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ABSTRACT 

The technical reliability and economic advantages of using sensors, communications 

and computing to more precisely monitor and control the state of electrical power 

systems are many. Implementing some of the communications functions wirelessly is 

cheaper, more flexible and more convenient than an implementation with their wired 

counterparts. Whilst wireless networks offer these obvious benefits over wired 

networks, concerns remain which need to be addressed. One such concern is the 

performance of wireless networks in the electromagnetically aggressive substation 

environment; an environment that is particularly rich in impulsive noise due to the 

presence of partial discharge, power electronics switching and other transient 

processes.  

 

This thesis investigates the degree to which the dominantly impulsive noise 

environment of an electricity substation will degrade the performance of wireless 

technologies, primarily designed to operate in a Gaussian noise environment. 

 

The electricity-substation noise environment is modelled as both a Middleton class-A 

process and a symmetric -stable process. Values of model parameters are estimated 

from a database of impulsive noise measurements made in a 400/275/132 kV air-

insulated substation. Computer simulations are then employed to evaluate the 

physical layer bit-error-ratio performance of the candidate wireless networking 

technologies including WLAN, Bluetooth and Zigbee. 
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All candidate technologies are shown to suffer a departure in performance 

degradation from that expected in a Gaussian noise environment.in the high SNR 

region whereas AWGN dominates in the low SNR region. In the high SNR region, 

there appears to be a noise floor which reduces the effect of an increase in SNR on 

the corresponding BER.  
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CHAPTER 1 INTRODUCTION 

Short range wireless technologies offer a number of monitoring, control, automation 

and surveillance applications in the future smart grids. The aim of this thesis is to 

assess the vulnerability of these wireless technologies to non-Gaussian impulsive 

noise, particularly electromagnetic noise found in an electricity substation 

environment. 

This chapter describes the research motivation, organization of thesis, relevant 

publications and contributions to the scientific knowledge. 

1.1 Research Motivation 

The traditional power transmission paradigm is changing. The more efficient, 

complex, electricity grid of the future incorporating distributed generation using 

renewable energy sources, a disparate array of energy storage technologies and the 

active collaboration of consumers in load balancing via smart metering and demand-

side management will require continuous grid monitoring and instant grid control.  

Wireless technologies represent a convenient means of achieving the necessary 

communications connectivity in substations with significant flexibility and cost 

advantages when compared to fibre and copper cabling. Deployment of wireless 

communications equipment in electricity substations for monitoring, control and 

surveillance applications offers potential significant benefits over wired 

communications in terms of convenience, flexibility and cost [1, 2].  

In industrial environments, Supervisory Control and Data Acquisition (SCADA) 

systems are becoming more sophisticated and more pervasive. These are computer 
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based monitoring systems which in many applications are complemented by a 

Distributed Control System (DCS). The principal components of a SCADA system 

are Remote Terminal Units (RTUs), the Human Machine Interface (HMI) and a 

Communication Infrastructure (CI). RTUs are connected to sensors, which send data 

to a control centre. In some more recent SCADA implementations, RTUs have been 

replaced with Programmable Logic Controllers (PLCs) which are more easily 

reconfigured than special purpose RTUs. The HMI presents the collected data to an 

operator who can supervise and manage the entire system. Alternatively, the system 

can be semi-automated by allowing computer programs to make control decisions. 

The CI connects the RTUs to the HMI and its reliability is critical. SCADA and DCS 

technologies are being increasingly used in the electricity supply industry and this 

trend is likely to accelerate with the implementation of the smart grid [3, 4]. RTUs 

can be widely scattered throughout electricity transmission substations and are 

traditionally connected by cables or optical fibre to the HMI [5]. Ethernet Local Area 

Network (LAN) implementations of such SCADA systems, which simplify the 

addition/reconfiguration of instrumentation and the coordination of protection 

systems, have been proposed and are already being evaluated [2, 6]. Significant 

flexibility and cost advantages over a wired LAN infrastructure would be gained, if 

signals could be routed around electricity substation compounds wirelessly. 

Furthermore, wireless communication technologies hold out the prospect of ‗hot-

line‘ sensors that can be deployed on energized High Voltage (HV) equipment 

without the inconvenience and costs associated with bridging the system‘s primary 

insulation.  
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Typically wireless receiver designs are based on the assumption that noise is 

Additive, White and Gaussian (AWG) and their applicability in a noise intensive 

electricity substation environment is not risk free [7, 8]. Major sources of impulsive 

noise (IN) in electricity substations are Partial Discharge (PD) and switching 

transients and, if the risks of deploying wireless communications equipment are to be 

properly assessed, the impact of such impulsive processes requires evaluation [9].  

Wireless LAN (WLAN) technology is used extensively for networking computers 

with peripheral devices and is an obvious candidate for deployment in substations. 

Zigbee technology, based on the IEEE 802.15.4 standard, is another popular short 

range technology which has been used in many commercially available Wireless 

Sensor Network (WSN) solutions.  

Whilst wireless networks have obvious benefits of cost and flexibility over wired 

networks, concerns remain which need to be addressed. One such concern is the 

practical performance that can be expected of commercially available wireless 

technologies in the unusual and challenging noise environment of electricity 

substations. This noise environment may be intensely impulsive in character due to 

PD, power electronic switching and other transient processes. The degree to which a 

dominantly IN environment might degrade the performance of wireless technologies, 

primarily designed to operate in a Gaussian noise environment, is an important 

consideration.  

The primary objective of this research is to characterize the IN environment of 

electricity substations and evaluate the performance of short-range wireless 

technologies, and consider their suitability for their deployment in electricity 

substations.  
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1.2 List of Publications 

1.2.1 Publications Directly Related to the Thesis 

1. S A Bhatti,  Shan Q, R Atkinson,  I A Glover "Performance simulations of WLAN and 

Zigbee in electricity substation impulsive noise environments," IEEE 3
rd

 International 

Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 

November 2012. 

2. S A Bhatti, I Glover, ―Performance Evaluation of IEEE 802.15.4 Receiver in the 

Presence of Broadband Impulsive Noise‖ Student Application paper in IEEE Standards 

Education (E-magazine), July 2012. 

3. S A Bhatti, Shan Q, R Atkinson, M Vieira, I A Glover: ― Vulnerability of Zigbee to 

impulsive noise in electricity substations‖,  The XXX General Assembly and Scientific 

Symposium of International Union of Radio Science (URSI GASS), Istanbul, Turkey, 

August 2011. 

4. S A Bhatti, Shan Q, I A Glover, R Atkinson, ―On modeling of electricity substation 

impulsive noise environment‖, International Conference on Statistical  Methods of 

Signal and Data Processing (SMSDP), Kiev, Ukraine, October 2010. 

5. S A Bhatti, Shan Q, I  A Glover, R Atkinson , P J Moore,I E  Portugues , R Rutherford, 

―Vulnerability of Bluetooth to impulsive noise in electricity transmission substation”, 

IET International Conference on Wireless Sensor Network(IET-WSN), Beijing, China, 

November 2010. 

6. S A Bhatti, Shan Q, I  A Glover, R Atkinson, P J Moore, I E Portugues, R Rutherford, 

―Impulsive Noise Modelling and Prediction of its Impact on the Performance of WLAN 

Receiver‖, 17
th
 European Signal Processing Conference(EUSIPCO 09), Glasgow, UK, 

August 2009. 
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7. Shan Q, I A Glover, R. Atkinson, S A Bhatti, I E Portugues, P J Moore, R Rutherford, 

M Vieira,  A M Lima,  B A De Souza, "Estimation of Impulsive Noise in an Electricity 

Substation," IEEE Transaction on Electromagnetic Compatibility, vol.53, no.3, 

pp.653,663, Aug. 2011. 

8. Shan Q , S A Bhatti , I  A Glover, R Atkinson, R Rutherford, ―Detection of super-high-

frequency partial discharge by using neural networks‖ , Insight – Non-Destructive 

Testing and Condition Monitoring (The Journal of The British Institute of Non-

Destructive Testing), vol. 51, no. 8, pp.442-447, August 2009. 

9. Shan Q, S A Bhatti , I A Glover, Atkinson R, Moore P J, Portugues I E, R Rutherford, 

―Noise amplitude distribution of impulsive noise from measurements in an electricity 

substation‖, The 44
th
 international Universities’ Power Engineering Conference 

(UPEC), Glasgow, UK, September 2009. 

10. Shan Q,  S A Bhatti, I A Glover, R Atkinson , P J Moore ,I E Portugues , R Rutherford, 

―Characteristics of impulsive noise in electricity substations‖, 17
th
 European Signal 

Processing Conference (EURSIP 09), Glasgow, UK, August 2009. 

11. J M R Neto, E C T  Macedo, J R Neto, E G Da Costa, S A Bhatti, I A Glover, ―Partial 

discharge location using unsynchronized radiometer network for condition monitoring in 

HV substations – a proposed approach‖, Journal of Physics Conference Series, 2012. 

12. E C T Macedo, D B Araújo, E G Da Costa, R C Freire, W T Lopes, I S Torres, J M 

Neto, S A Bhatti, I A Glover, ―Wavelet transform processing applied to partial 

discharge evaluation‖, Journal of Physics Series, 2012.. 

13. Shan Q, I A Glover, R Atkinson, S A Bhatti, I E Portugues, P J Moore 
 
and R 

Rutherford, ―Statistics of impulsive noise measured in an electricity substation‖, Tenth 

International Symposium on Communication Theory and Application(ISCTA 09), 

Ambleside, UK, July 2009.  
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14. Shan Q, I A Glover, R Rutherford , S A Bhatti, R Atkinson, I E Portugues, P J Moore, 

―Detection of UWB impulsive noise in a 400 kV electricity substations‖, 20
th
 

International Conference on Electricity Distribution, Prague, Czech Republic, June 

2009. 

15. Shan Q, S A Bhatti, I A Glover I A, R Atkinson, P J Moore , I E Portugues, R 

Rutherford, ―Extraction of impulsive noise from measurements in a 400 kV electricity 

substation‖, 4
th
 IASME/WSEAS- International Conference on Energy and Environment, 

Cambridge, UK, February 2009. 

16. Shan Q, I A Glover, P J Moore, I E Portugues,  R Rutherford , R Atkinson , S A Bhatti,  

―Laboratory Assessment of WLAN Performance Degradation in the Presence of 

Impulsive Noise‖ , International Wireless Communications and Mobile Computing 

Conference, Crete, Greece, August 2008. 

1.2.2 Seminars/Workshops 

17. S A Bhatti, Shan Q, I A Glover, R Atkinson ―Modelling of noise environment of an 

electricity transmission substation using symmetric alpha-stable distributions ‖, 2
nd

 UK 

URSI Festival of Radio Science, Leicester, UK, January 2011 

18. S A Bhatti, Shan Q, I A Glover, R Atkinson, R Rutherford ―Extraction of Middleton 

Noise Model Parameters from Measurement of the Noise Environment in an Electricity 

Substation‖, URSI-Festival of Radio Science, Birmingham, UK, December 2009. 

1.3 Thesis Contributions 

The work reported in this thesis can be grouped into two parts. The first part models 

the noise environment of Electricity Transmission Substations (ETS) and the second 

evaluates the Physical (PHY) layer bit error ratio (BER) of WLAN, Bluetooth and 
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Zigbee receivers in the presence of modelled IN. The thesis reports the following 

major contributions: 

1. Narrowband Impulsive Noise Model: In the field of non-Gaussian noise 

modelling, the research work of Middleton is of paramount importance [10]. In 

this thesis, the assumptions made by Middleton are objectively analysed and their 

application and relationship to the substation noise environment are explored. A 

number of methods are reviewed to estimate the Class-A parameters from the 

measurements data and to tune it to represent the narrowband impulsive noise 

found in electricity substations.  

 

2. Broadband Impulsive Noise Model: Discussion of impulsive noise modelling is 

further extended and a technical argument is presented to justify (i) that the 

impulsive noise environment of electricity substation can best be characterised by 

a broadband noise model and (ii) the use of Symmetric -Stable (SS) 

distributions to model the broadband impulsive noise phenomenon. Two methods 

are used to deal with the infinite variance of SS, and to conclude a comparative 

account of the BER performance evaluation.  

 

3. Performance Evaluation of WLAN/WPAN: PHY layer simulations of WLAN, 

Bluetooth and Zigbee standards are implemented (and/or adopted from the built-

in MATLAB/Simulink libraries) and validated. BER performance of these 

technologies is evaluated in the presence of impulsive noise, modelled as both a 

narrowband and a broadband process. 
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1.4 Thesis Outline 

An overview of the remaining six chapters of the thesis is given below.  

Chapter 2 covers the background and state of the art including characteristics of the 

impulsive noise and stochastic nature of the underlying processes which make up the 

noise environment of an electricity substation.  

Chapter 3 presents the details of the measurement campaign. It includes a description 

of the impulsive measurement and recording system, its deployment and an account 

of post-processing of the recorded data and extraction of impulse characteristics.  

Chapter 4 examines several aspects of impulsive noise modelling. An account of the 

existing knowledge in this field is followed by a detailed description of the noise 

models and parameter estimation methds.  

Chapter 5 details the implementation and validation of physical layer simulations of 

the candidate short-range wireless technologies.  

Chapter 6 covers the performance assessment of the candidate short-range wireless 

technologies in the presence of impulsive noise.  

Chapter 7 presents conclusions and suggests scope for the future research.  
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CHAPTER 2  

BACKGROUND AND CONTEXT 

2.1 Introduction 

This chapter commences with a description of different types of noise processes, 

presents a detailed account of the noise profile of an electricity substation and state 

of the art for the deployment of wireless technologies in electricity substations. A 

paradigm for the performance evaluation of short range wireless technologies in the 

presence of non-Gaussian impulsive noise is given at the end of the chapter.  

2.2 Background 

The focus of this research is on the performance evaluation of short-range wireless 

technologies in the presence of non-Gaussian impulsive noise, found in electricity 

substations.  

This section includes a classification and characteristics of different noise processes, 

noise profile of an electricity substation and a list of the candidate wireless 

technologies.  

2.2.1 Noise 

Noise is any unwanted signal that interferes with the information-bearing signal and 

degrades its quality. Noise is present in all environments, and its characteristics and 

extent depend on its physical source(s). Often, noise conveys information about the 

physical state of its sources and/or the environment in which it propagates [11]. For 
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example, noise originating from the insulation around HV cables can be used for 

insulation health monitoring and fault diagnosis. 

In addition to noise, information signals become distorted because of non-linear 

characteristics of the communications channel. These distortions may arise, in part or 

in whole, from the multipath reflections and fading. The capacity of any 

communications or signal measurement system is limited by noise and signal 

distortions. Therefore, in the field of systems engineering, it is important to 

understand and model these two processes. This research work focusses solely on the 

noise process. 

2.2.1.1 Noise Classification 

In communication systems, noise is usually classified into two categories: internal 

and external. Internal noise refers to noise from inside the communications receiver 

and includes thermal noise, shot noise, flicker noise and burst noise, whereas external 

noise arises outside of the receiver and includes atmospheric, cosmic and 

electromagnetic emissions from electrical devices. Noise can also be classified based 

on its temporal characteristics and the frequency spectrum e.g. white noise, coloured 

noise, impulsive noise etc. Definitions of the several noise types are included in the 

thesis for the purpose of completeness. [11]  

1. Thermal Noise 

Thermal noise is intrinsic to all conductors and originates from movements of 

thermally energised charge carriers. Temperature is the measure of the mean kinetic 

energy of electrons. The power of thermal noise is therefore proportional to the 
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physical temperature. The mean square value of voltage due to thermal noise, across 

the terminals of a resistor of value R Ω, is given by: 

 

  ̅̅ ̅                                                                              

 

where               J/K is Boltzmann‘s constant, T is absolute temperature, 

and B is the bandwidth. The noise power dissipated in a matched load of resistance R 

Ω is: 

 

      ̅  (
    

  
)
 

   
  ̅̅̅̅

  
                                                    

 

where vrms is the root mean square voltage. The spectral density of thermal noise per 

degree of freedom is given by: 

 

       
  

 
                                                                        

 

This can be reconciled with Equation 2.2, by appreciating that the electromagnetic 

energy in an electrical circuit can exist in two orthogonal modes or degrees of 

freedom, e.g. at any one frequency, the voltage can either have a sinusoidal or 

cosinusoidal waveform. 

The auto-correlation of the white noise, denoted by N(t), can be written as:  
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This describes the noise where the samples are statistically independent. The 

baseband equivalent of a thermal noise process, often used in computer simulations, 

has complex values and comprises an in-phase NI(t) component and a quadrature 

NQ(t) component which are modelled as independent baseband random variables 

with Gaussian Probability Density Function (PDF). The value of the auto-correlation 

RXX() for each component is (N0/2) The thermal noise is white and Gaussian, as 

illustrated in Figure 2.1. Since the distribution of the samples is Gaussian, the 

amplitude PDF is given by: 

 

      
 

√    
  

  
      

                                                     

It has two parameters.  (mean value) and 2 (variance), where the variance is a 

measure of the spread of samples around mean value. The term white implies that it 

has contant noise spectral density over all frequencies i.e. GN(f) = N0 (as is shown in 

Figure 2.1. The thermal noise samples follow a Gaussian distribution as is expected 

from the Central Limit Theorem (CLT)
1
[12]. 

2. Shot Noise 

Shot noise is intrinsic to current flow and originates from the random motion of 

carriers across a potential barrier. While thermal noise depends on temperature, shot 

noise, being determined by the movement of charged particles, solely depends on the 

current magnitude [13].  

 

                                                 
1
 The Central Limit Theorem (CLT) states that the sampling distribution of the mean of any 

independent, random variable will be normal or nearly normal, if the sample size is large enough. 
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Figure 2.1 Thermal noise characteristics 
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3. Flicker Noise 

Flicker noise is the result of a number of effects in electronic devices, such as 

impurities in a conductor channel and recombination noise in a transistor due to the 

base current [11]. 

4. Burst Noise 

Burst noise consists of step transitions in voltage, as high as several hundred 

millivolts, at random times and for random durations [14]. 

5. White Noise 

White noise is a random process with a flat power spectral density. Theoretically, it 

contains all frequencies, but it is not realisable in practice since any white noise 

process would carry infinite power. Thermal noise is a good example of white noise, 

which, at room temperatures, has constant spectral density up to the terahertz region. 

The precise bandwidth of (unfiltered) thermal noise is determined by quantum 

mechanical considerations and depends on temperature. 

6. Coloured Noise 

Strictly speaking, any noise process which has a frequency dependent power spectral 

density could be classified as a coloured noise.  

2.2.1.2 Impulsive Noise 

Impulsive noise is a non-stationary stochastic process which consists of random 

occurrences of voltage or current pulses with random amplitudes. In this section, a 

mathematical definition of the impulse function and spectra of ideal and short 

duration pulses are discussed. 
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2.2.1.2.1  Theoretical Impulse 

A continuous-time unit impulse function or dirac delta is defined as a function that is 

zero for all values of t ≠ 0 and yet its integral is nonzero, as is shown in Equations 

2.6 and 2.7 and plotted in Figure 2.2. The frequency domain representation of a 

continuous-time unit impulse is given in Equation 2.8 [15]. 

 

                                                                                         

 

∫                                                                                          
 

  

 

 

      ∫                                                                        
 

  

 

 

A discrete-time unit impulse can be defined as 

 

      ,
                     
                    

                                                                 

 

and the Fourier Transform (FT) of a discrete-time unit impulse is given by 

 

      ∑                                      

 

     

                         



16  

 

2.2.1.2.2 Real Impulse  

In contrast to the ideal impulse where the pulse width tends to zero, a real impulse 

has a duration longer than one sample and impulsive noise is characterized by a train 

of short duration pulses with different amplitudes and inter-arrival times. Spectra of 

an ideal impulse and two short-duration pulses are shown in Figure 2.3. 

 

The literature of communications theory has traditionally been dominated by the 

Gaussian noise models (justified by the CLT) which simplifies design and analysis of 

the receiver structures. An important class of non-Gaussian noise processes, 

encountered in practice, can best be characterized as impulsive.  

 

The features which differentiate an impulsive process from a typical Gaussian noise 

process are:  

 

a) Impulsive noise has a higher probability of producing high-amplitude 

excursions from the mean value. 

(b) Impulsive noise exhibits sharp spikes or occasional bursts of outlying 

observations. 

(c) The tails of impulsive noise density functions decay slowly compared to 

Gaussian. 

 

The topic of impulsive noise is revisited in Chapter 4, where different aspects of its 

characterization and modelling are discussed. 
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Figure 2.2 Unit impulse function. 

 

 

Figure 2.3 Spectra of an impulse and short duration pulses [11].  

  

2.2.2 Substations 

Substations are an integral part of power generation, transmission and distribution 

systems. The components of a substation are HV transformers, cables, switchgears, 

busbars, protective relays, voltage regulators, capacitors, and surge arrestors. In 
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addition to these components, there are a number of control, protection and 

measurement instruments, scattered throughout the substation. Typical functions of a 

substation are transmission lines connection, voltage levels transformation, fault 

isolation and power factor correction.  

Traditionally, control and monitoring signals are connected to SCADA (Supervisory 

Control and Data Acquisition) systems using cables or optical fibres. SCADA 

systems provide a centralized solution for control and monitoring of a substation or a 

number of substations.  

The HV substation equipment is a high-energy source of the unwanted radio 

frequency emissions. Partial Discharges (PD) and switching transients are the major 

noise sources in an electricity substation. [16]. 

2.2.3 PD and Switching Transients 

Electrical insulations suffer from imperfections because of manufacturing faults, 

ageing (i.e. chemical or physical changes), and mechanical damage. Often such 

imperfections are represented initially by microscopic voids or cracks. When the 

potential difference across a void crosses a certain threshold, the air inside the void 

becomes ionized and this process releases energy in the form of heat, smoke, light, 

sound and electromagnetic radiation. This phenomenon is called a PD and is defined 

as a discharge that does not bridge the space between the conductors supporting the 

potential that causes it. The energy released in a PD erodes the internal surface of the 

void and makes the void grow large. If this process continues the result may be the 

breakdown of the electrical insulation. 
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The origins of PD are voids in solid dielectrics and gas filled spaces on the dielectric-

conductor interfaces. Corona is a special case of PD which occurs around air-

insulated conductors and is usually accompanied by visible light. Some of the causes 

of PD are metal contaminants, air bubbles, voids in epoxy castings and 

polluted/cracked insulations. Examples of internal and external PD occurrences are 

shown in Figures 2.4 - 2.7.  

The IEC International Standard 60270 for PD measurements defines PD as ―a 

localized electrical discharge that only partially bridges the insulation between 

conductors and which can or cannot occur adjacent to a conductor‖. 

The necessary condition for a PD to occur, inside a void containing electro-negative 

gas, is:  

(E/D) > (E/D)c       

where (E/D) is the electric field to gas-density ratio and (E/D)c is the critical value at 

which coefficient (i ) is equal to the electron attachment coefficient () [17]. 

Moreover, if ne is the number of electrons generated during this process then: 

1. For ne < 10
8
, PD can simply be considered as an electron avalanche with a mean 

value of ne , given by: 

  ̅̅ ̅      *∫    
 

 
           ́   +  (Equation 2.11) 

where l is the path followed by the electron avalanche inside the void, and d ́(x) 

is an element of path length. This is the state when the total charge generated 

from the ionization is not sufficient to disturb the externally applied electric field.  
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2. For ne ~ 10
8
, the electric field produced by electron avalanche becomes 

comparable to the externally applied electric field and transforms into a self-

propagating phenomenon. This self-propagating phenomenon is often referred to 

as a streamer and results in the generation of a series of current pulses [18]. 

The energy released from an individual PD is usually very small (of order 1 J) and 

does not start the process of insulation degradation. During a continuous PD process, 

however, a small number of high-energy electrons are released and it is believed that 

most of the insulation degradation, directly or indirectly, is initiated by the 

bombardment of these high-energy electrons. These high-energy electrons have 

energies of order 10 eV and can potentially disrupt insulation molecules since the 

strengths of typical bonds e.g. C-H and C=H is much lower than 10 eV [19]. 

Moreover, production of reactive species such as OH, O and O3 can cause chemical 

transformation of the insulator and accelerates the PD activity.  

PD phenomenon is inherently pulse-like and is the result of many underlying 

physical processes whose behaviour can best be explained statistically.  
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Figure 2.4 Internal PD 

 

Figure 2.5 External PD  

A current transformer (on left) and its sectioned 

part (on right) to show the damage caused by PD 

It shows the tracking across the surface of the 

insulation. 

 

 

Figure 2.6 Transformer PD damage 

 

 

 

Figure 2.7 Tracking on epoxy resin 

busbar. 

 

Figure 2.4 & 2.5 – (EA Technology, available at www.eatechnology.com) 

Figure 2.6 & 2.7 – (Hoestar Inspection International, available at www.hoestarinsp.com) 

http://www.hoestarinsp.com/
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The statistical variability of properties of PD pulses, such as amplitude, shape and 

duration, results in a very complex deterministic description of the process. Field 

induced emissions of electrons from a discharge prone surface are governed by 

quantum mechanics and are, therefore, inherently probabilistic [20]. Similarly, 

electron-molecule collision processes, which determine PD growth, are explained in 

terms of collision cross-section probabilities. The stochastic nature of the PD 

phenomena can be described empirically by observing the pulse statistics of different 

types of PD, which occur when different insulation materials experience electrical 

stresses of varying strengths and time durations. In practical systems, the stochastic 

behaviour of PD becomes more complex due to the presence of many PD sources 

e.g. in transformers, capacitors, circuit breakers and cables etc.  

The noise environment of electricity substation is particularly complex since it 

comprises PD generated because of electron avalanches, high-energy streamers and 

corona from a number of sources. 

In addition to PD, switching transients also contribute to the noise profile of a 

substation and these are of particular interest. Switching transients are significantly 

important as the switching process is the occasion when control and protection 

equipment is required to work reliably. Switching transients result in sporadic 

impulses of large amplitudes and very small durations. The nature of radiated 

impulses from PD and switching transients depends on the rate of current during the 

insulation breakdown process or the switching event. [16]. 
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2.2.4 Candidate Wireless Technologies 

The candidate short range wireless technologies for deployment in electricity 

substation are WLAN, Bluetooth and Zigbee. A comparison in terms of data rates 

and operating frequency is given in Table 2.1 and detailed specifications are covered 

in Chapter 5. 

Table 2.1: Candidate wireless technologies  

Technology Data Rate Operating Frequency  

WLAN 1-54 Mbps 2.4 and 5 GHz 

Bluetooth 1 Mbps 2.4 GHz 

Zigbee 20-250 kbps 900 MHz and 2.4 GHz 

2.3 Literature Review – Wireless Technologies in Substations 

2.3.1 Applications 

Wireless technology has been used in electricity substations for decades, mainly for 

the applications which are not safety critical. The potential of wireless technologies 

for control, monitoring and protection has been investigated by the Electric Power 

Research Institute (EPRI) of USA and P1777 – Wireless Working Group of the 

IEEE, and it has been suggested that the incorporation of wireless technologies in 

future substation control systems is inevitable [21-23].  

Successful demonstrations of the use of WLAN for line differential protection 

applications in a laboratory environment and monitoring of air-core inductors in a 

substation environment have been reported by Abdel-Latif et. al.[24] and Brown et. 

al. [25] respectively. A number of applications of wireless technologies have been 

reported for future smart grids [26-29]. 
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The research and development of robust wireless transceivers have been initiated by 

a number of power utilities manufacturers e.g. RuggedCom, Tropos GridCom and 

Carlson Wireless [30].  

2.3.2 Substation Noise  

A number of studies have been conducted to characterize the substation noise profile 

but most of them have used narrowband equipment and have not explored the full 

spectral extent of the electromagnetic radiations [31, 32].  

There are only a few substation measurements, reported in the literature, which have 

used broadband equipment e.g. Moore et. al. [33] has conducted PD measurements 

using a broadband system (~1GHz) and has reported that the discharges from SF6 

have significant spectral energy up to 800 MHz.  

In another study, substation noise measurements have been conducted for the 900 

MHz and 2.4 GHz frequency bands and it has been reported that there are noticeable 

changes in the RF noise profile up to 2.4 GHz [1, 34]. Q. Shan et.al. [35, 36] have 

reported substation measurements in a 400 kV Air Insulated Substation (AIS) using 

an ultra-wideband equipment for the 2.4 and 5 GHz frequency bands.  

2.3.3 Performance Evaluation in non-Gaussian Impulsive Noise  

The performance evaluation of different modulation and error coding techniques, in 

the presence of non-Gaussian impulsive noise has been reported in a number of 

studies.  
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The performance evaluation of a Quadrature Amplitude Modulation (QAM) system, 

in the presence of Class A
2
 noise, has been reported to degrade significantly [37, 38]. 

The BER performance of Minimum Shift Keying (MSK) and Gaussian MSK 

(GMSK) in Class A noise has been shown to degrade at high SNR values[39]. A 

comparative study of a Direct Sequence Spread Spectrum (DSSS) with and without 

error coding has been undertaken. The results show that overall performance differs 

significantly and it is advantageous to use error coding [40]. 

Jia and Meng [41] have investigated the performance of ZigBee systems at 915 MHz 

and 2.4 GHz bands, in the presence of PD noise and have reported that it is 

advantageous to use 2.4 GHz compared to 915 MHz. In another study, the 

performance of a Zigbee based sensor has been shown to degrade. Further research 

was proposed into the noise immunity of the Zigbee sensors [42]. 

2.4 Scope of the Research 

The scope of this research is to evaluate physical layer BER performance of the 

candidate short range wireless technologies in the presence of non-Gaussian 

impulsive noise, found in electricity substations, using computer simulations.  

An overview of the performance evaluation work is shown in Figure 2.8 illustrating 

the tasks and the sequence, in which, they have been carried out.  

 

                                                 
2
 Class A is a narrowband impulsive noise model. Details are given Chapter 4.  
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Figure 2.8: Performance evaluation overview 

 

2.5 Summary 

This chapter has covered the characteristics of different types of electromagnetic 

noise and the stochastic nature of the underlying processes that make up the noise 

environment of an electricity substation. State of the art of substation noise 

measurements and performance evaluation of wireless technologies in substation 

noise environment has also been explored. 

 

  



27  

 

CHAPTER 3  

RF NOISE MEASUREMENTS 

3.1 Introduction 

This chapter covers the details of substation noise measurements including the design 

of measurement system, measurement campaign, analysis of recorded data and 

process of impulsive noise extraction from RF measurements. 

3.2 Measurement System 

An ultra-wideband detection system has been developed for the detection and 

recording of impulsive noise as part of the EPSRC funded project [43]. Since the 

potential interfering effects of impulsive noise will not only depend on power 

spectral density but also on the time-domain waveform, it is important that generic 

measurements should retain pulse shape information as far as possible. It will allow 

the effects of arbitrary filtering (introduced by commercial receivers) to be properly 

emulated when assessing performance impact. In view of this, the measurement 

system has been designed not only to have wide bandwidth but also to have good 

impulse response [36]. 

A block diagram of the measurement system is shown in Figure 3.1 [35]. It 

comprises three antennas, a LeCroy SDA9000 4-channel digital storage oscilloscope 

(DSO), an external 1 TB Hard Disk Drive (HDD) and a laptop computer for data 

logging and data pre-processing.  

The DSO sampling rate is 20 GS/s per channel and its analogue channel bandwidth is 

~6 GHz. The antennas are connected directly to the DSO. Direct sampling is used to 
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minimize signal distortion [44]. Interconnection is with 18 GHz, 50 Ω, coaxial 

cables. The time-series is recorded using conventional amplitude triggering. Duration 

of each recorded time-series is 2.5 ms which is the longest possible using the 

available DSO RAM. The recorded signals are transferred to the external HDD 

which is connected to the DSO via a USB interface. 

Two quasi-TEM half-horns, a high-band (HB) horn and low-band (LB) horn, have 

 

 

Figure 3.1 Impulsive noise detection and recording system[35] 

 

been designed to cover the previously unexplored frequency range above 700 MHz 

[36]. Quasi-TEM horns were selected for the frequency bands of greatest interest due 

to their wide bandwidth, linear phase response and, thus, excellent impulse 

characteristics. Two horn antennas were used since a single antenna covering the 
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entire band was found to be impractical without compromising the phase 

characteristic.  

The LB horn covers the range 0.7 – 2 GHz and the HB horn covers the range 2 – 6 

GHz. The third antenna is a Discone which is used to extend data collection below 

700 MHz, i.e. into the bands already investigated in the context of PD [45].  

The TEM horn, in its basic form, consists of two isosceles conducting plates. The 

apexes of the plates form the antenna feed-point. The sides of each plate opposite to 

the apex are parallel and form the antenna aperture. The flare angle, apex angle and 

plate length are chosen such that the characteristic impedance at the feed-point is 

equal to that of the feeding transmission line and the impedance at the aperture is 

equal to the plane-wave impedance of free space. 

The three principal design parameters are the length of the antenna (Lant), the azimuth 

angle of the antenna plates (αant), and the flare angle between the antenna plates 

(βant). Lant determines the lower end of the antenna frequency response and it must be 

at least one half-wavelength at the lowest frequency of interest. The upper end of the 

frequency response is inversely proportional to the separation between the plates at 

the feed point. The TEM half-horn comprises a single triangular plate mounted above 

a ground plane. Schematic diagrams of TEM-horn and disk-cone are shown in  

Figure 3.2 and Figure 3.3 respectively. 
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Figure 3.2: Schematic diagram of TEM horn antenna 

 

 

Figure 3.3: Schematic diagram of Disk-cone antenna 

 

A summary of the antennas design parameters is given below:  

LB Horn: The LB horn is constructed from a triangular aluminium plate and a 122 

cm × 122 cm aluminium ground plane. The width (w) of the triangular plate at the 

aperture is 65.1 cm, its length (L) is 84 cm, and its aperture height measured from the 

ground plane (h) is 20.1 cm. The antenna feed is a 50 Ω SMA connector with its 

flange in electrical contact with the ground plane and its centre-conductor connected 

to the triangular plate apex. The amplitude response, measured using a network 
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analyzer, shows the 3dB bandwidth of a pair of identical cascaded horns (transmit 

and receive) to be 1.264 GHz covering the frequency range 716 MHz - 1.98 GHz. 

The peak value of the amplitude response occurs at 1.068 GHz. A picture of LB 

Horn antenna is shown below (Figure 3.4) 

 

Figure 3.4: LB TEM Horn Antenna 

 

HB Horn: The HB horn triangular flange is constructed from a printed circuit board. 

The flange width (w) at the aperture is 21.7 cm and its length (L) is 28 cm. The 

aperture height (h) is 6.7 cm. The feed structure and ground plane are identical to 

those of the LB horn. The 3dB bandwidth of a cascaded pair (transmit and receive) is 

3.195 GHz (1.905 to 5.1 GHz) and the peak value of the amplitude response occurs 

at 2.13 GHz. A picture of HB Horn antenna is shown in Figure 3.5  
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Figure 3.5: HB TEM Horn Antenna 

 

Disk-cone Antenna: The disk-cone antenna consists of an inverted right circular 

cone over a circular ground plane. The ground plane is 17.1 cm in diameter and is 

constructed from aluminium plate. The cone was machined from solid aluminium. It 

has a base diameter of 13.3 cm and a height of 5.4 cm. A non-inverted cone with 

equal base diameter sits on top of the inverted cone. Its height is 4.9 cm. A picture of 

Disk-cone antenna is shown in Figure 3.6 
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Figure 3.6: Disk-cone antenna 

 

3.3 Measurement Campaign  

The measurement site is Strathaven 400/275/132 kV air-insulated substation in the 

UK, owned by Scottish Power Limited. The geographical location of the site is 

illustrated in Figure 3.7.  

 

The measurement system was deployed in 400 kV and 275 kV control rooms and the 

locations of the control rooms inside the substation are shown in Figure 3.8. The 

control rooms are located close to the centre of the substation.  

 

All antennas were deployed with vertical polarization. The deployment of 

measurement systems inside the control room is shown in Figure 3.9, whereas 

Figures 3.10, 3.11 and 3.12 show the composite images of 400 kV, 275 kV and 132 

kV compounds, respectively. 
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Figure 3.7: Geographical location of Strathaven Substation 

 

 

Figure 3.8: Location of the measurement system in the substation.  

(A) 400 kV control room, (B) 275 kV control room. 
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Figure 3.9: Impulsive noise detection and recording system deployment  

. 

 

Figure 3.10 Measurement site: 400kV compound 

 

Figure 3.11 Measurement site: 275kV compound 
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Figure 3.12 Measurement site: 132kV compound 

 

3.4 Data Analysis 

The duration of the measurement campaign was from January 2008 to April 2009. 

However, only datasets recorded between August 2008 and Feb 2009 by HB horn 

antenna are used for the noise modelling and performance evaluation work.  

Table 3.1 shows the number of datasets captured in each month. Each dataset 

comprises 50x10
6 

samples, representing a 2.5 ms time window, and sampled at 20 

GS/s.  

A snapshot of raw sample data recorded in the substation is shown in Figure 3.13. 

This figure, showing a 50x10
3
 samples dataset (250 s), is produced here for 

illustration purpose as one can see that any particular effects from PD and switching 

are hidden by noise from other sources. It also shows that what a broadband 

measurement system has picked up when it was triggered to capture a PD or a 

switching transient 
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Table 3.1: Time-series datasets  

Month Number of Datasets 

August 2008  51 

September 2008 68 

October 2008 22 

November 2008 47 

December 2008 76 

January 2009 45 

February 2009 30 

 

The recorded signal is a mixture of unwanted signals and noise including 

interference from other broadcast radio/tv communications and radar signals. A Fast 

Fourier Transform (FFT) of one recorded time-series dataset (2.5 ms) is shown in 

Figure 3.14, where the strong spectral peaks are labelled by comparing, in part, with 

the OFCOM‘s radio frequency allocation table [46]. A mapping of spectral peaks in 

FFT of time-series dataset and potential external interference sources is shown in 

Table 3.2.  

 

Figure 3.13: An example of raw sample data 
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Figure 3.14: FFT of a recorded substation noise dataset [35] 

 

The noise from PD and switching transients has been obscured by these broadcast, 

radar and communications signals and thus there is no obvious sign of impulsive 

noise in Figure 3.13. 
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Table 3.2 Description of the frequency spectrum of recorded noise data 

Spectral Peaks of Recorded Data Potential Sources 

0.5 - 1.2 MHz MW AM broadcast 

90 – 108 MHz FM radio band 

177 – 285 MHz Public Access Mobile Radio 

500 MHz TV broadcast 

600 – 750 MHz TV broadcast 

833 MHz TV broadcast 

1.25 GHz Civil airport radar band 

1.76 GHz GSM 1800 

2.1 GHz 3G 

2.917 GHz Civil maritime, air traffic control and range safety radars 

3.333 GHz Maritime mobile band 

3.75 GHz C-Band satellite TV 

5 GHz Civil landing system signals 

 

3.5 Extraction of Impulsive Noise 

The measured data have been ‗de-noised‘ using a Wavelet Packet Transformation 

(WPT) algorithm, to extract the impulsive noise buried in mixed unwanted noise 

processes and external interference [47]. 

The use of WPT for de-noising was encouraged by existing literature on the topic, 

where it has been reported to be an efficient method for the extraction of PD from RF 

noise measurements [48-50].  
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The application of WPT based de-noising algorithm to one time-series record has the 

following steps [47]:  

Step – 1: Read the 10 M samples from the time-series record. 

Step -2: Divide each 10 M samples block into 50 sub-datasets each with ~200,000 

samples.  

Step - 3: Compute the wavelet packet decomposition of both the approximation and 

detail, up to 12 levels using symlet-6.  

Step - 4: Compute the optimal wavelet packet tree using an entropy function.  

Stein‘s Unbiased Risk Estimate (SURE) entropy function was used. The entropy 

measures signal energy spread over a particular basis. Lower entropy means that 

fewer basis vectors are needed for representing the energy spread, and thus results in 

a more efficient decomposition.  

SURE works well if a signal is normalized in such a way that the data fits the model 

x(t) = f(t) + e(t), where e(t) is a Gaussian white noise process with zero mean and 

unit variance. The SURE is defined by [47]: 

))(logln(2 2 nnSURE       (Equation 3.1) 

where n is the number of signal samples. 

Step - 6: Apply thresholding. 

Hard thresholding was applied that removes all detail coefficients with a value lower 

than the threshold level.  
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Step - 7: Reconstruct the signal at each level using the original approximation 

coefficients and modified detail coefficients. 

Repeat the steps 1 to 7 five times to complete de-noising of one time-series 

dataset.The five sub-datasets (10 M samples each) of a time-series dataset (50 M 

samples) and their corresponding de-noised or WPT processed datasets are shown in 

Figures 3.15 – 3.24. The presence of an impulsive process can be observed in the de-

noised datasets. 

An impulsive noise database has been compiled by applying the WPT based de-

noising algorithm to time-series datasets recorded between August 2008 and 

February 2009 (Table 3.1). This compiled impulsive noise database has been used 

for noise modelling which will be described in Chapter 4.  
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Figure 3.15: Sub-dataset 1 - Raw sample data 

 

Figure 3.16: Sub-dataset 1 - De-noised data 

 

Figure 3.17: Sub-dataset 2 - Raw sample data 

 

Figure 3.18: Sub-dataset 2 - De-noised data 
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Figure 3.19: Sub-dataset 3 - Raw sample data 

 

Figure 3.20: Sub-dataset 3 - De-noised data 

 

Figure 3.21: Sub-dataset 4 - Raw sample data 

 

Figure 3.22: Sub-dataset 4 - De-noised data 
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Figure 3.23: Sub-dataset 5 - Raw sample data 

 

Figure 3.24: Sub-dataset 5 - De-noised data 

 

3.6 Summary  

The details of the noise measurements and extraction of impulsive noise from 

measurement data have been presented in this chapter. An impulsive noise database 

has been compiled which is used in Chapter 4. 
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CHAPTER 4  

IMPULSIVE NOISE MODELLING 

4.1 Introduction 

An important source of electromagnetic noise in electricity substations is PD which 

radiates from the flaws in the insulation materials used in the electrical equipment. 

The PD phenomenon is described in detail in Chapter 2, Section 2.4. This chapter 

builds on the discussion of the nature of PD and explores potential mathematical and 

statistical techniques that can be used to model such phenomena. 

Section 4.2 outlines the mathematical basis of impulsive noise modelling. This is 

followed in section 4.3 by a detailed account of Middleton‘s seminal work and 

description of the Class-A and Class-B models. 

Section 4.4 provides a description of -stable distributions and the characteristics 

that make them potential techniques for modelling broadband impulsive noise.  

The model selection criteria and justification of adopting Middleton‘s Class-A and 

Symmetric -Stable (SS) to model the PD noise environment of the electricity 

substations are given in section 4.5.  

Section 4.6 describes the parameter estimation methods and provides validation by 

comparing the noise amplitude distributions of both the recorded and generated noise 

data.  
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4.2 Impulsive Noise Models 

The noise which originates from the PD is impulsive. It can be characterised by 

bursts of short duration pulses with random amplitude and random time of 

occurrence. Mathematically PD noise can be described as a summation of individual 

pulses or summation of pulse trains (if we consider that each PD results in a pulse 

train). The resulting noise process is non-stationary i.e. its statistical parameters 

(including mean and variance) vary with time.  

If a non-stationary process has a well-defined Markovian structure then a Hidden 

Markov Model (HMM) can be used to statistically characterize the time-varying 

behaviour of the noise [51]. HMM is essentially a finite state Markov chain where 

each state corresponds to a stationary sub-process. The number of states in the HMM 

depends on the character of the noise
3
.  

Figure 4.1 shows a binary state Markov model, which can be used to model 

impulsive noise. State-1 corresponds to the absence of the impulsive noise and state-

2 to the presence of impulsive noise [14]. This is the simplest model to describe the 

time-varying nature of the impulsive noise. It has limited applications to representing 

the complex noise encountered in industrial environments such as electricity 

substations.  

                                                 
3
 Markov process is a stochastic process whose future behaviour is independent of past behaviour, and 

can be determined by present state only. Markov (1856-1922) proposed this process, when he was 

working on the generalisation of the Central Limit Theorem (CLT). 
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Figure 4.1 Markov Binary state noise model  

 

If a noise process does not have a well-defined Markovian structure then Gaussian 

mixture distributions offer an alternative approach. This alternative approach is 

particularly useful for impulsive processes [52].  

There have been many characterizations of submarine acoustic noise, man-made 

urban radio frequency (RF) noise, and low-frequency atmospheric noise. For such 

noise environments, it is well-established that the simple Gaussian noise model, 

although mathematically very appealing, is not appropriate [53-56]. The probability 

of occurrence of large-magnitude observations is high in these environments and the 

resultant noise process does not converge to a Gaussian distribution.  

The presence of impulsive noise results in a non-Gaussian noise profile whose 

density function tails decay at a lower rate than a Gaussian density function. To 

model this noise process, the tail behaviour of the Gaussian distribution function, 

therefore, needs to be adjusted. One approach is to generalize the Gaussian density 

function and allow its exponential decay to become a free parameter. A second 

approach is to control the algebraic decay in the tails of a Cauchy density function by 

introducing free parameters. Thus in both cases (generalized Gaussian and 
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generalized Cauchy), the behaviour of the tails can be controlled and a variety of 

different density shapes, which are appropriate for modelling different non-Gaussian 

noise profiles, can be achieved.  

The presence of PD is a root cause of the non-Gaussian nature of the noise 

originating from an ETS.  

Algazi and Learner [57] have reported that certain types of atmospheric impulsive 

noise can be modelled with a generalized Gaussian density function, in which the 

rate of exponential decay parameter k = 0.5. The noise density function for parameter 

k and variance 2 is defined as: 
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and  is the gamma function:  
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In a similar way, Mertz [58] modelled the amplitude distribution of impulsive noise 

found in digital communication systems using a higher-order hyperbolic distribution 

which, with the assumption that noise density is symmetric and k = 1, reduces to the 

generalized Cauchy distribution and can be written  in terms of three parameters 
2
, k 

and v as: 
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and A(k) is defined by Equation 4.2. The density function fk,v(x) has algebraic rather 

than exponential decay in the tails. This generalization of the Cauchy distribution is 

explained later in the context of Symmetric -Stable (SS) distributions. 

Another perspective on modelling non-Gaussian impulsive process is to use the 

mixed density function, which can be written as:  

                                                                                    

where  is a constant in the range [0,1]. G(x) can be a Gaussian density and I(x) is 

some other density function with heavier tails than Gaussian. In this density function, 

for small values of x, Gaussian behaviour dominates, and for large values I(x) 

dominates. The sum results in a heavy-tailed density function appropriate to 

impulsive noise. A mixture Rayleigh density function can be used to fit radar clutter, 

which also has heavier tails than a Gaussian density function [59].  

The impulsive noise can be considered to be a Poisson point process with i.i.d. 

amplitude values. It can be written as:  
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      ∑                                                                          

 

     

 

where ‗p’ is the pulse shape and is determined by the receiver‘s impulse response, Ak 

is amplitude values and tk is Poisson distributed. If we suppose ‗v’ is a rate parameter 

of the Poisson process and Tp is the width of the pulse then for vTp <<1, the density 

function of I(t) is given in Equation 4.8 [60, 61].  

      (     )                                                                     

In Equation 4.8, the density function I(x) depends on the shape and amplitude 

distribution of the pulse. The quantity 1 - vTp corresponds to the probability of no 

impulsive noise being present. If       is convolved with background (Gaussian) 

noise, this relationship results in the density function f(x) [Equation 4.6], where is 

replaced with vTp

The seminal work of Middleton [62], described in the next section, generalizes the 

concept of mixture noise.  

4.3 Middleton Noise Models  

Man-made interference can be either categorised as intelligent when the interfering 

signal carries meaningful information or unintelligent when the interfering signal 

carries no (conventional) information. The latter includes partial discharge (PD), 

switching transients and combustion engine ignition noise etc. When sufficiently 

close to a PD source, unintelligent impulsive interference will dominate.  

The realization of a tractable analytical model for combined man-made and natural 

radio noise serves a number of purposes [10, 62]:  
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a. It provides a realistic and quantitative description of man-made and natural 

electromagnetic interference. 

b. It provides a framework for experimental protocols for the measurement of such 

interference. 

c. It can be used to assess the comparative performance of competing 

communication systems in realistic noise environments. 

Middleton‘s three models (class A, B and C) are statistical physical models which 

include the non-Gaussian components of natural and man-made noise. These models 

are canonical in nature, i.e. their mathematical form is independent of the physical 

environment. The distinction between the three models is based on the relative 

bandwidth of noise and the receiver. The class A model is suitable for narrowband 

noise (relative to receiver front-end bandwidth) and the class B model is suitable for 

broadband impulsive noise (relative to receiver front-end bandwidth). Class C refers 

to the noise environment when both Class A and Class B interferers are present. The 

Class C model has limited practical applications and is not extensively developed in 

the literature. 

Middleton considered a set of impulsive noise sources distributed around a receiver 

as  illustrated in Figure 4.2. These sources can be categorized as weak when their 

effect is benign, due to large distances between the source and receiver or simply low 

radiated power. It is assumed that electromagnetic radiation from the sources is 

Poisson distributed. The received signals from a large number of sources overlap 

allowing the application of the Central Limit Theorem (CLT). The noise distribution 

(for weak sources) therefore tends to a Gaussian shape. An environment with a large 



52  

 

number of independent weak noise sources, therefore, does not impose any 

performance degradation to the receiver designed to perform optimally in the 

Gaussian noise.  

 

Figure 4.2 Middleton Noise Models – Depiction of multiple weak sources 

 

In addition to weak sources which superpose and lose their individual characteristics, 

there is a second category of fewer but stronger, noise sources (illustrated in Figure 

4.3) These may be strong either because of their short distance from the receiver or 

their relatively high level of radiated power. Such strong sources do not overlap 

sufficiently to lose their individual characteristics. The inclusion of the strong 

sources thickens the tails of the density function. For a noise environment with both 

strong and weak sources, the models proposed by Middleton represent good 

statistical tools. 
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Figure 4.3 Middleton Noise Models – Depiction of strong noise sources 

The same description of weak and strong sources can be extended to the noise 

environment of an electricity substation in which PD and switching/fault transients 

are the major, non-Gaussian, impulsive, noise sources. The inclusion of 

electromagnetic radiation from PD and switching/fault transients in the noise 

characterization modifies the overall distribution of the noise and invalidates a 

Gaussian distribution assumption.  

Middleton noise models are based on the location and distribution of noise sources 

and their radiated power. The parameters of the noise models have physical meaning 

and provide better stochastic behaviour when compared to other non-Gaussian noise 

models.  

There are a number of key assumptions made in the derivation of the Middleton 

noise models. These assumptions are: 

1. There are two independent components (a) a small number of strong sources 

Poisson distributed (in time and space) and (b) zero-mean Gaussian noise which 

accounts for internal receiver noise and any external noise sources (including 
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large numbers of weak sources) which tend to a Gaussian distribution in 

accordance with the central limit theorem.  

2. Phases uniformly distributed over 0-2 

3. Far-field (Fraunhofer) condition.  

4. Minimal relative motion between sources and the receiver (i.e. negligible 

Doppler effects). 

Note that the above assumptions do not require the noise sources or the receiving 

antenna to be omnidirectional. 

Middleton has used the Rayleigh Probability Presentation (RPP) for the 

representation of densities of the noise models [63]. RPP is a log-log representation 

of the amplitude exceedance probability. In an RPP plot, thermal noise appears as a 

straight line with a gradient of -0.5. The ordinate shows the rms voltage envelope and 

the abscissa displays the time fraction that the envelope exceeds the ordinate. The 

difference between Class-A and Class-B noise models and the significance of RPP 

are now addressed.  

4.3.1 Middleton Class-A Noise Model  

Class-A noise represents impulsive noise with a spectrum that is narrow compared to 

the receiver bandwidth and includes all pulses which do not produce transients in the 

receiver‘s RF and IF stages [10]. Thus, the receiver filter passes the impulsive 

components and the parameters of the model can be interpreted in terms of physical 

mechanisms which are generating this noise. Its PDF [11]is given by: 
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where 

  
  

 
     

    
                                                                        

 

The density function, given in Equation 4.9, for Middleton Class A noise, is obtained 

as an infinite sum of weighted Gaussian densities of different variances, where the 

weights decrease with increasing variance. For a variety of non-Gaussian noise 

environments, two or three terms of parameter m are sufficient where m determines 

the number of Gaussian densities to be included [64, 65]. The difference between the 

truncated Class A envelope distribution with m = 2 and 3 and the true envelope 

distributions is negligible for the expected range of the other Class A noise model 

parameter values [65]. Class-A noise has the following two parameters:  

1) Impulsive index (A): which is the product of mean impulse rate and impulse 

duration and is similar to vTp discussed in Section 4.2. The density function of 

class-A noise has a Gaussian noise component and an impulsive, Poisson 

distributed noise component. The lower the value of A the more impulsive is the 

noise.  

2) Scale Factor (’): which is the ratio of power in the Gaussian noise component 

and the power in the impulsive noise component. 
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Figure 4.4 and 4.5 show the PDF of Class-A noise with a fixed value of 

''and four values of   corresponds to highly impulsive 

noise. Class-A noise model has been used to evaluate a wide variety of modulation 

and error control coding techniques for communication systems operating in 

impulsive noise environments [66-70].  

The values of these parameters are estimated from the impulsive noise database 

compiled from the measurements made in the Strathaven electricity substation. 

4.3.2 Middleton Class-B Noise Model 

 Class-B noise refers to impulsive noise, which is wideband when compared to the 

receiver bandwidth and can produce transients in the receiver front end. Its practical 

applications are limited because of its mathematical complexity. It requires the 

estimation of five parameters and an inflection point, which needs to be arrived at 

empirically. A practical alternative is to use Symmetric -Stable (SS) distributions. 

The resultant probability density function of the summation of zero-mean Gaussian 

noise and SS (for 0 < < 2) converges to the Class-B probability density function 

[71]. In this work, SS process is used to model the broadband impulsive noise.  



57  

 

 

Figure 4.4 PDF of the Class-A noise model, for different values of A and ’ = 0.001 

 

 

Figure 4.5 Tails of the density function of Middleton Class A noise model, for 

different values of A and ’ = 0.001 
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4.4 Symmetric -Stable (SS) Noise Model  

Stable random variables can be used to model a wide range of impulsive phenomena 

[72]. Some of their desirable properties for modelling impulsive phenomena are:  

1. They conform to Generalized Central Limit Theorem (G-CLT) which states that 

‗if the sum of independent and identically distributed (i.i.d) random variables 

with or without finite variance converges to a distribution by increasing the 

number of variables, the limit distribution must belong to the family of stable 

laws’.  

The Central Limit Theorem (CLT) describes the convergence of infinitely many 

independent i.i.d. random variables with a finite variance to a Gaussian 

distribution whereas the G-CLT describes the convergence of random variables 

with an infinite variance to non-Gaussian stable distributions.[12] [73]. 

2. Their PDF tails decay slower than the Gaussian PDF. This property makes them 

suitable for modelling impulsive phenomena as it is evident from the empirical 

data that impulsive phenomena have heavier tails [74, 75].  

The SS distribution is characterised by three parameters;  (the characteristic 

exponent),  (the dispersion parameter) and (the location parameter). The SS 

distribution includes the Gaussian distribution as a limiting case (when the 

characteristic exponent  = 2): 

( )
j w w

f w e


 

      (Equation 4.12) 

where 0 < < 2, > 0 and < < . Its PDF is given by: 
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 



        (Equation 4.13) 

The characteristic exponent or shape parameter  controls the decay gradient of the 

PDF tails. For small values of  the tails decay slowly corresponding to a highly 

impulsive process. For  = 2, the SS distribution reduces to the Gaussian 

distribution while, for  = 1, it reduces to the Cauchy distribution. 

The dispersion parameter  controls the spread of the distribution around its location 

(determined by It can have any positive value and has a similar role to the 

variance in a Gaussian distribution. (For  = 2, the Gaussian case,  is equal to half 

of the variance).  

The location parameter is the point of symmetry of the SS PDF. It is equal to the 

mean of the distribution when 1 ≤ ≤ 2.  

 

Figure 4.6 SS PDF curves for different value of the characteristic exponent  

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

p
(x

)

 

 

  = 2

  =1

  =1.50

  = 0.50



60  

 

General closed-form expressions for the SS density and distribution functions are 

not known, apart from the special cases of Gaussian (= 2) and Cauchy (= 1). Its 

density function can, however, be expanded as a convergent power series [76]. The 

standard SS density function is given by Equation 4.14. 
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    (4.14) 

where  is the gamma function: 

1( )

0

tx t e dt


          (Equation 4.15) 

The PDF curves of the SS for different values of the characteristic exponent  are 

shown in Figure 4.6 to illustrate the impact of the value of  on the shape of the PDF 

curves.  

4.5 Selection of Models  

The most common impulsive noise models used in the literature are Middleton‘s 

Class-A and Class-B as described in the previous section [10]. In addition to 

Middleton models, a variety of impulsive noise models based on the statistical 

description of measured data have been used for modelling non-Gaussian noise 
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processes [77, 78]. These models are environment specific thus cannot be generalised 

or applied to other impulsive noise environments. 

Given the complexity of ETS noise environment, properties of Middleton Class-B 

noise model, and its mathematically convenient and equivalent SS based model, is 

suggested to be a good choice to model this type of noise environment [72]. This 

model selection is based on the following points: 

1. PD results in the generation of a series of current pulses which contribute to the 

impulsive noise component of the overall ETS noise profile. The technical 

literature, e.g. [10] encourages the use of Middleton Class-B noise model which 

is implemented in this work as an equivalent SS based model.  

2. Amplitude distribution based models for impulsive noise, e.g. higher order 

hyperbolic, Weibull, Pareto, exponential, log-normal, and Rayleigh have been 

proposed [58, 75, 79, 80]. However, none of these offers a good fit for the ETS 

data. A statistical comparison of the best four representative distributions is 

shown in Figure 4.7 and Table 4.1.  

The plot in Figure 4.7 includes the CDF of ETS noise amplitude data (recorded 

over the month of August 2008) and the top four representative distributions. The 

ranking is based on the goodness of distribution-fit that is evaluated using the 

Bayesian Information Criterion (BIC). The BIC is a log-likelihood based 

distribution (or model) selection criterion which selects the best-fit distribution 

from a set of potential distributions. The distribution set which is used for model 

selection includes normal, higher order hyperbolic (Mertz [58]), t-Location Scale,  
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Figure 4.7 CDF comparison of candidate heavy-tailed distributions for impulsive 

noise modelling. 

 

Extreme Value, Generalised Pareto, Weibull, and Logistic. BIC can be defined 

as: 

 

       ( ̂)                (Equation 4.16) 

 

where n is the dataset size, k is the number of free parameters to be estimated and 

 ̂ is the maximum likelihood of a model selected from the distribution set. The 

smaller the BIC value is, the better is the model. 

 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Value

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
il
it
y

Dataset - High Horn Antenna (August 2008)

 

 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.5

0

0.5

Value

E
rr

o
r

 

 

Normal

Higher Order Hyperbolic(Mertz)

Weibull

Generalised Pareto

ETS Noise

Normal

Higher Order Hyperbolic(Mertz)

Weibull

Generalised Pareto



63  

 

Table 4.1 Goodness of fit comparison of top three candidate heavy-tailed distributions 

for impulsive noise modelling (Dataset – August 2008). 

Distribution  Goodness of Fit Metric  

(BIC - Bayesian Information Criterion) 

Normal -4.5256e+005 

Higher Order Hyperbolic (Mertz) -3.3571e+005 

Weibull -2.1427e+005 

Generalised Pareto 1.3359e+005 

 

3. Noise measurements are detailed in Chapter 3 and statistics of the recorded data 

have been reported in [81]. A comparison of the data generated from a model 

built from the statistics of measurement data and estimated statistics of the 

measured data shows the weakness of a model based on the set of well-known set 

of distributions. The weakness of this model lies in the statistical variation among 

data sets recorded on different days/time. As is stated earlier, this approach lacks 

generalisation and leads to a model which can fit a certain dataset (recorded on a 

certain time and date) but fails when used to fit different datasets. Table 4.2 

shows a comparison of datasets from seven months (August 2008 to February 

2009). It includes a first best-fit distribution and corresponding BIC score. It is 

apparent that none of the distributions from the selected set of heavy-tailed 

distributions fits the data. 
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Table 4.2 Best-fit distribution comparison of all measurement datasets 

Dataset Best-Fit Distribution 
Goodness of Fit Metric 

(BIC - Bayesian Information Criterion ) 

August 2008 
Normal 

-4.5256e+005 

September 2008 
Normal 

-1.5663e+005 

October 2008 
Extreme value 

-4.0590e+005 

November 2008 
Normal 

-4.5624e+005 

December 2008 
t-location scale 

-4.3963e+005 

January 2009 
Logistic 

-1.2693e+005 

February 2009 
Normal 

-1.8734e+005 

 

4.6 Model Parameter Estimation 

In this section, some of the parameter estimation techniques for the Middleton Class 

A and SS models are introduced.  

4.6.1 Class A Estimation Techniques 

The parameter estimation challenge for the Class-A noise model has been the focus 

of research in many studies and a number of estimation methods have been derived 

[63, 64, 82-86].  

Middleton has proposed two parameter estimation methods for the Class-A model. 

The first is based on an empirical approximation of the distribution function and the 

second is based on the moments of the data [82]. Middleton‘s empirical 

approximation estimation method has been extended by Zabin and Poor and they 

have derived an efficient threshold comparison estimation method [83].  
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A typical Class-A envelope distribution for parameter values of A = [0.10, 0.20, 

0.30] and, ' = 0.001, is shown in Figure 4.8 [83] and it can be seen that the 

distribution function curve has the following three distinct regions: 

1. Gaussian region: the region of lower values of the distribution function 

corresponding to the background Gaussian noise or the measurement values 

where the Gaussian noise component is dominant. 

2. Null region: the middle region of distribution function where the probability 

P(Z > z0 ) has insignificant variation. 

3. Impulsive region: the region of higher values of the distribution function 

where the impulsive noise component is dominant. A threshold value can be 

set to mark the point where the distribution function departs from the 

straight-line.  

In the threshold comparison method, the estimated parameters are A and K instead of 

A and where K is an approximate product of A and . The estimation process can 

be described as follows:  

Step 1: Divide the ETS measurements dataset (Z) into two sub-datasets, based on the 

threshold (TIB). The sub-dataset, which has values above the threshold, represents 

impulsive noise component (denoted as ZI) and the dataset, which has values below 

the threshold, represents the background noise (denoted as ZB).  

Step 2: Estimate the value of A from these two datasets using: 

 ̅   
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where nI is the length
4
 of impulsive sub-dataset (ZI) and n is the length of the 

measurements dataset (Z).  

Step 3: Estimate K as the ratio of average energy in the background and impulsive 

noise datasets, which can be written as:  

              ̅      (
 

  
∑      

  
   )

 

(
 

  
∑      

  
   )

 

⁄                                                

For A ≥ 10
-1

; ' ≤ 10
-3

, the estimated value of A is the value on the abscissa, 

corresponding to the start of the sharp increase in the distribution function or the 

point where the distribution function starts to depart from the straight-line behaviour 

[83].  

An envelope distribution curve for the ETS measurements data
5
 has also been 

included in Figure 4.8 and it can be observed from figure labels that the values of 

threshold (TIB)and A are -15 dB (~0.178) and ~0.25 respectively. 

The second parameter estimation method, derived by Middleton for Class-A, is based 

on the higher moments of the measurements data. The values of parameters A and  

can be estimated using Equation 4.19 and 4.20 respectively [82]. 

                                                 
4
 Length in terms of number of values in the dataset 

5
 The measurement data is the PD noise recorded using HB TEM horn antenna, over the period from 

the August 2008 to February 2009. The total number of datasets used is 345 where each dataset has 

approximately 300 observations.  
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Figure 4.8 Envelope probability distribution [P (Z > z0)] of Class-A and ETS noise. 

 

 ̅           
              

        
 ⁄                                                     

  ̅           
                  

   ⁄                                                        

where e2, e4 and e6 denote second, fourth and sixth moments of the ETS 

measurements data.  

Zabin and Poor developed another parameter estimation method for the Class-A 

noise model, based on the Expectation Maximization (EM) algorithm [84]. In this 

method, the envelope pdf of Class-A model has been described in the form of a sum 

of weighted probability densities. If Θ is the set of parameters A and K (where K = 

A, then the envelope pdf can be written as: 

      ∑            
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The envelope pdf of the Class-A model after Equation 4.9 is: 

     {    ∑
  

    
 

  
 

  

  
 
                                                        

 

   

 

then the       and         for Class-A model can be written as: 

      
          

      
                                                                     

          (
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                                                  (Equation 4.23) 

The EM algorithm is a two-step process where step-1 is an evaluation of the 

expected value of log-likelihood function Q(Θ|Θ
(p)

). For the Class-A model, this is 

given by Equation 4.24 [84]. 
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where, using Equation 4.23,     is  

     
            

  

∑             
   

   

                                                                    

Step-2 of the EM algorithm is to determine Θ = Θ
 (p+1)

 to maximize Q (Θ|Θ
 (p)

). This 

is an iterative process. First, the value of K is fixed to maximize A, and then the value 

of A is fixed to maximise K. The value of parameters estimated using the method of 

moments are used to initialize the EM algorithm. 
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The estimated Class A parameters for ETS noise are given in Table 4.3. These 

parameter values are used in Chapter 6 for generation of the narrowband impulsive 

noise. 

Table 4.3: Estimated Class A Model Parameters for ETS Noise 

Method Parameter Value  

 A   

Envelope distribution method 0.253 0.2408 

Method of moments 0.132 0.2931 

EM based method 0.141 0.2291 

 

4.6.1.1 Validation 

The accuracy of the parameter estimation techniques is validated using the following 

two test cases. The validation process is illustrated in Figure 4.9.  

4.6.1.1.1 Test Case 1 

Class A noise datasets are generated using a known set of parameters and three 

estimation techniques are applied to estimate the parameters. The estimated 

parameters are compared against the known parameters.  

The estimation results of the parameters A and  are shown in Figure 4.10 and Figure 

4.11 respectively. It can be seen that the EM based estimation method has better 

overall performance as it gives the minimum estimation error (the difference between 

the actual and estimated value) among the three estimation techniques. 

4.6.1.1.2  Test Case 2 

The three estimation techniques are applied to the ETS measurement dataset and the 

estimated parameters are used to generate a Class A noise dataset. For validation, 
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Amplitude Cumulative Distribution (ACDF) curves are compared for the both real 

and Class A noise datasets generated using the estimated parameters. 

 

 

Figure 4.9: Illustration of parameter estimation validation 
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Figure 4.10: Test Case 1 – Estimation of the parameter A when = 0.005. 

 

 

Figure 4.11: Test Case 1 – Estimation of the parameter when A = 0.35. 
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The results of ACDF comparison are shown in Figure 4.12. The comparison shows 

the similarity between the ETS measurements dataset and the Class-A noise dataset, 

with the parameters, estimated from the envelope distribution, moments and EM 

based methods. It is apparent that either the Method of moments or the EM based 

method can be used for the parameter estimation.  

 

Figure 4.12 Comparison of the ETS ACDF and Class-A ACDF 

 

4.6.2 SS Model Estimation Techniques  

The challenge of SS parameter estimation has been addressed by many authors over 

the past four decades and the proposed estimation techniques are based on either the 

quantile of the dataset or the Fractional Lower Order Moments (FLOM). 

Fama and Roll [87] have proposed a quantile-based parameter estimation technique, 

where the p
th

 quantile of a dataset is defined as the value of xp for which fx(p) = p. 

The disadvantages of this technique are that it limits the value of characteristic 

exponent () to be greater than 1 and the estimated parameters are biased, even when 
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measurements are within the valid range. McCulloch [88] suggested another 

quantile-based technique which removed the asymptotic estimate biasing and allows 

the range of  to be (0.5 ≤ ≤ 2). 

The FLOM is a property of SS and there is a one-to-one relationship between the 

SS parameters and FLOMs i.e. each set of distribution parameters has a unique set 

of FLOMs. It is defined as: 

  | |                                                                          

Note that the parameter controls the tails of the PDF and thus it can control the 

moments of the distribution. The FLOM can be estimated empirically [72, 89] as: 

 | |         
 
                                                             

where  
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 √   (
  
 ) 

                                                              

There are two popular FLOM based estimation techniques. The first uses Log- 

FLOM [90, 91] and the second uses the asymptotic behaviour of the Extreme-Order 

Statistics (EOS) [76]. 

The first Log-FLOM technique uses the definition of the FLOM i.e. E(e
px

) for -1 

<p< and the parameters can be estimated using: 

       (
 

 
  )   
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where Ce is the Euler constant.  

The second EOS based technique estimates all three parameters and involves 

relatively simple computations. A description of this technique is as follows: 

Let X1, X2, . . . , XN be a measured series of independent samples from an SS random 

variable with unknown values of ,  and . The estimation procedure includes three 

algorithms. The first algorithm estimates . It does not need knowledge of  or  

The second algorithm estimates , using the estimated value of . The third 

algorithm estimates , using the estimates of  and . 

The estimate of the location parameter is the sample median of the measurement 

series: 

 ̂                                                                 

The estimate of the characteristic exponent  is calculated using three steps.  

1. The centred data series is divided into L non-overlapping segments of equal 

length.  

{      ̂        ̂        ̂         ̂}                                      

2.  If X(l, max) and X(l, min) are the maximum and minimum of the l
th

 data segment and 

the    and    are:  

      (        )            (        )                                     
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The standard deviations of    and    are calculated in the usual way:  
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 ∑         
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3. Finally, the estimate of the characteristic exponent () is calculated using: 
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)                                                                             

4. The estimation of the dispersion (parameter based on the theory of fractional 

lower order moments [17] is calculated from: 

 ̂   *
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where       ̂  is given by Equation 4.25 and the recommended order of fractional 

moment p is 1/3 of the estimated value of the characteristic exponent (  
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These two FLOM based techniques are used in this work for the estimation of the 

SS model.  

4.6.2.1 Validation  

A similar validation process to that previously illustrated in Figure 4.9 is adopted in 

order to evaluate the accuracy of the two FLOM methods. 

4.6.2.1.1 Test Case 1 

SS datasets are generated using a known set of parameters and the two FLOM 

based estimation techniques are applied to estimate the parameters. The estimated 

parameters are compared against the known parameters.  

The estimation results are shown in Figure 4.13 and Figure 4.14. The performance of 

the EOS-FLOM technique is satisfactory whereas Log-FLOM under-estimates the 

value of  by 10%. Since the same dataset is used ( is estimated first and the 

estimated value used to compute ) for the estimation of an over-estimation of  by 

roughly the same amount can be seen in Figure 4.14. 

4.6.2.1.2 Test Case 2 

The two estimation techniques, Log-FLOM and EOS-FLOM, are applied to the ETS 

measurements dataset and the estimated parameters are used to generate an SS 

dataset. For validation Amplitude Cumulative Distribution Function (ACDF) curves 

are compared for both the real ETS data and the emulated SS dataset, generated 

using the estimated parameters. 

The results of ACDF comparison are shown in Figure 4.15. The comparison shows 

that the parameters estimated using EOS-FLOM provide the best fit CDF curve.  
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The estimated parameter values of the ETS measurement data sets are recorded in 

Table 4.4. These parameters are used in Chapter 6, for the generation of the 

broadband impulsive noise. 

 

Figure 4.13: Estimation of  when  = 0.0015 and  = 0 

 

Figure 4.14: Estimation of  when  = [0.1 (0.2) 0.8] and  = 0 
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Figure 4.15 Comparison of the ACDF of ETS measurements noise  dataset and ACDF 

of the SS dataset generated using the estimated parameters  

 

Table 4.4: Estimated parameters of SS broadband impulsive noise model for 

electricity transmission substations 

Parameters Estimated Value 

Location Parameter () 1.1805E-7 

Characteristic Exponent () 1.4130 

Dispersion () 6.3422E-7 

 

4.7 Summary  

Impulsive noise modelling, not restricted to but including the seminal work of 

Middleton, has been reviewed. The practicality of applying Middleton‘s models has 

been discussed and the use of a Symmetric -Stable (SS) distribution as a 
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mathematically-tractable alternative to Middleton‘s Class-B model for application to 

electricity substations noise environment has been proposed.  

Parameter estimation techniques for both Middleton Class A and SS noise models 

are detailed and their performance is evaluated. The parameters for the ETS 

measurements data are computed for both narrowband (Class A) and broadband 

(SS) impulsive noise models to be used in the performance assessment of candidate 

short-range wireless technologies in Chapter 6.  
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CHAPTER 5  

PHYSICAL LAYER MODELS AND 

SIMULATIONS  

5.1 Introduction 

Computer simulations are an effective tool for the design and validation of electronic 

systems. They serve as a first step in the prototyping of a system. In communication 

systems, information is processed at the transmitter prior to be sent to the receiver 

through a noisy medium or channel. The objective of the processing at the 

transmitter is, in part, to make the signal resilient to additive noise, system non-

linearities and channel variations. The receiver is designed to mitigate the effects of 

the channel, reverse the transmitter processing and thus retrieve the source 

information.  

Traditionally communication systems are designed using analytic expressions for 

noise characteristics, system non-linearities and channel effects. This design process 

provides insight into the effects of only a relatively restricted set of noise and 

interference environments. 

Computer simulations provide an alternative that allows communication system 

performance to be assessed against a greater range of system parameters, noise 

characteristics and channel impairments [92]. Modelling of a communication system 

using simulation tools typically employs a modular approach in which each signal 

processing task is implemented as a block. Parameters of each block are variable. 

MATLAB and Simulink are widely-used digital modelling tools for communication 
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systems and they have a number of built-in functions which can be used or tailored to 

perform different signal processing tasks; e.g. generation of random numbers, 

coding, modulation, and filtering.  

Simulink has a wide range of blocks for the implementation of Physical (PHY) layer 

communication protocols. While Omnet and NS3 might be software packages of 

choice for simulation of the Network and higher layers, Simulink might be 

considered especially appropriate for the simulation of PHY layer communication 

protocols [93]. It is flexible and allows incorporation of the blocks designed by the 

user. Algorithms and procedures can be implemented (coded as s-functions) in 

MATLAB and used in Simulink with the built-in blocks. S-functions make the basis 

of Simulink blocks and can be written in C or MATLAB.  

The three short-range wireless technologies which are evaluated in this work, for 

their deployment in noise intensive environment of an electricity substation, are 

WLAN, Bluetooth and Zigbee. The PHY models of these wireless technologies are 

implemented using MATLAB and Simulink. The validation of these PHY models 

has been carried out by comparing the theoretically expected and computed Bit Error 

Rates (BER). The details of implementation and validation are presented in this 

chapter. The structure of the work described in this chapter is illustrated in Figure 

5.1.  
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Figure 5.1: Overview of the PHY Layer Simulations 

 

The rest of the chapter is organised as follows: Section 5.2 covers the three IEEE 

802.11 PHY Layer variants of a WLAN whereas sections 5.3 and 5.4 provide a 

detailed description and validation of Bluetooth and ZigBee PHYs. 

5.2 WLAN 

The base standard for WLAN is IEEE 802.11 which was released in 1997. It 

standardised the two bottom layers of the seven-layer Open Systems Interconnection 

model (OSI) for WLAN communications The lowest two layers of the OSI model are 

PHY and Medium Access Control (MAC) [94, 95].  

PHY layer provides the interface between the MAC and the wireless media through 

following two functional entities: 
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1. Physical Layer Convergence Protocol (PLCP) adds a PHY header to the MAC 

protocol data unit (MPDU). The MPDU is composed of data units passed down 

from higher layers e.g. Network and Transport.  

2. Physical Medium Dependent (PMD) performs the necessary signal processing 

(modulation, spreading, error coding, pulse shaping etc.) before transmitting the 

signal over the wireless medium.  

The IEEE 802.11 base standard operates in the 2.4 GHz frequency band and supports 

data rates of 1 and 2 Mbps. It employs Differential Phase Shift Keying (D-PSK) 

modulation and Direct Sequence Spread Spectrum (DSSS).[94]. 

The following four PHY extensions of the base standard have been released since 

1997: 

1. IEEE 802.11b, which employs Complementary Code Keying (CCK) modulation, 

supports data rates of 5.5 and 11Mbps and operates in the 2.4 GHz frequency 

band.  

2. IEEE 802.11a which employs Orthogonal Frequency Division Multiplexing 

(OFDM) modulation and convolutional Forward Error Correction (FEC), 

supports data rates of up to 54 Mbps and operates in the 5 GHz frequency band 

[96].  

3. IEEE 802.11g which uses CCK and OFDM modulations, supports data rates of 

up to 54 Mbps, operates in the 2.4 GHz frequency band and has three operational 

modes. These are (1) legacy mode – which is backward compatible with IEEE 

802.11b CCK (2) mixed mode – in which the transceiver can switch between 

IEEE 802.11b CCK and  IEEE 802.11a OFDM (3) New mode – in which all 

devices in the network are IEEE 802.11g enabled. The achieved data rate and 
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throughput are very comparable to the IEEE 802.11a OFDM devices operating at 

5 GHz. 

4. IEEE 802.11n which employs antenna arrays for transmission and reception and 

uses space diversity to achieve the high rates of up to 600 Mbps and operates in 

the 2.4 and 5 GHz frequency bands. Support for the operation at 5 GHz is 

optional. IEEE 802.11n is not assessed in this thesis due primarily to the need to 

restrict its scope to the time and resource available
6
. 

A comparison of the specifications of the four IEEE 802.11 PHY extensions and the 

base standard is shown in Table 5.1. 

Table 5.1: Specifications of the IEEE 802.11 PHY Extensions 

Release year PHY Extensions Frequency Band (GHz) 

1997 Base standard  (IEEE 802.11) 2.4 

1999 OFDM PHY (IEEE 802.11a) 5 

1999 HR DSSS PHY (IEEE 802.11b 2.4 

2003 IEEE 802.11g 2.4 

2009 IEEE 802.11n 2.4 and 5 

 

5.2.1 WLAN DSSS PHY  

The DSSS PHY is one of the three PHYs which were introduced in the base standard 

and the remaining two PHYs are Frequency Hopping Spread Spectrum (FHSS PHY) 

and Infrared PHY (IR PHY). Given the limited applications of IR PHY and inclusion 

of an FHSS based Bluetooth receiver in this work, only DSSS PHY has been 

                                                 
6
 The research can be extended in future and impulsive noise models employed to assess the 

performance of MIMO systems. IEEE 802.11n is one example of MIMO where antenna arrays are 

used for the transmission and reception. 
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included in the performance evaluation work. The description of DSSS PHY is 

structured into three subsections which are Framing, Modulation and Spreading.  

5.2.1.1 PHY Framing 

The PHY protocol data unit (PPDU) comprises 144-bit PLCP preamble, 

48-bit PLCP header and a PHY service data unit (PSDU) of variable length. The 

length of PSDU is dependent on the data rate. The composition of the PPDU is 

shown in Table 5.2.   

The PLCP preamble consists of SYNC (128 bit) and SFD (16 bit) fields. SYNC 

sequence is a string of 1s which is scrambled before transmission and is used by the 

receiver to synchronise its carrier tracking and timing. SFD (Start of Frame 

Delimiter) indicates the end of PLCP header. It is common to use hexadecimal word 

‗F3A0‘ for SFD in all DSSS receivers.  

The PLCP header consists of SIGNAL (8 bit), SERVICE (8 bit), LENGTH (16 bit) 

and CRC (16 bit) fields. SIGNAL is an indicator of the modulation technique to be 

used for the transmission and reception. The bit-by-bit functionality of the SERVICE 

field is shown in  Table 5.3. LENGTH field carries the time in microseconds to 

transmit the PSDU. The SIGNAL, SERVICE and LENGTH fields are protected by 

CRC-16 frame check sequence. Equation 5.1 shows the representative polynomial 

for the CRC-16 algorithm.  

                      (Equation 5.1) 

The receiver computes a CRC based on the SIGNAL, SERVICE and LENGTH 

fields and compares it with the value in the CRC field. This error detection and the 
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subsequent decision for retransmission or termination of the frame lies with the 

MAC layer.  

Table 5.2: PLCP PPDU format 

SYNC 

(128 bits) 

SFD 

(16 bits) 

SIGNAL 

(8 bits) 

SERVICE 

(8 bits) 

LENGTH 

(16 bits) 

CRC 

(16 bits) 

PSDU 

(variable length) 

PLCP Preamble 
(144 bits) 

PLCP Header 
(48 bits) 

PSDU 
(variable length) 

PPDU 

 

Table 5.3: SERVICE field definitions 

 

5.2.1.2 Modulation 

The Differential Binary Phase Shift Keying (DBPSK) and the Differential 

Quadrature Phase Shift Keying (DQPSK) are employed for 1 and 2 Mbps data rates 

respectively. The PLCP header and preamble is modulated using DBPSK at 1 Mbps 

whereas the PSDU is modulated using either of DBPSK or DQPSK to achieve the 

required data rate. 

 

DBPSK is a variant of BPSK. In BPSK the phase of a constant amplitude carrier 

switches between 0° and 180°. In DBPSK, information is carried as the phase 

difference between the consecutive bits. For example, if the phases of the current bit 
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(bk) and a previous bit (bk-1) are φk and φk-1 respectively, the DBPSK phase 

assignment can be written in the form of Equation 5.2 [97]. 

                                                

                                  (Equation 5.2) 

The implementation of a DBPSK modulator involves differential encoding of the 

binary data prior to BPSK modulation and the rule for differential encoding is: 

          
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (Equation 5.3) 

DQPSK is a variant of QPSK. In QPSK, the signal moves among four phases which 

are 90° apart and has four states on an I/Q diagram. Both I and Q components can 

carry binary digits enabling a QPSK symbol to carry two bits. It is equivalent to the 

transmission of two DBPSK symbols, one on each of the I and Q components.  

The signal constellations (I/Q diagrams) of DBPSK and DQPSK are shown in Figure 

5.2 and Figure 5.3 respectively. 
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Figure 5.2 DBPSK signal constellation 

 

Figure 5.3 DQPSK signal constellation 

 

5.2.1.3 PHY Spreading 

Spreading is a technique where signal energy is spread over a wider bandwidth 

compared to the bandwidth of the information signal. In DSSS PHY, a Barker 

sequence, where each information bit is converted to an 11 digit Barker code, is used 

for the spreading. The Barker word used in DSSS is [+1.-1,+1,+1,-1,+1,+1,+1,-1,-1,-

1] and has optimally low correlation at all offsets except zero. The autocorrelation of 

this Barker word is 11 at 0 offset and it is 0 or -1 at all other offsets [98]. 

The Barker word is passed through a Modulo-2 adder together with each information 

bit at the transmitter. This spreading process increases the number of physical pulses 

(referred to as chips) by a factor of 11. In the frequency domain, the signal is spread 

over a wider bandwidth with a lower RF power spectral density. 

At the receiver, the signal is correlated with the same 11-chip Barker word to recover 

the information bits. In-band interference is spread such that much of its energy then 

falls outside the collapsed signal bandwidth and, thus, is removed.  
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The ratio of spread bandwidth and de-spread bandwidth is called processing gain: 

                                 ⁄      (Equation 5.4) 

5.2.1.4 PHY Simulation Model 

A block diagram of DSSS PHY transmitter and receiver showing the functional 

blocks of both the transmitter and receiver is given in Figure 5.4. 

Simulink/MATLAB was used to implement
7
 this model and values of all the 

parameters of functional blocks are derived from the IEEE 802.11 base standard. 

In Mode-1
8
 transmitter, the Random Integer block generates frame-based binary data 

where samples per frame (or frame size) is 1024, symbol time period is 1s and 

sample time is set for achieving a data rate of 1 Mbps. The DBPSK block is a 

differential binary phase shift keying baseband modulator from Communications 

System Toolbox with a phase rotation of zero. The output of DBPSK is converted to 

a row vector prior to spreading using an 11-chip Barker code. The Barker chips are 

passed through Tx Pulse Shaping Filter before their transmission through AWGN 

channel. The Tx Pulse Shaping Filter is a root raised cosine filter where values of the 

roll-off factor, filter order and Oversampling factor are 0.3, 84 and 8 respectively. 

In the receiver data are passed through the Rx Pulse Shaping filter, despreading and 

DBPSK demodulator blocks. Bit Error Rate (BER) is computed using the Error Rate 

Calculation block from the Communications System Toolbox. 

                                                 
7
 It was built in the early 2008 when it was not available as a demo as part of the MATLAB 

documentation.  
8
 Mode-1 is 1 Mbps data rate mode of  WLAN DSSS PHY.  
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In the simulation of the Mode-2
9
, a DQPSK modulator and demodulator are used 

instead of the DBPSK modulator and the symbol time is changed alongside 

computational and receive delays.  

 

Figure 5.4 IEEE 802.11b - DSSS PHY (Mode1 and Mode 2) transceiver  

 

5.2.1.5 Validation 

The validation of the DSSS PHY simulation is carried out by a comparison between 

the theoretically expected and simulated BER. The theoretical BERs of the DBPSK 

and DQPSK are given by Equations 5.5 and 5.6 respectively [99]. 

   
 

 
     ( 

  

  
)      (Equation 5.5) 

            
 

 
            ( 

 

 
       )   (Equation 5.6) 

 

                                                 
9
 Mode-2 is 2 Mbps data rate mode of  WLAN DSSS PHY.  
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where 
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   (Equation 5.7) 

 

and Q1(a,b) and I0(a,b) are Marcum Q-function and the modified Bessel function 

respectively [100]. 

For the BER computation, simulations are run to process 100 bit errors or 10
6
 bits, 

whichever is reached first. The channel is AWGN and the results are averaged over 

50 simulation runs. 

The validation of the DSSS-PHY is shown in Figure 5.5 where the theoretical BER 

of the DBPSK and DQPSK are compared with the BER computed from the 

simulations for Modes 1 and 2. This validates the PHY simulation. 
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Figure 5.5: DSSS PHY validation - Comparison of theoretical and simulated BER 

 

5.2.2 WLAN OFDM PHY  

The OFDM PHY extension was released in 1999, as IEEE 802.11a. One motivation, 

among several, was the release of 300 MHz of spectrum by FCC in January 1997 in 

the 5 GHz band. It uses Orthogonal Frequency Modulation (OFDM) and Forward 

Error Correction (FEC) codes, operates at 5 GHz and supports several data rates 

ranging from 6 Mbps to 54 Mbps.  

The description of OFDM PHY is divided into three parts; the frame composition, 

modulation techniques, structure and parameters of OFDM.  
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5.2.2.1 PHY Framing 

The OFDM PHY frame (also called PPDU frame) comprises  a PLCP preamble, a 

Signal field and a Data field.  

The Signal field is 24 bits long which includes 4 bits to command data rate, 11 bits 

for the PSDU length, 1 parity bit and 6 tail bits. Both PLCP preamble and PLCP 

header are BPSK-OFDM modulated, encoded using convolutional encoding rate of R 

= ½ and transmitted at a data rate of 6 Mbit/s. The PLCP preamble is used to obtain 

the transmitted OFDM signal at the receiver and synchronize/train the demodulator. 

The PLCP preamble comprises 10 short and 2 long symbols; short symbols are used 

to acquire coarse channel estimation and long symbols to refine the estimate.  

The Data field comprises a 16-bit service field, variable length PSDU, and tail and 

pad fields of 6 bits each. The length of the Data field is the product of the number of 

OFDM symbols (Nsym) and number of data bits per OFDM symbol (Ndbps). 

5.2.2.2 Modulations and Coding 

OFDM is a block modulation scheme where a block of N serial data symbols are 

converted to N parallel data symbols. This process of serial to parallel conversion 

increases the duration of each symbol by a factor of N. For example if Ts is the 

duration of each symbol before ‗serial to parallel conversion‘, then after conversion it 

will become NTs. Such an increase in symbol duration reduces the impact of 

Intersymbol Interference (ISI) and improves resilience in the presence of multipath 

propagation. Each symbol is used to modulate a separate sub-carrier from a large set 

of orthogonal subcarriers. Orthogonality is achieved by using subcarriers which are 

integer multiples of the base or first subcarrier. All the sub-carriers are transmitted as 

a segregated sum (grouped together and transmitted in parallel).  
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Forward error correction coding is used to detect and correct the errors induced by 

the channel. Convolutional coding with a standard coding rate of ½ is used for the 

lowest data rate mode (Mode 1, see Table 5.4 for details of modes), with a constraint 

length of 7 and generator polynomials (133,171). For the higher data rate modes 

(Modes 2-8), puncturing is used to generate the higher coding rates of ⅔ and ¾. 

5.2.2.2.1 OFDM – A Mathematical Description 

An OFDM symbol can be written in the form of a summation of complex waveforms 

as shown in Equation 5.8 where each complex waveform represents a single 

subcarrier.  

         
 

 
∑                   

        (Equation 5.8) 

In Equation 5.8, n = 0 + n. When this summation is considered over one 

symbol period, An and n are constant values. The discrete time or sampled version 

can be written in the form of Equation 5.9, given that the sampling period is Ts.  

             
 

 
∑                         

    (Equation 5.9) 

In this sampled signal representation, N samples represent one symbol and if the 

sampling rate is Ts, then the duration of a symbol (Ts) is NTs. Equation 5.9 can be 

written in the form of Equation 5.10, by letting 0 = 0.  

             
 

 
∑          

                 (Equation 5.10) 

The general form of the Inverse Fast Fourier Transform (IFFT) is shown in Equation 

5.11 and a comparison with Equation 5.9 shows why IFFT is used for the generation 

of OFDM symbols.  
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     (Equation 5.11) 

In Equation 5.11,   
 

    
  is the frequency domain representation of the discrete time 

domain signal g(kTs) whereas in Equation 5.9,        is the definition of signal 

S(kTs) sampled in the frequency domain. The condition for the equivalence of 

Equation 5.8 and 5.10 is:  

    
  

  
  

 

    
 

 

  
    (Equation 5.12) 

The condition of orthogonality in OFDM thus allows the use of IFFT for the 

generation of the OFDM symbols.  

5.2.3 PHY Parameters 

The IEEE 802.11a standard defines 52 non-zero subcarriers comprising 48 data 

subcarriers and 4 pilot subcarriers for the OFDM PHY and supports a range of data 

rates, which are achieved using different signal constellations and error coding rates. 

Data rates supported by OFDM PHY and their corresponding parameters are given in 

Table 5.4. Inverse Fast Fourier Transform (IFFT) and Fast Fourier Transform (FFT) 

are used for implementing the modulator and demodulator banks respectively.  

Table 5.5 details the time-related OFDM parameters and their values.  
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Table 5.4 Data rate dependent OFDM PHY parameters [96] 

Mode Data rate 

(Mbps) 

Modulation Coding rate 

(R) 

Coded bits 

per 

subcarrier 

(NBPSC) 

Coded bits 

per OFDM 

symbol 

(NCBPS) 

Data bits per 

OFDM symbol 

(NDBPS) 

1 6 BPSK ½ 1 48 24 

2 9 BPSK ¾ 1 48 36 

3 12 QPSK ½ 2 96 48 

4 18 QPSK ¾ 2 96 72 

5 24 16 QAM ½ 4 192 96 

6 36 16 QAM ¾ 4 192 144 

7 48 64 QAM ⅔ 6 288 192 

8 54 64 QAM ¾ 6 288 216 

 

Table 5.5 Values of OFDM parameter [96] 

Parameter Value 

NSD (Number of data subcarriers)  48 

NSP (Number of pilot subcarriers) 4 

NST (Total number of subcarriers) 52 (NSD + NSP) 

ΔF (Subcarrier frequency spacing) 0.3125 MHz (= 20 MHz/64) 

TFFT (IFFT/FFT period) 3.2 µs (1/ΔF) 

TPREAMBLE (PLCP preamble duration) 16 µs (TSHORT + TLONG) 

TSIGNAL (Duration of the SIGNAL BPSK-OFDM symbol) 4.0 µs (TGI  + TFFT) 

TGI (GI duration) 0.8 µs (TFFT/4) 

TGI2 (Training symbol GI duration) 1.6 µs (TFFT/2) 

TSYM (Symbol interval) 4 µs (TGI +TFFT) 

TSHORT (Short training sequence duration) 8 µs (10 x TFFT/4) 

TLONG (Long training sequence duration) 8 µs (TGI2 + 2xTFFT) 

 

5.2.4 PHY Simulation Model 

A block diagram of the Simulink implementation of OFDM PHY transceiver is 

shown in Figure 5.6. The description of the functional blocks of the OFDM PHY 

simulation is given below: 

1. Mode Selector: takes an integer input in the range of 1-8 to set the mode of 

operation. Mode 1 corresponds to 6 Mbps and Mode 8 corresponds to 54 Mbps. 
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In addition to setting the data rate, this input selects the corresponding 

modulator/encoder and demodulation/decoder from the Modulator and 

Demodulator bank.  

2. Data Source: is a binary random data source and implemented using the Random 

Source block. The generated random data follows uniform distribution and data-

rate is dependent on the mode selected using Mode Selector.  

3. Modulator Bank: includes an implementation of all 8 combinations of 

modulator/channel encoder. Its underlying structure is shown in Figure 5.6. A 

trellis structure is passed to the convolutional encoder that determines the 

encoding code to be used. The trellis structure is formed using MATLAB 

function poly2trellis and its inputs are constraint length and a pair of octal 

numbers. 

4. OFDM symbol: reshapes/group the data into OFDM symbol.  

5. Assemble OFDM Frames: pads the pilot and training sequence to the OFDM 

symbol and generates an OFDM frame. The pilot is generated using a PN 

Sequence Generator and Unipolar to Bipolar Simulink blocks.  

6. IFFT: The underlying functionality of this block is based on the Simulink block 

IFFT. The input to IFFT is 52 source symbols and the output is 52 orthogonal 

sinusoids. The IFFT is applied to output complex time-domain samples that 

represent the combined OFDM subcarrier waveforms.  

7. Append Cyclic Prefix: fills in the guard interval by adding a copy of the end of 

the symbol to its start, which further improves the immunity of the OFDM 

symbol against inter-symbol interference (ISI) and also provides protection 

against time offset.  
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8. Multiplex OFDM Frames: a parallel to serial converter which transmits the 

OFDM symbols one by one.  

9. AWGN: a standard Simulink block which adds Gaussian noise to the input 

signal.  

10. De-multiplex OFDM Frames: a serial to parallel converter which receives each 

time domain OFDM symbol and constructs a parallel OFDM frame. 

11. Removed Cyclic Prefix: removes the cyclic prefix from each symbol. 

12. FFT: converts the OFDM symbols back to the frequency domain so that each 

frequency bin can be decoded independently.  

13. Frequency Domain Equalizer: The OFDM signal is affected by frequency 

selective fading and this block is a one-tap zero-forcing equaliser that is applied 

to each subcarrier to compensate for multipath fading. It does not have any effect 

for AWGN.  

14. Disassemble OFDM Frames: unpacks the OFDM frame i.e. serialises the 

OFDM symbol and passes symbols individually to the Demodulator Bank block.  

15. Demodulator Bank: performs  demodulation and decoding. After demodulation, 

the values are passed onto a Viterbi decoder block where decoding decisions are 

based on the Hamming distance (as un-quantised option is selected in the 

decision type menu in Viterbi decode block). The value of Traceback depth 

parameter in the Viterbi decoder block is the length of the decoder delay and 

should be six times the constraint length of the code. 
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Figure 5.6: OFDM PHY Simulink block diagram 
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16. Bit Error Calculation: The inputs to this block are, a range of Eb/N0 values, 

recieve delay and conditions to stop the simulation when a certain number of bit-

errors or a number-of-received-bits have been reached. Receive delay is 

computed using the traceback path depth, and delays introduced by buffers in the 

simulation.  

The end condition for the simulation is when either 100 bit errors or 10
7
 message bits 

have been processed. 

5.2.5 Validation  

The validation of OFDM PHY is carried out by the comparison of theoretical and 

simulation-computed BER. 

5.2.5.1 Modes 1-4 

The theoretical AWGN channel BER for BPSK and QPSK is [101]: 

    
 

 
    (√

  

  
)      (Equation 5.13) 

where erfc(.) is the complementary error function.  

The validation results are shown in Figure  5.7, where the theoretical BER of BPSK
10

 

is compared with the BER computed from the OFDM PHY layer simulation modes 

1-4. 

The coding gain is apparent in the result and its upper bound can be evaluated using 

Equation 5.14 where R is coding rate and df   is free distance of the code [102].  

                     (Equation 5.14) 

                                                 
10

Theoretical BERs of BPSK and QPSK are equal. 
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Figure 5.7 Validation of WLAN OFDM PHY Modes 1-4 

 

The minimum free distance (df) for convolutional codes is the minimum Hamming 

distance between two codewords. The difference between simulated and theoretical 

results is because of coding gain which follows the upper bound stated in Equation 

5.14 [103].  

The coding gain of modes 1 and 2 is ~5 dB for BER < 10
-5

, where the difference 

between the two modes, is the application of the puncturing in mode 2 for achieving 

the higher data rate.  

The coding gain of modes 3 and 4 is ~3 dB for BER < 10
-5

, where the difference 

between the two modes is, use of the puncturing in mode 4 for achieving the higher 

data rate. The effect of the puncturing (Modes 2 and 4) is small (<1 dB) on the BER 

performance when compared against modes 1 and 3 which do not use puncturing 

[104]. 
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5.2.5.2 Modes 5-8 

Symbol Error Rate (SER) and BER for a square M-QAM can be written in the form 

of Equation 5.15 and Equation 5.16 respectively [105, 106]  
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 (Equation 5.16) 

where                   

The validation results are shown in Figure 5.8, where the theoretical BERs of 16 and 

64 QAM are compared with the BERs computed from the OFDM PHY layer modes 

5-8 simulation. The coding gain is apparent in the result and its upper bound is given 

by Equation 5.14  

The coding gains of modes 5-6 and 7-8 are ~4dB and 3dB respectively, for a BER of  

~ 10
-5

, where modes 6 and 8 use puncturing for achieving the higher data rates and 

again the effect of puncturing on BER performance is small [104]. 

In Figures 5.7 and 5.8, the difference between the theoretical and simulated BER is 

explained in terms of the coding rate and the theoretically expected upper bound on 

the coding gain.  
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Figure 5.8 Validation of WLAN OFDM PHY Modes 5- 

 

In order to further establish the validity of the simulations, channel coding is disabled 

and the BER of Modes 1, 5 and 7 is evaluated from the simulation and compared 

with the theoretical BER of BPSK, 16 and 64 QAM. The results are compared in 

Figure 5.9 and it can be noticed that there is a very little difference between the two 

BERs. The remaining modes 2, 6 and 8 use the same modulation schemes as modes 

1, 5 and 7 but employ puncturing to achieve the higher data rates. 
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Figure 5.9: Validation of WLAN OFDM PHY without channel coding 

 

5.2.6 HR DSSS PHY 

The HR-DSSS PHY operates at 2.4 GHz in the license-free ISM frequency band and 

has 14 channels with centre frequency separation of 5 MHz and an overall channel 

bandwidth of 22 MHz. ETSI regulations allow using channels 1-13 in the EU. Not all 

channels can be used at the same time and data rates of 5 and 11 Mbps in addition to 

the 1 and 2 Mbps are supported by the base standard. A mechanism has also been 

included for shifting back to low data rates to support the legacy IEEE 802.11 base 

standard.  

5.2.6.1 PHY Framing 

A long and short preamble are supported. The description of the long preamble has 

already been given in the DSSS PHY section. The length of the short preamble is 72 
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bits comprising 56-bit short SYNC and 16-bit short SFD. The short preamble is 

transmitted at a data rate of 1 Mbps using DBPSK.  

The short header consists of SIGNAL (8 bits), SERVICE (8 bits), LENGTH (16 bit) 

and CRC (16 bits) fields, and is transmitted at a data rate of 2 Mbps using DQPSK. 

Further details of the functionality and implementation of all PLCP fields can be 

found in the IEEE 802.11 standard [107]. 

5.2.6.2 Modulation and Spreading 

In the HR-DSSS PHY, Complementary Code Keying (CCK) is employed to support 

the high data rates. CCK is a variation of an M-ary orthogonal keying modulation 

and provides interoperability with the base standards by maintaining the same 

bandwidth and support for existing PLCP preamble and PLCP header.  

In the CCK modulation, polyphase complementary codes are used for bandwidth 

spreading where the length of the spreading sequence is 8 and chip rate is 11Mchip/s. 

The CCK code for mode 2 (11 Mbit/s mode) is given in Equation 5.17, and a subset 

of this code is used for mode 1 (5.5 Mbps). The data symbols are represented by 4 

and 8 bits in modes 1 and 2 respectively. 

Equation 5.17 has four phases. One provides the QPSK rotation to the entire code 

vector. The other three modulate every odd pair and every odd quad of the chips. 

Also, every 4
th

 and 7
th

 term are rotated counter-clockwise by 180
o
. 

   {
                                                                 

     

                           
}   

(Equation 5.17) 
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The spreading rate is kept at 11 Mbps so that the CCK spectra are the same as the 

base standard. The symbol rate is increased to 1.375 Msymbol/s to support the higher 

data rates. 

In 5.5 Mbps mode, PPDU bits are grouped into four bits (nibbles). Two bits are used 

to select the spreading function and the remaining two, modulate the signal using 

QPSK. The selected spreading sequence then drives the I/Q modulators and DQPSK 

modulates the symbol.  

In 11Mbps mode, PPDU bits are split into groups of six and two bits. The six bits 

determine the spreading sequence while the two bits DQPSK modulate the entire 

symbol. CCK implementation is adapted from Simulink built-in libraries. The 

implementation is shown in Figure 5.10. Details of the complementary properties of 

codes used in HR DSSS PHY can be found in [108].  

5.2.6.3 PHY Simulation Model  

A Simulink implementation of the HR-DSSS PHY which supports four modes with 

data payloads of 5.5 and 11 Mbps is shown in Figure 5.11.  

In the simulation, Random Integer and Integer to Bit converter Simulink blocks are 

used to model a data source which generates random binary data with the uniform 

distribution. The PLCP preamble and header is appended to convert the MAC sub-

layer protocol data unit (MPDU) into a PPDU. Modulate and Spread is a 

configurable subsystem which implements CCK modulation where the PLCP 

preamble and header are modulated using DBPSK and the MPDU is modulated 

using CCK. A root raised cosine filter is used for pulse shaping before passing the 

modulated MPDU to the AWGN channel block. . 
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Figure 5.10: Implementation of CCK 

 

 

Figure 5.11: Simulation of WLAN High Rate DSSS PHY 

 



108  

 

5.2.6.4 Validation  

The validation of PHY layer simulations is carried out by the comparison of 

simulated and theoretical BER. There is no analytical method available to compute 

the BER for CCK and thus validation is carried out by comparison of simulated BER 

with theoretical BER of DPSK [108]. CCK reduces the spreading rate to support 

high data rates in DSSS PHY. This spreading rate reduction, however, makes it more 

susceptible to narrowband interference and reduces the range. The spreading rate has 

no impact on the BER performance in AWGN and thus the AWGN BER 

performance of the PSK and CCK is the same.  

The theoretical BER for DPSK is computed using the relationship in Equation 5.18 

[99]. 

   
 

 
    

( 
  
  

)
    (Equation 5.18) 

The BER comparison of the both HR-DSSS PHY modes is shown in Figure 5.12. A 

close match between the theoretical and the simulated BER validates the simulation.  
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Figure 5.12: Validation of WLAN HR DSSS PHY 

 

5.3 Bluetooth  

Bluetooth is a standard for the wireless Personal Area Network (PAN) and is based 

on the technology developed by the Bluetooth Special Interest Group (SIG) which 

was later standardized by IEEE as IEEE 802.15.1 standard for WLAN PANs. [109]. 

The operating range of Bluetooth depends on the transmit power and range, varying 

between 1m (transmit power of 1 mW) and 100m (transmit power of 100 mW). The 

most commonly used Bluetooth devices have a nominal range of up to 10m and have 

a transmit power of 2.5 mW. 

5.3.1 Modulation and Spreading 

Bluetooth transceivers operate in the unlicensed Industrial Scientific and Medical 

(ISM) 2.4 – 2.483 GHz band using FHSS. To combat interference and fading from 
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co-existing WLAN transceivers, it hops among 1 MHz spaced 79 frequencies at a 

rate of 1600 hops/s.  

The modulation used is Gaussian Minimum Shift Keying (GMSK) with bandwidth-

time (BT) product of 0.5 and modulation index of ~0.3. The transmitted symbol rate 

is 1 Msymbol/s and a 2/3 Hamming FEC code is used for the error coding. In FHSS, 

the position of an M-ary signal set is shifted by a pseudo-randomly selected 

frequency over the hopping bandwidth.  

FH-MSK modulation is a two-step process. In the first step, the data symbol is 

modulated using GMSK. In the second step, the data symbol is modulated using a 

randomly selected frequency. Transmission bandwidth for one hop is the same as  

conventional M-ary FSK but, when averaged over a number of hops, is equal to the 

entire spread-spectrum bandwidth. Frequency Hopping (FH) technologies can 

provide potentially much higher processing gains compared to DSSS as they allow 

hoping bandwidths of the order of GHz. The processing gain in an FH system is the 

ratio of hoping bandwidth and data rate [110]. 

In GMSK, the modulating signal is filtered using a Gaussian filter and modulated 

using a Minimum Shift Keying (MSK) where the MSK technique belongs to the 

class of Continuous Phase Modulations (CPM) and can be described either as O-

QPSK with sinusoidal symbol weighting or as a special case of CPM. O-QPSK 

suppresses the out-of-band interference and MSK avoids the phase discontinuities. 

The MSK waveform is described by Equation 5.19; considering MSK as a special 

case of CPM [102]. 

        *  (   
  

  
)     +                         (Equation 5.19) 



111  

 

where f0 is the carrier frequency, dk is either +1 or -1 (represents bipolar data) and xk 

is a phase constant for k
th

 binary data interval. It can be observed from Equation 5.19 

that the transmitted tones are (f0+ 
1
/4 T) and (f0+ 

1
/4T) when dk = +1 and dk = -1 

respectively. The tone spacing is half of that required by orthogonal FSK, hence the 

name minimum shift keying. 

A block diagram of the Simulink implementation of the Bluetooth PHY is shown in   

5.3.2 Validation  

The theoretical BER of a coherently detected MSK is the same as is that for 

BPSK/QPSK (Equation 5.13). However, GMSKemploys a Gaussian shaping filter 

 

Figure 5.13: Simulation of Bluetooth PHY 
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prior to modulation and thus the BER is a function of the Time-Bandwidth (TB)
11

 

product of the filter, which is shown in Equation 5.19. 

    
 

 
    (√

   

  
)                                                        

In Equation 5.19, k is a constant derived from the TB of the shaping filter and the 

performance degradation due to Intersymbol Interference (ISI). The ISI  introduced 

by the shaping filter, is 10log10(k/2).  The value of k ranges from 0.6 to 0.85 for the 

values of TB ranging from 0.3 to ∞ and the BER degradation is minimal for BT = 

0.5. 

The simulation of the Bluetooth PHY has been validated by comparing its simulated 

performance in the presence of AWGN channel, with the theoretically expected 

performance. Figure 5.14 shows the results of the validation.  

                                                 
11

 Time-Bandwidth (TB) is a product of the symbol length (T) and the 3dB bandwidth (B) of the 

shaping filter and has typical values of 0.3-0.5. It is equivalent of the excess bandwidth term used in 

the context of raised cosine shaping filter, however the excess bandwidth of the Gaussian filter can not 

be stated in terms of TB, given that its frequency response is not symmetrical around zero. 
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Figure 5.14: Validation of Bluetooth physical layer simulation  

 

The difference between the two curves is as expected due to the (15, 10) Hamming 

code included in the simulation. The minimum distance of the (15, 10) Hamming 

code is 4 and thus (using the relationship in Equation 5.14) the coding gain is 2.67 

dB [111, 112]. 

5.4 ZigBee 

Zigbee is a standard for low power, low data-rate wireless communications and has a 

wide range of applications in home and industrial automation. The application of 

interest here is in the substation segment of smart grids. The standard was originally 

developed by the ZigBee Alliance and then standardized by the IEEE as IEEE 

802.15.4 which has specifications for MAC and PHY layers. 
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5.4.1 PHY Modulation and Spreading 

The IEEE standard 802.15.4 defines four PHYs which operate in 868/915 MHz and 

2450 MHz frequency band. Of the four PHYs, two are optional. The specifications of 

the two mandatory PHYs are given below. 

The first mandatory PHY operates in the 868/915 MHz frequency bands and 

supports data rates of 20 kbps and 40 kbps with chip rates of 300 kchip/s and 600 

kchip/s respectively. It employs BPSK.  

Modulation and spreading is a three-step process which includes differential 

encoding, bit-to-chip mapping and BPSK modulation. Differential encoding is the 

modulo-2 addition of the data bit with the previous encoded bit. The bit-to-chip 

block maps the data bit to a 15 chip PN sequence as shown in Table 5.6. 

Table 5.6 Zigbee PHY bit-to-chip mapping for PHY-1 

Input bit Chip values (c0, c1 …c14) 

0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 

1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 

 

The second mandatory PHY operates in the 2.4 GHz frequency band and supports 

data rates of 250 kbps with a chip rate of 2000 kchips/s. The PHY employs 16-ary 

orthogonal QPSK (O-QPSK). Again the modulation and spreading is a three-step 

process which includes bit-to-symbol, symbol-to-chips and O-QPSK modulation. 

Bit-to-symbol converts the 4 data bits into a symbol. Symbol-to-chips maps each 

symbol to a 32 chip PN sequence as shown in Table 5.7. 

 

 



115  

 

Table 5.7 Zigbee PHY bit-to-chip mapping for PHY-2  

Data symbol 

(binary) 

Chip values (c0,c1, c3 … c31) 

0 0 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 

1 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 

0 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 

1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 

0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 

1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 

0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 

1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 

0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 

1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 

0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 

1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 

1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 

0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 

1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 

 

A Simulink block diagram of the implementation of the Zigbee PHY is shown in 

Figure 5.15.   
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Figure 5.15 Simulation of Zigbee PHY 

 

5.4.2 Validation  

The PHY of a Zigbee transceiver has been implemented using MATLAB/Simulink. 

The validation of the simulation has been carried out by comparing the simulated 

BER with the theoretically expected BER of the underlying modulations, in the 

presence of AWGN channel. Figure 5.16 shows the validation results for both 868 

MHz BPSK (Zigbee PHY 1) and 2.45 GHz OQPSK (Zigbee PHY-2) modes. The 

agreement between the simulated BER curves and the BPSK/O-QPSK BER curves 

validates the simulation.  
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Figure 5.16: Validation of the Zigbee PHY simulation 

5.5 Summary 

This chapter describes simulation models for the PHYs of WLAN, Bluetooth and 

Zigbee short range wireless technologies. The simulation parameters are derived 

from the IEEE standard documents for the PHYs and MATLAB/Simulink is used to 

implement the signal processing tasks to realise the transmitters and receivers. The 

simulations are validated by comparing the simulation-computed and the theoretical 

BERs for an AWGN channel. The models presented in this chapter are used in 

Chapter 6 to evaluate the physical layer performance of the wireless technologies in 

the presence of impulsive noise. 
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CHAPTER 6  

PERFORMANCE ASSESSMENT 

6.1 Introduction 

This chapter presents a BER performance evaluation of the candidate short-range 

wireless technologies using the impulsive noise models (chapter 4) and the PHY 

simulations of the short-range wireless technologies (chapter 5). 

The chapter is divided into two parts; part 1 addresses performance evaluation results 

in the presence of narrowband impulsive noise and part 2 addresses performance in 

the presence of broadband impulsive noise.  

The Middleton Class-A noise model is used to generate the narrowband impulsive 

noise, the noise parameters were estimated using the methods described in chapter 4. 

The estimated parameters are used to generate the impulsive noise time series which 

is representative of noise found in substations. 

The SS distribution based model is used to generate the broadband impulsive noise. 

The model parameters are estimated for the substation noise.  

6.2 Performance in Narrowband Impulsive Noise 

The Middleton Class A based narrowband impulsive model has two parameters 

which control the characteristics of noise - impulsive index (A) and scale parameter 

(). The three sets of values for these parameters are used to represent the following 

three impulsive noise cases.  
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1. Highly Impulsive (HI) - when the wireless equipment is deployed in close 

vicinity to high voltage equipment and where the impulsive noise originating 

from the PD and switching transients dominates the Gaussian component of 

the overall noise profile.  

2. Moderately Impulsive (MI) - when the wireless communications equipment is 

deployed inside electricity substation but is not close to a major source of PD. 

3. ETS – The model parameters are estimated from the measurements data. The 

details of the estimation of model parameters are given in Chapter 4.  

The values of the model parameters for the three cases are given in Table 6.1. The 

parameters for cases 1 and 2 are selected using the assumption that the impulsive 

noise component is ~1000 and ~100 times stronger than the Gaussian component, for 

the highly and moderately impulsive noise cases respectively.   

Table 6.1 Parameters of Narrowband Impulsive Noise Model  

Case Model parameter values 

Impulsive Index (A) Scale Parameter ( ) 

Moderately Impulsive Noise 0.10 0.05 

Highly Impulsive Noise 0.10 0.005 

ETS Noise 0.132 0.02408 

  

6.2.1 WLAN 

The BER performance evaluation of three WLAN PHYs in the presence of 

narrowband impulsive noise is presented in this section. 

6.2.1.1 WLAN DSSS PHY 

WLAN DSSS PHY supports two modes of operation with data rates of 1 and 2 

Mbit/s and employs DSSS and DBPSK/DQPSK.  
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The BER performance evaluation is shown in Figure 6.1 for the three impulsive 

noise cases and two modes of operations. The reference for the evaluation is BER 

performance in AWGN. The BER is calculated for AWGN, Class A – HI, Class A– 

MI and ETS using the DSSS PHY model and plotted as Eb/N0 (dB) vs. BER. It can 

be seen that: 

1. In the presence of Class A – HI, modes 1 and 2 have a performance 

degradation of ~2dB and ~3dB respectively at BER = 10
-5

 and for Eb/N0 > 

7dB. For Eb/N0 < 7dB the impact of the impulsive noise is less than AWGN. 

 

2. In the presence of Class A – MI and ETS, there is no performance 

degradation and the impact of impulsive noise is less than AWGN.  

 

Figure 6.1: BER Performance evaluation of WLAN DSSS PHY in the presence of 

Narrowband Impulsive Noise 
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6.2.1.2 WLAN OFDM PHY 

WLAN OFDM PHY supports 8 modes of operations with data rates ranging from 

6Mbit/s to 54 Mbit/s and employs OFDM and convolutional FEC codes (Table 5.4). 

The BER performance of OFDM PHY (Modes 1, 3, 5, 7) in the presence of 

impulsive noise and AWGN is shown in Figures 6.2, 6.3 and 6.4. It can be seen that: 

1. In the presence of Class A – HI, the performance of modes 1, 3, 5 and 7 

degrades by ~1 dB, ~1dB, ~3dB and ~4dB respectively for at BER = 10
-5

. 

There is an intersection between the AWGN and Class A – HI BER curves 

which shows the threshold for the Eb/N0, above which the impulsive noise has 

an impact on the BER greater than AWGN. The BER curves‘ intersection 

points for modes 1, 3, 5, and 7 are 3dB, 5dB, 7dB and 10dB and the 

corresponding BERs are ~10
-3

, ~10-3, 0.0190 and 0.0280 (Figure 6.2). 

2. In the presence of Class A – MI, there is no noticeable performance 

degradation for modes 1 and 3. For modes 5 and 7, however there a 

degradation of ~2dB (Figure 6.3). 

3. In the presence of ETS, for modes 1 and 3, the performance degradation is 

<1dB whereas, for modes 5 and 7, it is ~3dB (Figure 6.4).  



122  

 

 

Figure 6.2: Performance of WLAN OFDM PHY in the presence of Class A - HI Noise. 

 

Figure 6.3: Performance of WLAN OFDM PHY in the presence of Class A – MI Noise 



123  

 

 

Figure 6.4: BER Performance of WLAN OFDM PHY in the presence of ETS Noise 

 

6.2.1.3 WLAN HR DSSS PHY 

WLAN HR DSSS PHY supports two modes of operations with data rates of 5.5 and 

11Mbit/s and employs DSSS and CCK modulation. The BER performance in the 

presence of impulsive noise and AWGN is shown in Figure 6.5. It can be seen that: 

1. In the presence of Class A – HI, the performance degradation for the modes 1 

and 2 is 2dB and 5dB respectively for BER = 10
-5

. The BER curves‘ 

intersection points are at 5 dB (mode 1) and 7 dB (mode 2) and the 

corresponding BER values are 0.005 and 0.05.  

2. In the presence of Class A – MI and ETS, there is no noticeable performance 

degradation.  
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Figure 6.5: BER Performance of WLAN DSSS PHY in the presence of Narrowband 

Impulsive Noise.  

 

6.2.2 Bluetooth 

Bluetooth supports data rates of 1 Mbit/s and employs FHSS and GMSK. The BER 

performance comparison in the presence of impulsive noise and AWGN is shown in 

Figure 6.6.  

It can be seen that, in the presence of Class A – HI, the performance degradation is 

~3.5dB for BER = 10
-5

. The BER curve intersection point is Eb/N0 = 3dB and BER = 

10
-2

. In the presence of Class A – MI, the impact of impulsive noise is benign 

compared to the AWGN whereas the ETS noise degrades the performance by ~1dB 

at BER = 10
-5

. The ETS BER curve intersects the AWGN BER curve at Eb/N0. = 

6.5dB and BER = ~10
-4

. 



125  

 

 

Figure 6.6: Performance of Bluetooth PHY in the presence of Narrowband Impulsive 

Noise 

 

6.2.3 Zigbee 

The BER performance evaluation of Zigbee PHY-1 is shown in Figure 6.7. The 

Zigbee PHY-1 supports a data rate of 20 kbps and employs DSSS and BPSK. 

It can be seen that the BER performance in the presence of Class A - HI is 

comparable with that in AWGN and the performance degradation for BER = 10
-5

 is 

less than 1dB. In the presence of Class A – MI and ETS, the impact of impulsive 

noise is benign compared to  AWGN.  
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Figure 6.7: Performance of Zigbee PHY-1 in the presence of Narrowband Impulsive 

Noise 

6.2.4 Comparison  

In general, all candidate technologies perform poorly in the presence of highly 

impulsive noise at high Eb/N0 and better at low Eb/N0, compared to the performance 

in AWGN. However, in the presence of moderately impulsive and ETS noise, the 

BER performance, by and large, matches with the performance in the presence of 

Gaussian noise.  

A BER performance comparison between WLAN, Bluetooth and Zigbee in the 

presence of narrowband impulsive noise is shown in Table 6.2. The performance is 

described in terms of the required Eb/N0 to achieve a BER = 10
-5

 in the presence of 

impulsive noise. BER performance in the presence of AWGN is used as a reference. 
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The highest and lowest performance degradations are highlighted in red and green 

colours respectively.  

Table 6.2: Performance comparison in the presence of Narrowband Impulsive Noise 

Technology Modulation Spreading  

Gain 

Coding 

Gain 

Comparative  

Performance12 

HI MI ETS 

WLAN DSSS – Mode 1 DBPSK 10.4dB No coding - 2dB 5dB 3dB 

WLAN DSSS - Mode 2 DQPSK 7.4dB No coding -3dB 5dB 4.5dB 

WLAN OFDM - Mode 1 BPSK No spreading 5dB -1.5dB 0dB -0.8dB 

WLAN OFDM - Mode 3 QPSK No spreading 3dB -0.8dB 0dB -1dB 

WLAN OFDM - Mode 5 16 QAM No spreading 3dB -3dB -1.5dB -2.2dB 

WLAN OFDM - Mode 7 64 QAM No spreading 4dB -4dB -1.7dB -2.5dB 

WLAN HR DSSS - Mode 1 QPSK/CCK 3dB No coding -2dB 4dB 2dB 

WLAN HR DSSS - Mode 2 QPSK/CCK 0dB No coding -5dB 3.7dB 2dB 

Bluetooth  GMSK 80dB 2.6dB -3.5dB 2.2dB -1dB 

Zigbee – PHY 1 BPSK 11.76dB No coding -0.8dB 4.7dB 1.7dB 

 

6.3 Performance in Broadband Impulsive Noise 

This section discusses performance evaluation of WLAN, Bluetooth and Zigbee in 

the presence of broadband impulsive noise, modelled as a SS process. The 

broadband impulsive noise model has three parameters:  

1. Shape parameter (controls the decay gradient of the PDF tails. 

2.  Dispersion parameter (controls the spread of the distribution. 

3. Location parameter (is the point of symmetry of the SS PDF.  

                                                 
12

 When BER = 10
-5

 and compared against BER for AWGN 
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The estimated parameters for the ETS noise are shown in Table 6.3. 

Table 6.3 Parameters of SS broadband noise model 

Parameters Estimated Value 

Location Parameter () 1.1805E-7 

Characteristic Exponent () 1.4130 

Dispersion () 6.3422E-7 

 

The SS distribution does not have finite second-order moments and all SS signal 

processing is therefore based on fractional lower order moments (FLOMs) [72]. 

Therefore, the use of a traditional signal-to-noise ratio (SNR) is not appropriate. BER 

performance can be characterized, however, as a function of dispersion ( ) and 

signal variance (s). A generalized SNR (GSNR) is defined as [113]: 

            (
 

 
)                                                  

GSNR reduces to half (as a ratio, not decibels) of the SNR for Gaussian noise. The 

performance evaluation has been carried out as a function of GSNR and the PHY 

layer simulations (Chapter 5) are used to compute the BER.  

6.3.1 WLAN 

The BER performance evaluation of three WLAN PHYs in the presence of 

broadband impulsive noise is presented in this section. 

6.3.1.1 WLAN DSSS PHY and WLAN HR DSSS PHY 

The BER performance of DSSS and HR DSSS PHYs in the presence of ETS 

broadband impulsive noise is shown in  Figure 6.8. The reference BER curves for the 

Gaussian case (SS with  = 2) are included for comparison. It can be seen that: 
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1. For DSSS PHY modes 1 and 2, there is a performance degradation of ~2dB 

and ~4.5dB respectively for BER = 10
-5

. 

2. For HR DSSS PHY modes 1 and 2, there is a performance degradation of 8.5 

dB and 11 dB respectively for BER = 10
-5

. 

 

Figure 6.8 BER performance evaluation of DSSS PHY and HR DSSS PHY in the 

presence of broadband ETS noise 

 

6.3.1.2 WLAN OFDM PHY 

The BER performance of OFDM PHY (Modes 1, 3, 5 and 7) in the presence of ETS 

broadband impulsive noise is shown in Figure 6.9. It can be noticed that: 

1. For mode 1, ETS noise has less effect on the BER performance compared 

with Gaussian noise, for low GSNR values. The required GSNR for 

achieving a BER = 10
-5

 is the same for the both Gaussian and ETS noise.  

2. For mode 3, the BER performance has two distinct GSNR regions; low and 

high. In the low GSNR region ETS noise has less effect than Gaussian noise 
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whereas in the high GSNR region (GSNR > 7dB), ETS results in a 

performance degradation of ~ 2dB.  

3. For mode 5 there is a performance degradation of ~1dB for BER = 10
−5

 when 

compared to Gaussian noise. For most of the practical GSNR operating range, 

the effect of the ETS noise is benign compared to Gaussian noise.  

4. For mode 7, there is a performance degradation of ~4 dB when BER = 10
– 4

 

and it appears that the effect of an increase in the GSNR on the BER is low 

compared to modes 1, 3 and 5.  

 

 

Figure 6.9: BER performance evaluation of OFDM PHY in the presence of broadband 

ETS noise 
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6.3.2 Bluetooth  

BER performance of the Bluetooth PHY in the presence of broadband ETS noise is 

shown in Figure 6.10. It can be seen that for BER = 10
−5

, there is a performance 

degradation of ~5dB when compared to performance in Gaussian noise. 

 

Figure 6.10: BER performance of Bluetooth receiver in the presence of broadband 

impulsive noise 

6.3.3 Zigbee 

The BER performance evaluation of the Zigbee PHY is split into two cases: (1) 

GSNR versus BER and (2)  versus BER where  is the dispersion parameter of the 

broadband impulsive noise model.  

Figure 6.11 shows the results for the first case (for Zigbee PHY 1 and 2). It can be 

seen that the performance degradation due to broadband ETS is of the order of 1 dB 

and 2.5 dB worse than that due to Gaussian noise for PHY-1 and PHY-2 
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respectively. This is much less than the corresponding degradation in WLAN DSSS 

and HR DSSS PHYs. Zigbee supports a much lower maximum data-rate, however 

than that of WLAN PHYs.  

 

 

Figure 6.11 BER performance of Zigbee PHY in the presence of broadband ETS noise 

 

The performance evaluation of case 2 is shown in Figures 13, where the BER is 

plotted against for three values of : 1 (corresponding to a Cauchy distribution), 

1.40 (corresponding to broadband ETS noise) and 2 (corresponding to a Gaussian 

distribution). It can be seen that:  

1. For the performance degradation with respect to the Gaussian case is 

negligible.  
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2. For , the performance degradation is significant. Larger values of  

denote a greater dominance of impulsive noise power over Gaussian noise 

power. For example, for  = 0.4, the BERs for the Gaussian and ETS noise 

are ~ 10
-5

 and 10
-3

 respectively. The Cauchy distribution represents noise that 

is more impulsive noise than ETS noise. 

 

Figure 6.12 BER Performance of Zigbee PHY -1in the presence of broadband 

impulsive noise in term of . 

 

6.3.4 Comparison 

The performance comparison of WLAN, Bluetooth and Zigbee in the presence of the 

broadband ETS noise shows that the WLAN HR DSSS PHY - Mode 2, WLAN 

OFDM PHY Mode 7 and Bluetooth suffer a significant performance penalty whereas 

the other candidate technologies show either no, or little, performance penalty. A 
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comparison of the candidate technologies is given in Table 6.4 showing the 

degradation in terms of GSNR in the presence of ETS noise, with respect to AWGN 

for a BER = 10
-5

. 

Table 6.4: Performance comparison in the presence of narrowband and broadband 

ETS noise 

Technology Comparative Performance
13

 

ETS (Broadband) ETS (Narrowband) 

WLAN DSSS – Mode 1 -2dB 3dB 

WLAN DSSS - Mode 2 -4.5dB 4.5dB 

WLAN OFDM - Mode 1 0 dB -0.8dB 

WLAN OFDM - Mode 3 -2 dB -1dB 

WLAN OFDM - Mode 5 -1 dB -2.2dB 

WLAN OFDM - Mode 7 > -5dB -2.5dB 

WLAN HR DSSS - Mode 1 -8.5dB 2dB 

WLAN HR DSSS - Mode 2 -11dB 2dB 

Bluetooth  -5dB -1dB 

Zigbee – PHY 1 -1 dB 1.7dB 

 

6.4 Discussion  

The results of the simulation-based performance evaluation, given in sections 6.2 and 

6.3, cover a range of PHY layers which employ different modulation techniques, 

spreading codes/rates and error coding. It can be inferred from the results that: 

1. The spreading rate has an explicit impact on the BER performance in the non-

Gaussian noise environment. For example, the comparison of the WLAN 

                                                 
13

 When BER = 10
-5

 and compared against BER for AWGN 
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DSSS PHY, WLAN HR DSSS PHY and Zigbee PHY shows that PHYs with 

the higher spreading rate show less performance degradation. Zigbee has the 

highest spreading rate and lowest performance degradation whereas WLAN 

HR DSSS PHY has the lowest spreading rate and highest performance 

degradation. This is evident in both narrowband and broadband impulsive 

noise performance evaluation. (Table 6.2 and 6.4). 

2. Two SNR regions can be seen in most of the performance results, low SNR 

region where AWGN dominates and a high SNR region where non-Gaussian 

impulsive component dominates the impact on the BER performance. There 

appears to be a noise floor which reduces the effect of an increase in SNR on 

the corresponding BER. In some cases, a clear plateau is visible in the BER 

curve.  

6.5 Summary 

BER performance of WLAN, Bluetooth and Zigbee in narrowband and broadband 

impulsive noise environments has been modelled, evaluated and compared against 

the expected performance in the presence of AWGN leading to a potential rank-

ordering of the candidate technologies for electricity substation applications. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

The focus of research was to study and evaluate the PHY layer performance of 

candidate wireless technologies in the presence of impulsive noise found in 

electricity substations. The candidate technologies are WALN, Bluetooth and 

Zigbee.  

7.1 Summary and Conclusions 

The methodology adopted to carry out this research was to compile an impulsive 

noise database from substation RF noise measurements, characterize the noise using 

appropriate models, and perform computer simulations to evaluate the performance 

of candidate wireless technologies in terms of BER. 

 

An impulsive noise database has been compiled from a seven-months-long 

substation noise measurements campaign. A WPT based de-noising algorithm was 

used to extract impulsive noise from the recorded time-series of substation noise. The 

characterization of substation noise has been defined by the electromagnetic 

substation noise sources, which are radiations from PD in electrical insulations and 

switching transients. It was established using a technical argument and an analysis of 

the recorded impulsive noise data that the substation noise profile is non-Gaussian 

and impulsive.  

 

For building the substation representative noise models, the assumptions made in 

Middleton‘s work for modelling non-Gaussian noise have been objectively analysed 
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and their usability and relationship to the substation noise environment have been 

explored and positively exploited. Moreover, statistical analysis of the recorded time-

series noise data has been used to determine that noise models based on Class A and 

SS distributions could represent the substation noise.  

 

The performance of candidate wireless technologies has been evaluated using 

computer simulations where PHY layer simulations of these technologies were 

implemented using MATLAB/Simulink and noise models were used to generate the 

impulsive noise. The parameters of noise models were estimated using the compiled 

impulsive noise database. Major conclusions drawn from this research work are 

listed below:  

7.1.1 Substation Noise Modelling 

The characteristics of Class A and SS distributions make them a tool of choice for 

modelling of substation noise environment. A comparison of Class A (narrowband), 

SS distributions (broadband), and statistical analysis of the recorded noise show 

that the SS distributions represent a better approximation of substation noise. Based 

on the comparison of several parameter estimation methods, the EM-based method 

performs better for Class A and FLOM-EOS method performs better for SS noise 

models.  
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7.1.2 Performance Evaluation  

7.1.2.1 Performance in Highly Impulsive Class A noise 

In the presence of highly impulsive Class A noise, all candidate technologies show 

significant performance degradation
14

 for high Eb/N0 region. In the low Eb/N0 region, 

the impact of impulsive noise is less than AWGN. The Eb/N0 values for the high and 

low region are different for each candidate technology. 

7.1.2.2 Performance in Moderately Impulsive Class A Noise 

In the presence of moderately impulsive Class A noise, the impact of impulsive noise 

is less than AWGN for all technologies, with the exception of WLAN OFDM PHY 

(modes 5 and 7), which shows a performance penalty of ~2 dB. 

7.1.2.3 Performance in ETS Noise modelled as Class A (Narrowband) 

There is no significant difference in terms of performance in the presence of 

moderately impulsive noise and ETS noise modelled as Class-A.  

7.1.2.4 ETS Noise modelled as SS (Broadband) 

In the presence of ETS noise, all candidate technologies with the exception of 

WLAN OFDM PHY (mode 1) suffer a performance penalty
15

. Performance results 

for each technology are: 

a. For WLAN DSSS PHY (modes 1 and 2) there is a performance 

degradation of ~2dB and ~4.5dB respectively. 

b. For HR DSSS PHY (modes 1 and 2) there is a performance degradation 

of 8.5 dB and 11 dB respectively. 

                                                 
14

 The stated performance is with reference to AWGN, in terms of Eb/N0 and for a BER = 10
-5

 (for 

narrowband case) 
15

 The stated performance is with reference to AWGN, in terms of GSNR and for a BER = 10
-5

 (For 

broadband approximation) 
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c. For WLAN OFDM (mode 3), the BER performance has two distinct 

regions; in the low GSNR region, ETS noise has less effect than Gaussian 

noise whereas in the high GSNR region there is a performance 

degradation of ~ 2dB.  

d. For WLAN OFDM (mode 5) there is a performance degradation of ~1dB 

for BER = 10
-5

. For most of the practical GSNR operating range, the 

effect of the ETS noise is benign compared to Gaussian noise.  

e. For Bluetooth, there is a performance degradation of ~5dB. 

f. For Zigbee, there is a performance degradation of 1dB and 2.5dB for 

PHY-1 and PHY-2 respectively.  

 

The WLAN OFDM PHY shows a better performance compared to other candidate 

technologies because of the application of the error coding. The performance 

difference between WLAN DSSS and HR DSSS PHY is due to different spreading 

rates. There is a noticeable pattern; the higher the spreading-rate is, the better the 

performance. 

7.2 Thesis Contributions 

Against the stated objective of research work to evaluate the performance of 

candidate short range wireless technologies for their deployment in electricity 

substation for control, protection and monitoring applications, following 

contributions have been made to the knowledge:  

1. A framework has been proposed for the performance evaluation of candidate 

wireless technologies, which includes a compilation of impulsive noise 
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database, implementation of substation representative noise models and 

performance simulations.  

2. Two representative models of substation noise have been developed with 

implementations of the corresponding parameter estimation methods. The 

developed models have been converted to Simulink blocks. 

3. PHY layer simulations of three candidate wireless technologies have been 

implemented and validated.  

4. A detailed performance assessment of these wireless technologies has been 

carried out which provides guidance for their deployment in an electricity 

substation. A rank ordering of these technologies has been proposed, based 

on the BER performance.  

7.3 Limitations  

The measurements data which is used to characterise the substation noise is recorded 

from one electricity substation whereas noise environment of different substations 

can vary and it would have been beneficial to record and use the data from a number 

of substations.  

Given the benefits of using wireless receivers to support the functionalities needed to 

achieve the targets of true future smart grids, it is suggested to conduct the on-field 

trials of commercially available WLAN/WPAN transceivers including the ones, 

which have been recommended for communications in rugged industrial 

environments. 
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7.4 Scope for Further Research 

7.4.1 Impact of Re-transmission  

In addition to PHY performance, it is suggested to include the upper layers of OSI 

stack (particularly MAC) to study the impact of impulsive noise on re-transmission 

rate and delay. The IEC standard 61850-5 for substation automation specifies the 

time requirements of time-critical applications. The specified time requirements are 3 

ms and 5 ms for transmission and distribution substations [114].  

7.4.2 Robust Receiver Design  

The performance evaluation carried out in this work is based on the matched filter 

detection at the receiver. It is suggested to further extend this work to include 

different receiver types and study their performance in the presence of impulsive 

noise.  

7.4.3 BER based Fault Monitoring  

A fault monitoring system based on BER or Packet Error Rate (PER) of sensor nodes 

is another possible extension of this work. It is evident that the performance of the 

candidate wireless technologies degrades significantly in the presence of highly 

impulsive noise (which is when the transceiver is in the close vicinity of a PD 

source). This trend can be used to design a fault monitoring system. A potential 

system would have a Wireless Sensor Network (WSN) setup in the substation and a 

smart system which would broadcast a known signal and ping all sensor nodes. A 

BER/PER would be computed by comparing the broadcasted and received signals.  
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