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Abstract 

 

Networked Control Systems (NCS) are feedback/feed forward control systems where 

control components (sensors, actuators and controllers) are distributed across a 

common communication network.  With the introduction of the communication 

network in the control system, large-scale applications, multi-level distributed control 

applications and remote applications can be easily developed, but represent a 

challenge for control design. 

 

Finite communication channels introduce network constraints or communication 

errors (packet dropouts, network delays and variable sampling time) that reduce the 

reliability of the system measurements as well as the stability and robustness of the 

overall system. 

  

In this thesis, we investigate NCS under packet dropouts and network-induced delays 

that are bigger than the sampling time.  To compensate network constraints two 

approaches are proposed.  A non-recursive approach to compensate lumped network 

delays is developed by using the probability distribution function (pdf) of the delay in 

the design of PID controllers.   

 

A recursive approach is also developed to compensate sensor-to-controller delays and 

packet dropouts.  The methodology combines a time-driven Kalman filter with a bad 

data detector.  The resulting estimated states are constraints-free and can be used to 

design the control system.  The control law is based on Model Predictive Control 

(MPC) to compensate the controller-to-actuator delays recursively. 

 

Both methodologies are initially applied to a single loop NCS.  Multi-loop NCS are 

modelled as Distributed control systems (DCS) to decouple a multi-loop problem into 
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single loop problems and to solve a multiobjective control problem.  The 

multiobjective formulation allows the implementation of the previous methodologies 

on multivariable NCS.  The resulting Distributed control problem is formulated as 

multirate to decrease controller-to-actuator packet dropouts. 



 

 

Chapter 1 

 

 

Introduction 
 

Any attempt of using a communication network to exchange information among 

control system components (sensors, actuators and controllers) can be classified as 

Networked or Networked-based Control System. 

 

Wiener's ideas about the incorporation of information theory in feedback control 

theory revealed the critical aspects of the complex interconnected systems [1].  This 

complexity has been recently noted with the remarkable deployment of technologies 

in computer and communication networks for many parts of the industry. 

 

The development of NCS came as both, the result of incorporating data networking 

technologies into large-scale applications [97]; and the limited capacity of the 

communication channel to transmit observations and control signals for remote 

applications [67].  To reduce the complexity of such systems with nominal 

economical investments, distributed control methodologies were employed based on 

network capabilities.  Before the 1990’s, the first formal attempt to describe these new 

systems appeared in the work of Halevi and Ray [32], however the fusion between 

communications and control systems as NCS appeared in the work of Walsh et al. 

[94]. 
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Introduction to Networking Technologies for Distributed Applications 

 

 As mentioned by Almutairi et al. [2], data networking technologies have been widely 

applied to industrial and military control applications.  Large-scale applications 

during the 1970’s and 1980’s pushed the development of control coordination 

schemes to share control tasks that were physically separated.  The existing 

computational burden on centralized applications was mitigated with decentralized 

schemes.  As reported in a paper in 1973, “on the Stabilitization of Decentralized 

Control Systems”, stability and performance problems came together with the idea of 

decentralization [95].  Quasi-decentralized schemes became popular.  They combined 

the good centralized performance with the distribution of decentralized schemes.  

Consequently, cross communications were necessary, as well as large bandwidth on 

the shared communication channels.  

 

During the 1980’s quasi-decentralized schemes eased the implementation of 

multilayer and hierarchical control for industrial processes.  To implement 

hierarchical control, the system has to be decomposed into several sub-problems that 

represent a multilayer or multilevel architecture. Its implementation depends on the 

availability of the communications and real-time constraints.        

 

 

Real-Time Constraints 

 

Although there is not an established theory for real-time systems to manage timing 

constraints in real-time applications, the development of communication networks has 

allowed the achievement of accurate operations with logical results at the time at 

which they are produced.        

 

A particular problem in large-scale industry is how to accommodate changing 

requirements to create minimal disruption to normal operations.  Real-time systems 

implemented on large-scale applications offer correctness, timeliness and reliability 

for stable operating conditions.  Nonetheless the more hardware used, the more tasks 

and communication problems appeared and required solution. 
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To satisfy timing requirements, effective resource allocation strategies were applied. 

However, to ensure correctness, timing constraints are assumed implicitly.  These 

assumptions represent system components that are extremely difficult to integrate, as 

well as limited channel capabilities and processing time requirements. 

 

Network-Based Applications 

 

The necessity of real-time protocols pushed engineers to consider faster and more 

reliable communication networks to achieve the real-time systems capabilities.  Most 

of the applications had proprietary software, but the communication media had been 

developed using agreed standards. 

 

Standards of Industrial Networks appeared since 1969 with the well-known RS232 

proposed by the Electronics Industry Association; however the major breakthrough 

was the standardization of the Open System Interconnection (OSI) model. The first 

commercial distributed control systems appeared in the 1970's.  At the beginning, 

networks were only serial wired links; nonetheless with the development of 

communication protocols, networks could provide several increasing benefits of 

communication, reduction of wiring connections and ease of maintenance, among 

others.   

 

The impact of these benefits influenced the development of industrial protocols such 

as PROFIBUS which was developed in 1987 followed by Fieldbus and DeviceNet.  

These protocols offered robustness for real-time control purposes and allowed the 

implementation of Process Control Systems.  Practical applications may also require 

the modification of the protocols for Internet connectivity.   

 

 

SCADA Applications 

 

Networking Control Systems and Process Control Systems refer to systems able to 

monitor and measure hundreds of variables either locally or remotely.      
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Supervisory Control and Data Acquisition Systems (SCADA), is one of the most 

known Process Control Systems.  It has been conceived as an ad-hoc technique based 

on functionality, self-configuration, failure resistance and security.  SCADA 

technology started almost 30 years ago.  Due to the major reduction of computers and 

networks cost, applications extended from central master stations to remote master 

stations.  SCADA systems can easily implement multi-level distributed control 

schemes. These solutions offer redundancy, ease of maintenance, low cost, flexibility; 

upgrading and more flexible architectures to inter-operate with complementary 

systems such as Sensor Networks and Mesh Networks. 

 

The advances in the implementation of SCADA systems have begun with the 

migration from monolithic architecture to networked architecture.  Some of the most 

common applications of SCADA systems are in water and waste control, energy, oil 

and gas refining and transportation. 

 

Originally SCADA systems employed proprietary software, but with the increase use 

of personal computers, office-base computer networking can be achieved.  Networked 

SCADA systems offered new possible applications as well as Internet protocol (IP) 

for communications. 

 

Nowadays, with the introduction of commercial communication networks in the 

industry, the functionalities of Networked SCADA systems can be applied in several 

large-scale applications, multi-level distributed control applications and remote 

applications as NCS.     

 

1. 1   Motivation of the Research 

 

NCS applications offer low cost, ease of maintenance, flexibility, upgrading, 

redundancy and scheduling.  Today’s networks offer high connectivity and medium to 

high data transmission rates. Transmission policies allow dynamic bandwidth 

allocation or scheduling methodologies to meet real-time constraints and furthermore 
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broadcasting data allows coordination of the control system and implementation of 

centralized schemes but with decentralized structures. 

 

Connectivity of the control components is ad-hoc, only bounded by the NCS 

Information structure availability.  This Information structure, that is connectivity and 

capacity of the communication network, as mentioned by Giovanini and Balderud 

[29] offers any type of coordination on the system scheme, leading to real-time 

implementation of distributed control systems with certain complexity.  The 

complexity of NCS is not only in the process; but in the way the information is 

deployed through the communication network.  Communication networks introduce 

inherent communication errors that carries overload of information over real-time 

systems.  

 

To fully deploy the capabilities of the NCS, optimum performance of distributed 

control systems combined with Quality of service QoS-based networks are needed.  In 

the study of NCS, network constraints and link failures have to be considered.  Not all 

the communication channels are ideal data transmission medium (without errors).  

Missequencing, packet dropouts, network-induced delays and limited network 

bandwidths emerge when a control loop is closed across the network.    These 

network constraints reduce performance of the NCS by affecting the observability of 

the process as well as the reliability of output measurements and control signals.     

 

Almost all the literature in NCS is referred to stability.  Regardless of the method to 

be used, sufficient conditions are formulated for the stabilization of the NCS either for 

packet dropouts, network delays, dynamic bandwidth allocation or quantization 

constraints.  

 

Stability in the system will decrease as the delay grows. Finite communication 

channels introduce a maximum network delay before the system goes from closed 

loop to open loop.  Nonetheless, reaching this value will depend on the network 

traffic.  Network traffic is not always constant and consequently adds the time-

varying nature to the delay.  This characteristic makes the robustness of the system to 

vary in an intermittent or oscillatory way.  Thus a less conservative stability analysis 
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can be useful using concepts such as practical stability [50].  This concept of stability 

is weak but applicable when combined with recursive state estimation and control 

methodologies, and is the main motivation of this research. 

 

State Estimation and Control Methodologies in NCS are not that simple to implement.  

A trade-off between optimality and computational burden is needed for the 

methodology to be applicable.  Conventional techniques for systems with network 

constraints require the constraints to be known and constant which contradicts 

variable and random nature of the network constraints.  Recursive solutions can 

handle the variability and randomness of the delay as far as it is known at the 

beginning of the recursion.  In some applications when uncertainty varies every 

sample time, updating states using measurements before each optimization step 

increases performance of the closed-loop.    

 

 

1.2   Aims and Objectives 

 

The aim of this thesis is to study the effects of distributing the control objective across 

the network to fully deploy networks capabilities.  To achieve this aim, the following 

research topics are studied: 

 

 PID design for NCS:  The stability and robustness of PID controllers on NCS 

are studied. The controller design is subject to the following assumptions: The 

system is continuous with delayed inputs; sensors are time-driven; controller 

and actuators are also time-driven; packet dropouts as well as varying 

sampling intervals are not included.   The controller is a discrete PID 

controller where its parameters are calculated by solving a Linear Matrix 

Inequalities (LMI) problem; and finally the system can be proved to be delay-

dependent stable. 
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 Kalman filtering design for delay and packet dropouts compensation:  For 

delays bigger than the sampling interval on the sensor-to-controller interface, a 

modified Kalman filter is used.  The filter is time-driven.  In the absence of 

information arrivals, the filter forwards the estimated states to compensate 

delays.  The filter is combined with a bad data detector to differentiate 

between packet dropouts or delays increments.  The proposed filter/detector is 

combined with a MPC to compensate delays on the controller-to-actuator 

interface.  Its design is based on the method used for PID controllers analyzed 

in Chapter 3.   

 

 Model Predictive Control for Distributed NCS: Computational issues can be 

addressed extending the NCS problem to a Distributed NCS problem.  The 

Multivariable system is split into m  agents or entities that can sense the states 

of the system and decide upon the values of its control variables.  The process 

is observed by single channel modified Kalman filters and the control design 

is performed using a multiobjective optimization combined with model 

predictive control. 

 

 

1.3   Outline of the Thesis 

 

The structure of the thesis is described as follows: 

 

1.3.1   Chapter 2 Networked Control Systems 

 

This chapter describes a state of the art of the network constraints such as: network 

delays, packet dropouts, quantization and missequencing.  General structures for NCS 

are also discussed.  Network delays are defined to be finite and packet dropouts are 

defined as the absence of information arrivals. This chapter is structured such that in 

section 2.1 the NCS features are presented.  The general structure of NCS is presented 
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in section 2.2.  Network constraints are described in section 2.3.  The way information 

can be updated on NCS is shown in section 2.4. 

 

1.3.2   Chapter 3 Networked Control Systems modelling 

 

This chapter provides a state of the art review of the different control methodologies 

employed for NCS in conjunction with the information structure.  A functional 

differential equation is used to model NCS for linear systems.  Some discretization 

methodologies are used to demonstrate the NCS existing models and the most used 

control methodologies are addressed based on the information structure.  Section 3.1 

shows different methodologies to model a linear time invariant NCS with network 

delays.  Control strategies are presented in section 3.2   

 

1.3.3   Chapter 4 PID Controller design for NCS: a pseudo-

probabilistic approach 

 

A non-recursive control methodology is applied to a single-loop NCS.  The NCS is 

assumed to be affected by network delays only.  PID controllers are designed using 

the pdf of the lumped delay. The incorporation of the pdf of the delay into the 

controller design leads to a set of LMI’s.  This set is bounded to a range of network 

delays that includes the most probable network delay. The optimization is expected to 

achieve good system performance.  The structure of this chapter is as follows:  In 

section 4.1 a discrete NCS model with delayed inputs is combined with a discrete PID 

controller.  The pdf of the delay is used to model network delays.  In section 4.2 the 

resulting closed loop system is described as a convex set based on the pdf of the 

delay.  The convex set is reduced to a limited polytope bounded by a tuning 

parameter.  In section 4.3 the PID controller design is solved by formulating a LMI 

problem.   Performance and stability are included as constraints.  A numerical 

example is presented in section 4.4 to test the design approach.      
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1.3.4   Chapter 5 Estimation Approach for Networked Control 

Systems 

In this chapter a recursive control strategy is applied to single-loop NCS with packet 

dropouts in the sensor-to-controller interface and network delays longer than the 

sampling time in either the sensor-to-controller and controller-to-actuator interfaces.  

A Kalman filter is combined with a bad data detector to compensate network delays 

and packet dropouts at the sensor-to-controller interface.  The resulting network 

constraints-free system states are used to determine a MPC controller.  Controller-to-

actuator delays are compensated by forwarding the control law using the calculated 

value of the network delay. The structure of this chapter is as follows: Section 5.1 

concerns the formulation of the discrete Kalman filter for systems with neither delays 

nor packet dropouts.  The resulting algorithm is modified to include sensor-to-actuator 

delays and a bad data detector is formulated to use the resulting filter to compensate 

for both delays and packet dropouts.  In section 5.2, controller-to-actuator delays are 

incorporated in the system model and two control methodologies are proposed Linear 

Quadratic Regulator (LQR) with model transformation and closed loop MPC.  A 

numerical example is presented in section 5.3.  The resulting control methodology is a 

combination of the Kalman filter for estimating the system states affected by network 

constraints and closed-loop MPC.     

 

1.3.5   Chapter 6 Distributed Multirate Approach for NCS 

 

Multivariable NCS is modelled as a Distributed system and split into a known number 

of subsystems.  Distributed MPC (DMPC) is used to control the multivariable NCS 

and Nash stability is used to achieve stability of the overall system.  Single-channel 

constraints are compensated individually using the results of chapter 5. The resulting 

methodology is modelled as multirate systems in order to reduce the effects of packet 

dropouts in the controller-to-actuator interface.  The resulting methodology is 

Distributed Multirate MPC (DMMPC) and compensates entirely the network 

constraints.  The structure of this chapter is as follows:  section 6.1 focuses on the 

disadvantages of centralized control from an estimator perspective.  Section 6.2 offers 

a solution to the trade-off between scheduling policies and control design complexity 

by formulating the control problem within a distributed scheme, global optimality is 
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achieved as Nash optimal.  Section 6.3 concerns the addition of a packet dropout 

mechanism which leads to a suboptimal stochastic controller design.  Sub-optimality 

constraint is removed in section 6.4 by formulating the controller design problem as a 

DMMPC problem. A case study is presented in section 6.5 to test the resulting 

algorithm. 

 

1.4   Contribution of the Thesis 

 

1. A critical review of the state of the art of NCS is presented in chapters 2 and 3.  

Several survey papers on NCS show the most known control methodologies 

applied to NCS, but why these methodologies are chosen is explained briefly.  

This review emphasizes that information structure (connectivity and capacity) 

is a limiting factor and plays an important role when the control and 

estimation methodology is chosen.     

 

2. PID controllers are well-known and widely used in industry, and consequently 

within NCS.  Methodologies that incorporate the delay to tune a PID 

controller have been previously developed.  Most of the resulting 

methodologies emphasize on stability and consequently new methodologies 

that consider performance are needed.  In this thesis we present a PID control 

design for NCS that incorporates a range of delay values that maintains a good 

system performance and considers stability for NCS as practical stability.   

 

3. In the literature of NCS, one of the simplest estimation strategy is the one 

presented by Larsen et al. [51].  This strategy uses a modified Kalman filter to 

avoid model augmentation and is aimed at compensating sensor-to-controller 

delays.  In this thesis we use the modified Kalman filter developed by Larsen 

et al. [51] combined with a bad data detector.  The filter-detector combination 

allows the compensation of not only network delays but also packet dropouts 

for NCS with time-driven components.  The calculated network delay is also 

used to forward a MPC law and compensates network delays in the controller-

to-actuator interface.   
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4. The resulting filter-detector-controller strategy developed for single channels 

is used for multivariable NCS by modelling the NCS as a distributed control 

system.  It is shown that compensation of network constraints for individual 

channels is easier than multivariable NCS but stability can be reduced due to 

the resulting distributed system.  To avoid instability, the DMPC developed by 

Giovanini and Balderud [29] is used.  Furthermore, due to the information 

structure of the resulting distributed NCS (DNCS), a strategy to reduce the 

effects of packet dropouts in the controller-to-actuator interface is developed 

by modelling the resulting DNCS as multirate.  The resulting DMMPC uses 

the inter-sampling control laws of every subsystem as acknowledgement 

messages to compensate in case of packet dropouts.  Packet dropouts can not 

be entirely compensated but, the proposed methodology is able incorporate a 

measurement of the quality of the transmitted information as a controller 

design parameter. 

 

 

1.5   Publications arisen from this Research 

 

The contribution of this thesis has been presented in the following publications: 

 

1. Recalde, L. F., Katebi, R. (2008): PID Control design for Networked Control 

Systems: A pseudo probabilistic Robust Approach.  IFAC Control 

Conference, Soul, Korea. 

  

2.  Recalde, L. F., Katebi, R. (2010):  State Estimation and Control Design of 

Networked Control Systems.  IFAC Control Conference, Milan, Italy.  

Submitted for conference paper. 

  

3. Recalde, L. F., Katebi, R. (2010): Model-based Predictive Control of 

Networked Control Systems.  IFAC Control Conference.  Milan, Italy.  

Submitted for conference paper.  



Chapter 1  Introduction 

  12 

4. Recalde, L. F., Katebi, R. (2010): Delay-dependent PID Control design for 

Networked Control Systems: a probabilistic Approach.  Submitted for Journal 

publication.  International Journal of Control. 

 

5. Recalde, L. F., Katebi, R. (2010): Recursive compensation of packet dropouts 

and network delays in Networked Control Systems.  Submitted for Journal 

publication.  IEEE, Signal Processing. 



 

 

Chapter 2 

 

Networked Control Systems 

 

Networked Control Systems (NCS) are feedback/feed forward control systems where 

control components (sensors, actuators and controllers) are distributed across a 

common communication network [107] and [87].  For control design NCS is suitable 

on multi-level distributed control as well as remote control [101].  Industrial 

applications include power plants, flight and automotive control systems, robotics, 

automated manufacturing, control over Internet and environmental monitoring among 

others.  

 

The design of NCS depends to a particular design methodology in order to be feasible 

and reliable.  A NCS solution offers redundancy, ease of maintenance, low cost, 

flexibility and upgrading [54].  

 

To fully deploy the capabilities of the NCS, optimum performance of distributed 

control systems combined with Quality of service QoS-based networks are needed 

[54].  Today’s networks offer high connectivity and medium to high data transmission 

rates. Transmission policies allow dynamic bandwidth allocation or scheduling 

methodologies to achieved real-time constraints.  Furthermore broadcasting data 

allows coordination of the control objective and implementation of centralized 

schemes but with decentralized structures. 
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2.1   Networked Control System Features 

 

When distributed control processes are sharing a common communication network, 

asynchronous operations as well as multirate sampling intervals are expected.  

Network utilization is affected by the increase of data traffic.  Contention is also 

important for reliable transmissions. Contention depends on buffer size and collision 

detection/correction mechanisms. The way the Medium Access Control (MAC) 

sublayer protocol controls the transmission and resolves contention introduces time 

varying delays [54].  MAC describes the protocol for obtaining access to any network. 

Cyclic service networks, like Token Bus and Ring, add a deterministic behaviour to 

data traffic. On the other hand, random access network such as Ethernet makes data 

traffic probabilistic [90].     

 

For control design, the features of a NCS involve distributed scenarios, asynchronized 

multirate sampling and data traffic either deterministic or probabilistic [107]. Thus, a 

suitable approximation of the NCS problem is as time-varying systems, 

asynchronized and distributed.  The idea of distribution in NCS can be understood 

from several aspects: 

 

 

2.1.1   NCS in geographically distributed systems 

 

Firstly, the distributed nature of any NCS can be referred to as a physical distribution.  

In this context, the whole process is distributed over a geographical region and either 

centralized or decentralized control architectures may be implemented [101]. 

 

Large-scale systems based their control schemes on either decentralized or centralized 

control.  The scheme used will mostly depend on communications availability. In 

some applications the complexity of a centralized scheme makes itself less attractive, 

however decentralized scheme implementations also cause performance degradation.  

A quasi-decentralized scheme offers significant improvement in the trade-off between 
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performance and distribution.  A quasi-decentralized application increases 

implementation costs because some signals are transferred between local subsystems 

[101]. 

 

With the use of inexpensive communication networks within NCS schemes, control 

and process information are conveyed all over the system. Former communication 

limitations, due to individual wiring, can be completely removed on either a 

centralized or quasi-decentralized scheme.  Hence NCS schemes allow distributed 

subsystems being integrated into a large system.     

 

 

2.1.2   NCS with Sensor Networks 

 

The use of Sensor Networks Systems (SNS) in a closed-loop system is considered as 

NCS where the sensors are physically distributed and the network has been enhanced 

for data traffic purposes [77].  Individual sensors allow limited capabilities.  

Nonetheless, sensor networks accomplish local cooperation, aggregation and data 

processing [99]. 

 

Sensors are easily added when needed (ad-hoc network).  The information deployed 

by the sensors can be transmitted between them and fused before it reaches the 

controller [77].  SNS are a combined solution of the communications problem and the 

control problem.  Effective congestion management, bandwidth allocation, queuing 

and network partitioning can be solved with the implementation of novel protocols for 

real-time systems and data processing; and consequently, any control methodology 

can be implemented.  

 

Fig. 2.1, as presented in [77], represents a NCS with wireless ad-hoc sensor networks.  

S-blocks represent ad-hoc wireless sensors.  A-blocks represent the actuators, C-

blocks represent the controller and F-blocks are filters where both data fusion and 

information processing is made.   
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Fig. 2.1  Sensors, controllers and actuators in an ad-hoc wireless network 

 

Even with reliable communication networks, network-delays are inevitable but can be 

modelled as time-varying delays.  It is convenient to consider these delays into the 

system model by using either deterministic or stochastic models [23]. 

 

 

2.1.3   NCS in locally distributed systems 

 

Networking Control Systems can easily be implemented using multi-level distributed 

control schemes. Common applications of locally distributed systems are vehicle 

control systems.  The distribution is limited to a local environment where sensors, 

actuators and a main controller are connected to a Control Area Network CAN-type 

bus [101]. Multirate asynchronous sampling loops make the system multi-level and 

distributed.  Nonetheless, a centralized control scheme is expected.  
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2.2   General Structure in NCS 

 

NCS can be considered as the integration between Distributed Control, Sensor 

Networks and Communication Networks.  NCS provides industrial solutions that fall 

into the features of both centralized and decentralized control schemes as presented in 

Fig. 2.2.  The more information of the overall system, the more NCS resembles a 

centralized scheme and vice versa.  Stability will depend on local stability (each loop) 

and global stability (overall system). 

   

 

Fig. 2.2  NCS Features 

  

Components distribution divides NCS into direct structures, hierarchical structures, 

and application-oriented structures (structures that depend on the application).  

 

 

2.2.1   Direct structure 

 

Any NCS expressed as a direct structure is composed of controllers remotely located 

from the plant, Fig. 2.3. The network is used to transmit both sensor measurements 

and control signals as independent packets.  Receiver and transmitter queues appear 

due to buffer contentions.  Single-input single-output (SISO) NCS can be easily 

implemented within this structure.  A particular application of direct structures is the 

use of remote control on DC motors [101]. 
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A variation of the direct structure is presented in Fig. 2.4 [77].  In this scheme the 

controllers are implemented locally (actuators and controllers are inside the process) 

and the sensors are physically distributed.  This structure is suitable to implement 

wireless sensor networks for environmental monitoring and plant automation where 

wiring is almost impossible.    

   

Fig. 2.3  NCS Direct Structure 

 

 

 

 

Fig. 2.4  NCS Direct Structure with local 

controller 

 

 

 

2.2.2   Hierarchical structure 

 

NCS in a hierarchical structure can be implemented as a two-layer scheme [101].  

Local controllers guarantee the stability of simple processes and a main controller 

connected through a network can be used as a parameter optimization controller, 

adaptive controller or coordination manager controller. Further more Fault detection 

can be implemented. This structure is presented in Fig. 2.5 

 

 

Fig. 2.5  NCS Hierarchical Structure 

 

Fig. 2.6  NCS Hierarchical 

Structure with an industrial network 
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Most of the industrial applications can be considered as hierarchical including 

networked SCADA systems.  On the other side, some authors use this structure for 

mobile robots and teleoperation [90]. 

 

Industrial applications incorporate local controllers connected through a field 

industrial network [101] in the low level.  In the high level or supervisory level, 

computers coordinate low-level control actions. Supervisory levels can be 

implemented remotely using a Local Area Networks (LAN), Wide Area Networks 

(WAN) or the Internet [101].  The structure is presented in Fig. 2.6. 

 

 

2.3   Network Constraints 

 

In any network, there is an effective bandwidth for transmission purposes.  This 

bandwidth is defined as the maximum amount of meaningful data of a certain size in 

bytes (packets) that can be transmitted per unit of time [53].  The utilization of this 

bandwidth depends on the packet size, the nodes requirements such as sampling times 

and synchronized operations, and the MAC sublayer protocol that controls the 

transmission of the information [53].  In control applications the number of nodes that 

share the network can vary. The network can be dedicated (only for control purposes) 

or shared (as in remote control applications over the Internet), and more importantly, 

the role of the protocols in the way the nodes are transmitting will affect the 

achievement of time-critical requirements.  Here, nodes represent the control 

components as well as other unrelated nodes. 

 

All these factors are responsible for transmission delays. Once the nodes are 

transmitting, the MAC protocol is responsible for resolving contention in the network.  

Not all the network traffic is due to successful transmissions; the type of data 

transmitted across the bus architecture is a countless number of small packets [53].  

Thus, collisions are usual among nodes attempting to transmit; and the way the MAC 

solves these collisions adds either a random or deterministic time-varying delay. 
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2.3.1   Network-Induced delay 

 

In NCS, there exists a transmission delay in each channel.  This delay affects the 

performance of the system by pushing closed-loop stability conditions within the 

boundaries of the network stability. 

 

For control purposes, the delay has to be bounded.  A practical assumption is to define 

this delay as a scalar nonnegative time-varying function of time  k
t  on the sampling 

interval   , 1
k

t kh k h   [32], with h  being a constant sampling time.   k
t  is 

commonly discrete and varying  k , which makes it different from the well-known 

plant pure delay and computational delay [101].   

 

 k  appears in every single control component, attempting to transmit information 

(output measurements or control signals), independently.  Thus  k  also represents 

the total time delay to transmit data from the source node to the destination node in a 

sampling interval and can be expressed as three components: the time at the source 

node, at the network channel and at the destination node [101].  

 

At the source node, the delay time consists of computation time and waiting time. 

Waiting time is critical in network traffic.  This consists of the time a message waits 

queuing in the buffer (queuing time queueT ) and the time a message waits once the 

node is ready to sent it (blocking time blockT ).    

 

At the network channel, the time delay is a combination of the transmission delay and 

the propagation delay.  This delay depends on message size, data rate and length of 

the network cable [53].  Once the data has reached the destination node, there is a 

delay due to decoding and computation processes.   

 

The delays at the network channel and at the destination channel can be calculated 

based on the network specifications and represent min .  However, the delay at the 
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source node, and more specifically the delay due to waiting time is difficult to analyze 

and is the responsible for the time varying nature of the network [53].  

 

 

2.3.1.1   Varying nature of the delay 

 

The time a message has to wait before it is sent across the communication network 

depends on collisions, contention and transmission mechanisms.  It varies from 

network to network and is difficult to determine.  Waiting time depends on the 

blocking time and periodicity of the messages.  Blocking time is the time a packet 

must wait once a node is ready to send it, thus it is protocol-dependent [53] and 

depends the way protocols manage transmissions and collisions.   

In some cases non-standard protocols can be used to discard old messages and set the 

queuing time to zero. Some authors have exploited this possibility by designing 

control-oriented protocols such as TOD (try-once-discard) [41] and other dynamic 

bandwidth allocation methods.   

 

The way each node accesses the communication network can be random or 

prioritized.  For Ethernet-based networks, the node that wants to transmit listens to the 

communication network and transmits once the network is idle.  In case of collision, 

the transmitting node stops transmitting and waits jT  units of time to retransmit.  This 

random time is determined by a Binary Exponential Back-Off algorithm where jT  is 

taken from the following distribution: 

 

 

0, 2 1 0 10

11 160,1023

j

j

j
T

j

    
 

 

 

(2. 1) 

After 16 attempts, the node stops transmitting and a failure report is sent.  Hence the 

blocking time has a probabilistic behaviour [39].  The collision mechanism is shown 

in Fig. 2.7 as presented in [40]: 
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kh  1k h  2k h

 

Fig. 2.7  Collision mechanisms in Ethernet Communication network 

 

and can be calculated as follows: 

   
1

j

block i resid

i

E T E T T


   
(2. 2) 

.E  is the expectated value of the time and residT   denotes residual time that is seen 

by a node until the network is idle. 

 

2.3.1.2   Delay distribution 

 

Under heavy traffic load, the time-varying nature of the delay can hardly be 

deterministic [101].  Network traffic can be formulated as a probabilistic process 

where the distribution associates the probability that a particular delay happens.  One 

statistical model of the delay was presented by Mukherjee [69] as a Weibull 

distribution.  However, delay distribution implies delays between consecutive packets 

no correlated and also independent of the network utilization [77].  Correlation 

between packets was used by Nilsson [72] with a Markov chain of several delay 

distributions.   

 

If the applications are extended to Internet, traffic load is Poisson-like [69].   Being 

 kt  a random variable and equal to: 

  mink blockt T    (2. 3) 



Chapter 2  Networked Control Systems 

  23 

Mukherjee [69] proposed that the delay resembles a gamma density function.  If 

 kt  is random variable and min  be a constant, then   minkt   is approximately 

gamma distributed or resembles a gamma distribution function. 

 

Proof.  Let jT  be a gamma distributed random variable with density function given 

by: 

 
 

 

1
j

s T

j

s j

T e
f T

s

 




 

 

(2. 4) 

  1

0

s ts t e dt


     
(2. 5) 

 

with m  being the scale and s  the shape of the distribution.  Using the Continuous 

Distribution Function (CDF) of jT  as follows: 
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(2. 6) 

 

and      Pr Prj j jmT c t mT c m T t              , then: 
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(2. 7) 

 

where  , ,s m X x
f  is the pdf of the network induced-delay shifted by a minimum constant 

delay min .   s  is the gamma function with s  being the shape parameter and m  

representing the number of transition points from the source to the destination or 

hops.  The peak in the pdf is the most probable delay and can be used for controller 

design.  
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Fig. 2. 8  Distribution of the network delay for Ethernet 

It is possible to use average delay, but for Ethernet the most probable delay may not 

always be the average. 

 

 

2.3.2   Packet loss 

 

As it is mentioned by Chang [19], packet loss is present in any communication 

network. The increase on network congestion due to limited buffer size, timeouts and 

collisions can be correlated to packet loss and vice versa.  However, as stated by 

Mukherjee [69] a significant portion of packet losses can be associated to other 

transmission errors.  Thus packet loss requires individual study.  Some studies about 

the performance of NCS due to packet loss were focused in [59], [63], [83], [57] and 

[89].  Special attention of stability analysis is considered in the latter in either 

presence or absence of packet loss. 

 

Packet loss can be defined as follows:   :kt   .  The effect of infinite delays can be 

seen as the lack of information arrivals.  However, this definition does not state 

anything about the sampling time.  Assuming that the delay is bounded by a known 

value max  hence, it can be stated that a packet is being dropped if   maxkt  . 

 

Loss of information arrivals, for control purposes can be studied as minimum 

transmission rates to allow successful arrivals [107] or adding packet dropout 



Chapter 2  Networked Control Systems 

  25 

indicators  k  with known probability [59] and [86]. In other words, the stochastic 

process   k  can be stated as a Bernoulli process with   0P k      when the 

transmission fails and   1 1P k      , otherwise.    is a known packet dropping 

rate.  Any of the above assumptions represent a system model that can be seen 

intermittently [59], and allows the system to be represented as Asynchronous 

Dynamical Systems (ADS) [107].  

 

 

2.3.3   Additional Constraints  

 

The increase in data traffic drives the network bandwidth to its capacity limits. At the 

same time, the way the information is packed depends on quantization and 

encoding/decoding techniques. 

 

A channel with optimal encoding/decoding and maximum available bit rate is a 

common assumption for control purposes [36].  Nonetheless, when issues like channel 

capacity, quantization errors and encoding/decoding techniques are modelled, 

complicated nonlinear analysis and possible limited sampling times are expected [22]. 

 

In [71] and [88], the effects of having limited communication channels for control 

purposes are explored.  From Shannon's theory, channel capacity is expressed as the 

maximum rate at which the channel can be used to transmit data with an arbitrary 

small probability of error.  

 

This definition can be extended to maximum Shannon’s capacity C  or channel 

capacity with a small probability of error; and Zero error capacity 0C  or channel 

capacity without errors.  For stability purposes C  is too relaxed and 0C  is too 

conservative and unreal.  A new notion of channel capacity is introduced in [83] as 

"Any-time capacity anytimeC ”.  anytimeC  is a good indicator of the channel capacity to 
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maintain system stability with a probability of error that decays at least exponentially 

with delay at a given rate  . 

  0anytime
C C C


   (2. 8) 

 

The constraints of limited channels can be dealt with reducing the number of bits 

transmitted over the channel.  Two approaches can be considered: 

 

Tatikonda [88] stated that communication constraints are meant to limit the 

achievability of the control objective.  This information theoretic approach depends 

on the information available in the encoder, decoder and controller.  For low 

bandwidth channels the observation or information available is limited.  Thus, a 

boundary for stability is directly related to the bit-rate and the communication scheme 

used to transmit the information. 

      

In [15] the concept of "attention" is introduced in the control system to state that 

control laws  u t  with small values of 
u

t




 and 

u

x




 require less frequent update 

and will be more robust due to small changes of data.    x t  are the system states. 

 

Quantized measurements  q y  are measurement approximations based on partial or 

limited information of the states.  As it is stated by Ye et al. [103] and Oppenheim et 

al. [74], once quantization is introduced, the system model requires complicated non-

linear analysis and furthermore, limited information in closed-loop systems leads to 

instability.   

 

In [22], stability of the system is dependent not only on the properties of the system 

but also on the properties of the quantizer.  Thus, the selection of adequate control 

laws based on past quantized measurements is essential.  

 

Quantizers are defined as a piecewise constant function : lq R  with   as a finite 

subset of lR . 

In [21], it is assumed that the quantizer satisfies the following conditions: 
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1) If y M , then  q y y    

2) If y M , then  q y M   

 

where y  represents the output of the quantizer, M  and   are the quantization range 

and the quantization error of q , respectively. 

 

To stabilize the system using quantized feedback measurements, the system input u  

is constrained to be a non anticipative function of the past quantized measurements of 

the state x .  The resulting control strategy uses a quantized measurement of the form: 

 1

kq y   (2. 9) 

 

where 0k   is a function of  time kt  and output y .   

 

The method for choosing 0k   defines the range of the quantizer. Using an event-

based method as proposed in [57].  The quantized signal will be: 

 

 k kg   and  g   is a logarithmic quantizer given by: 

 
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(2. 10) 

 

with 
1

1

g

g

g










, 0 1g  .  The set of quantization levels is chosen as: 

        0 0: , 1, 2,... 0
i i i

g gu u u u i u         .  For implementation purposes, 

finite number of levels has to be considered [21]. 

  

Quantized NCS was presented by Brockett [16] and Elia et al. [24].  Quantization is 

considered useful to design the closed loop system.  The analysis is made for systems 

with countable number of fixed control laws. 
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In [16], asymptotic stability is achieved by keeping the quantizer values fixed, but 

changing quantization parameters as the system evolves.  Quantization sensitivity 

 t  can be increased for unknown initial states until the system can be adequately 

measured, as well as decreased to drive the state to zero. 

 

Thus, the stability of unquantized states can be extended to quantized versions and the 

system will reach stability when   0t   as t  . 

 

2. 4   Information Updates 

 

In practical applications, the control components are distributed and have their own 

processing units and timing functions [53].  Traditional sampling techniques require 

the sampling interval to be constant, and furthermore, as stated in [5], it is possible to 

sample signals if they remain constant between sampling intervals.  Assuming that the 

signal is piecewise constant after a sampler-and-hold device ZOH, the sampled signal 

will be:    f t f hk , with   , 1t kh k h   and 1,2,...k  . 

 

Sharing a common communication network causes control components to be 

inherently asynchronous or extremely difficult to synchronize [53].  The sampling 

time h  between source node and destination node can become variable, leading to 

multirate sampling.   

 

It is important to specify how control components update their transmissions and 

information arrivals.  Control components can be either event-driven or time-driven.  

A time-driven component is a component, which updates its value every sampling 

time h .  On the other hand, in an event-driven component, an event such as variation 

in the input, triggers the element to perform an update.  Event-driven components are 

useful for actuators which use piecewise constant signals.  For control components 

such as controllers and estimators, known sampling times facilitate the calculation of 

network delays as well as missing packets. 
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This framework was initially introduced by Low in [62] to study active queue 

management for feedback Internet congestion control; and lately was adapted by 

Yang in [101] to study NCS.  Control components such as actuators and sensors are 

included into subsystem 1, whereas subsystem 2 contains controllers and possibly 

estimators.  The interaction between communication network and control components 

can be seen in Fig. 2.9: 

u

w v

y

 

Fig. 2.9  NCS general framework 

 

Lets define y  and v  as the control components outputs; and w  and u  as control 

component inputs respectively.  Using h  as time reference, the information 

transmitted by the sensor output y  reaches the controller/estimator input v ,  SC kt  

times delayed or a packet is lost .* . 

 
    

 
max

max*

SC k SC k SC

SC k SC

y hk t t
v hk

t

  

 

  
 



 
 

(2. 11) 

 

On the other hand, the information transmitted by the controller output  w  updates the 

actuator input u   CA kt  times delayed or can be lost.  

 
    

 
max

max*

CA k CA k CA

CA k CA

w hk t t
u hk

t

  

 

  
 



 
 

(2. 12) 

 

 CA kt  is defined within the sampling interval   , 1kt kh k h  .  It is difficult to 

distinguish between packet dropouts and delayed information with long network 
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delays when time-driven components are used.  Event driven components are better 

for that purpose.  The differences on information deployment are shown in  Fig. 2.10. 

   

kh  1k h

SC

CA

 1y k 

 ˆ 1 SCx k  

 1 SCw k  

 1 SC CAu k    

kh  1k h

 1y k 

 ˆ 1 SCx k  

   ˆ1 1 SCw k Kx k    

 1 SC CAu k    

 

Fig. 2.10  Differences of information deployment between time-driven and event-

driven components 

 

In the above figure, an observer is also included in the information update an 

represented by the estimated state x̂ .    

 

Based in Fig. 2.10, the NCS problem can be analyzed via two separated sides, the 

system side represented by subsystem 1 and control side represented by subsystem 2. 

Actuators and sensors are considered inside subsystem 1.   Subsystem1 represents 

either a distributed plant to be controlled with sensors and actuators or a controlled 

plant with local controllers.  For simplicity the plant is assumed to be linear and time 

invariant (LTI), however the type of system will depend on the application.  A 

continuous LTI subsystem 1 can be expressed as 

     p px t a x t b u t   (2. 13) 

   py t c x t  (2. 14) 

                                                      t R  
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here,   uN
u t R  are the system input signals,   yN

y t R  are the outputs and 

  xN
x t R  are the states of the system. pa , pb  and pc  are plant matrices of 

compatible dimensions.  If subsystem 1 represents a plant to be controlled, a 

continuous model is suitable. For plants with local controllers, a discrete subsystem 1 

that represent the plant and the controllers, may be more convenient to represent plant 

and control components. In this way the discrete nature of the network can be easily 

added. 

 

Subsystem 1 expressed as discrete system is as follows: 

     1 p px k A x k B u k    (2. 15) 

   py k C x k  (2. 16) 

with 

                                                     e pa h

pA   

and 

                                            1

0

e ep p

h
a h a s

p pB b ds


   

 

where   yN
y k R ,   uN

u k R ,   xN
x k R  and all the system matrices pA , pB , pC  

are of compatible dimensions.  The discrete form is obtained at discrete time instants 

  , 1t kh k h  , where h  represents the sampling time and for convenience of 

notation is being omitted on the equations.  It is assumed that h  is constant, for all 

sensors to facilitate the implementation of SISO systems and Multiple-Inputs 

Multiple-Outputs MIMO systems. 

ih h  (2. 17) 

                                                   1,2,..., yi N  

 

This assumption does not include the varying sampling time of the scheduling 

methodology and furthermore, it is not suitable for distributed systems with multiple 

sampling intervals.  A complete definition of h  can be derived as follows: 

,i kh g h   (2. 18) 
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1,2, ,

1,2,

y

g

i N

k







N

 

and leads to asynchronous systems.   

 

 

2. 5   Conclusions 

 

NCS can be considered as the integration between Distributed Control, Sensor 

Networks and Communication Networks.  A composite constraints model that 

includes physical dynamics, software oriented dynamics and transmission capacity 

leads to complex nonlinear models.  Nonetheless, these network constraints can also 

be defined as a variable but bounded time delay.  There is only empirical evidence of 

the correlation between packet loss and transmission delays, thus the study of packet 

loss still requires individual study.  The definition of packet loss presented here can be 

sufficient for time-driven components.  The resulting constrained signals (due to 

packet loss and network delays) can be fed into a system model to obtain a NCS 

model.   

 

A general NCS model can be characterized by time-varying inputs/outputs, 

asynchronized transmissions and ad-hoc components distribution.  If aspects as 

channel capacities and quantization are included, the NCS problem falls into a 

communications theory analysis.  This type of analysis is beyond the limits of this 

thesis and will not be considered.     



 

 

Chapter 3 

 

Networked Control Systems Modelling 

 

This chapter is a state of the art review of the different control methodologies 

employed for NCS in conjunction with the information structure (connectivity and 

capacity) of the network.  Network constraints such as: network delays and packet 

dropouts are difficult to model.  Longer delays than the sampling time, also introduce 

missequencing (packet arrivals out of order) and variable sampling intervals, making 

the modelling process more complex.  These constraints can be presented within a 

general formulation of a continuous LTI system with delayed output measurements 

and delayed control inputs.  Different model transformations and discretization 

methods allow the modelling of NCS to be expressed in different forms such as: 

continuous perturbation, hybrid, augmented discrete and discrete with parametric 

delays.  These models are presented in section 3.1 to emphasize the need of a trade-

off between computational burden and system dimensions.  A NCS solution is 

network-dependent.  The NCS problem can be divided into two categories: NCS for 

accurate communications and NCS for system analysis and design.  Different ways to 

exploit network resources with existing control methodologies are presented in 

section 3.2 to show their adaptability against variable network constraints.         

 

NCS can be modelled as a combination of system dynamics and network dynamics.  

Network dynamics are a direct consequence of the finite capabilities of information 

processing among various parts of the system [65].  A simple assumption as presented 

in equations (2. 13) and (2. 14) can be combined with LTI systems.  Some of the 

network constraints such as bandwidth allocation are not addressed in this formulation 
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because they are protocol-dependent. Others such as Quantization and sampling 

devices models can be included in the discrete formulation of the problem.  

 

Open loop NCS resembles time-delay systems (TDS) with undelayed states or 

retarded systems.  Retarded systems can be modelled by a class of equations called 

Functional Differential Equations (FDE) [81].  These equations are different from the 

well-known Ordinary Differential Equations (ODE) because the state is function of a 

deviated time argument tx  corresponding to the past interval  ,t t .  Delayed states 

can appear over closed loop NCS problems.  Feedback delays are sometimes useful to 

stabilize control systems.  A convenient model transformation can lead to perturbation 

models from the open loop NCS.   

 

 

3.1   NCS modelling for network delays and LTI 

systems 

 

In practice, many physical, industrial and engineering systems are interfaced through 

communication networks and consequently their control inputs are affected by the 

network constraints. LTI systems are not common in industry but facilitate the 

analysis of NCS as TDS.  A general formulation of a TDS is presented by Richard 

[81] as follows:   

   1
, , , , ,i i i j j jTDS

a b c g h n   (3. 1) 

             
0 1 j

k r t

i i i i j j
t

i j

x t a x t bu t g x h u d


      


 

             
 

(3. 2) 

       
0 1 j

k r t

i i j
t

i j

y t c x t n x d


   


 

     
 

(3. 3) 

 

where , ,i i ja c g  and jn corresponding to the system state dynamics; ib  and jh  the 

system input dynamics.    xN
x t R  are the system states.  The inputs   uN

u t R  are 

delayed by the network and the sum of integrals represents distributed network 
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delays.  Delayed states appear on closed loop NCS.  The delay   is assumed to be 

constant and is chosen as:  , ,max , ,i j l i j l    . For 0 0   and 0a  represents open 

loop delay independent system dynamics.    yN
y t R  are the system outputs. 

 

In many real systems, the distributed effects can be replaced by a sum of discrete 

ones: 

   
1j

dt

j i j
t

i

i i
h u d h u t

d d d

  
   




   
    

   
  

 

(3. 4) 

 

with i  and d as constants. 

 

Due to this simplification, many authors investigate the particular case of discrete-

delay systems [81]: 

   1
, ,i i iTDS

a b c   (3. 5) 

     
0

k

i i i i

i

x t a x t bu t 


       
 

(3. 6) 

   
0

k

i i

i

y t c x t 


   
 

(3. 7) 

                                           0 1 1... k k        

 

The above system matches almost all the models presented in the literature of NCS.  

Furthermore, the delays can also incorporate sensors and actuators delays.   

 

 

3.1.1  Model transformation 

 

Let’s rewrite equation  

(3. 6) as open loop NCS with no delayed states and single input delay as follows: 

      p p kx t a x t b u t t    (3. 8) 
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where sensor-to-controller ,SC k  and controller-to-actuator ,CA k  delays are lumped 

together as   , ,k SC k CA kt     and is time-varying.   The resulting system with input 

delay can be transformed to a simpler model.  Model transformation is usually 

associated with stability analysis; there exist several model transformations as 

presented in [81].  Two model transformations are particularly used in NCS, namely 

the Arstein model reduction and the disturbance model transformation. Both 

transformations make the implementation of classic state feedback control 

straightforward. 

 

The so-called Arstein model reduction is a predictor-like technique that allows the 

formulation of delayed systems as delay-free systems with the delays on the system 

parameters.  This formulation is used by Kim et al. [48] to formulate a dynamic 

controller.  The transformation is defined as follows:  given a system as expressed in 

equation (3. 8), a new variable can be defined such that: 

        
 

p k

k

t a t s t

p
t t

z t x t e b u s ds




  


    

 

(3. 9) 

 

with   R xN
z t  .  Then      , kx t u t t  is admissible for (3. 9)if and only if 

    ,z t u t  is admissible for: 

       p k ka t

p pz t a z t e b u t


   
(3. 10) 

 

Using the model from equation (3. 10), classical state feedback optimal control 

   u t Kz t  can be implemented provided that  ,p pa b  are stabilizable, that so is 

  , p k ka t

p pa e b


.  Using equation (3. 10) the resulting control law contains a 

distributed component as follows: 

        
 

p k

k

t a t s t

p
t t

u t Kx t Ke b u s ds




  


    

 

(3. 11) 

 

and uses previously controlled input stored data. 
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Disturbance models, on the other hand, are a plausible model transformation based on 

the fact that feeding back small delays can improve the stability of a delay-free system 

[44]. 

 Rewriting equation (3. 8) in the following form 

           p p p kx t a b x t b u t t x t      (3. 12) 

 

the term      p kb u t t x t   can be considered as the disturbance of the system to 

be reduced such that equation (3. 12) is stable. 

 

This transformation is proposed by Montestruque et al. [68] as a model-based method 

in Fig. 3.1  This method is used to treat network constraints as an error between actual 

plant states  x t  and the estimated states  x̂ t  presented as a reference model.  ,m ma b  

correspond to the reference model matrices of compatible dimensions. 

     p px t a x t b u t 

     ˆ ˆ
m mx t a x t b u t 

K

S

 

Fig. 3.1  Model-based NCS 

 

K  is the controller gain.  State feedback control is implemented based on the 

reference model.  The network is sampled at a fixed-rate, thus periodic transmissions 

are used to reduce communication bandwidth requirements.  The disturbance is 

defined as the error between the real system and the reference model 

     ˆe t x t x t  .     

The dynamics of the model from Fig. 3.1 are given by: 
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 

       
 

 

p p p

p m m p m m p

a b K b Kx t x t

e t a a b b K a b b K e t

    
     

         

 
 

(3. 13) 

 

 

 
 ˆ

0

k k

k

x t x t

e t

   
   
  

 
(3. 14) 

 

with 
 

 
2 xk N

k

x t

e t

 
 

 
R .  The update time ks  in the model is defined as: k kh h khs t t  .  

This updating time is not constant and can acquire a certain value according to a 

probability distribution function of the network delay.   

 

Beldiman et al. [11] addresses this modelling methodology for nonlinear systems.  

The dynamics with   xN
x t R  and   uN

u t R , are presented as follows: 

     , ,px t f x t u t t     (3. 15) 

    ,py t g x t t     (3. 16) 

 

The controller is described as follows: 

     , ,cz t f z t w t t     (3. 17) 

    ,cv t g z t t     (3. 18) 

 

here  w t  is the input of the controller and represents the most recently transmitted 

value from the system output  y t .  In presence of delays, there is an error between 

both values.  This error is defined as network induced delay      e t y t w t  .  If 

 pg   is continuously differentiable [11] between too successive transmission times, a 

closed loop system can be obtained from equations (3. 15) to (3. 18) as follows: 

     , ,cl cl clx t f x t e t t     (3. 19) 

     , ,cl cle t g x t e t t     (3. 20) 
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At each transition time,  e t  has a discontinuous jump that needs to be set to zero.  

The perturbation can be defined as vanishing and is assumed to be a class C' function 

[11]. Two cases can be established: 

 

1) Bounded vanishing perturbation.  For a fast enough networks if the NCS state 

is bounded to E  during p  successive transmissions, then it will stay bounded 

afterwards.   E  is the worst case bounds.  The perturbation is: 

 e t E  (3. 21) 

 

2) Vanishing perturbation.  The asymptotic stability of the perturbed NCS will 

depend of reaching certain conditions of a factor   affecting the state. 

   e t x t  (3. 22) 

 

The resulting model incorporates the network delay implicitly.  When network 

constraints are incorporated into the system model explicitly, the network delay is 

discrete.   

 

 

3.1.2   Model Discretization 

 

As stated by Åström an Wittenmark [5], it is simple to sample systems with delays 

when the control signal remains constant between sampling intervals.  The resulting 

sampled-data system is finite dimensional.  If the control computation time is 

insignificant, sensor-to-controller delay as presented in equation (2. 14) can be 

lumped together with the controller-to-actuator delay as in equation (3. 8).  Thus the 

control input is delayed and depending on the information arrivals the input value can 

be switched every time a packet has arrived.  These events introduce discrete 

dynamics (from the control loop) into the continuous system [36]; and leading to a 

class of hybrid systems with fixed instants of impulse effects [107].  
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A hybrid NCS can be achieved under the following assumptions: plant outputs are 

sampled periodically with time-driven sensors; and controllers and actuators are 

event-driven.  Equation (3. 8) can then be defined as follows: 

     ˆ
p px t a x t b Kx t   (3. 23) 

  , 1k kt kh k h       

   ˆ
kx t x t     (3. 24) 

 , 0,1,2,...kt kh k     

 

The state   xN

kx t  R  in terms of  x t  and  x̂ t  is: 

       ˆp k p ka a

k k px t e x t b x te J K
 

 
 

    (3. 25) 

 

where 
( )

( )p

k

t
a h s

p k p

t

e b ds J b



 



 . 

 

If p ka
e


 and  p ka

k pbe J K





, and also discretizing equation (3. 23) at sampling time 

h , the eigenvalues of the NCS hybrid system H   will be: 

 

   
( )

p

p k p k

a h

p

a h a

k p

e J h b K
H

e e J h J b K
 


  

 
 

     

 

 

(3. 26) 

 

Stability of this type of system is reduced to evaluating the Shur-ness (e.i. wether all 

the eigenvalues of the matrix H  have magnitude less than one) [107].  Stability 

triangle can be used to explicitly calculate the relation between k  and h .   

 

Hoyakem et al. [35] present a novel modelling method to obtain an LTI sampled-data 

model, where the variable network delay is introduced as a constant into the model 

[35].  The network is modelled as a variable-rate ideal sampler hkS  between the plant 

and the controller, and the zero-order hold hkH  between the controller and the plant as 

shown in Fig. 3.2 
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khS
khH

 y t

 w k  v k

 u t

 eu t  cy t

 

Fig. 3.2  Sampled-data model approach 

 

If subsystem 1S  is a LTI system with exogenous inputs   ueN

eu t R  and controlled 

inputs   uN
u t R , the state-space model is as follows: 

       1 2p p e px t a x t b u t b u t    (3. 27) 

       1 11 12c p p e py t c x t d u t d u t    (3. 28) 

   2py t c x t  (3. 29) 

 

  xN
x t R .  ycN

cy R  is the controlled outputs and   yN
y t R  is the measurable 

outputs.  pa , 1pb , 2pb , 1pc , 11pd , 12pd , 2pc  are matrices of compatible dimensions. 

 

For convenience, the system can be expressed as follow: 

   

   

1 2
1 11 1 12

1 1 11 12

1 21 1 22

2 0 0

p p p

p p p

p

a b b
S S

S c d d
S S

c

 
  

      
   
 

 

 

(3. 30) 

 

21pd  and 22pd  are set to zero to assure continuity in the measured output.  Variable 

delays can be incorporated into an augmented state-space model.  Thus the resulting 

model contains constant delays.  This method is called lifting.  The lifting operators 

k
L  accommodate the output measurements  cy t  into a new augmented variable cy  

equals to k -times that of  cy t  [35] (hence the term lifting).  This is presented in 

Fig. 3.3.     
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Fig. 3.3  Reconfigured sampled-data model 

 

Lifted subsystem 1S  can be expressed as follows: 

1

1 1

0 0

0 0
k k

k k

L L
S S

S H

 

 

   
       
   

 
(3. 31) 
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where  kL   and  1

kL   are the lifting operators and the variable sampling time is: 

1k k kt t   .  The mathematical transformations are as follows: 

 

 1 11
S  relates the exogenous input ( )eu t  with the controlled output ( )cy t . To obtain 

 1 11
S , the linear operators are given by: 

e p ka

pA


  (3. 32) 

   1 1

0

e
k

p ka s

p e p eB u b u s ds


 

   
 

(3. 33) 

  1 1 e pa t

p pC x t c x  (3. 34) 

        11 11 1 1

0

e p

t
a t s

p e p e p p eD u t d u t c b u s ds
 

    
 

(3. 35) 
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 1 12
S  relates the controlled input ( )u t  with the controlled output ( )cy t .   1 12

S  is 

obtained using the following transformations: 

2 2

0

e
k

pa s

p pB ds b



   
 

(3. 36) 

  12 12 1 2

0

e p

t
a s

p p p pD u t d u c ds b u    
 

(3. 37) 

 

To obtain 
 1 21

S  and 
 1 22

S  the transformations presented on equations (3. 32)- 

(3. 37) are used respectively.  Furthermore the system dimensions are extended to 

  R x LN N
x k


 , with LN  being the lifting operator dimensions. 

 

To obtain a time reference, event-driven components can be replaced for time-driven 

components.  Time-driven components offer a time reference that can be used to 

calculate the network delays if the network allows the transmission of time-stamped 

packets. Discretization can be done using this known delay value by augmenting the 

discrete state-space model as follows: 

     ' '

1 0 1, , , , ,d p p k p k pA h B h B h C   
 

 (3. 38) 

             ' '

0 1, ,p p k k p k kx kh h A h x kh B h u kh h B h u kh h h           (3. 39) 

 

where '

k k kh    , '0 k h  , 0k  a positive integer; and: 

e pa h

pA   (3. 40) 

 
'

'
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0

e e
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p k p
a h a s

p pB dsb


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(3. 41) 

'

0

0

e
k

p

h

a s

p pB dsb



   
 

(3. 42) 

 

The above sampled-data system is time varying in piB , 0,1i  .  For constant 

sampling intervals the state-space augmented model is as follows: 
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             

 

(3. 43) 

 

The states of equation (3. 43) are 
 1x k uN N 

R .  Variable network delays can be 

incorporated but with a considerable increase in computational burden. 

 

The transformations presented in equation (3. 9) and (3. 10) can be used to reduce the 

resulting system dimensions from equation (3. 43).  The delay-free discrete model can 

be expressed as follows: 

     1 k

p p pz k A z k A B u k


    (3. 44) 

 

if and only if   R xN
z k   is a solution of the equation (3. 43) and is defined as 

follows: 

       
1

1k

k

i

p p

i

z k x k A B u k i





  



      

(3. 45) 

 

Discretization models presented in equations (3. 23) to (3. 45) assume periodic 

sampling times. Some works in non-identical sampling periods are reported by Liou 

et al. [58].  If network dynamics such as bandwidth allocation or scheduling protocols 

are included, the sampling time becomes variable [92].  Thus the resulting sampled-

data time varying system depends on the network-induced delay k  as well as the 

varying sampling time kh  as follows.  

     ' '

1 0 1, , , , ,d p k p k k p k k pA h B h B h C   
 

 (3. 46) 

 

Varying sampling intervals can be formulated as multirate systems for known values 

[17].  They can also be used to reduce the influence of packet lost onto the stability of 

the overall system.  This approach will be exploited on chapter 6 for multi-loop NCS. 
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Some of the above models increase the system dimensions and consequently the 

computational burden on the control calculation.  System dimensions can increase 

infinitely leading to complex solutions or no solutions. Network resources makes 

delays bounded and consequently the control methodologies have to take the network 

capacities into account.        

 

 

3.2   Control Strategies for NCS 

 

Provided the NCS system is controllable and observable, some specific control law 

can be used to regulate the system outputs and compensate the network constraints.  

These approaches are described by Yang [101] as analytically-oriented for system 

analysis and design. 

 

 

3.2.1   NCS for system analysis and design 

 

Almost all the literature in NCS is referred to stability analysis.  Regardless of the 

method used, sufficient conditions are found to stabilize the NCS either for packet 

dropouts, network delays, and bandwidth allocation; or quantization constraints.  

 

System stability will decrease as long as the delay grows. Finite communication 

channels introduce a maximum network delay before the packets are lost and the 

system goes from closed loop to open loop.  This value will depend on the network 

traffic.  Network traffic is not always constant and adds the time-varying nature to the 

delay.  This characteristic makes the robustness of the system varying in an 

intermittent or oscillatory way.   

 

Less conservative stability analysis such as practical stability can be a useful solution.  

In practical stability even instability may be good enough when the system oscillates 
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sufficiently near the state so that its performance is considered acceptable [50].  This 

concept of stability is weak but applicable because the worse delay is not always 

reachable.  Brockett et al. [16] presents a containability concept derived from practical 

stability over memoryless feedback law.      

 

More conservative stability analyses are presented as LMI.  Here, the worse network 

delay is defined as an upper bound and sufficient conditions can be derived to 

stabilize the system [42].  Lyapunov stability can be extended to time delay systems.  

The analysis still requires the construction of a Lyapunov function to quantify the 

deviation of the state from the trivial solution [44].  The construction depends on the 

deviated time argument tx  that leads to a Lyapunov functional  , tV t x .  This 

functional is called the Lyapunov-Krasovskii functional.  This method is presented in 

[21] and [52] and can be used for delay independent stability or delay dependent 

stability for distributed delays.       

 

When the model leads to jump systems, stochastic stability is analyzed as almost sure 

stability, [71] and [72].  A sufficient but not necessary stability test is used by Velasco 

[92] to avoid the complexity of LMIs.  Using interval algebra, network delay and 

sampling time are transformed into intervals bounded by extreme real values. The 

resulting interval system is generic and wraps or contains the original NCS model.  

The test shows that the stability of a wrapping system implies the stability of any of 

the systems that it includes. 

 

Controller design is based on either accurate models on any of the network 

constraints; or the network information availability.  The delay dependency of the 

network is expected to be compensated with delay-dependent controllers of the form: 

 tu g x .  However, not only point-wise delayed control law:    , ku g x t x t      

can be used, but also the classical state-feedback control law  u g x t     and 

structured controllers.  Structured controllers, more especially PID controllers have 

been treated either as optimal [77] and [28] or adaptive with parameter configuration 

[26].   
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Network capabilities and information availability characterize the type of control 

methodology to be used.  For control design, performance of the system depends on 

the network as well as the controllers.  Additionally, not all networks allow packet 

time-stamping and acknowledgement messages, hence the development of better 

protocols to increase Quality of Service (QoS) is inevitable for systems with 

inefficient communications capabilities [36].  Yang [101] considers this strategy as a 

problem of network architecture, protocol formulation and scheduling strategy or 

NCS for accurate communication networks. 

 

 

3.2.2   NCS for accurate communication networks 

 

Many industrial protocols have been developed and tested within NCS architectures.  

They have been specifically developed for real-time applications and have a 

deterministic behaviour, assuring bounded delays.  Some of the most known protocols 

are CAN for automotive and industrial automation, BACnet for building automation 

and Fieldbus for process control [101].     

 

The trade-off between transmission rates and protocols constitutes a main limitation 

in NCS.   Due to the popularity of commercial networks, the incorporation of 

Ethernet-based networks has to be addressed.  Ethernet for industrial applications 

represents a disadvantage.  Its non-deterministic behaviour is inadequate for real-time 

applications.  The use of faster networks such as switching Ethernet represents an 

alternative solution for real-time control problems [96].  Networks like EtherCAT, 

EPL and Profinet presented in [41] and [3] reduce transmission problems by 

performing the communication functions in hardware, so that reaching high speed 

transmission rates.  

 

To provide a more efficient use of network resources, Ethernet and wireless networks 

protocols are improved in [103] and [96].  Some applications are also extended over 

WAN networks and Internet applications [60.   
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On Internet applications the traffic is bursty [69].  Uneven pattern of data transmission 

makes queuing packets random.  Delay compensation using hardware is possible by 

increasing the buffer size and determining the queue length for compensation 

purposes.  Fig. 3.4 represents a NCS scheme with known network capabilities. 

     

 y k u k

 w k  v k

 

Fig. 3.4  NCS scheme with known network capabilities 

 

Additional compensation approaches such as: network utilization improvement or 

QoS acknowledgement are also possible.  The sampling time of the system can be 

incorporated into the protocol algorithm to improve network utilization.  In [33] this 

methodology is called sampling scheduling methodology. 

 

 

3.2.2.1   Sampling time Scheduling Methodology 

 

The objective of this methodology, as presented by Hong [33], is to determine a data 

sampling time, which satisfies performance requirements of the control system.  This 

methodology was originally developed for multiple NCS with periodic delays, but it 

can be modified for random network delays as demonstrated by Hong and Kim [34]. 

 

In [33], each control loop is assumed to be transmitting and receiving data.  For M   

number of NCS, the sampling time of all NCS is calculated from the sampling time of 

the most sensitive NCS.  The calculation is based on frequency domain analysis or 

worse case delay bound. 
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A network utilization algorithm is derived from the ratio of the sampling time. This is 

defined as the fraction of time during which the network medium remains busy for 

data transmissions.  This algorithm is suitable for single-dimensional NCS.  For 

multi-dimensional NCS, the extension of the algorithm is presented in [45] and [46]. 

 

Kim et al. [45], presents stability analysis over a Maximum Allowable Delay Time 

bound (MADT).  Having MIMO systems, a scheduling algorithm that allocates the 

bandwidth of the network is presented.  For a given node, the algorithm determines 

the maximum data sampling period under MADT consideration. 

 

Bandwidth allocation or scheduling methodologies are also treated in [94].  The 

authors introduce an algorithm for network scheduling called Try-Once-Discard 

(TOD). TOD is aimed to solve scheduling problems in protocols with bitwise 

arbitration like CAN.  In TOD, the node with the greatest weighted error from the last 

reported value will win the competition for the network resources.  Once a packet 

losses the arbitration, it is discarded.  Thus network utilization is reduced and data 

traffic depends only on new data.   

 

This methodology can be used in conjunction with the perturbation model presented 

in equations (3. 13)-(3. 14).  The error is determined within a bounded value defined 

as maximum allowable growth in error   over   seconds.  For any time t ,   will 

be: 

   i ie t e t     (3. 47) 

 

The dynamic nature of the error appears because   depends on the internal state of 

the plant and the current nature of the errors.  Furthermore,   represents a deadline 

and depends on the p  number of nodes. Thus the updating time t  is expressed as: 

0t t p  . 

 

Over improved protocols, delays can be assumed to be equal to transmission times 

and propagation times.  If processing times on the controller are insignificant, round 

trip delays can be lumped together and Linear Quadratic Gaussian (LQG) controller 

design can be proposed using a sampled-data model defined as in equation (3. 43).  
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Nilsson [72] restricts the delay to be less than the sampling period so that 

missequencing is avoided.  The resulting control law is point-wise delayed given by:  

   
 

 
,

1

x k
u k L k

u k


 
   

 
 

 

(3. 48) 

 

where  ,L k   is the result of minimizing a standard cost function of the form: 
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u k u k


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   
       

   
  

 

(3. 49) 

 

Padé approximations can also be used to introduce either constant or random delays in 

the system model.  Using a modified Padé approximation method, such as the one 

presented by Göktas [30], the delays can be written as follows: 

 1 1

1
2

s s
e w s

s
 


       



 
(3. 50) 

 

with 1  .  The resulting NCS structure is shown in Fig. 3.5: 
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Fig. 3.5  NCS for Robust methodology 

 

The control problem can be defined as a combination of H  control and  -synthesis.  

Thus system as presented in Fig. 3.5 can be transformed into Fig. 3.1 as follows:  
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Fig. 3. 6  μ-synthesis for NCS 

 

The introduction of μ-synthesis is possible by approximating the delays to 

uncertainties that yields to a proper rational interconnection matrix  M s  and purely 

complex perturbation matrix  s . Matrix  M s  is given by 

 
1

' ' ' '

11 12 22 21M G G K I G K G


    and: 

 

2

' '

11 3 12 3

1 1 1 1

' '

21 22

0 0 0

0 0

1 1

W

G W G G W G

W G W W W G

G G G G

   
   

 
   
        

    

 

 

Necessary conditions for robust performance are provided if   1M s

 .  If network 

performance can be monitored, network utilization can also be introduced in the 

controller design.    This is called the QoS-based methodology. 

 

3.2.2.2   QoS-based methodology 

 

QoS variation during network utilization can be compensated by using an end-user 

control adaptation approach [89].  This methodology involves cooperation with real 
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time QoS negotiation scheme as proposed by Addelzaher et al. [1] and measurements 

through a middleware as proposed in [55].  The network can send at least two QoS 

measurements: point-to-point network throughput 1QoS  and point-to-point maximal 

delay bound of the largest packet 2QoS .  2QoS  can also be derived from 1QoS .  

These measurements limit the end-to-end network application requirements; and to be 

applicable, they are related with the sampling time as follows: 

ph     (3. 51) 

 

The delays   and p  are the transmission delay and processing time delay 

respectively.    is function of 1QoS  and 2QoS , so that a sampling time-dependent 

structured controller such as PID controller can be formulated.  PID controllers are 

widely used in industry.  Their robustness combined with a parameter adaptability 

technique, make them suitable for NCS. 

 

A cost function based on the control parameters can be calculated and stored.   For 

real-time application, analytical techniques for cost function optimization are time 

consuming, thus in [55] a look up table of pre-calculated optimal control parameters is 

used.   

 

Pahjola [77] uses optimization methods such as integral time absolute error (ITAE) 

optimization and gain scheduling to find the best PID controller parameters.  Internal 

model control (IMC) and Ziegler-Nichols methods are presented for comparison 

purposes.  In [28] a PID controller is optimized by using a gradient descent method. 

 

Gain scheduling is used to adapt controllers to time varying parameters and it can also 

be used for time varying delay systems.  In [89], the design of PI controllers with gain 

scheduling based on IP-based traffic is proposed by using network traffic statistical 

parameters such as: mean delay, delay variance, loss rate and other network QoS 

variables. 

 

A simple controller given by     , uu t g y t p    , with uN

up R   being the 

controller parameters and uN R  being a variable gain.  This control law can be 
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tuned externally using gain scheduling approach if a yN
 R  gain can be found such 

that: 

     , ,u t g y t pu g y t pu             (3. 52) 

 

In some cases the relation between   and   is linear. An optimal   based on certain 

objective can be easily obtained.  Nonetheless, for some systems like mobile robots, 

this relation is nonlinear and soft computing techniques are more suitable.  Fuzzy 

logic methodologies are studied in [2], while in [19] external control-parameter 

configuration is based on Genetic algorithms. 

 

In [100] the tuning of PID controllers is achieved using a predictor-based approach.  

This approach is a two layer structure implemented to control nonlinear time-varying 

systems.  The lower layer consists of the system and the PID controller.   The upper 

layer is used to identify systems parameters using a receding horizon window of the 

output measurements  ŷ k j .  At the same time, controller parameters can be 

obtained at any instant.  These calculations are achieved by minimizing a predictive 

control criterion with no constraints.  Additionally if the buffer size is known, random 

delays can be bounded. 

 

 

3.2.2.3   Queuing methodology 

 

Reshaping random delays has been studied in [63] and [18].  Luk and Ray [63] store 

control signals and output measurements in a First-In-First-Out (FIFO) queue and a 

shift register.  The size of the queue is therefore used to construct an augmented 

model of the system based on estimation methodologies.   

 

To compensate network delays on the controller-to-actuator side, predictor-like 

techniques can be applied.  Predictive control for NCS attempts to compensate 

network-induced delays by using N-step ahead bounded control actions [63].  This 

approach is Ethernet-oriented and sends a set of control actions into a single packet.  

Ethernet networks allow long size packets.  Whether a bit or a hundred of bits are 
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sent, the packet uses the same amount of network resources [106].  Thus, the future 

control actions can be sent to the actuator queue for storage.  For known queue size, 

Fig. 3.4 can be modified as in Fig. 3.7. 

 y k u k

 w k 

 v k

 ˆ 1x k   x̂ k 
K





 

Fig. 3.7 Estimation and Control scheme for NCS with known queue sizes 

 

The control signal is forwarded  u k   times,   is the size of the controller-to-

actuator buffer.  Based on the size  , sensor-to-controller delay can also be 

compensated by using an observer.  The resulting states are delayed  ˆ 1x k    

times.  

 

N-step ahead predictions are mostly suitable for NCS applications with delays greater 

than the sampling period such as: remote control or control over Internet.  Liu et al.. 

[63] uses predictive control for NCS with time-driven components.  In [60] this 

approach is extended for event-driven controllers.  To avoid synchronization, the 

network sends time-stamped measurements to the controller, which generates a set of 

all possible future control predictions. At this point, network delay has not been 

entirely compensated.  To entirely compensate the delay, the authors propose the use 

of a network delay compensator on the plant side.  This scheme is presented in       

Fig. 3.8: 
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Fig. 3.8  NCS with predictive network delay compensation 

 

The network delay compensator calculates the round trip time delay based on the 

time-stamped received packets.  This round time delay represents the total network 

delay and is the base for the selection of the future control prediction.  Packet 

dropouts are considered if the delay exceeds the N-steps boundary.  The network 

delay compensator will use the latest control value from the control prediction 

sequences available on the plant side.  These sequences are as follows: 

 

1 1 1 1 1 1 1 1

2 2 2 1 2 2 2 2

1

[ , ,..., ,..., ]

[ , ,..., ,..., ]

[ , ,..., ,..., ]

T T T T T

k j k j k j k j k k j k N j k j

T T T T T

k j k j k j k j k k j k N j k j

T T T T T

k jt k jt k jt k jt k k jt k N jt k jt

u u u u

u u u u

u u u u

        

        

        

 

 

For 
ik ju  , 1,2,...,i t  and j  beign the control horizon, these values are available to be 

used as the control input of the plant at time k .  Thus the output of the network delay 

compensator will be: 

min{ 1, 2,.., }k k k j j jt
u u


  (3. 53) 

 

In [105], a more detailed networked predictive control system NPC is presented as an 

Internet-based control strategy. 

 

To reduce processing time, a network delay compensator can be added on the 

controller side as in Fig. 3.9. 
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Fig. 3.9  Networked Predictive Control 

 

Again the network delay is compensated by choosing the latest transmitted prediction 

sequences available on the actuator or the controller.   

 

A similar control methodology is derived using this network characteristic is called 

Packet-based control.  It was firstly introduced in [105].  Zao [106] extends this 

approach to compensate network delays, packet dropouts and missequencing. The 

scheme used resembles Fig. 3.8 with the implementation of state feedback control 

laws.  The network delay compensator is replaced for a more simple structure called 

Control Action Selector (CAS).  Synchronized operation is expected and the delays 

are considered separately.  The resulting control action is given by: 

     , , , ,,SC k AC k SC k CA ku t K x k        (3. 54) 

 

The controller sends a packet with a set of predicted control actions; the CAS saves 

the latest time stamp sequence and compares times with a sequence already stored. If 

the calculated time of the latest sequence is bigger than the previous one, the sequence 

is applied; otherwise missequencing is assumed and the sequence is discarded. 

 

Packet-based methodology is an accurate method for communication network 

constraints, nonetheless, it is restricted to Ethernet-based and Internet applications.   

Predictor-like and packed-based methodologies are usually combined with estimation 

techniques.  Provided synchronized communications, the network delay in the sensor-

to-controller side can also be compensated [107].  As presented in [20], predictors can 

be used to estimate the plant outputs between two successive transmission times.  
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Beldiman et al. [10] present sufficient conditions for NCS stability with static 

scheduling algorithms when a predictor is introduced in the loop.   

 

The structure of the predictor is chosen based on the speed of the network.  For slow 

networks an open loop predictor is proposed.  The control law to be implemented is: 

   u t Ky t  .  Thus the open loop predictor will be defined as follows: 

     p px t a x t b u t   (3. 55) 

   py t c x t  (3. 56) 

 

with   xN
x t R  the estimated state.  In addition, it is assumed that pc  is invertible to 

define an updating law given by: 

     1 T

i i p i i px t x t c v v c x x     (3. 57) 

 

where i  represents the channel transmitted at transmission time it  and 

 0,...,0,1,0,...,0 yN

iv  R  is a row vector with 1 on the ith position.  

 

For fast networks, all the states can be estimated and closed loop predictors can be 

proposed.  The resulting predictor will be: 

         p px t a x t b u t L y t w t       (3. 58) 

   pw t c x t  (3. 59) 

 

Both structures assure asymptotic stability for a given Maximum Allowable Transfer 

Interval (MATI) that depends on the scheduling algorithm. 

 

Zhang et al. [107] extend these techniques to estimate the state  ,SC kx t   with 

SC h   and to calculate a forward control action.  The resulting control action is 

given by: 

   , ,SC k SC ku k Kx k      (3. 60) 
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with        
,

,,

,

SC k
SC kSC k

k a k sa

SC k
k

x k e x k e bu s ds
 


   

    . 

 

Partial information can also be compensated with estimation techniques. The 

calculation of the estimated state is made in two steps.  Firstly the past estimated state 

is projected forward one step and then it is compensated using the receiving plant 

output.  The estimator is built as follows: 

       ˆ ˆ
e px k x k L y k C x k      (3. 61) 

 

This correction is based on  y k .   x k  is the estimated state and  x̂ k  is the 

projected state.  At time 1k   the resulting projected state will be: 

         ,

,

1 1

,
ˆ 1 SC k

SC k

ka h a k s

SC k
k

x k e x k e bu s ds





    


      

 

(3. 62) 

 

Consequently, it is shown that the separation principle holds for the estimator design 

without loss of stability. 

 

This model can also be used for asynchronized communications.  However the 

observer design may be extended to intermittent methodologies such as intermittent 

Kalman Filtering [86] or estimation techniques with uncertain observation [70].  

Intermittent methodologies are rather information-dependent.   

 

 

3.3   Conclusion 

 

The use of different control methodologies and their applicability to NCS was 

presented in this chapter.  The methodologies for control and estimation show the 

necessity of real-time adaptation to network traffic variation.  These variations appear 

on the controller as unreliable information arrivals, thus information-dependent 

methodologies constitute general solutions for NCS.  It can also be stated that network 

constraints can be approximated into variable but bounded delays.  These delays 
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reduce the observability of the system and the reliability of the information 

transmitted, making estimation necessary.  The estimation of time-delay systems leads 

to models with increased dimensions.  To make a given methodology applicable, 

model transformations are needed to reduce the computational burden.  Finally due to 

the discrete nature of the network delays, the control and estimation methodologies to 

be applied have to be discrete combined with time-driven components.  For event 

driven components, structured controllers can be implemented to improve the system 

performance.  These characteristics are exploited on the forthcoming chapters for 

control and estimation of NCS.                            



 

 

Chapter 4 

 

 

PID Controller design for NCS: a pseudo-

probabilistic approach 

 

This chapter presents a PID controller design methodology for NCS.  The 

methodology incorporates the variability of the network delay using the pdf of the 

delay.  In section 4.1, the closed loop system of LTI-NCS and PID controller is 

determined for systems with delayed inputs.  Section 4.2 shows delay-dependent 

Stabilization of time delayed systems with implicit transformations.  In section 4.3 the 

pdf of the delay is bounded for controller design purposes.  A polytope is determined 

based on a range of delay values that assure good performance.  Worst delay value is 

used just for stability analysis.  A numerical example is presented to test the design 

approach.      

 

 

4.1   Introduction 

 

Most of the literature on PID controllers for NCS has reported the necessity of either 

using parameter optimization [28], [77] and [107]; or adaptive parameter adjustment 

[26] and [56] to achieve desired specifications.  In an optimal fashion, the controller 

design is jointly feasible if the closed loop system meets the design specifications 
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[35].  This feasibility in NCS can lead to a search for controllers with higher 

dimensions or more sophisticated type such as LQR or LQG.  Additionally, sufficient 

conditions for stability have to be derived from maximum allowable delays ( max ). 

 

The controller design depends on information availability.  Assuming that the plant is 

controllable and observable, a typical NCS can be thought as two subsystems, the 

networked controlled system  1 t  and the controller  2 k ; interacting across a 

common communication network. 

 

 1 t
 u t  y t

 2 k
 v k w k

 r k

 

Fig. 4. 1  A general Framework for NCS with structured controllers 

 

   1 , ,p p pt a b c   is described as in Chapter 3 in equation (3. 8).  The discrete form 

is obtained at discrete time instants kt kh , where h  represents the sampling time.  

Using h  as time reference, the information transmitted by the sensor output  y k  

reaches the controller input  v k  after  SC kt .  The information transmitted by the 

controller output  w k  is sent immediately and updates the actuator input  u k  after 

 CA kt .  Consequently, as defined in Chapter 2 equation (2. 14) and with both delays 

lumped together as in Chapter 3  equation    (3. 8); the delayed system input can be 

written as: 

    u hk w hk k   (4. 1) 

 

with  k  as the round trip delay presented as follows: 
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     SC CAk k k     (4. 2) 

 

   2 , , ,c c c ck A B C D   represents a discrete controller.  The controller is dependent 

on the quality of available transmitted information.  Without an accurate dynamic 

model of the communication network dynamics or synchronization in the control 

loops; information on the controller side is limited.  The easiest way to design a 

controller for NCS is to use known nominal values of the delay ( min ).  This solution 

is too conservative because delays can be random and variable.    Moreover, although 

the controller may be accurately tuned, the randomness and variability of the 

communication network delays reduce the system performance.        

 

As stated by Silva [85], PID controllers are stable when the controller parameters 

depend of the delays.  The control signal of a PID controller is based on the past (I), 

present (P) and future (D) input errors. 

       P I Dw t w t w t w t    (4. 3) 

 

The standard structure of the PID controller in time domain is as follows: 

     
 

0

1 t

p d

i

de t
w t K e t e d T

T dt
 

 
   

 
  

 

(4. 4) 

 

To obtain a discrete form of the controller, the error  e k  is computed at discrete time 

instants kt kh .  The resulting discrete actions are: 

 

Proportional Action:   

   p k pw t K e k  (4. 5) 

 

where pK  is the proportional gain. 

 

Integral Action:  

   
0

t
p

I

i

K
w t e d

T
    
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   
1

0

k

I i

n

w kh K he n




   
 

(4. 6) 

 

Using first backward difference, the discrete integral (4. 6) will become: 

   

        

     

1

0

1

1 0

1

k

I i

n

I I i

I i

w k K h e n

w k w k K h e k e

q w k K he k







  

   

 



 

 

 
 

 
11

i
I

K h
w k e k

q



 

 

(4. 7) 

 

here, 
p

i

i

K
K

T
  is the integral gain and 1q  is the back shift operator.  

 

Derivative Action: 

The derivative action is implemented by adding a first order filter to the derivative 

term to reduce the effects of high frequency disturbances.  The derivative term is 

determined by using the first backward difference discretization as follows: 

 

 
   Dd

D p d

dw t de tT
w t k T

N dt dt
    

 

 
       1 1D Dd

D d

w k w k e k e kT
w k K

N h h

      
     

   
 

 

(4. 8) 

        

         1 1

1 1

1 1

d d
D D

d d

d D d

T K N
w k w k e k e k

T Nh T Nh

a h q w k b h q e k 

   
       

    

  

 

 

 
  

  
 

1

1

1

1

d

D

d

b h q
w k e k

a h q









 

(4. 9) 

 

with N defined as a filtering factor in a range of 2-10 [74]; and d p dK k T  being the 

derivative gain. 
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The discrete control signal  w k  can now be written as follows: 

       P I Dw k w k w k w k    (4. 10) 

   
 

 
 

 
 

1

1 1

1

1 1

di
p

d

b qK h
w k K e k e k e k

q a q



 


  

 
 

 

 
 
 

 
1 2

0 1 2

1 2

1 21

d d q d q
w k e k

c q c q

 

 

 


 
 

 

(4. 11) 

 

where:  

  

 
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1 2 1

2 2
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d i p

p d

d
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d

d
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d

c

c a h

c a h

d K K h b h

d b h c K h c K

d c K b

T
a h

T Nh

K N
a h

T Nh



  



  
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 







 

 

 

The controller parameters are sample-rate-dependent   ,i ic d h , 0,1,2i  .  The 

sampling time can be set as  h k , so that the controller can be re-tuned every 

time the delay changes.  This solution can also incorporate network utilization and 

leads to scheduling methodologies.  The main disadvantage of this methodology is 

that delays may be less than the sampling time.  For delays bigger than the sampling 

time such as Ethernet delays in Internet applications, models transformations like in 

Chapter 3, equation (3. 44) can be useful, but as shown in equation (3. 45), this 

solution leads to controllers with higher dimensions.  A more simple approach is to 

include the delays using delay dependent Stabilizability. 
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4.1.1   Model transformation 

 

From Fig. 4. 1 and delays as defined in equation (4. 2), it can be stated that subsystem 

 1 t  is delay-free, but the closed loop       1 2,cl k k k     is  k  times 

delayed. 

 

To determine the closed loop system of Fig. 4. 1, the controller of equation (4. 10) is 

used in state-space representation.  The resulting discrete PID controller will be: 

     1c c c cx k A x k B e k    (4. 12) 

     c c cw k C x k D e k   (4. 13) 

     e k r k v k   (4. 14) 

 

where the matrix coefficients are: 

 

2 1

2 2 0 1 1 0

0

0 1

0

1

c

c

c

c

A
c c

B

C d c d d c d

D d

 
  

  

 
  
 

  



 

 

 

The above state-space representation of the PID discrete controller is stable if  2 1c  .  

The state-space formulation is presented in appendix A.1. 

 

Combining the discrete PID controller of equations (4. 12) to (4. 14) with the equation 

(3. 8), the resulting closed loop system is given by: 

             0 1 0 11cl cl clx k A B KC x k B KCx k k B KRr k B KRr k k           

 (4. 15) 

 min maxk     

with: 
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0

1

0 0 0 0

0 0 0 0

0 0
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0

c cp p

c c
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c c

D CA C
A B KC

B AI I

D CB C
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B A I

I
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      
         

      

    
     

    

 
  
 

 

and  

                                                      
 

 cl

c

x k
x k

x k

 
  
 

 

 

pA  and pB  are calculated as in chapter 2.  Equation (4. 15) contains a delayed state 

  clx k k  and consequently   ,cl k k  is delayed.  In order to control and 

stabilize the closed loop system   ,cl k k , a delay-dependent stabilizability 

approach is employed. 

 

 

4.2   Delay-dependent Stabilizability 

 

Stability analysis does not necessarily require the incorporation of the delays.   Delay-

independent Stability and Stabilizability are too restrictive because it does not depend 

on the delay [13] and stability can be achieved if the eigenvalues of  1 k  are lesser 

than 1,   1A  .  This stability test does not take into account the effects of the 

delays, so that the controller should only be designed based on the worst case delays.   

If time delays are taken into account, the controller design becomes delay-dependent 

and the resulting stability test can be expressed as follows: 

  1A BK    (4. 16) 

 

where  A BK   are the eigenvalues of the closed-loop system.   
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Lyapunov-Krasovskii functional can be used to prove stability and Stabilizability.  

Equation (4. 15) can be transformed to include the delays explicitly in the resulting 

LMI.  A explicit model transformation leads to terms within the LMI that contain 

quadratic controller gains, making the resulting LMI, unsolvable.  A more convenient 

approach can be based on that during the bounding in deriving stability criteria, 

information  clx k  , 0     is used.  Thus the constraint: 

          

  

0 1 0

1

1cl cl clx k A B KC x k B KCx k k B KRr k

B KRr k k

    

 

         

  
 

 

is partially but not fully accounted for as described in [44].  This method is called 

implicit transformation. The derivation is presented in Appendix A.2.  Using implicit 

transformation over a Lyapunov-Krasovskii functional, stabilizability can be achieved 

as follows:     

 

Theorem 4.1 

Given that all state variables of the system in equation (4. 15) are measurable and 

available for feedback, the discrete state-space system   1 ,k k  is stabilizable. The 

closed loop system is stable if and only if, given values 

0, , ,T T TP P X X Y Z Z     and j , 1,2,3j  ; the following set of LMI’s are 

feasible:  

11

0

1

T T

T T T T

j

N Y A Y

N Y S B PB B Y

YA YB X


 
 

 
 
      
 
 
 
 

 

 

 

(4. 17) 

 

Proof.  The formulation requires a Lyapunov-Krasovkii functional of the form: 

           
1

1, ,
k

T T

cl cl cl cl cl cl

j

V x k x k Px k V x k x k j Sx k j






      
 

(4. 18) 

 

More explicitly, the functional can be written with the initial condition   as follows: 

       1 2 3V V V V       (4. 19) 
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with: 

     1 0 0
T

V P    (4. 20) 

       
1 1

2

k

T

j i j

V f i Zf i


  
 

 

    
 

(4. 21) 

     
1

3

k

T

j

V j S j


  




   
 

(4. 22) 

 

And 

        0 10 0 kf A B KC B KC        (4. 23) 

 

The first forward difference of  V   will be as follows: 

     1 0 0
T

V P        

         1 1 1 0 0
T T

V P P        (4. 24) 

             
1

2 0 0
k

T T

j

V f Zf f j Zf j


    




     
 

             
1

2 0 0
k

T T

k

j

V f Zf f j Zf j


     




    
 

(4. 25) 

 

For  3V   

           
1

0 0
k

T T T

k k

j

j S j S S


       




     
 

(4. 26) 

 

Assuming     1 0f  ,  equation (4. 24) can be written as follows: 

         

       

       

1 0 0

1 1

0 1

0 0

2 0

T T

T T

k k

T T

k

V A B KC P A B KC P

B KC P B KC

A B KC P B KC

  

   

  

     
 

  

  

 

 

 

Considering implicit transformation for  1V  ,  1V   can also be written as 

follows: 
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         

       

       

   
 

 

1 0 0

1 1

0 1

1

0 0

2 0

0
0

k

T T

T T

k k

T T

k

T T

T
j

V A B KC P A B KC P

B KC P B KC

A B KC P B KC

X Y
j

jY Z

  

   

  


 







     
 

  

  

  
          



 

 

 

Consequently  V   can be written as follows: 

  11 12

0 0

12 22

T

T

N N
V

N N
   
 

   
 

 
(4. 27) 
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

 

 
  
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N A PB A ZB Y

N S B ZB B PB

A A B KC

B B KC







       

  

   

 



 

 

 

Additionally considering that 1 0TZ Y X Y  , then 1TZ Y X Y  , and N  can be 

expressed without Z  as in equation (4. 17) and this proves the theorem. 

  

Theorem 4.1 considers that j , 1,2,3j   is known and constant during the control 

design.  To obtain the values of j  the pdf of the delay can be used and bounded to a 

closed interval  1 3,...,  , where good performance is guaranteed.  Adding a known 

interval, so that a set of LMI’s can be defined and leads as to a probabilistic control 

design approach. 
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4.3   Controller Probabilistic Design Approach 

 

The resulting LMI from equation (4. 17)   N k  is subject to  k  and represents a 

convex set: 

    min max, ,Co N N    (4. 28) 

 

with Co  referring to the convex hull and defined by linear models. The number of 

linear models in the above set is not finite since  k  can take any value.  Using the 

information of the pdf of the delay,   may be approximated to a finite number of 

linear models.   

1N

2N
3N

4N

 p 



min max
2 1 3

 

Fig. 4. 2  pdf. of the delay with known interval delay. 

  

For stability analysis the worse delay value can be used  4N  .  However, to achieve 

good performance, it is sufficient to include a set of models corresponding to the most 

probable value and other values defined by a tuning parameter  . 

      1 1 2 2 3 3, ,Co N N N     (4. 29) 

 

These models represent a polytope to be used in the controller design.     is a 

sweeping factor in the pdf of the delay and allows the selection of a set of possible 

models with good performance for a given controller. 
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Design specifications can be achieved for particular system models.  An optimum 

solution will determine all possible controller parameters for each model, making 

performance and stability model-dependent. The trade-off between good performance 

and stability can be stated as a design constraint.  It is logical that the controller 

design should be based on the most probable delay.  Using the tuning parameter, a 

finite set of models can be included in the design.  However, the bigger the range of 

these models involve, a lesser performance is achieved.  A convenient approach is to 

design the controller based on good performance.  It is expected that this approach 

presents performance degradation when the delay is out of the designing parameters 

range.  

 

Assuming that the polytope is known  j jN  ,  1,2,3j  , at least two steps are 

necessary in the controller design.  Firstly the LMI that represents the most probable 

delay  1 1N   must be feasible.  If the problem is feasible for this LMI, it can be stated 

that there exists a controller that satisfies all the set, otherwise less conservative 

specifications have to be considered. 

 

The other models depend on the tuning parameter  .  By sweeping the pdf  a range of 

possible models can be bounded by the set     2 2 3 3,...,N N  .   

 

Given  4 4N  , a conservative stability test can be made. If the LMI  4 4N  is 

feasible, then stability is assured for all the set.  These results are shown via a 

numerical example in the following section. 

 

 

4.4   Numerical example 

 

To illustrate the above design method, the step response of a SISO NCS is simulated 

and system stability is observed.  The NCS is connected to a 10 node netwok.   k  

is the lumped delay and represents the round trip delay for Ethernet-based.  
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Communication network parameters and system are taken from [39] to match with 

real values. The packet size is 8 bytes.  Each node represents a system as follows: 

                                             

                                           3 2

1

10 5 10.4 1
G s

s s s


  
 

 

The total time to send 10 messages over the communication networks is [53]: 576 s  

for Ethernet.  If the period is shorter than the total transmission time the traffic load 

increases and the communication network can become unstable. In the simulations the 

sampling period will be equal to  min
 , thus the communication network induced-

delay is zero or  k . 

 

Assuming a tuning factor   corresponding to the 70% of confidence of the probability 

of the delay, the following delays are obtained:  = 789 6 853 6 901 6e e e      

The polytope will be: 

 

      
.99 .0006 .0001

1 .0006 1 0 .213

.0006 1

572 6

x k x k u k k

h e



  
 

    
 
 

 

 

 

 

Solving a feasibility problem for the resulting polytope, the following gain values 

were obtained: 

.0007
.0026

.0012
c cB D

 
   
 

 

 

Simulations are based on a Simulink model using TrueTime1.5. This simulator allows 

co-simulation of controller-task execution in real-time kernels, network transmission 

and continuous plant dynamics [73].   Models 1 and 3 from Fig. 4. 2 are tested. Two 

controllers are implemented as nodes in an 10Mbps Ethernet network.  The remaining 

nodes are simulated as network traffic. 
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Fig. 4.3  Control Loops block diagram 

  

The delays used to obtain the models are simulated as random delay values 

1 3k    .   The following results were obtained: 

1x

2x

3x

 

Fig. 4.4  System states for 1 .  Dotted lines represent system states with the controller 

designed using the most probable delay.  Continuous lines represent system states 

with controller designed with the probabilistic delays.  

 

The simulation results show better performance for model 1  1 1N   with the 

controller designed for the most probable delay.  The simulation results for the 

controller designed using the range of delays shows small performance degradation. 
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The controller designed only for the most probable delay is the best controller for 

model 1, thus this degradation is expected.  

 

The simulation results of model 3 using the designed controllers are presented in Fig. 

4. 5.  The system is still controllable with the probabilistic controller, although with a 

slightly higher performance degradation.  The system can no longer be controlled by 

the most probable delay controller.  Thus the resulting controller design offers relative 

good performance for the range of bounded delays as expected.  The performance can 

be increased if the controller design includes more delay values within the range. 

3x

2x

1x

 

Fig. 4. 5  System states for model  1 3N  .   Continuous lines represent system states 

with controller designed with the probabilistic delays. Dotted lines are not included 

because simulation results are unstable. 
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4. 5   Conclusions 

 

It was argued that to achieve good performance, reliable networks and system 

performance are needed.  Furthermore, instability of the NCS is merely instability of 

the communication network due to heavy traffic. 

 

Communication network induced-delays have been lumped together for design 

purposes. The PID controller design is based on the expectation of the most probable 

delay accompanied by a set of models that depends on a tuning parameter  . 

 

Packet dropouts as well as quantization have not been considered.  Additionally it has 

been stated that dynamic bandwidth allocation is a varying communication network 

parameter that need to be included.  Stability analysis should be extended by using 

time-delay systems theory. 



 

 

Chapter 5 

 

 

Estimation approach for Networked 

Control Systems 

 

This chapter presents a modified discrete Kalman filter combined with a bad data 

detector for sensor-to-controller delay and packet dropouts compensation.  This 

methodology is applied on time-driven components to use the filter updating time as 

reference for the compensation. The structure of this chapter is as follows: Section 5.2 

demonstrates the formulation of the discrete Kalman filter for systems with neither 

delays nor packet dropouts.  This standard algorithm is modified to include sensor-to-

actuator delays and a bad data detector is formulated to use the resulting filter to 

compensate both delays and packet dropouts.  In section 5.3, controller-to-actuator 

delays are incorporated in the system model and two control methodologies are 

proposed LQR and MPC, both on NCS with Arstein model transformation.  A 

numerical example is presented in section 5.4.  The resulting control methodology is a 

combination of the Kalman filter for estimating the system states affected by network 

constraints and a MPC controller.     
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5.1   Introduction 

 

The complexity of NCS is not in the process, it is rather in the way the information is 

deployed through the communication network.  The distributed nature of NCS carries 

overload of information in real-time systems.  Time-critical applications require 

constant information flow as well as real-time computation but not all the 

communication channels are ideal data transmission medium, they can be 

contaminated with noise and errors.  Missequencing, packet dropouts, network-

induced delays and limited network bandwidth emerge when a control loop is closed 

across a network.    These network constraints reduce performance of the NCS by 

affecting the observability of the process as well as the reliability of output 

measurements and control signals.     

 

Lack of observability can be compensated by using observers to estimate necessary 

signals.  Conventionally, Estimation techniques can be defined as the problem of 

estimating the pdf of the states of the process that are not directly observable, using 

the past measurements.  Thus unreliable measurements may reduce the optimality of 

the applied observer.     

 

Observers in NCS are difficult to design and implement.  A trade-off between 

optimality and computational burden is needed for the observer to be applicable and 

useful [51].  Observing the states of the process through a communication network 

adds additional dynamics to the problem that the control techniques have to address.  

In an observer for NCS, network constraints are sample-dependent. They can change 

every time step, making tracking almost impossible [78].  Furthermore, not all the 

network constraints can be treated together.  It is possible to assume packet dropouts 

as infinite delays, as demonstrated in chapter 2, and reduce the NCS problem to 

delayed systems with finite delays.  

 

When only network delays are present, the model of the observer can be augmented to 

accommodate delayed measurements. This approach is acceptable for small delays.  

Model augmentation increases the computational burden based on the size of the 
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delay and the sample time, thus the model dimensions can become undesirably high 

[43]. 

 

Conventional techniques for systems with delays require the delay to be known and 

constant which contradicts variable and random nature of network-induced delays.  

On the other side, recursive solutions can handle the variability and randomness of the 

delay as far as it is known at the beginning of the recursion.  Consequently, it is 

reasonable to include a pre-estimation stage to estimate the delay value. 

   

Estimation techniques based on noisy measurements are very common in industry.  

The most known technique is the discrete Kalman filter.  The implementation of 

Kalman filtering algorithms offers an optimal estimation of the systems states when 

the process is linear and the noise is Gaussian.  The following section discusses the 

design of a Kalman filter for NCS systems. 

 

 

5.2   Standard Kalman Filtering 

 

Kalman Filtering is a plausible solution for NCS with time-driven components.  

Time-driven components have their sampling times set.  The correct reception of 

information arrivals is known at the beginning of every sample time.  Thus the 

information arrivals received at time kh  as presented in Fig. 2.2 (See chapter 2) for 

time-driven components, can be    delayedSCkh kh   on the observer and  

   delayedCAkh kh   on the actuator.  SC kh  and  SC kh  are the sensor-to-

controller and controller-to-actuator delays respectively. 

  

The structure of an NCS for control and estimation is presented in Fig. 5. 1.  For 

output feedback synthesis, subsystem  1 t  represents a LTI stochastic system with 

Gaussian process noise and measurement noise,  2 k  is the controller and  o k  

is the observer. The system is assumed to be controllable and observable. 
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 1 t
 u t  y t

 v k w k

 r k

 2 k
 x̂ k

  ,o SCk k

 ˆ
CA k

 

Fig. 5. 1  Feedback output synthesis for NCS 

 

Network constraints do not affect the distribution of the process or measurement 

noises, therefore these noises will remain Gaussian.  Kalman filter algorithms are 

simple to implement.  Having a LTI system of the form: 

       1 p px k A x k B u k k     (5. 1) 

     py k C x k k   (5. 2) 

 

where   yN
y k R ,   uN

u k R ,   xN
x k R  and all the system matrices pA , pB , pC  

are of compatible dimensions.    xN
k R  is zero mean value process noise, 

  yN
k R  is zero mean value measurements noise where: 

 

 
     

0

0

T T
k Q

E i i k i
k R


 



     
         

    

 
 

(5. 3) 

 

represents the covariance matrix of the noise with  k i   being the Kronecker delta.  

The initial state is  0x  with mean   0E x  and covariance matrix  0 , i.e.: 

    

          
0 0

0 0 0 0 0

x

T

x x

E x

E x x



 



         

 
 

(5. 4) 
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Assuming that process and measurements vectors are jointly Gaussian, the filter gives 

the minimum variance estimate of the state, that is, it evaluates the conditional mean 

of  x k  given a minimal gal ebra   that makes   ,x s s k  measurable and its 

denoted by the observations     ,..., 0kF y k y  [43].  The gal ebra   kF  

satisfies 1k kF F  , 1k k  .  

 

Consequently, if  ˆ 1x k   denotes the conditional mean of  1x k  , given the 

observations of kF  up to and including k , then  ˆ 1x k   satisfies the following 

recursion: 

         ˆ ˆ1 p px k k A x k B u k K k e k     (5. 5) 

   ˆ 0 0xx    

 

 K k  represents the filter gain and is given by: 

     
1

T T

p p p pK k A P k C C P k C R


  
 

 
 

(5. 6) 

 

 P k  is the state error covariance and is defined as follows: 

          1 1

T

k kP k E x k E x k F x k E x k F 
                 

 

 

and satisfies a Riccati Difference Equation: 

         1
TT T

p p p pP k k A P k A Q K k C P k C R K k     
 

 (5. 7) 

   0 0P    

 

For Gaussian processes, the first two moments describe the complete probability 

distribution.  Thus the conditional distribution of  ˆ 1x k   given 1kF   has mean 

 1x k   and covariance  1P k   determined as follows [31]: 

          1

1 12 22
ˆ1 1k x yE x k F x k k P P y k k 


         (5. 8) 
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           1

1 11 12 22 21
ˆ ˆ1 1 1 1 1

T

kE x k x k x k x k F P k k P P P P

                 

(5. 9) 
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and: 

   

   

   

   

   

   

1 111 12

21 22 1 1

1 1 1 1
T

k k

k k

T T

p p p p

T T

p p p p

x k E x k F x k E x k FP P
E

P P y k E y k F y k E y k F

A P k A Q A P k C

C P k A C P k C R

 

 

                   
      

                  

 
  

  

 

 

The presence of external inputs in Kalman filtering does not affect the estimation 

problem when the inputs are kF measurable .  These inputs are functions of the 

output measurements and consequently they are admissible.    

 

In order to keep the process Gaussian, these inputs should be formed by a linear 

output feedback process such as: 

     w k L k v k  (5. 10) 

 

where  L k  is the controller gain.  For linear systems, separation principle holds and 

the state estimation can be used for feedback, i.e.      ˆw k L k x k  

 

 e k  represents the estimation error and is defined as follows:  
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     ˆ
pe k y k C x k   (5. 11) 

 

Rearranging the above expression gives: 

     ˆ
py k C x k e k    

 

It is clear that  e k  also called as the innovations sequence, represents the new 

information contained in  y k , which is not contained in     1 ,..., 0y k y . 

 

 

5.2. 1   Sensor-to-controller delay compensation 

 

In NCS, the observation process  v k  on the observer is delayed. This delay 

1,2,...SC   is assumed to be a multiple integer of the sampling time.  Smaller delay 

values than the sampling time can be rounded up in the subsequent computation cycle 

[43].   

 

At time k  the resulting observation process is: 

      * *
p SCv k C x k k k     

(5. 12) 

 

where  *v k , as presented in Fig. 5. 2, is the delayed output measurement arrived at 

the filter at time k .  

 

  ˆ
SCx k k  x̂ k

 *v k

 x k  SCx k k

 

Fig. 5. 2  Delayed Output Measurements arrivals 
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Optimality cannot be achieved with the Kalman filter algorithm for NCS. The 

estimation of the delay is no longer optimal and consequently applying Kalman 

filtering only gives a linear minimum variance estimate of the delay that is not 

generally the conditional mean.  Instead other methods of delay estimation have to be 

applied i.e. by using Recursive Bayesian estimation [75]. 

Recursive Bayesian estimation is used by Pahjola et al. [78] to estimate the delay. The 

most probable delay value is used in an extended model of the system and the 

information is fused at time k .  Kalman filter is used for the estimation of the process.  

The delay is assumed to be bounded. Furthermore it is stated the use of Kalman 

filtering, based on the reliability of the estimation of the delay, leads to suboptimal 

estimation.   

 

Suboptimal estimation affects the covariance matrix and hence the Kalman gain in a 

complex manner [43].   As stated by Larsen et al. [51], using equation (5. 12), it is 

possible to perform the fusion by using extrapolated states.  Extrapolation can also be 

useful for packet dropouts.  When there is no correlation between packet dropouts and 

delays, it is impossible to distinguish which constraint produced the trigger event. 

  

The extrapolation causes a correction in the state estimate and consequently a 

decrease in the covariance matrix.  This solution is parametric-based because the 

correction can be included in the covariance matrix as a correction factor *M  using 

the system and filter parameters. 

 

 

5.2.2   Suboptimal measurement fusion 

 

It is possible to sub-optimally fuse the measurements  *v k  at time k  by 

extrapolating the measurements [43].    Due to the linearity of the innovation process, 

a definition for an extrapolated innovation process  exe k  can be stated as follows: 

         * *ˆex

SC p SCe k e k k v k C x k k       (5. 13) 
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For time-driven components, the absence of information arrivals triggers an event that 

represents either delays or packet dropouts.  When no information arrivals are present, 

the delay is increased one time-step and an extrapolated measurement  exv k  at time 

k  is used, otherwise the delay is kept constant and   *v k  is extrapolated to a present 

measurement defined as  exv k   so that: 

 

      

      

         

        

     

*

*

*

ˆ

ˆ ˆ

ˆ ˆ

ˆ

ex

SC p

p SC p

p SC p SC p

p p SC p

ex ex

p

v t e k k C x k

v k C x k k C x k

C x k k k C x k k C x k

C x k k C x k k C x k

v k C x k k





  

 



  

   

     

    

 

 

 

with       *ex

p SCk k C x k k     .  Equation (5. 12) is similar to equation (5. 2) 

but now; there exist a correlation between the extrapolated noise process  ex k  and 

the state  x k  [51]. 

  

The resulting observation process can now be written as: 

     ˆex exv k Cx k k   (5. 14) 

 

The modified Kalman filter, as given by Larsen et al. [51], is given by the following 

recursion: 

            ˆ ˆ ˆ1 , ex

p p SC px k k A x k B w k K k k v k C x k         (5. 15) 

   ˆ 0 0xx    

 

where the Kalman gain and error covariance are functions of the correction factor 

 M k . 

       
1

,
T T

SC p p p SC pK k k A M k C C P k k C R 


   
 

 
(5. 16) 
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           

 

1 , , ,
TT

SC SC p SC p SC

T

p p

P k k k K k k C P k k C R K k k

Q A P k A

        
 

 
 

(5. 17) 

                                                        0 0P   

 

The filter algorithm proof is given in B. 1 and keeps the original initial conditions 

because assumptions of initial delays can be too conservative. 

 

 

5. 3   Bad Data Detector 

 

In absence of data arrivals, the modified Kalman filter increases the correction factor.  

For time-driven components, the absence of data arrivals can be due to either packet 

dropouts or network delays.   Thus the difference is rather in the predefined value of 

the correction factor after it is reset.  For packet dropouts the correction factor is reset 

to a unity value and the filter performs as a standard Kalman filter [51].  On the other 

hand, for network delays the correction factor is reset to the last or predefined delayed 

value. 

 M k M k I

 K k
 

 

1

1

x k k

P k k





 *v k

 

 

(a) 

 

 

 

1

1

x k k

P k k




 K k

 M k   SCM k M k  

 *v k

 

 

(b) 

Fig. 5. 3  (a) Modified Kalman Filter for packet dropouts; (b) Modified Kalman Filter 

for network delays 
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It can be seen that the trigger event in both cases is the lack of data arrivals.  It is 

possible to add a detection mechanism to distinguish between both constraints.  This 

detection mechanism can be defined as a bad data detector of the estimated states 

 x̂ k  and compares the square of the estimation error with a decision threshold.  The 

decision threshold will be the square of the optimal estimation error [32].  Optimality 

on Kalman filter is proved when the innovations process is unbiased and the 

covariance of the estimation error is minimum.  

 

To design a bad data detector the observation process is used.  This contains the 

estimation error as well as the innovations process.  The detector is implemented to as 

follows: 

 

Using equation (5. 11) innovations process for packet dropouts is given by: 

     * ˆ
loss pe k v k C x k   

 

On the other hand, using equation (5. 13) the innovations process for network delays 

will be:     

      * ˆ
delay p SCe k v k C x k k    

 

Comparing both innovations process and defining one of them as a decision threshold 

 the k , thus: 

 

An increase of network delays has been detected if: 

   2 2

loss th
e k e k  (5. 18) 

   th delaye k e k   

 

Otherwise packet dropouts have been compensated in the previous iteration.  

       

Proof of optimality:  if the detector is designed using equation (5. 18) and the 

inequality is true, then the mean of  delaye k  is equal to the mean of the 

  SCx k k  and consequently zero, as follows: 
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        

     

   

  

* ˆ

0

delay p SC

p SC

SC

delay

E e k E v k C x k k

E C x k k k

CE x k k

E e k



 



  

  

 



 

 

 losse k   has mean: 

       

       

     

  

* ˆ

ˆ

ˆ

0

loss p

p SC p

SC

delay

E e k E v k C x k

E C x k k k C x k

C E x k k x k

E e k

 



 

   

   
 



 

Thus the estimation is unbiased and the filter-detector is optimal.  

 

 

5.4   Controller-to-actuator delay compensation 

 

Network delays are difficult to handle in the controller-to-actuator side during the 

actual time step.  Certain networks retrieve an acknowledgement message once the 

packets have been received at the destination point.  However applications of this type 

are network-dependent.  Without information about the controller-to-actuator delay on 

the controller, it is difficult to compensate delays and almost impossible to 

compensate packet dropouts. 

 

A plausible approach is to assume a known average value of the delay before the 

controller design.  Thus, a LQR can be designed for a LTI system with delayed inputs.  

The resulting control law, although it is optimal for the average delay value, it can not 

be considered optimal when the delay changes [9].  Furthermore, no packet loss 

compensation can be implemented.   
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5.4. 1   LQR design 

 

After the filter, the system is sensor-to-controller delayed-free.  Using equation (2. 

14), the input delayed system is given by: 

      1 p p CAx k A x k B w k k     (5. 19) 

 

 CA k  can change every sampling time.  To remain system dimensionality, the 

Arstein transformation as presented in equations (3. 44) and (3. 45) can be used.  The 

resulting transformed model is: 

        1 CA k

p p pz k A z k A B w k


     

(5. 20) 

 

if and only if   xN
z k R  is a solution of the equation (5. 20) and is defined as 

follows: 

        
 

1
1CA

CA

k j

p p

j k

z k x k A B w k j





  



    
 

(5. 21) 

 

In accordance to the dynamic programming principle that claims that part of the 

optimal control function in any subinterval must be the optimal control itself in this 

subinterval; the optimal control for systems with variable input delays must be 

designed as much times as  delays changes [9].  

 

A LQR can be designed assuming that the delay  CA k  is known and constant 

 CA CAk  , 1,2,...k  .  This assumption is restrictive but with no information about 

the delay, it offers a simple solution with possible system performance degradation.    

 

 

Optimal Control Problem Solution   

The optimal control law for the system given in equation (5. 20) and minimizing a 

cost function defined as follows: 
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           

       

1

0

1 1
, , ,

2 2

. .

1 AC

N

c

k

p p p

J z N Sz N z k Qz k w k Rw k

s t

z k A z k A B w k






    

  



 

 

is given by: 

     kw L k z k   (5. 22) 

 

with: 

          
1

1 1 1CA CA CA
T T

p p p p p p pL k R A B I A B R A B K k A
  


     

 

(5. 23) 

          
1

11 1CA CA
T

T

p p p p p pK k Q A K k I A B R A B K k A
 


      

 

(5. 24) 

 

Proof.  The solution of the optimal problem is given in appendix  

 

 

Equation (5. 24) is the discrete Riccati Equation where  K k   is known as the Riccati 

gain.  S, Q and R are chosen as follows [14]: 

 

a. Make, for lack of better knowledge, the off diagonal elements zero, 

b. Pick the diagonal elements as follows: 

 

 

 

2

max

2

max

2

max

1

1

1

ii

i

ii

i

ii

i

S
z N

Q
z k

R
w k







 

 

It is also possible to design a LQ regulator based on a polytope that include a range of 

the most probable delay values, so that, performance can be achieved for certain delay 

values [79].  Nonetheless, more accurate approaches require a recursive calculation of 

the controller gain based on the delay variation.   
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The delayed system states can be forwarded ĈA steps   ahead [61].  The resulting 

design represents a predictive controller design approach for NCS.    If an estimated 

value of the controller-to-actuator delay can be known every time step, the controller 

gain calculation can be updated iteratively. 

 

 

5.4. 2   Predictive Controller design 

 

Bollot [12] states that there exist a correlation between sampled delays and observed 

packet loss.  This correlation can be used to create a Markov model of either delays or 

packet dropouts. The resulting observations sequences can be used to implement a 

Bayesian estimator triggered by the result of the bad data detector.  

  

It can also be inferred that data traffic affects the entire network and consequently a 

change in the constraints on the sensor-to-controller interface evidences a change in 

the constraints on the controller-to actuator interface.  Thus the actuator-to-controller 

delay value, without considering the network dynamics, can be approximated to the 

value of the calculated sensor-to-actuator delay: 

   ap

CA SCk k   

 

Obviously packet dropouts can not be compensated, but the control signal  w k  can 

be forwarded n steps  ahead.  The resulting control law is a predictive controller. 

 

Generalized Predicitve Control (GPC) is presented in [61] to compensate bounded 

sensor-to-controller and controller-to-actuator delays over Internet-based networks.  

Open loop Predictive Control is used to derive a set of control inputs.  The set is then 

transmitted to the plant.  A buffer detector mechanism is implemented to calculate the 

delay based on time stamps and consequently choose the corresponding delayed 

control signal.   
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MPC for state-space models can be reformulated as a LQR framework.  The resulting 

optimization problem over a variable horizon makes it suitable for applications such 

as time-delayed systems [49].    

 

Theorem 5.1 

For the system given in equation (5. 20) and variable controller-to-actuator delay 

 ap

CA k , the optimal predictive control law that minimizes the following predictive 

objective function: 

  

1

1 2, ,
1 0

CP

ap
p C CA

HH
T T

k j k j k j k jH H k
j j

J e Q e w Q w




   

 

      
 

(5. 25) 

 

is given as follows: 

  ,
ap
CA

k kk k
w L Z


    (5. 26) 

 

with: 

  

1

1 1,
ap
CA

T T

w k kk k
L Q B B B A





 
        

(5. 27) 

           1, , , ,
ap ap ap ap
CA CA CA CA

T

T

k Z w kk k k k k k k k
Q L Q L A BL A BL

   

         
      

 
 

(5. 28) 

 

where 1k j k j k jw w w       is the control deviation and k je   is the predicted error 

between the output of the estimated model k jv   and a reference signal k jr  .  

 

For the remaining of this chapter ,  e k j  and  w k j   are written as k je   and 

k jw   respectively.  PH  is the prediction horizon, CH  is the control horizon and 

P CH H .  After the control horizon, the control signal will remain constant and 

 w k j   will be zero. 

 

From equation (5. 20) the mean of  ˆ 1z k   is given as follows: 

   1 11 k p k p k kk k
E z F A z B w w 

     
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And its extended model will be: 

1

1

k

k k k

k

z
Z AZ B w

w





 
    

 
 

 

thus 
0

p pA B
A

I

 
  
 

 and 
pB

B
I

 
  
 

 

 

Proof.  The proof is given in appendix B. 3. 

 

 

Lemma 5.1 

The predictive objective function of equation (5. 25) can be expressed as a finite cost 

function as follows: 

 
1

2

, 1

1

w

p w w w

N
T T T

N N k N x k N k j x k j k j u k j

j

J x S x x Q x w Q w r Q


     



      
 

(5. 29) 

 

Proof.  Let’s assume that the reference signal remains constant during the prediction 

horizon, thus the predicted error will be: 

k j k je v r    

 

Since the stochastic part of the original NCS problem is being tackled in the filter 

stage k je   can be written as function of k jz   as follows: 

 

 

k j k j c

c

p

z C z r

r Lr

CL I

C C I

  







 

 

thus the sum 1

1

PH
T

k j k j

j

e Q e 



  will be: 

 2

1 1

1

P P

U U

H N
T T

k j k j k j z k j

j N j N

T

z

e Q e Z Q Z r Q

Q C Q C

   

 

 



   
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In the time interval  ,c Pk k H k H   ,  the predictor ˆ
Pk Hx   is given as follows: 

     
1

0

ˆ
P C

P C

H H
H H i

P C C

i

Z k H k A z k H A Bw k H i
 





       
(5. 30) 

 

and writing the control signal as a sum of deviations: 

   
1

1

CH

C

i

w k H w k i




     

 

1

P

C

H
T

k j k j

j H

z Q z 



  will be: 

1
2

1 1

1

CP

c C

C

HH
T T T

k j k j k H Z k H k j w k j

H j

Z Q Z Z S Z w S w r Q


     



     

with: 

0

0 0 0

P C

P C

H H
Tj j

Z x

j

H H i i
TT j j

w x

i j j

S A Q A

S B A Q A B







  



   
    

   



  

 

 

and 2w wQ S Q   completes the proof. 

 

Lemma 5.2 

let equation (5. 13) be forwarded in the time interval  ,C Pk k H k H   ,  the 

optimal pN steps  ahead predictor ˆ
Pk Nz   of ˆ

kz   is the conditional mean 

  p kE z k H F  [31] given as follows. 

        1 1
ˆ

p pp p k H p k H kZ k H k E Z k H F E e Z k H F F         

 

Applying the smoothing property of expectations, equation (5. 30) is determined.  The 

resulting predictor is delay-dependent.  

The controller is updated by using the bad-data detector.   pH  is chosen to be equal to 

the inverse of the rise time, 1Q  and 2Q are chosen as in [14] respectively.  The 

resulting control law can be extended to compensate packet dropouts, but its 
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application requires event-driven actuators.  When a packet dropout is detected, the 

controller updates the control law for    ap

CA SC dk k P    , where dP  is the number 

of packets dropped. dP  is reset to zero when a delay is detected.  The controller will 

not transmit until 0dP  , thus the compensation can be too conservative.  

 

Another approach to reduce packet dropouts can be based on including the traffic load 

in the controller design.  An increase of traffic load will make the sampling time of 

the system variable.  Applying the resulting control synthesis on Multirate Systems 

introduces the variability of the sampling time into the controller design and 

consequently can decrease the uncertainty of the data traffic.   

  

 

5.5   Numerical Example 

 

To illustrate the above design methodology, the following example is studied. The 

NCS is defined as a one-node system connected across an Ethernet communication 

network.    SC k  and  CA k  are the sensor-to-controller delay and controller-to-

actuator delay respectively.  Communication network parameters are taken from [53] 

to match with real values. Packet size is 8 bytes.  The open loop transfer function of 

the system is as follows: 

  3 2

1

10 5 10.4 1
G s

s s s


  
 

 

Using a sampling time 0.001h  , its discrete form will be: 

 

        

       

0.99 0.0104 0.001 0.01

1 0.01 0.99 0 0

0 0.01 1 0

0 0 0.1

CAx k x k u k k k

y k x k k

 



    
   

       
      

 
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where  k  and  k  are process and measurements Gaussian noise respectively, 

with zero mean and covariance: 

 

 
     

0

0

0.0001

0.01

k Q
E i i k i

Rk

Q

R


 



     
        
     





 

 

The above state-space model represents a stochastic system that contains controller-

to-actuator delays only.  The communication network is implemented in Simulink 

using TrueTime 1.5 simulator [73].  This simulator allows co-simulation of controller-

task execution in real-time kernels, network transmission and continuous plant 

dynamics.    

 

Network transmission delays are simulated as random positive values.  Packets are 

dropped by software in the sensor.  The proposed modified Kalman filter allows 

packet dropouts compensation as well as time delay compensation every sampling 

time.  Packet dropouts in the sensor-to-controller interface are implemented by 

software by only transmitting a percentage of the available packets.  This percentage 

is generated randomly every sampling time and compared with a predefined value 

limit.  In the simulations this value was set from 10% to 90% of packet lost to test the 

filter robustness.   

 

Calculation of the sensor-to-controller delay is as stated in the filter design procedure.  

On the other hand controller-to-actuator delay is based in the assumption presented 

for the controller design.  This delay can freely be lesser, equal or bigger than the 

sensor-to-controller delay.  Packet dropouts in the controller-to-actuator interface 

cannot be compensated with the proposed controller, thus they are not implemented. 

 

The system is represented by a continuous state space model.  Sensor and actuator are 

discretized using TrueTime kernels.  These kernels contain A/D and D/A channels, set 

by software.  Packets are transmitted through the network according to a predefined 

scheduling policy.  In this case Fixed Priority scheduling was chosen.  The simulation 

diagram is given in Fig. 5. 4. 
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Fig. 5. 4  Simulation Diagram 

 

Filter and MPC controller are implemented by software.  Prediction horizon is chosen 

to be equal to the settling time of the system.  The resulting algorithm is presented in 

Fig. 5. 5 in the following flow chart. 
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 M k

 M k

   ˆ 1 & 1x k k P k k 

 
SC

K k

 x̂ k k

 
SC

P k k

 ˆ
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Fig. 5. 5  MPC Algorithm Flow Chart 

 

 



Chapter 5  Estimation approach for NCS 

 

 

 98 

Simulation results 

 

LQR and modified Kalman filter for CA SC  : 
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Fig. 5. 6  Comparison between Estimated states and real states of the proposed NCS 

system using a LQR controller with Artstein transformation for CA SC  .  The real 

system states appears at  CAt   

 

First the LQR controller is simulated.  CA   is set to be equal to SC  and known.  It is 

clear that for CA SC    the controller will perform better, thus the CA  is changed to 

be CA SC   only.  Simulations for both cases are presented on Fig. 5. 6 and Fig. 5. 7.  

Simulation results show that by increasing CA  the non-observed states become 

oscillatory and the systems tends to instability. 
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LQR and modified Kalman filter for CA SC  : 
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Fig. 5. 7  Comparison between Estimated states and real states of the proposed NCS 

system using a LQR controller with Artstein transformation for CA SC  .  The real 

system states appears at  CAt   

 

MPC controller is implemented under the same simulation conditions.  The MPC 

implementation gave better results that the LQR controller as expected.  Due to its 

variable control horizon cH , the controller can be tested for any value of ap

CA .  

Simulations for CA SC   and CA SC   are presented in Fig. 5. 8 to Fig. 5. 13.    

 



Chapter 5  Estimation approach for NCS 

 

 

 100 

MPC and extended Kalman filter simulation for CA SC   :  
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Fig. 5. 8  Comparison between Estimated states and real states of the proposed NCS 

system using a MPC controller with variable control horizon.  The real system states 

appears at  CAt   and CA SC  . 

 

Fig. 5.8 and Fig. 5.9 represent the step response of the system when CA SC  .  Fig. 

5.8 represents a comparison between real states and estimated states.  Real states 

appear after CA .  As expected, real states al almost similar than the estimated states 

when  CA SC  .  The effects of forwarding the control signal to compensate delays 

can be seen in a slightly better attenuation of  1x  and 2x . 

 

Fig. 5.9 represents the real and estimated output.  The real containts noise and has an 

initial negative peak due to the delays.  It can be seen that the peak is inmitially 

compensated by the controller and thus the real output can track the reference signal. 
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Fig. 5. 9   Comparison between Estimated states and real states of the proposed NCS 

system using a MPC controller with variable control horizon.  The real system states 

appears at  CAt   and contains noise. 

 

 

MPC and extended Kalman filter simulation for CA SC  : 

 

Fig. 5.10 and 5.11 represent the system step response when CA SC  .  It can be seen 

in Fig. 5.10 that the real states are more attenuated than in the previous case because   

Of the filter delay compensation. 
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Fig. 5. 10   Comparison between Estimated states and real states of the proposed NCS 

system using a MPC controller with variable control horizon.  The real system states 

appears at  CAt   and CA SC  . 
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Fig. 5. 11  Comparison between Estimated states and real states of the proposed NCS 

system using a MPC controller with variable control horizon.  The real system states 

appears at  CAt   and contains noise. 
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MPC and extended Kalman filter simulation for CA SC  : 
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Fig. 5. 12   Comparison between Estimated states and real states of the proposed NCS 

system using a MPC controller with variable control horizon.  The real system states 

appears at  CAt   and CA SC  . 

 

Fig. 5.12 and Fig. 5.13 represent the states and outputs when CA SC  .  Higher 

attenuation was expected due to the filter.   
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Fig. 5. 13  Comparison between Estimated output and real output of the proposed 

NCS system using a LQR controller with variable control horizon.  The real system 

output appears at CAt   and contains noise 

 

. 

 

5.6   Conclusions 

   

This chapter presents a simple, applicable and reliable filter-controller formulation.  

Network delays and packet dropouts in the sensor-to-controller interface have been 

successfully compensated by modifying a standard Kalman filter as well as by adding 

a bad data detector to distinguish between trigger events.   A trigger event is any 

constraint represented by the lack of arrivals on the filter. Bad data detection is 

possible due to the time-driven characteristic of the filter. 

 

Variable controller-to-actuator delay compensation has been achieved by assuming 

that the appearance of constraints in one of the channels of the network will affect the 

dynamics of the other channels.  
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Combining the modified Kalman filter with a MPC controller, a controller design was 

proposed where its implementation is straight forward.  However controller-to-

actuator packet dropouts have not been compensated.  A plausible solution is given in 

the next chapter. 



 

 

 

Chapter 6 

 

 

Distributed Multirate control design for 

Multivariable NCS 

 

This chapter presents a control solution for multi-loop NCS.  The applied control 

synthesis is a Distributed Multirate Model Predictive Control (DMMPC) for network 

delays and packet dropouts minimization.  The structure of this chapter is as follows:  

An introduction is given in section 6.1.  Section 6.2 focuses on the disadvantages of 

centralized control from an estimator perspective.  Section 6.3 offers a solution to the 

trade-off between scheduling policies and control design complexity by formulating 

the control problem within a distributed scheme.  Global optimality is achieved as 

Nash optimal.  Section 6.4 concerns with the addition of a packet dropout mechanism 

which leads to a suboptimal stochastic controller design.  Sub-optimality constraint is 

removed in section 6.5 by formulating the controller design problem as a multirate 

model predictive control problem.  A case study is presented in section 6.6 to 

demonstrate the performance of the proposed technique. 
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 6.1   Introduction 

 

Connectivity of the control components in a NCS is ad-hoc, only bounded by the 

Information structure availability.  This Information structure, that is connectivity and 

capacity of the communication network [29], offers many types of coordination on the 

system scheme; and leading to real-time implementation of distributed control 

systems.  Distributed Control Systems are control systems composed by several 

subsystems that communicate, coordinate and negotiate with each other to accomplish 

a centralized control objective [29].  This interactions lead to dynamic games where 

each subsystem deploys, through the network, information about their decision 

variables.  In this way global optimal solutions are achieved, but at a cost of 

increasing network traffic load.   

 

Computational issues can be addressed formulating the NCS problem as a Distributed 

control problem.  The Multivariable system is decomposed into m  agents or entities 

that can sense the states of the system and decide upon the values of its control 

variables [29].  The process is observed by single channel modified Kalman filters as 

in [80] and the control objective is formulated as multi-objective optimization 

problem.   

 

Individual decision variables can be forwarded n-steps ahead for network delay 

compensation, leading to Distributed Model Predictive Control approach.  Each agent 

will solve a local and simpler MPC optimization problem, so that the distributed 

system reaches optimality in the sense of Nash optimality at every sampling time [29].    

 

Inherent Network Constraints present on single loops such as: network delays, packet 

dropouts and packet missequencing are more complex for multi-loop NCS. 

Communication channels cannot be compensated independently and more 

importantly, it is unfeasible to make any correlation assumptions among common 

communication links such as network constraints propagation [80].  Lost packets in 

the controller-to-actuator interface can be taken into account by adding packet 

delivery indicators [7].  Their introduction makes the controller design stochastic and 
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furthermore since they are not observable, the separation principle for 

controller/estimator design is not applicable.  Approximated suboptimal solutions can 

be implemented as in [7].  Due to information structure, a packet-dropping rate may 

be known at the system estimation stage if the control signals can be deployed several 

times during the sensor’s sampling time.  This approach allows the application of the 

principle of optimality but leads to a multirate control problem.     

 

In practical applications, sharing a common communication network causes control 

components to be inherently asynchronous or extremely difficult to synchronize [54].   

The implementation of monolithic structures is very common [54] but exhibits heavy 

computational burden in the fusion processes and controllers. Predictive control over 

centralized structures can also be susceptible to poor fault tolerance [29].  

Furthermore, Predictive Control design for NCS is network-dependent.   

 

 

6.2   Multi-loop NCS with Centralized Control 

Scheme 

 

Output observations on multi-loop NCS are asynchronized and unreliable.  Control 

components on multi-loop NCS are distributed across a common communication 

network as presented in Chapter 5 in Fig. 2.5.  Fig. 6. 1 represents a more detailed 

multi-loop centralized NCS, where each control component will inherently be 

affected by its network constraints link.  Assuming that the system can be represented 

by an LTI stochastic multivariable state space model  1 t  as follows: 

       p px t a x t b u t t    (6. 1) 

     py t c x t t   (6. 2) 

 

where   yN
y t R ,   uN

u t R ,   xN
x t R  and all the system matrices pa , pb , pc  are 

of compatible dimensions.    xN
t R  is the process noise,   yN

t R  is the 

measurements noise where: 
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(6. 3) 

 

represents the covariance matrix of the noise with ji  being the Dirac delta.  

Assuming also that system outputs are sampled at the same sampling time 

0

it kh kh  , 1,..., yi N  and 0h  is constant, network traffic makes the information 

arrivals asynchronized and network constraints reduce the observability of the system 

outputs.  Sampling equation (6. 1) at 0h , the expected discrete state space model will 

be: 

       1 p px k A x k B u k k     (6. 4) 

     py k x k k   (6. 5) 

 

where   yN
y k R ,   uN

u k R ,   xN
x k R  and all the system matrices pA , pB , p  

are of compatible dimensions.    xN
k R  is the process noise,   yN

k R  is the 

measurements noise where: 
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    

 
 

(6. 6) 

 

represents the covariance matrix of the noise with  k i   being the Kronecker delta.  

The state initial condition  0x  with mean  0x  and covariance matrix  0  is: 

    

          
0 0

0 0 0 0 0

x

T

x x

E x

E x x



 



         

 

 

(6. 7) 

 

By adding the network induced delays to the individual outputs, the resulting 

networked outputs contain variable sampling intervals as follows: 

    i

i i i i SC iv h k y h k h k   (6. 8) 

1,..., yi N   
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To facilitate the fusion process for the filter  o k  as in Chapter 5, it is necessary to 

implement it as time-driven.  Communication links are assumed to be not correlated 

so the innovation signal can be decomposed and equation (6. 8) is valid.  For time-

driven components, the trigger event that represents either delays or packet dropouts 

is the absence of information arrivals and more importantly the synchronization 

dependence is being removed.  The resulting NCS is present on Fig. 6. 1. 

 

 u t

 1y k

 1v k 1w k

 2 k  o k

 
yNy k

 
yNv k

 y t

 
uNw k

 1u k

 
uNu k

 1 t

 

Fig. 6. 1  NCS Centralized Control Scheme 

 

Larsen’s modified Kalman filter presented in appendix B. 1 can be applied to the 

multi-loop NCS directly.  Nonetheless, there is a restriction to the application of the 

filter, which is that due to time driven components, the correction factor   k  

cannot be updated until all the observations   exV k  with 

     1 ...
y

ex ex ex

NV k v k v k 
 

, are available in the filter. 

 

The innovation process as presented in Chapter 5, equation (5. 13) can be defined as 

follows: 

    ex i

i i SCe k e k k    
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(6. 9) 

 

 *V k  is the observation process in the filter and  max

SC k  is given by: 

      max 1max ,..., yN

SC SC SCk k k    (6. 10) 

 

Three main aspects can be observed from the above equations:  firstly the filter cannot 

tackle single delays, the innovation process for the multi-loop NCS can be computed 

separately; computational burden is as many times higher as the number of outputs; 

finally the controller to be implemented will be monolithic and furthermore, 

information about delays from single compensated loops cannot be forwarded ahead 

to implement model predictive control. 

 

 Traditionally, centralized implementations arise from the need to operate the system 

in an optimal fashion [29], however controller design can be formulated sub-optimally 

by reducing the number of decision variables.  To reduce even more computational 

burden, sensors scheduling policies can be implemented, which extends the filter 

design problem to a sensors network design problem [67].  

 

It is also possible to formulate the controller optimization problem as a multiobjective 

formulation.  The main control problem is transformed to a dynamic game of local 

optimization problems and optimality is reached as Nash optimal [29].  This approach 

leads to distributed NCS formulation as described in the following sections. 

 

6.3   NCS Distributed Control Scheme 

 

Multivariable NCS can be decomposed into ym N  subsystems or single-loop agents 

interconnected to each other as shown in Fig. 6. 2.  The continuous distributed control 

system can be defined as follows: 
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         
1

1
m

i p i p i p j iii i j
j
j i

x k A x k B u k B u k k



      
 

(6. 11) 

     i p i iii
y k C x k k   (6. 12) 

  0
0i ix x   

 

where   1

iy t R ,   ui
N

iu t R ,   xi
N

ix t R .  pii
A , pi

B , p j
B  and pii

C  are matrices of 

compatible dimensions and 1,2,...,i m .   

 

 u t

 1y k

 1v k 1w k

 
yNy k

 
yNv k

 y t

 
uNw k

 1u k

 
uNu k

 1 t

 
1

y

y

N

j

j
j N

w k





 2
yN

k   ,y yN N
o SCk k

 yNap

CA k

 
1
1

yN

j

j
j

w k





 1
2 k   1 1,o SCk k

 
1ap

CA k

 

Fig. 6. 2   NCS Distributed Control Scheme for yN  subsystems 

 

If the capacity of communication and connectivity of the network is not a constraint, 

single loop agents can be estimated as follows: 
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Corolary 6.1 

Let  ˆ 1ix k  , 1,...,i m  represent the conditional mean of  1ix k   given 

observations   ex

iv k  and the remaining decision variables  
1

m

Pj j

j
j i

B w k



  up to and 

including k .  Then  ˆ 1ix k   is modified by a correction factor  iM k  and satisfies 

the following recursion: 

 

              
1

ˆ ˆ ˆ1 ,
yN

ex

i p i p i p j ii SC i p iiii i j ii
j
j i

x k k A x k B w k B w k K k k v k C x k



         

(6. 13) 

   ˆ 0 0
ii xx   

where the Kalman gain and error covariance are functions of the correction factor 

 iM k . 

       
1

,
T T

ii SC p i p p ii SC p ii iii ii ii ii
K k k A M k C C P k k C R 



   
   

(6. 14) 

 

           

 

1 , , ,
TT

ii SC ii SC p ii SC p i ii SCi i i iii ii

T

ii p ii pii ii

P k k k K k k C P k k C R K k k

Q A P k A

        
 

 
 

 (6. 15) 

   0 0ii iiP   

 

where    1

iv k R ,   ui
N

iw k R ,   xi
N

ix k R  and: 

   ˆ1 1i p iii
v k C x k k    (6. 16) 

 

The proof of corollary 6.1 can be derived from appendix B. 1.  The estimated states of 

each agent can now be forwarded ahead to implement local model predictive 

controllers as described in chapter 5, but the cost function should be modified to 

accommodate the information about the decision variables of the other agents. 
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6.3.1   Distributed Model Predictive Control 

 

Distributed Model Predictive Control is aimed to solve a centralized MPC 

optimization problem from a multiobjective formulation.  The original cost function is 

decomposed into yN  agents that represent single components of the multiobjective 

formulation.   

 

The resulting cost function is as follows: 

 
    ˆmin , ,

i
i

w k
J x k W k   (6. 17) 

       
1

1

0 1

. .

ˆ ˆ
yC

c

NH
H l

i c p i p p p jii ii i j
l j

j i

s t

x k H x k k A B w k l B w k l




 


 
       
 
 
 

 
 

 

 

where: 

           
1

1

ˆ ˆ, , , ,

0

1

m

i l l l l j l

l

l

m

l

l

J x k W k J x k w k w k











 









 

 

 

  is a vector of the weighting factors l  that are included to define the influence of 

each local performance index lJ  and  ˆ
i cx k H  is the i-th cH -step ahead predictor.  

If 1l
l i




  and 0l
l i




 , the control problem represents a centralized control problem.  

Therefore the condition 0l   assures that the control problem is an organizational 

problem of ym N  agents and each individual optimal decision depends on the 

information of the decisions of the others [29].  

 

Global optimality will depend on the interconnection between the sub-problems 

which can be solved by means of Nash optimality concept [29]; and is defined as 

follows: 
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Definition 6.1:  a group of control decisions      * * *

1 ... mW k w k w k     is said to be 

Nash optimal if: 

             1 1ˆ ˆ, , , ,q q q q

i i i j i i i i j iJ x k w k w k J x k w k w k 

   
(6. 18) 

 

Definition 6.1 leads to a non-cooperative dynamic game. Every sub-problem is 

optimized recursively based of known information about the optimal remaining 

decision variables from equation (6. 17).  Recursion is kept until all individual 

decisions reach an equilibrium point (attractor) [29]. 

 

An attractor has to rise every sampling time for the optimization problem to be 

optimal.  Information structure of the network is crucial for each agent to solve its 

optimization problem.  Additionally, deploying inter-sampling decision variables 

offers a monitoring mechanism on the controller-to-actuator links.  It can be seen that, 

local optimal inter-sampling decision variables cannot be transmitted to the plant 

because they have not reached global optimality.  To make this transmission possible, 

the original local optimization problems can be reformulated using a known inter-

sampling known rate.  This approach leads to a multirate control design problem.           

 

 

6.4   Controller-to-actuator Packet Dropouts 

Minimization 

 

Packet delivery indicators can be implemented to model packet dropouts on the 

controller to actuator interface.  A packet delivery indicator can be defined as follows: 

 

 1

1 if packet was recieved
1

0 if packet was lost
k


  


 

 

(6. 19) 
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with      11 1 ,..., 1
yNk k k      

 
 being the vector of packet indicators 

 1i k   at the i-th subsystem. 

 

The resulting estimated model would require not only observations about the process 

  ex

iv k  and the decision variables   *W k , but also information about these 

indicators   1k  .  Since decision variables are not acknowledged to the 

controllers, these indicators are not necessarily observable at time k  [7].  

Additionally, this lack of information makes the separation principle inapplicable for 

separate controller and estimator design.  As stated by Babak [7], approximated 

solutions can be obtained by assuming that separation principle is possible.  This 

approach leads to a stochastic control design problem.       

 

A finite horizon approximated control policy for each agent can be expected to be as 

follows: 

       , 1i

k i k i i i kw E x I L k k E x I   (6. 20) 

 

with 1,..., yi N  and       *, , 1ex

k iI v k W k k   .    , 1i iL k k   is the controller 

gain that can easily be the solution of a Receding Horizon Dynamic Game Control 

problem, and  1i k   is the dropping packet rate such that: 

   1 1 1 1k iP k        

   1 0 1k iP k       

 

Since corollary 6.1 shows a recursion algorithm that compensates packet dropouts and 

delays in the sensor-to-actuator interface, packet delivery indicators are only 

necessary in the control inputs.  For Kalman filter with exogenous inputs, if the 

control inputs are kI measurables , so that they depend on the observations of the 

process; and also by using the linear output feedback controller from equation  (6. 20), 

then the process is still Gaussian.  More importantly, the filter covariance is not 

affected by the input packet delivery rates  1k  .  The resulting estimated states 

will be: 



Chapter 6  Distributed Multirate Control for NCS 

 

 

 117 

Theorem 6.1 

Let  ˆ 1ix k  , 1,...,i m  represent the conditional mean of  1ix k   given 

information       , , 1ex

i iv k w k k   and the remaining decision variables 

 
1

m

Pj j

j
j i

B w k



  up to and including k .  Then  ˆ 1ix k   is modified by a correction 

factor  iM k  and satisfies the following recursion: 

           

      

1

ˆ ˆ1 1 1

ˆ,

yN

i p i i p i j p jii i j
j
j i

ex

ii SC i p ii ii

x k k A x k k B w k k B w k

K k k v k C x k

 






     

   


 

 

(6. 21) 

 

with Kalman gain and covariance error determined as in equations (6. 14) and (6. 15) 

respectively. 

 

Proof:  let’s suppose that the solution of   i

i SCx k k  can be expressed as follows: 

       i w i

i i i SCx k k x k x k k      (6. 22) 

 

where  w

ix k  and   i

i SCx k k   are control and process noise delayed inputs states 

respectively.  So far  i

CA k  is still unknown at the filter and is not included in 

equation (6. 22).  The observation process from equation (6. 12) can be reformulated 

using equation (6. 22) for every agent as follows: 

        w i

i p i p i SC iii ii
v k C x k C x k k k        

 

Rearranging terms such that: 

        w i

i p i p i SC iii ii
v k C x k C x k k k        

 

the observation process due to ix  can be defined as follows: 

     w

i i p iii
v k v k C x k     
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      i

i p i SC iii
v k C x k k k       (6. 23) 

 

Applying standard Kalman filter and defining an extrapolated innovation process 

 ex

ie k  for equation (6. 22) as follows:  

    

    
* *

ˆ

ex i

i i SC

i

i p SCii

e k e k k

v k C x k k

 









 

  
 

 

 

Using the definition of  iv k  for extrapolated measurements, then the innovation 

process will be: 

        * *
ˆex w i

i i p i p SCii ii
e k v k C x k C x k k



       

      * *ˆex i

i i p SCii
e k v k C x k k


     

   ex ex

i ie k e k


   

 

This result shows that theorem 6.1 can be applied for distributed systems with input 

packet arrival rates and demonstrates equation (6. 21). 

 

 

6.4.1   Elimination of packet dropouts constraint 

 

So far it is shown that: information about packet arrival indicators   1k   are not 

necessarily observable at time k; the filter recursion is independent of the inputs and 

consequently of a packet dropping rate  ; and more importantly, the separation 

principle cannot be directly applied. 

 

The compensation of packet dropouts on the controller-to-actuator interface, as stated 

by Babak [7] becomes a constraint for controller design.  Nonetheless, the distributed 

control approach for control design requires the controller-to-actuator interface to be 
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able to transmit the control objectives to the other controllers several times within a 

sensor-sampling time 0h . 

  

This decision variables deployment can be used as inter-sampling packet arrival 

indicators   kh h  , with 0
int

h
h

N
 , so that it is possible to define a measurable 

packet dropping index i  at 0t kh  , 1,2,...k  ; and reduce the effects of packet 

dropouts on the actuator by transmitting the locally optimized decision variables to 

the plant. 

 

Updating the decision variables  iw k k  at different sampling intervals of the system 

outputs  iy k , inevitably leads to multirate sampled-data systems.  The input 

multiplicity N, so far depends on the necessary number of iterations for the dynamic 

game to reach the attractor.  N can also be assumed known, so that the control inputs 

can be sampled regularly.  The resulting control law is assumed to be piecewise 

constant in the sampling interval   int int, 1t jh j h   and given by: 

      
00 int 0, 1i i i i khw kh qh L q k h E x I      (6. 24) 

 

with 0,..., 1q N  .  This type of controller is called Multirate constant output 

feedback controller, and its gain  .iL  can be formulated as the solution of a 

continuous MPC problem sampled at time inth  [17]. 

 

 

6.5   Multirate MPC Design for NCS 

 

Implementation of distributed schemes on multivariable NCS, for packet dropouts 

minimization, inevitably introduces inter-sampling behaviour on the loops.  This 

inter-sampling behaviour of the process can be addressed by using sampled-data 

methods.  Sampled-data models present a more realistic model of a control system 
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which contains a continuous plant controlled by a digital control or controllers.   If 

data in such systems are sampled in more than one rate, such systems become 

multirate [17].  

Let’s define a continuous distributed control system as follows: 

       
1

yN

i ii i i i j j

j
j i

x t A x t B u t B u t



    
 

(6. 25) 

   i ii iy t C x t  (6. 26) 

  0
0i ix x   

 

where   1

iy t R ,   ui
N

iu t R ,   xi
N

ix t R .  iiA , iB , jB  and iiC  are matrices of 

compatible dimensions.   

 

To formulate a Multirate MPC for the Distributed NCS sampled-data model, let’s 

assume that state measurements are available and sampled at 0kt kh .  Let’s also 

define a control horizon 0

i

CH h , such that  0 0 0iu kh t kh  , 0

i

Ct H h  .  Thus the 

single rate MPC problem [17] is to design the control input  0 0iu kh t kh , 

00 i

Ct H h  , which minimize the following objective function: 

 
       

0 0 0,0
1

min
y

i
i c

N

T T

i i i ii i i i i j j
khu kh t kh t H h

j
j i

J x t Q x t u t R u t dt J 


  



       

 

  0iiQ  , 0iR   and 0jR  . 

 

Using zero order hold, the objective function can be rewritten as follows: 

 
       

, 0,..., 1
1

min
y

i
i c

N

T T

k i i ii i i i i j k jkhw k j k i H
j
j i

J x t Q x t u t R u t dt J 


  



       

 

The resulting function is a hybrid optimization problem.  Sampling the objective 

function within the interval   0 0, 1hh k h  leads to a N-periodic discrete Residing 
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Horizon problem [17].  The performance index i

kJ  is a function of 0h  and the 

estimates states.  i

kJ  can be written as follows: 

   ˆ ˆ
c

i i T ii

k k i c H i cJ J x k H k Q x k H k     (6. 27) 

 

where  

     
0

0 0exp exp
c

c

ii T

H ii c ii ii c
H h

Q A t H h Q A t H h dt


     
   

 

   
0

exp exp
c

ii T

H ii ii iiQ A t Q A t dt

 
   

 

(6. 28) 

 

Equation (6. 28) resembles a LQR problem where only the states are considered.  

Considering that iiA  is invertible, 
c

ii

HQ  can be found by solving a continuous LMI 

problem: 

0
c c

T ii ii

ii H H ii iiA Q Q A Q    (6. 29) 

 

The solution of 
c

ii

HQ  is independent of the sampling time.   

 

The term i

kJ  can be written as: 

       
  0

0

ck H h
i T T

k i ii i i i i
kh

J x t Q x t u t Ru t dt


     
 

 

Sampling i

kJ  at interval sampling time inth , leads to the following performance index: 

 

 

 

 

1

1

c

T ii i
NH

g gi ii

k Ti i
g i ig g

Q Sx g x g
J

w g w gS R





    
     

     
  

 

(6. 30) 

 

with  

   
int

0
exp exp

h
ii T

g ii ii iiQ A t Q A t dt 
   

 

   
int

0
exp

h
i T

g ii ii iS A t Q H t dt 
   

 

   
0
exp

t
T

i ii iH t A v B dv   
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   
int

0

h
i T

g i ii iR H t Q H t dt     
 

 

The upper limit of i

kJ  is N-periodic and consequently time varying.  To remove this 

periodicity a time-invariant discrete time predictor can be formulated.  Sampling 

equation (6. 25) at time 0h  and considering also inter-sampling time intqh , 

0,..., 1q N  , the discrete system will be: 

       
1

1
yN

ii i j

i q i q i q j

j
j i

x kN q A x kN q B w kN q B w kN q



         

 

forwarding the above equation N-steps ahead gives: 

       
1

0 1

1 1
yNN

N gii ii i j

i q i q q i q j

g j
j i

x kN N A x kN A B w kN N g B w kN N g


 


 
          
 
  

   

 

Adding output states to equation (6. 26) leads to: 

   

   

ˆ 1i i

i i

v kN q v kN

v kN q v kN

  

 
 

 

 

forwarding again N-steps ahead: 

   

   

ˆ

1

i i

i i

v kN N v kN

v kN N v kN

 

  
 

 

 

Then, an augmented model can be formulated using the above results as follows: 

           
1

ˆ ˆ1 1 1
yN

i ii i i i j j

N N i N j N

j
j i

x k A x k k B w k k B w k 



       
 

(6. 31) 

   ˆi ii i

N Nv k C x k  (6. 32) 

 

with: 

 
 

 
ˆ

ˆ

i

Ni

N i

N

x k
x k

v k

 
  
  

, 
0

0

Nii
ii q

ii

A
A

C

 
  
  

, 
0

0

ii

q

ii

A

I

 
   

 
,  
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1 ˆ ˆ ˆNi

ii i ii i iB B B B
   

 
, 

1 ˆ ˆ ˆNj

ii j ii j jB B B B
   

 
, 

 

 ˆ
0

i

q

i

B
B

 
  
 

, ˆ 0ii

ii qC C    , ˆ ˆii

ii iiC C C 
 

   

 

The presence of  1i k   and  1 , 1,..., ,j yk j N j i     shows that equation (6. 

31) is an augmented time invariant model equivalent to the original model sampled at 

time 0h . 

 

Using equation (6. 31), the performance index is also modified as follows: 

 

 

 

 

1

1

ˆ ˆc

T
i iH
N Ni

k i i
g N N

x k x k
J

w k w k





   
    

   
  

 

(6. 33) 

ii i

Ti i

Q S

S R

 
   

  

 
 

 

with :  

     ,..., 1i i i

Nw k w kN w kN N     ,       ,..., 1
T

i i i

N N Nv k v kN v kN N      

 

and: 

1

0

N
Tj j

N g N

j

Q A Q A




  

     
1 1 1 1

1 1

0 0

0 ,..., 1
N N

T T T

N g N N g g N

j j

R B Q B B S S B diag R R N
 

 

         

1

1 1

0 0

N N
T Tj j

N g N g N

j j

S A S A Q B
 

 

    

 

Equation (6. 24) can now be reformulated as follows: 

      1i i

N i i Nw k K k v k   (6. 34) 

 

where:     0 11 ,..., 1i i

i i N iK k K K k 
     . 
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Finally substituting equation (6. 27) into (6. 17), the distributed multirate MPC 

problem will be: 

 
          

1 1

ˆ ˆmin , , , ,
y y

N

N N

i i i j

k N N i k N N N
w k

i j
j i

J x k w k J x k w k w k
 



 
  
 
 
 

   

(6. 35) 

 

The above performance index can be solved by applying dynamic programming in a 

recursive way as follows: 

    
 

       1
ˆ ˆ, , min 1 , 1 ,

N
k N N k k N N

w k
J x k w k J J x k w k        

 

where the terminal condition is: 

      *
ˆ ˆ ˆ,

c c

T ii

k H N c i c H i cJ x k H x k H k Q x k H k       

 

Proof.  For a deterministic case and assuming that   *
ˆ ,

ck H N cJ x k H    is the 

terminal condition at time ck H  with  
c

ii ii

H cQ N H . 

 

For time 1ck H  ,     1
ˆ 1 , 1 ,k Hc N NJ x k Hc w k Hc        will be: 

 

 
 

   
 

 
 

1

1 1
1

1

1
min 1 1

1c c
N c

T T N c

k H N c c k HN
w k H

cN

x k H
J x k H w k H J

w k H
  

 

                     

 

Forwarding the predictor developed in (6. 31) ck H -steps ahead and replacing it into 

the above equation,  1ck HJ     can be written as follows: 

 
 

   
 

 1

1 1
1

1

1
min 1 1

1c
N c

T T N c

k H N c cN
w k H

cN

x k H
J x k H w k H

w k H
 

 

                   

 

 

where that   is: 
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     

      

     

1

1 1 1 1

1

1

1

1 1 1 1

y

j

y

j

y y y y

j j j j

N

T T T

N c N N c N N c N

j

N
T

T T T

N c N N c N N c N

j

T T T
N N N N

T T

N c N N c N N c N

j j j j

Q A N H A S A N H B A N H B

S A N H B R B N H B B N H B

A N H B B N H B B N H B





   

 
  
 
 
 

   
 
 
      
      
       





   

 

 

1 12 13

21 22 23

31 32 33

  

  

  

 
 

 
 
  

 

 

In order to complete the squares in the above matrix, define: 22 12

TL  , such that: 

     
1 111 22 22

T
T T

N N N N N Nx L L x w Lx C w Lx C         

 

then: 

 
1 N Nw Lx C    

with: 

     

    

1 1 1

1 1 1

1

1

1

y

j

T T

N c N N c N

T
N

T T

N c N N c N

j

L R B N H B S A N H B

C R B N H B B N H B







  

 
   

 


 

 

This verifies the solution of the controller using dynamic programming. 

 

The resulting MDMPC algorithm is: 

 

Step 1  Each agent sets its inter-sampling time inth  using input multiplicity  N  

equals to the last iterative index q  that achieved global optimality, 

communicates its decision variables to the others and set 0q  . 

Step 2  Each agent calculates the SD weighting factors  . 

Step 3  Each agent solves its optimization problem (equation(6. 35)). 
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Step 4  Each agent computes its instant control law (equation (6. 34) and 

communicates to the plant and each other.  

Step 5  Each agent checks its terminal iteration condition (equation (6. 18).  If all 

the conditions are satisfied, go to step 4; otherwise go to step 3. 

Step 6  Each agent repeats step 5 until  q N .  If global optimality was not 

achieved, N  is doubled and go to step 2; otherwise go to step 3. 

 

 

6.6   Numerical Example 

 

To test the above algorithm a MIMO LTI will be used.  The system matrix transfer 

function is described as follows: 

 

 

 

 
1 1

2 2

1 1

10 1 7.5 1

1.5 1.5

11 1 8 1

y s u ss s

y s u s

s s

 
     

     
    
   

 

 

As described in [80], if the above system is decomposed into two subsystems, they 

show a strong interaction with a non-cooperative behaviour between them because 

one of the gains is negative. 

 

This example can be used to simulate either decentralized or distributed schemes by 

choosing the value of , 1,2i i  .  Simulations will only be run for the distributed 

example as the algorithm was developed for multivariable NCS rather than Predictive 

Control.  i  is chosen to 0.5.  The resulting subsystems will be:               

Subsystem 1: 1 2
1

10 1 7.5 1

u u
y

s s
 

 
 

Subsystem 2:   1 2
2

1.5 1.5

11 1 8 1

u u
y

s s
 

 
 

 

The simulation is done using Matlab.  A continuous model of the subsystems is built 

in Simulink as shown in Fig. 6. 3: 
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Fig. 6. 3  Block diagram of the Distributed NCS 

  

The network is an Ethernet network implemented by using TrueTime 1.5 simulator.  

Sensors, actuators and controllers are built by using real-time kernels.   Both 

subsystems are sampled at 0 0.1h  .  Actuators update their signals periodically at 

0
int

h
h

N
  , with N  chosen to initially be equal to 10.  Individual filters are updated at 

0h  , whereas controllers at inth .  The network specifications are: 

 

 

For the simulation, packet loss probability is chosen to be 40%, however due to data 

traffic, its value can be bigger.  Reference signals are chosen to be equal to 1 with a 

TYPE CSMA/CD Ethernet 

Speed 10Mbps 

Packet size 80 bits 

Packet Loss probability Variable 
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change in reference at t = 30 seconds.  Simulation results are presented in Fig. 6. 4. 

and Fig. 6. 5 

 

 

Fig. 6. 4  Subsystem 1: output response due to change in reference signal. Comparison 

between estimated output and real output 

 

 

Fig. 6. 5  Subsystem 2: output response due to change in reference signal. Comparison 

between estimated output and real output 

 

It can be seen that due to the time driven nature of the filter, the estimated outputs are 

delay-free responses.  On the other hand, real outputs are delayed 

   0 SC CAt th k k     times.  Both outputs show good tracking response.  Process 

and measurement noise have been filtered before the control law calculation, thus 

what it seems to be noisy signals are in fact the effects of compensating controller-to-

actuator packet dropouts.  Output response of subsystem 2 is also nonnegative due to 

its forwarded control law.  There exists a difference between the estimated responses 

and the real responses because the packet drops indicator is also considered in the 
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estimated system althought the estimated system is not affected by packet dropouts.  

Controller outputs are shown in Fig. 6. 6 and Fig. 6. 7. 

 

 

Fig. 6. 6  Subsystem 1: control signal 1 applied to the real subsystem after the network 

delays 

 

 

Fig. 6. 7  Subsystem 2: control signal 2 applied to the real subsystem after the network 

delays 

Due to the 40% packet loss probability, it can be seen that control signals are not 

smooth.  Peaks represent the controller compensation due to packet loss. These 

signals reach the time-driven actuators at  0 CAt th k  .  Control signal 1 shows a 

considerably high initial peak due to the negative gain present in the subsystem.  

Control signal 2 initial peak shows an initial increment followed by a sudden decrease 

immediately after control signal 1 increase drastically.  This is the effect of the Nash 

optimal to keep stability and provide cooperation between both subsystems.  
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6.7   Conclusions 

 

The proposed methodology decomposes a multivariable NCS into ym N  

subsystems in order to compensate single-loop network delays.  Distributed control 

leads to multiobjective optimization problems that reduce the computational burden of 

the filter and controller calculation.  Individual subsystems can forward the calculated 

i-th sensor-to-controller delay to implement Predictive control methodologies and 

compensates i-th controller-to-actuator delays.  The proposed methodology is 

formulated as multirate to reduce the effects of packet dropouts in the controller-to-

actuator interface.  During inter-sampling intervals every agent reaches local 

optimality and controls its subsystem.  Global optimality is achieved in the sense of 

Nash and therefore the overall multivariable NCS can be controlled. 

 



 

 

 

Chapter 7 

  

 

Final Conclusion and Future work 

  

 
Integrated Methods for Control of NCS were proposed in this thesis.  Suitable 

approximations of the NCS problem as time-varying, asynchronized and distributed 

systems are used to develop non-recursive and recursive Control and Estimation 

methodologies.  Control system components are mostly considered as time-driven 

components.  The resulting methodologies are applied to single-loop and multi-loop 

NCSs.  Reasons that motivated these assumptions and results as well as suggestions 

for future work are addressed in the following sections.         

 

 

 

7.1   Main Conclusions 

 

Any attempt of using a communication network to exchange information among 

control components (sensors, actuators and controllers) can be classified as 

Networked or Networked-based Control Systems.  NCS applications usually present 

poor stability and performance degradation.  Performance degradation has been the 

main concern in this thesis.   

 

The first contribution of the research work addressed a delay-dependent stabilizability 

approach to design structured controller for NCS using implicit model transformation 

of a Lyapunov-Krasovskii functional and the pdf of the network delay.   To achieve 
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good performance, it was necessary to incorporate only a portion of the delay 

distribution.  The incorporation of the reduced region of the pdfof the delay led the 

research to areas of probabilistic design for control. 

 

The second contribution of the thesis is the implementation of a bad data detector and 

its combination with Larsen’s modified Kalman filter.  On time-driven components 

the resulting estimation methodology can calculate and compensate network delays 

and packet dropouts in the sensor-to-controller interface. These calculations also 

facilitated the implementation of Optimal control with predictor-like model 

transformation and Predictive control methodologies with forwarded control signals 

to fully compensate the round trip network delay. 

 

 Without information about the transmitted control signal, it is almost impossible to 

compensate controller-to-actuator packet dropouts during the control calculation.  The 

third contribution of this thesis is the use of packet delivery indicators over multirate 

controllers to count and compensate packet dropouts in the controller-to-actuator 

interface.  The resulting methodology has to be implemented on multivariable NCS 

after decoupling the overall system into single-loop subsystems leading to a 

distributed structure for NCS.  The proposed methodology incorporates DMPC 

together with multirate systems control design and Nash optimality to achieve a 

DMMPC methodology that stabilizes multivariable NCS and fully compensates 

network constraints. 

 

Finally to fully deploy the network capabilities, NCS can be considered as the 

integration between Distributed Control, Sensor Networks and Communication 

Networks, where the trade-off between communication errors, transmission rates and 

protocols constitutes a main limitation for control and estimation.  A final 

contribution of this research work is a critical review of the state of the art of NCS 

that addresses the motivations behind the use of  each of the control methodologies 

within the NCS control problem.    
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7.2   Future work 

 

The research work done in this thesis showed the applicability of recursive 

methodologies to address the computational issues involved in NCS.   Research areas 

involving recursive methodologies are worth to be investigated in the near future.  

Additionally aspects such as nonlinearities and constraints correlation can be 

incorporated in the controller design as follows: 

  

1. Missequencing in NCS.  It was stated that network delays longer than the 

sampling time makes the delivered packets to be out of order.  Coherent  

data analysis can be exploited to improve the robustness of the control 

methodologies proposed in this thesis. 

  

2. Adaptive Control methodologies for NCS.  For fast NCS applications can 

offer reliable parameter adjustment as well as controller-to-actuator delay 

compensation.  Model Predictive Control speed depends on the control 

horizon, thus adaptive control is a good candidate to replace the optimal 

controllers developed in this thesis. 

 

3. Bayesian estimators for nonlinear NCS.  It was stated that for linear 

stochastic systems the delays do not affect the distribution of the 

disturbances.  If network constraints such as channel capacity and 

quantization are considered, more general estimation methodologies 

should be considerd.      

 

4. Markov jump systems.  The use of the bad data detector combined with the 

filter revealed an adaptation mechanism for modelling controller-to-

actuator network delays and packet dropouts.  Furthermore if it is possible 

to prove a direct correlation between network constraints, a composite 

model can be determined as Markov Jump system.  Controller design for 

jump linear NCS have been studied but none of the studies uses a 

composite model of the constraints. 
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5. Dynamic bandwidth allocation.  Real-time systems depend on the network 

allocation.  Incorporating dynamic bandwidth allocation in the controller 

design can allow the development of better control methodologies for 

multivariable NCS and a plausible control of the network. 

 



 

 

 

References 

 

[1]    Addelzaher, T.F., Atkins, E.M., Shin, K.G.: "QoS negotiation in real-time 

systems and its application to flight control", IEEE Transactions on Computers, 

2000. 

[2]    Almutairi, N.B., Chow, M.Y., Tipsuwan, Y.: "Network-based controlled DC 

motor with Fuzzy compensation", The 27
th

 Annual Conference of the IEEE 

Industrial electronics society (IECON 01), Denver, CO., 2001. 

[3]    Anon: "Scale communicates via Profinet", Prof. Eng., 2004. 

[4]    Artstein, Z.: “Linear Systems with Delayed Controls: A reduction”, Auomatic 

Control, IEEE, 1982.  

[5]    Åstrom K. J., Wittenmark B.: "Computer controlled systems, Theory and 

Design".  Prentice Hall information and System Science Serires.  1990. 

[6]    Aswin, N., Venkat, J., Rawlings, B., Wright, S.: "Stability and optimality of 

distributed model predictive control", Proceedings of the 44
th

 IEEE Conference 

on Decision and Control, and the European Control Conference, December 

2005. 

[7]     Babak, A.: “Stability of Networked Control Systems in the Presence of Packet 

Losses”.  42
nd

 IEEE conference on Decision and Control Proceedings, 2003  

[8]     Balderud, J., Giovanini, L., and Katebi, R.: "Distributed Control Design for 

Underwater Vehicles".  ImechE Proceedings, Part M: Journal of Engineering of 

the Maritime Environment, 2008.  

[9]     Basin, M., "New trends in Optimal Filtering and Control for Polynomial and 

Time-delay Systems".  Lecture Notes in Control and Information Science.  

2008.   

[10]   Beldiman O., Bushnell L., Walsh G.: "Predictors for Networked Control 

Systems", Proceedings of the American Control Conference, Chicago, Ill. June 

2002. 

[11]   Beldiman O., Bushnell L., Walsh G., Wang H., Hong Y.: "Perturbation in 

Network Control Systems", Proceedings of ASME-IMECE’01, New York, USA 

November 2001. 

[12]   Bollot J. C.: "Characterizing End-to-End Packet Delay and Loss in the Internet 

Journal of High-Speed Networks", pp. 289 – 298, Sigcomm 1993. 

[13]   Boukas, E.: “Deterministic and Stochastic Time-Delay Systems”, Springer-

Verlag New York, Inc, 2002. 



  References 

 

 136 

[14]   Bryson, A., Ho, Y.: "Applied Optimal Control: Optimization, Estimation and 

Control”.  Taylor & Francis, 1975.   

[15]   Brockett R. W., Liberzon D.: "Quantized Feedback Stabilization of Linear 

Systems", IEEE Transactions on Automatic Control, Vol. 45, No 7, July 2000. 

[16]   Brockett R. W.: "Minimum attention control", Proceedings of the IEEE 

Conference on Decision and Control, San Diego, California, USA, December 

1997. 

[17]   Cao, Y., Hu, L., Frank, P.: “Model Predictive Control via Piecewise Constant 

Output Feedback for Multirate Sampled-data Systems”, Proceedings of the 39
th

 

IEEE, Conference on Decision and Control, Sydney, Australia, December, 2000. 

[18]   Chang H., Özgüner Ü.: "Closed loop control of systems over a communication 

network with queues", International journal of Control, 1995 

[19]   Chang, K., Lee, S.: "Remote Controller Design of Networked Control Systems 

using Genetic Algorithms", ISIE, Korea, 2001. 

[20]   Comer D. E.: "Computer Networks and Internet", International Edition Prentice 

Hall,  1999 

[21]   Dai, J., Cui, B.: “A new delay systems approach to quantized networked control 

systems”, Manuscript draft, Jiangnan University, 2008 

[22]   Delchamps D. F.: "Stabilizing a Linear system with quantized state feedback", 

IEEE Transactions in Automatic Control, Vol. 35, No 8, August 1990. 

[23]   Ekanayake M.M., Premaratne K., Douligeris C., Bauer P.H.: "Stability of 

Discrete-Time Systems with Time-Varying Delays", In proc. American Control 

Conference, Arlington, VA, 2001. 

[24]   Elia N., Mitter S. K.: "Stabilization of Linear Systems with Limited 

Information", IEEE Transactions on Automatic Control, Vol. 46, No 9, 

September 2001. 

[25]   Fang, Y.: “A New General Sufficient Condition for Almost Sure Stability of 

Jump Linear Systems”, IEEE Transactions on Automatic Control, Vol. 42, No. 

3, March 1997. 

[26]   Fang, L., Wu, Z.: “Fuzzy immune self regulating PID control for 

Communication networked Control Systems”, International Conference on 

Computational Inteligence for Modelling Control and Automation and 

International Conference on Intelligent Agents Web Technologies and 

International Commerce (CIMCA'06).  2006. 

[27]   Franklin G. F., J. D. Powell: "Digital control of Dynamic systems".  Ellis-Kagle 

Press, 1998. 

[28]   Ghude, S.: "Design a PID Controller with Missing Packets in a Networked 

Servo-System", Master dissertation, University of Southern Queensland, Faculty 

of Engineering and Surveying.  March, 2007. 

[29]   Giovanini, L., Balderud, J.: "Game approach to distributed Model Predictive 

control", UKACC group.  Control Conference, 2006. 



  References 

 

 137 

[30]   Göktas, F.: "μ-Synthesis for Distributed control of systems with Network 

Induced Delays", Proceedings of the 35
th

 Conference on Decision and Control, 

Japan, 1996. 

[31]    Goodwin, G., Sin, K., "Adaptive Filtering Prediction and Control".  Prentice 

Hall Information and System Sciences Series.  2009. 

[32]   Halevi Y., Ray A: "Integrated communication and control systems, Part I-

Analysis", Journal of Dynamic Systems, Measurements and Control, Vol. 110, 

pp. 367-373, December 1988. 

[33]   Hong S.: "Scheduling algorithm of data sampling time in the integrated 

communication and control systems", IEEE transactions on Control Systems 

Technology, 1995. 

[34]   Hong S., Kim W.  : "Bandwidth Allocation scheme in CAN protocol", IEE 

proceedings- Control Theory and Application, 2000. 

[35]   Hoyakem, P., Abdallah, F., Chaouki, T.: "Networked Control Systems: A 

sampled-data Approach", IEEE International Symposium on Intelligent Control, 

Houston , Texas, USA, October 2003. 

[36]   Hokayem Peter F., Addallah Chaouki T.: "Inherent Issues in Networked Control 

Systems: A survey", Proceedings in the American Control Conference, Boston, 

Massachusetts, July 2004. 

[37]   Hörjel A.: "Bluetooth in control", MS thesis, Department of Automatic Control, 

Lund Institute of Technology, Lund, Sweden, 2001. 

[38]   Hristu D., Morgansen K.: "Limited Communication Control", Systems and 

Control Letter, 1999. 

[39]   Hu, Z.S., Zhu, Q.X.: "Stochastic Optimal Control and analysis of stability of 

networked control systems with long delay", Automatica, 2003. 

[40]   Jain R., Simsek T., Varaiya P.: "Control under Communication Constraints", 

Proceedings of the IEEE Conference on Decision and Control, Las Vegas, 

Nevada, pp.3209-3216, December 2002. 

[41]   Jansen D., Buttner H.: "Real-time Ethernet – the EtherCAT solution", 

Computing & Control Engineering Journal, 2004. 

[42]   Ji, K., Kim, W.: “Robust Control of Networked Control Systems with 

Admissible Parameter Uncertainties”, International Journal of Control, 

Automation and Systems, vol. 5, August 2007. 

[43]   Katayama, T.: “Subspace Methods for System Identification”, Springer-Verlag, 

January 2005, Japan. 

[44]   Kharitonov, V., Gu, K., Chen, J.: “Stability of Time-Delay Systems”.  

Birkhäuser, Technology and Engineering, 2003. Pg. 10-15. 

[45]   Kim Y., Kwon W., Park H.: "Stability and scheduling method for network-

based control systems", the 22dn Annual Conference of the IEEE industrial 

electronics society, Taiwan, 1996. 

[46]   Kim Y., Kwon W., Park H.: "A scheduling method for Network-based Control 

systems", Proceedings of the American Control conference, 1998. 



  References 

 

 138 

[47]   Krtolica R., Özgüner Ü., Chan H., Göktas H., Winkelman J., Liubakka M.: 

"Stability of linear Feedback Systems with random communication delays", 

International Journal of Control, Vol. 59, No 4, 1994. 

[48]   Kun, J., Kim, W.: “Robust Control for Networked Control Systems with 

Admissible Parameter Uncertainties”, International Journal of Control, 

Automation and Systems, Vol. 5, No. 4, pp.373-378, August 2007. 

[49]   Kwon, W., Han, S., “Receding Horizon Control: Model Predictive Control for 

state models”.  Springer, Technology and Engineering, 2005 

[50]   Lakshmikantham, V., Leela,S., Martynyuk, A.: “Practical Stability of Nonlinear 

Systems”,  Syngapore, World Scientific, 1990. 

[51]   Larsen, T., Andersen, N., Ravn, O., Poulsen, N.: “Incorporation of Time 

Delayed Measurements in Discrete-time Kalman Filter”.  Proceedings of the 

37
th

 IEEE Conference on Decision and Control, 1998. 

[52]   Leite, V., Tarbouriech, S., Peres, P.: “A convex approach for robust state 

feedback control of discrete-time systems with state delay”, Proceedings of the 

2004 American Control Conference, Boston, Massachusetts, July 2004. 

[53]   Lian F., Moyne J., Tilbury D.: "Performance Evaluation Control Networks: 

Ehternet, ControlNet and DeviceNet", Technical report UM-MEAN-99-02, 

Febrary 1999. 

[54]   Lian F., Moyne J., Tilbury D.: "Analysis and Modeling of Network Control 

Systems: MIMO case with multiple delays", Proceedings of American Control 

Conference, Arlington, Virginia, June 2001. 

[55]   Li, B., Nahrstedt, K.: "A control-based middleware framework for quality-of-

service adaptations", IEEE Journal on selected Areas in Communications, 1999. 

[56]   Li, S., Wang, Z., Sun, Y.:  “A novel Auto-tuning Robust PID controller for 

Communication networked Control Systems”.  The 29
th

 Annual Conference of 

the IEEE, Industrial Electronics Society, IECON, 2003. 

[57]   Liberzon, D.: “On Stability of linear systems with limited information”, IEEE 

Transactions in Automatic Control, Vol. 50, 2005. 

[58]   Liou, L.W, Ray, A.: "Integrated communication and control systems: Part III-

nonidentical sensor and controller sampling", Journal of Dynamic Systems, 

Measurements and Control, 1990. 

[59]   Liu X., Goldsmith A.: "Wireless communication tradeoffs in Distributed 

Control", Submitted to the First International workshop on Sensor Network 

Protocols and Applications (SNPA 2003). 

[60]   Liu G. P., Rees D., Chai S. C., X. Nie Y.: "Design, Simulation and 

Implementation of the Networked Predictive Control Systems".  IEEE 

Proceedings on Networking, Sensing and Control, 2005. 

[61]   Liu, G. P., Mu, J. X., Rees, D., Chai, S. C., “Design and stability of Networked 

Control Systems with random communication time delay using modified MPC”, 

International Journal of Control, April 2006. 

[62]   Low,S., Paganini, F., Doyle, J.: “Internet congestion control”, IEEE Control 

systems Magazine, February 2002. 



  References 

 

 139 

[63]   Luck R., Ray A.: "An observer-based compensator for distributed delays", 

Automatica, 1990. 

[64]   Luck R., Ray A.: "Experimental verification of a delay compensation algorithm 

for integrated communication and control systems", International journal of 

control, 1994. 

[65]   Mahmoud, M.: “Robust Control and Filtering for Time-Delay Systems”.  

Marcel Dekker, Technology & Engineering.  New York, 2000. 

[66]   Matveev A. S., Savkin A. V.: "Optimal LQG Control via Limited Capacity 

Communication Networks", Proceedings of the IEEE Conference on Decision 

and Control, Las Vegas, Nevada, pp.4047-4052, December 2002. 

[67]   Matveev and Savkin: “Estimation and control over communication networks”.  

Book, Birkhäuser, 2009. 

[68]   Montestruque L. A., Antsaklis P. J.: "Stochastic Stability for model-based 

Networked control Systems", Proceedings of American Control Conference, 

Denver, CO. 2003. 

[69]   Mukherjee, A.: “On the Dynamics and Significance of Low Frequency 

Components of Internet Load”.  Techincal Report, CIS.  University of 

Pensylvania, December, 1992. 

[70]   Nahi, N.: “Optimal Recursive Estimation with Uncertain Observation”, IEEE 

Transactions on Information Theory, July, 1969.  

[71]   Nair G. N., Evans R. J.: "Mean square stability of stochastic linear systems with 

data rate constraints" Proceedings of the IEEE Conference on Decision and 

Control, Las Vegas, Nevada, pp. 1632-1637, December 2002. 

[72]   Nilsson, J.: "Real-time control systems with delays", Ph.D. dissertation, Lund 

Institute of Technology, Department of Automatic Control, 1998. 

[73]   Ohlin, M., Henriksson, D., Cervin, A.: "True Time 1.5–Reference Manual", 

Department of Automatic Control, Lund University, January 2007. 

[74]   Oppenheim A. V., R. Schafer W., Buck J.R.: "Discrete-Time Signal 

Processing".  Prentice-Hall Signal Processing Series, 1999. 

[75]   Orderud, F., "Comparisson of Kalman Filter Estimation Approaches for State 

Space Models with Nonlinear Measurements".  Proceedings of Scandinavian 

Conference on Simulation and Modelling, SIMS 2005. 

[76]   Orham Imer Ç, Yuksel Serdar, Başar Tamer: "Optimal control of LTI systems 

over unreliable communication links".  Automatica, Journal of IFAC, 2006. 

[77]   Pahjola Michael: "PID Controller Design for Networked Control Systems", 

Master’s thesis for the degree of Master of Science in Technology, Espoo, 9. 

January, 2006.  

[78]   Pahjola, M., Koivo, H.: “Measurement Delay Estimation for Kalman Filter in 

Networked Control Systems”, Proceedings of the 17
th

 World Congress IFAC, 

2008. 

[79]   Recalde, L., Katebi, R., "Networked PID control Design: A Pseudo-

Probabilistic Robust Approach", IFAC, 2009. 



  References 

 

 140 

[80]   Recalde, L., Katebi, R.: “On Estimation Approach of Networked Control 

Systems”, IFAC, 2010.  

[81]   Richard, J.: “Time-delay Systems: an overview of some recent advances and 

open problems”, Automatica, Vol. 39, April 2003.  

[82]   Ryu, S., Cho, C.: “PI-PD-controller for robust and adaptive queue management 

for supporting TCP congestion control”, Proceedings of the 37
th

 Annual 

Simulation Symposium, IEEE, 2004. 

[83]   Sahai A.: "Evaluating Channels for Control: Capacity Reconsidered", 

Proceedings of the American Control Conference, Vol. 4, pp. 2358-2362, 2000. 

[84]   Seiler P., Sengupta R. "Analysis of Communication Losses in Vehicle control 

problems", Proceedings of the American Control Conference, Arlington, VA, 

pp. 1491-1496, 2001. 

[85]   Silva, G.: “PID controllers for Time-delay systems”.  Birkhäuser, Technology 

& Engineering, 2004 

[86]   Sinopoli, B.: “Kalman Filtering with Intermittent Observations”, Proceedings of 

the 43rd IEEE Conference on Decision and Control, Maui, Hawaii, 2003.  

[87]   Stankovic, J.: “A Serious Problem for Next-Generation Systems”, IEEE, 

Computers, 1988. 

[88]   Tatikonda S. C.: "Control under communication constraints", IEEE 

Transactions on Automatic Control, 2004. 

[89]   Tipsuwan, Y., Chow, M.-Y.: "Network-based controller adaptation based on 

QoS negotiation and deterioration", The 28
th

 Annual Conference of the IEEE 

Industrial electronics society (IECON 02), 2001. 

[90]   Tipsuwan, Y., Chow, M.: "Control Methodologies in networked control 

systems", Control Engineering practice 11, February 2003 

[91]   Tipsuwan, Y., Chow, M.Y.: "Gain scheduler middleware: a methodology to 

enable existing controllers for network control and teleoperation – Part I: 

networked control", IEEE Trans. Ind. Electron., 2004. 

[92]   Velasco, M., Marti, P., Villa, R., Fuertes, J.: “Stability of Networked Control 

Systems with Bounded Sampling Rates and Time Delays”, 31
st
 Annual 

Conference of IEEE, Industrial Electronics Society, IECON 2005. 

[93]   Verriest E., Egerstedt M.: "Control with Delay and Limited Information", 

Proceedings of the IEEE Conference on Decision and Control, Las Vegas, 

Nevada, pp.1231-1236, December 2002. 

[94]   Walsh G. C., H. Ye, Bushnell L. G.: "Stability analysis of networked control 

systems", IEEE Trans. Control Syst. Technol., pp. 438-446, 2002. 

[95]   Wang S.H., Davisson E.J.: “On the Stabilization of Decentralized Control 

Systems”, IEEE Trans. Automatic Control (18), 1973. 

[96]   Wang J. G., Ravindran B.: "Time-utility function-driven switched Ethernet: 

packet scheduling algorithm, implementation and feasibility analysis", IEEE 

Trans. Parallel Distrb. Syst., pp. 119-133, 2004. 

[97]   Wang fei-yue, Liu derong: “Networked control systems: theory and 

applications”.  Springer-Verlag, 2008. 



  References 

 

 141 

[98]   Wing, S., Brockett, R.: “Systems with Finite Communication Bandwidth 

Constraints-II: Stabilization with Limited information feedback”, IEEE 

Transactions on automatic Control, Vol. 44, No. 5, May 1999. 

[99]   Wood Anthony D., Stankovic John A.:  "Denial of Service in Sensor 

Networks", IEEE proceedings in Computers, October 2002. 

[100]   Xu, M., Li, S., Qi, C., Cai, W,: "Auto-tunning of PID controller parameters 

with supervised reciding horizon optimization", ISA transactions, 2005.  

[101] Yang T. C.: "Networked Control Systems: a brief survey", IEE proceedings in 

Control Theory and Application, Vol. 153, July 2006. 

[102] Yang, F., Wang, Z., Hung, S., Gani, M.: "H∞ Control for Networked Systems 

with Random Communication Delays", IEEE transactions on Automatic 

Control, March 2006. 

[103]  Ye H., Walsh G., Bushnell L.: "Wireless local area networks in the 

manufacturing industry", Proc. Amer. Control Conf., Chicago, IL, 2000 

[104]  Yook J.K., Tilbury D. M., Soparkar N.R.: "A design methodology for 

distributed control systems to optimize performance in presence of time delays", 

Proceedings of the 2000 American Control Conference. 

[105]  Yuanqing Xia, Chen, J., Liu, G.P., Rees, D.: "Stability Analysis of Networked 

Predictive Control Systems with random Network Delay", Proceedings of the 

IEEE International Conference on Networking, Sensing and Control, London, 

UK, 2007. 

[106]  Zhao, Y.: “Packet-Based Control for Networked Control Systems”, PhD thesis, 

University of Glamorgan, Prifysgol Morgannwg, pp. 22-29, May 2008. 

[107]  Zhang W., Branicky M., Phillips M.: "Stability of Networked Control 

Systems", IEEE Control Systems Magazine, 2001. 

 



 

Appendix A 
 

A.1   Controller State-Space formulation  

 

Having the following transfer function: 
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(A. 1) 

 

define the following states: 
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assuming that linear relation holds so that    w k e k , then equation (A.1) can be 

expressed in state- space for as follows: 
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And 
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A.2   Implicit Transformation of a Lyapunov-Krasovskii functional 

 

Lyapunov-Krasovskii functional for time delayed systems can be defined as follows: 

      :
T

V P          (A. 4) 

 

Knowing that the difference of a series is: 
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then the standard Lyapunov-Krasovskii functional can be expressed as follows: 
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(A. 6) 

 

using the same approximation as in  (A.5) into (A.4), equation (A.6) can be given by: 
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Additionally, it can be considered that the following inequality:  
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can be used in    1 0V   such that: 
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then: 
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A. 3   Linear Matrix Inequalities (LMI) 

 

A Linear Matrix Inequality (LMI) is a set of n  polynomial inequalities in a variable 

mx R .  This set has the form: 
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with 
T n n

i iF F R R    being positive definite such as   0Tu F x u  . This is a strict 

LMI and represents a convex constraint on x .  Depending of the nature of these 

constraints the form can vary from linear inequalities, quadratic inequalities, matrix 

norm inequalities; to particular inequalities that arise in control theory such as 

Lyapunov inequalities and convex quadratic matrix inequalities.  Nonlinear 

inequalities are also possible.  Nonlinear as well as quadratic inequalities can be 

converted to a Linear LMI form by using Schur complements.  The transformation is 

as follows: 

 

Having an LMI of the form: 

   

   
0

T
Q x S x

S x R x

 
 

  

 

 

  with    
T

Q x Q x ,    
T

R x R x  and  S x  depending affinely on x , the 

following representation is possible: 

  0Q x  ,        
1

0
T

Q x S x R x S x


  . 

 

Schur complement is useful because the LMI problems arising in Control are 

sometimes quadratic.  The variable x  is a random variable chosen to demonstrate the 

theory of LMIs and has no connection with the variables used to describe the NCS 

problem. 

 

There are some standard convex problems that arise in LMI theory such as: 

 Feasibility problem, where given a LMI, the problem is to find a feasible feasx , 

such as   0feasF x   or probe infeasibility.  This problem arises either as 

stability or Stabilizability test. 

  

 Eigenvalue problem, where the problem is to minimize the maximum 

Eigenvalue of a matrix associated to the variable x , subject to a LMI 

constraint, or to determine that the constraint is infeasible.  This problem is 

stated as follows: 
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   

min

0 0. . I A x B xs t



   
 

 

 A x  and  B x  are symmetric matrices that depend affinely on x .  In control   

theory such problems arise at 2L   and RMS  gains. 

 

 Generalized Eigenvalue problem, where the problem involves the 

minimization of the maximum generalized Eigenvalue of a pair of matrices.  

This problem appears on decay rate for bounded stability and is defined as 

follows: 
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min

0 0 0. . B x A x B x C xs t


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The above LMI problems constitute convex optimization problems for strict LMIs.  

For nonstrict LMIs   0F x   , it can be stated that the feasible set of the nonstrict 

case is the closure of the strict LMI, so that it is sufficient to solve the strict LMI 

problem. 

 

A way to describe a LMI is through differential inclusions (DI). A differential 

inclusion is described as follows: 

 

  ,x F x t t  ,   00x x  

 

 where  F   is a set-valued function on nR R  and any : nx R R   that satisfies the 

differential inclusion is its solution.  Using a standard result called the Relaxation 

theorem, it can be stated that  ,F x t  is a convex set for every x  and t . So that the DI 

can be defined by: 

  ,x F x t tCo  
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Differential inclusions can also be described by a family of linear systems x x , 

where n nR R   can be time-invariant, time-varying or polytopic.  Thus, a LDI can 

be generalized as a Linear State-Space System with inputs and outputs. 

     

 

,x A t x B t u A t

y C t x

  
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(A. 9) 

 

State properties as well as input-output properties of the resulting LDI can be 

described as LMI problems. 

 

 

a. Feedback Synthesis for LDIs 

 

Feedback Controller design can be stated by using either state or input-output 

properties.  The simplest design method is Quadratic Stabilizability.  In terms of 

linear systems theory, Stabilizability is equivalent to the condition that every unstable 

mode can be controllable with a controller of the form    u t Kx t .  Here  u t   is 

the control signal,  x t  are the states of the system and K  is the state-feedback gain 

that can be either static or dynamic. 

 

The system described in (A. 9)is said to be quadratically stabilizable, if there exists a 

state-feedback gain K   such that the closed loop system derived as follows: 

     x t A BK x t   

 

and having a quadratic function   TV P   , 0P  ; is quadratically stable and 

consequently stable. 

 

Using    V V x  , where  V x  is a quadratic Lyapunov function, the function 

decreases along every nonzero trajectory of (A. 9) and is derivate is negative such 

that: 

    0
T

A BK P P A BK     
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this condition is not jointly convex in K and P, but changing variables as follows: 

1: :Q P Y KQ   , and using the new variables, the above condition becomes: 

0T T TAQ QA BY Y B     

 

This condition is LMI in Q and Y and is feasible if there exist 0Q   and Y .  The 

control signal will be:    1u t YQ x t . 

 

The above condition can be reduced in number of variables by using the following 

elimination matrix method: 

 

Consider the following inequality: 

          0
T TTG z U z XV z V z X U z    

 

by using the Finsler’s lemma the above condition can expressed as the following 

form: 

      0
T

G z U z U z   

 

Using this result, the condition for Stabilizability can be expressed as follows: 

0T TAQ QA BB    

 

and without loss of generality,  it is possible to choose 1  .  The resulting gain will 

be: 

1

2

2

T

T

BY BB

K B Q



 

 

 
  

 

 

 

For time delayed systems, stability and stabilizabity requires the construction of a 

Lyapunov-Krasovskii functional  , tV t x . This functional will include the delay-free 

states as well as the delayed states.  The simplest functional is of the form: 

         
t

T T

t

t

V x x t Px t x Px d


  


    
 

(A. 10) 
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Hence, Stabilizability is achieve if the following condition is feasible: 

0
T

T T

AQ QA Q BY

Y B Q

  
 

 
 

 

(A. 11) 

 

For discrete time systems the same ideas can be applied. 
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Appendix B 
 

B. 1   Larsen’s Modified Kalman filter 

 

Consider the system and observations process model given in (5. 1) and (5. 14) 

respectively, with initial conditions as given in equation (5. 4) and jointly Gaussian 

initial state and noise sequences (process and measurements).  Let  ˆ 1x k   represent 

the conditional mean of  1x k   given observations   exv k  up to and including 

k .  Then  ˆ 1x k   is modified by a correction factor  M k  and is given by 

calculating the first two moments as follows: 

 

 

 

 

 

 

 

 

 

   

*

1

*

1

*

1 1

ˆ0 0

0 0 0

ˆ
0

x k

kv

p p

p

p p

p

k x k F
E

v k Fk

x k

x kA I B
E w k

C I k

k

A B
x k w k

C













      
    

      

  
  
     

      
    

    

   
    

  

 

 

   

   

   

   

   

    

1 111 12

* * * *
21 22 1 1

1 1 1 1
T

k k

k k

T T

p p p p

T T

p p p SC p

x k E x k F x k E x k FP P
E

P P v k E v k F v k E v k F

A P k A Q A M k C

C M k A C P k k C R

 

 

                   
      
                 

 
  

   

 

 

There is a correlation between the delayedSC   estimated state error and the 

estimated error at time k .  This correlation is represented by a correction factor 

 M k .   Then the recursion given by (5. 16) and (5. 17) immediately follows from 

the application of equations   (5. 8) and (5. 9). 
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The correction factor  M k  depends on the estimation error dynamics.  Its 

calculation is presented as follows: 

 

Let the correction factor be defined as follows:      T

SCM E x k x k k   then 

SC delayed  correlation is given by: 

      * SCM k M k P k k   (B. 1) 

   
  1

*

0

SC k

p p

i

M k A K k i C

 



      
 

(B. 2) 

 

The proof is given using equation (5. 5) and knowing that the state error at time k  is  

     ˆx k x k x k  , state error  1x k   at time 1k   will be:  

           1 p px k k A K k C x k K k k k          

 

then from  SCk k  to k , through SC  successive time steps, the estimation error 

becomes [51]: 

      
 

     
  11

00

SCSC kk

p p SC

ii

x k A K k i C x k k k i K k i k i


  




                

(B. 3) 

 

The noise sequences  k  and  k  are not correlated with the state  x k  and 

consequently the correction factor can be calculated as follows: 

         
 

     
1

0

SC k
TT

SC p p SC SC

i

M k E x k x k k E A K k i C x k k x k k


  




   
           

   


 

This is the SC delayed  correlation. 
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B. 2   Proof of solution of the optimal control problem  

 
by applying the extremun principle and its conditions of optimality.  First define the 

Hamiltonian as follows: 

                  
1

, , 1 ,
2

CA

p p pH k z k Qz k w k Rw k p k A z k A B w k


      

(B. 4) 

 

Determine the necessary conditions for optimality: 

 

 
     1T

H k
p k Qz k A p k

z k


   


 

 

(B. 5) 

 

 
       1

1
CA

p p p

H k
z k A z k A B w k

p k


   

 
 

 

(B. 6) 

 

Determine the transversality condition: 

 

 
   

G N
p N Sz N

z N


 


 

 

(B. 7) 

 

Determine the optimal control law: 

 

 
     0 1CA

T

p p

H k
Rw k A B p k

w k


   


 

 

     1 1CA
T

p pw k R A B p k
    

(B. 8) 

 

Substituting equation (B. 8) into (B. 6) and(B. 5), and assuming an inductive solution 

as follows: 

     p k K k z k  (B. 9) 

 

equations (5.25) to (5.27) can be proved. 
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B. 3   Solution of the predictive optimal control problem 

 
By the principle of optimality, there is an optimal control that satisfies the following 

functional equation [31]: 

 1 1min
k

k k k k
w

V E l V F 


   (B. 10) 

 

Expanding equation (B.7) over the interval  , Ck k k N  , leads to a dynamic 

programming problem of the form: 

1 2

1

1 1

1

min min
C

C
k k

H

k k H k kk j
w w

j

V E E l F Fl
 



  
 



   
    

   
  

 

(B. 11) 

 

with: 

C C C

T

k H k H k Hl Z SZ     

T T

k j k j z k j k j w k jl Z Q Z w Q w         

 

Boundary conditions for equation (B.8) can be found at time Ck H  as follows:  

 

 

1min
C C C C

k HC

C C C

T

k H k H Z k H k H
w

T

k H x k H z k H

V E Z S Z F

Z S Z trace S P


    

  



 

 
 

 

By induction, the solution of k jV   will be given by: 

C C

T

k j k H k j k H k jV Z Z          

 

with k j  symmetric definite, consequently at time k : 

  1 1 1 1 1min
k

T T T

k k z k k w k k k k k k
w

V E Z Q Z w Q w Z Z F    


        

       1 1min trace
k

TT T

k k Z k k k u k k k k k k k
w

V Z Q Z AP w Q w AZ B w AZ B w  


             

(B. 12) 

 

Differentiating equation (B. 12) with respect to kw  gives equations (5.29) to (5.31) 

and completes the proof.  

 


