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Abstract

Stochastic differential equations (SDEs) have become an indispensable tool for
modelling the dynamics of key state variables in mathematical finance such as
instantaneous short rates of interest, share prices, and volatility processes. The
appropriate application of SDEs requires reliable methods of generating sample
paths from the equations, e.g. for use in Monte Carlo simulations, and robust
parameter estimation methods to calibrate the SDEs to observed market data.
Proposed stochastic models for financial variables are becoming increasingly complex
in an effort to produce more realistic models, but only on rare occasions are the
analytic expressions for the processes’ transition densities available. Consequently,
it is rare to be able to simulate sample data from the exact process, or conduct full
likelihood-based inference. This difficulty motivates the need for approximation
methods that are capable of simulating approximate sample paths with desirable
convergence properties such that approximation errors can be controlled; and
flexible parameter estimation methods that are not materially hampered by a
paucity of analytic results associated with intractible SDEs. In this thesis we
introduce a numerical approximation scheme for a class of SDEs that are widely
applicable to finance. We prove the strong convergence of the numerical scheme
and provide a lower bound on the convergence rate associated with the scheme.
We also explore the subject of parameter estimation in the context of SDEs, and

present three new parameter estimation techniques. By an application of approxiate
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Bayesian computation (ABC) we develop two sampling algorithms that are capable
of producing high quality approximations to the posterior distribution of model

parameters, without any need to evaluate model likelihoods.
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Chapter 1

Introduction

1.1 Overview of subject area

Since the mid-eighties, stochastic analysis has been widely used within the financial
services industry. In particular, stochastic differential equations (SDEs) have been
used as parametric models to describe the dynamics of financial quantities such
as equity prices, interest rates, and inflation rates. Although in practice financial
quantities are quoted in markets at discrete times, and traded in discrete amounts,
SDEs (which are continuous-time processs) have been successfully applied to the
problem of modelling the behaviour of such quantities. Aside from technological
advances in financial services, which have resulted in more high-frequency data
being available for analysis (which puts the continuous-time approach associated
with SDEs on more solid ground), there is a rich suite of analytic results and tools
related to stochastic processes that are available to the analyst, which makes the
task of managing and modelling the risk associated with financial variables more
feasible.

Broadly speaking, there are two areas in finance in which SDEs are commonly used:

the pricing of complex financial products; and evaluating portfolio risk. A famous



example of the former use is the celebrated option pricing formula developed by
Fisher Black and Myron Scholes [Black and Scholes (1973), which evaluates the
fair price of a European call option (a type of financial derivative) assuming that
the share price, whose value determines the value of the option, obeys geometric
Brownian motion, a particular type of SDE which we will discuss in detail in the
main body of this thesis. Derivative pricing formulae are functions of the parameters
of the SDE being used to model the underlying financial process on which the
derivative price depends and, as such, it is important that the model parameters
are accurately estimated from the observed market data. Additionally, the pricing
of exotic financial derivatives such as path dependent options often requires efficient
numerical simulation schemes that converge strongly to the true solution of the
underlying SDE with a favourable rate. Therefore, a failure to use appropriate
numerical simulation schemes, or to correctly specify the model parameters can lead
to serious derivative pricing errors, which in turn can result in damaging economic
consequences for the financial services provider and their stakeholders. As well
as being useful from the perspective of derivative pricing, SDEs are widely used
to assess the risk associated with holding a portfolio of assets over a given time
horizon. For example, a common method of evaluating the capital requirements of
financial service providers is to use Monte Carlo methods to derive the empirical
distribution of losses over a given time period (e.g. one year), and then use the
nth percentile, e.g. the 99.5th percentile, of simulated losses as an indication of
how much capital an organisation must hold to stand a good chance of avoiding
insolvency during periods of excessive market volatility. Of course, the empirical
distribution obtained from the Monte Carlo simulation exercise will be heavily
dependent on the choices of model parameters used to simulate future scenarios;

once again, a poorly calibrated parametric model could lead to inadequate capital



provision, which in turn could expose stakeholders (customers, employees, investors,
etc.) to excessive levels of risk.

As the field of mathematical finance has evolved over the years, the complexity of
financial models has grown due to the desire to find models that can more plausibly
account for the rich variety of behaviour exhibited by financial variables like share
prices. While this growth in model complexity is a positive development, in the
sense that the most recent models can more realistically represent the dynamics
oberserved in markets, it brings with it some serious challenges for the mathematical
finance community, prime examples being model simulation and model estimation:
Simulation: Complex SDEs are rarely able to be solved analytically, and therefore
exact simulation schemes for generating sample data from these SDEs are not
usually available. While basic numerical simulation schemes can be used to generate
approximate sample paths from the SDE that converge weakly to the true solution
of the SDE, there are cases in which stronger convergence criteria are important,
for example, in the pricing of path dependent options by Monte Carlo simulation.
In addition, the fairly slow strong convergence rate associated with the most
basic numerical simulation schemes associated with SDEs results in much more
computational resources being utilised in order to achieve acceptable levels of
accuracy of the approximate numerical solution, which can be costly in cases
where computational speed is of great importance. The development of alternative
numerical simulation schemes with faster rates of strong convergence is therefore a
practically important, and mathematically challenging task.

Estimation: As models become more complex, they also become more difficult to
estimate from the data. Parameter estimation is essentially a reverse engineering

problem, and the more complicated the data generating process is assumed to be,



the more difficult it is to work backwards from the data to infer the best choice

model parameter values.

1.2 Thesis overview

In this thesis we will explore aspects of both problems in the context of SDEs
that are commonly used in mathematical finance. In Chapter 2] we analyse the
strong convergence properties of a numerical approximation scheme associated
with a particular class of SDEs that has been used to model equity prices, the
stochastic volatility process associated with more complicated equity price models,
and interest rates. We provide a proof of the strong convergence of the numerical
scheme introduced, and provide a lower bound for the convergence rate. In Chapter[3]
we investigate the parameter estimation of a highly nonlinear SDE that has been
proposed as a viable model of short term interest rates. We introduce and test a
completely new method of parameter estimation, based on the attractive qualities
of implicit numerical discretisation schemes. The chapter ends with an in-depth
discussion of the problems associated with conventional methods of parameter
estimation. In Chapter [4| we introduce approximate Bayesian computation (ABC)
methods, which combine a Bayesian approach to model estimation with a novel
approximation of the model that allows parameter estimation to be conducted
on models for which no information relating to the transition density (and hence
the model likelihood) is required. Current approaches to parameter estimation
of SDEs typically involve a significant amount of prior analysis before inference
is conducted, for example the approach involving an approximation to the model
likelihood via Hermite polynomial expansions, developed by |Ait-Sahalia (2002),
requires that the coefficients of the expansion be worked out in advance of the

parameter estimation, which can be a time-consuming task given the complexity



of the expressions for the coefficients. For a detailed review of existing parameter
estimation techniques for SDEs in finance, see Hurn et al.| (2007)). We survey the
existing ABC sampling algorithms that have been developed for other applications
in the environmental and biological sciences, and then introduce two brand new
ABC sampling algorithms that we propose to apply to the task parameter estimation
of SDEs used in finance. ABC methods represent a very promising method of
parameter estimation, especially in financial applications, because it is a likelihood
free method of inference—unlike most standard estimation methods, no analytic
results pertaining to the model itself need to be known in order to carry out ABC
based parameter estimation. Given the trend towards more complex financial
models, reliable estimation techniques that can avoid having to deal explicitly
with additional model complexity have great potential in the field of mathematical
finance. Our work represents some novel first steps towards develping simulation
based, likelihood free estimation techniques with financial applications in mind.
From a statistical perspective, we contribute original knowledge via the development
and detailed analysis of two new ABC based sampling algorithms. In Chapter 5[ we
apply the newly developed samplers introduced in Chapter [4] to two test models
that are very often seen in the mathematical finance literature; geometric Brownian
motion, and the mean-reverting square root process. We run a series of numerical
experiments to obtain empirical samples from the posterior distribution of model
parameters and compare the results against the analytic distributions to assess the
quality of the newly introduced ABC samplers. In Chapter [6| we conclude with a
recap of the main results and salient points raised in the body of the thesis, as well

as a brief discussion of potential avenues for further research.



Chapter 2

A strong convergence rate for numerical
simulation of a CEV-type diffusion pro-

cess

2.1 Introduction

In computational finance, the dynamics of financial quantities such as equity prices
are frequently modelled using stochastic differential equations (SDE). For example,
in the well-known Black-Scholes-Merton model, asset prices are assumed to follow

a Geometric Brownian Motion process
dS(t) = uS(t)dt + oS(t)dB(t)

where B(t) is a scalar Brownian motion and the rate of return, u, and the volatility,
o, are assumed to be constant (Hull, 2009). For a more realistic representation of

equity dynamics, the volatility of the equity process can also be considered random



(Hull, [2009)). Various models have been proposed to describe the volatility process;

in this chapter we consider one such model

dX (t) = k(A — X (t))dt + v X (t)°dB(t) (2.1)

where K, \, v, 6 are assumed to be strictly positive constants. Additionally, equations
of this class (linear drift with power law diffusion coefficient) are used to model
the dynamics of equity prices. Thirdly, this class of SDE has been proposed as a
model for the (instantaneous) short rate of interest, see |Chan et al.|(1992) and
also Nowman| (1997 for more details. The case § = 0.5 corresponds to the familiar
‘square-root’ process (this model was also used by (Cox et al.| (1985) as a model
of the nominal short interest rate); if # = 1 equation reduces to a linear
mean-reverting process.

Typically these models are used in the pricing of financial options (via the usual
expected present value calculation under the appropriate probability measure, see
Shreve| (2004)) and given that explicit formulae often do not exist for calculation of
these prices, Monte Carlo techniques are required in order to compute approximate
prices numerically. Ensuring the accuracy of such approximations motivates the
investigation of the convergence properties of discretisation schemes such as the
Euler-Maruyama approximation. A strong convergence result for the case 6 = 0.5,
which corresponds to an SDE usually referred to as the square root process or
the Coz-Ingersoll-Ross (CIR) model, was given in Dereich et al.| (2012)); in this
chapter we consider the case 0.5 < 6 < 1, and use a so called drift-implicit Euler
approximation to prove the strong convergence of equation above.

The difficulty in obtaining strong convergence rates for the approximation of the
CIR process is described in |Dereich et al.| (2012)); namely, the non-Lipschitz diffusion

coefficient makes conventional error analysis redundant. The same issue arises



with equation (2.1)). [Dereich et al. (2012)) use the so called Lamperti transform
to transform the square-root process into a process with unit diffusion, thereby
sidestepping the difficulties associated with non-Lipschitz diffusion coefficients
mentioned above. We adopt this approach in our more general setting, and
derive an equivalent result to that contained in Dereich et al| (2012)), via differing
arguments, that applies to a more general class of SDEs.

In what follows we will set out some preliminary steps that we take to make the
problem more amenable to our analysis, and establish some basic results that will
be relied on later in the proof of the main theorem; we then describe the steps in
the proof of the main theorem; lastly, we present the results of a simulation study,
the aim of which is to empirically demonstrate the strong convergence properties

of the drift-implicit Euler approximation.

2.2 Preliminaries

Throughout this chapter we will make repeated use of several well known inequalities;
these results are stated explicitly in Appendix In order to deal with the non-
Lipschitz diffusion coefficient, we transform equation ({2.1]) into a process with unit

diffusion using the Lamperti transform (lacus, |2008)

X(t)
Y(t) = / j:jg - V(ll_e)X(t)l“’, (2.2)
for X(t) > 0, which gives
X(t) = [v(1 - 0)Y (1)]77. (2.3)



The positivity of X(¢), i.e. P(0 < X(t) < oo for all t > 0) = 1, is proved in Mao
et al. (2006)). Note that, as a result of the restriction 0.5 < 6 < 1, the positivity is

preserved under the transformation from X (¢) to Y (¢). Itd’s Lemma shows

dY () = (VX*”Et)Q (A — X(1) + %”X(t)e—l)dt +dB(t).

Substituting (2.3)) into the equality above gives the following SDE for Y ()

dY (t) = (&Y(t)’p by (1) — eY(t)*l) dt + dB(t), (2.4)
where
_ K S 0 0
a_(l/u_g)e)tle’ b=nr{1=0), 2(1—-6)’ P=1"¢

Note that due to the restriction on 6, p lies in the interval 1 < p < co. We now
introduce a drift-implicit discretisation of equation ([2.4)) on which our error analysis

will be based

Y41 — ay,;fl + byk+1 + cyk_jl =Y + AkB, k= 0,1,2,... (25)
with
X(o)l—@
w=Y0)= 77"

where the step size associated with the discretisation is denoted by A, and a = Aa,
b= Ab ¢ =Aé. AB = B((k+ 1)A) — B(kA) is a Gaussian increment with
zero mean and variance A. The idea here is to simulate the process y; as an
approximation to Y (kA) and then transform back from yy, to z; via to obtain

an approximation of the process X (kA).



In order to use (2.5 reliably, we need to show that the approximate process yields
unique, positive solutions, i.e. we need to show that y,.; > 0 for all y, > 0. The

following lemma provides this result.

Lemma 1. Define
Fly)=0+by+cy ' —ay™? fory>0, (2.6)

where a, b, ¢ and p are defined as before. If

pt+1

~(ap(p+ 1)\ 1.
b( 57 ) 2ap(p 1)>0

bS]
[

(where a, b, and ¢ are, again, defined as before), i.e.

2(1-0) o 20—-1
AR (9(29 1)) (1 — )10 (2.7)

2 2

then for any z € (—o0,00), the equation F(y) = z has a unique, positive solution

for any step size, A. Otherwise,

2(1-6) _ 20—-1
KA < (9(29 1)> (1— )10 2.8)

V2 2

and F(y) = z, z € (—00,00) yields unique, positive solutions provided A < A*,

where

A* = — (2.9)

10



Proof The lemma follows if we can show that the function F' is continuous, coer-
civeEL and strictly monotone (Zeidler, |1989)). Clearly F' is continuously differentiable

and coercive on R, . Taking the derivative of F' w.r.t. y we see that

lim F'(y) = 400 lim F'(y) =1+b>0.

y—0 Y—r00

If we can show that min F”(y) > 0 then the function F is strictly increasing and the

result follows. Differentiaing F”(y) and setting the result equal to zero, we obtain

2cy™® —ap(p + 1)y~ = 0.

After rearranging for y, we see that the minimum of F’(y) occurs at the point

= () 210)

Substituting (2.10)) into F'(y) and imposing the condition that F’(g) > 0 yields
the following inequality
crap(p+ 1)\ i 1 ap(p + 1)\ i1
A (DY L )L (e yE
((*%; ap(p— 1) - @.11)
The RHS of (2.11)) is strictly negative. Keeping in mind that A > 0 we see that

two situations arise:

p+1
Lo () —dap(p—1) > 0

In this case, A must be strictly greater than a negative number, which is

obviously always true. Therefore (2.6)) always yields unique positive solutions

n this instance, a function is coercive if lim,_, F(y) = oo and lim, ¢ F(y) = —oo, or
lim,_, o F(y) = —oo and lim,_,o F'(y) = oo.

11



for all step sizes.

pt1

2 b ()~ Lap(p— 1) <0

2¢ 2
In this case, rearranging ([2.11]) for A yields, after some algebra, the condition:
A < A*) where A* is given by (2.9). This completes the proof. O

We now prove that the function f : (0,00) — R, defined by

fly) = ay™ — by — ey~ (2.12)

is one-sided Lipschitz-continuous. Note that the function f is of the same form as
the drift-coefficient in (2.4)). Higham et al. (2002) used this feature to control error
propagation using a drift-implicit approximation in the context of non-linear SDEs

with polynomial drift coefficients.

Lemma 2. If (2.7) is satisfied, then the following holds

(z —y) (f(x) = fy)) <0 (2.13)

for x,y >0, where f is defined by (2.12)) above.

Proof By inspection, f is clearly continuously differentiable and therefore, by the
mean value theorem, if f'(y) < 0, Vy > 0 then f is one-sided Lipschitz-continuous
and the result follows. After differentiating f w.r.t. ¥ and rearranging, we see that

f'(y) has a maximum at

1

T\

§= (—“p(gf )> > 0. (2.14)
C

12



Substituting ([2.14)) into the expression for f’(y) and rearranging we arrive at

p+1

@) =7 Gant - 1 - b HEED) T,

We see that f is one-sided Lipschitz iff the term in parenthesis on the RHS of the
above equality is strictly less than zero. As outlined in Lemma [I} this corresponds

to condition (2.7). The proof is complete. O

Note that although the numerical approximation may yield unique positive
solutions under condition or , the one-sided Lipschitz condition on which
our proof relies is only satisfied under condition . Henceforth we assume
condition is satisfied.

Condition ([2.7) imposes a certain restriction on the parameters of the original
diffusion process, (2.1]). We note that reasonable parameter values typically satisfy
this condition. When 6 — 0.5 condition (2.7)) reduces to the following:

Ak > 2

which closely resembles the so-called Feller conditionﬂ that guarantess the positivity
of solutions to the Cox-Ingersoll-Ross process (Brigo and Mercurio|, 2006)). Note
that our condition on the parameter values guarantees unique positive solutions
for the numerical approximation to our original process, , whereas the Feller
condition guarantees the positivity of the analytic solution to the Cox-Ingersoll-Ross
process; therefore there is no reason to expect our condition to reduce to the Feller

condition in the limit 8 — 0.5

2The Feller condition is as follows: 2k > v/2.

13



2.3 Main Result

In the interests of clarity, we now state the main result that we will prove in the

course of this section:

Theorem Let xog > 0 and T > 0. Then for all ¢ > 1, there exists a constant

K, >0 such that
1
(E sup |X; — i’t|q> < K,-/|log(A)]- VA
0<t<T

1

for all A € (0,1/2], where Ty = x, = [v(1 — Q)yx] 77, t € [kA, (k+1)A)), k>0
and yy is defined by (2.5]).

Note that z; is the piecewise constant interpolation for t € [kA, (k + 1)A) and
hence 7; is an F;-adapted process. This is different from that in Dereich et al.
(2012)) where they use the linear interpolation between x; and xjy;, meaning 7, is
not Fi-adapted.

We now work through the steps involved in proving this result.
2.3.1 Moment Bounds of X(t)

To begin, we prove that the moments and inverse moments of the original process,

X (t), are bounded in finite time.

Lemma 3. For all p € (—o0,00)

sup E|X ()|’ < o0
0<t<T

14



Proof First, let us consider the case where p > 2. Let V(X (¢)) = X (¢)?. A simple
application of 1t6’s Lemma shows that the infinitesimal generator (see (Oksendal

(2007)) denoted by LV (X (t)) is given byEI
1
LV(X) = kApXP — kpXP + 502p(p 1) XPE

which is clearly bounded from above by some constant, K. This observation allows
upper bounds for the higher moments of X (¢) to be established by virtue of the
fact that

EV (X(t) = V(Xo) + E / t LV (s)ds.

This result is extended to 0 < p < 2 by noting that X? < 1+ X?2 for any X > 0.
The case where p < 0 is dealt with by taking V(X (t)) = X(¢)"?, p > 0, and

applying the infinitesimal generator, as before, to obtain
1
LV(X) = —kApX P L oep X TP 4 EUQp(p — 1) X P2
which is also bounded from above by a constant. Upper bounds for the inverse
moments follow by similar reasoning used for the case p > 0. U

2.3.2 Smoothness of the Transformed Process, Y (t)

In this subsection, we will prove a smoothness result for the process obtained by the
transformation (2.2)). For the remainder of this chapter, any unimportant constant

shall be denoted by C for brevity.

3Note that we have omitted the time dependence of X for clarity.

15



Lemma 4. Let T' > 0. Then, for all ¢ > 1 we have

E(up Y (t) - Y<s>|q) < O (|log(A)|A)#
|t—s|<A

and

E sup |Y()]? < o0
0<t<T

for A € (0,0.5].

Proof We havd]
t ot t
yt_ysza/ Yu‘pdu—b/ Yudu—é/ Y, 'du + B; — B,.

By an application of the Holder inequality (see [Mao| (2008))) followed by the discrete

Hoélder inequality (see Mao and Yuan (2006)) one obtains

q

Y, —Yr < C- <(/tYu_2pdu>2 + (/tYu?de + (/tdeu)g 4B, — B$|‘1>.

8 S 5 (2.15)
After taking expectations of both sides above, what remains is to bound the first
three terms in parenthesis; an application of 1t6’s Lemma, and Theorem 2.12 in
Mao and Yuan| (2006) is sufficient for this purpose (see Appendix at the end of

this chapter for an example of this calculation). The first result follows by using

the inequality (Miiller-Gronbach, 2002)

E( sup |Bt—Bs|Q)s0-(\logA|A>3
0<s<t<T

ji—s]<A

4We abbreviate the time argument in what follows, i.e. Y (¢) = Y;.
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for A € (0,0.5]. The second assertion follows by a similar argument, and by noting
that Esupy<;<p |Bi|? < K1, which can be obtained using the Burkholder-Davis-

Gundy inequality (Maoj, [2008]). O
2.3.3 Error Bound for Implicit Euler Scheme for Y (t)

We now derive an upper bound for the strong error of the drift-implicit approximate

solutions of equation ([2.4]).

Lemma 5. For T > 0, there exists a constant, C', such that
B(,_ oup  ia —ul?) < - (llog(a)]8)""
k=0

for A € (0,0.5], where [T/A] denotes the smallest integer which is no less than
T/A.

Proof Let
er = Yea — Uk
be the local error introduced by the approximation scheme. We have the following

recursive relationship for the error at time kA

60:0

er1 = ek + (f(Yasna) — f(Up1)) A + 1%

with

(k+1)A
Tk = _/k (f(Yiegya) — f(Y3))dt.

A

17



Utilising the one-sided Lipschitz result (2.13]), we have that

eri1 = exr1k + et (F(Yrrna) — Fi1))A + eppary
eri1 < eryiler +1x)

lert1] < ler] + [ril.

Making use of the recursive nature of this inequality, we arrive at

1T/A)-1
sup  |[Yia —uyi| < Z 7k
k=0,...,[T/A] —~

As in Dereich et al.| (2012), we need to bound |r|

7| =

(k+1)A
/k: (f (Yiesya) — f(Y2))de|.

A

Note that
[f(w) = f)] < C- (P 407 414w 4 07%) - Ju— o

for u,v > 0, where f is, again, defined by (2.12). Thus

[T/A]-1 [T/A]-1
D Il <O s Vi-Yi(14+A Y VI
A

[T/A]-1

T T
A Y Vloat / Y, s + / Yd)
k=0 0 0

18



Raising both sides to the power ¢ and applying the discrete Holder inequality, we

obtain

_ 0<s<t<T
k=0 lt—s|<A

[T/Al-1 1 [T/A]-1
( > W) <C- sup |Yt—Ys\q(1+A PRI
k=0

[r/A1-1

T T
A Y YAt / Y, ds 4 / Yd)
k=0 0 0

We now take expectations of both sides and apply the Holder inequality once more.
We have already shown each of the four terms in parenthesis on the RHS to be
bounded from above from earlier (see section 3.2). The final result follows from

the smoothness result derived in section 3.2. O
2.3.4 Bounded Moments of the Approximation, y;

Lemma 6. Let A >0 and T > 0. Then for all r > 1 we have

E  sup |ypl" <o
k=0,..,[T/A]

Proof Note that y; are random variables with respect to some probability space
and corresponding sigma-algebra {Q, F}. To prove the boundedness of the moments

of yr, k =0,..,[T/A], we define the following partition of €2:

A = {w e (w) < AF € Q,

A = {w 11 (w) > A} e Q.

1. Ifw c Ak+1:

Y1 < AL
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2. fwe A5

Ubs1 = Yi + f(Uks1) A + ABy < yp + f(A)A + ABy.

Therefore we have that, for all w € Q)
Ukt1 < A4y + f(A)A+ ABy,
which implies that

Yrt1 < T(1+ f(A)) + yo + Bita.

Utilising once more the discrete Holder inequality we have that
yera|” < C - (yo + T (14 f(A)" + [Besal").

After taking the expectation of the supremum over k, we see by inspection that the
first two terms on the RHS are obviously bounded. The Burkholder-Davis-Gundy

inequality provides the bound for the third term, and the proof is complete. [
2.3.5 Error Bound for the Drift-Implicit Approximation of X ()

We are now in a position to prove the main result contained within this chapter,

which is reproduced below for the reader’s convenience.

Theorem 1. Let xog > 0 and T > 0. Then for all ¢ > 1, there exists a constant

K, > 0 such that

(E sup X, - |) < K, og )] - VA

0<t<T

for all A € (0,1/2].
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Proof Denote by X, the piecewise constant interpolation of the mean reverting

f-process with stepsize A > (ﬂ ie.
X, = Xpa, t € kA, (k+1)A).

Now recall the transformation defined in equation ([2.2))

1

Y =Ja =

X(t).

Using this and a well-known inequality (see Appendix , we obtain the following

relationship
X = X1 = C Yy = VI < O (8 Y)Y — Y

where r = ﬁ and ¢ > 1. This, along with Holder’s inequality, implies that

N[

1

2

<E wp\n—mw).
0<s<t<T

[t—s|<A

E( sup rXt—XsP) sc-(m: sup <1§”+12”)2">
0<s<t<T 0<s<t<T
[t—s|<A [t—s|<A

The RHS is bounded following Lemma Thus

El sup [X;—X|?] <C-(|log(A)|A)* (2.16)
=

for ¢ > 1.
Next, note that

X, — X = X; — Xpa,

5Note that Z; is taken to represent the equivalent piecewise constant interpolation of the
numerical solution, xj.
6Provided that the stepsize A € (0,0.5].
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where t € [kA, (k+ 1)A).

Given that
sup | Xt — Xgal| < sup | Xy — X
telkA,(k+1)A) 0<s<t<T
jt—s<A
we have that
sup | X; — Xy| < sup |X; — X (2.17)
0<t<T 0<s<t<T
ji—s|<A

Finally, we use the fact that
Xt_jt:Xt_Xt—i_Xt_jt
to arrive at

sup | Xy — 3|7 < C ( sup | X; — Xy|7+ sup | Xpa — xk|q> )

0<t<T 0<t<T k=0,..,[ L]

After taking expectations of both sides, we use (2.16)) and (2.17)) to bound the first
term on the RHS.

To bound the second term, first note that

1

[ Xoia —ax| = C - Vi —wil <CO- (V' +ui Yea —wl, 7= 1-6

which follows from (2.3) and an elementary inequality (which is reproduced in

Appendix for the reader’s convenience). We therefore have that

E sup [Xpa—ax|/?<C-E sup (Yk’Z1 + y};*l)q - osup [ Yia —wkl? ] -
k=0,..,[ £ k=0,...[£] k=0,..,[£]

After an application of Holder’s inequality, we arrive at our result by virtue of

Lemmas [4] [5] and [ The proof of Theorem [1] is now complete. O
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2.4 Simulation Study

In this section we produce some results to empirically demonstrate the strong
convergence of the so-called drift-implicit Euler approximation to equation ({2.1J).
All simulations of the process were carried out using reasonable values for
the drift and volatility parametersﬂ and with 8 = 0.75. The steps taken in this

analysis were as follows:

1. A sample path of the process (2.4]) over one time interval was produced using
the explicit Euler-Maruyama algorithm, with a time-step of 107%; this sample
path was used to approximate the exact process given that (2.4) cannot be

sampled exactly due to the transition density of the process being unknown.

2. An approximate path was then generated from the same Brownian motion
used in step 1, but using a larger time-step. The approximate path was
generated using the drift-implicit Euler approximation. Note that this ap-
proximation method involves solving for y;,1 at each time step; a simple

Newton-Raphson algorithm was implemented to carry out this taskﬂ.

3. The ‘exact’ and approximate sample paths were then transformed into the
original process (2.1)) using the Lamperti transform (2.2]). A sample path of

the ‘exact’ process and the corresponding approximation is illustrated in |2.1}

4. The square of the absolute difference between the end-points of the exact
and approximate sample paths was recorded. This error criterion was used
as a proxy for the supremum error over the whole path in order to reduce

memory usage and therefore reduce CPU run-time.

"Parameter values were as follows: x = 0.2, A = 0.09 and v = 0.08.
8(2.5) was solved for Y41 to within an accuracy of 10~7.
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5. Steps 1, 2, 3 and 4 were repeated 1000 times and the square root of the sample

mean taken to represent the strong error of the drift-implicit approximation.

6. Steps 1, 2, 3,4 and 5 were repeated for 4 different step-sizes: A = 107°, A =

1074, A = 1073and A = 102,

The results of the above experiment are illustrated in [2.2]
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Figure 2.1: A sample path of the true solution, X(¢), and the drift-implicit
approximation, x(t), based on the same Brownian sample path.

Note that the drift-implicit approximation appears to converge strongly to the
true solution with a rate of 1, rather than 0.5 as indicated in our earlier analysis.
Although this finding does not invalidate the analysis presented in this chapter,
this strong convergence rate is a much stronger result than that indicated by our

analysis; further work may be required to fully understand this feature.
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Figure 2.2: The strong error plot for the drift-implicit Euler approximation to the
mean reverting CEV process. The dashed line of slope 1 is the reference line.

2.5 Discussion & summary

In this chapter we provided a lower bound for the strong convergence rate associated
with a numerical approximation of a class of SDEs commonly known as CEV
processes. We began by introducing some preliminary steps that made the problem
simpler to analyse, which was then followed by proving some basic results concerning
the numerical approximation to the true process, which were then used to prove
the main result in this chapter. The chapter ends with a numerical experiment
to illustrate the main result. As mentioned earlier, the empirical results seem to

indicate a faster convergence rate for the numerical approximation used here than
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the theoretical analysis suggests. Note that since the results contained within this
chapter were produced (during 2011), other parties have independently derived a
stronger convergence rate result for this class of processes (Neuenkirch and Szpruch
2014)) and subsequently published these results. The result proved by Neuenkirch
and Szpruch| (2014) confirms the empirical work carried out in this chapter—that
the strong convergence rate of the numerical approximation to is equal to one.
Having analysed a typical problem associated with generating data from stochastic
models commonly used in finance, demonstrating that a judicial choice of numerical
approximation scheme can yield accurate approximations to the strong solutions
of such processes, in the forthcoming chapters we turn our attention to another
important area in the field of mathematical finance: the parameter inference of

stochastic models.
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2.6

Appendix A

The following are a list of some common results that have been used in this chapter:

Holder’s Inequality
[EXY] < (EIXP)» (E|Y[")7

ifp>1,1/p+1/q =1, provided E|X|P < co and E|Y|? < occ.

Discrete Holder’s Inequality

k k 1/p k 1/q
‘Zaibi < (Z|ai|p) <Z|bi|q>
i=1 i—1 i—1

ifp,g>1,1/p+1/g=1,k > 2, and a;,b; € R.

Power inequality

[u? — 0P| < plu —v|(uPt + 0P, Vu,v >0 and p € (—o0,0).

Moment inequality for stochastic integrals
Let p > 2. Let g be a process adapted to the filtration generated by a

one-dimensional Brownian motion, B(t), such that

E/ lg(s)[Pds < 0.

Then

E‘ / " o(5)dB(s)

"< (M) om0 [ lgtoras
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2.7 Appendix B

In the proof of Lemma [4) we had to bound the expectation of an integral of the
stochastic process, Y (¢); in this section we work through the steps required to do
this. We bound one of the terms to illustrate the method - the other two terms are
handled in a similar manner. Consider the first term inside parenthesis on the RHS
of , the integral is raised to the power ¢/2; we can show that the expectation
of this term is bounded by showing that higher moments are bounded. Therefore,

we will bound the following term

E(/tYu_deu>5, 5> 1.

Firstly, we transform back from Y'(¢) to X (¢) using (2.3) so that we may use some
of the results for the process X(¢) derived in earlier sections of this chapter. After

transforming to X (t), we apply 1t6’s lemma to obtain the following

u

Vo= X0 = X5 4 / L(X,2)dv — 200 / X 0+94B,.
0 0

From Lemma [3| we know that the infinitesimal generator under the first integral on
the RHS is bounded from above by some constant, K. Taking the integral over u,

we have that

t 1 t u
/ X, du < Xg ¥t — 5) + SK(t° = 5°) —29"/ / X, 0dB,du.
s s 0
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After reversing the order of the double integral, raising both sides to the power 9,

using the discrete Holder inequality (see Appendix and taking the expectation

we have that
t 5 t 0
E(/ Xﬂdu) <OXy?(t—s)P +CH - s*)° + CE(/ X0 (¢ v)dBv>

where, as before, C' represents any unimportant constant. Only the last term on the
RHS requires further analysis (the first two are clearly finite for t,s < T'). Using
a moment inequality for stochastic integrals (which is stated in Appendix for

convenience), we see that the final term on the RHS is also finite.
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Chapter 3

Drift-implicit pseudo-maximum-likelihood
estimation of the parameters of the Ait-

Sahalia short rate model

3.1 Introduction

In the previous chapter we focussed on the problem of simulating sample paths
from a particular class of SDEs, and demonstrated the convergence properties of a
particular numerical approximation to the underlying class of SDEs considered. In
this chapter we switch focus to the problem of parameter estimation, still in the
context of SDEs used in financial applications. Parameter estimation is a subject of
great practical interest for industry practitioners, as well as being a very challenging
problem from a researcher’s standpoint. For quantitative analysts, choosing a
model that is able to reproduce realistic dynamics of economic variables observed
in markets is a challenging task, but even once such a model has been chosen
there still remains the challenge of calibrating the model to real data. In recent

years various new models have been proposed for different financial quantities, e.g.
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interest rates, stock prices, exchange rates, that are increasingly able to capture a
wider variety of qualitative behaviours that one might observe in market variables;
however, increasing the complexity of models, while perhaps facilitating more
realistic representations of key variables, also leads to a correspondingly more
difficult parameter inference problem. Ensuring that ‘good” model parameter values
are chosen is extremely important in practice; poorly chosen parameter values
can lead to materially different behaviour being exhibited by the model generated
data, relative to the observed market data, which in turn can lead to errors in the
pricing of financial derivatives and other contingent claims, as well as potentially
leading to insufficient capital being set aside to cope with extreme risk events. For
these reasons it is important to develop robust parameter estimation techniques
for models used in finance.

In this chapter, we focus our attention on a six-parameter Ito diffusion process
that conveniently nests a family of SDEs frequently used to model the dynamics of
the instantaneous short rate of interest, a key state variable for pricing securities,
such as bonds, whose price depends on the term structure of interest rates. There
currently exists a relatively large number of parameter estimation techniques in
the literature that could be applied to this particular type of model (a univariate
diffusion process); however, most of these techniques either involve some non-trivial
work to be carried out prior to the parameter estimation (for example, in order
to implement the Hermite polynomial likelihood approximation presented by Ait+
Sahalia (2002)), one must first determine the coefficients of the expansion which can
be a challenging task due to the complexity of the terms), or are computationally
intensive and time-consuming. In this chapter we investigate a new technique for
estimating the six-parameter SDE which we will label the Ait-Sahalia short rate

model, or AS model for brevity. The technique we develop is closely related to
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the Pseudo-Maximum-Likelihood (PML) approach in which the SDE is discretised
using an explicit Euler-Maruyama approximation, effectively imposing on the
model the assumption that the transition density of the process is Gaussian. It is
known that the PML method is too crude for many SDEs, as parameter estimates
produced via this method can possess significant biases, especially in the parameters
appearing in the drift coefficient of the diffusion process. However, the method is
very straightforward to implement and can be useful for finding crude parameter
estimates that are then used as a starting point for more complex estimation
techniques. Our new technique involves making a drift-implicit Euler-Maruyama
discretisation of the AS SDE and deriving a transition density for the resulting
approximation. Given the often attractive properties of drift-implicit discretisations
of SDEs in the context of numerical simulation, which will be discussed below, our
goal is to investigate whether the corresponding parameter estimation utilising the
drift-implicit discretisation (which we will label DI-PML in what follows), yields
better parameter estimates, both in terms of closeness to the ‘true’ parameter
values, and in terms of the size of the confidence intervals of the estimates, than
the traditional PML estimates.

In the following sections we introduce the model being studied, along with some
interesting features of the model; this is followed by a brief survey of the traditional
PML approach to parameter estimation; we then introduce the new technique we
developed to estimate the AS model parameters, and derive the transition density
associated with the drift-implicit approximation of the SDE; we then carry out a
numerical experiment to compare the parameter estimates obtained via our method
against the estimates obtained via the traditional PML approach; the chapter ends

with a detailed discussion of the results along with what implications they have
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for parameter inference in mathematical finance in general, and a recap of the key

points covered in the chapter.

3.2 The model

The SDE that we will focus our analysis on in this chapter is the Ait-Sahalia short

rate SDE, which is given by
dr; = (a_lrt_l —agp + oy — ozgrf)dt +or/dB;, 1ro= Ry € (0,00) (3.1)

where B; is a scalar Brownian motion. a_q, ag, aq, o, 0 are positive Constamtsﬂ7
and 1 < v < 1.5, which we collectively represent as a vector of parameters 6. We
assume that the initial value, Ry, is known. The upper bound on 7 is required
in order to bound the moments of the process; for a derivation of this bound see
Szpruch et al (2011)). This form of SDE was first considered in [Ait-Séhalial (1996)P]
This particular SDE was the focus of the analysis conducted in [Szpruch et al.| (2011)),
in the context of the design of numerical approximation schemes for the simulation
of sample traces from the SDE. In [Szpruch et al.| (2011)), the authors demonstrate
that an appropriate implicit numerical approximation can preserve the positivity
of the process (a key qualitative feature of the strong solution to the SDE), as
well as demonstrating the strong convergence of the numerical approximation to
(3.1). The qualitative advantage of using an implicit numerical scheme, namely
that positivity of the approximate process is preserved, might indicate that there

are potentially additional benefits to be had by considering alternative parameter

!The drift parameters are bounded from below in order to ensure the existence and uniqueness

of solutions to (3.1)).

In fact, the form of diffusion coefficient considered here is slightly less general than the
diffusion coefficient introduced in |Ait-Sahalia) (1996)); nonetheless, all commonly used univariate
models for the short rate of interest are encapsulated in the SDE considered in this chapter.
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estimation techniques, the basis for which is some form of implicit discretisation of

1.

3.3 Pseudo-maximum likelihood estimation

One of the simplest methods of parameter estimation is to simply discretise the
SDE by using the explicit Euler-Maruyama (EM) approximation which, in effect,
imposes on the model the assumption that the transition density of the process
is Gaussian. Substituting the Gaussian approximate transition density into the
expression for the model likelihood of a diffusion process and optimising over the
range of the parameter space in which we are interested yields the PML parameter

estimates. The EM approximation of (3.1]) is as follows
Thil — Tk = (oz_lrlzl — a4+ iy — agr) At + or{ ABy, (3.2)

where 1, = rgar = r(kAt) and ABy = B((k+1)At) — B(kAt). This approximation
implies that the transition density of the approximate process, i.e. the probability

density function of ., conditioned on r; and some paramter value 6, is given by

fe(rkﬂrl‘rkae) NN(ﬁ(Tkae)?a—Q(rbe))? (33)

where fi(rg,0) = (a_ymt — ag + ayry — agr?)At + 7y, and 52(ry, 0) = o At
Ito diffusions are, by construction, Markov processes, which allows one to write
down the model likelihood, L(r|f), of such a process as a product of the transition

densities evaluated at the observed values of the time-series that we are modelling

(here labelled r), i.e.

N-1

L(rl0) = T £ (resalre, 0),

k=0
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where f¢(rgi1|rg,6) is defined in (3.3). The PML parameter estimates are then
obtained by maximising this quantity with respect to the parameters ¢. We have
already noted that the resulting PML parameter estimates can exhibit significant
biases away from the true parameter values when the time increment between
observations is finite. See [lacus| (2008)), page 122, for a discussion and illustration
of the discretisation bias associated with PML estimates. For this reason, this
particular method of parameter estimation is not terribly reliable, especially for
SDEs that possess nonlinear drift and/or diffusion coefficients; however, the method
is still useful for situations in which the time step between observations is very small
(a regime for which the Gaussian transition density is a reasonable assumption), and
also in situations where a crude parameter estimate is needed to initialise a more
complicated method of estimation, e.g. MCMC based estimation—a numerical

technique that will be discussed in detail later in this thesis.

3.4 The drift-implicit approximation

In the previous section we introduced the Pseudo-Maximum-Likelihood method of
parameter estimation, in which the assumption of a Gaussian transition density for
the process under consideration is used to derive a tractable approximation to the
model likelihood which, in turn, allows parameter estimates to be obtained from this
pseudo likelihood. Underlying the PML method is the explicit EM discretisation
of the SDE. In this section, we derive an approximate transition density, which
is not Gaussian, that is associated with a drift-implicit EM discretisation of the
underlying SDE . The rationale for this approach is that the drift-implicit
discretisation yields qualitatively superior numerical simulation schemes for the
SDE of interest (in particular, the positivity of the strong solution is preserved

in the numerical solution obtained under the drift-implicit discretisation of ({3.1))),
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therefore the task is to determine whether a drift-implicit discretisation can lead
correspondingly to superior parameter estimates. We now describe the steps taken
to determine the DI-PML estimates, starting with the basic discretisation of
that leads to the approximate transition density, developed for the first time in
this thesis.

First, we discretise (3.1]) using a drift-implicit EM approximation,

Thyl — Tk = (a_lr,;il — g+ TRy — agriH)At + or] ABy, (3.4)

where r, and AB), are defined as before. Note that this is very similar to the
discretisation in , the only difference being the appearance of 7, in the drift
coefficient, rather than r;. As mentioned earlier in the chapter, Szpruch et al.
(2011)) proved that this discretisation scheme converges strongly to the solution of

(3.1). Rearranging the drift-implicit discretisation, (3.4)), we obtain

rre1(1 — o At) — oz_lAtr,;il + apAt + agAtriH =1 + o] ABy. (3.5)

Note that the conditional density of the RHS of (i.e. the distribution of the
RHS conditioned on the value of ry) is normal, as it consists of a non-random term,
Tk, plus another non-random term multiplied by an increment of Brownian motion.
Let us represent the normally distributed RHS of by u. Let the LHS, which
is a function of 1, be represented by the function F(rg11). The goal is now to

derive an expression for f(ry,1|rx,0), the drift-implicit analogue of f¢(rjy1|r, 6)
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defined above. In what follows we will denote the transition density, f*(7x41|7%,0),

by fr,. () in order to keep the notation as clear as possible.

) 1
Jro (@) = Alb}cglo E]P’(m <rpp1 <o+ Ax)

1
= lim —P(z < F(u) <
Alggo AIIP(x < F ' (u) <x+ Ax)

1
= lim — <u<
Al;rgo AxP(F(:U) <u< F(z+ Ax))

F(z+Ax)

1
= lim — fu (U) dv
/

Az—0 Az
)

Changing integration variables from v to s via the transformation v = F(s) yields

lim - / Fu(F(3))F/(s)ds,

Az—0 Az
T

which is simply equal to

FAFEDF (@) = exp (o (F(0) = 12
TAtor) a?Atry,

(1 — a1 At + a1 Atr™? + 20 Atx),

recalling that u, the RHS of , is normally distributed. Note that in order to
carry out the steps above (in particular, the first steps involving the inverse of the
LHS of (3.5)) one must first demonstrate the existence of an inverse function F~*(u)
used in the above derivation. For a proof of the existence of an inverse function see
Szpruch et al. (2011)). We have now derived the drift-implicit approximation to the
transition density of the AS short rate model. One can then use this approximate
transition density to form pseudo likelihood functions by taking advantage of the

Markovian nature of diffusions in the manner described above.
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3.5 Numerical experiment

In order to test the newly developed approximation scheme outlined above, we con-
ducted a numerical experiment to empirically test whether the new approximation
yielded better results relative to the standard, explicit PML estimates obtained via
the Gaussian approximation to the transition density of the process, which was
briefly outlined in section above. We now provide some details regarding the

experiment set up, which will be followed by a presentation of the results.
3.5.1 Experiment design

Our methodology involved simulating a single trace from the process of interest
E| using a pre-determined parameter vector, which we will label 6, for the
remainder of this chaptexﬂ The sample trace from the model contained N = 10,001
observations; 1000 observations per time period, and 10 time periods, plus one
additional observation at ¢ = 0, which we will assume is known, and not random.
We label the N data points from the model D in the following analysis, i.e.

D = {D;}i=o...n- The approximate loglikelihood functions associated with the

model were then derived by taking advantage of the Markovian nature of
Ito diffusions, i.e. because diffusion processes are Markovian by construction,

the likelihood function can be written as the product of the transition densities

associated with successive observations of the process

N

L(D|0) = H f(Di|Dj—1,0). (3.6)

=1

3In practice, an approximate numerical simulation scheme with a very small step size (1,000, 000
per time period) was used to simulate the sample path of the process due to the analytical form
of the true transition density of the process not being known.

4Thoughout this chapter we will refer to fy as either the ‘true’ parameter values, or the ‘data
generating’ parameters.

38



By substituting either the drift-explicit or drift-implicit EM approximation to
the transition density for the true density in , one obtains an approximate
likelihood function that leads to PML or DI-PML parameter estimates respectively.
The true parameter values, 6y, that were used to generate the M sample paths

were chosen as follows

0o = (_1, ap, a1, (i, 0,7y) = (1.0, 3.0,2.0,4.0,0.8,1.3).

The optimisation was performed over a large region of the parameter space; the

lower and upper bounds of the search space were as follows:

B, = (0.0,0.0,0.0,0.0,0.0,1.0), B, = (50.0,50.0,50.0,50.0,50.0, 1.5).

The lower bounds (and the upper bound for the CEV parameter, ) are consistent
with the parameter bounds introduced in section [3.2] while the upper bounds were
chosen in order to ensure that the search space was large enough such that the
optimisation could explore a wide range of possible solutions.

The approximate loglikelihood functions were optimised in C++, using a Nelder-
Mead simplex optimisation routine (see|Nelder and Mead (1965) for further details of
this technique) from the Gnu Scientific Library (GSL). The approximate likelihood
functions associated with the simulated data D were each optimised 1500 times,
with each optimisation being initialised at a different, randomly generated, point
in the constrained search space. The M = 500 best estimates’| were then used to
construct point estimates and confidence intervals for the model parameters. The
rationale behind using only a subset of the 1500 optimisations was that a small

number (around 50 in each case) of optmisations failed to converge to within the

5By ‘best’ we mean the estimates that yielded the largest pseudo-likelihood value.
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specified tolerance, while a similarly small number of estimates that did converge
to within the specified tolerance were located in regions of the parameter space
that were very far from the bulk of the estimates, with these points evaluating to
pseudo-likelihood values that were significantly lower than the vast majority of
the other converged parameter estimates. Removing these points from the results
ensured that valid pseudo-maximum-likelihood estimates were used to derive our
conclusions. Point estimates were derived by evaluating the sample mean for each
collection of estimates; confidence intervals are empirical, i.e. they are generated
using the 2.5th and 97.5th percentiles of the sample estimates. Point estimates
and confidence intervals derived for each method of approximation (PML and
DI-PML) were then compared to one another and compared to the data generating

parameters, 0y, to evaluate the relative efficiency of each method.
3.5.2 Results

Table contains the results of the numerical experiments.
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Evidently both methods fail to accurately estimate the data generating parameters
that appear in the drift coefficient of ; not only are the point estimates
associated with both approximations significantly biased away from the true values,
but the confidence intervals associated with the estimates are extremely wide.
It appears that the DI-PML point estimates (which correspond to the means of
the M = 500 sample parameter estimates) are slightly less biased than the point
estimates obtained via the PML approximation, but the degree of variablity in
the drift parameter estimates associated with the DI-PML method is greater than
the variability in the PML estimates. As was pointed out earlier in the chapter,
the crude PML approach to parameter inference is known for producing extremely
biased estimates, especially in the case of models with nonlinear terms, such as the
model considered here. Unfortunetely it seems that the DI-PML approach does
not offer any material improvement over the PML approach in terms of accuracy
of estimates.

The estimates of parameters appearing in the diffusion coefficient (o and ) of
are considerably better relative to the drift parameter estimates, for both methods
of approximation. Both approximations yield point estimates that are close to the
true parameter values, but the DI-PML point estimates are marginally superior to
the PML point estimates, which exhibit a slight upward bias for both the ¢ and
the v parameters. Additionally, despite the point estimates associated with the
PML estimates being very close to the true parameter values, the empirical 95%
confidence intervals around the estimates do not actually include the true parameter
values, whereas the confidence intervals associated with the DI-PML approximation
do include the true parameter values. This result suggests that, despite these
discretisation schemes being ineffective at generating accurate drift parameter

estimates, this method of approximation might be used to derive relatively accurate
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parameter estimates for those parameters appearing in the diffusion coefficient of
the model, with the DI-PML method being preferrable to the PML method. The
following boxplots (figures and provide a more detailed description of the

distribution of parameter estimates obtained from the experiment.

Figure [3.1] reinforces the conclusions that were drawn above; namely, that both
methods of estimation are inadequate for the purposes of accurate parameter
inference for (3.1). The interquartile ranges (IQRs) of both the PML and DI-PML
estimates both span large regions of the parameter space, indicating that there
may be parameter identifiability issues associated with this particular model; a
consideration that we will return to later in this chapter.

Figure [3.2] clearly illustrates that both methods of approximation, PML and DI-
PML, provide good estimates of the diffusion coefficient parameters, o and =,
with the DI-PML method producing marginally superior results. Both methods
of parameter inference result in tight box and whisker plots, which indicates that
there was very little variability in the estimation of the diffusion parameters.

In the course of conducting the numerical experiment described above, we ran into
various difficulties associated with our method of inference that made obtaining
parameter estimates from the model observations particularly problematic. In what
follows we will discuss some of the reasons underlying these difficulties.

During preliminary testing of the optimisation routine used in the experiment,
we noticed that each optimisation of the approximate likelihood functionﬂ pro-
duced converged parameter estimates that differed greatly in their position in the
parameter space, but evaluated to the same loglikelihood value. Discretisation

bias associated with the PML and DI-PML approximations do not explain this

6The phenomenon we describe was observed using both approximations to the loglikelihood
function considered in this chapter, but for illustrative purposes the analysis that follows in this
section is focussed on the PML approximation only.
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Drift parameter estimates: PML vs. DIPML
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Figure 3.1: The first four boxplots relate to the ensemble of drift parameter
estimates associated with the PML approximation; the last four relate to estimates
of the drift parameters obtained via the DI-PML approximation. The red crosses
represent the true parameter values—the parameter values used to generate the
observations used in the experiment.
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Diffusion parameter estimates: PML vs. DIPML
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Figure 3.2: The first two boxplots relate to the ensemble of diffusion parameter
estimates associated with the PML approximation; the last two relate to estimates
of the diffusion parameters obtained via the DI-PML approximation. The red
crosses represent the true parameter values—the parameter values used to generate
the observations used in the experiment.
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observation; the fact that the locations of the parameter estimates differed signifi-
cantly from the locations of the data generating parameters can be explained by the
well-documented discretisation bias problems associated with the pseudo-likelihood
methods investigated here, but the wide spread of estimates associated with the
drift parameters suggests that, in addition to the problem of biased estimates,
there was an additional parameter identifiability problem associated with this
model—the model observations could be explained equally well by a wide range
of different parameter values. The distribution of sampled parameter estimates is
illustrated in Figure [3.3] It is clear from Figure [3.3] that no unique combination
of drift parameters best explains the data, and this explains why point estimates
and associated confidence intervals of the drift parameters were so poor for both
types of approximation. The optimisation stage was repeated using another GSL
optimisation routine, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) methodmfa
quasi-Newton method that utilises the gradient of the loglikelihood function to
move towards local optima—in order to test whether the loglikelihood optimisation
was sensitive to the choice of solver used, but the same behaviour was observed
using this solver. If the ridge-like features that appear in Figure were indeed
present in the approximate loglikelihood functions, they would almost certainly
manifest themselves in the form of parameter identifiability problems at the opti-
misation stage. In order to confirm our hypothesis that a ridge is present in the
parameter space which makes identifying a unique PMLE impossible, we generated
an empirical sample from the approximate loglikelihood function using a Markov
chain Monte Carlo (MCMC) sampling algorithm. As a brief aside: MCMC samplers
generate samples from a target function (in this case, the approximate loglikelihood

function associated with the explicit EM discretisation of (3.1])) by constructing a

"See |[Nocedal and Wright| (2006) for details of this method.
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Figure 3.3: These plots demonstrate that the M = 500 parameter estimates lie
on a ridge, running across large portions of the parameter space. The pseudo-
loglikelihood function evaluates to the same value all along this ridge.
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Markov chain with limiting distribution equal to the target function |Gilks et al.
(1996)). By running the constructed Markov chain for a sufficiently long period of
time (long enough for the chain to converge to its limiting distribution), draws from
the Markov chain should represent correlated samples from the target distribution,
which can be used to estimate model parameters or, as in this case, to visualise
the features of a multidimensional function. This sampling method is extremely
common in Bayesian statistics due to the sampler’s ability to generate samples
from complex distributions whose nomalising constant is not computable, but it is
equally valid as a means of sampling from complex functions, outside the Bayesian
paradigm. This sampling technique will be discussed at length in the following
chapter, where we will make use of MCMC techniques to develop new samplers that
can be used for parameter inference in cases where the model likelihood is not even
computable pointwise. The rationale for employing MCMC here is that it allowed
us to visualise the shape of the loglikelihood function in the vicinity of the ridge,
rather than simply assuming that the ridge was present on the basis of the location
of the converged parameter estimates. Figure plots the samples generated by
the MCMC sampler. The MCMC samples in Figure [3.4] provide further evidence
of parameter identifiabiliy problems associated with . One can clearly observe
the same ridge-like pattern in the MCMC sample that was observed in the scatter
plot of the parameter estimates (see Figure . To further illustrate this problem,
consider Figure 3.5, The black line represents the magnitude of the drift coefficient
of as a function of the process value, given the parameter values are equal to

0y. The red line represents the drift coefficient resulting from a sample parameter
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Figure 3.4: Marginal loglikelihood samples associated with the explicit Euler
discretisation of . Diffusion parameters were held constant, at their true
values (o,7) = (0.80,1.30), when running the MCMC sampler in order to simplify
the analysis; this is appropriate given that it is the structure of the approximate
loglikelihood function in the drift parameter space that is of interest here.
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estimate obtained from the numerical experiment. The estimated parameter values

used to draw the red line were as follows:

0 = (2.07,9.45,14.47,10.92,0.81,1.32). (3.7)

Note that only the first four parameter values are associated with the drift coefficient
of the model. Clearly, these parameter estimates differ, to a significant extent,
from the true parameter values, 6y, and yet both the mean reversion levels and
the magnitudes of the drift coefficients are very similar. With such similarities
between the drift coefficients associated with parameter values that are significantly
different from one another, one would indeed expect the data generated using 0 in

(3.7) to be virtually indistinguishable from data generated using 6.

Figures[3.6] [3.7and [3.8| further illustrate the problems associated with the estimation
of . These ‘funnel’ charts attempt to convey graphically the evolution of the
distributional properties of the data generated from ([3.1]) using a particular choice
of parameter values. Chart one was generated using the true parameter values,
funnel charts two and three were generated using samples from the ensemble of
parameter estimates obtained during the numerical experiment. The two sets of
parameter estimates used to generate figures 3.7 and were chosen because the
drift parameter estimates are significantly different in each case. Despite each set of
parameters differing to a significant extent, the distributions of the data produced in
each case are very similar. This provides further evidence to support the claim that
identifying unique parameter estimates using the maximum likelihood estimation
approach is very problematic in this context. One can rationalise these observations
by noting that the parametric form of was first introduced in |Ait-Sahalia

(1996)), in which the author tests a variety of stochastic diffusion processes for their
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Figure 3.5: This is a plot of the drift coefficient evaluated at two different parameter
values; the black line represents the drift associated with the true parameter values
(the values used to generate the samples used to infer parameters) and the red line
represents the drift associated with a particular set of parameter estimates obtained
during the experiment. When the line is above zero, the process exhibits a drift
downwards; conversly, when the line is below zero, the process drifts upwards. The
intersection of the line with the x-axis (labelled X) represents the mean reversion
level of the process; the value towards which the process will tend to drift over
time.
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ability to accurately represent the features observed in real market interest rate
data. In |Ait-Sahalial (1996) the author tests the various parametric models by
comparing their implied parametric density to the nonparametric density derived
from the market observations. |Ait-Sahalial (1996) rejects most models at the 95%
level; the only model not rejected was similar to ﬂ In other words, (3.1)) is
flexible in the sense that its parametric form is such that market data can credibly
be represented by this model; more parsimonious models are not flexible enough
for this purpose. While this flexibility is beneficial in the sense that the model is
capable of representing the features observed in real data, it is a hinderance when
it comes to actually inferring the parameter values that are most likely to have
generated the observed data, precisely because the flexibility of the model results
in the feature that many different choices of model parameters could credibly give

rise to the observed data.

3.6 Discussion & summary

In this chapter we introduced a new method of parameter estimation for equa-
tion based on a drift-implicit discretisation of the SDE. The new estimation
method was tested in order to determine whether the advantages associated with
drift-implicit discretisations in the context of numerical simulation of SDEs are
carried over into the problem of parameter inference. In summary the new method
of parameter estimation introduced here, namely the DI-PML approximation, fails
to provide parameter estimates that are sufficiently accurate to merit the adoption
of this method of parameter inference, at least in the context of drift parameter

estimation. As the above discussion suggests, this is a feature that is inherent in

8The form of the drift coefficient in the non-rejected model was the same as in (3.1]), but the
diffusion coefficient posessed a more general parametric form than the diffusion coefficient of

BD).

52



1.0

Value
0.6

0.4

Time (Years)

Figure 3.6: This figure plots certain percentiles of the distribution of the process, X,
whose dynamics is given by . The true parameters, 6y, were used to generate
the data, and the percentiles were derived by simulating 1000 sample paths of the
process and evaluating the 95th, 75th, 50th, 25th and 5th empirical percentiles
of the sample paths. The black line represents the median (50th percentile), the
green area represents the inter-quartile range, and the yellow regions represent the
range between the 5th and 25th, and the 75th and 95th percentiles.

53



1.0

0.8

Value
0.6

0.4

0.0

Time (Years)

Figure 3.7: This funnel chart was constructed in a similar manner to Figure [3.6]
except the sample data used was derived from using a sample from the
parameter estimates obtained during the experiment. The parameter values used
were (1.40,4.78,2.50,2.94,0.73,1.21).
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Figure 3.8: This funnel chart was produced using the same method that was used in
the creation of figures and The sample paths used to obtain the percentiles
were generated using a sample from the parameter estimates obtained during the
experiment. The parameter values used were (2.15,9.48,11.63,8.08,0.76, 1.26).
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the structure of the AS model itself, which is popular due to its ability to capture a
wide range of statistical features that appear in market interest rate data. In cases
where a large number of parameter choices can credibly give rise to the observed
data, traditional point estimates are not of much use—there is no reason, when
taking a maximum likelihood approach to inference, to take one point estimate over
another if both can describe the data equally well. One way of encapsulating this
ambiguity in the parameter estimates is to take a Bayesian approach to inference,
whereby one can talk of parameters in terms of distributions, without relying on
asymptotic normality assumptions that are sometimes required when constructing
confidence intervals, for example, in the frequentist approach to statisics. By taking
such an approach, one can properly estimate the distribution of the parameters,
taking into account dependencies between parameters, as well as having a robust
framework for handling uncertainty in the model and an explicit method of taking
additional sources of information into account in the process of parameter inference,
which may be necessary if one wishes to reduce the ambiguity surrounding the
‘best choice” of model parameters. In the succeeding chapters we will present some

new Bayesian inference techniques that can be used to estimate financial models.
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Chapter 4

Statistical inference of model parameters

using Approximate Bayesian Computation

4.1 Background and prerequisites

In the previous chapter concerning the estimation of model parameters using
pseudo-likelihood methods, we encountered problems associated with standard
point estimates based on optimisation of the approximate loglikelihood function.
We observed that a large subset of the parameter space could have credibly given
rise to the observed data on which inference was based. As a result the point
estimates of the drift coefficients obtained during the exercise, under both forms
of approximation (PML and DI-PML), were severely biased away from the true
parameter values. Construction of empirical confidence intervals did not help
matters as the intervals often spanned large portions of the parameter space. Only
when we implemented a MCMC sampler to build up a picture of the approximate
loglikelihood surface were we able to precisely identify the parameter identifiability
problem. In what follows we introduce several newly developed samplers, based

on a Bayesian approach to parameter estimation, that can be used to generate
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samples from distributions of interest (typically the posterior distribution of model
parameters) and obtain relevant point and interval estimates of model parameters.
Approximate Bayesian Computation (ABC) is a method of model inference that
takes advantage of the asymmetry represented by the relative ease with which
one can simulate data from a model and the difficulty in inferring parameter
values given sample data from a model. Standard methods of parameter inference
for SDEs usually involve the computation of the so called likelihood function
associated with the model; however, obtaining this function often requires the
analytic solution of the SDE under investigation to be known, a criterion which
is often not satisfied. Typically, SDEs that are used in finance are intractable, in
the sense that analytic solutions are frequently not available. Hence, the likelihood
function is not known, which makes performing inference a difficult task. ABC
methods provide a promising, and flexible, approach to the estimation of model
parameters, including the parameters of SDEs used in finance. If the utility of
using more complex SDEs to realistically represent the dynamics of state variables,
such as interest rates or share prices, is to be realised, robust methods for reliably
estimating such models must be developed. In this chapter we will provide an
overview of the development of the method of inference under investigation; we
will also set out the relevant results necessary for understanding the method at a

fundamental level.
4.1.1 Background

There are various approaches one could take when attempting to estimate the pa-
rameters of a model; the most common approaches being likelihood based methods
(which belong to the family of frequentist approaches to inference) and Bayesian

methods. Both methods have pros and cons associated with them; however, the
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systematic way in which information contained within observed data and external in-
formation, e.g. expert opinion, can be combined via Bayes’ theorem, along with the
feature that inference can be performed without the use of asymptotic results, made
the Bayesian approach an attractive one. From a practical perspective, Bayesian
results also enjoy the advantage of being intuitively interpretable—Bayesian credi-
ble intervals can legitimately be understood as representing the probability that
a particular estimand falls in some range; in contrast, the frequentist confidence
interval must be strictly understood in terms of a series of repeatable experiments,
a concept that is more difficult for lay-persons to grasp (Gelman et al 2003). The
main controversy associated with Bayesian inference is that the results can be
influenced by subjective opinion via the prior. Of course, this is paradoxically also
seen as one of the strengths of Bayesianism—it is often the case that the statistician
has additional information relevant to the problem that is not contained within the
observations, for example there may be parameter ranges outwith which the model
does not give realistic outputs. The relative influence of data and prior beliefs is
determined partly by the amount of data available. When estimating financial
models—the main practical application considered in this thesis—rich data sets
are often available thanks to detailed market data being readily available from
sources like Datastream or Bloomberg, and therefore the data will tend to exert a
strong influence on the posterior distribution, provided the prior is not too tightly
constained i.e. provided the degree of belief in the external information is not too
high. For this reason, it can be argued that the Bayesian approach has the potential
to be a flexible, reliable, and powerful tool for conducting parameter estimation in
a financial context. In addition, by selecting the prior distribution of parameters to
be uniform, the posterior density obtained via Bayes’ Theorem actually coincides

with the likelihood surface, and therefore the maximum a posteriori point (MAP)

59



(the mode of the posterior distribution) coincides with the maximum likelihood
estimate, provided the range of the prior distribution contains the MAP. Although
both methods are interpreted differently at a philosophical level, in a practical sense
the Bayesian approach to parameter estimation can be seen as a general method of
estimating parameters, the maximum likelihood method being a particular case of
the Bayesian method. As mentioned in the previous paragraph, Bayes’” Theorem
is the fundamental relation upon which all Bayesian analysis depends. Bayes’
Theorem is given below

f(D]8)x(6)

n(0|D) = (D)

,  where (D) = /f(D]H)W(@)d@. (4.1)
0
Here, f(D|0) stands for the likelihood of the data conditional on a particular
parameter value 6, which can be broadly interpreted as the probability of observing
data D from the model, given the model is parameterised by the parameter value @
7(0) represents the prior distribution of the parameter vector. The prior contains
external information about the model, e.g. expert opinion about the ranges within
which the components of the parameter vector are likely to lie. m(D) serves as a
normalising constant, ensuring that the LHS of is a valid probability density;
it is sometimes referred to as the marginal likelihood, model evidence, or the prior
predictive density (Prior PD) (Gelman et al., 2003)). The parameter vector 6 is
defined on the space ©, usually a subset of RP, with dim(f) = p. For complex
models with many parameters, evaluating the normalising constant (the Prior PD)
in becomes extremely difficult, which often means that obtaining analytic
expressions for the posterior density is not possible. Owing to an improvement

in computing power, computationally intensive methods such as Markov chain

IThis parameter can be a single unknown quantity or a vector of unknown quantities.
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Monte Carlo (MCMC) and sequential Monte Carlo (SMC) have been developed
that bypass the need to evaluate the normalising constant; as long as the likelihood
can be evaluated pointwise up to a constant, methods like MCMC and SMC are
capable of generating samples from the posterior distribtion. The details behind
these methods will be explained later in this chapter. As models become larger and
more complex, the likelihood function becomes correspondingly more complex and
difficult to compute (Beaumont, 2010), which severely restricts the applicability of
popular methods like MCMC. ABC methods provide a means of circumventing

this problem. What follows is an overview of the ideas behind ABC methods.

Although there has been a relatively rapid development in ABC techniques in
recent years, the concept itself was first alluded to in the mid-eighties by Rubin

(1984)). The salient features of Rubin’s algorithm are detailed below.

1. Draw 6; ~ 7(0).
2. Simulate X; ~ f(X]10).

3. Accept 0; if X; = D.

Repeat until N points have been sampled. D represents the observation used to
infer parameter values. This rejection algorithm produces samples from the true

posterior density of the parameter vector #, and is therefore not strictly an example

61



of ABC. The validity of this straightforward algorithm is easily demonstrated as

follows

f(6:) ocm(6:) Y f(X]6,)1(X = D)

= 7(0:)f(D]0;)

O(W<91|D)7

where D represents the space on which model outputs are defined. This algorithm
has limited uses. If the data are distributed on a continuous state space then the
probability of simulating data that exactly coincides with the observed sample
is zero; in this scenario it becomes necessary to adapt the previous algorithm by

replacing step 3 with the following step
3. Accept 0 if p(X;, D) <,

where p(-,-) is some distance metric between simulated data and observed data.
This formulation was proposed by |Pritchard et al.| (1999)). Pritchard’s algorithm
produces samples from an approximation to the posterior distribution of parameters,
the accuracy of which is controlled via the data mismatch parameter, e. If € is
taken to be zero, the distribution of sampled parameters reduces once more to the
true posterior. It is worth noting, however, that the data mismatch parameter is
typically not chosen to be zero; although this choice produces samples from the true
posterior, the algorithm becomes inefficient due to the zero probability of producing
data from the model that exactly coincides with the observations. Therefore, a
compromise between the accuracy of the posterior approximation and the efficiency

of the rejection algorithm is usually sought by choosing a mismatch parameter that
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is as small as possible, but not zero. Once the data become multidimensional?| then
it may become necessary to condense the information contained within the data
into summary statistics (Beaumont, 2010), in order to avoid unacceptably high
rejection rates in the above algorithm. That is, step three in the above procedure

might be replaced with

3. Accept 0 if p(S(X;),S(D)) <,

where S(-) represents, possibly a vector, of summary statistics that reduces the
dimensionality of the observations and data generated from the model whose
parameters are being estimated. The choice of summary statistics is of crucial
importance and, despite efforts to generalise the process, is still generally done
on a problem-by-problem basis. Methods for choosing summary statistics will be
discussed in the following chapter.

As mentioned above, in general p is some metric that measures the distance between
elements in the set of possible model outputs, but if one assumes that the set of
model outputs form a group with addition operator, +, and operator —, defined
as a — b = a + (—b), where —b is the inverse of b, then one is able to replace
the (more general) distance metric, p(S(X), S(D)), with the algebraic subtraction
operator, S(D) — S(X). This, in turn, allows one to interpret ABC as sampling
from a convolution of the true model likelihood with some error distribution, which
we will refer to as the similarity kernel. Making this slightly more restrictive
assumption about the structure of the set of model outputs allows us to attach an
intuitive interpretation to ABC sampling techniques and to derive some important
convergence results associated with the technique, which will be discussed in the

following section. In most cases, this assumption is not terribly restrictive—this

2In this context, ‘multidimensional’ data refers to the case in which the model output consists
of more than a single number, e.g. a time series of observations from a SDE.
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assumption poses no problems in the context of mathematical finance, wherein
data typically consists of numerical scalars, or vectors. This assumption is more
relevant in situations where one is attempting to apply ABC sampling techniques
to models over graphs, trees, or strings, which may occur in applications concerning

population genetics, for example.
4.1.2 Prerequisites

The archetypal rejection algorithm outlined above, in particular the use of a
distance metric p combined with a mismatch tolerance e, was given a probabilistic
interpretation by Wilkinson (2013). Wilkinson demonstrated that the ABC rejection
algorithm generated samples from the true posterior distribution of the parameters
if one assumes that there is a discrepancy between the model run at its best
parameter values and the observations. In other words, if one assumes that the
observed data, D, represents a realisation of the model run at its best input, ./\/l(é),
plus an independent error term e, distributed according to some distribution 7.,
ie.

D= M) +e,
(4.2)

£~ T,

then the rejection algorithm detailed above gives samples from the exact posterior
distribution of the parameters. The case where a 0 — 1 cut-off is used, i.e. simulated

parameter values are accepted if p(X;, D) < € and rejected otherwise, imposes on

3Here, M(é) denotes the model that we assume the observations are generated from; later
in this chapter, we will also use the notation f(:|6) to denote the likelihood associated with the
model M(6), especially in the context of generating pseudo data from the model.
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the problem the assumption that the error term, ¢, is uniformly distributed within

an n-ball of radius e, i.e.

TR 1fp(Xl7D)§€7

0  otherwise,

where C. is a normalising constant that ensures that the PDF of the error term
integrates to one. In the case above, where the error term is assumed to be uniformly
distributed within an n-ball, the normalising constant is expressed in terms of the

volume of an n-ball, V,;:
I (5 +1)

Vn - an/2en

C.

where n is the dimension of the data produced by the model. More generally, if we
assume that the error term implicit in the observations is distributed according
to some distribution that is centred at the origin, the dispersion of which being
dependent on €, i.e. € ~ m.(+|¢), then this corresponds to the following rejection

algorithm:

1. Draw 0 ~ 7 (0).
2. Simulate X ~ f(X]|0).

3. Accept 6 with probability m.(D — X|e).

A proof demonstrating that this algorithm produces samples from the posterior
distribution, assuming holds, is given in the appendix at the end of this
chapter. Making the assumption that the observations consist of the sum of two
independent random variables—the model output at the optimum parameter value

and the error term—allows one to represent the likelihood of the observations
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as a convolution of two probability densities: the model likelihood, f(X|f), and
the error distribution, 7.(D — X|e). This convolution will be labelled the ABC
likelihood approximation. Furthermore, by letting the data mismatch tolerance,
€, tend to zero, the ABC likelihood approximation reduces to the true likelihood
of the data assuming no discrepancy between model output and observations, i.e.
the ABC likelihood approximation reduces to the model likelihood. This result is

stated formally in the following lemma.

Lemma 7. Assuming the observed data represents the sum of the model output

and an error term (4.2)), the likelihood of the observations is given by

fancDI.0) = [ (D~ X|of(xIp)aX. (43)
D(X)
where D(X) represents the sample space on which the random variable X is defined.

In addition,

lim fanc(DI6.c) = F(DI) (4.4)

Proof In what follows, we derive the density function associated with the convo-
lution of two independent random variables. Let f(X|#) represent the unknown
likelihoood function of the model evaluated at the model output X, which can be
roughly interpreted as the probability of observing X given a particular parameter

value . Furthermore, let m. represent the distribution of the error term that
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contributes to the observations. The distribution function of the observations,

Fp/(D|0,e) =P(D' < DJf,¢), is given by

FD’(D|07€) = FX+€<D|67€)
—P(X +=< Db, e)
_P(e < D— X|6,¢)

_ / / Free(u, [0, ) dvdu

e)N(w<D—u)

X) D(e)
/ / f(ul@)m-(v]e)dvdu

X) D(e)N(v<D—u)

_ / F(l0)F(D — ule)du
DIX)

Taking the derivative of this expression with respect to D, as per the definition of
a probability density function, gives us the first result

fanc(DI6.€) = S5 For(Dlp.) = [ m(D = X|)f(XIo)ax

D(X)

The second result can be demonstrated by noting that a Dirac delta function can
be thought of as the limiting case of a sequence of distributions centred about

origin, which become progressively more concentrated at the origin. Informally,

i(z) = lir% 7e(x), and,

o0

lim [ 7 (z)f(z)dz = f(0).

e—0
—00

The sequence of distributions m. can be called nascent delta functions. In this

thesis we assume the limiting sequence of distributions are Gaussian, with standard
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deviation €, but in general the sequence of nascent delta functions can be chosen
differently. We use the following informal notation for convenience:

lim7m. (D — Xle) =46(D — X).

e—0

Therefore

iy fanc(DI6,0) = [ lim (D - X]o)(X|6)dX
D(X)

- / 5(D — X)f(X|0)dX

D(X)

= [(DI6).

g

Wilkinson’s insight allows one to interpret the acceptance probability in the above
ABC rejection algorithms (referred to in step 3) as the distribution of the error
assumed present in the observations, evaluated at D — X. Interestingly, the intro-
duction of the error can be given a meaningful interpretation as either an error
owing to some measurement error present in the process of data collection, or an
error associated with the model choice (Wilkinson, 2013)). The latter interpretation
is an appealing one in the context of financial modelling. Financial modellers must
acknowledge that the models being used to represent the dynamics of financial
variables are not the true data generating processes, but are useful representations
that, hopefully, capture much of the salient features one observes in the behaviour
of such quantities. Viewed in this light, the ability to explicitly incorporate the
possibility that the model being fitted to the data is not a perfect fit for the data

could be useful. If the statistician carefully specifies an error distribution based
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on knowledge about the likely form of error associated with the observations, and
finds that the acceptance rates of the ABC rejection algorithm are too low, it may
be necessary to use a more disperse error distribution in order to improve the
efficiency of the algorithm (Wilkinson| 2013). Indeed, using the error term as a
useful tool to approximate the true posterior associated with the model of interest

is the most common way in which ABC methods are currently used.

The basic ABC rejection algorithms outlined above all suffer from a critical problem:
if the posterior being approximated and the distribution from which the candidate
parameter values are sampled differ significantly (e.g. the sampling density is a
standard distribution that is easy to sample from and the posterior is complex and
highly localised), the efficiency of the algorithms will be very poor as many of the
points sampled from the prior will lie in regions of negligible posterior mass, leading
to unacceptably high rejection rates. Given that it is precisely these situations in
which ABC methods are most useful, several algorithms, based on Markov chain
Monte Carlo (MCMC), sequential Monte Carlo (SMC), and sequential importance
sampling (SIS) ideas, have been developed in order to overcome this problem. In
what follows we will survey the existing MCMC, SMC, and SIS based methods,

and introduce new variants which we have used in my applications.

4.2 Monte Carlo methods for sampling from intractible

distributions

To avoid the main problem associated with rejection algorithms (tightly constrained
posterior relative to the sampling distribution), three classes of algorithm have
been proposed: one based on MCMC; one on SIS; and another related algorithm

based on SMC. All three methods involve sampling parameters from a sequence
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of sampling distributions that represent the target distribution to a progressively
better extent, thereby avoiding the problems associated with sampling and target
distributions that differ substantially. General MCMC methods are first introduced
and then the practical considerations and difficulties with the method are discussed;
then SIS and SMC techniques are introduced and discussed in a similar fashion.
The ABC extensions of these algorithms will be outlined in the next section (section

2.2).
4.2.1 MCMC methods

As mentioned previously, MCMC is a powerful technique that allows one to
sample from complex distributions, and consequently infer model parameter values.
Additionally, expectations taken with respect to target distribution can also be
estimated without knowledge of the analytic form of the distribution, which is an
important application in the context of financial risk management, for example.
MCMC is effectively a method of Monte Carlo integration that utilises Markov
chains (Gilks et al., [1996)). In order to understand why MCMC produces valid
results, we will now provide a brief overview of both Monte Carlo methods and

Markov chains.
Monte Carlo integration

Much of the material in this section follows the introduction to Monte Carlo methods
given in (Glasserman, (2010). Monte Carlo methods are based on the connection
between probability and volume. The probability of an event is understood as
representing the volume that the event takes up in the space of possible events
that could have taken place. Monte Carlo methods use this analogy in reverse;

by simulating many realisations of random variables, one can approximate the
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probability of an event as the ratio of outcomes that coincide with that event to
the total number of simulated outcomes. This insight allows one to approximate
integrals (i.e. expectations) by simulating n realisations from the distribution of

interest, denoted by 7, and calculating

. 1 <&
E.f ==Y f(o here 6; ~ 7.
nf n — f( 1)7 where 0; T

The strong law of large numbers guarantees that this expression converges almost

surely to the quantity of interest, i.e.

lim E.f = [ f(0)nr(0)d) =K, f a.s.

There are a variety of methods available for approximating integrals such as this,
but Monte Carlo integration comes into its own when one must approximate an
integral in high dimensions. In order to appreciate this, consider the central limit
theorem. If the integrand f is square integrableﬂ then the central limit theorem
tells us thatf]

2
Bf % NEayf, D). 3= [ (7(6) = Euyf)'mr(6)s.
EC)
In other words, the Monte carlo convergence rate is O(n~'/2) and, most importantly,
this convergence rate is independent of the number of dimensions over which the
integral is being taken. This feature compares favourably with other methods of
approximate integration, whose convergence rate usually decreases as the number

of dimensions in the integral increases. Monte Carlo integration is a powerful

4That is, if [ |f(z)]*dz < oo
5The symbol ~, that appears below, means ‘approximately distributed’.
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method of approximating integrals in high dimensions. The utility of the Monte
Carlo method relies, however, on being able to sample points from the distribution
that the integral, or expectation, is being taken with respect to. Sampling points

from complex, multidimensional distributions is a non-trivial task.
Markov chains

In the interests of presenting as clearly as possible the concepts required to un-
derstand MCMC, the basic properties of Markov chains with discrete state-spaces
will be outlined in this section; the results can be generalised to apply to more
general Markov processes (i.e. Markov chains with uncountable state-spaces) by
altering the results slightly in order to take into account the uncountable nature
of the state-space. For a more rigorous treatment of Markov processes, see [Meyn
and Tweedie (1993). Markov chains are a type of stochastic process, consisting
of a sequence of discrete-time random variables (6,,),cz+ defined on a common
state-space S that is countable. Formally, a discrete-time stochastic process taking

values on the countable set S possesses the Markov property if

]P)(en—l—l - ]|9n - Z'n,en—l - in—la .. 700 = Z0) = ]P)(Hn-l—l - ]|0n - 2n)

for all n € Z* and for all 4g, ... ,,,j € S. Plainly, the Markov property states that,
given the current state, the future state of a process is indpendent of the history
of the process. A Markov chain can be fully characterised by its starting point 6,
(or, alternatively, an initial distribution) and its one-step transition probabilities
¢ij(n) =P(0,41 = j|6, = 7). If the Markov chain’s transition probabilities g; ;(n)
are not time-dependent, the Markov chain is called time-homogeneous and the

one-step transition probabilities are then given by ¢; ; = P(0,4+1 = j|0, = 1), for all

(n)

n € Z*. In what follows, we will use the notation ¢;; to represent the probability
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that the Markov chain, currently in state ¢, will visit state j in exactly n time

periods. Formally, a time-homogeneous Markov chain can be uniquely defined by:

1. A one-step transition matrix P = {¢;;}ijes with ¢;; > 0 for all ¢,j and

> @ =1for all i;

2. An initial distribution given by (\;);es with A; > 0, and ). A\; = 1, such that
P(6y = i) = A

The Markov chains that we consider here are time-homogeneous. Note that only
the one step transition probabilities are needed to fully specify a Markov chain;
two-step ahead transition probabilities can be derived from the one-step ahead
probabilities, i.e.

P(Qn—f—Z = ]|9n = Z) = (PQ)i,j'

And, more generally

]P)<0n+m = ]|0n = Z) = (Pm)i,j’

In order to understand MCMC methods, the factors determining the long run
behaviour of Markov chains must be outlined, but firstly some terminology is
required. The definitions in this section come from the SMSTC postgraduate
lecture series on probability (Wade, [2010)).

It is sometimes possible to break a Markov chain in to smaller chunks by considering

so-called irreducible closed classes of the Markov chain.

Definition 1. A non-empty subset C' of the state-space S is said to be a closed
class if it is not possible to leave C starting from a state within C, i.e. if ¢;; =0

for all states i € C and j ¢ C.

73



Definition 2. An irreducible closed class C' is a closed class such that no proper

subset of C'is itself closed)

Definition 3. A Markov chain is called irreducible if the entire state-space S is

an irreducible closed class.

In simple terms, an irreducible Markov chain is one in which every state is reachable

from any state within the space S.

Definition 4. A state i € S is called transient if the probability of returning to that
state at some future point in time is not 1, i.e. the probability of never returning to
state i is non-zero. A state i € S is called recurrent if the probability of returning
to that state at some point in the future is 1. More formally, if we define the first

passage time for a state i € S as follows

T, = min{n > 1: 6, = ilfy = i},

then a state is transient if

P(T; = c0) > 0,

and recurrent if

P(T; = 00) = 0.

Definition 5. A positive recurrent state j € S is one for which

We require one more definition before we can discuss the conditions under which a

Markov chain will settle down to a steady state in the long-run.

6 A proper subset, S’, of a set, S, is a subset that is strictly contained in S and so necessarily
excludes at least one member of the set.
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Definition 6. A state i € S of a Markov chain has period d if the greatest common
divisor (ged) of the set {n : qu) > 0} is d. Informally this means that the Markov
chain in state © can only visit state i again at times md later, where m is some
integer. Notably, if ged{n : qZ(Z) >0} =1 foralli € S then the Markov chain is

said to be aperiodic.

A natural question to ask is: if we set a Markov chain running and let it evolve for
a long period of time, will the behaviour exhibited by the chain settle down to a
steady state? This long-run equilibrium concept can be captured in the following

definition.

Definition 7. A stationary distribution © of a time-homogeneous Markov chain is

a probability distribution defined on S such that
TP =m, (4.5)

where P is the one-step transition matrixz defined earlier. This distribution is also

called the stationary or steady state distribution.

From the above definition, it is obvious that if the Markov chain’s distribution is 7
then it will remain in that distribution forever. We next establish the conditions

under which a Markov chain, if left to run for a sufficiently long time, will converge
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to its stationary distribution, assuming such a distribution exists. More formally,

we state the conditions under which the following holds trud|

™
lim P" " 4.6
=] (48)
™

The following lemma provides the sufficient conditions for this limiting behaviour

(Norris, |1997).

Lemma 8. An irreducible Markov chain has a unique stationary distribution if
and only if the chain is positive recurrent. Furthermore, if the Markov chain is
aperiodic, then the chain’s limiting distribution will equal the unique stationary
distribution of the chain. Such a process is sometimes referred to as an ergodic

Markov chain.

One final result from the theory of Markov chains is required in order to progress

with an explanation of MCMC methods (Johannes and Polson, 2010)).

Lemma 9. Suppose f is some real valued function with [ |f|dr < co. If (0;),ez+
15 an ergodic Markov chain with stationary distribution w, then for any initial

starting value 6y

JLIEO%Zf(Gj):/f(G)W(H)dH, a.s.

Note that the samples being used to approximate expectations with respect to

the stationary density 7 are not independent; Markov chains are, by construction,

"Recall that 7 is a row vector, hence the RHS of (4.6)) is shorthand for a matrix, with each
row corresponding to the stationary distribution of the chain.
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correlated random variables. With these results we can now turn our attention to

the details behind MCMC.
MCMC

As mentioned previously, Monte Carlo integration is a powerful technique used
to approximate expectations with respect to high dimensional distributions, but
sampling from high dimensional distributions is not easy. The idea behind MCMC
is to construct an ergodic Markov chain with a stationary distribution equal to the
complex distribution that one requires samples from. By running such a chain for
a sufficiently long period of time, the samples from the chain will (approximately)
represent a series of correlated samples from the stationary distribution of the
Markov chain. Determining the length of time that the chain must be run for
before the statistician can be confident that the Markov chain has converged to the
target distribution, usually called the burn-in time of the chain, is vitally important;
this issue will be discussed in more detail later in this section. Assuming that
the chain has converged, the samples from the Markov chain can be used in the
so-called ergodic average given in (4.2.1]). [Hastings (1970), in 1970, developed an
algorithm that produces a Markov chain with the desired stationary distribution
(the algorithm is itself a generalisation of work done previously by [Metropolis et al.
(1953))). In what follows, the target distribution (the stationary distribution of the
Markov chain) is labelled 7. The so-called Metropolis-Hastings algorithm takes
the point in the Markov chain at stage i, labelled 6;, and proposes a new point ¢’
using some proposal density denoted by ¢(6'|0;). Note that the proposal density can
be a function of the current state of the chain, and that there are no restrictions
on the functional form of the proposal density (Gilks et al., 1996). It is common

to use a multivariate Gaussian distribution, centred at the current point in the
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process 6;, with dimension equal to the dimension of the distribution from which
one wishes to sample. The candidate point ¢ is then accepted with probability
: m(6")q(6:]0")
a(b;,0") = min <1, — ). (4.7)
m(0:)q(0'0:)
If the candidate point is accepted, the next point in the chain, 6,1, is set equal to
the candidate point, 6. If the candidate point is rejected, the current point in the

Markov chain is taken as the next point, i.e. 6;11 = ;. The full algorithm is given

below:

1. Initialise the chain at some point, 6y, within the prior’s support, set i = 0.
2. Sample candidate from ¢(¢'|6;).

3. Sample a uniform random variable U ~ U(0,1) and set 6,1, = 0" if U <

a(6;,0"), otherwise, set 0,1 = 0;.

4. Set i =1+ 1 and return to step 2.

This algorithm is guaranteed to generate a Markov chain with stationary distribution
mr. In order to demonstrate this, it is sufficient to show that the Markov chain so
constructed satisfies the detailed balance condition (Johannes and Polson, 2010),

which is stated below

m(z)P(z,y) = m(y)P(y, ), (4.8)

for any x,y € S. As before, 7 represents the stationary distribution of the Markov
chain and P represents the transition density of the chain. Intuitively, this means
that the net probability flux between any two states of the chain is zero, or that the
probability of getting to state y from x is equal to the probability of getting to state

x from y. To see why detailed balance implies that 7 is a stationary distribution of
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the Markov chain with transition density P(z,y), notice that if we assume x ~ 7
then integrating the LHS of (4.8)) with respect to x gives the marginal distribution

of the state y, which we label 7,(y). So we have that

This is the continuous state-space analogue of which defined a stationary
distribution in the discrete state-space Markov chain theory. In order to demonstrate
that the Markov chain generated by the Metropolis-Hastings (MH) algorithm
satisfies the detailed-balance equations, first note that the transition density of the
Markov chain induced by MH is

Plas) = aylolate) + 1 =) (1= [ aGlojate.)az).

S

The first contribution on the RHS relates to the scenario in which the chain makes a

jump from state z to y and that candidate point is accepted; the second contribution
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relates to the scenario in which the chain was already in state y and the candidate

point was rejected. Thus

A =)~ [ aelpaty2)dz)

a(=ly)aly, 2)dz) )

z€S

To reiterate, this result proves that the Markov chain induced by MH posseses
a stationary distribution w. This alone does not imply that the Markov chain
will necessarily converge to this distribution (recall that a Markov chain must be
irreducible, positive recurrent and aperiodic in order to guarantee convergence to the
stationary distribution). See Gilks et al.| (1996) or Johannes and Polson (2010) for a
more detailed discussion of the way in which one might demonstrate the ergodicity
of Markov chains generated via the Metropolis-Hastings algorithm. Having covered
the important concepts underpinning MCMC, a number of important considerations

will now be discussed below.
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Convergence issues

The fact that the MH algorithm converges to the target distribution, regardless
of the functional form of the proposal density q(-,-), is remarkable; however, in
practice a judicious choice of proposal density can be the difference between an
efficient MCMC algorithm and a horribly inefficient algorithm. Firstly, to maximise
computational efficiency, the proposal density should be relatively easy to sample
from—MCMC provides a means of sampling from complex distributions, but if the
algorithm involves sampling from another difficult distribution then the utility of
the algorithm is diminished. In addition, although the functional form of ¢ does
not affect whether the chain will converge in theory, the rate at which the chain
converges is heavily influenced by the choice of ¢q. Furthermore, even if the chain
converges quickly the proposal distribution might result in the state space of the
target distribution being explored very slowly, requiring the algorithm to be run
for a long period of time to give the chain time to explore different regions of the
target distribution in the correct proportions. A chain that explores the space of
the target distribution slowly is called slow mizring; a chain that explores the target
distribution quickly is called fast mizing. Therefore, the proposal density should
be chosen such that: it is relatively easy to sample from; the chain converges at
an acceptable rate; and such that the chain exhibits fast mixing. In practice, the
choice of g often results from experimentation and craftmanship (Gilks et al., [1996]).

Two classes of proposal density are now briefly outlined:
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Metropolis Algorithm: this variant of the MH algorithm involves using a sym-
metric proposal density , i.e. ¢(y|x) = g(z|y), which simplifies the acceptance

probability used in the algorithm

q(|

aly,x) = min (1, WT(y—
1

)q(x y))
7(7)q(y|r)
= min ( ,:;—Ei;) .

A special case of the Matropolis algorithm is the random-walk proposal,

3

represented by q(y|z) = q(|ly — z|). A multi-dimensional Gaussian proposal
density is an example of a random-walk Metropolis algorithm, and it is the
approach used in the applications covered later in this thesis. When using
a random-walk proposal, the efficiency of the algorithm will usually depend
on some scale parameter (Gilks et al., |1996]). If a multivariate Gaussian
proposal is used, the scale parameter corresponds to the covariance matrix of
the proposal distribution. If the scale is chosen to be too small, the Markov
chain will make small jumps around the state-space; this will likely result in
high acceptance rates (the ratio of accepted moves to total moves proposed)
but poor mixing. A scale parameter that is too large results in large proposed
jumps around the state-space, often to the tails of the target distribution,
and low acceptance rates, again resulting in poor mixing. Typically, the
scale parameter is scaled by trial and error to arrive at a proposal density
that avoids both extremes (Gilks et al., [1996). For particularly complex
or high dimensional target densities, an initial exploratory stage is usually
implemented in order to get a rough idea of the location of the modes, and
the covariance structure of the target distribution—this information then

allows the statistician to design proposal distributions with appropriate scale
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parameters, and pick promising regions of the sample space to initialise the
MCMC algorithm, both of which should aid in speeding up convergence rates

and improving the chain’s mixing properties (Gilks et al., 1996]).

Independence Sampler: this algorithm involves using a proposal density that
is independent of the current point, i.e. ¢(y|z) = ¢(y). This results in an

acceptance probability of the form

aly, ) = min (1, %) . where w(z) = (@)

The effectiveness of the independence sampler depends on the match between
the proposal density and the target density; typically, one should look for
a proposal density that is similar to the target, but with fatter tails (Gilks
et al. |1996). Fatter tails reduce the chance of the Markov chain getting stuck
in low probability regions of the target density, and therefore promote faster

mixing of the chain.

In this section we have stated that the proposal density should be chosen with
the goal of maximising the convergence rate of the algorithm in mind. A key
consideration is how to determine if the chain has converged. As mentioned earlier,
only once the Markov chain induced by MCMC has converged are we justified in
using the samples to compute Monte Carlo estimates of expectations. The Markov
chain needs to be left to run for some initial period (the burn-in period) in order
to give the chain a chance to settle down to its stationary distribution, but how

long should the burn-in be? This question is considered in more detail below.
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Determining the burn-in period

After using the Metropolis-Hastings algorithm to construct a Markov chain with
the correct stationary distribution, the chain should be initialised and run until it
has converged after, say, m time-steps. We then run the chain for a further n —m
time-steps to obtain a sample {6;};—,11,., from the target distribution, which we

can then use to evaulate Monte Carlo approximations via

. 1 n
Bf=—r0 ; £(6)).

In theory, it is sometimes possible to analytically determine the required burn-in
length; however, the calculations involved are far from trivial and are not usually
practical or possible in more complex examples (Gilks et al., [1996). Aside from the
small number of situations in which we can analytically determine the necessary
burn-in period, there is currently no way to guarantee, using only the output from
the chain, that a Markov chain has converged to its stationary distribution. Despite
this, there are a number of techniques commonly used in practice. One method is to
visually inspect the Markov chain to see if it has converged. This approach, although
intuitive, is unfortunately not adequate. Even if the Markov chain appears to settle
down around some region of the state-space, there is nothing about this behaviour
that guarantees convergence; the chain could have, for example, become trapped
in a local mode, or it might be very slow mixing, giving the impression that it has
converged when in fact it has not. This approach also quickly becomes impractical
when the dimension of the target distribution increases. A more reliable approach
is to design some convergence diagnostic that gives a more objective, and reliable
indication of convergence. One such example is the Gelman-Rubin (GR) statistic.

The GR convergence diagnostic involves running a small number of MCMC chains
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simulataneously, initialised from dispersed starting positions in the state-space,
and periodically measuring the similarity between each of the chains. Only when
the distributions of each of the chains are similar to the combined distribution of
the sample can the chains have converged to the stationary distribution (Gelman
et al., [2003). Note that the GR diagnostic does not guarantee convergence, but it
can be a useful statistic that assists in determining convergence. In the case where
the Markov chain generated by MCMC is multidimensional (say, dimension p), the
Gelman-Rubin statistic should be calculated for each element of the p-dimensional
Markov chain, and the chain should be run until each statistic corresponding to
each element has indicated convergence. Assume that there are m Markov chains of
length n generated by MCMC and that each chain is p-dimensional. The following
steps describe how the Gelman-Rubin statistic should be calculated for each element

of the p-dimensional Markov chain:

1. Run m chains from starting points dispersed across the state-spate. Denote

the ith sampled point from the jth chain by 4 ;.

2. After running each chain for a certain length of time (e.g. 1000 iterations),

discard the first half of the samples from each chain - this is the burn-in.

3. With the remaining n sampled points from each of the m chains, calculate

the following quantities

N« - RS S
B = Z(W,j —4..)%, where 9. ; = - Zwm‘, and 9. = o Z¢-,j
i=1 =1

Jj=1
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4. Calculate an estimate of the target distribution’s variance using

_ -1 1
vart (Y) = nn W+ EB'

5. Calculate R = W;/(w)‘

6. If R is above some threshold (usually around 1.1 or 1.05), run the chain
for another n iterations and re-calculate R. Repeat until statistics for all p

elements of the Markov chain are below the threshold.

Note that, assuming the m Markov chains were initialised using dispersed starting
positions, the variance estimate var ' (1) overestimates the variance of the target
distribution, but is an unbiased estimator of the target variance as n — oo. The
within-chain variance statistic, W, is an underestimate of the variance of the target
distributionﬂ, but is also an unbiased estimate in the limit n — oo. Therefore, the
Gelman-Rubin statistic, R, should decline towards 1 as n — oo as numerator and

denominator approach the same value from above and below respectively.
Thinning

Once the Markov chain has converged sufficiently, the MCMC algorithm produces a
sequence of correlated samples from the approximate target distribution. By virtue
of the ergodic theorem introduced earlier, correlation among the samples does not
stop us from using the samples to generate Monte Carlo estimates as described
earlier; however, when the dimensionality of the Markov chain being generated is
large, it can be preferrable to only store every kth draw (where k is some integer)

from the MCMC output in order to mitigate the practical problems associated

8This is the case because the individual Markov chains have not yet had the chance to traverse
the full state-space.
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with storing large amounts of data. The process of only selecting every kth iterate

is known as thinning.
4.2.2 Sequential importance sampling

Having now outlined the salient features of Markov chain Monte Carlo, we will
now survey the first of two alternative but related Monte Carlo based methods for
sampling from intractible distributions: sequential importance sampling (SIS). In
the next section we will cover sequential Monte Carlo (SMC), which is described
in detail in Del Moral et al.| (2006). These methods have certain advantages over
MCMC, namely they are not hampered by the problems associated with assessing
convergence of a Markov chain, and they avoid the complications of MCMC
algorithms becoming stuck in local modes of the target distribution. In addition,
these sequential methods are readily parallelisable, i.e. the computational efficiency
scales with the computing power available to the statistician. The shortfalls of
both SIS and SMC will be considered after the ideas have been outlined.

SIS is a method of generating samples from intractible distributions that, as the
name of the method suggests, involves using well-known importance sampling
techniques to sequentially move through a series of distributions, starting with
a sample from an easy to sample from distribution and moving the sample in
such a way as to end up with a sample from the target distribution. SIS is based
on importance sampling, the main ideas associated with which are given in the
following section. In what follows, we will refer to individual sampled points as

particles, in keeping with the terminology used by others discussing SIS and SMC.
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Importance sampling

Importance sampling is a powerful technique that can be used to estimate properties
of a particular distribution. In particular, the technique can be used to generate
samples from distributions that are otherwise difficult to sample from. In what
follows we will denote by f the (unnormalised) density function of the distribution
II7 that we wish to obtain samples from. The technique of using importance
sampling to derive samples from intractible distributions is usually referred to as
sequential importance resampling (SIR) (Bernardo and Smith|, 2000)). Assume that

a sample is required from the following probability density

where, as stated above, only the functional form of f is known (the normalising
constant is not available). Assuming that a sample from ¢, some other probability
density that is easy to sample from, is available, SIR can be utilised to generate

samples from 7. There are two cases to consider:

1. There exists an identifiable constant M, such that

-

(©)
(©)

< M, for all 6.

Q
>

2. The bound M is not available.

In the first case, samples from 77 can be readily obtained via a simple rejection

algorithm (Bernardo and Smith, 2000):

1. Consider a particle 6; ~ g.
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2. Generate a uniform random variable U ~ (0, 1).

3. 1If

f(6;)
= Mg(ez‘)’

accept the particle 0; as a sample from 7, otherwise reject the simulated

particle.

In the second case, where the upper bound M is not available, one can still derive

an approximate sample from 77 via the following steps:

1. For each particle in the sample from g, calculate a weight given by

W;
where w;

4 = m = (00 (4.9)

2. Draw particle 6; from the sample with probability g;.

To see that the sampled points are (approximately) distributed according to 7r,
observe that the distribution function of the particle sample is given by (Bernardo

and Smith|, 2000))

= Z%H(Qi < a)
ZZ 1(0; < a)

Jj= 1 Wj
_lzz 1w1 (9 <Cl)

n-! Z?:l Wi
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Therefore,

which is the distribution function associated with the density mpy — the target
from which we wish to sample. It is also interesting to note that, when sampling
particles from the sample generated from ¢, resampling with replacement does not
jeopardise the algorithm’s ability to generate samples from the target density 7r,
and therefore samples from the target density can be as large as desired. However,
if g is not a good match to the target, the variance of the importance weights will
be large, which will adversely affect the quality of the approximation to the target
density.

Alternatively, importance sampling can be used to estimate integrals. In Bayesian
statistics, for example, importance sampling can be used to estimate the normalising
constant that appears in the denominator of Bayes’ Theorem (4.1)), or to estimate
expectations taken with respect to the posterior distribution. The rationale behind
importance sampling can be illustrated by the following observation. If b is a
function and G is some probability distribution with density ¢, i.e. G(dz) = g(x)dx,

then



This suggests that the integral can be approximated by drawing a n sample points
{z;}iz1,..n from g which we choose to be a relatively straightforward density to

sample from, and computing the quantity

w[}-15

which is an unbiased estimator of the expectation under G. In many cases, the
integrand b is the product of some other function h and another probability density
f, i.e. the integral being approximated is an expectation taken with respect to the
distribution F'(dx) = f(x)dz, which is impossible or computationally impractical
to sample from directly. Just as the quality of matching between the sampling
density, g, and target density, f, was an important factor affecting the quality
of samples derived from the SIR procedure above, the variance of the unbiased
estimator (4.10)), and hence its reliability, clearly depends on the choice of g; if ¢ is
similar to b then the ratio of b over g will vary very little. Therefore, importance
sampling works best when a sampling distribution g can be chosen that is similar

in shape to the integrand b.
Sequential Importance Sampling

As mentioned previously, the quality of importance sampling estimates depends
on the degree of similarity between the sampling and target densities; a sampling
density that is not a good fit to the target density will produce a large variation in
importance weights, which results in estimators derived via the importance sampling
particles that exhibit increased variance. Typically, posterior distributions that
play the role of the target distribution in Bayesian applications are complex, and it
is often difficult to pick a sampling distribution that results in particle populations

with low importance weight variance. To alleviate the difficulty in choosing good
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sampling distribtions, SIS algorithms introduce a sequence of distributions that
vary gradually between a distribution that is easy to sample from and the intractible
target distribution. In theory, if each distribution in the sequence is sufficiently
similar to each of its neighbours, then it should be possible to perform importance
sampling between each neighbouring pair of distributions in sequence, using the
sample obtained from one distribution as the sampling density for the next target
distribution in the sequence. By sequentially moving the particles around in this
manner, one generates a sample from the approximate target distribution. In
keeping with the notation used in Del Moral et al.| (2006), let the sequence of target
distributions that we wish to sample from sequentially be labelled {m,}n=1. .-
Define a sequence of importance distributions that we will use to generate samples
from the target distributions be labelled {7, }n=1. 7. Each particle in the sample
population will be denoted by i ), fori=1..., N. Assume the sequence of SIS
distributions, {7, }n=1, 7, are defined on a common measurable space (E,¢). Let
K,:Exe—=|[0,1],n=1,...,T, represent a sequence of Markov kernels, each
with associated density k,(6,6¢’). Finally, note that the marginal distribution of

the particle population after being perturbed by the Markov kernel is given by

() = /E i1 (0 (0, )16, (4.11)

1. Initialisation: Set n = 1. Generate a particle sample of size N from the initial
distribution in the SIS sequence, 71, and set each particle weight equal to lﬂ

The initial population is denoted by

<9§l)’ 1)1:1 N ’

9 Assuming 1, = m; i.e. the initial importance distribution is usually chosen to coincide with
the first sampling distribution, the variance of importance weights is zero (all unnormalised
weights are equal to 1).
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2. Set n = n+ 1. Perturb particles ¢ = 1,..., N using a Markov kernel with

density k’n(é(i) -) to obtain

n—1

09 ~ k(09 ,,) i=1,...,N.

n

3. Evaluate importance weights and normalise:

() , (i)

wl = Wn(QZ) . W = ;U—”(j), (4.12)
N (On”) Z]’:1 Wn

where nn(ﬁ,(f)) is defined in (4.11])).

4. Resample N times from the population (Hg), Wr(f)), sampling in proportion
to the normalised importance weights (W,S’))lzl ~, then reset all weights to

1/N. The new population is denoted by

(é@') 1) .
") i1, N

5. If n =T stop, otherwise return to step 2.

It is assumed that step 1 in the above algorithm is straightforward, i.e. it is easy to
sample from the initial distribution in the sequence of SIS distributions; if this is

the case then the initial population targets the initial distribtion in the sense that

which follows directly from the strong law of large numbers. Once the particles

are perturbed using the Markov kernel in step 2, the population now targetﬂ the

10The term ‘targets’ should be interpreted in the same sense as before, i.e. estimates of
expectations with respect to the sampling distribution converge almost surely to the correct value.
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sampling distribution denoted by 7,, the expression for which is given above. The
particle weights are then corrected in step 3 so that the particle population targets
the next SIS distribution in the sequence. It is a trivial exercise to demonstrate that
the re-weighted particle population obtained after stage 3 targets the distribution

T

_ fE wnw(g)nn(e)de (4.13)

Step 4 in the SIS algorithm serves to remove those particles in the population with
small weights and replace them with particles that are more representative of the
target distribution (particles with larger weights). There are several methods of
carrying out this selection stage of the SIS algorithm; in our application we use a
multinomial sampling technique which amounts to drawing each o) independently
from a multinomial distribution with probability ;" (see|Chopin| (2004) for further

details, including a brief survey of other approaches to selection of particles).
Practical difficulties and other considerations

In the SIS algorithm outlined above, the Markov kernel used to propagate the
particle population forwards through the sequence of intermediate distributions
was not defined explicitly. A random-walk kernel was used in the applications

considered in this thesis, i.e. we use a Gaussian transition kernel centered at the
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current particle value with a kernel bandwidth (the standard deviation parameter)
equal to the empirical standard deviation of the most recently generated particle
population. The reason for this particular choice will become clear when the
difficulties associated with the SIS method are discussed below. There are other
possibilities for the Markov kernel; for example, an MCMC kernel (of the type
defined in the previous section on MCMC methods) could be used in place of a
Gaussian kernel. For a more detailed overview of the choices available, see |Del
Moral et al.| (2006]).

The SIS algorithm outlined in the previous section suffers from one significant
drawback: when calculating the importance weights (step 3), the marginal proba-
bility density of the perturbed particles 1, has to be evaluated. Recall that the

expression for this density is

(0, = /E i1 (0 (0, 6,)0. (4.14)

In most cases, this integral will be impossible to evaluate analytically and therefore
evaluating the importance weights, which is necessary if the particle population
is to target the correct distribution, is not possible. One way to circumvent this

problem is to estimate (4.14]) using a Monte Carlo estimate, i.e.

As pointed out in Del Moral et al. (2006), this approach comes with its own
difficulties: firstly, it increases the computational complexity of the algorithm,
requiring an extra layer of calculations in order to approximate the marginal
distribution above; secondly, there are cases in which the transition kernel cannot

be computed pointwise analytically, for example if the Markov kernel is an MCMC
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kernel. The latter difficulty is the main motivating factor behind choosing a
Gaussian kernel for the applications considered later—Gaussian kernels can be
evaluated pointwise. The former difficulty is not a major problem considering
the applications in which the SIS algorithm is being used in this thesis. In the
applications considered in the succeeding chapter, the SIS algorithm is integrated
with the ABC approximation to the likelihood function (the combination being
labelled ABC' SIS) that was outlined earlier. As explained in Beaumont et al.
(2009), the main bottleneck in computer code associated with ABC sampling
algorithms arises as a result of having to simulate data sets from the model under
investigation; the additional computational expense incurred by approximating the
marginal distribution of the perturbed particles contributes relatively little to the
overall complexity of the ABC SIS algorithm and is therefore not a major issue.

One final thing to note about the SIS algorithm outlined above is that step 4—the
resampling of the particle population in proportion to their importance weights—is
not strictly necessary for the algorithm to target the distribution of interest (as
demonstrated by (4.13)). Recall that the motivation for step 4 was to discard
particles with small importance weights and replace them with particles with larger
weights; the rationale being that particles with large weights represent samples from
the target distribution to a greater extent than particles with small importance
weights. Consider the case where no resampling is carried out, i.e. at each stage
of the algorithm, each particle is perturbed using the Markov kernel K, and then
re-weighted using the importance weight formula that was made explicit earlier,
before repeating the process at the next stage of the algorithm. In this case, the

sampling density at stage n of the SIS algorithm is given by

%(9 /771 91 Hk] - 1,0 d91n 15
j=2
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which, as n increases, one would expect to diverge more and more from the target
distribution 7, leading to increasing variance of the importance weights (sometimes
referred to as a degeneracy in the particle population) (Del Moral et al., [2006]). One
solution is to resample at every stage of the algorithm, in line with the approach
outlined earlier in this subsection; however, this approach can actually have a
detrimental impact on the quality of the samples derived from the algorithm. In
the case where the variance of the importance weights is small, resampling is
unneccessary and typically wasteful as the resampling introduces some variance to
the sample, without discernibly reducing the variance of importance weights. Ideally,
resampling should only be carried out when the variance of the importance weights
becomes unacceptably high. One way to incorporate this optional resampling
step into the SIS algorithm is to monitor the effective sample size (or ESS) of the
particle population, and only resample if the ESS falls below some threshold value.
The ESS calculates the equivalent number of (unweighted) samples from the target
distribution that would give rise to the same Monte Carlo error as the weighted

particle sample derived via SIS (Sisson et al., [2007)). The ESS can be estimated by

N -1
gss = [ony|

i=1

where, as before the W represent the normalised importance weights in the SIS
algorithm. The ESS estimate lies in the range 1 < ESS < N. If the particle
population is not degenerate (i.e. the importance weights do not have a large
variance) then the ESS will be large — in the extreme case when all weights are
equal, the ESS equals the SIS population size IV; at the other extreme, where only
one particle has mass, the ESS reduces to 1. With this measure of population

degeneracy, the fourth step in the SIS algorithm can be altered to
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4 If ESS < E, where E is some threshold[l;r], then resample the particle popu-
lation in proportion to the importance weights. After resampling, reset all

importance weights to 1/N.

With this extra calculation, the SIS algorithm only resamples the population when
the population degenerates below some level which is determined by the statistician,
i.e. resampling is only carried out when the benefits of doing so (reduced sample

degeneracy) outweigh the costs (additional variance associated with resampling).
4.2.3 Sequential Monte Carlo sampling

In this section we will give an overview of the ideas behind the third and final
Monte Carlo based method of sampling that we consider in this thesis: sequential
Monte Carlo (SMC) sampling. SMC is closely related to the SIS algorithm outlined
in the previous section, and aims to avoid the major difficulty associated with SIS;
namely the evaluation of the sampling density that appears in the denominator
of the importance weight formula (4.12). Recall that in the previous section it
was highlighted that evaluating the marginal sampling density 7, was typically
not possible, and that approximating this density by Monte Carlo resulted in an
increase in computational complexity - a cost that, ideally, one would like to avoid.
One of the key features that differentiates SMC methods from SIS methods is
that the sequence of intermediate distributions that are used to produce samples
from the (approximate) target distribution have an increasing dimension in SMC,
whereas in SIS the sequence of distributions have a common state space E. The key
step in constructing SMC samplers, as per Del Moral et al.| (2006), is to introduce
a series of backwards Markov kernels L, 1 : £ x ¢ — [0,1], forn =2,...,T, with

associated density L, _1(0,,0,_1), to build a sequence of distributions with a fixed

E = N/2 is typically chosen as a threshold ESS.
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marginal distribution equal to the target distribution. Defining the artificial joint

target distribution by

Aul) = 20 5 0,0 =0 [] LeBhen0) (415)
" k=1

where Z,, is the normalising constant of the target distribution. The dimension of
these new target distributions increases over time, i.e. 7, is defined on E™ and
therefore this sequence of distributions is amenable to sampling by SMC methods.
Furthermore, the marginal densities associated with the new targets are always
equal to the target density of interest i.e. m,(0,). This is easily demonstrated by

integrating out the previous particle values, i.e.

3 a 9n n—1
/ 7T-n(‘gl:'rz)dgl:n—l = 7 ( ) / H Lk(6k+1,‘9k)d01m_1

Zn k=1
En—1 En—1 -
n—1
=10 [ | [ 24002.6000: | T] Lal6rr. 8002,
e I k=2
n—1
- 71-n(9n> / H Lk(9k+1> gk)dQQ:n—l
En—2 k=2
= m,(0,).

Similar to the importance sampling case, define the unnormalised importance

weights as the ratio of target density to sampling density:

Wy (01:n) = p (4.16)

noting that the importance and sampling densities are now associated with the path

of a particle 6;., as it is moved through the sequence of importance distributions,
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and not just the most recent value of the particle ,,. At time n — 1, assume that a
particle population {9%71, Wﬁl} is available that target the distribution ,,_;.
At time n, the path of each particle is extended via the forward Markov kernel
density k,(0,_1,6,) and the importance weights recalculated to correct for the
discrepancy between the sampling and target densities. The unnormalised weight
functions at time n can be obtained by multiplying the unnormalised importance

weights at time n — 1 by the incremental weight function

’yn(en)Ln—l (Qna Qn—l)

~TL Hn— 7011 - .
v ( ! ) /Yn—l(en—l)kn(en—hxn)

(4.17)

The expression for the incremental weight can be obtained from the expression for

the unnormalised weight function

wn<01:n> = wnfl(elznfl)wn(enflv en)

It is a straightforward exercise to demonstrate that the populations of particles
generated in this manner target the artificial joint density 7,. For clarity, the SMC

algorithm is outlined below.

1. Initialisation:

e Setn=1.
° Forizl,...,Ndrawﬁgi)Nm.

e Evaluate {wl (9&1))} and normalise these weights to obtain {W1(9§"))}.
Iterate steps 2 and 3.

2. Resampling

12 As before, ‘targets’ should be interpreted as meaning the empirical density of the particles
converges to m,_1 as the number of particles N goes to infinity.
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o If £SS < T (for some threshold T), resample the particles and set
Wi =1/N.

3. Sampling

e Set n=n+1,if n=T+1 stop.
o Fori=1,.., N draw 65 ~ Kn(@(f)_l, ).

e Evaluate the incremental weight function for each particle using (4.17))

and normalise the particle weights

- g
ijlwn( n— 179j)

Jj=

Notice that the SMC algorithm also makes use of the conditional resampling step
introduced in the SIS section in order to prevent the discrepancy between sampling
and target densities resulting in particle degeneracy. This SMC algorithm avoids
having to evaluate the marginal sampling distributions 7,, and is thus an attractive
alternative to the SIS algorithm. As with SIS, there are a variety of options at the
statistician’s disposal when it comes to the choice of the forward Markov kernel. For
a detailed discussion concerning the choice of forward Markov kernel, see \Del Moral
et al.| (2006). Applications considered in this thesis all make use of MCMC kernels
for the forward kernel in the SMC algorithm; MCMC kernels are based on the
Metropolis-Hastings (MH) accept-reject step that appears in MCMC algorithms
outlined previously. Consider a particle 9,@ in the population sample at time
n. At the sampling stage (second bullet point in stage 3 of the SMC algorithm)
the particle is perturbed by the Markov kernel knﬂ(eé), -) in order to generate a
particle that approximates the next target distribution 7, 1; if the Markov kernel

is a MCMC kernel this involves the following steps:
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1. Generate a candidate point ¢’ using a Markov transition kernel ¢(¢’ |¢9§f )).

2. Evaluate the MH acceptance probability

/ (@) g
o(99. ) = min (17 n(6)q(6516') )

(6 (06%)

3. Sample U ~ U(0,1) and set (97(31 =0 if U < 04(67(5),9’), otherwise set

0, =05

This series of steps can be iterated several times, or simply implemented once. As
discussed earlier in the chapter, this choice of MCMC kernel generates a Markov
chain that converges to the target distribution at time n, m,, and is therefore
a natural choice for the Markov kernel in SMC algorithms. In addition to the
attractive convergence properties of such kernels, one can utilise the significant
body of knowledge concerning the design of efficient MCMC moves that exists in
the MCMC literature to design efficient sampling distributions (Del Moral et al.|
2006). As in the MCMC case, we chose a symmetric (Gaussian) proposal density
(labelled g above) centred at the current particle value 6\ with covariance matrix
equal to the covariance of the particle population at time n.

The remaining feature of the SMC algorithm that requires consideration is the
choice of backwards Markov kernels L,_1(60,,6,_1). The particluar form of the
backwards kernels is arbitrary—the validity of the SMC algorithm does not depend
on the particular form of the kernel; however, just as the form of proposal density
in MCMC algorithms should be chosen to ensure the algorithm is efficient, the
backwards Markov kernels in SMC algorithms should be optimised with respect

to the forward Markov kernel used in the algorithm. There exists an expression
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for the optima]lﬂ form of the sequence of backwards kernels L n=1,...,p (Del
Moral et al. 2006))

Lopt - nnfl(enfl)kn(enflaen)
n—1 — 9
nn(en)

but this expression involves the evaluation of the marginal sampling densities 7,

(4.18)

and 7,1 which, as already discussed, is difficult or impossible in practice, and is the
main motivating factor driving the development of the SMC algorithm. With the
optimal backwards kernel being unavailable, a sensible approach is to attempt to
approximate (4.18)) in some way. As discussed in Del Moral et al.| (2006), there are
a number of ways in which the optimal sequence of kernels can be approximated. If
the forward Markov kernel is a MCMC kernel then Del Moral et al.| (2006]) suggest

using the following approximation

ﬂ-n(en—l)Kn(Qn—ly en)
Tn(0r) '

Ln—l(en’ 071—1) -

which reduces the expression for the incremental importance weights to

’Yn(en—l)

UN]n Qn— 7071 = .
( ! ) ’Yn—l(en—l)

Note that the expression for the incremental weights is now independent of the
proposed point 6,,; in this case, the SMC algorithm outlined above should be altered
so that the importance weights are calculated, and any resampling carried out,
before the new candidate point is generated (Del Moral et al., 2006)). Although
the SMC algorithm described in this section offers attractive practical qualities,
namely the avoidance of the evaluation of sampling distributions associated with the
SIS algorithm, when the SMC algorithm is incorporated with the ABC likelihood

approximation (called ABC SM(C'), difficulties arise that render this algorithm

130ptimal in the sense that the variance of the importance weights w,,(0;.,) is minimised.
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unsuitable for deriving samples from the ABC approximated posterior distribution.

These difficulties will be discussed in detail in the next section.

4.3 Combining ABC methods with Monte Carlo methods

The overall objective that is considered in this chapter is to estimate the parameters
of financial models (SDEs) by using Bayesian inference techniques. The primary
obstacle that often prevents straightforward Bayesian techniques being implemented
is the lack of an analytical expression for the likelihood of observations from the
model being estimated. Consequently, the analytical expression for the posterior
distribution of parameters (the key distribution of interest in Bayesian inference)
given by is also unavailable. We have already seen how ABC technniques can
provide a means of circumventing this problem—by introducing a second random
variable (typically interpreted as an error term) into the data generating process
, the likelihood function can be expressed as a convolution between the true
likelihood function—which is unknown—and the density of the error term, which
is typically chosen by the statistician carrying out the analysis. The quality of
approximation to the true likelihood is controlled via a data mismatch parameter;
the smaller this parameter value, the closer the ABC liklihood approximation will
be to the true likelihood function. In most ABC applications, the magnitude of the
mismatch parameter is chosen to maximise the accuracy of ABC approximation,
while still maintaining a minimum level of computational efficiency. In section 1.1
we gave some examples of very basic, rejection-based ABC algorithms that sampled
from the ABC approximation to the posterior distribution (the ABC posterior
approximation being proportional to the ABC likelihood approximation multiplied
by the prior distribution), but pointed out that simple rejection-based algorithms

are not suitable in the vast majority of problems due to the prior distribution
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being significantly different from the posterior distribution which leads to very
inefficient rejection-sampling approaches. In section 1.2 we introduced three Monte
Carlo based techniques that can be used to sample from complex distributions
when simple rejection-based approaches were insufficient—MCMC, SIS and SMC;
despite these techniques mitigating the problems associated with diffuse sampling
distributions relative to target distributions, all three methods require the target
distribution to be evaluated pointwise. In the case of Bayesian inference, the target
distribution is the posterior distribution of parameters which, as already pointed
out, is not available—even to evaluate pointwise—in most cases. In this section
we will review the ways in which ABC techniques introduced in section 1 have
been combined with the Monte Carlo sampling techniques outlined in section 2;
we will then go on and present the new variants of these algorithms that we have

developed for the purposes of our applications.
4.3.1 ABC MCMC

MCMC is a standard approach to tackling Bayesian problems, especially in situa-
tions where there is a significant mismatch between the prior distribution and the
posterior. In the most difficult problems, when the likelihood function is not able to
be evaluated at all, combining the ideas relating to ABC with the MCMC algorithm
can yield practical solutions. Marjoram et al.| (2003|) developed the first example
of an ABC MCMUC algorithm in the context of population genetics. In order to
appreciate the methodology introduced in |Marjoram et al| (2003), first note that
when the target distribution in the MCMC algorithm is a posterior density, the

Metropolis-Hastings acceptance probability is given by

m(6") f(D]0")q(6:]6")
m(6:)f (D16:)q(0'10;)”

a(6;,0) = (4.19)
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where, as before, §; and ¢’ represent the point at stage i and the proposed point,
respectively, of the Markov chain, D represents model observations, f represents
the likelihood function, m is the prior distribution and ¢ is the Markov proposal
density. In situations where we cannot evaluate the likelihood, the likelihood ratio
that appears in cannot be evaluated. Marjoram et al.| (2003) propose to
approximate the likelihood ratio in by evaluating Monte Carlo estimates
of the numerator and denominator separately. The following estimate is used to

approximate the likelihood

N
fanc(DI) = 310G = D). X~ S, (1.20)

where 1(-) represents an indicator function. With this approximation in mind, the

prototypical ABC MCMC algorithm is set out below

1. Set ¢ = 0. Initialise the chain at a point, 6;, within the prior’s support.

2. Propose a move from the current point in the chain, 6; to a new point ' via

a proposal density ¢(6'|6;).
3. Generate X ~ f(-¢).
4. If X = D go to next step, otherwise discard 6’ and return to step 1.

5. Calculate the MH ratio

it = min (1. Zes ) 42

6. Accept € as the next point in the chain, 6;,; = ', with probability MH,
otherwise retain 6; as the next point in the chain, 6,1 = 6;, set © = ¢+ 1 and

return to step 2.
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It is a trivial exercise to demonstrate that the Markov chain so constructed has
a stationary distribution equal to the posterior of interest (see Marjoram et al.
(2003) for more details). Note that step 3 above essentially involves a Monte Carlo
estimate of the likelihood of the newly generated point ', based on one sample
(N =1). As was pointed out earlier in this chapter, if the data are defined on a

continuous state space then it is necessary to replace the likelihood approximation

(#.20) with

N

=1

A 1
fABC(D"ga 6) ~ N

where, as before, p is a measure of the similarity between observed and simulated

data. In this case, step 3 of the ABC MCMC algorithm above should also be

altered to
3. If p(X;, D) < € go to next step, otherwise discard ¢ and return to step 1.

Now the stationary, limiting distribution of the Markov chain is equal to the ABC

approximated posterior distribution, which is given by
Tapc(0)D, €) x w(0) fapc(D|0,€), (4.23)

where fapc(D|6,€) is the ABC likelihood approximation defined in [22). As
demonstrated previously, this posterior approximation converges to the true poste-
rior as € tends to zero. As pointed out in Beaumont| (2010), a potential drawback of
this ABC MCMC algorithm stems from the fact that the likelihood ratio is being
crudely estimated by either a 0 or a 1. What this means is that the acceptance rate
of the algorithm is proportional to the number of simulated data sets X such that

p(D, X) < e which is itself proportional to the likelihood, and not the likelihood
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ratio, in the limit € — 0. Thus, the main benefit of using MCMC (namely, that
the acceptance rates of the Markov chain are based on likelihood ratios as opposed
to the likelihood itself, thereby improving the efficiency of the sampler) is lost. As
a result of this shortcoming, the ABC MCMC algorithm described above will tend
to mix poorly—once the chain moves into the tails of the posterior distribution,
the chain will tend to get stuck in one point for disproportionately long periods
of time as proposed local points will rarely produce data that coincides with the
observations. This problem becomes even more apparent if the ABC MCMC
algorithm is initialised in the tails of the posterior (Beaumont, 2010). There have
been several attempts made to avoid this problem of slow mixing; Ratmann et al.
(2007)) proposed to initialise the ABC MCMC algorithm with a relatively large
data mismatch parameter and reduce it gradually during the burn-in stage of the
algorithm so that, at convergence, the samples are from within the vicinity of
the mode of the posterior (Beaumont), 2010)—a similar approach to this is also
taken in certain applications of ABC SMC and ABC SIS algorithms, which will
be reviewed later. Alternatively, as per Bortot et al. (2007), one can treat the
model mismatch parameter € as an unknown parameter and construct the ABC
MCMC algorithm to produce a Markov chain on the joint space © X [0, co] where
O is the parameter space corresponding to the model parameters and e € [0, co].
If € is small, the samples will represent the true posterior well; if € is large then
much of the variability between observed data and model output can be explained
by the large error term in and thus the samples will generally not represent
the true posterior well. If the prior density of € is chosen such that small values
of € are generally favoured over large values, then the ABC MCMC algorithm
will tend to produce samples broadly representative of the true posterior, while

allowing for the occasional large value of € to be simulated, which should have a
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beneficial effect on the mixing properties of the ABC MCMC algorithm—especially
when the chain strays into regions of low posterior density. As noted in Beaumont
(2010), the precise interpretation of the limiting marginal distribution of the data
mismatch parameter is unclear; nevertheless, the technique has some utility in that
it improves the chain’s mixing properties, regardless of how the distribution of
the mismatch parameter is interpreted. Having outlined the basic ABC MCMC
algorithm, what now follows is an explanation of the new ABC MCMC algorithm
developed for the purposes of the applications considered in the next chapter. First,

note that the distribution that we wish to obtain samples from is given by

wapc(0|D,€) o< 7(6) / (D — Xle) f(X]0)dX, (4.24)
X~f(-16)

where, as before, D is the observed data, 0 represents the model parameters and
X is a trace from the model run at parameter value #. This is simply the prior
distribution of parameters multiplied by the ABC approximate likelihood (the
integral term in the RHS), i.e. the ABC approximated posterior density of model
parameters. The error distribution 7.(|€) that determines the degree of agreement
between traces generated by the model, f(-|#), and observed data, D, will be called

the similarity kernel. We use a similarity kernel with Gaussian distribution, i.e.

1 —1
T (0]e) = 2633]9{2—62(52}.

2me

As pointed out earlier, the distribution of the similarity kernel corresponds to
the distributional assumption made with respect to the model or measurement
error assumed present in the observations D. The choice of kernel distribution is
essentially arbitrary in this application as we are using the ABC assumption @ as

a practical tool to aid in the approximation of intractible likelihood functions, as
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opposed to using it to represent any concrete views about the distribution of errors
assumed present in the data; however, if one assumes that the error term in (4.2))
represents the sum of various errors associated with the data collection process
and/or the model’s imperfect fit, then the aggregate error can be approximated
by a normal distribution, as justified by the central limit theorem. In order to
incorporate the ABC approximations into the MCMC framework, note that the
ABC approximation of the likelihood given by @ can be approximated by a Monte

Carlo estimate,

M

[ 7P = XIOFXIOAX = ;5w (D X i X~ (10

hé i—1
and label this Monte Carlo estimate f4pc(D|6, €) as before. This approximation
is analogous to the likelihood approximation used in (4.20), where a uniform
distribution is used for the similarity kernel. Now define the MH acceptance

probability (associated with moving from parameter value 6 to ¢') asE|

(4.25)

aapc(6,60) = min (1 fABc(D|9')7T(9’)Q<9|0')>

fape(DI0)n(6)q(6'16)

i.e. we replace the likelihoods that appear in the numerator and denominator of

the general MH ratio by Monte Carlo estimates. This is similar to the approach

used in Marjoram et al.| (2003), except we are now using a Gaussian kernel in place

of an indicator function and we are estimating the likelihood function using M > 1
traces. Using more than one trace in the Monte Carlo estimate of the likelihood is

beneficial because it offers a refinement to the crude 0-1 cutoff used in

| Note that the MH ratio is also a function of the M simulated traces from the model; we omit,
tthis dependency in the MH acceptance probability for clarity. |
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et al.| (2003) which should improve the mixing of the simulated Markov chain. The

adapted ABC MCMC algorithm is as follows

1. Set ¢ = 0. Initialise the chain at some point, #;, within the support of the

prior distribution, 7

2. Propose a move from the current point in the chain, 6; to a new point €’ via

a proposal density ¢q(¢'|6;).
3. Evaluate fapc(D|0,€) and calculate aape(6;, 0) using (4.25).

4. Set 0;,1 = 0" with probability aspc, otherwise set 6,1 = 6;. Return to step
2.

If the proposed point is accepted then the likelihood estimate, calculated in step 2
above, that is used in the numerator of the MH ratio should be stored for use in the
denominator in the next iteration of the algorithm so as to reduce the number of
computations that must be carried out on each loop. The Markov chain constructed
by this algorithm is on (#, X') where X represents the M traces from the model that
are used in the Monte Carlo estimate of the ABC likelihood function f4pc(D|d, €).
The following theorem proves that the stationary marginal distribution of the

Markov chain constructed by the adapted ABC MCMC algorithm is the ABC

approximated posterior (4.24)).

Theorem 2. The adapted ABC MCMC' algorithm produces a Markov chain with

stationary limiting marginal distribution mapc(0|D, €).
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Proof To prove that the adapted ABC MCMC algorithm produces a Markov
chain with the required stationary distribution, it is required to show that the

detailed balance equation (4.8)) is satisfied. The joint target distribution is

fase(DI8, ) TT F(X:10)m(0)
) )

[y

(0, X|D,€) = =
T

-

and the transition probability of the chain is
M

p(0, X'10,X) = q(0/|0) [ | £(X/16")vanc(6,0).

=1
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Therefore,

—

fapc(D)6, €) |

™

f(Xil0)m(9)
)

M
(0, X|D, e)p(0/, X'|0, X) = q(0'10) [ ] £(X/10") X
=1

i
S|l

aABC(ea 9,)

—=

fac(D0, €) |

™

F(X,10)7(6)
)

(6 '>q<ew'>>
(0)q(0']0)
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S|l
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min | 1, =
fABc(D‘e €

M fapc(D|#',€)

= q(010') | | £(X:10) 7;
=1

min [ 1. F(D16, €)m(9)q(9']6)

fABC(Dw )7?'(9/ 9|9/

M fapc (D], €) |
= q(010) [ ] r(x:10)

i=1

\_/

I:1§V
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‘*:15

SES

F(X,10) 7T(9’
m(D)
aABC(6/79)

= mr(0, X'|D, e)p(9, X|0', X).

This proves that the adapted ABC MCMC algorithm converges to the target
distribution 7p. It is now straightforward to show that the marginal distribution

of the target distribution is the ABC approximated posterior, i.e.

[ o xip.0ax = 75 [ S w0 - X1 [T A D)X
D(X) X1.m =1 =1

w0 [

WD)Z (D~ X|e)f(X]0)

:7TA30(9|D,€). O
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4.3.2 ABC SMC

Sisson et al. (2007) attempted to incorporate the ABC methodology into the
generic SMC algorithm developed by Del Moral et al.| (2006)), which was outlined
earlier in the section titled ‘Sequential Monte Carlo sampling’. In this section
Sisson’s original algorithm will be outlined, and a variant of the ABC SMC (which
will be labelled Tempered ABC SMC') algorithm developed with the applications
considered in this thesis in mind will also be introduced. Unfortunately, Sisson
et al.’s algorithm (and, consequently, Tempered ABC SMC ) produces sample
particles that are systematically biased, owing to the fundamental incompatibility
between ABC and [Del Moral et al.| (2006))’s general SMC sampler. The reasons for
this bias in the particles sampled from the ABC SMC algorithm, and the ways in

which this problem has been tackled will both be discussed in this section.
Sisson et al.’s ABC SMC

As pointed out earlier, ABC MCMC provides a notable improvement in efficiency
relative to straightforward rejection sampling because the sampling density becomes
progressively more representative of the posterior density (the target density in
Bayesian applications) in ABC MCMC, and therefore mitigates the problem of a
diffuse sampling density relative to the target density that one suffers in rejection
sampling. ABC MCMC does have its own problems—recall that Marjoram et al.’s
acceptance probability was proportional to the likelihood (and not the likelihood
ratio), which often results in extremely low acceptance rates when the Markov
chain enters regions of low posterior mass. Bortot et al.’s solution of builing a
Markov chain with auxiliary variables (namely, the similarity kernel variance) can
alleviate this problem at the expense of reducing computational efficiency; only

sampled points with a small similarity kernel variance can be reasonably expected
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to represent the posterior density, therefore only the subset of sampled points with
low kernel variance parameter are used for inference, with the remaining points
discarded. |Sisson et al.| (2007)) motivate the development of ABC SMC by noting
several advantages associated with SMC over MCMC and rejection sampling, for

example

1. Inefficiencies resulting from a mismatch between sampling and target densities

are avoided, as in ABC MCMC.

2. Sampled points that poorly represent the posterior are discarded in favour of

points that are more representative of the posterior.

3. SMC methods are better suited to sampling from complex, multi-modal

posterior distributions than MCMC.

4. Particles are uncorrelated, and SMC-based methods do not require an assess-

ment of burn-in or convergence, unlike MCMC-based methods.

The aim of ABC SMC is to obtain N particles {Qi}z’:l,...,N whos empirical distribu-
tion converges to the ABC posterior (m4pc(0|p(S(D),S(D)) <¢€))as N — co. In
what follows, it is assumed that (possibly a vector of) summary statistics S(-)that
capture much of the information contained within the data are available to the
statistician. In practice, the choice of such summary statistics is a difficult problem,
and one that will be discussed in detail in the next chapter (section 2.3) concerning
numerical experiments. Having already set out the main structure and ideas behind
SMC in a previous section, all that is required to illustrate Sisson et al.’s algorithm
is to introduce the specific choices associated with the algorithm; namely, the

sequence of target distributions that the particle population will approximate and
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the particular form of ABC likelihood approximation. Recall that in SMC there

were a sequence of target distributions represented by

where 7, is the normalising constant of the target distribution. In Bayesian
applications, the target density is invariably the posterior density associated with
the model parameters, which is proportional to the product of the prior distribution
and the likelihood associated with the observed data. Sisson et al. define a sequence

of target distributions as follows:

m6p(S(D). S(X)) < e) = " S 1(p(S(D), S(X) S ). m=1,....T,

| (4.26)
where the X; are simulated traces from the model conditioned on the parameter
value 6. Note that the expression for the sequence of target distributions involves the
product of the prior distribution with the ABC likelihood approximation, in which
the error distribution associated with ABC (see (4.2))) is uniform, and therefore
the sequence of target distributions considered here is effectively a sequence of
approximations to the unnormalised posterior density of model parameters 6. €,
is a monotonically decreasing sequence of error tolerances—that is, the sequence
of posterior approximations becomes progressively more accurate, with ey chosen
such that the end product is a particle population that approximates the true
posterior up to some predetermined level of accuracy. By defining the sequence of
distributions in such a way, the particle population can be smoothly moved between
distributions in the sequence, resulting in a population that approximates the final

target distribution in the sequence. Note that the likelihood approximation in

(4.26) is of the same form used by Marjoram et al. in the ABC MCMC algorithm,

116



except the error tolerance ¢; and number of Monte Carlo terms B; are allowed
to vary along the sequence of target distributions. The ABC SMC sampler is as

follows:

1. Initialisation

e Specify a sequence of monotonically decreasing error tolerances €1, €s, . . . , 7.

e Set population indicator n = 1, and particle indicator i = 1.
2. Particle sampling

e If n = 1, sample ' ~ py, where p; is the initial sampling densityEl
If n > 1, sample 6" from the previous population {9521} with weights
{Wéi_)l}, and perturb the particle to ' ~ K, (0|0") according to a
Markov transition kernel K. Generate a data set X' ~ f(-|¢'). If
p(S(D),S(X")) > €,, go to step 3.

o Set

, A (0 ) (0)  if n =1,
00 =g, W=
(05 L1 (671605
() K (6516)

ift>1,

where L;_; is the backwards Markov kernel introduced earlier. If : < N,

set © =1+ 1 and go to step 3.
3. Resampling

N o
e Normalise the weights so that 3 W\ = 1.
i=1

o If ESS < E, resample with replacement the particles in proportion
to the weights {WTSZ)} and reset weights {Wf) = 1/N}, where ESS is
the effective sample size defined earlier, and E is some threshold value,

typically set to half the population size, N/2.

15Tn practice, this density is often just the prior distribution 7 (6).
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o [f n < T, set n=n+ 1 and return to step 2.

Sisson et al.| (2007) choose the backward Markov kernel L,,_; to equal the forward
kernel K,, which simplifies the expression for the particle weights in step 4 above,
which results in particle weights being equal, assuming a uniform prior is chosen
(Beaumont et al.; 2009). As demonstrated by Beaumont et al.| (2009)), the ABC SMC
algorithm illustrated above produces biased samples from the target distributions; in
particular, the empirical distribution of sampled particles tends to under-represent
the tails of the target distribution. Ultimately, this bias results from the fact that
the incremental weight formula of generic SMC sampler developed by Del
Moral et al.| (2006)) features the target density in the denominator, which is missing
in the ABC SMC algorithm—the accept-reject step that is common to all ABC
algorithms allows for the posterior in the numerator of the weight function to be
replaced by the prior but, unfortunately, not in the denominator. For a theoretical

demonstration of the biasedness of ABC SMC, see Beaumont et al.| (2009)).
Tempered ABC SMC

We developed an alternative ABC SMC sampler for use in this thesis that differs

in several ways from the ABC SMC algorithm developed by |Sisson et al.| (2007)):
1. The sequence of target distributions is given by

T (0) = 7(0) % [mapc(0|D, )], n=0,...,T, (4.27)

where mapc(0|D, €) is the ABC approximated posterior distribution and is

given by (4.24), and

O=¢o < <--<or=1
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By substituting (4.24)) into (4.27)), the sequence of target distributions can

also be represented by

&n

7 (0) = 7(6) / (D - X|OF(X|0)dX| . n=0,..., T (428)

X~ f(:10)

2. The incremental weight function, the analogue of the weight formula given in

step 2 of Sisson et al.’s ABC SMC, is given by

M
' . . 1
WT(LZ) — fABC(D|9n—17 €>¢n_¢n717 fABC(D|0n_17 E) = M ZIW5<D — X|€)7
(4.29)
where X ~ f(:160,,_1).

The sequence of distribution used in Tempered ABC SMC is inspired by the
path sampling techniques developed in (Neal, |2001) and (Gelman and Mengj,
1999). Rather than design a sequence of error tolerances to define the sequence
of distributions, as in [Sisson et al.| (2007, a sequence of tempering parameters
{®n}n=1.. 1 are used to generate a sequence of distributions that move gradually
from the—assumed easy to sample from—prior distribution to the complex, ABC
approximated posterior distribution. Both the sequence of importance distributions
defined by the decreasing error tolerance and the sequence defined by the tempering
parameter ¢, are valid choices in the context of ABC SMC (and ABC SIS);
however, the latter choice provides an elegant and easily interpretable sequence of
importance distributions that moves smoothly between the prior and the intractible
ABC posterior. The form of the incremental weight function follows directly from
the choice of forward and backward Markov kernels used in Tempered ABC SMC;

as outlined in Del Moral et al. (2006)), there are a variety of options available for
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choosing the forward kernels, one particular option being a MCMC kernel (see the
earlier section on SMC methods for a brief description of this kernel choice). As
per Del Moral et al.| (2006), the suggested choice of backwards kernel associated
with a MCMC forward Markov kernel results in the following expression for the

incremental weight function

W — T (0 1)
n o1 (On 1)’
which, after substituting in to the RHS of the above equation, reduces to
the ABC likelihood approximation raised to the power ¢, — ¢,_1. In practice the
ABC likelihood approximation cannot be evaluated analytically, therefore a Monte
Carlo approximation is used in place of the analytic expression, which leads to
the incremental weight function defined in (4.29)). The results of the Tempered
ABC SMC algorithm’s application to some financial models will be presented in
the next chapter; however, as noted previously, Tempered ABC SMC actually
produces biased samples that typically fail to adequately represent the tails of
the target posterior distribution of interest. This bias shares its origins with the
bias present in the ABC SMC algorithm develioped by [Sisson et al.| (2007)), which
was theoretically and empirically demonstrated in |Beaumont et al.| (2009)). What
follows is a theoretical demonstration of the bias exhibited by one step of the
Tempered ABC SMC algorithm. Following the approach of Beaumont et al.| (2009)),

it is assumed that

1. € = 0. That is, the similarity kernel variance—the parameter in the error

distribution w.—is zero.
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2. The number of terms utilised in the Monte Carlo approximation of the ABC
likelihood tends to infinity, i.e. M — oo, which, when taken with assumption
1, implies that

fapc(D|0,€) = f(D|0),

that is, the Monte Carlo estimate of the ABC likelihood approximation equals

the true likelihood function associated with the model.

3. The previous particle population is an exact sample from the target distribu-

tion at stage n — 1, i.e.

0,1 ~ 7(0)f(D|0).

By making these assumptions, the bias associated with the Tempered ABC SMC
algorithm can be clearly demonstrated by considering one step of the algorithm—in
particular, the expectation of some arbitrary integrable function h will be considered.
Given the aforementioned assumptions, the joint density of the accepted pair of

particles (0,1, 0,) is proportional to m(6,_1) f(D]0n_1)%"* K, (0,]0,_1), therefore

E(h(6,)W,) = / / B(00) £ (D1t} 1 (By1) F (D))~ o (Bul 1) A6, 1,

= / h(6,,) { / 7(0,_1) f(D|9n_1)¢’"Kn(0n|0n_1)d0n_1}den. (4.30)

In order for this step of the Tempered ABC SMC algorithm to yield unbiased results,
the integral in parenthesis above must be proportional to the target distribution at
stage n, i.e. 7(6,)f(D|0,)%", which is generally not the case. This demonstrates
that the Tempered ABC SMC algorithm produces biased samples. In order to
correct for this bias, the Tempered ABC SMC algorithm presented in this section

will be altered in a fashion similar to the steps taken by Sisson et al. to correct
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their ABC SMC algorithm. The corrections lead to an algorithm that is more
closely aligned with standard importance sampling ideas—this corrected algorithm

will be covered in section 1.3.3.
4.3.3 ABC SIS

To recap, Del Moral et al.’s paper (Del Moral et al., [2006)) presents two generic
sampling algorithms that provide the theoretical impetus for the development
of two ABC based samplers: ABC SMC and ABC SIS. As pointed out in the
previous section, samplers based on the generic SMC algorithm in |Del Moral et al.
(2006)) produce biased samples when the likelihood function cannot be evaluated
analytically, and are therefore not suitable for use in the ABC setting. This
leaves ABC SIS as the main alternative to ABC MCMC algorithms for sampling
from intractible posterior distributions. ABC SIS algorithms have been separately
developed by Sisson et al. (Sisson et al., 2007)[?]7 by Toni et al. (Toni et al., |2009)
and by Beaumont et al. (Beaumont et al., 2009)), but all three versions of the
algorithm are broadly the same. Toni et al.’s ABC SIS algorithm will be presented
first, before introducing the new ABC SIS algorithm developed for the applications

considered in this thesis.
Toni et al.’s ABC SIS

Recall that SIS involves selecting a sequence of intermediate target distributions,
{mp}, n=1,...,T — 1, and sampling distributions {n,}, n = 1,...,7 — 1, and
carrying out importance sampling sequentially to evolve a population of particles
through the sequence of target distributions, resulting in a sample from the final

target distribution 7 which, in this case, is the ABC approximated posterior

16 As a result of the corrections to their original ABC SMC algorithm to remove the bias.
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density of model parameters. The ABC SIS procedure in (Toni et al., 2009) is
defined by specifying the sequence of target and sampling distributions used in the
SIS setup. The target distributions are defined by

m(®) = TS 1D, X) < ),

=1

where, 7(-) denotes the prior density, X; are data sets generated from the model

using parameter value (or particle value, in the SIS terminology) 6, and B,

is the number of data sets utilised for the Monte Carlo approximation of the

ABC likelihood. Note that the distributions making up the sequence targets

are proportional to the ABC approximated posterior distribution, with varying

magnitudes of error tolerance. Define b, = % 1(p(D, X;) < €,). The sampling
i=1

distributions are defined by

n(0) = 1(x(0) > 0)1 (b, > 0) / o1 (00 ) K (0]6,1)d0, 1.

The indicator functions in the above definition are included to ensure that the
sampling densities and target densities are equivalent (i.e. m,(f) >0 <= n,(0) >
0), which in turn ensures that the importance weights are well defined. The ABC

SIS algorithm is as follows:

1. Initialise the sequence of error tolerances €y, ..., er. Set population indicator

n = 0.
2. Set particle indicator ¢ = 1.

3. If n = 0, sample ¢ independently from the prior, 7. If n > 0, sample 6"

from the previous population {H(i) } in proportion to the particle weights

n—1
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wy,_1 and perturb the particle to obtain ¢ ~ K,,(0|0”), where K, is a Markov

kernel.

4. If 7(0") = 0, return to step 3, otherwise simulate B,, datasets X; ~ f(:|¢),

i=1,...,B, and calculate b,(6").

5. If by(#') = 0, return to step 3, otherwise set 6 = ¢ and calculate the

importance weight

w,’ = (1) (#)
7(On")bn (0n") ifn > 0.

N . . .
S wl K@ 10,2)
P2

If i < N,set i =14+ 1 and go to step 3.

6. Normalise the weights. If n < T, set n =n + 1 and go to step 2.

Note that in step 5 above, a Monte Carlo estimate of the sampling density has been
used in the denominator of the importance weight calculation. Beaumont et al.
(2009) demonstrate that this ABC SIS algorithm generates sample populations

that yield unbiased expectations with respect to the target distributions.
Tempered ABC SIS

The Tempered ABC SIS algorithm that we suggest in this thesis differs from existing
ABC SIS algorithms in two ways: firstly, the sequence of importance distributions
that are targeted is given by —the same sequence of distributions used in
the Tempered ABC SMC algorithm; secondly, the ABC likelihood approximation
utilises a Gaussian distribution as opposed to the uniform distribution chosen by
Toni et al. and the other groups involved in developing ABC SIS algorithms. To

reiterate, choosing a Gaussian distribution for the similarity kernel is equivalent
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to (see Wilkinson (2013)) assuming the distribution of errors assumed present
in the observations is normally distributed, which, we argue, is a more realistic
assumption ] if it is assumed that the errors consist of additive errors from various
sources (e.g. different types of measurement and model error). In addition to being
justifiable from a theoretical perspective, the use of a Gaussian similarity kernel
results in an ABC SIS algorithm that does not feature an accept-reject step, unlike
in the cases where a uniform error distribution is used, which should result in some
improvement in computational efficiency. In order to implement Tempered ABC

SIS, replace steps 1, 4, and 5 in Toni et al.’s algorithm with the following:

1. Initialise the sequence of tempering parameters ¢,,, which define the sequence

of importance distributions. Set population indicator n = 0.

4. If m(0') = 0, return to step 3, otherwise simulate M datasets X; ~ f(:|0),
i=1,..., M and calculate b, (6’). In Tempered ABC SIS, b,,(¢') is defined as

follows:

M
bu(0) = D (D = X)), m(]e) ~ N0, ).
i=1
5. Set 6 = ¢ and calculate the importance weight

1 if n =0,
wy) = w(03) (ba(0))”"

N . . .
) w1, (050109 )
P2

if n>0.

The unbiasedness of this ABC SIS algorithm can be easily demonstrated by first
noting that the distribtion of the particle at time n in the algorithm is given by

N ,
Tn(On) X > w,(:ZIKn(QnW,(Ql). All that remains is to follow the steps taken earlier
=1

"By virtue of the central limit theorem.
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in the chapter when we demonstrated the biasedness of the Tempered ABC SMC

sampling algorithm (see equation (4.30))):

T bn
E(w,h(6,)) o / / h6,) (Qn)ﬁf’(?;g“” F(O01)n(0)d0, 16,

- / h(0,)7(6,,) (bn(6,))°" { / ﬁ(@n_l)den_l}den,

which does not depend on the distribution of the previously sampled points, 7(6,,_1).
This expression is proportional to the expectation of h taken with respect to the
target distribution at time n, hence the Tempered ABC SIS algorithm does indeed

produce unbiased samples from the sequence of importance distributions.

4.4 Discussion & summary

In this chapter we introduced the ideas associated with Approximate Bayesian
Computation (ABC) and its use in parameter estimation. Firstly, the motivations
behind the development of these techniques, namely the need to solve the ‘reverse
engineering problem’ of inferring parameters from model generated observations
which rapidly becomes a challenging task as the model complexity increases, were
introduced, followed by a brief historical overview of the development of these ideas.
Some basic results validating the basic ABC framework, i.e. approximating the
true likelihood with a convolution of the likelihood function with some similarity
kernel 7. and estimating this quantity using Monte Carlo estimation, were then
presented. After highlighting the limitations of basic rejection-based ABC samplers,
in particular, the inefficiency of such samplers when the target distribtion differs
greatly from the sampling distribution, a variety of Monte Carlo sampling methods
were introduced, which are capable of sampling from complex target distributions, in

each case covering the essential theory needed to understand how these procedures
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produce the desired empirical samples and the practical considerations that must
be taken into account when implementing the method. Lastly, a survey of Monte
Carlo based ABC samplers relevant to the work in this thesis was then presented,
including the ABC MCMC sampling procedure developed by [Marjoram et al.
(2003), the ABC SMC sampler developed by [Sisson et al.| (2007)) and the ABC SIS
sampler introduced by (Toni et al.| (2009). We then introduce some new importance
samplers that we developed, labelled Tempered ABC SIS and Tempered ABC SMC,
and a new variation of the ABC MCMC sampler introduced by Marjoram et al.
(2003) that we also developed that utilises multiple sample paths and a Gaussian

similarity kernel to approximate the model likelihood.

4.5 Appendix

In this appendix we provide a proof of the claim that the probabilistic approximate
rejection algorithm presented in |Wilkinson| (2013)) produces samples from the
posterior distribution, assuming holds true. This proof originally appeared
in Wilkinson| (2013)). The proof involves demonstrating that the distribution of
accepted parameter values from the algorithm is equal to the posterior distribution

of parameters under assumption (4.2)). Let

1 if 0 is accepted
I =

0 otherwise.

Then we have that

Pr(I =1|) = | Pr(I = 1IM(8) = X,6) f(X|0)dX

/
_ /7r€ F(X]0)dX
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Therefore, by an application of Bayes’ theorem, the distribution of accepted values

is given by
n(0) [ 7.(D — X|e)f(X]6)dX

w0 =1) = [#(0) [ 7(D— Xle) f(X]0)dXdo"

(4.31)

To complete the proof we must demonstrate that the posterior distribution of
parameters, under assumption (4.2)), is equal to (4.31)). From we know that the

likelihood of the observations, under assumption (4.2)), is

fapc(Dl6,¢€) = /Ws(D—X|€)f(X|Q)dX, where

X~ f(-10)

therefore, the posterior distribution of parameters is given by

7(60) [ 7.(D — X|0)F(X]0)AX
[7(0") [7.(D— Xle) f(X|0")dXdo"”

7(0|D) =

which is equal to (4.31)). OJ
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Chapter 5

ABC-based Parameter Estimation: A Sim-

ulation Study

5.1 Introduction

In the previous chapter, the theory that underpins the ABC approach to parameter
estimation was presented, along with several examples of Monte Carlo based ABC
(MC ABC) samplers in the existing literature. We then proposed some new MC
ABC samplers, namely Tempered ABC SIS, Tempered ABC SMC, and the adapted
ABC MCMC sampler. In this chapter, these new samplersﬂ will be tested against
some standard models that are widely used within the field of mathematical finance,
in order to assess their efficacy. In what follows we will provide an overview of the
models that we have chosen for the experiments; we will then discuss the need to
reduce the dimensionality of the data observations via the employment of summary
statistics, followed by a survey of the various methods of choosing suitable summary

statistics. We then present the specific details of the experiment set up, followed

!The samplers that do not produce biased samples, namely Tempered ABC SIS and adapted
ABC MCMC.
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by the results obtained from the analyses. The chapter concludes with a discussion

of the results, and a summary of the salient points raised herein.

5.2 Overview of models studied

In order to assess the effectiveness of the ABC estimation methodology, we will
apply the samplers introduced in the last chapter to two well known models, widely
used in mathematical finance: Geometric Brownian Motion (GBM) and the Cox-
Ingersoll-Ross (CIR) model. Both models are examples of stochastic differential
equations (SDEs); which are the most common means of representing the dynamics
of market variables such as share prices and interest rates. In fact, both models are
examples of a subclass of SDEs known as (time-homogeneous) It6 diffusions. An
n-dimensional time-homogeneous It6 diffusion process defined on the measurable
space (€2, F), labelled X;(w) = X (t,w) : [0, 00) x © — R"P|is a stochastic process

generally represented as follows

dX; = a(Xy)dt + b(Xy)dB;, X(0) = xo, (5.1)

where B; is an m~dimensional Brownian motion and a : R — R", b : R” — R™*™
are called the drift and diffusion coefficients respectively, that are assumed to satisfy
certain conditions such that possesses a unique solution. Models of this sort
possess several attractive properties that make them popular within quantitative
finance; diffusion processess are continuous time, stochastic processes, and as such,
analysts have a rich toolbox of analytic results and methods, available from the

general body of knowledge concerning stochastic processes, at their disposal. In

2For clarity, we supress the w € Q dependence of X (t,w) in what follows, i.e. we will write
X(t,w)=X(t) = X;.
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addition, Ito diffusion processes are Markov processes by construction, that is, for

some Borel measurable function f,

E [f (Xen) | F"] = B2 [f (X))

where [E* denotes the expectation taken w.r.t. the probability law, Q" of the process
{Xi}i>0, and F™ is the filtration, or o-algebra, generated by the m-dimensional
Brownian motion {B,;r < t}. This feature of diffusion processes will be utilised
later, when we consider the form of the likelihood associated with each model. Both
models considered here, GBM and CIR, are univariate models, that is n,m = 1.

What follows is a brief summary of the main features of each model.
5.2.1 Geometric Brownian motion

Geometric Brownian motion is arguably the most well-known SDE within the
mathematical finance community, mainly down to its central role in the seminal
work by Black and Scholes (1973)) in deriving the fair price for a derivative contract
based on an underlying asset, the dynamics of which are assumed to follow GBM.

The model is as follows:

dS; = uSidt + 0S5, dB;,  Sp = sg > 0, (5.2)

where 0 = (u,0) are the constant model parameters, u being labelled the ‘drift’
coefficient and o the ‘diffusion’ coefficient. This model has traditionally been used
as the standard approach to modelling share prices, given the qualitative properties

exhibited by processes with GBM dynamics:

e The process is non-negative, which is obviously a desirable characteristic of a

model describing share prices.
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e Expected returns from the model are independent of price level.

e The volatility of the process is proportional to the level of the process, which

is a quality observed in real markets.

In addition to the attractive qualitative properties mentioned, GBM is one of the
few SDEs that can be solved analytically, which makes working with the model
relatively easy.

Applying the ABC samplers to the estimation of the drift and diffusion parameters
of the GBM model will provide a basic test of the effectiveness of the ABC
methodology when applied to the type of models often considered in finance. If
the techniques outlined in the previous chapter are to be of any practical use in
finance, they must be able to deal with relatively simple models like the GBM
model, before being considered for the estimation of far more complex SDEs that
are now common place in industry. Aside from this model being well-known, its
analytical tractibility means that the transition density, and therefore the likelihood
function, is known explicity, making it a good candidate for assessing the extent to
which the ABC samplers can reproduce the analytic posterior density that we are
trying to sample from. In addition to being able to derive the analytic posterior,
which we can use as a yardstick to assess the performance of the samplers, we can
also derive the sufficient summary statistics for this model, which will allow us to
test the efficacy of the samplers using both sufficient and non-sufficient statistics.
A more detailed discussion regarding the choice of summary statistics will be given

in a separate section later in the chapter.
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5.2.2 The CIR model

This model, first introduced by |Cox et al.| (1985)), has been frequently used to model
the dynamics of nominal (instantaneous) short term interest rates. The model is

specified as follows:
dR; = (B — R)dt + vR}*dB,, Ry =1 > 0, (5.3)

where 6 = («a, 8, v) are strictly positive, constant parameters. Notably, the model

produces times series that

e Exhibit ‘mean reversion’. Mean reversion is an empirical feature of market
interest rate data and it relates to the tendency of nominal interest rates
to be pulled back towards some long term average level (most commonly
referred to as the ‘mean reversion level’) over time. If the current interest
rate is below the mean reversion level, the process tends to exhibit a positive
drift; when rates are above the mean reversion level, the process tends to
exhibit a negative drift. In addition to this behaviour being observed in the
data, there are compelling economic arguments that support the inclusion of
mean reverting behaviour in models of nominal interest rates. When interest
rates are high borrowing becomes expensive, which leads to a drop in demand
for funds for investment; this leads to a fall in interest rates. Conversly, when
rates are low, borrowing is relatively cheap which drives up demand for funds

for investment; this leads to an increase in interest rates.

e Exhibit positivity. Standard economic theory states that nominal interest
rates cannot drop below zero. Some models of short term interest rates (for

example, the so-called Vasicek model) are able to produce mean reverting
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behaviour, but do not exclude the possibility that the modelled process drops
below zero. In the CIR model the inclusion of the square root term in the
diffusion coefficient, /R, prevents the process from dropping below zero.
Provided that the constraints on the model parameters that were outlined
above hold, as the process approaches zero the diffusion term tends to zero
and the deterministic drift component of the model dominates the behaviour
of the process, pulling the interest rate up towards the positive mean reversion
level. This model ensures that the process does not drop below zero; however,
the process can still occasionally hit zero unless the model parameters satisfy

a further constraint, commonly referred to as the Feller condition:

2a8 > 1° (5.4)

The Feller condition is typically satisfied for parameter values corresponding

to realistic market data. In this thesis we will assume the Feller condition

holds.

The model is characterised by a non-central chi-squared transition density, i.e. the

conditional distribution, R;|Rs, s < t is non-central chi-squared. In addition to

the qualitative features that the model possesses, the model also admits analytic

expressions for the price of bonds and options on bonds, which is a highly desirable

feature that financial engineers look for in pricing models.

Although still relatively tractable, estimation of the CIR process represents a

more challenging test, relative to the Black-Scholes model of share prices, of the

ABC estimation techniques developed in the previous chapter. Firstly, the model

has three parameters, unlike the Black-Scholes model that possesses only two

parameters; secondly, the dynamics of the process are significantly more difficult
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to deal with than the log-normal dynamics of the Black-Scholes model—sufficient
summary statistics cannot be derived for this particluar model, and therefore we
must rely on the identification of suitable, non-sufficient, summary statistics in
order to test the efficacy of the ABC parameter estimation techniques presented
earlier. As such, this model estimation exercise is closer to the sort of problem that
one might encounter in industry, in which the model is not sufficiently tractable
as to allow sufficient summary statistics and analytic likelihood functions to be

derived.

5.3 Choosing summary statistics

In the last chapter it was noted that there are certain times when it is necessary
to construct summary statistics that effectively reduce the dimensionality of the
observations; in this section, we explore this concept in more detail. We will discuss
the rationale for using summary statistics, explain the concept of sufficiency, and
survey the methods of constructing statistics that have been proposed elsewhere in
the literature. We also discuss some alternative summary statistic choices, devised
for the models being investigated, that will be tested in the course of conducting

the numerical experiments.
5.3.1 The need for summary statistics

Recall that in the prerequisites section of the previous chapter (Section [4.1.1)),
it was stated that in situations where the model being estimated produces high
dimensional data, it is usually necessary to use summary statistics, rather than the
full data set, to estimate model parameters in order to avoid inefficiencies in the
sampling algorithm. This can be readily seen in the case of a simple rejection-based

ABC sampler, e.g. the sampler discussed on page[62] that was proposed by [Pritchard
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et al. (1999). In this basic rejection ABC sampler, a (potentially vector-valued)
parameter is simulated from the prior density, and a data set is then generated from
the model using the simulated parameter, the simulated data is then compared with
the observed data and the generated parameter is accepted as a sample from the
ABC posterior provided the generated data is sufficiently close to the observation

data, i.e. provided

p(Du XZ) <,
where p measures the degree of similarity between generated and observed data.
In Pritchard et al|(1999)) the similarity measure, p, is given by

D.— X, .
o(D, X,) = max 121 = X

—_— Where D = {Dj}jzl,...,n; Xj = {X@j}jzl’m’n.
J Dj

If the dimension of the data, n, is very large, then the probability that each
component of the difference between simluated and observed data will be less than
€ becomes very small, which results in extremely poor acceptance rates for the
generated parameters. For SDEs, where the model data is typically a time-series
of data points, this problem is very pronounced; the same parameter value can
yield traces from the model that differ significantly, due to the randomness inherent
in the system. Figure |5.1] illustrates the problem in the case of the GBM model.
Despite being generated with the same parameter value, the sample paths from
the GBM model all differ significantly due to the stochastic component of the SDE.
If one were to try and implement the rejection ABC sampler for the GBM model
by directly comparing time series generated from the model with the observed
time series, it is clear that in order to maintain any sort of reasonable acceptance
rate, the tolerance parameter, ¢, would have to be chosen to be very large indeed,

thereby drastically reducing the quality of the posterior approximation yielded
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Sample paths from GBM model
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Figure 5.1: This figure contains two sample paths from the GBM model ((5.2) using
the same parameter value, § = (0.07,0.20), and initialised at the same starting
point, Sy = 20.0, demonstrating that traces generated using the same parameter

values can result in significantly different sample paths.
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by the sampler. In such situations, comparing each element of the observed and
simulated data sets is not practical, and some means of capturing the information
contained within the model output in a lower dimensional object must be found.

This problem is considered further in the following subsections.
5.3.2 Summary statistics: some background theory

Broadly speaking, a statistic S is some (potentially vector-valued) function of a set
of observations, assumed to have been generated by some parametric model M (#).
Some basic examples are the sample mean, sample variance and interquartile range
of a data set D. In the context of this thesis, we are interested in finding particular

combinations of statistics that:

e Reduce the dimension of the model observations down to a manageable size.
Ideally the number of statistics should be equal to the dimension of the

unknown parameter 6.

e Capture as much of the information contained within the full data-set, D, as

possible.

In statistics, a summary statistic Sy, sy is said to be sufficient if, for a given model
and associated, unknown, parameter #, no other statistic, S, can be calculated from
a sample of observations that contains information about the parameter not already
included within Sy, s (Fisher, 1922). Stated in mathematical terms, sufficiency

can be defined as follows:
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Definition 8 (sufficient summary statistics). A statistic S = r(D) is suffi-
cient if, for each s, the conditional distribution of D = {Dy, Ds,..., Dy}, given

S = s and parameter 0, is independent of 0,

P(D|S, ) = P(D|S).

In practice, this definition is not particularly helpful as it is difficult to determine
whether a particular set of statistics are sufficient using this criterion. Additionally,
this definition is of no help in finding sufficient statistics. Fortunately, the above
definition of sufficiency implies a more practically useful definition, which is given

below:

Definition 9 (factorisation criterion). Let D = {Dy,Ds,..., Dy} be a ran-
dom sample of observations with joint density given by f(DI0). A statistic S(D) is

said to be sufficient iff the joint density of observations can be factorised as follows

f(D10) = g(S(D)|0) - h(D),

where g and h are non-negative functions.

Thus, if a set of sufficient statistics Sy, rr can be found, inference with respect to
the unknown parameter can be conducted by considering the observations only via
consideration of the sufficient statistics, i.e. the sufficient statistics provide the same
amount of information concerning 6 as the full data-set D. Trivially, the collection
of statistics {IV, Dy, Do, ..., Dy} are always sufficient (Bernardo and Smith, 2000);
however, the benefit of using summary statistics is in the ability to reduce the

dimension of the model output to a more manageable size, and therefore we are
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interested in finding the smallest number of sufficient statistics that represent the

information in the model observations D. This motivates the following definition:

Definition 10 (minimally sufficient statistics). If D = {Dy, Ds, ..., Dy} is
a sequence of observations from some parameterised model M(8), and Sy, rs(D)
are a set of sufficient statistics, then Sgr¢(D) are minimally sufficient iff, given

any other set of sufficient statistics Ts,pp(D), there exists a function g(-) such that
Ssup(D) = 9(Touss (D).

Intuitively, minimally sufficient statistics convey all information contained within
the full sequence of observations D in the least number of statistics, i.e. minimally
sufficient statistics convey information regarding the model parameters # most
efficiently. To illustrate the concept of sufficient statistics and demonstrate the
means by which one might derive sufficient statistics using the factorisation criterion

given above, consider the following example.

Example 1. Let X be a sequence of n i.i.d. observations from a normal distribution

with unknown mean and variance parameters,
- 2
X = {xi}iZI,...,’ru V/L,flfi ~ N(Ma g )

Then the likelihood of the observations is given by

. _1 n n
f(X|p,0)=C -0 -exp(rt2 [Zx?+2u2xi+nu2
i=1 i=1

) |

Hence, the joint distribution of the observations (the likelihood function) is a function

of the data, X, only through the two functions Ss,;r(X) = (D0, @i, Y5y @2) which,
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by the factorisation criterion given above, implies that Ss,r¢ are sufficient statistics

for the normal model with unknown mean and variance parameters.

One can also demonstrate that the sufficient statistics given in the example above
are minimally sufficient. In the applications for which the ABC approach to
inference is valuable, sufficient summary statistics are not available. Typically, one
identifies summary statistics for a model by first writing down the likelihood of
the model observations and then factorising it as per the factorisation criterion
above. If the analytic form of the likelihood function is not known, as is assumed
to be the case in this thesis, then one cannot derive summary statistics in this
manner, and therefore the statistician must find other, non-sufficient, summary
statistics that capture as much of the information contained within the model
observations as possible. Existing literature concerning the construction of such
non-sufficient summary statistics, as well as the new methods developed in this
thesis for the purposes of estimation of diffusion processes, will be presented in the

next subsection.
5.3.3 Methods of constructing statistics

One of the most challenging areas in the design of efficient ABC samplers is the
choice of suitable summary statistics, their purpose being to reduce the dimension-
ality of the observed data. Currently, most summary statistics are chosen on an ad
hoc, model by model basis, and work on the development of generalisable, robust
approaches to constructing summary statistics has been lacking in the literature.
Joyce and Marjoram| (2008) developed a method for choosing between a given list
of approximately sufficient summary statistics; however, this work does not address
the problem of how to actually choose the set of candidate summary statistics;

instead, the exstence of such a list of candidate statistics is assumed, and focus
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is on choosing good combinations of these candidates. For this reason, we do not
consider this work any further. Fearnhead and Prangle| (2012) developed a so-called
semi-automatic method of constructing summary statistics for ABC inference that
attempts to construct summary statistics that are as accurate as possible, with
‘accurate’ being defined in a specific way. What follows is an overview of their

approach.
Semi-automatic summary statistics

Fearnhead and Prangle| (2012) take a slightly different approach to ABC estimation
than other researchers in the field; rather than using the ABC approximation
to generate global approximations to the true posterior density of interest, they
focus on generating approximations that yield accurate parameter estimates, where
accuracy is defined in terms of a loss function for estimating parameters. By

considering the class of quadratic loss functions, that is loss functions of the form

L(6o,0; A) = (6 — 6)T A(6, — 0),

where A is a positive definite matrix, 6y is the true parameter and 0 is an estimate
of the parameter, |Fearnhead and Prangle| (2012)) demonstrate that the optimal
choice of summary statistic (i.e. the choice of statistic that leads to minimum

quadratic loss), in the limit € — (ﬂ is the posterior mean of the parameter

S(D) = E(6|D). (5.5)

3¢ represents the similarity kernel variance parameter that determines the degree of approxi-

mation between the ABC approximated likelihood and the true model likelihood.
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In other words, if we choose our summary statistic to be equal to the posterior
mean, then minimum quadratic loss is achieved by taking parameter estimates of

the form

0 = Eapc(0]S(D)),

where S(D) is given by . Using a quadratic loss function leads to ABC
posteriors that attempt to match the mean of the true posterior. Using different
choices of loss function will lead to ABC approximations that match other features
of the true posterior, e.g. using an absolute error loss function will lead to ABC
posteriors that match the median of the true posterior (Fearnhead and Prangle,
2012). In practice, of course, we cannot choose our summary statistics to be equal
to the posterior mean—deriving approximations to the unknown, true posterior
density is the aim of the analysis—therefore it appears that this result is academic.
However, |[Fearnhead and Prangle| (2012) produce estimates of the appropriate
summary statistics by running an additional simulation step before running the

full ABC sampler. Their approach is summarised as follows

e Run a pilot ABC sampler to determine regions of non-negligible posterior

mass.

e Simulate sets of parameter values and generate data with each simulated

parameter.

e Use the simulated parameters and model output to derive estimates of the

summary statistics.

e Run ABC using the summary statistics derived during stage 3.

Step one is optional, and should be implemented if the priors being used are

uninformative, its purpose being to focus on a particular training region of the
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parameter space from which parameters are simulated. Once the training region of
the parameter space has been determined, M parameter values are simulated from
the priorﬂ and M corresponding data sets generated from the model (step 2 above).
In step 3, the simluated parameters and data are used to construct estimates of the
appropriate summary statistics. Fearnhead et al. use linear regression for this stage
of the analysis but mention that other approaches, for example the lasso, might
also be used (see Tiribshani (1996) for more details concerning lasso regression).
For the regression stage, the simulated parameter values generated in stage 2 are
treated as response variables. The authors then introduce a (possibly vector valued)
function of the simulated data, f(X), and use this as the explanatory variable in
the regression. The simplest choice of function is f(X) = X; however, the authors
note that more complicated functions of the simulated data may yield better
estimates of the summary statistics. For example, |Fearnhead and Prangle| (2012)
used f(X) = (X, X2, X3, X*) in one application and found that this choice yielded
superior summary statistics. Note that in this chapter we test the semi-automatic
approach to summary statistic construction by using as explanatory variables the
simulated data alone (i.e. f(X) = X) in the case of the GBM model, and both the
simulated data and the squares of the data (i.e. f(X) = (X, X?)), in the case of
the CIR model. For the ¢th summary statistic, the following linear model is fitted

using least squares:
0, = E(0:|X) + & = 85 + BOF(X) + i, (5.6)

where ¢; is zero-mean noise. The linear function fitted during stage 3 serves as an
estimate of the mean of the posterior, and is used as a summary statistic in the

final stage of the estimation procedure. One advantage of this approach is that

4That is, the prior truncated to the training region of the parameter space.
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one can use many, potentially hundreds, of explanatory variables in the regression,
without directly affecting the efficiency of the ABC sampler—this is in contrast
to the standard approach, in which using more summary statistics increases the
dimensionality of the statistics and therefore reduces the efficiency of ABC, as per
the discussion in section [5.3.1] In the applications considered herein, model output
data are time-series, typically consisting of a large number of points. Assuming
the statistician is fitting a model to daily observations, of which there are roughly
250 per yearﬂ of some financial quantity, it is not at all uncommon to be dealing
with time series that are several thousand elements long; in this case, constructing
summary statistics based on regressing the full path against the parameter value, as
in the case of the linear model given by , can be impractical, especially if one
considers vector valued functions of the full data set rather than the observations
alone. Aside from the semi-automatic approach to constructing summary statistics
developed by |Fearnhead and Prangle (2012)), no other generalised approach to
selcting summary statistics has been presented (to our knowledge). Fearnhead et
al.’s approach of constructing summary statistics via an additional simulation stage
will be tested against our applications, alongside some ad hoc choices of summary
statistics, developed with SDE parameter estimation in mind, which will now be
presented.

Among the most straightforward approaches to parametric inference of SDEs is
the so-called ‘pseudo-likelihood” method, which involves assuming that the model
of interest possesses a Gaussian transition density and then deriving the pseudo-
likelihood function using this approximation. This method of parameter inference for
SDEs is known to be ineffective for all but the simplest SDEs, due to the bias in the

parameter estimates derived via this method. This bias can be significant, especially

5The number of trading days in a year is often approximated as being around 250.
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in estimates of parameters appearing in the drift coefficient of the SDE under
investigation. Despite this approach being unreliable due to the aforementioned
problem with biased estimators, the pseudo-likelihood approximation at the core
of the method might be of some use in deriving informative statistics (which will
be referred to as Euler-Maruyama (EM) based statistics) of the data which can
then be used in conjunction with an ABC sampler to produce samples from the
ABC posterior. We now outline the ideas underlying the construction of EM based

statistics.
EM based summary statistics

Earlier in this chapter, it was noted that diffusion processes, by construction, are
Markov processes. The Markovianity of diffusion processes is a useful feature that
allows such processes to be characterised by their initial states plus their transition
densities, which makes simulating solutions to SDEs, as well as deriving model
likelihoods, an easier task provided one can determine what the true transition
density of the process is. Unfortunately, the transition density of a diffusion process
is difficult to determine in all but the most straightforward cases. One way of deriv-
ing approximations to the transition density is to discretise the SDE using a crude
approximation that essentially amounts to assuming that the transition density, i.e.
the increments of the process, are normally distributed. For example, suppose we
have sample observations, X = {Xj}x—o, n, Where X = Xyar = X (kAt), from

(5.1)) at equally spaced points in timeﬂ The likelihood of these observations, due to

6This assumption is not necessary for the purposes of constructing Gaussian approximations
to the transition density of a diffusion process, but in the majority of applications in finance
observations from processes of interest occur at regularly spaced intervals, e.g. daily closing share
prices, therefore we will make this assumption to simplify the analysis.
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the Markovian nature of the underlying process, can be represented as the product

of the transition densities between neighbouring observations:

N

F(Xx10) = [ [ p(Xkl Xi1,0), (5.7)
k=1

where p(Xx| Xx_1,0) is the transition density of the process. If the transition density

is unknown, then one can discretise ([5.1]) as follows
AXk—l = Xk — Xk—l = ,U(Xk:—l)At + O'(Xk_l)ABk_l, k= 1, ey N,

where ABj,_; = By — Bj_1 is an increment of Brownian motion which is normally
distributed by definition (ABy_1 ~ N(0, At)). Thus, each increment of the process

is assumed to be distributed as follows
Akal‘kal ~ N(/,L(Xk,1>At, 0’2<Xk,1)At).

This crude approximation to the true SDE is called the Euler-Maruyama
(EM) approximation, and is frequently used when generating numerical solutions
to SDEs. Substituting the EM approximation of the transition density into ({5.7))
yields the pseudo-likelihood approximation for

fE'M(X|9) = (QWAt)_N/Q [H 01<Xk1)] X (58)
1 SN (X — Xt — u( X)) AL
exp{E; ( k kO'(Xk_l) b > }

Maximising this quantity with respect to the parameters, 6, would produce the
pseudo-maximum likelihood parameter estimates (PMLEs) which, as already men-

tioned, are typically biased estimates of the ‘true’ parameters. Although PMLEs
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are not suitable parameter estimates, it is possible to derive summary statistics
from the expression for the pseudo-likelihood—the idea is that despite the parame-
ter estimates that result from this approximation being unreliable, the summary
statistics that one can derive from this approximation should contain information
about the parameters and therefore can be used to differentiate between ‘good’
and ‘bad’ candidate parameter values. In the case of the GBM model introduced

earlier, the drift and diffusion coefficients are given by
w(Sy) = Sy, and o(S;) = oS,

respectively. Substituting these expressions into ([5.8), we obtain the pseudo-

likelihood function for S;
N

Fen(S16) = (2msr) 2 [H sk_ﬂ] oV
k=1

1 (= S ) =S
- k . k 2
exp { AT ( E (Sk—l) 2(1 + pAt) ;1 S + N(1 + pAt) ) } :

k=1

Notice that we can factorise this pseudo-likelihood function into the product of two
functions, one depending solely on the data, and one that depends on the model

parameters, § = (i, o) and the data, but only via two functions of the data:

By virue of the factorisation theorem [9 we know that these two functions of
the data must be sufficient statistics for the EM discretised SDE and capture
information relating to the drift and diffusion coefficients, which we would like to

estimate from observed data. We propose to combine these approximately sufficient
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statistics with the ABC samplers introduced previously in order to infer the GBM
model parameters from a time series of model observations. Similar calculations
for the CIR model can be found in Appendix at the end of this chapter.

Despite this technique of obtaining informative summary statistics working well,
for some parameters, in the examples studied in this chapter, it is not always
possible to obtain summary statistics in this manner. If the coefficients of the
diffusion process exhibit non-linear dependence on the model parameters, it may be
impossible to derive summary statistics from the pseudo-likelihood function due to
the inability to separate out the parameters from the data. As such, this technique
of constructing summary statistics would only be practical in applications in which

it is possible to separate data summaries from the model parameters.

Moving average based summary statistics

In addition to the semi-automatic summary statistics and EM based statistics,
we also trial an ad hoc summary statistic designed to capture information about
parameters appearing in the diffusion coefficients of and . Before ex-
plaining the rationale behind the formulation of this summary statistic, we outline

the steps required to construct the statistic from a time series of observed data

D= {Di}izo,...,N-

e Choose a smoothing window length and construct a smoothed (moving

average) time series, D®, from the observations, D.
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e Subtract the smoothed path from the observations, and scale the resulting
time series of differences by the smoothed series to obtain a time series of

scaled residuals, i.e. evaluate

D, — D? ]
Tf:—D.S L, z:O,...,N,

)

e Evaluate the standard deviation of the scaled residuals and use this as a

summary statistic.

The motivation for the construction of this statistic can be appreciated by studying,
for example, the form of the SDE describing GBM (equation ({5.2))). First, note that
in the absence of the drift coefficient of the SDE, the GBM process is essentially a
Gaussian process with state-dependent variance. Thus, by constructing a moving
average process and subtracting this smoothed path from the observations, we
should, to a first approximation, obtain a Gaussian time series with time inho-
mogeneous variance. By looking at the form of the diffusion coefficient, we can
deduce that the variance of the unscaled differences should depend on the level
of the underlying process S;; therefore, scaling the differences by S; should result
in a Gaussian time series with constant standard deviation equal to the diffusion
parameter, . A graphical illustration of the data manipulation involved in the
construction of the summary statistics is given in Figure |5.2, The effectiveness of
this technique of construct summary statistics is limited to certain models, in a
similar fashion to the EM based summary statistics introduced earlier. In particular,
one must know the way in which the diffusion coefficient of the underlying diffusion
process depends on the state variable in order to be able to scale the differences

between the raw and smoothed time series appropriately. Therefore, models such

"N, < N is the length of the moving average process, constructed from the observations.
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Original data vs. smoothed data
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Figure 5.2: The top plot illustrates the raw observations from the model (the
solid black line), and the smoothed observations that are derived from the raw
observations (the dashed red line). The (scaled) residuals that result from taking
the difference between the two series in the first plot, and then scaling the resulting
series by the process value, are drawn on the bottom plot; the standard deviation of
which is used as a summary statistic, which should contain information regarding
the constant diffusion coefficient in the GBM model.

151



as the constant elasticity of variance (CEV) diffusion process, whose diffusion
coefficient depends on the state variable raised to some unknown power, to be
inferred from the observations, would not be amenable to this sort of summary
statistic construction. As is generally the case at this stage in the development of
ABC methodology, other ad hoc methods of constructing informative summary
statistics would have to be determined for more complex models, such as the CEV
process. The CIR model, given by , also possesses a diffusion coefficient that
renders the construction of moving average (MA) based statistics possible, the
only difference arising in the construction of the statistic for the CIR model is in
the scaling of the differences between the smoothed path and the observations; in
the GBM model the variance of the unscaled differences should be proportional
to the level of the process S;, whereas the differences in the CIR model should be
proportional to the square root of the process, v/R;, which can be deduced from

the form of the diffusion coefficient in (/5.3))

Mean-gradient summary statistic

In order to capture information about the mean reversion rate parameter in the CIR
model , we developed an ad hoc summary statistic based on the observation
that the mean reversion rate determines the pace at which the process is pulled
back towards the mean reversion level. Given this observation, one might expect a
numerical approximation of the slope of the process, when drifting back towards the
mean reversion level, to capture some information about the magnitude of the mean
reversion rate. Larger values of the mean reversion rate should result in the process
reverting relatively rapidly back to the long term level, implying steep gradients of

the process; conversly, smaller mean reversion rates should translate into less steep
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gradients as the process is pulled less aggressively towards the long term mean
level. Henceforth we will label this summary statistic the ‘mean-gradient’ summary
statistic. To understand the rationale behind the construction of the mean-gradient

summary statistic, consider a deterministic process with dynamics given by

th = Oé(ﬁ - Rt)dt, RO =Tp. (59)

Note that this process is essentially the CIR model without the stochastic component
of the SDE. If one wanted to produce an estimate of the mean reversion rate
parameter, «, in above, a simple approach might be to first carry out a simple
Euler discretisation of the process, and then rearrange the resulting process in
order to obtain &, the estimate of the mean reversion rate based on the observed

data, R = {Ry}r—o,. N, Where Ry = Ryar = R(kAt), and the mean reversion level,

3.

Riy1 — Ry = o8 — Ry) At
Riy1 — Ry,

— a:m.

The sample average of this estimator for «, taken over all N + 1 observed points
R = { R} }x—o....n should yield useful information about the magnitude of the mean

reversion rate parameter.

N

. 1 5 - R — R;
o= —= Ria Ri— ) 7At ) Ria Ri— ) 7At = T
N;cb( 1,3, A), ¢ 1,8, At) G- At
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where B represents an estimate of the true mean reversion level parameter, ﬂ‘ﬁ Of
course, the CIR model differs from due to the additional stochastic component
of the CIR dynamics, and this stochastic component changes the nature of the
dynamics of the process. The solution of is represented graphically below.
From Figure one can see that the approximated process monotonically
approaches the mean reversion level, represented by the solid black horizontal line at
R; = 0.10. Due to the stochasticity of the full CIR process , the true solution
of this process does not monotonically drift towards the mean reversion level, but
instead exhibits volatility around the mean reversion level while gradually being
pulled towards it. Due to this difference between the approximate process and the
full CIR process, when evaluating the mean-gradient summary statistic we only use
segments of the time series of observations in which the process is moving towards
the mean reversion level. This is required so that the mean-gradient statistic always

gives strictly positive estimates of the mean reversion rate parameter, a.
OLS-based summary statistics

In this subsection we outline another approach for construcing non-sufficient sum-
mary statistics that we utilised during the estimation of the CIR model parameters.
If (5.3)) is discretised using an Euler-Maruyama approximation, the resulting differ-

ence equation can be rearranged to give the following relationship:

Zk:OdﬁXk,l—anQ—FVUk, k:O,,N—l

8In practice the true mean reversion rate of the process is unknown, so we use the sample
mean as an estimate of the mean reversion level parameter when constructing the mean-gradient
summary statistic. The sample mean performed well as an estimator for the mean reversion level
during our preliminary testing of the summary statistics—see section for more details.
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where Z;, = R\’“/%", Xp1 = }%—If, X2 = VRpAt, and Uy, ~ N (0, 1), which can

be used to construct the following linear regression model:

Z=X-0+vU,

Z = (Zy,...,Zn-1)",
© = (af, —a)T,

U= (U,...,Uy_1)%,

Xo,1 Xo2

Xnoin Xn-ip

This equation can be solved analytically in order to obtain the OLS estimators of
the model parameters, which we use as non-sufficient summary statistics in the

ABC samplers that we will test later in this chapter.
Sample mean statistic

One final summary statistic we use to capture information about the mean reversion
level parameter, (3, in (5.3]) is the sample mean of the time series of observations. On
an intuituve level, one would expect the mean reversion level to strongly influence
the average level of the process over time, i.e. a higher mean reversion level would
produce model traces with a higher sample mean, and, conversly, a lower mean
reversion level should be reflected by sample traces possessing a smaller sample

mean.

Table [5.1] sets out the different combinations of summary statistics that will be

used in the numerical experiments associated with the GBM model. Table
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sets out equivalent information relating to the numerical experiments associated
with the CIR model. For clarity, the summary statistic descriptions in these tables
have been condensed: Semi-automatic: regression, Semi-automatic: lasso, and
Semi-automatic: EM regression refer to the semi-automatic summary statistics
of [Fearnhead and Prangle (2012)), constructed using linear regression against the
full sample path, regularised regression (lasso) against the sample path, and linear
regression against the EM summary statistics outlined in section [5.3.3, respectively.
The statistic descriptions in Table follow the same format as those used in
Table [5.1] the only difference being that the Semi-automatic: regression statistics
were constructed by regressing the model parameters against the sample path and
squares of the sample path. The non-sufficient EM summary statistic used to

estimate the mean reversion level parameter, 3, in the CIR model was statistic 4

in Appendix [5.7
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Deterministic analogue of CIR model
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Figure 5.3: The orange line represents the solution of equation ([5.9)), conditional
on Ry = 0.02. The solid black line represents the mean reversion level, which was
chosen to be 0.1. The mean reversion rate used to produce this plot was 2.
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In the following subsection we test each of the summary statistics outlined above.

5.3.4 Assessing choices of summary statistics

Having presented the various ways in which one might construct summary statistics
for the parameter estimation of SDEs, we now focus attention on the problem
of determining the extent to which a particular choice of summary statistic is
informative. Obviously, the statistician can always pick some form of summary
statistic and run the sampler to obtain empirical posterior distributions, thereby
gaining some information about how well the chosen statistics capture information
pertaining to the model parameters; however, if the underlying posterior is unknown,
as is assumed to be the case, then assessing the quality of a particular choice of
summary statistic becomes difficult. In addition, it is not practical to have to run
the sampler for each choice of statistic to assess their effectiveness, especially if
there are time constraints on the analysis. Before explicitly testing each type of
summary statistic by estimating the GBM and CIR models, we ran some preliminary
diagnostics to try and determine which summary statistics were likely to perform

best. The steps involved in this diagnostic test were as follows:

e We simulated a sequence of parameter values over the support of the prior

distribution of the model parameters.

e For each simulated parameter, we generated a sample path from the underlying

model.

e For each simulated data set, we then evaluated the candidate summary
statistic and plotted the statistic values obtained for each data set and

parameter value against the sequence of parameter values.
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The idea behind this diagnostic is that the summary statistics, if informative about
the model parameters, should be able to map the simulated data back to the
parameter used to generate the data. Hence, if the choice of summary statistic is
good, the resulting plot should exhibit a rough one-to-one relationship between the
parameter value and the summary statistic obtained from the model data generated
by the parameter value. Figure illustrates the results of the diagnostic test for
the various statistics used to estimate the GBM model. As expected, the sufficient
statistics for the GBM model are able to differentiate between data generated by
different parameter values. All the other, non-sufficient, statistics for the drift
parameter (plots in the left hand column of appear to be able to differentiate
between statistic values at least to some extent, with the EM based statistic and
the semi automatic construction using the EM statistics yielding the best results
from the diagnostic test. With the exception of the moving average based statistic,
all non-sufficient summary statistics relating to the diffusion parameter (right
column of plots) exhibit a very weak relationship to the parameter value, indicating
that these statistics do not do a good job of mapping observed data back to the
underlying parameter used to generate the observed data. From this preliminary
analysis, we can conclude that some combination of either the EM based statistic
or the semi-automatic EM regression statistic for the drift parameter, coupled with
the MA based statistic for the diffusion parameter is most likely to yield the best
results out of all combinations of non-sufficient summary statistics.

Similar diagnostic tests were carried out for the candidate summary statistics
related to the CIR model. The results of the diagnostic test for the most promising
statistic candidatesﬂ are illustrated in figures , and . One can see that

9Due to the large number of possible combinations of summary statistics that could be used
to estimate the parameters of the CIR model, we first ran a pilot ABC SIS sampler for each
possible combination of summary statistics. Combinations of summary statistics that did not
produce promising results were discarded.
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Figure 5.4: Results of the summary statistic diagnostic test for all types of summary
statistic utilised for estimation of the GBM model. Good statistic choices should
lead to clear one-to-one relationships between the parameter and the statistic value,
as is illustrated in the top two plots of the sufficient statistics.
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Figure 5.5: Results of the summary statistic diagnostic test for all types of summary
statistic utilised for estimation of the mean reversion rate parameter in the CIR
model. Good statistic choices should lead to clear one-to-one relationships between
the parameter and the statistic value.
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Figure 5.6: Results of the summary statistic diagnostic test for all types of summary
statistic utilised for estimation of the mean reversion level parameter in the CIR
model. Good statistic choices should lead to clear one-to-one relationships between
the parameter and the statistic value.
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Figure 5.7: Results of the summary statistic diagnostic test of the moving average
based summary statistic used to estimate the volatility parameter in the CIR model.
Good statistic choices should lead to clear one-to-one relationships between the
parameter and the statistic value.
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the summary statistics chosen for the estimation exercise all exhibit a rough one to
one relationship with the parameter value used to generate the data, indicating
that these statistics are capable of capturing information about the data generating
parameters. Having now introduced the various methods used to construct summary
statistics, we now summarise the experimental set up that was chosen to test the

two Monte Carlo based ABC (MC ABC) samplers introduced in the last chapter.

5.4 Simulation study design

In this section we outline the details relating to the numerical experiments conducted

while testing the samplers.
5.4.1 Practicalities

In the numerical experiments conducted here, we used toy data generated from
the underlying process with fixed, known parameter value&EG]. In theory, real
market data could have been used to test the samplers; however, given that the
purpose of the experiments is to test the ability of the samplers to recover the true
parameter values that generated the data (or, in Bayesian terms, to recover the
true underlying posterior distribution of the model parameters), it made most sense
to conduct the inference using data generated from the underlying process with
known parameters. Daily closing prices are very typical of the data that one has
access to when fitting a model to market observations, therefore when constructing
the toy data used in this thesis, we assumed that our data consisted of 4 years
worth of daily observations, of which there are roughly 250 per year, giving an
observed time series of length 1000. The data were generated in each experiment

by simulating a sample path from the underlying SDE (equations (5.2)) and ([5.3))

10The parameters chosen for generation of the underlying data from the GBM model were
6 = (0.07,0.20), the true CIR model parameters were 6 = (2.0,0.1,0.06)
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respectively) using the Euler-Maruyama discretisation with a very fine step sizﬂ.
Both Monte Carlo ABC samplers tested were implemented in the C+4 language
and compiled using the GCC compiler. As discussed previously, the similarity
kernel variance parameter € plays a crucial role in ABC, controlling the trade off
between the accuracy of the ABC posterior approximation to the true posterior and
the efficiency of the sampling algorithm. In practice, this parameter was chosen
by trial and error, with as small a number as possible being chosen such that the

samplers still produced acceptable populationﬂ
5.4.2 Methodology

We will test the efficacy of two MC ABC samplers: the Tempered ABC SIS sampler
and the new ABC MCMC sampler introduced in the previous chapter. Due to
the biased nature of the Tempered ABC SMC sampler, which was demonstrated
earlier, we will not provide results for this procedure.

For each sampler, we assess the quality of the empirical ABC posterior distributions
obtained using various combinations of summary statistics by comparing the empir-
ical densities (both the marginal and full densities) against the analytic posterior
for the underlying models. For the estimation of the GBM model parameters, all
prior densities were assumed to be uniform over a suitable range of valued™}, which
represents a reasonable window within which the parameters are likely to lie. The
prior densities specified for the CIR model were slightly more complicated; model
parameters were sampled uniformly from a constrained parameter space such that

the Feller condition ((5.4)) was always satisfied. This was achieved by first uniformly

HThe step size used to simulate model observations was 1,000, 000 per time period.

12For Tempered ABC SIS, this equates to the sampler producing a particle population with
sufficiently large effective sample size; for ABC MCMC, this meant choosing the parameter to be
as small as possible while maintaining a reasonable acceptance rate for the sampler.

13The parameter range was (0,1) for both drift and diffusion parameters.
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sampling the mean reversion rate and level parameters from a suitable range of
Valuesfﬂ and then using a simple rejection sampling step to sample the diffusion
parameter such that was satisfied. When implementing the Tempered ABC
SIS sampler, we used a linear sequence of tempering parameters in both sets
of experiments to gradually evolve the target population from the prior to the

posterior density, i.e.

If applying Tempered ABC SIS to other, more complicated, models, it may be
necessary to investigate different tempering sequences to determine which sequence
gives the best samples (i.e. samples with the least particle degeneracy), but for the
relatively straightforward models estimated here, a simple linear sequence proved
to be sufficient. For a more detailed discussion of the choice of tempering sequence,

see |Calderhead and Girolami (2003)).

5.5 Simulation study results

5.5.1 GBM model

Due to the number of experiments being run (both the Tempered ABC SIS and new
ABC MCMC samplers will be run using each of the summary statistic combinations
set out in Tables , giving a total of 18 experiments), we will label each setup
with a number and use the number to refer to the particular experiment. There
are nine different combinations of summary statistics, therefore we will label each
combination from one to nine, in the order they are given in table 5.1} So, for

example, the label experiment 3 refers to the results of the Tempered ABC SIS

14The mean reversion rate parameter was sampled from the range (0,5), and the mean reversion
level parameter was sampled from the range (0, 1).
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sampler using semi-automatic summary statistics constructed using the lasso, and
experiment 5 (MCMC) refers to the results of the new ABC MCMC sampler using
EM based statistics. We first present a series of plots of the full joint posterior sam-
ple obtained from each experiment, plotted alongside the contours of the analytic
posterior for comparison. Both experiment 1 and experiment 1 (MCMC) (figures
and produced samples that matched the analytic posterior very closely,
demonstrating that when the summary statistics are sufficient, both MC ABC
samplers are capable of producing good approximations to the model posterior. All
other choices of (non-sufficient) summary statistic produced joint posteriors that
were inferior when compared with the posterior generated using sufficient statistics,
indicating that the non-sufficient summaries used did not capture as much paramet-
ric information contained within the model observations as the sufficient statistics
did. This is particularly evident in the case of the diffusion parameter, oc—all
semi-automatic approaches to constructing data summaries, as well as EM based
summary statistics failed to produce accurate inferences about this parameter. The
MA based summary statistics were significantly more informative, leading to joint
posteriors that more closely resembled the analytic posterior, although it appears
that there may be a small upward bias in estimates of the diffusion parameter
obtained with this choice of statistic.

To further examine the quality of the samples derived via the two MC ABC sam-
plers, figures and compare the marginal posterior densities produced via
the two MC ABC samplers with the analytic marginal posteriors. Once again, the
experiments utilising sufficient statistics produces extremely good approximations
to the true marginal posteriors, with very little discrepancy between the approxi-
mate and exact densities. In each of the other experiments utilising non-sufficient

summary statistics, the densities derived via Tempered ABC SIS appear to yield
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better approximations to the true posterior than the ABC MCMC sampler, par-
ticularly when semi-automatic summary statistics were used (experiments two,
three, six, seven and eight). Figure clearly demonstrates that all methods of
constructing summary statistics for the diffusion parameter, with the exception
of the MA based statistics, are ineffective. The MA based summary statistics are
able to capture some information relating to the diffusion parameter, o; however,
as mentioned previously, there seems to be a small bias present in the empirical
posterior densities derived using this statistic, with the mode of the empirical
posterior (the maximum a posteriori (MAP) estimate) located slightly to the right
of the analytic MAP in all densities produced via this statistic.

Having generated our approximations to the model’s posterior distribution, we
now demonstrate how one might go about constructing predictions about the
future state of the process, given the historical observations used in the parameter
estimation stage of the analysis. The posterior predictive density (PPD), which we
will denote by f(S|S), where S represents historical observations from the model,
is the predictive density of a new independent set of observables, S, generated from
the model , conditional on information contained in the actual observations
Gilks et al. (1996]). In frequentist statistics, one might first obtain the optimal
parameter estimate (via maximume-likelihood, or via some other technique such
as moment matching) and then generate many traces from the model using these
parameter estimates in order to build up a picture of how the process might evolve
in the future; however, this approach fails to take into account the uncertainty in
the parameter estimates themselves—this approach generates an empirical sample
from the distribution of the process conditioned on one particular parameter value.

In contrast, the PPD can be used to evaluate the distribution of new observations
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that takes into account the uncertainty in the model parameters in addition to the

stochasticity of the model itself. The PPD is computed as:

f@azfﬂiwme

D(0)
~ [ 118138

D(0)
where 7(0|S) represents the posterior density of parameters. From this expression,
one sees that the PPD averages the conditional distribution of new observations
against the posterior knowledge about the observables, which is encapsulated in
the posterior distribution of parameters. In Figure [5.28| we illustrate the credible
intervals of the PPD of four years’ worth of new data generated from the GBM
model, using the best approximation to the model posterior obtained during the
numerical experimentﬂ. We also overlay the observations used to generate our
posterior density approximations, denoted by the red line. One clearly observes
that the model observations, S, used to generate the model posterior (the red line
in Figure are well within the 95 percent PPD credible intervals, indicating

that the model fits the observed data well™]

15The results obtained from Tempered ABC SIS experiment 8 were used to generate this data.

16Note that in this experiment the observed data were generated from , and so one would
expect the model to fit the data well. This sort of model checking becomes useful when one
attempts to fit a model to extraneous data, e.g. observations of some market variable such as a
share price quoted on an exchange
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Joint posterior comparison: experiment 1
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Figure 5.8: Contour plot of the analytic posterior (solid black line) overlaid with the
empirical samples from the posterior derived via Tempered ABC SIS with sufficient
summary statistics. The correlation structure of the ABC posterior matches the
true posterior’s correlation structure well, indicating that the sampler is effective
provided good summary statistics can be found for the model.
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Joint posterior comparison: experiment 1 (MCMC)
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Figure 5.9: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via ABC MCMC with sufficient
summary statistics. As in figure[5.8 the empirical distribution matches the analytic
distribution closely.
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Joint posterior comparison: experiment 2
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Figure 5.10: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via Tempered ABC SIS with
semi-automatic summary statistics derived using least squares regression.
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Joint posterior comparison: experiment 2 (MCMC)
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Figure 5.11: Contour plot of the analytic posterior (solid black line) overlaid
with the empirical samples from the posterior derived via ABC MCMC with
semi-automatic summary statistics derived using least squares regression.
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Joint posterior comparison: experiment 3
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Figure 5.12: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via Tempered ABC SIS with
semi-automatic summary statistics derived using the lasso.
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Joint posterior comparison: experiment 3 (MCMC)
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Figure 5.13: Contour plot of the analytic posterior (solid black line) overlaid
with the empirical samples from the posterior derived via ABC MCMC with
semi-automatic summary statistics derived using the lasso.
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Joint posterior comparison: experiment 4
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Figure 5.14: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via Tempered ABC SIS with
semi-automatic summary statistics derived by linear regression using EM based
summary statistics as explanatory variables.
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Joint posterior comparison: experiment 4 (MCMC)
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Figure 5.15: Contour plot of the analytic posterior (solid black line) overlaid
with the empirical samples from the posterior derived via ABC MCMC with semi-
automatic summary statistics derived by linear regression using EM based summary
statistics as explanatory variables.
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Joint posterior comparison: experiment 5
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Figure 5.16: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via Tempered ABC SIS with EM
based summary statistics.
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Joint posterior comparison: experiment 5 (MCMC)
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Figure 5.17: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via ABC MCMC with EM based
summary statistics.
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Joint posterior comparison: experiment 6
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Figure 5.18: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via Tempered ABC SIS with
semi-automatic (regression) summary statistic for the drift parameter and a MA
based summary statistic for the diffusion coefficient.
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Figure 5.19: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via ABC MCMC with semi-
automatic (regression) summary statistic for the drift parameter and a MA based

Joint posterior comparison: experiment 6 (MCMC)

summary statistic for the diffusion coefficient.
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Joint posterior comparison: experiment 7
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Figure 5.20: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via Tempered ABC SIS with
semi-automatic (lasso) summary statistic for the drift parameter and a MA based
summary statistic for the diffusion coefficient.
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Joint posterior comparison: experiment 7 (MCMC)
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Figure 5.21: Contour plot of the analytic posterior (solid black line) overlaid
with the empirical samples from the posterior derived via ABC MCMC with
semi-automatic (lasso) summary statistic for the drift parameter and a MA based
summary statistic for the diffusion coefficient.
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Joint posterior comparison: experiment 8
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Figure 5.22: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via Tempered ABC SIS with
semi-automatic (regression) summary statistic, with EM based summary statistics
being used as explanatory variables, for the drift parameter and a MA based
summary statistic for the diffusion coefficient.
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Joint posterior comparison: experiment 8 (MCMC)

<
g
™
2 4
AN
o 3
—
age
- *  ABC MCMC sample
o | Analytic posterior

I I I I I
0.0 0.1 0.2 0.3 0.4

U

Figure 5.23: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via ABC MCMC with semi-
automatic (regression) summary statistic, with EM based summary statistics being
used as explanatory variables, for the drift parameter and a MA based summary
statistic for the diffusion coefficient.
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Joint posterior comparison: experiment 9
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Figure 5.24: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via Tempered ABC SIS with an
EM based summary statistic for the drift parameter and a MA based summary
statistic for the diffusion coefficient.
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Joint posterior comparison: experiment 9 (MCMC)
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Figure 5.25: Contour plot of the analytic posterior (solid black line) overlaid with
the empirical samples from the posterior derived via ABC MCMC with an EM
based summary statistic for the drift parameter and a MA based summary statistic
for the diffusion coefficient.
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Figure 5.26: Plots of the marginal drift densities derived via Tempered ABC SIS
(blue) and ABC MCMC (red) and the analytic marginal posterior (black dotted

line).
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Figure 5.27: Plots of the marginal diffusion densities derived via Tempered ABC
SIS (blue) and ABC MCMC (red) and the analytic marginal posterior (black dotted

line).
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Figure 5.28: Posterior predictive density of five years’ worth of new data, conditional
on the observations used for inference. The black line represents the median of the
PPD, the green area represents the inter-quartile range, and the yellow regions
represent the ranges between the 5th and 25th, and the 75th and 95th percentiles.
The red line represents the observations that were used to generate our samples
from the posterior distribution of parameters via Temepered ABC SIS and ABC
MCMC.

5.5.2 CIR model

In this section we present the results of 28 different numerical experiments: 14
different combinations of summary statistics, given in Table [5.2] were used to derive
samples from the ABC approximated posterior using the Tempered ABC SIS and
the adapted ABC MCMC samplers that were introduced in the previous chapter.
We label each experiment using the same format that was used to label the GBM

model experiments, e.g. experiment 3 refers to the results associated with the
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Tempered ABC SIS sampler, using a semi-automatic summary statistic for the
mean reversion rate, the sample mean statistic for the mean reversion level, and
the moving average based statistic for the diffusion parameter. We first present the
two dimensional marginal posterior samples obtained from our ABC experiments,
overlaid with contours of the analytic two dimensional posterior distribution, in
order to assess the quality of the sampling algorithms. Due to the large number
of marginal posterior plots (84 in total: 3 two dimensional marginal plots per
experiment and 28 different experiments), we will present the marginal posterior
plots for the best results obtained via the Tempered ABC SIS and adapted ABC
MCMC samplers, and include the remaining plots in Appendix at the end of

this chapter.
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2D marginal comparison: experiment 2
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Figure 5.29: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered
ABC SIS (red data points) for the mean reversion rate and mean reversion level
parameters. The mean-gradient, sample mean, and MA statistics were used for the
mean reversion rate, mean reversion level, and diffusion parameters respectively.
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2D marginal comparison: experiment 2
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Figure 5.30: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS (red data points) for the mean reversion rate and diffusion parameters. The
mean-gradient, sample mean, and MA statistics were used for the mean reversion
rate, mean reversion level, and diffusion parameters respectively.
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2D marginal comparison: experiment 2
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Figure 5.31: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS (red data points) for the mean reversion level and diffusion parameters. The
mean-gradient, sample mean, and MA statistics were used for the mean reversion
rate, mean reversion level, and diffusion parameters respectively.
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2D marginal comparison: experiment 12 (MCMC)
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Figure 5.32: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via adapted ABC
MCMC (red data points) for the mean reversion rate and mean reversion level
parameters. The OLS, semi-automatic (lasso), and MA statistics were used for the
mean reversion rate, mean reversion level, and diffusion parameters respectively.
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2D marginal comparison: experiment 12 (MCMC)
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Figure 5.33: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via adapted ABC
MCMC (red data points) for the mean reversion rate and diffusion parameters. The
OLS, semi-automatic (lasso), and MA statistics were used for the mean reversion
rate, mean reversion level, and diffusion parameters respectively.
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2D marginal comparison: experiment 12 (MCMC)
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Figure 5.34: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via adapted ABC
MCMC (red data points) for the mean reversion level and diffusion parameters. The
OLS, semi-automatic (lasso), and MA statistics were used for the mean reversion
rate, mean reversion level, and diffusion parameters respectively.

199



From Figure [5.29 one can see that the Tempered ABC SIS sampler was able to
successfully recover the correct location and general shape of the marginal posterior
distribution of the mean reversion rate and diffusion parameters. The empirical
distribution is slightly more diffuse compared to the analytic posterior, which is
to be expected given that our ABC approximation assumes additional Gaussian
randomness in the data generating process (see equation . Similarly, Figure m
illustrates that the Tempered ABC SIS sampler was able to recover the location
and shape of the marginal posterior associated with the mean reversion rate and
diffusion parameters. As was the case with the estimation of the diffusion parameter
in the GBM model covered previously, the MA statistic appears to yield slightly
biased samples from the posterior, with most of the data points lying marginally
above the location of the mode of the true posterior. Figure [5.31] reinforces these
conclusions—the sample points from the ABC approximated posterior are clustered
around the true posterior, with a slight positive bias evident in the sampled diffusion
parameter values.

Empirical parameter distributions obtained via adapted ABC MCMC sampling,

illustrated in Figures[5.32] 5.33] and[5.34], are represent good quality approximations

to the analytic posterior. Indeed, the marginal posterior in Figure is more
concentrated around the location of the analytic contours than the empirical sample
obtained via Tempered ABC SIS sampling. The semi-automatic summary statistic
derived via lasso regression also performed very well, producing an empricial sample
that is highly concentrated around the analytic posterior. The reader is referred to
the Appendix for the remaining two dimensional marginal posterior plots.

We now present the one dimensional marginal posterior approximations for all 28
experiments. Experiments 1, 2, and 3 yielded the most promising results, with

both the Tempered ABC SIS and adapted ABC MCMC samples recovering the
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analytic posterior densities. Empirical results for the mean reversion level and
diffusion parameters were very promising, suggesting that even in the absence of
sufficient summary statistics, and despite the non-zero similarity kernel variance,
e, that was used in the ABC likelihood approximation, both ABC samplers can
accurately recover the analytic marginal posterior densities for these parameters.

Consonant with the results section relating to the GBM model, we now present the
PPD plot for the CIR model. To reiterate: the PPD represents the density of newly
simulated data from the model, conditional on the pre-existing model observations.
PPD plots can be very useful when making predictions about the distribution of
newly simulated data from the model, given the historical data that has already
been observed, and explicitly take into account the uncertainty surrounding the
‘true’ parameter values. In the context of quantitative risk management in finance,
it is extremely important to capture different types of risk when making predictions
about the future evolution of key state variables; failing to take into account
parameter risk when generating Monte Carlo scenarios could lead to inadequate
capital being set aside to absorb future financial shocks, the consequences of which

could be very serious.
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Figure 5.35: Plots of the marginal mean reversion rate posterior densities derived
via Tempered ABC SIS (blue) and ABC MCMC (red), and the analytic marginal
posterior (black dotted line).
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Figure 5.36: Plots of the marginal mean reversion level posterior densities derived
via Tempered ABC SIS (blue) and ABC MCMC (red), and the analytic marginal
posterior (black dotted line).
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Figure 5.37: Plots of the marginal diffusion posterior densities derived via Tempered
ABC SIS (blue) and ABC MCMC (red), and the analytic marginal posterior (black
dotted line).
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Figure 5.38: Plots of the marginal densities of the mean reversion rate parameter,
derived via Tempered ABC SIS (blue) and ABC MCMC (red) and the analytic
marginal posterior (black dotted line).
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Figure 5.39: Plots of the marginal densities of the mean reversion level parameter,
derived via Tempered ABC SIS (blue) and ABC MCMC (red) and the analytic
marginal posterior (black dotted line).
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Figure 5.40: Plots of the marginal densities of the diffusion parameter, derived
via Tempered ABC SIS (blue) and ABC MCMC (red) and the analytic marginal
posterior (black dotted line).
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Figure 5.41: Posterior predictive density of five years’ worth of new data from
the CIR model, conditional on the observations used for inference. The black line
represents the median of the PPD, the green area represents the inter-quartile
range, and the yellow regions represent the ranges between the 5th and 25th, and
the 75th and 95th percentiles. The red line represents the observations that were
used to generate our samples from the posterior distribution of parameters via
Temepered ABC SIS and ABC MCMC.

5.6 Discussion & summary

In this chapter we provided an overview of the models chosen to test the MC ABC
samplers presented in the previous chapter, and explained the rationale behind the
choice of these models in particular, namely that they are very well known and can
be solved analytically which makes assessing the effectiveness of the samplers easier.

We then presented some background theory on summary statistics, and reiterated
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the need to utilise summary statistics in order to reduce the dimensionality of
the data and maintain the efficiency of the samplers. The various methods of
constructing summary statistics were presented, before outlining the experiment
set up and discussing the practical issues relating to the experiments, e.g. choosing
sampler parameters such as the similarity kernel variance. Finally, the results
of the various numerical experiments were presented, which indicated that both
MC ABC samplers were able to reproduce reasonably good approximations to the
true posterior with certain combinations of summary statistics, for both models
considered in this chapter. The semi-automatic summary statistics were able to
capture information about the drift parameters of the GBM model, but were not
useful when it came to the estimation of the parameter in the diffusion coefficient
of . A potential avenue for further investigation might be to try constructing
semi-automatic summary statistics by regressing against different functions of the
observed data, e.g. using f(D) = (D, D? ..., D¥) as explanatory variables in
the regression. This approach seemed to work relatively well when we applied
it during the CIR model estimation exercise to capture information about the
mean reversion rate and mean reversion level. One potential problem associated
with this approach is that data sets associated with financial models are often
large, which makes the regression stage difficult due to there being a large number
of explanatory variables being fitted, e.g. in order to produce reasonably stable
regression coefficients it is generally a good idea to ensure that the number of
parameters and corresponding data sets used in the regression be a multiple (of
perhaps ten or fifteen) of the number of predictor variables (which is just the size
of the time series of observations in this case), which means that the design matrix
of the regression may be very large, potentially leading to computational issues.

With this consideration in mind, it may be neccessary to use the lasso if regressing
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against a very large number of predictor variables. The moving average based
statistic seemed to perform well in both Tempered ABC SIS and the adapted
ABC MCMC samplers, with the relatively sharp peak of the marginal posterior
for the diffusion parameter roughly coinciding with the peak of the true marginal
posterior. As noted previously, there does seem to be a bias in the empirical
densities produced with this statistic, observed in the parameter estimates of the
GBM model and the CIR model; however, it is by far the most informative choice
of data summary for the diffusion parameters estimated in this thesis. The other
ad hoc summary statistics that were tested for each model had mixed results—the
mean reversion level parameter in the CIR model was easily identified using a
variety of summary statistics, but the statistics associated with the mean reversion
rate of the CIR model produced results of varying quality. Specifically, the choice
of summary statistics used for the estimation of other parameters seemed to affect
the performance of the summary statistics associated with the mean reversion rate.
A natural extension of this work would be to test the ABC sampling techniques
against more challenging models; both the GBM and CIR models are univariate,
and formulating summary statistics based on an intuitive interpretation of the
model parameters was a luxury that would not be available to the statistician if
larger models were to be estimated using the ABC sampling techniques developed in
this thesis. It is clear that the applicability of ABC based samplers to larger models,
with larger numbers of parameters, will depend crucially on the ability to construct
informative statistics from the observed data—a task the merits investigation on

its own.
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5.7 Appendix A

In this appendix we explicate the steps involved in constructing the EM based non-
sufficient summary statistics associated with the CIR model. The steps followed are
exactly the same as those taken in constructing the EM statistics associated with

the GBM model (5.2)). First, we discretise ([5.3]) to obtain the EM approximation
Ry — R = a(8 — R)At + vR*AB,,
which implies that the transition density of the approximation is Gaussian

fer (Riesa|Ri, 0) ~ N (u(Ry; 0), 0% (Ry; 0)),

where

W(Ry; 0) = af + Re(1 — @), o*(Ry;0) = V2 AtRy,

and aff = aBAt, @ = aAt. Substituting this expression into the formula for the
likelihood of the data, which is given by ([5.8)), we obtain the following expression

for the likelihood function associated with the EM approximated model

fea(R|9) = (2nAt)~N/? (H —1/2> (5.10)

N —
_ -1 (Rk — Oéﬁ - Rk,1(1 — C_Y))2
N
voep { 202 At Zk:l Ry ’

where R = {Ry, Ry, ..., Rn} represents the vector of N + 1 observations. By

utilising the factorisation criterion introduced earlier (see (9)), one observes that

expression ([5.10) above can be factorised into the product of two functions: one
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dependent solely on the data (no parameter dependence), and one that depends on

the parameters and various functionals of the data, i.e.

where

N

o(S(R).6) = v eXp{ S (e R a>>2}

2
202 At 1 Rk—l

N
W(R) = (2rAt) 2] R

k=1

By rearranging the function g, we obtain the following four EM statistics for the

CIR model
N
Ti(R) =) RiR., W (5.11)
k=1
- (5.12)

T)(R)=) R
T, (R)=)> R

5.8 Appendix B

We present the remaining results from the CIR parameter estimation exercises

below.
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Figure 5.42: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion rate and

mean reversion level parameters.



2D marginal: experiment 5
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Figure 5.43: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion rate and

mean reversion level parameters.



2D marginal: experiment 8
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Figure 5.44: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion rate and

mean reversion level parameters.
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Figure 5.45: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion rate and

mean reversion level parameters.
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Figure 5.46: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion rate and

diffusion parameters.
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Figure 5.47: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion rate and
diffusion parameters.
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Figure 5.48: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion rate and
diffusion parameters.
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Figure 5.49: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion rate and
diffusion parameters.
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Figure 5.50: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion level and
diffusion parameters.
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Figure 5.51: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion level and
diffusion parameters.
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Figure 5.52: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion level and
diffusion parameters.
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Figure 5.53: Contour plot of the analytic marginal posterior (solid black line)
overlaid with the empirical samples from the posterior derived via Tempered ABC
SIS and adapted ABC MCMC (red data points) for the mean reversion level and
diffusion parameters.
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Chapter 6

Conclusion

6.1 Review

In the course of this thesis we have investigated problems concerning both the design
of numerical simulation schemes and parameter estimation methods for SDEs. In
Chapter 2| we studied the class of SDEs with linear mean reverting drift and CEV
diffusion coefficients (see (2.1))), introducing a drift-implicit numerical approxima-
tion scheme that we used to prove the strong convergence of the numerical scheme
to the true solution and to provide a lower bound on the rate of strong convergence.
Establishing the strong convergence properties of numerical approximations to
SDEs is not only a challenging mathematical task, but very important from a
practical perspective, e.g. in situations where one has to price path dependent
options by Monte Carlo methods, it is the strong convergence properties of the
numerical approximation schemes that are relevant when considering the accuracy
of the approximated price.

In Chapter |3| we switched focus to the problem of parameter estimation in the
context of SDEs. We focussed our analysis on a highly non-linear SDE that has

been suggested as a model for the instantaneous, nominal rate of interest, which
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we referred to as the Ait-Sahalia (AS) short rate model. We presented a new
method of estimating the parameters of the AS SDE, the development of which
was based on the insight that when simulating SDEs numerically, drift-implicit
discretisation schemes often retain some important qualitative properies possessed
by the analytic solution of the SDE. We tested the new method of parameter
estimation against a standard estimation technique and found that both methods
of estimation were unsatisfactory. Following this conclusion, we presented some
analysis to further examine why the parameter estimation techniques performed
so poorly, and discovered parameter identifiability problems with the model itself;
in particular, there were a large number of parameter values that could credibly
have given rise to the data. This conclusion motivated a discussion regarding
the effectiveness of standard, likelihood based inference, and whether a Bayesian
approach to parameter estimation might represent a more appropriate approach.

Following the conclusions of Chapter |3} we began Chapter [4] by introducing Bayesian
inference and discussing the pros and cons of the Bayesian approach relative to the
likelihood based approach to parameter estimation. We then discussed approxi-
mate Bayesian computation (ABC) and its usefulness when it comes to estimating
complicated stochastic models that are intractible. After presenting a summary of
the standard ABC sampling algorithms in the literature, we proposed some new
ABC based samplers that were capable of deriving samples from an approximation
to the model posterior without any knowledge of the model likelihood.

In Chapter 5| we applied our newly developed ABC samplers to two test cases
that are representative of the sort of models commonly encountered in financial
applications. We spent time discussing the need for summary statistics that are
capable of condensing the information contained within observed data into a smaller

dimensional object, and proposed various methods of constructing such statistics
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when the data are assumed to come from SDEs. We then applied our newly devel-
oped ABC sampling algorithms (Tempered ABC SIS and adapted ABC MCMC)
to two widely used models in mathematical finance, geometric Brownian motion
and the square root process, and presented the resulting approximate posterior
distributions alongside the analytic solutions in order to assess the quality of the
respective approximations. Both of the newly developed ABC samplers were able to
produce good approximations to the model posterior, for both geometric Brownian
motion and the square root process. This was the first time (to our knowledge)
that ABC methods have been used to estimate the parameters of SDEs, and the
promising results obtained suggest that, with further work, this approach to model

estimation could be extremely useful in practice.

6.2 Avenues for further research

While investigating the efficacy of the ABC samplers presented in Chapter [4] it
became clear that the applicability of ABC to the problem of estimating the param-
eters of SDEs was critically dependent on being able to construct low dimensional
summary statistics from the data. Without summary statistics, Tempered ABC
SIS produced highly degenerate samples from the approximate posterior, and
the adapted ABC MCMC sampler produced Markov chains that exhibited very
poor mixing. The estimation results obtained for the GBM model using sufficient
summary statistics clearly demonstrate that both ABC samplers presented in this
thesis are capable of producing very high quality approximations to the true model
posterior, but when less informative summary statistics were utilised in the ABC
samplers the results were, unsurprisingly, of lower quality. The results relating
to the square root process are consistent with this observation. In the examples

considered in Chapter |5 we were able to construct summary statistics for each
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model parameter by considering the role each model parameter plays in determin-
ing the dynamics of the modelled process. For example, the mean reversion level
parameter of the square root process can be interpreted as the long run level to
which the process tends to drift over time, which suggests that the sample mean
of the observations should contain information about this parameter. While this
approach is possible for some simpler models, it is generally not possible to attach a
physical interpretation to the parameters associated with more complicated models
(e.g. multidimensional SDEs), and therefore this method of summary statistic
construction may not be available in general. For this method of parameter estima-
tion to be applicable to larger, more complex models (for which a likelihood free
method of parameter estimation would be most valuable), more general methods
of constructing summary statistics need to be developed. As was pointed out in
Chapter [5| |[Fearnhead and Prangle| (2012) have developed a semi automatic proce-
dure for constructing summary statistics, which we applied with mixed success in
the parameter estimation case studies in Chapter [5]] While this method of statistic
construction worked well for some parameters, it failed to produce informative
statistics for others, especially those found in the diffusion coefficient of the SDEs.
To our knowledge there are no other generic procedures for constructing summary
statistics in the literature, and therefore this challenge represents an interesting
topic that merits further investigation. If a generic procedure for summary statistic
construction can be developed, ABC parameter estimation could become one of

the most flexible and powerful methods of calibrating models to data.
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