EVG 1D-SSA
5 1st 85.43 ± 0.95 [+11.0] 88.78 ± 0.52 [+9.24]
5 1-2nd 83.42 ± 1.14 [+6.37] 88.02 ± 0.33 [+7.47]

10 1st 85.32 ± 0.74 [+10.9] 88.68 ± 0.69 [+8.87]
10 1-2nd 85.50 ± 0.93 [+11.4] 88.49 ± 0.57 [+8.57]
IMFG 2D-EMD

1st 43.41 ± 1.20 [-50.4] 55.12 ± 1.10 [-42.3]
1-2nd 89.80 ± 1.42 [+17.6] 95.62 ± 0.51 [+23.8]
1-3rd 95.28 ± 0.45 [+31.7] 97.45 ± 0.34 [+29.5]
1-4th 94.02 ± 0.60 [+29.4] 96.11 ± 0.35 [+26.8]

L2D EVG 2D-SSA
5×5 1st 95.00 ± 1.07 [+30.3] 97.50 ± 0.58 [+29.1]
5×5 1-2nd 93.23 ± 0.99 [+26.9] 96.03 ± 0.36 [+26.0]
5×5 1-5th 89.07 ± 1.03 [+18.7] 92.99 ± 0.40 [+19.2]
5×5 1-10th 84.85 ± 1.15 [+9.51] 89.49 ± 0.74 [+10.9]

10×10 1st 95.71 ± 0.83 [+31.4] 97.59 ± 0.63 [+28.7]
10×10 1-2nd 94.96 ± 0.80 [+29.9] 97.26 ± 0.55 [+28.3]
10×10 1-5th 93.04 ± 0.93 [+26.0] 96.28 ± 0.53 [+26.3]
10×10 1-10th 91.42 ± 0.92 [+23.2] 94.90 ± 0.46 [+23.3]
20×20 1st 94.47 ± 0.67 [+27.9] 97.23 ± 0.61 [+27.5]
20×20 1-2nd 94.43 ± 0.91 [+27.9] 97.36 ± 0.56 [+27.9]
20×20 1-5th 94.90 ± 0.66 [+29.5] 97.43 ± 0.51 [+28.5]
20×20 1-10th 93.70 ± 0.75 [+27.3] 96.91 ± 0.53 [+27.4]
40×40 1st 94.43 ± 0.73 [+28.0] 97.14 ± 0.67 [+27.3]
40×40 1-2nd 93.35 ± 0.94 [+25.3] 96.58 ± 0.45 [+25.8]
40×40 1-5th 93.47 ± 1.36 [+25.8] 97.15 ± 0.56 [+27.4]
40×40 1-10th 93.68 ± 0.82 [+26.6] 97.04 ± 0.60 [+27.1]
60×60 1st 94.05 ± 0.77 [+26.5] 97.29 ± 0.47 [+27.4]
60×60 1-2nd 92.94 ± 0.69 [+24.2] 96.55 ± 0.56 [+25.6]
60×60 1-5th 94.13 ± 0.92 [+27.2] 97.29 ± 0.50 [+27.6]
60×60 1-10th 93.02 ± 1.03 [+25.0] 96.72 ± 0.80 [+26.2]
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Table 6.3 Mean OA and McNemar’s test [Z ] for Pavia UA

Parameters
OA (%) [Z ]

Training 5% Training 10%

N/A
Baseline

95.83 ± 0.79 [-0.00] 96.67 ± 0.32 [-0.00]
L EVG 1D-SSA
5 1st 95.37 ± 0.86 [-2.44] 96.50 ± 0.31 [-0.88]
5 1-2nd 95.53 ± 0.72 [-1.88] 96.60 ± 0.36 [-0.69]

10 1st 95.21 ± 0.55 [-3.12] 96.15 ± 0.35 [-2.47]
10 1-2nd 95.00 ± 0.84 [-4.14] 96.30 ± 0.52 [-2.12]
IMFG 2D-EMD

1st 69.50 ± 1.75 [-38.1] 77.72 ± 1.63 [-30.8]
1-2nd 94.36 ± 0.73 [-4.16] 97.52 ± 0.34 [+2.92]
1-3rd 98.92 ± 0.34 [+11.6] 99.67 ± 0.11 [+12.5]
1-4th 99.53 ± 0.31 [+14.6] 99.80 ± 0.08 [+13.5]

L2D EVG 2D-SSA
5×5 1st 97.97 ± 0.38 [+7.31] 99.18 ± 0.28 [+9.92]
5×5 1-2nd 98.21 ± 0.35 [+8.55] 98.99 ± 0.31 [+9.44]
5×5 1-5th 97.57 ± 0.59 [+6.63] 98.90 ± 0.26 [+9.58]
5×5 1-10th 97.21 ± 0.66 [+5.85] 98.18 ± 0.34 [+6.84]

10×10 1st 97.77 ± 0.45 [+6.23] 98.92 ± 0.28 [+8.54]
10×10 1-2nd 96.96 ± 0.64 [+3.56] 98.36 ± 0.39 [+6.20]
10×10 1-5th 97.38 ± 0.64 [+5.19] 98.89 ± 0.44 [+8.76]
10×10 1-10th 97.94 ± 0.44 [+7.59] 98.86 ± 0.29 [+9.02]
20×20 1st 96.03 ± 0.75 [+0.56] 97.47 ± 0.47 [+2.64]
20×20 1-2nd 97.07 ± 0.65 [+3.78] 98.43 ± 0.37 [+6.24]
20×20 1-5th 97.20 ± 0.23 [+4.27] 98.51 ± 0.39 [+6.79]
20×20 1-10th 96.67 ± 1.27 [+2.86] 98.76 ± 0.30 [+8.03]
40×40 1st 95.91 ± 0.89 [+0.24] 97.64 ± 0.35 [+3.16]
40×40 1-2nd 96.38 ± 1.04 [+1.68] 98.32 ± 0.53 [+5.87]
40×40 1-5th 96.99 ± 0.40 [+3.54] 98.06 ± 0.42 [+4.92]
40×40 1-10th 96.42 ± 0.65 [+1.74] 97.80 ± 0.45 [+3.94]
60×60 1st 96.69 ± 0.42 [+2.46] 97.86 ± 0.45 [+4.02]
60×60 1-2nd 96.38 ± 0.44 [+1.60] 98.23 ± 0.33 [+5.48]
60×60 1-5th 96.35 ± 0.89 [+1.64] 97.98 ± 0.35 [+4.55]
60×60 1-10th 96.78 ± 0.70 [+2.96] 98.08 ± 0.55 [+5.09]

Spatial Extraction and Denoising by 2D-SSA 104



6.4 Analysis and Evaluation

Table 6.4 Mean OA and McNemar’s test [Z ] for Salinas C

Parameters
OA (%) [Z ]

Training 5% Training 10%

N/A
Baseline

98.30 ± 0.20 [-0.00] 98.61 ± 0.12 [-0.00]
L EVG 1D-SSA
5 1st 98.46 ± 0.22 [+2.47] 98.76 ± 0.12 [+2.03]
5 1-2nd 98.52 ± 0.15 [+3.41] 98.69 ± 0.09 [+1.21]

10 1st 98.39 ± 0.28 [+1.66] 98.68 ± 0.09 [+0.78]
10 1-2nd 98.42 ± 0.22 [+1.33] 98.76 ± 0.14 [+2.00]
IMFG 2D-EMD

1st 68.58 ± 0.85 [-65.3] 76.42 ± 0.64 [-54.3]
1-2nd 94.56 ± 0.55 [-18.5] 97.56 ± 0.27 [-6.92]
1-3rd 99.54 ± 0.17 [+12.2] 99.78 ± 0.05 [+12.2]
1-4th 99.71 ± 0.14 [+13.8] 99.83 ± 0.04 [+12.7]

L2D EVG 2D-SSA
5×5 1st 99.51 ± 0.17 [+10.6] 99.77 ± 0.06 [+11.1]
5×5 1-2nd 99.32 ± 0.13 [+9.45] 99.68 ± 0.07 [+10.3]
5×5 1-5th 98.94 ± 0.19 [+6.33] 99.31 ± 0.18 [+7.35]
5×5 1-10th 98.63 ± 0.12 [+4.01] 98.93 ± 0.18 [+3.64]

10×10 1st 99.58 ± 0.26 [+11.2] 99.74 ± 0.12 [+10.8]
10×10 1-2nd 99.34 ± 0.23 [+8.79] 99.69 ± 0.13 [+10.2]
10×10 1-5th 99.44 ± 0.19 [+10.3] 99.77 ± 0.06 [+11.4]
10×10 1-10th 99.06 ± 0.17 [+7.35] 99.47 ± 0.23 [+8.85]
20×20 1st 99.62 ± 0.12 [+11.3] 99.81 ± 0.12 [+11.3]
20×20 1-2nd 99.34 ± 0.15 [+8.55] 99.77 ± 0.12 [+11.0]
20×20 1-5th 99.50 ± 0.24 [+10.5] 99.79 ± 0.08 [+11.3]
20×20 1-10th 99.35 ± 0.13 [+9.17] 99.75 ± 0.05 [+10.9]
40×40 1st 99.67 ± 0.17 [+12.0] 99.85 ± 0.08 [+12.1]
40×40 1-2nd 99.81 ± 0.09 [+13.6] 99.93 ± 0.05 [+13.1]
40×40 1-5th 99.46 ± 0.24 [+9.88] 99.81 ± 0.08 [+11.6]
40×40 1-10th 99.56 ± 0.13 [+11.0] 99.77 ± 0.09 [+11.1]
60×60 1st 99.63 ± 0.15 [+11.9] 99.90 ± 0.11 [+12.8]
60×60 1-2nd 99.75 ± 0.15 [+13.0] 99.95 ± 0.05 [+13.5]
60×60 1-5th 99.65 ± 0.20 [+12.1] 99.92 ± 0.05 [+13.0]
60×60 1-10th 99.58 ± 0.17 [+11.1] 99.77 ± 0.07 [+11.1]
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Table 6.5 Mean OA, CbC, and AA for 92AV3C (10% training)

Class NoS Baseline 1D-SSA 2D-EMD 2D-SSA
(2) 1434 80.71 84.81 95.53 96.35
(3) 834 72.03 80.99 95.96 97.72
(5) 497 89.98 92.73 96.38 96.76
(6) 747 97.23 97.77 99.36 97.92
(8) 489 99.00 99.11 99.45 99.18
(10) 968 76.83 83.54 94.73 95.74
(11) 2468 83.99 86.11 98.48 98.27
(12) 614 80.45 84.91 95.89 95.94
(14) 1294 98.27 98.41 99.90 99.27
AA (%) 86.50 89.82 97.30 97.46
OA (%) 85.59 88.78 97.45 97.59

Table 6.6 Mean OA, CbC, and AA for Pavia UA (10% training)

Class NoS Baseline 1D-SSA 2D-EMD 2D-SSA
(1) 310 81.94 81.72 99.86 96.70
(2) 957 97.21 97.07 100 100
(4) 154 96.23 96.30 99.28 94.49
(5) 698 99.67 99.71 99.62 100
(6) 2559 97.57 97.42 99.89 99.79
(7) 860 95.27 95.44 99.85 98.46
(8) 854 96.63 96.51 99.48 98.54
(9) 293 100 100 99.77 98.17
AA (%) 95.56 95.52 99.72 98.27
OA (%) 96.67 96.60 99.80 99.18

Table 6.7 Mean OA, CbC, and AA for Salinas C (10% training)

Class NoS Baseline 1D-SSA 2D-EMD 2D-SSA
(1) 240 95.32 95.56 100 100
(2) 3400 99.93 99.92 99.96 100
(3) 1957 99.71 99.80 99.88 99.96
(4) 599 99.13 98.42 99.09 99.70
(5) 1155 97.77 98.40 98.78 99.95
(6) 1414 99.99 99.99 99.98 100
(7) 848 99.62 99.65 99.93 99.99
(8) 5890 99.23 99.35 99.99 99.98
(15) 159 25.52 32.59 98.81 97.97
AA (%) 90.69 91.52 99.60 99.73
OA (%) 98.61 98.76 99.83 99.95
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B. Computation Time for 2D-EMD and 2D-SSA

Being the 2D-EMD method the main competitor of the 2D-SSA proposal, it is impor-

tant to evaluate not only the classification accuracy in land-cover analysis but also the

computation time required for extracting the features. Therefore, yet the features from

both methods can achieve similar accuracy values, 2D-SSA extraction is proved to be

much faster, as shown in Table 6.8.

Table 6.8 Computation time for 2D-EMD and 2D-SSA (*best OAs)

Method Parameters
Time (s)

92AV3C Pavia UA Salinas C

2D-EMD IMFG

1st 322 196 394
1-2nd 635 365 765
1-3rd * 936 529 1148
1-4th 1324 * 688 * 1506

2D-SSA L2D

5×5 20 * 11 21
10×10 * 34 19 36
20×20 81 42 84
40×40 262 146 * 290
60×60 535 308 * 590

On one hand, extracting features for the best classification cases from the 2D-EMD

method requires 936, 688, and up to 1506 s for the 92AV3C, Pavia UA, and Salinas

C data sets, respectively. On the other hand, obtaining features with similar or even

better accuracy values with the 2D-SSA method takes only 34, 11, and 290 s for the

respective data sets. Hence, by using 2D-SSA, similar classification accuracy is ob-

tained while the time required for feature extraction is massively reduced to just few

seconds, 1 or even 2 orders of magnitude faster.

The reason why 2D-SSA is much faster resides in its straightforward implemen-

tation, based on the SVD (or equivalent EVD), avoiding empirical iterations such as

those undertaken in the 2D-EMD implementation. As a result, 2D-SSA goes a step be-

yond the current state of the art and provides a classification accuracy near 100% with

features obtained in just few seconds, leading to faster data processing and allowing

the implementation in portable and embedded systems for real-time applications, with

high potential for onboard missions in military and remote sensing tasks.
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C. Classification Accuracy for 2D-SSA and other Methods

After the main benchmarking against 2D-EMD, now the experiments include a wider

comparison to other state-of-the-art methods, to definitely put in context the 2D-SSA

proposal. All the methods compared here are divided into 2 main groups.

In the first place, it is possible to find methods maintaining the original dimen-

sionality of features (Nλ ), where 2D-SSA is benchmarked against a median filtering

procedure, the AFD method [106], morphological opening and closing operators, and

again 1D-SSA [15], 2D-EMD [18], and the Baseline case. In the second place, now

data reduction is introduced along the feature extraction, where some classical methods

such as PCA, ICA, and MNF are compared, including also the interesting EMP [104].

Additionally, 2D-SSA is combined with a posterior PCA computed in the spectral do-

main (2D-SSA-PCA), which is expected to prove benefits from combining 2D-SSA

with other methods, leading in this case to a reduced number of features F .

Table 6.9 Mean OA and McNemar’s test [Z ] for 92AV3C (best OAs)

Methods
OA (%) [Z ] (F)

Training 5% Training 10%
ORIGINAL DIMENSIONALITY OF FEATURES (200)

Baseline 81.26 ± 0.94 [-0.00] 85.59 ± 0.63 [-0.00]
1D-SSA [15] 85.50 ± 0.93 [+11.4] 88.78 ± 0.52 [+9.24]
2D-EMD [18] 95.28 ± 0.45 [+31.7] 97.45 ± 0.34 [+29.5]
2D-SSA [17] 95.71 ± 0.83 [+31.4] 97.59 ± 0.63 [+28.7]
Median Filter 92.88 ± 0.29 [+25.4] 95.24 ± 0.46 [+23.4]
AFD [106] 95.11 ± 0.72 [+30.9] 96.66 ± 0.47 [+27.2]
M. Opening 94.07 ± 0.75 [+28.1] 96.40 ± 0.32 [+25.9]
M. Closing 92.51 ± 0.87 [+23.9] 95.41 ± 0.65 [+22.9]

DATA REDUCTION (dimensionality of features F)
PCA 80.57 ± 0.85 [-1.59] (20) 84.19 ± 0.95 [-3.35] (20)
ICA 80.07 ± 1.21 [-2.69] (20) 83.72 ± 0.87 [-4.45] (20)
MNF 81.73 ± 1.04 [+1.13] (40) 85.94 ± 0.76 [+0.90] (10)
EMP [104] 94.83 ± 0.78 [+29.3] (34) 97.28 ± 0.34 [+28.0] (34)
2D-SSA-PCA 97.61 ± 0.69 [+35.5] (15) 99.01 ± 0.10 [+32.3] (20)

The benchmarking comparisons can be consulted in Table 6.9, 6.10, and 6.11, for

the 92AV3C, Pavia UA, and Salinas C data sets, respectively, where each method pro-

vides its best result (highest classification OA) from several different configurations
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evaluated, leading to a fair and significant comparison. More information is available

in the author’s related publication [17].

Results for 92AV3C in Table 6.9 prove that 2D-SSA beats all the other approaches,

including the interesting AFD and EMP techniques. Moreover, the joint 2D-SSA-PCA

method still leads to further improvement in classification accuracy, from 95.71% and

97.59% to 97.61% and 99.01%, highlighting the benefits from exploiting both spatial

and spectral domains.

With relation to the Pavia UA results in Table 6.10, even though 2D-SSA achieves

OA values marginally below the ones from 2D-EMD, AFD, and EMP, the combination

2D-SSA-PCA produces the best result of all methods, where it actually requires a

smaller number of features than EMP (20 instead of 34). Finally, OA values from the

Salinas C data set (Table 6.11) again support the efficacy of both 2D-SSA and 2D-

SSA-PCA, beating any other method and leading to almost 100% of accuracy, clearly

showing the 2D-SSA potential in this context.

Table 6.10 Mean OA and McNemar’s test [Z ] for Pavia UA (best OAs)

Methods
OA (%) [Z ] (F)

Training 5% Training 10%
ORIGINAL DIMENSIONALITY OF FEATURES (103)

Baseline 95.83 ± 0.79 [-0.00] 96.67 ± 0.32 [-0.00]
1D-SSA [15] 95.53 ± 0.72 [-1.88] 96.60 ± 0.36 [-0.69]
2D-EMD [18] 99.53 ± 0.31 [+14.6] 99.80 ± 0.08 [+13.5]
2D-SSA [17] 98.21 ± 0.35 [+8.55] 99.18 ± 0.28 [+9.92]
Median Filter 98.77 ± 0.20 [+11.4] 99.25 ± 0.17 [+10.5]
AFD [106] 99.32 ± 0.28 [+13.0] 99.61 ± 0.23 [+12.2]
M. Opening 97.57 ± 0.35 [+6.72] 98.47 ± 0.31 [+6.97]
M. Closing 97.19 ± 0.45 [+5.11] 97.93 ± 0.35 [+5.08]

DATA REDUCTION (dimensionality of features F)
PCA 94.29 ± 0.68 [-4.74] (15) 95.44 ± 0.34 [-4.46] (15)
ICA 94.59 ± 0.64 [-3.96] (15) 95.48 ± 0.41 [-4.30] (15)
MNF 94.54 ± 0.65 [-5.31] (15) 95.59 ± 0.32 [-4.72] (20)
EMP [104] 99.56 ± 0.68 [+14.1] (34) 99.88 ± 0.07 [+13.4] (34)
2D-SSA-PCA 99.58 ± 0.14 [+14.1] (20) 99.85 ± 0.07 [+13.4] (20)

Some extra comments can be derived from these comparisons, where it is obvious

that the spectral-domain feature extraction (having PCA, ICA, MNF, and also 1D-
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SSA as significant methods) offers a limited performance, especially when compared

to those other methods considering the spatial information from the HSI cubes, such

as median filtering or morphological operators. These methods provide considerable

accuracy, yet performing worse than the particular AFD and EMP approaches. How-

ever, 2D-EMD and especially 2D-SSA are the methods showing higher classification

OA, where 2D-SSA seems slightly better although being much faster in extracting the

features.

Table 6.11 Mean OA and McNemar’s test [Z ] for Salinas C (best OAs)

Methods
OA (%) [Z ] (F)

Training 5% Training 10%
ORIGINAL DIMENSIONALITY OF FEATURES (204)

Baseline 98.30 ± 0.20 [-0.00] 98.61 ± 0.12 [-0.00]
1D-SSA [15] 98.52 ± 0.15 [+3.41] 98.76 ± 0.12 [+2.03]
2D-EMD [18] 99.71 ± 0.14 [+13.8] 99.83 ± 0.04 [+12.7]
2D-SSA [17] 99.81 ± 0.09 [+13.6] 99.95 ± 0.05 [+13.5]
Median Filter 99.57 ± 0.09 [+11.8] 99.76 ± 0.04 [+11.4]
AFD [106] 99.70 ± 0.08 [+12.8] 99.79 ± 0.06 [+11.7]
M. Opening 99.50 ± 0.11 [+10.8] 99.74 ± 0.12 [+11.1]
M. Closing 99.24 ± 0.15 [+9.42] 99.47 ± 0.10 [+9.04]

DATA REDUCTION (dimensionality of features F)
PCA 98.60 ± 0.16 [+3.81] (25) 98.82 ± 0.09 [+2.37] (25)
ICA 98.57 ± 0.18 [+3.41] (25) 98.81 ± 0.07 [+2.38] (25)
MNF 98.08 ± 0.29 [-2.67] (20) 98.40 ± 0.08 [-2.89] (45)
EMP [104] 99.49 ± 0.16 [+10.5] (19) 99.72 ± 0.10 [+10.8] (19)
2D-SSA-PCA 99.83 ± 0.16 [+14.0] (20) 99.92 ± 0.06 [+12.9] (10)

All in all, it has been demonstrated that 2D-EMD and 2D-SSA provide the highest

accuracy values among all the evaluated methods, covering spectral/spatial exploita-

tion and original/reduced dimensionality of features. Moreover, the joint 2D-SSA-

PCA method has shown extra efficacy in classification tasks, with reduced number of

features, from hundreds to tens.

D. Comparison of Extracted Features in (F)-2D-SSA

Analogously to the 1-D case [16] in Section 5.3, the extracted features from the F-

2D-SSA implementation are expected to be very similar to those from 2D-SSA. To
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validate this assumption, features from both conventional and fast implementations,

(F)-2D-SSA, are visually and quantitatively studied below.

The original and 2D-SSA-reconstructed spectral scenes (Lr = 10, Lc = 10, and

EVG=1st), including conventional and fast implementation (from both mean and me-

dian representative scenes), can be seen in Figure 6.5 for a spectral scene randomly

selected (at 667 nm) from 92AV3C [132], where the difference among the 3 recon-

structed cases seems imperceptible.

Fig. 6.5 Original and (F)-2D-SSA-reconstructed scenes

Leaving aside visual indicators, the difference among features from the conven-

tional and fast implementations is quantitatively reported for a more detailed analysis.

The cosine distance [136] is employed again, as in the 1-D case, as objective and ade-

quate measurement.

Table 6.12 reports the mean cosine distance among all the original scenes and their

respective (F)-2D-SSA implementations, where this is repeated for all possible con-

figurations according to the L2D and EVG parameters. From these results, the similar-

ity of features between conventional and fast implementation is demonstrated, with a

small dissimilarity with relation to the original features that is commonly found in the

3 implementations, which increases with larger window size L2D and smaller EVG, in

consistency with the 1-D case (see Section 5.4.2).
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Table 6.12 Mean cosine similarity scores in (F)-2D-SSA for 92AV3C

Conventional 2D-SSA
L2D \ EVG 1st 1-2nd 1-5th 1-10th

5×5 99.8996 99.9345 99.9746 99.9917
10×10 99.7999 99.8553 99.9216 99.9536
20×20 99.6737 99.7383 99.8333 99.8857
40×40 99.5288 99.6150 99.7105 99.7793
60×60 99.4519 99.5417 99.6456 99.7249

F-2D-SSA (mean)
L2D \ EVG 1st 1-2nd 1-5th 1-10th

5×5 99.8995 99.9343 99.9745 99.9917
10×10 99.7996 99.8547 99.9212 99.9533
20×20 99.6728 99.7374 99.8326 99.8851
40×40 99.5313 99.5874 99.7075 99.7744
60×60 99.4586 99.5045 99.6226 99.6991

F-2D-SSA (median)
L2D \ EVG 1st 1-2nd 1-5th 1-10th

5×5 99.8995 99.9341 99.9742 99.9916
10×10 99.7998 99.8546 99.9208 99.9531
20×20 99.6731 99.7368 99.8324 99.8835
40×40 99.5279 99.6054 99.7062 99.7769
60×60 99.4391 99.5307 99.6359 99.7131

E. Classification Accuracy for (F)-2D-SSA

Providing very similar features, the (F)-2D-SSA implementations are now compared in

terms of classification accuracy in land-cover analysis. Comprehensive results for all

possible configurations are compared in Table 6.13 for the 92AV3C data set, showing

OA and McNemar’s test values, while complementary CbC and AA assessment is

reported as well in Table 6.14. Similar findings are obtained for the other data sets.

It is not surprising that both fast implementations provide a classification accuracy

similar to the conventional case. The OAs fluctuate around the conventional values in

some degree, which seems related to the similarity scores. Taking the highest OAs, the

fast implementations lead to 95.66% and 95.82%, in comparison to the 95.71% from

the conventional case. Complementary CbC and AA values lead to the same conclu-

sions. All in all, the global mean value from all possible configurations proves that,

even though there is some fluctuation, this is quite reduced and the general behaviour

from the fast implementations is validated.
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Table 6.13 Mean OA and McNemar’s test [Z ] in (F)-2D-SSA for 92AV3C

Parameters
2D-SSA

F-2D-SSA F-2D-SSA
L2D EVG (mean) (median)

5×5 1st 95.00 [+30.3] 95.00 [+30.3] 95.01 [+30.3]
5×5 1-2nd 93.23 [+26.9] 93.09 [+26.5] 93.09 [+26.4]
5×5 1-5th 89.07 [+18.7] 89.88 [+20.3] 90.08 [+20.9]
5×5 1-10th 84.85 [+9.51] 85.73 [+11.7] 85.71 [+11.8]

10×10 1st 95.71 [+31.4] 95.66 [+31.3] 95.82 [+31.5]
10×10 1-2nd 94.96 [+29.9] 95.22 [+30.4] 95.29 [+30.6]
10×10 1-5th 93.04 [+26.0] 93.95 [+28.1] 93.98 [+28.1]
10×10 1-10th 91.42 [+23.2] 92.08 [+24.7] 92.08 [+24.7]
20×20 1st 94.47 [+27.9] 94.47 [+27.9] 94.33 [+27.6]
20×20 1-2nd 94.43 [+27.9] 94.61 [+28.3] 94.36 [+27.6]
20×20 1-5th 94.90 [+29.5] 95.40 [+30.6] 95.49 [+30.8]
20×20 1-10th 93.70 [+27.3] 94.36 [+28.7] 94.52 [+29.1]
40×40 1st 94.43 [+28.0] 94.23 [+27.4] 94.73 [+28.6]
40×40 1-2nd 93.35 [+25.3] 94.07 [+27.1] 93.72 [+26.3]
40×40 1-5th 93.47 [+25.8] 93.78 [+26.6] 93.68 [+26.3]
40×40 1-10th 93.68 [+26.6] 94.75 [+28.9] 94.61 [+28.6]
60×60 1st 94.05 [+26.5] 93.30 [+24.9] 92.59 [+23.1]
60×60 1-2nd 92.94 [+24.2] 93.13 [+24.7] 92.85 [+23.9]
60×60 1-5th 94.13 [+27.2] 93.59 [+26.0] 93.55 [+25.9]
60×60 1-10th 93.02 [+25.0] 93.72 [+26.3] 93.22 [+25.4]

Global mean 93.19 [+25.9] 93.50 [+26.5] 93.44 [+26.4]

Table 6.14 Mean OA, CbC, and AA in (F)-2D-SSA for 92AV3C

Class NoS Baseline 2D-SSA F-2D-SSA F-2D-SSA
(mean) (median)

(2) 1434 75.38 95.38 94.88 95.65
(3) 834 63.32 96.00 96.00 96.00
(5) 497 89.30 94.79 94.77 94.60
(6) 747 96.81 96.59 96.47 96.50
(8) 489 99.07 97.09 97.16 97.11
(10) 968 65.97 90.45 89.76 91.23
(11) 2468 81.10 96.54 96.92 96.60
(12) 614 69.97 93.86 93.84 93.67
(14) 1294 97.62 98.47 98.45 98.46
AA (%) 82.06 95.46 95.36 95.54
OA (%) 81.26 95.71 95.66 95.82

Spatial Extraction and Denoising by 2D-SSA 113



6.4 Analysis and Evaluation

F. Computational Complexity

The F-2D-SSA method has been proved to achieve the same features and classification

performance as the conventional case in practical terms. However, the main purpose

of this fast implementation is to reduce the complexity by requiring only a single SVD

computation instead of the hundreds initially demanded. This saving is shown in the

following, where a brief description on the computational complexity required for the

2D-SSA method is included.

In the conventional 2D-SSA implementation, a 2-D image is reallocated into a 2-D

trajectory matrix by means of a predefined window with size L2D in the embedding

step, but this reallocation procedure actually requires no MACs. Then, the SVD com-

putation is carried out, where an equivalent EVD being applied to X2D(X2D)⊤ results

in less complexity than the one derived from SVD, with ((L2D)2K2D+(L2D)3) instead

of the ((L2D)2K2D+L2D(K2D)2+(K2D)3) suggested in [54, 137]. In the next step, the

grouping, a selection of components is performed by Equation 6.11 with complexity

2L2DK2DT . Then, in the last step, a diagonal averaging procedure is implemented with

a complexity approximated to NrNc, analogously to [16].

According to the description above, a comparison of computational complexity can

be undertaken between conventional and fast implementation of 2D-SSA, where in

Table 6.15 complexity is expressed in terms of MACs and divided into the 4 steps. As

already discussed, the savings are introduced in the SVD step, with costs being reduced

Nλ times, i.e., the number of spectral bands (normally hundreds). Putting some values,

Table 6.16 shows the number of MACs and saving factor globally achieved for a total

of 4 different configurations, with a minimum saving of about 2 (half the initial cost)

but also dramatically large savings superior to 100, depending on the configuration

selected.

Table 6.15 Computational complexity (MACS) in (F)-2D-SSA

Step 2D-SSA F-2D-SSA Sav. fac.
Embedding N/A N/A 1

SVD ((L2D)2K2D +(L2D)3)Nλ ((L2D)2K2D +(L2D)3)1 Nλ

Grouping (2L2DK2DT )Nλ (2L2DK2DT )Nλ 1
Diag. Av. (NrNc)Nλ (NrNc)Nλ 1
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Table 6.16 Number of MACS in (F)-2D-SSA for 92AV3C

L2D 5×5 5×5 60×60 60×60
EVG 1st 1-10th 1st 1-10th

2D-SSA 2.69e9 4.48e9 2.85e13 2.86e13
F-2D-SSA 2.15e8 2.01e9 1.53e11 2.49e11

Saving factor 12.5 2.23 186 115

With such saving factors, not only the complexity is reduced in MACs terms but

also in the computation time required for implementing the extraction of features,

whether the mean or median approach is used. This fact is especially visible in those

configurations with large saving factors, where the required time can be reduced up to

60%, going from 525 to 209 s for the 92AV3C data set as shown in Table 6.17.

Table 6.17 Computation time for (F)-2D-SSA for 92AV3C

Parameters
2D-SSA F-2D-SSA

Reduction
L2D EVG (s) (%)

5×5 1st 19 18 1 5.26
5×5 1-2nd 19 18 1 5.26
5×5 1-5th 19 18 1 5.26
5×5 1-10th 19 18 1 5.26

10×10 1st 31 28 3 9.68
10×10 1-2nd 31 28 3 9.68
10×10 1-5th 32 28 4 12.5
10×10 1-10th 32 28 4 12.5
20×20 1st 69 58 11 15.9
20×20 1-2nd 71 60 11 15.5
20×20 1-5th 72 61 11 15.3
20×20 1-10th 73 62 11 15.1
40×40 1st 244 137 107 43.9
40×40 1-2nd 251 142 109 43.4
40×40 1-5th 255 144 111 43.5
40×40 1-10th 257 145 112 43.6
60×60 1st 496 194 302 60.9
60×60 1-2nd 507 205 302 59.6
60×60 1-5th 518 208 310 59.9
60×60 1-10th 525 209 316 60.2
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6.5 Summary

Feature extraction methods exploiting the spatial-domain information from HSI cubes

have been introduced in recent years, with significant classification accuracy achieved.

Following previous contributions from the present thesis, in particular the 1D-SSA

method, its natural extension to the 2-D case is now introduced as 2D-SSA in hyper-

spectral remote sensing.

Working in the spatial domain, the 2D-SSA method is proved to achieve impres-

sive high accuracy values around 99-100%, only comparable to the 2D-EMD method.

Moreover, as the 2D-EMD method is based on empirical iterations, its implementa-

tion is found extremely complex and time-consuming, while the 2D-SSA method is

simply based on the SVD, which leads to a reduced computation time in extracting

features, 1 or even 2 orders of magnitude faster than the 2D-EMD case. Moreover,

2D-SSA complexity can be further reduced by a fast implementation analogous to the

one introduced in the 1-D case. This fast implementation produces similar classifica-

tion accuracy while further reduces the computational complexity, allowing potential

use in portable devices, onboard spacecrafts (or other Earth observation platforms),

and in real-time applications.

All in all, the 2D-SSA method has been proved to achieve the best classification

results from a comprehensive state-of-the-art comparison, where the combination of

the 2D-SSA method with a posterior PCA applied in the spectral domain (2D-SSA-

PCA) provides an excellent performance even with a reduced number of features, since

both spatial and spectral domains are exploited.
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Chapter 7

Segmented-SAE for Improved Data
Reduction

Although approaches based on Principal Component Analysis (PCA) and Singular

Spectrum Analysis (SSA) are proposed in the previous chapters for improved fea-

ture extraction and data reduction, they rely mainly on SingularValue Decomposition

(SVD) of the original or embedded data. In this chapter, however, learning-based ap-

proaches are explored for this purpose, using the Stacked AutoEncoders (SAEs) in the

Deep Learning (DL) framework. In fact, the DL framework is derived from the Neural

Network (NN) learning strategy, which has recently led to remarkable performance

in many application areas [139–141]. In most of these works, SAEs are found to be

useful in data abstraction for effective feature extraction [97, 98, 101].

Accordingly, SAEs have been proposed for feature extraction and data reduction

in HyperSpectral Imaging (HSI), as the hidden nodes from deep layers in the DL algo-

rithms are able to provide high levels of abstraction, resulting in features being reduced

but including the main information from the original feature space. However, as the

hidden nodes have to cope with hundreds of original features from the HSI cube, lim-

ited efficacy of feature extraction and extremely high computational cost become the

bottleneck for its implementation in HSI.

To solve this challenging problem, a segmented procedure for the SAEs algorithm

implementation, Segmented-SAE (S-SAE), is proposed in this chapter. By confronting

smaller data segments, the complexity of the DL architectures is reduced, while the ob-

tained features are improved due to the extraction of local information in the spectral



7.1 Introduction

domain. This concept and following ideas open a wide range of possibilities for future

research, with publications being developed by the author at the moment this disserta-

tion is submitted.

In this chapter, followed by a short introduction in Section 7.1, the background of

SAEs is presented in Section 7.2. In Section 7.3, the proposed S-SAE is discussed in

detail. Results are presented in Section 7.4 with a brief summary in Section 7.5.

7.1 Introduction

Due to the challenges and motivations related to the research in hyperspectral remote

sensing, many different methodologies regarding advanced Digital Signal Processing

(DSP) have been studied, especially with relation to the feature extraction and data

reduction stage [28, 87], where the accuracy in classifying pixels from an image is the

main indicator for evaluations.

Consequently, it is not surprising that along with many other approaches, some

DL methods are currently being introduced to remote sensing applications [97–101].

Based on NN architectures, which also includes convolutional NN and deep belief net-

works, the SAEs in a DL framework can lead to proper reduction in the dimensionality

of features, as internal nodes in the network are able to capture and represent the orig-

inal data in reduced elements by abstraction. The stimulating SAE method, however,

requires remarkable complexity in its implementation. When thinking about the NN

structure, it is easy to realise that the nodes forming the network have to deal with an

excessive amount of original data, i.e., the hundreds of spectral bands available in each

HSI pixel or sample. In addition, as the hidden units are expected to cope with all

the spectral values in the same activation functions, the process of finding an adequate

abstraction of features may be excessively complex.

In this chapter, the S-SAE is introduced, where the concept of spectral segmenta-

tion is exploited so that both reduction in complexity and extraction of local features

can be reached. To this end, local and smaller SAEs are implemented in different seg-

ments or regions of the spectrum, leading to enhanced performance in terms of better

classification accuracy and reduced complexity.
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7.2 Stacked AutoEncoders (SAEs) in HSI

The concept underlying a basic AutoEncoder (AE) can be defined as an NN (also con-

volutional NN or deep belief network) architecture model, built by numerous intercon-

nected nodes, in which an inputted signal, with dimensionality of features matching

the number of nodes in the first or input layer, is reconstructed at the output of the

model after going through an internal layer with reduced number of hidden nodes.

The global AE architecture is able to learn and pick up abstract features, so a re-

construction is feasible from the data contained in the reduced hidden nodes, providing

an output signal matching the original input with some degree of accuracy. A scheme

representing the basic AE architecture is available in Figure 7.1, where an input pixel

from the hyperspectral cube, p ∈ RNλ , can see its dimensionality of features reduced

to F << Nλ elements, from which it can be reconstructed into p̂ ∈ RNλ .

Fig. 7.1 Schematic representation of a basic AE

Mathematical formulation of AEs is indeed pretty simple and easy to understand.

Basically, an AE needs to satisfy the following

r = f{ωωωrp+βr}

p̂ = f{ωωω p̂r+βp̂}
, (7.1)

obtaining the internal signal r ∈ RF from p by means of the vector of weights ωωωr

and bias value βr. The f{} operator denotes the activation function able to introduce
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the nonlinearity in the network or AE architecture. In similar terms, the reconstructed

signal p̂ ∈RNλ is calculated in this case from the internal r thanks to the corresponding

weights ωωω p̂ and bias βp̂. Finally, the training process can be expressed as

argmin
ωωωr,ωωω p̂,βr,βp̂

{error{p, p̂}}, (7.2)

simply denoting a minimisation of the difference between original and reconstructed

signals. The error value usually depends on the application and related purposes, al-

though no specific definitions are suggested.

Once the basic AE algorithm is clear, the extended SAE is formulated by expanding

the AE concept and introducing several internal layers. Therefore, the new architecture

presents similar input and output, where it is possible to find several intermediate layers

in between. By introducing several layers, higher abstraction can be achieved through

progressive levels. In Figure 7.2, the scheme representing a SAE with 2 internal layers

is shown, where normally F < E.

Fig. 7.2 Schematic representation of a SAE (2 internal layers)

Due to the abstraction level achieved by reduced features in the internal layers,

SAEs can be introduced as a data reduction method in hyperspectral remote sensing,

exploiting the spectral domain of the pixels. Hence, after training with a representative

portion of pixels, each sample can be subject to a reduction in the dimensionality of

features.
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The training undertaken is based on an iterative process by which the weight (ωωω)

and bias (β ) values from different layers and nodes are continuously being updated.

The error between input and output signals is used for the iterative update of these

internal variables. Eventually, the error decreases enough to fulfil some criteria and

the training process is completed.

An effective training demands a reduced error in the reconstruction, which is ex-

pected to lead to appropriate features from the deepest layer. In Figure 7.3, an original

spectral profile from 92AV3C [132] is shown in comparison to its related reconstruc-

tion by a two-layer SAE.
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Fig. 7.3 Difference between original and SAE-reconstructed pixels

7.3 Proposed S-SAE

Regarding the potential of the SAE method for feature extraction and data reduction in

HSI, and the computational drawbacks with relation to its implementation, the segmen-

tation of the method is proposed, taking advantage of previous research and experience

in the field [13, 62], leading to the S-SAE.

The conventional implementation of the SAE method presents 2 main problems to

be addressed. On one hand, it treats all spectral bands equally, while it is common

to find specific regions in the spectral domain with enhanced information. Therefore,

this fact results in failure when trying to pick up the disparate contributions from each
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band [13]. On the other hand, working with all spectral values simultaneously yields

high computational complexity, as hidden nodes in the first layer have to deal with

the original feature dimension Nλ . The number of interconnections inside the NN

architecture seems therefore excessive and also may result in difficulties when looking

for proper abstraction.

In order to solve these drawbacks, the S-SAE method proposes an implementation

by parts, working into different segments of data. The segmentation concept has been

already introduced to some feature extraction and data reduction methods, such as PCA

[62, 116] (see Section 4.3.2). Even though this concept is simple, this is actually an

advantage, as it has been proved to be effective and easy to implement.

The schematic representation of the S-SAE method can be found in Figure 7.4.

The original profile p is divided into G different segments or regions pg|g ∈ [1,G]

along its spectral content, where some considerations about the segmentation process

are described later (Section 7.4.2). Independent SAEs are applied to each segment.

Fig. 7.4 Schematic representation of a S-SAE using two-layer SAEs

The independent SAEs have to deal with a smaller region of the spectrum as input,

leading to reduced number of hidden nodes (Eg, Fg), presenting a simpler architecture,

with less complexity involved, and focused on the feature extraction of a particular

region, with potential enhancement in the extraction process.
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Even though S-SAE consists of several independent SAEs, they present simpler

NN architecture and, therefore, the global complexity is reduced. Additionally, the

abstraction can be achieved more easily. At the output of the S-SAE network, the

reduced features from each local region rg|g ∈ [1,G] are concatenated F = ∑
G
g=1 Fg

forming the final reduced feature vector.

7.4 Analysis and Evaluation

In the following experiments, the main objective is to compare the conventional SAE

method to the S-SAE proposal, so the performance is evaluated in terms of classifica-

tion accuracy and also computational complexity (number of interconnections). More-

over, some classical data reduction methods are included in the classification accuracy

comparison, all under MATLAB [48] environment.

7.4.1 Experiments

Following the workflow defined in Section 2.3.1, information about (A) (B) the data

employed, (C) the feature extraction methods implemented, and (D) classifier mod-

elling are included in the experimental setup, being described as follows.

A. Data Description

In this case, 2 data sets (natural and urban) are selected for a brief analysis, having

been acquired by different sensors. These are:

1. 92AV3C [132] (Appendix A.1).

2. Pavia CA [36] (Appendix A.5).

B. Data Conditioning

Some noisy spectral bands suggested in Appendix A are removed again for consis-

tency. With relation to the number of labelled classes employed for land-cover classi-

fication, it is found appropriate to use all of them, i.e., 16 and 7 classes for 92AV3C

and Pavia CA, respectively.
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C. Feature Extraction

The 2 main methods to be compared here are SAE and S-SAE. Since most DL algo-

rithms are generally based on empirical development, the configuration adopted for

these 2 methods is not described here but in Section 7.4.2, as part of the results.

A wider comparison is made with some classical data reduction methods, includ-

ing PCA [12], Independent Component Analysis (ICA) [69], and Maximum Noise

Fraction (MNF) [71]. In this particular evaluation, the Baseline case (original feature

space) is ignored, as only data reduction methods are compared. The number of ex-

tracted features F in all methods is 5, 10, 15, and 20.

D. Classification

Support Vector Machine (SVM) from LIBSVM [45] with Radial Basis Function (RBF)

Gaussian kernel is implemented (training ratio of 5%) according to the considerations

in Section 2.3.2. The performance is assessed in terms of Overall Accuracy (OA), Av-

erage Accuracy (AA), and Class by Class (CbC) accuracy values [20, 49], including

McNemar’s test of significance [50] having the PCA method as a reference. On the

other hand, the complexity comparison between the SAE and the S-SAE methods is

simply carried out by evaluating the total number of neural interconnections required.

7.4.2 Results

Due to the empirical nature of the DL related algorithms and methods, the first part

of the experiments is focused on defining an (A) appropriate configuration to tune the

SAE method. This basic configuration is also considered in S-SAE for fair compar-

isons. Then, subsequent (B) configuration of the S-SAE proposal is undertaken, with

(C) classification accuracy and (D) complexity comparison between SAE and S-SAE.

A. Configuration for SAE

Firstly, the conventional SAE has to be properly tuned, so a good performance in terms

of classification accuracy can be ensured. In order to find out adequate configuration

parameters, the features obtained from several different SAE configurations are em-

ployed in classification tasks, leading to the results shown in Table 7.1.
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From the obtained results, it is worth to highlight that larger layer depth or higher

number of hidden units not necessarily means better features or classification OA (%),

as already claimed in [97]. In fact, the best result for both data sets is obtained using

only 2 layers, which indicates that under the current conditions it may be difficult to

achieve a good level of abstraction. With relation to the number of hidden nodes, the

intermediate case with 40 units performs the best.

Table 7.1 Mean OA for SAE configuration (F = 10)

Number of Number of layers
units (E) 2 3 4 5 6

92AV3C
20 68.33 68.84 66.62 60.39 59.24
40 74.01 68.87 69.43 67.26 65.83
60 71.84 69.93 69.13 67.90 67.06

Pavia CA
20 97.06 96.92 96.87 96.52 96.71
40 97.16 96.77 96.71 96.75 96.77
60 96.69 97 .00 96.98 96.78 96.95

According to these considerations, the configuration for conventional SAE is de-

fined by a two-layer scheme and 40 nodes in the first layer, implemented in the same

terms for both data sets. This is described in Table 7.2, where the implementations are

based on scaled conjugate gradient backpropagation, with a sigmoid activation func-

tion and a total of 2000 iterations (epochs) as a maximum limit during the training

processes. These values are found appropriate for fast experiments and results.

Table 7.2 Configuration implemented for SAE

Region Layer/nodes Reduced features (F)
Original 1st E=40

5, 10, 15, 20profile (Nλ ) 2nd F

B. Configuration for S-SAE

Once the conventional case is ready, subsequent configuration of the S-SAE method

is required. The most important consideration in S-SAE is the number of segments

G introduced and how to define them. Bearing in mind previous research on the seg-
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mentation concept, this procedure can be related to the correlation values among the

spectral bands in the hyperspectral cube.

As suggested in [62], the matrix correlation among the spectral values can be em-

ployed to work out the segmentation regions. Indeed, the correlation matrices obtained

for 92AV3C and Pavia CA (Figure 7.5 and Figure 7.6, respectively), show a great vi-

sualisation of correlated regions (white=1 or -1, black=0). Hence, following the main

diagonal regions and discarding the rest without loss of important information, an ap-

proximated segmentation is achieved, indicated in Table 7.3 for both data sets.

Fig. 7.5 Correlation matrix with selected regions for 92AV3C

Fig. 7.6 Correlation matrix with selected regions for Pavia CA

The number of layers in each particular SAE is the same as in the conventional

case, i.e., 2 for fair comparisons. Then, with relation to the number of nodes in the

first layer (a total of 40 in the conventional case), these are equally divided into the
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number of proposed segments (G). For the second layer, the total number of desired

features (5, 10, 15, and 20) is also divided evenly among the number of segmented

regions when it is possible, otherwise, remaining features are assigned to the widest

region, where F = ∑
G
g=1 Fg in all cases.

Table 7.3 Configuration implemented for S-SAE

Region Range Layer/nodes Features
92AV3C

Segment
1-35

1st E1=13
1 3 5 6

(Nλ )1 2nd F1

Segment
36-104

1st E2=13
2 3 5 7

(Nλ )2 2nd F2

Segment
105-200

1st E3=13
2 4 5 7

(Nλ )3 2nd F3

Pavia CA
Segment

1-80
1st E1=20

3 5 8 10
(Nλ )1 2nd F1

Segment
81-102

1st E2=20
2 5 7 10

(Nλ )2 2nd F2

C. Classification Accuracy

From the configurations proposed, both SAE and S-SAE are evaluated in land-cover

classification, being also compared to the PCA, ICA, and the MNF data reduction

methods. The main results are shown in Figure 7.7 and Figure 7.8, for the 92AV3C

and the Pavia CA data sets, respectively. Moreover, Table 7.4 provides a summary

with the best results achieved by every method.

Table 7.4 Mean OA and McNemar’s test [Z ] (F) (best OAs)

Method 92AV3C Pavia CA
PCA 77.01 [-0.00] (15) 97.06 [-0.00] (5)
ICA 76.90 [-0.21] (20) 96.93 [-1.27] (5)
MNF 78.03 [+2.14] (10) 97.16 [+0.11] (5)
SAE 74.01 [-6.07] (10) 97.29 [+1.07] (15)

S-SAE 80.66 [+8.14] (20) 97.42 [+1.60] (5)

In the 92AV3C results, the conventional implementation of SAE seems to perform

not so well as the rest of methods, especially the MNF approach. On the other hand,
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in the Pavia CA case, the SAE method achieves the second best result. More impor-

tantly, the proposed S-SAE clearly beats the conventional implementation, proving the

enhanced efficacy of features when obtained locally. In addition, the S-SAE proposal

also outperforms the rest of methods.
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Complementary accuracy measurements, CbC and AA, are provided in Table 7.5

and Table 7.6 for the 92AV3C and the Pavia CA data sets, respectively. These values

again support the S-SAE method, where similar or better accuracy is obtained for the

individual labelled classes from the scenes.
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Some issues have arisen from this set of results, as the MNF technique is detected

to perform better in few classes, probably due to the noise avoidance related to that

method. Moreover, SAE marginally outperforms the accuracy of the S-SAE method

for some classes with small Number of Samples (NoS) available. Even though these

issues have no negative impact on the proposed S-SAE, it can be interesting to further

explore these cases in future.

Table 7.5 Mean OA, CbC, and AA for 92AV3C

Class NoS PCA ICA MNF SAE S-SAE
(1) 54 50.20 46.86 65.88 63.53 55.29
(2) 1434 74.58 77.83 72.10 65.62 78.91
(3) 834 60.88 59.14 70.27 56.69 68.17
(4) 234 46.26 45.32 48.42 43.60 54.96
(5) 497 88.39 88.26 86.95 86.55 88.92
(6) 747 92.50 93.10 90.27 89.61 93.07
(7) 26 67.50 60.83 65.00 60.42 59.17
(8) 489 97.87 96.96 93.00 94.57 96.01
(9) 20 24.21 18.95 34.21 38.95 36.32
(10) 968 62.30 62.81 72.46 67.31 74.00
(11) 2468 77.95 76.99 81.17 78.07 82.98
(12) 614 67.86 65.54 63.71 57.87 71.99
(13) 212 98.31 98.41 94.38 93.23 96.67
(14) 1294 93.87 92.05 94.27 92.10 93.69
(15) 380 51.50 57.48 35.98 35.93 44.88
(16) 95 81.33 78.22 87.11 81.00 83.00
AA (%) 70.97 69.92 72.20 69.07 73.63
OA (%) 77.01 76.90 78.03 74.01 80.66

Table 7.6 Mean OA, CbC, and AA for Pavia CA

Class NoS PCA ICA MNF SAE S-SAE
(1) 447 100 100 100 100 100
(2) 28 23.46 21.92 23.85 18.08 23.08
(3) 347 83.43 83.47 89.24 86.57 87.84
(4) 1213 96.23 95.80 95.82 96.07 96.43
(5) 3512 98.73 98.63 98.66 99.07 98.86
(6) 893 97.59 97.67 96.85 97.09 97.63
(9) 43 99.75 99.50 100 99.75 100
AA (%) 85.60 85.28 86.34 85.23 86.26
OA (%) 97.06 96.93 97.16 97.29 97.42
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D. Computational Complexity

The local exploitation of different regions along the spectrum, with enhanced features

extracted and better classification accuracy, is not the unique advantage of the proposed

S-SAE technique. Thanks to this method, the global complexity in the NN architec-

tures is also reduced.

Despite having not only one but several SAEs implemented, the total number of

neural interconnections among all nodes is reduced in the S-SAE method. Now, for

every individual SAE related to each spectral region, the number of hidden units and

corresponding connections is limited, which contrasts with the conventional case, as a

higher number of nodes interconnected to each other fallouts in multiplicity of these

connections.

Taking a look at Figure 7.2, the total number of connections in the conventional

SAE method can be easily obtained by the expression (Nλ E +EF +FNλ ). In the S-

SAE case, now the multiplicity of connections is reduced, although several SAEs have

to be added together, leading to the expression ∑
G
g=1(NgEg+EgFg+FgNg). Therefore,

giving some values to these expressions, the total number of required interconnections

for the SAE and the S-SAE methods is shown in Table 7.7 under different number of

reduced features F .

Table 7.7 Number of neural interconnections in (S)-SAE

Data set F SAE S-SAE Reduction

92AV3C

5 9200 3030 67.07%
10 10400 3426 67.06%
15 11600 3795 67.28%
20 12800 4225 66.99%

Pavia CA

5 4790 2424 49.39%
10 5500 2750 50.00%
15 6210 3134 49.53%
20 6920 3460 50.00%

In general, the number of features selected involves no considerable effect in the

achieved reduction percentage. However, it is possible to see a difference between the

2 data sets evaluated, where the reduction is about 67% for 92AV3C and 50% for Pavia

CA. This difference can be explained by the number of segments or regions.
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Being (Nλ E +EF +FNλ ) the expression for the number of connections in con-

ventional SAE, and considering a basic S-SAE case in which all 3 parameters Nλ , E,

and F are simply divided by the number of segments G, then the new expression for

connections in S-SAE is G((Nλ E)/G2 +(EF)/G2 +(FNλ )/G2), or what is the same,

(Nλ E +EF +FNλ )/G, where the conventional complexity is merely divided by the

number of regions or segments G. As G = 3 and G = 2 for the 92AV3C and the Pavia

CA data sets, respectively, the reduction is obviously related to saving factors of 3 and

2, a remarkable reduction given by just few segmented regions.

7.5 Summary

In this chapter, some preliminary study using DL for feature extraction in HSI is in-

vestigated, where SAEs in particular are claimed to be an effective method for feature

extraction and data reduction in hyperspectral remote sensing.

Given that the conventional implementation of the SAE method suffers from ex-

tremely high computational cost and low efficacy in feature extraction, the well-known

concept of segmentation is introduced in this context. Actually, the proposed S-SAE

technique applies the same algorithm but focusing on different regions along the spec-

trum of HSI pixels, working on them in an individual manner with local SAEs. By

dividing the spectral domain into several few regions, the individual SAEs from the

S-SAE method are found to provide locally extracted features with enhanced capabili-

ties. Besides, the new NN architecture employing few local SAEs is able to reduce the

global complexity in terms of node connections.

In summary, the introductory evaluation performed in this chapter demonstrates

great potential of DL methods and related variants, pointing to future research lines in

effective feature extraction in hyperspectral remote sensing and Earth observation.
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Chapter 8

Conclusions and Future Work

8.1 Introduction

The present thesis has focused on methodologies for feature extraction and data re-

duction in hyperspectral remote sensing Earth observation. The contributions cover a

wide range of aspects such as reduction in computational complexity, including onsite

and real-time applications, and improved efficiency and efficacy in extracting features

from the spectral- and also the spatial-domain information of hyperspectral cubes.

Feature extraction and data reduction in hyperspectral remote sensing is always a

challenging problem and has been intensively investigated for decades. However, the

problem remains unsolved, particularly due to the difficulty in processing the combined

spectral and spatial data. Firstly, the computational complexity involved in many cases

is not feasible for portable or embedded applications, where more efficient implemen-

tations are highly desired. Secondly, some widely used methods seem to provide lim-

ited performance in HyperSpectral Imaging (HSI), and variations from or extensions

to them can be beneficial. Thirdly, most of the existing techniques focus mainly on

the spectral-domain information, however, spatial-domain exploitation can lead to en-

hanced analysis, where methodologies with sensibly limited complexity are required.

Finally, learning-based approaches from the Deep Learning (DL) framework, which

seems promising, have not been properly assessed yet and need to be explored.

A total of 5 different contributions have been proposed in this thesis to solve these

problems, which are summarised along with directions for future investigation.
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8.2 Main Contributions

The main contributions of this thesis cover 5 different aspects of feature extraction

and data reduction in hyperspectral remote sensing Earth observation, which include

the Structured Covariance (SC) method for efficient computation, the Folded Princi-

pal Component Analysis (Fd-PCA) technique, 1-D Singular Spectrum Analysis (1D-

SSA) and its fast implementation, extended 2D-SSA and its fast implementation, and

the Segmented Stacked AutoEncoder (S-SAE) method. A detailed summary of these

contributions is highlighted as follows:

1. In Chapter 3, a new method in HSI, SC [11], is proposed. By taking advantage

of the 3-D structure of the HSI cube, different partitions of data are employed

to sequentially construct a series of partial covariance matrices, which can be

accumulated to obtain the overall covariance matrix. The SC implementation

reduces memory requirements as the related mathematical operations involve

matrices with smaller size. However, the overall complexity remains the same

yet differently distributed. The different partitions along the rows, columns, pix-

els, or bands allow an optimum distribution of complexity that can be selected

depending on the way how the data is acquired. In addition, the sequential SC

schemes can lead to onsite and even real-time (on-the-fly) feature extraction in

portable and embedded HSI devices while the data is acquired.

2. A new feature extraction method, Fd-PCA [13], is presented in Chapter 4. As

a variation from PCA, samples are subject to a folding reallocating process and

reorganised as a matrix before the conventional PCA is applied. By doing this,

the folded samples involve matrices with smaller size, leading to a much reduced

computational complexity and memory requirement. Additionally, the proper-

ties of the new derived covariance matrix are changed and seem to enable the

extraction of local structures along with the global structures in conventional

PCA. As a result, the new features are found to provide better discrimination

ability and classification accuracy due to the extracted local and global structure

information.
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3. In Chapter 5, SSA, a recent technique for time series analysis, is applied to fea-

ture extraction in HSI. By adapting SSA to HSI and applying it to the spectral

domain of cubes, noise is suppressed and samples are enhanced thus the classifi-

cation accuracy is improved [15]. According to the evaluations, the characteristic

of 1D-SSA is categorised into 3 different regions, i.e., noisy, stable, and lossy,

where the performance depends on the configuration parameters L and Eigen-

Value Grouping (EVG). Moreover, a fast implementation of 1D-SSA, Fast-1D-

SSA (F-1D-SSA), is also proposed [16], where a unique set of eigenvectors is

employed in the pixel-level implementation, leading to reduced computational

complexity but similar features and classification accuracy.

4. A novel extension to 1D-SSA, the 2D-SSA method, is proposed and discussed in

Chapter 6 for exploiting spatial information in HSI feature extraction. The 2D-

SSA method [17] is able to extract local structures while avoiding noisy content,

being able to produce outstanding classification accuracy, only comparable to

the 2-D Empirical Mode Decomposition (2D-EMD) approach, but with much

reduced complexity. Additionally, 2D-SSA can be combined with a basic PCA,

namely 2D-SSA-PCA, where both spatial and spectral domains are conveniently

exploited, which results in even higher classification accuracy. Furthermore, a

fast implementation F-2D-SSA (journal publication under review) is also pro-

posed, with similar efficacy in feature extraction but with much less complexity,

including reductions of up to 60% for the computation time in some cases.

5. Finally, in Chapter 7 an introductory evaluation on SAEs is undertaken for HSI

data reduction and feature extraction, where a new method called S-SAE is pro-

posed (journal publication under review). As a variation of the SAE method, S-

SAE enables extraction of local spectral information for improved classification

and also reduced complexity in terms of much less neural connections needed.

The preliminary assessment results have shown very promising performance and

suggest that further investigation on this topic may lead to remarkable outcomes.
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8.3 Future Work

Following the work derived from the present thesis, even though the contributions

have achieved a certain level of success, several challenges are still there and can be

translated into potential improvements and further investigation as summarised below:

1. The introduced SC implementations include both offline and real-time compu-

tations, which have been theoretically proved to work well through simulations.

Therefore, the next step is to apply these techniques to specific real-application

systems. In addition, more functionalities such as real-time calibration or cor-

rection procedures can be added as a further extension of these methodologies.

2. With relation to the Fd-PCA method, there are some issues to be evaluated that

may improve the current algorithm, especially in dealing with uneven width of

segments, in accordance with results of band clustering or band grouping. Fur-

thermore, the folding procedure parameters may be better optimised by other

criteria, which can be assessed using PCA or even the nonlinear-PCA [66].

3. Regarding the 1D-SSA technique, a common setting is utilised for all samples.

This can be extended to spectral-based configurations that may lead to even bet-

ter results, i.e., the parameters L and EVG can be adapted to the different spectral

bands in the HSI cube. How to optimally tune these parameters can be further

investigated.

4. For the 2D-SSA method, a similar investigation as in the 1-D case is expected

with relation to the spectral-based configurations, where it is obvious that dif-

ferent spectral scenes would require different parameters in order to optimise

the feature extraction. Moreover, combination of 2D-SSA with spectral-domain

feature extraction methods is also a clear line to follow in the future.

5. Finally, as indicated by the promising results from preliminary assessments, the

performance of the SAE-based methods is still under comprehensive investiga-

tion. It is foreseeable that the combination of DL, sparse representation, SSA,

and other approaches such as compressive sensing [142, 143] will further ad-

vance the feature extraction and data reduction in HSI.
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Appendix A

Remote Sensing Data Sets

A.1 92AV3C (Indian Pines) from AVIRIS (NASA)

The 92AV3C data set, also known as Indian Pines in the literature, was acquired in

Northwest Indiana, the United States, over an agricultural site. Indeed, it is a small

portion or subscene [132] from the original image North-South Flightline [127], made

by 145×145 pixels and 220 spectral bands (4 of the initial 224 were not valid) in the

range 400 nm - 2500 nm.

Fig. A.1 92AV3C data set with ground truth

This data set is normally employed for land-use purposes, containing a total of

16 labelled classes related to agriculture, forest, and perennial vegetation. Complete

information about the labelled classes and their description is available in Figure A.1



A.1 92AV3C (Indian Pines) from AVIRIS (NASA)

and Table A.1, including the Number of Samples (NoS) or pixels available in each

class. It is important to remark that there is an alternative version of this data set in [36],

with slightly different ground truth (same classes but different NoS). Both versions are

normally employed in the literature, leading to similar results and evaluations. In the

present thesis, 92AV3C refers to [132] and the Indian Pines name is given to the version

in [36].

Table A.1 92AV3C data set description

Source image North-South Flightline [127]
Spatial location (376-520, 240-384) [132]
Hyperspectral cube dimension 145×145×224
Number of labelled pixels 10366
Number of background pixels 10659
Number of classes 16
Colour Code Class name NoS

1 Alfalfa 54
2 Corn-notill 1434
3 Corn-mintill 834
4 Corn 234
5 Grass/Pasture 497
6 Grass/Trees 747
7 Grass/Pasture-mowed 26
8 Hay-windrowed 489
9 Oats 20

10 Soybean-notill 968
11 Soybean-mintill 2468
12 Soybean-clean 614
13 Wheat 212
14 Woods 1294
15 Building/Grass/Trees/Drives 380
16 Stone/Steel towers 95

Widely used conditioning is applied to this data set, where it is really common to

discard some spectral bands in the regions (104-108, 150-163, 220) [18, 35], resulting

in 200 bands for analysis. It is also usual to avoid some labelled classes with few

NoS in the ground truth [18, 29], claimed to provide higher statistical significance.

Therefore, in some experiments only the labelled classes with code 2, 3, 5, 6, 8, 10,

11, 12, and 14 are employed.
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A.2 Indian Pines B from AVIRIS (NASA)

A.2 Indian Pines B from AVIRIS (NASA)

Indian Pines B is another subscene from the original North-South Flightline [127].

Given that the widely used 92AV3C (see Appendix A.1) data set has been proved to

be highly adequate for hyperspectral remote sensing experiments, it is found appropri-

ate to extract a different portion of the same original image [127] for complementary

analysis in the present dissertation (see Figure A.2).

The spatial location from which to obtain this subscene is defined by the pixels in

(902-1051, 201-350). Therefore, it is a 150× 150 portion with same spectral bands

(200), range and resolution (20 m in the spatial and 10 nm in the spectral domain) than

the 92AV3C or Indian Pines. However, a total of 20 classes are now included in the

ground truth, mostly related again to agriculture and vegetation (see Table A.2). The

class codes are referred to those used in the original North-South Flightline image,

unlike the 92AV3C case. The name of some classes is not clearly provided and may

differ from other studies.

Fig. A.2 Indian Pines B data set with ground truth

Data conditioning for the Indian Pines B image is quite simple, basically removing

some spectral bands in the regions (104-108, 150-163, 220) in the same way as it is

suggested for the 92AV3C image [18, 35], given that both subscenes come from the

same source image [127].
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A.2 Indian Pines B from AVIRIS (NASA)

Table A.2 Indian Pines B data set description

Source image North-South Flightline [127]
Spatial location (902-1051, 201-350)
Hyperspectral cube dimension 150×150×224
Number of labelled pixels 19423
Number of background pixels 3077
Number of classes 20
Colour Code Class name NoS

2 Buildings 305
4 Corn 196
7 Corn-NS 10
8 Corn-cleantill 147
9 Corn-cleantill-EW 1485

10 Corn-cleantill-NS 6666
14 Corn-mintill-EW 90
15 Corn-mintill-NS 702
16 Corn-notill 77
26 Hay 69
29 Notcropped 386
30 Oats 686
33 Pasture 24
38 Soybean-cleantill 162
40 Soybean-cleantill-EW 1206
41 Soybean-cleantill-NS 1968
44 Soybean-drilled 3041
48 Soybean-mintill-NS 704
50 Soybean-notill-EW 426
56 Wheat 1073
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A.3 Salinas C from AVIRIS (NASA)

Salinas C is a subscene from the original image in [36] collected over Salinas Valley

(see Figure A.3) in California, the United States. It presents a size of 150×150 pixels,

with 224 spectral bands and a spatial resolution of 3.7 m according to [36]. Its ground

truth covers 9 labelled classes related to vegetation (see Table A.3). Spectral bands in

(108-112, 154-167, 224) are removed for data conditioning as suggested by [36].

Fig. A.3 Salinas C data set with ground truth

Table A.3 Salinas C data set description

Source image Salinas Valley [36]
Spatial location (91-240, 61-210)
Hyperspectral cube dimension 150×150×224
Number of labelled pixels 15662
Number of background pixels 6838
Number of classes 9
Colour Code Class name NoS

1 Broccoli green weeds 1 240
2 Broccoli green weeds 2 3400
3 Fallow 1957
4 Fallow rough plow 599
5 Fallow smooth 1155
6 Stubble 1414
7 Celery 848
8 Grapes 5890

15 Vineyard 159
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A.4 Pavia University A (Pavia UA) from ROSIS (DLR)

Pavia University image [36] was acquired over Pavia, in North Italy, resulting in a

scene with 103 spectral bands valid for analysis and considerable spatial resolution of

1.3 m. A 150×150 portion is extracted for the experiments, where 8 classes are found

in the ground truth. These refer to urban elements such as asphalt, bitumen, or shadows

(Figure A.4, Table A.4). For this data set, most related publications in the literature

employ the available 103 spectral bands, so no particular conditioning is carried out.

Fig. A.4 Pavia UA data set with ground truth

Table A.4 Pavia UA data set description

Source image Pavia University [36]
Spatial location (201-350, 51-200)
Hyperspectral cube dimension 150×150×115
Number of labelled pixels 6685
Number of background pixels 15815
Number of classes 8
Colour Code Class name NoS

1 Asphalt 310
2 Meadows 957
4 Trees 154
5 Painted metal sheets 698
6 Bare soil 2559
7 Bitumen 860
8 Self-blocking bricks 854
9 Shadows 293
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A.5 Pavia Centre A (Pavia CA) from ROSIS (DLR)

Pavia CA (Figure A.5) is a subscene extracted from the original Pavia Centre image

[36], with 150×150 spatial size and a total of 102 spectral bands available. Its ground

truth includes 7 labelled classes such as water, trees or asphalt (see Table A.5). Simi-

larly to the Pavia UA case (see Appendix A.4), no particular conditioning is applied to

this data, as the 102 available bands are commonly employed for land-cover analysis.

Fig. A.5 Pavia CA data set with ground truth

Table A.5 Pavia CA data set description

Source image Pavia Centre [36]
Spatial location (251-400, 401-550)
Hyperspectral cube dimension 150×150×115
Number of labelled pixels 6483
Number of background pixels 16017
Number of classes 7
Colour Code Class name NoS

1 Water 447
2 Trees 28
3 Meadows 347
4 Self-blocking bricks 1213
5 Bare soil 3512
6 Asphalt 893
9 Shadows 43
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A.6 Botswana A from HYPERION (NASA)

The Botswana A image (see Figure A.6) is a 300×75 pixels subscene extracted from

the original Botswana data set [36], an image taken over the Okavango Delta, in

Botswana. It consists of 242 spectral bands and ground truth with 5 labelled classes

related to acacia and mopane vegetation, as shown in Table A.6.

In the data conditioning, several spectral bands are removed due to water absorption

regions and noisy content, being available for analysis only 145 bands. These are in

the regions (10-55, 82-97, 102-119, 134-164, 187-220) [36].

Fig. A.6 Botswana A data set with ground truth (rotated 90º clockwise)

Table A.6 Botswana A data set description

Source image Botswana [36]
Spatial location (291-590, 176-250)
Hyperspectral cube dimension 300×75×242
Number of labelled pixels 905
Number of background pixels 21595
Number of classes 5
Colour Code Class name NoS

9 Acacia woodlands 104
10 Acacia shrublands 154
11 Acacia grasslands 233
12 Short mopane 146
13 Mixed mopane 268
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