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Abstract

Understanding and improving humance performance, especially in situations that re-

quire safety, productivity, and well-being, relies on categorising mental workload (MWL).

Traditional methods for measuring MWL, such as in driving and piloting, have given

us some understanding, but these methods must accurately distinguish between low

and high workload levels. Excessive work can tyre participants, while insufficient work

can make them bored and inefficient.

Traditional MWL assessment tools, such as questionnaires, sometimes make it

harder for people to manage their MWL, especially when they struggle to express

or understand their thoughts and feelings. The recent work shift to neurophysiological

signals, specifically electroencephalogram (EEG), provides a promising way to mea-

sure brain activity related to MWL non-invasively. Advanced techniques such as deep

learning have made it easier to study EEG signals in more detail.

Our goal was to develop a clear and consistent approach for using EEG signals to

classify MWL effectively. Our approach focused on each process stage, from preparing

the data to evaluating the model and addressing common mistakes and misunderstand-

ings in current techniques.

The first study addresses the challenges of using EEG data contaminated by arte-

facts for assessing MWL. EEG signal artefacts, such as eye movement or muscle activity,

can skew MWL assessment. Recently, there has been significant progress in using deep

learning models to interpret EEG signals, but the challenge remains. The preprocessing

pipeline for EEG artefact removal is broad and inconsistently adopted; some pipelines

are time-consuming and contain human intervention steps, so they are unsuitable for

automation systems. Therefore, this study focused on automatic EEG artefact removal
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for deep learning analysis. Furthermore, we examined the impact of various preprocess-

ing techniques on the effectiveness of deep learning models in classifying MWL levels.

We used state-of-the-art models such as Stacked LSTM, BLSTM, and BLSTM-LSTM,

and found that certain techniques—specifically, the ADJUST algorithm—significantly

enhanced model performance. However, the sophisticated models could extract relevant

information from raw data, indicating a reduced need for preprocessing.

The second study shifted the focus to channel selection to refine the automation of

MWL classification and reduce unnecessary computational expenses by using unnec-

essary electrodes, aligning more closely to real-world applications. We prioritised the

best electrode setup focusing on brain activity related to MWL. We removed unneces-

sary data using Riemannian geometry, an effective method for EEG channel selection.

We aimed to balance information sufficiency with computational efficiency and to re-

duce the number of electrodes. The study also evaluated covariance estimators for

Riemannian geometry for their effectiveness in channel selection and impact on deep

learning models for MWL classification, as the traditional Empirical Covariance (EC)

has limitations for the EEG signal.

Finally, the third study tackled a critical but frequently overlooked aspect of MWL-

level classification using machine learning or deep learning techniques: the temporal

nature of EEG signals. We underscored that the traditional cross-validation technique

violates the sequential nature of time series data, leading to data leakage, model over-

fitting, and inaccurate MWL assessment. Specifically, to predict the subject’s MWL

level, we could not randomly split data and use future data to train the model and pre-

dict the previous MWL level. To address this problem, this study focused on the model

training phase, specifically on the importance of time series cross-validation methods.

We adopted the expanding window and rolling window strategies, finding that using

the expanding window strategy outperformed those using the rolling window strategy.

This research carefully developed a comprehensive and consistent method for clas-

sifying MWL using EEG signals. We aimed to correct misunderstandings and set a

standard in brain-computer interface (BCI) systems. This will help guide future re-

search and development efforts.
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Chapter 1

Introduction

Mental workload (MWL) is a critical factor in many aspects of human life, including

attention disorders in children [125], study design [168, 256], driving fatigue [88, 241],

and task performance [230]. MWL arises from a variety of factors, such as multitasking

[134]. When individuals engage in multiple tasks that require visual and auditory input

simultaneously, their MWL increases [6]. Some multitasking tasks, such as walking and

talking, are more manageable for people in normal health than others, such as using

a phone while driving, which can significantly increase MWL and even cause road

traffic incidents [162, 207]. Other factors that can strain attention and increase MWL

include the complexity of a task, time pressure, and environmental distractions [14].

To cope with these demands, individuals use skills such as memory, planning, and

experience [215].

The relationship between MWL and performance is complex and nonlinear. When

faced with more demanding tasks, people tend to increase their effort and use more

effective strategies to meet the challenge [82]. However, this compensatory behaviour

has limits; too much workload can lead to distractions, decreased processing capacity,

and divided attention. On the other hand, too little workload can lead to inattention,

decreased alertness, and even drowsiness [205]. Therefore, the optimal MWL is neither

too high nor too low, but rather at a level where performance is best [69].

To measure MWL level and determine whether it is too low, at a good level, or

too high, we can use specific measurement tools, such as performance-based measures,

2



Chapter 1. Introduction

subjective measures, physiological measures, and neurophysiological measures [173].

Performance-based measures assess performance on a task or set of tasks, such as

the time it takes to complete a task or the number of errors made. A decrease in

performance can indicate a high MWL [25], but performance-based measures can be

affected by other factors, such as motivation and fatigue. Therefore, it is important

to use them in conjunction with other measures, such as subjective measures and

neurophysiological measures [218].

Subjective measures assess the participant’s own perception of their MWL using a

questionnaire. The most commonly used questionnaires include the Task Load Index

(NASA-TLX) [71], Subjective Assessment Technique (SWAT) [173], and the Workload

Profile [208]. These multidimensional questionnaires measure the overall workload dur-

ing task performance. They require participants to evaluate and articulate their work-

load. However, subjective measures have some limitations. The boundary between too

low and too high MWL is often blurred for some people, making it difficult to deter-

mine if the workload is excessive or inadequate [237]. Additionally, self-reporting can

be complex, difficult to understand, and influenced by the participant’s competence,

talents, and effort, potentially increasing their MWL [131].

While physiological measures, such as electrooculography (EOG) [26, 66], electro-

cardiogram (ECG) [74,245] heart rate, blood pressure, and skin conductance, are used

to assess the body’s physiological responses to stress [38], they have limitations. For in-

stance, EOG and ECG are non-invasive and portable, but they are not directly related

to brain activity [58, 61]. Moreover, changes in physiological measures can be caused

by physical exertion, emotional arousal, and environmental stressors [194], making it

challenging to distinguish between MWL and other sources of physiological arousal.

Despite these challenges, MWL assessment remains a valuable tool for researchers

aiming to elucidate its characteristics. Thus, many have turned to neurophysiological

measures to assess the activity of the brain and nervous system. Specifically, brain sig-

nal activity has been evaluated using various neuroimaging techniques such as magne-

toencephalography (MEG) [200], functional magnetic resonance imaging (fMRI) [126],

functional near-infrared spectroscopy (fNIRS) [75], and notably, electroencephalogra-
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phy (EEG) [26].

Each neurophysiological signal has its own set of advantages and limitations. For

example, MEG and fMRI are capable of measuring brain activity and have high tempo-

ral and spatial resolution, respectively. Yet, they are not suitable for all environments,

and they are not only cumbersome and expensive but also require specialised equip-

ment [130]. fNIRS, which is relatively inexpensive and portable, can measure brain

activity in different brain regions. However, it has low spatial resolution and is prone

to artefacts from blood flow and movement. EEG, which is also portable, can measure

brain activity with a high temporal resolution, making it ideal for detecting subjects’

MWL levels in real-time. Additionally, when considering response time, EEG is gen-

erally superior to fNIRS. Among these neurophysiological signals, EEG is frequently

preferred in human-computer interaction contexts with regard to its non-invasive na-

ture and high temporal resolution, allowing for millisecond-scale measurements [117].

Its popularity is further enhanced by its strong correlation with a person’s real-time

MWL status [204].

EEG data is unique in that it is time series data [105], meaning that it consists of

a sequence of data points recorded at successive, equally spaced intervals in time. This

property captures the dynamic shifts in the brain’s electrical activity over time [105].

Time series data, particularly EEG data, has the potential to yield valuable insights

into underlying brain functions because it can capture temporal patterns and trends.

This characteristic is particularly important in tasks where continuous monitoring of

brain activity is needed, such as detecting seizures [181], monitoring sleep stage [90],

or assessing cognitive workload [46]. In order to accurately analyse and interpret EEG

data, it is crucial to have a good grasp of its time series nature and be able to utilise

appropriate analysis methods accordingly.

Traditional machine learning techniques have been used to predict MWL level from

EEG signals, such as linear discriminant analysis (LDA), support vector machines

(SVM), k-nearest neighbours (KNN), and random forest remain effective baselines in

the literature [76,180,187]. These models offer the advantage of being generally easier

to train and interpret than deep learning models. However, they might face challenges
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when dealing with the complex, non-linear relationships of EEG data. Artificial neural

networks (ANNs) are the main component of deep learning, a specialised subfield of ma-

chine learning that takes cues from the structure and function of the human brain [232].

This method is particularly effective for monitoring, forecasting, and managing MWL

in real-time because it can extract complex correlations from huge amounts of informa-

tion. Deep learning models can be used to identify people’s MWL, making systems more

flexible and effective. So, deep learning models have recently emerged as a promising al-

ternative. This enables continuous measurement and classification of MWL, paving the

way for more responsive and adaptive brain-computer interfaces (BCI) in the future.

Crucially, distinguishing between different MWL levels—low, medium, and high—is

essential for measuring the effectiveness of BCI [108].

Traditional machine learning techniques, such as linear discriminant analysis (LDA),

support vector machines (SVM), k-nearest neighbours (KNN), and random forest [76,

180,187], have been used to predict MWL levels from EEG signals. These models offer

the advantage of being generally easy to train and interpret, but they do struggle to

handle the complex, non-linear patterns in EEG data. Deep learning, a specialised

subset of machine learning inspired by the human brain, utilises artificial neural net-

works (ANNs) [232]. The model excels in real-time monitoring, forecasting, and man-

aging MWL due to its ability to extract complex correlations from large amounts of

data. As a result, deep learning models have attained significant progress in MWL

level prediction, advancing the adaptability and performance of systems [85, 98, 230].

These models are becoming a viable alternative, offering continuous MWL measure-

ment and classification and setting the stage for the evolution of more intuitive and

flexible BCI [108]. Recent advancements in deep learning have led to the development

of sophisticated models capable of discerning subtle fluctuations in EEG signals, with

the primary aim of accurately categorising MWL levels. Models such as the Recurrent

Neural Network (RNN) [116], Long Short Term Memory [109], and Bidirectional Long

Short-Term Memory-Long Short Term Memory (BLSTM-LSTM) [36] are leading the

way in this domain.

However, employing EEG signals in deep learning is not straightforward. A major
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challenge is the susceptibility of EEG signals to noise and other disturbances [223],

which can originate from both physiological and external sources [87]. Given the preci-

sion and sensitivity of EEG, maintaining data integrity becomes paramount. Artefact

removal is, therefore, an indispensable preprocessing step, meticulously filtering out

anomalies to preserve the data’s authenticity and ensure a superior signal-to-noise ra-

tio, which bolsters the performance of subsequent analytical models [209]. Despite the

importance of artefact removal, numerous studies in deep learning that employ EEG

signals often neglect to follow a standardised protocol for data cleaning. This lack of

uniformity in data preprocessing raises two primary concerns. First, it makes it diffi-

cult to accurately assess the true effectiveness of deep learning models, as the results

may be confounded by differences in the data preprocessing methods used. Second, it

prevents researchers from comparing findings across different studies, even when they

have used data from the same experiments. Therefore, the ongoing pursuit of a stan-

dardised approach for removing artefacts from EEG data in deep learning applications

remains a significant and unresolved challenge.

Building models for MWL classification is challenging [234]. In deep learning, too

much data can cause overfitting, where models perform well on the training data but

poorly on new data. Conversely, too little data can prevent models from learning the

underlying patterns effectively [55]. This balance between data abundance and scarcity

is especially relevant when considering the sources of the data. In the context of EEG

signals acquisition, data can be captured using portable devices or EEG caps with

multiple electrodes (channels) [213]. Introducing too many variables or features from

similar sources can introduce redundancy in deep learning, leading to issues such as

multicollinearity [37]. Therefore, for optimal results, it is crucial to select only the EEG

channels that are specifically relevant to MWL, which can improve both data quality

and the efficiency of model training.

The challenge of redundancy data in deep learning models can often lead to over-

fitting [55], especially during the evaluation phase. To tackle this problem, cross-

validation techniques are typically adopted. However, with different datasets and study

objectives, each strategy needs to be carefully considered. In the case of EEG signals,
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which are time series data, traditional CV approaches such as shuffling and random

splitting can lead to an unreliable model due to overfitting [35]. This challenge is even

more pronounced in forecasting tasks, where the model must not be able to see the

future data during training. Therefore, a tailored cross-validation strategy for time

series EEG data in MWL level classification is urgently needed.

In the following chapters, we explore these facets in depth, aiming to advance our

understanding of MWL through EEG data with sophisticated computational tech-

niques. This research aims to identify MWL levels experienced by users during various

cognitive tasks using EEG signals. It highlights the potential of EEG as an objective,

real-time tool for MWL assessment. The study focuses on several aspects, including

EEG preprocessing, deep learning model application, and thorough model evaluation

using time series cross-validation.

1.1 Research Motivations and Aims

The increasing prevalence of high-stress professions and complex tasks requires accu-

rate and objective MWL assessment. Consequently, there is a compelling need for non-

invasive, objective methods to measure MWL. As mentioned earlier, existing methods

to assess MWL, such as performance-based metrics, subjective evaluations, physio-

logical indicators, and neurophysiological metrics [173], each have their strengths and

weaknesses. Among these tools, EEG stands out as one of the most promising tools for

MWL assessment due to its non-invasive nature and ability to measure brain activity

directly. Inspired by the successes of deep learning across various fields [72,103,172,233],

our objective is to leverage deep learning to analyse EEG, which is inherently dynamic

and temporally nuanced, posing challenges for the precise classification of MWL lev-

els. As such, our primary aim is to accurately classify individuals’ MWL levels using

deep learning models that utilise EEG signals. The development of such a model has

the potential to greatly enhance how MWL is monitored in various professional fields,

leading to improved productivity and well-being. In this section, we aim to create a

deep learning model that can effectively distinguish between different levels of MWL

using EEG data.
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Utilising EEG signals effectively requires the removal of unwanted noise or artefacts.

However, lacking a universally accepted pipeline for this process can be problematic,

especially for those without specialised expertise. This is due to the inconsistency

that arises as each researcher might use a distinct method in their pipeline [1, 23,

49, 63]. Determining the optimal method for data processing can be challenging and

may lead to a decline in confidence in disseminating outcomes. This is because of

the uncertainty surrounding the appropriateness of noise removal techniques or the

possibility of excessive data cleansing. Moreover, methods that rely heavily on human

involvement may be time-consuming, create biases that impact EEG data reliability

[210] and are not optimal for routine usage [100]. Nonetheless, in the world of deep

learning, it can be challenging to compare model performances due to the lack of a

standardised pipeline. Although deep learning models are capable of processing raw

datasets efficiently, the presence of noise can often be misleading. For example, during a

high MWL task, if a subject moves simultaneously, the model may mistakenly interpret

the noise as relevant data, leading to misclassification.

To address these issues, this study aims to create an automated pipeline that can

efficiently and seamlessly remove artefacts in EEG data without human intervention.

With this approach, we aim to provide a user-friendly tool that can standardise and

simplify EEG data processing, thereby making it accessible to researchers across various

fields. Additionally, this approach enables us to evaluate the impact of each prepro-

cessing step on model performance and compare the performance of different models.

As mentioned earlier, traditional EEG recording for achieving high accuracy in

EEG signal classification typically involves using an electrode-rich cap channel recording

[213]. However, this method has its limitations when it comes to real-world applications.

The bulkiness and potential inconvenience of the technique can make it sub-optimal

for everyday use [5], and there is also a risk of capturing redundant or irrelevant data

[5]. Moreover, research shows that indicators of MWL are usually localised, especially

within the prefrontal cortex during sensory, motor, or cognitive activities [8]. Given

these challenges, it becomes evident that a more strategic approach to EEG channel

selection is necessary.
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Therefore, our primary objective is to investigate and analyse Riemannian channel

selection methodologies that offer the inherent ability to handle the space of covariance

matrices. Riemannian geometry serves as the inspiration for this approach. Addi-

tionally, we aim to identify the optimal covariance estimator within the Riemannian

framework that yields channels best suited for predicting MWL levels. We also as-

pire to determine the optimal EEG channel configuration that maintains high accuracy

comparable to all available channels.

When it comes to evaluating deep learning models, it is crucial to consider the

cross-validation approach used. However, standard cross-validation techniques can be

problematic when applied to EEG data, as they tend to disrupt the temporal structure

of the data and lead to biased performance metrics. The underlying issue is that

EEG signals are time series data and exhibit temporal dependencies, which are not

accounted for by traditional cross-validation techniques that assume data independence

and identical distribution (i.i.d.) [80]. This can result in models that are unreliable and

fail to reflect real-world conditions [35], particularly in forecasting tasks where future

information should not be accessible during training. To address this challenge, our

study also focuses on incorporating time series cross-validation into the model training

process for EEG data. By maintaining the temporal integrity of the data, we aim to

develop more accurate and reliable models for MWL prediction. This advancement

could significantly improve the effectiveness of EEG-based models and pave the way

for more robust deep learning models in the future.

1.2 Thesis Statement

The overarching goal of this research is to enhance the accuracy of MWL detection

using EEG technology. This study aims to develop a comprehensive deep learning-based

approach that addresses key challenges in EEG signal processing, model architecture,

and validation methods to advance the field of EEG-driven MWL detection.

9



Chapter 1. Introduction

1.3 Research Objectives

MWL detection using EEG signals involves complex signal processing challenges and

requires advanced classification techniques. This study focuses on leveraging deep learn-

ing advancements to improve the accuracy and reliability of MWL classification. The

specific research objectives are:

1. to review and synthesize the existing literature on deep learning applications in

EEG signal analysis to identify optimal input configurations and address classifi-

cation challenges.

2. to enhance EEG signal processing by developing and implementing artifact re-

moval techniques that improve the accuracy of MWL detection.

3. to determine the optimal number of EEG channels necessary for accurate clas-

sification and evaluate the effectiveness of different covariance matrix estimators

in channel selection.

4. to investigate and compare the efficacy of various deep learning models, including

Stacked LSTM, BLSTM, BLSTM-LSTM, Stacked GRU, BGRU, BGRU-GRU,

and CNN, in predicting session-specific MWL levels.

5. to design and apply rigorous cross-validation methods tailored for EEG data to

ensure the reliability and validity of the classification models developed.

Each of the experimental Chapters 4 - 6 contains research questions specific to

a particular investigation, and together, they contribute toward answering some of

the overarching objectives. Finally, Chapter 7 summarises our efforts to meet the

objectives of this thesis, as well as the limitations of our work and directions for future

research.

1.4 Publications

The research that resulted from this PhD has been published at or submitted to peer-

reviewed venues. Each paper has a direct link to a particular chapter where the content
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of that paper is thoroughly discussed.

1. Kingphai, K. and Moshfeghi, Y., Mental Workload Assessment Using Deep Learn-

ing Models from EEG Signals: A Systematic Review, IEEE Transactions on Cog-

nitive and Developmental Systems (TCDS), Submitted. The content of this paper

is discussed in Chapter 2.

2. Kingphai, K. and Moshfeghi, Y., 2023, September. On channel selection for EEG-

based mental workload classification. In International Conference on Machine

Learning, Optimization, and Data Science (pp. 403-417). Cham: Springer Nature

Switzerland. The content of this paper is discussed in Chapter 5.

3. Kingphai, K. and Moshfeghi, Y., 2022, September. On time series cross-validation

for deep learning classification model of mental workload levels based on EEG

signals. In International Conference on Machine Learning, Optimization, and

Data Science (pp. 402-416). Cham: Springer Nature Switzerland. The content

of this paper is discussed in Chapter 6.

4. Kingphai, K. and Moshfeghi, Y., 2022. EEG-based mental workload level estima-

tion using deep learning models. In: Ergonomics & Human Factors 2022, Birm-

ingham, UK: The Chartered Institute of Ergonomics & Human Factors (CIEHF),

pp. 297-299. The content of this paper is discussed in Chapter 4.

5. Kingphai, K. and Moshfeghi, Y., 2021, September. Mental workload prediction

level from EEG signals using deep learning models. In The 3rd Neuroergonomics

Conference 2021. The content of this paper is discussed in Chapter 5.

6. Kingphai, K. and Moshfeghi, Y., 2021. On time series cross-validation for mental

workload classification from EEG signals. In Neuroergonomics Conference. The

content of this paper is discussed in Chapter 6.

7. Kingphai, K. and Moshfeghi, Y., 2021. On EEG preprocessing role in deep learn-

ing effectiveness for mental workload classification. In Human Mental Workload:

Models and Applications: 5th International Symposium, H-WORKLOAD 2021,
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Virtual Event, November 24–26, 2021, Proceedings 5 (pp. 81-98). Springer In-

ternational Publishing. The content of this paper is discussed in Chapter 4.

1.5 Thesis Outline

This thesis is organised into subsequent parts, each corresponding to specific chapters.

Chapter 1 - Introduction. It provides the thesis outline and explains the moti-

vation behind the thesis objectives. It also presents a thesis statement and overviews

the research objectives and contributions.

Chapter 2 - Literature Review. This chapter provides a thorough background

to the central themes of the thesis, namely, the classification of MWL using EEG signals

and deep learning models. The chapter unfolds through the following sections:

Section 2.1 to Section 2.1.7 begin with the general background of neurophysi-

ological, which is the EEG signal in this study, and the definition of NeuraSearch is

also described in Section 2.1.10. The initial step of EEG analysis—the preprocessing

stage, setting the stage for future data examination—is provided in Section 2.1.8 and

Section 2.1.9 focuses on channel selection methods. The background of deep learning

models used in this study is provided in Section 2.2

The subsequent Section 2.3 describes how we can assess MWL level using tradi-

tional methods and physiological and neurophysiological measurements. Lastly, Sec-

tion 2.4 presents a comprehensive literature review on how the signal can show subject

MWL and the feasibility of using signal to predict MWL levels and Section 2.4.2 ex-

plores how to evaluate models possessing temporal characteristics by employing cross-

validation in machine learning.

Chapter 3 - Methodology. In this chapter, we begin with the details of the

datasets used in this thesis, highlighting their characteristics and the tasks performed

by the participants. The next section outlines the fundamental procedures applied

across all sections of our thesis, focusing on the pivotal machine learning stages of data

preprocessing, feature engineering, and model training. The methodology is structured

as follows:
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• Data Preprocessing: We provide a detailed discussion of our data preprocessing

strategy, which is essential for our research.

• Feature Engineering: We exhaustively detail our approach to feature extraction,

selection, and standardisation, as well as the meaning and formula of each feature.

• Deep Learning Model Evaluation: We present an overview of our evaluation tech-

niques, emphasising the use of various cross-validation methods tailored to the

unique attributes of each dataset and aligned with our experimental aims.

• Statistical Analysis: Our approach to descriptive and inferential statistics is dis-

cussed here, serving as the backbone for our hypotheses and the results of our

experiments.

Chapter 4 - EEG Preprocessing and Its Effect on Deep Learning Models

in MWL Prediction. In this chapter, we delve into the impact of various prepro-

cessing techniques on the performance of deep learning models in predicting MWL

using EEG signals. As EEG signals are susceptible to noise, we explore techniques

such as high-pass filters, the ADJUST algorithm, and re-referencing. Our primary re-

search question is to understand the effects of these techniques on the effectiveness of

deep learning models in predicting MWL levels using EEG signals. To evaluate these

techniques, we employ three state-of-the-art deep learning models - Stacked LSTM,

BLSTM, and BLSTM-LSTM. These models are all variants of RNNs that capture

temporal dependencies in sequential data. The “Bidirectional” variants process the

data in both forward and backward directions, enabling the models to capture past

and future information. The “Stacked” variants involve stacking multiple layers of the

same model to create a “deeper” network. By effectively preprocessing the data, we

can refine it for further analysis. (Chapter 5 and 6.)

Chapter 5 - EEG Channel Selection Enhancement with Covariance Es-

timators in Riemannian Geometry. In this chapter, we aim to investigate the

measurement of MWL using EEG and optimise channel selection strategies to improve

the computational efficiency and model performance of deep learning models for MWL

classification. We focus on evaluating the effects of different covariance estimators on
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the Riemannian distance-based channel selection approach and their impact on various

deep learning models.

Chapter 6 - Time Series Cross-Validation This chapter delves into evaluating

models based on time series data obtained specifically from EEG signals. To accomplish

this, we employ two time series cross-validation methods - the expanding and rolling

windows. Within each strategy, we explore varying window sizes, which are crucial

in influencing the sample size used for training the model. Our primary aim is to

determine the most effective strategy and establish the optimal window size for cross-

validation. This will provide us with valuable insights into the minimum amount of

data required to predict a subject’s MWL levels. This understanding is crucial, as our

ultimate goal is to forecast a participant’s MWL based on their records in the MWL

task.

Chapter 7 - Conclusions and Further Work. The present concluding chapter

provides an overview of the significant contributions of our thesis to the domain of

EEG-based MWL classification. We highlight the key findings and acknowledge the

limitations of our study. Additionally, we discuss the potential real-world applications

of our research and propose future research directions.
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Background

In this chapter, we first explore neurophysiology, which has been used in the context of

NeuraSearch. The background of EEG includes the definition and related aspects, and

the advantages and limitations of EEG signals are explained in this chapter. Moving

forward, we explore the initial step of EEG analysis—the preprocessing stage, which

sets the stage for future data examination and focuses on channel selection methods.

Additionally, we provided background on the deep learning models used in this study.

We also describe the assessment of MWL levels using traditional methods and phys-

iological and neurophysiological measurements. Furthermore, we present a literature

review on how EEG signals can indicate subject MWL levels and the feasibility of using

signals to predict MWL levels. Lastly, we explore ways to evaluate models possessing

temporal characteristics by employing cross-validation in machine learning.

2.1 Neurophysiological

2.1.1 EEG

EEG technology has been pivotal in advancing our understanding of the brain’s elec-

trical activities since its development by Hans Berger in 1924, who termed it “Elek-

trenkephalogramm.” He published his first paper detailing the recording of electrical

activity in the human brain in 1929 [17]. Subsequently, EEG has been widely used

in clinical settings for diagnosing neurological disorders such as epilepsy. The scope
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of EEG applications has broadened considerably over the decades. It has been used

to understand brain activity and various sleep stages [195]. Between the 1950s and

1990s, technological advancements with more sophisticated recording equipment re-

fined EEG’s capabilities, allowing it to capture high-resolution temporal dynamics of

brain activity, making it invaluable in both clinical and research settings [44].

In the modern invocation and application during the 2000s, digital signal process-

ing and more advanced computational techniques have led to significant improvements

in EEG analysis [184]. After that, the integration of EEG with other neuroimag-

ing techniques, such as fMRI, has provided a more comprehensive understanding of

the brain’s structural and functional aspects [120]. Furthermore, the development of

High-Density electrodes setups, which provide finer spatial resolution of brain activity,

marked another advancement [156]. However, it is not practical in some applications;

consequently, several studies have proposed lightweight, wearable EEG devices. These

innovations have expanded the use of EEG from clinical settings to users’ daily en-

vironments, facilitating continuous monitoring of brain health and functioning [34].

Advances in machine learning and artificial intelligence, especially deep learning, have

also propelled EEG into new applications, including BCIs, enhancing EEG’s analytical

power [45, 84]. This progression illustrates EEG’s versatility and adaptability to new

scientific and technological demands.

EEG is a sophisticated method that records the brain’s electrical activity using elec-

trodes placed on the scalp. By analysing the resulting waveforms, we can gain insights

into the functioning of the cerebral cortex, which plays a vital role in our thoughts,

emotions, and behaviours [161]. EEG quantifies the electrical activity generated by the

movement of electrical charges within the central nervous system, which is sustained by

ionic gradients across neuronal membranes. When strategically placed scalp electrodes

detect these subtle electrical signals, they indicate brain activity [202]. Once captured,

these weak electrical signals will be amplified to a level where they can be analysed. The

amplified electrical signals are subsequently converted into a digital format and stored

in computer memory for further analysis. Acquiring this data from the scalp allows

for examining the various brain waveform characteristics, such as frequency, voltage,
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morphology, and spatial distribution [204]. Figure 2.1 displays an EEG cap, which

consists of electrodes placed on the scalp and connected to a computer that records

signals.

Figure 2.1: Illustrated diagram of EEG cap and brain signal

2.1.2 EEG Electrode Placement

The placement of these electrodes is critical for acquiring accurate and reliable data.

Several standard electrode placement systems have been developed by researchers, in-

cluding the 10/20 system, the 10/10 system, and the 10/5 system. The commonly used

system is the 10/20 system; it is based on specific points of reference on the skull that

are used to ensure consistent positioning of electrodes. The name of this system is

derived from the distances between adjacent electrodes, which are either 10% or 20%

of the total front-to-back or right-to-left distance of the skull [101, 114]. Initially, the

10/20 system involved placing 21 EEG electrodes [91]. The placement of the EEG

electrodes according to the 10/20 system is shown in Figure 2.2
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Figure 2.2: EEG electrode positioning (10/20 system)

In order to increase the channel density, a more fine-grained system known as the

10/10 system was proposed [39]; it is an extension of the 10/20 system. This system

provides full coverage of the scalp with a higher density of 81 electrodes, achieved by

adding 60 electrodes to the unmodified 21 electrodes. The additional electrodes are

placed using a 10% division, which fills in intermediate sites halfway between those of

the existing 10/20 system. This method ensures closely and evenly spaced electrodes,

resulting in a more comprehensive and precise measurement of brain activity [39].

With advancements in EEG research, there has been a move towards even higher

channel densities. Some studies have employed up to 256 channels to capture a more

detailed picture of brain activity [188, 197]. Therefore, further refinement came with

the introduction of the 10/5 system, which is designed for high-resolution EEG studies.

This system allows for up to 345 electrode placements and uses proportional distances

of 5% of the total length between skull reference points for electrode positioning. As a

result, it is also called the 5% system or the 10-5 system [156].
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2.1.3 EEG Electrode Types

EEG electrodes can be categorised into several types based on their material, design,

and intended use. The common types of electrodes used in various applications are as

follows.

1. Traditional Wet Ag/AgCl Electrodes (Wet) [193]. These electrodes require the

application of a conductive gel that serves to bridge air gaps caused by hair or

irregular scalp surfaces to reduce impedance and ensure a stable, high-quality

connection between the electrodes and the scalp. The wet electrode typically

provides lower impedance and better signal quality than dry electrodes. However,

the preparation process can be more time-consuming and might cause discomfort

or irritation for some individuals. These electrodes are the most commonly used

in clinical and research EEG due to their stable and low-noise characteristics

[77,107].

2. Active Dry Single Gold Pin-Based Electrodes (BP Gold) [53] are designed to elim-

inate the need for conductive gel, simplifying the set-up process and enhancing

individual comfort. This electrode consisted of a gold-coated single pin shaped

like a mushroom. The gold pins gently penetrate through the hair to directly

contact the scalp. These electrodes also include a built-in amplifier within the

electrodes (active term). This amplifier helps boost the EEG signal at the source,

reducing signal degradation caused by distance and external noise. Moreover,

as it has a built-in amplifier, these electrodes are suitable for dynamic or mo-

bile EEG applications such as ambulatory EEG monitoring or studies involving

movement [3].

3. Passive Dry Solid-Gel Based Electrodes (BP Solid) offers a compromise between

traditional wet electrodes and completely dry designs. These electrodes utilise a

solid gel to establish direct contact with the scalp without requiring extensive skin

preparation. Unlike the BP gold type, these electrodes do not contain built-in

amplifiers, thus making them passive. They are easy to use and require minimal

cleanup time. However, they rely on external amplification systems to boost
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the EEG signal. BP Solid electrodes are suitable for standard EEG tests, sleep

studies, and other scenarios where mobility is not a primary concern but where

ease of use and patient comfort are valued. [53]

4. Hybrid Dry Multiple Spikes-Based Electrodes (Quasar) are an innovative type of

electrode that combines the best features of dry and wet electrode technologies.

They are made up of multiple tiny conductive spikes or micro-needles that gently

penetrate the scalp and make direct contact without the need for conductive

gel. As such, they are highly preferred in dynamic recording environments such

as neurofeedback sessions, cognitive research, and mobile EEG monitoring [53].

However, it is important to note that due to the spikes, careful handling and

maintenance are required [138].

Each electrode type has its own specific advantages and considerations, making them

suitable for different applications and user preferences in EEG monitoring.

2.1.4 Electrode Labelling

EEG electrodes are placed around the head to detect electrical signals from the brain.

These electrodes are carefully labelled to correspond to different brain regions. The

brain has four main lobes, shown in Figure 2.3, but for the EEG, there is also the

expansive pre-frontal area, which plays an important role in cognitive functions.

Figure 2.3: Brain lobes
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The electrode names, such as pre-frontal (Fp), frontal (F), temporal (T), parietal

(P), and occipital (O), help us understand which part of the brain they are recording

from. For instance, a typical 21-electrode EEG system is based on the 10/20 system,

consisting of electrodes such as Fp1, Fp2, F3, F4, F7, F8, Fz, T3, T4, T5, T6, C3,

C4, Cz, P3, P4, Pz, O1, O2, A1, and A2 (M1, M2). The electrodes with “Z” in their

names, such as FpZ, Fz, Cz, and Oz, are placed on the midline sagittal plane of the

skull. The electrodes in the central area are represented by “C” and odd-numbered

electrodes (1, 3, 5, 7) refer to electrodes placed on the left side of the head. In contrast,

even-numbered electrodes (2, 4, 6, 8) refer to those on the right side. The “A” electrode,

sometimes referred to as “M” for the mastoid process, refers to the bone found just

behind the outer ear [91].

In the high-resolution 10/10 EEG system, the labelling of electrodes employs a

two-letter combination system that represents intermediate contours between tradi-

tional placements of the 10/20 system. For example, electrodes between frontal-central

are FC, frontal-temporal are FT, central-parietal are CP, and parietal-occipital are

PO. Those between frontopolar-frontal are AF, and temporal-parietal is TP. Moreover,

T3/T4 become T7/T8, while T5/T6 become P7/P8 [39]. Similarly, in the 10/5 EEG

system, the naming follows this convention. Locations between the C and CP contours

are labelled CCP, while the region between O and PO is designated POO [156].

The signal quality from each electrode can vary due to various factors. These

can include the contact quality between the electrode and the scalp, the amount of

hair in that area, and the impedance of the electrode. Some electrodes may need

to be repositioned or excluded to ensure a good signal. Certain positions may be

uncomfortable for long durations, negatively affecting signal quality.

2.1.5 EEG Recording

The process of EEG recording, whether using traditional caps or mobile headsets, can

be broken down into several essential components. Firstly, electrodes with conductive

media detect electrical signals from the scalp. These signals are then amplified using

amplifiers to make them clearer and more accurate. Afterwards, the analogue signals
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or waveform of EEG signals are converted into a digital sequence of numerical values

using an analogue-to-digital (A/D) converter [204]. Analogue signals are continuous

waveforms, while digital signals are discrete and represented numerically with a limited

set of possible values. To create digital signals, the ongoing waveform is periodically

sampled, and each sample is discretised to correspond with a numeric value [216]. The

sampling rate, typically measured in hertz (Hz) [133], is the conversion rate or the

number of samples taken per second. For instance, a sampling rate of 512 Hz implies

that 512 samples of data are taken every second, making the signals easier to store and

process. Finally, the digital EEG signals are stored and displayed using a recording

device.

2.1.6 EEG Waveform

EEG waveforms can be divided into different frequency bands, each associated with

different states of brain activity. Common bands include Delta, Theta, Alpha, Beta,

and Gamma, each with a specific range of frequencies. The Delta band, with a frequency

of less than 4 Hz, is associated with deep sleep. The Theta band, with a frequency of

4-8 Hz, is associated with drowsiness, daydreaming, and memory consolidation. The

Alpha band, with a frequency of 8-12 Hz, is associated with relaxed wakefulness and

focused attention. The Beta band, with a frequency of 12-30 Hz, is associated with

active wakefulness and thinking. Finally, the Gamma band, with a frequency of over

30 Hz, is associated with high-level cognitive processing and consciousness. Figure 2.4

illustrates these frequency bands and their typical applications in EEG analysis.
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Figure 2.4: EEG frequency bands

2.1.7 Advantages and Limitations of EEG

Advantages

EEG is an exceptional tool with a high temporal resolution, enabling it to precisely

track changes in brain activity to the millisecond [115]. This makes it an invaluable

asset for real-time comprehension of sleep studies [164, 252], epilepsy monitoring [65],

and cognitive processes and MWL in various applications [227]. One of the significant

advantages of EEG, as elaborated in Section 2.1.5, is its non-invasive nature. It does

not require penetration into the body, and the simple application of a cap or mobile

device equipped with electrodes to the participant’s scalp suffices for data collection.

This ease of use, combined with the portability of EEG systems, allows for their ap-

plication in various settings, from clinical [77] to field environments [83]. Furthermore,

unlike techniques that involve ionising radiation, which can be harmful to participants’
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bodies, such as Computed Tomography (CT) or X-rays [22], which must be used ju-

diciously due to potential risks, EEG is remarkably safe and can be utilised across

a broad demographic spectrum. It is suitable for everyone from infants [157] to the

elderly [217], accommodating individuals with health conditions [40, 231] and those in

good health [50]. Overall, EEG’s non-invasive nature, adaptability, and safety profile

make it a versatile and powerful tool for various research applications.

Limitations

Despite its numerous advantages, EEG still faces certain challenges. One of the main

obstacles is its lower spatial resolution compared to other modalities such as fMRI [250].

This is due to the electrical signals having to diffuse through the skull and other tis-

sues before reaching the electrodes on the scalp. Additionally, EEG has to deal with

noisy and time-varying signals, making the signal-to-noise ratio a critical factor in de-

termining the quality of the recording [99]. The electrical activity generated by the

neurons in the brain is what EEG aims to measure, as explained in Section 2.1, but

unwanted electrical activity (noise) can also interfere with the signal. This susceptibil-

ity of EEG signals to noise or unwanted disturbances is a significant issue. There are

several sources of disturbances that can affect EEG recordings, including physiological

and non-physiological activities. Physiological activities, including eye movements like

blinks and ocular adjustments, generate electrical potentials captured through EOG.

Similarly, muscle activities—examples being chewing, clenching, frowning, or eyebrow

movements—are monitored using Electromyography (EMG). Additionally, the heart’s

electrical impulses are measured via an ECG or EKG [223]. Besides physiological

sources, EEG signals are also susceptible to disruption by various external factors. For

instance, instrumental interference can arise in EEG equipment due to electrode dis-

placement, inadequate grounding, or cable movement. Additionally, electrical noise

from external sources and electromagnetic interference from devices emitting radio

waves, visible light, or microwaves can introduce artefacts. Accurate EEG readings,

therefore, require a controlled environment to mitigate the impact of these electrical

interferences. Moreover, the subject’s body movements represent another significant
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source of potential artefacts [87]. Given the precision and sensitivity of EEG, main-

taining data integrity becomes paramount. Thus, artefact removal is an indispensable

preprocessing step. By meticulously filtering out these anomalies, the data’s authentic-

ity is preserved and ensures a superior signal-to-noise ratio, bolstering the performance

of subsequent analytical models [209].

2.1.8 EEG Artefact Removal

As mentioned in Chapter 1, we can use EEG signals to predict a person’s MWL

levels accurately. One of the primary difficulties in accurately analysing EEG data is

managing artefacts. Preprocessing is very important in EEG data analysis. Knowing

how to deal with artefacts before using the clean signal for further analysis is crucial.

This is especially important for people who are not experts in neuroscience. Recently,

deep learning has successfully been used in EEG analysis due to its capacity to cap-

ture good feature representation from data [177]. While some researchers have used

noise reduction techniques as part of their EEG preprocessing stage, the effectiveness

of each of these techniques on deep learning models for MWL classification has not yet

been investigated. This has resulted in a lack of a uniform framework to be followed,

and in turn, makes the comparisons of such models impossible. For example, Kurnar et

al. [116] have applied a band-pass filter in the raw EEG to remove unwanted signals and

employed a deep recurrent neural network (RNN) to classify four levels of the cognitive

workload. As a result, they have gained an average accuracy of 92.5% in their classi-

fication. The band-pass filter has also been adopted into Maneesh Bilalpur et al. [24]

study. However, the range of frequencies has been set at a different value; in this study,

it has been set between 0.1 and 45 Hz. Moreover, the authors have also further rejected

noisy epochs by visual inspection. Finally, noisy ICA components corresponding to eye

blinks and movements have been manually removed. The artefact-removed data has

been used to classify two levels of MWL induced by acoustic parameters by using a

deep convolutional neural network (CNN) classifier. The F1-score of 0.64 has been

obtained. The other type of filter which has been applied is a notch filter. Zhang et

al. (2019) [246] have applied a 50 Hz notch filter in their study and a Butterworth
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band-pass filter between 0.5 Hz and 50 Hz. Then, the EEG signals from all channels

have been re-referenced to the average of two ear electrodes. However, the authors

have left ocular artefacts in their data. A three-class MWL induced by n-back tasks

with easy, medium, and hard difficulty levels has been categorised by the proposed

two-stream neural networks (TSNN). The proposed model has achieved an average ac-

curacy of 91.9%. Similar to the previous work, the Butterworth filter has been employed

in [230] as well; however, it has been used with a low-pass cutoff frequency of 40 Hz.

To correct the artefacts from eye movements, the authors have employed ICA in their

preprocessing procedure. Then, the cleaned data is put into an ensemble deep learning

model (EL-SDAE) for the binary MW classification problem. The model has achieved

92% accuracy in MWL recognition. As observed from the literature, deep learning re-

searchers working with the EEG have attempted to remove noise from their data using

the existing preprocessing techniques proposed by the neurobiologist. However, there

is no single procedure of preprocessing that everybody is following. In particular, the

band-pass filter technique, which seems to be the most commonly used tool, has been

defined in a diverse range.

Another aspect is that even when people perform classification using the same

dataset, they apply different preprocessing techniques in their experiments. For ex-

ample, Lim et al. [128] have performed MWL classification using their own STEW

dataset. In the artefact removal stage, the authors used a high-pass filter at 1 Hz,

a notch filter, and artefact subspace reconstruction (ASR). Then, they re-referenced

data to the average for removing artefacts from muscle movement and cleaning the

noise. Authors have obtained 69% MWL classification accuracy from a Support Vector

Regression (SVR) model. The STEW dataset has also been adopted into Chakladar et

al. [36] study for MWL level classification as well. However, in this study, the authors

have removed the artefacts from EEG signals using only a band-pass filter technique.

The filter has allowed signals between 4 and 32 Hz to pass. Then, the preprocessed

data has been fed into various models for estimating human workload levels. They have

performed an analysis in two Tasks: 1) “No task” and 2)“SIMKAP-based multitasking

activity”. The proposed Bidirectional Long Short-Term Memory- Long Short-Term
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Memory (BLSTM-LSTM) model has outperformed other models in their study. The

model has reached 86.33% and 82.57% classification accuracy for studies 1) and 2),

respectively. Moreover, from the literature, it can also be observed that the effect of

the preprocessing procedure has not been considered in the analysis. The presence of

diverse preprocessing techniques among comparable datasets and the underappreciated

impact of these procedures on the outcomes highlight the necessity for a methodical

approach and additional exploration in this domain.

While artefact reduction is a critical step in ensuring the reliability and quality of

the EEG signal, knowing which EEG channel to use to obtain data for analysis is also

critical. A large number of EEG electrodes are used to record the signal, and it is pos-

sible that a signal from the same brain area may be picked up by numerous electrodes,

making the data redundant and the same information overlapped between channels.

Utilising too many channels can introduce analysis complexity, slow data transmission,

and increase experimental costs. Furthermore, it can lead to inefficiencies and practical

challenges in real-world applications [206,229]. Conversely, relying on too few channels

can be problematic. For instance, when applying Independent Component Analysis

(ICA) on a limited number of EEG channels, the resulting components might merely

represent mixed sources rather than individual ones [174]. In essence, the transfor-

mation with ICA in such cases might change one set of mixed sources into another,

offering no real insight or benefit. Thus, an excessive or insufficient number of channels

is considered unsuitable for EEG analysis. [255]. To avoid the problem of using either

too many or too few channels. In this regard, channel selection is just as important as

preprocessing approaches. We will go deeper into the significance and methodology of

EEG channel selection in the following section.

2.1.9 Channel Selection

As described in Section 2.1.2, the number of electrodes or EEG channels can vary from

21 to 345, with each electrode corresponding to a specific brain region. The electrode is

also referred to as a “channel”. The selection of the number of channel configurations

is customised based on the specific objectives of the experiment. Every choice entails
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trade-offs. While some EEG systems offer a predetermined set of channels, in practi-

cal scenarios, researchers often must decide which channels to use, balancing relevance

and minimising data redundancy. Effective channel selection methods for EEG data

analysis are essential to enhance classification accuracy [97]. To perform channel selec-

tion, wrapper or filtering techniques can be used [7]. Wrapper techniques optimise a

channel subset using classification accuracy as the primary measure [10]. For example,

Mzurikwao et al. [152] used a wrapper strategy with a convolutional neural network

(CNN) to select channels for decoding multiple motor imagery intention classes from

four amputees. They achieved a classification accuracy of 99.7% with a CNN model

trained on 64-channel EEG data, and channel selection based on weights extracted from

the trained model resulted in 8-channel models with 91.5±% accuracy. Despite offer-

ing potentially high performance, these techniques can be computationally demanding,

requiring the model to be retrained for each subset evaluated and carrying the risk of

overfitting due to their inherent exhaustive search nature [10]. In contrast, filtering

techniques evaluate subsets of channels a search algorithm generates using independent

evaluation criteria, such as distance, dependency, or information measures, offer speed,

independence from the classifier, and scalability [190]. These methods aim to maintain

the accuracy achieved with all channels by training the model with an optimal channel

set [9]. For instance, the mutual information maximisation technique proposed in [119]

ranks EEG channels based on their correlation with class labels, which lowers classifi-

cation error. Similarly, the normalised mutual information technique proposed in [221]

selects an optimal subset of EEG channels for emotion recognition, achieving high ac-

curacy with a sliding window approach and short-time Fourier transform. The sparse

common spatial pattern algorithm proposed in [7] optimises channel selection under

classification accuracy constraints and outperforms several other methods, achieving

up to 10% improvements over three channels.

2.1.10 NeuraSearch

There is a study called NeuraSearch [149] which has recently been on the edge of in-

tegrating neurophysiological signals into information systems. The NeuraSearch aims
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to combine computer and information science knowledge with neuroscience and cog-

nitive science knowledge. Specifically, the research in NeuraSearch aims to leverage

neurophysiological signals to enhance the effectiveness and user-centricity of informa-

tion systems and to enhance the understanding of the user’s intentions and cognitive

state across different scenarios by analysing the signals. Different brain signals, such

as fMRI and EEG, have been used.

Various studies under the NeuraSearch umbrella have shown promising diversity

and depth [142–144,158–160,166]. For instance, the research by Lamprou et al. (2022)

[118] focuses on using fMRI to evaluate and understand natural language processing

(NLP). This work offers valuable insights into how the human brain processes text

semantically and the potential of using this understanding to improve NLP models.

Similarly, Michalkova et al. (2023) [144] employed EEG to assess users’ cognitive states

in information systems, clarifying the impact of different levels of knowledge on search

behaviour.

Moreover, NeuraSearch has been expanding into the domain of MWL, which is

the key factor in various areas and tasks, impacting performance and outcome. King-

phai and Moshgefhi (2021) [109] utilised EEG to classify levels of mental workload

and investigated the importance of preprocessing for EEG data when used for MWL

classification. The results show that preprocessing substantially improves the classifi-

cation accuracy of machine learning models over that of the non-processed EEG data.

Moreover, they also identify the lack of a commonly adopted preprocessing pipeline

within the community and propose their preprocessing pipeline, which more recent

works have subsequently adopted. Their research also delved into the efficacy of time

series cross-validation in enhancing the performance of machine learning models that

analyse EEG data for MWL classification [111]. This work highlights the importance

of maintaining the temporal nature of the EEG signal when evaluating the model. In

summary, NeuraSearch represents a cutting-edge interaction between neuroscience and

information technology, leading to significant advancements and understanding of how

neurophysiological signals can enhance and improve communication between humans

and computers. One pivotal neurophysiology signal that has been extensively utilised
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and explored within the scope of NeuraSearch is the EEG.

2.2 Deep Learning (DL)

Artificial neural networks (ANNs) are the main component of deep learning, a spe-

cialised subfield of machine learning that takes cues from the structure and function

of the human brain. This method is particularly effective for monitoring, forecasting,

and managing MWL in real-time because it can extract complex correlations from huge

amounts of information. Deep learning models can be used to identify people’s MWL,

making systems more flexible and effective. The feedforward neural network (FNN),

the recurrent neural network (RNN), and the convolutional neural network (CNN) are

the three main neural network architectures for deep learning that are introduced in

this section. Each of these architectures has specific strengths and drawbacks and is

designed for various types of data and tasks. A thorough grasp of their distinctions is

essential for choosing the best approach for a given problem and creating effective deep

learning models.

Recent studies have investigated the possibility of predicting MWL via brain activity

captured using EEG. The main advantage of such a technique is that it is unobtru-

sive, allowing the MWL to be captured in real-time [21]. In line with recent advances,

sophisticated deep learning models have been designed to accurately capture variance

characteristics within EEG signals, allowing for precise classification of an individual’s

MWL levels [36,109,111,116,123]. Despite the promising potential of deep learning in

classifying MWL levels from EEG signals, its application is not without several inherent

limitations. Small sample sizes usually hinder the application of deep learning to EEG

signals, the absence of standardised protocols for data preprocessing, the lack of diver-

sity in study populations, and difficulties with feature extraction and model training.

Removing these constraints will enhance the accuracy, consistency, and applicability of

deep learning methods in EEG classification.
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2.2.1 Feedforward Neural Networks (FNN)

In 1958, Frank Rosenblatt proposed the perception concept, which was initially a single-

layer network used for binary classification tasks, and it is one of the earliest and

most significant contributions to the development of Feedforward Neural Networks

(FNNs) [175]. The FNN is the foundation of deep learning, and it is characterised by its

sequential layer structure,. The connections between the nodes are acyclic, comprising

an input layer, a hidden layer(s), and an output layer that connects forward to neurons

in the subsequent layer. This allows the information to flow in one direction only, and

that is why it is called feedforward. Moreover, there are no back-loops or connections

between neurons within the same layer.

The general workflow in an FNN involves the following steps:

• Input Layer: This layer receives the raw input data. Each neuron in this layer

represents one feature of the input data.

• Hidden Layers: These layers perform most computational heavy lifting. Neu-

rons apply a weighted sum on their inputs, followed by a nonlinear activation

function to introduce non-linear properties into the network. Common activation

functions include ReLU (Rectified Linear Unit), Sigmoid, and Tanh.

• Output Layer: The final layer outputs the prediction of the network. The func-

tion of this layer varies depending on the nature of the task (e.g., classification,

regression).

The operations within the network can be mathematically described by the following

equations:

h = σ(Wihx+ bh) (2.1)

y = Whoh+ by (2.2)

where h represents the hidden layer activations. x represents the input vector. y

represents the output vector. Wih and Who are the weight matrices for the input-

to-hidden and hidden-to-output connections, respectively. bh and by are the hidden
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layer’s and output layers’ bias vectors, respectively. σ is the activation function used

in the hidden layer, such as the sigmoid, ReLU, or tanh function.

In equation 2.1, the hidden layer activations (h) are computed based on the input

vector (x), using the weight matrix Wih and the bias vector bh, passed through the

activation function σ. In equation 2.2, the output vector (y) is computed by trans-

forming the hidden layer activations through the weight matrix Who and adding the

output bias vector by.

2.2.2 Recurrent Neural Network (RNN)

A recurrent neural network (RNN) [59,81] is a type of neural network architecture that

can process sequential data using internal memory. Unlike FNN, which processes data

unidirectionally, RNN can take past information into account and use it to inform the

current output. The architecture of RNN is characterised by feedback connections that

allow the network to process sequences of inputs with internal memory. An input vector

is fed into the RNN at each time step, producing an output value. The RNN considers

previous inputs by maintaining a “hidden state” that encodes relevant information from

previous time steps. This allows the RNN to capture long-term dependencies in the

input data and produce more accurate predictions. With every time step, the hidden

state of the RNN experiences an update, incorporating data from both the current

input and the previous hidden state. This feedback mechanism enables the RNN to

retain pertinent historical information, subsequently impacting future predictions.

This neural network is widely recognised as one of the most popular models for

analysing sequential data. In an RNN, consider (Xt is a sequence of input vectors

(Xt, t = 1, 2, 3, . . . , tn). The input xt are fed one at a time into the RNN then an

output value ht is given. The future information at the next time t continuously flows

into the model. The equations for a basic RNN are as follows:

ht = tanh(Whhht−1 +Wxhxt + bh) (2.3)

yt = Whyht + by (2.4)
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where ht represents the hidden state at time step t. xt represents the input at

time step t. yt represents the output at time step t. Whh and Wxh are the weight

matrices for the hidden-to-hidden and input-to-hidden connections, respectively. bh

is the bias vector for the hidden layer. Why is the weight matrix for the hidden-to-

output connections. by is the bias vector for the output layer. tanh is the hyperbolic

tangent function used to activate the hidden state. In equation (2.3), the hidden state

ht is updated based on the previous hidden state ht−1, the current input xt, and the

corresponding weights and biases. In equation (2.4), the output yt is computed by

multiplying the hidden state ht with the weights Why and adding the bias term by.

In theory, the model with the most data should be able to correctly identify corre-

lations between events; in practice, training the RNN model can be challenging. This

is because RNN can suffer from the vanishing and/or exploding gradient problem [16],

in which information is rapidly lost over time, making it difficult for the model to recall

distant information [186]. The vanishing gradient problem occurs when the gradient,

which is used to update the model parameters during training, becomes so small that

the model’s performance does not improve. Conversely, the exploding gradient prob-

lem occurs when the gradient becomes too large, causing the model’s performance to

become unstable. Various modifications to the basic RNN architecture have been pro-

posed to address these issues, including using long short-term memory (LSTM) and

gated recurrent units (GRU).

2.2.3 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM), which is an extension of the basic RNN architecture,

was proposed by Hochreiter and Schmidhuber [81] to address the vanishing gradient

problem. The LSTM unit comprises a memory cell (ct) and three different gates that

control the flow of information through the memory cell. By incorporating memory cells

and different types of gates, LSTM can learn long-term dependencies and recognise

patterns in sequential data. The first gate is a forget gate (ft), which decides what

information in the memory cell should be discarded. The input gate (it) controls the

incoming inputs that might not be relevant or may be errors that could interfere with
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the current memory content in the memory cell. The output gate (ot) protects other

units from currently irrelevant content in the memory cell and controls the error flow

from the current state to the next state.

The memory cell and all these different gates are updated over time. This allows the

LSTM to selectively remember or forget information from previous time steps and in-

corporate new information as it becomes available. The following equations commonly

describe the LSTM:

ft = σ(Wfhht−1 +Wfxxt + bf ), (2.5)

it = σ(Wihht−1 +Wixxt + bi), (2.6)

ot = σ(Wohht−1 +Woxxt + bo), (2.7)

c̃t = tanh(Wchht−1 +Wcxxt + bc), (2.8)

ct = ft ⊙ ct−1 + it ⊙ c̃t, (2.9)

ht = ot ⊙ tanh(ct). (2.10)

Where σ is the sigmoid function, ⊙ represents element-wise multiplication. The

term xt is the input at time t. h is a vector of hidden value. Wfh,Wfx,Wih,

Wix,Who,Wox,Wch, and Wcx are weight matrices for different values used to cal-

culate in variant gates. For example, Wfh refers to a weight metric for hidden value in

forget gate. The terms b are bias vectors. ct is a memory cell and c̃t is a candidate

updated in the memory cell. Despite the advances the LSTM represents in mitigating

the vanishing and exploding gradient problems, studies such as the one conducted by

DiPietro et al. [56] suggest that these challenges have not been fully overcome. Indeed,

their experiments demonstrated that LSTMs can still encounter difficulties when pro-

cessing extremely long sequences, indicating that the search for improved architectures

must continue.
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2.2.4 Gated Recurrent Unite (GRU)

Addressing the longstanding challenge of managing long-term dependencies effectively

in the realm of deep learning, the gated recurrent unit (GRU) has emerged as an

innovative solution. The GRU, a streamlined version of the traditional RNN, shares

the goals of the LSTM model yet differentiates itself through its minimalist design. This

design eliminates memory cells ct and merges the forget and input gates into a singular

update gate, resulting in a structure with fewer components but equal potency. The

intent behind this simplified architecture is to address the two primary obstacles that

have continually hindered the effectiveness of the LSTM model: the vanishing gradient

problem and the complex task of learning long-term dependencies [41].

The GRU unit is composed of ut and rt, which are the update gate and reset gate,

respectively. The GRU is commonly described as follows:

ut = σ(Wuhht−1 +Wuxxt + bu), (2.11)

rt = σ(Wrhht−1 +Wrxxt + br), (2.12)

h̃t = tanh(Whh(rt ⊙ ht−1) +Whxxt + bh), (2.13)

ht = ut ⊙ ht−1 + (1− ut)⊙ h̃t. (2.14)

Where ut and rt are the reset gate and update gate, respectively. The definition of

σ,xt, h and W term can be found in the previous section of the LSTM model.

The equations show how the GRU computes its hidden state ht at each time step

t, based on the input xt and the previous hidden state ht−1. The reset gate controls

how much past information to forget, while the update gate determines how much of

the new information to incorporate. The candidate activation function h̃t computes

the new proposed memory content. Finally, the hidden state ht is computed based on

the reset gate, the current hidden state, and the candidate activation function.
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2.2.5 Bidirectional Model

The bidirectional processing technique is a powerful tool for modelling sequential data

with long-term dependencies and can understand the context from both directions.

This technique can be applied to various types of RNN architectures. Bidirectional

RNN (BiRNN), for example, was proposed by Schuster and Paliwal [186] to address

the limited model power problem when dealing with long input sequences. The idea

of BiRNN is to train two RNN models, one in the forward direction and one in the

backward direction, and then merge the hidden states from each network to generate

predictions. This approach enables the network to consider both past and future con-

texts when processing the input sequence, thereby enabling it to capture long-term

dependencies more effectively.

Similarly, bidirectional long short-term memory (BiLSTM) and bidirectional gated

recurrent unit (BiGRU) combine bidirectional processing with advanced gating mech-

anisms to capture long-term dependencies and generate accurate predictions. These

models can effectively represent the intricate relationships between various events by

processing the sequence in both forward and backward directions and using memory

cells and gating mechanisms to retain or discard information selectively [43, 67]. De-

spite their strengths, bidirectional models have limitations; they need full sequences

for predictions, making them unsuitable for real-time use. They also require more

computational resources than unidirectional models due to dual-direction data pro-

cessing [104].

2.2.6 Convolutional Neural Network (CNN or CovNet)

Utilising the strategy of iterative application of convolutional filters to input data,

CNN facilitates the learning of progressively intricate features. These features prove

instrumental for various tasks, notably image classification and object detection [15].

Despite their initial conception for image processing tasks, the flexible design of CNN

has allowed for their application in time series analysis as well. This is accomplished

by incorporating time as an additional dimension, thereby expanding their functional

scope [121]. This model typically consists of three layers: convolution, pooling, and
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fully connected. In the convolution layer, features are extracted via filters made up of

small kernels. The dimensionality of the features is then reduced in the pooling layers,

and the fully connected layers combine data from the final feature maps to provide the

final classification. In the field of time series analysis, pooling layers are utilised to

downsample features and reduce the dimensionality of the data. This strategy closely

resembles the application of pooling in the context of image processing [62,122].

One challenge in using CNN for time series analysis is that the network must be

able to handle variable-length sequences [106]. One approach is to use a sliding window

approach, where the time series data is divided into fixed-length segments and fed into

the CNN [220]. Another approach is to use dilated convolutions, which can operate on

inputs of variable length and allow the network to learn features at different scales [238].

In general, CNN differs from FNN and RNN in their optimisation for spatial feature

learning and their use of convolutional layers; however, they all share the same objective

of identifying complex patterns and interdependencies among various categories of data.

By considering time as an additional dimension, CNN can be adapted for time series

analysis and serve as a potent instrument for analysing high-dimensional data [42].

2.3 Mental Workload (MWL) Measurment

The terms “mental workload” and “cognitive load” are often used interchangeably in

psychological and neuroscientific research [64]. However, they have different definitions

and contexts, so distinguishing between them is important. Cognitive load theory

focuses on how information and learning tasks can be optimised to make the best use

of working memory, and it is divided into intrinsic, extraneous, and germane cognitive

load. Intrinsic load refers to the complexity inherent to the material or task, regardless

of the learner’s other activities. Extraneous load relates to how information or tasks are

presented to the learner and can impede or enhance learning. Germane load represents

the cognitive effort to create lasting knowledge structures [185]. On the other hand,

MWL is a broad term that encompasses the demand placed on a person’s cognitive

system, including memory, attention, and executive functions, by a particular task or

set of tasks. It often considers a task’s total demand, including cognitive and emotional
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aspects [211]. While both concepts are related to performance, cognitive load theory

often aims to optimise learning efficiency, whereas MWL assessments aim to maintain

performance levels and safety in operational settings.

MWL is widely understood, yet it can be challenging to articulate [191]. Nonethe-

less, it is a crucial concept in understanding the cognitive demands placed on individuals

during task performance. MWL is also closely associated with stress and strain, re-

flecting two aspects of our interaction with challenging tasks [153]. Stress refers to

the external challenges that drain our mental resources, such as the complexity of

the task, time pressure, environmental conditions, and the need to juggle multiple

tasks [134, 207]. Strain, on the other hand, represents how we process, manage, and

adapt to the stressors of the task, which is demonstrated through the use of cognitive

skills such as memory and planning, as well as our accumulated experience [163, 215].

Therefore, achieving an optimal balance between demands and cognitive resources is

crucial when it comes to managing mental workloads effectively. This is because men-

tal workload has a significant impact on cognitive strain, which in turn can greatly

influence an individual’s productivity and overall performance.

MWL is evident in various areas of life, impacting everything from children’s at-

tention spans [125] to the design of educational programmes [168, 256], from driving

fatigue [88, 241] to performance across a broad spectrum of fields [230]. Mastery of

MWL is pivotal for maximising human capability and warding off cognitive overload

or insufficient stimulation. Its effective prediction and management are crucial for op-

timising human performance and preventing cognitive overload or under-stimulation.

While it is commonly assumed that there is a simple linear relationship between

workload and performance, research suggests that the relationship is curvilinear [82].

People may try harder and use different approaches when faced with challenges, which

can lead to improved performance despite an increased workload. However, excessive

workload can lead to decreased performance due to being distracted, having limited

mental resources, and juggling too many tasks. On the other hand, a low workload can

result in not paying attention, being less alert, and even falling asleep, which can also

negatively impact performance [205]. Therefore, it is critical to find the right amount
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of work that helps people perform at their best without causing problems [69].

Research studies, such as Young et al. [237], have shown that excessive workloads

often lead to decreased performance and increased errors. This is consistent with Kah-

neman’s resource model [102], which suggests that our cognitive resources are limited.

The graph in Figure 2.5 illustrates the relationship between MWL and performance.

Figure 2.5: The relationship between activation level, workload (task demands) and
performance (adapted from de Waard 1996 [48]).

The x-axis represents MWL, while the y-axis represents performance. Performance

improves as MWL increases, but only up to a certain point, after which it begins to

decline, forming an inverted U-shaped curve. The optimal MWL varies depending on

the complexity of the task at hand: simpler tasks may require a lower MWL, while

more complex tasks may demand a higher one.

In this study, MWL is defined as the measurable amount of cognitive demand

that an individual’s cognitive and emotional capacities experience while performing

multiple tasks simultaneously. The assessment of MWL is important to anticipate and

prevent mental overload or performance degradation in complex working environments

and real-life situations. Chapter 3 will describe in detail a deep learning model that

was developed to provide a reliable tool for assessing MWL across various operational

settings and tasks.
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2.3.1 Behaviour Measurement

The ability to measure an individual’s MWL is crucial, especially in safety-critical

scenarios like driving. Typically, this is done by assessing task performance, which is

essential for evaluating the effectiveness and efficiency of an individual’s abilities. Direct

task performance measures can help determine an individual’s MWL by evaluating how

well they perform the primary task.

For example, in a driving scenario, errors in steering or inconsistencies in following

distance can indicate a higher mental workload. Additionally, monitoring attention and

workload from a primary task can be done by assessing performance on a secondary

task, such as responding to peripheral visual signals, while performing the primary

task. As mental workload increases on the primary task, performance on the secondary

task declines [237]. One effective tool for assessing MWL in driving is the peripheral

detection task (PDT), which measures response times and missed signals to visual cues.

The PDT [212] is a secondary task measure of mental workload and visual distraction.

With the PDT, drivers must respond to random targets presented in their peripheral

view. It specifically assesses an individual’s ability to detect and respond to stimuli

presented in peripheral vision while engaged in a primary task, such as driving. During

the primary task, if an individual’s mental workload is high, their ability to process pe-

ripheral information decreases. So, if the participant’s mental workload is high during

the primary task (i.e., driving), their response times to the LED light will increase, and

they may miss more signals. This change in PDT performance is used to infer the level

of mental workload the participant is experiencing [237]. In a study examining the im-

pact of mobile phone conversations (hands-free and handheld) on driving performance

in various traffic environments, it was found that the complex urban environment pre-

sented the most demanding mental workload, even without phone use, as indicated by

significantly poorer performance [207].

Another widely used method for measuring participants’ mental workload is cog-

nitive tasks such as the n-back task [113]. The n-back task is a commonly used tool

for mental workload assessment and involves presenting participants with a sequence

of stimuli such as letters, numbers, spatial positions, or sounds. Participants must
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identify whether the current stimulus matches the one presented “n” steps earlier in

the sequence. The “n” factor can vary. Increasing numbers indicate a more demanding

task, with common iterations including 1-back, 2-back, and 3-back. Performance in

the n-back task is assessed based on two factors: the accuracy of the responses, the

percentage of correct recognition of both targets and non-targets and the reaction times

for correct responses. An interesting pattern emerges as the task’s difficulty escalates:

accuracy typically decreases and response times lengthen, indicating an increased men-

tal workload [8]. Performance metrics are essential for measuring the effectiveness of a

system or task. Common performance metrics include response time, completion time,

efficiency, engagement, accuracy, and error rate [132].

2.3.2 Self-Report Measurement

A self-report questionnaire is another method for measuring MWL, unlike an objective

measure, which infers workload from task outcome. NASA-TLX [70, 71] is a widely

used questionnaire that helps to evaluate the workload of participants after performing

a task. The questionnaire measures six different subscales of workload, including mental

demands, physical demands, temporal demands, performance, effort, and frustration.

Each subscale is rated on a 100-point scale with 5-point increments. The raw score

obtained from the first part is then subjected to a weighting process via a pairwise

comparison of subscales, where participants choose the subscale they perceive to be

more relevant to their workload. The frequency of subscale selection serves as a weight

for that subscale, which is multiplied by the participant’s rating on each respective

subscale to compute a weighted score for that subscale. The weighted scores are sub-

sequently aggregated and divided by 15 (the number of paired comparisons) to derive

an overall TLX score that reflects the participant’s workload. SWAT [173] is a simpler

alternative to NASA-TLX. It assesses participants on three subscales: time load, men-

tal effort load, and psychological stress load. Participants choose from three levels -

low, medium, and high - for each subscale. Another tool available for subjective mental

workload assessment is the Workload Profile (WP) questionnaire [208]. This tool evalu-

ates mental workload by asking individuals to assess the demand placed on them across
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eight distinct dimensions. These dimensions include perceptual/central processing, re-

sponse selection and execution, spatial processing, verbal processing, visual processing,

auditory processing, physical efforts related to manual tasks, and speech production.

By gathering ratings on these dimensions, the WP questionnaire offers a comprehensive

profile of the workload, highlighting how it is distributed across various cognitive and

physical resources, providing a more nuanced understanding of workload beyond the

overall intensity of demand.

While self-reporting can provide useful qualitative feedback on a participant’s ex-

perience, it can be subjective and influenced by factors such as the participant’s mood,

willingness to provide honest responses, and ability to self-assess. Moreover, it may

further increase participant’s MWL, particularly in studies that require participants to

rate their MWL level after completing a task and then immediately perform another

task.

2.3.3 Physiological Measurement

Various physiological measurements are commonly used to assess MWL. For example,

electrocardiac and cardiovascular activity can be measured by heart rate (HR), heart

rate variability (HRV), and blood pressure (BP). However, the effectiveness of these

measures can vary depending on the nature of the task being performed.

In a recent study, Mach et al. [135] found that HR can be a suitable indicator of

MWL under certain conditions. During the study, participants performed a range of

tasks with varying levels of mental effort while their HR was monitored. The researchers

observed that HR increased with MWL when participants were sitting but not walking.

This could be explained by the fact that physical exertion from walking can raise HR

even in the absence of mental exertion. Thus, while HR is a reliable indicator of MWL

when participants are stationary, its validity diminishes when they are mobile.

HRV is another important measure of the heart’s rhythm, and recent research has

shown that it changes during periods of stress. Specifically, the part of HRV linked to

relaxation tends to decrease, while the ratio indicating stress increases. Interestingly,

while blood pressure also increases during stressful tasks, it does not fully return to
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baseline even after a break, particularly the diastolic pressure (the lower number in a

blood pressure reading). These findings suggest that HRV may be a more sensitive and

accurate indicator of mental stress than blood pressure, which can be influenced by

physical factors such as muscle activity. This highlights the importance of considering

HRV as a potential biomarker for stress in both clinical and research settings [79].

Although some studies have shown increased blood pressure with harder tasks, others

have reported mixed results [38]. Blood pressure has limitations in measuring MWL

because it does not consistently rise with the complexity of tasks. Therefore, other

measures such as HR and HRV may be more suitable for assessing MWL than blood

pressure.

Another measure which has been adopted is respiratory measures such as respi-

ration rate, which indicates the number of breaths per unit of time. The respiratory

pattern is expected to change with an increase in MWL, resulting in slower and deeper

breathing [214]. In a recent study, raw photoplethysmogram (PPG) data was collected

to reconstruct respiratory signals while participants performed tasks. Using the respi-

ratory pattern, the study effectively classified the MWL level [214].

Eye-tracking measures are also well-established for assessing MWL. These measures

are based on eye activities such as blink rate, blink closure rate, gaze angle, pupil size,

diameter, and pupillary responses. In a recent study [226], pupil diameter and gaze

entropy were used to distinguish differences in workload between task difficulty levels.

The study found that both metrics increased as task difficulty levels increased. However,

it should be noted that this method has a key drawback, in that it is unresponsive after

overload occurs and is highly sensitive to changes in environmental illumination [31].

While physiological signals can be used to assess a subject’s stress [38], they have

some limitations. Therefore, researchers have used more neurophysiological measures

to access the subject’s MWL.

2.3.4 Neurophysiological Measurement

Brain signal activity has been evaluated using various neuroimaging techniques such as

MEG [200], functional magnetic fMRI [126], fNIRS [75], and EEG [26]. While MEG

43



Chapter 2. Background

can show brain activity with a high temporal resolution, fMRI has the strength that

it can measure brain activity mapping with high spatial resolution. However, they

are not suitable for all environments. Both signals require a lot of professional lab

settings and specialised equipment and are cumbersome, which is not practical in real-

life environments [130]. While fNIRS is portable, can show hemodynamic responses

associated with neural activity, and measure brain activity in different brain regions,

it has low spatial resolution. The portable EEG device can measure brain activity

with a high temporal resolution, making it ideal for detecting subjects’ MWL levels

in real-time. EEG is frequently preferred among these neurophysiological signals in

human-computer interaction contexts due to its non-invasive nature and high temporal

resolution, allowing for millisecond-scale measurements [117]. Its popularity is further

enhanced by its strong correlation with a person’s real-time MWL status [204].

2.4 MWL Classification

Classifying MWL levels using physiological or neurophysiological measures requires pre-

cise labels for each response category. This can be done through two primary methods.

Firstly, the self-report measures, as described in Section 2.3.2, involve participants

providing their subjective assessments of their MWL levels using a questionnaire. This

approach provides valuable insight into participants’ own perceptions of their MWL lev-

els. Then, participants’ physiological data can be classified into discrete levels of MWL

— low, medium, or high — and any changes or patterns in the data can be observed.

Mapping this objective measure against self-reported data helps us better understand

the correlation between personal experience and physiological and neurophysiological

markers of workload.

Task design offers an alternative yet equally systematic approach. In this method,

researchers meticulously craft tasks expected to elicit varying levels of MWL. These

tasks are typically employed during calibration to establish the baseline or reference

point for low, medium, and high MWL levels. For example, a straightforward task

is used to establish a baseline (low workload), a more intricate task for a medium

workload, and the most challenging task for a high workload. The ensuing physiological
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and neurophysiological responses induced by these tasks help us to construct a profile

of what low, medium, and high mental workloads look like for each individual.

In practical applications of these concepts, the n-back task, a well-established cog-

nitive challenge, is often adjusted to induce varying levels of MWL. In this study [89],

researchers modified a standard n-back task to create different levels of cognitive de-

mand. The 1-back version represented a low cognitive load, while the 3-back repre-

sented a high cognitive load. During the experiment, while participants performed the

tasks, their photoplethysmogram (PPG) signals were recorded and analysed to reveal

patterns in blood flow and respiration in relation to the imposed cognitive demands.

Building further on this empirical foundation, recent studies have demonstrated an

inclination towards using multifaceted criteria to gain a more nuanced understanding of

MWL. In recent work, researchers have employed more than one criterion to categorise

subjects’ mental workload. For instance, in one study [51], they utilised both task

design (the 1-hour computerised letter recognition task) and questionnaires (the visual

analogue scale of fatigue and the NASA-TLX) to categorise mental workload. The task

design induced a mental workload of a certain intensity, while the subjective question-

naires allowed participants to self-report their perceived stress level or workload. The

monitored physiological signal was the ECG from which heart rate variability (HRV)

was derived, as well as blood pressure waveforms captured using the finger volume clamp

method. Combining these methods provides a more comprehensive assessment, as the

task design ensures that MWL is being imposed. Simultaneously, the questionnaires

measure the subjective experience of the participants, which can vary individually.

By combining subjective and objective measures, researchers can create models

that predict mental workload levels based on physiological or neurophysiological data.

These models can be more accurate because they consider the individual variability in

physiological or neurophysiological responses to mental workload. This can be useful

for tailoring assessments to the individual and for training classification models.

The MWL level labels for our study were obtained using two methods: self-reported

data from questionnaires for the first dataset and task design data for the second

dataset. A more detailed description of the datasets used in this thesis is provided in
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Section 3.1.

2.4.1 Limitation of Current Works

The field of deep learning, known for its swift growth and potential, has shown par-

ticular promise when applied to EEG studies, especially in the classification of MWL.

Traditional shallow models continue to hold their ground in this diverse landscape of

models.

Comparative Analysis of Traditional and Deep Learning Models

Despite the growing popularity of deep learning models, techniques such as linear

discriminant analysis (LDA), support vector machines (SVM), k-nearest neighbours

(KNN), and random forest remain effective baselines in the literature [76, 180, 187].

These models offer the advantage of being generally easier to train and interpret than

deep learning models. However, they might face challenges when dealing with EEG

data’s complex, non-linear relationships.

Complexity in Hybrid and Ensemble Models

The efficacy of CNN in extracting spatial features from EEG data has resulted in

their increasing prominence in recent years [76,111,123,129]. However, the limitations

of CNN to capture temporal dynamics have caused researchers to investigate hybrid

architectures that combine CNN with recurrent networks such as the LSTM network

[116,248]. These hybrid models have demonstrated promising results in addressing the

temporal aspect of EEG data. Nevertheless, the complexity of these models may pose

challenges during the training process and result in reduced interpretability.

Almogbel et al. (2019) [4] utilised raw EEG signals without preprocessing as input

to their developed CNN model. The model was engineered to automatically extract

key information and discern three gradations of a vehicle driver’s cognitive workload

and driving environment. The classification model proved adept at identifying the low

MWL level but faced challenges when attempting to consistently discriminate between

medium and high workload levels. This reveals room for improvement in the model’s
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ability to differentiate between higher levels of MWL. Similarly, with an emphasis on

MWL classification, Lee et al. (2020) [124] implemented a CNN-based model. The

research team constructed a multiple-feature block-based CNN (MFB-CNN) that har-

nessed temporal-spatial EEG filters to illustrate the current mental states of pilots,

thereby enabling accurate classification. With a similar classification-centric approach,

Qayyum et al. (2018) [167] employed a pre-trained 2D-CNN to categorise human men-

tal states during recurrent multimedia learning tasks. By transforming one-dimensional

EEG signals into a two-dimensional format using the short-time Fourier transform tech-

nique, the researchers enabled the use of the 2D-CNN for classification. This method-

ology consistently tracked the behaviour of alpha brain waves across different cognitive

tasks, thus successfully classifying each distinct mental state.

Issues with Specific Deep Learning Implementations

Stacked denoising autoencoders (SDAEs) have been introduced to reduce the dimen-

sionality of EEG features while retaining the local information present in the data

[32,230]. SDAEs provide an alternative method to address the within-subject classifica-

tion issue, addressing certain limitations associated with CNN-based models. However,

they bring their own challenges, including the computational costs and their sensitivity

to hyperparameter tuning, which demand further exploration.

Ensemble models, which combine the strengths of multiple classifiers to boost per-

formance, have also emerged. The ensemble CNN (ECNN) model proposed by Zhang

et al. (2017) [244] is a testament to such an approach. Although ensemble models

can potentially enhance performance, they could also introduce increased complexity

and longer training times, which might be problematic in certain applications. Other

deep learning models have also tackled within-subject MWL classification problems.

These include RNN [116], BiLSTM [109,254], AConv-BiLSTM-NN [52], and BiLSTM-

LSTM [36, 109, 111]. The primary focus of these models is on capturing the spatial

and temporal features present in EEG data. However, these models may require large

amounts of data for effective training and are also susceptible to overfitting. Further

models used in this context include the Gated Recurrent Unit (GRU) [111], bidirec-
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tional gated recurrent unit (BiGRU) [111], and a combination of BiGRU with GRU

(BiGRU-GRU) [111]. Long Short-Term Memory (LSTM) networks [36] have also been

applied. These models, too, focus on capturing the dynamics in EEG data but may

bring their own challenges, such as the need for comprehensive data and the risk of

overfitting.

Researchers must weigh the trade-offs among accuracy, computational complexity,

and interpretability when selecting an appropriate model for their problem. Future

efforts should be devoted to developing more efficient and robust models that effectively

capture spatial and temporal EEG data features. Additionally, exploring innovative

approaches to address the distinct challenges of EEG-based MWL classification will

remain a significant area of research.

Cross-Subject and Cross-Session Challenges

Effective transfer of EEG analysis models from one subject to another has proven to be a

complex task [239]. In response to this challenge, Hefron et al. [73] developed a novel ap-

proach that entailed training a model on a specific subject and then applying this model

to other subjects for classification. This model, termed a multi-path convolutional re-

current neural network (MPCRNN), was tested in a non-stimulus-locked multi-task

environment to predict a subject’s cognitive workload levels. Notably, the MPCRNN

demonstrated increased classification accuracy and decreased variance across different

participants, underscoring its potential effectiveness for addressing the cross-subject

problem in EEG-based MWL classification. Meanwhile, Zheng et al. (2020) [253] pro-

posed an extreme learning machine (ELM)-based ensemble, the ED-SDAE, to classify

cross-subject cognitive workload levels, aiming to reduce subject-independent variation

and discover time-variant EEG signal properties. Alternative methods were proposed

by Jimenez et al. (2017) [95], who introduced a unique deep neural network architec-

ture that merges the strengths of residual networks and GRU. This model effectively

captured patterns across various regions and frequencies and interpreted changes over

time. In another study, they proposed a custom domain adaptation (CDA) method

designed to reduce both marginal and conditional distribution differences and person-
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alise a classifier for each subject, resulting in higher accuracy compared to other deep

unsupervised domain adaptation (D-UDA) methods.

Jimenez et al. (2020) [96] also addressed the issue of disparate EEG signal dis-

tributions among different subjects by proposing a custom domain adaptation (CDA)

method integrating adaptive batch normalisation (AdaBN) and maximum mean dis-

crepancy (MMD) into two separate deep neural networks. This method aimed to reduce

both marginal and conditional distribution differences and personalise a classifier for

each subject, achieving higher accuracy compared to other deep unsupervised domain

adaptation (D-UDA) methods. Yin et al. (2017) [235] developed a switching deep belief

network with an adaptive weights (SDBN) model for assessing the subject’s operator

functional states (OFS). The model architecture consisted of two sets of deep belief net-

works (DBNs): static and dynamic. The static DBNs aimed to eliminate higher-level

representations of EEG features, while the dynamic DBNs were designed to capture

novel EEG feature characteristics from unseen testing subjects. Zeng et al. (2019) [241]

employed a gradient boosting-based classifier, LightFD, which was developed using the

LightGBM framework. This model was particularly effective in identifying variations in

drivers’ mental states. The LightFD model, as proposed by the researchers, showcased

robust transfer learning capabilities coupled with minimal time consumption. These

characteristics render it especially suitable for real-time EEG mental state prediction,

underscoring its potential utility in real-world applications. In a parallel effort, Shao

et al. (2021) [189] employed a BiLSTM model for their investigation, demonstrating

the application of recurrent neural networks in handling the complexities and temporal

dynamics of EEG data for cross-subject MWL analysis.

Finally, Zeng et al. (2021) [239] utilised a domain-adversarial neural network

(DANN), a model that has demonstrated superior performance in transfer learning,

notably in the areas of document analysis and image recognition. However, it was

not previously applied directly to EEG-based cross-subject fatigue detection. They

proposed a novel model, a generative domain-adversarial neural network (GDANN),

which integrated DANN with generative adversarial networks (GAN) for EEG-based

cross-subject fatigue mental state prediction. The GDANN model aimed to address the
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problem of different EEG distributions across subjects. It attempted to balance dis-

parities in the sample sizes between the source and target domains, selected the most

appropriate Top N source domain subjects for experimentation, and endeavoured to

extract as many invariant features of the target domain as possible. The model allowed

transfer learning to be conducted across various domains and data tasks. Experimental

results revealed that the performance of GDANN surpassed that of DANN, SVM, and

EasyTL.

Given that the assessment of MWL is vital for individuals in both daily life and work

situations, it is crucial to construct models capable of effectively managing cross-subject

variations. Most studies in the current literature have primarily focused on single-

session experiments, underscoring the need for additional research on cross-subject

models for improved generalisability and applicability in diverse contexts.

Yin et al. (2017) [234] introduced an adaptive stacked denoising autoencoder

(SDAE) model. This model was designed to train a static pattern classifier with

EEG signals recorded on separate days for both training and testing. The aim was

to adaptively update the weights of the shallow hidden neurons during the testing

phase, thereby enabling more accurate classification across sessions.

Despite these initial efforts, current literature suggests that the estimation of cross-

session cognitive workload levels using deep learning models has not been thoroughly

explored. This area calls for further research to enhance the generalisability and appli-

cability of EEG-based MWL classifiers across multiple sessions. Lim et al. (2018) [127]

explored the feasibility of using the same features for different cognitive workload tasks

by employing two independent datasets. Despite the promising premise, the results

indicated that the average accuracy, although higher than chance levels, was too low

for practical use. This underscores the need for more sophisticated methods to achieve

better cross-task performance. To tackle this challenge, Shao et al. (2021) [189] pro-

posed a concatenated structure of deep recurrent and 3D convolutional neural networks

(R3DCNNs) to learn EEG features across different tasks. By converting the 1D EEG

signal into a 3D representation, the R3DCNNs model could simultaneously capture

EEG features from spatial, spectral, and temporal dimensions.
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After evaluating the current literature, it is evident that the field employs a variety

of deep-learning models. Each model is complicated and suited to specific problems.

For the analysis in this study, the focus is placed on the RNN family of models. This

decision is motivated by RNNs’ inherent strengths in processing sequential data. This

is especially relevant for the task at hand: the categorisation of MWL utilising deep

learning techniques applied to EEG data. Moreover, because the nature of the problem

and the features of the data are both time-dependent, RNNs are an appropriate choice

for our investigation.

The next section will explore the cross-validation techniques that have been utilized

in various research projects for MWL classification.

2.4.2 Cross-Validation in MWL Classification

As shown in the previous section, we aim to use machine learning techniques, specif-

ically deep learning, to capture the variance characteristics of EEG signals and make

a classification. Cross-validation is an essential technique for evaluating deep learning

models and assessing their performance [183]. Different cross-validation techniques have

been developed, each with its own algorithm. The experimental purpose, which may

be subject-, task-, or session-dependent, determines which cross-validation approach is

used.

A traditional CV technique splits an entire dataset into K equal-sized subsets or

folds. The model is trained on K − 1 folds, which are called the training set. One

fold, which is kept apart and not seen by the model, is used as the test set. Every

fold takes its turn as a test set [196]. The model training process is repeated K times,

with a different fold preserved for model evaluation each time. The fundamental idea

underlying a CV technique is that a collection of random variables is being drawn from

a given probability distribution; these variables are statistically independent of each

other, satisfying the independent and identically distributed (i.i.d.) property in proba-

bility theory and statistics [80]. However, the conventional method presents challenges

when used with EEG signals, which change over time and represent time series data.

Therefore, applying the traditional CV approach (i.e. shuffling and randomly splitting
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the data into K-folds) can violate the i.i.d. assumption [19]. A violation can make a

model unreliable due to overfitting [35]; this issue becomes more serious in forecasting

tasks in which future information should not be available to the model during train-

ing. In response to the unique characteristics of EEG data and the objectives of the

research, different types of CV strategies were developed.

For example, in the study by Yang et al. [230], the data from all subjects were

combined, shuffled, and then randomly divided into subsets to establish a subject-

generic paradigm. On the other hand, the study conducted by Zeng et al. [240] adopted

a task-generic paradigm, where data from different tasks were mixed before performing

K-fold cross-validation on each subject. This approach allowed for combining data

from different tasks and subjects, ensuring generality across both subjects and tasks in

their study [240]. Figure 2.6 demonstrates the data splitting process into training and

testing sets, as employed in K-fold cross-validation.

Figure 2.6: K-fold cross-validation technique

When looking more closely at validation methods for EEG, leave-subject-out cross-

validation becomes a popular option, particularly for cross-subject classification model

evaluation. Here, data from one subject is reserved for testing, while data from all other

subject(s) are combined for training. This procedure is repeated until each subject is

used at least once as a testing subject [73,94,95,116,239,253]. Figure 2.7 demonstrates

the data splitting process into training and testing sets, as employed in leave-subject-

out cross-validation. Different variations, including leave-session-out cross-validation,

have also been developed to adapt this method to various contexts.

Diving deeper into these variations, leave-session-out cross-validation is applicable

when training and testing. EEG signals are recorded in separate sessions or days; this
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strategy reserves one session for testing and uses the remaining sessions for training

[4, 198].

In a parallel vein, another LOOCV offshoot—the leave-task-out cross-validation—shifts

the focus, pivoting on tasks for data segregation. The leave-task-out cross-validation

approach involves selecting training and test data from different tasks [189, 248]. The

dataset is divided into two subsets: a training set and a test set, with separation carried

out randomly or based on specific rules. As an alternative to these LOOCV variants,

leave-p-out cross-validation has been proposed. The leave-p-out cross-validation, often

abbreviated as LPOCV, is similar to LOOCV but with a twist. It reserves p sam-

ples/subjects for testing instead of just one. The remaining n− p subjects are used for

training [146]. Unlike K-fold and LOOCV, which have independent test sets in each

iteration, some parts of the testing set might overlap in LPOCV, potentially causing

the model to remember the training set pattern. This issue prompted the investigation

of alternatives such as Monte Carlo cross-validation.

Figure 2.7: Leave-subject-out cross-validation technique
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Monte Carlo cross-validation, also referred to as repeated K-fold cross-validation

or repeated random sub-sampling cross-validation, is a variation of the K-fold method

that aims to address some of its limitations. Saha et al. [178] adopted the Monte Carlo

cross-validation technique with four folds, arguing that it offers higher optimisation

than traditional K-fold and hold-out cross-validation methods. This study randomly

divided each fold into training and testing datasets with a ratio of 60:40. The predictive

accuracy obtained through this method was averaged across the splits to derive the final

results.

Figure 2.8: Monte Carlo cross-validation technique (adaptive from [178])

Although Monte Carlo cross-validation provides a more robust approach than tra-

ditional cross-validation techniques, it is essential to consider the data’s specific char-

acteristics. To be more precise, random shuffling does not adequately address the

temporal nature of EEG signals before splitting the data into training and testing

sets. Specifically, when the goal is predicting future events, such as a subject’s MWL,

disregarding this temporal characteristic could lead to unreliable classification model

performance [35]. Figure 2.8 shows the Monte Carlo cross-validation technique, which

randomly splits the dataset into training and test sets multiple times.

In addition to this, it is clear that thoroughly studying different cross-validation

techniques is very important, especially when considering the type of data we have.

Different approaches can be used to preserve the temporal structure while ensuring

that the model evaluation is reliable when working with time series datasets such as

EEG signals [110,170,171]. Thus, researchers must consider these options in alignment

with their study’s specific characteristics and goals.

Considering the temporal nature of EEG signals, time-wise cross-validation has
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been suggested as a suitable strategy to accommodate these characteristics [171]. This

approach partitions the samples from each task and session into n evenly distributed,

contiguous segments. The model is trained on n − p segments from all tasks and

validated on the remaining segments [170]. To minimise the impact of task transitions,

some data from each task’s initial and final segments may be excluded from the analysis.

This approach provides a more tailored solution to the unique challenges of EEG signals.

Figure 2.9 illustrates the time-wise cross-validation technique, where the dataset is split

based on the temporal order of the data points.

Figure 2.9: Time-wise cross-validation technique (adaptive from [170])

Time series cross-validation is another method that considers the temporal charac-

teristics of time series data, such as EEG signals. This approach preserves the tempo-

ral structure of the data by reserving a final part of the series as the testing dataset.

Importantly, the corresponding training set only includes observations that occurred

before those in the test set [110]. By preserving the sequential arrangement of the

data, time series cross-validation effectively precludes the leakage of information from

future observations into the present prediction period, ultimately resulting in a more

dependable and precise evaluation of the model’s performance. In this way, time se-

ries cross-validation addresses the unique challenges of time series data and contributes

to developing robust and generalisable models. Figure 2.10 illustrates the time series

cross-validation technique, where the dataset is split based on the temporal order of

the data points.

Due to the inherent temporal nature of EEG data, in our deep learning model

evaluation step, It is crucial that we modify how we evaluate deep learning models in

light of this. This highlights the significance of the time series cross-validation method
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for our MWL levels classification, which is discussed in Chapter 6. We will discuss

the cross-validation technique in Section 2.4.2. At this point, we want to emphasise

how crucial cross-validation is in the field of machine learning. It is crucial to evaluate

the effectiveness and dependability of our deep learning model when predicting the

intensities of MWL.

Figure 2.10: Time series cross-validation technique

2.5 Chapter Summary

This chapter provides a comprehensive review of the literature on EEG-based MWL

classification. It sheds light on the intricacies and challenges of the field and identifies

underexplored areas that this thesis will delve into in subsequent chapters. In addition

to framing the classification problem, the chapter establishes a robust technical founda-

tion by delving into essential components such as artefact removal, feature extraction,

sequential model-based classifiers, CNN-based classification, and channel selection tech-

niques. By examining these elements together, the chapter presents a holistic approach

to the MWL assessment problem. Through careful analysis and synthesis, the chapter

sets the stage for a nuanced understanding of EEG-based MWL classification, laying

the groundwork for innovative contributions and insights.
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Methodology

The study utilised two distinct datasets to conduct experiments: the Simultaneous Task

EEGWorkload (STEW) dataset and the BCI Hackathon Grand Challenge dataset. The

first dataset was the STEW dataset, which was used to answer research questions re-

garding EEG preprocessing and time series cross-validation. The methodology involved

four key steps: data preprocessing, feature extraction, feature selection, and classifi-

cation. The initial focus was on the intricate EEG preprocessing step, which involved

only automated techniques. This step was crucial in capturing the unique characteris-

tics of the EEG signal. Features were then calculated using a sliding window approach,

extracting features from each window. To evaluate the models, a time series cross-

validation technique was employed, incorporating both rolling and expanding window

strategies. The classification was then performed on two tasks. The first task involved

binary classification to categorise the EEG signal between resting and working states.

In the second task, three MWL levels (low, moderate, and high) were classified from

subjective ratings using objective EEG spectral data. Overall, the four preprocess-

ing scenarios and time series cross-validation techniques were verified in deep learning

models. The diagram provides a comprehensive overview of the process for EEG-based

MWL classification using deep learning for the STEW dataset, as shown in Figure 3.1

The BCI hackathon dataset was utilised to perform the channel selection experi-

ment, which contains more data from 62 EEG channels. This allowed for a more com-

prehensive experiment than the STEW dataset, which only has data from 14 EEG chan-
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nels. The overall process was similar to the previous diagram, which included data pre-

processing, feature extraction, feature selection, and classification. However, in this ex-

periment, channel selection was performed after noise removal, and the cross-validation

used was stratified sampling. The diagram provides a comprehensive overview of the

EEG-based MWL classification process using deep learning for the BCI hackathon

grand challenge, shown in Figure 3.2. The detailed methods will be described in the

subsequent section, facilitating a clear understanding of the approach used in the study.

Figure 3.1: Methodological Overview for EEG Data Processing in the STEW Dataset
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Figure 3.2: Methodological Overview for EEG Data Processing in the BCI Hackathon
Dataset

3.1 Data Source Description

In order to fully comprehend the analyses presented in this thesis, it is crucial to

examine the data sources in detail and understand their underlying foundation. This

section describes the open-access datasets used in this thesis.

3.1.1 Simultaneous Task EEG Workload (STEW)

The STEW dataset records multitasking MWL activity generated through a single-

session simultaneous capacity (SIMKAP) experiment. Introduced by Lim et al. [128]

and available as open access, this dataset is purpose-built to facilitate EEG studies and

offers a framework for MWL level classification. It contains EEG signals from 48 male
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subjects who are university graduate students recruited via open email. They must not

have neurological, psychiatric, or brain-related diseases and have never participated

in an EEG experiment before. Data were recorded using the EMOTIV EPOC EEG

headset, a wireless device equipped with 14 electrodes (AF3, F7, F3, FC5, T7, P7,

O1, O2, P8, T8, FC6, F4, F8, AF4). These electrodes were strategically positioned

according to the 10–20 international system to ensure accurate signal capture. The

sampling frequency was set at 128 Hz with a 16-bit A/D resolution. The data was

transmitted to a paired PC desktop via wireless Bluetooth, and the raw data was

recorded using Emotiv’s ‘TestBench’ software.

The EEG signals were recorded in two states: resting and working. In the resting

state, subjects sat in a chair for 3 minutes without performing any task. Their EEG

was recorded during this time and used as the resting state data. In the working state,

subjects performed the SIMKAPmultitasking activity. The details of the SIMKAP task

will be described in Section 3.1.1. Only the final 3 minutes of the EEG recording

were used as the working state data. To reduce the effects of any between-task activity,

the first and last 15 seconds of data were excluded from each recording, resulting in

recordings of 2.5 minutes (150 seconds). The sample size of signals in each state is

19200 samples. Notably, the dataset does not provide any markers to indicate specific

activities or events presented to the subjects. After each experiment state, participants

were prompted to rate their MWL on a 9-point scale. This scale is analogous to the

1-21 scale used in the NASA-TLX [71], which is shown in Figure 3.3.

Figure 3.3: Questionnaire on a 1-9 scale for rating MWL, which subjects were required
to fill out after completing each experiment segment (modified from Lim et al., 2018
[127])

For analysis purposes, the 9-point rating scale was categorised into three MWL

levels: low (1-3), moderate (4-6), and high (7-9). Therefore, there is a single MWL
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rating for both the resting and working states.

Task: SIMKAP

The SIMKAP multitasking activity is primarily designed for job and career placement.

It measures subjects’ ability to concentrate and perform multiple tasks simultaneously,

such as completing a routine task while answering questions. SIMKAP consists of three

parts: routine tasks, problem-solving, and the SIMKAP test itself, which measures

stress tolerance.

In the first part, participants must identify and mark a certain number, letters,

and figures by comparing two separate panes shown in the upper part of Figure 3.4. In

the problem-solving section, participants answer questions posed orally by selecting the

answer from a multiple-choice selection displayed on the screen (shown in the bottom

part of Figure 3.4). In the third section, participants combine all previous tasks with

additional data look-up tasks, which require them to look up information in a simulated

telephone directory or diary (see Figures 3.5 and 3.6 respectively).

Figure 3.4: Screenshot from the SIMKAP task. The top panel displays participants
comparing numbers between two panes. The bottom panel presents a multiple-choice
problem-solving task.
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Figure 3.5: A Screenshot of the SIMKAP task: participants engage in a simulated task
of searching through a telephone directory.

Figure 3.6: Screenshot of the SIMKAP task where the participant searches for infor-
mation in a simulated diary.
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Data Formatting: STEW

The STEW dataset was captured using Emotiv EPOC [60], a device equipped with a

filtering technique. It features a digital notch filter that effectively eliminates electrical

interference at 50 and 60 hertz, frequencies that are commonly associated with electrical

noise. Additionally, the device has a digital 5th-order Sinc filter which selectively allows

brainwave frequencies between 0.16 and 43 Hz to pass through, further refining the

signal. As a result, the STEW dataset has been preprocessed by a notch filtering

technique that effectively removes 50/60 Hz.

Each participant’s EEG signal from the resting and working states is saved in sepa-

rate files, one for each state. The MWL ratings for these states are stored in a separate

file, with each entry consisting of the participant’s number followed by their ratings for

the resting and working states. For example, the entry “1, 2, 8” indicates that partic-

ipant 1 received a rating of 2 during the resting phase and 8 during the multitasking

test.

3.1.2 BCI Hackathon Grand Challenge

This dataset was curated as part of the Passive BCI hackathon grand challenge at the

Neuroergonomics Conference 2021, specifically for the cross-session MWL estimation

problem [78]1. It comprises EEG signals from 15 participants (6 female; 9 average

25 years old), captured using a 64-active Ag-AgCl Electrode system (ActiCap, Brain

Products Gmbh) at a 500 Hz sampling rate according to the international 10-20 system

and an ActiCHamp amplifier (Brain Products, Gmbh). In this dataset, the signal from

one electrode could not be used. One electrode was dedicated to recording cardiac

activity, resulting in 62 electrodes placed according to the international 10-20 system.

Therefore, the final set of electrodes includes Fp1, Fz, F3, F7, FT9, FC5, FC1, C3, T7,

CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8, TP10, CP6, CP2, FCz, C4, T8, FT8, FC6,

FC2, F4, F8, Fp2, AF7, AF3, AFz, F1, F5, FT7, FC3, C1, C5, TP7, CP3, P1, P5,

PO7, PO3, POz, PO4, PO8, P6, P2, CPz, CP4, TP8, C6, C2, FC4, FT10, F6, AF8,

AF4, F2. The effort was made to maintain impedances below 10 kΩ. Event markers

1https://www.neuroergonomicsconference.um.ifi.lmu.de/pbci/
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during tasks were recorded and synchronised via the LabStreamingLayer. In addition,

the precise electrode locations were determined using a STRUCTURE 3D camera and

the specially developed chanlocs plug-in for accurate EEG electrode placement. Details

are available on github.com/sccn/get chanlocs/wiki.

Data collection spanned three separate experimental sessions, each a week apart.

Participants engaged in both a resting and a working state, echoing the STEW dataset’s

structure. In the resting state, participants sat with open eyes for a minute, and their

EEG was recorded. Subsequently, in the working state, they tackled NASA’s Multi-

Attribute Task Battery II (MATB-II)2. This 15-minute task is segmented into three

5-minute blocks, each representing a distinct difficulty or MWL level (easy, medium, or

difficult). The complexity of tasks was determined through a pseudo-random procedure.

EEG data from sessions were labelled in terms of these MWL levels.

Task: MATB-II

MATB-II is a software tool for evaluating cognitive workload and performance [182].

It is used in research to assess the workload capacities of human subjects. MATB-II

presents subjects with a set of tasks to perform simultaneously, which include system

monitoring (SYTSMON), tracking (TRACK), resource management (RESMAN) and

communications (COMM). The tasks are designed to be similar to those that might

be performed in real-world operational systems, making MATB-II a valuable tool for

studying human performance in complex environments. The SYTSMON task is cru-

cial in ensuring the effective functioning of any information system and in responding

to system failures. Similarly, the TRACK task simulates keeping track of multiple

data streams, system states, or project progress in the field of information systems.

The RESMAN task mimics resource allocation and load balancing tasks in information

system management, while the COMM task is vital in collaborative information sys-

tems environments, project management, and inter-departmental communications. A

screenshot of the interface of MATB-II can be viewed in Figure 3.7.

2https://software.nasa.gov/software/LAR-17835-1

64

https://software.nasa.gov/software/LAR-17835-1


Chapter 3. Methodology

Figure 3.7: The screenshot of MATB-II task

The number of sub-tasks and their difficulties varied based on the workload condi-

tion. In the easy condition, participants engaged in two tasks - the SYTSMON and the

TRACK task. The SYSMON task is displayed in the upper left of Figure 3.7. During

the SYTSMON task, the subject monitored the four moving pointer dials for deviation

from the midpoint and responded to the absence of the green light and the presence

of the red light. At the same time, in the TRACK task presented in the upper middle

window, participants were required to sustain a target at the centre of an inner box

using a joystick.

In the medium condition, a third task called RESMAN was introduced, which

increased the complexity of the tasks. The RESMAN window is located in the lower

part of Figure 3.7, which displays six large rectangular tanks that indicate fuel levels

and fluctuate in real-time via green indicators. Participants had to maintain tanks A

and B at 2500 units each by activating and deactivating a set of pumps - eight pumps

shown in the lower right of Figure 3.7. A red area on the failed pump indicated any

pump failures.

Lastly, in the difficult condition, the COMM task was added to the three previ-

ous tasks. Here, participants listened to pre-recorded auditory messages to operate
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the frequencies of different radios, which are displayed in the lower left of Figure 3.7.

However, not all of the messages were relevant to the operator. The subject had to

determine which messages were relevant and respond by selecting the appropriate radio

and frequency on the communications task window.

The order of each condition was randomised, which means participants could start

with something other than the easy task and end with the difficult one. Notably, the

participant did not rate their workload after completing the tasks.

Data Formatting: BCI

The dataset underwent an initial preprocessing phase conducted by the hackathon

organiser. Initially, data from the resting state and various tasks were isolated from

the comprehensive recording. The ECG signal was meticulously removed, and the

residual data were segmented into 2-second non-overlapping epochs. The criterion

for data epoching was executed using workload level labelling, essentially dividing the

entire dataset into sequential 2-second epochs without incorporating any ‘pre-stimulus’

or ‘post-stimulus’ data within the epochs. Consequently, they also perform artefact

removal by applying the following techniques in the dataset: high-pass filtering at 1 Hz

and low-pass filtering at 40 Hz using an FIR filter, electrode, and noisy independent

component (IC) from muscle, heart, and eye rejection. Moreover, they also employed

the average re-referencing (CAR) technique, helping to reduce common noise present

across all channels. Finally, the signal was down-sampled to 250 Hz. Down-sampling

reduces the data size and computational requirements by reducing the sampling rate

while preserving sufficient information for analysis.

After rigorous preprocessing by the hackathon organiser, the refined BCI dataset

structured the three distinct MWL levels determined by the assigned task. Each sub-

ject’s EEG signal is saved in a singular directory, with each session having its own

distinct directory. However, the data is fragmented due to the organisation of the dif-

ferent MWL levels into distinct folders, which disrupts the dataset’s temporal structure.

For example, Figure 3.8 shows that the MWL conditions are marked every 2 seconds,

but it depicts only the medium level.
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Figure 3.8: The example of EEG signal with MWL condition is marked every 2 seconds

3.1.3 Comparison of MWL between STEW and BCI Hackathon Grand

Challenge Datasets

While experiments in both datasets aim to assess subjects’ MWL, they exhibit signifi-

cant differences in several aspects:

1. Task Nature and Complexity: The STEW dataset features MWL genera-

tion through a single-session SIMKAP experiment designed for job and career

placement, incorporating multitasking activities that require subjects to concen-

trate and perform multiple tasks simultaneously. In contrast, the BCI Hackathon

dataset involves the MATB-II, comprising tasks of varying complexity that sim-

ulate real-world operational systems. These tasks increase in complexity across

three conditions (easy, medium, and hard), each adding more sub-tasks.

2. Experimental Conditions: In STEW, all activities occur within a single ses-

sion, with EEG recordings taken during resting and working states. For the BCI

dataset, data collection spans three sessions, with tasks segmented into different

difficulty levels, influencing how workload is assessed across sessions.

3. MWL Measurement: STEW measures MWL directly through participant self-

assessment using a 9-point post-task scale, reflecting subjective workload expe-
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riences. Conversely, BCI infers MWL from task complexity. The tasks are pre-

defined as easy, medium, or hard without direct MWL ratings from participants.

This approach relies solely on the designed difficulty of the tasks rather than

participant feedback.

4. Data Labelling and MWL Levels: In the STEW dataset, participants eval-

uate and assign MWL levels solely upon completing the working stage, resulting

in each subject having a singular MWL rating for that stage. Meanwhile, the

BCI dataset labels MWL based on task conditions, with three distinct levels

(corresponding to the task difficulties) for each subject, as detailed in Section

3.1.1.

These distinctions highlight the varied methodologies and approaches to measuring

and analysing MWL in different experimental contexts. The STEW dataset provides

a subjective assessment of MWL, whereas the BCI Hackathon dataset employs a task-

based evaluation method, leading to fundamental differences in data interpretation and

application.

3.2 Key Components of Deep Learning Approach

In each chapter of this thesis, we employ a consistent experimental procedure for deep

learning models, consisting of three key stages: data preprocessing, feature engineer-

ing, and model evaluation. We use deep learning models to assess the effectiveness

of our studies in each chapter. For example, in Chapter 4, we compare different

preprocessing techniques. In Chapter 5, we explore various EEG channel selection

configurations and Chapter 6 examines diverse time series cross-validation strategies.

We will provide details of the features, models, and evaluation matrices used in all

chapters in this section for clarity.

3.2.1 Data Preprocessing

The initial step in EEG data analysis is to address signal noise or artefacts from sources

such as eye movements, muscle activity, or external electrical interference. These arte-

68



Chapter 3. Methodology

facts can contaminate EEG data, leading to inaccurate MWL assessments. This sub-

section describes the preprocessing methods employed in this study to remove artefacts

tailored to two distinct datasets.

For the STEW dataset, a more detailed discussion of the preprocessing process is

presented in Chapter 4. In this chapter, we introduce a key innovation: an automated

pipeline for noise mitigation that improves analysis reliability while reducing expert

intervention requirements. The preprocessing of BCI data is explained in Section

3.1.2.

3.2.2 Feature Extraction

After thoroughly cleansing and optimising the EEG data, the study progresses to the

vital feature extraction stage. This process identifies key elements within the EEG

signals that are closely linked with changes in MWL. Features can encompass time-

domain elements, such as mean and variance, and frequency-domain elements, such as

power spectral density in specific EEG bands. The selection process is meticulously

designed to hone in on features that are most indicative of MWL classification, laying

the groundwork for precise model training and in-depth data analysis. A comprehensive

description of the feature extraction process, including the rationale for each chosen

feature, will be provided in the respective experiment chapters.

In machine learning, high data dimensionality can lead to intensive computational

demands. To address this, many researchers employ feature extraction to capture

only pertinent EEG signal characteristics [151]. Feature selection then refines this

by curating an optimised set for enhanced model performance. Various features are

employed for MWL classification in EEG studies. In this research, we have delineated

features into six categories: frequency, statistical, morphological, time-frequency, linear,

and nonlinear. Details on each group are elaborated subsequently.

Frequency Domain

We calculated the signal power for each channel at four well-known power spectral

density bands by using a fast Fourier transformation (FFT) [155]; delta (0.5–4 Hz),
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theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz) bands

were used. Each PSD band represents a different state of the human brain [87]. The

delta shows deep sleep and not dreaming; thata happens when people are drowsy

and drift down into sleep and dream. Alpha shows a very relaxed and deepens into a

meditation. Beta appears when people are busily engaged in activities and conversation,

and gamma reveals a hyper brain active and great for learning [87]. We also computed

signal power features in every non-overlapping 2-Hz interval from 4–40 Hz because the

non-overlapping 2-Hz could provide finer power spectrum information [219].

PSD alpha and PSD theta were extracted by a Fast Fourier transformation (FFT)

[155].

Statistical Domain

The distribution of the signal can be determined from the time-domain features, i.e.

the mean, standard deviation, skewness, and kurtosis.

Mean is calculated as:

µ =
1

N

N∑
i=1

Xi (3.1)

For each EEG channel, we calculate the mean of the signal data over a specific time

window. This average electrical activity can provide insights into the brain’s overall

state during that period.

Standard deviation

σ =

√√√√ 1

N

N∑
i=1

(Xi −X)2 (3.2)

The dataset’s standard deviation quantifies the values’ dispersion around the mean. A

low standard deviation indicates that the values are close to the mean, while a high

standard deviation indicates that the values are spread out over a wider range.

Skewness [68], which is the degree of asymmetry in the distribution, was evaluated

by (3.3)

Skewness =
1

N

N∑
i=1

(Xi −X)3

σ3
(3.3)

If all the samples in a channel are uniformly distributed around the mean, they have a
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Gaussian distribution.

Kurtosis [68] showing the degree of peakedness in the distribution can be rep-

resented using (3.4). Channel value with highly-tailed or high kurtosis refers to the

presence of noise in the data.

Kurtosis =
1

N

N∑
i=1

(Xi −X)4

σ4
(3.4)

Again, in this formula, N represents the total number of observations, Xi represents

each individual observation, X represents the mean, and σ represents the standard

deviation.

Morphological Domain

Curve length In 1D (one-dimensional) space, the curve length can be calculated by

integrating over the curve. Given a function f(x), the curve length L from x = a to

x = b can be expressed as:

L =

∫ b

a

√
1 + [f ′(x)]2dx (3.5)

The number of peaks To count the number of peaks in a discrete signal, one can

compute a second-order difference and count the number of sign changes from positive

to negative, which indicate peaks. Let’s denote the signal as x[n] and the number of

peaks as Npeaks. This concept isn’t typically represented with a specific formula, but

you can explain it using the pseudo formula:

Npeaks =

N−1∑
n=2

[(x[n]− x[n− 1]) > 0& (x[n]− x[n+ 1]) < 0] (3.6)

Average non-linear energy In signal processing, the non-linear energy operator

E for a discrete-time signal x[n] is typically defined as:

E[n] = x[n]2 − x[n+ 1]x[n− 1] (3.7)
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Then, the average non-linear energy Eavg can be computed as:

Eavg =
1

N

N∑
n=1

E[n] (3.8)

where N is the length of the signal.

Time-frequency Domain

Wavelet transform The Wavelet Transform is a powerful mathematical tool used for

analysing localised power variations within a signal or a dataset. It decomposes a signal

into different frequency sub-bands and then analyses each sub-band with a resolution

matched to its scale. This allows for multi-resolution analysis, which is not possible

with other traditional methods like the Fourier Transform.

The Continuous Wavelet Transform (CWT) of a function f(t) with respect to a

real-valued wavelet ψ(t) is defined as:

CWTx(a, b) =
1√
|a|

∫ ∞

−∞
f(t)ψ∗

(
t− b

a

)
dt (3.9)

where a is the scale factor. b is the translation factor. The star denotes the complex

conjugate. Integration is over the entire line. The scale factor affects the width of

the wavelet. The translation factor b affects the location of the wavelet. The Discrete

Wavelet Transform (DWT) is a sampled version of the CWT and is computed for

discrete values of the scale and translation parameters. DWT can be implemented

efficiently using filter banks. In practice, DWT is used more often than CWT due to

its computational efficiency.

Linear Domain

Autoregressive coefficient (AR) with p = 6 [249] was calculated in the linear domain to

describe time-varying processes. An Autoregressive (AR) model represents a type of

random process. It is autoregressive in that the value at a given time point is a function

of previous values. The general form of an AR(p) model (p-order autoregressive model)
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is:

Xt = c+ ϕ1Xt−1 + ϕ2Xt−2 + . . .+ ϕpXt−p + ϵt (3.10)

where: Xt is the time series data at time t, c is a constant, ϕ1, ϕ2, ...,ϕp are the param-

eters of the model, Xt−1, Xt−2, ..., Xt−p are the values of the time series at previous p

points, and ϵt is white noise.

To estimate the coefficients ϕ1, ϕ2, ...,ϕp, we can use the Yule-Walker equations,

which are based on autocorrelations of the time series data. The ACF at lag k, denoted

as γ(k), can be represented as:

γ(k) =
1

N − k

N∑
t=k+1

(Xt − µ)(Xt−k − µ) (3.11)

The system of Yule-Walker equations at lag p can be represented as:

γ(0)ϕ1 + γ(1)ϕ2 + . . .+ γ(p− 1)ϕp = γ(p)

γ(1)ϕ1 + γ(0)ϕ2 + . . .+ γ(p− 2)ϕp = γ(p− 1)

...

γ(p− 1)ϕ1 + γ(p− 2)ϕ2 + . . .+ γ(0)ϕp = γ(1)

(3.12)

Which can be represented in matrix form as [R]Φ = γ, where Φ is a vector of parameters,

[R] is a matrix of autocorrelations and γ is a vector of autocorrelations at lags 1 through

p. The solution to the system of equations gives the estimates of the AR coefficients.

In linear algebra, this can typically be solved using a method like Gaussian elimination

or Cramer’s rule. In practice, software packages can handle these computations.

Non-Linear Domain

The approximate entropy (ApEn) and Hurst exponent (H), treated as non-linear fea-

tures, are used to quantify the unpredictability of fluctuations over time series and to

measure the self-similarity of the time series, respectively.

Approximate entropy (ApEn) [165] is used to quantify the regularity and the
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unpredictability of fluctuations over time series. It can be represented in (3.13).

ApEn(m, r,N) = ϕm(r)− ϕ(m+1)(r) (3.13)

Where r is a parameter usually referred to as the filtering level, and m represents

the length of compared run of data. For EEG signals data, the value of m is usually

set at 2, and the value of r is set between 0.1 and 0.25 times the standard deviation of

the original time series [249]. In this experiment, we set m at 2, and the r value was

arbitrarily chosen at 0.2.

Hurst exponent (H) [86] is used for measuring the self-similarity of the time

series. When H is equal to 0.5, it indicates no correlation in the time series; H lies

between 0 to 0.5 means there are long-term anti-correlations, and H lies between 0.5

to 1 means time series have long-term correlations. H can be evaluated by (3.14).

H =
log(R/S)

log(T )
(3.14)

where R denotes the range and standard deviation of the first n samples of time series

data. T represents the time series data.

3.2.3 Feature Standardisation

Inherent intra- and inter-subject variability are undeniable characteristics of the EEG

signal due to time-variant factors and psychological and neurophysiological parameters

[219]; they can cause a data distribution shift problem [179]. Consequently, this would

cause the extracted features to have poor generalisability. In this paper, a personalised

feature standardisation method was applied to alleviate this problem [30, 219]. The

extracted features were converted into the same scale across subjects by Fscaled. Assume

the raw feature value is Fraw. Lw and Uw are the upper and lower whisker (limits),

respectively, they are the measure’s value distribution for generating box plot [225]. Lw

= max (minimum feature value, lower quartile − 1.5 ∗ interquartile range) and Uw =

min (maximum value, supper quartile + 1.5 ∗ interquartile range. The scaled feature

value Fscaled is acquired from
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Fscaled =
Fraw − Lw

Uw − Lw
. (3.15)

3.3 Model Architectures

With the extracted features in hand, the study employed a range of deep learning

models, including stacked LSTM, BLSTM, BLSTM-LSTM, stacked GRU, BGRU, and

BGRU-GRU. These models can learn complex patterns and correlations within the

data, making them powerful tools for predicting mental MWL levels. Details of these

architectures are presented in Table 3.1.

Table 3.1: Deep learning model architectures

Model Layers

Stacked LSTM L128-L64-L40-D32-D1(D3)

BLSTM BL128-D32-D1(D3)

Stacked GRU G128-G64-G40-D32-D1(D3)

BGRU BG128-D32-D1(D3)

BLSTM-LSTM BL256-L128-L64-D32-D1(D3)

BGRU-GRU BG256-G128-G64-D32-D1(D3)

CNN 1D-CNN(filters = 64, kernel = 3)-
MaxPooling-Flatten-D32-D1(D3)

In Table 3.1, L, G, BL, BG and D refer to LSTM, GRU, BLSTM, BGRU and dense

layers, respectively. For example, L128-L64-L40-L32 indicates an LSTM layer with 128

units, followed by a second LSTM layer with 64 units, a third LSTM layer with 40

units, and a dense layer with 32 units. While D1 in the last layer indicates the dense

layer with 1 unit used in Task 1, D3 indicates the dense layer with 3 units used in Task

2. In this study, a dropout rate of 0.2 was applied to prevent overfitting, and the Adam

optimiser was employed with an initial learning rate of 1e-04 to train all the models.

An early stopping mechanism was also implemented, where the training would halt if

there were no improvements in the model’s performance for 30 consecutive epochs.
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3.3.1 Deep Learning Model Training

Due to the distinct natures of the two datasets employed in this study (detailed in

Section 3.1), we utilise two different cross-validation techniques.

For the STEW dataset, which has a temporal structure, we employ time series cross-

validation. Unlike conventional cross-validation, time series cross-validation respects

the sequential ordering of data points, strengthening the model’s ability to predict

MWL in real-world, time-sensitive scenarios accurately. A comprehensive elucidation

of this distinct validation technique will be furnished in Chapter 6.

For the BCI hackathon dataset, we apply stratified cross-validation, which provides

a reliable assessment of the model’s performance on independent subsets of the data.

3.4 Metrics

The evaluation metrics used in this study are shown in Table 3.2. Where true positives

(TPi) for each class Li represent the number of cases correctly predicted as belonging

to that class, while false negatives (FNi) represent the number of cases that belong to

class Li but were incorrectly predicted as belonging to another class. Conversely, true

negatives (TNi) represent the number of cases correctly identified as not belonging to

class Li, while false positives (FPi) represent the number of cases that were incorrectly

predicted as belonging to class Li when they actually belong to a different class. Each

individual class Li, with i ranging from 1 to the total number of classes, is evaluated

separately.

FRR and FAR are usually applied for measuring the performance of a biometric

system [203]; this measurement is also known as Type I and Type II errors, respec-

tively. That means FRR is the issue of the valid occasion that should be accepted are

rejected and FAR occur when an unauthorised case which should actually be rejected

are accepted.
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Table 3.2: Evaluation matrics

Measure Formula Evaluation focus

Sensitivity
(Recall)

[
n∑

i=1

TPi

(TPi + FNi)

]
/n Average per-class effective-

ness of the classifier in iden-
tifying positive labels.

Specificity

[
n∑

i=1

TNi

(TNi + FPi)

]
/n Average per-class effective-

ness of the classifier in iden-
tifying negative labels.

Precision

[
n∑

i=1

TPi

(TPi + FPi)

]
/n Average per-class agreement

between the positive class la-
bels and those predicted by
the classifier.

Accuracy

[
n∑

i=1

TPi + TNi

(TPi + TNi + FPi + FNi)

]
/n Average per-class overall ef-

fectiveness of the classifier.

Fscore

[
n∑

i=1

2 ∗ (Precisioni ∗Recalli)
(Precisioni +Recalli)

]
/n The average per-class balance

between the model’s precision
and recall.

FAR

[
n∑

i=1

FPi

(FPi + TNi)

]
/n Average per-class proportion

of incorrect acceptance of the
invalid inputs by the system.

FRR

[
n∑

i=1

FNi

(FNi + TPi)

]
/n Average per-class proportion

of incorrect rejection of the
valid inputs by the system.
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3.5 Statistic Analysis

The final step of each experiment is statistical analysis, which we perform to identify

significant differences between groups and to investigate the hypotheses proposed in

our study. The Kruskal-Wallis test, a non-parametric alternative to the ANOVA test

for multi-group comparisons, is advantageous because it does not require statistical

assumptions about normal population distribution, equal variances, or independent

data.

If we observe significant differences between groups, we further perform pairwise

post-hoc comparisons using the Wilcoxon Rank-Sum test (also known as the Mann-

Whitney U test).

3.6 Chapter Summary

In this chapter, we meticulously describe the study’s methodology. We begin with

a detailed exploration of the foundational dataset, providing vital context regarding

its scope, participant tasks, and task relevance to information system management.

Next, we provide an exhaustive description of the experimental procedure, including

a comprehensive feature list to facilitate a robust understanding of the analysed char-

acteristics. This feature list will be pivotal in subsequent discussions, specifically in

Chapters 4, 5, and 6.
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Chapter 4

EEG Preprocessing and Its Effect

on Deep Learning Models in

MWL Prediction

This chapter explores the effect of various EEG preprocessing techniques on the perfor-

mance of deep learning models for predicting MWL levels. Given that EEG signals are

prone to noise, the study examines preprocessing methods such as high-pass filters, the

ADJUST algorithm, and re-referencing. The core research question investigates how

these techniques influence the effectiveness of deep learning models in MWL prediction.

4.1 Introduction

Assessing MWL through EEG data is crucial, but it is challenging. One of the biggest

hurdles is the presence of signal noise or ‘artefacts’ from various sources, such as eye

movements, muscle activity, or external electrical interference. These artefacts not only

contaminate the EEG data but also lead to inaccurate MWL assessments.

Fortunately, recent advancements in deep learning models, such as the Convolu-

tional Neural Network (CNN) [123], RNN [116], and BLSTM-LSTM [36], have greatly

improved our ability to extract information from EEG signals. These models are de-

signed to capture the variance characteristics inherent in EEG signals, with the aim of
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classifying MWL status with greater accuracy.

Despite these advancements, the field still faces challenges. While neuroscientists

have provided several EEG preprocessing guidelines [1, 23, 49], they remain broad and

lack universal adoption, leaving researchers to decide which technique to employ for

effective noise removal. Moreover, certain existing pipelines integrate visual inspection

and manual labelling for noise reduction [29]. While these methods can be very useful

to reduce the noise in signals, they suffer from three issues. First, these methods are

time-consuming, particularly with large datasets. Second, it can introduce bias in the

analysis [210]. Finally, they limit the use of such pipelines in automated processes.

Moreover, the influence of preprocessing steps on EEG analysis within deep learning

remains largely unexplored, making it challenging to compare outcomes across different

studies. To address a gap in the current literature by replicating the study conducted

by Chakladar et al. [36], which evaluated the use of a publicly acknowledged MWL

scenario and is considered state-of-the-art within the domain. However, the approach

to artefact removal differs from the original paper, focusing on an automatic EEG

artefact removal framework suitable for deep learning analyses. More information on

the utilised scenario and the distinctive framework will be provided in Section 4.3.

To achieve the objective of investigating the effects of different preprocessing tech-

niques on the effectiveness of deep learning models using EEG signals to predict MWL

levels, the main research question for this chapter is posed as “What are the effects

of different preprocessing techniques on the effectiveness of deep learning models using

EEG signals to predict MWL levels?”. The focus is on those preprocessing techniques

that can be executed automatically, namely a high-pass filter, the ADJUST algorithm,

and re-referencing, as they can be incorporated into deep learning models without any

human intervention.

Three state-of-the-art deep learning models, specifically Stacked LSTM, BLSTM,

and BLSTM-LSTM [36], have been selected to investigate the impact of these prepro-

cessing techniques.
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4.2 Research Questions

Our research questions for this chapter are as follows:

• RQ1.1: How do different preprocessing techniques, such as high-pass filtering,

the ADJUST algorithm, and re-referencing, influence the performance of deep

learning models in MWL prediction, and what preprocessing techniques are most

effective for accurately interpreting EEG signals related to MWL?

• RQ1.2: How do preprocessing decisions affect the performance of specific deep

learning models, such as Stacked LSTM, BLSTM, and BLSTM-LSTM?

4.3 Artefact Removal Techniques

Artefact removal is a critical step in ensuring the accuracy and reliability of EEG data

interpretation. Noise, including muscle activity, eye movements, and heartbeats, can

interfere with EEG signals. Various techniques are used to eliminate these artefacts,

and we will describe them in detail in this section.

In digital signal processing, filtering is a common technique used to eliminate fre-

quencies that are not of interest. The filtering process typically involves using low-,

high-, and band-pass filters. Low-pass filters are used to remove high-frequency noise,

while high-pass filters are used to remove low-frequency noise. Band-pass filters, on

the other hand, are used to isolate the frequencies of interest. High-pass filtering is a

key technique in signal processing that allows frequencies higher than a certain cutoff

frequency to pass through while reducing the amplitude of frequencies lower than the

cutoff frequency. This technique is particularly useful in applications such as audio

processing, image processing, and telecommunications, where you may need to filter

out low-frequency noise or other unwanted components.

ADJUST [147] is a state-of-the-art tool that uses Independent Component Analysis

(ICA) to automatically detect and remove non-brain signals from EEG data. These

signals, known as artefacts, can be caused by various sources, such as eye movements,

heartbeats, and muscle activity. Artefacts can have a significant impact on the quality
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and interpretation of EEG data. ADJUST identifies which components likely represent

artefacts by analysing the statistical properties of the independent components. Once

the artefacts are identified, they can be removed, and the remaining components are

recombined to produce a clean EEG signal. Figure 4.1 displays the topographies of all

Independent Components (ICs). Those identified as artefacts by ADJUST are high-

lighted with a red box. Specifically, ICs 2, 3, 4, 6, and 10 are classified as artifacts by

ADJUST.

Figure 4.1 shows an example of an Independent Component (IC) map computed by

ADJUST.

Figure 4.1: Independent Component (IC) map computed by ADJUST

In EEG analysis, re-referencing is a technique for altering the reference electrode

used for the recordings. The choice of reference electrode can significantly affect the

EEG signals observed. Hence, researchers may digitally re-reference the collected data

to a different electrode or an average of multiple electrodes. This helps minimise the

impact of reference electrode activity on the recorded signals and provides a more

precise representation of brain activity. Depending on the specific needs of a study or

experiment, various re-referencing methods can be employed.
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4.3.1 Datasets: STEW

The dataset used for this study is the STEW dataset, which can be referred to in

Section 3.1.1.

4.3.2 Preprocessing Scenario: STEW

EEG preprocessing consists of several techniques. Some can automatically eliminate

noise from data, while others must be performed manually. This study investigates

the effect of preprocessing techniques that can only be performed automatically, i.e.,

without any human intervention. The advantage of an automatic processing analysis is

that it avoids the problem of bias from manually marking artifacts by visual inspection

[210]. Therefore, the effect of three main preprocessing techniques is investigated: a

high-pass filter, the ADJUST algorithm, and re-referencing. The reason for using only

high-pass filtering follows the guidelines found in the literature [128].1

The STEW dataset, which forms the basis for this analysis, presents several limita-

tions that restrict the use of certain preprocessing steps commonly used in EEG data

analysis.

First, each stage of the experiment in the dataset is associated with a single MWL

label, based on participant feedback. This provides a general overview of participants’

MWL during each phase but does not capture the nuances of their mental state. No-

tably, the dataset lacks stimulus data, which prevents an understanding of the precise

tasks or challenges participants faced.

Second, while participants in the SIMKAP experiment performed various tasks in a

seemingly random order, the dataset does not provide the exact timing or sequencing of

these tasks. This gap significantly hinders the ability to perform nuanced preprocessing

tasks, such as data epoching, which relies on granular events or stimulus timings.

Third, as mentioned in Section 3.1.1, each participant’s data is labeled with only

one MWL level denoting their working state. This unique feature necessitates merging

data from different participants to ensure a comprehensive representation of all three

1All preprocessing techniques were performed using EEGLAB v12, running under the cross-platform
MATLAB environment.
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MWL levels for model evaluation. This necessity also influences the decision to retain

all channels, forgoing channel exclusions to ensure uniformity in data dimensions across

all participants.

As a result of these considerations, the study defines four experimental scenarios as

follows:

Table 4.1: Experimental scenarios

Scenario Preprocessing process

1 None (Raw data)
2 High-pass filtering
3 High-pass filtering and ADJUST
4 High-pass filtering, ADJUST and Re-reference

• Scenario 1 - Raw Data: No preprocessing has been conducted on the data.

• Scenario 2 - High-pass filter: In this scenario, the EEG signal was filtered

using a 1 Hz high-pass filter to remove slow linear trends. Signals with frequencies

greater than a certain value were kept. A default of zero-phase FIR filter was

used.

• Scenario 3 - ADJUST: In this scenario, Independent Component Analysis

(ICA) was applied to the EEG signals previously filtered using a 1 Hz high-

pass filter (from Scenario 2) employing the Runica function [136]. The artifact

components identified through ICA analysis were automatically inspected by AD-

JUST [147], and the identified artifact components were removed without man-

ual correction. Although general guidelines proposed by Mognon et al. [147] for

running ADJUST include steps that require manual intervention, such as visual

inspection, these steps were omitted to maintain an automated process.

• Scenario 4 - Re-referencing: In this scenario, the EEG signal was re-referenced

by averaging electrical activity measured across all scalp channels. Re-referencing

can typically be performed by averaging with all channels or specific reference

channels, which are usually attached at locations like the earlobe or around the

eye as the EOG channel. For this step, averaging was performed with all channels,

as the adopted dataset did not contain any designated reference channel.
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The four experimental scenarios are summarised in Table 4.1.

Figure 4.2 and 4.3 show sample data before and after preprocessing techniques

applied in Scenario 4. It was observed that the artifacts were effectively removed by a

high-pass filter, the ADJUST algorithm, and re-referencing techniques.

Figure 4.2: Sample continuous time EEG channel data before preprocessing

Figure 4.3: Sample continuous time EEG channel data after preprocessing
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4.3.3 EEG Feature Extraction and Selection

The purpose of feature extraction is to capture characteristics of EEG signals. In the

literature, various features have been utilised in EEG classification. Power spectral

density (PSD) [137] is the most widely used feature. These features can be divided into

sub-bands of delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and

gamma (30–100 Hz), each corresponding to different states of the human brain. The

delta band indicates deep sleep without dreaming, theta occurs as individuals become

drowsy and drift into sleep and dreams, alpha is associated with deep relaxation and

meditation, beta with active engagement in activities and conversation, and gamma

with heightened brain activity beneficial for learning [87]. The time domain, linear

domain, and non-linear domain are other features that have been employed.

Features such as PSD alpha, PSD theta, skewness, kurtosis, approximate entropy,

and Hurst exponent were extracted from 14 channels, as they were reported to be the

best feature set for this collection, tasks, and models [36]. Skewness and kurtosis are

time-domain features, while approximate entropy and Hurst exponent are non-linear

domain features. All features were extracted from each EEG channel, using the entire

data length for calculations. Feature extraction was performed using a sliding window

approach to capture temporal dynamics. Specifically, a window of 512 samples with a

128-sample overlap was applied, ensuring a thorough analysis of signal variations. This

technique is visualised in Figure 4.4, demonstrating how the sliding windows overlap

to analyse the EEG data continuously.

Figure 4.4: Overlapping sliding window
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The details of each feature are elaborated in Section 3.2.2. Finally, the total

number of extracted features of a 14-channel data is 84 (14 × 6). All features were

standardised before further analysis. The standardised method is going to be explained

in the following section.

4.3.4 Feature Standardisation

Inherent intra- and inter-individual variability in EEG signals can lead to poor gener-

alisability of extracted features and potential data artefacts, complicating the task of

building a cross-subject model for MWL recognition. This issue was mitigated using

a personalised feature standardisation method, converting features into a unified scale

across subjects, as detailed in 3.2.3.

4.3.5 Deep Learning Models

To investigate the effect of preprocessing techniques, the scenarios were verified us-

ing three state-of-the-art deep learning models named Stacked LSTM, BLSTM, and

BLSTM-LSTM adopted from [36]. These models have been widely used in EEG signal

processing for MWL classification [92,154,213] and are particularly useful for learning

sequential data with long-term dependencies [251]. The deep learning model architec-

tures are explained in Section 3.3.

4.3.6 Evaluation Metrics

The efficacy of preprocessing techniques on deep learning model performance is as-

sessed using six metrics: sensitivity, specificity, precision, accuracy, False Acceptance

Rate (FAR), and False Rejection Rate (FRR). Detailed descriptions of these evaluation

metrics are provided in Section 3.4.

4.3.7 Experimental Procedure

In the study, classification was performed in two tasks; the first task involved binary

classification, categorising EEG signals between resting state or no task and working

state or during the subject performing the SIMKAP task. In the second task, three
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MWL levels from subjective ratings, which are composed of low, moderate, and high,

were classified using objective EEG spectral data. It was a multiclass classification.

For Task 1, data from all 48 subjects were used, but for Task 2, data from subjects

S05, S24, and S42 were excluded as rating data was unavailable for these subjects.

As shown in Section 4.3.2, in each preprocessing scenario, EEG features were

extracted, and then a set of 84 optimised features based on the original paper [36]

was utilised. In the model evaluation step, a cross-validation technique was applied.

Initially, 80% of the dataset was used for model training, and 20% of the data was set

aside as an unseen test dataset. Then, the training dataset was further split into five

folds of approximately equal size, constituting a 5-fold cross-validation. Within each

loop of classification model training, one fold was treated as a validation set, and the

model was trained on the remaining four folds. Inside the loop, the selected features

were standardised by using the Fscaled (3.15). Once the model was trained using 5-fold

cross-validation, model performance was evaluated by comparing predicted levels with

the true labels of the unseen dataset.

4.4 Results and Discussion

This section discusses different experimental results along with the performance analysis

of the proposed framework.

4.4.1 Scenario 1

For Scenario 1, where only raw data without any preprocessing were used, it is observed

from Table 4.2 and 4.3 that all adopted deep learning models are capable of capturing

relevant information and classifying with good model performance scores. Specifically,

the least sophisticated model, such as the Stacked LSTM, provided a good starting

point compared to chance.
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Table 4.2: The effect of the four preprocessing scenarios on MWL classification in
Task 1: resting state vs working state. The numbers in the parentheses indicate the
percentage change in model performance for each scenario compared to Scenario 1.
An asterisk (*) indicates a statistically significant difference (p-value < 0.05) in model
performance under three comparison conditions (Scenario 1 versus 2, Scenario 1 versus
3, and Scenario 1 versus 4).

Model Scenario Sensitivity Specificity Precision Accuracy FAR FRR
Stacked 1 79.63 76.07 76.90 77.85 29.23 20.37
LSTM 2 81.78* 77.11* 78.13* 79.44* 22.89* 18.22*

(2.70) (1.37) (1.60) (2.04) (-21.69) (-10.5)
3 85.78* 85.26* 85.34* 85.52* 14.74* 14.22*

(7.72) (12.08) (10.98) (9.85) (-49.57) (-30.19)
4 87.26* 87.78* 87.71* 87.52* 12.22* 12.74*

(9.58) (15.39) (14.06) (12.42) (-58.19) (-37.46)
BLSTM 1 78.81 76.96 77.38 77.89 23.04 21.19

2 82.89* 76.97 78.25* 79.93* 23.03 17.11*
(5.18) (0.01) (1.12) (2.62) (-0.04) (-19.25)

3 87.19* 85.78* 85.98* 86.48* 14.22* 12.81*
(10.63) (11.46) (11.11) (11.03) (-38.28) (-39.55)

4 88.30* 86.74* 86.94* 87.52* 13.26* 11.70*
(12.04) (12.71) (12.35) (12.36) (-42.45) (-44.79)

BLSTM- 1 83.85 79.56 80.40 81.70 20.04 16.15
LSTM 2 82.89* 79.78 80.39 81.33 20.22 17.11*

(-1.14) (0.28) (-0.01) (-0.45) (0.90) (5.94)
3 86.89* 88.44* 88.26* 87.67* 11.56* 13.11*

(3.63) (11.16) (9.78) (7.31) (-42.32) (-18.82)
4 87.93* 90.96* 90.68* 89.44* 9.04* 12.07*

(4.87) (14.33) (12.79) (9.47) (-54.89) (-25.26)

Task 1: Resting vs Testing State

Data in Table 4.2 shows that the highest accuracy scores are from the BLSTM-LSTM

model, followed by the BLSTM and Stacked LSTM models, with scores of 81.70%,

77.89%, and 77.85%, respectively. It could be implied that the more sophisticated model

provided higher model accuracy. However, examining the sensitivity scores reveals a

different pattern; the sensitivity of the BLSTM model was slightly lower than that of

the most unsophisticated model architecture, like the Stacked LSTM. This indicates

that the BLSTM model more frequently misclassified subjects who were in a resting

state as being in a working state than other models. Conversely, the highest specificity

score of 76.96% in Task 1 was obtained by the BLSTM model, indicating its proficiency

in correctly identifying non-resting states.
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Table 4.3: The effect of four preprocessing scenarios on MWL classification in Task 2:
low vs moderate vs high MWL. The numbers in the parentheses indicate the percentage
change in model performance for each scenario compared to Scenario 1. An asterisk (*)
indicates a statistically significant difference (p-value < 0.05) in model performance un-
der three comparison conditions (Scenario 1 versus 2, Scenario 1 versus 3, and Scenario
1 versus 4).

Model Scenario Sensitivity Specificity Precision Accuracy FAR FRR
Stacked 1 66.52 84.59 68.34 78.57 15.41 33.48
LSTM 2 70.96* 82.11* 66.48* 78.40 17.89* 29.04*

(6.67) (-2.93) (-2.72) (-0.22) (16.09) (-13.26)
3 81.81* 90.44* 81.06* 87.57* 9.56* 18.19*

(22.99) (6.92) (18.61) (11.45) (-37.96) (-45.67)
4 83.56* 91.83* 83.65* 89.07* 8.17* 16.44*

(25.62) (8.56) (22.40) (13.36) (-46.98) (-50.90)
BLSTM 1 22.52 95.94 73.52 71.41 4.06 77.48

2 17.11* 96.63 71.74* 70.12* 3.37* 82.89*
(-24.02) (0.72) (-2.42) (-1.81) (-17.00) (6.98)

3 24.11* 97.33* 81.89* 72.93* 2.67* 75.89*
(7.06) (1.45) (11.38) (2.13) (-34.24) (-2.05)

4 29.04* 97.44* 85.03* 74.64* 2.56* 70.96*
(28.95) (1.56) (15.66) (4.52) (-36.95) (-8.42)

BLSTM- 1 68.22 85.74 70.52 79.90 14.26 31.78
LSTM 2 71.74* 87.17* 73.65* 82.02* 12.83* 28.26*

(5.16) (1.67) (4.44) (2.65) (-10.03) (-11.08)
3 85.56* 92.09* 84.40* 89.91* 7.91* 14.44*

(25.42) (7.41) (19.68) (12.53) (-44.53) (-54.56)
4 86.59* 93.43* 86.82* 91.15* 6.57* 13.41*

(26.93) (8.97) (23.11) (14.08) (-53.93) (-57.80)

Task 2: Low vs Moderate vs High MWL Level

When examining model accuracy in Table 4.3, it is observed that the best model remains

the BLSTM-LSTM, followed by the Stacked LSTM, with the BLSTM being the least

effective. Model accuracies for the BLSTM-LSTM, LSTM, and BLSTM are 79.90%,

78.57%, and 71.41%, respectively. In this task, a concerning trend is noted in the lower

sensitivity score of the more sophisticated BLSTM model compared to the Stacked

LSTM. Specifically, while the Stacked LSTM achieved a sensitivity of 66.52%, the

BLSTM only reached 22.52%. This indicates that the BLSTM often failed to classify

the true level of the subject’s MWL accurately. For instance, when a subject was at a

low level of MWL, the model tended to misclassify the low MWL level as medium or

high. Moreover, a very high specificity score of 95.94% was observed for the BLSTM,
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suggesting its effectiveness at correctly identifying when subjects were not at a low level

of MWL. For example, when subjects were not at a low MWL level, the BLSTM model

was more accurate in marking medium or high levels compared to other models.

4.4.2 Scenario 2

In Scenario 2, the artefact components were removed from the dataset for the first time

using a high-pass filter technique. The same pattern of results is observed from Table

4.2 and 4.3 as in the previous scenario, with a few exceptions in Task 1.

Task 1: Resting vs Testing State

As seen in Table 4.2, the highest model accuracy is from the BLSTM-LSTM, followed

by the BLSTM and Stacked LSTM. The accuracy of the BLSTM and Stacked LSTM

increased by 2.62% and 2.04%, respectively, compared to Scenario 1. However, the

accuracy of the BLSTM-LSTM model decreased by 0.45% compared to Scenario 1.

It was observed that there was no decrease in the sensitivity score of the BLSTM

compared to the Stacked LSTM in this scenario.

Task 2: Low vs Moderate vs High MWL Level

As indicated in Table 4.3, the best model remains the BLSTM-LSTM; however, the

second-best model becomes the Stacked LSTM and the least effective model to classify

three levels of MWL is the BLSTM. The accuracy of the BLSTM-LSTM increased by

2.65%. However, for the Stacked LSTM and BLSTM, the accuracy decreased by 0.22%

and 1.81%, respectively, compared to Scenario 1. In this task of Scenario 2, a sharp

decrease in the sensitivity score of the BLSTM model compared to the Stacked LSTM

was still observed. While the Stacked LSTM achieved 70.96% sensitivity, the BLSTM

reached only 17.11% sensitivity. Nevertheless, the highest specificity score of 96.63%

in this task was observed for the BLSTM.

From these data, it is observed that there was some improvement in model perfor-

mance, but there were also some decreases. It appears that a high-pass filter technique

does not contribute significantly to model performance. Moreover, it might distort
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the EEG signal somehow and cause a loss of some information from the EEG data.

Furthermore, the problem of the BLSTM model still appears in this scenario.

The unexpected sensitivity underperformance of the BLSTM model in this scenario

might be attributed to the high-pass filtering technique used. While removing unwanted

low-frequency noise, high-pass filters also eliminate essential information crucial for ac-

curate classification. This loss could disproportionately affect the BLSTM’s sensitivity

due to its bidirectional approach, making it particularly vulnerable to signal quality

variations caused by such filtering.

4.4.3 Scenario 3

In Scenario 3, the artefact components were further removed from the dataset by using

the ADJUST algorithm. A similar pattern of results is observed from Table 4.2 and

4.3 as seen in Scenario 2, with a few exceptions. The exception is noted in Task 1.

Task 1: Resting vs Testing State

From the data in Table 4.2, it is noted that the highest accuracy scores are from the

BLSTM-LSTM, followed by the BLSTM and Stacked LSTM; their accuracy increases

by 7.31%, 11.03%, and 9.85%, respectively, compared with those in Scenario 1. It was

observed that the BLSTM obtained the highest sensitivity score in this task, followed

by the BLSTM-LSTM and Stacked LSTM.

Task 2: Low vs Moderate vs High MWL Level

Considering the accuracy score in Table 4.3, the best model remains the BLSTM-

LSTM, followed by the Stacked LSTM and the BLSTM. Model accuracy of the BLSTM-

LSTM, Stacked LSTM, and BLSTM rose by 12.53%, 11.45%, and 2.13%, respectively,

compared with those in Scenario 1. In this scenario, a significant decrease in sensitivity

score in the BLSTM, compared with the Stacked LSTM, was still observed. While the

Stacked LSTM enhanced to 81.81% sensitivity, the BLSTM acquired 24.11% sensitivity.

Furthermore, it was observed that the BLSTM model obtained the highest specificity

score of 97.33% in this task.
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Generally, substantial progress in model performance was seen in this scenario after

applying the ADJUST algorithm for further artefact removal from EEG signals. The

ADJUST has significantly contributed to model performance by filtering irrelevant

information from the data. However, the problem of low sensitivity in the BLSTM

model was still observed in this scenario.

4.4.4 Scenario 4

In Scenario 4, additional preprocessing techniques were incorporated into the pipeline,

specifically re-referencing.

Task 1: Resting vs Testing State

Considering the accuracy scores in Table 4.2, the best model remains the BLSTM-

LSTM, which shows a 9.47% improvement compared to Scenario 1. In this scenario,

both the BLSTM and Stacked LSTM achieved the same accuracy, albeit with different

improvement rates. The accuracy score of the BLSTM increased by 12.36%, while

the Stacked LSTM model improved by 12.42%, compared with their performances in

Scenario 1. The sensitivity pattern in this scenario was similar to Scenario 3; however,

the numbers were slightly increased.

Task 2: Low vs Moderate vs High MWL Level

In Task 2, the performance behaviour observed was the same as that found in Scenario

3, as shown in Table 4.3. Model accuracy of the BLSTM-LSTM, Stacked LSTM,

and BLSTM increased by 14.08%, 13.36%, and 4.52%, respectively, compared to their

performance in Scenario 1. A significant decrease in sensitivity score of the BLSTM

model compared to the Stacked LSTM was still evident. While the Stacked LSTM

model achieved a sensitivity of 83.56%, the BLSTM reached 29.04% sensitivity. The

BLSTM model continued to obtain the highest specificity score of 97.44%, although

the numbers did not differ significantly from Scenario 3.

To address the first research question (RQ1.1), various preprocessing techniques

were investigated, revealing that integrating more steps across different tasks resulted
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in a noticeable improvement in model performance. This behaviour was consistent

across all evaluated metrics, showing a linear decrease in error (FAR and FRR), with

some exceptions. The exception occurred in Scenario 2 when a high-pass filter was

used. In this scenario, an increase in error numbers was observed in Task 1 of the

BLSTM-LSTM model and Task 2 of the Stacked LSTM and BLSTM. As shown in

Table 4.2, FAR from Task 1 of the BLSTM-LSTM model starts at 20.04%; however,

after high-pass filtering, the number climbs to 20.22%. FRR, which starts at 16.15%,

changes to 20.22% after filtering. Considering Task 2 of the Stacked LSTM, as results

in Table 4.3 indicate, an increase in error numbers was found in FAR, which starts at

15.41% and climbs to 17.89%, and FRR from the BLSTM rises by 6.98% after filter-

ing. Smaller FAR and FRR values indicate better model performance. Conversely, the

model captures the data structure more effectively when it exhibits larger sensitivity,

precision, and accuracy values. Therefore, filtering EEG signals to remove artefacts

might be a common preprocessing step, but it could introduce temporal distortions

in the signals. Another important observation is that after EEG signals were prepro-

cessed using the ADJUST algorithm, performances notably increased across the state-

of-the-art deep learning models. The highest classification performance across the deep

learning models was achieved when using all preprocessing techniques. Hence, there

are opportunities for deep learning models to achieve higher performance by enhancing

artefact removal techniques in the preprocessing stage.

RQ1.2: Evaluating the impact of preprocessing on specific deep learning models

reveals that the less sophisticated model, i.e., Stacked LSTM, already provided a good

starting point compared to chance when using raw data. This indicates that even

simple deep learning model architectures can capture relevant information.

However, the BLSTM exhibited very low sensitivity, especially in Task 2: low vs

medium vs high MWL. The bidirectional approach, which processes data forwards and

backwards, did not seem to contribute significantly. The training strategy of the bidi-

rectional model, which involves concatenating two independent neural networks—one

processing inputs in chronological order and the other in reverse—might be problem-

atic [186]. Generally, the model requires input from both past and future contexts. In
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practical scenarios where future values of time series are not available at the time of

prediction, this could explain why the model struggles to categorize MWL levels effec-

tively. Therefore, this study raises an important question: “How can a bidirectional

neural network be effectively applied to time series analysis?”.

Furthermore, the BLSTM-LSTM had the highest starting point and also achieved

the best performance. Notably, results from Table 4.2 show that the accuracy for the

BLSTM-LSTM in Task 1 increased from 81.70% to 89.44%. The difference in perfor-

mance from raw data in Scenario 1 compared with Scenario 4 became less significant. In

Task 2, the accuracy of the BLSTM-LSTM climbed from 79.90% to 91.15%, as shown

in Table 4.3.

In this analysis, an analysis of variance on ranks was performed using the Kruskal-

Wallis H test [139] to test whether there were statistically significant differences between

the four scenarios of EEG preprocessing on model performance. It was found that there

was a statistically significant difference among the four scenarios across three models (p

< 0.05). Consequently, a pair-wise comparison was conducted using the Mann-Whitney

U test [140] to identify differences between model performance trained by raw data

and preprocessed data. The Mann-Whitney U test indicated statistically significant

differences in the performance of models at Scenarios 2, 3, and 4 compared to Scenario

1, which serves as the baseline for every model, with few exceptions. The asterisk in

Table 4.2 and 4.3 indicates the statistically significant results where the p-value < 0.05.

This demonstrates that the preprocessing techniques applied have a significant effect

in improving the effectiveness of the deep learning models on EEG signals. Overall,

even though the model is sophisticated, a suitable preprocessing pipeline still provides

an advantage. Thus, there are opportunities for deep learning models to achieve higher

performance by enhancing artifact removal techniques in the preprocessing stage.

4.5 Conclusion

In this chapter, the effect of preprocessing techniques defined by neuroscientists on the

effectiveness of deep learning models was explored. The focus was placed on automated

techniques including a high-pass filter, the ADJUST algorithm, and re-referencing. The
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effect of these preprocessing techniques was then verified across three state-of-the-art

deep learning models: Stacked LSTM, BLSTM, and BLSTM-LSTM, using a publicly

available MWL Scenario, STEW [128]. Findings indicate that the ADJUST algorithm

had the most significant impact on performance across the investigated deep learning

models compared to other techniques. Additionally, results demonstrated that EEG

signals preprocessed using a combination of a high-pass filter, the ADJUST algorithm,

and re-referencing provided the highest classification performance across the models.

However, it was also observed that raw signals were sufficient for classification, as

evidenced by each model’s performance, particularly the BLSTM-LSTM. This model

exhibited a strong starting point in both tasks. As models become more sophisticated,

their potential to extract relevant information from raw data increases, reducing the

need for preprocessing. Therefore, future work should focus on developing a deep

learning model sophisticated enough to automatically incorporate preprocessing within

its architecture.

The investigation into the effect of three artifact removal techniques, namely a

high-pass filter, the ADJUST algorithm, and re-referencing, yielded positive findings,

encouraging further research to explore the impact of other artifact removal techniques.

Additionally, the effects of these techniques on a broader range of deep learning models,

such as GRU, will be evaluated. Finally, future studies will explore how to integrate

EEG preprocessing techniques into the deep learning model architecture.

4.6 Chapter Summary

• This chapter contextualizes the user study within the first research goal, ad-

dressing prevalent issues surrounding EEG preprocessing procedures in machine

learning literature. Notably, the complexity and inconsistency of preprocessing

techniques affect the efficiency and accuracy of deep learning models interpreting

EEG data.

• Precise research questions are formulated to explore the consequential relation-

ship between various preprocessing techniques and the accuracy of MWL state
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predictions through deep learning models, providing a strategic pathway for sub-

sequent experimental scenarios and methodologies.

• Experimental scenarios are curated to scrutinise preprocessing techniques across

two distinct datasets, forming a comparative study to discern the impacts of vari-

ous preprocessing methods, specifically filtering, ADJUST algorithm application,

and different re-referencing strategies on the output of three deep learning archi-

tectures. These scenarios serve as practical groundwork to probe the formulated

research questions.

• Methodologies are elucidated, detailing the preprocessing steps and the mechanics

of the deep learning models utilised, namely, Stacked LSTM, BLSTM, and a hy-

brid BLSTM-LSTM. This section offers comprehensive insights into the practical

and theoretical underpinnings of the employed techniques, setting a foundation

for subsequent analyses and findings. Furthermore, this structured flow not only

provides crucial insights into the vital role of preprocessing in EEG signal inter-

pretation through deep learning models but also paves a path forward for future

research, particularly in honing methodologies for enhanced predictive accuracy

and model robustness in EEG analyses.

• Data analysis and its resultant findings are presented, combining statistical rigour

with insightful interpretations. Preprocessing methodologies are analysed in tan-

dem with performance metrics of deep learning models across four structured

scenarios, revealing substantial insights into their interplay and impact on pre-

diction accuracy.

• The concluding sections sift through major findings, providing a critical review

and an insightful discussion on how different preprocessing techniques influence

model performance, elucidating the nuanced impacts of preprocessing on model

efficiency and subsequent implications on EEG signal interpretation and MWL

state prediction.

• Limitations in the dataset were also identified, highlighting areas beneficial for
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the community in data collection, preparation, and release. A robust benchmark

dataset can expedite community advancements, facilitating progress without in-

heriting issues. During the preprocessing phase, several restrictions were observed

in both datasets, which subsequently influenced the processes involved in exper-

imental design. The STEW dataset, as mentioned in Section 3.1.1, presented

several issues. These challenges stemmed from the dataset’s limitation of provid-

ing solely EEG signals in a CSV file without any accompanying stimulus or event

information. The lack of presence hindered the process of epoching the data, a

crucial step in preparing EEG data. Epoching allows researchers to focus on spe-

cific periods when stimuli were presented and facilitate the study of event-related

potentials, provided that event markers are available. Moreover, the absence of

the mastoid channel in the dataset impeded the capacity to execute the reference

procedure using average referencing—an approach that carries inherent risks since

it may lead to data distortion if a channel contains outlier data or high noise.

• Additionally, the modelling technique was limited because each subject was as-

signed only one label for the MWL level. The execution of model training for

individual participants was impossible and could only be achieved by concatenat-

ing data. From a favourable standpoint, this methodology effectively safeguarded

the model from being limited to a certain subject, resulting in a more universally

applicable model.
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Chapter 5

EEG Channel Selection

Enhancement with Covariance

Estimators in Riemannian

Geometry

This chapter explores optimising channel selection to increase the computational effi-

ciency and performance of deep learning models for MWL classification. It examines

the consequences of various covariance estimators on the Riemannian distance-based

channel selection strategy and their implications on various deep learning models.

5.1 Introduction

Striving to balance data richness with computational efficiency, this study embarks on

the crucial stage of channel selection. The goal is to pinpoint the least number of EEG

channels that still retain the efficacy needed for precise MWL prediction. By optimising

this selection, the study ensures a streamlined yet robust dataset, thereby enhancing

the feasibility of the entire analytical process without sacrificing model accuracy.

Recently, the Riemannian geometry approach has become a popular method for

channel selection in EEG analysis. This technique utilises the covariance matrices of
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EEG signals as features, which are then manipulated and classified directly. By exam-

ining the covariance properties of these features, researchers can determine the most

meaningful channels for further analysis. For example, in the study by Barachant et

al. [11], Riemannian geometry was used to select fewer electrodes for brain signal analy-

sis. The method assessed how well different electrodes could distinguish between classes

by measuring the Riemannian distance between their spatial covariance matrices.

This method was applied to a two-class motor imagery paradigm, utilising the

sample spatial covariance matrix. Similarly, Qu et al. [169] employed Riemannian

geometry to minimise information redundancy, extracting key features from the most

relevant time-frequency bands of the selected channels to enhance decoding for BCI.

The EC estimator was utilised to analyse EEG signals in this binary classification

problem, focusing on the left- and right-hand motor imagery tasks. This technique

successfully reduced the number of electrodes from 61 to 18-32 using the LW estimator

by sequentially pruning channels to maximise the Riemannian distance between the

class-conditional covariance matrices [176].

Prior research primarily advanced binary classification. This study extends Rieman-

nian channel selection to more complex multiclass classification across easy, medium,

and difficult MWL levels, requiring multiple class comparisons. Additionally, past stud-

ies utilised various covariance estimators without thoroughly exploring their advantages

and drawbacks, potentially affecting technique effectiveness. Consequently, the primary

aim is to assess different covariance estimators’ impacts on channel selection and mul-

ticlass classification performance. By identifying the optimal number of channels for

model accuracy, this study aims to enhance the efficiency and effectiveness of channel

selection in EEG analysis.

5.2 Research Questions

RQ2: How can EEG channel selection be optimised using covariance estimators in

Riemannian geometry for MWL level classification?

• RQ2.1: How do different covariance estimators influence classification perfor-
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mance?

• RQ2.2: How does the reduction of EEG channels affect the classification model’s

performance?

RQ3: How can the selection and optimisation of EEG channels, including the

targeting of specific brain regions, enhance the classification of MWL levels?

• RQ3.1: Which specific regions of the brain are indicative of the MWL level, and

how can they be targeted effectively?

• RQ3.2: How can channel selection methods be employed to focus on these specific

regions?

5.3 Experimental Set-Up

In this study, channel selection is undertaken using the BCI Hackathon dataset. As il-

lustrated by the results presented in that chapter, model performance is enhanced when

employing scenario 2, in which the data is further denoised using ADJUST. Therefore,

in this experiment, the dataset processed according to that scenario is adopted for EEG

channel selection.

Four distinct covariance estimators are incorporated, the descriptions of which are

provided in Section 5.5. The targeted numbers of channels for selection have been

set to 4, 8, 16, and 32, which represent a low-density EEG channel configuration [192].

For comparative purposes, a model utilising all EEG channels, i.e., 62, is also trained.

The deep learning models employed in this experiment are elucidated in Section 3.3.

Channel selection was not performed on the STEW dataset because the method

requires three MWL levels per subject to measure the distance between channels, but

each subject in the STEW dataset only has one workload level.

5.3.1 Dataset: BCI hackathon

The effect of different covariance estimators on Riemannian channel selection was inves-

tigated using a publicly available EEG MWL dataset from the 2021 Neuroergonomics
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Conference Passive BCI hackathon 1 [78]. The dataset is explained in 3.1.2

5.3.2 Data Preprocessing

Before processing, artefacts in the EEG signals needed to be removed. Hackathon

organisers initially preprocessed the dataset by splitting the data from the task and

resting states of the complete EEG recording. Subsequently, the heart activity electrode

was removed, and the data was segmented into two-second non-overlapping epochs. The

dataset was then further subjected to high-pass filtering at 1 Hz and low-pass filtering

at 40 Hz using FIR filters, resulting in the rejection of electrodes and noisy independent

components from muscle, heart, and eye activity. Average re-referencing downsampled

the signal to 250 Hz. Based on the findings presented in Chapter 4, ADJUST is

highlighted as a potent noise removal technique. To guarantee optimal data quality, it

was employed [147] to eliminate any residual artefact components.

5.3.3 EEG Feature Extraction and Selection

In machine learning, high-dimensional data can pose significant challenges, including

time-consuming and computationally expensive calculations. Traditional feature ex-

traction techniques were employed to address this issue, capturing only relevant signal

characteristics from EEG data. This strategy enables a compact, fast model tailored to

the specific use case through customised features and interpretability. In this study, a

set of features broadly classified into six groups was calculated. Details of each feature

are described in Section 3.2.2. Rather than performing feature selection on individual

features, a different approach was adopted where entire channels of data were selected.

By choosing this method, all the features within those selected channels are utilised.

5.3.4 Feature Standardisation

The features were standardised as detailed in Section 3.2.3.

1https://www.neuroergonomicsconference.um.ifi.lmu.de/pbci/
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5.3.5 Deep Learning Models

This research employs the Gated Recurrent Unit (GRU) family, including Stacked GRU,

Bidirectional GRU (BGRU), and Bidirectional Stacked GRU (BGRU-GRU), to analyse

sequential and time series data effectively. These models have demonstrated efficacy

in MWL classification [45, 111, 213]. The architectures of the models are described in

Section 3.3

5.3.6 Evaluation Metrics

In the experiments, the performance of the three-class classification is evaluated using

various metrics, including Accuracy, Sensitivity (Recall), Precision, and F1-score.

5.3.7 Experimental Procedure

Cross-validation is a crucial technique for evaluating a machine learning model’s per-

formance, and the choice of cross-validation method depends on the objectives of the

analysis [112]. The hackathon organiser organised the EEG data into distinct folders,

including easy, medium, and difficult levels. This rigorous technique resulted in the

data’s temporal sequence being reorganised. To mimic a real-world experiment, where

each difficulty level would be performed randomly, the features were shuffled before

splitting them into training and validation sets. Stratified sampling was used to assign

80% of the data for model training and 20% for validation, thereby ensuring unbiased

performance evaluation by equally representing labels in each class.

5.4 Riemannian Geometry in EEG Data Processing

The seminal work by Barachant et al. (2010) [12] introduced Riemannian geometry

to the realm of EEG data processing, marking a transformative approach in this field.

This method offers a robust and interpretable framework for channel selection, enhanc-

ing signal interpretation and discrimination. Within this framework, EEG data are

represented as covariance matrices, residing in the space of symmetric positive-definite

(SPD) matrices—a curved Riemannian manifold. Channel selection involves assessing
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the discriminative power of channels based on their influence on Riemannian distances

between these covariance matrices. These distances quantify the dissimilarity between

matrices derived from different EEG conditions. By mapping these matrices to a tan-

gent space—a flat space where mathematical operations are more tractable—classical

methods can be employed to evaluate channel relevance. This geometric perspective

not only streamlines the channel selection process but also enhances the robustness and

interpretability of EEG-based analyses, particularly in tasks such as BCI classification,

where optimal channel combinations are crucial.

5.5 Covariance Estimation Techniques

The comprehension of interrelationships between multiple variables is of paramount

significance in numerous scientific studies and applications. The covariance matrix

serves as a standard tool to capture these interrelationships. This section delves into

various approaches to estimating covariance, particularly the Riemannian approach.

This method utilises covariance matrices to identify the links between MWL levels. The

focus is on four distinct estimators, all based on the fundamental concept of Riemannian

distance.

5.5.1 Empirical Covariance (EC)

Empirical Covariance, often termed as the sample covariance matrix or EC, is estab-

lished using:

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)T (5.1)

Here, n signifies the number of observations, xi is the i-th observation, and x̄ is

the sample mean. While widely used, this method has drawbacks like susceptibility

to outliers, noise amplification, and multicollinearity tendency, possibly affecting the

accuracy of subsequent analyses. Alternative covariance estimators such as SC, LW,

and OAS have been developed to resolve these issues.
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5.5.2 Shrunk Covariance (SC)

The Shrunk Covariance matrix estimator addresses the limitations of the sample co-

variance matrix by combining it with a structured target matrix (T ). The idea is to

“shrink” the sample covariance matrix towards the target matrix to obtain a more

stable and robust estimate. The SC matrix is computed as follows:

Shrunk Cov = αT + (1− α)S (5.2)

In the equation above, S is the sample covariance matrix, T is the target matrix,

and α is a shrinkage parameter between 0 and 1. The target matrix is typically an

identity matrix or a diagonal matrix with the average of the variances on the diagonal.

The choice of α can be made using cross-validation or by minimising some criterion,

such as the mean squared error.

5.5.3 Ledoit-Wolf (LW)

Further refining the concept of shrinkage, the Ledoit-Wolf estimator aims at deriving an

optimised covariance matrix by minimising the difference (mean squared error) between

the actual covariance matrix and the SC matrix. The LW estimator is described by:

Ledoit−Wolf = βI + (1− β)S (5.3)

In this formula, I is an identity matrix scaled by the average of the diagonal elements

of the sample covariance matrix and β is the shrinkage factor. Similarly, the OAS

estimator aims to find a shrinkage factor that minimises the mean squared error in an

oracle setting, where the true covariance matrix is known.

5.5.4 Oracle Approximating Shrinkage (OAS)

The Oracle Approximating Shrinkage estimator is a modern approach to covariance

estimation that approximates the ideal “oracle” estimator using available data. Its

unique adaptability makes it the superior choice for high-dimensional data, providing

superior performance compared to other shrinkage estimators.
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OAS = γI + (1− γ)S (5.4)

Here, I is an identity matrix, and γ is the shrinkage factor computed based on the

trace and Frobenius norm of the sample covariance matrix.

5.5.5 Channel Number

In this study, 4-, 8-, 16-, and 32-channel configurations were evaluated to optimize

the number of channels for each estimator. The goal was to identify the best covari-

ance estimator and optimal channel number for high model performance. Addition-

ally, six neural network models—LSTM, BLSTM, BLSTM LSTM, GRU, BGRU, and

BGRU GRU—were compared to further evaluate the effectiveness of these covariance

estimators.

The Riemannian distance within this framework, which quantifies the shortest dis-

tance between two points following a curved trajectory, is defined by equation 5.6. The

Riemannian mean is expressed by equation 5.7.

δR(C1, C2) = log ∥C−1
1 C2∥F =

[
N∑
i=1

log2 λi

] 1
2

(5.5)

where C1, C2 are two different covariance matrices respectively, λi denotes the ith

eigenvalue of C−1
1 C2, ∥ · ∥F denotes the Frobenius norm, and log(·) is the log-matrix

operator.

C̄ = argmin
C

N∑
i=1

δ2R(C,Ci) (5.6)

Crit = δR(C̄i, C̄j) = ∥log(C̄−1
i C̄j)∥F (5.7)

The pseudo-code employed for channel selection is shown in Algorithm 5.1.
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Algorithm 5.1 Pseudo code for Riemannian distance-based channel selection.

Input: The preprocessed N-channel EEG signals Xi, the total number of channels
N , the number of selected channels NCh, Number of MWL levels Nlevels

Output: NCh selected channel subset

1: procedure Channel Selection
2: Compute the covariance matrix Ci of Xi;
3: Compute the Riemannian means of each level C̄1, C̄2,...,C̄Nlevels

;
4: for n = 1: NCh do
5: for k = 1: N do
6: Remove kth channel by reducing the kth row and column from matrix
C̄1, C̄2,...C̄Nlevels

to C̄
′
1, C̄

′
2,...,C̄

′
Nlevels

;
7: Compute the sum of pairwise Riemannian distances between all classes’

Riemannian means DKsum;
8: end for
9: Select the channel corresponding to a minimum DKsum value;

10: end for
11: return NCh selected channels;
12: end procedure

To compute the sum of pairwise Riemannian distances for multiple classes, distances

between Riemannian mean covariance matrices of each pair in the three MWL levels

were calculated: C̄
′
1 and C̄

′
2, C̄

′
1 and C̄

′
3, and C̄

′
2 and C̄

′
3. The summed distances

serve as an overall measure of how dissimilar the classes are. Channels that, when

removed, result in the smallest summed distance are presumably the least informative

for distinguishing between classes and, therefore, are selected for removal first.

5.6 Results and Discussion

Table 5.1: Pairwise comparisons of mean accuracies across various estimators

Factor Comparison Mean p-value

Estimators

EC vs SC (93.14, 93.74) 0.0121*
EC vs LW (93.14, 93.66) 0.0239*
EC vs OAS (93.14, 93.70) 0.0101*
SC vs LW (93.74, 93.66) 0.7885
SC vs OAS (93.74, 93.70) 0.9790
LW vs OAS (93.66, 93.70) 0.7757
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In the analysis, the Kruskal-Wallis H test was utilised to analyse variance on ranks to

probe the impact of various factors on the accuracy of models designed for MWL level

classification [139]. The aim was to determine:

1. Whether there were statistically significant differences in model performance

across four covariance estimators used for Riemannian channel selection.

2. Whether significant variations existed across four channel configurations for Rie-

mannian channel selection regarding model performance.

3. If there were any discernible performance differences among six distinct models.

The findings indicated statistically significant differences across all three points:

1. A statistically significant difference was identified among the covariance estima-

tors with p-values < 0.05.

2. Significant variations in their impact on model performance were also observed

among the four channel configurations.

3. The six distinct models showed discernible performance differences as well.

To delve deeper into these differences, pairwise comparisons were conducted using

the Mann-Whitney U test (also known as the Wilcoxon Rank-Sum Test) [140], aiming

to pinpoint specific discrepancies in model performance associated with each factor.

The results from Table 5.1 showed significant performance differences when com-

paring SC, LW, and OAS to EC, the conventional covariance estimator. Despite initial

assumptions that EC might underperform, it trailed the other three. Specifically, SC,

LW, and OAS achieved accuracies of 93.74%, 93.66%, and 93.70%, respectively, out-

performing EC. As presented in Table 5.1, results marked with an asterisk denote

statistical significance with p-values < 0.05. However, SC, LW, and OAS showed no

significant performance differences among themselves. Notably, the SC estimator stood

out as the top performer, suggesting a preference for SC, LW, or OAS over traditional

methods.

These insights address RQ2.1: How do different covariance estimators influence

classification performance? In conclusion, the findings underscore the importance of
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selecting the appropriate covariance estimator in the success of deep learning models

for EEG signals. While a robust underlying model is crucial, the optimal covariance

estimator for Riemannian channel selection can enhance performance. This sheds light

on the potential for improved results by fine-tuning channel selection methodologies in

EEG-focused deep learning models.

Table 5.2: Pairwise comparisons of mean accuracies across different numbers of channels

Factor Comparison Mean p-value

Number of channels

4 vs 8 (92.67, 94.00) 0.0000*
4 vs 16 (92.67, 93.91) 0.0003*
4 vs 32 (92.67, 93.66) 0.0054*
4 vs all (92.67, 92.83) 0.9300
8 vs 16 (94.00, 93.91) 0.1984
8 vs 32 (94.00, 93.66) 0.0520
8 vs all (94.00, 92.83) 0.0045*
16 vs 32 (93.91, 93.66) 0.4391
16 vs all (93.91, 92.83) 0.0215*
32 vs all (93.66, 92.83) 0.0716

To address the research question RQ2.2: ”How does the reduction of EEG channels

affect the classification model’s performance?”, various channel configurations were

compared pairwise. The results in Table 5.2 offer several insightful observations. Firstly,

there was a clear enhancement in model accuracy as the number of channels increased

from 4 to 8, 16, and 32 (p < 0.05). Interestingly, when contrasting the 4-channel

configuration with a 62-channel setup, model accuracy improved, but the difference

was not statistically significant. After the 8-channel mark, consistent performance

gains were not observed. Model accuracy tended to decrease as channels increased to

16 and 32, although these declines were not statistically significant (p > 0.05). The

decrease became significant when the 8-channel configuration was compared with the

62-channel configuration. A similar pattern was noted with the 16-channel setup.

These insights are crucial as they confidently emphasise a fundamental point: simply

increasing the number of channels does not always guarantee better performance. While

scaling up from 4 to 8, 16, and 32 channels can offer measurable benefits, adding

more channels indiscriminately can lead to diminishing, if not adverse, returns. Thus,
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carefully selecting and optimising channel usage is paramount, striking a perfect balance

between performance goals and computational constraints.

Tables 5.3 through 5.6 show a comprehensive picture of how specific models behave

under various channel configurations. The models LSTM, BLSTM, BLSTM LSTM,

GRU, BGRU, and BGRU GRU provide results when tested across different covariance

estimators and channel configurations.

Table 5.3: Performance metrics of different models under Empirical Covariance (EC)
estimator with varied channel configurations

Scenario Model Accuracy Sensitivity Precision F1-Score

EC(4)

LSTM 91.84 87.76 89.92 87.45
BLSTM 92.97 89.46 90.57 89.31

BLSTM LSTM 92.24 88.36 90.04 88.12
GRU 92.31 88.46 90.21 88.19
BGRU 93.01 89.52 90.67 89.35

BGRU GRU 92.41 88.62 90.24 88.39

EC(8)

LSTM 93.25 89.88 91.79 89.53
BLSTM 93.96 90.93 92.24 90.72

BLSTM LSTM 93.56 90.33 92.01 90.08
GRU 92.34 88.51 90.79 88.11
BGRU 93.91 90.86 92.20 90.64

BGRU GRU 93.00 89.50 91.45 89.14

EC(16)

LSTM 92.71 89.07 91.84 88.57
BLSTM 94.40 91.61 93.10 91.38

BLSTM LSTM 92.33 88.49 91.40 87.96
GRU 92.33 88.49 91.40 87.89
BGRU 94.99 92.48 93.73 92.29

BGRU GRU 93.23 89.84 92.24 89.32

EC(32)

LSTM 92.87 89.31 92.07 88.75
BLSTM 95.15 92.73 93.96 92.49

BLSTM LSTM 91.85 87.78 91.30 87.16
GRU 93.40 90.10 92.52 89.47
BGRU 94.87 92.31 93.83 91.99

BGRU GRU 92.47 88.70 91.61 87.99

In the context of empirical covariance (EC) estimation, Table 5.3 demonstrates

that the performance of various models can differ significantly across different channel

configurations. Specifically, as the number of channels increases from 4 to 32, some

models show improvement, while others either stagnate or experience a slight reduction
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in performance.

Among the models examined, BLSTM consistently performed well as channels in-

creased, with a peak accuracy of 95.15% achieved with the 32-channel configuration.

Likewise, BGRU achieved its highest accuracy of 94.99% under the 16-channel con-

figuration. Notably, BGRU had the highest accuracy of 93.01% for 4-channels, while

BLSTM showed the highest accuracy of 93.96% for 8-channels configuration.

Moreover, BGRU and BLSTM demonstrated the most consistent top performance

across the various channel configurations, often leading or closely following in accuracy.

In contrast, LSTM, BLSTM LSTM, and GRU exhibited performance fluctuations as

channel configurations changed, with their results not always being consistent across

all channel configurations.

Overall, the models displayed a good balance between precision and sensitivity,

which is crucial for achieving a high F1-Score. This balance indicates that the models

are effective at correctly classifying positive instances (high precision) and capturing

most of the positive instances (high sensitivity/recall).

It is essential to note that the choice of model and channel configuration can sig-

nificantly impact performance metrics. Depending on the application’s requirements,

such as prioritising accuracy or sensitivity, one might opt for a specific model-channel

configuration over others. From a broader perspective, BLSTM and BGRU models

appear to be the most promising candidates in terms of their performance metrics,

especially when considering higher channel configurations.
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Table 5.4: Performance metrics of different models under Shrunk Covariance (SC)
estimator with varied channel configurations

Scenario Model Accuracy Sensitivity Precision F1-Score

SC(4)

LSTM 92.56 88.84 91.00 88.60
BLSTM 93.83 90.75 91.51 90.68

BLSTM LSTM 92.73 89.10 90.84 88.88
GRU 93.22 89.84 91.38 89.70
BGRU 93.99 90.98 91.84 90.84

BGRU GRU 92.85 89.28 90.76 89.00

SC(8)

LSTM 93.42 90.13 92.46 89.76
BLSTM 94.84 92.26 93.39 92.12

BLSTM LSTM 94.26 91.39 92.80 91.16
GRU 94.55 91.83 93.07 91.65
BGRU 95.23 92.85 93.93 92.73

BGRU GRU 94.28 91.41 92.85 91.28

SC(16)

LSTM 93.49 90.24 92.54 89.68
BLSTM 94.71 92.06 93.66 91.69

BLSTM LSTM 93.15 89.73 92.38 89.14
GRU 93.18 89.77 92.28 89.29
BGRU 94.96 92.44 93.84 92.18

BGRU GRU 93.41 90.11 92.48 89.40

SC(32)

LSTM 92.85 89.27 92.04 88.73
BLSTM 94.53 91.80 93.32 91.54

BLSTM LSTM 92.65 88.98 91.91 88.38
GRU 92.77 89.15 91.90 88.59
BGRU 95.47 93.20 94.32 92.95

BGRU GRU 92.71 88.96 92.05 88.46

The performance of different machine learning models under the Shrunk Covariance

(SC) Estimator with varying channel configurations is presented in Table 5.4. As the

number of channel configurations increases from 4 to 32 channels, interesting patterns

emerge in the performance of the models. While some models show an improvement in

their metrics, others exhibit a plateau or minor decline in performance.

Among the models, BLSTM consistently demonstrates strong metrics, with its high-

est accuracy of 94.84% achieved in the 8-channels configuration. Conversely, BGRU

attains its peak accuracy of 95.47% in the 32-channels setup. Notably, BGRU showcases

consistent high performance across all channel configurations, often leading the pack or

being a close contender. For instance, during the 4-channels setting, BGRU secured the
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top position with an accuracy of 93.99%. Similarly, in the 8-, 16-, and 32-channels con-

figurations, BGRU continued to exhibit outstanding performance, achieving accuracies

of 95.23%, 94.96%, and 95.47%, respectively.

While BLSTM displayed promising metrics, models like LSTM, BLSTM LSTM,

and GRU showed variable performance depending on the channel configuration. How-

ever, most models maintained a commendable balance between precision and sensitivity,

indicative of high F1-Scores, suggesting that the models accurately classified positive

instances and captured most of them.

Considering their robust metrics across various channel configurations, BGRU and

BLSTM emerge as the clear front-runners.

Table 5.5: Performance metrics of different models under Ledoit-Wolf (LW) estimator
with varied channel configurations

Scenario Model Accuracy Sensitivity Precision F1-Score

LW(4)

LSTM 91.15 86.72 89.45 86.29
BLSTM 93.27 89.90 90.73 89.74

BLSTM LSTM 91.90 87.85 89.91 87.52
GRU 92.40 88.60 90.33 88.22
BGRU 93.07 89.60 90.79 89.38

BGRU GRU 92.48 88.72 90.29 88.53

LW(8)

LSTM 93.21 89.81 92.15 89.37
BLSTM 94.59 91.88 93.21 91.64

BLSTM LSTM 93.94 90.90 92.65 90.57
GRU 93.97 90.95 92.43 90.76
BGRU 95.12 92.68 93.58 92.56

BGRU GRU 93.76 90.64 92.48 90.34

LW(16)

LSTM 94.23 91.34 93.09 91.00
BLSTM 95.47 93.21 94.34 93.04

BLSTM LSTM 93.49 90.23 92.74 89.67
GRU 93.28 89.92 92.48 89.35
BGRU 95.19 92.78 93.94 92.56

BGRU GRU 93.77 90.66 92.85 90.25

LW(32)

LSTM 93.28 89.92 92.63 89.34
BLSTM 95.51 93.26 94.57 93.02

BLSTM LSTM 92.55 88.83 91.92 87.93
GRU 93.60 90.41 92.74 89.92
BGRU 95.58 93.37 94.56 93.20

BGRU GRU 92.96 89.44 92.13 89.01
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The performance metrics of various models under the Ledoit-Wolf (LW) Estimator

with different channel configurations are presented in Table 5.5. The table shows that

the models exhibit a diverse range of performance metrics as the channel configurations

transition from 4 to 32 channels. However, most models seem to show an upward trend

in their performance as the number of channels increases, although there are exceptions

where the performance remains stagnant or slightly decreases.

Two models, namely the BLSTM and BGRU, showcase impressive results across

various channel configurations. The BLSTM model consistently exhibits remarkable

results with increased channels, achieving a peak accuracy of 95.51% at 32-channels.

Similarly, the BGRU model stands out, particularly at 8-channels and 32-channels,

with top accuracies of 95.12% and 95.58%, respectively.

Interestingly, the top-performing model in each channel configuration varies for

this covariance estimator. For instance, in the 4-channels scenario, the BLSTM model

emerges as the top performer with an accuracy of 93.27%. Meanwhile, for the 8-channels

configuration, the BGRU model leads the roster with an accuracy of 95.12%. In the

16-channels setup, the BLSTM model takes the lead again, achieving an accuracy

of 95.47%. Lastly, under the 32-channels framework, the BGRU model marginally

outperforms its counterparts, registering an accuracy of 95.58%.

Remarkably, both the BGRU and BLSTM models demonstrate commendable con-

sistency across various channel configurations, frequently topping the list or being

strong contenders. Moreover, they also emerge as standout models in terms of their

performance metrics across the different channel configurations.

On the other hand, models like LSTM, BLSTM LSTM, and GRU display some

variability in their performance metrics depending on the channel setup.
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Table 5.6: Performance metrics of different models under Oracle Approximating Shrink-
age (OAS) estimator with varied channel configurations

Scenario Model Accuracy Sensitivity Precision F1-Score

OAS(4)

LSTM 92.27 88.41 90.18 88.24
BLSTM 93.08 89.62 90.69 89.40

BLSTM LSTM 92.11 88.16 90.32 87.88
GRU 92.38 88.56 90.30 88.28
BGRU 93.13 89.70 90.95 89.55

BGRU GRU 92.84 88.27 90.66 89.06

OAS(8)

LSTM 93.85 90.77 92.45 90.52
BLSTM 94.92 92.39 93.49 92.29

BLSTM LSTM 92.99 89.49 91.76 89.10
GRU 94.15 91.22 92.78 91.03
BGRU 95.26 92.90 93.70 92.82

BGRU GRU 93.72 90.59 92.35 90.39

OAS(16)

LSTM 93.72 90.59 92.82 90.16
BLSTM 94.75 92.12 93.74 91.80

BLSTM LSTM 93.46 90.19 92.49 89.74
GRU 93.79 90.68 92.90 90.22
BGRU 95.51 93.26 94.31 93.05

BGRU GRU 94.21 91.31 93.14 90.96

OAS(32)

LSTM 93.40 90.10 92.76 89.47
BLSTM 95.08 92.61 94.10 92.36

BLSTM LSTM 91.69 87.54 91.09 86.77
GRU 93.57 90.35 92.65 89.93
BGRU 95.77 93.65 94.61 93.52

BGRU GRU 93.17 89.76 92.46 89.19

The Oracle Approximating Shrinkage (OAS) method has yielded some interesting

results, as presented in Table 5.6. Observations show that the performance of most

models improves as the channel configurations evolve from 4 to 32 channels, with some

slight variances. One of the models exhibiting a trend of consistent performance is the

BLSTM model, especially as the channel configurations increase, reaching its highest

accuracy of 95.08% at 32 channels. On the other hand, the BGRU model stands out

across all configurations, achieving an impressive accuracy of 95.77% at the 32-channel

configuration.

Similarly, a trend analogous to that observed with the SC estimator is noted, where

the BGRU model provides the highest accuracy across channel configurations, with
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93.13%, 95.26%, 95.51%, and 95.77% accuracy for the 4-, 8-, 16-, and 32-channel con-

figurations, respectively.

Table 5.7: Performance metrics of different models under with 62 channels configuration

Scenario Model Accuracy Sensitivity Precision F1-Score

62

LSTM 92.37 88.55 91.59 87.80
BLSTM 94.77 92.15 93.91 91.82

BLSTM LSTM 90.84 86.26 90.21 85.30
GRU 92.48 88.72 91.92 87.98
BGRU 95.80 93.70 94.74 93.50

BGRU GRU 90.70 86.05 90.53 85.17

In order to evaluate the performance of different covariance and channel configura-

tions, comparisons will be made between the top-performing model from each category

and the one that utilises data from all EEG channels. The results of this comparison

are summarised in Table 5.7.

It is evident that models such as BGRU consistently deliver outstanding perfor-

mance across several configurations, highlighting their adaptability and robustness.

Similarly, the reliability of the BLSTM model is reinforced by its consistent results

across diverse configurations. However, the interplay between the model’s architecture

and the number of channels employed is crucial. Certain models perform optimally with

specific channel configurations, revealing a synergistic relationship. The analyses un-

derline the importance of optimisation, emphasising that a more judicious approach to

selecting the right channel configuration tailored for the chosen model is indispensable.

This approach offers a twofold advantage: first, it prevents the model from getting

bogged down by redundant information; second, it can potentially reduce computa-

tional overheads. In essence, while the channel number is a pivotal factor, the com-

bination of the right model with an optimal channel configuration ultimately unlocks

peak performance. This synthesis of findings provides actionable insights for current

EEG classification tasks and lays down a guiding framework for future endeavours in

this domain.
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Figure 5.1: Selected EEG channel using Riemannian Geometry with Shrunk covariance
estimator

Figure 5.2: Selected EEG channel using Riemannian Geometry with Ledoit-Wolf co-
variance estimator
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Figure 5.3: Selected EEG channel using Riemannian Geometry with OAS covariance
estimator

The selected channels from the Riemannian technique under the SC, LW, and OAS

under different numbers of channel configurations are depicted in Figure 5.1, 5.2 and

5.3, respectively. The results illustrated in the figures show the configuration with

four channels, represented by red circles, spans across occipital, frontal, and prefrontal

brain regions, which are significant for analysing EEG signals about visual percep-

tion, attention, and cognitive functions—key aspects of MWL [145]. Meanwhile, the

8-channel configuration, denoted by blue circles, encompasses frontal, central, and tem-

poral regions, making it suitable for a broader range of EEG signals related to MWL.

Expanding further to a 16-channel configuration, symbolised by yellow circles, entails

capturing EEG signals from the frontal, central, parietal, and occipital areas. Lastly,

the 32-channel configuration, indicated by green circles, spans across frontal, central,

parietal, occipital, and temporal areas. Each channel combination is autonomously

selected by the Riemannian algorithm, ensuring optimal coverage and data acquisition

from targeted cerebral regions.

The results discern key similarities in various configurations, revealing that channels
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Fp1 and AF8 were uniformly selected in 8, 16, and 32 configurations across the LW,

OAS, and SC covariance estimators. Notably, Fp2 was a consistent choice across all

configurations (4, 8, 16, and 32) for the LW, OAS, and SC estimators, while F7 was

chosen in the 4, 16, and 32 configurations under the LW and OAS covariance estima-

tors. The FT9 channel was versatile, being chosen in all configurations with OAS and

SC estimators and in 8, 16, and 32 configurations with the LW estimator. Additionally,

the Oz channel demonstrated significant applicability, being a common selection in 4,

16, and 32-channel configurations for LW and OAS estimators and was universally se-

lected in all configurations when utilising the SC estimator. These repeatedly selected

channels highlight the importance of specific brain regions, regardless of the configura-

tion size used. Channels AF8, Fp1, Fp2, F7, FT9, and F8, associated with the frontal

and prefrontal regions, are important in influencing MWL [145]. In contrast, the Oz

channel, which is linked to the occipital region, highlights the importance of visual

perception in tasks related to MWL. The findings support existing studies on the role

of certain brain regions in mental effort [28], validating the results in exploring brain

function and cognition.

5.7 Conclusion

MWL is a cognitive construct that measures the mental effort needed to perform tasks.

Assessing MWL is essential for optimising human performance and decision-making,

and for designing efficient human-computer interactions. EEG has become popular for

estimating MWL due to its high temporal resolution and non-invasiveness. However,

current EEG devices are complex and involve many channels, making them unsuit-

able for practical use. Selecting the optimal number of channels is important, e.g., in

BCI applications. This study evaluated different covariance estimators for Riemannian

geometry-based channel selection and assessed their effectiveness with deep learning

models to classify MWL levels. Four covariance estimators were examined: EC, SC,

LW, and OAS. The OAS estimator consistently delivered the best performance across

all models, as did the covariance estimation technique. The study demonstrated that

using as few as four channels can achieve an accuracy of 0.940 (±0.036), improving prac-
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ticality for real-world applications. It was also found that the BGRU model, combined

with OAS covariance estimators and a 32-channel configuration, outperforms other

estimators for MWL classification tasks. The approach supports the development of

user-friendly, efficient, and accurate BCI for various purposes, such as cognitive assess-

ment and neurorehabilitation, by reducing the number of channels while retaining high

classification accuracy. This has significant implications for enhancing EEG-based BCI

in real-world settings.

In the future, it is possible that advanced hybrid techniques may be explored to

refine channel selection processes further. These techniques could combine Rieman-

nian geometry with other dimensionality reduction methods to improve the accuracy

of classification. Additionally, there is potential to explore more nuanced channel con-

figurations beyond the fixed sets of 4, 8, 16, and 32 channels selected from 62. This

could provide deeper insights into the optimal balance between system complexity and

classification accuracy, and an adaptive selection technique that adjusts the number of

channels based on specific tasks could be implemented. For tasks that require more

precise signal capture, this technique could adjust the number of electrodes accordingly.

Such studies could help tailor EEG-based BCI systems for use in real-time monitoring

and other varied settings.

5.8 Chapter Summary

• This chapter clarifies the second research goal, which addresses concerns about re-

dundant information caused by using too many EEG channels in machine learning

studies. The goal is to gather important information from relevant sources and

accurately represent the changing patterns of neural activity. Primary concerns

include having too much repetitive information and using an excessive number of

EEG channels to measure MWL, which is impractical for real-life scenarios.

• The significance of the channel selection step is highlighted, introducing a useful

methodology known as the Riemannian geometry technique. The importance and

effectiveness of this technique in choosing EEG channels are described, along with
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the crucial role of the covariance estimator in Riemannian channel selection and

how different characteristics of covariance estimators can impact this process.

• Different experimental settings are carefully selected, each with distinct ways of

estimating covariance and the number of channels used. These specific settings

provide a practical basis for investigating the research questions.

• The chapter also details the methodology used, including the specific setup for

selecting channels and providing insights into how the deep learning models oper-

ate. The models include Stacked LSTM, BLSTM, a combination of BLSTM and

LSTM, Stacked GRU, BGRU, and a combination of BGRU and GRU.

• The research investigates how various factors, such as the method used to estimate

covariance and the number of channels, affect the performance of deep learning

models. The study examines how these factors relate to interpreting EEG signals

and predicting MWL states. Statistical testing is utilized to validate the findings

and ensure the accuracy of the results. Insights are provided on how these factors

interact and affect classification accuracy, highlighting the complex relationship

between them.

• The final parts of the study show that using more EEG channels may not always

improve the model’s performance. This emphasises that only certain brain regions

are relevant to the MWL task, as supported by neuroscientific theories.
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Time Series Cross-Validation

This chapter focuses on evaluating deep learning models trained for MWL level clas-

sification using EEG signals. Given the temporal nature of EEG data, the limitations

of traditional cross-validation methods used in existing work are discussed. To ad-

dress this, time series cross-validation methods, specifically the expanding and rolling

windows strategies, are implemented to validate the models more effectively.

6.1 Introduction

The concept of MWL plays an important role in human life, influencing areas ranging

from study design [168, 256] to driving fatigue [88, 241], pilot performance [123], and

performance on various tasks [230]. To measure individuals’ MWL, EEG signals have

been thoroughly investigated due to their strong correlation with real-time MWL status

[204]. Recently, machine learning techniques have garnered significant attention and

have been developed to capture the variance characteristics of EEG signals to classify

MWL levels [109]. Such classification models are often trained and evaluated using the

cross-validation (CV) technique [183].

In a traditional CV technique, an entire dataset is split into K equally sized subsets

(also known as folds). The model is trained onK−1 folds (called the training set), while

the remaining fold is kept apart, unseen by the model, to be used as the test set [196].

The model training process is repeated K times, with a different fold preserved for
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model evaluation each time. The fundamental idea underlying a CV technique is that

it assumes a collection of random variables is being drawn from a given probability

distribution; these variables are statistically independent of each other, satisfying the

independent and identically distributed (i.i.d.) property in probability theory and

statistics [80]. However, EEG signals, which are generated over time, represent time

series data. Therefore, applying the traditional CV approach—shuffling and randomly

splitting the data into K-folds—can violate the i.i.d. assumption [19] and lead to an

unreliable model [35] due to overfitting. This is especially true for a forecasting task

where future information should not be available to the model during training.

Since the standard cross-validation (CV) approach is not directly applicable to time

series data, researchers have proposed various modifications of CV techniques for this

type of data [20, 35]. For example, a blocked form of CV with an expanding window

strategy is proposed by Bergmeir and Beńıtez [19]. This CV strategy is implemented

by mimicking a real-life scenario, where the test dataset is sequentially moved into the

training dataset, and the forecast origin is changed accordingly. Another strategy that

can be used in the blocked form of CV is the rolling window strategy. Bergmeir and

Beńıtez [19] stated that this strategy could be beneficial when the characteristics of

the previous observation dynamically change over time and tend to interrupt model

generation. However, discarding some parts of the time series might cause the models

to lose important information, potentially affecting their performance.

Machine learning models, especially deep learning models, have drawn the attention

of researchers in neuroscience, who have used them to classify MWL levels based on

EEG signals [109]. CV is a statistical technique for evaluating and comparing machine

learning models. It involves training the models on a subset of the available input

data and evaluating them on the complementary subset. The application of CV is also

task-dependent. For example, in scenarios not aimed at predicting future outcomes,

the traditional CV technique, which randomly shuffles data by splitting it into K-

folds, could effectively evaluate the model. However, in cases focusing on predicting a

future value, such as the subject’s MWL level, the temporal aspect of the data must be

considered since the time spent on a task typically affects the subjects’ performance,
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which deteriorates over the period of task engagement [126].

6.1.1 Cross-Validation for Deep Learning Model

Various studies aiming to predict a subject’s MWL have not considered the temporal

aspect of the EEG signal [76]. Additionally, some studies have not provided sufficient

details on how they perform CV [33, 247]. For instance, Ahmadi et al. [2] aimed to

detect driver fatigue using an expert automatic method based on brain region con-

nectivity. They utilized an EEG dataset that recorded fatigue and alert states. In

the model evaluation step, the dataset was randomly divided into five subsets (folds).

One of these folds was kept as the validation fold, and the others formed the training

set used in the feature selection and hyper-parameter tuning stage. Five-time five-

fold cross-validation was applied for each subject. However, the method of randomly

defining the dataset is implausible in practical settings. Human fatigue develops over

time [228], e.g., a driver’s fatigue level at the beginning of a drive may be low, but

it increases as time progresses. Therefore, training a fatigue detection model using

future fatigue levels to detect previous fatigue levels might not result in an accurate

model. Five-fold cross-validation was also adopted by Zhang et al. [242], who utilized

a one-dimensional convolutional neural network (1D-CNN) to automatically capture

information from different frequency bands and read the subject’s mental states. They

used an EEG dataset containing 31 recording sessions from five subjects and randomly

divided independent recording sessions into five groups for CV. As in previous work,

the subjects’ MWL continuously increases with time [199]. Therefore, arbitrarily as-

signing data from various sessions to training and test datasets may be considered

inappropriate. Zeng et al. [241] also aimed to identify the mental states of subjects.

They proposed a light-weight classifier, LightFD, which is based on a gradient boosting

framework. In the model evaluation step, they randomly extracted 80% of the EEG

signals of each subject to create a training set, and the remaining 20% of the signals

were used as a test set. The EEG time series used for MWL classification were also

randomly divided into training and test sets to evaluate the proposed deep learning

models in [243] and [247].
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As evident from the literature, researchers studying EEG signals using machine

learning methods have often overlooked the characteristics of time series and the i.i.d.

assumption of the elements of time series while performing cross-validation. They

applied traditional strategies by shuffling their EEG signals and then randomly dividing

them into training and test sets, failing to account for the temporal information of time

series data. To the best of current knowledge, there are only two studies that consider

the temporal characteristics of EEG data in the cross-validation step, cited in [170]

and [171]. In [170], the authors noted that evaluating the model using test samples

that are chronologically near one of the training samples could introduce an overfitting

problem due to EEG signal changes. Consequently, the authors of [171] adopted time-

wise cross-validation strategies in their study. In this strategy, the samples of each

task in each session are divided into n parts evenly and continuously. In each fold, the

model is trained using n − p parts of all the tasks and tested on the left-out parts of

all the tasks as well. Some parts of the data at the beginning and the end of each task

might be cut off to lessen the effect of task transition.

As the temporal aspect of time series has not been considered a significant factor in

choosing a CV method, it is important to raise awareness of this potential pitfall in the

community. This work aims to demonstrate how time series TSCV can be applied to

deep learning models using EEG signals and to investigate the effectiveness of applying

TSCV to various deep learning models.

This chapter investigates the effect of time series blocked CV strategies and the size

of their training and testing data on deep learning models for MWL classification using

EEG signals. Background information on time series and time series CV is described

in this section.

Time Series

Time series data consist of a series of data points measured in time order; these data

points can be measured every millisecond, every minute, hourly, daily, or annually.

The data can be represented by either continuous or discrete datasets. In time series

applications, the available past and present data are used to forecast the future values
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of X. A function F is calculated to do this. The estimated value X̂t+τ of X at time

t+τ can be obtained from a function F, where the function F is computed from a given

value of X up to time t (plus additional time-independent variables in multivariate time

series analysis):

X̂t+τ = F(Xt, Xt−1, ...) (6.1)

where τ is the lag for prediction. Then, the function of the continuous time series will

be mapped onto binary values of N classes for a classification approach:

Fc(Xt, Xt−1, ...) → ĉi ∈ C (6.2)

Fc(Xt, Xt−1, ...) → ĉi ∈ C where C is the set of class labels [57].

EEG signals, which are used to display human brain activity, are measured over

specific time periods and are considered time series. Each signal from an electrode

can be viewed as a univariate time series, with MWL levels serving as class labels.

For MWL level classification, EEG signals from various electrodes can be mapped into

specific classes corresponding to low, moderate, or high MWL levels using machine

learning models. CV is commonly employed to evaluate such models and test their

performance. However, a crucial distinction in forecasting is that the future is com-

pletely unavailable and must be estimated solely based on past occurrences. Thus,

time series data cannot be randomly shuffled as done in traditional CV methods. For

instance, in an autoregressive (AR(p)) model, the parameter p, known as the order,

indicates the maximum separation that can exist between events that are related to

each other in the AR process.

The model can be written as X̂t = (c + β1Xt−1 + β2Xt−2 + . . . + βpXt−p + ε),

where β1, β2, . . . , βp are the parameters of the model, Xt−1, Xt−2, . . . , Xt−p are the

past time series values, ε represents white noise, and c is a constant. It is clear that

the traditional CV method could cause an overfitting problem [19] because it allows

for potential leakage of future information into the training dataset. A method for

performing CV on a time series dataset is explained in Section 6.3.7.
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6.2 Research Questions

In this study, we aim to answer two research questions:

• RQ3.1: Which time series blocked CV strategies should be applied for the EEG

classification task?

• RQ3.2: How does the size of the block in a TSCV influence the effectiveness of

the models?

6.3 Experimental Set-Up

6.3.1 Datasets: STEW

The dataset used for this study is the STEW dataset, which can be referred to in

Section 3.1.1.

6.3.2 Data Preprocessing

EEG signals can easily become contaminated by unwanted artefacts; therefore, remov-

ing artefacts from EEG signals is usually a prerequisite for signal analysis [209]. In

this study, a noise removal technique outlined in Chapter 4 was utilised. The tech-

nique involves high-pass filtering, independent component analysis based on ADJUST

(ICA-ADJUST) [147], and re-referencing, and has been proven effective for the STEW

dataset [109], showing significant improvement in model performance. The prepro-

cessed data obtained from this technique was used for the analysis.

6.3.3 EEG Feature Extraction and Selection

In this section, the feature extraction and selection strategies outlined in Chapter 4

are followed. All features underwent standardisation analysis, which is explained in the

subsequent section.
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6.3.4 Feature Standardisation

EEG signals are inherently variable within and between subjects due to time-variant

factors, psychological parameters, and neurophysiological parameters [219]. This vari-

ability can lead to data distribution shifts [179], which can degrade the generalisability

of extracted features. To mitigate this problem, a personalised feature standardisation

method was applied [30,219]. This method converts the extracted features so that they

all have the same scale across subjects (Equation 3.15), as detailed in Section 3.2.3.

6.3.5 Deep Learning Model

The TSCV strategies were evaluated on two distinct classification tasks: Task 1 and

Task 2. A variety of deep learning models were employed, including Stacked LSTMs,

BLSTMs, Stacked GRUs, BGRUs, BGRU-GRUs, BLSTM-LSTMs, and CNNs. The

details of these model architectures can be found in Table 3.1.

6.3.6 Evaluation Metrics

The impact of preprocessing techniques on deep learning model performance was eval-

uated using six metrics: sensitivity, specificity, precision, accuracy, FAR, and FRR. For

in-depth explanations of these metrics, refer to Section 3.4.

6.3.7 Classification and Model Training

From the literature, it is observed that the temporal character of the EEG signal is

often not considered a critical criterion for choosing the cross-validation technique. For

this dataset, the goal is to predict a subject’s MWL in the next time step, treating

the EEG signals measured over a period of time as time series data. Consequently, the

deep learning models were trained using a 5-fold TSCV strategy [110]. Initially, 80%

of the beginning part (i.e., time = 1, 2, 3, ..., j) of EEG signals from each subject was

used to conduct model training, and 20% of the data (i.e., time = j+1, j+2, j+3, ...,

T) was kept aside as an unseen test dataset. How the dataset was split for TSCV is

illustrated in Figure 6.1 and 6.2. Subsequently, the training dataset was further divided
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into five folds of approximately equal size, constituting a 5-fold cross-validation. Once

the model was trained using 5-fold, the classification model performance was evaluated

by comparing the predicted levels with the true labels of the unseen dataset. More

details about how each strategy works will be described in the next section.

Time Series Cross-Validation (TSCV)

Traditionally, using the entire time series dataset to evaluate machine learning or deep

learning models leads to a theoretical statistical violation [19]. Therefore, in the evalu-

ation procedure for time series models, a final part of the time series should be reserved

for testing, ensuring that the corresponding training set consists only of observations

occurring before those in the test set. This approach prevents information leakage from

using future observations [19]. Tashman [201] has suggested four primary strategies for

time series forecasting: fixed-origin evaluation, rolling-origin-recalibration evaluation

(or expanding window), rolling-origin-update evaluation, and rolling-window evalua-

tion.

In this study, the data were split by ensuring that the test set consists of data

recorded after the data in the training set; additionally, expanding window and rolling

window strategies were employed in model evaluation. In the expanding window strat-

egy, the test dataset is sequentially moved into the training set, and the forecast origin

is changed accordingly. The classification model is recalibrated until all available sam-

ples are used. Thus, the test data of the previous fold is used as a validation set to

tune the parameters of the deep learning model. Figure 6.1 illustrates how data are

split into training, validation, and test sets using the expanding window strategy.
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Figure 6.1: Expanding window strategy
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Figure 6.2: Rolling window strategy

Since the subject MWL level might change over time, various scenarios are set in

the analysis. Firstly, the rolling window strategy is initiated with the training size

starting at 20% of the dataset, increasing to 40%, and then to 90%. As the training

dataset varies, this can affect the sizes of the validation and testing windows.

In the rolling window strategy, the amount of data used for training is kept constant.

The window is implemented by shifting the training and test data forward by a constant

window size of m seconds at each fold. As a result, new data enters the series, while
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old data from the beginning of the series is discarded. This method is suitable for

time series data, as the model is rebuilt in every window, ensuring that the temporal

fluctuation of the data does not disrupt model creation [201]. Figure 6.2 illustrates

how data are split into training, validation, and test sets using the rolling window

strategy. In this study, a 5-fold time series cross-validation with both expanding and

rolling window approaches was applied. Two parameters must be optimised for time

series cross-validation, namely the sizes of the training and testing windows.

The size of the training window for each time series TSCV strategy is investigated

by varying it from 20% to 90% of the data with incremental steps of 10%. Meanwhile,

the size of the validation and testing window, set at (10% × n)/k, is fixed at the end

of the series, as this window size has been shown to provide good model performance

for this dataset [110]. To generalise the model, data split from all subjects are fed into

the models simultaneously.
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Figure 6.3: Expanding window strategy with a validation and test window size of 6
fixed at the end of series

6.4 Result and Discussion

6.4.1 Type of Time Series: Expanding vs Rolling and Training Size

To evaluate the classification models on EEG data and perform a comprehensive study

of their effectiveness with several state-of-the-art deep learning models, a modification
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Table 6.1: The average accuracy of deep learning models evaluated using different
TSCV strategies and trained using different amounts of data for Task 1 and Task 2

Task 1 Task 2

TSCV strategy Training Size Accuracy S.D Accuracy S.D

Expanding 20% 84.07 2.65 71.92 1.90
40% 89.07 2.38 76.96 1.60
60% 91.01 2.50 78.86 1.72
80% 92.87 2.14 80.72 1.99
90% 93.53 1.80 81.38 2.19

Rolling 20% 78.39 4.67 67.04 4.73
40% 85.61 4.36 74.27 4.73
60% 87.58 3.92 76.23 4.59
80% 90.51 2.27 79.17 3.14
90% 91.78 1.55 80.44 1.90

of the CV technique known as blocked CV with expanding window and rolling window

strategies was adopted. The effect of different block sizes on each strategy was also

investigated.

Task 1: Resting vs Testing State

The results shown in Table 6.1 indicate that models evaluated using the expanding win-

dow strategy achieved higher accuracy than those evaluated using the rolling window

strategy for different training block sizes. For the expanding window strategy, model

accuracy steadily improves as the training block size increases. The highest accuracy

score of 93.53% was obtained when 90% of the data were used for model training, while

the lowest accuracy score of 84.07% was recorded when 20% of the data were used.

Similarly, for the rolling window strategy, a pattern of increasing accuracy scores with

larger block sizes is observed; however, the accuracy scores in this scenario are slightly

lower than those achieved with the expanding window strategy. The highest accuracy

score recorded is 91.78%, with the lowest being 78.39%. It was also observed that both

the expanding window and rolling window strategies demonstrate a similar pattern in

the standard deviation (S.D.) of model accuracy, where the S.D. decreases as the block

size of the training data increases. Additionally, models trained using the expanding

window strategy consistently exhibit a lower S.D. than those trained using the rolling

132



Chapter 6. Time Series Cross-Validation

window strategy.

Task 2: Low vs Moderate vs High MWL Level

In this task, a pattern similar to that observed in Task 1 is noted, with a few exceptions

related to the expanding window strategy. In this strategy, the highest model accuracy

was still achieved when models were trained using 90% of the EEG dataset. However,

the pattern of the S.D. score differs. It is noted that for models trained using 60% of

the data, the S.D. score slightly increases compared to Task 1. For the rolling window

strategy, the trend in the S.D. is consistent with that observed in Task 1.

In the analysis, the Kruskal-Wallis H test, a non-parametric test for the analysis of

variance on ranks, was used to probe the impact of training size on the accuracy of mod-

els designed for MWL level classification [140]. Kruskal-Wallis tests were performed to

compare the model accuracy of five groups for the training percentages of 20%, 40%,

60%, 80%, and 90%, for each TSCV strategy (expanding and rolling windows) in Task

1 and Task 2. In all scenarios, the Kruskal-Wallis test indicated statistically significant

differences between the groups. To delve deeper into these differences, pairwise com-

parisons were conducted using the Mann-Whitney U test (also known as the Wilcoxon

rank-sum test) to identify specific discrepancies in model performance associated with

each percentage level.

Through the pairwise comparison analysis, it was found that there were no signif-

icant performance differences among the 40% to 60%, 60% to 80%, and 80% to 90%

training data ranges in both Task 1 Expanding and Task 2 Expanding. Similarly, in

Task 1 Rolling and Task 2 Rolling, non-significant pairwise differences were observed

between 40% and 60%, 40% and 80%, 60% and 80%, and 80% and 90% of the train-

ing data. Therefore, it can be concluded that although some statistically significant

differences in model performances occur as the percentage of training data changes,

certain ranges (e.g., 40%-60%, 60%-80%) often do not show significant differences in

performance across tasks. This finding has important implications for determining the

optimal amount of training data to use in future projects.

Consequently, in response to RQ3.1 regarding the optimal TSCV strategy for EEG
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classification, it was discovered that the expanding window strategy, with a model

trained on 90% of the data, performed the best. For RQ3.2, which investigates how

block size in TSCV affects model performance, it was found that adding more training

data generally improved model performance, although there were instances when the

improvements were not significant. Essentially, while model performance consistently

increased with the inclusion of more training data, the expanding window strategy

demonstrated a reduced standard deviation compared to the rolling window approach.

The fluctuations in model performance as the training dataset changed for the rolling

window strategy indicate that the model was influenced by the data in some parts of

the time series. Specifically, models trained using the rolling window strategy were

more sensitive to variance in the data than those trained with the expanding window

strategy. Therefore, to mimic a real-life scenario and obtain models with high accuracy

and robustness to the EEG signal, which changes over time, a blocked form of CV with

the expanding window strategy should be used in the model evaluation step for the

classification of subjects’ MWL levels.

6.4.2 Model Comparison

In the previous subsection, it was observed that the model trained using 90% of the

data with the expanding window strategy exhibited the best performance for both

Task 1 and Task 2. Therefore, the effectiveness of using a blocked form of CV with the

expanding window strategy and performing model training using 90% of the data was

investigated for several state-of-the-art deep learning models.

Task 1: Resting vs Testing State

As evidenced by the data in Table 6.2, the top three models in terms of model accuracy

are the BGRU-GRU, BLSTM-LSTM, and Stacked GRUmodels, which achieved accura-

cies of 95.90%, 95.12%, and 94.79%, respectively. The lowest model accuracy of 91.53%

was recorded by the CNN model. This may suggest that GRU-based models perform

better than LSTM-based models. Additionally, the BGRU-GRU model also recorded

the highest specificity score of 97.11% for Task 1, indicating that it was more effective
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Table 6.2: The deep learning model performace, TSCV with the expanding window
strategy, and training using of 90% of the data on MWL classification for Task 1 and
Task 2

Task Model Sensitivity Specificity Precision Accuracy FAR FRR

1 : resting vs Stacked LSTM 90.28 97.08 96.87 93.68 2.92 9.72
testing state BLSTM 90.60 93.01 91.31 91.81 6.99 9.40

Stacked GRU 93.33 96.25 96.14 94.79 3.75 6.67
BGRU 90.67 93.08 92.02 91.88 6.92 9.33

BLSTM-LSTM 96.30 94.04 95.12 95.12 5.96 3.70
BGRU-GRU 94.70 97.11 96.19 95.90 2.89 5.30

CNN 89.03 94.03 93.71 91.53 5.97 10.97

2 : low vs Stacked LSTM 71.17 91.17 81.31 82.34 8.83 28.83
moderate vs BLSTM 70.23 90.23 79.44 80.46 9.77 29.77
high MWL Stacked GRU 71.72 91.72 82.42 83.45 8.28 28.28

level BGRU 70.27 90.27 79.51 80.53 9.73 29.73
BLSTM-LSTM 66.30 84.04 67.50 78.12 15.96 33.70
BGRU-GRU 72.28 92.28 83.53 84.56 7.72 27.72

CNN 70.09 90.09 79.16 80.19 9.91 29.91

at identifying non-resting states compared to other models. However, when examining

the sensitivity scores, a different pattern emerged; the sensitivity of the BGRU-GRU

model was slightly lower than that of the BLSTM-LSTM model, indicating that the

BGRU-GRU model was less effective at classifying the true level of the subject’s MWL

compared to the BLSTM-LSTM model. The lowest sensitivity score was also recorded

by the CNN model. Despite this, it was observed that GRU-based models slightly

outperformed LSTM-based models in terms of accuracy, with the Stacked GRU model

performing better than the Stacked LSTM model, the BGRU model outperforming the

BLSTM model, and the BGRU-GRU model surpassing the BLSTM-LSTM model in

accuracy.

Task 2: Low vs Moderate vs High MWL Level

According to the model accuracies shown in Table 6.2, the BGRU-GRU model remains

the best-performing model, followed by the Stacked GRU model, and then the Stacked

LSTM model. The accuracies for the BGRU-GRU, GRU, and Stacked LSTM mod-

els are 84.56%, 83.45%, and 82.34%, respectively, indicating that GRU-based models

continue to outperform LSTM-based models for this task.

Furthermore, the BGRU-GRU model achieves the highest sensitivity and specificity
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scores of 72.28% and 92.28%, respectively. This suggests that the BGRU-GRU model

is effective at correctly classifying the true level of the subjects’ MWL. It also performs

well in identifying incorrect MWL levels; for instance, when subjects were not at a

low MWL level, the BGRU-GRU model more accurately indicated a medium or higher

level compared to other models.

Conversely, the least effective model proved to be the BLSTM-LSTM model, which

yielded the lowest accuracy, specificity, and sensitivity scores of 78.12%, 84.04%, and

66.30%, respectively. This suggests that the BLSTM-LSTM model was less capable

of accurately classifying subjects’ MWL levels for this dataset. Overall, GRU-based

models demonstrate superior performance compared to LSTM-based models in this

task.

In summary, the results indicate that the BGRU-GRU model provided the best

performance for both tasks, and GRU-based models outperformed LSTM-based mod-

els. The primary distinction between GRU and LSTM models lies in their complexity.

GRUs are less complex than LSTMs as they incorporate only two gates—reset and

update—compared to the three gates—input, output, and forget—found in LSTMs.

Consequently, the less sophisticated GRU-based models have demonstrated the ca-

pability to capture relevant information effectively, making them preferable for this

dataset.

6.5 Conclusion

MWL is a crucial concept in understanding human performance. High or low MWL

can negatively impact performance, leading to stress, mood disorders, and illness. EEG

is used to determine MWL levels. Deep learning models are employed to classify MWL

accurately using EEG signals, with the CV technique being a common method for

training and testing. However, the CV technique used for such models does not take

into account the time series nature of EEG signals. Therefore, this chapter explores a

modification of the CV technique that can be applied to EEG data, i.e., a blocked form

of CV with expanding window and rolling window strategies. Additionally, the effect
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of the sizes of the training, validation, and testing window for each TSCV strategy was

investigated. The TSCV strategies and the window sizes were then verified using the

following deep learning models: the stacked LSTM, BLSTM, stacked GRU, BGRU,

BGRU-GRU, BLSTM-LSTM, and CNN models. A publicly available MWL dataset

called STEW [128] was used to carry out the experiment.

The findings show that the deep learning models evaluated using TSCV with the

expanding window strategy provide better classification performance than those eval-

uated using TSCV with a rolling window strategy. Moreover, for both classification

tasks, every deep learning model achieved the highest accuracy when trained using 90%

of the data, with a window size of 3 for validation and testing.

Moreover, the results also show that the BGRU-GRU model achieved the highest

accuracies of 95.90% and 84.56% for Task 1 and Task 2, respectively. Hence, in future

work, it would be advisable to consider applying the BGRU-GRU model and TSCV

with the expanding window strategy on other MWL datasets, which are more complex.

For example, some datasets were collected from different sessions/days, which usually

causes a non-stationary or co-variate shift problem. Finally, this proposed CV method

can also be applied to other types of time series data, such as stock prices, annual

retail sales, or monthly subscribers, since all of these data are sequential data that

were measured at successive times and have a natural temporal ordering, just like EEG

signals.

6.6 Chapter Summary

• In this chapter, the ultimate objective of the research is explained. This goal

focuses on using the appropriate cross-validation technique to assess MWL clas-

sification using EEG signals. The aim underscores the importance of effectively

training models for time series datasets, an endeavour where traditional cross-

validation techniques — which shuffle all data together before partitioning into

folds — prove unsuitable. Such a method violates statistical assumptions and dis-

rupts the inherent temporal nature of EEG signals. Therefore, it is essential to

use time series cross-validation, which accurately replicates real-world situations
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by not using future data for past predictions.

• Time series cross-validation is emphasised, and two helpful strategies, expanding

and rolling windows, are introduced. The background of the time series is also

described.

• Different experimental settings are carefully established, each utilising various

strategies for time series cross-validation and window sizes. These specific settings

provide a practical foundation for exploring the research questions.

• A comprehensive overview of the utilised methodology is provided, elucidating the

specific process for time series cross-validation and imparting an understanding

of the functionality of the deep learning models. The models explored include

Stacked LSTM, BLSTM, a hybrid of BLSTM and LSTM, Stacked GRU, BGRU,

and a combination of BGRU and GRU.

• This chapter examines how various factors, including the method used for time

series cross-validation and the window size, impact the effectiveness of deep learn-

ing models. The study investigates the connection between these factors and the

interpretation of EEG signals and classification of MWL levels. Statistical testing

is employed to confirm the findings and ensure the precision of the results.

• The study presents empirical evidence suggesting that utilising an extended time

series dataset can enhance the model’s accuracy in classifying MWL. The ra-

tionality behind this result is based on the assumption that obtaining a larger

historical dataset enables the model to improve its learning effectiveness.

• However, it is crucial to recognize a limitation in this study, specifically the time

constraint of the data, which only covers a duration of 2.5 minutes. The temporal

limitation inevitably hinders the ability to predict the cognitive effort of individ-

uals in longer-duration circumstances. Nevertheless, it is a noteworthy starting

point, especially in circumstances requiring rapid decision-making.
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Conclusions and Further Work

This chapter begins with a discussion and a recap of key achievements in using deep

learning for MWL classification and EEG-based information retrieval. It then addresses

the constraints of these breakthroughs. The future work section explores the potential

application of these contributions to a practical online system and possible research

directions in MWL classification.

7.1 Discussion

The experiments in this thesis systematically investigated various aspects of EEG-

based MWL classification using deep learning models, emphasising the critical roles

of preprocessing techniques, channel selection strategies, and TSCV approaches. This

comprehensive examination factors influencing model performance, paving the way for

future exploration in this area.

In addressing the challenges posed by EEG signals due to artifacts such as eye move-

ments, muscle activities, and external interferences, researchers have proposed numer-

ous preprocessing techniques, some manual [29] and others automated [147]. Previous

studies [1, 23, 49] have identified a significant challenge in accurately assessing EEG

signal information due to the presence of artifacts. These artifacts can distort EEG

signals, leading to unreliable MWL classifications. The problem with manual prepro-

cessing is that it is time-consuming and also susceptible to bias [210].
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Therefore, in this thesis, particularly in Chapter 4, a focused examination of

automated EEG preprocessing techniques was conducted. The examination of EEG

preprocessing techniques, including high-pass filtering, the ADJUST algorithm, and

re-referencing, was central to this study. These methods are crucial for integrating

EEG preprocessing into automated deep learning frameworks, significantly impacting

the classification of MWL [29, 210]. Building upon the foundations laid by Chakladar

et al. (2020) [36], which demonstrated the effectiveness of deep learning models such

as CNNs, RNNs, and BLSTM-LSTMs in extracting meaningful information from EEG

signals, this research further explores the preprocessing phase [116,123]. Unlike manual

methods, these automated techniques offer a more objective and scalable solution.

The findings from this experiment underscore the effectiveness of these techniques in

enhancing the performance of the aforementioned deep learning models, corroborating

the notion that sophisticated preprocessing can significantly mitigate noise and improve

model accuracy. This is aligned with recent research advocating for the integration of re-

fined preprocessing steps to bolster the accuracy of EEG-based classifications [116,123].

However, this study uniquely contributes by demonstrating the comparative effective-

ness of automated techniques over manual methods, addressing a gap noted in previous

guidelines which lacked specificity and universal application [1, 23, 49]. Future studies

may continue to build on these findings, exploring further the optimal combinations of

these techniques and their applicability in diverse real-world scenarios.

The enhanced clarity achieved through automated preprocessing provides a robust

foundation for subsequent stages of EEG analysis, such as channel selection. Effective

preprocessing is indispensable as it directly influences the accuracy of channel opti-

mization techniques.

In Chapter 5, on channel selection, the study tackled the optimization of EEG

channel selection using Riemannian geometry, a method increasingly recognized for its

effectiveness in identifying the most informative EEG channels by leveraging the prop-

erties of covariance matrices. This approach builds on the work of Barachant et al.

(2011) [11] and Qu et al. (2022) [169], who demonstrated the utility of Riemannian

geometry in reducing the dimensionality of EEG data while maintaining necessary infor-
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mation for accurate classification in binary tasks. This thesis extends previous applica-

tions of Riemannian geometry from binary to multiclass classification tasks, addressing

a gap in existing studies which have primarily focused on simpler task structures. By

exploring this approach in the context of distinguishing between easy, medium, and

difficult levels of MWL, this experiment not only tests the method’s robustness but

also its adaptability to more complex analytical challenges. The use of different co-

variance estimators like EC and LW, as shown in previous works [176], was critically

evaluated to determine their efficacy in enhancing model performance through optimal

channel selection. This study provides crucial insights into how these estimators can

influence the effectiveness of channel selection and, consequently, the overall accuracy

of the classification models for BCI hackathon dataset. However, the effectiveness of

different covariance estimators can vary significantly depending on the characteristics

of the EEG data and the specific MWL tasks being analyzed. Moreover, despite the

advantages of Riemannian geometry, its computational complexity and the need for

specific expertise in its application might limit its widespread adoption.

Given the promising results, future research could further investigate the applicabil-

ity of Riemannian geometry in other areas of EEG analysis, such as affective computing

or neurofeedback systems. Additionally, studies might explore the integration of these

channel selection techniques with other forms of neural data processing, potentially

creating more robust and versatile models for real-world applications.

Chapter 6, focuses on refining the CV technique for deep learning models ana-

lyzing EEG data, a crucial component in assessing MWL. Traditional CV methods, as

noted in studies by Schaffer (1993) [183] and Stone (1974) [196], often mishandle EEG

data by ignoring its time series nature, leading to potential overfitting and misestima-

tion of model generalizability. This thesis draws from the modifications suggested by

Bergmeir and Beńıtez (2012) [19], who advocated for time series-specific CV strategies

to maintain the temporal integrity of the data. Unlike traditional CV, which randomly

partitions data and can inadvertently mix training and testing data from different tem-

poral contexts, time series CV ensures that the model is only ever trained on past data,

mirroring real-world learning and prediction scenarios. This study not only addresses
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the gap in applying appropriate CV techniques to EEG data for MWL classification but

also demonstrates the practical implications of selecting between expanding and rolling

window strategies. By meticulously comparing these strategies, the experiment high-

lights how each strategy impacts the model’s ability to generalize across time, with the

expanding window strategy typically providing more robust and realistic assessments

of model performance. This approach is crucial for tasks where understanding tempo-

ral dynamics—such as fatigue progression in pilots or drivers—is vital for the model’s

application. Therefore, it significantly contributes to the methodology of evaluating

deep learning models for EEG data by providing a clearer framework for handling time

series data in machine learning, ensuring that future studies can achieve more accurate

and reliable results when predicting MWL. This enhancement is particularly relevant

for fields where real-time monitoring and prediction of cognitive load can inform safety

and performance, such as in aviation and automotive contexts.

7.2 Contributions & Conclusions

This thesis makes distinct contributions to the domain of EEG-based mental workload

classification by addressing key challenges and presenting innovative solutions across

three primary areas.

7.2.1 Impact of EEG Preprocessing Techniques

The first research goal was centered on the inconsistencies in EEG data preparation

procedures and their impact on the effectiveness and precision of deep learning mod-

els in reading EEG data. The goal was to investigate and demonstrate the critical

relationship between various preprocessing strategies and the accuracy of MWL state

predictions using deep learning models. The researchers emphasized the importance of

the preprocessing stage in machine learning domains. The study highlights that raw

EEG data is noisy, hindering model training and classification accuracy. While some

proponents argue that the CNN model can detect features in raw data, larger datasets

are required for model training to capture delicate and nuanced information. Moreover,

142



Chapter 7. Conclusions and Further Work

sophisticated models are needed to comprehend these complex features, which may not

be suitable for situations requiring rapid decision-making, such as MWL detection in

dynamic systems.

Therefore, this study contributes to the broader understanding of EEG prepro-

cessing by focusing on classic preprocessing methods that remove noise and employ

procedures that can be executed automatically without human intervention, such as

visual inspection. Experimental scenarios are created to test preprocessing techniques

across different datasets. This helps in understanding the impact of various prepro-

cessing methods such as filtering, ADJUST algorithm application, and re-referencing

strategies. The focus is particularly relevant in the context of integrating these tech-

niques with deep learning models (Stacked LSTM, BLSTM, and BLSTM-LSTM).

The key finding is that the ADJUST algorithm significantly impacts the perfor-

mance of the investigated deep learning models compared to other preprocessing tech-

niques. Moreover, when combining all preprocessing techniques for optimal perfor-

mance, the results indicate that using a combination yielded the highest classification

performance across the models. This finding highlights the benefit of using multiple

preprocessing techniques to improve deep learning model performance. Therefore, the

study proved that models trained on preprocessed EEG signals significantly improve

classification accuracy. Moreover, it was also found that raw EEG signals, without pre-

processing, were still sufficient for MWL-level classification, particularly in the BLSTM-

LSTM model. This finding reveals that more sophisticated models have the potential

to extract relevant information from the raw signals.

7.2.2 Optimising EEG Channel Selection for Mental Workload Clas-

sification

The detection of MWL can be hindered by excessively large datasets, particularly

in situations that require swift decision-making. This often leads to a slowdown in

the process. To address this issue, the study aimed to selectively include only the

most pertinent data related to MWL in the analysis. To ensure the feasibility of

future MWL systems, Riemannian geometry was utilised to perform channel selection,
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ensuring practicality in future MWL systems.

In this study, the practical limitation of MWL measurement using too many EEG

channels is highlighted, a key concern in real-world applications. Moreover, the intro-

duction and implementation of the Riemannian geometry technique for EEG channel

selection are discussed, as well as an effective method for identifying relevant channels

for EEG MWL classification. A novel insight into the impact of covariance estimators

in the process of EEG channel selection using Riemannian geometry is also provided.

This aspect contributes to a better understanding of how different characteristics of

covariance estimators affect EEG data analysis.

The study also presents the use of various deep learning models (such as Stacked

LSTM, BLSTM, GRU, and their combinations) in EEG MWL-level classification. It

contributes empirically to understanding how the covariance estimator and the number

of EEG channels influence the performance of deep learning models. This knowledge

is important for optimising EEG channel selection, which can affect the accuracy of

MWL-level prediction. Finally, to validate the results, reliable research findings were

utilised in this study.

The research reveals that excess EEG channels can lead to impracticality in real-life

scenarios due to the redundant information they provide, which has the potential to

cause overfitting problems. Interestingly, it was observed that when data from more

electrodes are added to the model, the model performance drops in some scenarios.

Therefore, a pivotal finding is that using more EEG channels does not necessarily

enhance the model’s performance. The findings also indicate that data obtained from

the frontal and prefrontal lobes strongly correlates with an individual’s MWL. This

observation aligns with previous studies indicating that an increase in EEG channels

can introduce noise and redundancy, detracting from model accuracy due to overfitting

[10]. Thereby validating the existing research in neuroscience. Consequently, it is

suggested to target these specific brain regions and channels relevant to MWL level

classification [145].
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7.2.3 Evaluating Time Series Cross-Validation Strategies in Deep Learn-

ing Models for EEG-Based MWL Classification

Cross-validation is an indispensable stage in training deep learning models, as it ef-

fectively mitigates the issue of model overfitting. The conventional approach involves

partitioning data into k subsets, randomising their order, and assigning them to training

and testing sets. However, within the framework of time series data analysis, especially

in the domain of MWL classification, utilising future data to predict the present MWL

state is not feasible.

Therefore, our primary contribution is to explore a modified cross-validation tech-

nique suitable for the EEG signal, which is time series data. It was found that there

are TSCV strategies, including expanding window and rolling window approaches, in

the field of time series analysis. The expanding the window strategy involves gradually

increasing the window size as the analysis progresses. In the first step, the window

starts at the minimum size and incrementally includes more data, expanding until it

encompasses the entire training dataset. In the rolling window strategy, the window

size for cross-validation is fixed. It involves moving windows along the signal. A wider

range of deep learning models (Stacked LSTM, BLSTM, Stacked GRU, BGRU, BGRU-

GRU, BLSTM-LSTM, CNN) were also utilised for MWL prediction using the TSCV

approach. This contributes significantly to the fields of deep learning and time series

analysis.

It was also found that deep learning models evaluated using TSCV with an expand-

ing window strategy significantly outperformed those using a rolling window strategy.

Specifically, models trained with 90% of the data, as demonstrated by the BGRU-GRU

model, achieved the highest accuracies of 95.90% in Task 1 and 84.56% in Task 2.

This suggests that a larger historical dataset enhances model performance, providing a

guideline for choosing TSCV strategies in similar contexts. For the STEW dataset used

in this study, the results underline the benefits of leveraging extensive historical data for

training. In light of this, the introduction of time series cross-validation has been a vital

development for practitioners in the BCI domain who seek to utilise machine learning

or deep learning models to classify subject MWL levels. The successful implementation

145



Chapter 7. Conclusions and Further Work

of this technique ensures that the temporal integrity of the data is maintained, which is

crucial for achieving accurate and reliable predictions in time-sensitive environments.

In conclusion, MWL measurement utilising EEG signals in brain-computer interac-

tion gained popularity and presented incredible challenges. Deep learning demonstrated

promising results in mental effort forecasting; however, its application in MWL cate-

gorization varied across studies. This thesis addressed the crucial task of accurately

classifying MWL levels. The proposed approach offered a comprehensive method for

utilising EEG for effective MWL classification, focusing on each process stage, from

preprocessing to model evaluation.

1. In the preprocessing stage, exploration of automatic EEG artifact removal tech-

niques and their impact on deep learning models was conducted. The findings

suggested that the ADJUST algorithm had the most significant impact on model

performance compared with others, and the more sophisticated models could

capture the relevant information from raw data, potentially reducing the need for

extensive preprocessing.

2. Channel selection was another focus; the aim was to reduce redundant information

and avoid using the cumbersome EEG cap to pave the way for automation of

MWL level classification in practical applications. Using Riemannian geometry,

the process was successfully performed by focusing only on electrodes that capture

MWL-related brain activity, balancing computational efficiency and information

sufficiency. However, there is no one-size-fits-all optimal number of channels for

all datasets, but for the BCI Hackathon dataset, an optimal range might start at

around 8 to 16 channels for simpler setups and can be extended to 32 channels

for more detailed analyses.

3. Existing works that employed a machine learning approach to perform MWL

level classification critically neglected the temporal character of EEG signals in

the model evaluation step. These studies typically employed the traditional CV

technique, which could lead to data leakage and model overfitting issues. To help

resolve these issues, the significant importance of TSCV was emphasised, and
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two TSCV strategies were adopted in this work: expanding and rolling. Through

analysis of STEW data, it was found that the expanding window technique out-

performed the rolling window strategy.

In summary, this thesis contributes a refined, efficient, and automated approach

to classifying MWL using EEG signals, paving the way for improved performance and

safety in critical environments. Further research and development could enhance their

suitability for real-world applications, advancing the development of more effective BCI

and related applications.

7.2.4 Limitations

Although the study acknowledges compelling insights, it also highlights numerous lim-

itations. One notable drawback is the use of secondary datasets, which means that

the study lacks control over the structure and accessibility of the data and may lack

crucial information as a result. Improvements are needed regarding the presence of a

stimulus marker in both datasets, and including a single label for each individual in

the first dataset presents a limiting factor. The temporal aspect of the second dataset

is distorted due to its pre-existing epoching based on MWL levels. Furthermore, it is

important to note that the datasets used in this study have a limited duration, specifi-

cally spanning only 2.5 and 15 minutes. This temporal constraint is a potential barrier

regarding the amount of data available for analysis.

The first dataset, referred to as STEW (Simultaneous Task EEG Workload), is

mentioned (Section 3.1.1). The retroactive MWL labeling was conducted after each

experimental phase, disregarding any potential variations in MWL that may have oc-

curred throughout the experiment. Due to the brief duration of each experimental

phase, which encompassed resting and working periods lasting only three minutes, it

remains unclear whether any noteworthy alterations in workload occurred within these

limited time intervals.

In contrast, the hackathon dataset (see Section 3.1.2) exhibited a higher frequency

of labeling, as measurements of MWL were recorded at intervals of two seconds. How-

ever, the labeling process was conducted pseudo-randomly, without a direct association
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with particular activities or stimuli. The current framework fails to consider the sub-

jective variability in task complexity, which can significantly vary among people. An

activity deemed effortless for one person may present challenges for another.

Moreover, the data organisation in the hackathon dataset further complicates mat-

ters. Each workload level has been classified as easy, medium, or high and then stored

separately. This not only divorces the data from the original time context but also

oversimplifies the inherently dynamic nature of MWL, which changes fluidly over time.

In summary, while beneficial, these datasets present distinct challenges due to their

secondary nature and specific organisation. The dynamic, subjective, and temporal

aspects of MWL are critical considerations often oversimplified or overlooked in the

current data, limiting their potential for accurate interpretation and application.

Much progress has been made in interpreting EEG signals for assessing people’s

MWL levels. However, the complexity of these signals presents an intriguing challenge

to those unfamiliar with the discipline, often inspiring further investigation. This sec-

tion will discuss the challenges of using deep learning models to classify MWL levels

based on EEG signals and possible future research directions.

EEG signal collection and the development of deep learning models for MWL classi-

fication face numerous obstacles. Diverse datasets employed by distinct research groups

and a shortage of publicly accessible datasets hinder experiment replication and com-

parison of results. Additionally, the distinctive nature of each dataset and insufficient

data obstruct the determination of relationships between input and output data. One

specific challenge is underfitting, which can arise due to the distinct characteristics

of each dataset. Insufficient data makes identifying connections between input and

output data difficult, ultimately leading to underfitting in the models. Increasing the

availability of online datasets is necessary to overcome these challenges.

7.3 Future Work

In this section, potential future research directions will be described that, if pursued,

could significantly enhance the classification of MWL levels from EEG signals using

deep learning models.
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EEG Preprocessing and Noise Removal Challenges

A comprehensive EEG preprocessing pipeline is essential and empowering for machine

learning practitioners without a neuroscience background. Artefact removal toolboxes

are becoming increasingly sophisticated, with the capacity to autonomously cleanse

EEG data of ocular, muscle, and cardiac signals based on identifiable patterns. The

future development of pattern recognition algorithms for various environmental noises,

such as traffic, trains, and aeroplanes, is essential and thrilling. This innovation will

enable even more effective noise removal, enhancing EEG signal preprocessing quality

in laboratory and real-world contexts with dynamic soundscapes.

Enhancing Model Generalisation and Minimising Calibration Requirements

The practical utility of deep learning models for MWL estimation is based on their

capacity to generalise effectively and require minimal calibration, enhancing their ap-

plicability in real-world settings. An ideal model should possess strong generalisation

properties, enabling its use across different subjects performing the same task. Addi-

tionally, the model should exhibit adaptability to mental and environmental fluctua-

tions during a session, ensuring its relevance and accuracy in various contexts. Priori-

tising these attributes in model development can significantly improve the practicality

and utility of deep learning models for EEG-based MWL classification.

Self-Reporting MWL Challenges

In classifying MWL, neural networks use EEG signals as input, supplemented by labels

from participant evaluations. These labels, indicative of self-reported workload lev-

els, are gathered through post-experiment questionnaires [128]. This approach can be

viewed as a secondary task [237]. To conduct post-task self-report feedback or perfor-

mance evaluations, individuals must be trained to understand the instrument used for

expressing their MWL [224]. These methods can increase subjects’ burdens, making it

harder for them to respond to new events. To gain deeper insights into MWL in future

studies, it could be beneficial to incorporate heart rate monitoring as a metric. This is

because an increase in MWL often correlates with a corresponding rise in heart rate,
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as supported by research [27,47,150].

Integration of Artefact Removal and Online Learning in Advanced Deep

Learning Models

Future research could also investigate the development of deep learning models that

incorporate an integrated artifact removal layer. This approach could facilitate the di-

rect input of raw data during the model training phase, thereby streamlining the overall

process. Furthermore, creating models capable of continuous adaptation through on-

line learning is essential for maintaining their relevance and accuracy in real-world

applications. This combination of cutting-edge techniques can significantly improve

the performance and utility of deep learning models for EEG-based MWL estimation.

Resource-Efficient Adaptive Modelling for Constrained Environments

Since a continuously adaptive model is needed, using cumbersome models can be in-

efficient regarding energy efficiency and computational cost. Tiny machine learning

(tinyML) [222] is a cutting-edge field that applies machine learning to performance-

and power-constrained devices. For example, devices that detect a pilot’s MWL must

be small and housed within a flight helmet. Operating neural networks on devices with

limited resources requires algorithms and hardware co-design. The real-time control

system is regarded as the modern vehicle’s brain [93].

Temporal Dynamics in Cross-Validation for MWL EEG Analysis

Researchers investigating EEG signals in the context of MWL levels can enhance their

studies by considering the inherent time series characteristics. This includes incorpo-

rating the assumption of independently and identically distributed (i.i.d.) time series

elements into their cross-validation procedures, which can improve the robustness and

reliability of their findings [18]. Traditional cross-validation approaches involve ran-

domly splitting EEG signals into training and test sets, disregarding the temporal

dynamics of MWL levels. To address this limitation and improve model accuracy, it

is crucial to emphasize the importance of considering the temporal component when
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selecting cross-validation methods for EEG analysis. Since physiological signals are

influenced by previous time steps and their statistical properties vary across individu-

als and types of mental tasks [236], future research should focus on developing models

capable of capturing common properties found across subjects, sessions, and tasks.

Manual Feature Extraction

Manual feature extraction from EEG signals is time-consuming and labor-intensive

in practical applications. Nevertheless, this approach facilitates a critical assessment

of which feature set and classifier best suit a specific dataset [13]. Hand-crafted fea-

ture engineering relies heavily on meticulous preprocessing work and advanced domain

knowledge [141], making model performance dependent on the quality of feature se-

lection techniques. The type of features extracted varies across studies, illustrating

the adaptability of these methodologies. Mohamed et al. [148] concentrated on time-

and frequency-domain features. In contrast, Diaz et al. [54] focused exclusively on

frequency-domain and predefined features predicated on the potential of the theta fre-

quency band for assessing MWL. Consequently, these techniques enable comprehensive

exploration and understanding, albeit at the expense of time and the potential loss of

some pertinent data.

Managing Cross-Subject, Cross-Session, and Cross-Task Variability in MWL

Classification

Deep learning, known for its swift growth and potential, has shown particular promise

when applied to EEG studies, especially in classifying MWL. This potential, however, is

coupled with substantial challenges posed by the inherent variability between subjects,

sessions, and tasks. To effectively manage these multi-dimensional variables, we have

grouped them under two broad classifications: “within” and “cross”, as illustrated in

Figure 7.1. Details of each multi-dimensional variable will be explained in this section.

151



Chapter 7. Conclusions and Further Work

Figure 7.1: EEG MWL classification problems

1. Within-Subject Variability. From the literature, it is evident that the within-

subject classification problem is the most popular study problem across papers

related to EEG-based MWL classification. The “within-subject” approach fo-

cuses on charting an individual’s MWL fluctuations as they engage in a singular

task during one recording session. According to the literature, this methodology

reduces the confounding effects of inter-individual variability by concentrating

solely on intra-individual changes. This approach allows for an isolated explo-

ration of an individual’s MWL, which can be particularly useful in understanding

individual physiological responses. Various model architectures and algorithms

have been utilized to resolve this issue.

2. Cross-Subject Variability. The “cross-subject” approach, also known as the

between-subjects or inter-subjects approach, is more complex. It strives to con-

struct a predictive model using data from several subjects to forecast the MWL

of unseen subjects. This strategy requires the model to be trained on data from
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a cohort of subjects and then tested on its ability to classify the MWL of differ-

ent individuals not included in the training phase. According to several studies,

while this approach is fraught with challenges due to the inherent variability in

EEG signals between individuals, it offers broader applicability. It necessitates a

meticulous selection of machine learning algorithms and potentially requires the

normalisation or standardisation of features to counterbalance individual differ-

ences.

Given that the assessment of MWL is vital for individuals in both daily life and

work situations, it is crucial to construct models capable of effectively managing

cross-subject variations. Most studies in the current literature have primarily fo-

cused on single-session experiments, underscoring the need for additional research

on cross-subject models for improved generalisability and applicability in diverse

contexts.

3. Cross-Session Variability. The “cross-session” approach involves tracking an

individual’s MWL across multiple sessions. This strategy seeks to develop a model

capable of predicting the MWL from one session and then applying this model to

data from different sessions. The model undergoes training during one session (the

training set) and is then tested for its ability to classify MWL in a different session

(the test set). While this approach allows for a more longitudinal assessment of

an individual’s MWL, it is challenged by the potential intra-individual variability

in EEG signals between sessions, which might not be related to changes in MWL

but other confounding factors such as fatigue or stress [176].

Numerous studies have proposed innovative approaches for addressing cross-subject

problems. However, the issue of cross-session variability remains relatively unex-

plored and presents unique challenges in EEG signal classification. The dataset

may display substantial variation even when collected from the same participant

during distinct sessions. As a result, models trained exclusively on EEG signals

from one session may struggle with generalisation. Additionally, static pattern

classifiers may not be suitable for classifying dynamic data, such as EEG signals
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recorded on different days. Several methodologies have recently been proposed

to tackle the cross-session problem in response to these challenges.

4. Cross-Task Variability. In previous sections, the focus was on challenges asso-

ciated with cross-subject and cross-session variations in EEG-based MWL classi-

fication. However, another crucial challenge in this field is the cross-task problem.

The “cross-task” approach involves a single subject engaging in multiple tasks.

The aim is to develop a model capable of predicting MWL across different tasks,

training on data from one task and testing data collected during another task

performed by the same subject. Despite its appeal for its potential to be gener-

alisable across various tasks, the literature indicates that this method is complex

due to the potential for different tasks to elicit varying types and levels of MWL,

thus producing unique EEG signatures. This model is expected to predict MWL

across various tasks and individuals.

5. Cross-Task and -Subject Variability. A combination of “cross-task” and

“cross-subject” approaches presents a significant challenge yet promises the high-

est level of robustness and generalisability. This model is expected to predict

MWL across various tasks and individuals. This problem has only been tackled

by a few researchers.

To the best of my knowledge, one significant contribution to this problem was

made by Zeng et al. [240]. They developed two CNN-based EEG classifiers, EEG-

Conv and EEG-Conv-R, to identify drivers’ MWL. The EEG-Conv model employs

a traditional CNN architecture, while EEG-Conv-R combines the CNN approach

with deep residual learning to enhance performance. This combination addressed

cross-task and cross-subject challenges, marking an innovative approach to EEG-

based MWL classification. The potential for the development of more robust and

versatile models was demonstrated through this research, signifying a significant

step forward in handling cross-task and cross-subject variations. Nevertheless,

the scarcity of studies investigating these combined problems indicates that fur-

ther research is needed to establish more effective methods for managing such

154



Chapter 7. Conclusions and Further Work

variations in real-world applications.

Guided by the existing literature, further combinations are envisioned, such as the

“cross-subject” and “cross-session” methodologies, as well as the tripartite approach

that combines the ‘cross-subject”, “cross-session”, and “cross-task” elements. The dual

method of “cross-subject” and “cross-session” aims to develop a model that can predict

MWL across subjects and sessions. “Cross-subject”, “cross-session”, and “cross-task”

approaches present the most difficult but potentially most rewarding scenario. This am-

bitious strategy aims to develop a model capable of predicting MWL across a spectrum

of individuals, sessions, and tasks, resulting in a highly adaptable tool with exten-

sive practical applications. However, the literature on these complex interconnections

remains sparse. The research community has yet to fully address the inherent chal-

lenges presented by these methodologies, rendering them a promising avenue for future

exploration and innovation in this dynamic field.

Decoding MWL levels from EEG signals is difficult. This task presents many diffi-

culties, primarily due to the intricate and numerous factors involved, all contributing

to the overall difficulty of accurate MWL decoding. These challenges include cross-

subject physiological variability arising from differences in individuals’ brain activities

and physical responses. Additionally, cross-session variability refers to fluctuations in a

single subject’s performance across different sessions, while cross-task variability high-

lights the differences that emerge when subjects perform various tasks. Moreover, the

vast diversity of real-world environmental variables, such as ambient noise, lighting con-

ditions, and external stressors, can also impact the performance of MWL decoders. To

create more robust and accurate models, it is crucial to consider individual factors like

gender, expertise, age, experience, and emotions during model training. These factors

can significantly influence a person’s MWL, and by accounting for them, the models

can better capture the nuances of MWL across different contexts and individuals.

Future research endeavours may seek to overcome these restrictions by designing

experiments and collecting datasets independently. Moreover, it is valuable to pursue

investigations into the integration of cross-task and MWL in practical contexts, such

as education. Furthermore, it is important to develop task designs that build upon the
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existing research findings in order to provide support and guidance.

The observations obtained in this study establish a fundamental structure for BCI

in tasks involving multitasking, which could potentially enhance the development of

closed-loop systems. Despite accurately implementing the proposed model and fol-

lowing each stage of the approach, the application of our findings to real datasets in

authentic MWL scenarios is still an area that requires further exploration. Future en-

deavours are focused on achieving practical implementation, particularly in the context

of recognising the workload of individuals in driving scenarios. In the event that a

person demonstrates elevated MWL or manifests indications of drowsiness, the system

has the capability to notify the driver to cease or temporarily suspend their travel.

The existing framework of my thesis is grounded on an open-loop approach, which

currently does not incorporate real-time feedback based on the user’s brain signals. This

setup serves as the foundation for the investigation and development pursued through-

out this research. In the future, the objective is to integrate the circuits, thereby ad-

vancing our model into a closed-loop BCI system. This system will integrate a feedback

mechanism, enabling real-time responses to the user’s brain activity and promoting an

interactive and dynamic exchange between the user and the system.

7.4 Chapter Summary

This chapter examines the contributions of this thesis, identifying and analysing the

inherent constraints associated with these contributions. Additionally, it outlines re-

search directions that could be investigated in the future.

• The chapter begins with a recap of the thesis’s contributions, particularly in using

EEG signals for MWL-level classification.

• This thesis highlights the importance of the EEG preprocessing step and reveals

how different techniques impact the effectiveness of deep learning models in MWL

level classification. The key contribution, explained in Section 7.2, concerns

EEG channel selection for MWL classification. The results reveal that signals

from specific EEG channels in certain brain regions can yield accurate MWL-level
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classifications. Furthermore, this thesis delves into the time series cross-validation

strategy used in deep learning models for EEG-based MWL classification, showing

that the expanding window strategy is superior to the rolling window strategy.

• The limitations are acknowledged, including challenges related to dataset diversity

and scarcity, as well as the challenges of self-reporting MWL.

• Future research directions are outlined, highlighting the need for new and inde-

pendent data collection for MWL-level classification and exploring “cross-task”

and “cross-task and subject” applications. A closed-loop system in BCI is seen as

a crucial advancement, enhancing real-time responsiveness and adaptability. This

approach builds on the findings of the thesis, highlighting the dynamic nature of

MWL and its implications for user-centered design in BCI technologies.
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[51] Stéphane Delliaux, Alexis Delaforge, Jean-Claude Deharo, and Guillaume

Chaumet. Mental workload alters heart rate variability, lowering non-linear dy-

namics. Frontiers in physiology, 10:565, 2019.

[52] Dipayan Dewan, Lidia Ghosh, Biswadeep Chakraborty, Abir Chowdhury, Amit

Konar, and Atulya K Nagar. Cognitive analysis of mental states of people ac-

cording to ethical decisions using deep learning approach. In 2020 International

Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2020.
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Dario Rossi, et al. Wearable technologies for mental workload, stress, and emo-

tional state assessment during working-like tasks: A comparison with laboratory

technologies. Sensors, 21(7):2332, 2021.

[67] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with

bidirectional lstm and other neural network architectures. Neural networks, 18(5-

6):602–610, 2005.

165

https://www.emotiv.com/product/emotiv-epoc-x-14-channel-mobile-brainwear/
https://www.emotiv.com/product/emotiv-epoc-x-14-channel-mobile-brainwear/


Bibliography

[68] Richard A Groeneveld and Glen Meeden. Measuring skewness and kurtosis. Jour-

nal of the Royal Statistical Society: Series D (The Statistician), 33(4):391–399,

1984.

[69] Peter A Hancock. A dynamic model of stress and sustained attention. Human

factors, 31(5):519–537, 1989.

[70] Sandra G Hart. Nasa-task load index (nasa-tlx); 20 years later. In Proceedings

of the human factors and ergonomics society annual meeting, volume 50, pages

904–908. Sage publications Sage CA: Los Angeles, CA, 2006.

[71] Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load

index): Results of empirical and theoretical research. In Advances in psychology,

volume 52, pages 139–183. Elsevier, 1988.

[72] James B Heaton, Nick G Polson, and Jan Hendrik Witte. Deep learning for

finance: deep portfolios. Applied Stochastic Models in Business and Industry,

33(1):3–12, 2017.

[73] Ryan Hefron, Brett Borghetti, Christine Schubert Kabban, James Christensen,

and Justin Estepp. Cross-participant eeg-based assessment of cognitive workload

using multi-path convolutional recurrent neural networks. Sensors, 18(5):1339,

2018.

[74] Tobias Heine, Gustavo Lenis, Patrick Reichensperger, Tobias Beran, Olaf Doessel,

and Barbara Deml. Electrocardiographic features for the measurement of drivers’

mental workload. Applied ergonomics, 61:31–43, 2017.

[75] Christian Herff, Dominic Heger, Ole Fortmann, Johannes Hennrich, Felix Putze,

and Tanja Schultz. Mental workload during n-back task—quantified in the pre-

frontal cortex using fnirs. Frontiers in human neuroscience, 7:935, 2014.

[76] Luis G Hernández, Oscar Martinez Mozos, José M Ferrández, and Javier M
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[122] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[123] Dae-Hyeok Lee, Ji-Hoon Jeong, Kiduk Kim, Baek-Woon Yu, and Seong-Whan

Lee. Continuous eeg decoding of pilots’ mental states using multiple feature

block-based convolutional neural network. IEEE Access, 8:121929–121941, 2020.

[124] Dae-Hyeok Lee, Ji-Hoon Jeong, Kiduk Kim, Baek-Woon Yu, and Seong-Whan

Lee. Continuous eeg decoding of pilots’ mental states using multiple feature

block-based convolutional neural network. IEEE Access, 8:121929–121941, 2020.

[125] Choon Guan Lim, Tih Shih Lee, Cuntai Guan, Daniel Shuen Sheng Fung, Yudong

Zhao, Stephanie Sze Wei Teng, Haihong Zhang, and K Ranga Rama Krishnan. A

brain-computer interface based attention training program for treating attention

deficit hyperactivity disorder. PloS one, 7(10):e46692, 2012.

172



Bibliography

[126] Julian Lim, Wen-chau Wu, Jiongjiong Wang, John A Detre, David F Dinges,

and Hengyi Rao. Imaging brain fatigue from sustained mental workload: an asl

perfusion study of the time-on-task effect. Neuroimage, 49(4):3426–3435, 2010.

[127] Wei Lun Lim, Olga Sourina, and Lipo Wang. Cross dataset workload classification

using encoded wavelet decomposition features. In 2018 International Conference

on Cyberworlds (CW), pages 300–303. IEEE, 2018.

[128] WL Lim, O Sourina, and Lipo P Wang. Stew: Simultaneous task eeg workload

data set. IEEE Transactions on Neural Systems and Rehabilitation Engineering,

26(11):2106–2114, 2018.

[129] Yuetian Liu and Qingshan Liu. Convolutional neural networks with large-margin

softmax loss function for cognitive load recognition. In 2017 36th Chinese control

conference (CCC), pages 4045–4049. IEEE, 2017.

[130] Ziming Liu, Jeremy Shore, Miao Wang, Fengpei Yuan, Aaron Buss, and Xi-

aopeng Zhao. A systematic review on hybrid eeg/fnirs in brain-computer inter-

face. Biomedical Signal Processing and Control, 68:102595, 2021.

[131] Luca Longo and M Chiara Leva. Human Mental Workload: Models and Appli-

cations: First International Symposium, H-WORKLOAD 2017, Dublin, Ireland,

June 28-30, 2017, Revised Selected Papers, volume 726. Springer, 2017.

[132] Luca Longo, Christopher D Wickens, Gabriella Hancock, and Peter A Hancock.

Human mental workload: A survey and a novel inclusive definition. Frontiers in

psychology, 13:883321, 2022.

[133] Steven J Luck. An introduction to the event-related potential technique. MIT

press, 2014.

[134] Kelvin FH Lui and Alan C-N Wong. Does media multitasking always hurt? a

positive correlation between multitasking and multisensory integration. Psycho-

nomic bulletin & review, 19:647–653, 2012.

173



Bibliography

[135] Sebastian Mach, Pamela Storozynski, Josephine Halama, and Josef F Krems.

Assessing mental workload with wearable devices–reliability and applicability of

heart rate and motion measurements. Applied ergonomics, 105:103855, 2022.

[136] Scott Makeig, Anthony J Bell, Tzyy-Ping Jung, and Terrence J Sejnowski. In-

dependent component analysis of electroencephalographic data. In Advances in

neural information processing systems, pages 145–151, 1996.

[137] Rainer Martin. Noise power spectral density estimation based on optimal smooth-

ing and minimum statistics. IEEE Transactions on speech and audio processing,

9(5):504–512, 2001.

[138] Robert Matthews, Neil J McDonald, Harini Anumula, Jamison Woodward, Pe-

ter J Turner, Martin A Steindorf, Kaichun Chang, and Joseph M Pendleton. Novel

hybrid bioelectrodes for ambulatory zero-prep eeg measurements using multi-

channel wireless eeg system. In Foundations of Augmented Cognition: Third

International Conference, FAC 2007, Held as Part of HCI International 2007,

Beijing, China, July 22-27, 2007. Proceedings 3, pages 137–146. Springer, 2007.

[139] Patrick E McKight and Julius Najab. Kruskal-wallis test. The corsini encyclo-

pedia of psychology, pages 1–1, 2010.

[140] Patrick E McKnight and Julius Najab. Mann-whitney u test. The Corsini ency-

clopedia of psychology, pages 1–1, 2010.

[141] Nijat Mehdiyev, Johannes Lahann, Andreas Emrich, David Enke, Peter Fettke,

and Peter Loos. Time series classification using deep learning for process planning:

A case from the process industry. Procedia Computer Science, 114:242 – 249, 2017.

Complex Adaptive Systems Conference with Theme: Engineering Cyber Physical

Systems, CAS October 30 – November 1, 2017, Chicago, Illinois, USA.

[142] Dominika Michalkova, Mario Parra Rodriguez, and Yashar Moshfeghi. Drivers of

information needs: a behavioural study–exploring searcher’s feeling-of-knowing.

In Proceedings of the 2022 ACM SIGIR International Conference on Theory of

Information Retrieval, pages 171–181, 2022.

174



Bibliography

[143] Dominika Michalkova, Mario Parra Rodriguez, and Yashar Moshfeghi. Confidence

as part of searcher’s cognitive context. In International Conference on Machine

Learning, Optimization, and Data Science, pages 510–524. Springer, 2022.

[144] Dominika Michalkova, Mario Parra Rodriguez, and Yashar Moshfeghi. Under-

standing feeling-of-knowing in information search: An eeg study. ACM Transac-

tions on Information Systems, 2023.

[145] Earl K Miller and Jonathan D Cohen. An integrative theory of prefrontal cortex

function. Annual review of neuroscience, 24(1):167–202, 2001.

[146] Yurui Ming, Danilo Pelusi, Chieh-Ning Fang, Mukesh Prasad, Yu-Kai Wang,

Dongrui Wu, and Chin-Teng Lin. Eeg data analysis with stacked differentiable

neural computers. Neural Computing and Applications, 32(12):7611–7621, 2020.

[147] Andrea Mognon, Jorge Jovicich, Lorenzo Bruzzone, and Marco Buiatti. Adjust:

An automatic eeg artifact detector based on the joint use of spatial and temporal

features. Psychophysiology, 48(2):229–240, 2011.

[148] Zainab Mohamed, Mohamed El Halaby, Tamer Said, Doaa Shawky, and Ashraf

Badawi. Characterizing focused attention and working memory using eeg. Sen-

sors, 18(11):3743, 2018.

[149] Yashar Moshfeghi. Neurasearch: Neuroscience and information retrieval. In

CEUR Workshop Proceedings, volume 2950, pages 193–194, 2021.

[150] Lambertus JM Mulder. Measurement and analysis methods of heart rate and

respiration for use in applied environments. Biological psychology, 34(2-3):205–

236, 1992.

[151] Hiroyasu Murakami and BVK Vijaya Kumar. Efficient calculation of primary

images from a set of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, (5):511–515, 1982.

[152] Deogratias Mzurikwao, Oluwarotimi Williams Samuel, Mojisola Grace Asogbon,

Xiangxin Li, Guanglin Li, Woon-Hong Yeo, Christos Efstratiou, and Chee Siang

175



Bibliography

Ang. A channel selection approach based on convolutional neural network for

multi-channel eeg motor imagery decoding. In 2019 IEEE Second International

Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pages

195–202. IEEE, 2019.

[153] Friedhelm Nachreiner. International standards on mental work-load the iso 10

075 series. Industrial Health, 37(2):125–133, 1999.

[154] Perattur Nagabushanam, S Thomas George, and Subramanyam Radha. Eeg

signal classification using lstm and improved neural network algorithms. Soft

Computing, pages 1–23, 2019.

[155] Henri J Nussbaumer. The fast fourier transform. In Fast Fourier Transform and

Convolution Algorithms, pages 80–111. Springer, 1981.

[156] Robert Oostenveld and Peter Praamstra. The five percent electrode system for

high-resolution eeg and erp measurements. Clinical neurophysiology, 112(4):713–

719, 2001.

[157] Alison O’Shea, Rehan Ahmed, Gordon Lightbody, Elena Pavlidis, Rhodri Lloyd,

Francesco Pisani, Willian Marnane, Sean Mathieson, Geraldine Boylan, and An-

driy Temko. Deep learning for eeg seizure detection in preterm infants. Interna-

tional Journal of Neural Systems, 31(08):2150008, 2021.

[158] Sakrapee Paisalnan, Yashar Moshfeghi, and Frank Pollick. Neural correlates

of realisation of satisfaction in a successful search process. Proceedings of the

Association for Information Science and Technology, 58(1):282–291, 2021.

[159] Sakrapee Paisalnan, Frank Pollick, and Yashar Moshfeghi. Towards understand-

ing neuroscience of realisation of information need in light of relevance and satis-

faction judgement. In International Conference on Machine Learning, Optimiza-

tion, and Data Science, pages 41–56. Springer, 2021.

176



Bibliography

[160] Sakrapee Paisalnan, Frank Pollick, and Yashar Moshfeghi. Neural correlates of

satisfaction of an information need. In International Conference on Machine

Learning, Optimization, and Data Science, pages 443–457. Springer, 2022.

[161] Alvaro Pascual-Leone, Catarina Freitas, Lindsay Oberman, Jared C Horvath,

Mark Halko, Mark Eldaief, Shahid Bashir, Marine Vernet, Mouhshin Shafi, Bran-

don Westover, et al. Characterizing brain cortical plasticity and network dynam-

ics across the age-span in health and disease with tms-eeg and tms-fmri. Brain

topography, 24:302–315, 2011.

[162] Christopher JD Patten, Albert Kircher, Joakim Östlund, and Lena Nilsson. Using
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