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Abstract

Premanufactured shelled microbubbles composed of a protein shell are currently

licensed in the UK as ultrasound imaging contrast agents. Current research is

focussing on using the shelled microbubbles as transportation mechanisms for lo-

calised drug delivery particularly in the treatment of various types of cancer. The

aim of this PhD study is to identify how the shell’s material parameters influ-

ence the collapse and relaxation times of the shelled microbubbles. A theoretical

model is proposed which utilises an analytical approach to predict the dynamics

of a stressed, compressible shelled microbubble. This model can be used to iden-

tify the optimal material parameters for the shells. A neo-Hookean, compressible

strain energy density function is used to model the potential energy per unit vol-

ume of the shell. A stress is applied to the inner surface of the spherical shell

whilst setting the outer surface’s stress to zero. The collapse phase of the stressed

shelled microbubble is then considered. Applying the momentum balance law,

a dynamical model is used to predict the dynamics of the collapsing shelled mi-

crobubble. An analytical approach is adopted using an asymptotic expansion. A

second model is then constructed to model the deformation of an open, shelled mi-

crobubble. This is achieved by considering a reference configuration (stress free)

consisting of a shelled microbubble with a spherical cap removed. This is then

deformed angularly and radially by applying a stress load to the free edge of the

shell. This forms a deformed open sphere possessing a stress. This is used to

represent the change in geometry of a shelled microbubble. The third and final

model focusses on developing a Rayleigh-Plesset equation for an incompressible,

thin shelled, gas loaded shelled microbubble with a shell that is composed of a



liquid-crystalline material. The technique of linearisation is used to predict the

shelled microbubble’s natural frequency and relaxation time. The influence of the

material properties of the shell on the natural frequency and relaxation time are

discussed.
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Chapter 1

Introduction

1.1 Ultrasound Contrast Agents (UCAs) as drug

carriers

Premanufactured shelled microbubbles are currently licensed in the UK as ultra-

sound imaging contrast agents. Current research is focussing on using the mi-

crobubbles as a transportation mechanism for localised drug delivery specifically

in the treatment of various cancers [1–9]. Ultrasound contrast agents (UCAs) are

shelled microbubbles typically composed of a layer or several layers of a protein

shell encapsulating a perfluoro gas that helps to stabilise the microbubble when it

is injected into the bloodstream [10–12]. The shelled microbubbles have a typical

radius of between 1 and 4 µm allowing them to propagate through the capillaries in

the human body and a shell thickness that varies between 4 and 100 nm depending

on whether the UCA is a monolipid or polymer variant [13]. A typical shear mod-

ulus value for a monolipid UCA is 20MPa with a Poisson ratio of ν = 0.48 [14,15].

UCAs create a contrast with the surrounding tissue primarily due to an impedance

mismatch and the production of higher harmonics. Microbubbles resonate with
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typical frequencies in the range of 1 to 10 MHz producing nonlinear, multiple har-

monic signals that enhance the quality of the medical imaging process [16]. There

has been research momentum growing in recent years to use the UCAs as localised

drug delivery agents [17]. Much progress has been made but much remains to be

done before this can be deployed routinely in patients [18]. Hence there is a need

to develop virtual simulation tools to better understand the challenges. This thesis

contributes to this effort by identifying how the material parameters of the shell

influence the dynamics and collapse time of the shell where the collapse time is

defined as the time taken for a stressed shelled microbubble to collapse back to its

stress free state. The outer shell of the shelled microbubbles will be coated with

chemical receptors which act as a targeting mechanism for cancerous tumours and

encapsulated within the shell will be cancer treating drugs [19]. The practitioners

have laid out a vision wherein microbubbles will be injected into the bloodstream

and the blood flow will pump them around the body [20]. The region of the body

which possesses the tumour is then subjected to ultrasound chirps typically in

the range of 3 - 7 MHz [13]. Acoustic microstreaming generated by shelled mi-

crobubbles near the cellular walls will result in the formation of cavitation bubbles

that collapse rapidly to produce shock waves that create pores in the capillary

walls. This enhancement of the porosity of the capillaries is known as sonopora-

tion [21–27]. The pores provide a doorway to the surface of the tumour where

the chemical receptors will guide the shelled microbubbles onto the surface of the

tumour where they will be burst by a further high power ultrasound pulse in a

controlled and highly localised manner. This procedure aims to minimise the per-

nicious side effects associated with current conventional chemotherapy treatments.

It is worth emphasising that there are competitor technologies being proposed and,

for example, some studies have focussed on exploiting the photothermal properties
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of gold and silver coated shelled microbubbles (and nanorods) to kill the cancer

cells [28–30].

1.2 Sonoporation and material identification

At present the mathematical modelling behind sonoporation is still in its infancy

with only a handful of articles attempting to quantify the physical mechanisms

behind sonoporation [31,32]. In vitro experiments performed on phantoms have

shown that high frequency chirps significantly enhance the sonoporation procedure

when used along with shelled microbubbles [4,13,21,33–35]. This is because the

microbubble populations have a spread of radii and therefore a distribution of reso-

nant frequencies. Since maximum sonoporation will occur when each microbubble

shears against the capillary wall at its resonant frequency, it is no surprise that

the chirp containing a range of frequencies performs better. Fundamental to the

sonoporation efficiency are the material parameters of the shell which can include

the thickness of the shell, its stiffness (shear modulus) and its Poisson ratio. The

fundamental goal of the work presented here is therefore to identify the most suit-

able material parameters for the shelled microbubbles. As a possible experimental

mechanism for testing the efficiency of the shells is in the bursting phase of the mi-

crobubble, this PhD will focus on developing mathematical models for evaluating

the material parameters’ influence on the collapse and relaxation times for shelled

microbubbles. The relaxation time is defined as the time taken for the amplitude

of an oscillating shelled microbubble to decrease to 1/e of its original amplitude.
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1.3 Rayleigh-Plesset model

Most current shelled microbubble models are based on the Rayleigh-Plesset equa-

tion for a free gas bubble, which is derived by balancing the pressures acting on

the inner surface of the shelled microbubble with those acting on the outside of

the shelled microbubble’s surface and the surrounding liquid. This gives [36–38]

RR̈ +
3

2
Ṙ2 =

1

ρL

(

Pg

(

Ro

R

)3κ

− 2σ

R
− 4µL

Ṙ

R
− Po − Pac(t)

)

(1.1)

where R(t) is the instantaneous radius of the microbubble, Ṙ = dR/dt, R̈ =

d2R/dt2, κ is the polytropic index, Pg = Po+2σ/Ro is the equilibrium pressure in-

side the microbubble, Ro is the radius of the microbubble at rest, µL is the viscosity

of the liquid, Po is the ambient pressure in the surrounding liquid, σ is the surface

tension at the liquid-gas interface and Pac(t) is the acoustic pressure applied by the

ultrasound. The Rayleigh-Plesset equation assumes that the microbubble oscilla-

tions are purely radial and that the surrounding liquid is incompressible. The gas

in the shelled microbubble is assumed to behave adiabatically despite its polytropic

index being relatively close to one which is associated with isothermal behaviour

[39]. The damping contributors are the viscosity of the liquid that surrounds the

microbubble, thermal damping between the gas and the surrounding liquid, and

damping associated with liquid compressibility via the external acoustic energy.

The thermal damping can be accounted for by selecting the appropriate value for

the polytropic index, κ [39]. The Rayleigh-Plesset equation can be modified to

take account of the compressible nature of the surrounding liquid, implying that

the Mach number for the microbubble wall given by Ṙ/c, where c is the speed of

sound in the liquid, is no longer negligible when compared to unity [39]. Two ex-

amples of Rayleigh-Plesset models which allow for compressibility are the Herring
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and Trilling equation [40,41] and the Keller-Miksis model [42,43].

1.4 Shelled microbubble modelling

Marmottant et al. [44] modelled lipid shelled microbubbles using the following

version of the Rayleigh-Plesset equation

RR̈+
3

2
Ṙ2 =

1

ρL

(

Pg

(

Ro

R

)3κ
(

1− 3κṘ

c

)

− 4µLṘ

R
− Po − Pac(t)− 4

κsṘ

R2
− 2σ(R)

R

)

(1.2)

where the term σ(R) is defined as the effective surface tension and κs is the surface

dilatational viscosity. This model assumes that when the shelled microbubble oscil-

lates, the elastic region holds only for a small range of radii. However, the model is

capable of describing nonlinear effects particularly the compression only behaviour

observed in the analysis of certain monolipid shelled microbubbles. This was the

first model wherein the surface tension of the shell varies during various stages of

its oscillatory motion. This was achieved by expressing the surface tension as a

piecewise function dependent on the shell’s area density with the shell experiencing

a smaller surface tension when the shell itself is smaller. This is due to the area per

molecule decreasing during contraction resulting in a smaller number of molecular

interactions and therefore a smaller surface tension. Paul et al. [45] developed

a Rayleigh-Plesset model using an effective surface tension that incorporated a

dilatational elasticity term which was a function of the surface area change. The

dilatational elasticity term was modelled using both quadratic and exponential

terms with each approach giving similar results and predicting the subharmonic

response with a reasonable level of accuracy [45]. Both of these models rely heavily

on experimental observations for one particular type of UCA. Several other models

also adopt an empirical approach which involves incorporating additional terms
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into the Rayleigh-Plesset equation based on physical observations of experimental

data. One such model has been developed by de Jong et al. [46–49].

1.5 Encapsulated interfacial shelled microbubble

models

Church [50] developed a model for an encapsulated shelled microbubble incorpo-

rating both the inner and outer radii and the interfacial surface tension. This

approach was developed using rigorous mathematical arguments rather than re-

lying on an empirical method. Church assumed that the incompressible spherical

encapsulated gas shelled microbubble was surrounded by an unbounded incom-

pressible liquid and experienced radial oscillations when it was subjected to an

external acoustic pressure. The model uses two surface tension expressions: a sur-

face tension for the outer shell/liquid interface and an interfacial surface tension

between the shell’s inner radius and the gas layer. Church exploited the Rayleigh-

Plesset equation and assumed that the shell material behaved as a viscoelastic

solid obeying the Kelvin-Voigt constitutive equation

τ (s)rr = 2µs
∂u

∂r
+ 2ηs

∂v

∂r
, (1.3)

where µs and ηs are the shear modulus and the shear viscosity of the material,

u(r, t) is the radial displacement inside the shell and v(r, t) is the radial component

of the velocity inside the shell. Experimental evidence indicates that this model

is more suited to albumin shelled bubbles with shell thicknesses of the order of 15

to 20 nm [39]. Note that the Kelvin-Voigt model is analogous to an elastic spring

in parallel with a dashpot (damper).

11



Doinikov and Dayton [51] suggested a model for lipid encapsulated microbubbles

where the shell is treated as a viscoelastic fluid that obeys the Maxwell constitutive

equation

τ (s)rr + λs
∂τ

(s)
rr

∂t
= 2ηs

∂v

∂r
, (1.4)

where λs is the relaxation time and ηs is the shear viscosity of the shell. This ap-

proach models the shell as an intermediate material between an elastic solid and a

viscous fluid. Incorporating a Maxwell viscoelastic behaviour into the model helps

to explain some of the experimental data that contradicted previous assumptions

that the lipid shell behaved like a viscoelastic solid. The model predicts that a

shelled microbubble possessing a viscoelastic fluid shell can have both higher and

lower resonance frequencies than a free bubble. This depends on the choice of the

shell parameters µs and ηs [39,51]. The Maxwell viscoelastic fluid model involves

modelling an elastic spring in series with a dashpot (damper).

Doinikov et al. [52] proposed a modification to this model where the shell’s vis-

cous constant, κs, was replaced by a function of the shell’s shear rate. Despite

numerous Rayleigh-Plesset models existing for UCAs, experimental observations

have been made that challenge the current, existing models [39]. The experimental

observations of compression only behaviour for monolipid coated UCAs is high-

lighted by the asymmetrical oscillation curves that are experimentally observed

and that were subsequently modelled empirically by Marmottant et al. [44] who

separated the shell elastic behaviour into three different regions. According to

current models, the shell’s material parameters such as viscosity and elasticity,

display a dependency on the initial radius of the shelled microbubble. However,

large shelled microbubbles possess a greater mass and surface area yet should still
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have the same viscosity and elasticity for the same type of material. This highlights

a current flaw in the modelling of the rheological properties of monolipid UCAs

which clearly requires a more fundamental and mathematically rigorous treatment

[39].

1.6 Shelled microbubble collapse

The literature pertaining to the mathematical modelling of shelled microbubble

collapse is very limited. Bogoyavlenskiy’s paper [53] on the differential criterion of

microbubble collapse is an analytical approach that exploits the Rayleigh-Plesset

equation specifically for a viscous, Newtonian liquid. This work derives a general

collapse condition relating to the viscosity of the surrounding fluid but it deals only

with a gas microbubble and not a shelled, viscoelastic microbubble [53]. Rayleigh’s

[36] original work from 1917 contains an analytical solution for the collapse time

of a ruptured microbubble but it is valid only for a gas microbubble (not shelled)

in an inviscid liquid.

1.7 Collapse of shelled microbubbles and nonlin-

ear elasticity

There currently exists very little literature pertaining specifically to UCA mod-

elling using nonlinear elasticity, which is the standard approach for modelling large

deformations of elastic materials and in particular soft materials such as in bio-

logical settings [54–59]. There are however, numerous publications relating to the

dynamics of spherical bodies using nonlinear elasticity [60]. Tsiglifis and Pelekasis

[61] used constitutive laws from nonlinear elasticity alongside the Kelvin-Voigt vis-
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coelastic model to study the physical behaviour of various UCA types ranging from

monolipids to polymer UCAs. They reported that the polymer based UCAs were

consistent with the neo-Hookean model whereas monolipid UCAs were consistent

with the Mooney-Rivlin constitutive law due to the presence of strain softening be-

haviour. Strain softening behaviour occurs due to the area density of the monolipid

decreasing as the material stretches radially outwards. This behaviour has been

observed in monolipids typically used in UCA shells such as Sonovue [39,61,62].

Gaudron et al. [63] have developed Rayleigh-Plesset models describing cavitation

bubbles in soft tissue. They achieved this using nonlinear elasticity in conjunction

with the Kelvin-Voigt viscoelastic model. They utilised both the neo-Hookean

and the Mooney-Rivlin models to develop their Rayleigh-Plesset equations. De-

spite this work being directly relevant to cavitation, a similar analytical approach

could be adopted to consider the nonlinear behaviour of UCAs.
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1.8 Outline of Thesis

The aim of this PhD thesis is to understand and identify how various material pa-

rameters such as the shear modulus (stiffness), Poisson ratio and thickness of the

shell influence the collapse and relaxation times and natural frequency of shelled

microbubbles.

Chapter 2 proposes an analytical model developed using an asymptotic expansion

for a stressed, compressible shelled microbubble that oscillates about its equilib-

rium position and considers how varying the shear modulus, Poisson ratio and

shell thickness influences the shell’s collapse time.

Chapter 3 discusses the physical model for the deformation of an open microbubble

shell. An opening angle approach is used with the original stress free configura-

tion being represented by an open, deformed and incomplete shelled microbubble

which is stressed via a hoop stress in order to subject the shell’s surface to both a

radial and an angular deformation. Future work will focus on modelling both the

forward (inflationary) stage and the collapse phase of the shell and the influence

of the material parameters on the collapse time.

Chapter 4 develops a Rayleigh-Plesset equation describing an incompressible, thin

shelled, gas loaded microbubble with a shell composed of a liquid-crystalline ma-

terial. Time-dependent perturbation theory is used to linearise the physical model

and the relaxation time and natural frequency of the shelled microbubble and

their dependency on the material parameters (Leslie viscosities [64]) of the shell

are considered.
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The original work in this thesis is:

Chapter 2 proposes an analytical model for a stressed oscillating shelled microbub-

ble and identifies how the key material parameters influence the dynamic behaviour

of the shelled microbubble. No previous study has isolated and identified the in-

fluence of these physical parameters nor has any previous study developed a model

for a compressible shell.

Chapter 3 proposes for the first time an analytical model for an angularly and

radially deformed, open shelled microbubble by exploiting an opening angle ap-

proach for a shelled microbubble. There is no spherical model in the literature

that has used an opening angle approach to model a stressed shelled bubble nor

is there any model that has attempted to model the shell’s surface unfolding.

Chapter 4 develops a model for a shelled liquid-crystal microbubble. Despite

there being numerous Rayleigh-Plesset models for shelled microbubbles there is

no existing model that views the shell as a mesophase. This is the first serious

attempt at modelling a shelled microbubble which exhibits both solid and liquid

characteristics by utilising liquid-crystal theory [65–67]. The model is linearised

and expressions are determined for the relaxation time and the natural frequency

of the shell. The influence of the material parameters of the shell on the relaxation

time and the natural frequency are discussed.

16



Chapter 2

The analysis of the collapse of a

shelled microbubble

2.1 Introduction

In this chapter a theoretical model is proposed to predict the dynamics of an oscil-

lating shelled microbubble. A compressible, neo-Hookean [54] strain energy density

function is used to model the potential energy per unit volume of the shell. Previ-

ous studies by Tsiglifis and Pelekasis [61] and Efthymiouhas et al. [62] show that

thick shelled ultrasound contrast agents (thicknesses of the order of 15nm and

above) can be modelled by using a neo-Hookean strain energy density function

whereas monolipid shells (thicknesses of the order of 4nm) are consistent with a

Mooney-Rivlin strain energy density function. This study will focus on microbub-

ble shells with thicknesses between 20-50nm whose shell can be be described via a

compressible, neo-Hookean strain energy density function. A neo-Hookean strain

energy density function has the added advantage of being among the simplest of

nonlinear models to study. Nonlinear elasticity can account for large scale defor-
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mations and has been used in numerous studies pertaining to modelling rubber

mediums and soft tissue [54,68]. Experimental studies [14,15] have shown that

the Poisson ratio of a typical ultrasound contrast agent is between 0.48 and 0.49

which is similar to rubber. The standard approach to modelling rubber is to utilise

nonlinear strain energy density functions which are either neo-Hookean or Mooney-

Rivlin [69]. The third invariant describes the compressibility of the material and

requires the use of Poisson’s ratio. Including Poisson’s ratio in the modelling pro-

cess allows us to identify how this parameter influences the collapse time of the

shell whereas a neo-Hookean or Mooney-Rivlin strain energy density function only

uses the shear modulus [69]. In the approach adopted here, a stress is applied to

the shell by applying a series of radially directed small stress steps to the inner

surface of the shell and setting the outer surface’s stress normal to the surface to

zero. This stressing process is quasistatic and is thus independent of time. The

spatial profiles of the Cauchy radial and angular (hoop) stresses that are created

within the shell during this process are evaluated using an asymptotic expansion.

The nonlinear model is linearised primarily to give some analytical insight into

how the material parameters influence both the inflationary phase of the shell and

its subsequent collapse time. The derived nonlinear model displays a level of com-

plexity that does not lend itself to being easily solved analytically or numerically.

Linearising circumvents the necessity of large scale numerical schemes since solving

the nonlinear model computationally is a formidable task due to the complexity of

the model, the stiffness of the equations and the required convergence of the nu-

merical scheme. The stress applied to inflate the shell (commensurate with typical

values used in sonoporation) works out to be around 1% of the shear modulus of

the shell [15,21]. This small stress load makes the asymptotic expansion possible.

Once a certain radial deformation is reached, the stress load at the inner radius is
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switched off causing the shell to collapse and oscillate about its equilibrium (stress

free) position. The inflated shell configuration is used as an initial condition to

model the time evolving collapse phase of the shell. The collapse phase is modelled

by applying the momentum balance law and mass conservation. The model is then

used to show the influence of the shell’s thickness, its Poisson ratio and the shear

modulus on the collapse times of the shelled microbubble.

2.2 Stressing a shelled microbubble

2.2.1 Defining the coordinate frames

Consider the reference configuration of a stress free, fully formed spherical shell

with inner and outer radii of RI and RO respectively ([70],p246). A configuration

of a body is defined as a one-to-one correspondence that maps the particles of the

body onto their locations in Euclidean space ([70],p77). Figure 2.1 illustrates such

a scenario.
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Figure 2.1: Reference configuration for a stress free spherical shell.

The reference configuration of the system is a spherical shell possessing no

stress. A spherical polar coordinate system with coordinates (X1, X2, X3) =

(R,Θ,Φ) has the coordinate transformation (Cartesian coordinates) (X1, X2, X3) =

(R sinΘ cosΦ, R sinΘ sinΦ, R cosΘ). The reference configuration basis vectors

eR, eΘ and eΦ can be written in terms of the Cartesian basis vectors e1, e2, e3

to give

eR = sinΘ cosΦe1 + sinΘ sinΦe2 + cosΘe3, (2.1)

eΘ = cosΘ cosΦe1 + cosΘ sinΦe2 − sinΘe3, (2.2)

and

eΦ = − sinΦe1 + cos Φe2. (2.3)

The following relationships for the basis vectors hold

20



∂eR
∂Θ

= cosΘ cosΦe1 + cosΘ sinΦe2 − sinΘe3 = eΘ, (2.4)

∂eR
∂Φ

= − sinΘ sinΦe1 + sinΘ cosΦe2 = sinΘeΦ, (2.5)

∂eΘ
∂Θ

= − sinΘ cosΦe1 − sinΘ sinΦe2 − cosΘe3 = −eR, (2.6)

∂eΘ
∂Φ

= − cosΘ sinΦe1 + cosΘ cosΦe2 = cosΘeΦ, (2.7)

∂eΦ
∂Θ

= 0, (2.8)

and

∂eΦ
∂Φ

= − cosΦe1 − sinΦe2 = − sin ΘeR − cosΘeΘ. (2.9)

The current configuration is an inflated spherical shell possessing a stress. Let

the current configuration basis vectors be represented by er, eθ and eφ where e1, e2

and e3 are the standard Cartesian basis vectors, and so

Figure 2.2: Current configuration for a stressed spherical shell.
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er = sin θ cosφe1 + sin θ sinφe2 + cos θe3, (2.10)

eθ = cos θ cosφe1 + cos θ sinφe2 − sin θe3, (2.11)

and

eφ = − sinφe1 + cosφe2. (2.12)

2.2.2 Tensor theory and vector fields

Consider the following discussion from Ogden ([70], p55) regarding curvilinear

coordinates. Let ψ : D → R
3 represent a one-to-one continuous mapping whose

inverse ψ−1 is also continuous. If x ∈ D then

ψ(x) = (x1, x2, x3), and x = ψ−1(x1, x2, x3). (2.13)

Assuming that ψ and ψ−1 have continuous derivatives up to infinity, given ψ and

D , there are three scalar fields ψi : D → R, such that

ψ(x) = (ψ1(x), ψ2(x), ψ3(x)), x ∈ D . (2.14)

The fields ψi are the coordinate functions of ψ on D , ψ is a coordinate system on

D which is a coordinate neighbourhood. The coordinates xi of the point x in the

coordinate system ψ are given by

xi = ψi(x). (2.15)
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They are called the curvilinear coordinates covering D where xi represents the

curvilinear coordinates and xi denote the Cartesian coordinates [70]. Equation

(2.15) can be used to define a subset of D called an xi-coordinate surface of ψ in

D such that

xi ≡ ψi(x) = constant. (2.16)

The natural basis of ψ at x is written as

gi(x) =
∂xj
∂xi

ej , (2.17)

where gi is a vector field on D and gi is a tangent to the xi-coordinate curve of ψ.

A reciprocal basis gi of gi at each point x of D may be defined such that

gi(x) · gj(x) = δij (2.18)

where δij is the Kronecker delta and {gi}i∈{1,2,3} represents a fixed set of general

basis vectors whose elements are assumed to be non-zero and non-parallel to each

other. The general basis vectors are linearly independent [58]. The reciprocal

general basis vectors are defined as

gi (x) =
∂xi

∂xj
ej . (2.19)

From equation (2.18), let I denote the identity matrix, such that

I = gi(x)⊗ gi(x) = gi(x)⊗ gi(x), (2.20)

23



for each x in D . The contravariant and covariant components of I are denoted by

gij(x) and gij(x) respectively, where

gij(x) = gi(x) · gj(x), gij(x) = gi(x) · gj(x),

gi(x) = gij(x)gj(x), gi(x) = gij(x)g
j(x), (2.21)

and the mixed components are δij . To distinguish between the reference and current

vector fields, we employ an uppercase (G) for the reference configuration and a

lowercase (g) for the current configuration. Using equations (2.17) and (2.18), the

vector fields for the reference configuration are

G1 = eR, (2.22)

G1 = eR, (2.23)

G2 = R cosΘ cosΦe1 +R cosΘ sinΦe2 −R sin Θe3 = ReΘ, (2.24)

G2 =
1

R
eΘ, (2.25)

G3 = −R sin Θ sinΦe1 +R sin Θ cosΦe2 = R sin ΘeΦ, (2.26)

and

G3 =
1

R sin Θ
eΦ. (2.27)
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Similarly, for the current configuration

g1 = er, (2.28)

g1 = er, (2.29)

g2 = r cos θ cosφe1 + r cos θ sin φe2 − r sin θe3 = reθ, (2.30)

g2 =
1

r
eθ, (2.31)

g3 = −r sin θ sinφe1 + r sin θ cosφe2 = r sin θeφ, (2.32)

and

g3 =
1

r sin θ
eφ. (2.33)

Using the identities from equation (2.21) the reference and current configura-

tions can be written as

Gij =













1 0 0

0 R2 0

0 0 R2 sin2Θ













,

and

gij =













1 0 0

0 r2 0

0 0 r2 sin2 θ













.

The gij and g
ij are commonly referred to as the metric coefficients and determine

the geometrical characteristics of a given basis [58].
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2.2.3 The gradient and divergence of a tensor

For a tensor field T of order n, grad T is written as ∇⊗T and represents a tensor

field of order n + 1. If v is a vector field, the scalar field ∇ · v (the divergence of

v), is defined as

div v ≡ ∇ · v = tr (∇⊗ v) , (2.34)

where tr represents the trace which is defined as the sum (∇⊗ v)ii. The divergence

operation is the contraction of the second order tensor field ∇⊗ v. Consider the

vector field v, then

grad v(x) ≡ ∇⊗ v(x) =
∂v(x)

∂xj
⊗ ej , (2.35)

where v = viei. Contraction of equation (2.35) gives the component expression for

div v. Hence

∇ · v(x) = ∂vi(x)

∂xi
. (2.36)

For a vector field v where v = vkg
k then it follows that ([70], p65)

∇⊗ v =

(

∂vk
∂xj

− Γ i
kjvi

)

gk ⊗ gj, (2.37)

(note that Γ i
kj = Γ i

jk) where the Christoffel symbols are ([70], p58)

Γ i
kj = −gk ·

∂gi

∂xj
. (2.38)

For a tensor field T of order n, equation (2.35) generalises to

∇⊗ T =
∂T

∂xi
⊗ ei,
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∇⊗ T =
∂Ti1i2...in
∂xi

⊗ ei1 ⊗ ei2 ⊗ ...⊗ ein ⊗ ei, (2.39)

where the components Ti1i2...in are scalar fields. For a second order tensor ([70],

p65)

T = Tijg
i ⊗ gj. (2.40)

2.2.4 Calculating the gradient of the deformation

The applied stress is due to a stress load that is applied to the interior surface

of the microbubble’s shell. The formal derivation of the deformation gradient of

an inflated sphere will be included to prepare the reader for the novel derivation

that will be performed in Chapter 3. The deformation gradient F is a two point

tensor (mixed tensorial basis) with a deformation, χ = χig
i, where the gradient

of the deformation is defined as F = ∇⊗χ. From equations (2.37) and (2.38) we get

∇⊗ χ =
∂

∂Xj

(

χig
i
)

⊗Gj =

(

∂χi

∂Xj
gi + χi

∂gi

∂Xj

)

⊗Gj ,

=

(

∂χi

∂Xj
gi + χi

∂gi

∂Xj
· gigi

)

⊗Gj ,

=

(

∂χi

∂Xj
+ χi

∂gi

∂Xj
· gi
)

gi ⊗Gj . (2.41)

The magnitude of the change in the basis vectors via the Cauchy stress is readily

evaluated using the Christoffel symbols. Note that the Cauchy stress is not based

on a mixed tensorial basis and is described by the area and the force in the cur-

rent configuration. In spherical polar coordinates the current configuration can

be transformed into physical components ([70],p64) to give χ1g
1 = χ1er = χrer

resulting in χ1 = χr. The χθ term is χ2g
2 = χ2eθ/r = χθeθ resulting in χ2 = rχθ.

The χφ term is χ3g
3 = χ3eφ/(r sin θ) = χφeφ where χ3 = r sin θχφ. Using equation
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(2.41) we can determine the gradient of the deformation where the deformation is

defined by χ1 = r (R), and χ2 = χ3 = 0. Assuming θ (Θ) = Θ and φ (Φ) = Φ, the

terms for equation (2.41) are

(∇⊗ χ)rR er⊗eR =

(

∂χ1

∂X1
+ χ1

∂g1

∂X1
· g1
)

g1⊗G1 =

(

∂r

∂R
+ r

∂er
∂R

· er
)

er⊗eR = r′er⊗eR,

(2.42)

(∇⊗ χ)rΘ er ⊗ eΘ =

(

∂χ1

∂X2
+ χ1

∂g1

∂X2
· g1
)

g1 ⊗G2 = (reθθ
′ · er)

er ⊗ eΘ
R

= 0,

(2.43)

(∇⊗ χ)rΦ er⊗eΦ =

(

∂χ1

∂X3
+ χ1

∂g1

∂X3
· g1
)

g1⊗G3 =

(

r
∂er

∂Φ
· er
)

er ⊗ eΦ

R sinΦ
= (r sin θeφφ

′ · er)
er ⊗ eΦ

R sinΘ
= 0,

(2.44)

(∇⊗ χ)θR eθ ⊗ eR =

(

∂χ2

∂X1
+ χ1

∂g1

∂X1
· g2
)

g2 ⊗G1 =

(

r
∂er
∂R

· reθ
)

eθ ⊗ eR
r

= 0,

(2.45)

(∇⊗ χ)θΘ eθ ⊗ eΘ =

(

∂χ2

∂X2
+ χ1

∂g1

∂X2
· g2
)

g2 ⊗G2 =

(

χ1
∂g1

∂X2
· g2
)

eθ ⊗ eΘ
rR

=

(

r
∂er
∂Θ

· reθ
)

eθ ⊗ eΘ
rR

=
( r

R
θ′
)

eθ ⊗ eΘ, (2.46)

(∇⊗ χ)θΦ eθ ⊗ eΦ =

(

∂χ2

∂X3
+ χ1

∂g1

∂X3
· g2
)

g2 ⊗G3 =

(

r
∂er
∂Φ

· reθ
)

eθ ⊗ eΦ
rR sinΘ

28



= (r sin θeφφ
′ · reθ)

eθ ⊗ eΦ
rR sinΘ

= 0, (2.47)

(∇⊗ χ)φR eφ⊗eR =

(

∂χ3

∂X1
+ χ1

∂g1

∂X1
· g3
)

g3⊗G1 =

(

r
∂er
∂R

· r sin θeφ
)

eφ ⊗ eR
r sin θ

= 0,

(2.48)

(∇⊗ χ)φΘ eφ⊗eΘ =

(

∂χ3

∂X2
+ χ1

∂g1

∂X2
· g3
)

g3⊗G2 =

(

reθ
∂θ

∂Θ
· r sin θeφ

)

eφ ⊗ eΘ
rR sin θ

= 0,

(2.49)

and

(∇⊗ χ)φΦ eφ⊗eΦ =

(

∂χ3

∂X3
+ χ1

∂g1

∂X3
· g3
)

g3⊗G3 =

(

r
∂er
∂Φ

· r sin θeφ
)

eφ ⊗ eΦ
rR sin θ sin Θ

=

(

r sin θ

R sinΘ
φ′
)

eφ ⊗ eΦ. (2.50)

The gradient of this deformation is a two point tensor, given by F = ∇ ⊗ χ,

i.e.

F =













r′ 0 0

0 rθ′

R
0

0 0 r sin θ
R sinΘ

φ′













. (2.51)

If θ = Θ and φ = Φ, then

F =













r′ 0 0

0 r
R

0

0 0 r
R













. (2.52)
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2.2.5 Defining the appropriate strain energy density func-

tion

If we assume that the shell material is hyperelastic then there exists a strain

energy density function expressing the potential energy per unit volume. The

strain energy density function that will be used here to model the microbubble

shell is a neo-Hookean strain energy density function [54,58,71], W (F ), which

includes a compressible term that is used to model the change in volume of the

shell of the microbubble as it is inflated. The strain energy term associated with the

compressibility of the shell was developed by Blatz ([72], p23-45). The determinant

of F (denoted by J) gives a measure of how the volume of the spherical shell

changes as it maps from the stress free, reference configuration to the stressed,

current configuration. The determinant is given by

J =
r′r2

R2
. (2.53)

The neo-Hookean strain energy density function is ([54], equation (5))

W (F ) =
µ

2

(

tr(FF T )− 3
)

+
µ

2β

(

J−2β − 1
)

, (2.54)

where FF T is defined as the left Cauchy-Green deformation tensor ([58],p81), µ is

the shear modulus, ν is Poisson’s ratio and β = ν/(1−2ν). Consider the following
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trace properties

∂

∂Fmn

(detF ) =
∂

∂Fmn

(

1

6
ǫijkǫpqrFipFjqFkr

)

,

=
1

6
ǫijkǫpqr (δimδpnFjqFkr + FipδjmδqnFkr + FipFjqδkmδrn) ,

=
1

6
(ǫmjkǫnqrFjqFkr + ǫimkǫpnrFipFkr + ǫijmǫpqnFipFjq) ,

=
1

6
(ǫmjkǫnqrFjqFkr + ǫmikǫnprFipFkr + ǫmijǫnpqFipFjq) ,

=
1

2
ǫmjkǫnqrFjqFkr, (2.55)

and premultiplying equation (2.55) by Fpn leads to

Fpn
∂

∂Fmn
(detF ) =

1

2
ǫmjkǫnqrFpnFjqFkr,

=
1

2
ǫmjk (detF ) ǫpjk,

=
1

2
ǫmjkǫpjk (detF ) ,

=
1

2
(2δmp) (detF ) ,

= (detF ) δmp. (2.56)

Multiplying equation (2.56) through by (F−1)qp results in

∂

∂Fmq
(detF ) = (detF )

(

F−1
)

qm
, (2.57)

which can be written as

∂J

∂F
= |F |(F−1)T = JF−T . (2.58)
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Similarly for the trace, where tr
(

FF T
)

=
(

FF T
)

ii
= FijFij , the derivative with

respect to F gives

∂

∂Fpq
(FijFij) = 2Fpq, (2.59)

or

∂(tr(FF T ))

∂F
= 2F. (2.60)

The stresses can be described using the first Piola-Kirchhoff stress tensor which

is the transpose of the nominal stress tensor, relating the force in the current

configuration to the area in the reference configuration [54]. Recall that the Cauchy

stresses relate the force in the current configuration to the area in the current

configuration. The first Piola-Kirchhoff stress tensor, S(F ), is given using equation

(2.58) and equation (2.60) along with equation (2.54), to give ([54], equation (5)),

S(F ) =
∂W

∂F
=
µ

2
(2F ) +

µ

2β

(

−2βJ−2β−1 ∂J

∂F

)

= µ
(

−J−2βF−T + F
)

. (2.61)

Substituting equation (2.52) into equation (2.61) gives

S = µ

(

−J−2β 1

r′
+ r′

)

er ⊗ eR + µ

(

−J−2βR

r
+
r

R

)

eθ ⊗ eΘ

+ µ

(

−J−2βR

r
+
r

R

)

eφ ⊗ eΦ. (2.62)

2.2.6 Calculating the divergence of the first Piola-Kirchoff

stress tensor

This subsection will formally derive the divergence of the first Piola-Kirchoff stress

tensor for an inflated, shelled microbubble. This task will be performed to prepare
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the reader for the novel derivation of the divergence of the first Piola-Kirchoff

stress tensor for an open shelled microbubble in Chapter 3. For the static solution

of a stressed shelled microbubble, the divergence of the first Piola-Kirchhoff stress

tensor will be equal to zero. To determine ∇ · S, we need to be able to relate

the physical coordinates for the mixed tensorial basis to the general basis vectors

represented by the components gi and Gi where i ∈ {1, 2, 3}. The first Piola-

Kirchhoff stress tensor is represented by ([70], p34), S = S j
i g

i⊗Gj where S
j
i are the

left-covariant components of S. Converting physical coordinates into generalised

coordinates using equations (2.4) to (2.27) and equations (2.28) to (2.33)

S 1
1 g

1 ⊗G1 = S 1
1 er ⊗ eR = SrRer ⊗ eR,

where

SrR = µ

(

−J−2β 1

r′
+ r′

)

, (2.63)

S 2
2 g

2 ⊗G2 = S 2
2

R

r
eθ ⊗ eΘ = SθΘeθ ⊗ eΘ,

where

r

R
SθΘ = µ

(

−J−2β +
r2

R2

)

, (2.64)

and

S 3
3 g

3 ⊗G3 = S 3
3

eφ
r sin θ

⊗R sinΘeΦ = SφΦeφ ⊗ eΦ,

where θ = Θ, results in

r

R
SφΦ = µ

(

−J−2β +
r2

R2

)

. (2.65)
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Calculating the divergence of S using equations (2.37), (2.38) and (2.40) results in

∇ · S =
∂

∂Xk

(

S j
i g

i ⊗Gj

)

·Gk. (2.66)

Only S 1
1 , S

2
2 and S 3

3 need to be evaluated because the off-diagonal elements are

all equal to zero. Calculating each of the terms in ∇ · S using equation (2.66) and

equations (2.22) to (2.33), gives

∂

∂X1

(

S 1
1 g

1 ⊗G1

)

·G1 =
∂S 1

1

∂R
(er ⊗ eR) · eR =

∂S 1
1

∂R
er. (2.67)

Similarly we get

∂

∂X1

(

S 2
2 g

2 ⊗G2

)

·G1 =
∂

∂R

(

S 2
2

eθ
r
⊗ ReΘ

)

· eR

=
∂

∂R

(

S 2
2

R

r

)

(eθ ⊗ eΘ) · eR = 0, (2.68)

since (eθ ⊗ eΘ) · eR = 0. Similarly

∂

∂X1

(

S 3
3 g

3 ⊗G3

)

·G1 =
∂

∂R

(

S 3
3

eφ
r sin θ

⊗ R sinΘeΦ

)

· eR

=
∂

∂R

(

S 3
3

R sinΘ

r sin θ

)

(eφ ⊗ eΦ) · eR = 0, (2.69)

since (eφ ⊗ eΦ) · eR = 0. Additionally

∂

∂X2

(

S 2
2 g

2 ⊗G2

)

·G2 =
∂

∂Θ

(

S 2
2

eθ
r
⊗ ReΘ

)

· eΘ
R

=
S 2
2

r

∂

∂Θ
(eθ ⊗ eΘ) · eΘ

=
S 2
2

r

(

∂eθ
∂Θ

⊗ eΘ + eθ ⊗
∂eΘ
∂Θ

)

· eΘ =
S 2
2

r

(

∂eθ
∂θ

θ′ ⊗ eΘ

)

· eΘ = −S
2
2

r
er, (2.70)
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since θ′ = 1 and S2
2 depends solely on r, r′ and R. Similarly

∂

∂X2

(

S 1
1 g

1 ⊗G1

)

·G2 =
∂

∂Θ

(

S 1
1 er ⊗ eR

)

· eΘ
R

=
S 1
1

R
(θ′eθ ⊗ eR + er ⊗ eΘ) · eΘ =

S 1
1

R
(er ⊗ eΘ) · eΘ =

S 1
1

R
er, (2.71)

since (eθ ⊗ eR) · eΘ = 0. Continuing

∂

∂X2

(

S 3
3 g

3 ⊗G3

)

·G2 =
∂

∂Θ

(

S 3
3 eφ ⊗ eΦ

R sinΘ

r sin θ

)

· eΘ
R

=
S 3
3

R

(

eφ
∂Θ

⊗ eΦ
sinΘ

sin θ
+ eφ ⊗

∂eΦ
∂Θ

(

sin Θ

sin θ

)

+ eφ ⊗ eΦ
∂

∂Θ

(

sinΘ

sin θ

))

· eΘ = 0,

(2.72)

and similarly

∂

∂X3

(

S 1
1 g

1 ⊗G1

)

·G3 =
∂

∂Φ

(

S 1
1 er ⊗ eR

)

· eΦ
R sinΘ

=
S 1
1

R sinΘ

(

∂er
∂Φ

⊗ eR + er ⊗
∂eR
∂Φ

)

·eΦ

=
S 1
1

R sin Θ
(sin θφ′eφ ⊗ eR + er ⊗ sinΘeΦ) · eΦ =

S 1
1

R
(er ⊗ eΦ) · eΦ =

S 1
1 er
R

. (2.73)

Other terms are

∂

∂X3

(

S 2
2 g

2 ⊗G2

)

·G3 =
∂

∂Φ

(

S 2
2

R

r
eθ ⊗ eΘ

)

· eΦ
R sinΘ

=
S 2
2

r sin Θ

∂

∂Φ
(eθ ⊗ eΘ) · eΦ

=
S 2
2

r sinΘ

(

∂eθ
∂Φ

⊗ eΘ + eθ ⊗
∂eΘ
∂Φ

)

·eΦ =
S 2
2

r sin Θ
(φ′ cosφeφ ⊗ eΘ + eθ ⊗ eΦ cosΘ)·eΦ

=
S 2
2 cotΘ

r
eθ, (2.74)

and

∂

∂X3

(

S 3
3 g

3 ⊗G3

)

·G3 =
∂

∂Φ

(

S 3
3

R sinΘ

r sin θ
eφ ⊗ eΦ

)

· eΦ
R sin Θ

=
S 3
3

r sin θ

∂

∂Φ
(eφ ⊗ eΦ)·eΦ
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=
S 3
3

r sin θ

(

∂eφ
∂Φ

⊗ eΦ + eφ ⊗
∂eΦ
∂Φ

)

·eΦ =
S 3
3

r sin θ
(−φ′ sin θer ⊗ eΦ − φ′ cos θeθ ⊗ eΦ)·eΦ

= −S
3
3 φ

′

r
er −

S 3
3 φ

′ cot θ

r
eθ = −S

3
3

r
er −

S 3
3 cot θ

r
eθ.

(2.75)

Gathering together equations (2.67) to (2.75) and substituting into ∇ · S = 0

gives the following radial and angular equations

∂S 1
1

∂R
+

2S 1
1

R
− 1

r

(

S 2
2 + S 3

3

)

= 0, (2.76)

S 2
2 cotΘ

r
− S 3

3 cot θ

r
= 0, (2.77)

since S 2
2 = S 3

3 due to θ = Θ. This results in the polar and azimuthal stresses hav-

ing the same dependency on the radial deformation. Equation (2.76) is equivalent

to the first Piola-Kirchoff stress in Daniel et al. [68].

2.2.7 Formulating the Cauchy stresses for the radial equa-

tion

To formulate the Cauchy stresses the radial differential equation (2.76) has to

be rewritten in terms of the physical coordinates. Calculating the various terms

in equation (2.76) using equations (2.63),(2.64) and (2.65) gives, from equation

(2.53),

∂J

∂R
=
r′′r2

R2
+

2(r′)2r

R2
− 2r′r2

R3
= J

(

r′′

r′
+

2r′

r
− 2

R

)

, (2.78)
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∂S 1
1

∂R
=

∂

∂R

(

µ

(

−J−2β 1

r′
+ r′

))

= µ

(

2βJ−2β−1 ∂J

∂R

1

r′
+ J−2β

(

1

r′

)2

r′′ + r′′

)

= µ

(

r′′
(

1 +
(2β + 1)J−2β

(r′)2

)

+ J−2β

(

4β

r
− 4β

Rr′

))

, (2.79)

2S 1
1

R
= µ

(−2J−2β

r′R
+

2r′

R

)

, (2.80)

−S 2
2

r
= µ

(

J−2β

r
− r

R2

)

, (2.81)

and (2.82)

−S 3
3

r
= µ

(

J−2β

r
− r

R2

)

. (2.83)

Substituting equations (2.79) to (2.83) into equation (2.76) and dividing through-

out by µ and multiplying by J−2β gives

r′′
(

1 +
(2β + 1)J−2β

(r′)2

)

+ J−2β

(

4β

r
− 4β

Rr′
− 2

r′R
+

2

r

)

+
2r′

R
− 2r

R2
= 0,

and rearranging,

r′′
(

(r′)2J2β + 1 + 2β
)

=

(

4βr′

R
− 4β(r′)2

r
+

2r′

R
− 2(r′)2

r

)

+ J2β

(

2r(r′)2

R2
− 2(r′)3

R

)

.

(2.84)

To determine the Cauchy stresses in the radial and angular directions, equation

(2.84) is solved for the inner surface of the shell being subjected to a load stress

and the outer shell’s surface being stress free. Using equation (2.63), at R = RI

(the inner radius), this inner boundary condition is
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SrR = −pJF−T
rR . (2.85)

Hence from equations (2.151) and (2.53)

SrR(RI) =
−pr2(RI)

R2
I

, (2.86)

where p represents the stress load on the inner shell. From equation (2.63)

µ






−J−2β 1

r′(R)
∣

∣

∣

R=RI

+ r′(R)
∣

∣

∣

R=RI






=

−pr2(RI)

R2
I

.

Hence

µ







r2(RI)r
′(R)

∣

∣

∣

R=RI

R2
I







−2β

−
pr2(RI)r

′(R)
∣

∣

∣

R=RI

R2
I

− µ(r′(R)
∣

∣

∣

R=RI

)2 = 0. (2.87)

Calculating the boundary condition for the outer shell’s radius R = RO gives

SrR = 0.

Hence

−J−2β 1

r′(R)
∣

∣

∣

R=RO

+ r′(R)
∣

∣

∣

R=RO

= 0,

and so






r2(RO)r
′(R)

∣

∣

∣

R=RO

R2
O







2β

=







1

r′(R)
∣

∣

∣

R=RO







2

.
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Rearranging gives the following boundary condition for R = RO,

r′(R)
∣

∣

∣

R=RO

=

(

RO

r(RO)

)2β/(β+1)

. (2.88)

Equation (2.84) can now be solved subject to the boundary conditions given by

equations (2.87) and (2.88). The Cauchy stresses represented by τ ([58], p111) are

then obtained from the first Piola-Kirchhoff stress tensor given by equation (2.61)

S =
∂W

∂F
= JτF−T . (2.89)

and rearranging gives

τ =
1

J
SF T . (2.90)

The radial and angular stresses are evaluated using equations (2.52), (2.90) and

(2.62)

τrr =
µ

J

(

−J−2β + (r′)2
)

, (2.91)

τθθ = τφφ =
µ

J

(

−J−2β +
( r

R

)2
)

. (2.92)

2.3 Nondimensionalising the quasistatic and col-

lapse phases

Nondimensionalisation is used to assist in solving the quasistatic and collapse

phases of the shelled microbubble. This is achieved by using the reference config-

uration’s inner radius, RI . Let

Y =
R

RI

, (2.93)
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and

y(Y ) =
r(R)

RI

, (2.94)

so YI = 1 and YO = RO/RI . This results in

∂r

∂R
=

∂y

∂Y
, (2.95)

and

∂2r

∂R2
=

1

RI

(

∂2y

∂Y 2

)

. (2.96)

The Jacobian given by equation (2.53) is then

J =
y′y2

Y 2
, (2.97)

which on substituting into equation (2.84) leads to

y′′

(

(y′)2
(

y′y2

Y 2

)2β

+ 1 + 2β

)

=

(

4βy′

Y
− 4β(y′)2

y
+

2y′

Y
− 2(y′)2

y

)

+

(

y′y2

Y 2

)2β (
2y(y′)2

Y 2
− 2(y′)3

Y

)

. (2.98)

Nondimensionalising the boundary condition at the inner radius given by equation

(2.87) and rearranging gives

(

y2(1)y′(Y )
∣

∣

∣

Y=1

)−2β

− p̂
(

y2(1)y′(Y )
∣

∣

∣

Y=1

)

− (y′(Y )
∣

∣

∣

Y=1
)2 = 0, (2.99)

where p̂ = p/µ. Similarly, nondimensionalising the boundary condition at the

outer radius represented by equation (2.88) leads to

y′(Y )
∣

∣

∣

Y=YO

=

(

YO
y(YO)

)2β/(β+1)

. (2.100)
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2.4 Linearisation of the inflationary process

The inflationary process, which is purely radially dependent, applies a small stress

to the inner radius, with a stress of the order of 1% of the shear modulus of

the shell. Applying such a small stress allows us to linearise the model for the

inflationary process by assuming that the stress is a small perturbation where

0 < p̂≪ 1. Assuming that the shell will be deformed by a small amount denoted

by p̂f(Y ) gives

y(Y ) = Y + p̂f(Y ), (2.101)

The Jacobian is linearised, resulting in

J ≈ 1 + p̂

(

f ′ +
2f

Y

)

. (2.102)

Determining J2β using equation (2.102)

J2β ≈ 1 + 2βp̂f ′ +
4βp̂f

Y
. (2.103)

Using equations (2.101), (2.102) and (2.103) and substituting into the first term

in equation (2.84) leads to

y′′
(

(y′)2J2β + 1 + 2β
)

≈ p̂f ′′ (2β + 2) . (2.104)

Considering the linearisation process for various terms in equation (2.84) leads to

J2β

(

2y(y′)2

Y 2
− 2(y′)3

Y

)

≈ 2p̂f

Y 2
− 2p̂f ′

Y
, (2.105)
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and substituting into equation (2.84) and rearranging results in

Y 2f ′′ + 2Y f ′ − 2f = 0. (2.106)

The second order differential equation (2.106) is solved by using the algebraic

substitution f(Y ) = Y q(Y ) leading to

Y 3q′′ + 4Y 2q′ = 0. (2.107)

Equation (2.107) is solved using separation of variables to give

q(Y ) =
A

Y 3
+B, (2.108)

where A and B are parameters determined using the boundary conditions of the

physical system. Substituting equation (2.108) into f(Y ) = Y q(Y ) and combining

this with equation (2.101) yields

y(Y ) = Y + p̂

(

A

Y 2
+BY

)

. (2.109)

Linearising and nondimensionalising the Cauchy radial stress given by equation

(2.91) results in

τ̂yy =
τyy
µ

=
1

J

(

−J−2β + (y′)2
)

≈ p̂

(

4βf

Y
+ (2β + 2) f ′

)

. (2.110)
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Linearising the Cauchy hoop stresses represented by τθθ and τφφ given by equation

(2.92) where τ̂θθ = τθθ/µ leads to

τ̂θθ = τ̂φφ =
1

J

(

−J−2β +
( y

Y

)2
)

≈ p̂

(

(4β + 2)f

Y
+ 2βf ′

)

. (2.111)

The boundary condition at the inner radius is

τ̂yy (1) = −p̂.

Linearising using equation (2.91) gives

(2β + 2) f ′(Y )
∣

∣

∣

Y=1
+ 4βf(1) + 1 = 0. (2.112)

Linearising the boundary condition at the outer radius using equation (2.110) and

the boundary condition given by equation (2.100) yields

f ′(Y )
∣

∣

∣

Y=YO

=
−2β

(β + 1)

(

f(YO)

YO

)

. (2.113)

Substituting f(Y ) from equation (2.109) into the boundary condition given by

equation (2.113) leads to the relationship

A =
Y 3
O

2
(3β + 1)B. (2.114)

Using equation (2.114) along with the linearised boundary condition for the inner

radius given by equation (2.112) and f(Y ) gives the following expressions for the
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parameters A and B

A =
Y 3
O

4Y 3
O − 4

, (2.115)

and

B =
1

(6β + 2)Y 3
O − (6β + 2)

. (2.116)

The radial deformation y(Y ) is from equations (2.109), (2.115) and (2.116) where

y(Y ) = Y + p̂

(

Y 3
O

Y 2 (4Y 3
O − 4)

+
Y

(6β + 2)Y 3
O − (6β + 2)

)

. (2.117)

Substituting equations (2.115) and (2.116) into equations (2.110) and (2.111) for

the Cauchy radial and hoop stresses where τ̂θθ = τ̂φφ, respectively gives

τ̂yy = p̂

(

Y 3 − Y 3
O

Y 3 (Y 3
O − 1)

)

, (2.118)

and

τ̂θθ = p̂

(

Y 3
O

Y 3 (2Y 3
O − 2)

+
1

Y 3
O − 1

)

. (2.119)

2.5 Linearisation of the time evolving collapse

phase of the shell

Applying the momentum balance law where ρo denotes the density in the reference

configuration, v represents the velocity and t denotes the time, gives

ρo
Dv

Dt
= ∇R · S, (2.120)
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where the radial component of the material derivative is given by Dvr/Dt =

∂vr/∂t + (v · ∇)vr − v2θ/r − v2φ/r ([70],p143-p145). Writing equation (2.120) in

terms of the Cauchy stress leads to

ρ
Dv

Dt
= ∇r · τ (2.121)

where v = vrer, vφ = 0 and vθ = 0 (radial dependency only) ([73], p354-p355).

To collapse the shell a change in the boundary conditions has to be applied at the

inner radius of the shell. In the inflationary picture there is a stress applied at the

inner radius, directed radially outwards, but to collapse the shell the stress at the

inner radius is set to zero. The right hand side of equation (2.121) is given by

∇r · τ =

(

∂τrr
∂r

+
2

r
(τrr − τθθ)

)

er, (2.122)

where τrr and τθθ are given by equations (2.91) and (2.92). Let vr = ∂r̂/∂t where

r̂ ≡ r̂(R, t). Using the chain rule

∂

∂r

(

∂r̂

∂t

)

=
∂R

∂r

∂2r̂

∂R∂t
, (2.123)

Equation (2.121) can be rewritten as

ρoJ

(

∂2r̂

∂t2
+
∂r̂

∂t

∂R

∂r

∂2r̂

∂R∂t

)

er = ∇r · τ. (2.124)

To nondimensionalise time we use t = γt̂ which results in

∂r̂

∂t
=
RI

γ

(

∂ŷ

∂t̂

)

,
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and

∂2r̂

∂t2
=
RI

γ2
∂2ŷ

∂t̂2
,

and the convective derivative (in component form) becomes

(

∂r̂

∂t

∂

∂r

)

∂r̂

∂t
=
RI

γ2
∂ŷ

∂t̂

∂Y

∂y

∂2ŷ

∂Y ∂t̂
.

The left hand side of equation (2.121) is

ρ
Dv

Dt
=
ρoRI

γ2
y2

Y 2

(

∂y

∂Y

)(

∂2ŷ

∂t̂2
+
∂ŷ

∂t̂

∂Y

∂y

∂2ŷ

∂Y ∂t̂

)

er, (2.125)

with the right hand side of equation (2.121) reducing to

∇r · τ =
µ

RIJ

(

(2β + 1)J−2β

(

2

y
+
∂2y

∂Y 2

(

∂Y

∂y

)2

− 2

Y

(

∂Y

∂y

)

))

er

+
µ

RIJ

(

∂2y

∂Y 2
+

2

Y

(

∂y

∂Y

)

− 2y

Y 2

)

er. (2.126)

Setting γ =
√

ρoR2
I/µ and substituting equations (2.125) and (2.126) into equation

(2.121) leads to the nondimensionalised momentum balance

y2

Y 2

(

∂y

∂Y

)(

∂2ŷ

∂t̂2
+

∂ŷ

∂t̂

∂Y

∂y

∂2ŷ

∂Y ∂t̂

)

= (2β + 1)J−2β−1

(

2

y
+

∂2y

∂Y 2

(

∂Y

∂y

)2

− 2

Y

(

∂Y

∂y

)

)

+
1

J

(

∂2y

∂Y 2
+

2

Y

(

∂y

∂Y

)

− 2y

Y 2

)

. (2.127)

Applying the boundary conditions at the inner and outer radii where the stress is

set to zero such that τyy(YI/O) = 0 gives

∂y

∂Y

∣

∣

∣

(1,t̂)
=
(

y
(

1, t̂
))−2β/(β+1)

, (2.128)
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and

∂y

∂Y

∣

∣

∣

(YO ,t̂)
=

(

y
(

YO, t̂
)

YO

)−2β/(β+1)

, (2.129)

where the nondimensionalised initial conditions are given by the inflated solution

y(Y, 0) = Y + p̂f(Y ), (2.130)

and

∂y

∂t̂

∣

∣

∣

(Y,0)
= 0. (2.131)

Linearisation is performed once again where

y = Y + p̂g(Y, t̂). (2.132)

Linearising the left hand side of equation (2.127) reduces it to

y2

Y 2

(

∂y

∂Y

)(

∂2ŷ

∂t̂2
+
∂ŷ

∂t̂

∂Y

∂y

∂2ŷ

∂Y ∂t̂

)

≈ p̂
∂2g

∂t̂2
, (2.133)

and the various terms on the right hand side of equation (2.127) are

∂2y

∂Y 2

(

∂Y

∂y

)2

+
2

y
− 2

Y

(

∂Y

∂y

)

≈ p̂
∂2g

∂Y 2
− 2p̂g

Y 2
+

2p̂

Y

(

∂g

∂Y

)

, (2.134)

and

J−2β−1 ≈ 1− (2β + 1)

(

2p̂g

Y
+ p̂

∂g

∂Y

)

, (2.135)

and so

(2β + 1)J−2β−1

(

∂2y

∂Y 2

(

∂Y

∂y

)2

+
2

y
− 2

Y

(

∂Y

∂y

)

)

≈ (2β + 1)

(

p̂
∂2g

∂Y 2
− 2p̂g

Y 2
+

2p̂

Y

(

∂g

∂Y

))

.

(2.136)
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Other terms on the right hand side of equation (2.127) linearise to give

∂2y

∂Y 2
+

2

Y

(

∂y

∂Y

)

− 2y

Y 2
≈ p̂

∂2g

∂Y 2
+

2p̂

Y

(

∂g

∂Y

)

− 2p̂g

Y 2
. (2.137)

Substituting equations (2.136) and (2.137) into the momentum balance law (2.127)

and cancelling out the small nondimensional parameter p̂ gives us

∂2g

∂t̂2
= (2β + 2)

∂2g

∂Y 2
+

(4β + 4)

Y

(

∂g

∂Y

)

− (4β + 4)g

Y 2
. (2.138)

The initial conditions are given by

g(Y, 0) = f(Y ), (2.139)

and

∂g

∂t̂

∣

∣

∣

(Y,0)
= 0, (2.140)

with boundary conditions that are stress free at both the inner and outer radius

given by

∂g

∂Y

∣

∣

∣

(1,t̂)
+

2β

(β + 1)
g(1, t̂) = 0, (2.141)

and

∂g

∂Y

∣

∣

∣

(YO ,t̂)
+

2β

(β + 1)

g(YO, t̂)

YO
= 0. (2.142)

Applying a Laplace transform to equation (2.138) and applying the initial condi-

tions leads to

(2β + 2)

(

d2G

dY 2
+

2

Y

dG

dY
− 2G

Y 2

)

= s2G(Y, s)− sf(Y ), (2.143)
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where G(Y, s) =
∫∞
0
g(Y, t̂)e−st̂dt̂. Setting α2 = 1/(2β + 2) results in

Y 2 d
2G

dY 2
+ 2Y

dG

dY
−
(

2 + α2Y 2s2
)

G = −α2Y 2sf(Y ). (2.144)

Consider first the case when s = 0. Here equation (2.144) becomes

Y 2 d
2G

dY 2
+ 2Y

dG

dY
− 2G = 0, (2.145)

which has solution G(Y, 0) = E/Y 2 + FY, where E, F ∈ R. The Laplace trans-

formed boundary conditions arising from equations (2.141) and (2.142) result in

E = F = 0. Hence the solution pertaining to the case s = 0 is the trivial solution

G(Y, 0) = 0. From now on we consider the case when s 6= 0. The homogeneous

equation has the solution

G(Y, s)Hom = A(s)I1(αsY ) +B(s)K1(αsY ), (2.146)

where I1(αsY ) is the modified spherical Bessel function of the first kind of order

one and K1(αsY ) is the modified spherical Bessel function of the second kind

of order one ([74],p443-445) and ([75],p633-634). The modified spherical Bessel

functions can be written in terms of more familiar functions as

I1(x) =
x cosh x− sinh x

x2
,

K1(x) =
e−x (x+ 1)

x2
.

The particular integral solution is

GPI(Y, s) =
f(Y )

s
, (2.147)
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since f(y) satifies equation (2.106). The general solution is then given by

G(Y, s) = A(s)I1(αsY ) +B(s)K1(αsY ) +
f(Y )

s
. (2.148)

Taking the Laplace transform of the stress free boundary conditions given by

equations (2.141) and (2.142) and substituting equation (2.148) into the Laplace

transforms of (2.141) and (2.142) gives

A(s)

(

∂I1(αsY )

∂Y

∣

∣

∣

Y=1
+

2β

(β + 1)
I1(αs)

)

+B(s)

(

∂K1(αsY )

∂Y

∣

∣

∣

Y=1
+

2β

(β + 1)
K1(αs)

)

+
1

s

(

∂f(Y )

∂Y

∣

∣

∣

Y=1
+

2β

(β + 1)
f(1)

)

= 0, (2.149)

and

A(s)

(

∂I1(αsY )

∂Y

∣

∣

∣

Y=YO

+
2β

(β + 1)

I1(αsYO)

YO

)

+B(s)

(

∂K1(αsY )

∂Y

∣

∣

∣

Y=YO

+
2β

(β + 1)

K1(αsYO)

YO

)

+
1

s

(

∂f(Y )

∂Y

∣

∣

∣

Y=YO

+
2β

(β + 1)

f(YO)

YO

)

= 0. (2.150)

Using equations (2.112) and (2.113), we can write equations (2.149) and (2.150)

as the matrix equation

M(s)







A(s)

B(s)






=







1
s(2β+2)

0






,

where

M(s) =







∂I1(αsY )
∂Y

∣

∣

∣

Y=1
+ 2β

(β+1)
I1(αs)

∂K1(αsY )
∂Y

∣

∣

∣

Y=1
+ 2β

(β+1)
K1(αs)

∂I1(αsY )
∂Y

∣

∣

∣

Y=YO

+ 2β
(β+1)

I1(αsYO)
YO

∂K1(αsY )
∂Y

∣

∣

∣

Y=YO

+ 2β
(β+1)

K1(αsYO)
YO






.

(2.151)
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Equation (2.151) leads to

A(s) =
1

det(M)

(

1

s(2β + 2)

)(

∂K1(αsY )

∂Y

∣

∣

∣

Y=YO

+
2β

(β + 1)

K1(αsYO)

YO

)

, (2.152)

and

B(s) =
1

det(M)

( −1

s(2β + 2)

)(

∂I1(αsY )

∂Y

∣

∣

∣

Y=YO

+
2β

(β + 1)

I1(αsYO)

YO

)

, (2.153)

where the determinant is given by

det(M) =

(

∂I1(αsY )

∂Y

∣

∣

∣

Y=1
+

2β

(β + 1)
I1(αs)

)(

∂K1(αsY )

∂Y

∣

∣

∣

Y=YO

+
2β

(β + 1)

K1(αsYO)

YO

)

−
(

∂K1(αsY )

∂Y

∣

∣

∣

Y=1
+

2β

(β + 1)
K1(αs)

)(

∂I1(αsY )

∂Y

∣

∣

∣

Y=YO

+
2β

(β + 1)

I1(αsYO)

YO

)

.

(2.154)

The matrix M becomes singular when the determinant given by equation (2.154)

is equal to zero. This corresponds to the poles of the integrand in the inverse

Laplace transform formulation. The location of the poles in the complex plane was

empirically observed by producing an exhaustive set of contour plots of |detM(s)|

where s = re + iω, over an extensive range of real and imaginary values of s and

a range of material parameters given by 0 < β ≤ 25 and 1.02 ≤ YO ≤ 1.05 [15].

Figure 2.3 illustrates one of the many contour plots that has been produced for

one set of material parameters where β = 12 and YO = 1.02.
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Figure 2.3: Contour plot of |detM(s)| (evaluated using equation (2.154)) over a
range of real and imaginary values where s = re+ iω for β = 12 and YO = 1.02.

Figure 2.3 shows a contour plot of |detM(s)| over a broad range of s where s =

re+iω with β = 12 and YO = 1.02. The scale on the right hand side of the contour

plot corresponds to the values of |detM(s)| with the dark blue regions of the

contour plot indicating values of |detM(s)| which are below ≈ 0.5 and potentially

equal to 0. Note that there is a symmetry in Figure 2.3 along the vertical line

re = 0. This is characteristic of all the contour plots that were constructed.

Constructing three dimensional plots of loge(|detM(s)|) over an extensive range

of real and imaginary values with 0 < β ≤ 25 and 1.02 ≤ YO ≤ 1.05 shows that

there is a series of approximately periodic minima. Figure 2.4 shows one such plot

for the material parameter set β = 12 and YO = 1.02.
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Figure 2.4: Plot of loge(|detM(s)|) (evaluated using equation (2.154)) over a range
of real and imaginary values where s = re+ iω for β = 12 and YO = 1.02.

Figure 2.4 highlights the series of approximately periodic minima. Due to the

complexity of the expression for the determinant given by (2.154) it is not possible

to prove that the poles are all purely imaginary for all of the parameter space and

hence we have resorted to this numerical investigation. For the remainder of this

study we shall therefore assume that the solutions of equation (2.154) are purely

imaginary. Setting s = iω in equation (2.154) gives

det(M) = −2i(YO − 1) (2 + YOα
2(1 + β)ω2) cos((YO − 1)αω)

Y 3
Oα

3(1 + β)2ω3

+
i (8− 4α2(1− 2YO + β + Y 2

O(1 + β))ω2 + 2Y 2
Oα

4(1 + β)2ω4) sin((YO − 1)αω)

2Y 3
Oα

4(1 + β)2ω4
.

(2.155)

To enable some analytic headway we shall consider an asymptotic expansion of
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equation (2.155) and examine the limit as ω → ∞. This results in

det(M) =
i sin ((YO − 1)αω)

YO
+O(ω−1). (2.156)

The poles are therefore approximately periodic and are given by

ωn ≈ (n− 1)π

√
2β + 2

YO − 1
, (2.157)

where n ∈ N. Equation (2.157) holds for the typical parameter regime of this

study, for example when β = 12 and YO = 1.02 then ω2 ≈ 800.

The inverse Laplace transform of G(Y, s), L−1 : s→ t̂, is given by

g(Y, t̂) =
1

2πi

∫ a+i∞

a−i∞
est̂G(Y, s)ds. (2.158)

The poles can be used to determine the inverse Laplace transform by utilising the

Bromwich contour C = C1 ∪ C2 as shown in Figure 2.5 ([76], p151-174).
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Figure 2.5: Illustration of the Bromwich contour which is required to calculate the
inverse Laplace transform.

Here C1 is the portion of the circle of radius R centred at the origin and C2

is the vertical line at x = a where a = ǫ which lies to the right of all the poles

(as they lie on the imaginary axis). The integration on equation (2.160) is in the

anticlockwise direction (as indicated in Figure 2.5). We must consider R → ∞ to

encircle all the poles, and in C2, γ =
√
R2 − a2. By the Residue Theorem ([76],

p151-174) we have in the limit as R → ∞

1

2πi

∮

C

est̂G(Y, s)ds =
∞
∑

j=−∞
res(ωj), (2.159)

where ωj are the poles and where res(ωj) is

lim
R→∞

(

1

2πi

∫

C1

est̂G(Y, s)ds

)

+
1

2πi

∫ a+i∞

a−i∞
est̂G(Y, s)ds =

∞
∑

j=−∞
res(ωj). (2.160)
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If we can show that the first term on the left hand side of equation (2.160) is

identically zero then from equation (2.158) we have that

g(Y, t̂) =

∞
∑

j=−∞
res(ωj). (2.161)

In the integral over C1 the substitution s = ReiΘ was made in the term G(Y, s)

which leads to

G(Y, s) =
1

2R(1 + YO)2
e−iΘ

(

2Y 3
O

−1 + Y 3
O

+
(1 + YO)

3

−2 − 6β + Y 3
O (2 + 6β)

− N1

D
+
N2

D

)

,

(2.162)

where

N1 = 8
√
2e−eiΘR(1+YO)/(2

√
2+2β)

(

1 +
eiΘR(1 + YO)

2
√
2 + 2β

)

(

−2
√
2eiΘRYO√
1 + β

cosh

(

eiΘRYO√
2 + 2β

)

+ (4 + e2iΘR2Y 2
O) sinh

(

eiΘRYO√
2 + 2β

)

)

,

and

N2 = 8
√
2e−eiΘRYO/

√
2+2β

(

−4 − e2iΘR2Y 2
O − 2

√
2eiΘRYO√
1 + β

)

(

eiΘR(1 + YO)

2
√
2 + 2β

cosh

(

eiΘR(1 + YO)

2
√
2 + 2β

)

− sinh

(

eiΘR(1 + YO)

2
√
2 + 2β

))

,
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with

D = e−eiΘRYO/
√
2+2β

(

4
√
2 +

√
2e2iΘR2Y 2

O +
4eiΘRYO√

1 + β

)

(

2
√
2eiΘR√
1 + β

cosh

(

eiΘR√
2 + 2β

)

−
(

4 + e2iΘR2
)

sinh

(

eiΘR√
2 + 2β

)

)

− e−eiΘR/
√
2+2β

(

4
√
2 +

√
2e2iΘR2 +

4eiΘR√
1 + β

)

(

2
√
2eiΘRYO√
1 + β

cosh

(

eiΘRYO√
2 + 2β

)

−
(

4 + e2iΘR2Y 2
O

)

sinh

(

eiΘRYO√
2 + 2β

)

)

.

We will now consider an asymptotic expansion of equation (2.162) as |s| → ∞.

Since there are hyperbolic functions contained within equation (2.162) we will

assume that R(s) is negative. Using Mathematica [77] to perform an asymptotic

expansion of equation (2.162) to order O(R−1) gives

G(Y,R) =
(2Y 3

O/(Y
3
O − 1) + (1 + YO)

3/(−2− 6β + Y 3
O(2 + 6β))

2R(1 + YO)2

− eR
√

1/(2β+2)−(R(1+YO)/2)
√

1/(2β+2)YO
√

1/(2β + 2)

2
√
2R(1 + YO)2

√

1/(1 + β)

− eR
√

1/(2β+2)−(R(1+YO)/2)
√

1/(2β+2)YO
√

1/(2β + 2)

2
√
2R(1 + YO)2

√

1/(1 + β)
+O(R−2). (2.163)

Since YO > 1 the resulting exponential terms in equation (2.163) are raised to a

negative power which in the limit as R → ∞ tends to zero. This reduces to

G(Y,R) ≈ (2Y 3
O/(Y

3
O − 1) + (1 + YO)

3/(−2− 6β + Y 3
O(2 + 6β))

2R(1 + YO)2
, (2.164)

which tends to zero as R → ∞. Hence by applying Jordan’s lemma ([76], p54)

limR→∞

(

1
2πi

∫

C1
est̂G(Y, s)ds

)

→ 0 for t̂ > 0. The poles ωj were identified nu-

merically using FindRoot in Mathematica [77] which uses the Newton method to

57



identify roots. The residuals were also evaluated numerically using NResidue in

Mathematica [77] for a range of β and YO values. The general form of the solution

is given by

g(Y, t̂) =

∞
∑

n=1

An(Y )e±iωnt̂, (2.165)

which simplifies to

g(Y, t̂) =

∞
∑

n=1

2An(Y ) cos(ωnt̂), (2.166)

where An(Y ) denotes the amplitude of each residual whose pole is given by s =

±iωn. Now equation (2.166) is a Fourier series. The amplitudes for higher har-

monics are very small in comparison to A1 (refer to Table 2.1).

Table 2.1: Magnitude of residuals at YO (outer radius)
Harmonic no. Magnitude of residual

1 2.24
2 4.12× 10−7

3 1.93× 10−5

4 1.52× 10−7

5 4.82× 10−6

6 3.29× 10−9

7 2.14× 10−6

8 1.20× 10−9

9 1.21× 10−6

10 5.65× 10−10

Table 2.1 shows that the amplitudes of the higher harmonics are very small in

comparison to A1(YO). Hence the collapse time is dominated by the first angular

frequency ω1. Every component in expression (2.166) independently satisfies the

boundary conditions given by equations (2.141) and (2.142). The collapse time t̂∗,

which is the time taken for the stressed shell to collapse to its stress free state, is

therefore given by t̂∗ = π/(2ω1). To validate this analysis the original linearised

PDE given by equation (2.138) is solved numerically using the NDSolve built

in solver in Mathematica [77]. This solver uses the method of lines to evaluate
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equation (2.138).

2.6 Results for the inflationary phase of the shelled

microbubble
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gradient, m = 1 for p̂ = 0
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Figure 2.6: Graph of the nondimensionalised radial deformation versus the nondi-
mensionalised reference configuration’s radial coordinates for different nondimen-
sionalised internal stress loads given by p̂ = 0, 0.001, 0.002, ..., 0.01 where ν =
0.48, β = 12 and the initial thickness is YO − 1 = 0.02. This is calculated using
equation (2.117).

Figure 2.6 plots the radial deformation of the inflated shell given by equation

(2.117) as a function of the reference configuration for a series of stresses applied

to the inner surface of the shelled microbubble. The red vertical arrow indicates

the direction of increasing applied stress. As the applied stress increases the slope
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of each successive line decreases slightly. The gradient of y(Y ) when p̂ = 0.01

varies from roughly 0.915 to 0.92 over the range of Y plotted. This is due to

the material being compressed more at the inner radius than at the outer radius.

Using equation (2.117) we can determine how the change in thickness of the shell

for the linearised model depends on the various material parameters of the shell.

Evaluating y(YO)− y(1)− (YO − 1) using (2.117) results in

y(YO)− y(1)− (YO − 1) =
−p̂(−2 + YO + 3βYO + Y 2

O(1 + 3β))

4(1 + YO + Y 2
O)(1 + 3β)

, (2.167)

which shows that the change in thickness of the shell varies linearly with p̂. The

negative sign highlights that the shell’s thickness decreases as the applied stress

increases. This is a result of the shelled microbubble expanding radially and the

thinning of the shell is indicative of a compressive stress in the radial direction.

Equation (2.167) also highlights the slightly more complicated dependency on the

Poisson ratio on which β depends and on the thickness of the shell which is given

by YO−1. The linearised Jacobian which measures the change in the local density

of the shell as it inflates can be simplified using equations (2.102), (2.115) and

(2.116) to give

J ≈ 1 +
3p̂

(6β + 2)(Y 3
O − 1)

. (2.168)

Equation (2.168) shows that as p̂ increases the Jacobian of the shell increases

linearly which implies that the density of the shell is decreasing. The change in

density at the final applied stress of p̂ = 0.01 is approximately 0.7% of its original

density which is the same order of magnitude as the nondimensionalised stress

load. Note that the Jacobian of the shell is independent of Y but depends on both

the Poisson ratio and the thickness of the shell YO − 1.

60



0 .000 0 .002 0 .004 0 .006 0 .008 0 .010

0 .995

0 .996

0 .997

0 .998

0 .999

1 .000

p̂

m
/m

O

Figure 2.7: Graph of the normalised mass of the shell versus the nondimension-
alised stress load where where ν = 0.48, β = 12 and the initial thickness is YO −
1 = 0.02. This is calculated using ρ0 = ρJ alongside equations (2.102) and (2.117)

.

Figure 2.7 plots the normalised mass versus the nondimensionalised applied

stress up to a value of p̂ = 0.01; the normalised mass is obtained by dividing

the mass at each stress step by the mass at the initial stress p̂ = 0 resulting in

the equation m/m0 = (y(YO)
3 − y(1)3) /((Y 3

O − 1)J). Figure 2.7 shows that the

mass error is approximately proportional to p̂2 as one would expect for a linearised

model.
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Figure 2.8: Graph of the nondimensionalised radial Cauchy stress of the shell
versus the nondimensionalised radial deformation for various nondimension-
alised internal stress loads where p̂ = 0, 0.001, 0.002, ..., 0.01, ν = 0.48, β =
12 and the initial thickness is YO − 1 = 0.02. This is calculated using equations
(2.117) and (2.118).

Figure 2.8 shows the relationship between the nondimensionalised Cauchy ra-

dial stress τ̂yy, and the nondimensionalised radial deformation, y(Y ), for a series

of stresses applied to the inner surface of the shelled microbubble. The Cauchy

radial stress is greater at the inner radius than at the outer radius. This is because

the stress is zero at the outer radius and nonzero at the inner radius during the

inflationary process. Figure 2.8 illustrates a Cauchy radial stress which is nega-

tive, indicating that the stress is compressive. This is a consequence of the shell

thinning down during the inflationary process. Note that the Cauchy radial stress

at the inner radius is equal in magnitude to the stress applied to the inner radius
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of the shell.
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Figure 2.9: Graph of the normalised Cauchy angular stress (hoop stress) of the
shell versus the nondimensionalised radial deformation for various nondimension-
alised internal stress loads where p̂ = 0, 0.001, 0.002, ..., 0.01, ν = 0.48, β =
12 and the initial thickness is YO − 1 = 0.02. This is calculated using equations
(2.117) and (2.119).

Figure 2.9 illustrates the relationship between the nondimensionalised Cauchy

angular (hoop) stress (τ̂θθ) and the nondimensionalised radial deformation for a

range of applied stress values up to a nondimensionalised inflationary applied stress

of p̂ = 0.01. The graph shows Cauchy hoop stresses that are linear and essentially

flat over the range of radial deformations varying from the inner to the outer radii.

The Cauchy hoop stress τθθ is equal in magnitude to τφφ due to the spherically

directed nature of the radial deformation and is positive indicating stretching. The

Cauchy angular stresses are significantly larger than the Cauchy radial stresses
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which were represented by Figure 2.8. This would suggest that the hoop stresses

play the key role in dictating the collapsing of the shelled microbubble. It is

interesting to note that the Cauchy angular stress is very slightly larger at the

inner radius than the outer radius which is a result of the material particle spacing

in the shell changing radially.
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Figure 2.10: Graph of the nondimensionalised hoop stress of the shell versus the
nondimensionalised radial deformation for two different Poisson ratios where p̂ =
0.01 and the initial thickness is YO − 1 = 0.02. This is calculated using equations
(2.117) and (2.119).

Figure 2.10 illustrates how the nondimensionalised hoop stress varies against

the nondimensionalised radial deformation for a particular shell thickness but with

two different Poisson ratio values for a nondimensionalised radial stress of p̂ = 0.01.

Figure 2.10 shows that the hoop stress is independent of the Poisson ratio and that

shells with smaller Poisson ratios experience larger radial displacements.
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Figure 2.11: Graph of the nondimensionalised hoop stress of the shell versus the
nondimensionalised radial deformation for two different Poisson ratios where p̂ =
0.01 and the initial thickness is YO − 1 = 0.10. This is calculated using equations
(2.117) and (2.119).

Figure 2.11 illustrates how the nondimensionalised hoop stress varies against

the nondimensionalised radial deformation for a thicker shell than Figure 2.10 but

with the same two Poisson ratio values as Figure 2.10 for a nondimensionalised

radial stress of p̂ = 0.01. Figure 2.11 when compared with Figure 2.10 highlights

the relationship between the hoop stress and the thickness of the shell with thinner

shells experiencing a significantly larger hoop stress. Note that the hoop stress

given by equation (2.119) is influenced by the applied stress p̂, the thickness of the

shell, and the inner and outer radii.

2.7 Results for the collapse phase of the shelled

microbubble

Having produced results for the inflationary phase of the microbubble’s evolution,

this can be used as an initial condition to model the collapsing shell. The collapse
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is achieved by setting the boundary condition on the inner surface of the shell to

be stress free.
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Figure 2.12: Graph of g(Y, t̂) at the nondimensionalised inner and outer radius
of a collapsing shell versus the nondimensionalised time where ν = 0.48, β =
12, and the initial thickness is YO − 1 = 0.02. This is calculated using equations
(2.154) and (2.166).

Figure 2.12 plots g(Y, t̂) at the nondimensionalised inner and outer radius of a

collapsing shell versus the nondimensionalised time for an initial condition based on

an inflationary stress load that is 1% of the shear modulus of the shell (p̂ = 0.01).

The resulting nonlinear trend is a sinusoidal function with a collapse time, t̂∗ ≈

0.47. There are no dissipative, damping terms in the momentum balance law such

as viscoelastic terms connected to the viscosity of the shell and the surrounding

fluid. Neglecting the fluid resistance results in a simple harmonic behaviour with

no resulting energy dissipation to the surrounding medium. Both the inner and

outer radius of the shell experience the same collapse time despite their radial

deformations being different with the inner radius experiencing a slightly larger

radial deformation.
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Figure 2.13: Graph of the nondimensionalised numerical solution of a collapsing
shell versus the nondimensionalised time where ν = 0.48 and β = 12. This is
calculated using equation (2.138).

Figure 2.13 plots the nondimensionalised numerical solution for the collapsing

shell versus the nondimensionalised time for an initial condition based on an in-

flationary stress load that is 1% of the shear modulus of the shell (p̂ = 0.01). The

resulting nonlinear trend is characteristic of Figure 2.12 with approximately the

same collapse time t̂∗. Note that the collapse time is the same for each section of

the shell lying between 1 ≤ Y ≤ YO.
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Figure 2.14: Graph comparing the nondimensionalised numerical and analytical
solutions of a collapsing shell at the inner radius versus the nondimensionalised
time where ν = 0.48 and β = 12. The analytical solution is calculated using
equations (2.154) and (2.166) whereas the numerical solution is calculated using
equation (2.138).

Figure 2.14 compares the analytical and numerical solutions to equation (2.138)

for the nondimensionalised parameters ν = 0.48 and β = 12. Figure 2.14 shows

that there is good agreement between the numerical and analytical solutions.
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Figure 2.15: Graph of the absolute difference between the nondimensionalised
numerical and analytical solutions of a collapsing shell at the outer radius versus
the nondimensionalised time where ν = 0.48 and β = 12. The analytical solution
is calculated using equations (2.157) and (2.166) whereas the numerical solution
is calculated using equation (2.138).

A series of graphs of ‖gnum − ganaly‖ have been produced where the number

of modes in the analytical solution were varied between one and nine. Very little

change was observed between these plots and the oscillations that can be seen in

Figure 2.15 persisted throughout. This suggests that these oscillations are caused

by numerical instabilities in the method used to numerically solve equation (2.138).
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Figure 2.16: Graph of the redimensionalised collapse time of the shell
versus the redimensionalised shear modulus where β = 12, ν =
0.48 and the initial stress free thickness is RO − RI = 0.02nm. The density of
the shell ρo = 1100kgm−3 [14] and its inner radius is RI = 1µm. Typical shear
modulus values are within the range of µ = 20 → 100MPa [14,15]. The collapse
time is calculated from the zeros of the determinant of the matrixM(s) in equation
(2.154) and is redimensionalised using t = γt̂ where γ =

√

ρoR
2
I/µ.

Figure 2.16 highlights the nonlinear relationship between the redimensionalised

collapse time of the shell and the redimensionalised shear modulus. The nondi-

mensionalised angular collapse frequency is evaluated using equation (2.151) where

the nondimensionalised collapse time is given by t̂∗ = π/(2ω). We redimensionalise

the collapse time using t = γt̂ where γ =
√

ρoR2
I/µ. Figure 2.16 shows that as the

shear modulus increases the microbubble shells experience shorter collapse times.
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Figure 2.17: Graph of the nondimensionalised collapse time (t̂∗ = π/(2ω1)) of the
shell versus the nondimensionalised original thickness of the shell (YO − 1) where
β = 12 and ν = 0.48. This is calculated from the zeros of the determinant of the
matrix M(s) in equation (2.154).

Figure 2.17 shows the relationship between the collapse time of the shell and

the nondimensionalised original (stress free) thickness of the shell. Thinner shells

will strain more to balance the tensions that they are subjected to which will

result in larger radial deformations. The hoop stresses play a key role in the

collapse phase of the shell with thinner shells experiencing a larger hoop stress as

illustrated by Figures 2.10 and 2.11. Thinner shells also possess a smaller mass

and it is the combination of the mass and the hoop stress that must be considered

when determining the collapse time. Figure 2.17 illustrates that thicker shells have

slightly longer collapse times.
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Figure 2.18: Graph of the nondimensionalised collapse time (t̂∗ = π/(2ω1)) of the
shell versus the Poisson ratio (ν) of the shell’s material where the initial stress
thickness is YO − 1 = 0.02. This is calculated from the zeros of the determinant of
the matrix M(s) in equation (2.154).

Figure 2.18 highlights the approximately linear relationship between the nondi-

mensionalised collapse time and the Poisson ratio ν. Equation (2.157) shows that

the angular frequency is approximately proportional to the square root of β, where

β = ν/(1 − 2ν). Since 0 < ν < 1/2 then β > 0 and monotonically increases as ν

increases and so as the Poisson ratio increases the angular frequency ω, increases

which results in a shorter collapse time (as t̂∗ = π/(2ω1)).
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2.8 Conclusion

This chapter described an analytical approach to modelling the inflationary pro-

cess of a shelled microbubble via a quasistatic radially directed stress load applied

to its inner surface. The stress load was switched off (a stress free boundary condi-

tion was applied) and the time for the microbubble’s shell to collapse back down to

its equilibrium position was determined by applying the momentum balance law

and the forward picture’s inflated radial deformation as an initial condition. Key

material parameters such as the thickness of the shell, its Poisson ratio and the

shell’s shear modulus were varied to determine their influence on the collapse phase

of the shell. A typical redimensionalised collapse time for a shelled microbubble of

interior radius 1µm, a shell density of ρ = 1100kgm−3, a redimensionalised shear

modulus of µ = 20MPa and a Poisson ratio of ν = 0.48, subjected to a redimen-

sionalised stress load of p = 200kPa, is of the order t∗ = 0.47×
√

(ρoR
2
I/µ) ≈ 3.5ns

where t̂∗ = 0.47 is the nondimensionalised collapse time. Shells with a larger shear

modulus possessed shorter collapse times. As the thickness of the shell increased

the collapse time of the shell increased in a linear manner. Shells with a larger

Poisson ratio had shorter collapse times. The stress profile within the shell of the

microbubble in the radial direction in the inflationary stage (quasistatic) differed

from the stress profiles during the collapse phase due to the unloading at the inner

shell as a consequence of the change in boundary conditions (switching off of the

stress load at the inner shell). The complexity of the Laplace transformed col-

lapsing deformation (G(Y, s)) made the process of obtaining an explicit form for

g(Y, t̂) challenging. The complex integrals were therefore evaluated numerically

and a numerical solution of the original PDE used to validate the analysis. It

would be extremely advantageous to have a numerical solution for the nonlinear

model to not only validate the linearised model’s solution but also to enable us to
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extend this study into the regimes of higher, non-perturbative stress loads where

an asymptotic expansion would be inappropriate. However, the development of a

numerical solution for a nonlinear model is a formidable challenge and is a possi-

ble area for future study. The chief legacy of this study is the qualitative insight

that it gives us into how the material parameters such as the shear modulus, the

thickness of the shell and the Poisson ratio influence the collapse time of the shell.

This study highlighted the key role that the hoop stresses played in the potential

rupture and collapse time of the shell. Figure 2.10 indicated that the hoop stresses

were not only larger than the axial (radial) stress but were also positive which is

indicative of a stretching behaviour.

Having studied the collapse of a stressed shelled microbubble that remains as

an intact sphere throughout the deformations, it seems natural to then extend

the analysis to a situation where the shell has ruptured. In the next chapter we

will study this situation and observe the static model of a stressed, open shelled

microbubble which experiences both a radial and an angular deformation.
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Chapter 3

Rupture of a shelled microbubble

3.1 Introduction

In this chapter a theoretical model is proposed to model a ruptured shelled mi-

crobubble. A compressible, neo-Hookean [54] hyperelastic strain energy density

function is used to model the potential energy per unit volume of the shell which

is subjected to a stress via an opening angle [54]. A stress is generated in the shell

by deforming a shelled microbubble with a spherical cap removed in the south polar

region; the original shelled microbubble represents the reference configuration. An

angular stress is applied to the rim of this open shelled microbubble resulting in it

experiencing both a radial and a polar angular deformation. This stressed shelled

microbubble then represents the current configuration and possesses both radial

and hoop stresses which are evaluated using the hyperelastic strain energy density

function in conjunction with the relevant boundary conditions and the momentum

balance law. The application of the deforming stress is done via a quasistatic

process and is thus independent of time. The quasistatic process implies that the

divergence of the stress is equal to zero. The radial stresses at both the inner and
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outer radii of the compressible shell are set to zero. An opening angle π − Θop is

chosen that is small compared to π (see Figure 3.1).

Figure 3.1: Figure illustrating the opening angle, π −Θop.

Since the shell is modelled as compressible this results in a small change in the

volume and thickness of the shell as it is deformed. The change in density (and

thickness) of the shell is described using the Jacobian of the shell which displays

a radial and an angular dependency. The deformation used to link the reference

configuration to the current configuration has both an angular and a radial de-

pendency and so produces two differential equations: one describing the angular

deformation and the other the radial deformation. This necessitates two different

sets of coupled boundary conditions, one set for the polar angle and the other set

for the radial behaviour. The process of deforming the initial shelled microbub-

ble will be referred to as the forward picture. Developing a model for the radial

and angular deformation of an open angle shelled microbubble is fundamental to

studying shelled microbubble rupture and collapse. Future work will use numeri-

cal analysis to solve both the forward picture and the collapse phase of a stressed

open shelled microbubble and its dependency on various material parameters. A
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collapse model for a ruptured shell would capture the unfolding shell imaged by

Müller and Stannarius [78].

3.2 Calculating the deformation for the forward

picture

Let us consider the reference configuration of a stress free shell. The reference

configuration in Cartesian coordinates is defined as (X1, X2, X3) and is more gen-

erally denoted as X i whereas the current configuration, representing the stressed

shelled microbubble, is defined using the Cartesian coordinates (x1, x2, x3) which

can be generalised to xi. The stress free, open shell has inner and outer radii

described by RI and RO respectively whilst the deformed stressed shell has inner

and outer radii denoted by r(RI ,Θ) and r(RO,Θ). A deformation acting on the

stress free, open shelled microbubble, is represented by

χ = r(R,Θ)er, (3.1)

such that the polar angle in the current configuration can be expressesd as a

function of the polar angle and the radius in the reference configuration where

θ = θ(R,Θ) and er represents the radial component of the standard basis in

spherical polar coordinates ([70], p66). This implies that for any given angle Θ in

the reference configuration, all points within the shell that lie along RI ≤ R ≤ RO

are not restricted to move in the same direction in their current configuration since

er depends on R. However, to reduce the complexity of the analysis we shall place

a kinematic constraint on this deformation such that θ = θ(Θ). This simplified

assumption means that for a given angle of Θ in the reference configuration, then
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all points within the shell that lie along RI ≤ R ≤ RO are constrained to move in

the same direction as er now only depends on Θ. We will use a mixed tensorial

basis and define the deformation gradient as F = ∇⊗ χ ([70], p83-84) where F is

given by equation (2.41). In spherical polar coordinates the current configuration

is transformed into physical components ([70], p64) yielding χ1 = χr, χ2 = ruθ and

χ3 = r sin θχφ where the physical coordinates preserve the units. Using equation

(2.41) we can determine the gradient of the deformation defined by equation (3.1)

where χ1 = r(R,Θ) and χ2 = χ3 = 0. For the opening angle approach θ =

θ(Θ) and φ = Φ resulting in a deformation, F , that is given by

(∇⊗ χ)rR er ⊗ eR =

(

∂χ1

∂X1
+ χ1

∂g1

∂X1
· g1
)

g1 ⊗G1,

=

(

∂r

∂R
+ r

∂er
∂R

· er
)

er ⊗ eR,

=

(

∂r

∂R

)

er ⊗ eR, (3.2)

(∇⊗ χ)rΘ er ⊗ eΘ =

(

∂χ1

∂X2
+ χ1

∂g1

∂X2
· g1
)

g1 ⊗G2,

=

(

∂r

∂Θ
+ r

∂er
∂Θ

· er
)

er ⊗ eΘ
R

,

=
1

R

(

∂r

∂Θ

)

er ⊗ eΘ, (3.3)

(∇⊗ χ)rΦ er ⊗ eΦ =

(

∂χ1

∂X3
+ χ1

∂g1

∂X3
· g1
)

g1 ⊗G3,

=

(

r
∂er
∂Φ

· er
)

er ⊗ eΦ
R sinΦ

,

= (r sin θeφφ
′ · er)

er ⊗ eΦ
R sinΘ

= 0, (3.4)
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(∇⊗ χ)θR eθ ⊗ eR =

(

∂χ2

∂X1
+ χ1

∂g1

∂X1
· g2
)

g2 ⊗G1,

=

(

r
∂er
∂R

· reθ
)

eθ ⊗ eR
r

= 0, (3.5)

(∇⊗ χ)θΘ eθ ⊗ eΘ =

(

∂χ2

∂X2
+ χ1

∂g1

∂X2
· g2
)

g2 ⊗G2,

=
r

R

(

eθ
∂θ

∂Θ
· eθ
)

eθ ⊗ eΘ =
r

R

(

∂θ

∂Θ

)

eθ ⊗ eΘ, (3.6)

(∇⊗ χ)θΦ eθ ⊗ eΦ =

(

∂χ2

∂X3
+ χ1

∂g1

∂X3
· g2
)

g2 ⊗G3,

=

(

r
∂er
∂Φ

· reθ
)

eθ ⊗ eΦ
rR sinΘ

= 0, (3.7)

(∇⊗ χ)φR eφ ⊗ eR =

(

∂χ3

∂X1
+ χ1

∂g1

∂X1
· g3
)

g3 ⊗G1,

=

(

r
∂er
∂R

· r sin θeφ
)

eφ ⊗ eR
r sin θ

= 0, (3.8)

(∇⊗ χ)φΘ eφ ⊗ eΘ =

(

∂χ3

∂X2
+ χ1

∂g1

∂X2
· g3
)

g3 ⊗G2,

=

(

reθ
∂θ

∂Θ
· r sin θeφ

)

eφ ⊗ eΘ
rR sin θ

= 0, (3.9)

and

(∇⊗ χ)φΦ eφ ⊗ eΦ =

(

∂χ3

∂X3
+ χ1

∂g1

∂X3
· g3
)

g3 ⊗G3,

=

(

r
∂er
∂Φ

· r sin θeφ
)

eφ ⊗ eΦ
rR sin θ sin Θ

,

=

(

r sin θ

R sinΘ

)

eφ ⊗ eΦ. (3.10)
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Combining equations (3.2) - (3.10) and writing them as a 3 × 3 matrix, since the

gradient of the deformation written as F = ∇⊗ χ is a two point tensor, gives

F =













∂r
∂R

1
R

∂r
∂Θ

0

0 r
R

(

∂θ
∂Θ

)

0

0 0 r sin θ
R sinΘ













(3.11)

with an inverse transpose, F−T , given by

F−T =













∂R
∂r

0 0

−1
r

(

∂R
∂r

) (

∂r
∂Θ

)

∂Θ
∂θ

R
r

(

∂Θ
∂θ

)

0

0 0 R sinΘ
r sin θ













. (3.12)

3.3 Hyperelastic strain energy density function

Let us assume that the shell’s material is hyperelastic so that there exists a strain

energy density function (expressing the potential energy per unit volume), that is

neo-Hookean [54,58,71], W (F ), and let it include a compressible term that is used

to model the change in volume of the shell as it is stressed. The determinant of F

gives a measure of how the volume of the spherical shell changes as it maps from

the stress free, reference configuration to the stressed, current configuration. From

equation (3.12), the Jacobian (determinant of F ) is

J =
r2

R2

(

∂r

∂R

)(

∂θ

∂Θ

)

sin θ

sin Θ
. (3.13)

The neo-Hookean strain energy density function is given by equation (2.54) ([54],

equation(5)). Substituting equations (3.11) and (3.12) into equation (2.61) leads
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to the first Piola-Kirchoff stress

S = SrRer ⊗ eR + SθΘeθ ⊗ eΘ + SφΦeφ ⊗ eΦ + SrΘer ⊗ eΘ + SθReθ ⊗ eR,

= µ

(

−J−2β ∂R

∂r
+
∂r

∂R

)

er ⊗ eR + µ

(

−J−2βR

r

(

∂Θ

∂θ

)

+
r

R

(

∂θ

∂Θ

))

eθ ⊗ eΘ

+ µ

(

−J−2βR sinΘ

r sin θ
+

r sin θ

R sin Θ

)

eφ ⊗ eΦ +
µ

R

(

∂r

∂Θ

)

er ⊗ eΘ

+
µJ−2β

r

(

∂R

∂r

)(

∂r

∂Θ

)

∂Θ

∂θ
eθ ⊗ eR. (3.14)

Note that equation (3.14) identifies the physical components for SrR, SθΘ, SφΦ and

so on.

3.4 Calculating the divergence of the first Piola-

Kirchoff stress tensor for the forward picture

The reference configuration shelled microbubble is deformed by applying a stress

directed towards the pole and applied on the rim of the open surface at the opening

angle. The applied stress causes a quasistatic deformation. This implies that the

divergence of the first Piola-Kirchoff stress tensor must satisfy ∇·S = 0. We need

to be able to relate the physical coordinates for the mixed tensorial basis to the

general basis vectors represented by the components gi and Gi where i ∈ {1, 2, 3}.

The first Piola-Kirchhoff stress tensor is represented by ([70], p34), S = S j
i g

i⊗Gj

where S j
i are the left-covariant components of S. Converting physical coordinates

into generalised coordinates using equation (3.14) yields

S 1
1 g

1 ⊗G1 = S 1
1 er ⊗ eR = SrRer ⊗ eR,
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where

S 1
1 = SrR = µ

(

−J−2β ∂R

∂r
+
∂r

∂R

)

, (3.15)

and

S 2
2 g

2 ⊗G2 = S 2
2

(

R

r

)

eθ ⊗ eΘ = SθΘeθ ⊗ eΘ,

thus

S 2
2 = µ

(

−J−2β

(

∂Θ

∂θ

)

+
r2

R2

(

∂θ

∂Θ

))

, (3.16)

and

S 3
3 g

3 ⊗G3 = S 3
3

(

R sinΘ

r sin θ

)

eφ ⊗ eΦ = SφΦeφ ⊗ eΦ,

resulting in

S 3
3 = µ

(

−J−2β +

(

r sin θ

R sin Θ

)2
)

. (3.17)

Similarly

S 2
1 g

1 ⊗G2 = S 2
1 er ⊗ ReΘ = SrΘer ⊗ eΘ,

where

S 2
1 =

µ

R2

(

∂r

∂Θ

)

, (3.18)

and

S 1
2 g

2 ⊗G1 = S 1
2

eθ
r
⊗ eR = SθReθ ⊗ eR,

resulting in

S 1
2 = µJ−2β

(

∂R

∂r

)(

∂r

∂Θ

)

∂Θ

∂θ
. (3.19)
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Calculating the divergence of S,

∇ · S =
∂

∂Xk

(

S j
i g

i ⊗Gj

)

·Gk, (3.20)

requires the quantity

∂

∂X1

(

S 1
1 g

1 ⊗G1

)

·G1 =
∂S 1

1

∂R
(er ⊗ eR) · eR =

∂S 1
1

∂R
er. (3.21)

Similarly we get

∂

∂X1

(

S 2
2 g

2 ⊗G2

)

·G1 =
∂

∂R

(

S 2
2

eθ
r
⊗ ReΘ

)

· eR,

=
∂

∂R

(

S 2
2

R

r

)

(eθ ⊗ eΘ) · eR = 0. (3.22)

Similarly

∂

∂X1

(

S 3
3 g

3 ⊗G3

)

·G1 =
∂

∂R

(

S 3
3

eφ
r sin θ

⊗ R sinΘeΦ

)

· eR,

=
∂

∂R

(

S 3
3

R sinΘ

r sin θ

)

(eφ ⊗ eΦ) · eR = 0. (3.23)

The off diagonal terms are

∂

∂X1

(

S 2
1 g

1 ⊗G2

)

·G1 = 0, (3.24)

and

∂

∂X1

(

S 1
2 g

2 ⊗G1

)

·G1 =

(

∂S 1
2

∂R

)

eθ
r
− S 1

2

r2

(

∂r

∂R

)

eθ. (3.25)
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Other terms are

∂

∂X2

(

S 1
1 g

1 ⊗G1

)

·G2 =
S 1
1

R
(er ⊗ eΘ) · eΘ,

=
S 1
1

R
(er ⊗ eΘ) · eΘ =

S 1
1

R
er, (3.26)

also

∂

∂X2

(

S 2
2 g

2 ⊗G2

)

·G2 =
∂S 2

2

∂Θ

(eθ
r

)

+ S 2
2

∂

∂Θ

(eΘ
r

)

,

=
∂S 2

2

∂Θ

(eθ
r

)

− S 2
2

r2

(

∂r

∂Θ

)

eθ −
S 2
2

r

(

∂θ

∂Θ

)

er, (3.27)

similarly

∂

∂X2

(

S 3
3 g

3 ⊗G3

)

·G2 =

(

S 3
3

eφ
r sin θ

⊗ ∂

∂Θ
(R sin ΘeΦ)

)

· eΘ
R

= 0, (3.28)

and

∂

∂X2

(

S 2
1 g

1 ⊗G2

)

·G2 =
∂S 2

1

∂X2
g1 + S 2

1

∂g1

∂X2
+ S 2

1 g
1 ⊗ ∂

∂Θ
(ReΘ) ·G2,

=
∂S 2

1

∂Θ
er + S 2

1

(

∂θ

∂Θ

)

eθ, (3.29)

with

∂

∂X2

(

S 1
2 g

2 ⊗G1

)

·G2 =

(

S 1
2 g

2 ⊗ ∂G1

∂X2

)

·G2,

=

(

S 1
2

eθ
r
⊗ ∂

∂Θ
eR

)

· eΘ
R

=
S 1
2

Rr
eθ. (3.30)
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Other components are

∂

∂X3

(

S 1
1 g

1 ⊗G1

)

·G3 =

(

S 1
1 g

1 ⊗ ∂eR
∂Φ

)

·G3,

=
(

S 1
1 er ⊗ sinΘeΦ

)

· eΦ
R sinΘ

=
S 1
1

R
er, (3.31)

and

∂

∂X3

(

S 2
2 g

2 ⊗G2

)

·G3 = S 2
2

eθ
r
⊗ ∂

∂Φ
(ReΘ) ·

eΦ
R sinΘ

,

= S 2
2

eθ
r
⊗R cosΘeΦ · eΦ

R sinΘ
=
S 2
2 cotΘ

r
eθ, (3.32)

also

∂

∂X3

(

S 3
3 g

3 ⊗G3

)

·G3 = S 3
3

∂

∂Φ

( eφ
r sin θ

)

,

= −S
3
3

r
er −

S 3
3 cot θ

r
eθ, (3.33)

similarly

∂

∂X3

(

S 2
1 g

1 ⊗G2

)

·G3 = S 2
1 er ⊗

∂

∂Φ
(ReΘ) ·

eΦ
R sinΘ

,

= S 2
1 er ⊗ cosΘeΦ · eΦ

sinΘ
= cotΘS 2

1 er, (3.34)

and

∂

∂X3

(

S 1
2 g

2 ⊗G1

)

·G3 = S 1
2 g

2 ⊗ ∂G1

∂X3
·G3,

= S 1
2

eθ
r
⊗ ∂eR
∂Φ

· eΦ
R sin Θ

=
S 1
2

rR
eθ. (3.35)
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3.5 Radial and angular equations

Combining equations (3.21) to (3.35) and substituting into equation (3.20) results

in the radial and angular equations

∂S 1
1

∂R
+

2S 1
1

R
− S 2

2

r

(

∂θ

∂Θ

)

− S 3
3

r
+
∂S 2

1

∂Θ
+ cotΘS 2

1 = 0, (3.36)

and

1

r

(

∂S 1
2

∂R

)

− S 1
2

r2

(

∂r

∂R

)

+
1

r

(

∂S 2
2

∂Θ

)

− S 2
2

r2

(

∂r

∂Θ

)

+ S 2
1

(

∂θ

∂Θ

)

+
2S 1

2

Rr
+
S 2
2 cotΘ

r
− S 3

3 cot θ

r
= 0. (3.37)

The first Piola-Kirchoff tensor is related to the Cauchy stress tensor via

τ =
1

J

(

SF T
)

, (3.38)

where J , the Jacobian, is given by equation (3.13) and F is described by equation

(3.11) [54]. Using equation (3.38) in conjunction with equations (3.15) to (3.19),

alongside equations (3.11) and (3.38) results in Cauchy stress terms that are given

by the expressions

τrr =
1

J

(

SrR
∂r

∂R
+
SrΘ

R

(

∂r

∂Θ

))

,

=
µ

J

(

−J−2β +

(

∂r

∂R

)2

+
1

R2

(

∂r

∂Θ

)2
)

, (3.39)
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alongside

τθθ =
1

J

(

SθΘ

( r

R

) ∂θ

∂Θ

)

,

=
µ

J

(

−J−2β +
( r

R

)2
(

∂θ

∂Θ

)2
)

, (3.40)

and

τφφ =
SφΦ

J

(

r sin θ

R sinΘ

)

=
µ

J

(

−J−2β +

(

r sin θ

R sinΘ

)2
)

. (3.41)

The off diagonal term is given by

τrθ =
1

J
(SrΘ)

r

R

(

∂θ

∂Θ

)

=
µr

JR2

(

∂θ

∂Θ

)

∂r

∂Θ
. (3.42)

The radial equation can be written in terms of r(R,Θ) and θ(Θ) by substituting

equations (3.15) to (3.19) into equation (3.36), where

∂J

∂R
= J

(

2

r

(

∂r

∂R

)

+

(

∂R

∂r

)

∂2r

∂R2
− 2

R

)

, (3.43)

and

∂S 1
1

∂R
= µ

(

∂2r

∂R2

(

1 + (2β + 1)J−2β

(

∂R

∂r

)2
)

+ J−2β

(

4β

r
− 4β

R

(

∂R

∂r

))

)

.

(3.44)

Similarly

2S 1
1

R
= µ

(−2J−2β

R

(

∂R

∂r

)

+
2

R

(

∂r

∂R

))

, (3.45)

also

−S
2
2

r

(

∂θ

∂Θ

)

= µ

(

J−2β

r
− r

R2

(

∂θ

∂Θ

)2
)

, (3.46)
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and

−S
3
3

r
= µ

(

J−2β

r
− r sin2 θ

R2 sin2Θ

)

. (3.47)

The off diagonal terms are

∂S 2
1

∂Θ
=

µ

R2

(

∂2r

∂Θ2

)

, (3.48)

and

cotΘS 2
1 =

µ cotΘ

R2

(

∂r

∂Θ

)

. (3.49)

Substituting equations (3.44) to (3.49) into equation (3.36) yields

∂2r

∂R2

(

1 + (2β + 1)J−2β

(

∂R

∂r

)2
)

+ J−2β

(

4β

r
− 4β

R

(

∂R

∂r

)

− 2

R

(

∂R

∂r

)

+
2

r

)

+
2

R

(

∂r

∂R

)

− r

R2

(

∂θ

∂Θ

)2

− r sin2 θ

R2 sin2Θ
+

1

R2

(

∂2r

∂Θ2

)

+
cotΘ

R2

(

∂r

∂Θ

)

= 0.

(3.50)

For the angular equation given by equation (3.37), the following is required

∂J

∂Θ
=

∂

∂Θ

(

r2

R2

(

∂r

∂R

)(

∂θ

∂Θ

)

sin θ

sin Θ

)

,

= J

(

2

r

∂r

∂Θ
+

(

∂R

∂r

)

∂2r

∂Θ∂R
+
∂2θ

∂Θ2

(

∂Θ

∂θ

)

+
∂θ

∂Θ
cot θ − cotΘ

)

, (3.51)

and

1

r

∂S 2
2

∂Θ
= µ

(

J−2β

(

4β

r2

(

∂Θ

∂θ

)(

∂r

∂Θ

)

+
2β

r

(

∂Θ

∂θ

)(

∂R

∂r

)

∂2r

∂Θ∂R
+

(2β + 1)

r

∂2θ

∂Θ2

(

∂Θ

∂θ

)2
))

+ µ

(

J−2β

(

2β cot θ

r
− 2β cotΘ

r

∂Θ

∂θ

)

+
2

R2

(

∂θ

∂Θ

)

∂r

∂Θ
+

r

R2

∂2θ

∂Θ2

)

, (3.52)
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also

1

r

∂S 1
2

∂R
= µJ−2β

(

−4β

r2

(

∂Θ

∂θ

)(

∂r

∂Θ

)

− 2β

r

(

∂Θ

∂θ

)(

∂R

∂r

)2(

∂r

∂Θ

)

∂2r

∂R2

)

+µJ−2β

(

4β

rR

(

∂Θ

∂θ

)(

∂R

∂r

)

∂r

∂Θ
+

1

r

(

∂Θ

∂θ

)

∂2r

∂R∂Θ

(

∂R

∂r

)

− 1

r

(

∂Θ

∂θ

)(

∂R

∂r

)2
∂r

∂Θ

(

∂2r

∂R2

)

)

,

(3.53)

similarly

−S
2
2

r2
∂r

∂Θ
= µ

(

J−2β

r2

(

∂Θ

∂θ

)

∂r

∂Θ
− 1

R2

∂θ

∂Θ

(

∂r

∂Θ

))

, (3.54)

and

−S
1
2

r2

(

∂r

∂R

)

= −µJ
−2β

r2

(

∂r

∂Θ

)

∂Θ

∂θ
, (3.55)

where

2S 1
2

Rr
=

2µJ−2β

Rr

(

∂Θ

∂θ

)

∂R

∂r

(

∂r

∂Θ

)

, (3.56)

and

S 2
2 cotΘ

r
= µ

(

−J
−2β

r
cotΘ

∂Θ

∂θ
+

r

R2
cotΘ

∂θ

∂Θ

)

. (3.57)

Other angular terms lead to

−S 3
3 cot θ

r
= µ

(

J−2β cot θ

r
− r sin θ cos θ

R2 sin2Θ

)

, (3.58)

and

S 2
1

(

∂θ

∂Θ

)

=
µ

R2

(

∂r

∂Θ

)

∂θ

∂Θ
. (3.59)
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Combining equations (3.51) to (3.59) and substituting into equation (3.37) gives

J−2β

(

(2β + 1)

r

∂Θ

∂θ

(

∂R

∂r

)

∂2r

∂Θ∂R
+

(2β + 1)

r

(

∂Θ

∂θ

)2
∂2θ

∂Θ2
+

(2β + 1) cot θ

r

)

+ J−2β

(

−(2β + 1) cotΘ

r

(

∂Θ

∂θ

)

− (2β + 1)

r

(

∂Θ

∂θ

)(

∂R

∂r

)2(
∂r

∂Θ

)

∂2r

∂R2

)

+ J−2β

(

2(2β + 1)

rR

(

∂Θ

∂θ

)

∂R

∂r

(

∂r

∂Θ

))

+
2

R2

(

∂θ

∂Θ

)

∂r

∂Θ
+

r

R2

∂2θ

∂Θ2

+
r

R2

(

∂θ

∂Θ

)

cotΘ− r sin θ cos θ

R2 sin2Θ
= 0. (3.60)

Both the radial and angular equations given by (3.50) and (3.60) can be rearranged

and expressed in terms of their respective second partial derivatives with respect

to Θ resulting in

∂2r

∂Θ2
= −R2 ∂

2r

∂R2

(

1 + (2β + 1)J−2β

(

∂R

∂r

)2
)

+ J−2β

(

−4βR2

r
+ 4βR

(

∂R

∂r

)

+ 2R

(

∂R

∂r

)

− 2R2

r

)

− 2R

(

∂r

∂R

)

+ r

(

∂θ

∂Θ

)2

+
r sin2 θ

sin2Θ
− cotΘ

∂r

∂Θ
, (3.61)

and

(

(2β + 1)

r
J−2β

(

∂Θ

∂θ

)2

+
r

R2

)

∂2θ

∂Θ2

= J−2β

(

−(2β + 1)

r

(

∂Θ

∂θ

)(

∂R

∂r

)

∂2r

∂Θ∂R
− (2β + 1) cot θ

r
+

(2β + 1) cotΘ

r

(

∂Θ

∂θ

))

+ J−2β

(

(2β + 1)

r

(

∂Θ

∂θ

)(

∂R

∂r

)2(
∂r

∂Θ

)

∂2r

∂R2
− 2(2β + 1)

rR

(

∂Θ

∂θ

)(

∂R

∂r

)

∂r

∂Θ

)

− 2

R2

(

∂θ

∂Θ

)

∂r

∂Θ
− r cotΘ

R2

(

∂θ

∂Θ

)

+
r sin θ cos θ

R2 sin2Θ
. (3.62)
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The radial and angular equations are nondimensionalised using y = r/RI and

Y = R/RI . The equation for the quasistatic radial momentum represented by

equation (3.61) gives

∂2y

∂Θ2
= −Y 2 ∂

2y

∂Y 2

(

1 + (2β + 1)J−2β

(

∂Y

∂y

)2
)

+ J−2β

(

−4βY 2

y
+ 4βY

(

∂Y

∂y

)

+ 2Y

(

∂Y

∂y

)

− 2Y 2

y

)

− 2Y

(

∂y

∂Y

)

+ y

(

∂θ

∂Θ

)2

+
y sin2 θ

sin2Θ
− cotΘ

∂y

∂Θ
, (3.63)

where the Jacobian given by equation (3.13) becomes

J =
y2

Y 2

(

∂y

∂Y

)(

∂θ

∂Θ

)

sin θ

sin Θ
. (3.64)

The quasistatic polar momentum equation represented by equation (3.62) reduces

to

(

(2β + 1)

y
J−2β

(

∂Θ

∂θ

)2

+
y

Y 2

)

∂2θ

∂Θ2

= J−2β

(

−(2β + 1)

y

(

∂Θ

∂θ

)(

∂Y

∂y

)

∂2y

∂Θ∂Y
− (2β + 1) cot θ

y
+

(2β + 1) cotΘ

y

(

∂Θ

∂θ

))

+ J−2β

(

(2β + 1)

y

(

∂Θ

∂θ

)(

∂Y

∂y

)2(
∂y

∂Θ

)

∂2y

∂Y 2
− 2(2β + 1)

yY

(

∂Θ

∂θ

)(

∂Y

∂y

)

∂y

∂Θ

)

− 2

Y 2

(

∂θ

∂Θ

)

∂y

∂Θ
− y cotΘ

Y 2

(

∂θ

∂Θ

)

+
y sin θ cos θ

Y 2 sin2Θ
, (3.65)

and the Cauchy stresses given by equations (3.39), (3.40), (3.41) and (3.42) lead

to

τ̂yy =
τyy
µ

=
1

J

(

−J−2β +

(

∂y

∂Y

)2

+
1

Y 2

(

∂y

∂Θ

)2
)

, (3.66)
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alongside

τ̂θθ =
τθθ
µ

=
1

J

(

−J−2β +
( y

Y

)2
(

∂θ

∂Θ

)2
)

, (3.67)

and

τ̂φφ =
τφφ
µ

=
1

J

(

−J−2β +

(

y sin θ

Y sinΘ

)2
)

, (3.68)

with the off diagonal stress term given by

τ̂yθ =
τyθ
µ

=
y

JY 2

(

∂θ

∂Θ

)

∂y

∂Θ
. (3.69)

At the opening angle Θop the polar hoop stress represented by equation (3.107)

is subjected to the nondimensionalised stress p̂ where p̂ = p/µ. The boundary

condition is then

τ̂θθ (Θop) = p̂. (3.70)

The boundary conditions at the inner and outer radii of the shell are that the

Cauchy radial stresses vanish,

τrr(RI) = τrr(RO) = 0. (3.71)

3.6 Linearisation

Linearisation can be applied to both the radial and angular equations provided

that the applied stress p is small compared to µ. Now consider the linearisation

of the nondimensionalised radial equation (3.61) where

y(Y,Θ) = Y + p̂f(Y,Θ), (3.72)
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and

θ(Θ) = Θ + p̂g(Θ), (3.73)

where p̂ = p/µ and is small in magnitude, p̂f(Y,Θ) represents a small radial

perturbation and p̂g(Θ) denotes a small angular perturbation. Linearising the

Jacobian, J , given by equation (3.64) gives

J =
(Y + p̂f)2

Y 2

(

1 + p̂
∂f

∂Y

)(

1 + p̂
dg

dΘ

)

(1 + p̂g cotΘ),

≈ 1 +
2p̂f

Y
+ p̂

∂f

∂Y
+ p̂

dg

dΘ
+ p̂g cotΘ, (3.74)

and hence

J−2β ≈ 1− 2βp̂

(

2f

Y
+
∂f

∂Y
+
dg

dΘ
+ g cotΘ

)

. (3.75)

Terms in equation (3.63) become

1 + (2β + 1)J−2β

(

∂Y

∂y

)2

≈ 1 + (2β + 1)

(

1− 2βp̂

(

2f

Y
+

∂f

∂Y
+

dg

dΘ
+ g cotΘ

))(

1− 2p̂
∂f

∂Y

)

,

≈ 2(β + 1)− 2(2β + 1)p̂

(

2βf

Y
+ (β + 1)

∂f

∂Y
+ β

dg

dΘ
+ βg cotΘ

)

,

(3.76)

and

−Y 2 ∂
2y

∂Y 2

(

1 + (2β + 1)J−2β

(

∂Y

∂y

)2
)

≈ −2Y 2(1 + β)p̂
∂2f

∂Y 2
. (3.77)

To linearise the following term in equation (3.63)

J−2β

(

−4βY 2

y
+ 4βY

(

∂Y

∂y

)

+ 2Y

(

∂Y

∂y

)

− 2Y 2

y

)

, (3.78)
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we use the linearised terms

−4βY 2

y
=

−4βY 2

(Y + p̂f)
≈ −4βY + 4p̂βf, (3.79)

and

4βY

(

∂Y

∂y

)

=
4βY

(

1 + p̂ ∂f
∂Y

) ≈ 4βY − 4βp̂Y

(

∂f

∂Y

)

, (3.80)

also

2Y

(

∂Y

∂y

)

=
2Y

(

1 + p̂ ∂f
∂Y

) ≈ 2Y − 2p̂Y
∂f

∂Y
, (3.81)

similarly

−2Y 2

y
=

−2Y 2

(Y + p̂f)
≈ −2Y + 2p̂f, (3.82)

to give

J−2β

(

−4βY 2

y
+ 4βY

(

∂Y

∂y

)

+ 2Y

(

∂Y

∂y

)

− 2Y 2

y

)

≈ 2 (2β + 1) p̂

(

f − Y

(

∂f

∂Y

))

.

(3.83)

Linearising the following terms from equation (3.61) results in

−2Y

(

∂y

∂Y

)

≈ −2Y − 2p̂Y

(

∂f

∂Y

)

, (3.84)

also

y

(

∂θ

∂Θ

)2

= (Y + p̂f)

(

1 + p̂
dg

dΘ

)2

≈ Y + 2p̂Y

(

dg

dΘ

)

+ p̂f, (3.85)

similarly

y sin2 θ

sin2Θ
= (Y + p̂f) (1 + p̂g cotΘ)2 ≈ Y + 2p̂Y g cotΘ + p̂f, (3.86)
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and

− cotΘ

(

∂y

∂Θ

)

≈ − cotΘ

(

p̂
∂f

∂Θ

)

. (3.87)

Collecting the expressions (3.77) and (3.83) to (3.87) reduces equation (3.63) on

rearrangement to

− (4β + 4)Y
∂f

∂Y
+ (4β + 4) f + 2Y g cotΘ + 2Y

dg

dΘ

− cotΘ
∂f

∂Θ
− ∂2f

∂Θ2
− 2Y 2 (β + 1)

∂2f

∂Y 2
= 0, (3.88)

which can be further rearranged and results in

(4β + 4) f − (4β + 4)Y
∂f

∂Y
− cotΘ

∂f

∂Θ
− ∂2f

∂Θ2
− 2Y 2 (β + 1)

∂2f

∂Y 2

= −2Y g cotΘ− 2Y
dg

dΘ
. (3.89)

Linearising the angular equation given by equation (3.65) requires the following

expressions

J−2β

(−(2β + 1)

y

)(

∂Θ

∂θ

)(

∂Y

∂y

)

∂2y

∂Θ∂Y
≈ −(2β + 1)

Y
p̂
∂2f

∂Y ∂Θ
, (3.90)

simplifying cot θ yields

cot θ =
cos (Θ + p̂g)

sin (Θ + p̂g)
,

≈ cotΘ− p̂g csc2Θ, (3.91)
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leading to

−(2β + 1) cot θ

y
=

−(2β + 1)(cotΘ− p̂g csc2Θ)

(Y + p̂f)
,

≈ −(2β + 1)

Y

(

cotΘ− p̂g csc2Θ− p̂
f

Y
cotΘ

)

, (3.92)

which results in

− J−2β (2β + 1) cot θ

y
≈ −(2β + 1) cotΘ

Y
+

(2β + 1)(4β + 1)p̂f cotΘ

Y 2

+
(2β + 1)p̂g

Y
(β + 1 + β cos 2Θ) csc2Θ

+
2β(2β + 1)

Y
p̂

(

cotΘ
dg

dΘ
+ cotΘ

∂f

∂Y

)

. (3.93)

Consider

(2β + 1) cotΘ

y

(

∂Θ

∂θ

)

≈ (2β + 1) cotΘ

Y

(

1− p̂
f

Y
− p̂

dg

dΘ

)

, (3.94)

and combining expression (3.94) with J−2β gives

J−2β (2β + 1) cotΘ

y

(

∂Θ

∂θ

)

≈ (2β + 1) cotΘ

Y

− p̂
(2β + 1) cotΘ

Y 2

(

(1 + 4β)f + Y

(

(2β + 1)
dg

dΘ
+ 2βg cotΘ + 2β

∂f

∂Y

))

.

(3.95)

On the third line of equation (3.65) the following term can be approximated as

follows

(2β + 1)

y

(

∂Θ

∂θ

)(

∂Y

∂y

)2(

∂y

∂Θ

)

∂2y

∂Y 2
≈ (2β + 1)

(Y + p̂f)

(

1− p̂
dg

dΘ

)(

1− 2p̂
∂f

∂Y

)(

p̂
∂f

∂Θ

)

p̂
∂2f

∂Y 2
≈ 0.

(3.96)
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Similarly, the next term

−2(2β + 1)

yY

(

∂Θ

∂θ

)(

∂Y

∂y

)

∂y

∂Θ
≈ −2(2β + 1)

Y 2
p̂

(

∂f

∂Θ

)

, (3.97)

which on combining with J−2β results in

J−2β

(−2(2β + 1)

yY

(

∂Θ

∂θ

)(

∂Y

∂y

)

∂y

∂Θ

)

≈ −2(2β + 1)

Y 2
p̂

(

∂f

∂Θ

)

. (3.98)

Terms on the fourth line of equation (3.65) become

−2

Y 2

(

∂θ

∂Θ

)(

∂y

∂Θ

)

≈ −2p̂

Y 2

(

∂f

∂Θ

)

, (3.99)

and

−y cotΘ
Y 2

(

∂θ

∂Θ

)

≈ − cotΘ

Y
− p̂ cotΘ

Y

(

dg

dΘ

)

− p̂f cotΘ

Y 2
. (3.100)

Now since sin θ ≈ sinΘ + p̂g cosΘ similarly, cos θ ≈ cosΘ− p̂g sin Θ, resulting in

sin θ cos θ ≈ sinΘ cosΘ + p̂g
(

1− 2 sin2Θ
)

, (3.101)

then

y sin θ cos θ

Y 2 sin2Θ
≈ 1

Y

((

1 +
p̂f

Y

)

cotΘ + p̂g(cot2Θ− 1)

)

, (3.102)

also, on the first line of equation (3.65)

(2β + 1)

y
J−2β

(

∂Θ

∂θ

)2

+
y

Y 2
,

≈ (2β + 1)

Y

(

1− p̂f

Y
− 2p̂

dg

dΘ
− 2βp̂

(

2f

Y
+
∂f

∂Y
+
dg

dΘ
+ g cotΘ

))

+
1

Y

(

1 +
p̂f

Y

)

,

(3.103)
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which on combining equation (3.103) with ∂2θ/∂Θ2 leads to

(2β + 1)p̂

Y

(

d2g

dΘ2

)

+
p̂

Y

(

d2g

dΘ2

)

≈ 2(β + 1)p̂

Y

(

d2g

dΘ2

)

. (3.104)

Combining and substituting equations (3.90), (3.92), (3.93), (3.95) to (3.100) and

(3.102) and (3.104) into the angular equation (3.65) results in

− Y
(

1 + 2β + cos2Θ
)

g csc2Θ+ 2Y (1 + β) cotΘ

(

dg

dΘ

)

+ 2Y (1 + β)
d2g

dΘ2
+ 4(1 + β)

(

∂f

∂Θ

)

+ Y (1 + 2β)
∂2f

∂Y ∂Θ
= 0. (3.105)

The Cauchy radial, polar and azimuthal stresses given by equations (3.66), (3.67)

and (3.68) respectively are linearised using equations (3.72) and (3.73) which re-

sults in

τ̂yy ≈ p̂

(

4βf

Y
+ (2β + 2)

∂f

∂Y
+ 2β

dg

dΘ
+ 2βg cotΘ

)

, (3.106)

alongside

τ̂θθ ≈ p̂

(

(4β + 2)
f

Y
+ 2β

(

∂f

∂Y

)

+ (2β + 2)

(

dg

dΘ

)

+ 2βg cotΘ

)

, (3.107)

and

τ̂φφ ≈ p̂

(

(4β + 2)
f

Y
+ 2β

(

∂f

∂Y

)

+ 2β

(

dg

dΘ

)

+ (2β + 2)g cotΘ

)

, (3.108)

respectively. Equations (3.106) and (3.107) will be used to evaluate the boundary

conditions for the deformation of the open shell (forward picture).
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The boundary conditions at the nondimensionalised inner and outer radii of the

shell (which are represented by 1 and YO respectively) are obtained using the

nondimensionalised Cauchy radial stresses, τ̂yy (1) = 0 and τ̂yy (YO) = 0. Using

equation (3.106) and setting τ̂yy = 0 at both the nondimensionalised inner and

outer radii Y1/O leads to

4βf(Y1/O,Θ)

Y1/O
+ (2β + 2)

∂f

∂Y

∣

∣

∣

(Y1/O ,Θ)
+ 2β

dg

dΘ
+ 2βg cotΘ = 0. (3.109)

The angular boundary condition at the rim, Θop, is given by equation (3.70). This

simplifies using equation (3.107) to give

(4β + 2)f

Y
+ 2β

∂f

∂Y
+ (2β + 2)

dg

dΘ

∣

∣

∣

Θ=Θop

+ 2βg cotΘop = 1. (3.110)

To solve the coupled linearised radial and angular PDEs for the quasistatic phase

denoted by equations (3.89) and (3.105) respectively, we have to use the linearised

boundary conditions given by equations (3.109) and (3.110). Future work will focus

on solving both the radial and angular equations numerically using a relaxation

scheme.

3.7 Conclusion

Chapter 3 discussed the deformation of an open shelled microbubble. The opening

angle approach was used with the original stress free configuration represented by

an open, deformed and incomplete shelled microbubble. This can be thought of as

a spherical shelled microbubble with a spherical cap removed. A radial and angu-

lar deformation was applied via a polar hoop stress and an asymptotic expansion

was used to simplify the complex radial and angular equations. This model was
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developed in order to study the rupture of a shelled microbubble. The opening

angle approach attempted to model the change in geometry of a deformed shell.

Future work will focus on modelling numerically the linearised quasistatic phase

using a numerical relaxation scheme. A similar approach could be used to solve

the collapsing, perturbed shell. Solving both the quasistatic stage and the collapse

phase of the open shelled microbubble would represent a formidable challenge due

to the coupled nature of the angular and radial PDE equations as well as the

boundary conditions for both the radial and hoop (angular) stresses.

Literature pertaining to the modelling of UCAs adopts a Rayleigh-Plesset ap-

proach [36,39,44,45,50–52], modelling the shell as linearly elastic and viscoelastic

in nature. Certain proteins are smectic A liquid crystals implying that some thin

protein shelled UCA microbubbles could possibly be modelled using continuum

liquid crystal theory. Understanding how the material parameters influence the

natural frequency and relaxation time of the shelled liquid-crystal microbubbles is

of considerable importance. To this end, Chapter 4 develops a Rayleigh-Plesset

model for such a liquid-crystal shelled microbubble.
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Chapter 4

Liquid-crystal shelled

microbubble

4.1 Derivation of the Rayleigh-Plesset equation

One particular type of shelled microbubble displays the physical behaviour that is

characteristic of a liquid crystal and such shelled microbubbles could have potential

advantages as drug carrying vehicles [39]. This chapter uses the Leslie-Ericksen

theory for liquid crystals to build up a model for the dynamics of such a shelled

microbubble. This is the first study that has used liquid crystal theory to model

UCAs.

The research literature pertaining to the mathematical modelling of ultrasound

contrast agents involves the use of some modified version of the Rayleigh-Plesset

equation [36–39,42–45,50–52]. Despite the extensive use of this well known equa-

tion and the numerous modifications made to it, most of the published literature

fails to derive the Rayleigh-Plesset equation using arguments based on the mo-
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mentum balance law [44,50–52]. The derivation of the Rayleigh-Plesset equation

by applying the momentum balance law is included in Appendix A on the grounds

of completeness. This derivation will be used in conjunction with liquid crystal

theory to develop a Rayleigh-Plesset model for a shelled microbubble that exhibits

mesophase type behaviour.

4.2 Calculating the viscous stress of a liquid-

crystal shell

This section focusses on deriving an expression for the viscous stress of an incom-

pressible liquid-crystal shell of known inner and outer radii. It is assumed that the

shell’s composition is a liquid crystal that can be described dynamically using the

nematic theory developed by Leslie and Ericksen ([65], p133-159) where five Leslie

viscosities [79] are required to determine the stress in the shell. Certain ultrasound

contrast agent shells exhibit both solid and fluid like characteristics and, therefore,

can be described as a mesophase [39]. Some proteins [67] exhibit the characteristic

behaviour of a smectic A liquid-crystal where the molecules are arranged in layers

and exhibit greater long range positional ordering than a nematic liquid-crystal

([65], p6). Smectic A liquid-crystals are slightly more viscous than nematic liquid-

crystals due to the layer interactions within the smectic [66]. However, the model

in this chapter will use nematic theory as an approximation to smectic A [66].

Continuum modelling of liquid-crystal theory assumes that the molecules are rod

like in nature and are described by a unit vector n which is called the director.

The molecules are arranged in layers with the director aligning perpendicular to

the layers and parallel to the layer normal ([65],p6). We shall assume spherical

symmetry of the liquid-crystalline shell with the director pointing radially out-
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ward everywhere and the smectic layers consisting of concentric spherical shells.

The director describes the local direction of the average molecular alignment and

is a unit vector (so n = eixi/r) ([65],p6). The viscous stress τij for a nematic

liquid-crystal is given by

τij = α1nkAkpnpninj +α2Ninj +α3niNj + α4Aij + α5njAiknk +α6niAjknk, (4.1)

where α1, α2, ...., α6 are the Leslie viscosities, Aij is the rate of strain tensor and Ni

is the co-rotational time flux of the director n ([65], p151). The co-rotational time

flux is a measure of the rotation of the director, n, relative to the material. These

terms are explicitly defined as ni = xi/r, Aik = (vi,k+vk,i)/2 where vi,j = ∂vi/∂xj ,

Ni = ṅi −Wijnj where the superposed dot signifies the material time derivative

ṅi = ∂ni/∂t + vj∂ni/∂xj and Wij = (vi,j − vj,i)/2 is the vorticity tensor. For the

spherically symmetric case we have a velocity profile given by v = ver = vr̂ which

is rewritten as

vi =
vxi
r
. (4.2)

Hence

vi,k =
∂

∂xk

(xiv

r

)

=
vδik
r

+ xi
∂

∂xk

(v

r

)

=
vδik
r

+ xi
∂

∂r

(v

r

) ∂r

∂xk
.

Since r2 = xkxk,

2r
∂r

∂xk
= 2xk,

and so

∂r

∂xk
=
xk
r
. (4.3)
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Equation (4.2) can then be written

vi,k =
vδik
r

+
xixk
r

∂

∂r

(v

r

)

, (4.4)

and since δkp = δpk

Akp =
vδkp
r

+
xkxp
r

∂

∂r

(v

r

)

. (4.5)

Substituting equations (4.4) and (4.5) into the first term on the right hand side of

equation (4.1) gives

α1xixjv

r3
+
α1xixj
r

∂

∂r

(v

r

)

. (4.6)

Calculating the second term on the right hand side of equation (4.1) using Ni =

ṅi −Wijnj requires an expression for Wij . From equation (4.4)

Wi,j =
1

2
(vi,j − vj,i) = 0. (4.7)

Using this to calculate Ni leads to

Ni = ṅi =
∂ni

∂t
+ vk

∂ni

∂xk
,

=
∂

∂t

(xi
r

)

+ vk
∂

∂xk

(xi
r

)

,

= 0 + vk

(

δik
r

+ xi
∂

∂xk

(

1

r

))

,

= vk

(

δik
r

− xixk
r3

)

,

=
vi
r
− vkxixk

r3
,

=
vxi
r2

− vxkxixk
r4

,

=
vxi
r2

− vxi
r2

= 0. (4.8)

104



Therefore the second term on the right hand side of equation (4.1) is

α2Ninj = 0.

Similarly, the next term in equation (4.1) is

α3niNj = 0. (4.9)

Continuing in this way for the next term in equation (4.1) we use equation (4.4)

to give

α4Aij =
α4

2
(vi,j + vj,i) , (4.10)

=
α4

2

(

vδij
r

+
xixj
r

∂

∂r

(v

r

)

+
vδji
r

+
xjxi
r

∂

∂r

(v

r

)

)

,

= α4

(

vδij
r

+
xixj
r

∂

∂r

(v

r

)

)

,

=
α4vδij
r

+
α4xixj
r

∂

∂r

(v

r

)

. (4.11)

For the next term in equation (4.1) we use equation (4.5) to give

α5njAiknk = α5

(xj
r

)

(

vδik
r

+
xixk
r

∂

∂r

(v

r

)

)

xk
r
,

=
α5xjxk
r2

(

vδik
r

+
xixk
r

∂

∂r

(v

r

)

)

,

=
α5vxjxi
r3

+
α5xjxi
r

∂

∂r

(v

r

)

, (4.12)

and finally the last term in equation (4.1) is

α6niAjknk =
α6xixjv

r3
+
α6xixj
r

∂

∂r

(v

r

)

. (4.13)
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4.3 Determining the Leslie viscosity terms in spher-

ical polar coordinates

In this section we will calculate an expression for the right hand side of the momen-

tum equation (A.13). This will be achieved by taking the divergence of the viscous

stress given by equation (4.1) and then integrating this in the radial direction be-

tween the inner and outer radii of the shelled microsphere. The microbubble’s shell

is assumed to be incompressible and consists of a thin liquid-crystal shell with a

radially directed flow. Since the shell is incompressible its volume, V , and density

will be time independent. For a shelled microbubble with inner and outer radii

given by R1 and R2 respectively, the following relationship holds

dV

dt
=

d

dt

(

4

3
π
(

R3
2 −R3

1

)

)

= 0.

This results in R2
2Ṙ2 − R2

1Ṙ1 = 0 from which we can deduce that

R2
1Ṙ1 = R2

2Ṙ2. (4.14)

Equation (A.3) can be rewritten in terms of the inner radius of the shelled mi-

crobubble R1 as

v

r
=
R2

1Ṙ1

r3
. (4.15)

Hence

∂

∂r

(v

r

)

=
∂

∂r

(

R2
1Ṙ1

r3

)

=
−3R2

1Ṙ1

r4
. (4.16)
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So let us calculate the contributions to the right hand side of equation (A.13) by

systematically working through each of the Leslie viscosity terms. The Leslie vis-

cosity contribution due to α1 given by equation (4.6) on substituting in equations

(4.15) and (4.16), becomes

α1vxixj
r3

+
α1xixj
r

∂

∂r

(v

r

)

= α1

(

R2
1Ṙ1

r2

)

xixj
r3

+
α1xixj
r

(

−3R2
1Ṙ1

r4

)

,

=
α1xixj
r5

(

R2
1Ṙ1

)

− 3α1xixj
r5

(

R2
1Ṙ1

)

,

=
−2α1xixjR

2
1Ṙ1

r5
. (4.17)

Calculating the divergence of the viscous stress associated with α1 in component

form gives

∂

∂xi

(

−2α1xixjR
2
1Ṙ1

r5

)

= −2α1R
2
1Ṙ1

∂

∂xi

(xixj
r5

)

,

= −2α1R
2
1Ṙ1

(

δiixj
r5

+
xiδij
r5

− 5xixj
r6

(xi
r

)

)

,

= −2α1R
2
1Ṙ1

(

3xj
r5

+
xj
r5

− 5xj
r5

)

,

=
2α1R

2
1Ṙ1xj
r5

. (4.18)

Since the shelled microbubble moves solely in the radial direction then in spherical

polar coordinates r = rer, with r
2 = xjxj . The jth Cartesian component of er is

given by xj/r. Equation (4.18) is integrated between the inner and outer radii of

the shelled microbubble to give one component of the right hand side of equation
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(A.13) (see Appendix)

∫ R2

R1

2α1R
2
1Ṙ1

r4
dr =

−2α1R
2
1Ṙ1

3

(

1

R3
2

− 1

R3
1

)

,

=
−2α1

3

(

R2
1Ṙ1

R3
2

− Ṙ1

R1

)

. (4.19)

The stresses for the viscosities α2 and α3 are both zero since Ni = 0 and Nj = 0.

The α4 term is associated with a conventional Newtonian fluid, and so it will

exhibit purely isotropic behaviour. Combining equations (4.11) and (4.15) results

in

α4vδij
r

+
α4xixj
r

∂

∂r

(v

r

)

=
α4R

2
1Ṙ1δij
r3

+
α4xixj
r

∂

∂r

(

R2
1Ṙ1

r3

)

,

=
α4R

2
1Ṙ1δij
r3

− 3α4xixj
r

(

R2
1Ṙ1

r4

)

,

=
α4R

2
1Ṙ1δij
r3

− 3α4xixjR
2
1Ṙ1

r5
. (4.20)

Calculating the divergence of the stress associated with α4 using equation (4.20)

and equation (4.3) and writing it in component form gives

∂

∂xi

(

α4R
2
1Ṙ1δij
r3

− 3α4xixjR
2
1Ṙ1

r5

)

=
−3α4R

2
1Ṙ1xiδij
r5

− 3α4R
2
1Ṙ1

∂

∂xi

(xixj
r5

)

,

=
−3α4R

2
1Ṙ1xj

r5
− 3α4R

2
1Ṙ1

(

δiixj
r5

+
xiδij
r5

− 5xixixj
r7

)

,

=
−3α4R

2
1Ṙ1xj

r5
− 3α4R

2
1Ṙ1

(

3xj
r5

+
xj
r5

− 5xj
r5

)

,

= 0.

This is consistent with Brennan ([80], p49-50).
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Determining the contribution to the viscous stress from α5 using equations (4.12)

and (4.15) gives

α5vxixj
r3

+
α5xixj
r

∂

∂r

(

R2
1Ṙ1

r3

)

=
α5xixjR

2
1Ṙ1

r5
+
α5xixj
r

∂

∂r

(

R2
1Ṙ1

r3

)

,

=
α5xixjR

2
1Ṙ1

r5
− 3α5xixjR

2
1Ṙ1

r5
,

=
−2α5R

2
1Ṙ1xixj
r5

. (4.21)

Evaluating the divergence of the stress contribution associated with α5 results in

∂

∂xi

(

−2α5R
2
1Ṙ1xixj
r5

)

= −2α5R
2
1Ṙ1

∂

∂xi

(xixj
r5

)

,

= −2α5R
2
1Ṙ1

(

δiixj
r5

+
xiδij
r5

− 5xixixj
r7

)

,

= −2α5R
2
1Ṙ1

(

3xj
r5

+
xj
r5

− 5xj
r5

)

=
2α5R

2
1Ṙ1xj
r5

. (4.22)

Integrating this expression to give another term in the right hand side of equation

(A.13) where r2 = xjxj and the jth Cartesian component of er is given by xj/r

leads to

∫ R2

R1

2α5R
2
1Ṙ1

r4
dr =

−2α5R
2
1Ṙ1

3

(

1

R3
2

− 1

R3
1

)

,

= −2α5

3

(

R2
1Ṙ1

R3
2

− Ṙ1

R1

)

. (4.23)
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Determining the contribution to the viscous stress from α6 using equation (4.13)

follows a similar derivation to give

∫ R2

R1

2α6R
2
1Ṙ1

r4
dr =

−2α6

3

(

R2
1Ṙ1

R3
2

− Ṙ1

R1

)

. (4.24)

Collecting all the contributing viscous stresses from equations (4.19), (4.23) and

(4.24) results in a stress contribution on the right hand side of equation (A.13)

given by
∫ R2

R1

(∇ · τ) dr = 2

3
(α1 + α5 + α6)

(

Ṙ1

R1
− R2

1Ṙ1

R3
2

)

er. (4.25)

where ∇ · τ is the viscous stress. The Miesowicz viscosities are the physically

measurable quantities ([81], p209-231) and can be related to the Leslie viscosities

using the expressions for the Miesowicz viscosities given in ([65], p158), [82] which

allows this equation to be rewritten in radial component form as

∫ R2

R1

(∇ · τ) dr = 2

3
(η12 + 2η1 + 2η2 − 4η3 − γ1)

(

Ṙ1

R1
− R2

1Ṙ1

R3
2

)

er. (4.26)

Note that γ1 is the rotational viscosity which determines the rate of relaxation of

the director whereas η1, η2, and η3 are related to the orientation of the director

and the flow velocity of the liquid crystal.

4.4 The elastic energy density for a shelled mi-

crobubble

The liquid-crystal shell has both a viscous stress associated with the Miesowicz

viscosities and a stress due to the elastic energy of the liquid crystal. This latter

stress will add a further term to equation (4.1) as calculated below. The following
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strain energy density function was proposed for a bilipid membrane by De Vita

and Stewart [67]

W =
1

2
K1a (∇ · a)2 + 1

2
K1n (∇ · n)2

+
1

2
B0|∇Ψ|−2 (1− |∇Ψ|)2 + 1

2
B1

(

1− (n · a)2
)

+B2 (∇ · n)
(

1− |∇Ψ|−1
)

,

(4.27)

where K1a, K1n, B0, B1 and B2 are material constants, a is the unit normal to the

layer, Ψ defines the layer structure of a smectic A liquid crystal and |∇Ψ|−1 repre-

sents the current local interlayer distance. The first term on the right hand side of

equation (4.27) refers to the bending energy while the second term represents the

splay energy contribution. The B0 term represents the compression-expansion en-

ergy, B1 is the energy associated with the coupling between n and a, and B2 is the

term associated with the coupling between the splay and compression-expansion

of the layer. Note that the strain energy density represented by equation (4.27) is

associated with smectic A liquid crystals rather than nematic. This strain energy

density function has been chosen since it is the simplest model available requiring

only a splay contribution. It is assumed that the shelled microbubble is a bilipid

membrane with a typical thickness of 4nm ([65], p4). Generally |∇Ψ|−1 6= 1 al-

though for an undistorted liquid-crystal such as planar layers it is useful to define

|∇Ψ|−1 such that |∇Ψ|−1 = 1. Assuming that |∇Ψ|−1 = 1 implies that the energy

density of the bilipid layer given by equation (4.27) reduces to

W =
1

2
K1a (∇ · a)2 + 1

2
K1n (∇ · n)2 + 1

2
B1

(

1− (niai)
2) . (4.28)
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For an undistorted smectic A liquid-crystal n = a [66]. Since n · a = niai = 1 the

energy term associated with the coupling between n and a becomes

1

2
B1 (1− (n · a)) = 0. (4.29)

The strain energy density equation represented by equation (4.27) reduces to

W =
1

2
K1a (∇ · a)2 + 1

2
K1n (∇ · n)2 . (4.30)

where we assume that K1a = K1n = K1. Assuming that n = a then we can

conclude that the contribution from the elastic energy density reduces to

W = K1 (∇ · n)2 . (4.31)

The stress associated with the elastic constant arising from the splay and the

bending energies given by K1(ni,i)
2 is determined via (−∂W/∂np,j)np,i and is rep-

resented by τelastic ([65],p151) where W is given by equation (4.31). So

(τelastic)ij = − ∂W

∂np,j
np,i,

= −2K1 (np,p)nj,i,

= −2K1
∂

∂xp

(xp
r

) ∂

∂xi

(xj
r

)

.
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Using equation (4.3) gives

(τelastic)ij = −2K1

(

δpp
r

− xpxp
r3

)(

δij
r

− xixj
r3

)

,

= −2K1

(

3

r
− 1

r

)(

δij
r

− xixj
r3

)

,

= −4K1

(

δij
r2

− xixj
r4

)

. (4.32)

Calculating the divergence of equation (4.32) using equation (4.3) gives (in com-

ponent form)

∂

∂xi
(τelastic)ij = −4K1

∂

∂xi

(

δij
r2

− xixj
r4

)

,

= −4K1

(−2δijxi
r4

− δiixj
r4

− xiδij
r4

+
4x2ixj
r6

)

,

= −4K1

(−2xj
r4

− 3xj
r4

− xj
r4

+
4xj
r4

)

=
8K1xj
r4

. (4.33)

The integral of the divergence of the stress associated with the elastic energy

density contributions due to n and a is

∫ R2

R1

(∇ · τelastic) dr = −4K1

(

1

R2
2

− 1

R2
1

)

er. (4.34)

Combining equations (4.25) and (4.34) gives the total stress in the shell as

∫ R2

R1

(∇ · τS) dr =
2

3
(α1 + α5 + α6)

(

Ṙ1

R1
− Ṙ2

R2

)

er + 4K1

(

1

R2
1

− 1

R2
2

)

er, (4.35)

where τS represents the total stress in the shell.
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4.5 A Rayleigh-Plesset model for a liquid-crystal

shelled microbubble

In this section we will now bring together all the different stress contributions to

find a form for the momentum balance law (A.13).

Figure 4.1: Illustration of the three media of a shelled microbubble.

Calculating the left hand side of equation (A.12) with reference to Figure 4.1

gives

ρS

(

−2RṘ2 − R2R̈

r
+
R4Ṙ2

2r4

)R2

R1

+ ρL

(

−2RṘ2 − R2R̈

r
+
R4Ṙ2

2r4

)∞

R2

.

This gives a revised version of the momentum balance law (A.13) as

(

R1R̈1 +
3

2
Ṙ1

2

+
R4

1
Ṙ1

2

2R4
2

− 2R1Ṙ1

2

R2

− R2
1
R̈1

R2

+
ρL

ρS

(

2R1Ṙ1

2

R2

+
R2

1
R̈1

R2

− R4
1
Ṙ1

2

2R4
2

))

er =
1

ρS

∫

∞

R1

(∇ · σ) dr.

That is

(

R1R̈1

(

1−
(

ρS − ρL

ρS

)

R1

R2

)

+ Ṙ1

2

(

3

2
−
(

ρS − ρL

ρS

)(

4R1R
3
2
−R4

1

2R4
2

)))

er =
1

ρS

∫

∞

R1

(∇ · σ) dr.

(4.36)

A pressure balance has to be applied in order to determine the right hand side of
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equation (4.36). The pressure of the gas phase inside the shell and the surrounding

ambient fluid pressure have to be considered as do the surface tensions and the

shell and fluid viscosities we have defined in Sections 4.3 and 4.4. The divergence

of the stress σ can be expressed as

∇ · σ = −∇P +∇ · τ,

where P denotes a pressure term and τ represents the stress in the shell and the

stress due to the surrounding Newtonian fluid. Rewriting the right-hand side of

equation (4.36) in terms of ∇ · σ = −∇P +∇ · τ and integrating over the various

media leads to

∫

∞

R1

(∇ · σ) dr =

∫

∞

R1

(−∇P +∇ · τ) dr

= (PS(R1, t)− PS(R2, t) + PL(R2, t)− P∞(t)) er +

∫ R2

R1

(∇ · τS) dr +
∫

∞

R2

(∇ · τL) dr,

(4.37)

where PS, PL and P∞ are the pressures in the shell, the surrounding Newtonian

fluid, and at infinity, respectively. The viscous stresses in the shell and the stress

associated with the surrounding fluid viscosity are denoted by τS and τL respec-

tively. It is assumed that there is no mass exchange at the shell’s interface. The

boundary conditions on the momentum at the inner and outer radii of the shell’s

surface [50] which are obtained by balancing forces and using the Young-Laplace

law for surface tension, are

PS(R1, t) = Pg

(

Ro1

R1

)3κ

+ τS,rr(R1, t)−
2γ1
R1

, (4.38)

and

PS(R2, t) = PL(R2, t) + τS,rr(R2, t) +
2γ2
R2

− τL(R2, t), (4.39)
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where τS,rr denotes the stress in the radial direction. Note that P∞ in equation

(4.37) describes the atmospheric pressure plus any external applied pressures and

is given by P∞ = Po + PA sinωt where PA and ω represent the externally applied

pressure and angular frequency respectively. Substituting equations (4.38) and

(4.39) into equation (4.37) gives

∫ ∞

R1

(∇ · σ) dr =
(

Pg

(

Ro1

R1

)3κ

+ τS,rr (R1, t)− τS,rr(R2, t)−
2γ1
R1

− 2γ2
R2

− Po

)

er

+ (−PA sinωt+ τL(R2, t)) er

+

∫ R2

R1

(∇ · τS) dr +
∫ ∞

R2

(∇ · τL) dr. (4.40)

The stress due to the viscosity of the surrounding Newtonian fluid at the outer

surface is denoted by τL(R2, t) where ([50], [80] p50)

τL(R2, t) = 2µL
∂v

∂r

∣

∣

∣

r=R2

= 2µL
∂

∂r

(

R2
2Ṙ2

r2

)

∣

∣

∣

r=R2

= −4µL
Ṙ2

R2

, (4.41)

whereas the term
∫∞
R2

(∇ · τL) dr in equation (4.40) ([73], p354-p355) becomes

∫ ∞

R2

(∇ · τL) dr = µL

∫ ∞

R2

(

1

r2
∂

∂r

(

r2
∂v

∂r

)

− 2v

r2

)

erdr = 0. (4.42)

It is important to recognise that the term
∫∞
R2

(∇ · τL) dr is zero for a velocity profile

given by v = R2
2Ṙ2/r

2. Substitututing equations (4.35), (4.41) and (4.42) into

equation (4.40) and using equations (4.17), (4.20), (4.21) and (4.32) to calculate
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τS,rr(R1, t) and τS,rr(R2, t) results in

∫ ∞

R1

(∇ · σ) dr =
(

Pg

(

Ro1

R1

)3κ

− 4

3
(α1 + α5 + α6)

(

Ṙ1

R1
− Ṙ2

R2

)

− 4K1

(

1

R2
1

− 1

R2
2

)

)

er

+

(

−4µL
Ṙ2

R2
− Po − PA sinωt− 2γ1

R1
− 2γ2
R2

)

er, (4.43)

where Ro1 is the unperturbed inner radius. To simplify the notation let α =

4
3
(α1 + α5 + α6). Substituting equation (4.43) into the right-hand side of equation

(4.36) leads to

R1R̈1

(

1−
(

ρS − ρL
ρS

)

R1

R2

)

+ Ṙ1
2
(

3

2
−
(

ρS − ρL
ρS

)(

4R1R
3
2 − R4

1

2R4
2

))

=
1

ρS

(

(

Po +
2γ1
Ro1

+
2γ2
Ro2

+ 4K1

(

1

R2
o1

− 1

R2
o2

))(

Ro1

R1

)3κ

− 2γ1
R1

− 2γ2
R2

− Po − PA sin (ωt)

)

− 1

ρS

(

α

(

Ṙ1

R1
− Ṙ2

R2

)

+ 4K1

(

1

R2
1

− 1

R2
2

)

+
4µLṘ2

R2

)

. (4.44)

4.6 Linearisation and time-dependent perturba-

tion theory

The technique of linearisation is used to determine the natural frequency and

relaxation time for the shelled microbubble whose dynamic behaviour is described

by equation (4.44). The time-dependent perturbations for the inner and outer

radii are

R1 = Ro1 (1 + x (t)) , (4.45)

and

R2 = Ro2 (1 + y (t)) , (4.46)
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respectively, where R3
2 − R3

1 = R3
o2 − R3

o1, since the shell is assumed to be incom-

pressible, and |x|, |y| ≪ 1. Hence

R3
2 − R3

1 ≈ R3
o2 (1 + 3y)−R3

o1 (1 + 3x) ,

which can be simplified to give

y =

(

Ro1

Ro2

)3

x. (4.47)

To linearise equation (4.44) we have to assume that the externally applied forcing

pressure PA (in some appropriate sense) is of the same order of magnitude as |x|

and |y|. Consider a small parameter ǫ such that |x| = O(ǫ) and |y| = O(ǫ) where

x = ǫX, y = ǫY and PA = ǫP ∗
APo where X, Y and P ∗

A are O(1) quantities. Then

linearising equation (4.44) leads to

R2
o1ẍ

(

1−
(

ρS − ρL
ρS

)

Ro1

Ro2

)

=
1

ρS

(

−3κx

(

Po +
2γ1
Ro1

+
2γ2
R02

+ 4K1

(

1

R2
o1

− 1

R2
o2

))

+
2γ1x

Ro1

+
2γ2y

Ro2

− PA sin (ωt)

)

− 1

ρS

(

αẋ

(

1−
(

Ro1

Ro2

)3
)

+
8K1y

R2
o2

− 8K1x

R2
o1

+ 4µLẏ

)

. (4.48)

Dividing equation (4.48) throughout by R2
o1 and substituting equation (4.47) into

it gives

ẍ

(

1−
(

ρS − ρL

ρS

)

Ro1

Ro2

)

=
1

ρSR
2
o1

(

−3κx

(

Po +
2γ1
Ro1

+
2γ2
R02

+ 4K1

(

1

R2
o1

− 1

R2
o2

))

+
2γ1x

Ro1

+
2γ2
Ro2

(

Ro1

Ro2

)3

x− PA sin (ωt)

)

− 1

ρSR
2
o1

(

αẋ

(

1−
(

Ro1

Ro2

)3
)

+
8K1

R2
o2

(

Ro1

Ro2

)3

x− 8K1x

R2
o1

+ 4µL

(

Ro1

Ro2

)3

ẋ

)

. (4.49)
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Dividing equation (4.49) throughout by 1−((ρS − ρL)/ρS)Ro1/Ro2 and rearranging

reduces equation (4.49) to

ẍ+ 2γdẋ+ ω2
ox =

P (t)

ρSR2
o1 (1− ((ρS − ρL)/ρS)Ro1/Ro2)

, (4.50)

where γd represents a damping coefficient where P (t) = PA sin (ωt), and ωo is the

natural angular frequency of the shelled microbubble. The term, P (t), represents

the sinusoidal, external ultrasound signal which forces the shelled microbubble.

The damping coefficient is given as

γd =
α
(

1− (Ro1/Ro2)
3)+ 4µL (Ro1/Ro2)

3

2ρSR2
o1 (1− ((ρS − ρL)/ρS)Ro1/Ro2)

, (4.51)

which is related to the relaxation time by

trelax =
1

γd
. (4.52)

The natural frequency, fo = ωo/(2π), is given by

fo =
1

2π

√

N

D
, (4.53)

where

N = 3κRo1R
5
o2 (Po + 2γ1/Ro1 + 2γ2/Ro2)− 2γ1R

5
o2 − 2γ2R

4
o1Ro2

+ (12κ− 8)K1R
5
o2/Ro1 + 8K1R

4
o1 − 12κK1R

3
o2Ro1, (4.54)

and

D =
(

ρSR
3
o1R

5
o2 − (ρS − ρL)R

4
o1R

4
o2

)

. (4.55)
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4.7 Results
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Figure 4.2: The linearised and nonlinear models of the radial displacement of
a 1µm shelled microbubble versus time for a shell thickness of 4nm which is
subjected to an acoustic pressure of PA = 100kPa at a forcing frequency of
f = ω/(2π) = 5MHz which is very close to the natural frequency. The Leslie
viscosities for MBBA are α=0.035Pa s ([65], p330) and the densities of the liquid-
crystal shell and the surrounding fluid are ρS = 1060 kgm−3 and ρL = 1000kgm−3

respectively. The polytropic index of the gas, the viscosity of the surrounding
fluid and the interfacial surface tension and the exterior radius’ surface tension
are κ = 1.095, µL = 10−3Pa s, γ1 = γ2 = 0.072Nm−1 respectively. The graph is
produced numerically by solving the ordinary differential equation (4.44) and from
equation (4.49).

Figure 4.2 illustrates how the radius of a 1µm shelled microbubble with a thickness

of 4nm varies with time when it is subjected to a forcing frequency of f = 5MHz

(calculated using equation (4.53)) and an external acoustic pressure of amplitude

PA = 100kPa. Figure 4.2 displays a characteristic transient growth during the first

couple of oscillations of the shelled microbubble. The linear model has a larger

amplitude than the nonlinear model at a forcing frequency that is very close to

the linearised model’s natural frequency (fo = 5.03MHz). Figure 4.2 shows that

there is also a time lag between the nonlinear and the linear models.
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Figure 4.3: The relaxation time of a shelled microbubble of exterior radius
1µm (thickness 4nm) versus the Leslie viscosities α where α = 4

3
(α1 + α5 + α6).

The densities of the liquid-crystal shell and the surrounding fluid are ρS =
1060 kgm−3 and ρL = 1000kgm−3 respectively. The polytropic index of the gas,
the viscosity of the surrounding fluid and the interfacial surface tension and the ex-
terior radius’ surface tension are κ = 1.095, µL = 10−3Pa s, γ1 = γ2 = 0.072Nm−1

respectively. The graph is constructed using equations (4.51) and (4.52).

Figure 4.3 illustrates the relaxation time’s dependency on the Leslie viscosities

where α = 4
3
(α1 + α5 + α6). As α increases the relaxation time trelax decreases in a

nonlinear manner. This is because a more viscous shell will dampen the oscillatory

motion of the shell faster.
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Figure 4.4: The relaxation time of a shelled microbubble of exterior radius
Ro2 = 1µm (and thickness 4nm) versus the density of the shell ρS. The den-
sity of the surrounding fluid is ρL = 1000kgm−3 and the Leslie viscosities are
α = 0.035Pa s. The polytropic index of the gas, the viscosity of the surrounding
fluid and the interfacial surface tension and the exterior radius’ surface tension
are κ = 1.095, µL = 10−3Pa s, γ1 = γ2 = 0.072Nm−1 respectively. The graph is
constructed using equations (4.51) and (4.52).

Figure 4.4 shows the relaxation time’s dependency on the density of the shell

ρS. The relaxation time increases by a very small amount in an approximately

linear manner as the shell’s density increases . The increase in relaxation time is

so small that it is almost independent of ρS. This is due to the thinness of the shell

which can be seen by substituting Ro2 = Ro1 (1 + ǫ) where ǫ ≪ 1 into equation
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(4.51) giving

γd ≈
α(1− (1 + ǫ)−3) + 4µL(1 + ǫ)−3

2ρSR
2
o1(1− (1− ρL/ρS)(1 + ǫ)−1

,

≈ 3αǫ+ 4µL(1− 3ǫ)

2ρLR2
o1(1− ǫ)

,

≈
(

3αǫ+ 4µL(1− 3ǫ)

2ρLR2
o1

)

(1 + ǫ),

≈ 2µL

ρLR
2
o1

+O(ǫ). (4.56)

Equation (4.56) shows that the damping is dominated by the viscous fluid.
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Figure 4.5: The relaxation time of a shelled microbubble of exterior radius Ro2 =
1µm versus the thickness of the shell Ro2 − Ro1. The density of the surrounding
fluid and the shell are ρL = 1000kgm−3 and ρS = 1060kgm−3 respectively and the
Leslie viscosities are α = 0.035Pa s. The polytropic index of the gas, the viscosity
of the surrounding fluid and the interfacial surface tension and the exterior radius’
surface tension are κ = 1.095, µL = 10−3Pa s, γ1 = γ2 = 0.072Nm−1 respectively.
The graph is plotted using equations (4.51) and (4.52).

Figure 4.5 shows how the relaxation time decreases nonlinearly as the thick-
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ness (Ro2 − Ro1) of the shell increases. Equations (4.51) and (4.52) highlight the

dependency of the damping coefficient and the relaxation time on the radii of the

shell. Rewriting equation (4.51) as

γd =
α(1− (Ro1/Ro2)

3(1− 4µL/α))

2ρSR2
o1 (1− ((ρS − ρL)/ρS)Ro1/Ro2)

, (4.57)

and rearranging for a fixed α, µL, Ro1, ρS and ρL gives

γ̂d =
1− aR̂−3

1− bR̂−1
, (4.58)

where a = 1 − 4µL/α, b = (ρS − ρL)/ρS, R̂ = Ro2/Ro1 and γ̂d = 2ρSR
2
o1γd/α.

Note that γ̂d can increase or decrease as a function of R̂ depending on the values

of a and b. Substituting the values of µL, α, ρS and ρL that are used to construct

Figure 4.5 (see caption) satisfies the condition a ≫ b. Hence as R̂ increases and

the shell thickens, the damping coefficient γd increases which results in a shorter

relaxation time (since trelax = 1/γd).

124



0 .05 0 .10 0 .15 0 .20 0 .25 0 .30

4 .5

5 .0

5 .5

6 .0

6 .5

7 .0

γ1/2(Nm
−1)

fo(MHz)

Figure 4.6: The natural frequency fo of a shelled microbubble of exterior radius
Ro2 = 1µm and thickness 4nm versus the surface tension of the shell γ = γ1 = γ2.
The polytropic index of the gas is κ = 1.095 and K1 = 6× 10−12N. The density of
the surrounding fluid and shell are ρL = 1000kgm−3 and ρS = 1060kgm−3; and the
Leslie viscosities are α = 0.035Pa s. The graph is plotted using equation (4.53).

Figure 4.6 illustrates how the natural frequency fo of the shell increases as the

inner γ1 and outer γ2 surface tensions of the shell increase where γ1 = γ2. This is

due to a greater restoring force arising from a larger surface tension acting on the

surface of the shell.
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Figure 4.7: Natural frequency fo of a shelled microbubble of exterior radius Ro2 =
1µm and thickness 4nm versus the density of the shell ρS . The polytropic index
of the gas is κ = 1.095 and K1 = 6 × 10−12N. The density of the surrounding
fluid is ρL = 1000kgm−3 and the Leslie viscosities are α = 0.035Pa s. The graph
is plotted using equation (4.53).

Figure 4.7 illustrates how the natural frequency fo of the shell decreases by a

very small amount as the density of the shell ρS increases.

4.8 Conclusion

A modified Rayleigh-Plesset equation has been derived for a shelled microbubble

with an incompressible shell composed of a liquid-crystal material, surrounded by

a Newtonian fluid. The model considers the gas inside the shelled microbubble, the

shell’s material and the surrounding Newtonian fluid. This model is then linearised

using time-dependent perturbation theory to determine the relaxation time and

the natural frequency of the shelled microbubble. The relaxation time exhibits a

dependency on both the thickness of the shell and the Leslie viscosities (these are
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dependent on the type of liquid-crystal material that the shell is made from). This

model is anisotropic unlike previous Rayleigh-Plesset equations which model the

shell of the microbubble as an isotropic solid. Liquid crystals are non-Newtonian

fluids, exhibiting shear thinning whereas all previous Rayleigh-Plesset models use

Newtonian fluid mechanics. Current experimental evidence indicates that some

contrast agents are viscoelastic with mesophase type behaviour [51] which, by

definition, constitutes a liquid-crystal material. The radial displacement exhibited

a symmetrical oscillatory pattern. As the Leslie viscosities increased in value the

relaxation time decreased in a nonlinear manner. The relaxation time increased

linearly as the density of the shell increased. As the thickness of the shell increased

the relaxation time decreased nonlinearly. The natural frequency increased linearly

as the surface tension increased.
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Chapter 5

Conclusion

5.1 Motivation

The aim of this PhD thesis was to understand and identify how various mate-

rial parameters such as the shear modulus, Poisson ratio and thickness of the

shell influenced the collapse, relaxation times and natural frequency of shelled mi-

crobubbles. Chapter 2 proposed an analytical model for a stressed, compressible

shelled microbubble that oscillated about its equilibrium position and considered

how varying the shear modulus, Poisson ratio and shell thickness influenced the

period of oscillation. Chapter 3 discussed the physical model for the deformation of

an open shelled microbubble whose geometry evolves. An opening angle approach

was used to model this geometrical change (folding shell) with the original stress

free configuration being represented by an open, deformed and incomplete sphere

which was stressed via a hoop stress in order to deform the shell’s surface both

radially and angularly. This model used an asymptotic expansion (linearisation)

to model the quasistatic phase. Chapter 4 developed a Rayleigh-Plesset equation

describing an incompressible, thin shelled, gas loaded microbubble with a shell
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composed of a liquid-crystalline material. Time-dependent perturbation theory

was used to linearise the physical model and the relaxation time and natural fre-

quency of the shelled microbubble and its dependency on the material parameters

(Leslie viscosities [64]) of the shell was considered.

5.2 Results

Chapter 2 described an analytical approach to modelling the inflationary process

of a shelled microbubble via a quasistatic radially directed stress load applied to

its inner surface. The stress load was switched off and the time for the microbub-

ble to collapse back down to its equilibrium position was determined by using

the Cauchy momentum equation and the inflated radial deformation as an initial

condition. Key material parameters such as the thickness of the shell, its Poisson

ratio and the shell’s shear modulus were varied to determine their influence on

the collapse phase of the shell. A typical collapse time for a shell with a shear

modulus of µ = 20MPa and a Poisson ratio of ν = 0.48, subjected to a stress

load of p = 200kPa, was t∗ ≈ 3.5ns. Shells with a larger shear modulus results in

shorter collapse times. As the thickness of the shell increased the collapse time of

the shell increased in a linear manner. Shells with a larger Poisson ratio possess

smaller initial radial deformations and therefore exhibited shorter collapse times.

Chapter 3 considered a deformed open shelled microbubble with a spherical cap

removed. The stress free, open angle shelled microbubble was subjected to a polar

directed stress which was applied to the rim of the shell. The deformation had both

a radial and angular dependency. This model attempts to consider the change in

geometry of a ruptured shelled microbubble.
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In Chapter 4, a modified Rayleigh-Plesset equation was derived for a shelled mi-

crobubble with an incompressible shell composed of a liquid-crystalline material,

surrounded by a Newtonian fluid. The model considered the three physical me-

dia of the shell; inside the microbubble, the shell’s liquid-crystalline material and

the surrounding Newtonian fluid. This model was then linearised using time-

dependent perturbation theory to determine the relaxation time and the natural

frequency of the shelled microbubble. The relaxation time exhibited a depen-

dency on both the thickness of the shell and the Leslie viscosities. The relaxation

time decreased nonlinearly as the Leslie viscosities increased in magnitude. It also

increased linearly by a very small amount as the density of the shell increased.

For thickening shells the relaxation time decreased nonlinearly. The natural fre-

quency increased linearly as the surface tension of the shell increased. The nat-

ural frequency decreased linearly by a very small amount as the density of the

shell increased. The radial displacement of the oscillatory shelled microbubble

was symmetric whereas the experimental results for UCAs exhibit an asymmetric

behaviour [44].

5.3 Further work

Chapter 2 could be extended by applying an external stress load to the outside

surface of the shell to represent atmospheric pressure. The viscoelastic behaviour

of the shell and the influence of the surrounding fluid could be modelled by using

a Maxwell fluid model. Future work could also focus on solving numerically both

the forward and collapse phases for the nonlinear model.
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The linearisation of Chapter 3 could be evaluated numerically to solve the ra-

dial and angular partial differential equations in conjunction with their respective

coupled boundary conditions. Further work could consist of solving the linearised

collapse phase numerically. The influence of varying material parameters on the

collapse time could also be considered.

Chapter 4 models the shell using nematic viscosities rather than smectic A vis-

cosities. A Rayleigh-Plesset model could be developed for a smectic A shell which

requires thirteen viscosities rather than the five Leslie viscosities associated with

a nematic. The liquid-crystal model could be applied to consider the influence of

various physical parameters of the shell on the wall shear stress. Currently, there

are very few mathematical models that have been developed to understand sono-

poration via acoustic microstreaming [31], [32]. Such a model could consider how

the thickness, density and Leslie viscosities of the shell influence the magnitude of

the wall shear stress.

This PhD modelled the influence that various material parameters had on the

collapse time, the natural frequency and relaxation time of shelled microbubbles.

Chapter 2 considered how varying the shear modulus, the Poisson ratio and the

thickness of the shell influenced the collapse time. Chapter 3 focussed on mod-

elling the rupture of the shell of a typical UCA shelled microbubble. Chapter 4

considered the shell of the shelled microbubble as a mesophase exhibiting both liq-

uid and solid characteristics. Hopefully such models will aid soft matter scientists’

understanding of UCA localised drug delivery and gene therapy.
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Appendix A

Justifying the Rayleigh-Plesset

equation

Assuming that the fluid flow in the surrounding fluid and in the shell is in the

radial direction only, then the velocity, v, of the flow can be related to a fluid

potential, φ, via v = ∇φ. Applying the conservation of mass to an incompressible

shell in an incompressible liquid medium gives ([65],p138-139), ∇ · v = 0, and so

∇ · ∇φ = ∇2φ = 0. Converting this into spherical polars for a radially symmetric

flow gives

1

r2
∂

∂r

(

r2
∂φ

∂r

)

= 0,

which is solved giving

∂φ

∂r
=
A(t)

r2
,

φ =
−A(t)
r

+B(t).
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Defining the potential such that φ → 0 as r → ∞ results in B(t) = 0 and so

φ = −A(t)/r. The equation φ = −A(t)/r is a fluid potential ([65], p138-139)which

can be either positive or negative and can be written as

φ =
C(t)

r
, (A.1)

where C(t) can be either positive or negative. Using this equation along with the

definition of the velocity, v = ∇φ, results in

∇φ =
−C(t)
r2

er.

At this point let us assume that the inner and outer radii of the shelled microbub-

ble, R, are a function of time alone such that R ≡ R(t) [83]. Defining the velocity

of the shelled microbubble as Ṙ at r = R leads to

∇φ|r=R =
−C(t)
R2

er = Ṙer,

which on rearranging gives C(t) = −R2Ṙ. From equation (A.1) then, the fluid

potential, φ, and the radial velocity component of the bubble, v, are given by

φ =
−R2Ṙ

r
, (A.2)

and

v =
∂φ

∂r
=
R2Ṙ

r2
. (A.3)

Assuming that the influence of gravity is negligible due to the small density con-

trast between the contrast agent and the surrounding fluid, the momentum balance
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law is given as [83]

ρ
∂v

∂t
+ ρ (v · ∇)v = ∇ · σ, (A.4)

where ρ denotes the fluid density and σ represents the Cauchy stress. The following

derivation focusses on the radial direction of the perturbed, spherical, liquid-crystal

shelled microbubble. Equation (A.4) gives

(

ρ
∂v

∂t
+ ρv

∂v

∂r

)

er = ∇ · σ, (A.5)

or alternatively
(

∂v

∂t
+

1

2

∂v2

∂r

)

er =
1

ρ
(∇ · σ) . (A.6)

Using equation (A.3), this gives

(

∂

∂t

(

∂φ

∂r

)

+
1

2

∂

∂r

(

(

∂φ

∂r

)2
))

er =
1

ρ
(∇ · σ) , (A.7)

and if we assume

∂

∂t

(

∂φ

∂r

)

=
∂

∂r

(

∂φ

∂t

)

,

then equation (A.7) can be rewritten as

(

∂

∂r

(

∂φ

∂t

)

+
1

2

∂

∂r

(

(

∂φ

∂r

)2
))

er =
1

ρ
(∇ · σ) , (A.8)

which can be rearranged to give

(

∂

∂r

(

∂φ

∂t
+

1

2

(

∂φ

∂r

)2
))

er =
1

ρ
(∇ · σ) . (A.9)
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This can be integrated across r ∈ [R,∞) to give

∫ ∞

R

∂

∂r

(

∂φ

∂t
+

1

2

(

∂φ

∂r

)2
)

erdr =
1

ρ

∫ ∞

R

∇ · σdr. (A.10)

Using equation (A.2) gives

∂φ

∂t
= −R

2R̈

r
− 2RṘ2

r
, (A.11)

and substituting this and equation (A.3) into equation (A.10) gives

∫ ∞

R

∂

∂r

(

−R2R̈− 2RṘ2

r
+
R4Ṙ2

2r4

)

erdr =
1

ρ

∫ ∞

R

∇ · σdr. (A.12)

Evaluating the integral in (A.12) leads to

(

RR̈ +
3

2
Ṙ2

)

er =
1

ρ

∫ ∞

R

∇ · σdr. (A.13)

Polytropic gas and the role of surface tension

The gas encapsulated by the shelled microbubble is assumed to be adiabatic and is

modelled using a polytropic equation PgV
κ
o = pV κ where κ denotes the polytropic

index which is a dimensionless parameter [45,50], Vo is the equilibrium volume of

the gas filled shelled microbubble at a gas pressure of Pg and p is the pressure

of the gas during the expansion/contraction phases. Assuming that the shelled

microbubble is a sphere with a volume given by V = (4/3)πR3 where R denotes

the time varying radius of the shelled microbubble, then

Pg

(

4

3
πR3

o

)κ

= p

(

4

3
πR3

)κ

, (A.14)
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which gives

p = Pg

(

Ro

R

)3κ

, (A.15)

where Ro is the initial (equilibrium) shelled microbubble radius when the total

pressure inside the shelled microbubble (p) is equal to the initial gas pressure

inside the shelled microbubble (Pg).

Figure A.1: Illustration of the gas pressure, surface tensions and the stress associ-
ated with the elastic energy density acting on a thin shelled microbubble.

Figure A.1 illustrates the pressure balance acting on an isolated shelled mi-

crobubble surrounded by a Newtonian fluid with an inwardly acting pressure given

by pL and a gas pressure acting outwards represented by Pg. There is also a stress

associated with the elastic energy density of the liquid crystal denoted by τelastic.

There are two surface tensions in Figure A.1 where γ1 represents the interfacial sur-

face tension between the inner shell and the encapsulated gas layer and γ2 denotes

the surface tension between the outer shell of the shelled microbubble and the

surrounding Newtonian fluid [51,52]. Shelled microbubbles are assumed to have a

finite, ultra thin thickness with an initial thickness given by the difference between

their unperturbed inner and outer radii Ro2 − Ro1. The surface tension terms are

used to determine their respective pressure terms via the Young-Laplace formula

136



([84],p230-234). Note that this model assumes that the surface tensions γ1 and γ2

are constant and do not vary with the area density as the shelled microbubble

expands and contracts.

Justifying the pressure terms for the surface tensions

The energy (work done W ) associated with the surface tension of the shelled

microbubble is given by

W =

∫ ∫

γds = γ

∫ π

0

∫ 2π

0

R2 sin θdθdφ = 2πγR2 (cos θ)π0 = 4πγR2.

Using the definition of work done from thermodynamics and rewriting the partial

derivative using the chain rule results in

p =
∂W

∂V
=
∂W

∂R

∂R

∂V
.

Applying these definitions to the case of a spherical shelled microbubble leads to

∂V

∂R
= 4πR2,

and

∂W

∂R
= 8πγR,

which gives

p =
8πγR

4πR2
=

2γ

R
. (A.16)

This is the well known Young-Laplace equation describing the pressure contribu-

tion of the surface tension of a spherical object such as a shelled microbubble [84].
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Balancing the pressures acting in Figure A.1 where pL = Po gives

Pg = Po +
2γ1
Ro1

+
2γ2
Ro2

+ 4K1

(

1

R2
o1

− 1

R2
o2

)

, (A.17)

where Po represents the surrounding ambient liquid pressure and 4K1 (1/R
2
o1 − 1/R2

o2)

is the stress associated with the elastic energy density of the liquid crystal and is

given by equation (4.34).
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