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Abstract

Planetary defence against asteroid is a booming field in the space sector. High-level

of autonomy is required on board spacecraft during their proximity operations around

these small bodies, both to cope with the highly uncertain non-linear dynamical envi-

ronment which surrounds them, and to reduce ground operation complexity related to

the significant delays in communication covering the distances involved in these mis-

sions. This thesis presents an Artificial Intelligence (AI)-assisted Image Processing (IP)

algorithm to support the optical navigation of asteroid rendezvous missions during their

close proximity operations. By focusing on the case scenario of the ESA’s Hera mission

to binary asteroid system (65803) Didymos, this work aims to tackle challenges of the

current paradigm of methodologies involved in standard and intelligent IP algorithms.

Firstly, by exploiting Convolutional Neural Networks, the algorithm is designed and

developed to cope with scenarios involving adverse illumination conditions, irregular

shape of the target body and the presence of external bodies. Secondly, the algorithm is

refined and implemented in an Open Loop navigation system to assess its performances

in the context of proximity operations. Finally an incremental validation test campaign

is performed to assess the applicability of the developed algorithm on board asteroid

rendezvous missions spacecraft. The test campaign objective is twofold: on one hand

it aims to solve standard AI-related issues, i.e. bridging domain gaps to account for

contingencies; on the other it aims to validate the algorithm on board spaceborne com-

puters within the Guidance, Navigation and Control system of the spacecraft. This

thesis primarily contributes by designing and implementing a structured pipeline for

deploying AI-based IP algorithm in asteroid optical navigation, enabling a systematic

evaluation of its suitability and performance.
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Chapter 1

Introduction

Excitement lies in the

exploration of the world around

us

Jim Peebles

1.1 Asteroids exploration

Asteroids are small Solar system bodies that generated by accretion and one or more

catastrophic events of disruption. Research on asteroids is one of the most active

because of asteroids’ large presence near the Earth and the possibility to trace past

history of the evolution of the Solar system. Multiple missions have been launched and

many others more are being planned to rendezvous with asteroids and potentially bring

back samples to fathom about the solar system origins, planetesimals and to support

the geological understanding of the Earth in areas of granular mechanics, landslides,

earthquakes and faulting [1]. Most of the asteroids reside in a large torus called the

Main Asteroid Belt (MBA) located between Mars’ and Jupiter’s orbits (within ∼ 2

and ∼ 3.3 AU) and in two groups accumulated at ±60◦ with respect to Jupiter in its

orbit [2].

The inner half of the MBA is a dominant reservoir of near-Earth Asteroids (NEAs)

that pose a threat to civilization considering the potential risk of impacts [3]. This

hazard affects the space environment, e.g. the impact that may have catalyze the origin
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of the Moon 3.5 Gyr ago, and the evolution of life, e.g. the Chicxulub impact 65 Myr

ago responsible for the Cretaceous-Tertiary extinction [4]. More recently, in Siberia in

1908 the event of Tunguska occurred, with a meteroite of 30 to 60 m of diameter moving

at 15 km/s entered the atmosphere and exploded at an altitude of 5 to 10 km releasing

an energy between 10 to 40 megatons of TNT. The explosion devastated around 2150

km2 of forest area and produced a radiant burn of flora at more than 100 km2 [5]. On

February 2013, another meteorite impact event was recorded in Russia, where the ∼ 20

m Chelyabinsk meteorite struck the Ural region at 18 km/s. The object exploded in

a meteor air burst with an energy of ∼ 450 kilotons of TNT causing many injuries,

especially because of the brightness of the generated light flare [6–8].

1.1.1 Space Missions for asteroid exploration

Considering the continuous hazard faced by the Earth due to the enormous amount of

asteroids that may collide with its orbit, space agencies established several planetary

protection programs to track, monitor and design technologies to potentially deflect

asteroids’ trajectory to minimize and possibly avert impact events. Due to the con-

siderable limitations of Earth-based and space-based telescopes, studying asteroids up

close is essential for planetary protection. With technological progress making this fea-

sible, spacecraft have been deployed to either flyby or rendezvous with these bodies [3].

1.1.1.1 NEAR Shoemaker

NEAR (Near Earth Asteroid Rendezvous) Shoemaker was a NASA mission aimed at

orbiting the Near Earth Asteroid Eros. Launched in the late 1990s, it experienced a

missed burn and subsequent corrections before successfully rendezvousing with Eros on

February 14, 2000. The spacecraft initially entered a circular 350 km orbit around the

asteroid [9]. Through a series of propulsive maneuvers, this orbit was reduced to 50 km

and then 35 km, allowing NEAR Shoemaker to conduct a thorough characterization of

Eros. This was achieved through landmark position and ranging determination [10].

At the end of its mission, NEAR Shoemaker was landed on the surface of Eros for

decommissioning. The landing was planned to maximize the spacecraft’s chances of
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survival, though this was not a primary design constraint and became an option during

the decommissioning phase. Ultimately, NEAR was gently placed on Eros’ surface,

and telemetry data was collected for several days. This data helped to reconstruct the

spacecraft’s orientation as it rested on the asteroid [11].

1.1.1.2 Hayabusa (MUSES-C)

Hayabusa, previously known as MUSES-C, was an interplanetary mission by JAXA

with the objective of delivering an asteroid sample to Earth, demonstrating key tech-

nologies for future exploration of small bodies in the Solar System. Hayabusa success-

fully rendezvoused with the asteroid Itokawa on September 12, 2005. Following this,

the spacecraft began a three-month scheduled descent, utilizing the weak gravitational

pull of the asteroid. Initially positioned 20 km from Itokawa, the spacecraft reduced its

distance to 8 km by the end of September [12]. After completing the initial character-

ization and reconnaissance of Itokawa, Hayabusa performed two touchdown attempts.

This mission marked the first successful collection and return of asteroid material,

providing valuable insights into the composition and history of our solar system [13].

1.1.1.3 Dawn

The Dawn mission, led by NASA’s JPL, was a pioneering interplanetary endeavour

aimed at exploring two of the largest bodies in the asteroid belt, Vesta and Ceres.

Launched in September 2007, Dawn was the first mission to orbit two extraterres-

trial bodies using an electric propulsion system, enabling it to travel vast distances

and to conduct detailed studies of these celestial objects. The spacecraft successfully

rendezvoused with Vesta on July 16, 2011, revealing that the asteroid has a layered

structure similar to terrestrial planets, including a basalting surface and a nickel-iron

core. The mission also suggested the possibility of buried ice on Vesta, which could

have influenced its surface features. After departing Vesta, Dawn arrived at Ceres on

March 6, 2015 [14]. Ceres, a dwarf planet, presented a stark contrast to Vesta with

its icy composition. One of the most intriguing discoveries was the presence of bright

spots within the Occator Crater, later identified as carbonate salts, indicating past

4



water activity. Dawn’s mission concluded in November 2018 after providing extensive

data that has significantly advanced our understanding of these ancient bodies and the

early solar system [15].

1.1.1.4 Hayabusa 2

After Hayabusa 1, JAXA Launched in December 2014 Hayabusa 2 towards the near-

Earth asteroid (162173) Ryugu, arriving on June 27, 2018. The mission’s objectives

included surveying the asteroid, collecting samples, and returning them to Earth for

detailed analysis. During its 18-month stay at Ryugu, Hayabusa 2 deployed multiple

landers and rovers to gather data from both the surface and subsurface. The spacecraft

successfully collected over 5 g of material, far exceeding the mission’s initial target.

Initial analyses of the Ryugu samples have revealed that the asteroid is carbonaceous

body, rich in carbon and water-bearing minerals. This suggests that Ryugu, and similar

asteroids, could be key to understanding the distribution of organic materials in the

solar system. The samples showed a darker and less dense material than expected,

indicating a composition that has preserved primitive solar system materials [16].

1.1.1.5 OSIRIS-REx

The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security,

Regolith Explorer) mission is a NASA-led project aimed at studying and returning sam-

ples from the NEA (101955) Bennu. Launched on September 8, 2016, OSIRIS-REx’s

primary objectives include mapping Bennu’s surface, understanding its composition,

and returning a sample to Earth to provide insights into the early solar system and

the origins of organic compounds necessary for life. Upon arrival on December 3, 2018,

OSIRIS-REx conducted a detailed survey of Bennu’s surface, creating high-resolution

maps and selecting a suitable site for sample collection. The mission identified the

Nightingale crater as the primary sample site due to its relatively smooth terrain and

minimal debris. On October 20, 2020, OSIRIS-REx successfully executed its Touch-

and-Go (TAG) maneuver, briefly touching Bennu’s surface to collect samples using its

TAGSAM (Touch-and-Go Sample Acquisition Mechanism) arm [17]. The spacecraft
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collected an estimated 60 g of material, surpassing the mission’s minimum require-

ment. After securing the sample, OSIRIS-REx began its journey back to Earth in May

2021. The sample return capsule is scheduled to re-enter Earth’s atmosphere and land

in the Utah Test and Training Range on September 24, 2023. The mission successfully

provided information on the processes that shaped the early solar system by analyzing

the organic compounds of the target asteroid [18].

1.1.2 The Hera Mission

The previous missions had all the common scientific objective of providing in-situ mea-

surements or returning asteroids’ samples back to Earth, in order to analyze its chemical

compounds and advance the understanding of the early stages of the solar system. Nev-

ertheless space agencies devised and launched missions also to mitigate the continuous

hazard represented by the asteroids. The Asteroid Impact and Deflection Assessment

(AIDA) collaboration represents the first attempt at demonstrating a technique to

mitigate the threat of potentially hazardous celestial objects. This international ini-

tiative, involving NASA and ESA, comprises two complementary missions: NASA’s

Double Asteroid Redirection Test (DART) and ESA’s Hera mission. AIDA focuses on

the binary asteroid system (65803) Didymos. The deflection experiment occurred on

September 26, 2022, during which the DART spacecraft collided with the secondary

member of the binary system at a velocity of 6.15 km/s, resulting in a change in its

orbital period. Following this, the Hera spacecraft will arrive at Didymos to perform a

detailed characterization of the asteroid and observe the impact results directly, ensur-

ing precise measurements of the deflection caused by DART. The AIDA collaboration

aims to generate critical new insights into the mechanical behavior and impact crater-

ing processes of asteroids, with significant implications for planetary defense, human

space exploration, and the study and utilization of near-Earth objects (NEOs). The

combination of this two missions will provide data on the strength, surface properties,

and internal structure of an asteroid [19].
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1.1.2.1 Didymos

Binary NEA (65803) Didymos was discovered on April 11, 1996 by the Spacewatch

telescope at Kitt peak. The first image of Didymos is a Delay-Doppler image obtained

in November 2003 by the Goldstone Solar System Radar, as shown in Fig. 1.1 [20].

Reflectance spectroscopy from ground-based observations identifies Didymos as part of

Figure 1.1: Goldstone delay-Doppler images of Didymos [20]

the ”S complex” of asteroids, the most common compositional group among NEOs.

This group includes the targets of previous spacecraft missions, such as (433) Eros and

(25143) Itokawa, and it is associated with ordinary chondrite meteorites. Selecting

an S-complex asteroid for the mitigation demonstration ensures the results will be

applicable to a large fraction of the most likely potential Earth impactors [21]. The

binary system consist of a primary body, Didymos, and a secondary body, Dimorphos,

orbiting around the primary. The choice of a binary system over a single NEA is that

an orbital deflection of the secondary with respect to the primary is easier to measure

than an heliocentric one. Didymos has a top-shape appearance, resembling a spherical

body with an equatorial ridge. Little was known regarding the shape of Dimorphos

7



prior to the impact. It was believed to be an elongated ellipsoid, as it is the case for

the majority of observed near-Earth binary systems [22,23].

1.1.2.2 DART mission and the impact

On September 26, 2022, NASA’s DART mission successfully struck Dimorphos. The

spacecraft collided with Dimorphos at a relative velocity of approximately 6.15 km/s,

which led to an estimated reduction of about 2.7 mm/s in the along-track component of

its orbital velocity (∆Vt) in the mutual orbit. The collision, which targeted Dimorphos’s

leading hemisphere along its intermediate axis, shortened the mutual orbit period by

roughly 33 min and decreased the semimajor axis of the orbit [24]. The effectiveness

of the DART mission in deflecting Dimorphos is primarily measured by the momentum

enhancement factor, β. This factor assesses the amount of momentum transferred from

DART to Dimorphos as a result of the impact. According to estimates on the ∆Vt,

β ranges between 2.2 and 4.9, contingent on the unknown mass of Dimorphos, with a

nominal value of 3.61 ± 0.25 (1σ) assuming both Didymos and Dimorphos have equal

densities of 2400 kg/m3. The higher β value implies that the momentum transferred

was significantly influenced by the ejecta generated from the impact rather than the

impact itself [25]. Table 1.1 shows the parameters of the binary system Didymos prior

and after the DART impact on Dimorphos, retrieved by radar observations and updated

with DART measurements [26–29].
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Table 1.1: Relevant physical and dynamical parameters of the Didymos system [26–29]

Parameter Preimpact value Postimpact value

Binary system

Osculating heliocentric eccen-
tricity

0.383294733± 1.34 · 10−10 Unchanged

Osculating heliocentric semi-
major axis

1.642514364 ± 2.61 · 10−10

Au
Unchanged

Osculating heliocentric incli-
nation to the ecliptic

3.414168803◦ ± 1.62 · 10−8 Unchanged

Total mass of system 6.05 · 1011 ± 2.10 · 1010 kg Unchanged (assumed)

Separation distance between
component centres

1.24± 0.014 km 1.204± 0.015 km

Mutual orbital period 11.9214811± 1.60 · 10−5 hr 11.3685± 3.00 · 10−5 hr

Mutual orbital eccentricity < 0.03 3.10 · 10−2 ± 1.70 · 10−4

Mutual orbital inclination 0◦ (assumed) Unknown

Drift in mean anomaly 0.15◦ ± 0.14◦ yr−2 Unknown

Didymos

Volume-equivalent diameter 730± 17 m Unchanged (assumed)

Bulk density 2950± 300 kg/m3 Unchanged (assumed)

Rotation period 2.260± 0.0001 hr 2.260± 0.001 hr

Extent along principal axis x
[m]

832± 25 m 849± 5.6 m

Extent along principal axis y
[m]

837± 25 m 851± 5.6 m

Extent along principal axis z
[m]

786± 39 m 620± 5.6 m

Dimorphos

Volume-equivalent diameter 150± 2.5 m Unchanged (assumed)

Bulk density 2400± 300 kg/m3 Unchanged (assumed)

Rotation period 11.921481 ± 1.60 · 10−5 hr
(assumed)

Unknown

Extent along principal x-axis 208 m (assumed) 177± 1.2 m

Extent along principal y-axis 160 m (assumed) 174± 1.2 m

Extent along principal z-axis 133 m (assumed) 116± 1.2 m
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The DART mission featured a single primary instrument, the Didymos Reconnais-

sance and Asteroid Camera for Optical navigation (DRACO). DRACO, a narrow-angle

telescope, boasted a 208 mm aperture, a field of view spanning 0.29◦, and a 2560×2160

raw pixel CMOS detector. Its design was inspired by the high-resolution imager from

the New Horizons mission. Images captured by DRACO were processed by the on-

board autonomous system known as Small-body Maneuvering Autonomous Real Time

Navigation (SMART Nav). As part of the guidance, navigation, and control (GNC)

system, SMART Nav was engineered to independently identify and differentiate be-

tween the asteroids Didymos and Dimorphos. It collaborated with other GNC sensors

and actuators and navigation strategies to guide the spacecraft towards Dimorphos,

approximately one hour before collision. During this time, SMART Nav had to op-

erate alongside the spacecraft system and transmit images back to Earth in real-time

prior to impact. A highly efficient data processing pipeline ensured that these images

were promptly available to both the public and the mission team [30]. Fig. 1.2 shows

one of the images downlinked by DART prior to the impact [31].

It can be seen from Table 1.1 that the measurements derived by DRACO yields to

a substantial difference in the extent along the z-axis of the shape model of Didymos.

Instead of appearing top-shaped, Didymos is more ellipsoidal, with an equatorial ridge

that provide evidence that the body is a rubble pile. For Dimorphos, the measurements

obtained with DRACO results in an oblate ellipsoidal shape [32].

1.1.2.3 Hera mission’s objectives

The Hera mission is the European component of the AIDA collaboration. It is under

development in the Space Safety Program of ESA for launch scheduled in October 2024.

The mission objectives are the following:

1. Conduct the first thorough characterization of a binary NEA, including an analy-

sis of its internal properties, to enable precise comparisons with theoretical models

and an understanding of the binary NEA formation mechanism.

2. Determine the surface structure and regolith mobility on both Didymos and Di-

morphos, providing initial insights into how material properties influence the
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Figure 1.2: Asteroid Didymos (bottom left) and its moon, Dimorphos, about 2.5 min-
utes before the impact of NASA’s DART spacecraft [31]

formation of asteroid satellites [33].

3. Measure the detailed surface and subsurface properties of an asteroid crater cre-

ated by an impact experiment at a speed similar to typical inter-asteroid collision

speeds.

4. Offer a unique opportunity to study the surface geophysics of two objects with

different sizes and surface gravities, likely originating from the same material.

5. Obtain the first in-situ measurements of the properties of an asteroid, Dimorphos,

which is at the threshold between gravity-dominated and strength-dominated

structures.

6. Characterize a crater formed with a known energy for the first time, helping to

determine whether strength or gravity is the dominant factor in crater formation

on such a small asteroid [34].
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7. Observe native and post-DART surface activity and particle ejection events.

8. Examine the crater formed by the DART impact to identify fresh, unweath-

ered material on a silicate asteroid, contributing to the understanding of space-

weathering processes [35].

9. Test the hypothesis that the crater produced by the Small Carry-on Impactor of

Japan’s Hayabusa 2 mission on asteroid (162173) Ryugu formed in the gravity

regime by comparing it with the results of the DART impact on Dimorphos.

10. Investigate an asteroid, Didymos, with a spin period of 2.26 hr, which may be

near the limit of structural stability [36].

1.1.2.4 Payloads

To achieve these objectives, the spacecraft is equipped with the following payloads:

❖ Two Asteroid Framing Cameras (AFCs);

❖ A microlidar (PALT);

❖ A spectral imager (HyperScout-H);

❖ A Thermal Infrared Imager (TIRI);

❖ Two CubeSats that will be deployed at close proximity:

[✛] Juventas, which carries on board a low-frequency monostatic radar, a

gravimeter and an accelerometer [37];

[✛] Milani, composed of a near-infrared imager and a microthermogravimeter

[38].

Fig. 1.3 shows the design of the spacecraft of the Hera mission, with all the payloads

mentioned above and the Small Monitoring Cameras (SMC) [36].
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Figure 1.3: Design of the Hera spacecraft [36]

1.1.2.5 Proximity operations

After the launch in October 2024, the spacecraft will arrive to the binary system in

October 2026, and it will start the proximity operations to achieve the mission objec-

tives. A high-level overview of the mission is shown in Fig. 1.4 [39]. Table 1.2 sums up

Figure 1.4: High-level overview of the Hera mission [39]

the phases of the proximity operations baselined for the mission.
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Table 1.2: Proximity operation phases of the Hera mission [36,40]

Name Acronym Distance
with the
target [km]

Objectives Duration

Early Character-
ization Phase

ECP 20− 30 Determination
of global shape,
mass/gravity, ther-
mal and dynamical
properties

6 weeks

Payload Deploy-
ment Phase

PDP 20− 30 Release and commis-
sion of CubeSats

2 weeks

Detailed Charac-
terization Phase

DCP 9− 20 Meter-scale mapping
and determination of
thermal, spectral and
internal properties

6 weeks

Close Observa-
tion Phase

COP 4− 22 High-resolution inves-
tigations of the sur-
face and Dimorphos’
crater

6 weeks

Experimental
Phase

EXP 1− TBD Very high-resolution
investigations of the
surface and Dimor-
phos’ crater

6 weeks

1.2 Optical navigation

The asteroid exploration missions mentioned in the previous section were/are all equipped

with autonomous, although at different level, navigation systems to cope with the un-

certain dynamical environment around the target asteroid during the proximity oper-

ations. As the distance from Earth can lead to significant delays in terms of ground

real-time control of the spacecraft, autonomous navigation systems represent valid al-

ternative strategies to react rapidly to all possible contingencies. Optical navigation

emerges as the preferred choice to achieve autonomy on board spacecraft, as it is shown

by previous asteroid missions: combining imagers and data-processing algorithms al-

lows the spacecraft to accurately navigate around the target and to respond rapidly in

uncertain and complex environments [41]. Therefore, Autonomous Optical Navigation
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(AON) systems are a key technology for asteroid exploration missions, enabling deep

space navigation, relative navigation, proximity operations, terrain-relative navigation,

landing and flybys. AON can be active or passive according to the type of imagers

used. Passive imagers are vision-based cameras, visible or infrared, acquiring images of

the mission scenario and analyzing them on board using Image Processing (IP) algo-

rithms. Active imagers requires a light source to operate, for examples LIDARs (LIght

Detection and Ranging), and interact with the environment to retrieve data [42]. The

focus of this Ph.D. is on the vision-based cameras operating on visible wavelength. The

main parameters that describe the properties of a vision-based camera are:

❖ Field Of View (FOV) that is the extent of the observable world that is seen at

any given moment through the camera’s lens. The FOV is typically specified in

degrees and categorized as follows:

[✛] Narrow Field of View (NFOV): The FOV is around a few degrees and

the objective of these cameras is to observe in detail a small region of space or of

a celestial object;

[✛] Wide Field of View (WFOV): The FOV spans tens of degrees to capture

larger areas of sky or the space;

[✛] Ultra-Wide Field of View (UWFOV): The FOV goes up to 180 degrees

and these cameras are used typically to monitor the space weather.

❖ Image size that is the dimensions of the image produced by the camera, expressed

as the number of pixels in width by the number of pixels in height;

❖ Spatial resolution that is the ability of the camera to distinguish between objects

that are close together;

❖ Focal length that is the distance between the lens and the camera sensor when

the subject is in focus;

❖ Aperture size that defines the amount of light entering the camera;

❖ Exposure time that is the duration for which the camera’s sensor is exposed to

light;
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❖ Pixel size that is the size of a single pixel on the camera’s sensor.

A generic AON working with these type of sensors is shown in Fig. 1.5.

State at 
epoch 𝑡𝑘

Dynamical
environment

Image 
Processing

Propagated state 
at epoch 𝑡𝑘+1

Measurements at 
epoch 𝑡𝑘+1 

Navigation filter
Updated 
state at 

epoch 𝑡𝑘+1

Vision-based 
cameras

Figure 1.5: AON pipeline

The state of the spacecraft at epoch tk refers to the estimate of its status (motion,

orientation and other relevant parameters) at that specific instant. Once a set of ref-

erence systems are defined for the particular problem, the conditions often included

in the state are the spacecraft’s location in space, its velocity vector, its attitude and

attitude rate [43]. Other additional information that the navigation of the spacecraft

could benefit from are parameters describing the orbital environment, such as the grav-

ity field, proximity to other celestial objects or the Solar Radiation Pressure (SRP).

The uncertainties on the variables included in the state are represented by the covari-

ance matrix, a statistical measure that quantifies the accuracy on the estimation of the

state. Given a state x of n variables, the covariance matrix P is a n×n matrix defined

with Eq. 1.1.

P = E[(x− x̂)(x− x̂T )] (1.1)

In Eq. 1.1, E denotes the expectation operator, x is the true state of the spacecraft

and x̂ is the estimated state. The latter and its covariance are then propagated at

a new epoch tk+1 using the equations that best describe the dynamical environment

surrounding the spacecraft and according to the adopted navigation filter [44]. At the
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same epoch tk+1, the IP algorithm generates from the acquired image provided by

the on-board vision-based camera a set of measurements z with their own uncertainties

represented by the covariance matrix R. The navigation filter combines the propagated

state with the retrieved measurement together with their relative uncertainties in order

to produce the best estimate of the state of the spacecraft at tk+1 [45]. In the following

sections an in-depth description of each step of the AON pipeline is given.

1.2.1 Dynamical environment

The dynamical environment contains all the modelled forces acting on a body of mass

m in the target’s system. For an asteroid system, the modelled forces usually considered

are the gravitational attraction of the bodies part of the system and the SRP.

1.2.1.1 Gravitational attraction

The point mass gravitational forces fg exerted by an asteroid system made of n bodies

is given by Eq. 1.2.

fg = −
i=n∑
i=1

µir̂i
r2i

(1.2)

In Eq. 1.2 µi and ri denote the standard gravitational parameter and the relative

position vector of each body part of the asteroid system. For an asteroid with a diameter

of hundreds of meters, the standard gravitational parameter is of the order of 10−9

km3/s2 [28]. The point mass approximation is effective for modelling the gravity of

spherical objects with uniform mass density such as planets [46, 47]. For small and

irregularly shaped bodies such as asteroids the model of the gravitational attraction

shall account the non-spherical mass distribution. This is particularly relevant for

designing the trajectories around the target asteroid or to analyze the stability of these

trajectories [48, 49]. Nevertheless, for the scope of this Ph.D. thesis the point mass

approximation is considered sufficient.
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1.2.1.2 SRP

The SRP is the force generated by the impact of the sunlight on a surface of the

spacecraft. The incoming photons are absorbed and reflected according to the material

properties of the surface of the spacecraft, generating a force which is quite small in

magnitude. Nevertheless, around an asteroid system which exerts a weak gravitational

attraction, the SRP plays a major role in the dynamics of a spacecraft. The SRP

depends on the material properties, on the spacecraft shape and attitude, the distance

with the Sun and with the asteroid (due to its albedo). Eq. 1.3 shows the cannonball

model, the most common method to model the SRP force fSRP .

fSRP =
PsunAQ

c
(1.3)

In Eq. 1.3 Psun is the SRP at a given distance from the Sun, A is the cross-sectional

area of the object facing the Sun, Q is the dimensionless coefficient that accounts for

the reflectivity and absorptivity of the object’s surface and c is the speed of light in

vacuum. For a spacecraft at distance R with respect to the Sun, the solar radiation

pressure is equal to fSRP = 4.54·10−6

R2 AQ [50].

1.2.2 Image Processing

IP algorithms represent the core of the AON system. The design of these algorithms

depend on the mission’s objectives, the target appearance, the distance with respect to

the target and the properties of the on-board vision-based camera. The IP algorithm

for asteroid missions usually combines different methods according to these parameters.

In this section the state of the art of standard IP algorithms used specifically for AON

systems is presented, going from the ones used from a range where the asteroid occupies

a small portion of the FOV, to the ones used when the target body saturates the FOV

and features such as boulders and/or craters are distinguishable [51]. To streamline the

discussion, throughout this Ph.D. thesis the word standard applied to IP algorithms

refers to fundamental methods, with solid mathematical formulations, accepted and

validated across industries and research.
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1.2.2.1 Lightcurves

A lightcurve is a measure of the variations in brightness of an object over time. Ana-

lyzing the lightcurve of an asteroid can provide measurements of its rotation period, its

shape and surface properties and whether the asteroid system consists of one or more

bodies. The lightcurve is also used to track the asteroid during the approach of the

spacecraft [52]. Fig. 1.6 shows a lightcurve of the asteroid Didymos taken in 2003. It

can be seen that the curve (panel a) can be divided into the contribution given by the

rotation of Didymos (panel b) and the presence of Dimorphos (panel c) [53].

Figure 1.6: Didymos lightcurve [53]

1.2.2.2 Far centroiding

When the body is detected from the spacecraft, it appears as a point-spread function

across several pixels in the focal plane, with the background showing the star field and

other sources of disturbance. With the utilization of brightness-moment algorithms

and Gaussian-based centroiding functions the relative position of the target asteroid

can be determined [54].
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1.2.2.3 Shape-based methods

When the spacecraft is near enough to the target, the latter’s outline can be used for

navigation. Methods such as centroiding, centroid apparent diameter, limb fitting and

Maximum Correlation with a Lambertian Sphere are used for Line Of Sight (LOS)

navigation, both for rendezvous, flyby and deflection, such as for the Hera and the

DART missions [55–58]. These methods rely on retrieving the position in the image

plane of the Center of Mass (COM) and/or the Center of Brightness (COB) of the target

and tracking this point to ensure the accuracy of the camera pointing throughout the

proximity operations. The simplicity of the design of shape-based methods comes at the

cost of a lower applicability, since the underlying requirement is that the target’s shape

is almost spherical, which is not met by most of the minor bodies. Triaxial ellipsoidal

shapes can be solved using non-iterative ellipse fitting horizon-based methods [59].

Attempts to solve the problem of the determination of the LOS of irregular bodies

have been made by using a bidimensional figure feature database developed by the

tridimensional model of the target asteroid, assumed to be reconstructed during the

approach of the spacecraft [60]. Otherwise, when operating with irregularly shaped

asteroids, their features can be used to trace out Circles of Latitude (CoL), which can

be used to determine the spinning axis rotation [61].

1.2.2.4 Feature-based methods

When the target body occupies all the FOV, the outline of the target asteroid may not

be visible in its whole, hence the methods described in the previous section are less

applicable. Therefore, if the asteroids present enough visbile features such as boulders

and/or craters, feature-based methods are preferred. Indeed, most of the heritage

mission presented in Section 1.1.1 applied these methodologies in order to safely orbit

around the target body.

During the descent phase of Hayabusa 1 to the target asteroid Itokawa from an

altitude of 500 m, the navigation was based on Ground Control Point (GCPs) on the

surface of the target. By tracking the GCPs positions ground control was able to

determine the relative position of the spacecraft with respect to the asteroid. The
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tracking scheme was based on the virtual FOV of the on-board optical camera and

based on the a priori built shape model of the target asteroid. This method gives to

the ground operator direct view of virtual landmark from the estimated position of

the target, which were correlated to the landmark visible from the real image [62]. A

similar approach was adopted by the mission Dawn around Vesta, and by OSIRIS-REx

around Bennu [63,64].

Hayabusa 2 adopted a unique landing strategy based on deployable artificial land-

marks, or more simply Target Markers (TMs). Fig. 1.7 represents a schematic overview

of this navigation technique. A TM is a retroreflective ball of 10 cm in diameter, and

it was deployed near the landing site of the target asteroid Ryugu. The spacecraft had

a xenon flash lamp which illuminated the TM and the reflected light was captured by

the on-board camera. With a sequence of TM images, the spacecraft autonomously es-

timated its relative position and velocity with respect to the asteroid surface, securing

a safe touchdown on the landing site [65].

Figure 1.7: Schematic overview of the TM navigation strategy of Hayabusa 2 [65]

The feature tracking algorithm of the Hera mission is not based on a shape model
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previously built. Instead, it is based on the relative position of different features in a

sequence of images. By determining the displacement of the features, the algorithm is

able to reconstruct its relative position to the target [58].

1.2.3 Artificial Intelligence-assisted Image Processing

The influence of Artificial Intelligence (AI) technologies on our contemporary world is

increasingly significant. Initially a specialized research area in computer science and

mathematics, the concept of machines achieving human-level intelligence has evolved

into dependable and established industrial products. Machine Learning (ML) is a

branch of AI that focuses on using data and algorithms to learn how to perform tasks

without specific programming. This is achieved by applying algorithms that iteratively

learn from training data generated and/or collected for the specific problem that needs

to be solved.

Based on the given problem and the available data, there are three types of ML: su-

pervised learning, unsupervised learning and reinforcement learning. Supervised learn-

ing requires a training dataset that encompasses both examples of inputs and outputs.

The dataset is then used to calibrate the parameters of the ML model, so that it is

able to predict the output when a new unseen data is given as an input. There are two

types of problems that are addressed with supervised learning: regression problems,

where the output has a numerical value, and classification problem, where the output

is a class/category. Unsupervised learning has a training dataset which consists in only

inputs. The goal is to find patterns and structures within the data. Typical problems

that are solved with unsupervised learning are clustering, association and dimensional-

ity reduction. Reinforcement learning does not require any input or output data, but

a current state of the system, a goal, and a list of actions and constraints to achieve

that goal by a trial and error process. Problems that can be solved with this particular

ML are game playing, resource management and natural language processing [66,67].

There are several types of ML algorithms, which depends on the task to be per-

formed and available data. The Artificial Neural Networks (ANNs) are a type of ML

inspired by biological systems and consisting of connections among artificial neurons
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organized in different layers. A shallow neural network consists of the input data, one

layer of neurons, usually referred to as hidden layer, and the output data. When the

hidden layers are multiple, the ANN is called a Deep Neural Network (DNN). DNN

allows learning complex tasks from raw input data, a process which is known as Deep

Learning (DL). Several DL architectures are available, usually chosen according to the

provided training dataset and the application. For computer vision, Convolutional

Neural Networks (CNNs) are the most suitable DL architecture. Unlike other neural

networks, CNNs leverage spatial hierarchies and local connectivity to extract meaning-

ful patterns from image data. CNNs comprise a series of stages where specific features

of the input data are learned, starting from the most basic ones (such as edges and

corners) to the most detailed ones (craters, boulders) [68]. This hierarchical represen-

tation mimics the human visual cortex, which also processes visual information in a

layered and localized manner. Furthermore, CNNs employ weight sharing, meaning

that the same filter is applied across different spatial locations, significantly reducing

the number of parameters and enhancing the model’s ability to generalize [68].

CNNs have consistently demonstrated state-of-the-art performance in major com-

puter vision benchmarks and competitions. The breakthrough model AlexNet [69],

which won the ImageNet Large Scale Visual Recognition Challenge in 2012, brought

global attention to the capabilities of CNNs. Since then, architectures like VGGNet [70],

ResNet [71], and EfficientNet [72] have advanced the field by increasing depth, reduc-

ing parameters, and improving training stability. These architectures have been widely

adopted in both academia and industry for tasks ranging from autonomous driving to

medical imaging, underscoring their reliability and adaptability. Other deep learning

architectures, such as RNNs, Transformers, and GANs, have specific strengths but are

generally not as well-suited for vision tasks as CNNs:

❖ RNNs excel in sequence modeling (e.g., natural language processing, time series)

but struggle with spatial data due to their sequential computation and lack of

spatial inductive biases.

❖ Transformers, especially Vision Transformers (ViTs), have shown competitive

performance in computer vision, particularly with large datasets and extensive
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pretraining. However, they often require more data and computational resources

than CNNs, making them less practical in many scenarios.

❖ GANs are powerful for image generation but are not primarily designed for dis-

criminative vision tasks like classification or detection.

Thus, while alternative architectures offer complementary strengths, CNNs remain the

most balanced and efficient choice for general-purpose computer vision applications [73].

Table 1.3 reports the most effective CNN architectures at date for the most common

computer vision tasks [68,74].
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Table 1.3: Mapping of common computer vision Tasks to the most effective CNN
architecture [68,74]

Computer vision task Best CNN architec-
ture

Remarks

Image Classification ResNet-50/101, Efficient-
Net, DenseNet

ResNet and EfficientNet
provide a strong balance
of accuracy and efficiency

Object Detection Faster R-CNN, YOLOv5,
RetinaNet

CNN backbones like
ResNet and CSPDarknet

Semantic Segmentation U-Net, DeepLabv3+,
FCN

U-Net is favoured in
biomedical imaging;
DeepLabv3+ adds convo-
lutions for detail

Instance Segmentation Mask R-CNN Extends Faster R-CNN to
add a segmentation head

Style Transfer / Image
Synthesis

VGG19, encoder-decoder
CNNs

VGG used for perceptual
loss; not optimal for speed
but widely used for artis-
tic tasks

Face Recognition FaceNet, VGGFace, Arc-
Face

Specialized CNNs trained
for face embeddings and
similarity learning

Pose Estimation OpenPose, HRNet, Deep-
Pose

CNN backbones to regress
joint positions

Super-Resolution SRCNN, CAN CNNs with residual and
attention blocks for up-
scaling

Image Captioning (Vision
Encoder)

ResNet-101, InceptionV3 Typically used as feature
extractors before passing
to an RNN or Trans-
former decoder

The space sector is also advancing with these developments, as numerous publica-

tions now incorporate AI-related concepts such as natural language processing, knowl-

edge representation, automated reasoning, computer vision, and robotics. The appli-

cations of AI in this field are extensive, ranging from early spacecraft design to mission

operations, guidance and control algorithms, navigation, predicting dynamics of per-
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turbed motion, classifying astronomical objects, and enhancing remote sensing data,

among others [75]. Related to space optical navigation, AI-assisted IP algorithms have

been proposed to achieve the same purposes of the IP algorithms described in Sec-

tion 1.2.2. The preference for intelligent IP algorithms over standard ones is driven by

the following main reasons:

❖ Standard techniques use manual filters for the extraction of relevant information

(centroid, light curves, etc...) from the images, while AI can automatically learn

them with a higher accuracy and without explicit programming [76];

❖ AI is more effective at identifying unexpected phenomena in large datasets [77];

❖ while traditional methods require manual tweaking of their intrinsic parameters

when applied to new data, AI models can be retrained or fine-tuned, enabling

faster and easier adaptation to different mission scenarios [77].

Advanced lightcurve analysis with ML has been performed in order to classify Resident

Space Objects (RSOs) [78, 79]. Enhanced centroiding and apparent centroid diameter

techniques leveraging ML have been proposed for asteroid navigation to tackle the

challenge related to their shape irregularity [80–83]. CNNs architectures have been

applied to discern different morphological regions over the surface of small bodies, such

as the Moon, Mars and asteroids [84–88]. CNNs have also been utilized in problems of

feature extractions as the initial step of feature tracking navigation [89,90].

1.3 Dissertation overview

1.3.1 Limitations and Challenges

As shown in the previous sections, image processing is a cornerstone for the proximity

operation of asteroid exploration missions. It increases the autonomy of the space-

craft, securing safe navigation around the highly non-linear and complex dynamical

environment surrounding the target body. The application of intelligent algorithms

in image processing is analyzed by multiple space actors to improve the performances

and increase the robustness of optical navigation systems against contingencies that
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may occur during mission scenario. Moreover, it would reduce the human effort in

programming a software that achieves the same objectives, thus trimming the cost of

the overall mission design. In dealing with this topic, the following limitations have

been identified:

1. Synthetic vs Real images: Standard IP algorithms go through an extensive

validation and verification process supported by synthetic images generated with

rendering engines that represent as accurate as possible the mission scenario.

Nevertheless, when applied to real space images, standard IP algorithms tend to

lack robustness and provide inaccurate estimations that can lead to the failure

of the navigation system. The irregular shape of the target, the illumination

conditions, generic distortions and blur, the presence of external bodies and/or

disturbances, are all factors that alter the properties of the input image, and,

thus, affect the accuracy of the extracted visual information. Spacecraft are

usually provided with additional sensors to cope with the potential failures or

inaccuracies of the implemented IP algorithm. Therefore, a stand-alone optical

navigation system it has not been used yet for asteroid exploration, especially to

solve for the relative position of the spacecraft.

2. Domain gap of AI-based IP algorithms: Domain gap in AI refers to the dif-

ferences between the training domain (data used to train an AI model) and the

target domain (data the model encounters during deployment). This mismatch

can lead to performance degradation when the model is applied to real-world sce-

narios or datasets significantly different from those it was trained on. Therefore,

the robustness of AI-based IP algorithms comes at the cost of a large amount of

data needed for training. The training dataset has to account for all the contin-

gencies that might occur during real mission scenario, such as a different shape

of the target body or the presence of stars in the background. If the AI is trained

on one domain, it may fail to generalize to new, unseen data and this leads to

performance degradation.

3. Validation for on-board application: To meet the required level of auton-

27



omy during the proximity operations around a target asteroid, IP algorithms

go through several tests on-ground, which are part of the Design, Development,

Validation and Verification (DDVV) strategy of the mission design. The test

campaign is incremental, going from Functional Tests carried with synthetic im-

ages to Hardware-In-The-Loop Tests carried with images captured by a model

of the spacecraft optical camera. Nevertheless, the validation of AI-based IP al-

gorithms is usually restricted to Functional Tests aimed to bridge domain gaps

and improve the generalization capability of the model. The sequence of tests

that allows the validation of the IP algorithm and its correct implementation on

the On-Board Computer (OBC) of a spacecraft have not been applied extensively

to AI models, mainly due to the lack of facilities and computational resources.

As such, AI-based IP algorithms have been not utilized in asteroid missions yet,

neither implemented on board the spacecraft as experimental payloads.

1.3.2 Research Questions & Objectives

Asteroid exploration missions can largely benefit from AI-based IP algorithms during

their proximity operations with the target body. By improving upon the current limita-

tions outlined in the previous section, the mission design paradigm could shift towards

adopting stand-alone optical navigation strategies, without the necessity of increasing

the redundancy of the navigation with other on-board sensors. By adopting as case

scenario the Hera mission around the target binary asteroid system (65803) Didymos,

this thesis aims to tackle the identified challenges. This leads to the following thesis

statement:

Thesis Statement

Implementing AI-based IP algorithms within the optical navigation strategy of asteroid

exploration missions, increases operational autonomy and reliability of the spacecraft

during proximity phases around the target.

A set of detailed research questions and objectives is elaborated to drive the re-

search presented in this thesis and to support the thesis statement.
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Research Questions (RQ):

1. To what extent can optical navigation strategies benefit from AI-based IP algo-

rithms?

(a) What are the IP tasks that can be improved compared to standard ap-

proaches?

(b) What degree of performance can be achieved adopting a stand-alone AI-

based optical navigation system for positioning?

2. What are the challenges of validating AI-based IP algorithms for the implemen-

tation on a real asteroid rendezvous mission?

(a) What are the tests needed to bridge domain gaps and optimize the general-

ization capabilities of AI-based IP algorithms?

(b) What are the constraints encountered during the incremental test campaign

from the SW and HW point of view?

Research objectives (RO):

1. To design and develop an AI-based IP algorithm that improves the performances

of the optical navigation system of an asteroid exploration mission during its

proximity operations.

2. To bridge domain gaps through Functional Tests with synthetic images represent-

ing the mission scenario in different adverse situations.

3. To validate the developed algorithm for a future utilization on board spacecraft.

1.3.3 Dissertation Structure

By considering the case study of the Hera mission’s proximity operations around the

target asteroid Didymos, this thesis addresses the RQs and meets the ROs with the

structures defined as it follows. This chapter introduces the context, the limitations
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and challenges, the research questions and objectives and the overall structure of this

thesis.

Chapter 2 focuses on the design and the development of the AI-based IP algorithm.

The goal is to achieve an algorithm able to estimate the outputs needed to safely

navigate around the target asteroid. Furthermore, the algorithm is extended to perform

other IP tasks that can increase the robustness of the navigation system. This chapter

addresses RQ 1a and meets partially RO 1.

Chapter 3 delves into the application of the developed AI-based IP algorithm to the

optical navigation system to achieve autonomous navigation around the asteroid. The

AI-based IP algorithm is refined for this purpose, and the outputs of the AI model are

interpreted to increase the robustness of the navigation system. This chapter addresses

RQ 1b and it fulfills RO 1.

Chapter 4 analyzes the robustness of two AI-based IP algorithms through a series

of Functional Tests with images generated synthetically. The images aim to stress

test the two algorithms with conditions never seen during training, thus analyzing the

generalization capability and performance limits. The two algorithms have different

architectures, which allows to make assumptions in the decision-making policy of the

design of an AI-based IP algorithm for an asteroid exploration mission. This chapter

addressees RQ 2a and meets RO 2.

Chapter 5 discusses the validation of the developed algorithm through a series of

tests embodied in DDVV strategies used for traditional IP algorithms. The tests are

aimed to incrementally validate the algorithm to analyze the robustness and identify

potential limits for a real mission application. This chapter addresses RQ 2b and meets

RO 3.

Chapter 6 analyzes the possibility of using the developed AI-based IP algorithm to

solve the continuous 6-dof pose (position and attitude) of the target asteroid. The pros

and cons and the limitations of the algorithms are identified.

Finally, Chapter 7 presents the conclusions of this work and recommends future

directions to continue this research. The thesis report itself is based on a collection of

published/submitted journal papers.
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RQ 1: To what extent can optical navigation strategies benefit from AI-based IP 
algorithms?

Chapter 2 Chapter 3RQ
1a

RQ
1b

RO 
1

RQ 2: What are the challenges of validating AI-based IP algorithms for the 
implementation on a real asteroid rendezvous mission?

Chapter 4 Chapter 5RQ
2a

RQ
2b

RO 
2

RO 
3

Introduction Conclusion and 
Future Work

Chapter 6

Figure 1.8: Graphical structure of the Ph.D. illustrating the relationship between chap-
ters, RQs and ROs

The format of this thesis is based on a collection of published/submitted journal

papers to facilitate readability and allow each chapter to be understood independently,

without requiring reference from preceding chapters. Accordingly, a general literature

review is presented in this chapter to provide the preliminary context, while each chap-

ter includes a more focused and detailed review pertinent to its specific topic. To ensure

coherence and consistency across the thesis, an inter-chapter section (named Paper con-

tent) is included between each chapter to provide smooth transitions and maintain a

unified structure. Furthermore, in each chapter, the term paper may be used, reflect-

ing the standalone nature of the chapters as individual publications. Each paper has

been slightly revised to incorporate feedback and address comments provided by the

VIVA examiners. Figure 1.8 illustrates a graphical representation of the relationships

between the different chapters, RQs and ROs. It can be seen that the structure of the

Ph.D. thesis is deliberately parallel: the reader begins with the Introduction, identify

the research question and/or research objective they want to focus on, then proceed

directly to the Chapters that address them, and finally review the Conclusions and

Future Work.
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Chapter 2

CNN-based Image Processing

algorithm for autonomous optical

navigation of Hera mission to the

binary asteroid Didymos

The more we learn about space,

the more we realize it’s not an

empty void. It’s filled with

possibilities

Chris Hadfield

Kaluthantrige A., Feng, J.‡ and Gil-Fernández, J.§

Published in Acta Astronautica, May 2023

‡Associate professor, Department of Mechanical and Aerospace Engineering, University of

Strathclyde

§Guidance, Navigation and Control Engineer, ESA ESTEC
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Paper content

This chapter introduces an artificial intelligence-driven image-processing method tai-

lored to Hera’s proximity operations around Didymos/Dimorphos. It reliably estimates

key navigation parameters (centroids, distance, Sun angle) even under challenging con-

ditions, boosting the mission’s navigation autonomy and robustness. Following the

map and structure shown in Fig. 1.8 in Section 1.3.3, this chapter addresses RQ 1a and

achieves the objective of developing an AI-based IP algorithm stated in RO 1. With this

chapter, the reader will understand how intelligent image-processing algorithms, specif-

ically those built on convolutional neural networks, significantly outperform standard,

traditional IP methods in spacecraft navigation tasks.
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Abstract

Hera mission is the European Space Agency’s contribution to the international collabo-

ration with NASA for the planetary defence, i.e. Asteroid Impact Deflection Assessment

aiming to deflect the trajectory of its target binary asteroid system (65803) Didymos.

The Early Characterization Phase and the Detailed Characterization Phase of Hera

mission are two phases of the proximity operations with the objective to physically and

dynamically characterize Didymos. During these phases, an Image Processing algo-

rithm is required to estimate the position of the centroid of the primary to enable Line

of Sight navigation. However, the performance of standard Image Processing algorithms

is affected by the disturbances of the image, such as poor illumination conditions, the

presence of external bodies and the irregular shape of the target. This research ad-

dresses this challenge by developing a robust Convolutional Neural Networks-based

Image Processing algorithm to estimate the position of the centroids of Didymos and

its moon Dimorphos, the pseudorange from the primary and the Sun phase angle. The

training, validation and testing datasets are generated with the software Planet and

Asteroid Natural scene Generation Utility using the Early Characterization Phase and

the Detailed Characterization Phase trajectories as case scenario. The position in the

image of the centroids of Didymos and Dimorphos is estimated using their respective

position vectors. To estimate the pseudorange, the developed algorithm regresses a set

of keypoints on the visible border of Didymos and evaluates its apparent radius. For

the Sun phase angle, the pixel position of the subsolar point of the primary is lever-

aged. The High-Resolution Network is the Convolutional Neural Network architecture

applied to detect keypoints with superior spatial precision. Even with the considered

disturbances, the analysis shows that the proposed algorithm is able to provide an ac-

curate estimation of the mentioned outputs for all the Early Characterization Phase

trajectory and for 77.33% of the Detailed Characterization Phase trajectory, improving

the robustness and autonomoy of the mission navigation.
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2.1 Introduction

The Asteroid Impact Deflection Assessment (AIDA) is an international collaboration

between NASA and the European Space Agency (ESA), with the primary objective

of planetary defence by deflecting a binary asteroid system using kinetic impact. The

NASA contribution to this mission is the Double Asteroid Redirection Test (DART), a

planetary defence-driven test of a kinetic impactor launched on the 24th of November

2021 that performed the deflection in September 2022 [34]. ESA’s segment of AIDA is

Hera mission, whose objectives are to investigate the properties of the binary asteroid

system, to observe the results of DART’s impact and to provide information for asteroid

impact threat mitigation, mining and science purposes [35]. Hera falls under ESA’s

Space Situational Awareness (SSA) initiative, which enables ESA to detect, predict

and assess the risk of Near Earth Objects.

The target of this mission is the near-Earth binary asteroid (65803) Didymos. Ta-

ble 2.1 illustrates relevant properties of the primary Didymos and its moon Dimorphos.

In this work we refer to the pre-impact properties of the binary system, since the im-

pact of DART has changed major parameters of Dimorphos, such as its orbit around

Didymos and its physical characteristics, with potential unstable motion that can be

confirmed only with the Hera’s spacecraft arrival [91]. The spin axis of both bodies is

orthogonal to the binary’s orbital plane. Dimorphos is tidally locked with Didymos,

i.e. its rotation period is equal to its revolution period around the primary [29].

Table 2.1: Didymos’ system pre-impact properties [29]

Parameter Didymos Dimorphos

Gravitational parameter [km3/s2] 3.5225 · 10−8 2 · 10−10

Approximated diameter [m] 780 164

Rotation period [hr] 2.26 11.92

Obliquity of the binary orbit with
Ecliptic plane

169.2◦ 169.2◦

The proximity operations of Hera mission consist of different phases that depend

on the mission objectives. In this work the Early Characterization Phase (ECP), 30
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to 20 km distant from the target, and the Detailed Characterization Phase (DCP), 23

to 9 km distant from the target, are considered as case scenario with the objective of

conducting physical and dynamical characterizations of Didymos [40].

A vision-based navigation system is designed to guarantee autonomy for the obser-

vation of the binary asteroid from short distance. This system includes an on-board

camera taking images of the asteroid, an Image Processing (IP) algorithm that extracts

information from these images, and a navigation filter that processes the visual data

to estimate the spacecraft position, velocity and attitude with respect to the binary

system. The camera used is the Asteroid Framing Camera (AFC). For the ECP and

the DCP, the navigation strategy is centroid-based, meaning that the IP algorithm is

designed to extract the position of the Center of Mass (COM) of the primary body,

and then to estimate the Line Of Sight of the spacecraft, with the purpose of enabling

autonomous attitude navigation [58].

Nevertheless, standard IP algorithms’ performances are highly dependent on the

intrinsic properties of the captured images. Factors such as the Signal-to-Noise ratio,

illumination conditions, the presence of other bodies in the image and the irregular

shape of the asteroid can affect the accuracy of the extracted visual information. Stan-

dard IP algorithms introduce correction terms that depend on the Sun phase angle

(Sun-asteroid-spacecraft angle) to reduce the error caused by the illumination condi-

tions.

Recent years have seen an increase of the implementation of Convolutional Neural

Networks (CNNs) in space image processing. One of its main advantages over the stan-

dard IP algorithms is the robustness against disturbances and adverse characteristics

of the images. Most of the CNNs process the input image with a network typically

consisting of a series of high-to-low resolution subnetworks. This process reduces the

input’s resolution, which is then recovered through a low-to-high process. With this

procedure, the extracted visual data have low spatial precision and accuracy that could

not meet the requirement of an autonomous attitude navigation system. Therefore,

this work adopts the High-Resolution Network (HRNet) architecture that has the main

characteristic of maintaining a high-resolution representation through the whole net-

36



work while exchanging information across the parallel multiresolution subnetworks.

This process leads to a keypoints regression with higher accuracy given images with

high resolution [92]. The HRNet has been developed for 2D human pose estimation

problems but has already found its spaceborn application to the monocular pose esti-

mation of satellites problems, where the HRNet is used to estimate a set of landmarks

from the input images of the target satellite [93,94].

To estimate the relative position of the spacecraft, a range measurement from the

asteroid is required. The on-board instrument to measure the range with Didymos is

the Planet ALTimeter (PALT), a lidar experiment that determines the distance to the

asteroids with an accuracy of 0.5 m operational at a distance ranging from 500 m to

14 km. Therefore, it can not be used during the ECP for range measurements, but it

can be used during part of the DCP.

This work addresses the IP challenges related to the irregular shape of the aster-

oid, the disturbance caused by the presence of the secondary body in the images and

the adverse illumination conditions. We develop an HRNet-based IP algorithm that

takes as input synthetic images generated during the ECP and the DCP trajectories

and outputs the elements summarized in Table 2.2, reducing and confining the errors

introduced by the mentioned factors. Since it is not a direct measurement but it is

derived from the images, the estimated range is a pseudorange measurement. With

these measurements the navigation filter is able to estimate the relative state of the

spacecraft with respect to Didymos, increasing the robustness of the navigation strategy

and of the proximity operations. The estimation of the position of the centroid of the

secondary body represents a unique contribution of this work. Another contribution of

this work is the regression of the subsolar (SS) point on the surface of Didymos, which

is leveraged with a novel methodology to estimate the Sun phase angle.

This paper is structured as follows. Section 2.2 reviews the state of the art of

methodologies applied for image processing algorithms to solve the centroiding, range

and phase angle problems. Section 2.3 describes more in detail the developed HRNet-

based IP algorithm. Section 2.4 performs the numerical simulations and analyses the

results. Finally Section 2.5 concludes this research and recommends future research
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Table 2.2: Outputs of the CNN-based IP algorithm

Name Symbol Description

COM of Didymos COMDid Estimated position of the centroid of Didymos
[px, px]

COM of Dimorphos COMDim Estimated position of the centroid of Dimorphos
[px, px]

Pseudorange ρ Pseudorange with Didymos [km]

Phase angle γ Estimated Sun Phase angle [◦]

directions.

2.2 Related methods

In this section, current IP algorithms that estimate the quantities shown in Table 2.2

are reviewed. To the authors’ knowledge, the methodologies to estimate the range and

the Sun phase angle from images are limited, as these parameters are usually obtained

from lidars, altimeters and Sun sensors. These methodologies have been tested with

the shapes of Didymos prior to the updates provided by DART mission, hence they

will not work with the shape known currently.

2.2.1 Centroiding algorithms

Methods that leverage the position of the Center of Brightness (COB), the centroid of

the image when each pixel is weighted by its intensity, on the image have been proposed.

To locate the COB, the IP algorithm needs to perform several steps: windowing, to

prevent Dimorphos to be included in the computation and detect a window that includes

the primary, thresholding and binarization, to reduce the noise and locate the brightest

area of the image, and finally the computation of the COB, which represents the center

of the located area [55]. Gil-Fernández and Ortega-Hernando [55] applies the offset

ϵCOB between the COB and the COM to determine the position of the latter. The

offset ϵCOB depends on the Sun phase angle, the spacecraft latitude with respect to the

primary Equatorial plane and the shape of the asteroid. Nevertheless, when the lighting
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circumstances are inadequate this method becomes inaccurate. Pugliatti et al. [81]

applies data-driven scattering laws to determine with higher accuracy the relationship

between the position of the COB and the COM. Centroid Apparent Diameter, ellipse

and limb fitting techniques rely on the a priori knowledge of the apparent size and shape

of the asteroid. Moreover, they require that the shape of the model is regular [95,96].

The current IP algorithm implemented by Hera for the centroiding problem resolu-

tion is the Maximum Correlation with a Lambertian Sphere (MCLS). This algorithm

estimates the size of the sphere with Lambertian reflectance that maximises the nor-

malized correlation with the binarized image of the asteroid. Hence, the bright pixels

of the image play a major role in this IP technique, thus making it highly depending

on the position of the Sun [58]. The dependency on the illumination conditions is

minimised in this research by applying CNNs.

While Hera is focusing on identifying the COM of both bodies, DART performed

the impact while aiming for the COB of Dimorphos. In the final 4 hr prior to the

impact with Dimorphos, DART used the Small-body Maneuvering Autonomous Real-

Time Navigation (SMART Nav) algorithm with the images captured by the on-board

Didymos Reconnaissance and Asteroid Camera for Optical navigation (DRACO) to

perform autonomous terminal navigation. Prior to relying fully on SMART Nav, the

on-board ephemeris have been updated with the ground-processed Optical Navigation

data collected by DRACO. The capability of the algorithm to be updated real-time with

ground-processed data allowed to target the COB of Dimorphos with high accuracy

without needing to identify the position of its COM [97,98].

2.2.2 Pseudorange

Monocular Depth Estimation (MDE) represents the task of measuring the distance of

each pixel of an input image relative to the camera by leveraging depth maps. MDE

requires as input RGB images that contain a larger amount of information per pixel,

and a strong knowledge of the target shape in order to match relevant feature with

the corresponding depth map [99]. Nevertheless, the synthetic images used in this

work are greyscale, and the precise models of Didymos and Dimorphos can only be
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reconstructed during the close approach of the Hera’s spacecraft [91]. Therefore, in

this work we propose a method that depends only on the shape of the target, with no

constrain on its surface appearance.

Methods that rely on the calculation of the apparent radius have been proposed

[100]. By comparing the radius of the asteroid with the major length (δ) of the pro-

jection of the asteroid on the image plane, the range is calculated. Nevertheless, the

estimated range is noisy and not accurate, as the irregular shape of the asteroid gen-

erates different values of δ. In order to meet the accuracy requirements (percent error

with respect to ground truth lower than 10%) for the navigation strategy of Hera mis-

sion, in this research we develop a method of calculating multiple values of δ for each

image in order to average the irregularity, which reduces the error introduced by the

irregular shape of Didymos.

2.2.3 Sun Phase angle

Pugliatti et al. [81] compared different methodologies to measure the Sun phase angle

obtained by analyzing a database of images of Didymos generated with the 3D computer

graphics software Blender. These methods rely on the characterization of the blob of

pixels representing the asteroid in the binarized image generated with Blender. The

eccentricity e of this blob of pixels is found to be correlated with the phase angle. This

relationship is described with the following second-order polynomial:

γ(e) = p2e
2 + p1e+ p0 (2.1)

The coefficients p0, p1 and p2 are evaluated fitting the data in the least-square sense.

The estimation of the Sun phase angle is accurate for larger phase angle values. Their

second method involved the application of Neural Networks and CNNs to spot rela-

tionships between different geometrical features of the blob of pixels representing the

asteroid. It has been found that the CNNs outperform all the other methods with their

capability of extracting spatial information from images. In this work the CNNs are

used to estimate the position of the SS point that is used to estimate the Sun phase
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angle.

2.3 Methodology

Figure 2.1: Overall pipeline of HRNet-based IP algorithm

In this section, the methodology is described in detail. Fig. 2.1 shows the main steps

of the overall pipeline. With the given reference trajectories from ESA and Planet and

Asteroid Natural scene Generation Utility (PANGU) software, two sets of images are

generated, one without the presence of Dimorphos and one with both bodies. Both sets

are processed to retrieve the Ground Truth (GT) keypoints which are used to supervise

the training and validation of the HRNet. The former set is used to determine the GT

position of the COMDid, 24 points on the visible border of the primary and the SS

point in the image. The GT keypoint COMDim is retrieved with the second set, which

is also used for the training and validation of the HRNet.

The trained HRNet is then applied to estimate the position of the keypoints of the

testing dataset with both bodies. Finally, the pinhole camera model is used with the

regressed keypoints to estimate the pseudorange and the Sun phase angle. Details of

the main steps are described in the rest of this section.
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2.3.1 Reference trajectories

Figure 2.2: ECP trajectory

Figure 2.3: Range and phase angle of the ECP trajectory

The adopted reference frame is the Target Body Equatorial Inertial (TBEqI), which

has the origin located on Didymos, the X-axis pointing towards the vernal equinox, and

the XY plane coplanar to the equatorial plane of Didymos. The relative motion of the

Sun around Didymos is retrograde as the binary system’s orbit obliquity with respect

to the ecliptic plane is larger than 90◦, as shown in Table 2.1.

The ECP trajectory is provided by ESA. Fig. 2.2 illustrates the trajectory of the

spacecraft, together with the position of the Sun (scaled down in the illustration) and

the orbit of the secondary. The position of the Sun is calculated using the Jet Propulsion
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Laboratory Small Body Database [101]. The trajectory consists of 4 hyperbolic arcs,

with an initial epoch of tin = 9012 d and a final epoch of tfin = 9026 d, calculated in

the Modified Julian Date 2000. The only forces considered for each arc are the point

mass gravitational attractions of both the primary and the secondary asteroids. Orbital

maneuvers are performed at the joint of two arcs. The durations of the 1st and 3rd arcs

are both 4 d while the durations of the 2nd and 4th arcs are both 3 d. The range from

the primary varies between a minimum of 20 km and a maximum of 30 km as shown

in Fig. 2.3. It can be seen from Fig. 2.2 that the ECP trajectory is located in between

the Sun and Didymos, in order to provide the AFC camera with bright images of both

bodies for Line of Sight navigation [40]. Fig. 2.3 shows that the phase angle γ for the

ECP trajectory is lower than 90◦, meaning that the spacecraft is always seeing the day

side of the asteroid.

Figure 2.4: DCP trajectory

The DCP trajectory is provided by GMV Aerospace and Defence, who is in charge

of the development of the Guidance, Navigation and Control system of Hera mission.

Fig. 2.4 illustrates the trajectory of the spacecraft, together with the position of the Sun

(scaled down in the illustration) and the orbit of the secondary. The trajectory consists

of 8 hyperbolic arcs with a total duration of 28 d. The first arc is the transition between

ECP and DCP, followed by repetitive trajectories with a range from the primary varying

43



Figure 2.5: Range and phase angle of the DCP trajectory

between approximately 9 km and 23 km, as shown in Fig. 2.5. The minimum distance

of 9 km is designed to ensure that the full shape of Didymos is within the Field Of

View (FOV) of the AFC even in the presence of 100 m navigation error [40]. Fig. 2.5

shows that the DCP trajectory is also designed to face the camera to the binary system

during the day side.

2.3.2 Image Generation

Figure 2.6: PANGU viewer with two sample images captured at different points of the
ECP trajectory

The software PANGU is used to generate the database of images for this research.

PANGU is a simulation tool that models planet and asteroids surfaces and provides

a high-fidelity visualization of images while operating at near real-time speeds. The

software has been developed by the STAR-Dundee engineering company [102]. The

models of Didymos, Dimorphos and the camera are provided by GMV, and are based
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on ground observations. Didymos’ model is near-spherical and is a spinning top with

an elevated ridge along the equator. The shape of Dimorphos is known to be near-

ellipsoidal and it is approximated by scaling down the shape model of Itokawa that

was the target asteroid of the Hayabusa mission. DART’ s images confirmed the near-

ellipsoidal shape of Dimorphos, while providing different results for Didymos, which

appeared to be ellipsoidal as well, with an extent along its equatorial axes of 849 m

and 851 m, larger than the 620 m extent along its rotation axis [28]. Nevertheless,

in this work we refer to the pre-impact models of Didymos and Dimorphos, with final

remarks in Section 2.5 about the effects that the change of shape could have on the

proposed pipeline and in the results obtained.

The software generates greyscale images detected by the camera and shows them

on the PANGU viewer, which is a plane with the size of the image (shown in Table 2.3)

and the origin of the coordinated frame set at the top left corner. The horizontal and

the vertical axes of the plane are referred as i-direction and j-direction respectively.

The flight file system of PANGU is operated in order to visualize the binary asteroid

system during the trajectories. Flight files are the input to PANGU and they control

the viewer to generate images taken at selected epochs of the reference trajectory in

the TBEqI reference system, considering the position of the Sun (range, Azimuth and

Elevation) and the positions and the orientations (quaternions) of both the binary

asteroid system and the AFC camera (joined with the spacecraft) [102].

For asteroid imaging, the AFC has its boresight pointing towards the primary and

the vertical axis of the camera is perpendicular to the direction of the Sun with respect

to the spacecraft [40]. PANGU adopts the boresight, the vertical and the horizontal

axes of the camera respectively as the Z- the Y- and the X-axis of the camera reference

frame [102]. Therefore, the position vector of the Sun with respect to the spacecraft lies

on the XZ plane of the camera frame. As a result, the images shown in the PANGU

viewer always represent the binary system illuminated from the right side. Fig. 2.6

shows two sample images generated at different epochs of the ECP trajectory, together

with the i- and the j-directions of the PANGU viewer.
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Table 2.3: AFC properties [103,104]

FOV Focal Length: f Aperture Image size Pixel Size: ν

5.5◦ 10.6 cm 2.5 cm 1024× 1024 px 14 µm

2.3.3 Ground Truth data

Figure 2.7: Camera pointing with error

2.3.3.1 Centroids of Didymos and Dimorphos

Figure 2.8: Sample images generated during the 2nd, the 3rd and 4th arc of the ECP
with Ground Truth position of the centroids of Didymos and Dimorphos

When the camera is pointing perfectly towards the primary or the secondary, the

latter are displayed in the middle of the PANGU viewer. With the conditions that

the camera is pointing directly to either the primary or the secondary, the Geomet-

rical Center (GC) of the selected body that is the arithmetic mean position of all

the points belonging to the body, is located at the central pixel with the coordinates

(i, j) = (512, 512) px in the PANGU viewer. The COMs of the primary and the sec-
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ondary almost coincide with their GCs because of their respectively near-spherical and

ellipsoidal shapes. Since the images used in this work are all generated with PANGU,

it is assumed that the GCs of Didymos and Dimorphos are their centroids.

Training the CNN algorithm with a set of images with perfect pointing conditions

will result in an issue of lacking label variability. To overcome this issue, a pointing error

represented by spherical coordinates and defined by two angles α and β is introduced at

each epoch of the trajectory in the boresight direction of the camera reference system,

as shown in Fig. 2.7. As a result, the generated images are shifted from the central

position of the PANGU viewer. In order to make sure that both bodies lie within the

FOV of the AFC camera, random values within an interval of [−0.5, 0.5]◦ are considered

for both α and β for the ECP. With these values, the primary and secondary locations

are shifted around in the PANGU viewer. By calculating the shift in pixels of the

primary and the secondary from their central position, the GT pixel coordinates of

COMDid and COMDim are calculated for each value of α and β, as shown in Fig. 2.8.

Since Dimorphos is not included in the FOV of the AFC during the DCP, its GT

position is not considered during this phase. To ensure that the asteroid is fully visible

in the images even at the closest approaches, the values of α and β are limited to an

interval of [−0.25, 0.25]◦ for the DCP.

2.3.3.2 Pinhole camera model, pseudorange and Sun phase angle

Figure 2.9: Pinhole camera model geometry [105]

The pinhole camera model is implemented in PANGU using the properties of the

AFC camera, shown in Table 2.3. In the pinhole camera model, also called perspec-

tive camera model, the camera aperture is considered as a point rather than a lens.
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Therefore, this model is used to achieve a first-order approximation of the relationship

between the coordinates of a point in the 3D space and its projection onto the 2D image

plane of the camera [106].

Fig. 2.9 shows the geometry of a pinhole camera model. In this model the center

of projection C is the origin of the camera reference frame and the image plane is

located at the focal length f = 10.6 cm (Table 2.3). It can be seen from Fig. 2.9 that a

point P with coordinates (X,Y, Z) in space is mapped to a point with the coordinates

(fXZ , fYZ , Z) on the image plane [104]. The units conversion from meters to pixels for

an object of length l on the image plane is given by n · ν px, where n is the number of

pixels representing the object and ν is the pixel size (Table 2.3). Therefore, an object

of length L in meters on a plane of the 3D space at distance Z from the camera and

parallel to the image plane is projected onto the latter with the dimensions in pixels

defined by Eq. 2.2.

n · ν =
f · L
Z

(2.2)

(a) Two points (b) Multiple points

Figure 2.10: Keypoints selected from the visible border of the asteroid

In order to apply the pinhole camera model to estimate the pseudorange of the

spacecraft from Didymos, the shape of Didymos is approximated as a sphere of radius

R = 390 m (Table 2.1). Given that on the image plane the length of the asteroid radius
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has a value of nR px, Z can be solved from Eq. 2.2, which is the distance from the

center of projection C and the COM of Didymos, i.e. the range. Therefore, once nR of

an image captured by the camera is obtained, the pseudorange can be calculated with

Eq. 2.3.

ρ =
f ·R
nR · ν

(2.3)

Fig. 2.10a shows how nR is calculated for a generic synthetic image of the asteroid, which

is measured by the number of pixels from COMDid to the point P on the asteroid’s

border along the positive i-direction, considering that the asteroid is always illuminated

from the right side. Dimorphos is hidden from the images as its presence in front of

Didymos or near its border would disturb the evaluation of nR.

Nevertheless, the shape of the asteroid is irregular and the accuracy of its approx-

imation to a sphere depends on the relative attitude of the asteroid with respect to

the spacecraft. To reduce the error introduced by the irregularity of the shape in the

calculation of nR, multiple points Pi on the border within the angular aperture 2θ are

considered, as shown in Fig. 2.10b.

The distance ni
R is evaluated for each point Pi and the average value n̄R is calculated

and used in Eq. 2.3 to calculate the pseudorange. To find the optimal value for θ and

for the number of points Pi that minimize the error, the following steps are taken:

1. Given an image of the asteroid, an angular aperture 2θ with θ ∈ [0, 110]◦ is

considered; the maximum value of θ is determined considering that the asteroid

is illuminated from the right side of the image plane, as explained in Section 2.3.2.

2. A number of points Pi at an equal angular distance from each other are taken

on the asteroid’s border; an upper limit of 50 points is selected considering the

computational complexity (memory storage of the intrinsic parameters of the

architecture and computational time) of the keypoints regression of the HRNet;

3. For each point Pi, n
i
R and the average n̄R are calculated, and the pseudorange

with the asteroid is evaluated with Eq. 2.3.

4. Finally, the pseudorange is compared with the GT range (i.e. the range obtained
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from the reference trajectory shown in Section 2.3.1) for each image and the Mean

Absolute Error (MAE) is determined with Eq. 2.4.

MAE = |ρ−Range| (2.4)

Following this procedure, Fig. 2.11 is obtained with the y-axis representing the angle

θ ∈ [0, 110]◦, the x-axis representing the number of points Pi ∈ [1, 50] and the colourbar

representing the MAE. It is illustrated by the red dots that the MAE has its local

minima (MAE < 350 m) in three different regions. The minima have a similar value

of θ around 90◦, and different values of number of points Pi. Hence, considering the

whole illuminated side of Didymos instead of only one point on the i-direction justifies

the approximation of the shape of the asteroid with a sphere and reduces the error in

the pseudorange calculation.

Relying on one singular point, as in the left region of Fig. 2.11, poses a major risk

of failure in the case that the HRNet is not capable of regressing that point accurately.

On the other hand, the error obtained with 50 points is not low enough to justify

the computational complexity implicated in the regression of such a high number of

keypoints. Therefore, in this study we select 24 points Pi on the border within an

angular aperture 2θ with θ = 87◦.

Figure 2.11: Optimization of number of keypoints for pseudorange calculation
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(a) Planar view (b) Image plane view

Figure 2.12: Illustration of subsolar point for Sun phase angle estimation

The Sun phase angle estimation relies on the SS point on Didymos, as shown in

Fig. 2.12. Given an image captured by the camera, the COM and the SS projections

are detected on the image plane. Dimorphos is hidden from the images as it can cause

disturbance in the estimation of the position of the SS. The distance in pixels between

these two points, defined here as nP , together with the average radius of the asteroid

n̄R, are then used to calculate the phase angle γ with Eq. 2.5, as shown in Fig. 2.12a.

Eq. 2.5 applies twice the approximation of the shape of the asteroid as a sphere: one

for using n̄R and one for using the inverse of the sine function to calculate γ.

γ = arcsin

(
np

n̄R

)
(2.5)

2.3.4 HRNet

The HRNet architecture is shown in Fig. 2.13. The network maintains the high resolu-

tion representations of the input images by connecting multiple subnetworks in parallel.

The first stage is a high-resolution subnetwork. New stages are formed from the gradual

introduction of high-to-low subnetworks. To maintain the high-resolution representa-

tion, repeated multiscale fusions are performed using low-resolution representation of
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Figure 2.13: HRNet architecture

the same depth and level. The last high-resolution representation is then used for the

regression of the selected visual data [92].

The keypoints to regress for each image generated during the ECP are 27 points,

which are the COMDid and the COMDim, 24 points on the visible border and the SS.

For the DCP images the keypoints are 26, since the COMDim is not visible. Each

input image of the HRNet is coupled with the corresponding keypoints that are used to

supervise the training to regress the keypoints locations on the testing dataset. For this

work, the CNN architecture of the pose-hrnet-w32 that was previously implemented

in [107] is used, where 32 represent the widths of the high-resolution subnetwork in the

last three stages. During the training, the validation dataset is used beside the training

one to compute the validation losses and avoid overfitting. The Adam optimizer is used

with a cosine decaying learning rate with initial value of 10−3 and decaying factor of

0.1. The total parameters involved in the training process are 28, 536, 443. The default

hyperparameters specified by [107] are adopted in this work, including those related

to the network architecture, training procedure, and optimization strategy, in order to

ensure consistency with the original implementation.

Dimorphos is not hidden in the images as done in Section 2.3.3.2, so that the HRNet

is trained to regress the location of the keypoints despite the disturbance introduced by

the presence of Dimorphos. The input database for the ECP consists of 10083 (59.91%)

images for training, 1266 (7.52%) images for validation and 5031 (29.89%) images for

testing, obtained by sampling the trajectory respectively every 100, 800 and 200 s and

discarding the images where Dimorphos is outside of the camera frame or behind the
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primary. The images generated with the DCP are 448 (2.68%) i.e. sampling every 90

min the trajectory and discarding the ones showing the border of Didymos partially

outside of the FOV. The dataset of the DCP is used only for testing, in order to assess

the ability of the HRNet to generalize the keypoint regression to images showing the

binary system in different configurations. The network is trained for 210 epochs. The

training of the network is run on the virtual machine provided by Google Colab with

the NVIDIA V100 Tensor Core GPU, and it takes around 48 hr for the completion of

the 210 epochs. The whole HRnet architecture together with its trained weights and

biases has a total weight of 109 MB.

2.4 Results

In this section, the results of the HRNet-based IP algorithm for the estimation of the

centroids of Didymos and Dimorphos, the pseudorange from the primary and the Sun

phase angle are presented. Firstly, the accuracy of the HRNet on the estimation of the

positions of the keypoints for the ECP is evaluated with the metric defined as follows:

RMSEm =

√∑N
n=1(P

GT
mn − P pred

mn )2

N
(2.6)

where Pmn represents the m-th keypoint; the index n refers to the n-th image of the

N = 5031 images of the ECP testing dataset; RMSEm is the Root Mean Squared Error

(RMSE) between the GT position of the m-th keypoint PGT
mn and the estimation P pred

mn

using the HRNet. The RMSE value of 7.746 px obtained by the MCLS IP algorithm

developed by GMV to estimate the position of the centroid of Didymos during the

ECP of Hera mission is given as a reference, since their estimation meets the pointing

accuracy required by the mission [58]. This result is obtained by applying the algorithm

over a set of 243 images of the 1st arc of the ECP generated with PANGU by GMV.

Further, the accuracy of the developed algorithm on the estimation of the position

of the centroids during the ECP is evaluated by the metric defined in Eq. 2.7, which

represents the error in pixels between the position of COMDid and COMDim with

respect to their GT value. This metric is evaluated for both the i− and the j− directions
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of the PANGU viewer.

εGC = COMGT − COMpred (2.7)

The MCLS IP algorithm estimated the position of the COM of Didymos with an average

error εGC of 4.83 px on the i−direction and 3.95 px on the j−direction. The accuracy

of the pseudorange and the Sun phase angle during the ECP is assessed through the

error between the GT values and their estimations. The distribution of the error is also

analyzed for both parameters by comparing it with the Gaussian distribution that is

the ideal one for navigation filters [108].

The performance of the HRNet-based IP algorithm on the estimation of the position

of the centroid of Didymos, the pseudorange and Sun phase angle are also evaluated for

the DCP, in order to assess the possibility and robustness of generalization to completely

new images.

2.4.1 Accuracy of the keypoints regression

Figure 2.14: Accuracy of the keypoints regression during ECP

Fig. 2.14 is a bar chart of the RMSE values obtained for the 27 keypoints regressed

by the HRNet during the ECP. The first two and the last bars represent the RMSE of

the two COMs and of the SS position estimations respectively. The other 24 keypoints
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Figure 2.15: Keypoints regression results for two images of the 1st and the 3rd arc

are the ones defined in Section 2.3.3 on the border of the asteroid. It is observed that

the worst performance of the HRNet is obtained for the first keypoint (θ = 87◦) on the

border of the asteroid and the best performance for the SS point, with the RMSE of

13.161 px and 1.973 px, respectively.

The difference of the estimation accuracy among the keypoints depends on the

different lighting conditions and on the shape of the asteroid. Nevertheless, the values of

the RMSE differ from the one obtained using the MCLS IP algorithm by a maximum

of around 5 px, which is negligible compared to the size of the image, reported in

Table 2.3. Therefore, the HRNet is able to estimate the position of the keypoints with

the same accuracy of the MCLS IP algorithm for the test scenario considered in this

work, thus meeting Hera mission’s pointing accuracy requirements. Fig. 2.15 illustrates

two sample images generated by PANGU during the first and the third arc, together

with the keypoints estimated by the HRNet.
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Figure 2.16: εGC for Didymos centroid during ECP

2.4.2 Estimation of COMDid during ECP

2.4.2.1 Accuracy

Fig. 2.16 represents the error εGC for the centroiding of Didymos in both i and j-

directions of the PANGU viewer reference frame, for the ECP testing dataset of 5031

images. It can be seen that the error oscillates around 3.35 px in the i-direction with

a maximum and a minimum values of 18.78 and −7.9 px and around 1.41 px in the j-

direction with a maximum and a minimum values of 17.46 and −15.27 px, respectively.

The standard deviations of the error εGC are σi = 3.74 px and σj = 5.65 px which

means that 68.27% of the Didymos centroiding estimation error is contained between

−6.7 px and 0.78 px for the i-direction and between −5.8 px and 5.5 px for the j-

direction. The reduced values of the mean and the standard deviations of εGC allow

the utilization of Didymos centroiding estimations in a navigation filter. Comparing

with the results on the εGC obtained by GMV, the HRNet-based IP algorithm is more

accurate to solve the centroiding of Didymos.
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Figure 2.17: Centroiding results for images with disturbances due to the presence of
Dimorphos

2.4.2.2 Illumination conditions

As mentioned in Section 2.3.2, the binary system is always illuminated from the right

side in the images. Hence, the influence of the illumination can be inferred by the error

on the i-direction. The systematic error of 3.35 px is negligible considering that it is

lower than the peak-to-peak amplitude (26.68 px) of the error itself. Therefore, the

developed centroiding algorithm is not affected by the illumination conditions of the

asteroid.

2.4.2.3 Dimorphos’ disturbance

The subset of images with the projection of Dimorphos on the surface of Didymos are

193 out of the 5031 of the testing dataset. The RMSE value for these images is 7.4
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px. The difference of this value from the reference value is 0.346 px, which is negligible

compared to the size of the image plane.

When Dimorphos is located between the Sun and Didymos, its shadow is projected

on the surface of the primary. 537 out of the 5031 images of the testing dataset present

this condition. For this subset, the value of the RMSE is 7.27 px, and the difference

from the reference value is 0.476 px, which is negligible compared to the size of the

image plane. Therefore, the proposed centroiding algorithm is robust to Dimorphos’

disturbance. Fig. 2.17 shows four examples of these two disturbances analyzed in this

section.

2.4.3 Estimation of COMDim during ECP

2.4.3.1 Accuracy

Figure 2.18: εGC for Dimorphos during ECP

Fig. 2.18 illustrates the centroiding results of Dimorphos in the i- and j-directions

of the PANGU viewer for the 5031 images of the ECP testing dataset. The average

value of the error is 3.05 px for the i-direction and 0.107 px for the j-direction. The

standard deviations of the error εGC are σi = 10.26 px and σj = 5.52 px which means
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that 68.27% of the Dimorphos centroiding estimation error is contained between −6.71

px and 13.81 px for the i-direction and between −5.1 px and 5.94 px for the j-direction.

The reduced values of the mean and the standard deviations of εGC allow the utilization

of Dimorphos centroiding estimations in a navigation filter.

The peaks of the error shown in Fig. 2.18 correspond to two epochs where Dimorphos

is in eclipse because of the shadow of Didymos, as it will be explained in Section 2.4.3.2.

2.4.3.2 Dimorphos in eclipse

Figure 2.19: Illuminated boundary of Dimorphos when eclipse occurs

Figure 2.20: Dimorphos’ centroiding results in partial and total eclipse

There are 593 images out of the ECP testing dataset that include Dimorphos in

partial or total eclipse because of the primary’s shadow. The centroiding algorithm is

still capable of estimating the centroid as in this subset the secondary’s boundary is
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visible even in the worst case scenario of a total eclipse conditions, as shown in Fig. 2.19

(the boundary illumination has been enhanced in the figure for illustration purposes).

The RMSE value for this subset of images is 30.24 pz. Fig. 2.20 shows the results of

two images representing the partial and the total eclipse of Dimorphos.

It can be seen from Fig. 2.18 that the IP algorithm fails for image 2038 and 3747

of the ECP testing dataset, as the boundary of Dimorphos is not illuminated enough

for the HRNet to determine the centroid position.

2.4.4 ECP pseudorange measurement

Figure 2.21: Pseudorange estimation during ECP

Fig. 2.21 shows the results obtained of the pseudorange estimation with the HRNet-

based IP algorithm during ECP. The upper plot shows that the estimation is similar

to the ground truth illustrated in Fig. 2.3 in Section 2.3.1. The lower plot in Fig. 2.21

shows that the absolute percentage error is smaller than 10% and oscillates around a

mean value of 2.1385%. The proposed algorithm meets the Hera mission requirements

which requires the absolute percentage error on the measurement of the pseudorange

to be smaller than 10%. When the range reaches its local minima in the 1st and 3rd

arcs, the absolute percentage error is higher, due to the fact that the images of the
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Figure 2.22: Pseudorange percentage error distribution during ECP

asteroid are appearing larger in the image plane. As a consequence, the non-spherical

shape becomes more predominant and the approximation as a sphere is less accurate.

In particular, the error near the local minima of the range in the third arc is larger

because the phase angle is the lowest (Fig. 2.3) hence the asteroid is the brightest and

its irregular shape is the most visible.

Fig. 2.22 illustrates the distribution of the percentage error of the pseudorange

estimation during ECP, which is similar to a white noise with the mean value of

µ = 0.1298% near 0. The value of the error that appears the most, which is rep-

resented by the peak of the histogram, is 0.4695%. The standard deviation of the

error is σ = 2.6888% which means that 68.27% of the pseudorange measurements have

a percentage error ranging between −2.559%and 2.8186% with respect to the ground

truth. The distribution of the error is symmetrical (skewness = 0.0176) and light-tailed

(kurtosis = 3.0067) which indicates that the percentage error distribution is similar to

a Gaussian distribution. Therefore, the algorithm to estimate the pseudorange from

images of Didymos can be implemented in the navigation filter of the spacecraft.
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Figure 2.23: Phase angle estimation during ECP

Figure 2.24: Phase angle error distribution during ECP

2.4.5 ECP Sun phase angle estimation

Fig. 2.23 shows the Sun phase angle estimation obtained by the HRNet-based IP algori-

htm during the ECP. The absolute error is moderate and reaches the peak value of 20◦,

although the SS position is estimated with a higher accuracy, as shown in Fig. 2.14.
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The error is larger because the sphere approximation of the shape of the asteroid for

the estimation of the phase angle is introduced twice in Eq. 2.5. Nevertheless, the mean

error is small (6◦) and the estimated phase angle is similar to the GT value shown in

Fig. 2.3.

Fig. 2.24 illustrates the distribution of the error of the phase angle estimation during

ECP. Compared with the pseudorange estimation, the white noise approximation is less

accurate considering that the mean value of the error is high (µ = 5.976◦). The peak

of the distribution is reached at 6.192◦ and the standard deviation is σ = 3.5639◦,

which means that 68.27% of the estimations have an error ranging between 9.5399◦and

2.4121◦. The distribution of the error is right skewed (skewness = 0.5654) and light-

tailed (kurtosis = 3.0946). In conclusion, the algorithm to estimate the Sun phase

angle is affected by a limited systematic error that is due to the approximation of the

shape of the asteroid as a sphere. Ultimately, the Sun phase angle measurement is not

ideal for a navigation filter, but it can still be implemented for redundancy.

2.4.6 Estimation of COMDid during DCP

Figure 2.25: εGC for Didymos during DCP
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Figure 2.26: Absolute error between GT and estimated (i, j) pixel position of Didymos
centroid vs range of DCP

Fig. 2.25 illustrates the centroiding results of Didymos in the i- and j-directions of

the PANGU viewer for the 448 images of the testing dataset of the DCP. The average

value of the error is 22.04 px for the i-direction and 26.31 px for the j-direction and the

respective RMSE values are 62.03 px and 79.22 px. Since during the DCP the range

from the asteroid is smaller, the apparent size of the asteroid is bigger in the images

and the estimation accuracy is lower than that of the ECP. This is also illustrated by

comparing Fig. 2.25 with Fig. 2.5. The epochs when the spacecraft is getting closer to

Didymos coincide with the increase of the error of the estimation of the centroid.

Fig. 2.26 shows the norm of the DCP error εGC in both directions for each im-

age with respect to the range. When the range value is larger than about 12.4 km,

the asteroid is far enough for the HRNet-based IP algorithm to provide an accurate

estimation of the position of the centroid. The number of images where the range of

the asteroid is lower than 12.4 km is 102. Therefore, the HRNet-based IP algorithm

provides accurate results for 77.33% of the DCP images. Considering that the HRNet

has been trained using the ECP trajectory that has a minimum range with respect to

the asteroid of 20 km, the algorithm is proved to be robust by generalizing the keypoint

regression for further 7.6 km.
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Figure 2.27: Pseudorange estimation during DCP

Figure 2.28: Phase angle estimation during DCP

2.4.7 DCP pseudorange and Sun phase angle estimation

Fig. 2.27 and Fig. 2.28 shows the pseudorange and the Sun phase angle estimation

obtained by the HRNet-based IP algorithm during the DCP. Similarly to the error

obtained with the COMDid, the accuracy of the estimations is lower when the spacecraft
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is closer than 12.4 km to the asteroid. When the range is higher than this value, the

algorithm provides an accurate estimation of the range, as it can be seen by comparing

Fig. 2.27 and Fig. 2.28 with Fig. 2.5. The errors in the pseudorange and the Sun phase

angle estimations can be reduced if the HRNet-based IP algorithm results are combined

with the ones of the PALT instrument, which is in operation only when the range is

smaller than 14 km.

2.5 Conclusion

This paper develops a CNN-based IP algorithm addressing the problem of centroiding

(Geometrical Center), range and the phase angle estimations for autonomous optical

navigation around a binary asteroid system. The ECP and DCP proximity operations

of Hera mission to Didymos system are studied as case scenario. The challenges tackled

by the developed methodology include adverse illumination conditions of the target,

irregular shape of the asteroid and the disturbances caused by the presence of the

secondary.

The results show that the HRNet-based IP algorithm is able to estimate the po-

sition of the centroids of the primary, the pseudorange and the Sun phase angle with

high accuracy for the ECP. In particular the centroiding method is robust to the pres-

ence of Dimorphos and its shadow projected on the surface of the primary. Besides, it

exhibits no dependency on the illumination condition. If higher accuracy is required,

the training database can be augmented using additional images generated from dif-

ferent trajectory segments around the target body. Moreover, the algorithm estimates

with high accuracy the position of the centroid of the secondary body, even in partial

and total eclipse conditions, which is another unique contribution of this work. The

methodology to estimate the pseudorange is robust to the disturbances caused by the

irregular shape of the asteroid and the presence of Dimorphos. In particular, the per-

centage error in the pseudorange estimation has a near-Gaussian distribution, which

is ideal for navigation filters. The algorithm can also provide an accurate estimation

of the position of the SS point on the surface of the asteroid during the ECP, which

is used to estimate the Sun phase angle. Nevertheless, the estimation of the latter
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is moderately affected by the irregular shape of the asteroid and the error does not

present a Gaussian distribution.

The trained net from the ECP is able to generalize its solution to the DCP if the

range is larger than a threshold value of 12.4 km, in terms of the centroid of Didymos,

the pseudorange and the Sun phase angle. If higher accuracy is required for lower

ranges, the training database can be augmented using additional images generated

with the DCP or closer trajectories.

Nevertheless, the proposed pipeline is applied to the pre-impact models of Didymos

and Dimorphos. Assuming that the same methodology is applied to images representing

the actual shapes of Didymos and Dimorphos with the post impact orbital parameters,

the obtained results will be different. The regression of the 27 keypoints will not be

affected, as the non-spherical shapes of the target will be learned by the HRNet, as

it can be seen from the regression of the COM of Dimorphos represented in this work

by the irregular shape of Itokawa. Hence, the estimation of the position of the COMs

from images representing the updated shapes of Didymos and Dimorphos will not be

affected. On the other hand, the estimation of the range from the primary and the

Sun phase angle are both based on the approximation of the shape of the primary to a

sphere. Therefore, in order to apply the same pipeline, it should be taken into account

the ellipsoidal shape of Didymos. Finally, notice that in this work the sole utilization

of IP algorithms and the camera is considered for the requested measurements. The

parallel utilization of other onboard sensors is also a viable option to refine the obtained

results. It is important to address that the potential unstable motion of Dimorphos

caused by the impact can cause its continuous reshaping, that might not cease at Hera’s

arrival [91]. In that case, a fine-tuning of the HRNet-based IP algorithm with a dataset

of images taken during the first days of the ECP is necessary in order to learn the

position of the COM of Dimorphos.

Our developed methodology contributes to the SSA by improving the robustness

and the autonomy of the navigation strategy of the first mission ever testing asteroid

deflection. Specifically, the unique contribution represented by the estimation of the

SS point can be applied to any object in space. The pseudorange and Sun phase angle
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estimation methodologies can be employed for any space object with a near-spherical

shape, hence it can also support the tracking of space debris and other uncooperative

objects.

Future work would go into the direction of other applications for the HRNet-based

IP algorithm. For instance, an additional output useful for the navigation during

the proximity operations is the pose estimation. Subsequently, the algorithm will be

incorporated with a navigation filter to estimate the state of the spacecraft and to

quantitatively evaluate the improvement of navigation performance.
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Paper content

This chapter demonstrates that with the algorithm developed in Chapter 2 Hera can

autonomously navigate around Didymos using purely visual data, achieving both accu-

racy and robustness in challenging imaging conditions. Following the map and struc-

ture shown in Fig. 1.8 in Section 1.3.3, this chapter addresses RQ 1b, completing all

the answer to RQ 1, and achieves the objective of improving the performances of the

optical navigation systems of asteroid mission proximity operations stated in RO 1.

With this chapter, the reader will understand how to achieve spacecraft positioning

around Didymos using only optical navigation, detailing the measurable performance

outcomes.
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Abstract

The European Space Agency (ESA)’s Hera mission requires an autonomous visual based

navigation in order to safely orbit around the target binary asteroid system Didymos

and its moon Dimorphos in 2027. Nevertheless, the performance of optical based nav-

igation systems is depending on the intrinsic properties of the image, such as high

Sun phase angles, the presence of other bodies and, especially, the irregular shape of

the target. Therefore, to improve the navigation performance, thermal and/or range

measurements from additional on-board instruments are usually needed to complement

optical measurements. However, this work addresses these challenges by developing a

fully visual-based autonomous navigation system using a Convolutional Neural Net-

works (CNN)-based Image Processing (IP) algorithm, and applying it to the Detailed

Characterization Phase of the proximity operation of the mission. The images taken by

the on-board camera are processed by the CNN-based IP algorithm that estimates the

position of the geometrical centers of Didymos and Dimorphos, the range from Didy-

mos and the associated covariances. The results shows that the developed algorithm

can be used for a fully visual based navigation for the position of the Hera spacecraft

around the target with good robustness and accuracy.

3.1 Introduction

Small celestial bodies are remnants of the ancient Solar System, holding invaluable

insights into its evolutionary history. Asteroids and comets have garnered attention as

prime targets for numerous space missions in the past years, such as Hayabusa 1 and

2 exploring asteroid Itokawa, Rosetta, a comet rendezvous mission targetting Comet

67P/Churyumov-Gerasimenko, and OSIRIS-REx that sampled asteroid Bennu [109–

112]. The European Space Agency (ESA) contributes to small bodies exploration with

Hera, a planetary defense mission under development in their Space Safety and Security

Program. The Hera mission represents the European contribution to the international

collaboration Asteroid Impact and Deflection Assessment (AIDA) with NASA. The

main purpose of AIDA is to demonstrate the deflection of a hazardous asteroid by
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means of kinetic impact. The Double Asteroid Redirection Test (DART) spacecraft is

the kinetic impactor designed by NASA, which performed successfully the impact on the

26th of September 2022. The Hera mission will rendezvous in early 2027 with the target

asteroid and characterize its physical and dynamical properties, including the crater

made by the impactor and the momentum transfer efficiency [34, 97]. Furthermore,

Hera aims to bring clarity to the currently uncertain mass measurements of the asteroid

and it will delve into the possible presence of recently deposited material, which could

potentially constitute reaccreted ejecta following the impact of DART.

The destination of Hera is (65803) Didymos, a binary asteroid consisting of the pri-

mary Didymos and its moon Dimorphos, objective of DART’s impact. Table 3.1 shows

the relevant characteristics of the binary asteroid system, provided by the Didymos

Reference Model document and updated with the Design Reference Asteroid document

that reports data collected with the DART mission [28,29]. Accompanying Hera on this

mission are two CubeSats: Milani and Juventas. While Milani is tasked with capturing

detailed imagery of the DART crater, Juventas will conduct comprehensive assessments

of Dimorphos’ internal structure [113].

Table 3.1: Didymos’ characteristics [28,29]

Property Didymos Dimorphos

Gravitational parameter [km3/s2] 3.5 · 10−8 2 · 10−10

Extent along principal axis x [m] 849 177

Extent along principal axis y [m] 851 174

Extent along principal axis z [m] 620 116

Following the interplanetary cruise phase, Hera will perform a series of Delta-Vs in

order to reduce the relative velocity of the spacecraft with respect to the target, which

marks the beginning of the proximity operations. The focus of this research is on the

Early Characterization Phase (ECP) and the Detailed Characterization Phase (DCP)

designed to achieve physical and dynamical characterizations of the binary asteroid [40].

Specifically, the characterization is aimed to improve the accuracy of the values shown

in Table 3.1, together with other parameters related to the binary system, such as the

72



rotation rate of both bodies, the geometric albedo, mass properties and the gravitational

field.

To ensure a high level of autonomy the spacecraft is equipped with on-board instru-

ments to accurately determine its position relative to the asteroid system. To meet this

requirement, a vision-based navigation system is implemented in the Guidance, Navi-

gation, and Control (GNC) system of the spacecraft, which incorporates an on-board

camera, image processing algorithms and a navigation filter. The HERA GNC base-

line incorporates a hyperspectral/thermal camera and a laser altimeter called Planet

ALTimeter (PALT). These additional instruments enhance the navigation strategy’s

reliability: the hyperspectral/thermal imager helps to overcome limitations caused by

shadows and Sun phase angle issues, while PALT improves estimations in the radial

direction, which are typically challenging for a vision-based GNC system. The camera

employed in this system is the Asteroid Framing Camera (AFC) [58].

Each day during the proximity operations is divided into two operational segments:

data acquisition and data transmission. Within a single operational day, one set of

each is scheduled in the following sequence: 15.5 hr for acquisition and 8.5 hr for trans-

mission. For the ECP and the DCP an autonomous attitude navigation is designed,

which relies on an Image Processing (IP) algorithm that estimates the pixel-position

of the Center of Mass (COM) of the main body in the images. Subsequently, the algo-

rithm estimates the Line of Sight (LOS) of the spacecraft [58, 114]. During the ECP,

the performance of the autonomous attitude navigation system is rehearsed while the

spacecraft is flying at a safer distance from the target. Data gathered during the ECP is

transmitted to ground within the time interval of data transmission in order to update,

if necessary, the IP algorithm. Once the system is verified, the system can be used

during the DCP [115].

Despite the validation process, standard IP algorithms are strongly influenced by

the inherent characteristics of the taken images. Elements such as the overall noise,

lighting status, the appearance of secondary or undesired objects, and the irregular

shape of the target can all impact the accuracy of the optical measurements [55,116,117].

While the GNC system of the Hera mission tackles these IP challenges by relying on
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the additional on-board instruments, the authors of this work addressed them with a

Convolutional Neural Networks (CNN)-based IP algorithm built and presented in [80].

The algorithm is able to estimate accurately from the images captured by the AFC the

position of the centroids of Didymos and Dimorphos and the range from the primary

during the ECP and the DCP trajectories. The reader is referred to that work for a

comprehensive understanding of the pipeline undertaken for the development of such

algorithm. Nevertheless, the work is performed with the pre-impact shape models of

Didymos and Dimorphos.

In this work we build upon the CNN-based IP algorithm to develop a fully au-

tonomous visual based navigation algorithm for the DCP trajectory of the Hera mis-

sion around the target body Didymos. We leverage the previous phase of the mission,

the ECP, to train the CNN-based IP algorithm with a dataset of images representing

the new shape of the targets Didymos and Dimorphos. The algorithm is expanded

by providing the covariance matrix associated to each measurement and a Flag that

inform the filter whether the centroid of Dimorphos is visible or not, which is a unique

contribution of this work. An Unscented Kalman Filter (UKF) combines the measure-

ments obtained by the CNN-based IP algorithm with the information retrieved from

the dynamical environment to provide the optimal estimate of the relative position of

the spacecraft with respect to Didymos. In addition, the developed navigation algo-

rithm relies fully on the AFC without requiring the inputs of the hyperspectral/thermal

imager and PALT. Another contribution of this work is the utilization of the position

of the centroid of Dimorphos for navigation.

The organization of this paper is as follows. Section 3.2 reviews the state of the

art of navigation systems around smaller bodies. Section 3.3 describes more in detail

the proposed IP algorithm and the navigation filter. In Section 3.4, we conduct the

numerical simulations and discuss the results. Section 3.5, in conclusion, summarizes

this research and suggests prospective areas for future work.
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3.2 Related methods

This section gives a review on the navigation strategies adopted by previous mission

that successfully approached small solar system bodies.

3.2.1 Heritage missions

3.2.1.1 Rosetta

In July 2014, the ESA interplanetary spacecraft Rosetta conducted a rendezvous with

the comet 67P/Chuyumov-Gerasimenko. At 130 km of distance with respect to the

target, Rosetta navigated towards the target relying on optical measurements provided

by the on-board navigation camera NAVCAM. The strategy consisted in matching the

newly acquired images with a database of old images for which the geometry is known,

using small scale 3D high resolution maps (maplets) built around visible landmarks of

the target body. The maplets consist of a height and an albedo map built on-ground

with the available shape model of the target [118].

3.2.1.2 Hayabusa 1 and 2

Hayabusa 1 spacecraft performed approaching and landing on the target asteroid Itokawa

in November 2005. To maintain the relative position to the asteroid during proximity

operations a visual based GNC system was developed, similar with that of the Hera

mission. Two wide-angle cameras, an IP algorithm estimating the position of the cen-

troid of the target and a Light Detecting And Ranging (LIDAR) estimating the range

from the target have been used.

Hayabusa 2 spacecraft approached the target asteroid Ryugu in July 2018. As its

predecessor Hayabusa 1, this spacecraft is also provided with two wide-angle cameras

and a LIDAR. Both spacecraft had on board a Thermal Infrared Imager and a Near-

Infrared Camera Spectrometer for scientific purposes but also to increase the robustness

of the navigation system as for the Hera mission [119,120].
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3.2.1.3 OSIRIS-REx

OSIRIS-REx used two wide-range cameras of the camera suite OCAMS and the touch-

and-go camera system TAGCAMS for the proximity operations navigation around the

target asteroid Bennu. Stereophotoclinometry was used to create digital terrain maps

for landmark tracking technique, while the on-board LIDAR solves for the radial di-

rection estimation [121].

3.2.1.4 DART

DART utilized the Small-body Maneuvering Autonomous Real-Time Navigation (SMART

Nav) algorithm in conjunction with images obtained from the on-board Didymos Re-

connaissance and Asteroid Camera for Optical navigation (DRACO) to carry out au-

tonomous terminal navigation in order to target the center of brightness (COB) of

Dimorphos. The on-board ephemeris was updated with optical navigation data col-

lected by DRACO till about 4 hr before the impact, after which the spacecraft went

fully autonomous with SMART Nav [98].

3.2.2 Summary

The navigation techniques involved in Rosetta and OSIRIS-REx have in common the

usage of asteroid models to be rendered for correlation with real images acquired with

the on-board cameras. Therefore, prior knowledge of the surface appearance of Didy-

mos would be required to employ these navigation strategies. Furthermore, the more

complex is the model, the more computationally expensive is to run the technique on-

board. To apply DART’ SMART Nav algorithm, constant direct communication with

ground is necessary for the real-time updating of the ephemeris, which is not the case

of Hera that alternates its attitude for data acquisition and transmission. Finally, the

optical navigation solutions employed by Hayabusa 1 and 2 are similar to Hera and

as such rely on multiple instruments to improve the robustness, while the purpose of

this work is to provide a navigation strategy with good robustness that relies only the

images captured by the on-board camera.
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3.3 Methodology
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Figure 3.1: Overall visual based navigation algorithm

This section provides a detailed description of the methodology applied in this

work. A terminology is briefly clarified to streamline the discussion. In this work,

with centroid or Center of Mass (COM) is intended as the body’s geometrical center

projected on the image. While this assumption is almost valid for Didymos given its

ellipsoidal shape, it is not certain if it holds true for Dimorphos consequently to the

DART impact that may have modified its shape [91]. Fig. 3.1 shows the main steps

of the overall pipeline. Given a reference trajectory, at epoch tk+1 a new image is

captured by the on-board AFC. In this work, synthetic images generated with the

software Planet and Asteroid Natural scene Generation Utility (PANGU) are used.

The image is input to the IP block and it goes several steps detailed in Section 3.3.3

in order to provide 4 different estimations: the position of the centroid of Didymos,

the range from Didymos, the centroid of Dimorphos (if available), and the associated

covariance matrix for each measurement. The IP consists firstly in a Pre-Processing

step where the image undergoes an initial normalization before it is handled by the

CNN aimed to regress specific keypoints on the image. The CNN outputs a sequence of
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heatmaps, each one associated with the regressed keypoint. The Post-Processing block

analyzes the heatmaps and outputs the position of the keypoints and the intensities of

the heatmaps. The latter are used to calculate the covariance matrices and to inform

whether an estimate of Dimorphos’ centroid position is available with a boolean variable

represented by Flag Dimorphos. Finally, an UKF combines the available measurements

and the propagated state to provide the best estimate for the state of the spacecraft at

epoch tk+1.

This work is an extension of [80], where the main focus was to build an IP algo-

rithm supported by CNNs able to provide optical measurements for the navigation of

Hera using the pre-impact shape models of Didymos and Dimorphos. In contrast, this

research is focused on refining the previous algorithm with the latest shape models,

and combining it with an UKF in order to solve for the state estimation of the Hera

spacecraft. We use the same reference trajectories (Section 3.3.1), software to generate

the database of images (Section 3.3.2), CNN architecture (Section 3.3.3.2) and cen-

troiding and range estimation methodologies (Section 3.3.4). The subsequent part of

this section contains a thorough explanation of the applied methodology.

3.3.1 Reference trajectories

The reference trajectories used in this work are represented in the Target Body Equa-

torial Inertial (TB) reference frame, which has the geometrical center of Didymos as

origin of the axes, the X-axis pointing as the Earth-Centered Ecliptic Inertial, and the

XY plane lying in the same plane as the equator of Didymos. A summary of the most

relevant information of the orbit of the binary system is reported in Table 3.2 [20,101].

The orbit of Dimorphos considered in this work is prior to the DART impact. The

reference trajectories employed in this work are from the ECP and the DCP proximity

operations. The former is used to train the CNN and to tune the parameters of the

Post-Processing, while the latter is used as a test case scenario.

The ECP trajectory is provided by ESA while the DCP trajectory is provided by

GMVAerospace and Defence, in charge of the GNC simulator of the Hera mission. Both

trajectories consist of hyperbolic arcs: the spacecraft cannot be placed into captured
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Table 3.2: Selected orbital properties of Didymos system [20,101]

Heliocentric orbit

Semi-major axis [AU ] 1.642665 ± 2.7214e− 9

Eccentricity [] 0.383264 ± 1.3374e− 10

Inclination [◦] 3.41415 ± 1.6188e− 8

Longitude of ascending node [◦] 72.987867 ± 2.1852e− 7

Orbital period [yr] 2.105386 ± 5.2320e− 10

Binary orbit

Semi-major axis [m] 1190 ± 30

Eccentricity [] 0

Orbital period [hr] 11.93 ± 0.01

orbits due to the limited prior knowledge of Didymos’ dynamical environment. The

arcs are designed so that the AFC, whose parameters are shown in Table 3.3, is able to

contain within its Field Of View (FOV) the whole shape of Didymos in a single image

in order to use the centroiding algorithm [103,104,115].

Table 3.3: AFC properties [103,104]

FOV Focal length: f Aperture Image size Pixel size: ν

5.5◦ 10.6 cm 2.5 cm 1024× 1024 px 14 µm

Fig. 3.2 depicts the spacecraft’s ECP trajectory along with the relative position

of the Sun (reduced in size in the visual representation) and Dimorphos’ orbit. The

trajectory is composed of four arcs, with the initial epoch set at tin = 9012 d and the

final epoch at tfin = 9026 d calculated in the Modified Julian Date 2000 (MJD2000).

The 2nd and the 4th arcs are 3 d long and go respectively from Didymos’ high latitudes

to low latitudes and viceversa. The 1st and the 3rd arcs are 4 d long and cover the poles

of the target. The sole gravitational forces from the point masses of both bodies and

the orbital maneuvers at the joint of two arcs are taken into account. The planar view

illustrated in Fig. 3.2 shows that the ECP trajectory is placed between the Sun and

Didymos in order to provide the AFC with visible images of the target [40]. Fig. 3.3

shows that the distance from the primary ranges from 20 km and to 30 km.
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Figure 3.2: ECP trajectory

Figure 3.3: Range from Didymos during ECP trajectory

Fig. 3.4 depicts the spacecraft’s DCP trajectory along with the relative position

of the Sun (reduced in size in the visual representation) and Dimorphos’ orbit. The

trajectory is composed of eight Z-shaped arcs located between the target and the Sun’s

position, with a total duration of 28 d, plus 3 d of transition from the ECP. The distance

from the primary ranges approximately from 9 km to 23 km, as illustrated in Fig. 3.5.

The minimum distance is established to guarantee that the complete shape of Didymos

remains within the FOV of the AFC, even when there is a navigation error of up to 100

m. In the actual mission, the ECP and the DCP last 4 weeks each but in this work the
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Figure 3.4: DCP trajectory

Figure 3.5: Range from Didymos during DCP trajectory

whole DCP and only half of the ECP are considered, as provided by ESA and GMV

Aerospace and Defence.

3.3.2 Image Generation

The software PANGU is used to generate the database of synthetic images for this work.

PANGU is a simulation tool developed by the STAR-Dundee engineering company, and

it is capable of modeling planetary and asteroid surfaces and providing high-fidelity

visualizations of images in near real-time [102]. The shape models of Didymos and
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Dimorphos are provided by GMV and updated with the data collected with the DART

mission shown in Table 3.1. Didymos’ shape is ellipsoidal, with the extent along its x-

and y-axes larger than the extent along its z axis, as shown in Table 3.1. Dimorphos’

shape prior to DART’s impact was an oblate ellipsoid, which is approximated in this

work scaling down the shape model of asteroid Itokawa.

PANGU generates grayscale images as seen from the AFC with the properties shown

in Table 3.3, and displays them on its viewer with its coordinate frame’s origin at the

top left corner and the horizontal and vertical axes referred to as i-direction and j-

direction, respectively, as illustrated in the example of Fig. 3.6.

i – direction [px]

j –
 d

ir
ec

ti
on

 [p
x]

1024

10
24

Figure 3.6: Image taken during the ECP trajectory shown on the PANGU viewer

For asteroid imaging during the ECP and DCP trajectories, the AFC’s boresight

is aligned with Didymos’ position vector, and the camera’s vertical axis is orthogonal

to the spacecraft-Sun’s position vector to the spacecraft [40], which results on images

displayed on the viewer consistently portraying the target illuminated from the right

side.

In this work, PANGU is used to generate:

❖ Dataset 1: 40, 000 images generated during the ECP trajectory and used for

the training and validation of the CNN and to tune the parameters of the IP

algorithm. Two fictitious additional arcs are considered, the first arc connecting
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Figure 3.7: Augmented ECP trajectory

the end of the 2nd arc with the beginning of the 1st one, and the second one

connecting the end of the 3rd arc with the end of the 1st one, as shown in Fig. 3.7.

The augmented ECP trajectory is sampled randomly to generate a secondary

trajectory closer to the target, with a minimum distance of 7 km, in order to

train and validate the IP algorithm with a pool of images showing the asteroid

in multiple configurations relative to the spacecraft. A pointing error of the AFC

boresight direction with values spanning between [−0.3, 0.3]◦ is considered for

each image to randomize the position of the projected centroid of Didymos on

the image plane;

❖ Dataset 2: 450 images taken sampling the DCP trajectory every 3600 s and

used as testing batch for the whole visual based navigation pipeline. A pointing

error of the AFC boresight direction with values spanning between [−0.5, 0.5]◦ is

considered for each image to randomize the position of the projected centroid of

Didymos on the image plane.

The pointing error values considered in the generation of the images of Dataset 1 and

Dataset 2 are chosen taking into account the only mission requirement of having the

whole shape of Didymos within the FOV of the camera [40].
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3.3.3 Image Processing
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Figure 3.8: Image Processing

In this section the operations that each image undergoes with the IP algorithm are

described, as represented in Fig. 3.8.

3.3.3.1 Normalization

Once an image is generated with PANGU, its size is reduced from 1024 × 1024 px to

256× 256 px and consequently it is normalized using Eq. 3.1 to calibrate the different

pixels intensities, which helps the CNN to converge faster for a given learning rate.

Eq. 3.1 shows that the image is converted from grayscale to RGB as required from the

specific CNN architecture chosen in this work.

Image = Image−Mean/std (3.1)

where Mean = [0.485, 0.456, 0.406] and Std = [0.229, 0.224, 0.225]. Fig. 3.8 shows the

output normalized image of the Pre-Processing block (the colors of the output image

are enhanced for visualization purposes).

3.3.3.2 CNN

The CNN employed in this work is the High-Resolution Network (HRNet), the state-

of-the-art CNN architecture for keypoints regression, with its ability to maintain high

resolution representation of the input image through the whole net [122]. The keypoints

to regress for each synthetic image are 26, and they are the COM of Didymos, COMDid,

the COM of Dimorphos, COMDim, and 24 points on the visible limb, i.e. the right
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side, segmenting Didymos from the background. The positions of the 24 points are

used together with the position of the COMDid to estimate the range from Didymos,

as it is explained in Section 3.3.4. The reader is referred to [80] for the methodology

applied to retrieve the Ground Truth (GT) positions of the 26 keypoints on the images.

In this work, we utilize the CNN architecture known as pose-hrnet-w32 [107].

Throughout the training process, the validation dataset is employed alongside the

training dataset to calculate validation losses, thereby preventing overfitting. For the

training and validation Dataset 1 is not used entirely, as images where Dimorphos is

located outside of the image plane or behind Didymos are discarded. Whether Dimor-

phos is visible or not in the testing Dataset is handled by the Post-Processing block of

the IP. Consequently, the training and validation datasets consist respectively of 15, 156

(93.73%) images and 520 (3.22%) images from Dataset 1, while the testing dataset con-

sists of the whole 450 (3.05%) images from Dataset 2. The training utilizes the Adam

optimizer, employing a learning rate that follows a cosine decay schedule, initialized at

10−3 and decaying at a rate of 0.1. The overall number of parameters engaged in the

training process amounts to 28, 536, 410.

The CNN model undergoes training for 210 epochs, which approximately equates

to 48 hr of training time. This training is conducted on a virtual machine hosted by

Google Colab, utilizing the NVIDIA V100 Tensor Core GPU. The trained model is then

converted into an ONNX (Open Neural Network Exchange) open format and imported

on Matlab. The trained HRNet with the updated weights and biases has an overall

weight of 109 MB.

The outputs of the HRNet consist in a sequence of heatmaps of size 64×64 px, each

one associated with the corresponding keypoint. A heatmap is a cloud of white pixels

around the estimated keypoint, and it represents the estimated accuracy in regressing

the position of that particular keypoint. The smaller and intense is the heatmap, the

more accurate is the estimation of the position of the associated keypoint. Fig. 3.9 shows

an example of the heatmap around the estimated position of the COM of Didymos.
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Figure 3.9: Heatmap associated to the position of the centroid of Didymos

3.3.3.3 Post-Processing

In the Post-Processing block, the 26 heatmaps associated to each keypoint are analyzed.

Specifically, the Post-Processing block has three main functions:

❖ To remove the white noise by thresholding each heatmap image so that the only

non-black pixels are the one associated to the heatmap;

❖ To extract the peak intensity of the heatmap and its x and y coordinates;

❖ To obtain a statistical population around the heatmap’s peak.

The coordinates of the points with the peak pixel intensity within the heatmap de-

fines the estimated position of the regressed 26 keypoints. The intensity and shape of

the heatmap conveys the level of confidence in accurately pinpointing the associated

keypoint at that particular position. Therefore, in this work the statistical population

around the regressed keypoint is used to derive the associated covariance matrix.

3.3.3.4 Flag Dimorphos

By analyzing the peak intensity of the heatmaps associated to the COM of Dimorphos

and generated by the trained HRNet with the entire Dataset 1, it is derived a threshold

value to determine whether Dimorphos is visible or not. Fig. 3.10 shows the mentioned

peak intensities, together with their average value and the cut-off threshold value.

Three main regions of peak intensities are identified:
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visible/ 
Eclipse

Not 
visible

Visible

Figure 3.10: Peak intensity of the heatmaps associated to COMDim generated with
Dataset 1

❖ 0 - 0.3: Heatmaps peak intensities associated to images where Dimorphos is hardly

visible or not visible;

❖ 0.3 - 0.782649: Heatmaps peak intensities associated to images where Dimorphos

is in eclipse or is partially visible;

❖ > 0.782649: Heatmaps peak intensities associated to images where Dimorphos is

fully visible.

Fig. 3.11 shows three sample images of each region along with the heatmaps asso-

ciated with the regression of the centroids of both bodies. The output of this block is

a boolean variable that is true if the peak intensity of Dimorphos’ centroid heatmap is

higher than 0.3, i.e. Dimorphos is at least partially visible or in eclipse.

3.3.3.5 Covariance computation

In this block of the IP algorithm, the covariance matrices associated to the error in the

estimation of the position of the centroids of Didymos and Dimorphos are computed.

Given the xi− and yi− coordinates of the i−th pixel belonging to the heatmap associ-
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Non - visible
Eclipse/Partially 

visible Visible

Figure 3.11: Heatmaps of COMDid and COMDim associated with three sample images
showing Dimorphos respectively non-visible, in eclipse and visible

ated to the regressed centroid of coordinates xp and yp, the covariance of the error is

calculated with Eq. 3.2 and Eq. 3.3, in accordance with [93].

PCOM =

cov(x, x) cov(x, y)

cov(y, x) cov(y, y)

 (3.2)

cov(x, y) =
n∑

i=1

wi(xi − xp) · (yi − yp) (3.3)

where n is the number of pixels in each keypoint’s heatmap and wi is a weight that

takes into account the intensity of the pixel belonging to the heatmap. This process

aims to assign greater weight to pixels that exhibit high brightness and are situated

near the peak, while assigning reduced importance to pixels with low intensity that are

distant from the peak. Fig. 3.12 shows two examples of covariance matrices associated

to the estimation of the centroids of both bodies. The example on the image of the

right of Fig. 3.12 shows that Dimorphos’ centroid estimation covariance can reach

lower values than the one of Didymos due to its relative reduced size on the image.

Therefore, the cloud of points associated to Dimorphos’ centroid estimation is smaller.

In order to account for the different size of the bodies, a tuning of the covariance is

applied accordingly. The tuning consists in adjusting the parameters of the covariance

matrices to weigh majorly the estimation of the centroid of Didymos with respect to

the one of Dimorphos.
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Figure 3.12: Two example of covariance matrices associated to the centroids of Didymos
and Dimorphos

3.3.4 Measurements

The input measurements of the navigation filter are the estimated position of the cen-

troids of Didymos and Dimorphos (when available) and the estimated range from Didy-

mos. The first two are direct outputs of the IP block together with their associated

covariance matrices. The range is estimated using the relative average distance in pixel

(nR) of the 24 regressed keypoints on the visible limb of Didymos with respect to its

estimated COM, as explained in [80]. The 24 keypoints have an equal relative angular

distance and span an angular aperture of [−87, 87]◦ with respect to the i−direction of

the PANGU viewer. By applying the pinhole camera model using the properties of the

AFC shown in Table 3.3, and by approximating the shape of Didymos as a sphere of

radius R = 773.33 m (average value of the extent along the three principal axis shown

in Table 3.1), the range ρ is estimated, as shown in Eq. 3.4:

ρ =
f ·R
nR · ν

(3.4)

where f is the focal length and ν is the pixel density, as shown in Table 3.3. The

covariance of the error associated with the estimated range is obtained by applying

Eq. 3.4 to Dataset 1 and by comparing it with the range’s GT value. The error obtained

is reported on Table 3.4 and the covariance of the error chosen in this work is Pρ =

MAE2.

The Absolute Error (AE) and the Absolute Percent Error (APE) are defined as
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Table 3.4: Range estimation error for Dataset 1

Mean Absolute Error (MAE) [m] 854.9

σMAE [m] 518.85

Mean Absolute Percent Error (MAPE) [%] 5.68

σMAPE [%] 4.3

follows:

AE = |Rangeest −RangeGT |, (3.5)

APE =
|Rangeest −RangeGT |

RangeGT
· 100% (3.6)

3.3.5 Navigation filter

To combine the measurements produced by the image processing algorithm with the

dynamical environment and form an accurate estimate of the state of the spacecraft, a

navigation filter is implemented. In particular, in this work the UKF is used in order

to better accommodate the non-linear system of equations involved in the dynamical

environment of a binary asteroid system. The relative state of the spacecraft with

respect to Didymos to be estimated consist of the three coordinates of the relative

position and the three coordinates of the relative velocity. The measurements are

available for each image of Dataset 2, therefore every 3600 s.

The UKF is based on a non-linear uncertainty propagation technique called the

Unscented Transform (UT) that captures the propagation of the statistical properties

of state estimates through non-linear functions. This is done using a set of sigma points

that are built with the matrix square root of the covariance matrix of the state. Assume

the following n-state discrete-time non-linear system x with measurement equation
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z [123]:

xk+1 = f(xk) + wk,

zk = h(xk) + vk,

wk ∼ (0, Qk),

vk ∼ (0, Rk)

where f is a non-linear state transition function from discrete time k to k + 1, and w

and v are respectively the process and measurement noise. The individual steps of the

UKF are shown in Algorithm 1. W i
n and W i

c are weights that determines the spread and

the distribution of the sigma points around the mean state value, while c is a scaling

factor based on the size of the state.
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Algorithm 1 The Unscented Kalman Filter

Initialize:

x̂0 = E[x0]

P0 = E[(x0 − x̂0) · (x0 − x̂0)
T ]

for Each measurement zk at epoch k = 1, . . . , tf do

Calculate sigma points and the associated predicted measurements:

x̂
(0)
k|k−1 = x̂k|k−1

∆x(i) = (
√

cPk|k−1)i for i = 1, . . . , n

∆x(n+i) = −(
√

cPk|k−1)i for i = 1, . . . , n

x̂
(i)
k|k−1 = x̂k|k−1 +∆x(i) for i = 1, . . . , 2n

ẑ
(i)
k|k−1 = h(x̂

(i)
k|k−1) for i = 1, . . . , 2n

Combine the predicted measurements of each sigma point to obtain the mean

predicted measurement at time k:

ẑk =
∑2n

i=0W
(i)
n ŷik|k−1

Estimate the covariance of the predicted measurement:

Pzz =
∑2n

i=0W
(i)
c (ẑ

(i)
k|k−1 − ẑk) · (ẑ

(i)
k|k−1 − ẑk)

T +Rk

Estimate the cross-covariance:

Pxz =
∑2n

i=0W
(i)
c (x̂

(i)
k|k−1 − x̂k|k−1) · (ẑ

(i)
k|k−1 − ẑk)

T

Update Step:

Kk = PxzP
−1
zz

x̂k|k = x̂k|k−1 +K(zk − ẑk)

Pk|k = Pk|k−1 −KkPzzK
T
k

Prediction Step:

Calculate the sigma points and propagate with function f :

x̂
(i)
k|k+1 = f(x̂

(i)
k|k)

Combine the predicted state for each sigma point to compute the mean predicted

state at epoch k + 1:

x̂k+1|k =
∑2n

i=0W
(i)
n x̂ik+1|k

Compute the covariance of the predicted state at epoch k + 1:

Pk+1|k =
∑2n

i=0W
(i)
c (x̂

(i)
k+1|k − x̂k+1|k) · (x̂

(i)
k+1|k − x̂k+1|k)

T +Qk

end for
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3.3.5.1 Dynamics and measurement equations

There are various options in terms of modelling the dynamics of the spacecraft. The

main forces acting on the spacecraft are the gravitational forces from both Didymos

and Dimorphos, the solar radiation pressure (SRP), and the third body gravitation of

the Sun. To reduce the computational complexity, the main forces considered in this

work are the gravitational attraction of the two bodies of the binary system, as shown

in Eq. 3.7, where the subscripts D and d refer to Didymos and Dimorphos respectively.

At the distance of the DCP, it was found that for accurate modelling the point mass

model is sufficient [38]. The maneuvers to change the arcs of the DCP are not added

into the dynamics, as the measurements are expected to capture these as well.

f = −µDrD
r3D

− µdrd
r3d

(3.7)

The equations of motion of the spacecraft in the TB reference frame is given as

follows.

r̈H =
−µDrH

r3H
+ µd

(
−rHd

r3Hd

− rd
r3d

)
(3.8)

where rH , rHd and rd denote respectively the position vector of the spacecraft with

respect to Didymos, the position vector of the spacecraft with respect to Dimorphos,

and the position vector of Dimorphos with respect to Didymos, while µD and µd are

the standard gravitational parameters of Didymos and Dimorphos.

The measurement equation correlated with the centroids’ estimations is given by

the pinhole camera model, which relates the three coordinates of the position xCOM of

the COM in the TB with its two projected coordinates zCOM on the image plane, as

shown in Eq. 3.9 [106].

zCOM = K[A|t]xCOM (3.9)

where K is the calibration matrix that depends on the intrinsic properties of the AFC

and A and t are respectively the rotation matrix and the translation vector from TB

to the camera reference frame. The rotation matrix A at each point in time is assumed
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to be given by the on-board attitude determination system.

The range measurement equation is the norm of the spacecraft position vector given

in Eq. 3.10.

zρ =
√
x2 + y2 + z2 (3.10)

Eq. 3.9 and Eq. 3.10 show that both measurements involve the position estimation,

which means that the velocity estimation is provided just by the dynamic equation given

by Eq. 3.7. It can also be seen that in the camera reference frame Eq. 3.9 affects the X

and Y coordinates of the position estimation while Eq. 3.10 affects the Z coordinate.

3.4 Results

In this section, the results of the visual based navigation algorithm for the relative state

estimation of Hera with respect to Didymos during the DCP trajectory are presented.

The performances of the IP on estimating the position of COMDid and COMDim are

presented with the absolute error with respect to the GT value, using the metric de-

fined in Eq. 3.11. This metric is applied to both i− and j− directions of the PANGU

viewer. The analysis is conducted only for the absolute error, as the presence of poten-

tial systematic error and biases towards positive or negative values of the centroiding

estimation error has already been analyzed in [80].

ϵCOM = |COMGT − COMest| (3.11)

These results are compared with the ones shown in Table 3.5, presented in [80] and

obtained applying the same CNN-based IP algorithm on 6052 images generated with

PANGU during the ECP trajectory and showing the shape models of Didymos and

Dimorphos prior to DART’s close encounter. The results shown in Table 3.5 comply

with pointing accuracy requirements of the mission [58].

Fig. 3.13 shows two sample images of Dataset 2 processed by the HRNet for the 26

keypoints regression.

The accuracy on estimating the spacecraft’s range from the primary is assessed
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Table 3.5: Centroiding results on old shape models of Didymos and Dimorphos [80]

Image axis ϵCOM Didymos [px] ϵCOM Dimorphos [px]

i-direction 5.35 11.05

j-direction 4.41 7.17

Figure 3.13: Two sample images of Dataset 2 with the estimated keypoints

through the APE with respect to the GT value. The Hera mission requires that the

MAPE on the range estimation is lower than 10% along the trajectory [40]. For the

ECP, the MAPE obtained by the IP algorithm developed in this work is 2.1385%, thus

satisfying the mission requirements. Finally, the results of the navigation filter on the

estimated state of the DCP are presented.

The trained model is run with Matlab on the NVIDIA GeForce RTX 2070 with

Max Q-design GPU of the local machine. The average computational time required for

processing a single image from the IP block is 2.4828 s with a standard deviation of

0.21 s. On an on-board spacecraft-like CPU processor such as the Zynq 7000 System-

on-a-Chip, the average computational time is 165 s with a standard deviation of 0.15

s. On a CPU processor with higher performances such as the LEON3 on-board the

Hera spacecraft, half the computational time to process a single image is expected.
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Figure 3.14: ϵCOM for Didymos during DCP

3.4.1 Centroiding Didymos

Fig. 3.14 illustrates the results of the centroiding of Didymos for the DCP testing

dataset of 450 images. It is possible to see that the absolute error fluctuates around

11.24 px in the i−direction and around 5.95 px in the j−direction, with a standard

deviation of σi = 11.63 px and σj = 6.01 px. The error is greater in comparison to

the old results shown in Table 3.5. This is due to the fact that, during the DCP, the

distance from Didymos is reduced, resulting in a larger projection of Didymos on the

images. This is also shown by looking at Fig. 3.14 and Fig. 3.5: the two peaks of

the error on the i−direction and on the j− direction of ϵCOM correspond to two local

minima of the range.

3.4.2 Flag Dimorphos

The performance of the IP block on the detection of Dimorphos in the images is assessed

with the confusion matrix shown in Table 3.6. It is defined as positive class if Dimorphos

is visible in the image and as negative class viceversa.

where TP , TN , FP and FN stand respectively for True Positive, True Negative,

False Positive and False Negative. The confusion matrix allows to calculate the metrics

to evaluate the performance of Dimorphos’ recognition in the images:
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Table 3.6: Confusion matrix detection Dimorphos

Actual Positive = 276 Actual Negative = 174

Predicted positive = 247 TP = 246 FP = 1
Predicted negative = 203 FN = 29 TN = 174

❖ Accuracy (A): Overall accuracy of the algorithm;

❖ Precision (P ): Out of all the predicted positive, what percentage is truly positive;

❖ Recall (R): Out of the all actual positive, what percentage is truly positive.

The results obtained are shown in Eq. 3.12, Eq. 3.13 and Eq. 3.14.

A =
TP + TN

TP + FP + TN + FN
= 93.3% (3.12)

P =
TP

TP + FP
= 99.6% (3.13)

R =
TP

TP + FN
= 89.4% (3.14)

The IP block is capable to identify the presence of Dimorphos with high accuracy

and precision but with a medium-high recall. By lowering the cut-off value of the peak

intensity of the heatmap generated by the HRNet in the regression of the COM of

Dimorphos it is possible to minimize the FN and improve the recall. Neverthelesss,

this might increase the FP that is important to minimize in order to limit the number

of false measurements input to the navigation filter.

3.4.3 Centroiding Dimorphos

Fig. 3.15 illustrates the performance of the IP in estimating the position of the centroid

of Dimorphos for the DCP testing subset of 247 images where Dimorphos is considered

as visible by the IP. It is possible to see that the absolute error fluctuates around 17.04

px in the i−direction and around 7.8 px in the j−direction, with a standard deviation

of σi = 31.64 px and σj = 7.42 px. The peak of the absolute error is obtained because

it represents the sole FP detected by the algorithm leading to a higher average error
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Figure 3.15: ϵCOM for Dimorphos during DCP

compared to the old results shown in Table 3.5.

3.4.4 Range

Figure 3.16: Estimated range During DCP

Fig. 3.16 shows the estimated range attained by the IP algorithm for the DCP

testing dataset. The estimation is following its GT value illustrated in Fig. 3.5, with

an APE that oscillates around a mean value of 6.23%. The error is higher compared to
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Figure 3.17: Estimated range percent error distribution during DCP

the one obtained with the ECP because of the lower range of the DCP trajectory and

because of the less-spherical shape of Didymos used in this work. The APE is inversely

proportional to the range, due to the fact that the projected image of Didymos is bigger

for lower ranges. As a result, the ellipsoidal shape takes on a more prominent role, and

the accuracy of approximating it as a sphere diminishes. In particular it can be seen

that the peak of the APE is obtained for the same image where the ϵCOM reached its

peak (Fig. 3.14), which means that the calculated relative average distance in pixel

(nR) is inaccurate, leading to an imprecise calculation of the estimated range (Eq. 3.9).

Nevertheless, the accuracy on the range estimation complies with the Hera mission

requirements (APE < 10%) [40].

Fig. 3.17 shows the distribution of the percent error of the estimated range obtained

by the IP algorithm. The mean value is µ = −6.14% and the standard deviation is

σ = 3.85% which means that 68.27% of the percent error value is located between

−10% and −2.29%. Ultimately, the range estimations are accurate and can be used for

navigation purposes.
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Figure 3.18: Estimated trajectory vs Real trajectory

3.4.5 Estimated State

An error of 10 km and 0.1 m/s is introduced into each coordinate of the initial estimate

of the position and velocity of the spacecraft. These errors are chosen because they are

relatively high compared to the ground truth state. This allows to analyze the capacity

of the measurements in correcting the estimated trajectory even in the worst navigation

scenario. The complete settings of the UKF parameters are given in Table 3.7. The

estimated trajectory resulting from the navigation filter is shown in Fig. 3.18, and the

errors in the estimated position are shown in Fig. 3.19 in the TB reference frame and in

Fig. 3.20 in the camera reference frame. Since the focus of this study is to estimate the

position with centroid and range measurements, and there is no velocity measurement

available, the velocity estimate is not shown since it is not affected.

Fig. 3.19 shows that initial error of 10 km in the estimated position quickly decreases

after incorporating the first measurement for all the three coordinates. It can be seen

that the unmodelled maneuvers connecting each arc to the other does not affect the

position error, which stays lower than 5 km for the whole trajectory. The appearances

of local peaks are due to the fact that the attitude used in Eq. 3.9 presents some

singularities given the particular relative geometry of the spacecraft/Sun/Didymos.

This is shown more clearly in Fig. 3.20, where the peaks are mainly present only for
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the X and Y coordinates of the position estimation in the camera frame, which are the

ones affected by the attitude. Therefore, a different relative geometry of the spacecraft

with respect to the target would have a large impact on the general accuracy of the

navigation system. Nevertheless, the developed navigation filter trained for the ECP

is still able to perform well in a new environment and to generalize its solution.

Table 3.7: Unscented Kalman Filter variables

Variable Symbol Value

Initial True State xi (−1.58e4 [m], −2.05e04 [m], 1.5e04 [m], 0.0032
[m/s], 0.0138 [m/s], −0.1023 [m/s])

Initial error in
position

errp (10, 10, 10) [km]

Initial error in
velocity

errv (0.1, 0.1, 0.1) [m/s]

Initial covariance
matrix of the
state

P (10002 [m], 10002 [m2], 10002 [m2], 0.12 [m2/s2], 0.12

[m2/s2], 0.12 [m2/s]2)

Covariance
matrix of the
process

Q (10002 [m2], 10002 [m2], 10002 [m2], 0.012 [m2/s2],
0.012 [m2/s2], 0.012 [m2/s2])

Covariance
matrix of the
measurements

R Given by the IP block

3.5 Conclusion

In this work, an autonomous visual based navigation technique with a Convolutional

Neural Network (CNN)-based Image Processing (IP) algorithm is developed for the De-

tailed Characterization Phase (DCP) proximity operation of the Hera mission around

the target binary asteroid system Didymos. The selected CNN architecture for this

work is the High Resolution Network (HRNet). The algorithm is trained with syn-

thetic images generated with Planet and Asteroid Natural scene Generation Utility

(PANGU) with the previous phase of the mission i.e. the Early Characterization Phase

(ECP). The shape models of Didymos and Dimorphos are updated with data collected
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Figure 3.19: Error Estimated position for Dataset 2 in the TB reference frame

Figure 3.20: Error Estimated position for Dataset 2 in the camera reference frame

by the Double Asteroid Redirection Test (DART) mission. The algorithm estimates

the position of the centroid of Didymos and Dimorphos (if available), the range from

Didymos and the associated covariances. The covariance associated with the range esti-

mation is selected using the results obtained with the training process. The covariance

associated with the centroids’ estimation is calculated using the heatmaps generated

by the HRNet. The measurements are then combined with the dynamical environment
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using a Unscented Kalman Filter (UKF) for the relative position estimation of the

spacecraft.

The results shows that the IP algorithm solves the centroiding of Didymos and

Dimorphos with high accuracy independently from the ellipsoidal shape. In particular

the algorithm is able to identify whether Dimorphos is visible or not with high accuracy,

precision and recall as shown from the confusion matrix represented in Table 3.6, which

is a novelty of this work. The second main novelty is that the position of the centroid

of Dimorphos is used by the UKF for the estimation of the state when available. The

methodology to estimate the range is robust to the ellipsoidal shape of Didymos, with

an error higher than the one obtained in [80] where the shape model of Didymos was

more spherical. Nevertheless, the Absolute Percent Error (APE) is lower than 10%,

meeting the Hera mission requirements. The UKF is able to estimate the state of the

spacecraft accurately. The source of the largest error are from the centroid estimation,

which relies on the attitude of the camera reference frame even when it is singular.

The developed pipeline in this work enhances the robustness and autonomy of the

navigation strategy for the Hera mission. Specifically, this work shows that it is possible

to navigate around a binary asteroid system using only optical measurements. If higher

accuracy for the state estimation is required, thermal or Light Detecting And Ranging

(LIDAR) measurements can be used. It is important to point out that if the actual

shape of Didymos and Dimorphos is not the same one used in this work, an offline

fine-tuning of the HRNet with a subset of images taken during the ECP is necessary

to estimate the position of the centroids and the range from Didymos.
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Chapter 4
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data-driven Image Processing
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system

The stars don’t look bigger, but
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Paper content

This chapter analyzes the algorithm developed in Chapter 2 and a architecturally less

complicated one, showing how two artificial intelligence-based image-processing meth-

ods perform under realistic conditions for Hera’s proximity operations. It reveals that

architectural complexity enhances robustness, while careful fine-tuning boosts mission-

specific accuracy, outlining key trade-offs between adaptability, precision, and general-

ization. Following the map and structure shown in Fig. 1.8 in Section 1.3.3, this chapter

addresses RQ 2a and achieves the objective of bridging gaps between the training and

target domains stated in RO 2. With this chapter, the reader will understand the level

of robustness of data-driven image processing algorithms can achieve under practically

relevant contingency scenarios, the performance trade-offs between architectural com-

plexity, accuracy, and adaptability and how fine-tuning shapes algorithm resilience in

both specific and generalized mission contexts.
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Abstract

Space proximity operations around asteroids demand precise relative navigation and

high dynamic response achieved with the on-board implementation of autonomous vi-

sual based navigation systems, which comprise of image processing algorithms that

extract information from images taken by on-board cameras. This work presents a

series of functional tests of two data-driven image processing algorithms based on two

different convolutional neural networks architectures and designed for the application

to the European Space Agency’s Hera mission with the target of binary asteroid system

(65803) Didymos. The two data-driven methods estimate the position of the centroid

of Didymos and its range from the spacecraft. Through different image datasets and

comparative analyses, this work evaluates the two algorithms’ performance under con-

ditions of adverse illumination conditions, different shape of the target asteroid and

different noise levels of the images, addressing questions on performance deviations,

architectural discrepancies, and fine-tuning requirements upon encountering real-world

scenarios. The analyses indicate that algorithms with more sophisticated and complex

architectures exhibit greater robustness across various contingencies, despite being less

accurate in their estimations. Furthermore, the results show that fine-tuning datasets

improve the performances of the algorithms in the specific mission scenario they are

generated, while reducing the performances in other circumstances.

4.1 Introduction

Space rendezvous operations require high levels of accuracy in terms of relative naviga-

tion. When the target does not actively assist in the rendezvous process, with a highly

uncertain dynamical environment and with a large distance from the Earth, spacecraft

are equipped with an Autonomous Visual Based Navigation (AVBN) system, which

provides a precise visualization of the surrounding environment and a navigation sys-

tem with a high dynamic response to the unknown settings. As such, the design,

implementation and testing of an AVBN system is a crucial step in the development of

a space rendezvous mission. The AVBN system is integrated with the Guidance, Navi-
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gation and Control (GNC) algorithm implemented on the On-Board Computer (OBC)

of the spacecraft. The end goal is to have the spacecraft able to estimate autonomously

its relative position and/or attitude with respect to the target, and perform maneuvers

(ground-based or calculated on board) to operate safely around the target [124–126].

An AVBN system of a space rendezvous mission usually consists of the following three

main components [64,119]:

❖ An optical sensor that may represent the payload of the spacecraft and that

acquires images of the target body. The same sensor can be used both for scientific

and navigation purposes;

❖ An Image Processing (IP) algorithm that analyses the acquired image and mea-

sures pre-defined quantities that gives information on the mission scenario. These

may include the range from the target, the relative orientation of the spacecraft

with respect to the stellar background, the position of relevant features on the

target’s surface, etc.;

❖ A navigation filter that combines the outputs of the IP algorithm with the dy-

namical environment and provides the best estimate of the relative state of the

spacecraft with respect to the target.

In this work we focus on the IP algorithm of an AVBN system. The Design, Develop-

ment, Validation and Verification (DDVV) strategy for the IP algorithm is incremental

and it is based on a chain of different tests that aim to analyze the robustness of the

algorithm against potential contingencies [58, 127]. The main tests that are part of a

standard DDVV strategy are:

1. Functional Tests (FT): the IP algorithm is tested with synthetic images gen-

erated with rendering engines that represent the mission scenario; these images

include information on the target, illumination conditions considering the Sun-

spacecraft-target relative geometry, relative pose of the spacecraft with respect

to the target, and other additional parameters (background noise, distortions

etc...). The aim of these tests is to prove that the IP algorithm can provide the
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required measurements with a level of accuracy high enough for the navigation

filter to estimate the spacecraft’s state. Additional objectives of these tests are

the robustness over external disturbances and noise/distortions of the image. For

this purpose, rendering software such as the Planet and Asteroid Natural Scene

Generation Utility (PANGU), SurRender, and Blender-based software such as

CORTO and SISPO can be used [128–132].

2. Model-In-The-Loop (MIL) tests: the IP algorithm is integrated to the Func-

tional Engineering Simulator (FES) of the GNC prototype of the spacecraft. The

FES is a SW environment that includes reference models of the selected GNC

solutions and algorithms defined specifically for the mission, and it allows us to

test the validity of the designed GNC at a SW level. The aim of the MIL is to

test the interfaces of the IP algorithm with the rest of the GNC models, and more

in general that the GNC algorithm is robust to the measurements provided by

the IP.

3. Software-In-The-Loop (SIL) tests: the GNC algorithm with the embedded

IP algorithm is exported to the final programming language that will be used on

the OBC of the spacecraft. The aim of the SIL tests is to verify the correctness of

the SW implementation with respect to the FES and to test the interfaces with

all the other on-board SW.

4. Processor-In-The-Loop (PIL) tests: the validated SW from the previous

step is implemented on the qualified processor of the spacecraft. These tests are

aimed to profile the different algorithms of the SW and to check the performances

in terms of computational time and on-board memory requirements. This test

allows us to tackle the issue of the HW implementation.

5. Hardware-In-The-Loop (HIL) tests: in these tests a representative GNC

sensor/actuator is included in the loop, for an AVBN usually being the Functional

Model (FUMO) of the camera designed for the mission. The aim of the HIL is

to test the robustness of the embedded IP algorithm to the noise, errors and any

other electro-optical effect introduced by the camera. This test is usually executed
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using optical testbenches projecting the scenery on high-resolution screens or in

a robotic facility using 3D-printed mock-up of the target body [133–141].

This work presents a series of FTs of two data-driven-based IP algorithms developed

by the authors and presented in [81, 142]. The aim of this work is to validate the

functionality and test the robustness of the developed algorithms to multiple mission

scenarios and contingencies that are typical of a space rendezvous mission.

In particular, the case study of this work is the European Space Agency (ESA)’s

Hera mission during the proximity operations around the target binary asteroid system

(65803) Didymos, which consists in a primary body, Didymos, and a secondary body,

its moon Dimorphos [36]. The mission is a planetary defense and asteroid exploration

mission, key component of a broader international effort to develop asteroid deflection

techniques. Hera’s primary objective is to analyze the aftermath of NASA’s DART

(Double Asteroid Redirection Test) impact on Dimorphos, which successfully altered

the moonlet’s orbit in September 2022. By doing so, Hera will provide critical data

on the effectiveness of the kinetic impactor technique as a method of planetary de-

fense. The mission will also gather extensive scientific data on the Didymos system’s

composition, structure, and dynamics, contributing to our understanding of near-Earth

asteroids. Hera was launched in October 2024 and it will arrive at the Didymos sys-

tem in late 2026. It is equipped with cameras, LIDAR (Light Detection and Ranging)

for topographic mapping, and a thermal infrared imager. Additionally, Hera carries

two small cubesats, Milani and Juventas, which will perform specialized tasks, such

as subsurface radar studies and measuring local magnetic fields. Hera also aims to

demonstrate advanced autonomous navigation technologies, which are essential for fu-

ture deep-space missions [36]. During the first phases of the proximity operations the

navigation is an AVBN system that relies on an IP algorithm that estimates the po-

sition of the Center of Mass (COM) of the primary body from the images captured

by the on-board camera. The latter’s boresight is oriented towards the primary body,

and the AVBN uses the IP algorithm’s measurement to maintain the orientation of

the spacecraft in this configuration. Periodically, the spacecraft is ground-controlled to

re-orient itself towards the Earth and transmit telemetry and payload data. This re-
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quires aligning the spacecraft’s high-gain antenna toward Earth during communication

windows. In order to estimate the relative position of the spacecraft with respect to

the target, the COM measurements are combined with range measurements from the

primary retrieved by the on-board LIDAR system [58,114].

The application of data-driven methods to the IP algorithm in asteroid rendezvous

missions is driven by the possibility to overcome challenges represented by adverse il-

lumination conditions, irregular shape of the target, background noise or the presence

of other bodies such as stars or moons that are usually affecting the performances of

standard IP algorithms. For instance, edge detection algorithms may falsely identify

cosmic rays and sensor noise captured in the image as edges. Feature matching algo-

rithms may fail if the lightning conditions and asteroid viewing angles are different from

the ones used for on-ground validation [94,143]. Recent trends in data-driven based IP

algorithms are exploring the use of Artificial Intelligence (AI), particularly deep learn-

ing, to address these challenges and bypass traditional techniques. Their utilization in

space IP and navigation is becoming more and more relevant given their capability of

learning complex features from the provided data [69, 75, 81, 82, 85, 144–147]. The two

data-driven methods analyzed in this work are based on Convolutional Neural Networks

(CNNs) with different architectures, number of parameters and with a different set of

outputs.

Nevertheless, AI-based methods are not yet in general validated for critical functions

of space missions. This is mainly due to the lack of complete mathematical methods to

cope with the ”reality gap” that separates simulated data with real data. Thus, it re-

mains uncertain how unforeseen changes during the data acquisition process will impact

the outcome of AI-based methods. For instance, input data could be blurred, suffer

from under/overexposure or contain some noise sources. Therefore, it is important to

assess the robustness of AI-based methods against input data alterations [148]. Most of

the robustness analysis of AI techniques have been applied considering as inputs adver-

sarial examples [148,149] and quality distorted data [150,151]. With the FTs presented

in this work, we analyze the performance of the two data-driven methods applied to the

IP algorithm of the Hera mission when estimating the position of the COM of Didymos
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and the range from it, using images representing conditions never encountered dur-

ing training. In particular, the FTs aim to provide answers to the following research

questions: 1) What degree of deviations from design conditions can CNN approaches

endure in terms of performance drop? 2) Are there fundamental discrepancies in terms

of performance between different architectures? 3) Once Hera arrives at the Didymos

system, how many images would be required to fine-tune the data-driven IP algorithms

to ensure optimal performances? The first question is assessed by developing a series

of challenging datasets that assess network performance with unseen conditions (with

respect to training) such as high Sun phase angles (Sun-asteroid-spacecraft), different

noise levels in the images, and different shape models of the target asteroid system.

The second is addressed by performing the analysis with two different convolutional

approaches. The third is assessed by performing a series of fine-tuning episodes with

incremental dataset sizes. This emulates a possible operational scenario applicable to

any data-driven method applied to a space mission, which would require a small subset

of images from the real system to be fine-tuned.

While the Hera mission GNC algorithm implemented on the OBC of the space-

craft is going to use the Maximum Correlation with a Lambertian Sphere (MCLS) IP

algorithm [127, 152], the FTs carried out in this work represent a fundamental vali-

dation step toward the applicability of data-driven methods in the AVBN of asteroid

rendezvous missions.

This paper is structured as follows. Section 4.2 describes in detail the data-driven

methods, the case study and the FTs carried in this work. Section 4.3 shows the

obtained results and discusses the applicability of the developed methods to the Hera

mission. Finally, Section 4.4 concludes this work.

4.2 Methodology

This section describes the methodology applied in this work to validate through FTs

the data-driven methods developed by the authors. Firstly, the case study is presented,

in Section 4.2.1. Then the data-driven methods are described in Section 4.2.2. The

first data-driven method relies on a CNN-based architecture called High Resolution
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Network (HRNet), developed in [142] and it is briefly outlined in Section 4.2.2.1. The

second data-driven method relies on an architecture applied to the AVBN system of

Milani, one of the CubeSats of the Hera mission [38,153]. It is developed in [81] and it

is introduced in Section 4.2.2.2 . We refer to the first data-driven method as M1 and

to the second as M2. Finally, the FTs with their objectives and the datasets used are

detailed in Section 4.2.4. To facilitate the discussion, we refer to Didymos as B1 and to

Dimorphos as B2. The geometrical center of B1 is considered its COM for simplicity.

4.2.1 Case Study

Figure 4.1: ECP and DCP trajectories

The proximity operations of the Hera mission around the target binary asteroid

system Didymos represent the case study of this work. Hera serves as Europe’s con-

tribution to the Asteroid Impact and Deflection Assessment (AIDA) international col-

laboration with NASA. AIDA aims to demonstrate asteroid deflection using NASA’s

kinetic impactor Double Asteroid Redirection Test (DART) spacecraft, which achieved

successfully its objective on September 26, 2022, by colliding with. Hera will rendezvous

with the target asteroid in early 2027 to study its physical and dynamic properties, in-

cluding the impact crater and the momentum transfer efficiency [34, 98, 153]. The

current knowledge on the shapes of B1 and B2 is provided by DART’s latest obser-
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vations, which indicates that they are two oblate ellipsoids with the extent along the

principal axes and the respective uncertainties given in Table 4.1 [28, 29]. The table

shows the data retrieved by DART prior to the impact, as the shape resulted from the

collision will be only resolved once the Hera spacecraft reaches the asteroid [154]. The

Table 4.1: Shapes of B1 and B2 prior to DART’s impact [28,29]

Parameter B1 B2

Extent along principal
axis x [m]

849± 5.6 177± 1.2

Extent along principal
axis y [m]

851± 5.6 174± 1.2

Extent along principal
axis z [m]

620± 5.6 116± 1.2

properties of the Hera on-board Asteroid Framing Camera (AFC) shown in Table 4.2

are used for the generation of the images [103,104].

Table 4.2: AFC properties [103,104]

Horizontal
FOV

Focal length: f Aperture
diameter

Image size Pixel size: ν

5.5◦ 10.6 cm 2.5 cm 1024× 1024 px 10 µm

The images of the FTs are generated with the aim to prove the robustness of the al-

gorithm in different scenarios, including two specific phases of the proximity operations,

the Early Characterization Phase (ECP) and the subsequent Detailed Characterization

Phase (DCP), shown in Fig. 4.1 (courtesy of ESA). The two trajectories are represented

in the Target Body reference frame (TB), which uses B1’s COM as origin, the x-axis

parallel to the one of the Earth-centered inertial coordinate frame and the xy-plane

coplanar to the orbit of B2. As aforementioned, the navigation in these first two prox-

imity operations require the AFC always pointing towards the centroid of the primary

body. During the ECP, the navigation and the attitude profile is ground based and

images of the target are captured and downlinked to Earth in order to tune the on-

board IP algorithm to optimize its performances. The range of the spacecraft from
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B1 varies from ∼ 20 km to ∼ 30 km and the Sun phase angle ranges from ∼ 45◦ to

∼ 80◦. During the DCP, the navigation is fully autonomous and it relies on the tuned

IP algorithm. The range of the spacecraft from B1 varies from ∼ 9 km to ∼ 20 km and

the Sun phase angle ranges from ∼ 0◦ to ∼ 80◦ [40,115]. The orbit of Dimorphos prior

to DART’s impact is considered as the orbital changes resulting from the collision are

not affecting the FTs carried out in this work.

4.2.2 Data-driven methods

4.2.2.1 M1

Pre 
Processing HRNet Post 

Processing Measurements

Flag 
Availability

Covariance 
computation

Input Normalized Image Heatmap

1024 x 1024 256 x 256 64 x 64

Figure 4.2: M1 data-driven method

Figure 4.3: Heatmap associated to the estimation of the COM of B1

M1’s pipeline is shown in Fig. 4.2 and it consists in the following blocks:

1. Pre-Processing : The input images are scaled down (256× 256 px) and the mag-

nitude of each pixel is normalized for the convergence of the HRNet;

2. HRNet : The HRNet block applies the HRNet to the input image in order to
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regress the position of the COM of B1, the COM of B2, and 24 points on the

illuminated border of B1 [107]. The output of the HRNet block is a set of 26

64 × 64 px heatmaps, each one associated with the regressed point [122]. The

n-th heatmap manifests as a cluster of white pixels encircling the n-th predicted

point, indicating the degree of accuracy in determining its position. The denser

and more concentrated the heatmap, the more precise the estimation of the point’s

location. Refer to Fig. 4.3 for an illustration of a heatmap example, associated

to the estimated position of the COM of B1.

3. Post-Processing : Each heatmap is denoised and analyzed to calculate the exact

position of the desired point. A statistical population of pixels of the heatmap

around the desired point is extracted. The 24 points on the illuminated border

are used together with the COM of B1 to derive its range from the spacecraft

geometrically, by approximating the shape of B1 to a sphere of diameter D = 780

m.

4. Flag Availability : If the pixels of a heatmap are less intense than a pre-defined

threshold, the associated point is not given as an output and the corresponding

measurement is not available.

5. Covariance Computation: If the pixels of the heatmap are more intense than the

pre-defined threshold, the associated point is given as an output, the measurement

is available and its covariance is derived by the magnitude and shape of the

heatmap.

Further details about this algorithm can be found in [80,142].

4.2.2.2 M2

M2’s pipeline is shown in Fig. 4.4 while the CNN architecture is illustrated in Table 4.3

using TensorFlow 2.10 notation. The architecture’s hyper-parameters are a result of a

thorough search based on the use of extreme-learning machine methods and hierarchical

grid search, an approach that can be found in [155].
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Table 4.3: M2 Architecture, made of 3563907 parameters, all of which are trainable

Layer Type Output Shape Parameters Connected to

I InputLayer B, 128, 128, 1 0 -

C11 Conv2D B, 128, 128, 16 160 I
C12 Conv2D B, 128, 128, 16 160 I
C13 Conv2D B, 128, 128, 16 160 I
CC1 Concatenate B, 128, 128, 48 0 C11, C12, C13

A1 Activation B, 128, 128, 48 0 CC1
P1 MaxPooling2D B, 64, 64, 48 0 A1

C21 Conv2D B, 64, 64, 32 13856 P1
C22 Conv2D B, 64, 64, 32 13856 P1
C23 Conv2D B, 64, 64, 32 13856 P1
CC2 Concatenate B, 64, 64, 96 0 C21, C22, C23

A2 Activation B, 64, 64, 96 0 CC2
P2 MaxPooling2D B, 32, 32, 96 0 A2

C31 Conv2D B, 32, 32, 64 55360 P2
C32 Conv2D B, 32, 32, 64 55360 P2
C33 Conv2D B, 32, 32, 64 55360 P2
CC3 Concatenate B, 32, 32, 192 0 C31, C32, C33

A3 Activation B, 32, 32, 192 0 CC3
P3 MaxPooling2D B, 16, 16, 192 0 A3

C41 Conv2D B, 16, 16, 128 221312 P3
C42 Conv2D B, 16, 16, 128 221312 P3
C43 Conv2D B, 16, 16, 128 221312 P3
CC4 Concatenate B, 16, 16, 384 0 C41, C42, C43

A4 Activation B, 16, 16, 384 0 CC4
P4 MaxPooling2D B, 8, 8, 384 0 A4

C51 Conv2D B, 8, 8, 256 884992 P4
C52 Conv2D B, 8, 8, 256 884992 P4
C53 Conv2D B, 8, 8, 256 884992 P4
CC5 Concatenate B, 8, 8, 768 0 C51, C52, C53

A5 Activation B, 8, 8, 768 0 CC5
P5 MaxPooling2D B, 4, 4, 768 0 A5

FC5 Flatten B, 12288 0 P5
DO Dropout B, 12288 0 FC5
D Dense B, 3 49156 DO
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Figure 4.4: M2 data-driven method

The convolutional portion of the architecture is divided into 5 depth levels that

make extensive use of dilated convolutions of 1, 2, and 3 rates (represented at each

i− th depth level by the Ci1, Ci2, and Ci3 layers), concatenation, activation, and max-

pooling layers. The head of the architecture is represented by a single dense output

layer connected directly to the fully connected FC5 layer. Dropout is applied on this

layer with a probability of 15%.

Differently from M1, M2 is an end-to-end architecture, since it generates an output

vector consisting of B1 COM components, range from B1, and Sun phase angle. More-

over, M2 uses as input a cropped and/or resized version of the original 1024 × 1024

px image. Each image acquired by the camera, thus needs to be pre-processed outside

the network before being considered as an input. During training, labels need to be

modified accordingly to reflect the reduced input size.

While M1 uses resized 256 × 256 px images from the original 1024 × 1024 px, M2

needs a more elaborate image-label preprocessing to reduce each input to 128× 128 px

images. This is performed with an adaptable cropping algorithm that first produces

a region of interest on the image which is one of four possible sizes (128 × 128 px,

256× 256 px, 512× 512 px, and 1024× 1024 px depending on how the body appears in

the image at a specific range) and then generates a resized 128 × 128 px image. This

process also changes the values of the COM of B1 and range, which need to be adjusted

both during training and testing. Further details about this algorithm can be found

in [81,155].

4.2.3 Overview of data-driven methods

Table 4.4 reports the main parameters and characteristics of the IP algorithms described

in this section. It can be seen that M1 has roughly 8 times more parameters than M2,
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due to its heavier and more complex architecture. This also affects the higher Average

Computational Time (ACT) required by M1 to process a single image on a Zynq-7000

System-on-a-Chip (SoC) processor considered in this work as representative of a typical

OBC. It can also be noted that M2 is an end-to-end data-driven method and derives

the range from B1 directly with the CNN architecture, while M1 takes advantage of

B1’s shape and derives it geometrically.

Table 4.4: Overview of architecture of M1 and M2

Parameter M1 M2

Number of model
parameters

28.5 M 3.6 M

Weight 109 MB 13.6 MB

ACT on a Zynq-
7000 SoC

165 s 9.94 s

Outputs COM B1, COM B2, Range
from B1, Associated covari-
ances, Flag if measurement is
available or not

COM B1, Range from B1, Sun
phase angle

Range estimation Derived geometrically Estimated from network

4.2.4 FTs analysis

Figure 4.5: Sample image generated with CORTO (left) and PANGU (right)
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The FTs run in this work are designed to test the robustness and performances

of the developed IP algorithm against multiple adverse conditions that could occur

during mission operations. Specifically, the objective of the FTs is to analyze the

capability of the trained IP algorithm to generalize their solution when facing conditions

never seen during training. In particular, the conditions analyzed in this work are

of different illumination, different shape of the target body, presence/absence of B2,

different Signal-to-Noise ratio, and, more in general, different images than the ones

generated synthetically and used on ground. Furthermore, we analyze the applicability

of the algorithm during Hera’s proximity operations. Since the baseline Hera AVBN

system consists of the measurements of the position of the COM of B1 given by the

on-board IP MCLS algorithm and the range from B1 given by the on-board LIDAR

system, only these two outputs of the developed IP algorithms are analyzed with the

FTs. The next section describes in detail the different types of datasets generated in

this work.

4.2.4.1 Training and Testing Datasets

In this work, several datasets are generated to train and test the data-driven methods.

A summary of their main properties is represented in Table 4.5 and Table 4.6, while a

representation of the distribution of the dataset in the space surrounding the Didymos

system is illustrated in Fig. 4.6. Finally, samples of the images constituting the datasets

are represented in Fig. 4.7 and Fig. 4.8. Table 4.7 reports the values of the length of

the principal axes of the different shape models of B1 and B2 used in this work. Shape1

represents the current knowledge of these shape models without uncertainties as shown

in Table 4.1 [28]. The shape models of Shape2 instead, considers as principal axes the

ones retrieved from radar observations, prior to DART’s arrival when B1’s shape was

thought to be more spherical [29]. Shape3 represents an expanded version of Shape1 in

all axes. While the first three shape models are generated with the software Blender,

the last one, Shape4, is made with the software PANGU and it uses the same principal

axes length of Shape1.

The same pipeline is used to generate all the images. However, all butDS6 andDS7
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Figure 4.6: Visualization of the training (left column), and testing (right column)
datasets in TB. The Sun is illuminating the asteroid system from the +Y axis. The
dots and the arcs distributed around B1 represent the points where the images of the
datasets are taken from

are generated in CORTO [131], while PANGU is instead used to generateDS8 andDS9.

CORTO stands for Celestial Object Rendering TOol and it is an open-access 1 tool that

uses Blender to generate high-fidelity, large, annotated datasets of celestial bodies. The

tool represents a versatile and comprehensive solution for generating synthetic images

of celestial bodies, aiding the development and validation of image processing and

navigation algorithms for space missions. Fig. 4.5 shows two sample images generated

with CORTO (left) and PANGU (right), using the same orbital properties of the Hera

mission and with the shape models Shape1 of B1 and B2. Notably, even though the

1https://github.com/MattiaPugliatti/corto, last accessed, 3rd of March, 2024.
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Figure 4.7: First 5 samples, from top to bottom, of DS1a, DS1b, DS2, DS3, DS4,
DS6, DS7, DS8, and DS9

length of the axes of B1 and B2 are the same, since the modelling software are different

the two bodies have different appearances. This can be seen especially with B2: while

in CORTO the shape model of B2 is generated from an ellipsoid, adding roughness

and albedo variations to simulate the surface of an asteroid, in PANGU the shape

model of B2 is a scaled down version of asteroid Itokawa, the target of the Hayabusa

mission [80,81].

The training datasets are represented in Table 4.5 while the testing datasets in

Table 4.6. DS1a and DS1b are used to train M2 and M1 respectively. The trained M1

and M2 are then tested with DS1c, DS2, DS3, DS4 and DS5. The fine-tuning of M1
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Figure 4.8: First sample of DS5 seen by 9 different noise subsets

Table 4.5: Summary of the properties of the training datasets

Acronym Number of
images

Description Shape
model

Image generation
tool

DS1a 30000 Nominal sce-
nario

Shape1 CORTO

DS1b 30000 Nominal sce-
nario, with-
out B2

Shape1 CORTO

DS6 8, 16, 32, 64,
128, 256, 512,
1024

ECP, new
shape

Shape3 CORTO

DS8 8, 16, 32, 64,
128, 256, 512,
1024

ECP, new
shape

Shape4 PANGU

and M2 is carried with DS6 and DS8 and the respective tests are done with DS7 and

DS9 subsequently.

The geometric distributions of the locations where the images are generated are

illustrated in Fig. 4.6. The distribution of DS1a, DS1b, DS1c, DS3, DS4, and DS5

122



Table 4.6: Summary of the properties of the testing datasets

Acronym Number of
images

Description Shape
model

Image generation
tool

DS1c 5000 Nominal sce-
nario

Shape1 CORTO

DS2 5000 High Sun
phase angles

Shape1 CORTO

DS3 5000 Nominal
scenario,
new shape,
without B2

Shape2 CORTO

DS4 5000 Nominal
scenario,
new shape,
with B2

Shape2 CORTO

DS5 500× 9 Nominal sce-
nario, differ-
ent noises

Shape1 CORTO

DS7 450 DCP, new
shape

Shape3 CORTO

DS9 450 DCP, new
shape

Shape4 PANGU

Table 4.7: Axes elongation of the shape models used in this work

Shape
models

B1x
[m]

B1y
[m]

B1z
[m]

B2x
[m]

B2y
[m]

B2z
[m]

Modelling
software

Shape1 849 851 620 177 174 116 Blender

Shape2 821 823 786 202 159 134 Blender

Shape3 861 862 626 178 175 117 Blender

Shape4 849 851 620 177 174 116 PANGU

is characterized by random points between 10 km and 40 km from Didymos, with Sun

phase angles ranging from 0◦ to 120◦, and absolute values of elevation angle with respect

to Didymos’ equator between 0◦ and 30◦. These conditions are referred throughout the

paper as the Nominal scenario, i.e. the scenario used for the training dataset. The

training dataset DS1b differs from DS1a simply by the absence of B2 from the images,
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which is necessary to train M1. DS3 and DS4 are used to assess the IP performance

with a different B1 shape model with principal axes shown in Table 4.7. While DS3

represents only B1 and is used to isolate the error introduced by the different shape of

the target, DS4 represents both B1 and B2, therefore including also the dependence of

the IP algorithms performances on the presence of B2.

DS5 represents a small subset of the first 500 points of DS1 in which the settings of

the artificial noise are varied. For the noise model used, the reader is directed to [131].

In this work, the number of pixels considered in the horizontal motion blur (νmb), a

generic isotropic blur (νb), a gamma correction factor (γ), mean (νµ) and variance (νσ)

of Gaussian noise are sampled with random uniform distributions according to the

extremal values reported in Table 4.8 (note, however, that νµ and νσ are sampled in

logarithmic scale).

Table 4.8: Summary of the noise properties varied in the different subsets of DS5. For
comparison, the first row represents the nominal values used in all other datasets

Subset νmb νb γ νµ νσ Acronym

Nominal
values

[0.10, 2.00] 0.5 [0.9,1.1] [1e-4,1e-1] 1e-4 -

1 [1.00, 2.00] [1.00, 2.00] [0.70, 1.00] [1e-3, 1e-2] [1e-3, 1e-2] BgL

2 [1.00, 2.00] [1.00, 2.00] [0.70, 1.00] [1e-5, 1e-3] [1e-5, 1e-3] Bgl

3 [1.00, 2.00] [1.00, 2.00] [1.00, 1.30] [1e-5, 1e-3] [1e-5, 1e-3] BGl

4 [1.00, 2.00] [1.00, 2.00] [1.00, 1.30] [1e-3, 1e-2] [1e-3, 1e-2] BGL

5 [0.20, 1.00] [0.20, 1.00] [0.70, 1.00] [1e-5, 1e-3] [1e-5, 1e-3] bgl

6 [0.20, 1.00] [0.20, 1.00] [0.70, 1.00] [1e-3, 1e-2] [1e-3, 1e-2] bgL

7 [0.20, 1.00] [0.20, 1.00] [1.00, 1.30] [1e-5, 1e-3] [1e-5, 1e-3] bGl

8 [0.20, 1.00] [0.20, 1.00] [1.00, 1.30] [1e-3, 1e-2] [1e-3, 1e-2] bGL

9 [0.20, 0.21] [0.20, 0.21] [0.99, 1.01] [1e-6, 1e-5] [1e-6, 1e-5] bg0l

The subsets of DS5 from 1 to 4 are referred to as ”high blur” (B) while those from

5 to 9 are considered ”low blur” (b). The subsets 1, 2, 5, and 6 are referred as ”low

gamma” (g), the subsets 3, 4, 7, and 8 are referred as ”high gamma” (G), while the

subset 9 is considered ”nominal gamma”(g0). Similar distinctions are also made for
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”low mean and low variance” (l), such as for subsets 2, 3, 5, 7, and 9, and ”high mean

and high variance” (L), such as for subsets 1, 4, 6, and 8. Lastly, the distribution ofDS2

points differs from all those described above only for one condition: the illumination

conditions are adverse, with the Sun phase angles ranging from 120◦ to 150◦.

Finally, DS6 and DS8 distributions represent points scattered uniformly across the

ECP trajectory of the Hera mission. The same is done for DS7 and DS9 with the

DCP. However, while DS6 and DS8 are rendered with CORTO using shape models

generated with Blender, DS7 and DS9 are using shape models with the same length of

the principal axes as Shape1 but generated with PANGU. Both DS6 and DS8 are used

in eight, separate, fine-tuning episodes in which the number of images used is doubled

each time from 8 to 1024. These datasets mimic real mission scenarios in which a

limited amount of images could be available to fine-tune a data-driven method. The

eight different fine-tuned networks are then tested with DS7 and DS9 respectively, as

they would be deployed in the next phase of the Hera mission, to assess the impact of

the fine-tuning performed during the ECP.

All datasets except for DS9 consider a random relative attitude of the spacecraft

with respect to B1 for each image, showing therefore illumination coming from any

possible direction. In DS9 the Hera spacecraft’s body reference frame is considered,

having the Sun-B1 vector always lying on the horizontal axis of the image plane, thus

showing the target asteroid illuminated from the right side. Furthermore, a limited

pointing error is added for each image in order to shift the position of the COM of B1

from the exact center of the image.

To promote shared test benches and encourage other researchers to propose alter-

native methods, all datasets are available on Zenodo, while the Blender file used to

render the datasets of this work is available as a dedicated scenario within the CORTO

repository 2.

2https://zenodo.org/records/15346833, last accessed, 3rd of March, 2024.
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4.3 Results

In this section, the results of the FTs of the developed data-driven methods are pre-

sented. As mentioned, the performances of the algorithms on the testing datasets are

analyzed only for the estimation of the position of the COM of B1 and the range from

B1. The metrics defined in Eq. 4.1 and Eq. 4.2 are used to evaluate the performances

of each data-driven method for each FTs.

εCoM = CoM e − CoM t (4.1)

ερ = ρe − ρt (4.2)

where CoM and ρ indicate the COM of B1 and the range from B1 respectively, while

the superscripts t and e indicate respectively the ground truth and the estimated value.

εCoM represents the error of the estimated position of the COM in the image plane (in

the original 1024×1024 image size) and is calculated in px while ερ represents the error

of the estimated range and is calculated in km. Since the position of the COM of B1 on

the image is defined by its (u, v) coordinates on the image plane, εCoM is a vector with

coordinates (εuCoM , εvCoM ), and its norm is εnCoM . The (u, v) coordinates are defined in

a reference frame with the origin at the top left corner of the image and the horizontal

and vertical axes referred to as i and j-directions, as shown in Fig. 4.9 [142].

Lastly, ε%ρ is used to represent ερ as relative percentage error with respect to the

true range ρt, as described in Eq. 4.3.

ε%ρ =
ρe − ρt

ρt
· 100% (4.3)

In order to assess the robustness of the data-driven methods against the various noises,

different shape models and adverse illumination conditions, the results of DS2, DS3,

DS5, DS7 and DS9 are compared with the results obtained on the nominal scenario of

the images of DS1c. The results of DS4 are compared to the ones of DS3, to analyze

the robustness of the algorithm to the presence of B2.

As mentioned in Section 4.2.2.1, the availability of the measurements of M1 depends
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Figure 4.9: Coordinate frame of the image plane [142]

on the intensity of the heatmap generated by the HRNet from an input image. This

is not the case for M2, that always converge to a solution. Therefore, it is relevant to

assess the convergence of M1 for each dataset, as shown in Table 4.9, which shows for

each dataset the amount of images not solved by M1. For DS5, the best and worst

subset results are shown. For DS7 and DS9 the best and worst results obtained with

the eight fine-tuned versions of M1 and M2 are shown. It can be seen that the worst

Table 4.9: Images not solved by M1 in absolute and relative terms

Dataset Absolute [−] Rate [%]

DS1c 195 3.90

DS2 751 15.02

DS3 359 7.18

DS4 350 7.00

DS5 7-47 1.40-9.40

DS7 31-151 6.89-33.56

DS9 37-219 8.22-48.67

scenarios are given by the fine-tuning tests DS7 and DS9 for which up to 48.67% of

the images are not solved by M1. In these cases, the heavier architecture of M1 seems

to exhibit a higher inertia to the fine-tuning. In order for M1 to be more confident with
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the provided solution and thus, exhibit intense heatmaps, M1 would require additional

images for the fine-tuning.

4.3.1 From DS1c to DS4

Fig. 4.10, Fig. 4.11, Fig. 4.12 and Fig. 4.13 illustrate the performances of M1 and M2

on the estimation of the position of the COM of B1 and the range from B1 for the

testing datasets DS1c, DS2, DS3 and DS4, respectively. Table 4.10 reports the value

of each mean µ and standard deviation σ of the metric in the curly brackets. It can be

seen from the values of εuCoM and εvCoM that both methodologies introduce a small bias

in estimating the position of the COM of B1. Independently from the shape model,

noise condition, and the direction of the incoming light, M1 underestimates CoMu,

while overestimating CoMv. On the other hand, M2 overestimates only CoMv, but

with higher values compared to M1.

Table 4.10: Performances of M1 and M2 on the estimation the position of the COM of
B1 and the range from B1 for DS1c, DS2, DS3 and DS4

Dataset IP µ(σ){εuCoM}[px] µ(σ){εvCoM}[px] µ(σ){εnCoM}[px] µ(σ){ερ}[km] µ(σ){|ερ|}[km]

DS1c M1 -7.24 (-5.75) 7.82 (8.72) 12.73 (7.79) -2.77 (1.73) 2.77 (1.72)
DS1c M2 1.80 (0.44) 9.69 (9.57) 10.67 (8.66) -0.05 (1.10) 0.79 (0.77)

DS2 M1 -7.12 (-7.55) 20.31 (21.39) 25.99 (17.38) -4.91 (4.29) 4.93 (4.27)
DS2 M2 1.98 (2.05) 38.18 (40.06) 44.07 (33.60) -2.45 (3.38) 2.89 (3.01)

DS3 M1 -7.47 (-6.14) 17.02 (17.07) 20.56 (15.86) 1.22 (1.37) 1.41 (1.18)
DS3 M2 1.97 (0.48) 20.35 (19.30) 21.07 (18.62) 2.82 (1.51) 2.83 (1.50)

DS4 M1 -7.49 (-6.16) 17.18 (17.11) 20.57 (16.08) 1.19 (1.37) 1.39 (1.17)
DS4 M2 2.15 (0.62) 19.80 (18.98) 20.70 (18.14) 2.79 (1.51) 2.80 (1.50)

4.3.1.1 DS1c: Nominal scenario

It can be seen from the top left plot of Fig. 4.10 that the error made by M1 on estimating

the range from B1 is biased towards negative values (µ{ερ} = −2.77 km), while the

error made by M2 is distributed around 0 (µ{ερ} = −0.05 km). Moreover, the error of

the estimates made by M2 is less dispersed than those of M1, with a standard deviation

respectively of σ{ερ} = 1.73 km and σ{ερ} = 1.10 km.
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Figure 4.10: Range (left column) and centroiding (right column) error results of M1
and M2 for DS1c

The worse performance of M1 on ερ is due to the inaccurate approximation of the

shape of B1 to a sphere to derive geometrically the range. This is also visible in the

bottom left plot of Fig. 4.10, where the percent error of ερ is plotted against the ground

truth value of the range, showing that the error made by M1 is higher and spread more

widely. Nevertheless, the bottom left plot also highlights that the range estimate of

both algorithms does not exhibit any relevant trend with respect to the true range.

The top right plot of Fig. 4.10 shows the distribution of εnCoM for M1 and M2. It can

be seen that the performances are very similar, with the mean value of εnCoM obtained

by M1 slightly higher (µ{εnCoM} = 12.73 px for M1, and µ{εnCoM} = 10.67 px for M2),

with a standard deviation of σ{εnCoM} = 7.79 px and σ{εnCoM} = 8.66 px respectively.

This is also visible in the bottom right plot of Fig. 4.10, where the distribution of εCoM

is plotted with its (u, v) coordinates in a neighborhood of 64× 64 px around the ideal
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results of εCoM = (0, 0).

In conclusion, in the nominal scenario where the testing dataset is similar to the

training one, M2 is more accurate and precise than M1 in estimating both range and

COM coordinates.

4.3.1.2 DS2: high Sun phase angles

Figure 4.11: Range (left column) and centroiding (right column) error results of M1
and M2 for DS2

It can be seen from Table 4.10 and from Fig. 4.11 that the adverse illumination

conditions represented by the high Sun phase angles of DS2 affect the performances

of M1 and M2, shown by the higher values of µ{ερ} and µ{εnCoM}. As in DS1c, the

error distribution on the range estimation is biased towards negative values for M1

(µ{ερ} = −4.91 km, σ{ερ} = 4.29 km) with respect to M2 (µ{ερ} = −2.45 km,

σ{ερ} = 3.38 km). For the estimation of the position of the COM of B1, M1 performs
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better than M2, with a µ{εnCoM} = 25.99 px for M1 and µ{εnCoM} = 44.07 px for

M2, and with a standard deviation of σ{εnCoM} = 17.38 px and σ{εnCoM} = 33.60 px

respectively. The worse performances of the two methods with respect to the nominal

scenario can be seen from the bottom left and the bottom right plots of Fig. 4.11, which

show that ερ and εnCoM are less precise compared to the nominal scenario.

To conclude, in the scenario in which higher phase angles are considered, both

methods suffer a considerable drop in performance compared to the results in DS1c.

However, M1 seems to suffer a smaller drop compared to M2, indicating a higher degree

of robustness. As it is possible to see from the sample in Fig. 4.7, the illumination

conditions of DS2 generate relatively small illuminated limbs of the target body. From

the results presented in this section, it appears that the visible edge of the body in

such challenging illumination conditions works better with the geometrical derivation

strategy performed with the HRNet in M1 than with the end-to-end approach of M2.

This is particularly visible looking at the performance on the range, which greatly

degrade for M2, while they only mildly degrade for M1 with respect to the ones obtained

with DS1c. However, it is also noted that M1 does not converge for a higher number

of cases (∼4 times higher than in DS1c, see Table 4.9).

4.3.1.3 DS3: Nominal scenario, new shape of B1, without B2

It can be seen from Table 4.10 and from Fig. 4.12 that the different shape of B1 affect

slightly the performances of M1 and M2. Contrarily to the results obtained in DS1c

and DS2, the error distribution on the range estimation is now biased towards positive

values for M1 (µ{ερ} = 1.22 km, σ{ερ} = 1.37 km), with a higher accuracy than M2

(µ{ερ} = 2.82 km, σ{ερ} = 1.51 km). Considering that in this dataset the shape of B1

is more spherical, the geometrical derivation of the range from its shape improves the

performances of M1, while reducing the ones of M2. For the estimation of the position

of the COM of B1, M1 performs slightly better than M2, with a µ{εnCoM} = 20.56 px for

M1 and µ{εnCoM} = 21.07 px for M2 and with a standard deviation of σ{εnCoM} = 15.86

px and σ{εnCoM} = 18.62 px respectively. The better performances of M1 in the range

estimation can be seen from the bottom left and bottom right plots of Fig. 4.12, which
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Figure 4.12: Range (left column) and centroiding (right column) error results of M1
and M2 for DS3

show that ερ and εnCoM have values closer to 0 with respect to M2.

To conclude, the different shape of B1 tested in DS3 seems to have a less drastic

effect than unforeseen illumination conditions tested in DS2 as both M1 and M2 per-

formance are closer to those in DS1c. The different shape models seem to favor both

the accuracy and precision of the range estimate of M1 compared to M2. This is at-

tributed to the more spherical shape of B1 in this dataset, which performs better in the

apparent diameter formulation used by M1 compared to the end-to-end approach used

in M2. Centroiding performance on the other hand are basically very similar between

M1 and M2.
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Figure 4.13: Range (left column) and centroiding (right column) error results of M1
and M2 for DS4

4.3.1.4 DS4: Nominal scenario, new shape of B1, with B2

It can be seen from Table 4.10 and from Fig. 4.13 that the presence of B2 does not

affect the results, as they remain quite similar to the ones obtained for DS3. The

error distribution on the range estimation is biased towards positive values for M1

(µ{ερ} = 1.19 km, σ{ερ} = 1.37 km), with a higher accuracy with respect to M2

(µ{ερ} = 2.79 km, σ{ερ} = 1.51 km). For the estimation of the position of the COM

of B1, M1 performs slightly better than M2, with a µ{εnCoM} = 20.57 px for M1 and

µ{εnCoM} = 20.70 px for M2 and with a standard deviation of σ{εnCoM} = 16.08 px and

σ{εnCoM} = 18.14 px respectively.

To conclude, both M1 and M2 are essentially unaffected by the presence of B2 in the

images, as negligible differences are observed with respect to DS3 of the mean values
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of ερ and εnCoM are negligible. This confirms also the results shown in [80], where the

influence of B2’s presence on M1 is analyzed thoroughly.

4.3.2 DS5: Nominal scenario, different noises

Table 4.11: Performances of M1 and M2 on the estimation the position of the COM of
B1 and the range from B1 for the different conditions of blur, gamma and mean and
variance of the images of DS5

Dataset IP µ(σ){εnCoM}[px] µ(σ){|ερ|}[km]

BgL M1 15.37 (11.38) 3.19 (2.17)
BgL M2 15.52 (9.60) 1.96 (1.85)

Bgl M1 13.98 (9.13) 3.12 (1.91)
Bgl M2 12.59 (8.52) 1.02 (1.08)

BGl M1 13.64 (8.67) 3.08 (2.09)
BGl M2 13.38 (10.26) 1.20 (1.29)

BGL M1 14.11 (9.29) 3.42 (2.43)
BGL M2 16.12 (11.78) 1.27 (1.26)

bgl M1 13.06 (8.69) 2.78 (1.64)
bgl M2 11.34 (7.94) 0.91 (0.96)

bgL M1 14.33 (10.25) 2.76 (1.84)
bgL M2 13.71 (8.90) 1.86 (1.75)

bGl M1 12.76 (8.03) 2.71 (1.84)
bGl M2 11.28 (9.43) 0.87 (0.88)

bGL M1 13.47 (8.54) 3.01 (2.06)
bGL M2 13.87 (10.95) 1.12 (1.10)

bg0l M1 12.19 (6.98) 2.56 (1.59)
bg0l M2 10.86 (8.18) 0.83 (0.86)

Table 4.11 reports in a synthetic form the values of the mean and standard deviation

of ερ and εnCoM for the images of DS5. Since the interest is to quantify the error

introduced by the different noises, the absolute value of ερ is analyzed, differently from

the previous cases. The values of the mean are also represented in Fig. 4.14 for a

simpler visualization.

It can be seen that in the overwhelming majority of the cases, both M1 and M2

performance suffer degradation when extra noise is added to the images. Both data-
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Figure 4.14: Range (top) and centroiding (bottom) error results of M1 and M2 for DS5

driven methods’ performances worsen with the conditions of high blur, for both the

estimations of the centroid of B1 and the range from it. The highest values of the

means of |ερ| of M1 and M2 are 3.42 km (BGL) and 1.96 km (BgL) respectively, with

a standard deviation of 2.43 km and 1.85 km respectively. The worst performance on

the centroiding estimation are given with conditions of BgL for M1, with a mean value

of εnCoM of 15.37 px and a standard deviation of 11.38 px, and with conditions of BGL

for M2, with a mean value of εnCoM of 16.12 px and a standard deviation of 11.78 px.

Fig. 4.14 shows also the values of |ερ| and εnCoM obtained with the nominal scenario

of DS1c, as a reference to assess the robustness of the two algorithms with respect to

the noises introduced with DS5. The performance of M1, when extra noise is added to

the images, is consistent with that in DS1c while M2 seems more susceptible.

Finally, it is interesting to note that higher blur is negatively affecting both net-
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works. Higher blur levels could challenge the convolutional kernels obtained during

training, spreading the input image content across larger image patches. This result

could inspire future data-driven IP designers to include a higher blur level in the train-

ing dataset in those cases in which robustness to noise is more demanding.

4.3.3 DS7 and DS9: DCP, new shape

Fig. 4.15 and Fig. 4.16 show the results on |ερ| and εnCoM on the testing datasets DS7

and DS9 obtained by fine-tuning M1 and M2 using an incremental batch of images

(8, 16, 32, 64, 128, 256, 512 and 1024) from the ECP phase represented in DS6 and

DS8. The results obtained with M1 and M2 prior to the fine-tuning are also shown,

represented by a batch size of 0 images. The pair DS6 − DS7 is expected to stress

the difference in shape while the pair DS8 −DS9 stresses a greater shape difference,

exacerbated in this setup also by the different rendering software used to generate the

datasets (i.e. PANGU instead of CORTO). The aim of this analysis is to find the

amount of images taken during the ECP that minimizes the estimation errors during

the DCP, i.e. the number of images that tunes the two models’ parameters to adapt

their solution to a target different from the one seen during training. This scenario is

especially relevant for small body missions, since the property of the target body are

rarely precisely known before arrival.

Ideally, using a higher amount of images of the ECP for fine-tuning is expected to

improve performances, as the data-driven models would have more information about

the real target, minimizing possible discrepancies due to different modeling of the body’s

shape. However, as illustrated in this section, this scenario is more challenging than

anticipated.

Considering the DS6 − DS7 case, observing the trends reported in Fig. 4.15, the

number of images used for the fine-tuning of M1 and M2 is not improving performances

on DS7 apart from the range estimate in M1. Lastly, it is also noted that both M1

and M2 have robust performances prior to fine-tuning, even in the case when different

artificial environments are used (CORTO and PANGU) to generate training images.

In particular, it can be seen from Fig. 4.16 that M1 performs better than M2, despite
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Figure 4.15: Range (left) and centroiding (right) error results of M1 and M2 for DS7

Figure 4.16: Range (left) and centroiding (right) error results of M1 and M2 for DS9

its worse performance with the other testing datasets generated using the same image

generation tool of the training. However, it is also noted that M1 suffers in this dataset

from the highest drop in convergence rates compared to all other scenarios presented

in this work, as illustrated from the rates in Table 4.9.

A key conclusion is drawn from these results. Firstly, apart from specific cases

(M1’s range in DS7 and M2’s centroid in DS9) in the majority of the cases considered,

training episodes from the ECP dataset are drastically degrading both M1 and M2

performance for a robust application on the DCP datasets. A possible explanation of

this phenomenon is given by the fact that both DS1a and DS1b used for the initial

training are generated with a distance from the target that varies from 10 km to 40

km. The images from ECP that are used for fine-tuning represent a new target shape

at a distance between 20 km and 30 km. Lastly, the testing dataset shows the new
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target shape at a range between 9 km and 20 km. These different range intervals may

explain why the DS1 dataset is more representative of the entire mission conditions

than those encountered in ECP. Therefore, a possible explanation for the trend observed

is that both data-driven methods are performing better when not fine-tuned, as their

parameters were already optimized for ranges including the ones shown with DS7 and

DS9. Effectively, both methods are challenged by the new training datasets ofDS6 and

DS8 to learn two contradicting information: learn about the new shape, and do that in

a limited range interval. Even in an ideal training instance, in which a network would

have specialized on the new shape but in a limited range interval, poor generalization

performance would have been observed in a different geometric regime. This poses

an interesting challenge in terms of fine-tuning data-driven methods for small-body

applications. Fine-tuning episodes should be carefully designed to introduce the desired

effect in the final networks.

4.4 Conclusion

This paper analyzes the robustness of two data-driven based IP algorithms designed to

address the issue of centroiding (geometrical center) and range estimation of a binary

asteroid system. The study examines the Hera mission’s target proximity operations

around the Didymos system as a case scenario. The data-driven methods are based on

two different CNN approaches: M1, a heavier method based on the HRNet architecture

and the point regression strategy, and M2, a custom-built end-to-end architecture made

of subsequent dilated convolutional layers.

The test campaign includes FTs with images generated with CORTO and PANGU,

representing conditions different from the ones seen during training. In particular,

the two data-driven methods are stress-tested with images showing the target asteroid

system in conditions of high Sun phase angles, different noise levels, and different

shape models of the target. Considering overall performances, the results show that

neither method is affected by the presence of the secondary, that M2 is slightly more

accurate and precise in the estimation of the centroid and range, but also shows greater

sensitivity to noises compared to the more robust M1.
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Lastly, a potential operational scenario applicable to any data-driven method is

also analyzed, considering a series of fine-tuning sessions simulating different batches of

images downlinked to ground from the ECP phase of the Hera mission. This analysis

turned out more complex and counterintuitive than expected, highlighting the chal-

lenges in fine-tuning these algorithms on specific characteristics of the target body.

Indeed, both methods performed better in the DCP phase when fine-tuning was not

applied, suggesting that both networks’ training is affected more by different ranges

than different shape models of the target asteroid. A possible explanation is that given

the reference trajectories and the asteroid’s rotation, both data-driven methods are

trained considering images showing different orientations of the target with respect to

the spacecraft. Therefore, the two methodologies are already trained with images show-

ing a target with different shapes, since Didymos’ irregular shape is shown differently in

each image. On the other hand, the range depends on the apparent size of the asteroid

in the images, which is unique at different range intervals.

To conclude, this work demonstrates that different data-driven approaches possess

subtle differences that a coherent validation campaign can highlight. This ultimately

represents an important tool for a mission designer to make informed decisions on their

use. Considering overall performance, robustness, computational time, and fine-tuning

inertia, one network was not clearly better than another, both exhibiting different sets

of strengths and weaknesses that resonate for the better or for the worse in different

untested conditions. M1 is less sensitive to new untested conditions due to its larger

capacity (with ∼8 times more parameters than M2), showing greater robustness. This

comes at a cost of high inertia to fine-tuning, slower computational time, and some

highly variable convergence rates due to unclear heatmaps. M2 is a more efficient

network, exhibiting greater accuracy and precision, shorter computational times, more

agile fine-tuning, and always convergent to a solution. This comes at the cost of an

increased sensitivity to untested conditions.

Finally, the analysis illustrated in this work would have not been possible without

a shared testbench serving as a common baseline. This also motivates the decision of

the authors to make both datasets and results publicly available to encourage other
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researchers to propose different approaches. Future works could be focused specifi-

cally on the fine-tuning campaign of the ECP, including data-augmentation and image-

manipulations as pre-processing steps of the ECP dataset. Furthermore, a hybrid

training strategy and different architectures could be investigated.
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Paper content

This chapter presents a concise overview of the incremental validation campaign for the

algorithm built in Chapter 2. The chapter demonstrates that the artificial intelligence-based

image-processing algorithm is capable of providing robust and accurate optical naviga-

tion for Hera across mission-relevant proximity phases, with successful deployment on

representative hardware, while highlighting implementation challenges like calibration

sensitivity and memory constraints. Following the map and structure shown in Fig. 1.8

in Section 1.3.3, this chapter addresses RQ 2b, completing all the answer to RQ 2, and

achieves the objective of validating the developed algorithm for a future utilization on

board spacecraft stated in RO 3. With this chapter, the reader will understand how to

structure a multi-stage validation campaign and what are the core factors to monitor

when implementing intelligent-image processing algorithms on board a spacecraft.
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Abstract

This paper presents the incremental validation test campaign of a Convolutional Neural

Network-based Image Processing algorithm with application to the proximity opera-

tions of the European Space Agency’s Hera mission around the target binary asteroid

system (65803) Didymos. The algorithm estimates the position of the Center of Mass

of both the primary and the secondary (if visible), the range from the primary, and

the associated covariance matrices using the synthetic images generated with the SW

Planet and Asteroid Natural Scene Generation Utility. The first step of this incremental

validation process is an Open-Loop and Closed-Loop Model-In-The-Loop test, which

uses the Functional Engineering Simulator of the Guidance, Navigation and Control

system of the Hera mission. The second step is a bare-metal Open-Loop test run on

the processing system of a Zynq 7000 System-on-a-Chip, considered in this work as the

representative of a typical spacecraft On-Board Computer. The third and final step is

an Open-Loop Hardware-In-The-Loop test, which includes the Hera mission’s camera

functional model and it is run at the GMV Optical Laboratory. The test case scenarios

are the Early Characterization Phase, the Detailed Characterization Phase and the

Close Observation Phase of the proximity operations of the Hera mission, when the

vision-based navigation system is based on the centroid of Didymos. Therefore, the

incremental validation test campaign presented in this work considers only the position

of the Center of Mass of the primary estimated by the developed Image Processing

algorithm. The results show that the algorithm is able to perform accurately its esti-

mations across the multiple tests, with a slight dependency on the calibration of the

camera. Nevertheless, the results show that prior to the implementation on a spacecraft

On-Board computer the algorithm requires a dedicated memory optimization process.

5.1 Introduction

Vision-based navigation systems are a core module for small bodies rendezvous space

missions. The European Space Agency (ESA)’s Rosetta, the Jaxa’s Hayabusa 1 and 2

and NASA’s OSIRIS-REx all used a vision-based navigation system, usually coupled
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with a LIDAR (Light Detection and Ranging) and/or other sensors in order to pro-

vide a robust navigation algorithm and perform safely mission operations around the

respective target body [64, 65, 118, 119]. Due to large communication delays, the un-

known dynamical environment and to facilitate the rendezvous operations, autonomous

navigation is preferred over ground-based [156]. To meet the required level of auton-

omy per operation scenario and to probe the algorithm’s boundaries and its sensitivity

to external disturbances and noise, vision-based navigation systems go through sev-

eral validation tests on ground. The two main testbeds used to validate vision-based

navigation systems are virtual and physical realities. The first one consists in stimulat-

ing the vision-based navigation system with images representing the mission scenario.

To this end, rendering engines such as Planet and Asteroid Natural Scene Generation

Utility (PANGU) used from ESA and SurRender used by Airbus are able to gener-

ate synthetic high-fidelity images of the target according to its shape, the spacecraft’s

relative trajectory and attitude and the Sun’s position [102, 157]. The second testbed

is a Hardware-In-The-Loop (HIL), which relies on the inclusion of one or more hard-

ware manufactured for the specific mission, and performed in dedicated facilities that

emulate space-representative conditions [133–141,158].

This work presents the incremental validation of a Convolutional Neural Network

(CNN)-based Image Processing (IP) algorithm applied to the vision-based navigation

system of the Hera mission around the target binary asteroid system (65803) Didymos.

The Hera mission is the European contribution to a joint collaboration born between

NASA and ESA [34]. The aim is to send a group of spacecraft to Didymos, with the

following three main goals:

❖ To explore the viability of a planetary defense strategy involving a kinetic im-

pactor.

❖ To enhance our understanding of small celestial bodies within the solar system.

❖ To advance the technology required for future asteroid missions.

NASA launched the Double Asteroid Redirection Test (DART) mission in November

2021, and its primary task to execute a kinetic impact on the secondary body of the
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Didymos system, Dimorphos, was accomplished in September 2022. The Hera mission

is scheduled to reach the asteroid approximately five years after the impact [35]. Hera’s

mission objectives include a detailed investigation of the effects caused by DART’s

kinetic impact and the execution of additional scientific observations. As a component

of the Hera mission, two CubeSats will be deployed from the main spacecraft upon

arrival. These CubeSats will orbit the Didymos system closely, enabling comprehensive

scientific observations. Juventas, one of these CubeSats, is designed to land on the

surface of Dimorphos. During Juventas’ descent, on-board cameras will acquire images

of Dimorphos’ surface, potentially including the impact site of DART [36,37].

Hera will initiate the proximity operations after completing the interplanetary cruise

and decreasing its velocity with respect to the target with the execution of multiple

Delta-V maneuvers. This study primarily centers on the Early Characterization Phase

(ECP), the Detailed Characterization Phase (DCP), and the Close Observation Phase

(COP), intended to conduct thorough physical and dynamical assessments of the bi-

nary asteroid and to fully characterize the impact crater [40]. Autonomous vision-based

navigation is designed for these phases based on line-of-sight and range measurements

from Didymos in order to estimate the relative position of the spacecraft. The navi-

gation system includes the on-board Asteroid Framing Camera (AFC) taking images

of the asteroid, an IP algorithm that extracts information from these images, and a

navigation filter that combines the visual data with the dynamical environment to es-

timate the relative state of the spacecraft with respect to the target [127]. The IP

algorithm implemented in Hera is the Maximum Correlation with a Lambertian Sphere

(MCLS) developed by GMV1, an international space technology company in charge

of the Guidance, Navigation and Control (GNC) system of the Hera mission, and de-

signed to extract from the acquired images the position of the Center of Mass (COM)

of Didymos every 48 s [58]. The goal of the autonomous visual based GNC system

during the first three proximity operations is to maintain the position of the centroid

of Didymos in the center of the camera frame. Therefore, the estimated position of

the centroid from the IP algorithm is used to correct the error in the orientation of

1https://www.gmv.com/en/sectors/space, last accessed: 18 September 2023
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the boresight of the camera of the spacecraft and achieve this goal. Throughout the

ECP, the autonomous visual based navigation system’s functionality is tested as the

spacecraft orbits at a more secure distance from the target. Tuned parameters are then

transmitted from ground to improve its performance with the robustness ensured from

ground validation. Following this commissioning process, the autonomous visual based

navigation system is used during the DCP and the COP to safely orbit around the

target and perform the required mission operations [40].

The CNN-based IP algorithm of this work is developed and presented by the au-

thors in [80,142]. During the ECP, the DCP and the COP trajectories, the algorithm,

using images acquired by the AFC accurately determines the centroids’ positions for

Didymos and Dimorphos (if accessible) along with the distance from Didymos and the

covariance matrix associated to each measurement. For an in-depth understanding of

the algorithm’s development pipeline, readers are directed to [80,142]. Recent advance-

ments in artificial intelligence (AI) for computer vision have shown the effectiveness of

deep-learning convolutional architectures in IP tasks [82,159,160]. These methods are

increasingly significant for space-related applications, particularly in the areas of IP,

visual navigation, and control. The primary benefit of these techniques in the context

of visual navigation around asteroids lies in their ability to overcome challenges usually

faced by standard IP algorithms such as presence of other bodies (stars or asteroid’s

moons) in the image, the irregular shape of the target, low Sun phase angles, presence

of hot pixels or other noises/distortions in the images. Nevertheless, this benefit comes

at the cost of a large amount of data needed for training. If the target is unknown, then

the utilization of an AI technique relies on an online training performed during mission

operations, which requires high computational power not available on the state-of-the-

art On-Board Computers (OBC) processors. Furthermore, most of the AI techniques

for computer vision lack explainability, i.e. their internal processes are not easily inter-

pretable by humans. Therefore, the verification and validation of AI-based techniques is

challenging and it is essential to test them, as the one developed in this work and based

on CNNs, with every mission scenario to validate their functionality across multiple

contingencies that might occur during mission operations [69,75,145,147,161].
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The incremental validation of the developed algorithm presented in this work con-

sists of:

❖ three Model-In-The-Loop (MIL) tests run during the ECP and the DCP trajec-

tories using the GPU of the local machine; the MIL tests use the model-based

environment of the GNC system of the Hera mission developed by GMV.

❖ two On-processor tests run on a Zynq 7000 System-on-a-Chip (SoC)2.

❖ three HIL tests with the Hera’s spacecraft Functional Model (FUMO) of the AFC;

the HIL tests are run in the GMV Optical Laboratory.

The MIL tests are aimed to analyze the performance and the robustness of the algorithm

when integrated with the whole software-based GNC system. The On-processor tests

assess the performances of the algorithm on a computing system representative of a

typical spacecraft OBC processor. With the HIL tests it is possible to analyze the

robustness of the algorithm to the electro-optical effects introduced by a spaceborn

camera. Since during the ECP, the DCP and the COP the navigation is centroid-based,

the tests are aimed to validate the developed algorithm only for this measurement. By

performing these tests, this work adopts the Design, Development, Validation and

Verification (DDVV) strategy by GMV applied to their GNC models and algorithms

[152]. The CNN-based IP algorithm is treated as a standard IP algorithm, with the

usual challenges that the latter face during this validation strategy.

To the authors’ knowledge, this is the first attempt to validate an AI-based IP

algorithm through the DDVV strategy for space visual navigation systems. Although

previous work has been done [135,162–164] in the field, it mostly examined performing

single tests or the validation of the whole AI-based navigation system. The integration

in a model-based environment of a GNC system and subsequent incremental validation

test campaign of a single AI-based algorithm is a unique contribution of this work.

The main objectives of this work are: to bridge the gap between the stand-alone

application of CNNs in space IP and the integrated-application in a whole GNC system;

2https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html, last accessed: 25
September 2023
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to analyze the performance of the developed algorithm when the images of the target

differ from the ones used for training. Specifically, the performances of the developed

algorithm are analyzed in conditions of different orbital geometry, a slightly different

shape of the target and considering images acquired with a space qualified hardware

with all the noises and distortion introduced.

While Hera on-board GNC system is going to use the MCLS algorithm, the CNN-

based IP algorithm presented in this paper may become an alternative for future aster-

oid missions. Moreover, the testing and validation of the CNN-based IP took benefit

of realistic and very detailed Hera vision-based simulation and validation environments

made available by GMV and ESA and used primarily for the Hera MCLS-based IP.

This paper is structured as follows. Section 5.2 describes more in detail the proposed

IP algorithm and its validation process. Section 5.3 performs the numerical simulations

and analyzes the results. Finally Section 5.4 concludes this research and recommends

future research directions.

5.2 Methodology

This section provides a detailed description of the methodology applied in this work

to validate the developed CNN-based IP algorithm applied to the Hera mission. With

centroid or COM we refer to the geometrical center of the target body projected on

the image. The developed algorithm presented in [80,142] is briefly introduced in Sec-

tion 5.2.3. While [80,142] focused on the ECP and the DCP trajectories, in this work we

include also the COP (Section 5.2.1). The same software to generate synthetic images

of Didymos and Dimorphos is used (Section 5.2.2). The details of the methodology of

this work are presented in the next part of this section.

5.2.1 Reference trajectories

The three reference trajectories used in this work are the ECP, the DCP and the

COP of the Hera mission. The ECP is the first of the proximity operations, when

the spacecraft is orbiting around the target at a safer distance while conducting a
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Figure 5.1: ECP trajectory [142]

Figure 5.2: DCP trajectory [142]

preliminary physical and dynamical characterization of the asteroid [36]. Fig. 5.1,

Fig. 5.2 and Fig. 5.3 illustrate respectively the ECP, DCP and COP trajectories in the

Target Body Equatorial Inertial (TB) reference frame, which has the origin centered on

the geometrical center of Didymos, the fundamental plane coplanar with the equatorial

plane of Didymos and the X-axis of the Earth-centered Ecliptic Inertial reference frame.

The ephemeris of the target are reported in Table 5.1 [20, 101]. In this work the orbit

of Dimorphos around Didymos prior to the impact is used. These three proximity

149



Figure 5.3: COP trajectory

Table 5.1: Orbital properties of Didymos system prior to DART’s impact [20,101]

Heliocentric orbit

Semi-major axis [au] 1.642665 ± 2.7214e− 9

Eccentricity [] 0.383264 ± 1.3374e− 10

Inclination [◦] 3.41415 ± 1.6188e− 8

Longitude of ascending node [◦] 72.987867 ± 2.1852e− 7

Orbital period [yr] 2.105386 ± 5.2320e− 10

Binary orbit

Semi-major axis [m] 1190 ± 30
Eccentricity [] 0
Orbital period [hr] 11.93 ± 0.01

operations trajectories shown in these plots are provided by ESA. Both trajectories are

made by patching several hyperbolic arcs in order to be able to escape the gravitational

attraction of Didymos for the safety of operations. The distance with the target and

the position of the arcs with respect to the Sun take into account two main drivers: the

Field of View (FOV) of the AFC, that needs to be able to contain the whole shape of

Didymos (ECP and DCP) and Dimorphos (COP), and the need for bright images for

the IP algorithm. The ECP consists of four square-shaped arcs while the DCP and the

COP consist of several z-shaped arcs, all the trajectories with a total duration of 14 d.
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The minimum and maximum distances with respect to the target are respectively: 20

km and 30 km for the ECP, 9 km and 23 km for the DCP and 4 km and 22 km for

the COP [40].

5.2.2 Image Generation

Table 5.2: Didymos’ system properties [28,29]

Body Didymos Dimorphos

Gravitational pa-
rameter [km3/s2]

3.5 · 10−8 2 · 10−10

Extent along prin-
cipal axes

Updated Not updated Updated Not Updated

x-axis [m] 849± 5.6 832± 25 177± 1.2 208

y-axis [m] 851± 5.6 837± 25 174± 1.2 160

z-axis [m] 620± 5.6 786± 39 116± 1.2 133

The database of images used in this work to test and validate the developed CNN-

based IP algorithm is generated with PANGU, a simulation tool developed by the

STARDundee engineering company used widely across multiple ESA interplanetary

missions to validate their optical navigation systems. With PANGU it is possible to

model the shapes and surfaces of Didymos and Dimorphos and to render them, in

order to provide a high-fidelity visualization of the mission scenario [102]. The shape

models of Didymos and Dimorphos are provided by ESA (also available in GMV optical

laboratory) and updated with the observations retrieved by the DART mission before

the impact, with parameters summarized in Table 5.2. Given that the extents along

the x and y axes are larger than the one along the z axis, the shapes of Didymos and

Dimorphos are similar to two oblate ellipsoids. For Dimorphos, a scaled-down shape

model of asteroid Itokawa, the target of the Hayabusa mission, is used. It is not known

whether the impact with DART generated a crater on Dimorphos’ surface, or whether

said crater will be absorbed by the time the Hera spacecraft reaches the target [91]. As

a reference, Table 5.2 shows also the characteristics of the shape models of Didymos

and Dimorphos prior to DART’s updates and obtained solely with ground observations.
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PANGU shows the generated images on its viewer, set up with the properties of the

AFC, reported on Table 5.3 [103, 104]. The viewer is a plane of the size of the image

acquired by the camera, and the coordinates of each pixel are identified in the viewer’s

reference frame, which has the origin on the top left corner and the x- and y-axis

referred to as i- and j- direction respectively, as shown in Fig. 5.4. The z−axis of the

viewer’s reference frame has the same direction of the camera’s boresight. When the

GNC system is in the asteroid imaging mode, the AFC has its boresight axis pointing

towards Didymos or Dimorphos, and the spacecraft attitude is such that the position

vector of the Sun is always lying on the xz plane of the viewer’s reference frame.

As a consequence, the binary asteroid system is shown in the PANGU viewer always

illuminated from its right side [40].

Table 5.3: AFC properties [103,104]

FOV Focal length: f Aperture Image size Pixel size: ν

5.5◦ 10.6 cm 2.5 cm 1024× 1024 px 14 µm

i – direction [px]

j –
 d

ir
ec

ti
on

 [p
x]

1024

10
24

Figure 5.4: Example of image taken during ECP and shown in the PANGU viewer [142]
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Figure 5.5: Augmented ECP trajectory [142]

Pre 
Processing HRNet Post 

Processing Measurements

Flag 
Availability

Covariance 
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Input Normalized Image Heatmap

1024 x 1024 256 x 256 64 x 64

Figure 5.6: CNN-based IP algorithm [142]

5.2.3 Image Processing

In this section a summary of the operations that each image undergoes with the CNN-

based IP algorithm is given, as represented in Fig. 5.6. We use PANGU to generate

40, 000 images of the target with the updated shape taken during the ECP in order to

calibrate the CNN-based IP algorithm’s parameters to achieve the optimal results prior

to the incremental validation test campaign. The trajectory is augmented by adding

two fictitious diagonal arcs that connect the vertices of the square, as shown by the

cyan circles in Fig. 5.5. The 40, 000 images include a subset generated considering a

closer augmented ECP trajectory, shown with the yellow circles of Fig. 5.5. A pointing

error of a maximum absolute value of 10% of the AFC’s FOV is considered for each

153



generated image to change the position of Didymos randomly on the PANGU viewer.

No background noise is considered for the generation of these images. Training the

algorithm with the 40, 000 images of the augmented ECP trajectory is only intended

for the on-ground validation approach. It does not exclude the possibility of further

fine-tuning or re-training of the algorithm prior to the application in the real mission.

Hereby are presented the operations performed on each image (for in-depth infor-

mation on the pipeline of this algorithm please refer to [80,142]):

1. Pre-Processing : The 1024×1024 px image acquired by the AFC is reduced in size

(256× 256 px) and its pixel intensities are normalized as required by the selected

CNN architecture.

2. HRNet : The High-Resolution Network (HRNet) CNN architecture is used in

this work, with the aim of regressing the location of specific keypoints on the

image [107], as shown in Fig. 5.7: the COM of Didymos, the COM of Dimorphos

(if visible) and 24 points on the right side of Didymos, i.e. its visible border, which

are used to estimate the range with Didymos using the pinhole camera model

[105]; the HRNet provides its solution in the form of heatmaps of size 64× 64 px

associated to the corresponding desired keypoint. Most of the CNN architectures

which solve for the keypoint heatmap estimation problem consist in a main body

structured with a high-to-low followed by low-to-high framework. This approach

decreases the spatial resolution of the estimation, as key information of the pixels

of the input image are distributed in less pixels. The HRNet tackles this issue

by connecting high-to-low subnetworks in parallel, maintaining a high-resolution

representation of the input image through the whole architecture [107].

3. Post-Processing : Each heatmap is analyzed in order to extract the x and y coordi-

nates of its peak intensity, which represents the location of the regressed keypoint,

as shown in Fig. 5.7. The coordinates of the keypoints in the 64×64 px heatmaps

are then converted back to the original 1024× 1024 px size image.

4. Covariance computation: The intensity and the shape of the cloud of points

surrounding the heatmap’s peak is examined to derive the regressed keypoint’s
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associated covariance matrix.

5. Flag Availability : The value of the peak intensity of the heatmap associated to

the regression of the location of the COM of Dimorphos is analyzed to determine

whether Dimorphos is visible or not in the images, as shown in Fig. 5.8.

Figure 5.7: Two sample images generated with PANGU with the regressed keypoints
[142]

Non - visible
Eclipse/Partially 

visible Visible

Figure 5.8: Heatmaps of the centroid of Didymos and Dimorphos associated with three
sample images showing Dimorphos respectively non-visible, in eclipse and visible [142]

The HRNet is trained on Google Colab with the NVIDIA T4 GPU, and the trained

model is imported on Matlab as an ONNX (Open Neural Network Exchange) format.

The whole IP algorithm, with the aforementioned blocks has a total weight of 125 MB.

Further details about this algorithm can be found in [80,142].
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5.2.4 Incremental validation

Table 5.4 summarizes the test campaign adopted for validating the developed CNN-

based IP algorithm from MIL to HIL. Each test and its functionality is described in the

following sections. With Open-Loop (OL) is intended that the Hera MCLS algorithm

is used for navigation and the CNN-based IP algorithm is only run in parallel. With

Closed-Loop (CL) the CNN-based IP algorithm replaces the MCLS for navigation. The

updated and not updated shapes of Didymos and Dimorphos after DART’s mission are

shown in Table 5.2 and are both used and referred for simplicity as Shape 1 and Shape

2, respectively.

Although the algorithm is able to provide the estimation of the position of the

centroids of Didymos and Dimorphos on the image, the range from Didymos and the

associated covariances to these measurements, this incremental validation test cam-

paign examines only the estimation of the position of the centroid of Didymos. This

stems from the fact that the reference phases of the proximity operations undertaken

in this work consider only this measurement for the visual navigation, which is the

only output of the MCLS IP algorithm on board the Hera GNC system. The range

measurements and the covariances of each measurement, if needed in the tests, are

provided by other models and algorithms not analyzed in this work.

Table 5.4: Incremental validation test campaign

Name Loop Trajectory Shape

MIL Test 1 Open 2nd arc of ECP 1

MIL Test 2 Open 6th arc of DCP 1

MIL Test 3 Closed 6th arc of DCP 1

On-processor Test 1 Open 2nd arc of ECP 1

On-processor Test 2 Open 6th arc of DCP 1

HIL Test 1 Open 2nd arc of COP 1

HIL Test 2 Open 2nd arc of COP 2

HIL Test 3 Open 6th arc of DCP 1

HIL Test 4 Open 6th arc of DCP 2
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5.2.4.1 MIL Test Setup

Figure 5.9: Hera DKE block

The MIL tests are run with the Functional Engineering Simulator (FES) developed

by GMV on Simulink. The FES is a software environment that allows to test the GNC

design/algorithms by closing the loop using models for the Dynamics, Kinematics, and

Environment (DKE) effects. The DKE models are, thus, in charge of simulating the

environment and physics laws affecting the spacecraft dynamics. Fig. 5.9 shows an

example of the DKE layer in a MIL test architecture configuration. The list of the

major blocks that can be identified are:

❖ Target body dynamics: contains the ephemeris of the celestial bodies involved in

the simulations, the rotation matrix of the reference axes fixed to these bodies

and an inertial reference, their radius, and, if needed, the offset between their

COM and the center of gravity of the system.

❖ SC Dynamics: Contains the Mass, Center of gravity and Inertia (MCI) properties

of the spacecraft, and computes the forces and torques exerted on the spacecraft;

finally, in this block the position and attitude of the spacecraft are propagated

using the aforementioned computations.
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The three major blocks of the SC Dynamics layer are:

❖ MCI update: contains the evolution of the MCI properties.

❖ Forces and Moments: contains the forces and torques exerted on the spacecraft

by the central body gravity acceleration, the considered perturbations and those

caused by the actions of the actuators.

❖ Dynamics: contains the translational and attitude dynamics equations which

allows to propagate the relative state of the spacecraft.

The Attitude and Orbit Control System Units of Hera are the following: Gyro, Star

Trackers, Sun Sensors and Reaction Wheels. Other GNC models include the thrusters,

the AFC, represented by PANGU, and the Planet Altimeter. These models are part

of the closed-loop configuration with the Hera GNC software, composed by the GNC

Application software and the IP software used in the Hera mission baseline. The

developed CNN-based IP algorithm is embedded to the FES and it is used to estimate

the COM of Didymos given an image generated by the AFC model. The estimated

COM is used together with the dynamics computed with the DKE block and the

measurements obtained from the other sensors to provide the best estimate of the

relative position and attitude of the spacecraft. Specifically, the developed CNN-based

IP algorithm is embedded in the translational navigation filter of the FES of the GNC.

During the ECP and the DCP, the purpose of the translational navigation of the Hera

mission is to perform data fusion with the measurements of the position of the COM of

Didymos (using the pinhole camera model [105]) and the Planet Altimeter, if available,

in order to estimate the state vector of the spacecraft. This happens only during the

ECP and the DCP as the distance to the binary system is above 9 km, which allows

the primary body to not fill the entire camera’s FOV. The measurements are taken

every 10 min, except for communication windows of 8 hr to Earth, and in between

the measurements the spacecraft’s state is being propagated. The navigation filter is

a hybrid between an Extended Kalman Filter (EKF) and an Unscented Kalman Filter

(UKF): the propagation of the state of the spacecraft is done using the EKF approach

and with the relative dynamics contained in the Dynamics block of the FES. When a
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measurement is available, the innovation of the spacecraft’s state is done with the UKF

method. The covariance matrix is always propagated using the UKF approach [58].

In order to integrate the Matlab format of the CNN-based IP algorithm with the

FES developed on Simulink, the ONNX format of the HRNet obtained as described

before is adapted for code generation. From there, the Matlab/Simulink Coder is run,

including the other blocks of the IP algorithm. The Coder settings involved no dynamic

memory, no Open Multi Processing3 (OpenMP) libraries and support for deep-learning

code generation. A generic ARM-compatible device is selected as target hardware and

C++ code is selected as output. The C++ code is then uploaded in the Simulink model

of the FES as an S-function.

In this work we run three different MIL tests:

1. MIL Test 1: OL test with synthetic images generated during the 2nd arc of the

ECP with Shape 1 of Didymos and Dimorphos.

2. MIL Test 2: OL test with synthetic images generated during the 6th arc of the

DCP with Shape 1 of Didymos and Dimorphos.

3. MIL Test 3: CL test with synthetic images generated during the 6th arc of the

DCP with Shape 1 of Didymos and Dimorphos.

With the OL tests it is possible to analyze the accuracy of the estimations of the

CNN-based IP algorithm with synthetic images generated with training-like conditions

(MIL Test 1) and with unfamiliar conditions (MIL Test 2) of illumination and relative

position of the target. While in MIL Test 1 and MIL Test 2 the Hera MCLS algorithm

is the one used for navigation, with MIL Test 3 it is possible to evaluate the closed-loop

behaviour of the GNC system when the provided centroid of Didymos is given by the

developed CNN-based IP algorithm. No background noise is introduced in the images

generated by the AFC model (embedded in PANGU model), as the behavior of the

developed IP algorithm with respect to noises and distortions are analyzed with the

HIL test. The MIL tests are run with Matlab on the NVIDIA GeForce RTX 2070 with

Max Q-design GPU of the local machine.

3https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf, last ac-
cessed: 25 September 2023
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5.2.4.2 On-processor Test Setup

Additionally, the S-function of the CNN-based IP algorithm is run on a Zynq-7000 SoC

processor, in order to evaluate the algorithm performances in terms of computational

time and on-board memory requirements on a processor with the computational power

similar to the one available on board the spacecraft. Once the C++ sources of the

CNN-based IP algorithm are obtained, the zWrap toolchain4 is employed to deploy

the algorithm on a ZedBoard on which the Zynq 7000 SoC is located. The toolchain

takes the source files as input and generates a boot image for the board, featuring a

dual-core Asynchronous Multi-Processing (AMP) application in which the first ARM

core is dedicated for socket-based communication to the host and the second core is

entirely dedicated to the deployed CNN-based IP algorithm. A shared memory region,

whose size and location is automatically inferred by the toolchain, is allocated to store

the inputs and output variables. Apart from the application image, the toolchain also

outputs a drop-in Matlab/Simulink function and a drop-in Simulink block to run the

application with inputs provided from the host, in order to seamlessly convert existing

MIL simulations into Processor-In-The-Loop (PIL) simulations. The communication

from the host to the board happens through TCP/UDP. There is minimal overhead on

the board side, as the only task for the application running on the first ARM core is to

move the incoming packets to the shared memory region; this is possible because the

input data are serialized (and deserialized) on the host side thanks to auto-generated

interfaces during the image building process. The exact byte generation for the input

and outputs is passed to the Zynq, so that no memory nor CPU time is needed to pass

the data to the target function. The on-board application is connected to a Simulink

model with the generated block, and a subset of 40 images generated with MIL Test 1

and MIL Test 2 are tested in OL. Therefore, the On-processor tests are:

1. On-processor Test 1: OL test with a subset of synthetic images generated during

the 2nd arc of the ECP with Shape 1 of Didymos and Dimorphos, run on the

Zynq-7000 SoC processor.

4https://github.com/gian-didom/zWrap, last accessed: 25 September 2023
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2. On-processor Test 2: OL test with a subset of synthetic images generated during

the 6th arc of the DCP with Shape 1 of Didymos and Dimorphos, run on the

Zynq-7000 SoC processor.

With these two tests, we evaluate the execution time (that ideally should be around the

48 s required by the MCLS algorithm) and the memory requirements on a representative

processor that emulates the capabilities of the one usually employed on spacecraft.

5.2.4.3 HIL Test Setup

Figure 5.10: GMV Optical Laboratory in Hera setup (includes Hera AFC FUMO -
courtesy of ESA)

The HIL tests are run in the GMV Optical Laboratory, used in past and on-going

projects for validation of optical navigation solutions. It relies on confidence on the

PANGU models of the target asteroid (without the need of the mock-up used in the

robotic platform of GMV). Fig. 5.10 shows the current setup of the HIL test, featuring:

❖ the AFC FUMO, courtesy of ESA and developed by Jena Optronik GmbH [165].
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❖ a monitor with 4k resolution where images of PANGU are projected; 2 × 2 px

of the screen stimulates 1 detector px, in order to avoid aliasing and keep the

smoothness of the image.

❖ a rail where the AFC FUMO and the monitor are mounted.

❖ the Hera Avionics Test Bench (ATB) PC, that runs the FES, projects the images

on the high resolution screen, and controls the acquisition of images by the AFC

FUMO.

This setup has its own specific mounting and inherent optical characteristics and

it requires for each project/mission a dedicated calibration. Parameters such as point

spread function, alignment (either physical or software corrections) and gamma need

to be adjusted to be representative of what the camera “would see” in the real flight

scenario. This means to correct for effects inherent to the optical setup and leaving the

remaining effects such as camera electro-optical properties unaffected. The calibration

was completed and with errors much smaller than required image processing errors

performance. The photometrics are optimised to assume a good ground calibration

and low in-flight degradation of this calibration/knowledge.

Fig. 5.11, Table 5.5, Fig. 5.12 and Fig. 5.13 show the results achieved for the cal-

ibration of the AFC FUMO setup, demonstrating the capacity of the GMV Optical

Laboratory and in-house calibration procedures to offer good quality imaging setups

without compromising the representativity (if required) of accurate imaging conditions

in-flight:

❖ Alignment and focus: Fig. 5.11 and Table 5.5 show the achieved point spread

function and alignment errors (only with physical correction). The Point Spread

Function (PSF) illustrates the normalized luminosity captured by a portion of the

camera sensor when a dot, approximately the size of a pixel sensor, is presented

on the screen, enabling the analysis of both bloom effects and focus quality.

❖ Radiometric correction: The radiometric adjustments are balanced between flight

configuration and laboratory conditions. The AFC FUMO is set to an integration
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time of ∼ 50 ms, considering that in nominal flight conditions it can range from

hundreds of µs to few ms. Gain and bias matrices (applied as a post-process

to the acquired image) are used in conjunction with an alteration of the image

displayed on the monitor using a gamma function in order to obtain a uniform

brightness curve. Fig. 5.12 shows the column-wise average brightness obtained

by the camera for the horizontal gradient that is shown.

❖ Geometric distortion: Fig. 5.13 shows the achieved distortion errors (to both

correct screen distortions and emulated on-board image corrections). The plot

on the left of Fig. 5.13 illustrates the normalized error between the true radial

position of a displayed pixel and the position acquired by the camera sensor.

The discontinued line signals the radius that corresponds with the corner of the

sensor. The plot on the right of Fig. 5.13 displays the absolute error in pixel

position, representing the disparity between the actual location of a displayed

pixel and the position recorded by the camera sensor. The calculation of this

error was performed across a grid of 31× 31 positions. The warm-colored surface

is associated to pre-correction error values while the cool-colored one represents

said magnitude after performing the distortion correction.

Figure 5.11: GMV Optical Laboratory: Achieved Point Spread Function in Hera HIL
setup
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Table 5.5: GMV Optical Laboratory: Achieved Alignment errors in Hera HIL setup

Parameter Misalignment detected

Camera Yaw < 0.5◦

Camera Pitch < 0.5◦

Camera Roll < 0.1◦

Image center i−direction 0.3 px

Image center j−direction −0.06 px

Figure 5.12: GMV Optical Laboratory: Gradient used (left) and achieved calibration
errors (right)

Figure 5.13: GMV Optical Laboratory: Achieved Distortion Errors in Hera HIL setup

Once the HIL setup is calibrated, the FES is run with the Hera ATB PC, and images

generated with PANGU are projected on the high resolution screen. For each image,
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the AFC FUMO acquires a photo which is used to test the CNN-based IP algorithm

in OL. We run four different HIL tests:

1. HIL Test 1: OL test with acquired images during the 2nd arc of the COP with

Shape 1 of Didymos and Dimorphos.

2. HIL Test 2: OL test with acquired images during the 2nd arc of the COP with

Shape 2 of Didymos and Dimorphos.

3. HIL Test 3: OL test with acquired images during the 6th arc of the DCP with

Shape 1 of Didymos and Dimorphos.

4. HIL Test 4: OL test with acquired images during the 6th arc of the DCP with

Shape 2 of Didymos and Dimorphos.

HIL Tests 1 and 3 aim to test the robustness of the CNN-based IP algorithm to the

camera electro-optical effects, while HIL Tests 2 and 4 introduce also the effect rep-

resented by an unfamiliar shape of the target that was never seen during training.

Therefore, with HIL Tests 2 and 4 we are testing the CNN-based IP algorithm with

the most realistic situation that will occur during the mission, i.e. the acquired images

and the shape of the target are different from what were used to validate and optimize

the algorithm on ground.

5.3 Results

In this section, the results of the incremental validation of the developed CNN-based

IP algorithm applied to the Hera mission scenarios are presented. For the MIL OL

Tests shown in Table 5.4 the accuracy on the estimation of the position of the centroid

of Didymos (COMest) on the images is assessed with the absolute error with respect

to Ground Truth (GT) (COMGT ), defined as follows:

ϵCOM = |COMGT − COMest| (5.1)
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This metric is applied to both i− and j− directions of the PANGU viewer. These results

are compared with the ones obtained in [80], where the same IP algorithm was applied

to the shape models of Didymos and Dimorphos prior to DART’s close encounter. For

Didymos the average ϵCOM obtained was 5.35 px on the i−direction and 4.41 px on the

j−direction. These results were obtained by applying the developed IP algorithm over

a set of 6052 images generated with PANGU during the ECP trajectory. Eq. Chapter

5Epsilon COM is also applied to HIL Test 2 and HIL Test 4 in order to quantify the

absolute error made in estimating the centroid in the most realistic scenario where

both the input image and the shape of the target are unfamiliar to the developed IP

algorithm.

Additionally, with the MIL CL Test the closed-loop behaviour of the developed

algorithm is tested. This is done by analyzing the performances in terms of position

estimation of Hera with respect to Didymos in camera frame when the developed IP

algorithm is implemented, using the following metrics:

ϵx = xGT − xest (5.2)

where xGT and xest represent respectively the GT and the estimated position of Hera

with respect to Didymos in camera frame.

For the HIL tests, an additional metric is introduced to capture the error introduced

by the camera. Eq. 5.3 defines the absolute error between ϵCOM applied to the images

acquired by the camera (ϵcCOM ) and applied to the corresponding image generated

with PANGU (ϵpCOM ). Eq. 5.3 is applied to the images showing Shape 1 of Didymos

and Dimorphos (i.e. HIL Test 1 and Test 3), hence it is aimed to capture only the

electro-optical effects introduced by the camera.

ϵc = |ϵcCOM − ϵpCOM | (5.3)

Eq. 5.3 is applied to both i− and j− directions of the PANGU viewer.
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5.3.1 MIL Tests

The average computational time required for processing a single image from the IP

block is 2.4828 s with a standard deviation of 0.21 s.

5.3.1.1 MIL Test 1

Figure 5.14: ϵCOM : MIL Test 1

Fig. 5.14 illustrates the performance of the CNN-based IP algorithm in estimating

the position of the Fig. 5.14 illustrates the performance of the CNN-based IP algorithm

in estimating the position of the centroid of Didymos for MIL Test 1. It is possible

to see that the absolute error oscillates around 8.54 px in the i−direction and around

13.83 px in the j−direction, with a standard deviation of σi = 5.28 px and 9.84 px,

respectively. The 4 peaks of the error are obtained during the data transmission time,

when the spacecraft is not pointing anymore to the target and, therefore, the images

generated with PANGU do not present Didymos. The slight increase, with subsequent

reduction, of the error in the j−direction from the second day of duration of the ECP

arc is the result of a limited error made by the MCLS algorithm in the estimation of

the position of COMGT with Shape 1 of Didymos. Nevertheless, comparing with the

results obtained in [80], the centroid estimation follows GT, therefore the developed

algorithm is performing accurately with a dataset of images representing the target
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with the same illumination and geometric conditions used for training.

5.3.1.2 MIL Test 2

Figure 5.15: ϵCOM : MIL Test 2

Fig. 5.15 illustrates the performance of the CNN-based IP algorithm in estimating

the position of the centroid of Didymos for MIL Test 2. It is possible to see that the

absolute error oscillates around 22.4 px in the i−direction and around 21.57 px in the

j−direction, with a standard deviation of σi = 16.43 px and 24.93 px. The peaks of

the error are obtained during the data transmission time, when the spacecraft is not

pointing towards the target and, therefore, the images generated with PANGU do not

present Didymos. The slight increase, with subsequent reduction, of the error in the

j−direction from the second day of duration of the DCP arc is the result of a limited

error made by the MCLS algorithm in the estimation of the position of COMGT with

Shape 1 of Didymos.

Nevertheless, the values of εCOM are similar to the ones obtained in [80], therefore

meeting the Hera mission requirements of pointing accuracy. In particular, it can be

seen that the error in the i− direction, the direction of the incoming illumination, is

comparable to the one in the j−direction, which means that the developed IP algorithm

is not affected by the illumination conditions, as it was already proven in [80]. The
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error is higher compared to the one obtained for MIL Test 1 mainly because the range

from the asteroid is lower and the projected image of Didymos in the camera is bigger.

An additional reason could be the point of observation of the spacecraft relatively

to the target which results in a different projection of the asteroid onto the images.

Nevertheless, the spacecraft during the phases of the proximity operations considered

in this work is orbiting the target asteroids observing it from any possible orientation,

given the relative geometry of the hyperbolic arcs and the asteroid’s rotation period.

Therefore, the contribution to the error of the point of observation is less relevant.

5.3.1.3 MIL Test 3

Figure 5.16: ϵx: MIL Test 3

Fig. 5.16 represents the error in the estimated position in camera frame for MIL

Test 3, together with the associated covariance cone (3σ). It can be seen that the

position of the spacecraft with respect to Didymos can still be estimated accurately in

closed-loop when the developed IP algorithm is replaced in the loop, with an error of the

order of 50 m in the camera plane (x−, y− coordinates) and of 100 m in the boresight

direction (z−coordinate). It is also shown that the position error follows accurately the

covariance cone, which increases during the data transmission time interval, when the

spacecraft is not pointing towards the target.
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5.3.2 On-processor Tests

Figure 5.17: Execution time for On-processor Test 1 and 2

The On-processor tests show a longer execution time with respect to local machine;

the Zynq is able to process a single image of a subset of 40 images generated with both

On-processor Test 1 and On-processor Test 2, with an average computational time of

165 s, as shown in Fig. 5.17, higher than the 48 s required by the MCLS algorithm.

The nature of the implementation, with no underlying operative system or dynamic

memory allocation, and the type of algorithm resulted in a real-time implementation;

indeed, the recorded computational time registers a standard deviation of just 0.15

s, less than 0.01%. Moreover, such variations take into account the communication

overhead, as the time is measured on the host side before and after the communication.

The on-board memory requirements are organized as follows:

❖ 108.95 MB for the .text section, containing function symbols and constant data.

This accounts for most part of the on-board memory requirements since it contains

all the weights and biases of the network.

❖ the .data section accounted for 1.43 KB. This contains non-constant, initialized

variables.
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❖ the .bss section accounted for 155.24 MB and refers to the space occupied by

uninitialized variables.

Overall, the total RAM required is about 264 MB. Therefore, the weights and biases

of the network accounts for 41% of the total RAM required. It should be noted that

no memory optimization is performed during this test. Moreover, a static analysis of

the stack size requirements show that the maximum stack size for the net to run is

about 200 KB. These figures offer large space for improvement, hence exploring solu-

tions involving lower-precision arithmetic, dedicated hardware, and clever review of the

static-declared variables can greatly improve the memory required by the application.

5.3.3 HIL Tests

HIL Test 1

HIL Test 3

PANGU AFC FUMO

Figure 5.18: Example image captured with the AFC FUMO (right) and its correspond-
ing PANGU image (left) for the HIL Test 1 (above) and HIL Test 3 (below)

Fig. 5.18 shows 2 images taken with the HIL setup employed in this work, with the

corresponding PANGU image. It can be seen how the dedicated calibration minimizes

the effects introduced by the camera.
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Figure 5.19: ϵCOM : HIL Test 2 (left); ϵc: HIL Test 1 (right)

Figure 5.20: ϵCOM : HIL Test 4 (left); ϵc: HIL Test 3 (right)

5.3.3.1 HIL Test 1 and HIL Test 2

Fig. 5.19 shows the value of ϵCOM (left) obtained with HIL Test 2 and the value of ϵc

(right) obtained with HIL Test 1, divided in i− (above) and j−directions (below). It

is possible to see that the absolute error of the centroid estimation with respect to GT

oscillates around 20.55 px in the i− direction and around 12.33 px in the j−direction,

with σi = 13.42 px and σj = 8.12 px, respectively. Therefore, even in the most realistic
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scenario where both the shape of the target and the input images are different the

CNN-based IP algorithm centroid estimation follows GT. The average bias introduced

by the camera for HIL Test 1 is negligible, with a value of 9.55 px and 13.02 px, for

the i− and j− directions, respectively.

5.3.3.2 HIL Test 3 and HIL Test 4

Fig. 5.20 shows the value of ϵCOM (left) obtained with HIL Test 4 and the value of ϵc

(right) obtained with HIL Test 3, divided in i− (above) and j−directions (below). It

is possible to see that the absolute error of the centroid estimation with respect to GT

oscillates around 19.32 px in the i− direction and around 14.43 px in the j−direction,

with σi = 11.77 px and σj = 9.67 px, respectively. The slight increase, with subsequent

reduction, of the error in the j−direction from the second day of duration of the DCP

arc seen on HIL Test 4, is the result of a limited error made by the MCLS algorithm

in the estimation of the position of COMGT with Shape 1 of Didymos. The same

reason justifies the imperceptible decrease of the error in the i-direction. Nevertheless,

the obtained values of the error show that even in the most realistic scenario where

both the shape of the target and the input images are different from the training

conditions the CNN-based IP algorithm centroid estimation follows GT. The average

bias introduced by the camera for HIL Test 3 is negligible, with a value of 14.57 px and

12.04 px, for the i− and j− directions, respectively

5.4 Conclusion

This paper discusses the validation of a CNN-based IP algorithm addressing the prob-

lem of centroiding (Geometrical Center) applied to the autonomous visual based nav-

igation around a binary asteroid system. The ECP, the DCP and the COP of the

proximity operations of the Hera mission around the Didymos system are studied as

case scenario. The test campaign consists of OL and CL MIL tests with the FES of

the GNC developed by GMV, OL On-processor tests run on a Zynq 7000 SoC and OL

HIL tests run at the GMV Optical laboratory with the AFC FUMO.
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The OL MIL tests show that the developed algorithm is able to estimate accurately

the position of the centroid of Didymos, showing its ability to perform well with a

dataset of images representing the asteroid in familiar conditions seen during training

(2nd arc of the ECP) and to generalize its solution with a dataset of images representing

the asteroid in unfamiliar orbital conditions (6th arc of the DCP). In particular, the

CL MIL Test shows that the developed IP algorithm can be implemented in the GNC

system to estimate the position of the spacecraft. Future work is directed towards

validating with MIL tests the developed IP algorithm considering all the arcs of the

ECP and DCP.

The On-processor tests shows that the computational time required to process a sin-

gle image is higher than the one baselined for the mission. Furthermore, the total RAM

required to run the algorithm on board is high compared to the one available from a

standard OBC processor. Future works foresee the implementation of the algorithm on

other architectures (e.g. a LEON3 processor similar to the one used on the Hera space-

craft) and the evaluation of different implementations. For instance, working in single

or fixed precision is expected to improve the computational performances with minimal

impact on the accuracy and output of the network. Moreover, hardware-accelerated

implementations exploiting Field Programmable Gate Array (FPGA) architectures are

expected to decrease the computational time required for a single image processing by

at least an order of magnitude, as both the IP pipeline and the HRNet structure are

well-suited for parallelization.

The HIL tests show that the electro-optical effects introduced by the camera are

minimal when estimating the centroid of Didymos. The CNN-based IP algorithm is

robust to a different shape of the target with respect to the one used in training.

Nevertheless, the results obtained depend on the dedicated calibration, which in this

work aimed to minimize the difference between the acquired image and the PANGU

image. During mission operations the images acquired with the camera will be different

from the synthetic ones of PANGU: the different shape of the target, the presence of

stars in the background and any other disturbance, the different illumination conditions

and the high albedo that characterizes asteroids are all factors to take into account
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when performing the calibration from ground. To optimize the centroiding estimation,

a subset of images of the target acquired by the camera will be needed in order to

fine-tune in-flight the developed IP algorithm prior to its utilization in the dedicated

proximity operations.

In this work the challenges faced usually by a standard IP algorithm are analyzed

through the DDVV strategy of GMV. Nevertheless, the behaviour of the developed

CNN-based IP algorithm in other contingencies is essential to determine its general-

ization capability and the ability to bridge domain gaps. Future work will analyze

the robustness of the algorithm in scenarios never seen during training such as: ad-

verse illumination conditions, very different shape of the target, presence of noises and

distortions and more in general using images generated with other tools.

175



Chapter 6

Pose estimation of Dimorphos

using CNN-based Image

Processing algorithm

To live is to suffer, to survive is

to find some meaning in the

suffering

Friedrich Niestzche

Kaluthantrige A., Feng, J.‡ and Gil-Fernández, J.

In development

‡Associate professor, Department of Mechanical and Aerospace Engineering, University of
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Paper content

This chapter discusses the development and application of an artificial intelligent-based

image processing algorithm for estimating the six degrees of freedom (6-DoF) pose,

position and attitude, of Dimorphos during the Close Observation Phase of ESA’s Hera

mission. This chapter does not address a specific research question; rather, it serves

as a preliminary investigation aimed at addressing one of the significant challenges

anticipated during the Hera mission’s proximity operations.
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Abstract

The Close Observation Phase (COP) is the proximity operation of the European Space

Agency (ESA)’s Hera mission with the objective of obtaining high-resolution images

of the target asteroid Didymos and its moon Dimorphos. The relative attitude of Di-

morphos with respect to the spacecraft remains unsolved as standard feature tracking

navigation techniques require closer distances to be able to extrapolate relevant feature

from the target’s surface. In this work we estimate the continuous six degree of free-

dom pose (position and attitude) of Dimorphos during the COP using a Convolutional

Neural Networks (CNN)-based Image Processing (IP) algorithm, which is independent

from the surface appearance. Instead, the algorithm relies on the lit limb of the target

asteroid, and it consists of two stages. In the first stage, we use CNNs with the images

captured by the spacecraft on-board camera to regress a set of keypoints segmenting

Dimorphos from its background. In the second stage, we use Neural Networks (NN) to

map these keypoints to the four quaternions representing the estimated relative rota-

tion matrix of Dimorphos with respect to the spacecraft. The estimated keypoints are

also used to estimate the position of the centroid of Dimorphos and its relative distance

with respect to the spacecraft, which together provides the estimated relative position

vector of the spacecraft.

6.1 Introduction

A joint space mission born with the collaboration between NASA and the European

Space Agency (ESA) is underway with the aim of sending a group of spacecraft to the

binary asteroid system known as (65803) Didymos. The objective of this cooperative

effort can be summarized in three main goals:

❖ To explore the viability of a planetary defense strategy involving a kinetic im-

pactor;

❖ To enhance our understanding of small celestial bodies within the solar system;

❖ To advance the technology required for future asteroid missions.
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NASA launched the Double Asteroid Redirection Test (DART) mission in November

2021, and its primary task to execute a kinetic impact on the secondary body of the

Didymos system, Dimorphos, was accomplished in September 2022. ESA’s contribu-

tion, the Hera mission, is scheduled to reach the asteroid approximately five years after

the impact. Hera’s mission objectives include a detailed investigation of the effects

caused by DART’s kinetic impact and the execution of additional scientific observa-

tions. As a component of the Hera mission, two CubeSats will be deployed from the

main spacecraft upon arrival. These CubeSats will orbit the Didymos system closely,

enabling comprehensive scientific observations. Juventas, one of these CubeSats, is

designed to land on the surface of Dimorphos. During Juventas’ descent, on-board

cameras will capture images of Dimorphos’ surface, potentially including the impact

site of DART [36,37].

The two CubeSats will be released during the Close Observation Phase (COP) of the

proximity operations of the Hera mission. The COP has the objective of obtaining high-

resolution images of Dimorphos and fully characterizing the impact crater. The success

of the landing phase require accurate knowledge of the relative attitude of Dimorphos,

as well as a high-level of autonomy to operate safely at close distances [166]. Table 6.1

shows the properties of the binary asteroid system estimated with DART’s observations

prior to the impact [28,29].

Table 6.1: Shapes of Didymos and Dimorphos prior to DART’s impact [28,29]

Parameter Didymos Dimorphos

Extent along principal
axis x [m]

849± 5.6 177± 1.2

Extent along principal
axis y [m]

851± 5.6 174± 1.2

Extent along principal
axis z [m]

620± 5.6 116± 1.2

Autonomous optical navigation is designed for this phase based on line-of-sight and

range measurements from both the primary body and Dimorphos in order to estimate

the relative position of the spacecraft. Autonomy is essential due to potential com-
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munication delays or limited coverage that makes impractical to rely solely on ground

control station commands for navigating relative maneuvers. The navigation system

includes the on-board Asteroid Framing Camera (AFC) taking images of the asteroid,

an Image Processing (IP) algorithm that extracts information from these images, and

a navigation filter that combines the visual data with the dynamical environment to

estimate the relative state of the spacecraft with respect to the target [58]. The close

distance between the primary and the spacecraft during the COP allows the implemen-

tation of feature tracking relative navigation to solve the primary’s relative attitude.

An IP algorithm extracts relevant features from the captured images of the target.

Given the latter’s shape, the features are then tracked and combined with a Kalman

Filter to solve for the target’s position and attitude. This approach was used in previ-

ous asteroid rendezvous missions as well, such as Rosetta or Hayabusa 2. In the former

the features were used to reconstruct the shape and the attitude of the target with the

aid of ground operators. In the latter the process was made entirely on board, using the

features extracted in the first phases of the close proximity operations to reconstruct

the target’s shape prior to the attitude [118,167–169].

Nevertheless, estimating the relative attitude of Dimorphos remains an unsolved

problem as feature tracking algorithms require closer distances in order to be able

to detect relevant features, due to Dimorphos’ reduced size. Furthermore, studies on

the attitude dynamics of Dimorphos consequently to the DART impact suggest that

unstable tumbling is possible, which could potentially add further challenges for a

feature tracking relative navigation algorithm [91].

In this work we develop a monocular pose estimation (position and attitude) algo-

rithm for Dimorphos during the COP using a Convolutional Neural Networks (CNN)-

based IP algorithm. Monocular pose estimation consists on leveraging 2D images taken

by a camera on board the spacecraft to estimate the relative pose of a target. Estima-

tion methods are divided into model-based, which makes use of a simplified wireframe

3D model of the target, and non-model based, which relies on the appearance or rele-

vant features of the target. Given that a precise wireframe model of asteroids is difficult

to attain prior to the close encounter of the spacecraft, our methodology is non-model
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based [94,170,171].

The key of the developed algorithm is to leverage the lit limb of the target to

estimate the rotation matrix representing the relative orientation of Dimorphos with

respect to the spacecraft. By relying on the visible portion of the shape of the target,

the developed algorithm is not constrained on the prior knowledge of the spinning state

of the target [172]. Furthermore, relevant features such as craters or boulders can be

detected only at reduced relative distances from the target, which is not the case for

the whole COP trajectory. The choice of CNNs over standard IP algorithms is dictated

by the robustness of the former over the adverse characteristics of the taken images,

such as noise, distortions introduced during acquisition, the presence of stars or other

undesired objects, the overall brightness and the irregular shape of Dimorphos. The

challenges represented by these disturbances are addressed by the authors of this work

in [80].

This paper is structured as follows. Section 6.2 describes in detail the developed

algorithm. In Section 6.3 we show the obtained results during the COP trajectories

and discuss the performances and applicability of the algorithm. Finally, Section 6.4

concludes this research and recommends future research directions.

6.2 Methodology

This section provides a detailed description of the monocular pose estimation algorithm

developed in this work. With centroid or Center of Mass (COM) we refer to the

geometrical center of the target body projected on the image. Fig. 6.1 shows the main

steps of the pipeline of our methodology. The pipeline of our IP algorithm consists

of three main modules: Regression, Mapping and Pinhole. The first module refers to

the regression of the COM of Dimorphos and of a number of keypoints on its lit limb

once an image is available at epoch tk+1, and it is carried out by CNNs using the High-

Resolution Network (HRNet) architecture. The second module refers to mapping the

regressed keypoints to the rotation matrix describing the relative attitude of Dimorphos

with respect to the spacecraft. The second module is carried out by a Neural Network
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Figure 6.1: Pipeline of CNN-based IP algorithm for Dimorphos’ pose estimation

(NN) developed in this work. In the third and final module the regressed keypoints are

used to estimate the range of the spacecraft from the secondary using the pinhole camera

model. The estimated range together with the estimated position of the COM are

then combined with an Unscented Kalman Filter (UKF) together with the information

derived from the dynamical environment to provide an estimate of the relative position

of Dimorphos with respect to the spacecraft. The estimated relative attitude and

position represent together the full estimated pose of Dimorphos at tk+1.

The algorithm presented in this work builds upon [80], where the main objective

was to build an IP algorithm estimating the position of the COMs of Didymos and

Dimorphos, the range from Didymos and the Sun-phase angle, while having the camera

pointing towards Didymos. The shape models used were the ones obtained via ground

observations, before the updates provided by DART in September 2022. In contrast, in

this research the camera points towards Dimorphos, the target of the developed pose

estimation algorithm. Furthermore, the shape models are updated with DART’s close

encounter observations. Compared to [142] we use two reference trajectories for testing

the algorithm (Section 6.2.1) and the same software to generate synthetic images of

Didymos and Dimorphos (Section 6.2.2). The details of the developed algorithm are

182



presented in the next part of this section.

6.2.1 Reference trajectories

Figure 6.2: ECP trajectory [142]

Figure 6.3: DCP trajectory [142]

The three reference trajectories used in this work are the Early Characterization

Phase (ECP),the COP and the Detailed Characterization Phase (DCP) of the Hera

mission. The ECP and the DCP are the first proximity operations, when the spacecraft
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Figure 6.4: COP trajectory [173]

is conducting a physical and dynamical characterization of the target binary asteroid

system [35]. Fig. 6.2, Fig. 6.3 and Fig. 6.4 illustrate respectively the ECP, the DCP

and the COP trajectory in the Target Body Equatorial Inertial (TB) reference frame,

which has the origin centered on the geometrical center of Didymos, the fundamental

plane coplanar with the equatorial plane of Didymos and the X-axis of the Earth-

centered Ecliptic Inertial reference frame. The ephemeris of the target are reported in

Table 6.2 [20,101,142,173].

In this work the orbit of Dimorphos around Didymos prior to the impact is used.

DART’s impact changed the orbital period of Dimorphos by an additional 33.25 min

±15 s. This value is still evolving, which suggests that the impact generated debris

whose gravitational attraction on Dimorphos act as a force against its along-track

velocity [174]. Furthermore, prior to the impact, Dimorphos was tidally-locked to

Didymos, i.e. its rotation period, along one of its principal axis of rotation, was equal

to its orbital period, shown in Table 6.2. Nevertheless, studies shown that Dimorphos’

spin state was excited by the impact, causing rotations along its non-principal axes.

Dissipative effects generated by the tidal forces of Didymos may not be extremely

efficient for Hera to find Dimorphos in a relaxed spin state [154]. For the sake of

simplicity, we consider Dimorphos in its relaxed rotation prior to the impact.
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Table 6.2: Selected orbital properties of Didymos system [20,101]

Heliocentric orbit

Semi-major axis [au] 1.642665 ± 2.7214e− 9

Eccentricity [] 0.383264 ± 1.3374e− 10

Inclination [◦] 3.41415 ± 1.6188e− 8

Longitude of ascending node [◦] 72.987867 ± 2.1852e− 7

Orbital period [yr] 2.105386 ± 5.2320e− 10

Dimorphos’ orbit around Didymos

Semi-major axis [m] 1190 ± 30

Eccentricity [] 0

Orbital period [hr] 11.93 ± 0.01

Rotational period [hr] 11.93 ± 0.01

The ECP, the DCP and the COP trajectories are provided by ESA. The trajectories

are made by patching several hyperbolic arcs in order to be able to escape the gravita-

tional attraction of Didymos for the safety of operations. The distance with the target

and the position of the arcs with respect to the Sun take into account two main drivers:

the Field of View of the AFC, that needs to be able to contain the whole shape of

Didymos (ECP and DCP) and Dimorphos (COP), and the need for bright images (Sun

phase angle γ < 90◦) for the IP algorithm. The ECP consists of four square-shaped

arcs while the DCP and the COP consist of several z-shaped arcs, all the trajectories

with a total duration of 14 d. The minimum and maximum distances are respectively:

20 km and 30 km for the ECP, 9 km and 23 km for the DCP and 4 km and 22 km for

the COP, shown in Fig. 6.5, Fig. 6.6 and Fig. 6.7 [40,142] respectively.

6.2.2 Image generation

The database of images used in this work to develop the monocular pose estima-

tion algorithm is generated with the software Planet and Asteroid Generation Utility

(PANGU), a simulation tool developed by the STARDundee engineering company used

widely across multiple ESA interplanetary missions to validate their optical navigation

systems. With PANGU it is possible to model the shapes and surfaces of Didymos and
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Figure 6.5: Range from Didymos during ECP trajectory [142]

Figure 6.6: Range from Didymos during DCP trajectory [142]

Dimorphos and to render them, in order to provide a high-fidelity visualization of the

mission scenario [102]. The shape models of Didymos and Dimorphos are provided by

GMV Aerospace and Defence, in charge of the development of the software for the GNC

of the Hera mission, and updated with the observations retrieved by the DART mission

before the impact, shown in Table 6.1. Given that the extents along the x and y axes

are larger than the one along the z axis, the shapes of Didymos and Dimorphos are

similar to two oblate ellipsoids. For Dimorphos, a scaled-down shape model of asteroid

Itokawa, the target of the Hayabus mission, is used. It is not known whether the impact

with DART generated a crater on Dimorphos’ surface, or whether said crater will be
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Figure 6.7: Range from Didymos during COP trajectory

absorbed by the time the Hera spacecraft reaches the target. Postimpact measurements

revealed an elongated ellipsoidal shape, which is still into evolution due to the chaotic

rotation/orbital motion of Dimorphos [174].

PANGU shows the generated images on its viewer, set up with the properties of

the AFC, reported on Table 6.3 [103, 104]. The viewer is a plane of the size of the

image captured by the camera, and the coordinates of each pixel are identified in the

viewer’s reference frame, which has the origin on the top left corner and the x- and

y-axis referred to as i- and j-direction respectively, as shown in Fig. 6.8. When the

GNC system is in the asteroid imaging mode, the AFC has its boresight axis pointing

towards Didymos or Dimorphos, and the spacecraft attitude is such that the position

vector of the Sun is always parallel and opposite to the i−direction. As a consequence,

the binary asteroid system is shown in the PANGU viewer always illuminated from its

right side.

Table 6.3: AFC properties [103,104]

Field Of View
(FOV)

Focal length: f Aperture Image size Pixel size: ν

5.5◦ 10.6 cm 2.5 cm 1024× 1024 px 14 µm

In this work, PANGU is used to generate:
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Figure 6.8: Example of image taken during ECP and shown in the PANGU viewer

❖ Dataset 1: 40, 000 images taken during the ECP. The trajectory is augmented

by adding two fictitious diagonal arcs that connect the vertices of the square,

as shown by the cyan circles in Fig. 6.9. A subset of Dataset 1 is generated

considering a closer augmented ECP trajectory, shown with the yellow circles

of Fig. 6.9. A pointing error of a maximum absolute value of 10% of the AFC

FOV is considered for each generated image to change the position of Dimorphos

randomly on the PANGU viewer.

❖ Dataset 2: 6, 052 images taken sampling the COP trajectory every 200 s with a

pointing error per image generated as in Dataset 1.

❖ Dataset 3: 450 images taken sampling the DCP trajectory every 3600 s with a

pointing error per image generated as in Dataset 1.

Dataset 1 is used as the training and validation database for the HRNet and the NN.

The ECP trajectory is augmented in order to see the asteroid from different point
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of views. The goal is to tune the monocular pose estimation algorithm leveraging

the information collected with the ECP, the first phase of the proximity operations.

Afterwards, the algorithm is tested using Dataset 2, generated during the COP, where

this algorithm is necessary to achieve the objectives of this phase of the mission. Dataset

3, generated with the DCP trajectory, is used for testing the algorithm and analyze its

generalization capability, even if the pose estimation of Dimorphos during this phase

of the proximity operations is not required.

Figure 6.9: Augmented ECP trajectory [142]

6.2.3 CNN-based Monocular Pose Estimation algorithm

The key of the developed algorithm is the direct correlation between the lit limb of Di-

morphos and its relative orientation with respect to the camera, given that the shape

model of Dimorphos, represented by a scaled-down Itokawa, is an irregular oblate ellip-

soid, and that the source of illumination is always on the right side of the images. Once

the relative orientation is solved, we use the pinhole camera model to solve for the range

and we combine it with the position of the COM to estimate the relative position of the

spacecraft. Dataset 1 is split randomly in 38, 000 images for training and 2, 000 images

for validation, while the 6, 052 images of Dataset 2 and the 450 images of Dataset 3

are used for testing. The four sets of images are pre-processed manually by discarding
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the images where Dimorphos is not visible at all due to the presence of Didymos. The

resulting sizes of the training, validation and testing datasets are respectively 33, 530

(83.13%), 1, 790 (4.44%), 5, 016 (12.43%).

6.2.3.1 Regression

The first step of the developed algorithm is the regression of the position of the COM

and of a set of keypoints on the lit limb of Dimorphos. This is performed by the

HRNet, a CNN architecture that has the ability to preserve the high resolution of

the input image throughout the whole newtork, which leads to a keypoints regression

with high accuracy and high spatial resolution [107]. In particular, the pose-hrnet-w32

architecture of the HRNet is used for this algorithm [122].

We selected 30 keypoints on the lit limb within an arc of angular aperture 2θ with

θ = 130◦ being the angle formed with the i−direction of the PANGU viewer. The

number of keypoints on the lit limb and the angular aperture θ selected in this work

results from a trade-off between maximising the accuracy of the estimated pose of

Dimorphos and the overall required computational power. Fig. 6.10 shows a sample

image of Dataset 1 with the Ground Truth (GT) position of the COM and of the 30

keypoints on the lit limb. The GT position of the keypoints is obtained removing

Didymos from the images, as it sometimes covers partially or totally Dimorphos, and

it is calculated as explained in [142].

Table 6.4 shows the parameters describing the HRNet together with the computa-

tional performance.

6.2.3.2 Mapping

The second step of the developed algorithm consists in mapping the lit limb with the

relative orientation of Dimorphos with respect to the spacecraft. Given an image of

Dimorphos, the X and Y coordinates of the position of the i-th keypoint Ki on the

image depends on three factors: the projected shape Ψ of Dimorphos on the image as

seen by the spacecraft (i.e. its relative orientation), the Sun phase angle γ and the

range from the spacecraft r. Indeed, when the range of the spacecraft from Dimorphos
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        Limb keypoint
        𝜃 = 130∘

Figure 6.10: Example of GT keypoints on image of Dataset 1

decreases, the projection of Dimorphos on the image is bigger in size, and the keypoints

on the lit limb are located further apart from each other. In order to eliminate the

dependency of the keypoints’ positions on the range, the coordinates X and Y of each

i-th keypoint Ki on the lit limb is normalized using the coordinates XCOM and YCOM

of the position of the COM, as shown in Eq. 6.1. The end result is a set of 30 normalized
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Table 6.4: Parameters of the HRNet [107]

Parameter Value

Optimizer Adam

Learning rate 0.001

Decaying rate 0.1

Batch size 32

Number of epochs 210

Processor NVIDIA V100 Tensor Core GPU

Training time ∼ 48 hr

Deploying time ∼ 10 s

Number of parameters 28, 536, 575

Total weight 109 MB

keypoints ki with coordinates xi and yi, function of (Ψ, γ).

xi =
30(Xi −XCOM )∑30
1 |Xi −XCOM |

yi =
30(Yi − YCOM )∑30
1 |Yi − YCOM |

(6.1)

As explained in Section 6.2.1, the need for bright images during the proximity

operations result in a Sun phase angle always lower than 90◦. Moreover, the relative

orientation of the spacecraft is such that the lit limb is always the right one. Therefore,

the relative position of the keypoints on the image loses its dependency from the Sun

phase angle γ, as lower values than 90◦ do not change the portion of illuminated border.

Consequently, the set of 30 normalized keypoints ki are solely functions of the projected

shape Ψ of Dimorphos on the images, which depends on the relative orientation of

Dimorphos with respect to the spacecraft.

Given the rotation matrix RC
T from the TB reference frame to the camera reference

frame and the rotation matrix RB
T from the TB reference frame to the body fixed

frame of Dimorphos, the relative rotation matrix RB
C that represents the attitude of
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Dimorphos with respect to the camera can be calculated with Eq. 6.2.

RB
C = RB

T · inv(RC
T ) (6.2)

The relative rotation matrix RB
C is translated using Eq. 6.3 into the 4 quaternions [46].

q0 =
1

2

√
1 + C11 + C22 + C33

q1 =
1

4q0
(C23 − C32)

q2 =
1

4q0
(C31 − C13)

q3 =
1

4q0
(C12 − C21) (6.3)

The notation Cij refers to the i-th and j-th element of the rotation matrix RB
C . In

this work, the short rotation around the Euler principal axis (q0 > 0) is considered.

Dataset 1 is used to calculate the GT values of the position of the normalized keypoints

with Eq. 6.1 and of the 4 quaternions with Eq. 6.3, which are used to supervise the

training of the NN developed in this work, therefore learning the relationship between

the regressed lit limb of Dimorphos and its relative attitude.

The NN architecture consists of 7 fully connected layers with Rectified Linear Unit

functions and a number of nodes per layer that decreases throughout the network.

The input layer has a number of neurons equal to 60, which represents the x and y

coordinates of the position of each of the 30 normalized keypoints. The output layer

has 4 neurons which are normalized in order to get the estimation of the 4 quaternions.

Table 6.5 shows the parameters describing the NN together with the computational

performance. The NN architecture is built considering a compromise between the

accuracy of the results obtained with a subset of images of Dataset 1 and the total

weight of the model.

6.2.3.3 Pinhole

The last step of the developed algorithm consists in estimating the relative position of

Dimorphos with respect to the spacecraft using the pinhole camera model. The latter
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Table 6.5: Parameters of the NN developed in this work

Parameter Value

Optimizer Adam

Learning rate 0.001

Decaying rate 0.1

Batch size 32

Number of epochs 1000

Processor NVIDIA GeForce RTX 2070 with Max-Q
Design

Training time ∼ 6 hr

Deploying time ∼ 5 s

Number of parameters 13, 719, 124

Total weight 40 MB

is a first-order approximation of the relationship between the 3D space and the 2D

image obtained with the camera [106]. This model was used by the author in [142] to

estimate the range with Didymos during the ECP and the DCP of the Hera mission,

using the shape models of Didymos and Dimorphos prior to DART observations. The

shape of Didymos was approximated to a sphere and with the pinhole camera model

the range ρ was calculated by comparing the radius in pixel nR of the asteroid to the

corresponding value in meters R using Eq. 6.4:

nR · ν =
f ·R
ρ

(6.4)

where ν and f are respectively the pixel size and the focal length of the AFC camera,

whose values are reported on Table 6.3. While this methodology works for a sphere

that is always projected as a circle on a 2D image, in the case of an ellipsoidal shape

such as the one of Dimorphos an additional step is required.

For each image, we calculate nL, which represents the number of pixels from the

regressed position of Dimorphos’ COM to the keypoint P on its lit limb at θ = 0◦, as

shown in Fig. 6.11. With the estimated RB
C , hereafter referred to as R for simplicity,
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        Limb keypoint
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Figure 6.11: Characteristic length of Dimorphos

and the pinhole camera model, the corresponding value of nL in meters is given by

Eq. 6.5.

L =
√

(a · (R11)2 + (b · (R21))2 + (c · (R31)2 (6.5)

where a, b and c represent the extent of Dimorphos along the principal axis x, y and

z respectively, shown in Table 6.1, and Rij represent the ij-th element of the matrix

R. Comparing the lengths nL and L, Eq. 6.4 can be solved for the range ρ as shown in

Eq. 6.6.

ρ =
f · L
nL · ν

(6.6)
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6.2.4 Navigation filter

We use the UKF developed in [142] to couple the dynamics and the measurements

obtained with the monocular pose estimation algorithm and to estimate the relative

position of Dimorphos with respect to the spacecraft. The UKF uses non-linear func-

tions to propagate the state of the spacecraft including its covariances with a technique

called the Unscented Transformation [123]. The developed UKF in this work is a trans-

lational navigation filter as it is applied only for the relative position and not for the

relative attitude which is given by the NN as shown in Section 6.2.3.2. The sole force

considered in this work is the gravitational attraction of Didymos and Dimorphos, as

in Eq. 6.7.

f = −µDrDH

r3DH

− µdrdH
r3dH

(6.7)

where rDH and rdH are the relative position vector of the spacecraft with respect to

Didymos and with respect to Dimorphos respectively in the TB reference frame. By

using the relative form of Eq. 6.7 we obtain Eq. 6.8 [46]:

¨rDH = −µDrDH

r3DH

+ µd

(
−rdH
r3dH

− rDd

r3Dd

)
(6.8)

where rDd is the position vector of Dimorphos with respect to Didymos. Notably, the

term we are estimating in Eq. 6.8 is rdH that is the opposite of the relative position

vector of Dimorphos with respect to the spacecraft rHd. The dynamics equations does

not include the maneuvers that connect each arc of the analyzed proximity operations

trajectory, as the measurements are expected to capture this information.

The measurements obtained by the monocular pose estimation algorithm are the

X and Y coordinates of the position of the COM of Dimorphos and the range from the

spacecraft, which are related to the position vector rdH with Eq. 6.9 and Eq. 6.10.

COM = K
[
RC

T | rDH

]
rdH (6.9)

ρ = ||rdH || (6.10)

where K is the calibration matrix that depends on the properties of the AFC (Ta-
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ble 6.3). The rotation matrix RC
T is assumed to be given by the attitude determination

system of the spacecraft. The measurements are available every 200 s for Dataset 2

and every 3600 s for Dataset 3.

The complete settings of the UKF parameters are given in Table 6.6.

Table 6.6: Unscented Kalman Filter variables

Variable Symbol Value

Initial error in position errp (2, 2, 2) [km]

Initial covariance matrix of the
state

P (10002 [m2], 10002 [m2], 10002 [m2])

Covariance matrix of the process Q (10002 [m2], 10002 [m2], 10002 [m2])

Covariance matrix of the measure-
ments

R (152 [px2], 102 [px2], 5002 [m2])

6.3 Results

COM

     Limb keypoint

Figure 6.12: Example keypoints regression results

In this section, the results of the CNN-based IP algorithm for the relative pose

estimation of Dimorphos during the DCP and the COP trajectories are presented.
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The HRnet is able to estimate the position of the keypoints on each image of the

testing dataset, as shown in the example of Fig. 6.12. Two separate error metrics

for the relative position and attitude respectively are adopted in the evaluation of the

accuracy of the proposed algorithm [145]. Firstly, the translational error between the

estimated relative position Xest and XGT is computed as in Eq. 6.11. ϵT is a vector of

components [ϵx, ϵy, ϵz].

ϵT = |Xest −XGT | (6.11)

Secondly, the attitude accuracy is measured in terms of the Euler axis-angle error

between the estimated relative quaternion qest and qGT with Eq. 6.12:

qe = (qse qve ) = qGT ⊗ qest

ϵR = 2 · arccos(|qse|) (6.12)

qs and qv refer respectively to the scalar and the vectorial component of the quaternion.

As reference values to validate the algorithm, 1 km and 10◦ are considered as max-

ima for the error in the estimated position (for each coordinate) and for the estimated

attitude respectively. These values are obtained considering previous small body mis-

sions and standard landing procedure requirements [58].

The trained algorithm is deployed on Matlab with the local GPU NVIDIA GeForce

RTX 2070 with Max Q-design. The average computational time required for the algo-

rithm to process an image and output the results is 6.42 s.

6.3.1 COP pose estimation results

The estimated trajectory of the COP resulting from the navigation filter is shown in

Fig. 6.13, and the errors ϵT and ϵR are shown in Fig. 6.14 and Fig. 6.15.

The initial error in the position estimate quickly decreases with the first measure-

ment as shown in Fig. 6.14. The error oscillates around a mean value of 87.85 m,

−710.31 m and −267.44 m for the x−, y− and z−coordinates respectively, with peaks

lower than 1 km for each axis. The effect of the spacecraft maneuvers can be barely
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Figure 6.13: GT vs Estimated trajectory of the COP

Figure 6.14: Error in position estimation of the COP

seen on the position error. This shows the capability of the filter to react to unmodelled

accelerations like the maneuvers of the spacecraft and keep the navigation error low.

Notably, the position estimation is not depending on the range of the spacecraft from

Dimorphos, which can be seen by comparing Fig. 6.14 with Fig. 6.7. The promising

performances of the algorithm during this trajectory can also be seen from Fig. 6.13,

where the estimated and the true trajectories of the COP diverge limitedly.

Fig. 6.15 shows that the attitude estimation error oscillates around 3.55◦ with a
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Figure 6.15: Error in attitude estimation of the COP

maximum value of around 40◦ obtained for one image of the testing dataset, which does

not affect the range estimation since the position estimation error shown in Fig. 6.14

does not increase. The standard deviation on the x−, y− and z−coordinate of the

position estimation error and the attitude estimation error are respectively σx = 132

m, σy = 211 m, σz = 148 m, σR = 1.2◦. Since both the means of the errors in the

position and attitude estimation are lower than the maxima of 1 km and 10◦, the

CNN-based monocular pose estimation is validated for the COP trajectory.

6.3.2 DCP pose estimation results

The estimated trajectory of the DCP resulting from the navigation filter is shown in

Fig. 6.16, and the errors ϵT and ϵR are shown in Fig. 6.17 and Fig. 6.18.

It can be seen that the CNN-based monocular pose estimation algorithm’s perfor-

mances are lower for this trajectory. In particular, although the initial error in the

position estimate decreases with the first measurement, it stays high for the three posi-

tion coordinates, oscillating around −1446.3 m, −2271.4 m and 2128.4 m respectively.

Furthermore, for the z−coordinate the error increases around mid trajectory, reaching

peaks of almost 4 km. Notably, the position estimation is not depending on the range

of the spacecraft from Dimorphos, which can be seen by comparing Fig. 6.17 with
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Figure 6.16: GT vs Estimated trajectory of the DCP

Figure 6.17: Error in position estimation of the DCP

Fig. 6.6. The worse performances of the algorithm for this trajectory can also be seen

in Fig. 6.16 where the estimated trajectories have limited divergences from the true

ones of the COP.

Fig. 6.18 shows that the attitude estimation error oscillates around 38.47◦ with

peaks reaching almost 100◦. This means that the algorithm failed to meet the accuracy

requirement and it is not capable of estimating the relative attitude of Dimorphos

during the DCP trajectory. The standard deviation on the x−, y− and z−coordinates
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Figure 6.18: Error in attitude estimation of the DCP

position estimation error and the attitude estimation error are respectively σx = 696

m, σy = 421 m, σz = 323 m, σR = 27.27◦. Since both the means of the errors in

the position and attitude estimation are higher than the maxima of 1 km and 10◦,

the CNN-based monocular pose estimation algorithm is not validated for the DCP

trajectory.

6.4 Conclusions

A CNN-based monocular pose estimation algorithm is presented in this work. The

algorithm is an appearance-based method that estimates the continuous 6-dof pose of

Didymos’ moon Dimorphos relatively to the Hera spacecraft during the DCP and the

COP of the proximity operations of the mission. The algorithm uses the HRNet CNN

architecture and a NN architecture developed in this work to estimate the relative

attitude of the target, the distance from the target and the position of the COM of

the target from synthetic images generated with the rendering software PANGU. The

shape model of Dimorphos obtained by DART prior to the impact is taken into account.

The COM measurements and the range measurements are combined with an UKF to

estimate the relative position of Dimorphos with respect to the spacecraft and complete

the pose estimation. The algorithm is trained with images obtained with the first phase
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of the proximity operation, i.e. the ECP.

The results show that the algorithm is able to meet the pose estimation accuracy

requirements for the COP, both for the relative position (< 1 km) and for the rela-

tive attitude (10◦). In particular, the algorithm shows no dependency on the distance

between the spacecraft and the target. Nevertheless, the results show limited perfor-

mances for the pose estimation of Dimorphos during the DCP. Both the position and

attitude estimations diverge considerably from GT values, making it impossible to use

the algorithm during this phase of the proximity operations. Ultimately, the algorithm

is highly depending on the projected shape of the target on the images; therefore, the

CNN and NN architectures lacks generalization capabilities and requires a larger pool

of data for training. This also means that when the Hera spacecraft will arrive to the

Didymos system it will require to collect a high amount of images of the target asteroid

for its fine-tuning in order to optimize its performances on pose estimation. It has to

be noted that the spacecraft might find the target still in an tumbling state, which

could potentially lead to a continuous variation of its principal moments of inertia, i.e.

its shape.

Future work will go into the direction of increasing the robustness of the algorithm

by considering during training not only different relative orbital geometry of the systems

but also slightly different shapes of the target.
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Chapter 7

Conclusion and Future Work

We are more fulfilled when we

are involved in something bigger

than ourselves

John Glenn

7.1 Discussion and Answers to the Research Questions

In the introduction of this thesis, an overall thesis statement was made and several

RQs were formulated to support the statement and to drive the research presented.

Each chapter of this thesis answered to the RQs and fulfilled the ROs as described in

Section 1.3.2. This chapter reports the main high-level conclusions that answer the

introduced RQs, which are repeated here for convenience.
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7.1.1 RQ 1

To what extent can optical navigation strategies benefit from AI-based IP

algorithms?

7.1.1.1 RQ 1a: What are the IP tasks that can be improved compared to

standard approaches?

In Chapter 2, the HRNet-based IP algorithm used throughout the thesis was intro-

duced, and applied to the ECP and the DCP proximity operations of the Hera mission

around the binary asteroid system (65803) Didymos. Fig. 2.1 shows the pipeline of this

algorithm. The latter inputs 1024× 1024 px synthetic images generated with PANGU

and emulating the on-board camera pictures, and solves for the regression of specific

keypoints on the image, which are used to estimate variables that can improve the

overall navigation strategy.

In particular, the algorithm has been able to solve for the centroiding of Didymos

and Dimorphos, the range from the primary and the Sun phase angle. Given that

standard approaches solve just for the centroiding of the primary body, the last three

quantities represent results of additional IP tasks that can be performed by an AI-based

IP algorithm.

Additionally, standard IP algorithms are affected by the adverse illumination con-

ditions of the scenario, the irregular shape of the target and the disturbances caused by

the presence of two bodies. The developed algorithm demonstrated to be independent

from such quantities. In particular it has been able to solve for the centroiding of Di-

morphos during partial and total eclipse, which is a unique contribution of this work.

Finally, the algorithm has been able to generalize its solution for most of the DCP,

showing robustness over different trajectories and, thus, different orbital geometries.

In conclusion, this research demonstrated the improved performance of AI-based

IP algorithms compared to standard approaches, both in terms of IP tasks that can be

performed, and in terms of robustness to IP typical challenges.
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7.1.1.2 RQ 1b: What degree of performance can be achieved adopting a

stand-alone AI-based optical navigation system for positioning?

In Chapter 3, the previously developed algorithm has been improved and combined with

an UKF to analyze the navigation performance during the DCP of the Hera mission, as

shown in Fig. 3.1. The algorithm uses the estimated centroid of Didymos, centroid of

Dimorphos (if available), and range from the primary to estimate the relative position of

the spacecraft with respect to Didymos. Furthermore, the algorithm uses an IP-based

covariance method to analyze the reliability of the provided measurements.

The results showed that the stand-alone HRNet-based optical navigation system has

been able to estimate the position of the spacecraft accurately, even if the dynamical

model considered did not account for the maneuvers between each arc of the trajectory.

In conclusion, the algorithm performs well for navigation purposes and it could

be implemented on board the spacecraft, taking into account that it would require

an additional fine-tuning with a subset of images taken with the on-board camera to

optimize its output according to the real mission scenario.

7.1.2 RQ 2

What are the challenges of validating AI-based IP algorithms for the

implementation on a real asteroid rendezvous mission?

7.1.2.1 RQ 2a: What are the tests needed to bridge domain gaps and

optimize the generalization capabilities of AI-based IP algorithms?

In Chapter 4, the HRNet-based IP algorithms built in the previous chapters has been

stress-tested with a series of FTs aimed to analyze its generalization capability. The

test campaign consisted in feeding the developed algorithm with images never seen

during training, which emulate the potential contingencies typical to a standard mission

scenario. Specifically, the images showed the binary asteroid system in conditions of

adverse Sun phase angles, different noise levels, and different shape models of the target.

The results showed that the HRNet-based IP algorithm has been able to perform

accurately in these adverse conditions, demonstrating a high-level of robustness and a
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capability to bridge domain gaps.

Additionally, the HRNet-based IP algorithm has been able to perform well consider-

ing images generated with a different rendering software and different shape models of

Didymos and Dimorphos compared to the ones used for training. This test showed that

the developed algorithm is robust to the most probable contingency, i.e. images cap-

tured from the on-board camera different from the ones used for the ground validation

and different shape of the target asteroid.

In conclusion, the AI-based IP algorithm has been able to generalize its solutions

in different contingency scenarios affecting the proximity operations around the target.

7.1.2.2 RQ 2b: What are the constraints encountered during the incre-

mental test campaign from the SW and HW point of view?

In Chapter 5, the HRNet-based IP algorithm has gone through the DDVV strategy

adopted by GMV, in charge of the GNC SW of the Hera mission. The strategy consists

of a test campaign aimed to analyze the performance of the developed algorithm when

interfaced with the SW and HW solutions adopted for the mission. In particular, the

test campaign consisted of OL and CL MIL tests run with the FES of the GNC system,

OL On-processor tests run on a processor with computational power similar to the ones

used on board spacecraft, and OL HIL tests using the FUMO of the AFC.

The OL and CL MIL tests showed that the developed algorithm performs well in

the FES simulator of the GNC, interfacing well with the other SW models of the GNC

sensors and actuators selected for this mission. Nevertheless, when implemented on

OBC performance-like processor, the algorithm required a computational time higher

than the one baselined for the mission, and a total RAM which is very high for a

spacecraft. The HIL tests showed that the developed algorithm performs well even with

images distorted by the electro-optical disturbances introduced by the AFC FUMO,

demonstrating a high level of robustness even with HW-introduced uncertainties.

In conclusion, the AI-based IP algorithm does not present any constraint from the

SW point of view, as it performs well both with the FES of the GNC system and with

the disturbances introduced by the camera. Nevertheless, its implementation on an
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OBC requires additional work to decrease the computational power required.

7.2 Limitations and Future Work

Provide explanation for model’s behavior.

In Chapter 3, the HRNet outputs have been analyzed in order to calculate the as-

sociated covariance to the estimates of the position of the centroid of Didymos and

Dimorphos. Specifically, the HRNet generates heatmaps associated to each of the es-

timated keypoint. The heatmap consists of a 64 × 64 px black image with a cloud

of points whose intensity and shape represents the level of confidence of the HRNet

in estimating the associated keypoint. By analyzing the heatmap, the developed algo-

rithm is able to discriminate a reliable measurement from an unreliable one, according

to weather said keypoint is visible or not in the image. This has been demonstrated

also with the confusion matrix shown in Table 3.6, which shows the performance of

the heatmap/based algorithm to recognize the presence/absence of Dimorphos in the

images. Nevertheless, in Chapter 4, Table 4.9 shows the amount of images discarded

by the analysis of the heatmaps generated by the HRNet. The results show that even

if the centroid of Didymos is visible, the HRNet is not able to estimate its position.

Future work will target the explainability of the model, essential to justify the decision-

making process of the HRNet and to aptly tune the whole IP algorithm to optimize its

estimations.

Tackle the challenges related to fine-tuning during simulative operational

scenarios.

In Chapter 4, a limited amount of images never seen during training has been used to

fine-tune the HRNet-based IP algorithm in order to mimic a potential operational sce-

nario where it is required to adapt the algorithm to a new environment. Nevertheless,

the results showed that the algorithm performed better before fine-tuning was applied.

Moreover, adding more images to the fine-tuning dataset did not seem to provide any

pattern in the results, which improved/reduced independently from the number of im-

ages used. Therefore, future research will go towards analyzing different datasets and
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setting up a know-how on optimizing the fine-tuning dataset to affect the algorithm

and improve its results in unseen mission scenarios.

Improve the applicability on OBCs.

In Chapter 5, tests on an OBC performance-like processor have been run to analyze

the applicability of the HRNet-based IP algorithm on board a spacecraft. Nevertheless,

the test showed that the deployment time per image does not meet the GNC system

requirements. Furthermore, the total RAM required is too high to run the algorithm

on board. On-going research is currently focused on reducing the computational com-

plexity of the algorithm by implementing pruning and quantization techniques. The

former consists in reducing the size of the model by zeroing weights and biases which

are not affecting the outcomes of the model itself. The latter focuses on reducing the

precision of the weights and biases, e.g. by working on fixed precision, reducing the

number of bits required and/or going from floating points to integers. Future work

foresees HW-accelerated implementations such as FPGAs that allow parallelization of

computations to reduce the computational time required per single image.

Increase the generalization capability of the CNN-based monocular pose

estimation algorithm.

In Chapter 6, the HRNet-based IP algorithm has been extended to solve for the pose

estimation of Dimorphos during the DCP and the COP of the Hera mission. The results

showed good performance during the COP, meeting the relative position and relative

attitude requirements for the mission. In particular, the algorithms estimation showed

no dependency on the range from the target asteroid. Nevertheless, when applied to the

DCP, the performances were limited and not suitable for navigation. Future research

will improve the generalization capability of the algorithm by considering a more com-

pleted training dataset involving images of the asteroid seen from different perspectives

and with different shapes.
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7.3 Unique contributions

Below is a list of the distinct contributions made to the research topic addressed in this

thesis. Chapter 2:

❖ Estimation of the position of the centroid of the secondary body in images of a

binary system;

❖ Estimation of the Sun phase angle (Sun-asteroid-spacecraft) using the regressed

position of the subsolar point on the surface of the target body.

Chapter 3:

❖ Return of a flag that signals whether the secondary body of a binary system is

visible or not (outside of the FOV or behind the projected image of the primary).

Chaper 5:

❖ Integration in a model-based environment of a GNC system and subsequent in-

cremental validation test campaign of a single AI-based algorithm.

7.4 List of publications
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ference Papers, which are the result of the work carried in this 4-years Ph.D.
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[37] H. R. Goldberg, Ö. Karatekin, , and et al., “The Juventas CubeSat in Support of

ESA’s Hera Mission to the Asteroid Didymos, Proceedings of the Small Satellite

Conference, SSC19-WKIV-05,” 2019.

[38] F. Ferrari, V. Franzese, and et al., “Trajectory Options for Hera ’ s Milani Cube-

Sat Around ( 65803 ) Didymos,” The Journal of the Astronautical Sciences, pp.

973–994, 2021.

[39] ESA, “Hera,” 2023. [Online]. Available: https://www.esa.int/Space Safety/Hera

[40] ESA ESTEC, “HERA : Proximity Operation Guidelines,” Tech. Rep., 2020.

[41] Y. Kawabata and Y. Kawakatsu, “On-board orbit determination using sun sen-

sor and optical navigation camera for deep-space missions*,” Trans. JSASS

Aerospace Tech. Japan, vol. 15, pp. 13–19, 2017.

[42] J. M. Rebordão, “Space optical navigation techniques: an overview,” vol. 8785.

SPIE, 11 2013, pp. 87 850J1–87 850J20.

[43] R. E. Kalman, “A new approach to linear filtering and prediction

problems,” Journal of basic engineering, pp. 34–45, 1960. [Online]. Avail-

able: http://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/82/1/

35/5518977/35 1.pdf

[44] D. C. Woffinden and D. K. Geller, “Relative angles-only navigation and pose

estimation for autonomous orbital rendezvous,” Journal of Guidance, Control,

and Dynamics, vol. 30, no. 5, pp. 1455–1469, 2007. [Online]. Available:

https://doi.org/10.2514/1.28216

218

http://dx.doi.org/10.3847/PSJ/ac6f52
http://dx.doi.org/10.3847/PSJ/ac6f52
https://www.esa.int/Space_Safety/Hera
http://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/82/1/35/5518977/35_1.pdf
http://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/82/1/35/5518977/35_1.pdf
https://doi.org/10.2514/1.28216


[45] L. Zhang, S. Zhang, and et al., “Relative attitude and position estimation for

a tumbling spacecraft,” Aerospace Science and Technology, vol. 42, pp. 97–105,

2015.

[46] D. A. Vallado, Fundamentals of Astrodynamics and Applications, 2013.

[47] D. J. Scheeres, S. J. Ostro, and et al., “Orbits close to asteroid 4769 castalia,”

ICARUS, vol. 121, pp. 67–87, 1996.

[48] J. C. Melman, E. Mooij, and et al., “State propagation in an uncertain asteroid

gravity field,” Acta Astronautica, vol. 91, pp. 8–19, 2013.

[49] Y. Wang and S. Xu, “Equilibrium attitude and stability of a spacecraft on a

stationary orbit around an asteroid,” Acta Astronautica, vol. 84, pp. 99–108,

2013.

[50] I. Jean, A. Ng, and et al., “Impact of solar radiation pressure modeling on orbital

dynamics in the vicinity of binary asteroids,” Acta Astronautica, vol. 165, pp.

167–183, 12 2019.

[51] I. A. Nesnas, B. J. Hockman, and et al., “Autonomous Exploration of Small Bod-

ies Toward Greater Autonomy for Deep Space Missions,” Frontiers in Robotics

and AI, vol. 8, no. November, pp. 1–26, 2021.

[52] B. D. Warner, Lightcurve Photometry and Analysis, 2006. [Online]. Available:

http://link.springer.com/10.1007/978-3-319-32750-1

[53] P. Pravec, P. Scheirich, and et al., “Photometric survey of binary near-Earth

asteroids,” Icarus, vol. 181, no. 1, pp. 63–93, 2006.

[54] S. Bhaskaran, “Autonomous navigation for deep space missions,” SpaceOps 2012

Conference, 2012.

[55] J. Gil-Fernandez and G. Ortega-Hernando, “Autonomous vision-based navigation

for proximity operations around binary asteroids,” CEAS Space Journal, vol. 10,

no. 2, pp. 287–294, 2018. [Online]. Available: https://doi.org/10.1007/

s12567-018-0197-5

219

http://link.springer.com/10.1007/978-3-319-32750-1
https://doi.org/10.1007/s12567-018-0197-5
https://doi.org/10.1007/s12567-018-0197-5


[56] J. A. Christian, “Accurate planetary limb localization for image-based spacecraft

navigation,” Journal of Spacecraft and Rockets, vol. 54, no. 3, pp. 708–730, 2017.

[57] T. Teil, H. Schaub, and et al., “Centroid and apparent diameter optical navigation

on mars orbit,” Journal of Spacecraft and Rockets, vol. 58, no. 4, pp. 1107–1119,

2021.

[58] A. Pellacani, M. Graziano, and et al., “HERA vision based GNC and autonomy,”

European Conference for AeroSpace Sciences, pp. 1–14, 2019.

[59] J. A. Christian and S. B. Robinson, “Noniterative horizon-based optical navi-

gation by cholesky factorization,” Journal of Guidance, Control, and Dynamics,

vol. 39, no. 12, pp. 2755–2763, 2016.

[60] W. Qian, Z. Wei, and et al., “Model-based line-of-sight detection of an irregular

celestial body for autonomous optical navigation,” Chinese Control Conference,

CCC, vol. 2015-September, pp. 5527–5532, 2015.

[61] J. A. Christian, “Pole Estimation and Optical Navigation Using Circle of Latitude

Projections,” Journal of Guidance, Control, and Dynamics, vol. 47, no. 3, pp.

407–416, 2024.

[62] H. Morita, K. Shirakawa, and et al., “Hayabusa Descent Navigation based on

Accurate Landmark Tracking Scheme,” pp. 21–31, 2006.

[63] N. Mastrodemos, B. Rush, and et al., “Optical Navigation For The Dawn Mission

At Vesta,” Advances in the Astronautical Sciences, vol. 140, no. 2, pp. 1739–1754,

2011.

[64] D. A. Lorenz, R. Olds, and et al., “Lessons learned from OSIRIS-REx autonomous

navigation using natural feature tracking,” IEEE Aerospace Conference Proceed-

ings, pp. 1–12, 2017.

[65] N. Ogawa, F. Terui, and et al., “Image-based autonomous navigation of

Hayabusa2 using artificial landmarks: The design and brief in-flight results of

220



the first landing on asteroid Ryugu,” Astrodynamics, vol. 4, no. 2, pp. 89–103,

2020.

[66] C. Janiesch, P. Zchech, and et al., “Machine learning and deep learning,” Elec-

tronic Markets, no. 31, pp. 685–695, 2021.

[67] R. Gentleman and V. J. Carey, Unsupervised Machine Learning. New

York, NY: Springer New York, 2008, pp. 137–157. [Online]. Available:

https://doi.org/10.1007/978-0-387-77240-0 10

[68] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[69] A. Krizhevsky, I. Sutskever, and et al., “Imagenet classification with deep

convolutional neural networks,” Commun. ACM, vol. 60, no. 6, p. 84–90, May

2017. [Online]. Available: https://doi.org/10.1145/3065386

[70] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1409.1556

[71] K. He, X. Zhang, and et al., “Deep residual learning for image recognition,”

2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[72] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional

neural networks,” 2020. [Online]. Available: https://arxiv.org/abs/1905.11946

[73] A. Dosovitskiy and L. B. et al., “An image is worth 16x16 words:

Transformers for image recognition at scale,” 2021. [Online]. Available:

https://arxiv.org/abs/2010.11929

[74] A. Khan, A. Sohail, and et al., A survey of the recent architectures of deep

convolutional neural networks. Springer Netherlands, 2020, vol. 53, no. 8.

[Online]. Available: https://doi.org/10.1007/s10462-020-09825-6
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Cham: Springer International Publishing, 2016, pp. 137–149.

[129] G. Napolano, C. Vela, and et al., “A multi-sensor optical relative navigation

system for small satellite servicing,” Acta Astronautica, vol. 207, no. February,

pp. 167–192, 2023.

[130] R. Brochard, J. Lebreton, and et al., “Scientific image rendering for space scenes

with the surrender software,” 2018.

[131] M. Pugliatti, C. Buonagura, and et al., “Corto: The celestial object rendering

tool at dart lab,” Sensors, vol. 23, p. 9595, 2023. [Online]. Available:

https://www.mdpi.com/1424-8220/23/23/9595

[132] M. Pajusalu, I. Iakubivskyi, and et al., “SISPO: Space Imaging Simulator for

Proximity Operations,” PLoS ONE, vol. 17, no. 3 March, pp. 1–22, 2022.

227

http://dx.doi.org/10.1016/j.actaastro.2015.07.026
http://dx.doi.org/10.1016/j.actaastro.2015.07.026
https://doi.org/10.1007/s12567-017-0189-x
https://www.mdpi.com/1424-8220/23/23/9595


[133] H. Benninghoff, F. Rems, and et al., “Development and hardware-in-the-loop

test of a guidance , navigation and control system for on-orbit servicing,” Acta

Astronautica, vol. 102, pp. 67–80, 2014.

[134] F. Pace, E. Paolini, and et al., in Modern Spacecraft Guidance, Navigation, and

Control.

[135] F. Piccolo, M. Pugliatti, and et al., “Toward Verification and Validation of

the Milani Image Processing Pipeline in the Hardware-in-the-Loop Testbench

Tinyv3Rse,” in Proceedings of the 44th Annual American Astronautical Society

Guidance, Navigation, and Control Conference, 2022, 2024, pp. 1081–1101.

[136] C. Beierle, J. Sullivan, and et al., “Design and Utilization of the Stanford Vision-

Based Navigation Testbed for Spacecraft Rendezvous,” in International Work-

shop on Spacecraft Formation Flying, 2017, pp. 17–26.

[137] M. Samaan, S. Lockhart, and et al., “On-Ground Calibration and Optical Align-

ment for the Orion Optical Navigation Camera,” in John Junkins Dynamical

Systems Symposium, 2018.

[138] T. H. Park, J. Bosse, and et al., “Robotic Testbed for Rendezvous and Optical

Navigation: Multi-Source Calibration and Machine Learning Use Cases,” in

AAS, 2021, pp. 1–20. [Online]. Available: http://arxiv.org/abs/2108.05529
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