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Abstract 

Crystallisation is a complex process that consists of multiple mechanisms that can compete 

for solute particles in solution. Subsequently, modelling the crystallisation process accurately 

is challenging. Within this work, two different types of crystallisation, two different solute 

systems and two methods of parameter estimation have been modelled using population 

balance modelling software. The ability to model a system of interest allows the model to 

then be considered as a digital representative of the process. The mechanistic model can 

then be used to test the process under new conditions and ultimately allow for optimisation 

of the process for given process outputs. 

The main component system of interest for this work has been lactose and water. A 

mechanistic model of a seeded cooling lactose crystallisation has been achieved within this 

work. The characteristic slow growth and nucleation kinetics of lactose were seen 

experimentally and as such evaporative crystallisation was then focused upon. The 

development of a vacuum-induced evaporative crystalliser was attempted to circumvent the 

slow kinetics seen from the cooling lactose crystallisation work. The kinetics of this system 

were far faster and a representative model was built for this process. Despite a noisy and 

difficult process platform a sufficient model was built describing the primary nucleation, 

growth and agglomeration kinetics of the system. An innovative approach to process design 

was endeavoured to combine the two models and develop a multi-mode platform for the 

recovery of lactose from water. This allowed for the fast nucleation rate of an evaporative 

crystalliser to be utilised while combining with a multi-stage cooling crystallisation to improve 

yield recovery. 
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The ultimate goal of this work is to show the usefulness of developing mechanistic models. 

The models developed within this work allowed for the optimisation of given crystallisation 

processes for focused optimisation objectives. Optimisation of crystallisation without further 

experimentation allows for well-defined and designed processes to be built while performing 

minimal experiments and producing less waste. Finally, within this work, the combination of 

mechanistic models has been attempted to develop a multi-mode crystallisation platform. 

This approach allowed for an entirely simulation-based design of a continuous platform made 

up of both evaporative and cooling crystallisation stages. From this work, the ability to model 

effectively and utilise mechanistic models to reduce experimentation and waste has been 

clearly demonstrated. 
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1 Introduction 
 Crystallisation Background 

Crystallisation is a key unit operation within many industrial processes as it is a widely used 

method of purification and isolation[1]. The purification and isolation of compounds via 

crystallisation have a clear purpose for manufacturing, particularly when considering the 

pharmaceutical industry's need for high-purity drug substances and avoidance of 

contamination in products to assure patient safety. Crystallisation is the process of producing 

solid particles in the form of crystals of solute from a solution. This process can produce highly 

pure crystals due to the highly ordered structure and precise molecular level recognition 

required for incorporation into a crystal structure during nucleation and growth from 

solution. This limits the introduction of foreign molecules within the structure and as such 

improves the purity of the recovered solid particles from crystallisation [1]. 

The inducement of crystallisation is commonly driven by controlling the supersaturation 

levels within the solution [2]. Supersaturation can be achieved by several methods and as 

such a variety of different modes of crystallisation processing can be used in different 

products and industries. Specifically: evaporative, cooling, reactive, and antisolvent [1]. The 

focus of this research is primarily cooling crystallisation but with some additional 

consideration of evaporative crystallisation under vacuum conditions to investigate the 

ability to apply digital design approaches to pharmaceutical crystallisations. 

Cooling crystallisation is a commonly used method of purification within both the 

pharmaceutical industry and the fine chemical industry. In this case, supersaturation is 

introduced by the reduction of solubility of solute by reducing the temperature of the 

solution [3].  
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When discussing the design, operation or control of cooling crystallisation or any type of 

crystallisation, it is important to consider how the process conditions affect the different 

crystallisation mechanisms. The crystallisation process can be tentatively split into nucleation 

and growth mechanisms. The nucleation stage of crystallisation is the initial formation of the 

smallest stable solute nuclei upon which subsequent growth can begin with the attachment 

and integration of more solute molecules into the crystal structure. This is a highly simplified 

description of crystallisation without any inclusion of additional processes such as breakage 

or agglomeration within the system that can affect the outcome of the overall process. 

Nucleation is a complex process that is stochastic in nature. Although the nucleation events 

themselves are not directly predictable, repeated experimentation under identical 

conditions results in a probability distribution [4]. Additionally, the different mechanisms 

within crystallisation are not restricted to occurring consecutively instead the different 

aspects can occur in parallel to each other such that nucleation events occur alongside 

growth, breakage or agglomeration [5]. The solution conditions also change during 

nucleation as supersaturation is depleted and new secondary nucleation sites are created. 

Taken in combination, these factors make modelling crystallisation processes challenging. 

The presence of multiple mechanisms operating competitively throughout process operation 

can lead to the production of material with variable attributes. This is particularly true with 

respect to crystal size distribution (CSD) as there will be the production of nuclei and growth 

in parallel allowing different extents of growth to occur for different nuclei and seeds 

typically resulting in a broad CSD comprising fines and larger particles. To achieve greater 

control over the process it is highly desirable to understand the relationship between process 

parameters and the crystallisation rate process outcomes in order to design and operate 

crystallisations capable of reproducibility and delivering consistent product quality. 
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 Continuous Crystallisation Processes 

 Despite crystallisation being one of the earliest process unit operations in history, the 

process itself remains relatively poorly understood [6]. There have been great research 

advances in the last few decades and this growth in knowledge has allowed vast strides in 

the design and control of the crystallisation process[7]. Whilst pharmaceutical manufacturing 

largely relies on batch processing, the increased understanding of crystallisation processes 

has also allowed the development of continuous platforms such as depicted in Figure 1-1 

[8][9]. Currently, the pharmaceutical industry heavily favours batch processes, specifically, 

with respect to crystallisation for simplicity and robustness [10]. The use of batch compared 

to continuous processes is less demanding on process understanding of the crystallisation 

mechanisms involved to achieve acceptable results [9]. However, with there being great 

strides in the flow chemistry and continuous synthesis of active pharmaceutical ingredients 

(API) there is considerable interest in continuous crystallisation processes to allow more 

integrated continuous processing [10].  

Figure 1-1 - A schematic representation of a mixed suspension, mixed product removal (MSMPR) 3-stage cascade 

from gPROMS FormulatedProducts version 2022.1.0 (gFP) [8]. Flowsheet components are defined as follows; 

“Global_specifications” links to model background data such as solubility, “Liquid_source” supplies feed stream 

properties and flow to cascade, “Sink” receives and monitors product flow, “T” and “TC” define temperature sensor 

and temperature controller respectively. 

Sink 

MSMPR_1 

MSMPR_2 

MSMPR_3 

Global_specifications 

Liquid_source 
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Continuous processing has a number of advantages when compared with batch processing. 

The use of continuous crystallisers can lead to reduced batch-to-batch variability of product 

characteristics that can be seen when comparing different batches of the same product 

[8][9]. More consistent primary particle or crystal attributes are also an advantage in terms 

of slurry and powder properties as there will be less variance, and the processing 

downstream can be more easily controlled [9]. There is also an improved ability to exert 

control over continuous processes as any necessary changes to process conditions can be 

implemented quickly and on a smaller volume of process solution. As such, the consequences 

of disturbances can be limited more effectively [10]. However, the level of control required 

for an effective continuous process is higher and subsequently more enhanced process 

design is needed as well as a greater understanding of the process [11]. The details of 

designing controllers for various continuous pharmaceutical manufacturing platforms have 

been well described by Benyahia et al [12].  More enhanced control measures means that 

control systems can be implemented in such a way as to obtain direct control over ideal 

particle attributes including size and morphology throughout the process and subsequently 

produce less waste in the form of off-spec products [13][14][11]. This concept has been 

shown through the development of a continuous sonocrystallisation platform for the 

crystallisation of lactose with particle size control through the D50 by Siddique et al [15]. 

Continuous processes are also easier in terms of scale-up when compared to batch systems 

which can allow the system to vary production rate relative to requirements [9]. Overall, the 

potential for continuous manufacturing of pharmaceuticals is of growing interest due to the 

reduced capital due to smaller sized vessels, flexibility of production scale and more robust 

processes through enhanced control [11][16][17]. 
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 Crystallisation Mechanisms 

As previously discussed, the crystallisation process is complex and made up of numerous 

mechanisms.  These different mechanisms have numerous mathematical models that can be 

used to describe them. The coupling of these individual mechanisms allows the full 

crystallisation process to be described for a given system. As such, the defining of the 

individual mechanisms and the model equations used to define them is fundamental in the 

ability to model their behaviour. 

1.1.2.1 Nucleation 

Nucleation is the process by which new solid particles are created from supersaturated 

solutions. The formation of nuclei and the rate of nucleation is key to all unseeded 

crystallisation processes. Nucleation can be further split into primary and secondary 

nucleation mechanisms. Primary nucleation is nucleation that takes place in the absence of 

any solute particles. Primary nucleation is either regarded as homogenous in which the nuclei 

form in a system with no foreign bodies or heterogeneous where the presence of non-solute 

particulates aids the nucleation process. This latter scenario is largely thought to describe 

most practical crystallization applications. 

There are a number of different expressions that can be used to describe nucleation 

rate[18][19][20]. The simplest form is the empirical expression that follows the power-law 

model[20]. B represents the primary nucleation rate, which has been described in Equation 

1 in terms of; the nucleation rate constant, the gas constant, temperature, supersaturation 

and supersaturation order denoted by kb, R, T, S and b, respectively. The activation energy 

term, Ea,b, has also been included in this model to allow for additional variables for the fitting 

of the expression to measured data. 
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Equation 1 

𝐵 = 𝑘𝑏𝑒
−𝐸𝐴,𝑏
𝑅𝑇 𝑆𝑏 

Secondary nucleation is defined as the formation of small nuclei in the presence of seed 

crystals of the same system. This type of nucleation is further divided by the two mechanisms 

which produce the stable nuclei: the attrition of seed particles; and the removal of clusters 

at the seed surface. The defining difference between these two mechanisms is that one is 

the physical removal of small particles from the seed particle and the other is a phase shift 

from liquid to solid to form nuclei without altering the initial seed particle. There is much 

discussion around the definitions of these two mechanisms and whether attrition should be 

described as nucleation given that there is no phase change present[21].  

Secondary nucleation has been found to be the more dominant nucleation mechanism in 

industrial crystallisers and as such there has been significant research into this area. In 

particular, the effects of attrition-based secondary nucleation have been intensively studied 

in literature[23]–[28]. Equation 2 describes the attrition of particles due to collisions between 

the particle and the impeller. This equation can be split into three sections: kinetics, stirrer 

effects and seed effects. The kinetics of the system are represented by the rate constant, kn,c-

I, relative supersaturation, Srel,  and supersaturation order, nc-i. The stirring effects are 

described by the energy dissipation rate, the impeller pumping number and power number 

denoted by ε, NQ and Np, respectively. Finally, seed effects on nucleation rate are captured 

by shape factor kv, particle density, ρp and the volume of particles captured by the third 

moment limited by the minimum size expected to be prone to attrition, Lmin, c-i. 
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Equation 2 

𝐽𝑎𝑡𝑡 = exp(ln(𝑘𝑛.𝑐−𝑖))𝑆𝑟𝑒𝑙
𝑛𝑐−𝑖(

𝑁𝑄
𝑁𝑃

) 𝜀𝑘𝑣𝜌𝑝∫ 𝐿3𝑛(𝐿)𝑑𝐿
∞

𝐿𝑚𝑖𝑛.𝑐−𝑖

 

1.1.2.2 Growth 

The growth of crystals in a saturated system is the increase in initial particulate size by the 

uptake of solute molecules from the solution. The increase in particle size through time 

during the crystallisation process is defined by the growth rate and there are different models 

that can be used to define growth rate. The most commonly used model to define growth 

rate is a power law type formula as shown in Equation 3[25]. These different models differ 

by varying the definition of the supersaturation driving force for growth in absolute or 

relative terms as displayed in Equation 6 and the inclusion of a diffusion step.  

Two basic growth models are to be investigated for fitting the growth rates of the systems 

studied within this work: the two-step kinetic model and the power law. The two-step model 

considers growth across two stages: the diffusion of solute molecules from the bulk to the 

crystal surface; and the integration of solute molecules into the crystal structure's 

surface[25], [26]. The growth rate of the diffusion step is shown in Equation 4 and is defined 

in terms of the solute concentration, C, solute concentration at the crystal surface, Cl, the 

crystal density, ρ, and finally the volume diffusion constant, kd. The subsequent growth rate 

of the surface integration step is described in the form of the power law expression shown 

in Equation 3. This equation has incorporated the temperature effects through the inclusion 

of activation energy, EA,g. Ultimately, the growth rate is determined by the rate constant, kg, 

supersaturation, S, and supersaturation order, g. 
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Equation 3 

𝐺𝑆𝑢𝑟𝑓(𝐿) = 𝑘𝑔𝑒
−𝐸𝐴,𝑔
𝑅𝑇 𝑆𝑔 

 

Equation 4 

𝐺𝑑𝑖𝑓𝑓(𝐿) = 𝑘𝑑(𝐿)
𝐶 − 𝐶𝑙(𝐿)

𝜌𝑐
 

 

The diffusion step is made system-specific with the use of the effective diffusivity correction 

factor, α, through the relationship with the diffusion coefficient, DAB in Equation 5. The 

diffusion coefficient constant is additionally described by the Boltzmann constant, k, 

temperature, T, dynamic viscosity, µ, and the molecular diameter of the solute, dm. If the 

system in question is known or found to be surface integration limited, then the need for 

modelling of the diffusion step is negated and the power law will be sufficient. The cooling 

crystallisation of paracetamol form I from ethanol was found to be an example of a surface 

integration limited system by Mitchell et al[27]. The driving force defined within the surface 

integration step can be defined as absolute or relative as shown in Equation 6 depending on 

the system[8].  

Equation 5 

𝑘𝑑(𝐿) ∝ 𝐷𝐴𝐵 = 𝛼
𝑘𝑇

6𝜋𝜇
𝑑𝑚
2
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Equation 6 

𝑆 =
𝐶𝑙 − 𝐶∗

𝜌𝑐
=
𝐶𝑙 − 𝐶∗

𝐶∗
 

1.1.2.3 Agglomeration 

Agglomeration is the process in which individual particles adhere together to form large, 

clustered particles referred to as agglomerates [28]. The presence of agglomeration within a 

process can be considered in both a positive and negative view depending on desired process 

outputs and the ability to control the agglomeration rate. The use of spherical agglomeration 

to control particulate size has been a recent development in the crystallisation industry[29]. 

Additionally, there are research areas focused on the limiting of agglomeration within a 

process to ensure primary particles are produced such as the work of Terdenge et al that 

utilised gassing to reduce the agglomeration rate[28]. 

When investigating agglomeration with a view to determining and modelling any rate 

processes taking place, there are two factors to consider: collision rate and agglomeration 

efficiency. Within gPROMS FormulatedProducts version 2022.1.0 (gFP), the rate of collision 

of particles is simulated by the agglomeration kernel and is not part of the investigation when 

fitting size data. Alternatively, the overall agglomeration rate is made system-specific 

through the agglomeration efficiency which describes the effectiveness of colliding particles 

to produce stable agglomerates. 

A key point of interest for parameter estimation for developing a model that accurately 

describes the impact of agglomeration on product PSD is to identify reliable estimates for the 

parameters in Equation 7 [30]. This equation shows the semi-empirical model that links 

Mumtaz number, A50, to agglomeration efficiency, Ψ. A50 is a dimensionless number 
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describing the strength of the crystalline bridge between the two individual particles joining 

to form the agglomerate and is the unknown term to be estimated when fitting the 

agglomeration term within the model. The remaining terms of Equation 7 are defined as 

growth rate, G, dynamic viscosity, µ, characteristic mean length of new agglomerate, d3.0, and 

mean shear rate, ɣ.  

Equation 7  

𝜓 =

𝑨𝟓𝟎𝐺

𝜇𝑑3.0
2𝛾 2

1 +
𝑨𝟓0𝐺

𝜇𝑑3.0
2𝛾 2

 

 Population Balance Modelling 

Population balances have been used in many different industries as a way of describing the 

progression of particulate systems over time and have been applied to model varied systems 

from biological populations to aerosols[31]. Randolph and Larson were the driving force in 

using population balances with respect to crystallisation processes [32]. The basic premise of 

population balance modelling is rather simple, utilising the well-established methods in 

chemical engineering of using mass and/or energy balances to describe and monitor changes 

during processes[33]. However, in the case of population balance modelling, this allows 

further discrimination of the changes taking place during the process and describes the 

distribution of mass across the population of particles as governed by the different rate 

processes that describe the birth, growth and death of crystals. The birth of crystals needs to 

be considered from three mechanisms: nucleation, agglomeration, and breakage.  

Subsequently, the death of crystals also needs to be considered across three mechanisms: 

dissolution, agglomeration, and breakage. Population balances allow the progression of the 
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crystals through the crystallisation process being studied to be accounted for on a probability 

basis.  

The basis of the population balance described by Randolph and Larson is the continuum 

mechanics framework that relies on the principles of conservation of mass, energy and 

momentum and assumes the system can be modelled as a continuous medium [32]. In this 

framework, the evolution of particulate properties in a system is described in two separate 

spaces. The first is the physical space, this depicts the physical location within the design 

space and is described by the external coordinates. The second space depicts the abstract 

property space, which depicts a defining property of the particles, such as length[33]. The 

abstract space is described by internal coordinates which can be defined in continuous or 

discrete terms[34]. By assessing both design spaces the system can be fully described and 

can act as the basis of the model [32]. A well-mixed process can be described by the 

characteristic length of particles through time using the 1D PBE described by Majumder et 

al., in 2011 as shown in Equation 8[35]. The PSD within the system is defined by n(L,t), the 

growth rate by G, Q defines the rate of the nucleation, agglomeration and breakage as 

denoted within Equation 8. 

Equation 8 

𝜕

𝜕𝑡
𝑛(𝐿, 𝑡) +

𝜕

𝜕𝐿
(𝐺(𝐿, 𝑡)𝑛(𝐿, 𝑡)) = 𝑄𝑛𝑢𝑐 + 𝑄𝑎𝑔𝑔 + 𝑄𝑏𝑟𝑒𝑎𝑘  

 

 Solving Population Balance Equations 

Population balance equations allow a particulate process to be simulated based on the 

probability of events and therefore take into account uncertainties and stochastic effects in 
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the birth, growth and death of particles depending on the process conditions that will 

influence how the particle distribution evolves over time [32]. The equations being utilised 

are in an integro-differential form when including agglomeration and breakage terms and are 

usually solved by numerical methods as they are too convoluted for analytical solutions to 

be practicable [36]. As such, a great deal of research has been put into developing adequate 

numerical solution methods, such as finite element. These numerical solution methods, 

attempt to better describe processes in relation to computational time and enable the most 

appropriate approach to be implemented for any application. 

1.1.1.1 Analytical Solution 

As highlighted earlier, population balance equations are often too complex for analytical 

solutions to be attempted. However, in simpler cases, these equations can be solved 

analytically by applying some simplifying assumptions [36]. In the case of MSMPR, which this 

research is focused on, a solution can be found by assuming: steady state operation, uniform 

mixing, no hold-ups or losses from the system, that growth is uniform and independent of 

size and agglomeration and attrition are negligible. The MSMPR is therefore assumed to have 

no crystals within the inflow, the product and the contents of the crystalliser at any one time 

are identical and the system is well-mixed. This form of analytical solution was described by 

Randolph et al for a multi-stage cascade with nucleation in each vessel. However, it was 

stipulated it could be used for single vessel systems for any specified component system so 

long as the assumptions stated hold true[37]. 
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1.1.1.2 Method of Moment 

Equation 9 

𝜇𝑖 = ∫ 𝑛(𝐿, 𝑡)𝐿𝑖(𝑡)𝑑𝐿
∞

0

 

The Method of Moments is a commonly used method of solving population balance 

equations and was pioneered by Randolph and Larson and Hulburt and Katz [36]. This 

method takes the population balance equations and converts them into moments. The 

moment equation can then be used to identify the global properties of the system. The 

transformation of the population balance equations into the form of moments reduces the 

number of calculations required and therefore reduces the computational power needed for 

the solution compared to other methods. The transformation of population balance 

equations to moments can be completed using Equation 9 [38]. This equation calculates the 

ith moment, μi, from the number density function, n, and the characteristic size of crystals, L. 

The use of the method of moments is so important to solving the population balance 

equations (PBE) as it reduces the partial differential equation to a simpler set of ordinary 

differential equations assuming no agglomeration, breakage or size-dependent growth is 

present [38]. This simplification allows the solving of these equations to be far simpler than 

that of analytical methods. 

The crystallisation process can most often be described by using the first four moments. The 

different moments all depict different properties of the system's distribution per unit 

volume: 0th moment corresponds to the total number of particles, 1st moment gives the total 

length of particles, 2nd moment gives the total surface area of the crystals and finally, 3rd 

moment gives the total volume [38]. 
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There are a number of different methods of moments used in describing crystallisation. 

These different methods vary in their ability to describe different mechanisms. For instance, 

the Standard Method of Moments (SMOM) cannot account for agglomeration or breakage 

within the system. Therefore, methods such as the Quadrature Method of Moments 

(QMOM) and other manipulations of SMOM have been developed to depict the complicated 

mechanisms of crystallisation more accurately [36]. These different methods often give rise 

to greater computational requirements. Therefore, there needs to be a trade-off depending 

on the prevalence of the different crystallisation mechanisms within the process being 

assessed.  

A disadvantage of using the method of moments for solving population balances is that the 

raw information of the distribution is lost during the transfer. Therefore, this means the 

distribution is not reproducible and instead needs to be inferred based on deconvolution 

methods and a priori knowledge [36][39]. There have been some very promising progressions 

of the SMOM to incorporate the more challenging mechanisms such as agglomeration. The 

work of Attarakih et al has allowed for a general method that can be manipulated to revert 

to QMOM and other sectional methods. This method defines the system by separating 

between primary particles used for reconstructing the distribution and secondary particles 

that contain information for particle interactions. This distinction allows for accurate solving 

of the population balance equations without losing the shape of the distribution[39]. 

1.1.1.3 Discretization method 

Discretization methods are based on the sectioning of the internal coordinates into 

designated bins to transform the PBEs into a set of differential equations that can then be 

solved directly[40]. A clear advantage of the discretization methods for solving population 
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balances is that the original distribution is preserved, and no prior knowledge of the system's 

behaviour is required. However, this leads to an increase in computational power 

requirements [36]. The computational power is directly related to the chosen bin size and 

therefore depends heavily on the broadness of the distribution of the system. With advances 

in the wide accessibility of powerful computational resources, the use of discretization 

methods is becoming more common [36]. 

1.1.1.3.1 Method of Characteristics 

In this method, the original partial differential equation is transformed into ordinary 

differential equations by discovering curves along the L-t plane. The solution of these 

ordinary differential equations is based upon a characteristic such as length can then be 

utilised to solve the original partial differential equation. A disadvantage to this method is 

the high computational time required to solve such a large number of equations. This method 

of solving population balance equations is often coupled with other methods to improve the 

efficiency of solving the equations. 

1.1.1.3.2 Finite Difference Method (FDM) 

This method utilises difference equations in order to approximate the differential equations 

of the PBEs. The use of this method is particularly suited for building population balance 

models while incorporating computation fluid dynamics (CFD) which is often based upon 

using finite element or finite volume methods [36]. The inclusion of PBE can be achieved by 

direct input of PBE to CFD code[36].  The combining of CFD with PBE has been utilised by 

John et al., to study the effect of the location of inlets on the flow field within a cavity and 

ultimately how this impacts the growth rate and primary nucleation rate of calcium 

carbonate[41].  
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1.1.1.3.3 Finite Element Method (FEM) 

In this method, the partial differential within the PBEs is converted into integral forms [36]. 

The numerical solution of which requires the system to be discretized. Once the continuum 

is discretised, solutions for the differential equations across the individual sections can be 

found using iterative solver methods [36][42]. From summing up these solutions, global 

solutions of the system can be found [43]. The advantage of FEM over FDM is that the 

discretization of the domain does not need to be uniform and therefore the higher resolution 

can be applied where needed and not across the whole domain which greatly reduces 

computational load [36]. 

1.1.1.3.4 Finite Volume Method (FVM) 

Finite volume is similar to finite element in that the function being fit is discretized and values 

are calculated in line with this. However, finite element defines functions to represent the 

individual discretised points whereas finite volume utilises integrals to give average values at 

the individual points. The use of FVM has been utilised in other research areas such as 

aerodynamics and its efficacy for population balance modelling has been discussed when 

considering high-resolution methods[44].  

1.1.1.4 Monte Carlo Method 

The basic premise for Monte Carlo solving methods is the input of randomly generated 

numbers from a specified distribution into the equations of interest and the most frequent 

solutions will correspond to the true solution. There are a number of advantages to this 

method of solving population balance equations. The random input produces a dependable 

set of results that closely depict the crystallisation process being studied. However, to 
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thoroughly and accurately use this method a large number of particles need to be tracked 

[45]. As such, there is a correspondingly high computational time for this method [36]. 

 Parameter Estimation 

The research described by Pérez-Calvo, Kadam and Kramer [30] and Bari and Pandit [46] 

discuss the use of gFP as a method of defining the individual parameters of crystallisation. 

The gFP software has in-built rigorous parameter estimation abilities based upon maximum 

likelihood optimisation solvers [46]. The basis for solving and defining the parameter 

estimates from experimental results within gFP is simply done by minimizing the objective 

function, Φ, in Equation 10[30]. This equation is defined by the number of measurements, 

NT, the parameters being estimated, θ, the number of experiments being used, NE, the 

number of measured variables in the ith experiment, NVI, the number of measurements of 

variable j for experiment I, NMij, the variance of the kth measurement of variable j in 

experiment I, σijk
2, the measured value of the kth measurement of the jth variable in 

experiment I, Z̃̃ijk, and finally the predicted counterpart of Z̃̃ijk, Zijk. In the case of gFP, the 

population balance is solved and modelled by the high-resolution fidelity finite volume 

scheme with flux limiting function (HRFVS-FL) which has been widely described in the 

literature and adopted in a number of industrial applications [47][48][49]. 

Equation 10 

Φ =
𝑁𝑇

2
ln(2𝜋) +

1

2
min
𝜃

{∑∑ ∑ [ln(𝜎𝑖𝑗𝑘
2) +

(�̃�𝑖𝑗𝑘 − 𝑧𝑖𝑗𝑘)
2

𝜎𝑖𝑗𝑘
2 ]

𝑁𝑀𝑖𝑗

𝑘=1

𝑁𝑉𝑖

𝑗=1

𝑁𝐸

𝑖=1

} 

1.1.2.1 Model Design Methods 

Parameter estimation is a key step in the development of a mechanistic model of 

crystallisation. The ability to define the parameters of crystallisation allows a true 
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representation of the particular crystallisation system to be described. As the resulting model 

is to be the basis for optimisation and to inform greater process understanding, the accuracy 

of the parameters and subsequent model is paramount. The method of retrieving sufficient 

parameters to adequately describe the crystallisation process will have a large effect on the 

accuracy of the mechanistic model produced.  

The modelling of crystallisation is such a complex problem due to there being a number of 

different mechanisms taking place and potentially interacting within a system 

simultaneously. These numerous mechanisms of crystallisation are competing for solute 

molecules in solution and all have different effects on the crystal size distribution (CSD) of 

the product. It is therefore important to accurately depict the different mechanisms in order 

to get a true representation of the overall system. In the next section, the different methods 

of uncoupling these parameters are discussed in detail. 

1.1.2.2 Simultaneous Parameter Estimation 

A method of determining growth and primary nucleation kinetics has been discussed by Nagy 

et al based upon the metastable zone width of the system [50]. The advantage of this method 

is the simplicity of the experiments required. The defining of the metastable zone width is 

usually a prerequisite to performing a controlled crystallisation and as such is often studied 

regardless of the need to build a mechanistic model. The knowledge gained from defining 

the metastable zone width (MSZW) allows for effective experimental design in terms of 

seeding and the cooling profile with maximum tolerable supersaturation levels before 

primary nucleation occurs. The expansion of knowledge gained from MSZW experiments is 

an efficient method of investigating the kinetics of the system without the need for numerous 

experiments. The system investigated in the work of Nagy et al utilises in-situ analysis 
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methods to assess the kinetics of a paracetamol-water system. The concentration within the 

system was continuously monitored using a Fourier-transform infrared spectroscopy (FTIR) 

probe. This allowed the concentration changes and depletion of supersaturation induced by 

the presence of nucleation or growth to be monitored and assessed. Additionally, the use of 

a focused beam reflectance measurement (FBRM) probe allows crystal size distribution (CSD) 

to be assessed. The recorded chord length distribution (CLD) can be used to estimate the CSD 

by utilising a shape factor. This estimation of the CSD allows for growth to be assessed with 

direct respect to the crystals grown within the system as opposed to merely inferred from 

concentration changes.  

The experiments designed for this method of kinetic data collection are centred around 

unseeded desupersaturation experiments. The induction times of the system can be assessed 

in this manner and will allow for systems where primary nucleation is the only form of 

nucleation taking place. This can be assumed as the nuclei present are too small to allow for 

secondary nucleation to take place. The growth of particles formed can be monitored via 

FBRM and the resulting CSD data. The parameters of crystallisation can be assessed from 

these experiments while including their dependence on supersaturation levels and the 

cooling rates applied to the system. The primary nucleation and growth parameters can then 

be assessed simultaneously with the use of a generic dynamic model and the incorporation 

of the MOM. 

This method however has a number of disadvantages in providing reliable estimates of the 

parameters describing the process. For instance, the use of CLD to determine CSD increases 

errors within the system as CLD is known to inaccurately describe particle size due to the 

inherent method of measuring CLD not representing the true sizes but simply the cut of the 

particle that the FBRM laser detects[51]. This often leads to undersized predictions, 
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particularly when considering needle-like crystals. The parameters assessed within the work 

of Nagy et al., were limited to growth and primary nucleation[50]. This is also a clear 

disadvantage of this method as the effects of breakage and agglomeration can have great 

effects on the final outputs of a system. For instance, agglomeration and breakage have great 

effects on the final CSD which will ultimately affect downstream processing[52]. Secondly, 

the presence of breakage and attrition are key players when assessing secondary nucleation, 

which is widely recognised as the dominant nucleation mechanism in MSMPRs and is not 

considered in this approach. 

1.1.2.3 Sequential Parameter Estimation 

The estimation of crystallisation parameters sequentially has shown promising results. The 

methodology, which has been described by Pérez-Calvo, Kadam and Kramer [30] and Bari 

and Pandit [46], looks to uncouple the different parameters of crystallisation for specific 

mechanisms by limiting the presence of different and potentially competing mechanisms by 

altering the process conditions to favour a specific mechanism. By limiting certain 

parameters, other parameters can dominate under specified conditions and therefore the 

kinetics of the mechanism and specific parameters enable that to be modelled relative to 

crystallisation. Once individual parameters are defined and understood, their effect on 

crystallisation can be accounted for. This allows a wider range of parameters beyond growth 

such as nucleation and agglomeration to be assessed. In the analysis of agglomeration for 

instance, if the growth parameter is well understood the particle size distribution (PSD) of 

seed size can be broadened to include for a large span of sizes. The larger span of seed sizes 

has been shown to improve agglomeration efficiency[30]. The conditions in which 

agglomeration thrives are typically also favourable towards growth. Therefore, 
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agglomeration can only be assessed with any confidence once the growth parameters have 

been accounted for when looking at the resulting CSD of the product retrieved.  

The reliability of results obtained from the parameter estimation approach within gFP is 

heavily dependent on the discretisation of the grid for population balance solving. It is 

important in this case to limit the bounds of the grid to appropriate sizes of crystal, 

dependent on the system being defined. As for the case of nucleation and growth the grid 

range must cover a suitable range to design the system. For instance, in the case of Pérez-

Calvo, Kadam and Kramer a minimum crystal length of 1µm and a maximum of 5000µm were 

chosen.  

1.1.2.3.1 Three-Step Sequential Parameter Estimation 

 

 Figure 1-2 - Schematic depicting the ideology of the three-step method of parameter estimation  [30] 

The difference between the sequential method across these two papers is the method of 

decoupling the parameters experimentally. Perez-Calvo, Kadam and Kramer have separated 

growth into two terms (volume diffusion and surface integration) and agglomeration by 
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simply considering agglomeration to not affect the concentration of the solution [30]. This 

therefore allowed the surface integration mechanism of growth to be evaluated by seeded 

desupersaturation experiments where secondary nucleation was avoided by minimizing 

attrition. Any agglomeration terms could later be assessed by utilising the product CSD once 

growth could be accounted for with sizes in excess of achievable growth attributable to 

agglomeration. Similarly, secondary nucleation via attrition was accounted for by increasing 

collisions of the crystal with the stirrer by increasing the agitation rate. Finally, primary 

nucleation could be assessed when all other parameters were defined by minimising attrition 

and varying cooling rates in unseeded desupersaturation experiments.  

This method of parameter estimation is similar to that described by Mitchell, Ó’Ciardhá and 

Frawley for determining the growth parameters of paracetamol from ethanol [27]. However, 

the solving of the population balances and the optimisation needed for estimating the 

chosen parameters were completed in MATLAB as opposed to gFP. 

1.1.2.3.2 Five-step Sequential Parameter Estimation 

The experimental method of the research completed by Bari and Pandit goes further in 

seeking to decouple different mechanisms. Growth and primary nucleation were assessed 

together by the use of induction time experiments. In this research, primary nucleation was 

thought to begin as soon as supersaturation was induced and the induction time represented 

the time taken for the nuclei produced via primary nucleation to grow to a measurable size 

[46]. From this viewpoint, the growth and primary nucleation terms were considered 

together. Induction time experiments also allow for secondary nucleation and agglomeration 

to be negated as the crystals will be too small in size to promote either mechanism at this 

initial stage. As primary nucleation can be defined purely on the number of crystals produced, 
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the changes in the concentration profile during induction time can be used to define the 

growth term of crystallisation[46]. Similar to the method described by Pérez-Calvo, Kadam 

and Kramer, agglomeration and breakage are assumed to have no effect on the 

concentration profile. With growth and primary nucleation defined in the previous set of 

experiments and agglomeration and attrition determined to not affect the concentration of 

the solution, any changes in concentration can be assumed to be caused by secondary 

nucleation. This was completed by constant cooling rate experiments. With nucleation and 

growth defined the product CSDs can finally be utilised alongside the optimisation systems 

within gFP to define agglomeration and breakage[46]. 
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2 Aims and Objectives 

Building on current best practices for modelling crystallisation processes, mechanistic models 

for different crystallisations were developed in this work. The development of crystallisation-

mode-specific mechanistic models was achieved through the use of batch experiments. 

These small-scale batch experiments utilised process analytical technology (PAT) in the form 

of solute concentration and particle size monitoring through FTIR and FBRM probes. The 

modelling work for this thesis utilised the population balance modelling software from PSE, 

FormulatedProducts. This software also allowed for optimisation of the modelled process for 

different goals such as particle size, yield, and reduced batch time. Through the use of 

developed mechanistic models, the suitability and potential of different mixed-mode 

crystallisation platforms were tested without further experimentation and waste of material. 

The aims of this work are highlighted as follows: 

• Develop mechanistic models of different crystallisation modes for the model system 

of lactose and water through a set of small, designed batch experiments. 

• Develop a mechanistic model for the crystallisation of a late-stage development 

active pharmaceutical ingredient (API) compound from pre-existing data. 

• Utilise the developed models for optimisation purposes for an array of optimisable 

objectives. In particular the optimisation of crystal mass recovery within particle size 

ranges of interest for the specified processes 

• Utilise developed models of the lactose system to test the potential capabilities of 

different configurations for a continuous multimode crystallisation platform. 

The overall goal of this work is to utilise the building of mechanistic models to gain a better 

understanding and optimisation of the crystallisation process for improved recovery and 
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tuneable particle size ranges. The use of models to aid in the development of processes 

allows fewer experiments to be performed and therefore reduces the waste in the 

development stages. This reduction in experiments focuses on the collection of efficient 

datasets that improve the sustainability of the work while still allowing for a better 

understanding of the system. Given the current push for better and more sustainable 

manufacturing practises, the use of mechanistic models to supplement the data needed for 

efficient manufacturing, through optimisation and simulation-based investigation of 

potential processes, has never been clearer. 

 Thesis Outline 

Chapter 1 outlines crystallisation background theory, as well as methods of estimating 

crystallisation kinetic parameters. This chapter gives an overview of literature pertaining to 

developing mechanistic models of crystallisation processes. Chapter 3 details the methods 

used to build a mechanistic model of the cooling crystallisation process of lactose from water 

by means of sequential parameter estimation. The resulting model is then used as the basis 

for the optimisation of the system for an increase in yield while reducing batch time. Chapter 

4 focuses on building a mechanistic model of a late-stage development compound from 

AstraZeneca by utilising pre-existing data from experiments with different aims. Chapter 5 

outlines the designing of a semi-batch vacuum-induced evaporative crystalliser and the 

subsequent mechanistic modelling of the system. The model itself is then used for 

optimisation purposes for different process outcomes. Finally, Chapter 6 utilises the 

previously built cooling crystallisation model and the evaporative model as a way of 

investigating different configurations of a multi-mode platform. The capabilities and 

optimisation of these configurations are then discussed. 
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3 Mechanistic Model Development of Cooling Crystallisation 

 Introduction 

This chapter is centred on the building of a mechanistic model of the cooling crystallisation 

of alpha-lactose monohydrate from water by means of sequential parameter estimation. The 

advantages and disadvantages of the different types of sequential parameter estimation 

were discussed in section 1.1.2.3 and within this chapter, the method outlined by Perez Calvo 

et al has been followed to develop a mechanistic model of the lactose cooling crystallisation 

process[30]. Lactose was chosen as the compound of interest for this work for a number of 

reasons, in particular its large-scale production and wide range of applications and the 

challenges caused by anomeric transformation, multiple solid forms and slow crystallisation 

kinetics of the system. The slow kinetics highlight the potential advantages of reducing the 

experimental work by means of simulated experiments. As such, the building of a mechanistic 

model relying on data from small-batch experiments will allow for the process to be 

represented digitally. 

The additional complexity of modelling the system in terms of the mutarotation equilibrium 

and the formation of hydrate crystals was considered throughout the modelling process. The 

inclusion of these added complexities within the mechanistic model, will ensure that the 

model developed will be broadly applicable and robust in its ability to provide reliable 

predictions of the outcomes of the process. The end goal of this work is to utilise the model 

for optimisation purposes and to showcase the benefits of developing mechanistic models of 

crystallisation systems. The ability to optimise the process for different process output goals 

without the need for additional experimentation is a key advantage of building mechanistic 

models.  
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 Lactose Crystallisation 

 Use in the Pharmaceutical Industry 

Lactose is a naturally occurring disaccharide made up of galactose and glucose that is found 

within the whey of dairy products [53]. Whey is a by-product of dairy processing and is a 

serious consideration for waste processing. The lactose in whey is the largest source of 

biochemical oxygen demand (BOD) in the waste stream so it is important to remove the 

resulting lactose not only to reduce waste effects but as it is also a commodity in itself [54]. 

Lactose is widely used in not only the food industry but also as an excipient in the 

pharmaceutical industry where it is often added to the formulation of many tablets as a filler 

due to its relative affordability, availability and low toxicity [55]. 

 Mutarotation 

As shown in Figure 3-1 lactose exists as two isomers, α and β [53]. The transformation 

between these two isomers is undergone when in solution via mutarotation until equilibrium 

is reached. The method of crystallisation determines what form of lactose is produced with 

Figure 3-1 – Depiction of the mutarotation of lactose and the different possible crystal forms [53] 
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the most commonly used form in the pharmaceutical industry being α-lactose monohydrate 

(ALM) [56]. Although this is not the most stable form, it is easily recovered as β-lactose has a 

higher solubility than that of its counterpart and as such crystallisers working under 

moderate temperatures will primarily produce ALM [53]. To crystallise the β form the 

crystallisation would have to operate at exceedingly high temperatures as crystallising below 

93°C will favour α-lactose production [53][15]. As the α-lactose is crystallised the molecules 

in the solution undergo mutarotation and therefore more α-lactose is produced to account 

for the loss in solution [53]. This mutarotation consideration was found to have a limiting 

effect on the recovery as the equilibrium shift is temperature dependent and at lower 

temperatures, the equilibrium position reduces to an unfavourable yield recovery [57]. The 

focus of this work is centred on optimising the production of ALM crystals from water in 

terms of yield and particle size through the use of a mechanistic model. 

 Morphology 

Figure 3-2 – Depiction of the different possible morphologies of lactose depending on the crystallisation 

process[58] 
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The characteristic shape of a slow-cooled α-lactose monohydrate is a ‘tomahawk’ shape 

which can be seen in Figure 3-2 [58]. The type of crystallisation, as well as the level of 

supersaturation at the beginning of crystallisation, has a great effect on the morphology of 

the produced crystals. It is important to control the morphology during the crystallisation 

process as this can lead to processing problems further down the line. For instance, needle-

like crystals are notorious for their poor flow properties and as such have a high risk of 

blockages [59]. Such issues with downstream processes can incur high costs and therefore it 

is important to consider the morphology of crystals produced within a process to minimise 

such issues. The favoured tomahawk shape for ALM is typically achieved from cooling 

crystallisation at relatively low supersaturation [58]. 

 Challenges in Industrial Crystallisation of Lactose  

There are a number of issues with lactose crystallisation within an industrial context. For 

instance, the nucleation of lactose is very slow [54]. As such, it is common to use methods of 

inducing nucleation within the system such as sonication as discussed by Siddique et al for a 

continuous oscillating baffle crystalliser[15]. Alternatively, the slow nucleation kinetics are 

avoided through the use of seeding. Furthermore, the growth of lactose also has slow kinetics 

and is surface integrating limited as opposed to volume diffusion limited meaning that 

outside factors such as enhanced mixing cannot be used to aid the growth 

mechanism[60][56][57]. The rate of mutarotation was investigated as a possible limiting 

factor for the crystallisation of α-lactose but was found not to restrict the growth of crystals 

[57]. The slow growth and nucleation of lactose may be explained by the presence of 

impurities and ions when considering true lactose refining from whey [61]. However, in the 

case of this research, the lactose used is of pharmaceutical grade (≥99% total lactose basis) 

and therefore impurity levels should be sufficiently low to avoid interference with the 
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kinetics of crystallisation. The slow crystallisation kinetics, in this case, can be explained by 

the inhibiting effects that the presence of β-lactose can have when in solution [57]. This 

inhibiting effect of anomers is due to the likeness of the different anomers in solution 

blocking the inclusion of new solute particles into the crystal structure. 

The slow nucleation kinetics is of clear concern when considering the lactose crystallisation 

process. As such, the use of ultrasound has been investigated for its ability to improve the 

rate of nucleation of lactose when in an aqueous solution [62]. The introduction of ultrasonic 

waves to the solution produces cavitation and the generation of gas bubbles. When these 

collapse, localised points of high temperatures and concentration are created[4]. The release 

of this energy within the system has been shown to induce nucleation. This can produce 

nuclei rapidly and also at lower supersaturation levels than is usually required [62][15]. 

Lactose crystallisation has been investigated within an array of different crystallisation 

platforms. The different crystallisers have been found to have significant effects on the 

crystallisation process, in terms of morphology, yield, and purity. The use of oscillatory baffle 

crystallisers has been investigated and it was shown that with the use of sonication, an 

appropriate continuous system can be implemented [15]. 

 Model Basis 

The parameter estimation experiments will allow kinetic data to be collected for the different 

mechanisms present in the investigated crystallisation process. Prior to parameter 

estimation of the crystallisation kinetics, the system itself was modelled to include physical 

properties as well as information specific to the crystallisation system. This prior modelling is 

important for physical properties that may vary throughout the experiment as well as 

particular impacts introduced by the solute when in solution. In the case of the lactose 
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system, there is increased complexity due to the mutarotation between alpha-lactose and 

beta-lactose when in an aqueous solution. This has a number of knock-on effects on other 

properties of the system. In the following sections, the basis of this will be explained in terms 

of; physical properties including viscosity and density, the solubility of ALM depending on 

beta-lactose concentration and temperature, and mutarotation kinetics. 

 Physical Properties Model 

The physical properties of the model need to be adequately described to ensure the model 

depicts the true system in real-time. As such, the density and viscosity have been individually 

modelled as these properties are known to depend on both concentration and temperature. 

As such, the modelling of a cooling crystallisation is particularly susceptible to changes in 

viscosity and density which directly affect the very kinetics being studied.  

The density and viscosity of lactose solutions have been researched in the literature with 

some success. The basis of this model is a set of expressions developed by Morison and 

Mackay [63]. The work performed by Morison and Mackay is restricted to the experimental 

range of 5-25 wt% and 10-50 °C. This range is lower than the working range of the work 

undergone within this research of around 15-65 °C and 20.19-36.98 wt%. As such, the 

extrapolation of these expressions may have some degree of error at higher concentrations 

and temperatures.  

Equation 11 

𝑠. 𝑔. =
𝜌𝑠

𝜌𝑤𝑎𝑡𝑒𝑟(𝑇)
= 1.000 + 0.3886𝑤 + 0.1158𝑤2 
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Equation 12 

𝜂

𝜂𝑜
=
(1 + 0.5𝜑)

(1 − 𝜑)2
 

The density of the lactose solution can be found via Equation 11 which relates the ratio of 

solution density, ρs, and the density of water at a given temperature, ρwater(T) to the effect of 

changes in the concentration of lactose in wt%, w. The viscosity of the lactose solution, η, at 

the specified temperature and concentration can be calculated from Equation 12 through 

the effective volume fraction, φ, and the density of solvent, η0. The set of expressions 

developed by Morison and Mackay [63] have all been combined and input within gFP to 

calculate the density and viscosity of the solution at any given time to define the physical 

properties of the system.  

 Mutarotation Kinetics Modelling 

The relationship between α-lactose and β-lactose when in solution is an important factor in 

many of the mechanisms in the ALM crystallisation system and as such, it needs to be 

considered within the model.  

The dissolution of lactose within water is followed by mutarotation of the molecule between 

the two anomers: alpha and beta. The mutarotation reaction has been studied and a 

governing equilibrium constant can be used to assess the concentration of the two anomers 

at any given time.  The equilibrium constant can also aid in the assessment of the rate 

constants of the forward and backward reaction as can be seen in Equation 13. The 

equilibrium constant has been found in the literature to vary with temperature as shown in 

Equation 14 [64]. These relationships have been input to gFP to allow for accurate simulation 

of the mutarotation equilibrium within the solution with respect to time and temperature. 
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Equation 13 

𝐾𝑚 =
𝑘1
𝑘2

=
𝐶𝛼
𝐶𝛽

 

Equation 14 

𝐾𝑚 = 0.526 − 0.0003𝑇 + 2𝐸−6𝑇2 

 Custom Solubility Model 

The solubility of lactose has an added complexity due to the subsequent mutarotation of the 

molecule when in an aqueous solution. The different anomers of lactose have different 

solubilities with beta’s around ten times higher than that of alpha[65]. This difference in 

solubility is partly due to the mutarotation equilibrium lying in favour of the beta form with 

a ratio of 60:40 and as such the alpha dissolution will occur across two stages[66]. The first 

stage is the simple dissolution of ALM until the solution is saturated in relation to alpha-

lactose. Following this, any excess alpha-lactose supplied will only dissolve once 

mutarotation of the previously dissolved solute lowers the concentration below saturation 

of beta and in turn, the system is shifted to an undersaturated state. The combined solubility 

of both anomers describes the total lactose solubility in water. The solubility of total lactose, 

Cl,s, has been studied in the literature extensively and the data acquired has been collated 

into a mathematical expression by McLeod in his 2007 thesis which can be seen in Equation 

15[67].  

Equation 15 

𝐶𝑙,𝑠 = 10.9109𝑒0.02804𝑇 
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It is important that within this model the saturation and subsequent driving force for 

crystallisation are defined in terms of α-lactose as opposed to total lactose concentration. 

This will give an accurate representation of the driving process for the different crystallisation 

mechanisms under investigation. The definition of supersaturation of the system in terms of 

alpha-lactose can be seen in Equation 16[67]. 

Equation 16 

𝑆 =
𝐶𝛼(𝑇)

𝐶𝛼,𝑠(𝑇)
 

An important consideration is the effect that the presence of the β-anomer in solution has 

on the concentration and solubility of ALM. The effect of the presence of different anomers 

on their solubility is an interesting phenomenon that is consistently seen in mixed 

carbohydrate systems[61]. The presence of additional carbohydrates has been found to 

lower the solubility of the original species. This lowering of solubility of ALM due to the 

presence of β-anomer has been described by Visser et al [68]. From this work, a correction 

factor has been suggested. A mathematical expression calculated from Visser’s work 

describing the correction factor’s dependence on temperature has been defined by McLeod 

and can be seen in Equation 17.  

Equation 17 

𝐹 = 0.0187𝑒0.0236𝑇 

The correction factor simply describes the dependence of the concentration of ALM in a 

saturated solution on the concentration of β-lactose. This dependence requires the definition 

of saturation described in Equation 16 to be updated as can be seen in Equation 18.  
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Equation 18 

𝑆 =
𝐶𝛼(𝐶𝛽𝑇)

𝐶𝛼,𝑠(𝐶𝛽𝑇)
 

The calculation of these terms requires the relationships describing mutarotation and the 

solubility suppression to be utilised. The incorporation of mutarotation kinetics can be done 

by including the equilibrium constant Km. 

The correction factor, F, can be described as the gradient of the line depicting the relationship 

of ALM in a saturated solution with respect to β-lactose concentration. The equation for the 

gradient can be used to define the concentration of alpha-lactose, at saturation, 

corresponding to the concentration of β-lactose in equilibrium at the required temperature. 

With this definition and the use of the mutarotation equilibrium constant the required 

supersaturation ratio can be defined for a given lactose concentration, Cl, as shown in 

Equation 19[67]. This was input into gFP as a custom solubility equation. 

Equation 19 

𝑆 =
𝐶𝑙

(𝐶𝑙,𝑠 − 𝐹 ∗ 𝐾𝑚 ∗ (𝐶𝑙 − 𝐶𝑙,𝑠)
 

 Methods 

 Concentration Calibration Modelling 

The ability to accurately monitor concentration during the crystallisation process is 

fundamental to the ability to assess the kinetics of the process. As such, building an accurate 

calibration model for the chosen spectra is a necessary prerequisite to ensure reliable data 

for modelling. The most suitable spectrometer was chosen based on the component system 

being monitored and the disparity between the spectra of the solute and solvent. Recording 
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concentration through the crystallisation process requires the incorporation of temperature 

effects. Therefore, a range of temperatures and concentrations that cover the working range 

of the crystallisation process being assessed are covered in the building of the spectral 

calibration model. A number of experiments were performed to record the required spectra 

of the specified system under an array of temperatures and mass compositions.  

The use of projection-based regression methods such as PLS and PCR is the standard method 

for building calibration modes for spectral data such as FTIR [69], [70]. Univariate models are 

capable of describing the concentration of a system, however, are often not found capable 

of achieving suitable accuracy or robustness. The use of univariate methods also requires the 

selection of characteristic signals within the spectra that best describe the system, and this 

can be complex and slow depending on the system being studied. Alternatively, multivariate 

regression methods negate the need for manual selection of signals and are found to have a 

high degree of accuracy and can produce more robust models for systems with temperature-

sensitive spectra[71]. 

The use of multivariate regression in the form of PLS and PCR for ATR-FTIR spectra is 

described in detail by Cornell et al 2008 [70]. An experimental plan is executed within this 

work to collate numerous spectra at different concentrations and temperatures to cover a 

wide range that may be seen during crystallisation processes. Within this work, the use of 

univariate and multivariate methods of building calibration models for concentration 

monitoring is compared. The use of multivariate regression was found to be superior to the 

univariate calibration model in terms of accuracy. More specifically, the use of PLS regression 

was better when using the same number of latent variables. Additionally, the inclusion of 

temperature as an input variable was found to have no resulting effect on the model's 

accuracy and therefore was not carried forward. 
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The concentration monitoring for total lactose concentration has an added level of 

complexity due to the presence of the mutarotation reaction when lactose is in water. Due 

to the mutarotation reaction, the lactose solution is actually made up of three components: 

water, alpha-lactose and beta-lactose. Therefore, the monitoring of the lactose 

concentration needs to incorporate the combination of beta and alpha-lactose. The ability to 

measure the concentration of the individual components via the monitoring of the IR spectra 

is not simple due to the inability to separate the peaks of the separate lactose anomers. 

Additionally, due to the relationship between mutarotation equilibrium and temperature, 

the onset of a temperature change corresponds to a shift in alpha and beta-lactose 

concentrations corresponding to the shift in equilibrium. 

Figure 3-3 - FTIR spectra collected of a near mutarotation equilibrium solution of lactose: water solution with a 

concentration of 6.16g/100g lactose solution. 𝑥𝛼 alpha mass fraction of total lactose [72]. 

The ability to accurately monitor lactose concentration via FTIR spectra has been investigated 

and described well by Schiele et al [72]. Within this work, the problem of monitoring anomer 

concentration has been investigated. The experiments performed within this paper found 

the unsuitability of standard calibration techniques such as PLS and PCR for the monitoring 

of total lactose concentration. Figure 3-3 shows spectra from Schiele’s work that were 

collected over several hours that show the variation of spectra due to the concentration shift 

between alpha and beta-lactose due to mutarotation. The standard methods of developing 
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calibration models from spectra, such as PLS and PCR methods, are based on the area under 

the peaks of interest. The changing nature of the peaks regardless of constant total lactose 

concentration negates the use of PLS and PCR as suitable methods of building calibration 

models. This paper also highlighted the use of peaks which intersect for varying stages of 

mutarotation as suitable peaks to monitor total lactose concentration via polynomial fits and 

the incorporation of temperature. 

3.4.1.1 Experimental Method 

The working concentration and temperature range of interest for the system are highlighted 

in Table 1. The experiments were subsequently designed to encapsulate the workspace of 

interest while building the calibration model. A total of five different concentration 

experiments were proposed with additional experiments added where deemed necessary to 

build a more accurate calibration model. The temperature of each experiment was varied 

from at least 5°C above saturated temperature and cooled to the lowest temperature of 

interest or until nucleation was detected. The presence of nucleation defines the point at 

which the concentration of the solution is no longer known. 

Component/Mode Concentration (kg/kg) Temperature(°C) 

Lactose/Cooling 20-40 10-65 

Table 1 - Working range of specified experimental work. 

The following experiments were carried out in an EasyMax (Mettler Toledo) reactor system 

within a 100 ml vessel. Particle counts within the system were monitored continuously with 

the use of an FBRM probe. An FTIR ATR probe was also positioned within the system to collect 

spectra throughout the experiments to be used for the calibration modelling. A specified 

mass of solute was supplied to the empty vessel and subsequently topped up with pure 
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solvent to achieve the concentration of interest. The vessel was then heated within the 

EasyMax system to at least 5 °C above its corresponding saturation temperature and held for 

20 min to allow for complete dissolution. Dissolution was confirmed by use of the FBRM 

probe before the system was then gradually step cooled in segments of 5 °C with a 10-minute 

hold. This was continued until nucleation was detected via the particle count or the lowest 

temperature of interest was reached. The detection of nucleation marks the loss of 

concentration data as the concentration from that point onwards no longer corresponds to 

the concentration following dissolution. This method was repeated across five 

concentrations covering the concentration and temperature range of interest.  

 Parameter Estimation Experiments 

3.4.2.1 Experimental Theory 

The crystallisation process can be split into individual mechanisms that when combined 

describe the overall process as can be seen in Figure 3-4. A mechanistic model of the process 

Figure 3-4 – Schematic depicting the building of a mechanistic model by individually assessing the different 

crystallisation mechanisms and collating them to build a full kinetic description of the process in question.  
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gives a particular insight into how the different parameters interact relative to each other 

and with respect to process conditions. As the different parameters are often competing 

within the system it is important to try to only evaluate one parameter at a time by 

manipulating the process conditions. As different parameters are estimated and defined, 

their influence in later experiments can be accounted for to isolate the effects of the later 

studied parameters. Following the research described by Pérez-Calvo, Kadam and Kramer, 

five parameters of crystallisation are to be assessed within these experiments[30]. These 

parameters have been highlighted in Table 2. 

Within this work, two-step growth kinetics are assumed, as such, volume diffusion and 

surface integration have been included in Table 2. The volume diffusion experiments have 

been carried out under isothermal dissolution conditions. This step is studied by assuming 

volume diffusion is the limiting factor affecting dissolution. From this assumption, volume 

diffusion is assessed experimentally by considering it as the inverse of growth, where surface 

integration is considered negligible.  

Parameter Experiment Manipulation 

Volume Diffusion Isothermal dissolution • Intermediate T 

Surface Integration 
Isothermal seeded 

desupersaturation 

• Reduce seed size 

• Min RPM 

Attrition 
Isothermal seeded 

desupersaturation 

• Increase seed size 

• Decrease seed mass 

• Max RPM  

Agglomeration 
Isothermal seeded 

desupersaturation 
• Broaden seed PSD 

Primary Nucleation Induction time • Min RPM 

Table 2 - Summary of the individual crystallisation mechanism being investigated and the method of isolating the 

mechanisms for individual assessment. 



41 
 

Surface integration is the second step of growth and considers the uptake of solute molecules 

within the crystal structure itself following diffusion from the bulk fluid. The investigation of 

surface integration parameters is assessed by isothermal seeded desupersaturation 

experiments. To maximize growth kinetics within the system as well as minimise secondary 

nucleation due to attrition, the stirrer rate was kept low. The seed size was also reduced to 

reduce attrition with respect to collisions between the seeds and the impeller. 

Following the characterisation of both growth terms, the attrition effects can be assessed, 

again via isothermal desupersaturation experiments. Secondary nucleation is assumed to 

only occur due to attrition from crystal-blade collisions. As such, attrition and therefore 

secondary nucleation is made dominant by increasing the stirring rate and seed size to 

increase collisions between the blade and the seed crystals. The increase of the stirring rate 

also reduces agglomeration efficiency and therefore reduces the presence of agglomeration. 

In order to limit the effects of growth on these experiments, the area for growth is decreased 

by not only increasing the size of the crystals but also reducing the amount of added seed.  

The final set of isothermal desupersaturation experiments is used for assessing the effects of 

agglomeration on the crystallisation process. As growth and attrition have been fully 

characterized their effect on the final PSD can be predicted and as such the deviations from 

the predictions will allow the differences to be accounted for based on agglomeration. To 

improve the data obtained for assessing agglomeration within this system further 

experiments will be performed which use seeds with a broader CSD as agglomeration 

efficiency was found to improve with seed material made up of varied sizes.  

Finally, primary nucleation is to be assessed by the use of induction time experiments across 

different supersaturation ratios. It is of course key to limit the presence of attrition and 
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therefore secondary nucleation effects. As such, the stirring rate was minimized. 

Concentration and temperature were varied to assess the full working range of this study. 

3.4.2.2 Experimental Method 

 The ALM used for bulk material was purchased from Sigma-Aldrich, UK. The seeding material 

for these experiments was recrystallised from this material except for the 5 µm seeds (PSD 

shown in Figure 3-9) as these were purchased directly from DFE Pharma. Finally, all water 

used in these experiments was deionised and laboratory-grade. 

The experimental set up used for parameter estimation experiments is shown in Figure 3-5. 

A chosen mass of ALM was weighed out and supplied to a corresponding mass of water 

within the 100 ml EasyMax vessel to achieve precise concentrations. The vessel and its 

contents were then heated to a temperature of at least 5°C above that of the saturation 

temperature for this concentration. The contents were then held at this temperature for an 

Figure 3-5 – Experimental set-up used for the determination of the crystallisation mechanisms. 

FBRM 
Probe 

EasyMax 
System 

ATR-FTIR 
Probe 

Overhead 
Stirrer 

100 ml 
Glass 
Vessel 

Temperature 
Sensor 
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hour to ensure complete dissolution. At this stage, the system was seeded in a manner 

specific to the mechanism of interest. 

3.4.2.2.1  Seeding - Isothermal Dissolution Experiment 

For the study of the kinetics of volume diffusion, the following seeding method was used. 

The vessel was cooled to a temperature that would induce a supersaturation ratio of 0.9. At 

this stage, 2.5g of seed was added that would just saturate the solution in the vessel. 

3.4.2.2.2 Seeding - Isothermal Deseeded Supersaturation Experiments 

For the experiments investigating surface integration, attrition and agglomeration, the 

following seeding method was used. The temperature of the solution was dropped in order 

to attain the chosen supersaturation ratio of interest as stated in Table 3. At this stage, the 

seed was added to the vessel via a syringe with the use of a room-temperature saturated 

solution of lactose and water as the carrier fluid. The system was then held at this 

temperature for a minimum of five hours to allow time for the mechanism being investigated 

to have a significant effect on the system and particle size. 

3.4.2.2.3 Experimental Analysis 

The experiments were monitored in situ with two process analytical tool (PAT) probes: FTIR 

(ReactIR, Mettler Toledo) and FBRM (G400, Mettler Toledo.) The FTIR probe allowed for 

continual concentration monitoring of lactose in solution while the FBRM probe was used as 

a way of monitoring the presence of particles throughout the process. The monitoring of 

particle count is important to ensure complete dissolution prior to seeding as well as to 

assess the presence of nucleation. The particles produced and recovered experimentally 
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were analysed using a laser diffractometer (Mastersizer 3000, Malvern Instruments) for size 

analysis as well as X-ray powder diffraction (XRPD) to assess form.  

3.4.2.2.4 Process Conditions 

 Modelling Experiments 

3.4.3.1 Parameter Estimation 

Within gFP, a number of flowsheets representing the performed experiments were created 

(Figure 3-6). These flowsheets are individually made to match the process conditions of each 

experiment. With the complete set of experiments represented within gFP and the 

Exp. Concentration 

(mass %) 

Saturated 

Temperature 

(°C) 

Seeding 

Temperature 

(°C) 

Seed 

Mass 

(g) 

Supersaturation 

Ratio 

(a) 35.13 60 50.17 0.89 1.2 

(b) 35.13 60 42.48 1.44 1.4 

(c) 29.18 50 40.95 0.69 1.2 

(d) 29.18 50 33.75 1.12 1.4 

(e) 23.84 40 24.76 0.87 1.4 

Table 3 - Experimental plan used to assess growth rate. Mass % in this case is defined as the mass of lactose in 

solution as opposed to ALM. Across these experiments, the stirring rate was held constant at 400 RPM. 

Figure 3-6 - Depiction of flowsheet within gFP used for the parameter estimation of the unknown variables 

concerning growth as well as the flowsheet used for simulation. 
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concentration profiles input, parameter estimation of the unknown growth constants can be 

assessed. As stated previously, the chosen growth model is a two-step kinetic Mersmann 

model and the constants being assessed are growth rate constant, supersaturation order and 

effective diffusivity. Additionally, the discretisation of the grid for this work is specified as 

0.1µm to 1000µm using a logarithmic scale with 50 grid points. 

3.4.3.1.1 Modelling Amendments 

This model has the capability to predict the α and β-lactose equilibrium for changes in process 

conditions based on previously determined mutarotation kinetics [64]. This allowed the 

experimental conditions including timings to be input to achieve accurate predictions of the 

α and β equilibrium that would be representative of the true concentrations at specific times 

experimentally. Additionally, the size of the seed particles was specified by the laser 

diffraction bins obtained experimentally. The seed size was constant for all the surface 

integration experiments.  

 Goodness of Fit Test 

The ability of the model to accurately predict the measured data is assessed via a goodness 

of fit test. Within this test, the predictions and the measured values are compared via the 

weighted residual and the expected weighted residual[73]. The expectation for a perfect 

model would be the difference between these two values to be zero and this describes the 

null hypothesis of this test. χ2 and χ2
critical are used to describe whether this null hypothesis 

has been met. If the χ2 value is found to be less than the critical value it can be defined as 

statistically insignificant and therefore the goodness of fit test can be considered passed[73].  

 Global Systems Analysis 
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Global system analysis was used to investigate the process output’s sensitivity to the 

variation of the input process conditions as well as the variance from the fitted kinetic 

parameters. The variance of the fitted kinetic parameters was investigated in relation to their 

effects on the crystal mass recovery and particle size. Pseudo-random sampling allows values 

for the fitted kinetic parameters within the given variance bounds to be simulated and the 

resulting process outputs values compared. This analysis allows the uncertainty of the model 

developed to be assessed in regard to the resulting variation in process endpoints. 

Alternatively, this analysis allows the process conditions to be varied to allow for an 

awareness of the potential attainments capable of the tested system. This allows for insight 

into process conditions with the most significant influence on the process outputs. This 

insight can then be used to focus the optimisation of the process. The temperature and 

concentration of both anomers have been linked corresponding to the equilibrium at the 

given temperature.  

 Optimisation  

The optimisation of the cooling crystallisation process within this work has been investigated 

for a number of chosen objective functions. An approach to optimising a variety of 

crystallisation platforms has been described in detail by  Vetter et al[74]. This paper describes 

a method to utilise optimisation functions to discover and define attainable regions for given 

process outputs such as particle size via manipulation of process conditions within acceptable 

ranges. This form of optimisation is set up to allow for variation of specified process 

conditions within given ranges with the aim of optimising a chosen process output. The 

process conditions chosen for the purpose of optimisation are decided from the results of 

the global systems analysis of the variation of the process conditions. The optimisation of the 

process is also limited by specified constraints selected due to the physical and practical 
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considerations of running the proposed optimised pathway. This work has utilised inequality 

endpoint constraints to focus the optimisation within workable regions. For instance, 

selecting an endpoint constraint of a yield of greater than 70 % will guide the optimisation to 

not accept any found maxima below this constraint. 

 Results 

 Concentration Calibration Model 

Preliminary attempts at building the calibration models for the lactose system were trialled 

with the use of PLS regression using both the MATLAB plsregress function (version R2020a) 

and the EigenVector PLS_Toolbox (version 8.9.1 [75]) capabilities. The initial findings from 

this work were that at moments where there were shifts in the mutarotation equilibrium, 

such as temperature changes, the calibration model would perform poorly. This is in 

agreement with the work by Schiele et al discussed previously[72]. As such, polynomial 

relationships were used to describe the system for subsequent analyses. 

Due to the issues with temperature seen using the PLS and PCR calibration models for 

concentration prediction, the use of temperature as an input variable for the prediction of 

concentration was investigated. This links the temperature and peak height at any given time 

to the resulting concentration. The calibration data is used to assign the variables of the 

polynomial. Ultimately, a defined polynomial equation can then be used to predict 

concentration from temperature and peak height.  

Prior to building the calibration model, an appropriate wavelength to assess concentration 

with minimal temperature effects must be assigned. Additionally, a corresponding 

wavelength is needed to be used for the baseline correction. The spectra from the calibration 

set were assessed to gauge wavelengths that show minimal variation with changing 
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temperatures. Pairs of these points were assessed to gauge the best baseline and peak 

combination to improve the prediction of concentration for the calibration models 

independently. 

The fitting of the polynomial equation describing the relationship between the peak height, 

H and temperature, T, for the cooling crystallisation work began by finding the optimal peak 

and baseline paring. Pairings between 950 and 1200 cm-1 were investigated, and the optimal 

pairing was found to be 1018.1 cm-1 and 1141.1 cm-1. The surface polynomial was defined as 

shown in Equation 20. The fitted polynomial was then tested against two validation 

experiments that covered a range of two intermediate concentrations with varying 

Figure 3-7 - Surface depicting the polynomial calibration relationship between peak height, temperature and 

concentration in kgsolute/kgsolution. The peak height at 1018.1cm-1 with respect to the baseline at 1141.1 cm-1 was 

used for the monitoring of the concentration. Black data points show the collected data from experimental 

calibration work. 
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temperatures. It should be noted that the peak height has a much stronger relationship to 

concentration than that of temperature but from the work described by Schiele et al the 

incorporation of both variables is found to produce a robust calibration model[72]. 

Equation 20  

𝐶(𝐻, 𝑇) = 0.303 + 0.0710𝐻 + 3.34 × 10−3𝑇– 8.65 × 10−3𝐻2 + 4.94 × 10−4𝐻 + 3.89 × 10𝑇2 

The fitted polynomial's ability to describe the concentration from the measured variables is 

displayed in Table 4  in the form of a high R2 value of 0.9983 and low RMSE values. The RMSE 

values for the calibration data and the validation data show the high accuracy that the 

developed calibration model is capable of. As such, the accuracy of the calibration model was 

deemed acceptable for use for concentration predictions for all future cooling lactose 

concentration crystallisation experiments.  

Model R2 RMSE (kg/kg) RMSE (val) (kg/kg) 

Cooling/lactose 0.9983 0.0031 0.0036 

Table 4 - Cooling lactose calibration model results. 

 Parameter Estimation Experiments 

3.5.2.1 Nucleation Investigation 

Induction time experiments were performed at the highest concentration of interest, 35.13 

wt%, and the temperature was set to investigate the supersaturation ratios of 1.2 and 1.4. 

The induction time experiments were found for a supersaturation ratio of 1.2 to be greater 

than 100 hours. The exceedingly slow induction time was considered not industrially relevant 

especially when coupled with the fact that lactose is typically crystallised in seeded 

conditions[76]. As such, the need to model the primary nucleation of lactose within this 

cooling system was unnecessary.  
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Similarly, secondary nucleation was also investigated for this system using isothermal seeded 

desupersaturation experiments using a larger seed size with a D50 of 119 μm to increase the 

number of crystal-impeller collisions and aid attrition. This was tested at the highest 

concentration and supersaturation ratio investigated as part of the surface integration 

experiments as seen in Table 3. Under these conditions, with an increased stirring rate of 900 

rpm, the recorded particle count was shown to hold steady and no signs of nucleation were 

observed. This was found to be in line with literature where a threshold of supersaturation 

ratio of 1.6 has been stated [77][67]. This is out of the stated working range for this work and 

therefore secondary nucleation is not found to be present in this system and will not be 

considered further for modelling purposes. 

3.5.2.2 Growth Kinetics 

The different models of growth within gFP were assessed to gauge which model provided the 

best fit for the growth data set being investigated. The growth rate can be described in terms 

of absolute or relative supersaturation following the combination of Equation 3 and Equation 

6. The parameters being assessed with regard to the growth models in question are 

activation energy, growth constant, effective diffusivity correction factor and 

supersaturation order. The effective diffusivity correction factor, α, is only considered when 

estimating parameters within either of the two-step kinetic models via Equation 5 and was 

fitted from the volume diffusion experiment. 

The importance of temperature to the growth of lactose crystals has been described by Wong 

and Hartel [76]. The effect of temperature has been highlighted in terms of the physical 

properties of the system as opposed to the growth kinetics of the system. This work 

highlighted the effect of temperature on the viscosity of the system and the adverse effect 

this may have on the mass transfer aspects of growth as well as the previously highlighted 
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impacts of mutarotation. Both of these temperature effects have been accounted for within 

the basic model equations depicting the state of the system. The other key aspects 

highlighted within the relationship between temperature and growth rate include 

consideration of the translation mobility of lactose and the presence of crystal surface 

distortions. As the literature does not highlight the importance of temperature dependence 

with respect to the activation energy, the parameter was initially set to zero within Equation 

3 for this work.  

3.5.2.2.1 Concentration Profile Comparisons 

Upon analysing the predicted concentration profiles produced from initial parameter 

estimation runs two key findings were apparent. Firstly, following a volume diffusion 

experiment as outlined in section 3.4.2.2.1, the system was found to be surface integration 

limited with a fitted effective diffusivity value below 0.005. The negligible nature of the 

volume diffusion step in the case of lactose crystallisation is discussed in the literature and 

agrees with the preliminary findings here[60][56][57].  Additionally, the initial fitting of the 

growth kinetics parameters showed a clear dependence for temperature across the tested 

experiments. Therefore, the growth model was investigated in terms of a power law with 

activation energy as a considered variable to allow for the temperature effect on growth rate 

to be incorporated. 

Kinetic Variable Fitted Value St. Dev. 

Ea,g (J/mol) 57329.6 2939.51 

kg (m/s) 19.52 22.41 

So (-) 1.095 0.106 

Table 5 - Fitted kinetic values and the corresponding standard deviation for the developed growth and 

agglomeration model. 



52 
 

The fitted kinetic parameters are displayed in Table 5. Figure 3-8 shows the comparisons 

between the model predicted and the true concentration profiles. The predictions generally 

fit well within the error bars of the experimental data except for plot (b). However, the model 

predictions for the higher supersaturation ratio experiments follow a different trend than the 

Figure 3-8 - Comparison of the experimental concentration profiles and the predictions from the mechanistic 

model. Individual plots labelled as per Table 3. The goodness of fit test for this model showed an adequate fit with 

a χ2 value lower than the calculated critical value with values of 200.95 and 414.8 respectively. 

(a) 
C=35.13 wt% 
S=1.2 

(b) 
C=35.13 wt% 
S=1.4

(c) 
C=29.18 wt% 
S=1.2

(d) 
C=29.18 wt% 
S=1.4

(e) 
C=23.84 wt% 
S=1.4
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experimental results. The experimental results show an exponential decay with respect to 

concentration and time which is to be expected following the crystallisation of solute 

material out from the solution. However, the predicted results follow a very gentle right-

hand side bell curve which is particularly clear from plot b. The presence of this suggests an 

inaccuracy of the model being built. To assess the potential causes for this inaccuracy a look 

into the PSD predictions is needed. This suggests more work is needed to improve the model 

going forward. 

The slight difference in the slopes of the predicted and experimental trends is minimal within 

the time frame of these experiments with a maximum range of around 1 wt%. However, as 

the trends are moving away from each other at the end of the experiment it is important to 

note that these errors increase over time and could lead to significant errors for longer 

growth experiments. Secondly, it is also important to notice that the predicted trends follow 

a more linear trend than the exponential decay seen in all the experiments to different 

degrees. These differing trends also fall within the error bars of the prediction under the time 

restraint of these experiments but may lead to errors over the course of longer experiments.  

3.5.2.2.2 Particle size analysis 

Table 6 – Summary table of the particle sizing based upon the experimentally obtained laser diffraction results 

following the use of ultrasound (US). Measurements for recovered experimental material are labelled as outlined 

in Table 3.  

Experiment  (a) (b)  (c)  (d)  (e) seed 

D10 (µm) 4.01 4.67 1.96 2.18 1.8 1.48 

D50 (µm) 12 12.3 8.08 8.7 7.62 4.54 

D90 (µm) 23.5 23 16.7 17.2 14.6 9.41 
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 A final step to corroborate the growth model is the comparison between particle size 

prediction and the true PSD obtained via laser diffraction. As previously stated, the size of 

the seed used is 5 µm. 

Focusing on the experimentally recovered results displayed within Figure 3-9 and Table 6, 

the effects of growth can be seen across the tested conditions. Overall, the measured growth 

of crystal size displayed is small but considering the mass and number of crystals input to the 

system as seeds the growth experienced is relatively substantial. With a few exceptions 

where supersaturation has affected the crystal size recovered, Figure 3-9 shows a trend of 

greater concentration and temperature producing larger particles. The relationship between 

increasing concentration and subsequently increasing PSD is well understood as there is 

more material available for incorporation within the seed particles. The effect of an 

increasing temperature could also be linked to the increase in recovered particle size directly 

by the increase of growth rate through the exponential term within Equation 3. 

Across all the recovered PSD distributions there is the presence of a second minor peak 

consistent with the presence of fines. No significant change in particle count was seen from 

the FBRM results and therefore no nucleation is thought to have taken place. There is also 

the consideration of the presence of fines in the seeding material as can be seen from the 

laser diffraction results of the seed material. This could alter the growth rate of the material 

as there is a substantial increase in the surface area considering the smaller particle sizes. 

Again, this is something that needs more investigation, especially upon analysing the current 

prediction capabilities of this model for particle size. 
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Comparing the results displayed in Figure 3-9 and Table 6 for experiments (a) and (b) as well 

as (c) and (d) allows the effect of supersaturation on growth rate to be analysed. The 

comparison of these PSD plots shows supersaturation to have a minimal effect on particle 

size. However, the size quantiles displayed in Table 6 shows that increased supersaturation 

Figure 3-9 – Laser diffraction size analysis results depicting the comparison of recovered experimental material 

and seeding material as well as the resulting predictions from the current growth-only mechanistic model within 

gFP. Black – seed material, Blue – experimental recovery, Green – PSD model predictions. Plots labelled as per 

Table 3. 

(a) 
C=35.13 wt% 
S=1.2 

(b) 
C=35.13 wt% 
S=1.4 

(c) 
C=29.18 wt% 
S=1.2 

(d) 
C=29.18 wt% 
S=1.4 

(e) 
C=23.84 wt% 
S=1.4 
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levels do have positive effect on the PSD of the recovered material. This increase in particle 

size can be explained due to the increased driving force of the growth mechanism under 

larger supersaturation ratios.  

The predictions are considerably underestimating the size of crystals produced under the 

specified experimental conditions. When comparing the predicted crystal sizes and the seed 

material there seems to be a narrowing of the distribution and some removal of the tail 

discussed previously. This suggests the tail of the left-hand side of the seed distribution is 

experiencing stronger growth effects than the larger particles. This could be due to the larger 

surface area of these particles being more susceptible to growth than their larger 

counterparts. This however is not in agreement with the measured PSD and as such the 

growth model is inadequately representing the growth processes occurring experimentally.  

The reduced growth seen could be linked to the slight differences within the concentration 

profiles discussed previously. The deviation of particle size prediction within the model from 

the true PSD is an important issue that could have knock-on effects within the simulation. As 

the model currently stands there is a need for further development to mitigate the errors 

producing the unfavourable concentration profile and PSD predictions. 

Due to the consistent under-prediction of particle size by the current growth-only model, it 

was decided to perform SEM on the recovered samples. This analysis provided more 

information about the produced particulate material. As can be seen in Figure 3-10 the 

material from the growth experiments is heavily agglomerated across all tested conditions. 

Agglomeration was not considered during the initial population balance modelling of these 

experiments however provides a likely explanation for the consistent under-sizing by the 
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current growth-only model. As a consequence, the inclusion of the agglomeration kernel 

within gFP to model this set of experiments was decided. 

3.5.2.3 Agglomeration Kinetics 

Kinetic Variable Fitted Value St. Dev. 

Ea,g (J/mol) 55718.1 2783.7 

kg (m/s) 24.77 27.37 

So (-) 1.186 0.107 

A50 (N/m) 0.00187 1.34E-4 

Table 7 - Fitted kinetic values and the corresponding standard deviation for the developed growth and 

agglomeration model. 

(a) 
C=35.13 wt% 
S=1.2 

(b) 
C=35.13 wt% 
S=1.4 

(a) 
C=29.18 wt% 
S=1.2 

(a) 
C=29.18 wt% 
S=1.4 

(a) 
C=23.84 wt% 
S=1.4 

Figure 3-10 Scanning electron microscope (SEM) images of the recovered material from growth investigation experiments. 

Plots labelled as per Table 3. 
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Estimation of the Mumtaz number has been computed using the following final particle size 

quantiles: D10, D50 and D90. The constant variance model for D10 and D90 were set to 3μm 

and D50 only 1μm to allow for focussed fitting of the D50 dataset. The growth kinetics were 

Figure 3-11 - Comparison of the experimental concentration profiles and the predictions from the growth and 

agglomeration mechanistic model. Individual plots labelled as per Table 3. The goodness of fit results also suggests 

an acceptable model with overall values of 258.4 and 448.7 for χ2 and χ2
critical, respectively. More comparably, the 

concentration-based goodness of fit test resulted in χ2 value of 106.2 compared to a χ2
critical value of 413.7. 

(a) 
C=35.13 wt% 
S=1.2 

(b) 
C=35.13 wt% 
S=1.4 

(c) 
C=29.18 wt% 
S=1.2 

(d) 
C=29.18 wt% 
S=1.4 

(e) 
C=23.84 wt% 
S=1.4 
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initially fixed as per the fitting of the growth-only model. The growth parameters were then 

subsequently fitted alongside the A50 to allow for improved fitting of the experimental data. 

The current growth-only model built from the growth experiments has been built solely by 

fitting concentration profiles while estimating only the unknown growth parameters. As 

such, the growth parameters have been fitted assuming growth upon the supplied seed PSD. 

With agglomeration now confirmed to be present within this crystallisation system, the sizes 

modelled during the fitting of the growth terms will have been continually under-predicted. 

Figure 3-12 Laser diffraction size analysis results depicting the comparison of recovered material and seeding 

material as well as the resulting predictions from the developed model. Plots labelled as per Table 3. 

(a) 
C=35.13 wt%  
S=1.2 

(b) 
C=35.13 wt% 
 S=1.4 

(c) 
C=29.18 wt%  
S=1.2 

(d) 
C=29.18 wt%  
S=1.4 

(e) 
C=23.84 wt% 
 S=1.4 
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The expected change in concentration during an isothermal seeded desupersaturation 

experiment would be minimal as the amount of solute needed to bridge the agglomerated 

particles is negligible. However, the increase in particle size due to agglomeration through 

time subsequently results in a reduction in the surface area available for growth to take place. 

This reduction in surface area consequently results in a smaller rate of change in 

concentration. Therefore, it was necessary to refit the growth kinetics following the inclusion 

of agglomeration. The prediction of concentration profiles and PSD can be seen in Figure 3-11 

and Figure 3-12 respectively. 

The concentration profile predictions have shown a slight improvement upon the predictions 

from the growth-only model. The presence of the RHS bell curve trends has been removed. 

However, the trends are still linear as opposed to the exponential decay shown by the 

experimental results. Overall, the inclusion of the agglomeration term has improved the 

model’s capability to simulate the experiments more accurately. The goodness of fit test, 

performed as part of the parameter estimation, showed an acceptable fit with χ2 value lower 

than χ2
critical. χ2 values of 258.4 and 200.9 for the growth-agglomeration model and previously 

discussed growth-only model suggest minimal improvement. However, a direct comparison 

of the concentration-based statistics of the growth-agglomeration model and the growth-

only model shows the model's improved ability to predict concentration for these 

experiments by a significantly smaller χ2 value of 106.2 compared to 200.9. This suggests the 

prediction capability of the PSD from the growth-agglomeration model could be a source of 

error. 

The agglomeration kernel was fit using quantile sizes D10, D50 and D90. This was shown to 

produce reasonably accurate D50 predictions, but the tail seen in the measured PSD was lost 

during the simulated experiments. As such, additional quantiles were added to try to improve 
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the prediction of the overall shape as opposed to the individual quantiles. The seed PSD was 

also input as a full PSD direct from the laser diffraction analysis to improve the representation 

of the system and its prediction capability. As can be seen in Figure 3-12, the tail of the seed 

is lost during the simulated crystallisation process, unlike the true experiments. The tail 

however is overly dominant in the growth-only model's predictions. As such, the growth and 

agglomeration model's poor fit of the tail of the PSD is noted as a limitation for the model 

going forward. 

 Global Systems Analysis 

 Uncertainty Analysis - Fitted Parameters 

The acceptability of the fitted parameters is tested using the global systems analysis entity 

within gFP. In the case of this model, the covariance of the fitted parameters is inputted in 

terms of a multivariance model utilising the statistical outputs from the parameter 

estimation.  The covariance calculated between the kinetic parameters is input as the bounds 

for the uncertainty analysis and tested across the two selected outputs of interest: average 

particle size, D4,3 and crystal mass recovery.  

The uncertainty in the fitting of the Mumtaz number was found to have no discernible effect 

on either crystal mass recovery or D4,3. However, the fitted growth kinetics were found to 

have a prominent effect on the recorded outputs of the system as can be seen in Figure 3-13. 

The uncertainty for the growth rate constant is shown to have an adverse effect on the 

process outputs. The covariance relationship between the growth rate constant and 

activation energy is shown in Plot C and is limited by the positive confidence ellipsoid 

extremes produced from the model validation within gFP. The variation of the activation 

energy and growth rate constant are shown to have no direct relationship to average particle 
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size.  The relationship between the growth rate constant and crystal mass recovery can be 

seen in Plot A. The maximal trend is shown around the fitted value of 24.77 m/s. However, 

the resulting crystal mass recovery values show a broad distribution. The broadness of the 

resulting crystal mass recoveries was shown to be directly linked to supersaturation order 

with lower values producing higher yield predictions. This trend is mirrored in the prediction 

of average particle size, D4,3. The positive trend between particle size and yield is shown in 

Plot B to be directly linked with the supersaturation order. The probability of the variation of 

supersaturation order is itself rather low and was found to satisfy the t-test for the 95% 

confidence interval, unlike the growth rate constant. Suggesting that although the variance 

of the supersaturation order is shown to have the most effect on the process outputs of 

interest the fitted parameter is still considered to be fitted with statistical accuracy. 

Figure 3-13 - Scatter plots depicting the uncertainty analysis and covariance of chosen fitted kinetic parameters 

of the developed model. Plot A and B vary by colour with increasing supersaturation from blue to yellow. Plot C 

varies with colour for increasing average particle size from blue to yellow. 

Plot (B) Plot (C) 

Plot (A) 
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 Sensitivity Analysis - Process Conditions  

The process conditions of interest, temperature, composition of solution and seed mass, are 

varied within this sensitivity analysis to investigate the importance of these conditions on the 

process outputs of interest. The concentration and temperature are input as a multivariate 

enumerated set to incorporate the mass fraction of all components coinciding with the 

mutarotation equilibrium at the given temperatures. The positive trend between increasing 

temperature and both the average particle size and crystal mass recovery can be seen in 

Figure 3-14 Plot A. The broadness of the plotted data is due to the nature of the enumerated 

dataset between temperature and concentration. The range produced for both particle size 

and crystal mass recovery are seen to be very large when varying the process conditions.  

Plot B shows the effect of increasing the concentration of alpha-lactose in the solution on the 

process outputs. Figure 3-14 shows the positive trend of both concentration and 

temperature with yield and average particle size. The increase in temperature would 

inherently increase the growth rate through Equation 3 and increasing the concentration 

supplies the system with more material to be crystallised out. Therefore, the increase in 

temperature or concentration subsequently leads to an increase in both yield and D4,3. 

Figure 3-14 - Scatter plots depicting the uncertainty analysis of process outputs predicted upon the variation of 

the process conditions. Plot A and B vary by colour with increasing crystal mass recovery from blue to yellow.  

Plot (A) Plot (B) 
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Interestingly, there was no trend seen for increasing the mass of seed supplied to the system. 

An Increase in the mass of the seed would be expected to affect the system in two ways: 

increase crystal mass and reduce D4,3. Firstly, the increase in crystal mass would be due to 

the increase in initial crystal mass within the system. Secondly, the D4,3 will be reduced due 

to the mass of solute available for crystallisation being spread across more individual 

particulates resulting in a small extent of growth per particle. 

 Optimisation 

The global systems analysis has allowed the investigation of the extremes possible for this 

system based upon manipulation of the process conditions. The outputs from Figure 3-15 act 

as the initial guide for the optimisation of the process in terms of; reducing batch time, 

increasing crystal mass recovery and particle size. The process being investigated here was 

specified as a controlled cooling profile with the key points of interest focusing upon initial 

temperature, cooling rate and batch time. As can be seen in Figure 3-15, slower and longer 

cooling paths lead to an increase in particle size and yield. This result is in itself quite intuitive 

in that a longer batch time with a more gradual cool will allow for more time for the growth 

of the seed particles. Additionally, Plot A and Plot C also show the effect of initial temperature 

on particle size and crystal mass recovery, respectively. These show a broad but slightly 

positive tendency of higher initial temperature relationship to both D4,3 and crystal mass 

recovery. This result is likely due to the increased growth rate seen at higher temperatures. 

It is clear that cooling rate and batch time have a higher level of influence on process outputs 

than initial temperature.  

Due to the findings from the attainment plots in Figure 3-15, the focus of the optimisation of 

a controlled cooling profile will be focused upon in the form of initial temperature, cooling 
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rates and simulation duration based on initial suggestions shown here. It was decided to 

include hold periods within the cooling profile to increase yield. These holds also allow the 

supersaturation levels reached within the system to remain below the secondary nucleation 

threshold corresponding to a ratio of 1.6, as discussed previously[77]. For simplicity, the 

system was limited to three hold periods; an initial hold following seeding, an intermediate 

hold and a final hold at the end. The duration of each section of the cooling pathway is open 

to optimisation as well as the initial temperature and the cooling rate for the cooling section. 

 Optimising Crystal Mass Recovery 

The initial objective for the optimisation was to increase the crystal mass recovered from the 

system. The optimised time intervals and cooling rates can be seen in Table 8. Additionally, 

Figure 3-15 - Contour plots showing the effects of selected process conditions on the highlighted process outputs 

predicted from the developed model. Plot A and B vary by colour with increasing average particle size from blue 

to yellow. Plot C and D varies with colour for increasing crystal mass recovery from blue to yellow. 

Plot (A) Plot (B) 

Plot (C) Plot (D) 
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the outputs from the optimised process can be seen in Figure 3-16. The maximum crystal 

mass recovered experimentally was 6.58g including the seed mass. The optimised controlled 

cooling simulated process is predicted to produce 9.6g which is a substantial increase in 

recovery of over 45%. It should be noted that a controlled cooling experiment is expected to 

produce a higher yield than an isothermal experiment due to the lower final saturated 

concentration capable of being reached. 

The optimised condition is predicted to produce larger particulates than the experimental 

results. It should be noted here that the particle size prediction of the resulting particles is a 

Variable Final Value (s) Cooling rate (K/min) Initial Temperature (°C) 

Time interval # 1 3600.0 0.000 40.00 

Time interval # 2 15174.3 -0.0198 40.00 

Time interval # 3 4660.5 0.000 35.00 

Time interval # 4 14949.9 -0.0265 35.00 

Time interval # 5 6615.3 0.000 28.39 

Table 8 - Table displaying the optimised conditions for the maximising of the crystal mass recovery. 

Figure 3-16 - Plots depicting the optimised cooling pathway alongside the resulting concentration profile and 

subsequent end PSD. 

Plot (A) Plot (B) 
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known limitation of the model as seen by the predictions in Figure 3-12. More specifically, 

the measured PSD would be expected to be much broader and contain a small peak resulting 

from fines in the seeding material that is not captured in the narrow predicted PSD. As such, 

the confidence in the optimised process to produce material following the unimodal PSD 

shown in Figure 3-16 is rather low and is considered more of a guide than an expected 

outcome if this process was tested experimentally. 

 Optimising Average Particle Size 

Variable Final Value (s) Cooling rate (K/min)  Temperature (°C) 

Time interval # 1 3600 0.00 41.28 

Time interval # 2 14511.3 -0.0129 41.28 

Time interval # 3 7141.89 0 38.15 

Time interval # 4 16146.8 -0.03 38.15 

Time interval # 5 1800 0.00 30.00 

A secondary interest in optimising the cooling crystallisation of lactose is to increase the 

growth of the seed material as the growth across all conditions was very small as seen in 

Table 9- Table displaying the optimised conditions for the maximising of the average particle size. 

Figure 3-17 - Plots depicting the optimised cooling pathway alongside the resulting concentration profile and 

subsequent end PSD. 

Plot (A) Plot (B) 
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Table 6. Comparing Plot A of both Figure 3-16 and Figure 3-17, it is clear an initially slower 

cooling period is seen when optimising for particle size. This initial slower cooling period 

allows for the particles to grow in a period of higher growth rate due to the increased 

temperature. Additionally, the intermediate hold is at a higher temperature of 38.15 °C 

compared to 34.95 °C which again allows the particles more time to experience the increased 

growth rate from a higher temperature environment. Again, the particle size is a known 

limitation of the model and the practice of optimising for D4,3 is viewed as a guide at this 

stage. Table 6 shows the particle size quantiles recovered experimentally with a maximum 

D50 of 12.3 μm which is an order of magnitude smaller than the predicted value for the 

optimised process. This highlights the potential for a large increase in particle size obtainable 

from the controlled cooling process compared to the isothermal experiments performed. 

 Optimising Batch Time 

Following the optimisation of the possible particle sizes and crystal mass recovery of the 

system, an optimisation focusing on reducing batch time while producing similar process 

outputs was attempted. From Plot A in Figure 3-18, it can be seen that a similarly slow initial 

cooling period has been selected albeit to a lower intermediate temperature hold. As 

Table 10 - Table displaying the optimised conditions for minimising the required batch time. 

Variable Final Value (s) Cooling rate (K/min) Initial Temperature (°C) 

Time interval # 1 2430 0.00 41.46 

Time interval # 2 22000 -0.012 41.46 

Time interval # 3 7200 0.00 37.03 

Time interval # 4 7000 -0.06 37.03 

Time interval # 5 1800 0.00 30.00 
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discussed previously, this slower cooling allows for larger growth to be seen as well as a larger 

recovery of crystal mass. The subsequent sharper cooling stage suggests recovery at the 

lower temperatures has not been deemed efficient through the optimisation process. This 

preference for slightly higher final temperatures is consistent across all of the optimisations 

and also aligns with the findings of Visser et al., which show a lower recovery of lactose at 

lower temperatures due to the shift in the anomer equilibrium [68]. As can be seen from the 

data in Table 11, the optimisation of the batch time has produced a very comparable D4,3 of 

30.53 μm compared to 31.68 μm from the optimised process for particle size. It has also 

maintained a strong crystal mass recovery of 10.00g. 

 Table 11 - Results from the optimisation of the process by means of minimising the batch time while maintaining 

the desired particle size and crystal mass recovery. 

 Conclusion 

In this chapter, the development of a mechanistic model of the lactose crystallisation system 

was developed. This model is capable of handling the mutarotation kinetics of lactose when 

Batch time (hr) Average Particle Size  (μm) Crystal Mass recovery (g) 

11.23 30.53 10.00 

Figure 3-18 - Plots depicting the optimised cooling pathway alongside the resulting concentration profile and 

subsequent end PSD. 

Plot (A) Plot (B) 
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in aqueous solution and also specifies the lactose solubility in terms of the mutarotation 

equilibrium and a correction factor needed to account for the inhibiting effect of the beta-

lactose presence in ALM crystallisation. The resulting model was found to be statistically 

sound through a goodness of fit test. However, the PSD predictions were found to be a known 

limitation of the model in that the full PSD shape was not captured through simulations. The 

parameter estimation attempted within this work has allowed for the separation of the 

individual mechanism of crystallisation taking place for the purpose of fitting kinetic 

parameters. This ultimately highlighted agglomeration and growth as the defining 

mechanisms seen experimentally within the working range of interest. 

Following the mechanistic model development, the model variance was tested by a global 

systems analysis on the uncertainties of the fitted kinetic parameters. This highlighted the 

effects of variance of parameters, particularly kg and So, on process outputs. The model was 

then used to assess how the process conditions affected the process outputs of interest. This 

highlighted the strong relationship of concentration with both crystal mass recovery and 

particle size. Finally, the model allowed for the assessment of attainable regions through 

contour plots in Figure 3-15 by simulating a large number of processes to assess conditions’ 

effect on resulting process outputs. The model has allowed the optimisation of the system 

for three main goals without the need for further experimental work: crystal mass recovery, 

particle size and batch time. The optimisation was focused upon a seeded controlled cooling 

process and was found capable of increasing the mass recovery from the isothermal 

experiments of 6.58g to 10g. Similarly, the particle size was also predicted to increase. 

However, it should be again noted that the prediction of particle size is a known limitation of 

the model, and the true shape of the PSD is not expected to be well predicted. Finally, the 

batch time needed to produce comparable results to the two previous optimisations was 
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undertaken. This resulted in an 11.23 hr batch time with crystal mass again higher than seen 

experimentally at 10g with a D4,3 of 30 μm. The ability to utilise the model to optimise the 

crystallisation process is the defining advantage of developing the mechanistic model of the 

lactose cooling process. 

This work hopes to firstly show the process to adequately model the crystallisation system 

from experimental work and secondly show the usefulness of having a mechanistic model of 

a process of interest. The model itself has allowed the testing of the system under different 

process conditions to gauge the relationship between process conditions and their effects on 

the process in the form of yield and particle size. 

  



72 
 

4 Mechanistic Model Development – Simultaneous Parameter 

Estimation of an Industrial API 

 Introduction 

This work aims to use a simultaneous parameter estimation approach to build a mechanistic 

model of the cooling crystallisation of an API supplied by AstraZeneca (AZ). This work looks 

to utilise data from previously completed cooling crystallisation experiments to increase the 

understanding of the system and its kinetics. The utilisation of readily available experimental 

data shows the ease with which building mechanistic models as part of the development 

stage of new isolation processes could be undertaken. A key aspect of this work is to highlight 

the benefits of developing a mechanistic model of processes of interest. Primarily, the 

utilisation of the model for optimisation purposes in place of copious experiments. The 

optimisation of this process is focused on increasing the crystal mass recovery by altering the 

cooling profile and final temperature. The size of the particles produced is not the main focus 

of this work as the produced material is to be dry-milled to obtain the required particle size 

distribution. 

The crystallisation system modelled within this work is a cooling crystallisation of a 

proprietary compound, designated for the purposes of this work as Compound-X, from 

ethanol. The system is known to produce agglomerated plate particles. As such, the focus is 

for a 1D population balance model of the system to be built that incorporates growth and 

agglomeration kinetics. The deployment of the model to investigate the optimisation 

possibilities of this seeded controlled cooling process was intended to increase the recovery 

of the product by optimising the cooling profile. 
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 Simultaneous Parameter Estimation 

The description of multiple crystallisation mechanisms by the fitting of the unknown kinetic 

parameters is the basis for all mechanistic model development. As discussed previously, 

there are a number of methods for defining these mechanisms. Chapter 3 shows a sequential 

method of defining the different crystallisation mechanisms that make up the overall 

process. This method requires designated experimental work to use the process conditions 

as a method to decouple the different mechanisms. This work is looking to utilise readily 

available experimental data from experiments performed during the development stages of 

the process. As such, the separation of the individual mechanisms for fitting purposes is not 

directly possible with the experimental data available. Therefore, the fitting of the different 

mechanisms is completed concurrently not sequentially. 

Due to the mechanistic modelling being performed utilising pre-existing data and not a set 

of designed experiments for the purpose of modelling, the different crystallisation 

mechanisms are occurring simultaneously. As such, the fitting of the individual mechanisms 

is interconnected and needs to be decoupled to avoid the correlation of parameters to 

deliver an unreliable model. The supplied experimental data is from a series of seeded 

crystallisation experiments with differing cooling profiles. The mechanisms of interest have 

been highlighted as growth and agglomeration. These mechanisms are inherently linked, 

however, the consumption of solute molecules for the bridging of particulates to form an 

agglomerate is negligible. Therefore, concentration profiles can be singularly used as the 

basis for fitting growth kinetics and subsequently, the agglomeration model can be fitted 

from the PSD data of the recovered crystalline material. 
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 Model Basis  

It is important when beginning the modelling process to incorporate enough detail in the 

model background to capture the representative physical phenomena to describe the system 

being investigated. As such, physical properties and solubility relationships are necessary to 

specify the behaviour of the system. Therefore, prior to assessing the crystallisation kinetics 

of the system, some expressions were included to improve the model's representation of the 

true experimental conditions. This required some custom modelling within gFP to allow 

specified relationships for solubility and physical properties of the solvent to be incorporated. 

Additionally, the model is discretised following a logarithmic scale with 50 grid points with a 

minimum and maximum crystal size specified as 0.1 µm to 1500 µm, respectively. 

4.1.2.1 Custom Modelling Solubility 

The solubility of Compound-X in ethanol was investigated previously by AZ and recorded in 

terms of mass concentration. The calibration of the UV spectra needed for concentration 

monitoring was not done considering the change in volume due to changes in density with 

temperature whereas within gFP this would be accounted for. Therefore, the solubility data 

was converted to mass fraction as this negates the issue with changing density. The solubility 

y= 1.1689E-07e
4.1409E-02x

 
R² = 9.9882E-01 

Figure 4-1 - Solubility of Compound-X in ethanol in mass fraction(kg solute/kg solvent) fitted as an exponential. 

Red – solubility from exponential fit. Blue – Experimental solubility data supplied by AZ. 
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was input as an exponential fit with respect to absolute temperature as can be seen in Figure 

4-1. The exponential fit was selected to allow for extrapolation to lower temperatures for 

use during optimisation calculations. 

4.1.2.2 Custom Modelling Physical Properties 

Some physical property expressions were input to the basis of the model to capture their 

variation with temperature. For this purpose, density and dynamic viscosity were input as 

custom fits within the model. Data for both terms were found in the literature and 

temperature polynomials fit were defined as shown in Figure 4-2[16]. 

4.1.2.3   Fitting Seed Size Parameters  

The particle size of the seed used in the experiment has been recorded in terms of PSD 

quantiles. The availability of PSD quantiles for input into the mechanistic model is limited to 

three quantile sizes: D10, D50, and D90. Within gFP, it is possible to input seed size data in 

the form of a full distribution or in terms of location parameters. As the full distribution is 

not available it was decided to try to fit the quantile data in terms of location parameters and 

Figure 4-2 - Physical Property temperature polynomials fitted for custom modelling. Red – Polynomial fitted for 

viscosity data from literature. Blue- Polynomial fitted to density data from literature. 

y =-1.8177E-03x
2
 + 2.5347E-01x + 8.7209E+02 

R² = 9.9977E-01 

y = 1.4807E-07x
2
 - 1.0773E-04x + 2.0038E-02 

R² = 9.9973E-01 
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their standard deviation. This will allow the software to utilise size data in the way that it was 

designed to. For the fitting of these terms, the flowsheet shown in Figure 4-3 is used as the 

basis for model validation. In this case, the known experimental quantiles are input and 

suitable initial guesses for the standard deviation and location parameter, which describe the 

centre of the distribution are selected. The model validation then allows for the iteration 

around the location parameter and standard deviation for the best fit of the quantile size 

data. The resulting best fit found is displayed in  Table 12 and is used directly within the 

flowsheets used for building the mechanistic model. It should be noted that the standard 

deviation and location parameters of the seed material were refit following the fitting of any 

crystallisation mechanism based on PSD to improve the resulting fit. 

Parameter Measured Values (μm) Predicted values (μm) 

D10 9.35 10.9 

D50 31.1 29.9 

D90 81.8 82.0 

Location Parameter N/A 29.9 

Standard Deviation N/A 37.6 

 Table 12 - Model validation results for fitting seed particle size data. Goodness of fit test produced acceptable 

results with a lower calculated χ2 of 0.97 compared to a critical value of 3.8.  

Figure 4-3 - gFP flowsheet used for fitting size parameter for seed material. 
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 Methods 

 Controlled Cooling Experiments 

A set of controlled cooling experiments that had previously been completed for this system 

were made available to build the mechanistic model. The data covers the working range 

investigated by AZ as part of their development of the process. The differences across the 

experiments are limited to different cooling profiles and two different initial concentrations. 

The crystallisation mechanisms the material is known to experience during these 

experiments are limited to secondary nucleation, agglomeration, and growth based on 

background information shared for the purpose of this work. The controlled cooling 

experiments were monitored in situ using a UV probe and an FBRM. This allowed 

concentration to be monitored continuously alongside the particle count. The recorded 

FBRM data highlighted only one experiment showing signs of secondary nucleation. This 

experiment tested the fastest cooling rate within this set of experiments of 0.2 K/min. As 

there was only one experiment displaying this crystallisation mechanism there was therefore 

not enough data to fit the secondary nucleation kinetics with any reliability. As such, this 

Figure 4-4 - gFP flowsheet used for parameter estimation of systems crystallisation kinetics. 
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experiment was removed from the model development dataset and the estimation of 

kinetics was limited to growth and agglomeration only. 

The seeded controlled cooling experiments were input into gFP following the flowsheet 

shown in Figure 4-4 with the point of seeding indicating the start of the simulation. The fitting 

of the kinetics parameters was achieved by the use of two forms of data: concentration 

profiles and PSD quantiles. As discussed previously, the primary data used to fit the growth 

kinetics of the system were the concentration profiles for each experiment. Additionally, the 

particle size information for the seed material in the form of size quantiles, D10, D50 and 

D90, was supplied to the flowsheet to ensure an accurate estimate of the surface area over 

which growth takes place. Following the preliminary fitting of the growth mechanisms, the 

PSD quantiles of the recovered experimental material were used for the fitting of the 

agglomeration term. Following model development, the model was assessed and utilised for 

optimisation purposes following the methods described previously in section 3.4.4-3.4.6.  

 Results 

Following the customisation for the basis of the model described above, the experimental 

data was formatted for input into gFP. This formatting requires the truncation of the 

concentration profiles from the point of seeding. The truncation of data is simply to remove 

data points prior to seeding as there was no crystallisation taking place at this stage. The 

concentration profiles are then sampled to reduce the data points inputted to gFP to reduce 

the computational load. The formatted experimental data was supplied to fit the kinetic 

parameters of the specified crystallisation mechanism and model validation was begun. 

 Growth Kinetics 
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Due to the limitation of the experimental data available and the lack of any volume diffusion 

experiments fitting a two-step growth model was not appropriate [30]. Therefore, the 

modelling of the growth mechanism was fitted following a power law model as shown 

previously and below (Equation 3).  

𝐺𝑆𝑢𝑟𝑓(𝐿) = 𝑘𝑔𝑒
−𝐸𝐴,𝑔
𝑅𝑇 𝑆𝑔 

4.2.1.1 Concentration Profile Comparisons 

4.2.1.1.1  Temperature Independent Growth Rate 

 For the parameter estimation of the data around this model, the activation energy was set 

to 0 kJ/mol to simplify the model by assuming no temperature dependence on the growth 

rate. The concentration profiles from the experimental data were used as the basis for fitting 

the unknown parameters. The resulting fits from the parameter estimation can be seen in 

Table 13.  

As can be seen in Figure 4-5, the predicted concentration deviates consistently from the 

measured values. This is particularly evident at lower concentrations. At the lower 

concentrations and consequently lower temperatures, the growth rate predicted seems to 

be overestimated with the concentration decrease far sharper than the measured values. 

Subsequently, the final concentration is consistently under-predicted which is of particular 

Parameter Unit Value St.dev 

Growth Rate Constant m/s 2.206e-5 2.09e-6 

Supersaturation Order - 1.951 0.0193 

Location Parameter μm 29.9 1.62 

Standard Deviation μm 37.6 2.52 

Table 13 - Fitted crystallisation parameters from the parameter estimation. 
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concern for this work as the aim of the resulting model is to be used as the basis for 

optimising crystal mass recovery. The concentration predictions also show an under-

prediction of the rate of decrease in concentration at the higher temperatures at the 

beginning of the processes. This trend is particularly evident in experiment E21-004890. This 

E21-003303 

E21-004636 

E21-004028 

E21-004187 

E21-005506 E21-004890 

Figure 4-5 - Concentration profile prediction comparisons between measured values and model predictions for a 

number of experiments. Blue – measured concentrations with an error of 0.004 kg/kg. Red -  predictions of 

concentration from the mechanistic model. The goodness of fit test showed a lack of fit for the current model 

with χ2 higher than the critical value with value of 2754.45 and 793.97 respectively. 
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experiment particularly highlights that at higher temperatures the growth rate predicted is 

too slow whereas at a lower temperature, the rate is seen to be too fast. This shows the 

significance of temperature in the lack of fit of the predictions at points within the 

experiments. The current growth model has no dependence on temperature as the activation 

energy is set to zero. Therefore, this apparent dependence of temperature in the growth rate 

seen experimentally has not yet been captured within the current model. From this, it was 

decided to include activation energy within the parameter estimation to account for the 

evident temperature dependence of this system. The inclusion of the exponential term of 

Equation 3 will produce a lower growth rate at lower temperature and vice versa and should 

allow for a more representative growth model to be produced. 

4.2.1.1.2 Temperature Dependent Growth Rate 

The inclusion of activation energy as an unknown within the parameter estimation allowed 

for the temperature dependence of this system to be accounted for. The fitted parameters  

 with the inclusion of the activation energy can be seen in Table 14. As can be seen in Figure 

4-6, the fits are greatly improved. In particular, the overshoot of under-predicting the final 

concentration has been removed. Similarly, the over-prediction of concentration at the early 

stages of the process has been reduced. However, examples of this over-prediction can still 

Parameter Unit Value St Dev 

Growth Rate Constant m/s 10036.7 5616.35 

Activation Energy J/mol 55349.3 1225.18 

Supersaturation order - 1.768 0.0885 

Location parameter μm 29.943 - 

Standard deviation μm 37.584 - 

Table 14 - Fitted crystallisation parameters from parameter estimation. 
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be seen in experiments E21-004187 and E21-005506. At this stage, the fit of the growth 

model was considered acceptable in terms of the concentration profile and the fitting of the  

PSD of the final product was focused on. 

Figure 4-6 -  Concentration profile prediction comparisons. Blue – measured concentrations with an error of 0.004 

kg/kg. Red -  predictions of concentration from mechanistic model. The goodness of fit test showed a much 

improved fit for this model with χ2lower than the critical value with value of 631.8 and 799.2 respectively. 

 

E21-003303 

E21-004636  

E21-004028 

E21-004187 

E21-005506 E21-004890 
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4.2.1.2 Particle Size Prediction Comparisons  

Exp. 

Quantiles of PSD (μm) 

D10 D50 D90 

Measured Predicted Measured Predicted Measured Predicted 

E21-003303 52 39.69 193 62.28 367 100.95 

E21-004028 49 39.60 177 62.13 363 100.72 

E21-004187 52 39.46 187 61.95 367 100.50 

E21-004636 N/A 39.78 N/A 62.40 N/A 101.11 

E21-004890 53 39.49 186 61.98 356 100.51 

E21-005006 54 39.60 185 62.14 350 100.75 

Table 15 - PSD Quantile comparisons from model predictions and measured values. 

The full PSD of the recovered material from each experiment is not available for comparison, 

however, the D10, D50 and D90 quantiles are. Table 15 shows the measured quantile data 

alongside the predicted values from the growth-only model. It is clear from the comparisons 

of the quantile data that the growth–only model vastly under-predicts the size of crystals 

produced from the performed experiments. This is particularly true for quantile sizes D50 

and D90. This is unsurprising as the material recovered from these experiments is known to 

be heavily agglomerated. Therefore, consistent under-prediction of particle size from the 

growth-only model highlights the need for the agglomeration term to be included for this 

model to be representative of the system being investigated.  

It should be noted that the size data from the performed experiments is very consistent. 

From the quantile data, there is very little variation in sizes across the experiments. This lack 

of spread in PSD could lead to a limitation in the model for predicting PSD out of this range. 
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 Agglomeration Kinetics 

In order to improve the model’s representation of the system the inclusion of the 

agglomeration term needs to be fitted. Equation 7 describes agglomeration efficiency in 

terms of Mumtaz number. The fitting of the Mumtaz number to experimental data will 

describe the agglomeration mechanism experienced within this system. Within gFP, the 

quantile size data, D10, D50 and D90 were supplied for the fitting of the Mumtaz number.The 

variance for these measurements was set as such to focus the data fitting around the D50 

quantile. 

4.2.2.1 Concentration Profile Comparisons 

When describing agglomeration, the expected effect on concentration is minimal as the 

uptake of solute molecules in the solution required to form the crystalline bridges between 

molecules is very small. However, the inclusion of agglomeration within the model will have 

a significant and continual effect on the size of particles at any given time. This increase in 

particle size from the formation of agglomerates leads to a decrease in the surface area 

available for growth to take place upon. The effect of this decrease in available surface area 

can be seen by comparing Figure 4-6 and Figure 4-7. In some cases, this decrease in the rate 

of concentration depletion has improved the overall fit of the data. For instance, experiments 

E21-004028 and E21-004890 can be seen in the growth–only model predictions to have 

sections that lie on the very outskirts of the error bars of the measured values. The final 

Table 16 - Fitted crystallisation parameters from parameter estimation. 

Parameter Unit Value St Dev 

Mumtaz Number (A50) N/m 0.00457 1.75e-5 

Growth Rate Constant m/s 10047.3 6951.01 

Activation Energy J/mol 53737.8 1692.70 

Supersaturation order - 1.75 0.0098 

Location parameter μm 27.712 50.26 

Standard deviation μm 42.175 163.62 
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model predictions for these experiments lie well within the experimental errors and closely 

follow the shape of the measured concentration profile suggesting a more physically 

representative model has been achieved. 

It should also be noted the end concentration predictions are improved with the inclusion of 

the agglomeration term. A particular improvement in fit is seen for experiment E21-004636. 

E21-003303 

E21-004636 

E21-004028 

E21-004187 

E21-005506 E21-004890  

Figure 4-7 - Concentration profile prediction comparisons. Blue–measured concentrations with an error of 0.004 

kg/kg. Red - predictions of concentration from the mechanistic model. The goodness of fit test showed a much-

improved fit for this model with χ2 lower than the critical value with the value of 475.2 and 801.3 respectively. 
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This was previously predicted outside the acceptable range and now can be seen in Figure 

4-7 to lie just at the outskirts of the error bars. The improvement in predictions has some 

exceptions but is still seen as an overall improvement in the model’s abilities. A highlighted 

experiment with which the predictions are shifted away from the measured values with the 

inclusion of the agglomeration term is E21-004187. The decrease in surface area, in this case, 

has pushed the concentration prediction values higher and at times outside the acceptable 

range. Overall, the shifts in concentration predictions brought on by the inclusion of the 

agglomeration term have shown improvement and are considered acceptable. The overall 

goodness of fit is displayed by the weighted residuals and calculated reference, χ and χ2-

critical respectively. All experiments except E21-004187 are calculated to have smaller χ than 

χ2-critical and therefore pass the null hypothesis. The total χ2 for all the experiments 

combined is found to be 475.2 which is considerably smaller than the total χ2-critical of 

801.267. More directly, the χ2 values of the growth-only and growth-agglomeration models 

of 631.8 and 475.2 show the improved prediction capability of the model by including the 

agglomeration term.   The kinetic parameters fitted from parameter estimation and used to 

define the growth and agglomeration model can be seen in Table 16.  

4.2.2.2 Particle Size Prediction Comparisons  

Table 17 – Quantile size comparisons – shows predicted values for growth and agglomerated model. 

 

Exp. Name 

Quantiles of PSD (μm) 

D10 D50 D90 

Measured Predicted Measured Predicted Measured Predicted 

E21-003303 52 122.96 193 188.55 367 275.29 

E21-004028 49 117.18 177 179.65 363 262.95 

E21-004187 52 115.90 187 177.67 367 260.28 

E21-004636 N/A 123.23 N/A 188.98 N/A 275.98 

E21-004890 53 116.45 186 178.47 356 261.29 

E21-005006 54 116.70 185 178.89 350 261.97 
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The focus for fitting the agglomeration term is the improvement of the PSD predictions as 

the material from these experiments is known to be agglomerated. A comparison between 

the full PSD of the predictions from both the growth-only model and the final growth and 

agglomeration model can be seen in Figure 4-8. As expected, the inclusion of the 

agglomeration term within the model has quite significantly shifted the PSD to larger values. 

E21-003303 

E21-004636 

E21-004028 

E21-004187 

E21-005506 E21-004890 

Figure 4-8 - PSD prediction comparisons between both models. Blue - growth only model PSD predictions. Orange 

-  growth and agglomeration model PSD predictions. 
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A summary of the size data from both models and the true measured values is shown in Table 

17. It is clear from the D10 sizes that the final model is heavily over-predicting this quantile 

with size comparisons over double the true measured value. When comparing the recorded 

values for D90, the inclusion of the agglomerated term has improved the predictions, 

however still significantly undersized compared to the measured values. Finally, the D50 

predictions show much improvement from the growth-only model. The D50 predictions lie 

between a few microns and 10 μm from the measured value across all experiments. This 

accuracy is likely linked to the low variance model input for the D50 dataset and therefore 

the focus of the parameter estimation to fit these data points over the other quantile data. 

Overall, the inclusion of the agglomeration term has improved the size prediction of the 

model, but the broadness of the true PSD is still not being obtained. This is shown by the 

over-prediction of D10 while under-predicting D90.  

The improvement of the size prediction resultant from the inclusion of a suitable 

agglomeration term could be improved further by using more size quantiles to broaden the 

information supplied to parameter estimation. The use of the full PSD for final comparison 

would also aid the fitting of the data as there would be more awareness around the shape of 

the measured PSD. Knowledge of this shape of the distribution in terms of the presence of 

tails could help in the selection of appropriate quantiles to best aid the parameter estimation 

process. Even in light of the limited historical data available to this project, the size 

predictions are known to be a limitation for this model and should be considered for 

improvement at a later stage with additional data. 

 Global Systems Analysis 

 Sensitivity Analysis 
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Following the finalisation of the growth and agglomeration model, the optimisation of the 

cooling profile for the increase in the crystal mass recovery is focused upon. Prior to the 

optimisation, it was necessary to investigate factors of the process that most affect the 

process outputs. At this stage, it was decided beneficial to investigate factors affecting both 

crystal mass recovery and D50. The chosen factors of interest were allowed to vary within 

chosen bounds and the resulting outputs from the process under these conditions were 

recorded. This dataset of factors and ultimate responses allows for trends to be investigated 

and visualised.  

The factor sensitivity table can be seen in Table 18 and highlights the important factors 

affecting the crystal mass and the D50. From Table 18, it is clear the deciding factors for the 

final value of the crystal mass are the initial concentration and the initial mass of saturated 

solution in a lessening order of importance. These factors' influences on the crystal mass are 

quite intuitive in that the more solute present within the solution initially, the more material 

is available to crystallise out. The work of Öner et al [78], discovered the three main factors 

affecting yield for a batch cooling process were: batch time, cooling profile and 

concentration. With the tested system within this work limited to an isothermal experiment 

with a set batch time the initial concentration having this largest effect on process output is 

Factor\Response 
Crystal Mass Size Quantile D50 

1st order total effect 1st order total effect 

Seed loading -0.08061 6.68E-04 -0.01429 0.02817 

T set point -0.08121 2.93E-05 -0.0049 0.03663 

Initial Mass fraction of solute 0.5480 0.6163 0.7788 0.8138 

Initial Mass fraction of ethanol -0.07335 0.01037 -0.03503 0.01364 

Initial mass saturated solution 0.3840 0.4471 0.1110 0.1456 

Table 18 - Factor sensitivity analysis results for different process parameters and their resulting effect on crystal 

mass and particle size in the form of D50. 
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in agreement with Öner et al[78]. The factors found to have the most effect on D50, and in 

turn particle size, are the initial concentration and mass of saturated solution. This 

relationship is again intuitive in that the presence of more solute in the solution allows for 

more growth upon the seed particles. Similarly, Öner et al[78] learned through sensitivity 

analysis on the batch cooling system the three factors most affecting the average particle 

size were: seed size, seed mass and initial concentration. This is in overall agreement with 

the findings of this work except for the seed mass which was found to have a very minimal 

effect within this study. 

The scatter plots seen in Figure 4-9 show the relationship between the previously discussed 

factors and both crystal mass recovery and particle size. As can be seen from Plot A, the initial 

mass fraction of solute shows a positive trend for the crystal mass as well as the particle size 

Figure 4-9 - Sensitivity analysis scatter plots highlighting found trends in factors and process outputs. Colour bars 

trend from blue to yellow denoting the increase of the final particle size in the form of D50. 

Plot A Plot B 

Plot C 
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as would be expected. This positive trend is also seen with regard to the initial mass of 

saturated solution in Plot B. The positive trend for the initial mass of the solution is quite 

intuitive in that more material is available to be crystallised out. Finally, the effect of 

increasing the seed mass surprisingly shows no trend for crystal mass or particle size as 

shown in Plot C. In this case, the lack of a trend between seed mass and crystal mass could 

be due to a lack of varied data supplied when building the mechanistic model. From this 

analysis, the lack of varied seed loading in the supplied experiments is known to have a 

limiting effect on the model. The two defining variables for optimising crystal mass recovery 

and particle size are highlighted in Table 18 and Figure 4-9 as the initial mass fraction of solute 

and the initial mass of the saturated solution. 

 Uncertainty Analysis 

4.3.2.1 Process Conditions 

The effects of variation in process conditions are investigated within this section. The small 

variations in process conditions that could be seen when working experimentally were 

investigated in terms of their effect on the crystallisation outputs.  

Similar to the sensitivity analysis results, the highlighted factor was initial concentration. As 

can be seen in Figure 4-10, the initial concentration shows a negative trend for the span of 

crystal size as well as a positive trend for the D50 and the crystal mass recovery. The increase 

in concentration of around 14% in Plot B leads to an increase in the particle size and the 

crystal mass of 5% as there is more solute in the solution available to crystallise out. This 

increase in particle size leads to a reduction in the span of particle size as the increase in 

particle size is across all particles. However, the span variation is very small only varying from 

81.05 to 81.45% which is consistent with the narrow PSD distribution produced during the 
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parameter estimation in Figure 4-8.The initial mass of the saturated solution showed no 

trend with crystal mass recovery or particle size, however, the direct relationship between 

particle size and crystal mass recovery is clear. This positive relationship is intuitive in that 

the increase in crystal mass recovery is directly linked to the growth of seed material which 

is fundamental in the increase in particle size alongside agglomeration. 

4.3.2.2 Crystallisation Kinetics 

The effect of the uncertainty of the fitted kinetics parameters were investigated in terms of 

their resulting effect on process outputs. The uncertainty of the fitted parameters on process 

outputs: D50 and crystal mass recovery, are shown in Figure 4-11. The investigation of the 

Figure 4-10 - Uncertainty analysis - scatter plots highlighting found trends in process conditions and process 

outputs. Colour bars trend from blue to yellow denoting the increase of the final particle size in the form of D50. 

 

Plot A Plot B 

Plot C 
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uncertainty of the crystallisation kinetics was completed by simulating the process with 

uniform distributions for the kinetic parameters with variations based on the standard 

deviations found during the model validation stage. Across all plots, it is clear the system 

holds reasonably consistent in terms of both crystal mass recovery and D50. Plot A shows a 

broad deviation at lower growth constant values that narrows after following a slow positive 

trend ending with a plateau with respect to crystal mass recovery. The D50 is also shown in 

Plot A to vary directly with the growth rate constant, as would be expected and is shown to 

be directly linked to crystal mass recovery across all subsequent plots. Similarly, in Plot B the 

trend is shown to broaden in line with D50 and has a very minimal negative trend relating to 

supersaturation order and crystal mass recovery. This trend is mirrored in Plot C but relates 

crystal mass to the activation energy. Surprisingly, there is no discernible trend for variation 

Figure 4-11 - Uncertainty analysis - scatter plots highlighting found trends in kinetics parameters and process 

outputs. Colour bars trend from blue to yellow denoting the increase of the final particle size in the form of D50. 

 

Plot A 

Plot D Plot C 

Plot B 
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of the Mumtaz number and can be seen to plot a broad but straight horizontal line in Plot D. 

The broadness of the trends across all tested kinetic parameters suggests more experiments 

included in the model validation could be necessary to improve the robustness of the model 

by reducing the standard deviation of the fitted parameters. 

 Optimisation 

As stated previously, the focus of this work is to use a mechanistic model to aid in the 

optimisation of the cooling profile. The goal of the optimisation of the cooling profile is to 

increase the final mass of crystals recovered. A number of factors were highlighted within 

Table 18 as possible points for manipulation for optimisation of the process.  

 Optimising Cooling Profile 

Upon optimisation for maximising crystal mass recovery with the highlighted factors from 

the sensitivity analysis, all were selected for variation, some were shown to tend to the upper 

bound.  These were limited to three factors: initial mass of saturated solution; initial 

composition of solute and seed loading. The time intervals were also found to push towards 

the maximum at the higher supersaturation stages of the process. These results are in line 

with the results from the sensitivity analysis that showed the positive relationship between 

crystal mass and both: the initial mass of saturated solution and the initial composition of 

solute. As such, any increase in the two highlighted factors has a resulting increase in the 

crystal mass produced within the system. The slightly unexpected result is the positive trend 

for seed mass. This positive trend is quite intuitive that an increase in the mass of the seed 

would result in a larger recovery due to the larger surface area for growth and the obvious 

larger mass of crystal at the start of the process. However, the results of the sensitivity 
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analysis showed no trend between the seed mass and crystal mass recovery. The lack of 

varied seed data was highlighted previously as a possible limitation of the model and as such,  

this factor was not studied further for optimisation. 

Table 19 - Process conditions set for the optimisation of the cooling process. 

 Due to the factors' tendency to fit towards the maximum bound, it was decided to focus 

upon the cooling profile as a means of optimising the process. As such, the other process 

conditions were set as stated in Table 19. As discussed previously, the cooling rate was 

limited to a maximum of -0.1 K/min as this is the maximum cooling rate used within the 

experiments that did not show signs of secondary nucleation. The optimised cooling rate of 

0.077 K/min is some 10% faster than the current proposed cooling rate of 0.07 K/min with 

an end temperature of 4.5 °C compared to the proposed method of 10 °C. It should also be 

highlighted that the time interval for the cooling rate has remained relatively unchanged 

Variable Units Conditions 

Seed loading g 0.35 

Initial mass of saturated solution g 311 

Initial composition of solute kg/kg 0.112 

Initial composition of ethanol kg/kg 0.888 

Initial temperature ° C 55 

Variable Units Final value Initial guess Lower bound Upper bound 

Interval # 1 hr 2.0 2.0 2.0 2.0 

Interval # 2 hr 10.94 11.00 7.50 14.00 

Interval # 3 hr 12.06 6.50 4.00 12.40 

Cooling rate K/min -0.077 -0.1 -0.1 -0.03 

Table 20 - Time interval and cooling rate optimised values for improved crystal mass recovery. 
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during the optimisation process. However, the final hold stage has been considerably 

increased from the initial value of 6.5 hrs to 12.06 hr as can be seen in Table 20. 

 The optimised process conditions were simulated as shown in Figure 4-12. As can be seen in 

Table 21, the yield relative to the end solubility from the proposed method is stated as 92.35 

wt% whereas the optimised process results in a yield of 95.55%. The mass of crystals 

recovered has increased from 28.22 g from the proposed method to 30.69 g from the 

optimised path. The reduced final temperature and subsequent reduction in the endpoint 

solubility allow for more material to crystallise out of the system. This increase in recovery is 

also linked to the substantially longer final hold stage of the process. This larger hold period 

allows more time for the concentration to push towards solubility and ultimately increases 

Variable Optimised cooling Current method 

Predicted Recovery (g) 30.69 28.22 

Maximum Recovery (g) 32.12 30.56 

Theoretical Yield (%) 95.55 92.35 

Q
u

an
ti

le
 s

iz
e D10 118.34 53 

D50 181.42 186 

D90 265.50 356 

Table 21 - Comparison between outputs from the proposed method and the optimised approach. 

Figure 4-12 – Simulated results of mechanistic modelling using the outputs from the optimisation process. 
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crystal mass recovery. Detailed process economics could determine the effectiveness of this 

optimised process with respect to relative cost if more details of the specific compound were 

known and could guide the optimisation towards lucrative avenues. 

 Optimising Cooling Profile and Starting Concentration 

Following the optimisation of the cooling profile with set start conditions, it was decided to 

also open the initial concentration and the first time interval to variation for optimisation. As 

can be seen in Table 22, the first notable change during the optimisation process was the 

significantly shorter initial hold stage from 2 hr to 0.8 hr. The shortening of this stage to the 

lowest allowable bound shows the observed necessity to start the cooling stage as quickly as 

possible. However, this could raise issues in terms of a secondary nucleation event as the 

level of supersaturation could exceed a threshold that has not been investigated within this 

work. If such a threshold could be supplied as a constraint for the optimisation process, there 

could be an increase in confidence in the optimisation outputs. It should be noted that the 

two remaining time intervals were similar to the previous optimisation process with an 

Variable Units Final value Initial guess Lower bound Upper bound 

Interval # 1 hr 0.80* 1.00 0.80* 2.20 

Interval # 2 hr 10.79 11.00 7.50 14.00 

Interval # 3 hr 11.41 6.50 4.00 12.40 

In
it

ia
l 

C
o

m
p

o
si

ti
o

n
 

solute kg/kg 0.13* 0.112 0.1 0.13* 

ethanol kg/kg 0.87* 0.888 0.87* 0.9 

Cooling rate K/min -0.088 -0.08 -0.1 -0.03 

Table 22 - The factors and time intervals of interest in the optimisation of the process.  

* Depicts values reaching a bound. 
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increase in time for cooling allowing lower temperatures to be reached and a longer final 

hold time allowing the system to push closer to solubility concentration. 

The initial concentration of the saturated solution was also investigated as a possibility for 

optimisation. As expected from the sensitivity analysis, the initial concentration of 

Compound-X had a positive effect on crystal mass recovery. The results from the optimisation 

show the initial concentrations of solute and solvent have reached their respective bounds. 

As stated previously with regards to the sensitivity analysis, the increase in concentration 

allows for an increase in crystal mass as there is more material present in the solution to 

crystallise out onto the seed particles. Finally, the results of optimising the cooling rate 

showed an increase to 0.088 K/min and the final temperature dropped to -2 °C. The final 

temperature allows for the system to be pushed towards a lower saturated concentration 

and in turn larger crystal mass recovery. The faster cooling rate is not considered a point of 

concern in terms of the level of supersaturation reached throughout the process as previous 

experiments performed with cooling rates of 0.1 °C/min showed no signs of secondary 

nucleation. 

The process outputs from the simulation of the optimised process can be seen in Table 23 

and Figure 4-13. The difference in mass of crystal recovery is quite significant from 28.22 g 

Variable Optimised cooling Current method 

Predicted Recovery (g) 36.44 28.22 

Maximum Recovery (g) 38.25 30.56 

Theoretical Yield (%) 95.22 92.35 

Q
u

an
ti

le
 s

iz
e D10 130.08 53 

D50 199.26 186 

D90 291.09 356 

Table 23 - Comparison between outputs from the proposed method and the optimised approach. 
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to 36.44 g for the proposed method and optimised, respectively. This increase is 

predominantly down to the lower end temperature allowing for a lower final concentration 

of the solution possible. Upon comparing the theoretical yield of the two processes, a slight 

increase from 92.35% to 95.22% can be seen. It should also be noted that the resulting PSD 

from the optimised path shows an increase in size compared to the supplied experiments. As 

previously discussed, the prediction of size is a limitation of the model due to the limited size 

data supplied during the building of the model. This prediction of an increased PSD is of 

interest as previously the predictions, although not fitting the true measured values, have 

been just as consistent. This increase suggests a shift that could be interesting for future 

experimental work and could have effects on downstream milling processes. 

 Conclusion 

Within this work, a mechanistic model depicting the cooling crystallisation of a late-stage 

development API was achieved by utilising pre-existing experimental data. The experiments 

were known to undergo growth and agglomeration during the cooling process and as such 

these mechanisms were investigated for modelling purposes. The fitting of the growth and 

agglomeration kinetics was achieved by fitting to the concentration profiles and particle size 

Figure 4-13 - Simulated results of mechanistic modelling using the outputs from the optimisation process. 
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quantiles for the supplied experiments. The resulting PSD predictions from the experiments 

show close predictions for the D50 quantile but over-predicted D10 and under-predicted 

D90. This shows the model does not represent the broadness of the true PSD. Despite the 

deficiencies in the PSD prediction the overall model is found to be statistically sound by the 

goodness of fit test. 

Sensitivity analysis and uncertainty analysis were performed to highlight the factors most 

affecting the crystal mass recovery and the particle size in the form of D50. The results from 

these analyses showed the importance of the initial concentration and initial mass of 

saturated solution. These factors' influences are expected as the presence of more solute in 

solution allows for more material to crystallise out and therefore increases particle size as 

well as the mass of crystals recovered. The surprising result from these analyses was the 

apparent lack of an effect seeding had on the system. However, this is believed to be due to 

limited data supplied in terms of varied seed loadings for the building of the model.  

Finally, the optimisation of the system was investigated. This investigation was completed 

across two scenarios with the different factors optimised. Firstly, only the cooling profile was 

considered and then the cooling profile and initial concentration were investigated for 

optimisation purposes due to the results from the sensitivity analysis. From this investigation, 

an increase in the time interval for the cooling stage and the final hold was suggested. This 

allowed for lower temperatures and lower solubility regions to be reached as well as a longer 

time interval for the system to push towards the saturated concentration. The cooling rate 

itself was slightly increased for both investigations, 0.077 K/min and 0.088K/min respectively. 

However, the suggested cooling rates did not exceed the system's bounds of 0.1K/min and 

as such, secondary nucleation is not considered an issue with regard to the rate of cooling.  
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Overall, within this work, a mechanistic model was achieved through the parameter 

estimation of pre-existing experimental data. This chapter highlights the ability to build a 

mechanistic model as part of the development stages for a given compound of interest within 

the industry. Through the limited data available a model was produced that was capable of 

describing the process well with some discrepancies for particle size predictions. The material 

from this process was to be milled and therefore the problem of PSD predictions was not 

considered significant. The resulting growth and agglomeration model then allowed for the 

optimisation of the process beyond conditions tested experimentally. This particularly 

highlights the advantages of utilising mechanistic models to aid in the development of the 

process of late-stage development compounds such as this work focused upon.  
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5 Mechanistic Model Development of an Evaporative 

Crystalliser 

 Introduction 

This section of the work focuses on crystallisation by means of evaporation as a point of 

interest. This work continues to focus on the crystallisation of alpha lactose monohydrate 

from water and the benefits of modelling the crystallisation process using population balance 

modelling. In particular, the defining of the kinetics of the system as well as investigating its 

capabilities for optimisation and potential for merging different modes of crystallisation. The 

previous studies into the cooling crystallisation kinetics of lactose highlighted the slow 

nucleation kinetics and raised interest in studying a system capable of faster recovery. The 

first method of interest was to utilise supercritical conditions to perform antisolvent 

crystallisation with the use of supercritical CO2. The supercritical unit was tested with a model 

system of paracetamol and API and was found to produce some favourable results. 

Unfortunately, the system was never successfully run with lactose due to technical problems 

with the unit itself. Hence evaporative crystallisation was selected as an additional method 

to investigate the primary nucleation of lactose. The use of an evaporative crystalliser had 

the added constraint of being capped at 93°C to avoid the crystallisation of the unwanted β-

lactose. As such, the development of a vacuum-induced crystalliser was undertaken within 

this work. 

 Evaporative Crystallisation 

The use of evaporation as a method of isolating lactose was first recorded in 1633 by 

Bartolettus (Nickerson 1974) and remains a method used in the dairy industry today[79]. 



103 
 

However, its use is now primarily reserved for concentrating the whey prior to the cooling 

crystallisation for the isolation of the ALM crystals. The use of evaporation as a means of 

introducing supersaturation has the potential to improve yield recovery compared to the 

standard method of cooling crystallisation. As such, the use of evaporative crystallisation has 

gained more attention as discussed within the patent of Dinesen and Henningfield [80]. 

Within this patent the production of ALM is achieved directly from the lactose containing 

product streams of dairy industries in a continuous process under evaporative and high shear 

conditions. 

There has been some work on modelling the crystallisation of lactose via evaporative 

methods on both a batch and semi-batch lab scale by Vu et al in 2005[81]. Their work focused 

on optimising the conditions of both evaporative and cooling crystallisation platforms of 

relatively small scales of 4L and 2L, respectively. They compared the model simulated 

conditions to the seeded experiments for both evaporative and cooling with good results. 

This work found that although the evaporative produced a far greater yield of 30% increase 

in solid content in only 4 hours, the system itself was difficult to control. Specifically, due to 

the avoidance of the secondary nucleation threshold. Alternatively, the work completed by 

Agrawal in 2012 focused specifically on the presence of secondary nucleation within 

evaporative crystallisers in the industry[82]. This work focused on the development of a 

mechanistic model for a forced circulation crystalliser (FCC) where the secondary nucleation 

kinetics are found to be dominant and no primary nucleation was considered prior to start-

up. The focus of the work in this chapter is around the evaporative crystallisation on a lab 

scale and as such limits the crossover with details concerning a FCC.  

The work performed by Sowul in 1981 describes a method for assessing different 

crystallisation kinetics of a sucrose water model by utilising CSD data collected from sampling 
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a continuous MSMPR system[83]. The running of the continuous platform allowed multiple 

data points depicting different states of the system prior to reaching a steady state. This 

method of investigating crystallisation kinetics allowed growth, primary and secondary 

nucleation kinetics to be defined reliably with minimal experiments performed. The use of 

continuous platforms for the assessment of the kinetics of a system is an interesting 

approach to maximise data from minimal experimental work. However, the work within this 

chapter looks to build a mechanistic model of a semi-batch platform and is not currently 

looking to utilise the learnings from Sowul et al work directly. 

 Designing the Platform 

Evaporative crystallisation is dependent upon increasing solute concentration within the 

system by the removal of the solvent by evaporation. In the case of the lactose-water system, 

at ambient pressure, the evaporation of water would need to occur at around 100 °C. As the 

crystallisation would occur above 93 °C, the process would produce beta-lactose crystals and 

as such, this would not be an effective method to crystallise the desired ALM particles. As 

such, the design of this crystallisation platform requires the system to be held under vacuum 

conditions in order to lower the boiling point below 93 °C. As the hope of this work is to 

develop a mechanistic model of the system, the new crystallisation platform requires in-situ 

monitoring of the following: concentration, particle count, temperature and pressure. This 

raised the need for a bespoke 3D-printed lid that allows the vacuum pressure to be 

maintained in the presence of the probes. The need to maintain constant vacuum pressures 

resulted in the need for a vacuum controller and vacuum pump. The vacuum controller 

allows the outlet to be held at a constant pressure set point by controlling a valve connected 

via the vacuum pump.  
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 Figure 5-2 - Vacuum-induced evaporative crystallisation platform. 

The development of a mechanistic model requires the concentration change across time 

brought on by the crystallisation process to be recorded. As the concentration of this system 

will be continually changing due to the evaporation process and not solely the effect of 

crystallisation, additional consideration is required when modelling this system. As such, the 

concentration recorded by the IR spectra during this process will not be able to describe the 

crystallisation process alone and will need the mass of water evaporated to be recorded. This 

led to the incorporation of a condenser connecting the outlet of the vessel and a cold trap. 

The mass of water collected in the cold trap can then be recorded using a balance and custom 

Figure 5-1 - Flowsheet depicting the semi-batch vacuum-induced evaporative crystallisation platform. 
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MATLAB script to record data in real time. The continual measurement of mass evaporated 

and concentration recorded via the IR spectra allows the solute removed due to 

crystallisation to be accounted for. Finally, the problem of seeding the system under vacuum 

conditions had to be assessed. This was solved by utilising a bleeding valve attached to a 

syringe. This allowed the seed to be added while keeping the system closed. A small pulse in 

pressure was recorded when testing this method of seeding but it was minimal and deemed 

not to be significant. The finalised test platform is shown in  Figure 5-2 and the corresponding 

flowsheet in Figure 5-1 allowed the required data to be recorded for developing a 

mechanistic model of the system in gFP and for adequate control of the system. 

 Preliminary Results 

The setup of the system was assessed by performing a limited number of seeded and 

unseeded experiments to ensure the stability and control capabilities of the system. Minor 

changes were made to the set-up to improve the control of the pressure within the vessel 

such as new O-rings and tubing. The tubing between sections was found to heat up during 

experiments and this increase in temperature caused a steady increase in the pressure within 

the system. As such, smaller sections of tubing were used to connect the different sections 

of the set-up for better temperature performance. This alteration to the system was found 

to allow for steady pressure to be maintained during the other preliminary crystallisation 

experiments. These experiments showed signs of encrustation at the liquid line on both the 

vessel and the probes. These experiments were run to the extreme to test the system and 

gauge appropriate times and supersaturation limits to work at for future parameter 

estimation experiments. The strong presence of fouling highlighted the need to reduce the 

time before ending the experiment and beginning the recovery of the product material for 

future experiments. Additionally, the opening and closing of the valve during control resulted 



107 
 

in sharp changes in the cold-trap mass recorded. The resulting very noisy data for the 

recorded mass of water evaporated was deemed unsuitable for modelling purposes. As such, 

the mass of water evaporated was calculated based on concentration data collected via the 

FTIR probe before seeding and before signs of nucleation. 

The unseeded experiments were found to nucleate within a few hours. This shows the 

evaporative system to be a much more suitable platform for the study of primary nucleation 

kinetics. SEM images were taken of the recovered material from a few of the seeded 

preliminary experiments as can be seen in Figure 5-3.The SEM images show the presence of 

small needle particles on the surface of the larger primary particles. The presence of particles 

of different morphology and smaller sizes raised concerns about the wash solvent protocol 

and the possibility of antisolvent effects taking place. These small needle particles could be 

due to uncontrolled nucleation of ALM or potentially beta-lactose during the washing. 

Therefore, a small investigation into the suitability of the current wash protocol was 

undertaken. 

Plot A Plot B 

  

Figure 5-3 - Scanning electron microscopy images of recovered crystalline material from preliminary evaporative 

crystallisation experiments. Plot A shows a close-up image of the needles adhered to the surface of primary 

particles. Plot B shows the consistency of the needles present across the sampled crystals. 
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 Methods 

 Concentration Calibration Modelling 

The monitoring of concentration during the experiments is paramount in the ability to build 

an accurate mechanistic model of the process. The previously built lactose concentration 

calibration model developed in section 3.5.1 does not cover the working range of interest for 

the evaporative work undertaken within this chapter. By nature, the evaporative 

crystallisation process will run at higher temperatures and concentrations than the cooling 

crystallisation process the previous calibration model was designed for. As such, an 

evaporative-based lactose concentration calibration model was built for the working range 

of interest for the proposed evaporative crystallisation experiments as stated in Table 24. 

The method for building the calibration model is described in section 3.4.1 was followed for 

this work. 

Component/Mode Concentration (wt%) Temperature (°C) 

Lactose/Evaporative 30-60 50-90 

Table 24 - Working range of interest for the evaporative crystallisation experiments. 

 Wash Solvent Protocol Investigation 

Upon evaluation of the crystals produced from the preliminary growth experiments concerns 

surrounding the wash protocol were prompted by the presence of crystals on the surface of 

the primary particulates that displayed a different morphology consistent with the 

characteristic needle particles of beta-lactose[84]. This is likely due to improper washing 

methods as the crystallisation of beta-lactose is more common when crystallised using higher 

antisolvent concentrations[85]. It is key to determine whether the needle crystals are formed 

during the designated crystallisation space or if the wash protocol is contaminating the 

recovered sample. 
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5.4.2.1 Experimental Method 

This method is used to assess the presence of nucleation due to both antisolvent effects and 

the temperature reduction experienced between the crystallisation and wash stages. An 

intensive method is described by Shahid et al to determine the antisolvent effects of wash 

solvent choice[86]. The method utilised within this work is simpler and more direct by 

utilising the multiple reactor vials of the Crystalline (Technobis Crystallization Systems) but 

does follow a similar approach. Four vials of lactose-water solutions were weighed out and 

supplied to the Crystalline and heated to a specified temperature. Four additional vials of 

water-ethanol mixtures were measured out and held at room temperature. Each vial 

contained a different ratio of ethanol-water, ranging from 40:60 to 70:30, to be assessed for 

its efficacy as the initial wash solvent.  Once the temperature is settled and the lactose-water 

solution vials are clear, an individual vial of an ethanol-water solution is added directly to the 

lactose solution vial. The combined solution vial was then re-placed within the Crystalline to 

be monitored for signs of nucleation. This method was performed for the highest and lowest 

temperatures seen at the end of the evaporative crystallisation experiments. 

Experiment Concentration (wt%) Temperature (°C) 

Exp-High 47.0 75 

Exp-Low 37.0 60 

Table 25 -Experimental conditions for the testing of the suitability of different wash solvent ratios. High and Low 

denotes the extremes of the evaporative crystallisation experiments to be performed. Concentration is set as the 

saturated concentration for the specified temperature. 

 Parameter Estimation Experiments 

The initial mechanisms of interest for investigation in this work are specified as primary 

nucleation and growth. In the previous cooling crystallisation work the growth kinetics were 

assessed, however, the primary nucleation was considered not industrially relevant due to 
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the exceedingly slow induction times recorded for preliminary experiments. The increased 

concentration and supersaturation levels within the evaporation platform are expected to 

speed up the nucleation rate. Due to the nature of the system, the use of heating and cooling 

cycles to investigate induction time is not possible. As such, the investigation of the primary 

nucleation kinetics is to be investigated by isothermal experiments with constant 

evaporation present which ultimately leads to dynamic conditions.  

This system will be held at constant temperature and pressure allowing for the continual 

increase of concentration due to the evaporation of water from the system. The presence of 

nucleation is recorded by both an FBRM and IR probe. The kinetics will be fitted using the 

recorded concentration profiles, seed and final PSD collected from a set of isothermal 

experiments as outlined in Table 26.  

Table 26 - Parameter estimation experiments for vacuum-induced evaporative crystallisation of lactose. 

The required mass of water and ALM were supplied to the 250ml glass Duran vessel used for 

this process. A 3D-printed lid with dedicated ports was designed to fit the process 

requirements. This allowed for in-situ monitoring of the process with the use of both FBRM 

and IR probes. This allowed for the monitoring of particle count to gauge dissolution and 

nucleation as well as concentration monitoring with a dedicated calibration model. The 

outlet flows along a condenser to a cold trap vessel. The mass within the cold trap vessel is 

continually monitored via the scale and a dedicated MATLAB script. The vacuum controller 

Exp. Concentration  

(mass %) 

Temperature  

(°C) 

Seed Mass  

(g) 

Supersaturation Ratio 

GroVac2 36.98 65 0.77 1.2 

GroVac4 40.30 70 0.46 1.1 

NucVac1 36.98 65 N/A 1.4 

NucVac5 43.72 75 N/A 1.4 
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holds the pressure to the specified set point within the vessel utilising a valve connected to 

the vacuum pump. 

The supersaturation of the system was monitored remotely by the IR and temperature data 

allowing for a concentration measurement to be made. The mass of the seed was weighed 

in a beaker and room temperature saturated solution was added to the beaker at a minimum 

volume required to suspend the seed particles. The seed suspension was then taken up 

within a syringe. The syringe was then connected to the inlet tubing. The inlet remained 

closed to the outer environment due to the bleed valve and was opened to allow the inflow 

of the seed suspension. The bleed valve was then closed, and the syringe was removed 

allowing the system to remain closed and vacuum pressure maintained. 

 Modelling 

Figure 5-4 - gFP flowsheet depiction of simulated vacuum-induced evaporation crystallisation set-up. 

The modelling of the evaporative process is more complex than that of cooling. The modelling 

of evaporation of the solvent during the process requires the inclusion of the vapour-liquid 

equilibrium of the system. The fitting of vapour-liquid equilibrium data would allow an 
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activity model to be defined and evaporation to be modelled. However, the accurate 

collection of this data would be very intensive and any error in the evaporation rate would 

have considerable compounding inaccuracies in the fitting of the crystallisation kinetics 

which is the ultimate goal of this work. As such, it was decided to simplify the modelling 

requirements and remove the necessity of including an activity model.   

The exclusion of an activity model while modelling the evaporation process can only be 

achieved by not directly modelling the evaporation of the solvent. This was achieved by 

utilising the splitter components within gFP. The resulting flowsheet can be seen in Figure 

5-4. The MSMPR crystalliser is set to have a constant outlet flowrate that is then passed 

through an ideal phase splitter (ideal_phase_splitter_gFP001) which separates the solid and 

liquid in the stream. The solid stream is recycled back into the crystalliser while the liquid 

stream is separated again through an ideal component splitter 

(ideal_component_splitter_gFP001). This splitter produces a pure water stream and a 

dissolved solute stream made up of both alpha and beta lactose. The lactose stream is 

recycled back to the MSMPR whereas the pure water stream is sent to a liquid sink. Utilising 

the model validation entity within gFP the flowrate set-point for the outflow of the vessel 

can be fitted to match the measured evaporation rate of pure water to the liquid sink. This 

was completed for individual experiments to allow for accurate simulation of the measured 

evaporation rates.  

The model for this work is discretised across 50 points following a logarithmic scale ranging 

from 0.1µm to 1000µ. Finally, the soundness of the model was assessed as described in 

sections 3.4.4  and 3.4.5. The model was subsequently optimised for different objectives 

following the methods described previously in section 3.4.6.  
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 Results  

 Concentration Calibration Modelling 

Table 27 - Evaporative crystallisation calibration model results. 

The combination found to show the least variation brought on by temperature changes for 

the evaporative working range was identified as 1137 cm-1 and 1014 cm-1 for baseline and 

peak positions respectively. Utilising curve-fitting tools within MATLAB, the resulting fit of 

Equation 21 was defined and displayed in Figure 5-5 

Model R2 RMSE RMSE (validation) 

Evap/lactose 0.9976 0.003802 0.002243 

Figure 5-5 - Polynomial surface plot depicting the relationship between temperature peak height and 

concentration (in kgsolute/kgsolution.) used for prediction purposes. The peak height at 1014 cm-1 with respect to the 

baseline at 1137 cm-1 was used for the monitoring of the concentration. Black data points show the collected 

data from experimental calibration work. 
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The R2 value for the corresponding fit has been calculated as 0.9976 which again shows the 

polynomial's ability to describe the calibration data well. The validation experiments for this 

model were performed over only two concentrations with three corresponding 

temperatures each. The RMSE calculated for the validation data of 0.002243 kg/kg is very 

low and highlights the accuracy of the calibration model. Although the RMSE from the 

calibration data is larger than that of the validation data, the value of 0.003802 kg/kg shown 

in Table 27 still shows the accurate capability of the polynomial fit. 

Equation 21 

𝐶(𝐻, 𝑇) = 0.0815 + 0.928𝐻 − 1.39 × 10−4𝑇 − 0.435𝐻2 + 3.59 × 10−4𝐻𝑇 + 1.78 × 10−6𝑇2 

 Wash Solvent Protocol Investigation 

The goal of these experiments is to determine which ratio of ethanol to water is the most 

suitable for washing the recovered material where the best system shows an absence or 

minimal nucleation. The trajectory comparisons in Figure 5-6 show the points where 

nucleation is taking place in the form of a drop in transmissivity. As can be seen from Figure 

5-6, the drop in the level of transmissivity brought on by nucleation is very fast when using 

Figure 5-6 - Transmissivity profiles of antisolvent addition experiments for the two tested conditions. Left plot 

shows results from Exp-Low and the right plot shows results from Exp-High as described in Table 25.. 
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the 70:30 solution for both tested conditions. This highlights that the current use of the 70:30 

solution as the first wash solvent was unsuitable and the likely cause of the small needle 

particulates seen from the SEM images in Figure 5-3. Overall, there is a clear trend seen 

between higher antisolvent concentration and faster nucleation times. 

As stated previously, this method of assessing wash solvent suitability was done for four wash 

solvent concentrations and two lactose concentrations. The images collected five minutes 

after the solvent addition can be seen in Figure 5-7. These display the respective level of solid 

density for each tested wash solvent. There are still some signs of nucleation for the higher 

temperature experiments using the lowest concentration solvent. The level of solid density 

is rather low and holds steady for the remainder of the experiment.  However, the lower 

temperature experiments only show nucleation at the highest solvent concentration of 
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Figure 5-7 - Captured images displaying level of solid content from antisolvent effects from the addition of different 

wash solvents ratios after 5 minutes. Exp-Low and Exp-High are based on the lactose solution conditions described 

in Table 25 
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70:30. This is likely due to the lower concentrations of the lactose solution used 

corresponding to the saturated solution. 

From the results of the wash solvent investigation, an improved wash protocol consisting of 

three washes has been deduced. The initial wash solvent was decided to be the 40:60 

solution, as that showed minimal nucleation, followed by 70:30 and finally pure ethanol. This 

gradual increase in ethanol concentration allows for the antisolvent effects on the present 

mother liquor to be minimised prior to each wash while thoroughly washing the recovered 

crystalline material. The effectiveness of the new wash protocol was investigated via SEM 

images of recovered crystallisation material from additional growth experiments as can be 

seen in Figure 5-8. These images show there is agglomeration in both experiments but the 

presence of needle-like particulates on the surface of the crystals has been removed 

compared to the previous wash method seen in Figure 5-3 

Additionally, XRPD patterns of the recovered crystalline material from growth experiments 

using both wash protocols can be seen in Figure 5-9. All patterns show the distinctive ALM 

peaks at 20°[87]. However, the beta-lactose peaks at 10.5° can only be seen from the 

patterns collected from the original wash protocol starting with a high ethanol concentration 

of 70:30. These results confirm that the needle crystals present in the original results were  

Figure 5-8 - SEM images collected from evaporative crystallisation experiments using the new wash protocol. 

Plot A Plot B 
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beta-lactose as opposed to ALM. Importantly, the new wash protocol starting with a lower 

ethanol:water ratio of 40:60 has proven to remove the presence of antisolvent effects and 

uncontrolled nucleation of beta lactose during washing. 

 Growth and Agglomeration Experiments 

Due to the high concentration and temperatures being investigated within the evaporative 

process, there were instances of nucleation detected within the seeded desupersaturation 

experiments. As such, the experiments known to experience only growth were used for the 

modelling of the system. This limited the experiments input within the model validation to 

two growth experiments with different working temperatures and different initial 

Figure 5-9 - XRPD patterns comparing recovered material from evaporative crystallisation using different wash 

protocols. Blue – “Old” Wash used. Red – “New” Wash protocol followed. 

Β-lactose 

Β-lactose  
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supersaturation levels. The temperature range investigated within this work varies only 

between 65 and 80 °C due to the limitation of the vacuum pressures achievable within the 

system and the maximum temperature of 93°C for α-lactose crystallisation. Due to the small 

working range of interest, the lower number of experiments is considered sufficient to 

characterise the crystallisation process's behaviour under these conditions.  

The power law, shown in Equation 3, was focused on for the fitting of the growth kinetics of 

this system. It was investigated in terms of absolute and relative supersaturation. Relative 

saturation was found to fit the experimental data more closely in terms of concentration 

trends. Similarly, the inclusion of the exponential term to incorporate temperature 

dependence of the kinetics was also found to produce a better fitting growth model in 

agreement with the cooling crystallisation model discussed previously. Following, the initial 

fitting of the growth terms, the agglomeration model is made active and fitted to account for 

the agglomeration seen in the SEM images Figure 5-8. Following the learnings of the 

modelling of the cooling crystallisation, the process of fitting agglomeration and growth 

kinetics are finalised together. 

Figure 5-10 – Comparison between the predicted and measured concentration profiles of the growth experiments. 

Red- model predictions. Blue – Measured values 

Plot A - GroVac2 
S=1.2  
T=65°C  

Plot B – GroVac4 
S=1.1  
T=70 °C 
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As shown in Figure 5-10, the measured concentration profiles follow a steady increase due 

to the evaporation of water then there is a plateau followed by a drop in concentration. This 

plateau shows the point at which the dominant mechanism affecting concentration shifts 

from evaporation to crystallisation in the form of growth. The onset of the plateau, which 

will be hereby referred to as the ‘shift-point’, is only just visible in Plot B this is due to the 

lower level of supersaturation at the point of seeding. The shift-point is more clearly seen in 

Plot A likely corresponding to the higher supersaturation ratio of 1.2. The prediction of the 

concentration profiles from the fitted growth and agglomeration model fits the overall trend 

across both experiments. However, the shift-point seen at the end of Plot B is not currently 

described by the model and instead, the linear trend is continued to the end of the 

experiment. Similarly, the shift-point of Plot A is much sharper following the measured value 

compared to the more gradual curve predicted by the model. The deviation across these 

experiments is, however, within 1% relative variance of the measured values and as such 

considered acceptable.  

The necessity of fitting the agglomeration kinetics in the form of the Mumtaz number was 

highlighted during the preliminary experiments. Following the fitting of the growth kinetics 

initially, the Mumtaz number was then investigated in parallel with the growth terms. This 

Figure 5-11 - Particle size distribution comparisons between the measured values and the predictions from the 

developed model. 

Plot A - GroVac2 
S=1.2  
T=65°C  

Plot B – GroVac4 
S=1.1  
T=70 °C 
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was necessary as the previous fitting of growth and agglomeration kinetics found the 

presence of agglomeration had a significant effect on the concentration profiles when using 

such small seed particles. The resulting particle size predictions from the growth and 

agglomeration model can be seen in Figure 5-11. The prediction for the quantile sizes is 

consistently undersized across all experiments. Particularly the D90 predictions, which show 

the model's lack of fit for the agglomeration seen experimentally. The measured size 

quantiles are quite broad when considering the very small D10 values seen in Table 29. As 

such, the broadness is difficult for the agglomeration kernel to capture as it tends to produce 

narrow distributions. 

 Primary Nucleation Experiments 

Following the fitting of the growth and agglomeration kinetic parameters, the model 

validation is focused upon fitting the primary nucleation kinetics. The main advantage of 

using evaporative crystallisation over cooling is the faster inducement of nucleation due to 

the higher temperature and supersaturation values reached by the system. As such, the 

fitting of the primary nucleation parameters is key for the usefulness of the resulting model.  

Parameter Units Fitted Value St Dev 

Growth rate constant m/s 0.00437 8.58E-03 

Supersaturation order (-) 5.911 1.663E-01 

Activation energy J/mol 20804 5.568E+03 

Mumtaz Number N/m 0.003223 2.994E-04 

Primary nucleation rate constant Ln(#/m3.s) 60.562 1.695E+01 

Supersaturation order (-) 2.907 4.448E-01 

Activation Energy J/mol 93605 4.670E+04 

Table 28 - Fitted kinetics parameters for the evaporative crystallisation model. The goodness of fit for this model 

found that concentration was predicted very well by the model with a χ2 0f 39.5 compared to a higher χ2
critical of 

177.4. However, the PSD has not been captured well by the model with a χ2 significantly greater than χ2
critical of 

338.4 compared to 25.0. 
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The concentration profiles are supplied to the model validation for the estimation of the 

primary nucleation kinetics and as such only points following the onset of nucleation are 

included. Across the primary nucleation experiments, the shift-point is very clear and occurs 

significantly later than the point of nucleation recorded by the FBRM data. The broadness of 

the plateau in Plot B of Figure 5-12 is due to a drop in temperature from 75°C to 63°C resulting 

in the drop of evaporation rate hence the steady concentration between 1.75 and 2 hrs. This 

drop in evaporation was included in the performed experiment within gFP allowing the 

experiment to be used for the fitting of the kinetic parameters.  

Exp. 

PSD Quantile 

D10 D50 D90 

Measured Predicted Measured Predicted Measured Predicted 

GroVac2 11.6 22.0 29.9 33.2 54.7 47.1 

GroVac4 4.54 3.5 15.8 6.4 34.3 11.9 

NucVac1 35 48.2 74.8 75.7 139 112.9 

NucVac5 15.3 37.9 57.7 59.2 151 88.8 

Table 29- PSD quantile comparison between measured values and the predicted values from the mechanistic 

model. 

The power law was chosen for the fitting of the primary nucleation kinetics. As can be seen 

in Figure 5-12 the resulting predictions for the concentration profiles fit the recorded 

Figure 5-12 - Concentration profile comparisons between the measured values and the predictions of the 

developed mechanistic model. Red- model predictions. Blue – Measured values 

Plot A – NucVac1 
S=1.4  
T=65 °C 

Plot A – NucVac5 
S=1.4  
T=75 °C 
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concentrations within a reasonable error. The error is inputted as a constant relative variance 

of 1%. It should be stated at this stage the growth and agglomeration kinetics were also 

opened for variation to improve the fitting of the kinetics to a greater set of experiments. 

This resulted in a very acceptable model with a χ2 value of 39.5 which is notably lower than 

the critical value of 177.4 when considering the concentration predictions. The PSD data was 

also supplied for the fitting of the resulting kinetic data. The model's ability to predict the 

curvatures seen as both the experiments cross the shift-point is considered very encouraging. 

The prediction of PSD comparisons can be seen in Figure 5-13 and Table 29. The D50 

predictions for the primary nucleation experiments are seen to be very accurate. Again, the 

broadness of the full PSD is not quite captured by the model. This poor ability to predict the 

overall distribution is captured by the failed goodness of fit test with respect to PSD with a 

significantly higher χ2 value compared to the critical value as seen in Table 28. This ultimately 

highlights a failure in the model to adequately describe the evaporative crystallisation 

process as a whole despite the promising concentration predictions. This limitation in the 

model is likely due to the agglomeration parameter as this would have no direct effect on 

concentration but would ultimately hinder the effectiveness of the model to predict PSD. The 

overall narrowing of the PSD when modelling agglomeration was also seen for the cooling 

Figure 5-13 - Particle size distribution comparisons between the measured values and the predicted values from 

the mechanistic model.  

Plot A – NucVac1 
S=1.4  
T=65 °C 
 

Plot B– NucVac5 
S=1.4  
T=75 °C  
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model developed in section 3. The D50 predictions are very encouraging as shown in Table 

29 and suggest that although the shape of the PSD is predicted poorly the D50 is an accurate 

guide to the size of the material produced experimentally. 

 Global Systems Analysis 

 Kinetics 

 The resulting effects of the uncertainty of the fitted kinetic parameters on the predicted 

outputs of the system are investigated within this section. In the case of this work, the 

kinetics have been fitted using a very small set of experiments due to the difficulty in 

controlling the crystallisation platform as such the error with the fitting of the parameters is 

of keen interest.  

The process outputs of interest from the model were highlighted as crystal mass and D4,3. 

These were decided upon for two reasons: the use of evaporative crystallisation for seed 

generation and the improved yield compared to cooling crystallisation. As can be seen from 

Table 30, the uncertainty of the fitted kinetic parameters is found to maintain fairly 

consistent crystal mass recoveries and the standard deviation is relatively small. Conversely, 

the recorded range seen for the crystal mass recovery is rather large. Additionally, the effect 

of the uncertainties on the average particle size is found to be much greater with a standard 

deviation of 43.79 μm and a range of 313.42 μm which is equatable to the expected value of 

Table 30 - Distribution statistics for process outputs due to the variance of the fitted kinetic parameters of the 

mechanistic model. 

Response Expected Value Std range 

Crystal mass (g) 0.0561 0.0025 0.0201 

D4,3 (μm) 355.86 43.79 313.42 
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355.86 μm. The uncertainty of the fitted parameters is shown to lead to a very strong 

deviation in average particle size, suggesting a need for greater validation of the mechanistic 

model. 

The primary nucleation kinetic parameters were found to have no direct relationship with 

average particle size or crystal mass recovery. The covariance relationship between primary 

nucleation activation energy and rate constant is displayed in Plot A and clearly shows the 

lack of trend for average particle size. Similarly, the covariance relationship between the 

growth activation energy and the growth constant is shown in Plot B. However, there is a 

clear relationship with regard to average particle size as shown by the clustering of the larger 

particle sizes at lower growth rate constant values. This effect is more clearly seen in Plot C 

Figure 5-14 - plots depicting the variance of selected fitting kinetic parameters and their resulting effect on process 

outputs. Plot A and Plot B - Colour bars trend from blue to yellow denoting the increase of the final average particle 

size. Plot C - Colour bars trend from blue to yellow denoting the increase in crystal mass recovery. 

Plot B 

Plot C 

Plot A 
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with a maximum for both particle size and crystal mass recovery around the fitted growth 

rate constant value of 0.00437 m/s. 

 Process Conditions 

This section identifies the important process conditions affecting the outputs of the process. 

This can be used as the starting guide for the optimisation of the process and more generally 

the capabilities of the system. The optimisation has been approached from two possible 

objectives: increasing yield and increasing D4,3. Due to the complicated nature of the set-up, 

the factors that are readily controllable are limited to temperature via pressure control, initial 

concentration and batch time. The importance of all three variables on process outputs is 

highly correlated in that the time to nucleate would depend on the supersaturation levels 

within the experiment which are directly dependent on initial concentration and 

temperature. As such, for the purposes of investigating the effect of process conditions on 

the yield and particle size it was decided to link the initial concentration and temperature 

inputs. This allowed the initial concentrations to always coincide with an initial 

supersaturation ratio of 0.9 for all corresponding temperatures. It should also be noted that 

the evaporation rate was set constant for the purposes of the uncertainty analysis. This is 

simply due to the inability to directly control the evaporation rate during the experiments. 

The recorded evaporation rates for a number of different experiments were examined and 

no discernible link between evaporation rate, temperature or concentration was seen. As 

such, there is no credible way to assess the effect of the evaporation rate on the process 

outputs. This is a known limitation of the model at this stage that can only be aided by the 

inclusion of evaporation kinetics that were not considered for this work. 
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The relationship between process outputs and the controlled variable of temperature and 

batch time is displayed in Figure 5-15. The increase in temperature is shown to have a positive 

effect on the crystal mass recovery of the system. This is likely due to the increase in growth 

rate seen at higher temperatures. Surprisingly, the larger temperatures are shown to have 

the opposite effect on average particle size. As discussed previously, the growth rate would 

be expected to be increased at higher temperatures. This effect is linked to the lower 

temperature simulations reaching higher supersaturation values than the higher 

temperature counterparts. Therefore, the higher supersaturation ratios increased the 

growth rate experienced by lower temperatures simulations leading to larger-sized 

particulates. 

 Optimisation 

The clear advantage of the evaporation process, as opposed to cooling crystallisation, is the 

increase in crystal mass recovery and as such it is of keen interest to investigate the 

capabilities of this system through the use of simulations. Consideration of the level of solid 

content within the system at any given time is key for the suitability of the tested process 

Figure 5-15 - The effect on selected process outputs from the variance of the process conditions. Colour bars trend 

from blue to yellow denoting the increase in temperature of the vessel. 

Plot B  Plot A 
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conditions. As such, the inclusion of an interior constraint, based on Equation 22, has been 

made to ensure the process is practicable in real life. 

Equation 22 

𝑠𝑜𝑙𝑖𝑑𝑐𝑜𝑛𝑡𝑒𝑛𝑡% =
100 ∗ 𝑀𝑎𝑠𝑠𝑜𝑓𝑠𝑜𝑙𝑖𝑑𝑠

𝑀𝑎𝑠𝑠𝑜𝑓𝑠𝑜𝑙𝑖𝑑𝑠 + 𝑀𝑎𝑠𝑠𝑜𝑓𝑙𝑖𝑞𝑢𝑖𝑑
 

For simplicity, the initial concentration was held constant and only temperature and batch 

time were investigated for optimisation purposes. As discussed previously, the evaporation 

rate of water from the system is not directly controllable or modelled and is an inherent 

inaccuracy in the model.  

The two goals of optimising this process are to increase yield and particle size. Figure 5-16 

shows the attainment capabilities of this system and as such guides the inputs for the process 

variables for the optimisation of the system. Plot A shows that to maximise the average 

particle size produced within the system large batch times and lower temperature values are 

favourable. Alternatively, Plot B shows large batch time and higher temperature values to 

increase yield. However, the temperature effect is very minimal and not expected to play a 

large role in the optimisation of the crystal mass recovery. It should also be noted that D4,3 

and mass recovery are highly correlated due to the fast kinetics of the system as can be seen 

in  Plot C and Plot D of Figure 5-16. 

The optimisation of the process is centred around the manipulation of temperature and 

batch time. The initial concentration is held constant at a supersaturation ratio of 0.9 for the 

lowest temperature of 65 °C assessed within this work. This allows for the testing of all initial 

temperatures as the saturation concentration for any given temperature will be reached 

given sufficient time for adequate evaporation to take place. The optimisation of this process 
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is focused upon the two different uses for the evaporative process: seed generation, and high 

recovery batch crystalliser. The optimisation of the developed model allows for different 

evaporative crystallisation setups to be investigated digitally without the need for physical 

set-up and experimentation.  

 Batch Optimisation 

The simplest method of investigating the system is the optimisation of the batch crystalliser 

that was tested for the development of the model. In this case, the focus is to optimise the 

Table 31 - Optimised conditions and the resulting process outputs. 

Batch time (hr) Temp (°C) Average Particle Size (μm) Crystal Mass (kg) 

4.06 65 386 0.052 

Figure 5-16 - Contour plots showing the attainable regions of process outputs of interest in relation to process 

conditions. 

Plot C Plot D 

Plot A Plot B 
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crystal mass recovery and the size of particles produced. The only constraints imposed for 

the optimised pathway are a maximum solid content of 40% and a maximum supersaturation 

of 1.55. The optimised conditions and outputs can be seen in Table 31 and Figure 5-16. As 

expected, there was a preference for lower temperatures for the increasing particle size. The 

operating temperature of 65°C is the lower bound of interest and is also the lowest 

temperature tested on the experimental setup. The final average particle size of 386 μm is 

considered very large for a batch time of only just over 4 hours. Comparing the recovered L50 

of 360 μm from an industrial cooling crystalliser with a batch time of 13 hours from the work 

of Wong et al the prediction of a comparable L50 of 377 μm from a 4-hour evaporative 

crystallisation is impressive [88]. Evidently, direct comparisons between an industrial plant 

experiment and a small batch experiment are impossible due to the added consideration of 

scale. However, the promise of evaporative crystallisation as a method of producing large 

lactose crystals fast is clear. 

 Optimising a Potential Seed Generation 

The unique attribute of the evaporative process compared to the cooling is the ability to 

nucleate material in short time frames. Therefore, the investigation of using the evaporative 

Figure 5-17 - Concentration profile and final PSD of simulated optimised batch process. 



130 
 

crystallisation platform as a fast seed generation unit is desired. The goals of such a platform 

are very different from the previous optimisation of the crystal mass recovery from batch 

processing in that small sizes are desirable for the purpose of seeding. As such, interior 

constraints were set to obtain an average particle size between 50 μm and 100 μm similar to 

Wong et al 2012[88]. Additionally, the maximum solid content was maintained at 40% to 

ensure realistic and desirable working conditions within the vessel.  

 Due to the fast nature of the crystallisation process under evaporative conditions, the 

production of small particles is inherently linked to a low yield. As can be seen from Table 32, 

the desired particle size of below 100 μm has been captured with a value of 99 μm and a 

subsequent mass recovery of 12g. Unlike the optimisation of the batch recovery, the 

optimisation of the seed generation unit favours a higher temperature of 80°C and slightly 

shorter batch times. This predilection for higher temperatures is in agreement with Plot A in 

Figure 5-16. 

Batch time (hr) Temp (°C) Average Particle Size (μm) Crystal Mass (g) 

3.79 (2.37) 80 99.02 12.07 

 Table 32 - Optimised conditions and the resulting process outputs. 

Figure 5-18 - Concentration profile and final PSD of optimised seed generation process.   
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The main variable controlling this process is the batch time as the goal is to stop the growth 

of the particle from growing beyond the desired size range. This subsequently limits the 

crystal mass recovery possible for the given particle size. However, a mass of 12 g from one 

batch run of fewer than 4 hours would be sufficient for seeding purposes for many 

experiments depending on scale. A potential problem with the proposed optimised 

processes is the lack of control of process outputs as they are fundamentally linked to batch 

time. The changes in concentration and particle size are quite sharp as can be seen in Figure 

5-18 and the ability to control these outputs is likely to be difficult and open to variance. 

 Limitation of Model 

Unfortunately, due to the nature of the evaporative process, there is no other method of 

controlling the system with the current level of characterisation of the platform other than 

temperature and batch time. As the model is currently defined without the inclusion of the 

pressure and temperature relationship the system is forced to work under isothermal 

conditions. If the evaporation kinetics were considered, then an additional control variable 

of pressure could be manipulated to alter the evaporation rate through temperature. 

Additionally, the current model is assumed to have a constant flowrate out of the vessel of 

0.017 g/s with the corresponding mass of water removed to mimic the evaporation of water 

of around 0.0065 g/s to 0.0085 g/s. As such, the evaporation rate has no defined relationship 

with temperature. These limitations in the defined model have a direct restrictive effect on 

the ability to optimise the platform for given parameters. 

 Conclusion 

A vacuum-induced evaporative crystallisation platform was developed for the investigation 

of the crystallisation kinetics of the system. The use of vacuum conditions allowed for the 
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evaporation of water from a lactose-water solution in a temperature range suitable for the 

crystallisation of alpha-lactose monohydrate. The platform itself was developed to ensure 

pressure was maintained throughout the experiments including during the addition of seed. 

Preliminary results of seeded evaporative experiments were found to be unsuitable using the 

current wash protocol followed for lactose crystallisation. As such, an investigation into 

suitable wash solutions was tested and a new wash protocol for the expected recovery 

concentrations from the evaporative process was designed and implemented. 

Following the development of the platform, the investigation into the crystallisation kinetics 

of the system was focused upon. This system was investigated with the aim of fitting the 

agglomeration, growth and primary nucleation kinetics for the development of a mechanistic 

model. Minimal experiments were used for the development of this model due to the difficult 

nature of controlling the platform. The concentration profiles for all experiments are shown 

to pass the goodness of fit test. However, the prediction of the particle size quantiles does 

not pass the test as was expected from the comparison of the predicted PSD and the 

recovered experimental values as shown in Figure 5-11 and Figure 5-13. Two of the fitted 

kinetic parameters were calculated to have high standard deviations and the corresponding 

effects on the process outputs were shown to be prevalent. The variation in predicted 

process outputs based on the variance of the fitted kinetic parameters is particularly evident 

with regard to the particle size resulting in a large range of predictions but a much smaller 

standard deviation of 43 μm. The high standard deviation and the resulting effect on process 

outputs highlight the benefits to the model that could be made with more experimental data 

to fit the parameters. Unfortunately, due to the unsteady nature of the platform, this was 

not suitable at this stage.  
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The investigation into the effect of varying the process conditions was limited to temperature 

and batch time. This highlighted the capabilities of the system in terms of particle size and 

crystal mass recovery. The ability to utilise the model in the place of experiments for the 

optimisation of the process for a range of goals was shown. The developed mechanistic 

model allowed the optimisation of a batch evaporative crystalliser to be investigated. The 

result showed an optimised process producing particles of 370 μm within 4 hrs and a crystal 

mass recovery of over 52 g. This far exceeds the capabilities seen experimentally from either 

the cooling or evaporative processes within this work. Additionally, the process was 

optimised focusing on the production of suitable-sized particles for seeding other processes. 

This showed the capability of the platform to produce 12g of material with an average 

particle size of 99μm. The clear advantage of this mechanistic model is that it has allowed for 

the testing of extremes the evaporative platform could be used for. 

The developed model for the evaporative crystallisation of lactose was found to accurately 

describe the concentration profiles but did not capture the overall PSD shape despite good 

predictions for D50. The resulting errors on the fitted parameters were found to be quite 

high which is likely due to the limited number of experiments performed and used for model 

development. The potential for a vastly improved yield has been found through the 

optimisation of the process suggesting a significant improvement in both the cooling 

crystallisation work in chapter 3 and the evaporative experiments performed within this 

chapter. 
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6 Multimode Continuous Crystallisation Configuration 

 Introduction 

With mechanistic models of both the evaporative and the cooling crystallisation of lactose 

from water defined previously, a unique opportunity to test configurations for continuous 

multimode crystallisation platforms is made possible. As such, this chapter will implement a 

theoretical assessment of the suitability of different configurations of continuous platforms 

for the recovery of lactose. As discussed previously in section 5.1.1, the use of evaporative 

crystallisation has been studied at both laboratory and industrial scales. The typical method 

of evaporative crystallisation on an industrial scale is the FCC but within this chapter, the 

focus will be MSMPR due to the capabilities of studying on a small scale and the previously 

built mechanistic model. 

 Continuous Evaporative Crystallisation 

Figure 6-1 - gFP flowsheet depicting the continuous evaporative crystallisation process. 
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The conditions used for the crystalliser were set to the tested conditions experimentally to 

allow for confidence in the evaporation rate. This allows the flow rate used to mimic the 

evaporation rate to be from experimental tested conditions. As such, the temperature is set 

at 67.5 °C and the flow rate to pass through the ideal splitter sections is set to 0.017g/s. The 

continuous configuration is shown in Figure 6-1.  

Manual mass balance calculations were done across this system with assumed 

concentrations and solid content recovery to allow for initial guesses during the optimisation 

of the process. The system was optimised over a longer simulation time than necessary to 

ensure a steady state was reached. The optimisation was based on the variation of the feed 

flowrate, flowrate leaving the vessel and the mixer-splitter fraction. As the consideration for 

an evaporation rate recorded experimentally the flowrate passing through the ideal splitter 

sections was constrained to the measured value of 0.017 g/s. The only other constraint 

imposed on the optimisation was the limitation of a supersaturation ratio below 1.6 to avoid 

the secondary nucleation threshold as this has not been covered within the model. 

 Methods 

This chapter focuses on the utilisation of pre-existing mechanistic models to allow for 

investigation into continuous and multimode platforms through digital means. The potential 

for these hypothetical crystallisation configurations is achieved through the use of global 

systems analysis and optimisation capabilities within gFP. The methods utilised for these 

techniques have been discussed previously in sections 3.4.5 and 3.4.6. 

 Continuous Unseeded Evaporative Crystalliser 

The first configuration of interest is taking the model developed from batch evaporative 

crystallisation processes, in the previous chapter (5) and converting it to continuous mode.  
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 This continuous evaporative crystalliser model can then be used to find the steady-state 

conditions needed for producing sought-after particulates. The capabilities of the 

evaporative crystalliser in terms of continuous manufacture are investigated by utilising the 

modelled kinetics of the system without further experimentation. The batch evaporative 

crystalliser was optimised in the previous chapter (5) for PSD and crystal mass, however, the 

continuous configuration will allow greater control by obtaining desirable attributes at 

steady-state conditions. The ability to utilise the evaporative model to design a theoretical 

continuous evaporative crystalliser has the potential to offer a dynamic solution to the slow 

nucleation kinetics of the lactose system being studied. 

Table 33 - Optimised process conditions for maximised recovery from the continuous evaporative crystallisation. 

Optimisation of the continuous evaporative crystalliser for solid content in the product 

stream was focused upon. The introduction of the continuous mode allows for more control 

of the process outputs as the previous batch mode shows sharp changes in PSD and solid 

mass recovery due to increasing supersaturation levels within the vessel. However, the 

continuous mode allows process outputs to be maintained at steady-state conditions and 

subsequently allows for easier and more consistent product recovery. The process conditions 

Optimised Variable Unit Final Value Initial Guess 

Crystalliser → mass fraction (lactose, 

liquid phase)  
[kg/kg] 0.4045 0.5039 

Crystalliser → mass fraction (water, 

liquid phase)  
[kg/kg] 0.5955  0.5961  

Crystalliser → Flow rate set point  [g/s]  0.1241  0.1363  

Feed→ Mass flow rate set point  [g/s]  0.1140  0.1262  

Feed→ Mass fraction (lactose)  [kg/kg]  0.5569 0.5613  

Feed→ Mass fraction (water)  [kg/kg]  0.4431 0.4377  

Mixer splitter → Split fraction [-]  0.1362 0.1240  
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found to maximise the solid content in the product stream are shown in Table 33. These 

process conditions allowed for the recovery of ALM particles with a D4,3 of 401 μm with a 

product stream solid content of 7.97 %. The particle size allowed for this optimised process 

was limited to below 400 μm due to considerations for downstream processing which has 

only been slightly eluded. 

The time for steady-state to be reached is found to be relatively short for this process at 

around 5.5 hrs. The optimised conditions produce a solid product flowrate of 30.8 g/hr which 

is not considered high. The increase in control of particle size and solid content due to the 

continuous configuration has resulted in a loss of recovery. This is an unfortunate 

disadvantage of the continuous platform. However, comparing the particle size and solid 

content profiles for the continuous platform to the optimised batch process the control that 

is offered through continuous manufacturing for this system is very clear. It should also be 

noted that although 30.8g/hr is not a large solid recovery, the largest recovery from the batch 

process seen experimentally was roughly 40 g for a 4-hour batch time. Therefore, comparing 

the batch and continuous processes in terms of crystal mass recovery would favour the 

continuous when considering larger running times. 

6.3.1.1 Sensitivity Analysis 

Due to the continuous nature of the proposed process, the effect of the variation in flowrates 

on the process outcomes is key to the suitability of the proposed configuration. Therefore, 

the robustness of the continuous evaporative crystalliser was investigated by allowing 

variation of the flowrate setpoint within the system. The advantage of the continuous 

platform is the consistency in the produced material in terms of size and yield. As such, the 

effects of the variation of the flowrates away from the setpoints due to disturbances and 
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other minor unavoidable variations on the process outputs are key to the robustness and 

suitability of the proposed process. 

The variation of the feed flowrate and the flowrate leaving the vessel was allowed to vary via 

uniform distribution with limits of +/- 10% of the optimised value discussed previously. Some 

of the tested conditions resulted in the vessel emptying and as such the failure of the process. 

Additionally, solid content in the recovery stream and the particle size were shown to vary 

across a large range. The consistent error of a flowrate exceeding or undershooting for the 

whole process is an unusual problem only seen if there were problems with the pump 

calibration. However, the onset of sharp changes in flowrates such as surges can be caused 

by upstream processing conditions or control settings. Therefore, it was decided that testing 

the system’s ability to handle fluctuations in the feed flowrate in terms of disturbances would 

Figure 6-2 - Sensitivity analysis of feed flowrate disturbances. Plots A and B show disturbance effects over time. 

Plots C and D show the maximum effect seen due to disturbances of different frequencies and magnitudes. 

Plot B 

Plot C 

Plot A 

Plot D 
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give an insight into the robustness of the configuration. The disturbances were investigated 

in terms of frequency and level of deviation from the setpoint value. As can be seen from 

Figure 6-2, the presence of disturbances was only seen to greatly affect the process outputs 

for frequency values below 1 hr-1. This is due to the slowness to correct for such low 

frequencies. The ability of the system to remain steady with the presence of these 

disturbances highlight the system's robustness to flowrate changes. It should also be noted  

that with adequate controls and monitoring, the correction of disturbances would be quick 

enough to avoid the high variance seen within Figure 6-2. 

The recovered distribution statistics of the process outputs shown in Table 34 upon the 

variation of the simulated disturbances to the feed flowrate shows the presence of broad 

ranges for the minimum and maximum values predicted for the final solid content and the 

particle size. These broad ranges would suggest a lack of stability in the process when dealing 

with fluctuations in the feed flowrate. However, combining the results in Table 34 and Figure 

6-2 it is clear the large variations are all seen for low frequency and high variation percentage 

and as discussed previously, the use of adequate control and process monitoring would 

negate such persistent runoff of process conditions. Additionally, the median value for both 

particle size and crystal mass recovery is quite consistent for both the final and maximum 

values suggesting an overall consistency to the process outputs. 

Value Process Output Unit Exp. Value St.Dev Min Max Median 

M
ax

 

Average particle size μm 403.63 13.299 393.54 470.71 399.64 

Solid content % 8.12 0.33 7.92 9.72 8.01 

Liquid mass kg 0.255 0.0170 0.250 0.364 0.250 

Fi
n

al
 Average particle size μm 393.52 13.434 352.98 448.63 395.97 

Solid content % 7.79 0.37 6.40 9.24 7.88 

M
in

 

Liquid mass kg 0.203 0.0179 0.140 0.244 0.207 

Table 34 - Sensitivity analysis distribution statistics. 
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  Seed Generation Unit 

 Table 35 - Optimised conditions for the production of a seed product stream from a continuous evaporative 

crystallisation. 

An advantage of the evaporative process over the cooling crystallisation of lactose is the 

faster onset of primary nucleation. As such, the use of a continuous evaporative crystalliser 

for use as a first-stage crystalliser, with continuous seed generation, would be considered 

very beneficial for use in the continuous manufacturing of lactose. Therefore, the 

evaporative process needs to be optimised in a manner to allows the product stream to be 

suitable for use as a seed stream for a separate crystallisation process.  

 In this instance, the chosen point of interest Is the development of a continuous evaporative 

crystalliser capable of producing material suitable for use as seed. The limitation of the 

process is therefore small seed size while producing an outlet stream with a solid content 

between 0.5-5%. Additionally, the D4,3 was limited to a maximum of 150 μm to ensure 

suitability as seeding material. The optimisation aim was to maximise the solid content of the 

recovery. Again, the solid content was aimed to be above 1% to ensure suitability for the 

outflow of the process for use as 1st stage in a multimode crystallisation platform or as a seed 

stream to any continuous system. 

Optimised Variable Unit Final Value Initial Guess 

Crystalliser → mass fraction (lactose, 

liquid phase)  

[kg/kg] 0.5044  0.4860 

Crystalliser → mass fraction (water, 

liquid phase)  

[kg/kg] 0.5956  0.6140 

Crystalliser → Flow rate set point  [g/s]  0.0584  0.0585  

Feed→ Mass flow rate set point  [g/s]  0.0495  0.0496  

Feed→ Mass fraction (lactose)  [kg/kg]  0.450  0.450  

Feed→ Mass fraction (water)  [kg/kg]  0.550  0.550  

Mixer splitter → Split fraction [-]  0.289 0.289 
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This optimisation resulted in an average particle size of 150μm with a seed loading of 1.4%. 

This is considered a low seed loading for a continuous process, especially considering the 

slow kinetics of lactose crystallisation. However, the crystal mass recovery of the evaporative 

process and seed size are directly linked. Therefore, there is a trade-off between a suitable 

particle size and a sufficient solid content level for use as an inlet seed stream. 

6.3.2.1 Sensitivity Analysis – Seed Generation Unit 

Similar to the previous sensitivity analysis performed on the maximised evaporative 

crystallisation platform, the effect of disturbances to the system in the form of flowrates is 

also investigated with regard to the proposed seed generation unit. The variation of the feed 

Figure 6-3 - Sensitivity analysis results for the presence of disturbances to feed flowrates for the seed generation 

unit. Plots A and B show disturbance effects over time. Plots C and D show the maximum effect seen due to 

disturbances of different frequencies and magnitudes. 

Plot B 

Plot C 

Plot A 

Plot D 
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flowrate is performed again with a variation of 10% of the setpoint value. The effects of the 

disturbances on the process outputs can be seen in Figure 6-3 and Table 36. Plot A and Plot 

C show the largest effect on the solid content recovery is seen at lower frequencies with 

higher frequencies shown to have minimal effect. There is a similar but less obvious trend 

between the frequency of the disturbances and the D4,3 as can be seen in Plot B. The overall 

learnings from this sensitivity analysis are that disturbances to feed flowrate need to be large 

and low frequency before the system significantly deviates from the optimised process 

outputs. Also, it should be stated that Plot C and Plot D display the maximum values, not the 

end values. Therefore, the consistency capable of this process with the presence of 

disturbance is clear within Plot C and Plot D for frequency values lower than 1 hr-1.  

 As previously stated, a large deviation and a low frequency are required to shift the system 

away from the desired output variables. Therefore, the system is considered fairly robust. 

However, as the output from this process is to be used as the feed source for a subsequent 

process any variations could have an effect on the succeeding processes. Therefore, the 

resulting variation of the product PSD and solid content per cent are to be used as part of the 

basis for the sensitivity analysis of the cooling cascade process. 

Table 36 - Sensitivity analysis distribution statistics of selected process outputs. 

Value Process Output Unit Exp. Value St.Dev Min Max Median 

M
ax

 

Average particle size μm 149.51 0.71 147.65 152.64 149.61 

Solid content % 1.455 0.023 1.423 1.547 1.451 

Liquid mass kg 0.250 5.05E-4 0.250 0.255 0.250 

Fi
n

al
 Average particle size μm 148.61 1.77 142.23 150.85 149.46 

Solid content % 1.401 0.050 1.223 1.512 1.417 

M
in

 

Liquid mass kg 0.237 0.0038 0.2235 0.2420 0.2372 
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 Continuous Multimode Crystallisation 

 Cooling Cascade 

Following the optimisation of the continuous evaporative seed generation unit, the use of a 

multimode crystallisation process was investigated. Figure 6-4 shows the flowsheet 

configuration for a 5-stage cooling crystallisation platform. For simplicity and reduced 

computational time, a slurry source has been used in replace of the continuous evaporative 

crystalliser. The concentration, flowrate and particle size set within the slurry source module 

are all finalised in agreement with the previously optimised continuous seed generation unit. 

The simulated particle size quantiles were used to set the standard deviation and location 

parameter values within the slurry source module to accurately represent the output from 

the evaporative crystalliser. This greatly reduced the computation time to run simulations, 

optimisations and other analyses on the proposed multimode crystallisation process. 

Figure 6-4 - Flowsheet depicting a 5-stage cooling cascade with seed pot representing the stream produced from 

the continuous seed generation unit. 

The output of the optimised continuous evaporative crystallisation process also sets the 

product flowrate and conversely the inlet stream for the cooling cascade. The inlet stream 

for the cooling cascade is a limiting and defining factor for the multimode platform as it will 
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directly dictate the residence time and subsequently, the time to reach steady-state. The 

slow kinetics and low flowrates are a consideration for the applicability of the proposed 

multimode platform due to the time required to reach steady-state conditions for desired 

process outputs. Therefore, a defining factor of reaching a steady-state is only possible to 

manipulate through the vessel size. Due to the slow kinetics of the system being studied, 

there is a trade-off between minimising time to reach a steady-state and suitable residence 

time to allow for sufficient growth. Figure 6-5 shows an uncertainty analysis performed on a 

single-stage MSMPR connected to the previously discussed slurry source module. 

Temperature, concentration, and vessel volume were allowed to vary to gauge the effects 

on the process output. Plot A and Plot B show the progression of the solid content % and the 

average particle size for the tested simulations, respectively. The effect of the mass of 

solution within the vessel has been highlighted as a determining factor in the capabilities of 

the process. The mass of solution within the vessel is a direct representative of the vessel 

volumes that are being investigated. As discussed previously, the slow flowrates and slow 

kinetics of the system being tested are known limitations of the process and heavily limit its 

capabilities. Figure 6-5 shows that greater crystal mass recovery and larger particle size 

recoveries are capable through the proposed process, however, the system either takes a 

very long time to reach a steady-state or not at all under the tested time frame. The 

consideration of the time to reach steady-state is particularly important considering the 

proposed use of a cascade will multiply the time per stage. As such, the second lowest vessel 

size investigated is proposed at 250ml and subsequently 250 g initial mass within the vessel. 

This vessel size had a shorter time to reach a steady-state of around 10 hours. This vessel size 

was fixed upon for all future stage additions.  
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As can be seen from Plot C in Figure 6-5, the temperature of the vessel has a significant effect 

on the solid content recovered from the process. Across the tested temperatures between 

67.5 °C and 53.8 °C, there is a variance of 0.1% which may be considered insignificant. 

However, if this 0.1% reduction is viewed in relation to the increase of the solid content from 

the seed stream of 1.4%, the solid content is increased by between 36% and 44% across the 

cooling stage. It is interesting to note that the maximum recovery and particle size are not 

recovered at the lowest temperature and therefore the highest supersaturation ratio. This 

highlights, that the growth rate within this temperature region is more affected by 

temperature than the level of supersaturation. 

Figure 6-5 - Sensitivity analysis of a single stage cool vessel for variation in temperature and vessel size. Plots A 

and B vary in colour with increasing initial mass of solution from blue to yellow. Plot C also varies in colour form 

blue to yellow for increasing maximum solid content produced.  

Plot B 

Plot C 

Plot A 
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Following the sensitivity analysis of a one-stage continuous cooling crystallisation process, an 

initial attempt at optimising this process was carried out to gauge the optimal temperature 

for the first stage of a cascade. This optimisation focused upon increasing solid content in the 

vessel by varying temperature setpoints. The temperature of the seed stream is held 

constant at 67.5 °C. The optimisation showed a reasonable increase in D4,3 from 149 to 

161μm when the stage was held at 63.8C as shown in Table 37. The optimisation of the 

process was constrained by the supersaturation ratio limit of 1.6 to avoid conditions that 

could induce secondary nucleation if repeated experimentally. The temperature difference 

across the seed generation unit and the 1st stage is less than 4 °C according to the 

optimisation results. This highlights the potential limit in the cooling that is possible for this 

configuration when considering real-life considerations in the form of a number of stages and 

time for the process to reach a steady-state with desirable outputs.  

Variables Temperature D4,3 Solid Content % S ratio  

End Values 63.8 161 2.075 1.33 

Table 37 - Optimisation of continuous single-stage cooling crystallisation process. 

To aid the optimisation of the proposed 5-stage cooling cascade, a sensitivity analysis was 

performed with varying degrees of cooling between vessels. As was shown in the analysis of 

the single-stage crystallisation process the optimal temperature was found to be 63.8C, 

however, this does not appear to be optimal when considering the full cascade. For this 

analysis, four temperatures were trialled for the first vessel and the subsequent vessel 

temperatures were investigated considering equal drops in temperature between vessels. 

Three sets of temperature changes across the cascade were tested: 2, 3 and 4 °C. This allowed 

different cooling rates to be considered across the whole cascade but did not allow for 



147 
 

variation in temperature changes between different vessels. This analysis was primarily used 

for an initial understanding of how the cooling cascade is likely to behave and to further aid 

in the optimisation of the process. 

The temperatures of preceding vessels directly affect the recovery of the latter vessels in two 

ways: the concentration and the mass of solid present in the succeeding vessel outlet 

streams. The solid content and concentration of the inlet streams affect the amount of 

material available to be crystallised upon and the amount available to be crystallised out. As 

the solid content is relatively low, the effect of solid content from preceding vessels is not 

expected to have a determinant effect. However, the temperature of a vessel affects the 

growth rate and the resulting concentration of the outlet stream. As such, the temperature 

of each vessel is paramount in the optimisation of the process. Figure 6-6 shows the 

relationship between the temperature of the 5th stage and the chosen process outputs in 

relation to the temperature of the 1st stage. It is clear from Figure 6-6 that there is a positive 

relationship for both solid content recovery and average particle size with respect to the 

temperature of the 5th stage. This again, highlights that the growth rate is shown to have a 

stronger dependence on temperature than supersaturation. However, there is the beginning 

Figure 6-6 - Sensitivity Analysis of 5-stage cooling cascade temperature relationship between vessels and process 

outputs. Colour bar varies from blue to yellow with increasing Stage 1 temperature. 

Plot B Plot A 
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of a plateau at the maximum temperature range, suggesting there may be a point where 

supersaturation is the dominant factor in growth over temperature. It should also be noted 

that the temperature of the 1st stage was previously optimised to 63.8 °C and is now shown 

to vary from 63 °C to 67 °C with favourable results in the maximising of both solid content 

recovery and average particle size. This increase in potential temperatures of the 1st stage 

was unexpected and has highlighted the usefulness of performing sensitivity analysis prior to 

attempting the optimisation of the 5-stage cascade.  

Table 38 - Optimised temperature setpoint values for each vessel in the multi-mode 5-stage cooling cascade. 

* indicates values that hit the upper bound. 

 Initial attempts to optimise the 5-stage cooling cascade are shown in Table 38 and Table 

39.There is an evident restriction with the proposed process with respect to temperature. 

The initial guesses for the temperature values were for the most gradual cool between 

vessels investigated within the previous sensitivity analysis. The result of the optimisation 

showed a preference for an even more gradual cool. The favouring for higher temperatures 

was seen in earlier sensitivity analysis but the lack of cooling across the stages suggests the 

unsuitability of the proposed process with the current conditions. The proposed process 

conditions were predicted to produce an increase of over 400% in the solid content and a 

Variable 
Temperature set point (°C) 

Stage 1 Stage Stage 3 Stage 4 Stage 5 

Optimised Value 63.4 63.6 62.8 61* 60* 

Initial guess 63 61 59 57 55 

Table 39 Process outputs from the optimised multi-mode 5-stage cooling cascade. 

Process Output Solid content (%) Final D4,3 (μm) 
Supersaturation ratio (-) 

Stage 3 Stage 4 Stage 5 

Final Value 5.69 216.7 1.336 1.367 1.379 
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final average particle size of 217 μm. The growth of particles from the seed value of 149 μm 

to 217 μm is quite small considering there are five vessels within the process. Additionally, a 

larger recovery of solid content would also be desired for this proposed process. This current 

optimised process is not producing favourable results that would warrant the investigation 

of this multimode continuous process experimentally. 

Due to the stagnation of temperature when attempting the optimisation for a 5-stage cooling 

cascade. A 3-stage cascade was investigated within a sensitivity analysis for variation in 

temperature and vessel size. This investigation allowed for different-sized vessels within the 

same cascade to be tested. The tested vessel sizes were limited to 250ml, 400ml and 500ml.  

Larger vessel sizes would allow for a longer time for the material to remain within the vessel 

Figure 6-7 - Sensitivity Analysis for the 3-stage cooling cascade with variation in temperature and vessel sizes. 

Colour bar varies from blue to yellow with increasing combined initial mass of solution (Plot A and B) and average 

particle size (plot C and D). 

Plot B 

Plot C 

Plot A 

Plot D 
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and therefore more significant changes in the concentration within each stage. This larger 

change would allow for larger cooling steps between the stages and overall greater crystal 

mass recovery. Plot A and Plot B within Figure 6-7 show the increase in solid content and 

average particle size for increasing the overall mass of solution in the vessels. This is in 

agreement with the previous investigation into the effect of vessel size where larger sizes 

increase recovery but the time to reach steady state is prohibitively slow. The effect of 

temperature is still consistent with a maximum of around 60 °C as can be seen in Plot D. 

Interestingly, Plot C shows a maximum in terms of recovery for all tested vessel sizes at 

supersaturation ratio values between 1.35 and 1.37. This is consistent with the optimisation 

results for the 5-stage cascade discussed previously and displayed in Table 39. This analysis 

showed that the variation of vessel size was prohibited by the time taken to reach a steady 

state and that the effect of temperature was not removed by the use of larger vessels 

anyway. Therefore, the use of the cooling cascade alongside the continuous seed generation 

unit was still not producing favourable results. 

With the consideration of temperature and vessel size not sufficient enough to improve 

recovery in a reasonable timeframe, the evaporative seed generation unit is likely the limiting 

factor. The development of the continuous seed generation unit was discussed previously 

and was shown to have a low solid content and low flowrate. These are two considerations 

that have a direct effect on the potential of the multimode process in question. The low solid 

content means there is less material available to be crystallised upon and could be limiting 

the potential output of the cooling cascade. Additionally, the low flowrate directly affects the 

residence time within the vessel and subsequently the suitability of different vessel sizes for 

adequate recovery time frames. Simulations investigating the effect of feed flowrate and the 
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solid content from the seed generation unit on the recovery of the cooling cascade were 

tested to find the limiting factor of the recovery of the multimode process.  

The effect of seed loading is evident in Figure 6-8. Increasing the solid content of the feed 

stream to the 5-stage cooling cascade was shown to increase the solid content recovery of 

the process as well as the average particle size. This highlights the low solid content produced 

from the seed generation unit as a limiting factor in the proposed multimode process. The 

positive effect of seed loading on the process outputs is linked to the greater reduction in 

concentration within each vessel. It should be noted that although the solid content has 

greatly increased, in relative terms the recovery using smaller seed loading is larger. A feed 

stream with 1.4% solids results in an increase in solids of over 400% but a feed stream of 10% 

is currently showing a relative increase of only 220%. 

The sensitivity analysis also investigated the effect of flowrates within the cascade and two 

different vessel volumes. The effect of larger vessel volume was found to increase the 

amount of time to reach a steady state for set flowrate values. However, the end values 

recovered for both average particle size and solid content have increased. This suggests 

through the variation of the flowrate from the seed generation unit, larger vessel volumes 

Figure 6-8 - Sensitivity analysis for 3-stage cascade with a constant flowrate of 0.1495 kg/hr. Variations for 

temperature and seed loading. Colour bar varies from blue to yellow with increasing solid loading.  

Plot B Plot A 
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may be necessary to improve the yield recovery from the proposed multi-mode platform. 

Larger flowrates are shown to decrease the time to reach steady state but also produce 

smaller particles and lower solid content values. The effects of flowrate and vessel volume 

are directly linked in terms of their suitability and are restricted by the slow kinetics of the 

lactose crystallisation system.  

It is clear from the investigation into the variation of flowrate and seed loading that the 

current outputs of the seed generation unit are not suited for the proposed multimode 

MSMPR cascade. Due to the current evaporative crystallisation being limited to 250ml 

experiments and therefore limited data on the evaporation rate out with these conditions it 

Figure 6-9 - Sensitivity analysis for 3-stage cascade with a constant seed loading of 1.4%.. Variations for flowrate 

shown by colour bar. Top graphs tested on 500 ml system. Bottom graphs tested on 250 ml system. Colour bar 

varies from blue to yellow with increasing feed flowrate. 

Plot B 

Plot C 

Plot A 

Plot D 
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was decided not to attempt scale-up of the seed generation unit. As such, the proposed 

multimode cascade is deemed not suitable for further work at this stage. 

 Plug Flow Reactor 

As the MSMPR cooling cascade was not found to produce favourable results when connected 

with the seed generation unit, a plug flow reactor (PFR) was investigated. The PFR system 

was considered as four separate modules with separate temperatures that would allow for 

a controlled cool across the overall vessel. This framework of a four-module reactor follows 

the Rattlesnake from Cambridge Reactor Designs. The feed flowrate is rather low due to the 

seed generation unit's output and as such different vessel sizes are considered for this 

Figure 6-10 Sensitivity analysis of PFR cooling crystalliser with seed generation unit. Colour bar varies from blue 

to yellow with increasing: Initial mass of solution (Plot A and B); solid content (Plot C) and average particle size 

(plot D). 

Plot B 

Plot C 

Plot A 

Plot D 
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potential PFR set-up. The ratio between the cross-sectional area and the length of each 

module is kept consistent with the measurements of a single module from the rattlesnake to 

keep the set-up relative in nature.  

Sensitivity analysis was done for the PFR multimode set-up to investigate the possibilities of 

the proposed process. The vessel size and dimensions of the PFR were all varied in connection 

with each other and the temperature was also varied to investigate the degree of cooling 

capable over the PFR since this was highlighted as a limiting effect of the multimode MSMPR 

cascade previously investigated. Plot A in Figure 6-10 shows at least two initial masses of 

saturated solution that reach a steady state in a reasonable time. However, the solid content 

value of 2.3 % for an initial mass of 0.277 kg is very similar to that recovered for the single-

stage MSMPR vessel with 250g in the previous section of 2.08%. This suggests the limitations 

of the previous MSMPR cascade may be also seen with the cooling PFR multimode platform. 

Plot B shows the particle size leaving the vessels through time for different initial masses of 

solution. It is clear from this that there is a limitation in the growth capability due to realistic 

times for the running of the set-up. It is also clear from Figure 6-10 that the particle size 

outputs from the 1st module are very minimal with the current conditions of the seed 

generation unit. Again, this is similar to the findings of the multi-mode cooling cascade in that 

the flowrate and solid content of the seed generation unit are the limiting factors in the 

optimisation of the platform. 

From initial investigations into the first module of a cooling PFR system, it is clear that the 

problems seen in the multimode MSMPR platform are still prevalent in the multimode PFR 

system. As such, the optimisation of the multimode PFR platform is not investigated further 

as the limiting factor has already been highlighted as the process outputs from the seed 

generation unit.  



155 
 

 Conclusion 

The simulation capabilities of gFP were utilised in this chapter to investigate the capabilities 

and robustness of proposed crystallisation processes that had not been investigated 

experimentally. Initially, the focus of this work was to investigate the transfer of the semi-

batch evaporative crystallisation process investigated in the previous chapter to continuous 

operation. This evaporative crystalliser was focused upon in terms of two different output 

goals. An optimised continuous evaporative crystalliser for solid product flowrate was 

developed and the optimised process conditions have been highlighted in Table 33. This 

optimised process is predicted to produce particulates with an average size of 401 μm and a 

solid content of 7.97%. The size of particles predicted to be produced from this process is 

quite impressive for only 5.5 hrs to reach steady-state. The optimised continuous process 

was then tested under the presence of disturbances to feed flowrate to test the robustness 

of the proposed platform. The proposed continuous process was found to only deviate 

strongly from the optimum process outputs with the presence of low frequency and high 

deviation disturbances. 

The evaporative crystalliser was also used as the basis for the development of a continuous 

seed generation unit. The hope of this process was to have a process with a continual output 

stream with suitable properties to be used as the seeded feed stream to a cooling platform. 

The limitations of 150 μm particles and a solid content of above 1% were set for the 

optimisation of the continuous evaporative process. These constraints were set to ensure 

the suitability of the process as a seed generation unit. The particle size and solid content are 

directly linked and therefore the optimised process was found to produce a low solid content 

of 1.4% and a large D4,3 of 149 μm. This process was also tested for its ability to handle 
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disturbances of the feed flowrate stream. Again, the system was only strongly seen to deviate 

from process outputs for low frequency and high deviation disturbances. However, due to 

the lower values of solid content and particle size, the deviations are large when considered 

relative to the optimised values. 

The optimised seed generation unit process outputs are used as the feed values for two 

different cooling crystallisation processes. The first investigated was the use of a 5-stage 

cooling cascade. The optimisation and sensitivity analysis of the use of cooling cascades 

found the current conditions of the seed generation unit limited the level of recovery 

possible. This was due to the low level of solid content in the feed stream resulting in a slow 

depletion of the concentration in individual stages and therefore minimal cooling across 

stages was seen. The slow kinetics and the low process outputs from the seed generation 

unit are direct limits on the proposed multimode crystallisation platform with a cooling 

cascade. Additionally, the seed generation unit was connected with a cooling crystallisation 

PFR. Through sensitivity analysis, the multimode PFR system was also found to be limited by 

the current outputs of the seed generation unit. 

The seed generation unit is found to be the limiting factor of the proposed continuous 

multimode crystallisation platforms. Unfortunately, the specific problem with the seed 

generation unit is the outlet flowrate and solid content when producing material of a suitable 

size for seeding purposes. As discussed previously, the solid content is directly linked to the 

size of particles produced and therefore cannot be separated to allow for higher solid content 

values. The scaling of the evaporative seed generation unit would require a knowledge of the 

evaporation rates seen experimentally at larger vessel volumes which are not available at 

this stage. 
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In conclusion, this work has allowed for the investigation of continuous evaporative 

crystallisation processes from the development of the batch mechanistic model developed 

in the previous chapter. Additionally, proposed continuous multimode crystallisation 

platforms were investigated through the use of mechanistic models. However, due to the 

limitations of the continuous evaporative seed generation unit, the proposed multimode 

crystallisation platforms were not found to be feasible at this time. 
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7 Conclusions and Future Work 

This work has centred on the use of mechanistic models to describe different crystallisation 

processes and the use of such models to aid in the optimisation of crystalline recovery 

processes. The use of sequential parameters estimation has been used for both cooling and 

evaporative crystallisation of ALM from water. The design of experiments for the different 

platforms was slightly modified to allow for the intricacies of the semi-continuous vacuum-

induced evaporative crystalliser compared to the batch cooling set-up. The parameter 

estimation methods allowed for the building of mechanistic models of both platforms that 

describe the crystallisation kinetics of the systems. The cooling crystallisation model in 

particular was shown to accurately represent the system with only some variation in the PSD 

prediction not fully capturing the shape of the recovered material. The evaporative model, 

however, did pass the goodness of fit test but the uncertainties on the fitted kinetics were 

shown to have quite large effects on the process outputs. In particular, the PSD was greatly 

affected by the uncertainty of the growth rate constant. The evaporative crystalliser model 

was built using minimal experiments and as such the error is higher than the cooling model. 

The building of mechanistic models for a late stage development API was also endeavoured 

to utilise pre-existing experimental data from controlled cooling experiments. This required 

the decoupling of the growth and agglomeration kinetics similar to the previous modelling 

work. The resulting model was found to accurately describe the process in terms of 

concentration prediction. However, the PSD predictions were again too narrow and not fully 

capturing the broadness of the recovered PSD. The D50 quantile was accurately captured by 

the model and as such the model was found to accurately describe the chosen process.  
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The developed mechanistic models were then all used for optimisation purposes to gauge 

the possible outputs of the tested system. The lactose cooling crystallisation was optimised 

for recovery due to the low recovery seen experimentally. A large increase in recovery was 

seen from the batch-seeded desupersaturation experiments compared to the batch-

controlled cooling platform that was focused on for optimisation. The cooling profile was the 

focus of the optimisation and was found to produce a crystal mass recovery of 10 g with a 

predicted particle size of 30.53 μm for a reduced batch time of 11.23 hrs. The mechanistic 

model allowed for these different process conditions to be investigated without the need for 

additional experimentation. 

The crystallisation of Compound-X was also focused on in terms of optimisation and found 

to be influenced by the initial concentration and the cooling profile. The model allowed for 

extrapolation down to lower temperatures than were tested experimentally and was found 

to be useful in the increase in crystal mass recovery. The optimisation of the Compound-X 

crystallisation process was found to rely on faster cooling time and longer final hold period 

to allow for lower temperatures to be reached and added time for the system to push 

towards the saturated concentration for the tested temperature.  

Finally, the evaporative process was investigated in terms of optimising for crystal mass 

recovery in both batch and continuous mode. The continuous mode optimisation of crystal 

mass was attempted for two goals: producing large particulates and small particulates for 

seeding purposes. The conditions for the running of the continuous evaporative 

crystallisation process were found to maximise the capabilities of the process and for use as 

a seed generation unit. The robustness of the proposed continuous processes was found to 

hold for disturbances with a frequency greater than 1 hr-1. The seed generation unit was then 

tested as the first stage of a multimode crystallisation process. This looked to link the 
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evaporative crystalliser to a cooling crystalliser in order to utilise both lactose mechanistic 

models. A cooling MSMPR cascade and a PFR were both trialled within a multimode platform. 

Both processes were found to be limited by the process outputs of the seed generation unit. 

The testing of the proposed multimode platform was achieved through entirely 

computational means and was capable of ruling out the use of such processes at this stage. 

The future work that would be proposed based on the results of this thesis would be to 

expand the working range of interest for the cooling lactose crystallisation model to allow for 

a more dynamic model to be built. Greater temperature and supersaturation regions would 

allow for additional mechanisms of interest to be included within the model such as 

secondary nucleation. Additionally, it would also produce larger concentration changes 

across the experiments and would likely improve the accuracy of the model being built. In 

terms of the Compound-X model, there are limits to the improvements that can be made due 

to available data but it would be recommended to include the full PSD for fitting where 

possible to improve the model's PSD predictions. The developed evaporative crystallisation 

model could be greatly improved through further experimentation. This is however limited 

by the current platform and the recommendations would be to improve the control of the 

pressure in the vessel to reduce the noise from the valve. Additionally, the inclusion of 

evaporation kinetics through a VLE model would give a more complete look into the 

evaporative crystallisation process being studied. Finally, the hypothetical process proposed 

for the multi-mode crystallisation platform was directly limited by the results of the 

evaporative crystallisation model and as such could benefit from more work into the 

evaporative crystallisation model. 

A limit of the usefulness of the models built within this thesis has been consistently 

highlighted as the size prediction inaccuracy. A key area of focus would be to endeavour to 
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improve the PSD prediction and uncertainty by the inclusion of additional PSD data during 

the development of the model. This could be achieved by PSD data produced from image 

analysis of images taken in-situ during the experiments. This would rely on a relatively new 

piece of technology and its accuracy would have a direct link to the robustness of the model 

produced. Alternatively, sampling during experiments could also supply the required 

additional PSD information but it would also increase the complexity of the flowsheet used 

for modelling.  

The key takeaway from this thesis is the usefulness of mechanistic models and their ability 

to aid process design and ultimately increase understanding of processes while reducing 

waste. An innovative approach to crystallisation process design was endeavoured to design 

a multi-mode crystallisation platform through entirely digital design methods. This approach 

although unsuccessful could be adapted and utilised for the combinations of different 

processes such as the addition of an antisolvent crystalliser as a final stage MSMPR to 

improve the yield. On a more general note, the Compound-X model has shown that building 

mechanistic models do not necessarily require additional experimentation and therefore 

could be an insightful asset for process developers during the early stages of product 

development. The hope would be to include the development of mechanistic models for 

crystallisation process as an industry standard in the early development to better aid 

experimental design and recovery. This could be particularly useful given the current 

requirement for green manufacturing and the collective goal of reducing waste by means of 

more effective experimental design and utilisation of digital twins. 

  



162 
 

8 References 
[1] H. J. M. Kramer and G. M. van Rosmalen, “CRYSTALLIZATION,” Encycl. Sep. Sci., pp. 

64–84, Jan. 2000, doi: 10.1016/B0-12-226770-2/00031-4. 

[2] M. T. Lusk and A. E. Mattsson, “High-performance computing for materials design to 
advance energy science,” MRS Bull., 2011, doi: 10.1557/mrs.2011.30. 

[3] A. K. El-Zhry El-Yafi and H. El-Zein, “Technical crystallization for application in 
pharmaceutical material engineering: Review article,” Asian J. Pharm. Sci., vol. 10, no. 
4, pp. 283–291, Jul. 2015, doi: 10.1016/J.AJPS.2015.03.003. 

[4] Z. Zhang, D.-W. Sun, Z. Zhu, and L. Cheng, “Enhancement of Crystallization Processes 
by Power Ultrasound: Current State-of-the-Art and Research Advances,” Compr. Rev. 
Food Sci. Food Saf., vol. 14, no. 4, pp. 303–316, Jul. 2015, doi: 10.1111/1541-
4337.12132. 

[5] C. T. Ó’Ciardhá, K. W. Hutton, N. A. Mitchell, and P. J. Frawley, “Simultaneous 
Parameter Estimation and Optimization of a Seeded Antisolvent Crystallization,” 
Cryst. Growth Des., vol. 12, no. 11, pp. 5247–5261, Nov. 2012, doi: 
10.1021/cg3006822. 

[6] H. M. Schoen, C. S. Grove, and J. A. Palermo, “The early history of crystallization,” J. 
Chem. Educ., vol. 33, no. 8, p. 373, Aug. 1956, doi: 10.1021/ed033p373. 

[7] Z. K. Nagy and R. D. Braatz, “Advances and new directions in crystallization control.,” 
Annu. Rev. Chem. Biomol. Eng., vol. 3, pp. 55–75, 2012, doi: 10.1146/annurev-
chembioeng-062011-081043. 

[8] Siemens Process Systems Engineering Limited, “gPROMS FormulatedProducts 
Documentation.” London, Jul. 2022. 

[9] K. Plumb, “Continuous Processing in the Pharmaceutical Industry: Changing the Mind 
Set,” Chem. Eng. Res. Des., vol. 83, no. 6, pp. 730–738, Jun. 2005, doi: 
10.1205/CHERD.04359. 

[10] D. Zhang, S. Xu, S. Du, J. Wang, and J. Gong, “Progress of Pharmaceutical Continuous 
Crystallization,” Engineering, vol. 3, no. 3, pp. 354–364, Jun. 2017, doi: 
10.1016/J.ENG.2017.03.023. 

[11] S. L. Lee et al., “Modernizing Pharmaceutical Manufacturing: from Batch to 
Continuous Production,” J. Pharm. Innov., vol. 10, no. 3, pp. 191–199, 2015, doi: 
10.1007/s12247-015-9215-8. 

[12] B. Benyahia, P. D. Anandan, and C. Rielly, “Control of Batch and Continuous 
Crystallization Processes using Reinforcement Learning”, doi: 10.1016/B978-0-323-
88506-5.50211-4. 

[13] C. J. Brown et al., “Enabling precision manufacturing of active pharmaceutical 
ingredients: workflow for seeded cooling continuous crystallisations,” Mol. Syst. Des. 
Eng., vol. 3, no. 3, pp. 518–549, 2018, doi: 10.1039/c7me00096k. 

[14] A. S. Myerson, M. Krumme, M. Nasr, H. Thomas, and R. D. Braatz, “Control Systems 
Engineering in Continuous Pharmaceutical Manufacturing Continuous Manufacturing 



163 
 

Symposium”, doi: 10.1002/jps.24311. 

[15] H. Siddique, C. J. Brown, I. Houson, and A. J. Florence, “Establishment of a Continuous 
Sonocrystallization Process for Lactose in an Oscillatory Baffled Crystallizer,” Org. 
Process Res. Dev., vol. 19, no. 12, pp. 1871–1881, Dec. 2015, doi: 
10.1021/acs.oprd.5b00127. 

[16] M. S. Alam, B. Ashokkumar, and A. Mohammed Siddiq, “The density, dynamic viscosity 
and kinematic viscosity of protic polar solvents (pure and mixed systems) studies: A 
theoretical insight of thermophysical properties,” J. Mol. Liq., vol. 251, pp. 458–469, 
Feb. 2018, doi: 10.1016/J.MOLLIQ.2017.12.089. 

[17] R. Liang and Z. Yuan, “Computational Shape Optimization of Microreactors based on 
CFD Simulation and Surrogate Model driven Optimization,” 2020, doi: 10.1016/B978-
0-12-823377-1.50155-5. 

[18] A. Mersmann, Crystallization Technology Handbook. Taylor & Francis, 2001. [Online]. 
Available: https://books.google.co.uk/books?id=BVJdDw59lDcC 

[19] R. Davey and J. Garside, From molecules to crystallizers. Oxford University Press, 2000.  

[20] N. Kubota, “A new interpretation of metastable zone widths measured for unseeded 
solutions,” J. Cryst. Growth, vol. 310, pp. 629–634, 2008, doi: 
10.1016/j.jcrysgro.2007.11.123. 

[21] A. Cashmore, M. Haw, M. Lee, and J. Sefcik, “Understanding and Measurement of 
Secondary Nucleation,” 2022. 

[22] S. G. Agrawal and A. H. J. Paterson, “Secondary Nucleation: Mechanisms and Models,” 
Chem. Eng. Commun., vol. 202, no. 5, pp. 698–706, May 2015, doi: 
10.1080/00986445.2014.969369. 

[23] S. O’regan, P. J. Frawley, and O. Shardt, “The determination of the critical Reynolds 
number for particle-wall collisions using the lattice-Boltzmann method.” [Online]. 
Available: https://ssrn.com/abstract=4127895 

[24] M. Bravi, S. Di Cave, B. Mazzarotta, and N. Verdone, “Relating the attrition behaviour 
of crystals in a stirred vessel to their mechanical properties,” Chem. Eng. J., vol. 94, 
no. 3, pp. 223–229, Aug. 2003, doi: 10.1016/S1385-8947(03)00053-6. 

[25] J. B. Rawlings, M. Stephen, and R. Witkowskit, “Model Identification and Control of 
Solution Crystallization Processes : A Review Z4y ],” no. 512, pp. 1275–1296, 1993. 

[26] J. W. Mullin, Crystallization. in Chemical, Petrochemical & Process. Elsevier Science, 
2001. [Online]. Available: https://books.google.co.uk/books?id=Et0EtojQmvsC 

[27] N. A. Mitchell, C. T. Ó’Ciardhá, and P. J. Frawley, “Estimation of the growth kinetics for 
the cooling crystallisation of paracetamol and ethanol solutions,” J. Cryst. Growth, vol. 
328, no. 1, pp. 39–49, Aug. 2011, doi: 10.1016/J.JCRYSGRO.2011.06.016. 

[28] L.-M. Terdenge, J. A. Kossuch, G. Schembecker, and K. Wohlgemuth, “Potential of 
gassing crystallization to control the agglomeration degree of crystalline products,” 
2017, doi: 10.1016/j.powtec.2017.07.044. 

[29] K. Pitt et al., “Particle design via spherical agglomeration: A critical review of 



164 
 

controlling parameters, rate processes and modelling,” Powder Technol., vol. 326, pp. 
327–343, 2018, doi: https://doi.org/10.1016/j.powtec.2017.11.052. 

[30] J.-F. Pérez-Calvo, S. S. Kadam, and H. J. M. Kramer, “Determination of kinetics in batch 
cooling crystallization processes-A sequential parameter estimation approach,” AIChE 
J., vol. 62, no. 11, pp. 3992–4012, Nov. 2016, doi: 10.1002/aic.15295. 

[31] A. Abbas and J. A. Romagnoli, “Multiscale modeling, simulation and validation of 
batch cooling crystallization,” Sep. Purif. Technol., vol. 53, no. 2, pp. 153–163, 2007, 
doi: 10.1016/j.seppur.2006.06.027. 

[32] H. A. Jakobsen, “The Population Balance Equation,” in Chemical Reactor Modeling, 
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 807–865. doi: 10.1007/978-
3-540-68622-4_9. 

[33] D. Verkoeijen, G. A. Pouw, G. El, M. H. Meesters, and B. Scarlett, “Population balances 
for particulate processes-a volume approach,” Chem. Eng. Sci., vol. 57, pp. 2287–
2303, 2002, Accessed: Aug. 30, 2023. [Online]. Available: 
www.elsevier.com/locate/ces 

[34] D. Ramkrishna and M. R. Singh, “Population balance modeling: current status and 
future prospects.,” Annu. Rev. Chem. Biomol. Eng., vol. 5, pp. 123–146, 2014, doi: 
10.1146/annurev-chembioeng-060713-040241. 

[35] A. Majumder, V. Kariwala, S. Ansumali, and A. Rajendran, “Lattice Boltzmann method 
for population balance equations with simultaneous growth, nucleation, aggregation 
and breakage,” Chem. Eng. Sci., vol. 69, no. 1, pp. 316–328, 2012, doi: 
https://doi.org/10.1016/j.ces.2011.10.051. 

[36] H. M. Omar and S. Rohani, “Crystal Population Balance Formulation and Solution 
Methods: A Review,” Cryst. Growth Des., vol. 17, no. 7, pp. 4028–4041, Jul. 2017, doi: 
10.1021/acs.cgd.7b00645. 

[37] A. D. Randolph and M. A. Larson, “Transient and steady state size distributions in 
continuous mixed suspension crystallizers,” AIChE J., vol. 8, no. 5, pp. 639–645, 1962, 
doi: 10.1002/aic.690080515. 

[38] S. K. Jha, S. Karthika, and T. K. Radhakrishnan, “Modelling and control of crystallization 
process,” Resour. Technol., vol. 3, no. 1, pp. 94–100, Mar. 2017, doi: 
10.1016/J.REFFIT.2017.01.002. 

[39] M. M. Attarakih, C. Drumm, and H.-J. Bart, “Solution of the population balance 
equation using the sectional quadrature method of moments (SQMOM),” Chem. Eng. 
Sci., vol. 64, pp. 742–752, 2009, doi: 10.1016/j.ces.2008.05.006. 

[40] F. Puel, G. Fã Evotte, and J. P. Klein, “Simulation and analysis of industrial 
crystallization processes through multidimensional population balance equations. 
Part 1: a resolution algorithm based on the method of classes,” Chem. Eng. Sci., vol. 
58, pp. 3715–3727, 2003, doi: 10.1016/S0009-2509(03)00254-9. 

[41] V. John, T. Mitkova, M. Roland, K. Sundmacher, L. Tobiska, and A. Voigt, “Simulations 
of population balance systems with one internal coordinate using finite element 
methods,” Chem. Eng. Sci., vol. 64, no. 4, pp. 733–741, 2009, doi: 



165 
 

https://doi.org/10.1016/j.ces.2008.05.004. 

[42] K. K. Pradhan, S. Chakraverty, K. K. Pradhan, and S. Chakraverty, “Finite Element 
Method,” Comput. Struct. Mech., pp. 25–28, Jan. 2019, doi: 10.1016/B978-0-12-
815492-2.00010-1. 

[43] B. E. Rapp and B. E. Rapp, “Finite Element Method,” Microfluid. Model. Mech. Math., 
pp. 655–678, Jan. 2017, doi: 10.1016/B978-1-4557-3141-1.50032-0. 

[44] R. Gunawan, I. Fusman, and R. D. Braatz, “High Resolution Algorithms for 
Multidimensional Population Balance Equations,” AIChE J, vol. 50, pp. 2738–2749, 
2004, doi: 10.1002/aic.10228. 

[45] D. Meimaroglou and C. Kiparissides, “Monte Carlo simulation for the solution of the 
bi-variate dynamic population balance equation in batch particulate systems,” Chem. 
Eng. Sci., vol. 62, no. 18–20, pp. 5295–5299, Sep. 2007, doi: 
10.1016/j.ces.2006.11.032. 

[46] A. H. Bari and A. B. Pandit, “Sequential Crystallization Parameter Estimation Method 
for Determination of Nucleation, Growth, Breakage, and Agglomeration Kinetics,” Ind. 
Eng. Chem. Res., vol. 57, no. 5, pp. 1370–1379, 2018, doi: 10.1021/acs.iecr.7b03995. 

[47] S. Kumar and D. Ramkrishna, “On the solution of population balance equations by 
discretization—III. Nucleation, growth and aggregation of particles,” Chem. Eng. Sci., 
vol. 52, no. 24, pp. 4659–4679, Dec. 1997, doi: 10.1016/S0009-2509(97)00307-2. 

[48] A. W. Mahoney, F. J. Doyle, and D. Ramkrishna, “Inverse problems in population 
balances: Growth and nucleation from dynamic data,” AIChE J., vol. 48, no. 5, pp. 981–
990, May 2002, doi: 10.1002/aic.690480508. 

[49] F. Févotte and G. Févotte, “A method of characteristics for solving population balance 
equations (PBE) describing the adsorption of impurities during crystallization 
processes,” Chem. Eng. Sci., vol. 65, no. 10, pp. 3191–3198, May 2010, doi: 
10.1016/J.CES.2010.02.009. 

[50] Z. K. Nagy, M. Fujiwara, X. Y. Woo, and R. D. Braatz, “Determination of the Kinetic 
Parameters for the Crystallization of Paracetamol from Water Using Metastable Zone 
Width Experiments,” Ind. Eng. Chem. Res., vol. 47, no. 4, pp. 1245–1252, Feb. 2008, 
doi: 10.1021/ie060637c. 

[51] M. Li, D. Wilkinson, and K. Patchigolla, “Comparison of Particle Size Distributions 
Measured Using Different Techniques,” Part. Sci. Technol., vol. 23, no. 3, pp. 265–284, 
2005, doi: 10.1080/02726350590955912. 

[52] R. Wakeman, “The influence of particle properties on filtration,” Sep. Purif. Technol., 
vol. 58, no. 2, pp. 234–241, 2007, doi: https://doi.org/10.1016/j.seppur.2007.03.018. 

[53] E. Simone, A. I. I. Tyler, D. Kuah, X. Bao, M. E. Ries, and D. Baker, “Optimal Design of 
Crystallization Processes for the Recovery of a Slow-Nucleating Sugar with a Complex 
Chemical Equilibrium in Aqueous Solution: The Case of Lactose,” Org. Process Res. 
Dev., vol. 23, no. 2, pp. 220–233, 2019, doi: 10.1021/acs.oprd.8b00323. 

[54] S. R. Patel and Z. V. P. Murthy, “Ultrasound assisted crystallization for the recovery of 
lactose in an anti-solvent acetone,” Cryst. Res. Technol., vol. 44, no. 8, pp. 889–896, 



166 
 

2009, doi: 10.1002/crat.200900227. 

[55] P. Eadala, J. P. Waud, S. B. Matthews, J. T. Green, and A. K. Campbell, “Quantifying the 
‘hidden’ lactose in drugs used for the treatment of gastrointestinal conditions,” 
Aliment. Pharmacol. Ther., vol. 29, no. 6, pp. 677–687, Mar. 2009, doi: 
10.1111/j.1365-2036.2008.03889.x. 

[56] A. van Kreveld and A. S. Michaels, “Measurement of Crystal Growth of α-Lactose,” J. 
Dairy Sci., vol. 48, no. 3, pp. 259–265, Mar. 1965, doi: 10.3168/JDS.S0022-
0302(65)88213-3. 

[57] G. Haase and T. A. Nickerson, “Kinetic Reactions of Alpha and Beta Lactose. II. 
Crystallization,” J. Dairy Sci., vol. 49, no. 7, pp. 757–761, Jul. 1966, doi: 
10.3168/JDS.S0022-0302(66)87941-9. 

[58] P. Parimaladevi and K. Srinivasan, “Influence of supersaturation level on the 
morphology of α-lactose monohydrate crystals,” Int. Dairy J., vol. 39, no. 2, pp. 301–
311, Dec. 2014, doi: 10.1016/J.IDAIRYJ.2014.08.007. 

[59] J. Colin Haser, R. H. Herring, and S. Datta, “Development of QSPR Model Relating 
Solvent Structure to Crystal Morphology,” Comput. Aided Chem. Eng., vol. 34, pp. 
321–326, Jan. 2014, doi: 10.1016/B978-0-444-63433-7.50038-9. 

[60] E. A. Schmitt, D. Law, and G. G. Z. Zhang, “Nucleation and Crystallization Kinetics of 
Hydrated Amorphous Lactose Above the Glass Transition Temperature,” J. Pharm. 
Sci., vol. 88, no. 3, pp. 291–296, Mar. 1999, doi: 10.1021/JS980387S. 

[61] A. Bhargava and P. Jelen, “Lactose Solubility and Crystal Growth as Affected by 
Mineral Impurities,” J. Food Sci., vol. 61, no. 1, pp. 180–184, Jan. 1996, doi: 
10.1111/j.1365-2621.1996.tb14754.x. 

[62] S. R. Patel and Z. V. P. Murthy, “Ultrasound assisted crystallization for the recovery of 
lactose in an anti-solvent acetone,” Cryst. Res. Technol., vol. 44, no. 8, pp. 889–896, 
Aug. 2009, doi: 10.1002/crat.200900227. 

[63] K. R. Morison and F. M. Mackay, “Viscosity of Lactose and Whey Protein Solutions,” 
Int. J. Food Prop., vol. 4, no. 3, pp. 441–454, Nov. 2001, doi: 10.1081/JFP-100108647. 

[64] P. Walstra, J. T. M. Wouters, and T. J. Geurts, Dairy science and technology, second 
edition, 2nd ed. CRC Press, 2005. Accessed: Nov. 09, 2022. [Online]. Available: 
https://www.perlego.com/book/1698670/dairy-science-and-technology-pdf 

[65] J. M. Johnson and F. D. Conforti, “Lactose,” in Encyclopedia of Food Sciences and 
Nutrition (Second Edition), B. Caballero, Ed., Second Edi.Oxford: Academic Press, 
2003, pp. 3472–3476. doi: https://doi.org/10.1016/B0-12-227055-X/00674-X. 

[66] P. Zarmpi, T. Flanagan, E. Meehan, J. Mann, and N. Fotaki, “Biopharmaceutical aspects 
and implications of excipient variability in drug product performance,” Eur. J. Pharm. 
Biopharm., vol. 111, pp. 1–15, 2017, doi: https://doi.org/10.1016/j.ejpb.2016.11.004. 

[67] J. Mcleod, “Nucleation and growth of alpha lactose monohydrate : a thesis presented 
in partial fulfilment of the requirements for the degree of Doctor of Philosophy in 
Process Engineering at Massey University,” vol. Doctor of, 2007, Accessed: Apr. 22, 
2020. [Online]. Available: http://hdl.handle.net/10179/1444 



167 
 

[68] R. A. Visser, Crystal Growth Kinetics of Alpha-lactose Hydrate. Druk: Cooperative 
Condensfabriek"Friesland" w.a., 1983. [Online]. Available: 
https://books.google.co.uk/books?id=PZOPNQAACAAJ 

[69] E. Simone, A. N. Saleemi, and Z. K. Nagy, “Raman, UV, NIR, and Mid-IR Spectroscopy 
with Focused Beam Reflectance Measurement in Monitoring Polymorphic 
Transformations,” Chem. Eng. Technol., vol. 37, no. 8, pp. 1305–1313, Aug. 2014, doi: 
10.1002/CEAT.201400203. 

[70] J. Cornel, C. Lindenberg, and M. Mazzotti, “Quantitative application of in situ ATR-FTIR 
and raman spectroscopy in crystallization processes,” Ind. Eng. Chem. Res., vol. 47, 
no. 14, pp. 4870–4882, Jul. 2008, doi: 10.1021/IE800236V. 

[71] T. Togkalidou, H.-H. Tung, Y. Sun, A. Andrews, and R. D. Braatz, “Solution 
Concentration Prediction for Pharmaceutical Crystallization Processes Using Robust 
Chemometrics and ATR FTIR Spectroscopy,” Org. Process Res. Dev., vol. 6, no. 3, pp. 
317–322, May 2002, doi: 10.1021/op015516x. 

[72] S. A. Schiele, R. Meinhardt, C. Eder, and H. Briesen, “ATR-FTIR spectroscopy for in-line 
anomer concentration measurements in solution: A case study of lactose,” Food 
Control, vol. 110, p. 107024, Apr. 2020, doi: 10.1016/J.FOODCONT.2019.107024. 

[73] G. James, D. Burley, D. Clements, P. Dyke, and N. Steele, Advanced Modern 
Engineering Mathematics. Pearson, 2018. [Online]. Available: 
https://books.google.co.uk/books?id=OiPZswEACAAJ 

[74] T. Vetter, C. L. Burcham, and M. F. Doherty, “Regions of attainable particle sizes in 
continuous and batch crystallization processes,” Chem. Eng. Sci., vol. 106, pp. 167–
180, 2014, doi: https://doi.org/10.1016/j.ces.2013.11.008. 

[75] Eigenvector Research Inc., “Solo and PLS Toolbox User Guide,” V 1.1. 2010. 

[76] S. Y. Wong and R. W. Hartel, “Crystallization in Lactose Refining—A Review,” J. Food 
Sci., vol. 79, no. 3, pp. R257–R272, 2014, doi: 10.1111/1750-3841.12349. 

[77] B. E. Butler, “Modelling Industrial Lactose Crystallisation,” Doctoral thesis, University 
of Queensland, 1998.  

[78] M. Öner, S. M. Stocks, and G. Sin, “Comprehensive sensitivity analysis and process risk 
assessment of large scale pharmaceutical crystallization processes,” Comput. Chem. 
Eng., vol. 135, p. 106746, 2020, doi: 
https://doi.org/10.1016/j.compchemeng.2020.106746. 

[79] B. H. Webb, A. H. Johnson, and J. A. Alford, Fundamentals of Dairy Chemistry. Avi 
Publishing Company, 1974. [Online]. Available: 
https://books.google.co.uk/books?id=Mm9RAAAAMAAJ 

[80] D. Henningfield, Thomas and A. Dinesen, Richard, “Process and Plant for Evaporative 
Concentration and Crystallization of a Viscous Lactose-Containing Aqueous Liquid,” 
Oct. 23, 2003 

[81] L. T. T. Vu, R. J. Durham, J. A. Hourigan, and R. W. Sleigh, “Dynamic modelling and 
simulation of lactose cooling crystallisation: from batch and semi-batch to continuous 
operations,” Comput. Aided Chem. Eng., vol. 20, no. C, pp. 493–498, Jan. 2005, doi: 



168 
 

10.1016/S1570-7946(05)80204-4. 

[82] S. Agrawal, “Evaporative crystallization of alpha-lactose monohydrate : a thesis 
presented in partial fulfilment of the requirements for the degree of Doctor of 
Philosophy in Chemical Engineering at Massey University, Manawatu, New Zealand.,” 
2012. 

[83] L. Sowul and M. A. F. Epstein, “Crystallization Kinetics of Sucrose in a CMSMPR 
Evaporative Crystallizer,” Ind. Eng. Chem. Process Des. Dev., vol. 20, no. 2, pp. 197–
203, Apr. 1981, doi: 10.1021/I200013A004. 

[84] J. L. Crisp, S. E. Dann, and C. G. Blatchford, “Antisolvent crystallization of 
pharmaceutical excipients from aqueous solutions and the use of preferred 
orientation in phase identification by powder X-ray diffraction,” Eur. J. Pharm. Sci., 
vol. 42, no. 5, pp. 568–577, Apr. 2011, doi: 10.1016/J.EJPS.2011.02.010. 

[85] P. Parimaladevi and K. Srinivasan, “Anti-Solvent Crystallization of Lactose Single 
Crystals from Alcohol-Aqueous Solution at different concentrations,” Int. J. ChemTech 
Res. CODEN, vol. 6, no. 3, pp. 1595–1597. 

[86] M. Shahid, G. Sanxaridou, S. Ottoboni, L. Lue, and C. Price, “Exploring the Role of Anti-
solvent Effects during Washing on Active Pharmaceutical Ingredient Purity,” Cite This 
Org. Process Res. Dev, vol. 25, pp. 969–981, 2021, doi: 10.1021/acs.oprd.1c00005. 

[87] R. Wijayasinghe, D. Bogahawaththa, J. Chandrapala, and T. Vasiljevic, “Crystallization 
behavior and crystal properties of lactose as affected by lactic, citric, or phosphoric 
acid,” J. Dairy Sci., vol. 103, no. 12, pp. 11050–11061, 2020, doi: 
https://doi.org/10.3168/jds.2020-18375. 

[88] S. Y. Wong, R. K. Bund, R. K. Connelly, and R. W. Hartel, “Designing a lactose 
crystallization process based on dynamic metastable limit,” J. Food Eng., vol. 111, no. 
4, pp. 642–654, Aug. 2012, doi: 10.1016/J.JFOODENG.2012.03.003. 

 


