The development of small molecules

for treatment of idiopathic

pulmonary fibrosis (IPF)

Thesis submitted to the University of Strathclyde in fulfilment of the requirements for the degree of Doctor of Philosophy
by
Matthew H. J. Campbell-Crawford 2015
do more feel better live longer

Declaration of Copyright

This thesis is the result of the author's original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.

Signed:
Date:

Abstract

Idiopathic Pulmonary Fibrosis (IPF) is a chronic lung disease characterised by deposition of fibrotic tissue in the lungs. The exact cause of the disease is unknown; however it is possible that the condition may be triggered by either a chemical or biological insult. The death rate of IPF is high, with median survival rates from diagnosis of around three years. Current estimates suggest it is the $7^{\text {th }}$ biggest killer in the UK, killing around 5000 people every year. An integrin $\left(\alpha_{\nu} \beta_{6}\right)$ is known to interact with the TGF_{β} protein, which is known to be involved in cell growth, adhesion, migration and apoptosis as well as extracellular matrix (ECM) synthesis, and therefore $\alpha_{v} \beta_{6}$ could potentially be a therapeutic target for IPF.

The first chapter in the thesis discusses the progression of small molecules for inhaled delivery. Compounds containing heterocyclic cores and with more $s p^{3}$ character showed a favourable selectivity profile. This led to the development of compounds (\boldsymbol{R})-70a and (\boldsymbol{R})80a, which showed superior levels of selectivity whilst maintaining potency. Compound (\boldsymbol{R})70a was tested in PK studies and showed suitable properties for inhaled drug delivery. Compound (\boldsymbol{R})-80a is one of the most selective small molecules at $\alpha_{v} \beta_{6}$ integrin reported in the literature or measured in-house. Unfortunately compound (\boldsymbol{R})-80a was terminated due to a change in priority, however, there is now some evidence that a selective $\alpha_{v} \beta_{6}$ integrin compound might be useful on the inhaled programme and it is currently being used as a tool compound.

(R)-70a

(R)-80a

The next chapter explored molecules suitable for oral drug delivery. These compounds showed either permeability or low protein binding, however both attributes are required for oral administration. Chapter four describes the development of a model to predict good oral properties based on the in-house data and the model is used in chapter five to develop a number of series. The fluoropyrrolidine series was identified, and exemplified by compound 211a, which was a potent inhibitor of the integrin receptor $\alpha_{v} \beta_{6}$ with high permeability and had a low protein binding. The compound also showed excellent oral bioavailability in both rat and dog PK studies. The concern about a metabolite being produced stimulated work to find an alternative replacement. The suggestion that a 2-(methoxy)ethoxy could replace the morpholine in compound 211a and this resulted in compound 239a. This compound showed superior PK properties when compared with compound 211a. Both compounds are currently being considered as small molecule anti-fibrotic medicines to be delivered to patients with fibrotic diseases with a dose around $30-550 \mathrm{mg}$ per day. On-going experiments include a CT SPECT study, which will show if the compound binds to the $\alpha_{v} \beta_{6}$ integrin on the damaged epithelium or not. If it does bind, it may inhibit the activation of TGF_{β} and the production of collagen by active myofibroblasts. In doing so, it is expected to slow or stop the progression of fibrosis, providing significant benefits to patients allowing them to do more, feel better and live longer.

211a

239a

Acknowledgements

I would like to thank my supervisors Dr P. Procopiou, Dr V. Patel and Prof. J. Percy for their help, guidance and support.

I would like to thank the members of my programme team for their support and assistance. In particular my gratitude goes to Felix Kennedy, Seble Lemma, Adam Yip, Alix Descamps, Ricky Cain, John Pritchard, Jo Redmond, Ian Campbell, Andy Craven and Simon MacDonald. I would also like to acknowledge my students Benoit Rhone and Jacob Hall for the synthesis of a number of azepine compounds which have been included in this thesis for completeness.

The completion of this report could not have been accomplished without the help and support of the following people Alan Hill, Sean Lynn, Stephen Richards, Iain Reid, Eric Hortense, Steve Jackson, Giampa Bravi, Chris Luscombe, Tim Ritchie, John Barrett, Josie Morrell, Giovanni Vitulli and Becky Graves.

I would like to thank Prof H. Kelly and Prof. W. Kerr for enabling me to pursue this wonderful qualification.

I would also like to thank members of the administrative team at GlaxoSmithKline and University of Strathclyde.

To Toria

Table of Contents

Acknowledgements 2
Abbreviations 8

1. Introduction 11
1.1 Idiopathic Pulmonary Fibrosis 11
1.2 Current treatments for IPF 12
1.3 Mechanism of action 15
1.4 Integrins 16
$1.5 \mathrm{TGF}_{\beta}$ 18
1.6 Biological pathway 20
1.7 Potential for therapeutic intervention 20
1.8 Route of administration 21
1.9 Biological assays 22
1.10 Properties of desired compound 23
1.11 Medicinal chemistry background 24
2. Results and discussion 28
2.1 Introduction 28
2.2 The development of selective $\alpha_{v} \beta_{6}$ antagonists 28
2.3 Optimising the substitution pattern on the phenyl ring 37
2.4 Further phenyl ring optimisation 51
2.5 Compound (R)-70a as a potential pre-candidate for IPF 60
2.6 Designing a selective $\alpha_{v} \beta_{6}$ antagonist 66
2.7 Summary 72
3 The Oral $\alpha_{v} \beta_{6}$ programme 74
3.1 Oral absorption 74
3.2 Modifying the heterocyclic cores for higher permeability 78
3.3 Synthesis of fluorinated cores 82
3.4 Summary 94
3.5 In vitro and in vivo studies on compound 97 94
3.6 Conclusions 96
3. Oral drug design guide 98
4.1 Introduction 98
4.2 Data sourcing of literature compounds 98
4.3 Summary of literature compounds 100
4.4 Development of the $\alpha_{v} \beta_{6}$ oral drug guide 101
4.5 The guide 104
4.6 Validation of the grid 106
4.7 Using the guide for new ideas 108
4.8 Conclusions 111
4. Use of oral drug design guide 112
5.1 Proposed new compounds 112
5.2 Summary 121
5.3 Short review of nucleophilic fluorination reactions 121
5.4 Synthesis of azepine targets 123
5.5 Further SAR around azepine core 131
5.6 Summary of compounds based on azepine cores 134
5.7 3-Fluoropiperidine core 136
5.8 Summary to 3-fluoropiperdine series 140
5.9 4-Difluoropiperidine core 140
5.10 Conclusions to difluoropiperidine core 143
5.11 4-Fluoropiperidine core 143
5.12 3-Fluoropyrrolidine series 150
5.13 Summary of results obtained with fluorine containing cores 161
5.14 Conclusion 175
5. Experimental 178
6.1 General experimental 178
6.2 Analysis of experiments 178
6.3 HPLC Purification 180
6. References 365

Abbreviations

${ }^{13} \mathrm{C}$ NMR	Carbon NMR
${ }^{1} \mathrm{H}$ NMR	Proton NMR
2MeTHF	2-Methyltetrahydrofuran
Ac	Acetyl
Ar	Aryl
BEH	Bridged ethylene hybrid
Bn	Benzyl
Boc	tert-Butoxycarbonyl
$\mathrm{Boc}_{2} \mathrm{O}$	Di-tert-butyl dicarbonate
${ }^{\mathrm{n}} \mathrm{Bu}$	n-Butyl
${ }^{\text {t }} \mathrm{Bu}$	tert-Butyl
cLogP	Calculated lipophilicity coefficient
cChromLogD ${ }_{7.4}$	Calculated chromatographic partition coefficient at pH 7.4
ChromLogD ${ }_{7.4}$	Chromatographic partition coefficient at pH 7.4
CMR	Calculated molar refractivity
COD	(1Z,5Z)-Cycloocta-1,5-diene
COPD	Chronic obstructive pulmonary disease
CPME	Cyclopentyl methyl ether
CT	Computerised tomography
CV	Column Volume
d	Doublet
Da	Daltons
DCM	Dichloromethane
dd	Double doublet
DIPEA	N,N-diisopropylethylamine
DMF	N, N-dimethylformamide
DMAP	N, N-dimethylaminopyridine
DMSO	Dimethylsulfoxide
DNA	Deoxyribonucleic acid
$\mathrm{E}_{\text {rel }}$	Relative energy values
ESI	Electrospray ionisation
Et	Ethyl

FDA	Food and Drug Administration
HATU	2-(1H-7-Azabenzotriazol-1-yl)—1,1,3,3-tetramethyl uronium hexafluorophosphate Methanaminium
hERG	Human Ether a-go-go related gene
HMBC	Heteronuclear Multiple Bond Correlation
HPLC	High Performance Liquid Chromatography
HSA	Human serum albumin
HSQC	Heteronuclear Single Quantum Coherence
In vivo	Experiment conducted on a whole living organism
In vitro	Experiment conducted in/on cells
IPF	Idiopathic Pulmonary Fibrosis
LAP	Latency associated peptide
LCMS	Liquid chromatography mass spectrometry
LogP	Lipophilic coefficient
$\operatorname{LogD}_{7.4}$	Lipophilic coefficient at pH 7.4
LTBP	Latent TGF_{β} binding protein
MDAP	Mass directed auto prep
MDCK	Madin Darby Canine Kidney
Me	Methyl
MeOTf	Methyl triflate
mp	Melting point
ND	Not determined
NICE	National Institute of Health and Care Excellence
NOE	Nuclear Overhauser Effect
NMR	Nuclear Magnetic Resonance
OD	Optical Density
Ph	Phenyl
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}$	Logarithmic measure of the acid dissociation constant
$\mathrm{pK} \mathrm{K}_{\mathrm{i}}$	Logarithmic measure of the equilibrium dissociation constant
pIC_{50}	Logarithmic measure of the 50\% inhibition concentration
PPB	Plasma protein binding
ppm	Parts per million
Py.HCl	Pyridinium hydrochloride

q	Quartet
quin.	Quintet
R	Rest of molecule/substituent
RGD	Arginine glycine aspartic acid
s	Singlet
$\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$	Aromatic nucleophilic substitution
t	Triplet
T3P $^{\circledR}$	Propylphosphonic anhydride
TGF $_{\beta}$	Transforming growth factor beta
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
PSA	Polar Surface Area
UHP	Urea hydrogen peroxide
UIP	Usual interstitial pneumonia
UPLC	Ultra performance liquid chromatography
XPhos	2-Dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl

1. Introduction

This thesis discusses the discovery, in vitro and in vivo biological and physicochemical data of small molecule antagonists of the $\alpha_{v} \beta_{6}$ integrin, with the aim to provide a treatment for idiopathic pulmonary fibrosis.

1.1 Idiopathic Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterised by deposition of fibrotic tissue in the lungs. This tissue is usually darker in colour and has the structure of honeycomb (Figure 1). The exact cause of the disease is unknown; however it is possible that the condition may be triggered by either a chemical or biological injury to the lung. ${ }^{1}$

The clinical presentation of IPF is characterised by breathlessness on exertion and a dry, irritating cough.

Figure 1: Pictures of healthy lungs (left) ${ }^{2}$, fibrotic lungs, note the darker colour of the fibrotic lungs (right) ${ }^{3}$.

The honeycombing begins in the periphery of the lung and then works upwards towards the bronchiole. This excess tissue in the alveoli causes poor gaseous exchange, which is believed to be the cause of the breathlessness. Diagnosis is confirmed by the characteristic features of
basal sub-pleural honeycombing on high-resolution Computerised Tomography (CT) scanning (Figure 2). One of the pathological diagnostic indicators is the presence of Usual Interstitial Pneumonia (UIP) upon biopsy. ${ }^{1}$ The detection uses high-resolution computerised tomography, which in the presence of $\left[{ }^{18} \mathrm{~F}\right]$-labelled deoxyglucose can detect cells, which take up glucose. ${ }^{4}$ This suggests that the cells are functioning and there is the potential to interact with this area of the lung.

[18F]-FDG-PET

Figure 2: (Left) High resolution CT scan of a patient with IPF lungs. The white areas indicate fibrotic tissue; a healthy lung would not have any white marks. (Right) CT scan of a patient with IPF lungs. The black areas are fibrotic tissue, which are metabolising glucose, a healthy lung would still metabolise glucose but there would be no fibrotic tissue for the ligand to bind resulting in an all white scan.

IPF has a high mortality rate, with median survival rates from diagnosis of around three years, ${ }^{5}$ and an incidence rate of diagnosis of 8-9 per 100,000 per year. The rate of diagnosis is increasing and this is not due to population ageing or recognition of milder disease. Current estimates suggest it is the seventh biggest killer in the UK, killing around 5,000 people every year and there has been a six-fold increase in deaths since 1979. ${ }^{6}$

1.2 Current treatments for IPF

The only drug specifically approved for the treatment of IPF is pirfenidone $\mathbf{1}$ (Figure 3). Pirfenidone $\mathbf{1}$ has been shown to have both antifibrotic and anti-inflammatory properties in a number of in vitro systems and animal models of fibrosis. ${ }^{7}$ A number of studies have shown that pirfenidone 1 reduces the production of TGF_{β}, which reduces collagen production. It has
also been shown to reduce fibroblast proliferation. ${ }^{8}$ There was some doubt as to the efficacy of pirfenidone $\mathbf{1}$; however Jenkins has recently published a summary of all the clinical trials and has concluded that it should be prescribed for the treatment of IPF. ${ }^{9}$ In September 2014 a further clinical trial was completed on the use of pirfenidone in IPF patients and showed the patients using the drug had reduced disease progression compared with the placebo group. ${ }^{10}$

In 2010 pirfenidone 1 became available in Japan, then in 2011 it became available for patients in Europe ${ }^{11}$ and China. ${ }^{11}$ In 2012 NICE decided that pirfenidone would not be available to patients on the NHS in the UK^{11}, however this decision was reversed in April 2013. ${ }^{12}$ The side effects of pirfenidone are mild-moderate and are well tolerated. ${ }^{13}$

1

Figure 3: Structure of pirfenidone 1

The main strategy for the treatment of IPF is the reduction of inflammation. ${ }^{14}$ Many clinicians also add a treatment to suppress the body's immune system. These treatments can prevent further scarring and increase survival time in some patients.

Prednisone 2, an anti-inflammatory corticosteroid, is the front line treatment prescribed to IPF patients. Most patients treated chronically experience side effects including insomnia, weight gain, acne and irritability. Prednisone 2 can also exacerbate conditions such as diabetes and glaucoma. Long term use of prednisone $\mathbf{2}$ can also lead to other conditions, such as high blood pressure, immunosuppression, hyperglycaemia, osteoporosis, growth retardation, cataracts, anxiety and depression. ${ }^{14,15}$ Many clinicians prescribe secondary
medicines along with prednisone, such as cyclophosphamide $\mathbf{3}$ and azathioprine 4. Azathioprine has immunosuppressant activity as it inhibits the proliferation of lymphocytes by interfering with DNA synthesis. Side effects are uncommon, but can include nausea, diarrhoea, fever, anaemia, liver problems, pancreatitis and lymphoma. Cyclophosphamide is another autoimmunosuppressant and is effective for the treatment of IPF by decreasing the immune system's response to disease. It is a pro-drug; one of its active metabolites forms DNA crosslinks between and within DNA strands at guanine $N-7$ positions, resulting in cell death. The most common side effect of cyclophosphamide is lymphoma; other reported side effects include nausea, diarrhoea, fatigue, hair loss, infertility and bladder irritation. ${ }^{16}$

2

3

4

Figure 4: Prednisone 2, cyclophosphamide 3, azathioprine 4.

An alternative or supplement to the use of drugs is oxygen therapy. This treatment raises the level of oxygen in the air breathed by the patient, typically from the naturally occurring 21%, to $30-35 \%$ for periods of time. This allows more oxygen to enter the bloodstream and can reduce the blood pressure of the patient. ${ }^{16}$

Pulmonary rehabilitation is an alternative therapy that is usually given to all patients with lung disease. The therapy tries to teach patients how to manage their condition and usually includes physical conditioning and breathing exercises. It also helps with anxiety, stress and depression management.

If all previous types of therapy are unsuccessful, the last resort is a lung transplant. This is only suitable for patients below 65 years of age, who have no other medical issues and are unresponsive to drug therapies. Although a lung transplant can improve quality of life, there are complications, such as the risk of rejection of the transplanted organ, and infection. There is also a very limited supply of donor lungs, which restricts the availability of this procedure.

Due to the unmet need of the disease, many organisations and research groups are working on approaches to treat fibrosis. There are a number of organisations researching ways to inhibit integrins, of these some are working directly on treatments for fibrosis. The majority of the research is in the small molecule field, but there is at least one example of a biopharmaceutical.

1.3 Mechanism of action

The pathogenesis of IPF is unknown; there is no single mechanism to explain all the phenotypes and it is likely that a number of factors play a role. ${ }^{17}$ The current understanding of the disease is that repeated lung injury leads to an impaired epithelial membrane, resulting in epithelial apoptosis and the consequent recruitment of fibroblasts to the affected area. The fibroblasts produce collagen in the tissue. In healthy patients there is a biological path for epithelial repair, however in IPF patients, the fibroblasts change into myofibroblasts. Myofibroblasts are normally involved in cell health and repair, but in IPF patients they upregulate matrix synthesis and degradation genes. This process results in the deposition of fibrotic tissue in the lung causing fibrosis (Figure 5). ${ }^{17}$

Figure 5: Mechanism of action for Fibrosis. ${ }^{17}$

Cytokine transforming growth factor $\beta\left(\mathrm{TGF}_{\beta}\right)$ is involved in the process of regulating the matrix synthesis and degradation genes. TGF_{β} is itself involved in cell growth, adhesion, migration and apoptosis as well as extracellular matrix (ECM) synthesis. ${ }^{18}$ TGF $_{\beta}$ signalling controls the proliferation of epithelial cells as well as fibroblasts. In IPF patients this signalling pathway is disturbed. ${ }^{19}$ Total inhibition of TGF $_{\beta}$ could have serious side-effects, such as uncontrollable inflammation affecting numerous organs, due to its position in the signalling cascade. A cell surface protein known as an integrin $\left(\alpha_{v} \beta_{6}\right)$ is involved in activation of TGF_{β} protein, so $\alpha_{v} \beta_{6}$ could potentially be a better therapeutic target for IPF.

1.4 Integrins

Integrins are a family of heterodimeric transmembrane receptors, each consisting of an α and β subunit. There are 18α units and 8β subunits and in mammals, there are a total of 24 encoded heterodimers of these α and β units. ${ }^{19}$ The integrins bind to the extracellular
membrane (ECM) and internally to the cytoskeleton. In vertebrates integrins transmit signals from outside the cell to the inside, and vice versa, to regulate virtually every aspect of the behaviour of epithelial cells. This includes cell migration, adhesion, proliferation and apoptosis. Integrins do not exhibit any catalytic activity and do not independently initiate signalling cascades, but instead serve as scaffolds for the assembly of signalling complexes (Figure 6). ${ }^{20}$

Figure 6: Cartoon representation of an integrin sitting in the cell membrane. ${ }^{21}$

Of the 18α and 8β subunits, only certain subunits bind to others. The β_{1} subunit is ubiquitously expressed and binds to a number of the α subunits. However, the β_{6} subunit is only expressed with the α_{v} subunit. There is a manganese(II) ion present in the β subunit which is necessary for protein survival and forms part of the binding site.

Mice lacking the gene to encode $\alpha_{v} \beta_{6}$ develop normally, suggesting that $\alpha_{v} \beta_{6}$ is not important in the role which TGF_{β} plays in development. ${ }^{22} \mathrm{TGF}_{\beta}$ is associated with a number of pathological states, including tumour cell growth, autoimmune disease and fibrosis. ${ }^{19}$ The $\alpha_{\mathrm{v}} \beta_{6}$ integrin has been shown to play a role in various animal models of IPF. One such role involves their interaction with latent complexes of TGF_{β}.

$1.5 \mathrm{TGF}_{\beta}$

There are three isoforms of the cytokine TGF_{β} in mammals. All the isoforms have a similar signalling pathway in vitro, but in vivo, knockout of each isoform results in widely divergent phenotypes. ${ }^{23} \mathrm{TGF}_{\beta}$ is a dimer linked by a disulfide bond. One half of the protein does not have any cytokine activity and is known as the latency associated peptide (LAP). The other half is known as the latent TGF_{β} binding protein (LTBP). When the two monomers (LAP and LTBP) are bound together they form latent TGF_{β}, which is found in a number of different organs. The concentration of latent TGF_{β} is tightly regulated, as high expression of active TGF_{β} results in organ scarring.

Integrins are known to activate latent TGF_{β} (vide infra) by binding to the linear tripeptide sequence of arginine, glycine and aspartic acid (RGD). ${ }^{24}$ In vivo data has shown that $\alpha_{v} \beta_{6}$ binds to latent TGF_{β} via this peptide sequence, and activates TGF_{β}. Once bound to the TGF_{β} receptors, it activates a signalling cascade that results in excessive deposition of collagen, which leads to fibrosis. When $\alpha_{v} \beta_{6}$ is up-regulated in patients, this signalling cascade leads to fibrosis (Figure 7).

Figure 7: $\alpha_{\vee} \beta_{6}$ binds to latent $\mathrm{TGF}_{\beta 1}$ and sites in the β_{6} cytoplasmic domain become accessible for binding to the actin cytoskeleton. Cytoskeleton associated integrin then induces a change in the conformation of the latent complex, allowing access of mature $\mathrm{TGF}_{\beta 1}$ to TGF_{β} receptors and induction of classic TGF_{β} signalling. ${ }^{24}$

Small molecule integrin antagonists have been developed and taken into the clinic for the treatment of a number of difference diseases. This includes efforts from scientists at Monsanto, who were the first to publish an $\alpha_{v} \beta_{3}$ antagonist in $1998 .{ }^{25}$ Their work showed a stark difference in selectivity when the dichlorobenzene ring on structure 5 (Figure 8) was modified. Merck also produced a series of integrin antagonists, similar to compound $\mathbf{6}$, for the treatment of osteoporosis. These compounds were effective in sub-nanomolar levels at the $\alpha_{v} \beta_{3}$ integrin receptor. The structures of the compounds were similar to the Monsanto compounds but included a tetrahydronaphthyridine which is believed to interact with the aspartic acid residue in the α_{v} portion of the receptor (vide supra). ${ }^{26}$

Figure 8: Compounds 5 and $\mathbf{6}$ - potent integrin antagonists from Monsanto Laboratories 5 and Merck $\mathbf{6}$.

Currently there are no published examples of small molecule $\alpha_{v} \beta_{6}$ antagonists, however there is one antibody (Stromedix antibody STX-100). This is a humanised monoclonal antibody targeting integrin $\alpha_{\vee} \beta_{6}$. It has shown significant anti-fibrotic activity in preclinical models of the different organs and therefore the company is developing the antibody for the treatment of both interstitial fibrosis and idiopathic pulmonary fibrosis. STX-100 completed a phase 1 clinical study and is currently running in a phase 2 a study in kidney transplant and IPF patients. ${ }^{27}$

1.6 Biological pathway

One biological pathway for fibrosis is summarised in Figure 9. The $\alpha_{v} \beta_{6}$ integrin is activated by the detection of the damaged tissue. This protein activates the $\mathrm{LAP}-\mathrm{TGF}_{\beta}$ by interacting with the RGD binding site. This triggers matrix synthesis genes in myofibroblasts to produce collagen. The collagen is deposited in the damaged tissue to aid healing. In healthy patients this process is terminated but in IPF patients the collagen continues to be deposited resulting in fibrosis.

Figure 9: Biological pathway for fibrosis formation.

1.7 Potential for therapeutic intervention

Slowing the progression of fibrosis can occur using a number of strategies for potential therapeutic intervention, from epithelium strengthening, epithelium repair or inhibition of mesenchyme proliferation. ${ }^{28}$ However, when the damage has already occurred prevention of mesenchyme proliferation should be considered as the major intervention. TGF_{β} and $\alpha_{\nu} \beta_{6}$ antagonists could provide a method of decreasing mesenchyme proliferation.

Though TGF_{β} has a role in fibrosis, ${ }^{23}$ total inhibition of TGF_{β} may be dangerous as it is involved in so many diverse signalling pathways. It has been shown in vivo that deletion of TGF_{β} in mice resulted in uncontrolled inflammation in a number of organs, ultimately resulting in death. ${ }^{29}$ The $\alpha_{v} \beta_{6}$ integrin is up-regulated in the lung tissue of fibrotic patients and therefore an antagonist of this receptor has potential for the treatment for IPF. A small molecule could bind competitively to RGD binding site on the $\alpha_{v} \beta_{6}$ integrin, inhibiting the activation of the TGF_{β} from its latent state and resulting in control of epithelial apoptosis.

Other integrins that bind RGD sequences such as $\alpha_{v} \beta_{3}, \alpha_{v} \beta_{5}$ and $\alpha_{v} \beta_{8}$ have been shown to be involved with inflammation, TGF_{β} activation, and angiogenesis and have other potential disease targets. Currently, there is debate about whether inhibition of these integrins produces a beneficial change to the phenotype in vivo or not. Given this, and that the full biology of the other integrins has not been explored, the ideal selectivity profile for a molecule has yet to be defined.

1.8 Route of administration

Our laboratories are considering both the oral and inhaled routes of administration for the development of new therapeutic agents against IPF. As the target is expressed in the affected lung epithelium, topical treatment using inhaled delivery could be effective at producing high levels of compound in the target organ; whilst having reduced systemic exposure that would minimise the impact of TGF_{β} inhibition outside the lung. Running in parallel to the $\alpha_{v} \beta_{6}$ inhaled programme is the $\alpha_{v} \beta_{6}$ oral programme, which aims to deliver a candidate with suitable properties for oral administration. There are three reasons for designing a drug that can be delivered orally; the first is an increase in patient compliance. The second is that fibrotic tissue may not be accessed via an inhaled delivery, and the third reason is that the
compound could have potential efficacy in fibrotic diseases found in organs other than the lung (e.g. kidney, liver or heart). ${ }^{30}$

1.9 Biological assays

The main binding assay in the $\alpha_{v} \beta_{6}$ programme is the cell adhesion assay. The assay uses mammalian whole cell lines with the human $\alpha_{v} \beta_{6}$ integrin expressed on the cell surface $\left(\mathrm{K} 562-\alpha_{v} \beta_{6}\right)$. The LAP protein is bound to a plate then the compound and cell line are added. The plate is agitated for 30 minutes then it is manually agitated, so that all unbound cells are removed, and the remaining fixed cells are stained. The absorption coefficient at 485 nm indicates the number of cells that have remained on the plate; the presence of few stained cells on the plate results in low absorption, showing that the compound is a stronger inhibitor of $\alpha_{v} \beta_{6}$. The assay is run at different concentrations of compound, so that an IC_{50} can be calculated, allowing a pIC_{50} to be quoted (Figure 10).

Figure 10: Schematic diagram showing the cell adhesion assay.

Property of GSK - Confidential - Do not copy

1.10 Properties of desired compound

The ideal properties for compounds for inhaled and oral delivery are shown in Table 1. The numbers quoted have been used for the programme and have been taken either from the GSK candidate selection document or from discussions with experts. The current understanding is the need for a very potent compound ideally $\mathrm{pIC}_{50}>8$ in the cellular assay. The need for selectivity over the other integrins is unclear (vide supra). For an inhaled delivery GSK guidelines recommend compounds have low oral bioavailability, high clearance, moderate permeability, whereas the recommendations for compounds for oral delivery are high bioavailability, low clearance and high permeability. The lipophilicity of a compound for either delivery method should be less than five with oral designed for oral delivery, ideally being slightly lower. Compounds should have high solubility, as this should prevent the compound precipitating out in the gut or lung, depending on the method of delivery.

Table 1: Properties for ideal compounds, for oral and inhaled delivery.

Property	Inhaled delivery	Oral delivery
$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{\mathbf{6}}$ cell assay (pIC $\mathbf{5 0}$)	>8	>8
Selectivity against other integrins	$10-100$ fold	$10-100$ fold
\%F	$<10 \%$	$>25 \%$
Clearance	$>2 / 3$ liver blood flow	$<1 / 3$ liver blood flow
High throughput permeability	$<80 \mathrm{~nm} / \mathrm{s}$	$>150 \mathrm{~nm} / \mathrm{s}$
cLogP	<5	$<3.5^{31}$
MW	$>1 \mathrm{mg} / \mathrm{mL}$	$>1 \mathrm{mg} / \mathrm{mL}$
Solubility		

Property of GSK - Confidential - Do not copy

1.11 Medicinal chemistry background

A directed screen was carried out from previous in-house compounds which were designed as $\alpha_{v} \beta_{3}$ integrin antagonists, suitable for inhaled delivery. The most significant hit obtained from this screen was compound 7 which had reasonable potency (as a racemate) in the cell assays (Table 2). In the $\alpha_{v} \beta_{3}$ assay the compound has a pIC_{50} of 9.6 and in the $\alpha_{\mathrm{v}} \beta_{6}$ cellular assay, the pIC_{50} was 5.9.

Table 2: Initial hit molecule and biological data.

7

Assay	$\mathbf{p I C}_{\mathbf{5 0}}$
$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{\mathbf{3}}$	9.6
$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{\mathbf{6}}$	5.9
$\mathbf{c L o g} \mathbf{P}$	4.4

The molecule contains three key components - a tetrahydronaphthyridine, a carboxylic acid, and a linker. The nitrogen atoms on the tetrahydronaphthyridine are thought to form hydrogen bonds with the aspartic acid residue in the α_{v} sub-unit. At physiological pH , the carboxylic acid is ionised and present as the carboxylate which can coordinate to the metal found in the β sub-unit (Figure 11). In the β_{6} sub-unit the metal is believed to be a Mn^{2+}.

Figure 11: Cartoon representation of the active site of the integrin with the pharmacophores mapped on top.

An homology model of the $\alpha_{v} \beta_{6}$ integrin was developed from the $\alpha_{v} \beta_{3}$ crystal structure ${ }^{33}$ of the murine $\alpha_{v} \beta_{3}$ integrin which has 88% homology with human $\alpha_{v} \beta_{3}$ (Figure 12). ${ }^{34,35}$ There is a high level of confidence in the model for the α_{v} portion because this is identical in both integrins. The β_{3} and β_{6} subunits also have considerable homology, with around 700 amino acids in common. ${ }^{36}$

Figure 12: $\alpha_{v} \beta_{6}$ homology model. Cartoon representation of binding site (orange curve).

Compound 7 was docked into this model (Figure 13); some of the protein has been removed in Figure 13 to provide clarity. The protein around the aromatic linker varies between the different integrins. In $\alpha_{v} \beta_{3}$, this area is planar, whereas in $\alpha_{v} \beta_{6}$ there is more space and this may provide an opportunity for the development of selectivity. The binding site of $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{6}$ differs by thirteen amino acid residues. One change (253Lys \rightarrow 273Asp) makes the binding site in $\alpha_{v} \beta_{3}$ planar whereas in $\alpha_{v} \beta_{6}$ there is less space. The other significant change
(218Ala $\rightarrow 238 \mathrm{Thr}$) enables a non-covalent interaction between the sub-units to be different, essentially making the α_{v} and β_{3} subunits closer than α_{v} and β_{6}. In the $\alpha_{v} \beta_{3}$ crystal structure, the linking aromatic ring does not interact with the protein and only acts as a bridge between the two ends of the molecule. The m-fluoro phenyl is believed to interact with a lipophilic region of the β_{6} subunit, which has been removed for clarity.

Figure 13: Compound 7 docked into the homology model.

Compound 7 (Figure 14) was the first compound studied, however compound $\mathbf{8}$ was identified as a more potent $\alpha_{v} \beta_{6}$ integrin antagonist. The major concern with compounds 7 and $\mathbf{8}$ is the potential liberation of an electron-rich aniline after metabolism. Anilines and especially electron-rich ones are known to have mutagenic potential, ${ }^{37}$ which give rise to positives in the Ames test, ${ }^{38}$ indicating increased risks of cancer. Initial work looked at replacing the aniline with amino-pyridines (compound 9) but ultimately these compounds were not sufficiently potent and showed off target activity. Further work moved away from an aromatic to an aliphatic core (compound $\mathbf{1 0}$) and the results showed an improvement in the physicochemical properties of the molecules, bringing them lipophilicity in line with the criteria set out in Table 1. However the compound was not sufficiently potent at the $\alpha_{v} \beta_{6}$ integrin and still lacked the desired selectivity. The next chapter will describe the development of compound $\mathbf{1 0}$ into a compound which met the criteria described in Table 1.

Figure 14: Medicinal chemistry iteration from aniline to aminopyridine to piperazine amide

2. Results and discussion

2.1 Introduction

As described in chapter 1 , compound $\mathbf{8}$ has shown potency at the $\alpha_{v} \beta_{6}$ integrin, however it did not meet the criteria set out in Table 1. Six series that were structurally similar to compound 8, all containing heteroaromatic cores were explored and did not deliver compounds which met the criteria set by the programme team. After two years of medicinal chemistry iterations compounds containing non-aromatic cores were developed (exemplified by compound 10) and these showed improved physicochemical properties, however they still lacked the desired potency and selectivity. This chapter will describe the development of these compounds to identify a molecule, potentially a single enantiomer, which would meet the potency and selectivity criteria for progression to in vivo efficacy and safety and developability studies prior to candidate selection.

2.2 The development of selective $\alpha_{v} \beta_{6}$ antagonists

Compound $\mathbf{1 0}$ contained a piperazine amide in the core; this core had not been used before, and therefore a number of targets were proposed to expand the SAR. Initially three compounds were proposed, one containing a m-chlorophenyl ring (compound 10) which was consistent across a number of series, one exchanging the chlorine for a cyclopropane (compound 11) and a third compound with a 3,5-dicyclopropylphenyl (compound 12) (Figure 15). These suggestions were based on previous series which suggested meta-substituted phenyls were potent in the integrin assays.

$\mathrm{R}_{1}=\mathrm{CIR}_{2}=\mathrm{H} 10$
$\mathrm{R}_{1}=\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{R}_{2}=\mathrm{H} 11$
$\mathrm{R}_{1}=\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{R}_{2}=\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5} 12$

Figure 15: Compounds 10-12

The retrosynthetic analysis of compound $\mathbf{1 2}$ is shown in Scheme 1 and starts from the commercially available ester 13. The cornerstone to this retrosynthesis is the $\mathrm{C}-\mathrm{C}$ bond disconnection as shown for compound 15. In synthesis, this bond is made when ester $\mathbf{1 4}$ undergoes a 1,4-Michael addition.

Scheme 1: Retrosynthesis of compound 12

Compound $\mathbf{1 2}$ contains a stereogenic centre and an enantioselective route would ideally be required. It is well known that different enantiomers have different pharmacokinetics in the body because enzymes can distinguish enantiomeric molecules. For example, this is important for Losec ${ }^{\circledR}$ and Nexium ${ }^{\circledR}$, or Citalopram ${ }^{\circledR}(\pm)-\mathbf{1 6}$ and Escitalopram ${ }^{\circledR}(\boldsymbol{S}) \mathbf{- 1 6}$.

Selective serotonin reuptake inhibitor (SSRI) drugs are used for the treatment of depression. Citalopram is an SSRI and is a racemic mixture of the R and S enantiomers. Escitalopram is the S-enantiomer of compound ($\mathbf{\pm}$)-16 (Figure 16). The racemate has known side effects such
as nausea and headaches. ${ }^{39}$ In a double blind clinical study it was shown that Escitalopram has fewer side effects than Citralopram. ${ }^{40}$

Citalopram ($\mathbf{(1) - 1 6}$

Escitalopram (S)-16

Figure 16: Structure of Citalopram and Escitalopram.

The first step in the synthesis of compound $\mathbf{1 2}$ involved an amide coupling between commercially available acid $\mathbf{1 7}$ and amine $\mathbf{1 3}$ which resulted in a 90% yield of the amide using the coupling reagent HATU on a small scale. ${ }^{41}$ Due to the expense of HATU on scale, an alternative coupling reagent was used. $\mathrm{T} 3 \mathrm{P}^{\circledR} \mathbf{1 8}$ is a cheaper coupling agent than HATU, and has the added benefit that the by-product from the reaction is water soluble, so work up procedures are simpler. Amine 13 was coupled with acid 17 with $\mathrm{T} 3 \mathrm{P}^{\circledR} 18$; however the yield for this reaction was a disappointing 42% yield (Scheme 2). The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 4}$ distinguishes all four carbon atoms on the piperazine, suggesting that these are in different environments. One explanation for this observation would be the existence of rotamers.

Scheme 2: Reagents and conditions: DIPEA, $50^{\circ} \mathrm{C}, 21 \mathrm{~h}, 42 \%$.

The next step in the synthesis required the insertion of a phenyl ring on to an α, β-unsaturated ester. This could be done with classical methods such as cuprates ${ }^{42}$ or by using a Rhcatalysed conjugate addition ${ }^{43}$. There were also two ways to synthesise compound 15, either by a Rh-catalysed conjugate addition with 3,5-dibromoboronic acid 20 followed by a subsequent Pd-catalysed Suzuki coupling with cyclopropyl boronic acid 19. These two steps could easily be made more convergent by making the 3,5-dicyclopropylphenyl boronic ester 21 from boronic acid 20, then carrying out the Rh-catalysed addition (Scheme 3).

Scheme 3: Proposed route to make compound 15

The first step in the synthesis of compound 21 was a Pd-catalysed reaction of 1,3dibromobenzene 23 with cyclopropyl boronic acid (Scheme 4). The reaction was attempted using both thermal and microwave conditions. In the microwave oven the reaction was complete within 1 h , whereas the thermal reaction took longer than 18 h . The reaction mixture was repeated 22 times due to the difficulty of scaling in the microwave. The compound was purified by flash chromatography to give a mixture of compound 24 and unreacted starting material.

Scheme 4: Reagents and conditions : (i) Cyclopropyl boronic acid 19, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{XPhos}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{THF}, 130{ }^{\circ} \mathrm{C}$, 30 min .

The next step in the synthesis converts a C-H bond into a C-B bond; this C-H activation chemistry was developed by Ishiyama et al.. ${ }^{44}$ The scope of this reaction is broad; Murphy et $a l .{ }^{45}$ have demonstrated that this reaction can be carried out on electron rich phenyl and heteroaromatic compounds and electron poor phenyl compounds. The boronic ester functional group was added to the dicyclopropylbenzene using the Ir-catalysed condition developed by Ishiyama et al. ${ }^{44}$ The iridium complex inserts into the least hindered $\mathrm{C}-\mathrm{H}$ bond; transmetallation with bis(pinacolato)diboron then took place to afford the boronic ester 21 in 28% (Scheme 5). As the polarity of compound 21 was low, it could be purified by washing the reaction mixture with cyclohexane, then the product was recrystallised from hot DMSO. In the large scale reaction, the yields were higher because several crops were extracted from the mother liquor.

24

Scheme 5: Reagents and conditions: (i) $\left[\operatorname{Ir}(\mathrm{COD}) \mathrm{OMe}_{2}, ~ 4,4^{\prime}-b i s(1,1\right.$-dimethylethyl)- 2, 2'-bipyridine, TBME, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}, 28 \%$.

The boronic ester 21 was reacted with alkene $\mathbf{1 4}$ using the reaction conditions described previously. Anderson et al. ${ }^{46}$ have shown that the addition of boronic acids to alkenes in the
presence of a $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ gives variable results, which depend on the specific boronic acid used. The yields reported range from 10 and 70%. Using the conditions reported compound 15 was obtained in 63% yield (Scheme 6). This yield is the sum for the two enantiomers after chiral column chromatography.

Resolution is a rather wasteful process, as 50% of the product is disposed of. Therefore an attempt to make the more potent enantiomer using an asymmetric reaction was attempted. Anderson et al. ${ }^{46}$ described an enantioselective procedure; when the (R)-BINAP ligand was used, the products could be obtained in up to $89 \% e e$. Alkene 14 and boronic acid 21 were reacted; using these conditions the two enantiomers were formed in a ratio of 85.5:14.5. However an $e e$ of 71% was considered too low (Scheme 6).

From this point in the text compound numbers with a letter suffix indicate an unknown ratio of stereoisomers or a single stereoisomer of the racemic compound of unassigned configuration, for example compound $\mathbf{1 5 a}$ is a mixture of enantiomers of compound $\mathbf{1 5}$.

Scheme 6: Reagents and conditions : (i) $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95^{\circ} \mathrm{C}, 30 \mathrm{~min} ; 63 \%$ sum of enantiomer A and B (ii) $(R)-\mathrm{BINAP}, \mathrm{Pd}(\mathrm{OAc})_{2}$, XPhos, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, 130^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

Compound $\mathbf{1 5 a}$ was hydrolysed using 4 M HCl in a solution of 1,4 -dioxane to give compound 12a but due to the $e e$ it was not tested. Material $\mathbf{1 2}$ was chirally enriched using
chiral HPLC to give single enantiomers $\mathbf{1 5 b}$ and $\mathbf{1 5 c}$, these were deprotected using 4 M HCl in a solution of 1,4-dioxane followed by LiOH to give compounds $\mathbf{1 2 b}$ and 12c (Scheme 7).

Scheme 7: Reagents and conditions: (i) 4 M HCl in 1,4-dioxane:water, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$, then (ii) LiOH, THF. 12a 15\%; 12b 31\%, 12c 46\%.

The biological data for compounds $\mathbf{1 2 b}$ and $\mathbf{1 2 c}$ are presented in Table 3. Elsewhere in the team, compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ were made as single enantiomers and are included here for comparison. Compound $\mathbf{1 1}$ has a potency in the $\alpha_{v} \beta_{6}$ cellular assay a pIC_{50} of 7.5 . This compound has similar potencies for the other three integrins. Introduction of an additional cyclopropyl group at the C-5 position on the phenyl ring (compound 12c), does not change the potency $\alpha_{v} \beta_{6}$ and $\alpha_{v} \beta_{8}$ cellular assays. However, the potency against $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ is nearly one \log unit lower. Furthermore there was also an increase in the $C h r o m \log \mathrm{D}_{7.4}$ value and the molecular weight (Table 3). Compound 12c was more potent than compound 12b across all the integrins and this can be attributed to the differences in stereochemistry.

Table 3: Biological data for compounds 12b, 12c, 11 and 10

Compound number	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{\mathbf{6}}$	$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{\mathbf{3}}$	$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{\mathbf{5}}$	$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{\mathbf{8}}$	ChromLogD $\mathbf{7 . 4}$	$\mathbf{M W}$
$\mathbf{1 0}$	H	Cl	6.6	7.6	7.3	7.0	2.20	471
$\mathbf{1 1}$	H	$\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}$	7.5	7.5	7.2	7.8	2.56	476
$\mathbf{1 2 b}$	$\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}$	$\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}$	6.0	5.4	5.2	6.2	3.65	517
$\mathbf{1 2 c}$	$\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}$	$\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}$	7.7	6.7	6.1	7.9	3.57	517

As compound 12c was the most potent and showed some selectivity it was examined in a number of in vitro clearance assays to determine the rate of metabolism in microsomes and hepatocytes (Table 4). In rat microsomes the clearance was $0.9 \mathrm{~mL} / \mathrm{min} / \mathrm{g}$ liver; this value is low and therefore the compound is considered stable. Compound 12c had high clearance in the mouse and moderate clearance in human microsomes. Finally, the compound was put through the mouse hepatocyte assay, the compound was cleared rapidly with a clearance value of $10 \mathrm{~mL} / \mathrm{min} / \mathrm{g}$ liver (Table 4). As the delivery of this compound is via inhaled administration, high clearance by microsomes or hepatocytes is required because any compound that is absorbed into the systemic circulation needs to be removed quickly.

Table 4: In vitro clearance data for compound 12c.

Species	Cell type	Clearance (mL/min/g liver)
Rat	Microsomes	0.9
Mouse	Microsomes	4.0
Human	Microsomes	1.5
Mouse	Hepatocytes	10

With in vitro clearance of compound 12c suitable for inhaled delivery, the compound was examined in vivo. The compound was dosed to mice both orally and subcutaneously (SC). The SC route of administration was chosen as the compound avoids first pass metabolism; it is also easier to administer to animals. The mice that were dosed orally showed only traces of compound in the blood stream, which was as expected because of the poor chromatographic permeability across the gut wall. The mice that were dosed by the subcutaneous route showed an AUC $=130 \mathrm{ng} . \mathrm{h} / \mathrm{mL}$. Unfortunately, the level of exposure was too low in both the SC and oral legs to meet candidate selection criteria and the compound was therefore not progressed further.

2.3 Optimising the substitution pattern on the phenyl ring

The programme team have spent time developing and optimising the substituents on the phenyl ring. One observation was the increase in selectivity against the other integrins when going from a compound with one cyclopropyl substituent to two (vide supra). The increase in selectivity is beneficial because this could reduce the promiscuity of the compound. One hypothesis for the selectivity is based on the availability of space in the binding pocket. The $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ integrins may have less space than the $\alpha_{v} \beta_{6}$ integrin to accommodate two cyclopropyl rings. When the unfavourable interaction occurs with a monosubstituted phenyl ring and the $\alpha_{v} \beta_{3}$ or $\alpha_{v} \beta_{5}$ protein, the aromatic ring can rotate to avoid this; however in the dicyclopropyl compound it is not possible to avoid this interaction (Figure 17).

Figure 17: Cartoon representation of a compound with a mono and dicyclopropyl substituted phenyl ring. The blue line represents the backbone for the $\alpha_{v} \beta_{3}$ integrin and the red line for the $\alpha_{v} \beta_{6}$ integrin. X represents an amino acid side chain interacting with the cyclopropyl group.

Further work exploring the binding of compounds $\mathbf{1 2}$ and $\mathbf{1 1}$ in the proteins was done using MOE (2012.10). Compounds $\mathbf{1 2}$ and $\mathbf{1 1}$ were docked into the $\alpha_{v} \beta_{3}$ crystal structure (Figure 18). When compound 11 was docked there was no interaction between the compound and Arg214; however when compound $\mathbf{1 2}$ was docked there was a clash. This clash occurs with

Property of GSK - Confidential - Do not copy

the second cyclopropyl ring and the protein, which does not occur with compound $\mathbf{1 1}$ as the molecule rotates to avoid this clash. When these compounds are docked into the $\alpha_{v} \beta_{6}$ homology model there is no clash.

11

Figure 18: (Top) Compounds 11 and 12 docked into the $\alpha_{v} \beta_{3}$ crystal structure; (Bottom) Compounds 11 and 12 docked into the $\alpha_{v} \beta_{6}$ homology model.

The information about disubstituted phenyl rings provided the opportunity to gain a selectivity window. Further compounds could have been synthesised and tested, however it was decided to explore the possibility of restricted rotation around the benzylic $\mathrm{C}-\mathrm{C}$ bond. Desymmetrising the phenyl ring would provide further understanding of the binding site, and might suggest which side of the phenyl ring a substituent would occupy for optimal binding.

Conformational properties of the fragment 25 were predicted using the MOE (MOE 2012.10) modelling package using the MMFF94x force-field. The dielectric constant was set to forty,
to mimic a polar solvent. Compound $\mathbf{2 5}$ was shown to have a 3.8° rotation between the benzylic proton and the plane of the aromatic phenyl ring, in its lowest energy conformer. The clash between benzylic proton and the ortho-phenyl protons has a smaller energy penalty than with the rest of the chain, hence its small dihedral angle (Figure 19). The space filling view of the molecule is shown in Figure 19 and it appears that the ortho-hydrogen atoms on the phenyl ring (highlighted in pink) are in a very congested area of the molecule.

Figure 19: Lowest energy conformer of compound $\mathbf{2 5}$ stick modelling (top-left) space filling (bottom).

The second lowest energy conformer is shown in Figure 20; there is only a $0.2 \mathrm{kCal} / \mathrm{mol}$ difference between the two, suggesting that at atmospheric temperature and pressure the populations of each conformer are likely to be equal. Here, there is a twist of 6.2° between the benzylic proton and the plane of the phenyl ring.

Figure 20: Second lowest energy conformer of compound 25, showing a 6.2° rotation between the benzylic proton and the phenyl ring.

When an ortho-fluorine atom was added to the phenyl ring (compound 26), the dihedral angle was measured at 4.8° (Figure 21), very similar to that in compound 25. There were a number of low energy conformers which would be accessible at atmospheric temperature and pressure. However, all had a dihedral angle of less than 10°; there were no examples of conformers with the phenyl ring flipped 180°; which would put the fluorine in a very congested area.

Figure 21: Lowest energy conformer of compound 26.

There was a high energy conformer of compound 26 which placed the fluorine atom on the other face of the molecule. However there was a steric clash with the electron clouds between the fluorine atom and the rest of the chain (Figure 22).

Figure 22: High energy conformer of compound 26, showing steric clash between electron clouds.

It is well known that ortho substituents on aromatic rings can restrict rotation. ${ }^{47}$ Graph 1 shows the rotational barriers between compounds $\mathbf{2 5}$ and compound $\mathbf{2 6}$, which contain an ortho-proton and an ortho-fluorine, respectively. Compound $\mathbf{2 5}$ has a low energy conformer, but as it rotates around the benzylic centre the energy increases. There is a local minimum at 90° where the strain from the benzylic proton is reduced; however there is a penalty to pay because the phenyl ring has steric clashes with the acid and the piperidine amide ring. The energy profile for the compound $\mathbf{2 5}$ is slightly different from compound 26. The two extremes have different strain energy because the local environment around the fluorine atom is different at 0 and 180°. There is also a difference in energy between the interaction of the fluorine atom with the acid and with the piperidine amide ring (Graph 1). At atmospheric temperature and pressure there is enough energy for the groups to rotate in solution.

Graph 1: Energy plotted against rotation of two different compounds.

Although there was insufficient evidence from the molecular modelling that an ortho-fluorine could be used restrict the number of conformations, two compounds, the 2-fluoro-3cyclopropyl species 27 and the 2-fluoro-5-cyclopropyl analogue 28 (Figure 23) were proposed to see if there were any evidence from the biological data. These compounds would be made alongside the mono and dicyclopropyl substituents in the homopiperazine series (Figure 23). If a compound with a fluorine atom had similar potency and selectivity to the dicyclopropyl congener, it would support the idea that an extra substituent was driving this profile, through the steric effect proposed in Figure 17. However, if there was a difference between the two fluorine isomers, it would provide evidence that there was a favourable interaction being made in $\alpha_{v} \beta_{6}$ and/or an unfavourable one in $\alpha_{v} \beta_{3}$. This knowledge could not only be very powerful, but would also provide a selective compound which has a lower MW and ChromLogD $\mathrm{D}_{7.4}$ than the dicyclopropyl species.

Elsewhere in the programme compounds containing an azepine in the core of the molecule have been shown to be potent $\alpha_{v} \beta_{6}$ antagonists. These cores show beneficial selectivity profiles, but the development of these molecules is beyond the scope of this thesis. The hypothesis described above was explored on this series and compounds 27 and 28 were proposed (Figure 23).

27

28

Figure 23: Compounds to test hypothesis around restricted rotation of phenyl ring.

Compounds 27 and 28 were made using similar chemistry outlined in (Scheme 1). Boronic ester 31 was made by coupling 4-bromofluorobenzene 29 with cyclopropylmagnesium bromide in the presence of $\mathrm{PdCl}_{2}(\mathrm{dppf})$, followed by an Ir-catalysed direct borylation involving $\mathrm{C}-\mathrm{H}$ activation of compound $\mathbf{3 0}$ (Scheme 8). The identity of the isomer was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy; in the spectrum, the signal arising from the protons ortho to the fluorine was reduced by one proton. Compound $\mathbf{3 1}$ is a mixture of boronic ester and boronic acid in a ratio of $2: 1$. The ${ }^{19} \mathrm{~F}$ NMR spectrum shows two signals; the first is at 110 ppm and is a multiplet with two coupling constants of 10 Hz and 5.5 Hz . The second signal at -112 ppm is also a multiplet with coupling constants of 7.0 and 7.5 Hz . The ratio of the two peaks in the NMR spectrum is $2: 1$ and therefore the peak at -110 ppm can be assigned to the fluorine atom in the boronic ester and the peak at -112 ppm can be assigned to the fluorine atom in the boronic acid. The chemistry and scope of this reaction has been discussed previously; however the predicted regiochemistry of borylation is ortho to the
fluorine atom due to steric effects. The yields for these reactions are not quoted due to impurities in the sample.

Scheme 8: Reagents and conditions: (i) Cyclopropylmagnesium bromide, PdCl_{2} (dppf) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct, THF, $60^{\circ} \mathrm{C}, 3 \mathrm{~h}$. (ii) Bis(pinacolato)diboron, $[\operatorname{Ir}(\mathrm{OMe}) \mathrm{COD}]_{2}, 4,4^{\prime}$-di-tert-butyl-2, 2^{\prime}-bipyridine, TBME, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Boronic ester 34 was prepared using the chemistry developed for boronic ester 31, but starting from 2-bromofluorobenzene 32. However there was no regioselectivity in the $\mathrm{C}-\mathrm{H}$ insertion reaction of $\mathbf{3 3}$. As a result, three boronic esters, compounds $\mathbf{3 4}$ - 36, were formed and all attempts to separate these regioisomers failed (Scheme 9).

Scheme 9: Reagents and conditions: (i) Cyclopropylmagnesium bromide, $\mathrm{PdCl}_{2}(\mathrm{dppf})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct, THF, $60^{\circ} \mathrm{C}, 3 \mathrm{~h}, 100 \%$. (ii) $\operatorname{Bis}($ pinacolato $)$ diboron, $[\operatorname{Ir}(\mathrm{OMe}) \mathrm{COD}]_{2}, 4,4$ '-di-tert-butyl-2, 2^{\prime}-bipyridine, TBME, $80^{\circ} \mathrm{C}$, 1 h .

Compound 34 was prepared successfully from 1,3-dichloro-2-fluorobenzene 37 (Scheme 10). The chemistry to make compound $\mathbf{3 4}$ was carried out by another member of our laboratories and is included here for completeness. Compound $\mathbf{3 7}$ underwent a Kumada coupling with cyclopropylmagnesium bromide in the presence of $\mathrm{PdCl}_{2}(\mathrm{dppf})$ to give compound 38 . The
remaining chlorine on compound $\mathbf{3 8}$ was then exchanged for the boronic ester in a Pdcatalysed cross coupling, using conditions similar to those reported by Fürstner et al. ${ }^{48}$ (Scheme 10).

Scheme 10: Reagents and conditions: (i) Cyclopropylmagnesium bromide, $\mathrm{PdCl}_{2}(\mathrm{dppf})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct, THF, $60{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$ (containing $\sim 20 \%$ des-borylated material) (ii) Bis(pinacolato)diboron, XPhos, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{KOAc}$, 1,4-dioxane, $110^{\circ} \mathrm{C}$, $40 \mathrm{~min}, 30 \%$.

These boronic acids were each added to alkene 39 using the standard Rh conditions previously deployed in the synthesis of related compounds. The final compounds $\mathbf{3 7}$ and $\mathbf{3 8}$ were made after ester hydrolysis using LiOH (Scheme 11).

Scheme 11: Reagents and conditions : (i) $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 9{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) $\mathrm{LiOH}, 25{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}, 274 \%$ yield (2 steps), 285% yield (2 steps).

The incorporation of one or more fluorine atoms is known to modify molecular properties significantly, so a control compound was sought. This species would contain one fluorine atom in the meta-position from which no direct influence on $\mathrm{C}-\mathrm{C}$ bond rotation would be
anticipated (Figure 24). If compound 42, had a different potency to compound $\mathbf{4 3}$, it would suggest that adding a fluorine atom anywhere in the ring may be the reason for the change, rather than restricting the rotation at the benzylic centre.

42

43

Figure 24: Compounds 42 and 43.

Compound 42 was made using chemistry described previously. 3-Bromofluorobenzene 44 was treated with cyclopropylmagnesium bromide to give compound 45 . The boronic ester 46 was formed by a $\mathrm{C}-\mathrm{H}$ insertion reaction using an iridium catalyst (Scheme 12).

Scheme 12 Reagents and conditions: (i) Cyclopropylmagnesium bromide, PdCl_{2} (dppf) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct, THF, $60^{\circ} \mathrm{C}, 3 \mathrm{~h}, 77 \%$; (ii) Bis(pinacolato)diboron, $[\operatorname{Ir}(\mathrm{COD}) \mathrm{OMe}]_{2}, 4,4$ '-di-tert-butyl-2,2'-bipyridine, TBME, $80^{\circ} \mathrm{C}$, $1 \mathrm{~h}, 10 \%$.

Boronic ester $\mathbf{4 6}$ was added to alkene $\mathbf{3 9}$ using standard Rh chemistry. ${ }^{46}$ The final compound 42 was formed after deprotection of compound 47 using LiOH (Scheme 13).

Scheme 13: Reagents and conditions : (i) Boronic ester 46, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) LiOH, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}, 18 \%$ yield (2 steps).

The biological data for compounds 27, 28, 42, 43, 48 and 49 are shown in Table 5. Compounds 43, 48 and 49 were made elsewhere but have been included here for comparison. ${ }^{41}$ The potency of compound $\mathbf{4 3}$ in the $\alpha_{v} \beta_{6}$ assay is 6.8 and there is a small increase to 7.1 in compound 48 when a second cyclopropyl ring is added. The 1,2,3trisubstituted benzene 28 is less potent in the $\alpha_{\vee} \beta_{6}$ assay than compound 43. This could suggest that there is a favourable interaction of the cyclopropane with the protein, but with the introduction of this fluorine atom, this molecule is unable to rotate to make this interaction. The opposite can be seen for the 1,2,5-trisubstitueted benzene 27, which has a potency of 7.0 in the $\alpha_{v} \beta_{6}$ assay. The profile against the other integrins for compound 27 is similar to compound 48 , yet the molecular weight is lower and the ChromLogD ${ }_{7.4}$ is more than one log unit lower. Compound $\mathbf{4 2}$ and compound $\mathbf{4 3}$ have a similar selectivity profile across the other integrins. Given that the biological data for compound $\mathbf{4 2}$ is similar to that for compound 43 it can be inferred that the addition of the fluorine atom to this ring does not make the compound more potent, further validating the hypothesis that there is restricted rotation around the benzylic centre. Compound 49 has an unsubstituted phenyl ring and has a $\mathrm{pIC}_{50}=5.9$ at the $\alpha_{\mathrm{v}} \beta_{6}$ integrin which is about a log unit less than compound 43.

Table 5: Potency data for compounds 27, 28, 42, 43, 48 and 49.

NT = Not tested

The potencies of the compounds containing the ortho-fluorine atoms (compounds 27 and 28) are different and the these observations suggest that there is a preferred orientation of the phenyl moiety in the protein. Compound 27 is one of the most potent $\alpha_{v} \beta_{6}$ integrin antagonists made, with a similar selectivity profile to compound $\mathbf{4 8}$, but the molecular weight is 22 Da lower and the $\mathrm{ChromLogD}_{7.4}$ is more than one \log unit lower. As compound 27 has better properties than compound $\mathbf{4 8}$, this substitution pattern will be investigated in other series to see if there is a similar profile.

To understand the effects of restricted rotation of the phenyl ring more fully, boronic ester $\mathbf{3 1}$ was added to the related piperazine amide series, using chemistry described previously. Boronic ester $\mathbf{3 1}$ was coupled to alkene $\mathbf{5 0}$ to give compound 51. Compound ($\mathbf{\pm}$)-51 was resolved by chiral HPLC to afford separate enantiomers 51a and 51b, each in greater than 98\% ee. Compounds 51a and 51b were deprotected with LiOH to give compounds 52a and 52b (Scheme 14).

Scheme 14: Reagents and conditions: (i) Boronic ester $31[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 51 \mathrm{a} 4 \%$, 51b 4% yield; (ii) LiOH, $25^{\circ} \mathrm{C}$, 18 h, 52a 41\%, 52b 8\%.

Compounds 53a and 53b were made by other members of the team ${ }^{49}$ and used for comparison with compounds 12c, 12b, 52a and 52b. The biological data and structures for these compounds are shown in Table 6. In each pair of compounds one enantiomer is more potent than the other and the less active enantiomer has greatly reduced potency against all of the integrins. Compound 53a has similar potencies at all the integrins whereas compound 12c had nearly ten-fold of selectivity over $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$. The potency of compound 52a containing the ortho-fluoroaryl substituent is 7.6 in the $\alpha_{v} \beta_{6}$ assay, whereas the corresponding enantiomer with the dicyclopropyl substituent (compound 12c) is also 7.7. This trend is seen in the other cellular assays, where both compounds have a very similar selectivity profile.

Given the lower molecular weight and ChromLogD ${ }_{7.4}$ value, the ortho-fluoroaryl ring is the preferred substituent.

Table 6: Potency and selectivity profiles for compounds 12c, 12b, 52a, 52b, 53a and 53b.

Compound Number	R	Stereochemistry	$\begin{gathered} \alpha_{v} \beta_{6} \\ \mathrm{pIC}_{50} \end{gathered}$	$\begin{gathered} \alpha_{v} \beta_{3} \\ \mathrm{pIC}_{50} \end{gathered}$	$\begin{gathered} \alpha_{v} \beta_{5} \\ \mathrm{pIC}_{50} \end{gathered}$	$\begin{gathered} \alpha_{v} \beta_{8} \\ \mathrm{pIC}_{50} \end{gathered}$	MW	ChromLogD ${ }_{7.4}$
53a		Enantiomer A	7.7	7.6	7.5	7.6	476	2.78
53b		Enantiomer B	6.0	5.3	5.6	5.0	476	2.74
12c		Enantiomer A	7.7	6.7	6.1	7.9	516	3.57
12b		Enantiomer B	6.0	5.4	5.2	6.2	516	3.65
52a		Enantiomer A	7.6	6.9	6.6	7.9	494	2.90
52b		Enantiomer B	6.0	5.6	5.0	5.8	494	3.02

Property of GSK - Confidential - Do not copy

2.4 Further phenyl ring optimisation

Replacement of the cyclopropyl ring (compound 53) with a morpholine (compound 54) was shown by other members of the team ${ }^{49}$ to result in improved properties. Compound $\mathbf{5 4}$ has a cellular potency of 7.3 ; compound $\mathbf{5 3}$ is comparable with a potency of 7.5 in the $\alpha_{v} \beta_{6}$ cellular assay. Compound $\mathbf{5 4}$ has a lower ChromLogD ${ }_{7.4}$ value than compound 53, but has a higher molecular weight (Table 7). Compound 55 which does not contain any substitution on the phenyl ring is also included for comparison. This compound is less potent at the $\alpha_{v} \beta_{6}$ and $\alpha_{v} \beta_{8}$ integrins but was equipotent at the $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ integrins (Table 7) compared with compounds 53 and 54.

Table 7: Potency and physicochemical properties of compounds 53-55.

It was unclear whether the morpholine was making additional interactions with the protein or not, therefore two further compounds were proposed. These compounds could help clarify the role of the substituents in interacting with the $\alpha_{v} \beta_{6}$ protein, revealing if they were giving extra affinity and/or if the substituents were causing unfavourable interactions with other integrins. The first compound 56 contained a $1,2,5$-trisubstituted benzene with a fluorine atom in the 2
position and the morpholine in the 5 position (Figure 25). If compounds $\mathbf{5 2}$ and $\mathbf{5 6}$ have a similar profile, then it is unlikely that there is a specific binding interaction, due to morpholine being a larger, more polar substituent and a cyclopropyl being a small, lipophilic substituent. The other proposed compound was compound 57 which is a hybrid of compounds 53 and 54, this compound contains a 1,3,5-trisubstituted benzene containing a cyclopropyl and morpholine substituent (Figure 25).

56

57

Figure 25: Compounds 56 and 57.

Compounds 56 and 57 were formed using chemistry similar to that described previously. Compound 56 was synthesised using boronic ester 59. The first step to form boronic ester $\mathbf{5 9}$ was a Pd-catalysed coupling of morpholine with 4-bromofluorobenzene 29 to give compound 58. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8}$ shows $\mathrm{J}_{\mathrm{H}-\mathrm{F}}$ coupling resulting in a complex splitting pattern. Compound 58 underwent a $\mathrm{C}-\mathrm{H}$ insertion using the Ir catalyst to give boronic ester 59 in 74% yield over two steps (Scheme 15). The regiochemistry was determined clearly by NMR spectroscopy.

Scheme 15: Reagents and conditions: (i) Morpholine, $\mathrm{PdCl}_{2}(\mathrm{dppf})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct, dimethoxyethane, $50{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, 90%; (ii) Bis(pinacolato)diboron, [$\operatorname{Ir}(\mathrm{COD}) \mathrm{OMe}]_{2}, 4,4^{\prime}$-di-tert-butyl-2, 2^{\prime}-bipyridine, TBME, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}, 84 \%$.

Compound 57 was synthesised using boronic ester 63. 1,3-Dibromobenzene $\mathbf{6 0}$ was treated with morpholine and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, to provide compound $\mathbf{6 1}$ in 52% yield. Compound $\mathbf{6 1}$ underwent a Kumada coupling as previously described to give compound 62, then a $\mathrm{C}-\mathrm{H}$ insertion on compound 62 gave boronic ester 63 in 23% overall yield over three steps (Scheme 16).

Scheme 16: Reagents and conditions: (i) Morpholine, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}, \mathrm{BINAP}, \mathrm{PhMe}, 50{ }^{\circ} \mathrm{C}$, 1 h ; (ii) Cyclopropylmagnesium bromide, PdCl_{2} (dppf) $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct, $\mathrm{THF}, \quad 60 \quad{ }^{\circ} \mathrm{C}, ~ 3 \quad \mathrm{~h}, \quad 88 \%$ (iii) Bis(pinacolato)diboron, $[\operatorname{Ir}(\mathrm{COD}) \mathrm{OMe}]_{2}, 4,4^{\prime}$-di-tert-butyl-2, 2^{\prime}-bipyridine, $\mathrm{TBME}, 8{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 52 \%$.

Boronic esters 59 and $\mathbf{6 3}$ underwent Rh-catalysed 1,4-addition to alkene 50, followed by ester hydrolysis using LiOH to give compounds 56 and 57 (Scheme 17).

Scheme 17: Reagents and conditions: (i) Boronic esters 59 or 63, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) $\mathrm{LiOH}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$. Compound 5620% (2 steps); compound $\mathbf{5 7}$ 11\% (2 steps).

The biological data for the racemic compounds $\mathbf{5 2}, \mathbf{5 3}, \mathbf{5 4}, \mathbf{5 6}$ and $\mathbf{5 7}$ are presented in Table 8. Compound 53 has a potency in the $\alpha_{v} \beta_{6}$ assay of 7.3 ; this is similar to that of both compounds 56 and 57. Compound 56 has improved selectivity over the $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ integrins compared with compound 54. The fact that compound $\mathbf{5 4}$ has a similar selectivity profile to the compound $\mathbf{5 2}$ implies that both the morpholinyl and cyclopropyl rings are binding into the same space of the protein. This suggests that one substituent is required to increase potency and that a specific interaction is unlikely.

Compound 57 shows an excellent selectivity profile with over one \log unit difference between the $\alpha_{v} \beta_{6}$ and the $\alpha_{v} \beta_{3}$ integrins. If this compound were more potent than either compound $\mathbf{5 4}$ or $\mathbf{5 3}$, it could be assumed that there were two favourable interactions. However, because compound $\mathbf{5 7}$ is similar to both of these compounds it can be assumed that there are no additional interactions and the selectivity profile is solely driven by the sizes of the binding pockets in the proteins.

Table 8: Potency data for compounds 52, 53, 54, 56 and 57.

The hypothesis that the replacement of a cyclopropyl substituent with a morpholine substituent would cause the compound to have different binding potencies with the protein was inconsistent with the results in Table 8. The low energy conformers for compound $\mathbf{5 3}$ and 54 overlay well, as both conformers place the tetrahydronaphthyridine and carboxylic acid in similar positions. The carbon atoms on the morpholine ring of compound $\mathbf{5 4}$ overlay with the carbon atoms on the cyclopropyl ring compound 53 (Figure 26).

53

Figure 26: Lowest energy conformer of compounds $\mathbf{5 3}$ (green) and $\mathbf{5 4}$ (blue).

The pyrrolidine series (exemplified by compound 64 (Figure 27)) developed by other members of the team ${ }^{49}$ had been shown to have some of the most potent compounds with good physicochemical properties.

Figure 27: Compound 64

Accordingly, it was important to investigate the effect of disubstitution of the phenyl ring in the pyrrolidine series. The disubstituted phenyl ring in compound 57 could improve the selectivity of the pyrrolidine series further. The retrosynthetic analysis for compound (\boldsymbol{R})-70 is shown in Scheme 18. The cornerstone to this retrosynthesis is the $\mathrm{C}-\mathrm{C}$ bond disconnection as shown for compound $(\boldsymbol{R})-\mathbf{6 7}$. In synthesis, this bond is made when iodide $(\boldsymbol{R})-\mathbf{6 6}$ is reacted with the lithio derivative of methyl naphthyridine. Parekh ${ }^{50}$ has reported that lithio
derivatives of methyl pyridines react with allylic iodides. Previous work in the team ${ }^{41}$ has shown that compounds containing the R enantiomer of the pyrrolidine are the more potent at the $\alpha_{v} \beta_{6}$ integrin.

Scheme 18: Retrosynthesis of compound (\boldsymbol{R})-70.

Chiral alcohol (\boldsymbol{R})-65 was converted into iodide (\boldsymbol{R})-66 using PPh_{3} and I_{2}. The synthesis was adapted from the method of Perez et al.. ${ }^{51}$ Iodide (\boldsymbol{R})- $\mathbf{6 6}$ was alkylated with the lithio derivative of 2-methyl-1,8-naphthyridine to give (\boldsymbol{R})-67 in 62% yield (Scheme 19). Previously, this reaction gave less than 50% yield of isolated purified product; however using a gradient of $0-5 \% \mathrm{MeOH}$ in EtOAc in the purification rather than an isocratic method resulted in better separation of the product and impurities, giving the higher yield.

Scheme 19: Reagents and conditions: (i) $\mathrm{PPh}_{3}, \mathrm{I}_{2}$, imidazole, $\mathrm{PhMe}, 25{ }^{\circ} \mathrm{C}, 72 \mathrm{~h}, 81 \%$; (ii) 2-Methyl-1,8naphthyridine, LiHMDS, THF, $-10^{\circ} \mathrm{C}, 1 \mathrm{~h}, 62 \%$.

The Boc group was removed from compound (\boldsymbol{R})- $\mathbf{6 7}$ using 4 M HCl in 1,4-dioxane to give a purple hygroscopic dihydrochloride salt (\boldsymbol{R})-71 in $\mathbf{9 1 \%}$ yield. Compound (\boldsymbol{R})-71 was then alkylated using (E)-methyl 4-bromobut-2-enoate to give alkene (\boldsymbol{R})-68 in 77\% yield (Scheme 20). LCMS showed traces of dialkylation, but this material was not isolated. Compound (R)68 was found to be unstable in the presence of isopropylamine, silica and acidified water, so it was not purified and was instead taken directly into the next step. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the product contained the trans alkene as the major component and only 0.6% of the cis alkene. The remaining material contained unreacted starting materials.

Scheme 20: Reagents and conditions: (i) 4 M HCl in 1,4-dioxane DCM, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}, 91 \%$; (ii) (E)-methyl-4-bromobut-2-enoate, DCM, $0^{\circ} \mathrm{C}, 4 \mathrm{~h}, 77 \%$.

Boronic ester $\mathbf{6 3}$ was added to the alkene (\boldsymbol{R})- $\mathbf{6 8}$ using chemistry described previously. The mixture of diastereomers was then separated by chiral HPLC to give diastereomers (\boldsymbol{R})-69a and ($\boldsymbol{R}) \mathbf{- 6 9 b}$ (Scheme 21) both in 16\% yield and in $>99 \% d r$.

Scheme 21: Reagents and conditions : (i) Boronic ester 63, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95^{\circ} \mathrm{C}, 30 \mathrm{~min},(\boldsymbol{R})-\mathbf{6 9 a} 16 \%$, (R)-69b 16\%.

Property of GSK - Confidential - Do not copy

Finally, naphthyridines $(\boldsymbol{R})-\mathbf{6 9 a}$ and (\boldsymbol{R})-69b were hydrogenated to give compounds (\boldsymbol{R})-72a and $(\boldsymbol{R}) \mathbf{- 7 2 b}$. Compounds (\boldsymbol{R})-72a and $(\boldsymbol{R}) \mathbf{- 7 2 b}$ were hydrolysed using LiOH in MeCN to give compounds (\boldsymbol{R})-70a and (\boldsymbol{R})-70b (Scheme 22).

Scheme 22: Reagents and conditions: (i) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}(\boldsymbol{R})-72 \mathrm{a}$ 81\%, (R)-72b 94\%; (ii) LiOH, $\mathrm{MeCN}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}(\boldsymbol{R})-70 \mathrm{a} 84 \%,(\boldsymbol{R})-70 \mathrm{~b} 39 \%$.

The biological data for compounds $(\boldsymbol{R})-\mathbf{7 0},(\boldsymbol{R})-\mathbf{7 3}$ and $(\boldsymbol{R})-74$ is presented in Table 9. Compound (\boldsymbol{R})-70a shows a potency of 8.4 in the $\alpha_{v} \beta_{6}$ cellular assay. The potency was only 5.7 in the $\alpha_{v} \beta_{3}$ assay, making it more selective than the leading two compounds in this series (compounds $(\boldsymbol{R})-\mathbf{7 3}$ and $(\boldsymbol{R})-\mathbf{7 4}$). Compound $(\boldsymbol{R})-\mathbf{7 0 b}$ is less potent than $(\boldsymbol{R})-\mathbf{7 0 a}$ and no further work was conducted on this compound.

Table 9: Potency data for compounds $(\boldsymbol{R})-\mathbf{7 0},(\boldsymbol{R})-\mathbf{7 3}$ and $(\boldsymbol{R})-\mathbf{7 4}$.

Compound Number	R	Stereochemistry	$\begin{gathered} \alpha_{v} \beta_{6} \\ \mathrm{pIC}_{50} \end{gathered}$	$\begin{gathered} \alpha_{v} \beta_{3} \\ \mathrm{pIC}_{50} \end{gathered}$	$\alpha_{v} \beta_{5}$ pIC_{50}	$\begin{gathered} \alpha_{v} \beta_{8} \\ \mathrm{pIC}_{50} \end{gathered}$	MW	$\begin{aligned} & \text { Chrom } \\ & \operatorname{LogD}_{7.4} \end{aligned}$
(R)-70a		Enantiomer A	8.4	5.7	6.6	7.7	518	3.07
(R)-70b		Enantiomer B	6.4	5	5	6.4	518	2.95
(R)-73		Single enantiomer	8.4	6.2	7.3	7.8	478	2.27
(R)-74		Single enantiomer	8.4	6.8	8.1	8.2	433	3.34

2.5 Compound (\boldsymbol{R})-70a as a potential pre-candidate for IPF

All three compounds $(\boldsymbol{R})-\mathbf{7 0 a},(\boldsymbol{R})-73$ and $(\boldsymbol{R})-74$ were progressed to in vitro and in vivo assays in order to further profile each of these. The synthesis and properties of compounds $(\boldsymbol{R})-\mathbf{7 3}$ and $(\boldsymbol{R})-\mathbf{7 4}$ are described elsewhere. ${ }^{41}$ Compound $(\boldsymbol{R})-\mathbf{7 4}$ had hERG liability and its progression was halted to prevent the unnecessary cardiovascular risk. Compound (\boldsymbol{R})-73 showed poor efficacy in an in vivo model.

There was evidence that the most active compounds were not being differentiated by the cellular assay due to the upper quantifiable limit of the assay being below the potency reported for these compounds. For this reason a new assay was developed using a lower
protein binding concentration in the binding assay to obtain a more accurate understanding of the binding affinities of these compounds. Compound (\boldsymbol{R})-70a had a binding affinity $\left(\mathrm{pK}_{\mathrm{i}}\right)$ of 10.3 in the tight binding assay, which was two orders of magnitude higher than in the previous assay.

The artificial membrane permeability (AMP) assay uses the retention time of the compound on a column; this is then converted to a permeability using standard compounds. The AMP permeability of compound (\boldsymbol{R})-70a was $90.5 \mathrm{~nm} / \mathrm{s}$, which is classed as moderate permeability. A more accurate permeability measure is obtained using the MDCK cellular assay (vide infra). The permeability of compound (R)-70a in the MDCK assay was $8.3 \mathrm{~nm} / \mathrm{s}$ (Table 10). The compound is considered to have low permeability. Low permeability is preferred for compounds which will be administered by inhalation, because the portion of the dose that will be swallowed will be less likely to be absorbed in the GI tract, reducing systemic exposure. If a compound designed for inhaled delivery has a very low permeability it can however, potentially lead to lung retension and toxic side effects.

Table 10: Permeability data for compound (\boldsymbol{R})-70a.

Assay	Result
AMP permeability	$90.5 \mathrm{~nm} / \mathrm{sec}$ (moderate)
MDCK	$8.3 \mathrm{~nm} / \sec$ (low)

The solubility of compound 70a was measured in simulated gastric fluid (SGF) and in fasted state simulated intestinal fluid (FaSSIF). The results showed that the compound had a solubility of $\sim 500 \mu \mathrm{~g} / \mathrm{mL}$ in SGF and $>2000 \mu \mathrm{~g} / \mathrm{mL}$ in FaSSIF which are classed as very high solubilities (Table 11).

Table 11: Solubility data for compound (R)-70a.

Media	Result for compound (R)-207a
SGF	$\sim 500 \mu \mathrm{~g} / \mathrm{mL}$
FaSSIF	$>2000 \mu \mathrm{~g} / \mathrm{mL}$

The compound was tested six times in the hERG Barracuda ${ }^{\circledR}$ assay 52 and was shown to have a $\mathrm{pIC}_{50}<4.2$. This result may imply a very small cardiovascular risk to patients.

The compound was tested in a number of screens to determine mitochondrial potency, cell health, transporter and ion channel inhibition, to explore any off-target activity, which may result in toxicity. Compound (\boldsymbol{R})-70a did not show any interaction in any of these assays. There was a small amount of inhibition of Aurora $\mathrm{B}\left(\mathrm{pIC}_{50}=4.8\right)$ and the enzyme monoamine oxidase $\mathrm{B}\left(\mathrm{pIC}_{50}=4.9\right)$. Aurora B is involved in the mitotic spindle alignment of chromosomes during mitosis. Inhibition of this protein can result in incorrect chromosomal alignment which can lead to an abnormal number of chromosomes in the new cell. There are proteins that can detect this abnormality and trigger cell death. ${ }^{53}$ Monoamine oxidase B (MAOB), is an important protein in the degradation of xenobiotic and natural monoamines such as dopamine. ${ }^{54}$ Inhibition of these is not thought to be of major concern; however this will need to be monitored if the compound progresses further.

Low lipid and plasma protein binding is important, because if a compound is tightly bound to these proteins there will be an insufficient concentration of the drug for efficacy. Two in vitro high throughput assays are available for predicting plasma and lipid protein binding. Each assay takes the retention time of the compound on a column and compares it to known standards. Compound (\boldsymbol{R})-70a is 89% bound to plasma proteins and 43% bound to lipid proteins in these assays (Table 12).

Table 12: Chromatographic protein binding results of compound (R)-70a.

Assay	Results
Plasma protein	93%
Lipid protein	40%

These high throughput assays are typically only used to predict whether a compound is going to be very highly bound to proteins or not. Compound (\boldsymbol{R})-70a shows low binding to these proteins ($<90 \%$), so it was examined in blood and lung matrix binding assays. In rat whole blood the binding of compound (\boldsymbol{R})-70a was 65%, whereas in human whole blood it was 75%. In both mouse and human lung homogenate the binding is 92% and 91%, respectively (Table 13). These experiments show that the compound has low protein binding with about 10% free-fraction to interact with the target.

Table 13: In-vitro protein binding of compound (R)-70a.

Species	Matrix	Percentage drug bound
Rat	Blood	65%
Human	Blood	75%
Mouse	Lung	92%
Human	Lung	91%

Lungs from dosed mice were homogenised and dialysed against buffer for 4 h ; analysis showed that 95.5% of compound was bound to the protein. This result is similar to the in vitro experiment, suggesting the in vitro assays are relevant to in vivo models (Table 14).

Table 14: Mouse lung serum and ex vivo lung binding data.

Species	Matrix	Percentage drug bound
Mouse	Lung homogenate	92%
Mouse	Ex vivo Lung	95.5%

The liver is the main organ of drug metabolism in the body. Sub-cellular fractions such as liver microsomes are useful in vitro models of hepatic clearance as they contain many of the drug metabolising enzymes found in the liver. Compound (\boldsymbol{R})-70a was tested in rat, human and mouse microsomes. The results show low levels of clearance, which suggests low levels of metabolism (Table 15). Low microsomal clearance suggests the compound is not being metabolised by phase I enzymes in the liver. A compound with low clearance can cause problems for the development of a drug as the compound needs to be removed from the body. An in vivo experiment was proposed to explore whether the compound is metabolised by other methods.

Table 15: Microsomal clearance for compound (\boldsymbol{R})-70a.

Species	Clearance value (mg/min/g of tissue)
Rat	<0.53
Human	<0.53
Mouse	<0.53

The concentration of compound (\boldsymbol{R})-70a in mouse lung and blood is in Table $16 .{ }^{55}$ Twelve mice were dosed intranasally with a $1 \mathrm{mg} / \mathrm{kg}$ dose of compound (\boldsymbol{R})-70a and two other compounds as part of a cassette in vivo experiment. Two mice were euthanised at each of six different intervals and the concentration of compound was determined in the blood and the lung.

Property of GSK - Confidential - Do not copy

Table 16: Mouse lung and blood concentration levels of compound (\boldsymbol{R})-70a.

Mouse ID	Time	Mean conc lung [ng/g of lung]	Conc blood [ng/mL]
$\mathbf{1 4 *}$	5 min	1940	204
$\mathbf{1 5 + 1 6}$	30 min	1383	88.7
$\mathbf{1 7 + 1 8}$	2 h	152	11.8
$\mathbf{1 9 + 2 0}$	4 h	16.8	5.66
$\mathbf{2 1 + 2 2}$	7 h	10.9	6.67
$\mathbf{2 3 + 2 4}$	12 h	$<$ LLoQ	3.53

<LLoQ - Below the lower limit of quantification, * $\mathrm{n}=1$

The mean concentrations are plotted against time in Graph 2; after just 5 minutes, the mean amount in the lung was just under 2000 ng compound $/ \mathrm{g}$ of lung. The half-life of this material in the lung is just over 1 h . The comparison of lung and blood profiles contains additional information about the partition / distribution of the compounds in vivo and the driving force leading to the elimination of compound from the lung. However, the very low lung retention means that this compound could not be progressed further and extracting data from the ratio was limited due to experimental error.

Graph 2: The variation of lung and blood concentration of compound $(\boldsymbol{R}) \mathbf{- 7 0 a}$ with time in mouse lung.

Compound (\boldsymbol{R})-70a has suitable in vitro properties for inhaled administration, showing nearly 100 -fold selectivity over the $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ integrins. The compound also demonstrates low permeability, low-to-moderate protein binding, high solubility and high stability. However, the in vivo data shows the compound is eliminated and has a very short half life in the lung and the blood. For these reasons the compound was not progressed further.

2.6 Designing a selective $\alpha_{v} \beta_{6}$ antagonist

Elsewhere in the team ${ }^{49}$ a library of analogues having heterocyclic substituents on the phenyl ring was made in an array format. Compound (\boldsymbol{R})-78a, containing a 3,5-dimethyl pyrazole on the phenyl ring was the most potent (Scheme 23).

Compound (\boldsymbol{R})-78a was re-synthesised using chemistry previously described. Compound (\boldsymbol{R})-68 underwent a Rh-catalysed 1,4-addition with boronic acid 75, the diastereomers were separated to give compound (\boldsymbol{R})-76a and (\boldsymbol{R})-76b (Scheme 23). Compound (\boldsymbol{R})-76a was hydrogenated with Pd / C to give compound $(\boldsymbol{R})-77 \mathrm{a}$. Ester $(\boldsymbol{R})-77$ a was hydrolysed with LiOH to give acid (\boldsymbol{R})-78a. The ${ }^{7} \mathrm{Li}$ NMR spectrum of compound (\boldsymbol{R})-78a showed that it contained Li . A stock solution of LiOH in d_{6} - DMSO was made to a known concentration (10 $\mathrm{mM})$. The QUANTAS ${ }^{56}$ programme was run to integrate the peak and using this information it was possible to quantify the amount of Li in the ${ }^{7} \mathrm{Li} \mathrm{NMR}$ spectrum of compound (\boldsymbol{R})-78a (made to $1 \mathrm{mg} / \mathrm{mL}$). The programme calculated the concentration of Li to be roughly 1 $\mathrm{mg} / \mathrm{mL}$ therefore it was assumed that compound (\boldsymbol{R})-78a was present as the Li salt.

Scheme 23: Reagents and conditions: (i) Boronic acid 75, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95^{\circ} \mathrm{C}, 30 \mathrm{~min} ;(\boldsymbol{R})-\mathbf{7 6 a}: 21 \%$; (R)-76b : 25% (ii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$ (iii) LiOH, MeCN, $25^{\circ} \mathrm{C}, 18 \mathrm{~h} 58 \%$ (2 steps).

The biological data for compound (\boldsymbol{R})-78a is shown in Table 17. The potency in the $\alpha_{v} \beta_{6}$ cellular assay for compound (\boldsymbol{R})-78a was 8.4 , making it one of the most potent compounds obtained to date. The compound was more than 100 -fold more selective over the $\alpha_{v} \beta_{3}$ integrin but showed less than 100 -fold selectivity at the $\alpha_{v} \beta_{5}$ and $\alpha_{v} \beta_{8}$ integrins. The compound showed weak activity in the hERG Barracuda assay, however even with 1000 fold selectivity it is a risk that would need to be monitored.

Table 17: Biological data for compound (\boldsymbol{R})-78a.

pIC_{50}	Compound (R)-78a
$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{6}$	8.4
$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{3}$	6.0
$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{5}$	6.9
$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{8}$	7.8
hERG (Barracuda)	4.9

Compound (\boldsymbol{R})-78a was over 100 -fold more selective over the $\alpha_{v} \beta_{3}$ integrin against the $\alpha_{v} \beta_{6}$ integrin. However, at the time of writing, it is unclear whether more selectivity is required. It was noted that the compounds with a 3,5-disubstituted phenyl ring showed higher selectivity over $\alpha_{v} \beta_{3}$ (vide supra) and therefore compounds (\boldsymbol{R})-79 and (\boldsymbol{R})-80 were proposed to explore this hypothesis and to see if a more potent and selective compound could be made. Two compounds were proposed based on previous SAR; both contained a dimethylpyrazole and another substituent. Compound (\boldsymbol{R})-79 contained a cyclopropyl and compound (\boldsymbol{R})-80 contained a morpholine substituent.

(R)-79

(R)-80

Figure 28: Compounds (\boldsymbol{R})-79 and (\boldsymbol{R})-80.

Compound (\boldsymbol{R})-79 has a calculated ChromLogD ${ }_{7.4}$ value of 3.27 whereas compound ($\left.\boldsymbol{R}\right)$-80 has a ChromLogD $\mathrm{D}_{7.4}$ of 2.68. Given the problems noted elsewhere that a higher ChromLogD ${ }_{7.4}$ value can cause toxicity and hERG activity, ${ }^{57}$ compound (\boldsymbol{R})-80 was prioritised over compound (R)-79 (vide supra).

Compound $(\boldsymbol{R})-\mathbf{8 0}$ was synthesised using chemistry similar to that used to obtain compound (R)-78a. However, the synthesis of boronic acid $\mathbf{8 4}$ required for the Rh-catalysed 1,4-addition proved challenging. The first attempt to make the boronic acid required a C-H insertion of bispinacolato(diboron) (Scheme 24). The synthesis started with a condensation of hydrazine 81 with penta-2,4-dione using $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ as a catalyst. This was followed by a Pd-catalysed
amination with morpholine to give compound 83. The Ir-catalysed C-H insertion, which had been used previously for the preparation of other boronic acids, was unsuccessful, returning unreacted starting material.

Scheme 24: Reagents and conditions : (i) Pentane-2,4-dione, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{DCM}, 0^{\circ} \mathrm{C} 18 \mathrm{~h} .51 \%$ (ii) Morpholine, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{NaO}^{\mathrm{t}} \mathrm{Bu},(R)$-BINAP, $\mathrm{PhMe}, 50^{\circ} \mathrm{C}, 1 \mathrm{~h}, 70 \%$ (iii) Bis(pinacolato)diboron, $[\operatorname{Ir}(\mathrm{COD}) \mathrm{OMe}]_{2}, 4,4^{\prime}$ '-di-tert-butyl-2,2'-bipyridine, TBME, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

To overcome the problematic C-H insertion an alternative approach was undertaken, which involved a C-Br conversion to the required C-B species. Aniline $\mathbf{8 5}$ was diazotised using nitrous acid and NaNO_{2}, then reduced to give the corresponding hydrazine which was condensed with penta-2,4-dione to give compound 86 (Scheme 25) using similar chemistry to Ohyama et al.. ${ }^{58}$ Boronic ester $\mathbf{8 4}$ was formed in a two-step process from compound $\mathbf{8 5}$, which involved Pd-catalysed amination with morpholine followed by Pd-catalysed borylation. The intermediate phenyl morpholine was not fully characterised as it was contaminated with BINAP. LCMS indicated the presence of boronic acid; however, the ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of the boronic ester alone which suggested that the ester was the reaction product, but hydrolysed under the LCMS conditions used.

Scheme 25: Reagents and conditions (i) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaNO}_{2}, L$-ascorbic acid, $\mathrm{MeCN}, 0^{\circ} \mathrm{C}$ then pentane-2,4-dione, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{DCM}, 0{ }^{\circ} \mathrm{C} 18 \mathrm{~h}, 63 \%$; (ii) morpholine, BINAP, $\mathrm{NaO}{ }^{\dagger} \mathrm{Bu}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{PhMe}, 80{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then bis(pinacolato)diboron, KOAc, XPhos, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ 1,4-dioxane $110^{\circ} \mathrm{C}, 1 \mathrm{~h}, 49 \%$.

Compound (\boldsymbol{R})-80a was made using chemistry similar to that previously described (Scheme 23). Compound (\boldsymbol{R})-71 underwent a Pd-catalysed Tsuji-Trost reaction with tert-butyl 4-acetoxybut-2E-enoate $\mathbf{8 7}$ to give alkene (\boldsymbol{R})-88 (Scheme 26). Compound (\boldsymbol{R})-88 underwent a Rh-catalysed 1,4-addition followed by chiral HPLC separation to obtain the diastereomers (\boldsymbol{R})-89a and $(\boldsymbol{R})-\mathbf{8 9 b}$ of unknown configurations at the benzylic asymmetric centre. Compound (\boldsymbol{R})-89a was hydrogenated over Pd / C, then ester $(\boldsymbol{R})-\mathbf{9 0 a}$ was hydrolysed to give compound (\boldsymbol{R})-70a. As compound $(\boldsymbol{R})-\mathbf{9 0}$ a was not isolated as a pure material a yield was not calculated; however the combined yield for the last two steps was 45%.

Scheme 26 Reagents and conditions : (i) (E)-tert-Butyl 4-acetoxybut-2-enoate, $\operatorname{Pd}\left(\mathrm{dppf}^{2}\right) \mathrm{Cl}_{2}$, DIPEA, DCM, 25 ${ }^{\circ} \mathrm{C} 50 \%$; (ii) $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}$, boronic acid 84, 1,4 -dioxane, $95{ }^{\circ} \mathrm{C}$; 100 min ; then chiral HPLC ($\left.\boldsymbol{R}\right)$-89a 3%; (R)-89b 5\%; (iii) Pd/C, H_{2}, EtOAc : EtOH (1:1), $25^{\circ} \mathrm{C}$; (iv) TFA, DCM, $25^{\circ} \mathrm{C}, 97 \mathrm{~h}, 45 \% ~(2$ steps).

The biological data for compound $(\boldsymbol{R})-\mathbf{8 0 a}$ are shown in Table 18. The compound was potent at the $\alpha_{v} \beta_{6}$ integrin, with a $\mathrm{pIC}_{50}=8.1$ and was more than 1000 -fold selective over $\alpha_{v} \beta_{3}$ and 250 -fold more selective over $\alpha_{v} \beta_{5}$, making it the most selective small molecule ever reported in the literature or made in-house. By contrast, however compound (\boldsymbol{R})-80a showed no selectivity over the $\alpha_{v} \beta_{8}$ integrin, with a $\mathrm{pIC}_{50}=8.0$. The compound was also inactive in the hERG assays.

Table 18: Biological data for compound (\boldsymbol{R})-80a.

	Compound (R)-80a
$\alpha_{v} \beta_{6}\left(\mathrm{pIC}_{50}\right)$	8.1
$\alpha_{v} \beta_{3,} \alpha_{v} \beta_{5,} \alpha_{v} \beta_{8}\left(\mathrm{pIC}_{50}\right)$	$5.0,5.8,8.0$
hERG (QPatch, Barracuda)	$<4.52,<4.2$

A potent and highly selective compound would be required as a candidate molecule. Compound (\boldsymbol{R})-78a was potent in the cellular and also the tight binding assays, however the selectivity over the $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ was only 10 -fold. The observation that 3 ,5-disubstituted phenyl rings gave an increase in selectivity which was found in compounds $\mathbf{1 2}$ and $(\boldsymbol{R})-\mathbf{7 0}$, resulted in the design of compound $(\boldsymbol{R})-\mathbf{8 0 a}$. This compound was found to be more selective than, but equipotent with compound (\boldsymbol{R})-78a, with over 1000 -fold selectivity over the $\alpha_{\mathrm{v}} \beta_{3}$ and $\alpha_{v} \beta_{5}$ integrins. This compound also showed no evidence of hERG activity.

2.7 Summary

This chapter described an investigation of small molecules antagonists of $\alpha_{\vee} \beta_{6}$ integrin and its potential as a target in the treatment of idiopathic pulmonary fibrosis. The initial starting point of the programme was a molecule which contained an aniline in the core, which was replaced with an aminopyridine. However, attention moved away from the aromatic cores when selectivity was found in other series. Compounds containing heterocyclic cores and with more $s p^{3}$ character showed a favourable selectivity profile with more affinity for the $\alpha_{v} \beta_{6}$ integrin over $\alpha_{v} \beta_{3}$. The selectivity was improved further when modifications to the phenyl ring on the right hand side of the molecule were explored. Compounds containing a 3,5dicyclopropylphenyl showed further selectivity, but at a cost of higher molecular weight and ChromLogD ${ }_{7.4}$. The identification of ortho-fluorine containing molecules which would favour certain orientations of the phenyl ring gave further evidence that selectivity could be obtained from right hand side modifications. This led to the development of compounds (\boldsymbol{R})70a and (\boldsymbol{R})-80a, which were hybrids of other molecules. These compounds showed superior levels of selectivity whilst maintaining potency. Compound (R)-70a was tested in in vivo PK studies, and showed suitable properties for inhaled drug delivery. However, this compound
was not progressed further in the programme due to the lack of residence time in the lung leading to low exposure. Compound (\boldsymbol{R})-80a which contained a morpholine and a 3,5 dimethylpyrazole is one of the most selective small molecule at $\alpha_{v} \beta_{6}$ integrin reported in the literature or measured in-house. This compound showed no activity in the hERG assay unlike similar compounds, and this was attributed to the substituents on the right hand side of the molecule. Unfortunately compound (\boldsymbol{R})-80a was also terminated due to a change in priority, however, there is now some evidence that a selective $\alpha_{v} \beta_{6}$ integrin compound might be useful on the inhaled programme and it is currently being used as a tool compound.

3 The Oral $\alpha_{v} \beta_{6}$ programme

The $\alpha_{v} \beta_{6}$ oral programme was running in parallel to the $\alpha_{v} \beta_{6}$ inhaled programme. There are three reasons for designing a drug that can be delivered orally; the first is an increase in patient compliance. ${ }^{59}$ The second is that fibrotic tissue may not absorb an inhaled drug, and the third reason is the range of additional organs such as the kidney and liver that could potentially be exposed when the drug is in the systemic circulation. The treatment of fibrotic tissue in the kidney and liver may be an additional target which could be addressed; however this is currently beyond the scope of this thesis.

Compound (\boldsymbol{R})-70a was tested in a mouse pharmacokinetic oral and IV leg study (vide infra). When compound $(\boldsymbol{R})-70$ a was dosed orally in the mouse there was limited systemic exposure. In this chapter the efforts to identify orally bioavailable integrin $\alpha_{v} \beta_{6}$ antagonists will be discussed.

3.1 Oral absorption

The first major issue involved in delivering a compound orally is permeability across the gut wall. When the drug leaves the stomach and enters the gastrointestinal (GI) tract, it needs to dissolve and then cross a layer of enterocytes on the gut wall. Once across the membrane, a series of efflux mechanisms can extrude the drug back into the gut (Figure 29). ${ }^{60}$ The process of absorption is an equilibrium process; small, neutral compounds can pass easily across the membrane, whereas large or charged species usually do not.

Figure 29: Cartoon representation of a drug passing across the gut wall into the hepatic portal vein.

For an oral programme, it is important to show in vitro permeability before proceeding to animal studies; two permeability assays have been developed to do this. Firstly, there is the high throughput passive permeability assay, an HPLC method correlated to in vivo data. The second assay uses the Madin Darby Canine Kidney (MDCK) cell line. These cells are expressed from the canine kidney and predict the ability of a compound to permeate in human gut cells. ${ }^{61}$ The compound is placed in a well consisting of two compartments separated by a semi-permeable membrane containing MDCK cells (Figure 30). The well is left for a period of time and the concentration of compound is measured on each side of the membrane. The ability of a compound to permeate can be determined from these measurements. The experiment can be modified to include a transporter inhibitor and this will show if the compound is being transported using specific transporters or it is being effluxed.

Figure 30: Cartoon representation of a permeability well.

The pK_{a} of a compound is important when predicting its ability to pass through the gut wall. Assuming that there are no transporter mechanisms, only neutral species can cross the membrane. If the pK_{a} of a compound is such that 90% of the compound is protonated, only 10% will be available to pass through initially. Absorption is an equilibrium process, so in this example, the 10% will cross the membrane into the hepatic portal vein and the remaining 90% will re-equilibrate making another 10% of the neutral form, allowing this to pass through in turn (Figure 31). The entire dose could be absorbed, depending on the solubility of compound and the time in the gut. The pK_{a} of the GI tract changes according to location; the pH is 6.5 in the duodenum, increasing to 7.5 in the small intestine. A compound with a basic nitrogen $\left(\mathrm{pK}_{\mathrm{a}} \sim 9\right)$ is therefore more likely to be absorbed in the small intestine than in the duodenum.

Figure 31: Schematic showing the ionisation and adsorption of compound $\mathrm{A}: \mathrm{HA}^{+}$is the protonated species, $A_{\text {neu }}$ is the neutral species and $A_{a b s}$ is the absorbed species. K_{a} is the dissociation constant of $\mathrm{HA}^{+}, \mathrm{k}_{\text {abs }}$ is the absorption rate constant and $\mathrm{k}_{\text {eff }}$ is the efflux rate constant (left). pK_{a} graph, showing that $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ when 50% of the species is ionised.

It is important that inhaled compounds have low oral absorption so that the $80-90 \%$ of the inhaled dose which is inadvertently swallowed by the patient will not enter the systemic circulation. The heterocyclic lead series which is both potent and selective in the $\alpha_{v} \beta_{6}$ inhaled programme shows poor passive permeability. This poor permeability is attributed to the basicity of the core and not the zwitterionic nature of the molecule, because zwitterionic compounds have been made with excellent permeability/oral bioavailability. Compound 91 contains an azepine core, which has a measured pK_{a} of 10.4 (Table 19). It is well known that β-heteroatoms such as N, O or F reduce the pK_{a} of basic nitrogens. ${ }^{62}$ Compound 43 contains a homopiperazine, a close analogue of this has a measured pK_{a} of 9.9 , which is $0.5 \log$ units less basic than compound 91 . This can be attributed to the β-nitrogen atom on the core. Although compound $\mathbf{4 3}$ contains a less basic core, it is also more polar (the cLogP has been reduced to 2.1). The permeability decreased from $180 \mathrm{~nm} / \mathrm{s}$ to $12 \mathrm{~nm} / \mathrm{s}$ as a result of adding a nitrogen atom.

Table 19: Potency, selectivity and physical properties of compound 91 and 43.

Potency $\boldsymbol{\beta}_{6}$ cell (pIC_{50})	7.8	6.8
Selectivity	>10 fold at β_{3}, β_{5} equipotent at β_{8}	>10 fold at β_{3}, β_{5} equipotent at β_{8}
cLog P	3.6	2.1
Permeability high throughput (nm / s)	180	12
pK_{a} (core)	10.4	9.9**
pK_{a} (tetrahydronaphthyridine)	7.7	7.7**
$\mathrm{pK} \mathrm{K}_{\mathrm{a}}$ (acid)	3.9	3.1 **

** pK_{a} measurement for a similar compound, with the cyclopropyl group replaced on aromatic core; this modification is unlikely to change the pK_{a} measurements because they are distal from the point of modification.

3.2 Modifying the heterocyclic cores for higher permeability

Passive permeability in the duodenum and small intestine may increase as the basicity of the molecule decreases, assuming the polarity is maintained roughly constant. This part of the thesis will explore compounds which have cores of reduced basicity. Table 20 shows the predicted pK_{a} data for N, N-dimethylhomopiperazine 92 and a range of substituted N, N dimethylpiperazines 93-95. The values were calculated using the Marvin calculator version 5.7.2 ${ }^{63}$ It is known that the predictive values calculated by this algorithm have a good correlation with measured values.

Using the Henderson-Hasselbalch equation (Equation 2) and the pK_{a} values, it is possible to calculate the \% of the core that would be protonated at different pH values. The pH values of
interest were $\mathrm{pH}=6.5$ and pH 7.5 which represent the pH of the duodenum and the small intestine, respectively.

Equation 1: Henderson-Hasselbalch equation

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10}\left(\frac{[\mathrm{~B}]}{\left[\mathrm{BH}^{+}\right]}\right)
$$

Assuming a pH of 6.5 in the duodenum, less than 0.5% of compound 92 would be neutral, resulting in very slow (if any) passive permeability across the gut wall. This value does not change significantly in the small intestine. Adding an electron-withdrawing group in position X or Y (or both) will decrease the pK_{a} of either nitrogen atom. When X and Y substituents are both fluorine atoms, the core has a much reduced pK_{a} of 6.26 . Around 60% of this core would be unprotonated in the duodenum and 94.4% unprotonated in the small intestine; this compound is therefore predicted to be highly permeable (Table 20).

Table 20: pK_{a} measurements for a series of homopiperazines and the calculated percentage which will be protonated in different parts of the GI tract.

Compound Number	X	Y	pKa (calculated)	\% of the core unprotonated in Duodenum $\mathrm{pH}=6.5$	\% of the core unprotonated in S. Intestine $\mathrm{pH}=7.5$
92	H	H	9.81	<0.5	<0.5
93	H	OH	9.27	<0.5	1.7
94	H	F	8.10	2.4	20.1
95	F	F	6.26	64.0	94.4

Property of GSK - Confidential - Do not copy

Other team members ${ }^{49}$ have progressed a series containing a diazabicyclooctane [3.3.0] core; an exemplar of this series is compound 96. The biological data for this compound is presented in Table 21 and shows a pIC_{50} in the $\alpha_{v} \beta_{6}$ cellular assay of 6.9. The compound was tested against the $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ integrins and showed a $\mathrm{pIC}_{50}=5$; the compound was also tested at $\alpha_{v} \beta_{8}$ and showed a $\mathrm{pIC}_{50}=7.0$. The core is basic with a measured pK_{a} of 9.67.

Table 21: Potency, selectivity and physical properties of compound 96 (single enantiomer of unknown configuration).

Potency $\alpha_{v} \beta_{\mathbf{6}}$ cell $\left(\mathrm{pIC}_{50}\right)$	$\mathbf{6 . 9}$
Selectivity $\alpha_{\mathrm{v}} \beta_{3}, \alpha_{\mathrm{v}} \beta_{5,} \alpha_{\mathbf{v}} \beta_{8}\left(\mathrm{pIC}_{50}\right)$	$5,5,7.0$
$\mathbf{c L o g P}$	3
Permeability high throughput (nm/sec)	240
$\mathbf{p K}_{\mathrm{a}}($ core, naphthyridine, acid $)$	$9.67,7.71,3.16$

Using the strategy described above, adding two fluorine atoms to compound $\mathbf{9 6}$ at the ring junction to give compound 97 could reduce the pK_{a} of the core nitrogen atoms (Figure 32).

Figure 32: Compounds 96 and 97.

The pK_{a} for N, N-dimethyl-2,5-diazabicyclooctane [3.3.0] $\mathbf{9 8}$ has been measured in-house and has a value of 9.67 (Table 22). The calculated value was determined using a predictive tool (Marvin version 5.7.2) and gave a value of 9.56. This calculated pK_{a} predicts that $>99.5 \%$ of the compound would be protonated in the duodenum. The predictive model was also used to calculate the pK_{a} of 3,6-difluoro- N, N-dimethyl-2,5-diazabicyclooctane [3.3.0] 99 and gave the value as 5.49 . With this value only 10% of the compound would be protonated in the duodenum (Table 22).

Table 22: pK_{a} predictions for a series of bicyclic diamines and the calculated percentage which will be protonated in different parts of the GI tract.

Compound	\mathbf{X}	$\mathbf{p K a}$			
(calculated)	(measured)	\% of the core unprotonated in Duodenum	\% of the core unprotonated in S. Intestine		
$\mathbf{9 8}$	H	9.56	9.67	$\mathbf{p H}=6.5$	<0.5
$\mathbf{9 9}$	F	5.49	5.58	90	<1

NM: Not measured

Graph 3 shows the trend between pK_{a} and the $\%$ protonated species in different parts of the GI tract. The green highlighted area ($<25 \%$ protonated) is where the molecules are more likely to be orally absorbed. Both compounds $\mathbf{9 5}$ and 99 are therefore predicted to have good oral absorption, based on the degree of ionisation and related effects on permeability.

Graph 3: Compounds 92-95, 98-99 with the calculated pK_{a} and $\%$ protonated in different parts of the GI tract. The highlighted area shows compounds in $<25 \%$ protonated form; both compounds $\mathbf{2 3 2}$ and $\mathbf{2 3 6}$ fall into this region.

3.3 Synthesis of fluorinated cores

Based on the analysis discussed in the previous section, compounds containing the cores from fragments $\mathbf{9 4}, \mathbf{9 5}$ and $\mathbf{9 9}$ were synthesised with a view to assessing the effect on permeability and ultimately bioavailability.

Compounds 103 and 104 were formed by a reductive amination of the commercially available cores $\mathbf{1 0 1}$ and $\mathbf{1 0 2}$ with aldehyde 100, followed by deprotection using five equivalents of HCl in 1,4-dioxane (Scheme 27). The ${ }^{1} \mathrm{H}$ NMR spectrum showed a mixture of mono- and di-hydrochloride salts. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0 4}$ shows complex multiplets in the aliphatic region which can be attributed to the ${ }^{3} J_{\mathrm{H}-\mathrm{F}}$ coupling. The ${ }^{13} \mathrm{C}$ NMR spectrum has 14 signals each representing a C atom in the compound. There are three peaks which have additional couplings attributed to the ${ }^{1} J_{\text {C-F }}$ and ${ }^{2} J_{\text {C-F }}$ coupling. The carbon atom with the two fluorines directly attached is represented by a $d d$ with coupling constants of 235 Hz and 232 Hz . The ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{1 0 4}$ shows a multiplet (pseudoquintet)
with ${ }^{3} J_{\mathrm{F}-\mathrm{H}}$ coupling constants of 14 Hz and 16 Hz . As the fluorine atoms are non-equivalent, two double of quintets were expected; however this spectrum can only be explained if the fluorines have equivalent chemical shifts.

Scheme 27: Reagents and conditions: (i) $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{DCM}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$, (i) 4 M HCl in 1,4-dioxane, $25^{\circ} \mathrm{C}$, $18 \mathrm{~h}, \mathbf{1 0 4} 82 \%$.

Amines 103 and 104 were alkylated with (E-methyl 4-bromobut-2-enoate to give compounds $\mathbf{1 0 5}$ and $\mathbf{1 0 6}$ (Scheme 28). The purity of compound $\mathbf{1 0 5}$ was 87% therefore a yield was not determined for this reaction. The crude material was taken directly into the next step of the synthesis without further purification.

Scheme 28: Reagents and conditions: (i) (E)-Methyl 4-bromobut-2-enoate, DIPEA, DCM, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}, \mathbf{1 0 6}$ 56\%.

In the next step, the alkenes $\mathbf{1 0 5}$ and $\mathbf{1 0 6}$ were reacted with boronic acids $\mathbf{1 0 7}$ and $\mathbf{2 1}$ in the presence of $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ to give esters $\mathbf{1 0 9 - 1 1 2}$, which were hydrolysed with aqueous LiOH to give acids $\mathbf{1 1 3} \mathbf{- 1 1 6}$ (Scheme 29). Compound $\mathbf{1 1 4}$ was only 82% pure therefore a yield was not determined for this reaction. At this purity, it was less than ideal to determine in
vitro properties of the compound, however it did meet the purity criteria for the cellular integrin assays.

Scheme 29: Reagents and conditions: (i) Boronic ester, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) LiOH , THF, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}, \mathbf{1 1 3} 36 \%, 11423 \%$, 115 17\%, $\mathbf{1 1 6} 92 \%$.

The synthesis of compounds $\mathbf{1 2 1}$ and $\mathbf{9 7}$ followed procedures similar to those described above (Scheme 30). Commercially available compounds $\mathbf{1 0 0}$ and $\mathbf{1 1 7}$ were reacted together in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}$ to give compound 118, which was not isolated but was treated with HCl to give compound 119. The ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{1 1 9}$ shows only a singlet at -165 ppm , due to the fluorine atoms being in same environment based on the symmetry of the molecule. The ${ }^{1} \mathrm{H}$ NMR spectrum did show $J_{\mathrm{H}-\mathrm{F}}$ couplings as the aliphatic region of the spectrum consisted of a number of complex multiplets. Compound $\mathbf{1 1 9}$ was reacted with (E)-methyl 4-bromobut-2-enoate $\mathbf{1 0 7}$ to give compound $\mathbf{1 2 0}$ in 63% yield. Finally compounds $\mathbf{1 2 1}$ and $\mathbf{9 7}$ were made after a Rh-catalysed 1,4-addition followed by ester hydrolysis.

Scheme 30: Reagents and conditions: (i) $\mathrm{NaB}(\mathrm{OAc})_{3} \mathrm{H}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (ii) 4 M HCl in 1,4-dioxane, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$ 100% (2 steps) (iii) DIPEA, DCM, $25^{\circ} \mathrm{C}, 18 \mathrm{~h} .63 \%$ (iv) Boronic ester 108 or 21, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95^{\circ} \mathrm{C}$, 30 min ; (v) LiOH, THF, $25^{\circ} \mathrm{C}$, $18 \mathrm{~h} \mathbf{1 2 1} 0.7 \%$, 972% (2 steps).

Two additional compounds were made to explore the basicity of the core. The synthesis followed the same procedures as described above. The syntheses of compounds $\mathbf{1 2 8}$ and $\mathbf{1 2 9}$ are shown in Scheme 31.

Scheme 31: Reagents and conditions: (i) $\mathrm{NaBH}_{4}, 2 \mathrm{MeTHF}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (ii) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{DCM}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (iii) $\mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 18 \mathrm{~h}, 95 \%$; (iv) 4 M HCl in 1,4-dioxane, $25^{\circ} \mathrm{C}, 18 \mathrm{~h} 100 \%$; (v) DIPEA, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}, 64 \%$; (vi) Boronic ester 108 or 21, $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}, \mathrm{KOH}, 95^{\circ} \mathrm{C}, 30 \mathrm{~min}\right.$, (vii) LiOH, THF, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}, \mathbf{1 2 8} 64 \%, \mathbf{1 2 9} 29 \%$ (2 steps).

The permeability, biological and pK_{a} data for $(\pm)-\mathbf{4 3},(\pm)-96-(\pm)-97,(\pm)-113-116,(\pm)-\mathbf{1 2 1}$, $(\pm) \mathbf{- 1 2 8 - 1 2 9}$ and $(\pm) \mathbf{- 1 3 0 - 1 3 1}$ are presented in (Table 23). Compound $(\pm) \mathbf{- 4 3}$ has a potency of
6.8 in the $\alpha_{v} \beta_{6}$ receptor assay which increases to 7.1 in compound $(\pm) \mathbf{- 1 3 0}$, where there is an extra cyclopropyl group. The measured pK_{a} of the core in compound ($\pm \mathbf{)} \mathbf{- 4 3}$ is 8.9 and this compound has no permeability in the artificial membrane permeability assay. The cores of compounds ($\mathbf{\pm} \mathbf{- 1 1 3}$ and ($\mathbf{\pm}$)-115 have lower pK_{a} values and have higher permeabilities than compounds $(\pm)-\mathbf{4 3}$ and $(\pm) \mathbf{- 1 3 0}$. However, the potencies of these compounds are lower than that of $\mathbf{(\pm) - 4 3}$. When two fluorine atoms are present in the core, as in compounds $\mathbf{(~} \mathbf{)} \mathbf{- 1 1 4}$ and (\pm)-116, the potency drops so far that these compounds are inactive at the $\alpha_{v} \beta_{6}$ receptor assay. However, the pK_{a} of the core is 5.26 and as a result the permeability is extremely high.

Compounds with the fused pyrrolidine cores such as compounds (\pm) - $\mathbf{9 6}$ and $(\pm)-\mathbf{1 3 1}$, are potent in the $\alpha_{v} \beta_{6}$ receptor assay; however, because of the high pK_{a} values, only compound $(\pm)-96$ has high permeability, which is achieved by adding the extra cyclopropyl group on the benzene ring. Compounds ($\mathbf{\pm} \mathbf{)} \mathbf{- 1 2 1}$ and $(\pm) \mathbf{- 9 7}$ also contain a fused pyrrolidine, but the ring junction hydrogen atoms have been replaced with fluorine atoms, reducing the pK_{a} to 5.49. As a result, the permeability is one of the highest measured in this assay at over $450 \mathrm{~nm} / \mathrm{s}$. Unlike the azepine series (compounds $(\pm) \mathbf{- 1 1 4}$ and $(\pm) \mathbf{- 1 1 6}$), the reduction in pK_{a} is not achieved at the expense of a reduction in potency. This could be attributed to a change in shape of the flexible azepines when a fluorine atom is added. However, the more rigid fused pyrrolidines are unable to change shape and therefore potency is retained. Finally, compounds ($\mathbf{\pm}$)-128 and ($\mathbf{\pm}$)-129 contain an amide in the core; this reduces the pK_{a} but the compounds are inactive.

Property of GSK - Confidential - Do not copy

Table 23: Potency, pK_{a} and permeability data for compound for $(\pm)-\mathbf{4 3},(\pm)-96-97(\pm) \mathbf{- 1 1 3 - 1 1 6 ,}(\pm)-121$, and ($\mathbf{\pm}$)-127-131.

Compound number	Core	X	$\alpha_{v} \beta_{6}$	tency $\alpha_{v} \beta_{3}$		$\begin{gathered} \text { Measured } \\ \mathbf{p K}_{\mathrm{a}} \end{gathered}$	Artificial membrane Permeability (nm/s)
(\pm)-43		H	6.8	5.0	5.0	8.9	77
(\pm)-130		Cyclopropyl	7.1	5.2	5.7		190
(\pm)-113		H	5.5	5.8	5.0	7.1	290
(\pm)-115		Cyclopropyl	5.8	5.0	5.0		NM
(\pm-114		H	5.0	5.3	5.5	5.26	420
(\pm)-116		Cyclopropyl	5.0	5.0	5.0		550
(\pm)-131		H	6.7	5.1	NM	9.67	85
(\pm)-96		Cyclopropyl	6.9	5.0	5.0		240
(\pm-121		H	6.7	6.6	7.4	5.49	470
(\pm)-97		Cyclopropyl	6.3	5	5.9		655
(\pm-128		H	5.0	5.0	5.0	6.83	110
(\pm)-129		Cyclopropyl	5.0	5.0	5.9		355

NM: Not measured

The tabulated data are also presented pictorially in Graph 4, which shows a direct trend between basicity with permeability.

Graph 4: Plot showing $\mathrm{pK}_{\mathrm{a}} v s$. permeability for compounds $\mathbf{4 3}, \mathbf{1 1 3}, 114,95,121$ and 128.

The drop in potency in the homopiperazine series was unexpected. The hypothesis that compounds with a pK_{a} of less than 6 are inactive was not consistent with the data, as compound 121 had a pK_{a} of 5.49 and a $\mathrm{pIC}_{50}=6.7$ (Table 23). Compound 121 has a diazabicyclooctane [3.3.0] core which has fewer rotatable bonds than compounds $\mathbf{4 3}$ and 114; DFT calculations ${ }^{64}$ were therefore carried out on the cores to explore the hypothesis that the shape of the core affects the potency. The full structures were not modelled due to the computation time required to process the large number of conformers, hence N, N dimethylhomopiperazine and N, N-dimethyl-6,6-fluorohomopiperazine (Table 24) were used as model systems of compounds $\mathbf{4 3}$ and $\mathbf{1 1 4}$, respectively. The N, N-dimethylhomopiperazine will be a monocation at physiological pH , therefore both the neutral and protonated state of this compound were modelled. The three systems (N, N-dimethylhomopiperazine neutral, N, N-dimethylhomopiperazine monocation and N, N-dimethyl-6,6-fluorohomopiperazine
neutral) were modelled in the water phase using a DFT method ω B97X-D and 6-3IG* basis set. ${ }^{65}$

The neutral N, N-dimethylhomopiperazine could access conformers A - F (Table 24), with an even distribution and not favouring one conformer. The N, N-dimethylhomopiperazine monocation could access conformers A and G-J (Table 24); however 55\% of the molecules are predicted to be in conformer H . The N, N-dimethylhomopiperazine neutral and monocation have different global minima due to the protonation state. The neutral $N, N-$ dimethyl-6,6-fluorohomopiperazine is predicted to be in only conformers $\mathrm{D}-\mathrm{F}$ (Table 24). Over 50% of the molecules are predicted to be in conformer F which orientates the methyl groups in a pseudoequatorial orientation.

Table 24: DFT calculations of N, N-dimethylhomopiperazine neutral and monocation and neutral N, N-dimethyl-6,6-fluorohomopiperazine.

Conformer	 92	 92-(H^{+})	 95
	\% Occupied		
	23	5	0
	15	0	0
	20	0	0
	15	0	28

	10	0	14
	9	0	55
	0	13	0
	0	55	0
	0	11	0
	0	10	0

The global minima of the N, N-dimethylhomopiperazine monocation (conformer H) and the neutral N, N-dimethyl-6,6-fluorohomopiperazine (conformer F), which are believed to be the bioactive conformations (vide supra), do not have significantly different orientations; both locate the methyl groups in pseudoequatorial environments. It is therefore difficult to attribute the two log unit difference in potency between the two cores to a different core conformation. Further investigation was required to rationalise the change in potencies.

The DFT calculations did not provide the evidence to explain the difference in potency of compound 130 and 116, because only the cores were modelled. Conformational analysis was conducted on compounds $\mathbf{1 3 0}$ and $\mathbf{1 1 6}$ using MOE (2012.10, forcefield MMFF94x). The carboxylic acids of the lowest energy conformers were superimposed showing that the tetrahydronaphthyridine were in different environments (Figure 33). The second lowest energy conformation for compounds $\mathbf{1 3 0}$ and $\mathbf{1 1 6}$ were $4.7 \mathrm{kcal} / \mathrm{mol}^{-1}$ and $3.6 \mathrm{kcal} / \mathrm{mol}^{-1}$, respectively higher than the lowest energy conformer, suggesting that the large majority of these molecules sit in the conformation at room temperature and pressure (consistent with the DFT calculations of the core). Both compounds are predicted to have pseudoequatorial substituents on the nitrogen atoms (consistent with the DFT calculations). However, in compound $\mathbf{1 1 6}$ the presence of the fluorine atoms causes the carbon chain in the core to flip and therefore adopt a different shape. This minor change in the core is accentuated when the full structure is considered (this was not possible in the DFT calculations), forcing the tetrahydronaphthyridine ring to occupy a different area of space than in compound $\mathbf{1 3 0}$.

Figure 33: Lowest energy conformers of compounds $\mathbf{1 3 0}$ (orange) and $\mathbf{1 1 6}$ (black).

A flexible alignment of compound 116 was conducted using MOE (2012.10, forcefield MMFF95x, iteration 1000, cut-off 100) to see if it could fit the same space as compound $\mathbf{1 3 0}$. The lowest energy overlay is shown in Figure 34, with compound $\mathbf{1 1 6}$ showing $19 \mathrm{kcal} / \mathrm{mol}^{-1}$ of strain energy. Assuming compound $\mathbf{1 3 0}$ is in the bioactive conformation, only a small percentage of compound $\mathbf{1 1 6}$ can sit in this orientation at room temperature and pressure, without incurring an enthalpic penalty.

Figure 34: Flexible alignment of compound $\mathbf{1 1 6}$ (black) on compound $\mathbf{1 3 0}$ (orange).

The Newman projections of the cores were examined; both cores have a gauche conformation with respect to the C-C bond highlighted in Figure 35; however the presence of the fluorine atoms has changed the orientation of the C-C bond with respect to the other atoms (Figure 35). This change in shape could be an explanation of the difference in potencies.

130

116

Figure 35: Newman projections of compounds $\mathbf{1 3 0}$ and 116.

3.4 Summary

The alicyclic series containing a basic nitrogen atom, represented by compound 43, did not show sufficient permeability to deliver the compound orally, therefore modifications to reduce the pK_{a} were attempted by the addition of fluorine atoms. The permeability was increased as the pK_{a} of the core was decreased; however this was at the expense of potency. The addition of the fluorine atoms in the homopiperazine series may have had a conformational influence on the molecule as well as modifying the pK_{a}. Compound 97 showed that the addition of two fluorine atoms to compound $\mathbf{1 3 1}$ increased the permeability whilst maintaining potency. Therefore, the synthesis of the single enantiomer of compound 97 was scaled up for further in vitro and in vivo studies (vide infra).

3.5 In vitro and in vivo studies on compound 97

Compound $\mathbf{9 7}$ showed excellent permeability in the artificial membrane permeability assay. The compound was put through the MDCK assay and one of the highest measurements of permeability in this assay was recorded, with a value of $715 \mathrm{~nm} / \mathrm{s}$ (Table 25).

Table 25: Permeability data for compound 97.

Assay	Value (nm/s)
Artificial membrane	655
MDCK	715

With excellent in vitro permeability, compound 97a was synthesised as a single enantiomer and put into a mouse pharmacokinetic study.

The single enantiomers of compound $\mathbf{9 7}$ were separated to give compounds $\mathbf{9 7 a}$ and $\mathbf{9 7 b}$. The data for enantiomer 97a and racemate 97 are shown in Table 26. Enantiomer 97a has a potency of 7.3 in $\alpha_{v} \beta_{6}$ the cellular assay, so it is over 10 -fold more potent than the $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ receptors and is equipotent with the $\alpha_{v} \beta_{8}$ receptor.

Table 26: Mean potency values of compounds 97 and $\mathbf{9 7 a}$.

Compound number	Stereochemistry	$\alpha_{v} \beta_{6}$ cell $\mathbf{p I C}_{50}$	$\alpha_{v} \beta_{3}$ $\mathbf{p I C}_{50}$	$\alpha_{v} \beta_{5}$ $\mathbf{p I C}_{50}$	$\alpha_{v} \beta_{8}$ $\mathbf{p I C}_{50}$
97	Racemic	6.3	5	5.9	6.7
97 a	Enantiomer A	7.3	6.0	6.3	7.7

Compound 97a was dosed orally at $3 \mathrm{mg} / \mathrm{kg}$ to twelve mice and terminal blood samples were collected at time points ranging from 10 min to $7 \mathrm{~h} .{ }^{55}$ Each mouse provided an hepatic portal vein blood sample, and a systemic cardiac blood sample. The data showed that the compound had moderate to low hepatic clearance with a clearance of 23% liver blood flow and an estimated oral bioavailability of 14%. The compound had systemic concentration maximum

Property of GSK - Confidential - Do not copy

$\left(\mathrm{C}_{\max }\right)$ of $182 \mathrm{ng} / \mathrm{mL}$ and the time to reach this concentration $\left(\mathrm{T}_{\max }\right)$ of 0.16 h . Using the hepatic portal vein exposure $\left(\mathrm{AUC}_{0-\mathrm{t}}=437 \mathrm{ng} / \mathrm{mL}\right)$ and the hepatic extraction ratio, 18% of the oral dose appears to have been absorbed (Table 27).

Table 27: in vivo data for compound 97 a.

Sampling site	$\mathbf{C}_{\text {max }}$				
$(\mathbf{n g} / \mathbf{m L})$	$\mathbf{T}_{\text {max }}$ (h)	Mean AUC 0-last $(\mathbf{h} \times \mathbf{n g} / \mathbf{m L})$	$\left.\begin{array}{c}\text { Fraction } \\ \text { Absorbed (} \\ \mathrm{ab}\end{array}\right)$	Bioavailability	
Hepatic portal vein	230	0.16	437	18	14
Systemic	182	0.16	335		

Control blood was removed from naive mice and compound 97a was added to the matrix. It was found that compound 97 a was stable in whole blood for up to 4 h at $37{ }^{\circ} \mathrm{C}$. The compound was found to bind to blood proteins with a binding of 99.6% (Table 28). This result suggests that the free-fraction is only 0.4%, and therefore only a small amount of the compound absorbed would be available to interact with the target of interest.

Table 28: Blood binding and stability data of compound 97a.

	Compound 97a
\% of compound bound to blood proteins	99.6%
Stability of compound after 4 h at $37^{\circ} \mathrm{C}$	Stable

3.6 Conclusions

The introduction of fluorine atoms onto a rigid fused pyrrolidine core enabled the nitrogen basicity of the core to be reduced. The reduction in pK_{a} increased compound permeability both in vitro and in vivo. Compound 97a was the first in-house integrin compound to have measureable in vivo permeability. The rigid core prevented the structure from twisting when
the fluorine atoms were added and therefore potency was maintained. This compound demonstrated that we might be able to obtain a suitable compound for oral drug delivery. However, with the reduced pK_{a} the lipophilicity increased and the free-fraction decreased. This molecule was not progressed further because it would be unsuitable for oral delivery. The next chapter will explore the properties of molecules to see if it is possible to obtain both permeability and free fraction.

4. Oral drug design guide

4.1 Introduction

As outlined in previous chapters there is growing evidence that the development of an oral $\alpha_{v} \beta_{6}$ integrin antagonist could be used for the treatment of a wide range of fibrotic diseases, including idiopathic pulmonary, liver and kidney fibrosis. The compounds used to treat these diseases could be dosed orally and delivered to the target organ once they enter the systemic circulation. Compounds that have been made in-house (Chapter 3) and screened in vivo were not suitable for oral delivery, due either to low permeability, or to high protein binding. This chapter will explore the properties of compounds from the literature that are suitable for oral delivery, to see if trends can be determined and applied to the in-house series.

4.2 Data sourcing of literature compounds

A search was conducted using the Aureus Sciences database (version 4.0). This database extracts biological data from publicly available sources such as journals and patents. The search found 4,904 compounds for which there was data in one or more integrin based assays. This dataset was refined to RGD integrin antagonists/agonists to ensure the most relevant data was analysed. The refinement removed all compounds which did not contain one carboxylic acid, because compounds without an acid are not RGD mimetics and compounds with more than one acid would be too dissimilar to our pharmacophore. Further refinement removed compounds without a basic centre, for similar reasons. This left 182 compounds that had been specifically designed as RGD integrin antagonists/agonists.

The 182 compounds designed to be RGD mimetics were analysed for common structural motifs. For ease of analysis, the compounds were split into three sections. The first moiety

Property of GSK - Confidential - Do not copy

was the arginine mimetic, the second was the linker or glycine mimetic, and the third was the aspartic acid mimetic (Figure 36)

Figure 36: Fragments of an RGD antagonist.

A tetrahydronaphthyridine has been used as an arginine mimetic in 83 compounds; of these, two references gave examples of disubstitution. Scientists from Merck KGA published work around these disubstituted compounds and found that substitution on the piperidine ring decreased $\alpha_{v} \beta_{3}$ potency, ${ }^{66}$ whereas substitution on the tetrahydronaphthyridine pyridine ring increased potency at $\alpha_{v} \beta_{3}$ (Table 29). ${ }^{67}$

Table 29: Biological data of disubstituted tetrahydronaphthyridine.

Compound number	$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{\mathbf{3}}$ potency $\mathbf{I C}_{\mathbf{5 0}}(\mathbf{n M})$	Reference
132	1.01	${ }^{67}$
133	0.29	${ }^{67}$
134	0.08	${ }^{66}$
135	0.11	${ }^{66}$

Arginine mimetics other than tetrahydronaphthyridines were 2-amino pyridines, guanidines or amidines. There were 29 amino pyridines, 15 guanidines and one amidine.

All of the aspartic acid mimetics were carboxylic acids because the initial refinement ensured that all the compounds had this functional group. However, over a quarter of the compounds (49) contained a β-phenylalanine. The β-phenylalanine was found in all of the in-house molecules made as part of the programme. Surprisingly, there were no examples of 4-amino-3-aryl-butyric acids, which are common in the in-house heterocyclic series (Table 30).

Table 30: Aspartic acid mimetics.

Search criteria	Number of examples

A variety of linkers between the arginine and aspartic acid mimetics were found; these included alkyl chains, aromatic and aliphatic rings. However out of the 182 compounds there were no examples of compounds with a basic nitrogen in the linker, which are found in some of the in-house series.

4.3 Summary of literature compounds

There were 182 RGD integrin related compounds in the literature. All contained a carboxylic acid and nearly half contained a tetrahydronaphthyridine. There were 49 examples of a β-phenylalanine. There were 31 compounds with both a tetrahydronaphthyridine and a β phenylalanine, which matched the pharmacophore of the in-house aromatic and quaternary

$$
\text { | Page | } 100
$$

pyridinium species (Figure 37). However, there were no examples of compounds with an additional basic nitrogen atom. It would be difficult to develop a model which would predict oral drug space, based on a dataset which contained compounds structurally different to our heterocyclic series.

Figure 37: Venn diagram highlighting molecules which contain a tetrahydronaphthyridine and a β phenylalanine.

4.4 Development of the $\alpha_{v} \beta_{6}$ oral drug guide

As there was insufficient data from the literature, in-house data was used to build the $\alpha_{v} \beta_{6}$ oral design guide. An extraction of the in-house database (GSKChem IJC) found 1237 compounds which had a potency in the integrin assay >6. The query also removed all intermediates, non-small molecules and pro-drugs as these would not be useful in building the model.

The optimisation of physical properties is essential for successful drug discovery. ${ }^{68}$ Both permeability and free-fraction are vital when a drug is delivered orally, as this facilitates delivery to and subsequent interaction with the pharmacological target. ${ }^{69,70}$ The physicochemical descriptors selected in this study are similar to the ones used by Gleeson et al.. ${ }^{71}$ After principal component analysis, size and lipophilicity were used for analysing the data. CMR was used in preference to molecular weight because the number of sulfur and fluorine atoms skewed the dataset; ChromLogD ${ }_{7.4}$ was used as the measure of lipophilicity. Descriptors such as number of rotatable bonds, heavy atoms, $s p^{3}$ character or ionisation state were also investigated but the correlation between properties was poor. The complexities associated with a multiple parameter approach were explored but are beyond the scope of this thesis.

Permeability is an important factor for an oral drug molecule, enabling delivery across the gut wall. Of the 1237 compounds in the dataset, 554 had measured permeability data in the high throughput artificial membrane permeability assay. The data was binned into two classes, above and below $50 \mathrm{~nm} / \mathrm{s}$, which is seen as a cut-off for desirable permeability. The compounds were plotted on a CMR vs. ChromLogD ${ }_{7.4}$ plot and showed a clear cut-off between desirable permeability. All compounds with a ChromLogD ${ }_{7.4}>4$ were permeable and those with a ChromLogD ${ }_{7.4}<2$ were impermeable. Compounds with a ChromLogD ${ }_{7.4}$ between 2 and 4 were permeable depending on size (Figure 38). A line (black) shows the distinction between good and poor permeability. For validation of the plot, the entire GSK compound collection was plotted in a similar way and the grey line shows a very similar line to the integrin programme.

Figure 38: Plot of CMR verses ChromLogD ${ }_{7.4}$ for in-house compounds. Compounds with permeability $>50 \mathrm{~nm} / \mathrm{s}$ are coloured in green, those with $<50 \mathrm{~nm} / \mathrm{s}$ are red. Black line $(0.502 \mathrm{x}-4.48)$ demarks the difference between the two categories for the dataset and the grey line $(0.407 \mathrm{x}-2.186)$ demarks the difference between the two categories for the GSK compound collection.

Drug efficiency ($\mathrm{D}_{\text {eff }}$) is the free concentration of a drug at the site of action relative to dose. ${ }^{72}$ It is a useful parameter that was recently introduced to optimise the pharmacokinetic properties and the in vivo efficacy potential of molecules. The $\mathrm{D}_{\text {eff }}$ is measured in vivo and depends on the compound's bioavailability, clearance, and the nonspecific binding to proteins and phospholipids. Known drug molecules have $\mathrm{D}_{\text {eff }}$ typically greater than 1% at the site of action. ${ }^{73}$ Given the low throughput of in vivo experiments, determining the $\mathrm{D}_{\text {eff }}$ is resource intensive, so the parameter drug efficiency maximum ($\mathrm{D}_{\text {eff }} \max$) can be used. $\mathrm{D}_{\text {eff }}$ max ignores the amount of compound lost in absorption or metabolism, but does take into consideration non-specific binding and binding to phospholipids. However, the main advantage of determining the $D_{\text {eff }}$ max is that it can be done using HPLC-based protein binding measurements. ${ }^{73}$

Of the 1237 compounds in the dataset 1078 had measured $\mathrm{D}_{\text {eff max }}$ data. The data was binned into two classes, above and below 1%, which is seen as a cut-off for desirable $\mathrm{D}_{\text {eff max }}$ (vide infra). The compounds were plotted on a CMR vs. ChromLogD ${ }_{7.4}$ plot and showed a cut-off for good drug efficiency (Figure 39). The data shows that a compound can have good drug efficiency at any ChromLogD ${ }_{7.4}$ vs. CMR space, but there is a cut-off where there is more confidence of obtaining $\mathrm{D}_{\text {eff max }}>1 \%$ below the black line. The confidence in this line is not as strong as in the permeability plot due to the smaller number of compounds with $\mathrm{D}_{\text {eff max }}<$ 1%. The grey line represents where the GSK compound collection cut-off threshold is.

Figure 39: Plot of CMR vs. ChromLogD $D_{7.4}$ for in-house compounds. Compounds with $\mathrm{D}_{\text {eff } \max }>1 \%$ are coloured in green, those with $<1 \%$ are red. Black line $(17.3-x)$ demarks the difference between the two categories for the dataset and the grey line ($8.3916-0.3902 \mathrm{x}$) demarks the difference between the two categories for the GSK compound collection.

4.5 The guide

The guide combines the concepts of good permeability and drug efficiency maximum to give a plot of CMR vs ChromLogD ${ }_{7.4}$ split into four quadrants. The quadrants represent molecules that are predicted to have good permeability and drug efficiency (quadrant 1), good
permeability and poor drug efficiency (quadrant 2), poor permeability and good drug efficiency (quadrant 3) and poor permeability and poor drug efficiency (quadrant 4). The plot in Figure 40 shows in which quadrant, compounds from the in-house programme would be, based on the ChromLogD ${ }_{7.4}$ and CMR values.

Figure 40: Plot of CMR verses ChromLogD ${ }_{7.4}$ for in-house compounds, green quadrant (quadrant 1), red quadrant (quadrant 2), yellow quadrant (quadrant 3), blue quadrant (quadrant 4).

When one physicochemical parameter of a molecule is changed, many others can also be affected; it was therefore decided to create aspirational and acceptable quadrants which would provide regions to aim for in molecule design. The acceptable region (yellow in Figure 41) sets a cut-off for permeability of $25 \mathrm{~nm} / \mathrm{s}$ and $0.5 \% \mathrm{D}_{\text {eff max }}$. The aspirational region (green in Figure 41) is the same as the quadrant 1 in Figure 40.

Figure 41: Plot of CMR verses ChromLogD ${ }_{7.4}$ for in-house compounds, showing the aspirational (green) and acceptable (yellow) region.

4.6 Validation of the grid

The grid was validated using two datasets; the first was the literature integrin dataset and the second was the GSK zwitterionic compound collection. In each dataset compounds were refined to include only those with PK data. Those with $>25 \%$ F were classed as having good permeability. Figure 42 shows the integrin literature dataset coloured by $\%$ F. All but three of the compounds with $>25 \% \mathrm{~F}$ are in the aspirational or acceptable regions. This implies that a compound in the aspirational or acceptable region is more likely to have bioavailability than one that is outside of this space. No drug efficiency data was available on the literature compounds to validate the model.

Figure 42: Plot of CMR verses ChromLogD ${ }_{7.4}$ for in-house compounds. Compounds with $\% \mathrm{~F}>25$ (green), < 25 (red).

The other dataset of in-house zwitterionic compounds (4420) was refined to include only those with PK and drug efficiency maximum data (297). Compounds with $\% \mathrm{~F}>25 \%$ and $\mathrm{D}_{\text {eff max }}>1 \%$ were coloured green, all other compounds were coloured in red (Figure 43). The data shows most of the compounds in the aspirational or acceptable zones have suitable PK properties for oral delivery.

Figure 43 Plot of CMR verses ChromLogD ${ }_{7.4}$ for in-house zwitterionic compounds. Compounds with $>25 \% \mathrm{~F}$ and $D_{\text {eff max }}>1 \%$ (green), others (red).

4.7 Using the guide for new ideas

The guide was designed to determine if there were compounds that had suitable properties for oral delivery. It was also designed to help rank and prioritise new ideas to ensure that compounds in the aspirational or acceptable regions were made first. The calculated property of ChromLog $\mathrm{D}_{7.4}$ is required because before synthesis, measured data points are not available for compounds.

A good correlation between measured and calculated ChromLogD ${ }_{7.4}$ values was important to be able to use the model based on calculated data. The calculated ChromLogD ${ }_{7.4}$ values for 537 programme compounds was obtained using the Helium (version 4.0) algorithm; and these results were plotted against the measured ChromLogD ${ }_{7.4}$ values (Figure 44). The r^{2} was 0.839 and this was seen as a good correlation.

Figure 44 : Calculated vs measured ChromLogD ${ }_{7.4}$ values for programme compounds (537).

Given that new targets will not have a measured property of ChromLogD ${ }_{7.4}$ before being synthesised, a new guide was developed to change the measured ChromLogD ${ }_{7.4}$ axis into a calculated ChromLogD ${ }_{7.4}$. The lines to demarcate the aspirational quadrant and the nonaspirational quadrants were re-drawn using the equation derived from the data in Figure 44.

The guide for plotting new targets is shown in Figure 45. The demarcation lines have been modified to allow for the change of axis from measured ChromLogD $_{7.4}$ to calculated ChromLogD ${ }_{7.4}$. The plot was validated with 537 programme compounds which have been made and have measured permeability and $\mathrm{D}_{\text {eff max }}$ data. The calculated ChromLogD $\mathrm{D}_{7.4}$ was plotted against CMR and the plot shows that a compound in the aspirational quadrant is likely to have permeability $>50 \mathrm{~nm} / \mathrm{s}$ and a $\mathrm{D}_{\text {eff } \max }>1 \%$ (green). There are a number of compounds that fit the aspirational criteria but fall outside the aspirational quadrant and this is due to the differences in the calculated and measured ChromLogD $_{7.4}$ values.

Figure 45: Plot of CMR verses Calculated ChromLogD ${ }_{7.4}$ for 537 programme compounds. Compounds with >25 nm / s in the permeability assay and $\mathrm{D}_{\text {eff max }}>1 \%$ (green), others (red).

The guide was further validated by plotting all orally marketed drugs (2067) into the guide (Figure 46). The guide shows that 85% of all orally marketed drugs fall within the aspirational zone, suggesting that if a compound is designed and fits within the boundaries it is more likely to have suitable properties for oral delivery. The majority of the remaining 15% which are orally marketed drugs but do not fit in the aspirational zone are large marcocyclic peptidic compounds.

Figure 46 Plot of CMR verses Calculated ChromLogD ${ }_{7.4}$ for 2067 marketed drugs.

4.8 Conclusions

A search of the literature has found 182 integrin RGD compounds; the physical and biological data from these compounds were analysed. None of the compounds in the literature that were designed as RGD mimetics contained a basic nitrogen in the core. Due to this constraint a model based on literature data would have provided little insight to the problem of delivering compounds with a basic centre suitable for oral delivery. A model to predict good oral properties was developed based on the in-house data. The permeabilities and $\mathrm{D}_{\text {eff max }}$ were analysed for each compound and trends showed that a highly permeable but low protein bound compound was possible but was dependent on its size and lipophilicity. The guide was validated using a dataset of literature integrin compounds and in-house, nonintegrin oral compounds. The guide was developed further to include new compounds with calculated ChromLogD ${ }_{7.4}$ values. This will be used in the next chapter.

5. Use of oral drug design guide

5.1 Proposed new compounds

As part of the inhaled programme compounds with a cyclic amine core were identified as potent $\alpha_{v} \beta_{6}$ antagonists. These compounds were not suitable for oral drug delivery due to the basicity of the core which was believed to reduce permeability. This chapter will describe a range of compounds designed to have less basic cores, and which fit the oral design guide discussed in chapter 4. The compounds in Figure 47 are fluorinated analogues of potent $\alpha_{v} \beta_{6}$ antagonists, with fluorine atoms in either the β or γ position from the basic centre. The effect that the fluorine atoms have on the basicity will be explored to see if any of these compounds remain potent and whether they can permeate cells or appropriate cell models.

Figure 47: Compounds 136 - 139.

Compound 136 has an azepine core with a fluorine atom at the γ-tertiary carbon atom. In Chapter 3 compound 91, the des-fluoro analogues of compound 136, was shown to be potent but unable to permeate the gut wall. The addition of the fluorine atom is expected to decrease the pK_{a} and this may affect the permeability.

Compounds $\mathbf{1 3 7}$ and $\mathbf{1 3 8}$ have a 3- or 4-fluoropiperidine cores, respectively. The decrease in basicity of the nitrogen by the presence of the fluorine atom will be more pronounced in

Property of GSK - Confidential - Do not copy

compound $\mathbf{1 3 7}$ as there is a shorter distance between the fluorine and nitrogen than in azepine 136 (vide infra). Finally, compound 139 which contains a 3-fluoropyrrolidine will be examined; this core is similar to that of compound (\boldsymbol{R})-78a which was the lead molecule for the inhaled series.

Measured pK_{a} values for the cores found in compounds $\mathbf{1 3 6} \mathbf{- 1 3 9}$ were not reported in the literature. The in-house database of measured pK_{a} values showed that a number of molecules containing these cores had been made and their pK_{a} values measured. The compounds found in this database were examined visually to remove samples that might have had other substituents that would affect the pK_{a}; for example, if there were additional fluorine atoms near the basic centre, or if the nitrogen atom was linked to an aromatic ring, the compounds were excluded. After removing compounds that would not be suitable for analysis, the mean pK_{a} values were found and recorded in Table 31. For comparison the pK_{a} 's were calculated using Helium v 4.0; there was a good correlation $\left(\mathrm{r}^{2}>0.95\right)$ between the measured and the calculated values (Figure 48).

Table 31 : Calculated and measured pK_{a} values of cyclic amines.

Mean measured $\mathbf{p K}_{\mathrm{a}}$ (water)	$\begin{gathered} 9.8 \pm 0.6 \\ (\mathrm{n}=47) \end{gathered}$	$\begin{gathered} 9.3 \pm 0.1 \\ (\mathrm{n}=2) \end{gathered}$	$\begin{aligned} & 8.6 \pm 0.3 \\ & (\mathrm{n}=14) \end{aligned}$	$\begin{gathered} 8.3 \pm 0.4 \\ (\mathrm{n}=17) \end{gathered}$	$\begin{aligned} & 7.8 \pm 0.3 \\ & (\mathrm{n}=22) \end{aligned}$
$\begin{aligned} & \text { Calculated } p K_{a} \\ & \quad(\mathrm{R}=\mathrm{Me}) \end{aligned}$	10.2	9.7	9.1	8.3	8.2

$\mathrm{n}=$ number of compounds in dataset

Figure 48: Measured vs calculated pK_{a}.

Using the Henderson-Hasselbalch equation (Equation 2) and the pK_{a} values it was possible to calculate the percentage of the core molecules that would be protonated at different pH values. The pH values of interest were $\mathrm{pH}=6.5$ and pH 7.5 which represents the pH of the duodenum and the small intestine, respectively.

The pyrrolidine has a calculated pK_{a} value of 10.2 and would have less than 1% unprotonated in the GI tract; this could explain its poor permeability. The azepine has a pK_{a} value of 9.7 so less than 1% would be unprotonated in the duodenum and small intestine. The 4fluoropiperidine has a calculated pK_{a} of 9.1 and only 1% would be unprotonated in the duodenum but about 2% unprotonated in the small intestine. The calculated pK_{a} of the 3fluoropiperidine is 8.3 , low enough for there to be about 2% unprotonated in the duodenum and 14% unprotonated in the small intestine. The fluoropyrrolidine has the lowest calculated pK_{a} with a value of 8.2, this would give around 2% unprotonated in the duodenum and 17% unprotonated in the small intestine. Of all the cores, the fluoropyrrolidine is predicted to have the best chance of passive permeability as there is a larger percentage of unprotonated material in the GI tract.

Equation 2: Henderson-Hasselbalch equation.

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10}\left(\frac{[\mathrm{~B}]}{\left[\mathrm{BH}^{+}\right]}\right)
$$

Table 32 : pK_{a} values and \%protonated at different parts of the GI tract.

\% of the core unprotonated in Duodenum pH $=6.5$	<1	<1	<1	2	2
$\%$ of the core unprotonated in S . Intestine $\mathbf{p H}=7.5$	<1	<1	2	14	17

The caveat to this discussion is that a calculated pK_{a} value is being used to calculate the percentage of protonation in the GI tract, which limits the quantitative accuracy of the predictions, therefore a qualitative approach was used. Taking the range of pK_{a} from the Table 31, it is expected that the pyrrolidine, azepine and 4-fluoropiperidine will not be able to permeate the duodenum, whereas small amounts of the 3-fluoropiperidine and the fluoropyrrolidine may permeate the duodenum. The pyrrolidine is unlikely to permeate the small intestine but small amounts of the azepine and 4-fluoropiperidine may be able to. The 3-fluoropiperidine and the fluoropyrrolidine may be able to permeate the small intestine (Table 33).

Property of GSK - Confidential - Do not copy

Table 33: Qualitative estimation of the amounts of compound will be able to permeate in different parts of the GI tract.

Likelihood of being able to permeate in Duodenum pH = 6.5	Unlikely to be permeable			Small quantities likely to be permeable	
Likelihood of being able to permeate in the S . Intestine $\mathbf{p H}=$ 7.5	Unlikely to be permeable		Small quantities likely to be permeable	Likely to be permeable	

Most of the compounds made to date have a two-carbon linker between the tetrahydronaphthyridine and the core; however it is unclear whether the azepine requires a two carbon atom linker or not. Molecular modelling will be used to explore which compound has the best overlay with a known potent compound, and compound 140 (Figure 49) will be explored alongside the other proposed cores.

Figure 49: Compound 140.

The new cores were profiled in the oral drug guide (described in Chapter 4). The ChromLogD ${ }_{7.4}$ and CMR were calculated (Helium version 4.0) and the values were inputted into the guide (Figure 50). All the proposed compounds were predicted to have a permeability of more than $50 \mathrm{~nm} / \mathrm{s}$ and a $\mathrm{D}_{\text {eff max }}$ of more than 1%. Compound $\mathbf{1 3 9}$ was

Property of GSK - Confidential - Do not copy

predicted to have the best chance for permeability ($>50 \mathrm{~nm} / \mathrm{s}$) and drug efficiency maximum ($>5 \%$) whereas compound $\mathbf{1 3 6}$ is predicted to have a smaller drug efficiency maximum.

Figure 50: Compounds 136 - $\mathbf{1 4 0}$ plotted on the oral design guide.

Molecular modelling was conducted on the new compounds to determine whether they could make the same interactions as a known integrin antagonist. Compound 97a was used as a control, because it is known to be highly potent compound at the $\alpha_{v} \beta_{6}$ integrin receptor. It was discussed in chapter 3 but work based on it was discontinued due to its high plasma protein binding. A stochastic search was performed on compound 97a, using MOE 2011.10, force field MMFF94x and an ε value was set to 40 , to mimic an aqueous environment. The lowest energy conformer found is shown in Figure 51.

Figure 51: Lowest energy conformer of compound $\mathbf{9 7}$ a, hydrogen atoms have been removed for clarity.

The carboxylic acid and phenyl ring from compounds $\mathbf{1 3 6}$ and $\mathbf{1 4 0}$ were overlaid and fixed onto compound 97a. A conformational search (iteration 10000, rejection 100) was then conducted on the remaining portion of each compound, with the lowest energy conformer superimposed onto compound 97 a. Compound 136 (yellow, Figure 52) can occupy the same space as compound $\mathbf{9 7 a}$, and the fluorine atom in compound $\mathbf{1 3 6}$ is on the same face as the fluorine atoms in compound 97a.

Figure 52: Compound 136 (yellow) superimposed onto compound 97 a (blue).

The overlay of compound $\mathbf{9 7 a}$ and compound $\mathbf{1 4 0}$ showed that compound $\mathbf{1 4 0}$ was under high strain. The energy difference is $16 \mathrm{kcal} / \mathrm{mol}$ between the conformer with the best overlay
and the conformer with the lowest energy. This strain could be attributed to the extra carbon atom between the tetrahydronaphthyridine and the azepine core, forcing the molecule to occupy an unfavoured conformation to make the necessary interactions (Figure 53).

Figure 53 : Compound 140 (red) superimposed onto compound 97 (blue).

Compound $\mathbf{1 4 0}$ is therefore predicted to have much lower potency than compound $\mathbf{1 3 6}$ and accordingly was not prioritised for synthesis.

Compounds 137 and $\mathbf{1 3 8}$ have piperidine cores with different connectivity. The compounds were modelled using the same method (MOE 2011.11, forcefield MMFF95x), but overlaid with a fragment of compound $\mathbf{9 7}$ a. The modelling shows that compound $\mathbf{1 3 8}$ makes a good overlay with compound 97 a in the tetrahydronaphthyridine, carboxylic acid and benzene regions; however there are differences in the central core (Figure 54). Historically differences in the central core of the molecule change the selectivity of the compound rather than its inherent potency at $\alpha_{v} \beta_{6}$, so based on this modelling, compound $\mathbf{1 3 8}$ could be a potent $\alpha_{v} \beta_{6}$ antagonist.

Figure 54: Low energy minima of compound 97 a and 138.

The same modelling was carried out for compound 137 and the best conformer was overlaid with compound 97a (Figure 55). The 3-fluoropiperidine shows a poor overlay with compound 97a. The tetrahydronaphthyridine and the carboxylic acid are approximately in the same position but to overlay these pharmacophores, the linker has to force the CH_{2} group to have unusual dihedral angles. It is expected that the 3-fluoropiperidine series will be less potent than the 4-fluoropiperidines.

Figure 55: Overlay of compounds 97a and 137.

Finally, compound $\mathbf{1 3 9}$ was overlaid with compound 97 a. There is a good overlay between the two compounds (Figure 56). All the constituent moieties (acid, core, benzyl and tetrahydronaphthyridine) overlay well, therefore it is expected that compounds in the

Property of GSK - Confidential - Do not copy

fluoropyrrolidine series will have similar potencies to those in the 5,5 -fused core series. Compound $\mathbf{1 3 9}$ is predicted to have excellent physicochemical properties therefore this series may produce a compound that meets the aims of the programme.

139

Figure 56: Overlay of compounds $\mathbf{9 7 a}$ and 139.

5.2 Summary

The lowest energy conformers of compounds $\mathbf{1 3 6} \mathbf{- 1 4 0}$ have been overlaid onto compound 97a. Compound 139 is predicted to have the best chance of potency similar to that of compound 97a. All of the compounds were predicted to have good physicochemical properties as they fit in the aspirational space in the oral design guide. It was therefore proposed that compounds $\mathbf{1 3 6}$ - $\mathbf{1 3 9}$ be made, and that compound $\mathbf{1 4 0}$ is discarded. The next section of this thesis will discuss the general methods of making C-F bonds, and then discuss the synthesis of the compounds.

5.3 Short review of nucleophilic fluorination reactions

The substitution of hydrogen by a fluorine atom can dramatically change the physical, biological and chemical properties of a molecule. As a result of this, organofluorine chemistry is an important area in chemistry.

Historically, the traditional methods for dehydroxyfluorination involved Olah's reagent (HFpyridine). ${ }^{74}$ Nowadays, there is an expanding arsenal of new reagents for the site-selective introduction of fluorine into organic molecules. The most common deoxyfluorination reagent is diethylaminosulfur trifluoride (DAST). DAST was first reported by Middleton ${ }^{75}$ in 1975. Middleton was able to convert a propargylic alcohol to the corresponding fluoride using DAST in DCM at $-78^{\circ} \mathrm{C}$. This reaction is quite general and can work on a range of alcohols; primary, ${ }^{76}$ secondary, ${ }^{77}$ and tertiary ${ }^{78}$ species all give the corresponding alkyl fluorides. Depending on the type of alcohol there can be side reactions; for example the mechanism for tertiary alcohols is believed to go via a carbocation which can either be trapped by fluoride, or lose a proton to form the corresponding alkene. Buist and Adeney have shown that enantiomerically pure secondary alcohols usually undergo inversion of stereochemistry with $e e$ values of around $90 \%{ }^{77}$

Benzyl alcohol can be converted to the corresponding fluoride using DAST; however Johnson ${ }^{79}$ found that reactions with diarylcarbinols (such as compound 141) can results in an intermolecular dehydration to give the corresponding bis(diarylmethyl)ethers (such as compound 142), in addition to or instead of aryl fluoride formation (Scheme 32). The hydroxy group is protonated and water is lost to give a stabilised carbocation, which can either be attacked by trace amounts of fluoride in the solution or with another molecule of the starting material.

[^0]The major disadvantage to the use of DAST is that it is highly toxic, reacts violently with water releasing SO_{2} and is explosive at elevated temperatures. ${ }^{80}$ Fluolead ${ }^{\mathrm{TM}} \mathbf{1 4 3}$ has been developed as an air stable, solid fluorination agent; however it is less reactive than DAST (Figure 57).

143

Figure 57: Nucleophilic fluorinating reagent.

5.4 Synthesis of azepine targets

Compound $\mathbf{1 3 6}$ was synthesised via the retrosynthesis in Scheme 33. The retrosynthesis goes via fluoride 147 and this could be made from alcohol 146. Compound 146 is converted to compound $\mathbf{1 4 7}$ by the use of a nucleophilic source of fluorine, such as diethylaminosulfur trifluoride (DAST). The remaining steps in the synthesis use chemistry described previously.

[^1]LiHMDS which was formed in situ, was used to deprotonate methyl naphthyridine 280; this was subsequently added to commercially available ketone $\mathbf{1 4 4}$ to give compound $\mathbf{1 4 6}$ in 85% yield (Scheme 34).

145

144

146

Scheme 34: Reagents and conditions: (i) BuLi, HMDS, then compound 145, then compound $144, \mathrm{THF}, 0^{\circ} \mathrm{C} \rightarrow$ ambient temperature, 85%.

Alcohol 146 was treated with a range of nucleophilic sources of fluorine. The alcohol was dissolved in DCM and cooled to $-78^{\circ} \mathrm{C}$, then two equivalents of the fluorinating agent were added. Deoxofluor ${ }^{\circledR}$, morpholinosulfur trifluoride and Fluolead ${ }^{\mathrm{TM}}$ were examined as the reagents are sold as safer versions of DAST (vide supra), however no product was observed. When DAST was used the reaction proceeded in 98% yield (Scheme 35). The ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{1 4 7}$ contained two singlets at -147.5 and -148.0 ppm . Due to the broad signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of the CH_{2} on the CBZ and all the CH_{2} on the azepine ring, the compound is thought to exist as a mixture of rotamers as there is restricted rotation around the carbamate. The signals in the ${ }^{19} \mathrm{~F}$ NMR spectrum were therefore attributed to the fluorine atom being in different environments in each rotamer.

[^2]Alkyl fluoride $\mathbf{1 4 7}$ was hydrogenated using Pd / C to give compound 148. The next step was a Pd-mediated allylation, using conditions similar to those of Connell et al.; ${ }^{81}$ acetate $\mathbf{8 7}$ was reacted with amine $\mathbf{1 4 8}$ in the presence of catalytic amounts of $\mathrm{PdCl}_{2}(\mathrm{dppf})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give compound 149 in 87% yield.

Scheme 36: Reagents and conditions: (i) $\mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 5 \mathrm{~h}$; (ii) Acetate 87; $\mathrm{PdCl}_{2}(\mathrm{dppf})-\mathrm{DCM}, \mathrm{DIPEA}, \mathrm{DCM}, 0$ ${ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 87 \%$.

Compounds 150 and 152 were made from the Rh-catalysed 1,4-addition on alkene 149. The esters were cleaved using TFA in DCM. The ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{1 5 3}$ showed two peaks associated with the fluorine atoms from each of the pairs of diastereomers. The NMR also showed that at least 5 equivalents of TFA was present in the material, and this can be attributed to residual TFA from the reaction mixture.

$X=H ; Y=c-C_{3} H_{5}-150$
$X=Y=c-C_{3} H_{5}-152$

$X=Y=c-C_{3} H_{5}-153$

Scheme 37: Reagents and conditions: (i) Boronic ester, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) TFA, DCM, 40 ${ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 13631 \%, 1536 \%$.

Compound 153 was synthesised via methyl ester 155 due to the availability of starting material. Ester 155 was formed by the alkylation of compound 148 with (E)-methyl 4-bromobut-2-enoate 107. The LCMS of the crude reaction mixture suggested the reaction had gone to completion; however when compound $\mathbf{1 5 5}$ was purified by flash chromatography the yield was lower than expected. Upon washing the column with MeOH compound $\mathbf{1 4 8}$ eluted; it was assumed that compound 155 had degraded to give compound 148. One mechanistic explanation of this degradation pathway involves the alkene isomerising on the acidic silica gel column, so that it moved out of conjugation with the carbonyl; the derived enamine could then readily hydrolyse using water from the silica to give compound 148.

148

(ii)

155

Scheme 38: Reagents and conditions: (i) (E)-methyl 4-bromobut-2-enoate 107, DIPEA, DCM, $25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 26 \%$; (ii) Silica column.

Compound 155 underwent a Rh-catalysed 1,4-addition with 3-morpholinophenylboronic ester. The crude LCMS showed that the expected product had hydrolysed to give compound 154, which was obtained in 6% overall yield (Scheme 39). The ester hydrolysis could be explained by the presence of KOH in the reaction mixture and the delay between the end of the reaction and work-up. The ${ }^{19}$ F NMR of compound $\mathbf{1 5 4}$ shows two signals for the fluorine atom in a 1:1 ratio, these signals could correspond to the different pairs of diastereomers.

Scheme 39: Reagents and conditions: (i) Boronic acid 156, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathbf{1 5 4} 6 \%$.

The biological results for fluorinated compounds $\mathbf{1 3 6}, \mathbf{1 5 3}$ and $\mathbf{1 5 4}$ are summarised in Table 34; compound 91 which does not contain a fluorine atom and was made elsewhere, is also included for comparison. ${ }^{49}$ The measured pK_{a} of compound 91 is 10.4 and when a fluorine is added to the core azepine the pK_{a} decreased to 9.2 . The potencies of the fluorinated compounds 136, $\mathbf{1 5 3}$ and $\mathbf{1 5 4}$ are between 6.3 and 7.1, whereas the potency of compound $\mathbf{9 1}$ is 7.2. In the only direct comparison (compounds 91 and 136) there is nearly ten-fold drop off, which could be attributed to the fluorine atom. The hypothesis that the increase in permeability is related to pK_{a} is supported here, partly. The chromatographic plasma protein binding (\%ChromPPB) for compound $\mathbf{1 3 6}$ is 97%, which is classed as high. This may be related to the high ChromLogD ${ }_{7.4}$. This observation is also apparent in compound 91 where the $\%$ ChromPPB is 97% and the ChromLogD ${ }_{7.4}$ is 3.32 . Compound $\mathbf{1 5 4}$ has a much lower \%ChromPPB of 82% and a permeability of $49 \mathrm{~nm} / \mathrm{s}$; this is classed as a low permeability compound with low plasma protein binding.

Table 34: Biological results for compounds 91, 136, 153 and 154.

Compound number	X	Y	Z	$\begin{gathered} \alpha_{\mathrm{v}} \beta_{6} \\ \text { assay } \\ \left(\mathrm{pIC}_{50}\right) \end{gathered}$	Chrom $\operatorname{LogD}_{7.4}$	Measured pK_{a}	Perm (nm/s)	\% Chrom PPB
136	Cyclopropyl	H	F	6.3	3.77	9.2	340	97
153	Cyclopropyl	Cyclopropyl	F	6.5	4.80		490	ND
154	Morpholine	H	F	7.1	2.84		49	82
91	Cyclopropyl	H	H	7.2	3.32	10.4	245	97

Compound $\mathbf{1 5 4}$ is a mixture of four stereoisomers; the diastereomers were separated to see if one had a higher potency. The single enantiomers were synthesised via a similar route to the racemate; compound $\mathbf{1 4 9}$ underwent the Rh-catalysed 1,4-addition to give compound 157. Compound 157 was then separated using chiral HPLC to give the four separate tert-butyl esters 157a-d. The tert-butyl esters were cleaved with HCl to give the desired single diastereomers 154a-d. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 5 4 a} \mathbf{a}$ d suggest compounds $\mathbf{1 5 4 a}$ and 154 c and compounds $\mathbf{1 5 4 b}$ and 154 d are pairs of enantiomers.

Scheme 40: Reagents and conditions: (i) Boronic ester, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then chiral HPLC 157a 7%; 157b 6%; 157c 7%; 157d 6%; (ii) $\mathrm{HCl}, 50^{\circ} \mathrm{C}, 6 \mathrm{~h}$, then $25^{\circ} \mathrm{C}, 66 \mathrm{~h}$, then $50^{\circ} \mathrm{C}, 6 \mathrm{~h}$, then $25^{\circ} \mathrm{C}, 17 \mathrm{~h}$, then $50^{\circ} \mathrm{C}, 6$ h then $25^{\circ} \mathrm{C}, 17 \mathrm{~h}$; 154a 47%; 154b 72%; 154c 64\%; 154d 74%.

Property of GSK - Confidential - Do not copy

The biological results for compounds $\mathbf{1 5 4 a - d}$ are shown in Table 35. The ChromLogD ${ }_{7.4}$ and permeabilities are similar for all the diastereomers. Compound $\mathbf{1 5 4 d}$ has a potency of 6.8 in the $\alpha_{v} \beta_{6}$ cellular assay, but the other diastereomers all show lower potency. As expected there were no significant differences between the permeability or the \%ChromPPB values between the four isomers. Interestingly the racemate tested at $\mathrm{pIC}_{50}=7.1$ and on-going work is exploring the concentration of this sample.

Table 35: Biological data for compounds 154a-d

Compound Number	Diastereomer	$\boldsymbol{\alpha}_{\mathbf{v}} \boldsymbol{\beta}_{6}$ assay $\mathbf{p I C}_{50}$	ChromLogD ${ }_{7.4}$	Permeability $\mathbf{n m} / \mathbf{s}$	\%ChromPPB
$\mathbf{1 5 4 a}$	Diastereomer A	5.0	2.86	45	76
$\mathbf{1 5 4 b}$	Diastereomer B	6.5	2.85	46	78
$\mathbf{1 5 4 c}$	Diastereomer C	5.5	2.79	43	81
$\mathbf{1 5 4 d}$	Diastereomer D	6.8	2.79	34	79
$\mathbf{1 5 4}$	Racemate	7.1	2.84	49	82

The permeabilities for compounds 154a-d are all too low for oral drug delivery; an array of differently substituted morpholines was therefore explored to address this problem. The substituted morpholines all contained additional methyl or methylene groups which would increase the lipophilicity. The array synthesis was carried out in parallel to deliver three different substituted morpholines; these were separated using chiral chromatography. Ester cleavage was slow and further equivalents of HCl were required to drive the reaction to completion. The eight esters were cleaved to give the corresponding diastereomers of acids 161-162. (Scheme 41).

Scheme 41: Reagents and conditions: (i) Boronic ester, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then chiral HPLC (ii) $\mathrm{HCl} 50^{\circ} \mathrm{C}, 6 \mathrm{~h}$ then $25^{\circ} \mathrm{C}, 66 \mathrm{~h}$ then $50^{\circ} \mathrm{C}, 6 \mathrm{~h}$ then $25^{\circ} \mathrm{C}, 17 \mathrm{~h}$ then $50^{\circ} \mathrm{C}, 6 \mathrm{~h}$ then $25^{\circ} \mathrm{C}, 17 \mathrm{~h}$.

The biological data for compounds 161a-d, 162a-b, 162a and 162b can be found in Table 36. Compounds 161a-d are the four stereoisomers of compound 161, of which compound 161b, is the most potent. This compound has a similar potency to compound $\mathbf{1 5 4 d}$. There is an improved permeability of $62 \mathrm{~nm} / \mathrm{s}$ compared with $34 \mathrm{~nm} / \mathrm{s}$ for compound $\mathbf{1 5 4 d}$. This increase is consistent with the increase in ChromLogD $D_{7.4}$ from 2.79 to 3.25. Compound 162a and 162b are two diastereomers which differ in configuration at the azepine centre. There is over a log unit difference in the potencies of these diastereomers in the cellular assay and compound 162a shows a large increase in permeability compared with compound 162 b or $\mathbf{1 6 2 d}$ consistent with the increase in ChromLogD $\mathrm{D}_{7.4}$. Finally, compounds 163a and 163b are diastereomers which differ in configuration at the azepine centre. The potencies of these compounds are similar with a $\mathrm{pIC}_{50}=6.2$ and 6.1 respectively. Disappointingly, none of the compounds in Table 36 were more potent than the original compound 154d. However, as increases in permeabilities were observed further exploration of this core was conducted.

Table 36: Biological data for compounds 161-163.

| Compound number | Diastereomer | Cell assay
 $\left(\mathbf{p I C}_{50}\right)$ | ChromLogD |
| :---: | :---: | :---: | :---: | :---: |

5.5 Further SAR around azepine core

Compound 162a had the highest permeability of the series; different substituents on the righthand side phenyl ring were therefore explored. Three substitution patterns of interest based on previous in-house experience, were the 3-cyclopropyl-4-methoxyphenyl, (3-methylpyrazol-1-yl)-phenyl and (3,5-dimethylpyrazol-1-yl)-phenyl. These compounds were predicted to have higher ChromLogD $_{7.4}$ values than compound 154 d and were therefore likely to be more permeable.

The synthesis of these compounds was similar to that of the other compounds in this series. Compound 149 was reacted with boronic acid $\mathbf{1 6 4}$ under standard Rh-catalysed 1,4-addition conditions. The intermediate ester was not characterised but was separated by chiral HPLC to the give four stereoisomers, which were then cleaved using HCl in 2 MeTHF to give compounds 165a-d.

Scheme 42: Reagents and conditions: (i) Boronic ester 164, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95{ }^{\circ} \mathrm{C}, 60 \mathrm{~min}, 64 \%$; (ii) Chiral HPLC, (iii) HCl, 2MeTHF, $25^{\circ} \mathrm{C}$, 18 h then $50^{\circ} \mathrm{C}$, 165a 51%, 165b 78%, 165c 81%, 165d 81%.

Compounds 168a-d were synthesised from tert butyl ester 149 and boronic acid 166 to give intermediate 167 which was separated by chiral HPLC to give compounds 167a-d (Scheme 43). The esters 166a-d were cleaved using HCl at elevated temperatures to give compounds

168a-d.

Scheme 43: Reagents and conditions: (i) Boronic ester 166, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95{ }^{\circ} \mathrm{C}, 60 \mathrm{~min}, 28 \%$; (ii) Chiral HPLC, (iii) $\mathrm{HCl}, \mathrm{THF}, 50^{\circ} \mathrm{C}, 7 \mathrm{~h}$ then $25^{\circ} \mathrm{C} 16 \mathrm{~h}$, then $50^{\circ} \mathrm{C} 7 \mathrm{~h}$, then $25^{\circ} \mathrm{C} 16 \mathrm{~h}$, then $50^{\circ} \mathrm{C} 6 \mathrm{~h}$; 168a 69%, 168b 86\%, 168c 68\%, 168d 68\%.

Finally, compounds 170a-d were synthesised from methyl ester $\mathbf{1 5 5}$ and boronic acid $\mathbf{1 6 9}$ (Scheme 44). The diastereomers were separated and then hydrolysed. Attempted acid
catalysed hydrolysis with HCl in 1,4-dioxane was unsuccessful. However the addition of LiOH gave compounds 171a-d. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds 171a and 171c were identical, but different to the spectra of $\mathbf{1 7 1 b}$ and $\mathbf{1 7 1 d}$, so these compounds are likely to be pairs of enantiomers. From the ${ }^{1} \mathrm{H}$ NMR spectra of compounds 171a-d is was possible to show that compound 171a and 171c were enantiomers of each other.

Scheme 44: Reagents and conditions: (i) Boronic ester 169, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 95{ }^{\circ} \mathrm{C}, 60 \mathrm{~min}, 63 \%$; (ii) Chiral HPLC, (iii) HCl then LiOH, $25^{\circ} \mathrm{C}$, 171a 61%, 171b 61%, 171c 61%, 171d 82%.

The biological results for compounds 165a-d, 168a-d and 171a-d are in Table 37. Compound $\mathbf{1 6 5 c}$ was the most potent diastereomer in the set of four isomers. This compound had a potency in the in the cellular assay of 7.0. The ChromLogD ${ }_{7.4}$ for this compound was 3.81 making it one of the most lipophilic compounds in the series; due to the high lipophilicity the chromatographic permeability was high. Compound 168c was the most potent isomer of the 3-methylpyrazole series, with a potency of 6.8 in the cellular assay. Finally, in the dimethylpyrazole isomers compound 171b had a potency of 7.2 in the cellular assay. The ChromLogD ${ }_{7.4}$ for compound 171b was 3.20 and the permeability was $99 \mathrm{~nm} / \mathrm{sec}$ (Table 37).

Property of GSK - Confidential - Do not copy

Table 37: Biological data for compounds 165a-d, 168a-d and 171a-d.

Compound number	R	Cell assay (pIC_{50})	ChromLogD ${ }_{7.4}$	Chromatographic Permeability (nm/s)
165a		6.5	3.89	310
165b		6.0	3.90	450
165c		7.0	3.81	430
165d		5.9	3.82	430
168a		6.3	3.19	90
168b		5.8	3.29	91
168c		6.8	3.00	87
168d		5.5	3.31	88
171a		6.9	3.29	130
171b		7.2	3.20	99
171c		6.1	3.29	140
171d		6.7	3.20	91

5.6 Summary of compounds based on azepine cores

Compounds from the fluoro-azepine series were less potent than their des-fluoro counterparts. In this series there was only a small decrease in the pK_{a} which resulted in poor permeability, although the \%ChromPPB results were satisfactory. A number of small modifications to the morpholine ring were carried out, but none of the new compounds were more potent. A more speculative approach produced three sets of four diastereomers of which compound 165 c was potent, and permeable. The properties of this compound will be explored in the next section.

Compound $\mathbf{1 6 5 c}$ was the most potent and permeable compound made in this series. This had the potential to translate into a potent and permeable drug; however one key experiment to determine if it was suitable for oral drug delivery was to measure the $\%$ ChromPPB. The \%ChromPPB for compound 165c was 95% (Table 38). Compound 165c also had high permeability with a value of $430 \mathrm{~nm} / \mathrm{s}$ in the artificial membrane permeability assay. This was the first in-house example of a compound with high permeability in the artificial membrane permeability assay ($>100 \mathrm{~nm} / \mathrm{s}$) and a low plasma protein binding ($\leq 95 \%$), and was potent in the integrin assay. The permeability in the MDCK cell assay was $116 \mathrm{~nm} / \mathrm{s}$ and therefore the compound is considered to have high permeability (Table 38). The compound was tested in the hERG assay and unfortunately, it showed a value of $\mathrm{pIC}_{50}=4.4$, which was above the acceptable limit. Further work would therefore be needed to find a suitable compound with a lower level of hERG activity.

Table 38: \%ChromPPB for compound 165c.

Compound number	$\mathbf{1 6 5 c}$
$\%$ ChromPPB	96%
AMP	$430 \mathrm{~nm} / \mathrm{s}$
MDCK	$116 \mathrm{~nm} / \mathrm{s}$
hERG $\left(\mathbf{p I C}_{50}\right)$	4.4

Sub-cellular liver fractions such as liver microsomes are useful in vitro models of hepatic clearance as they contain many of the drug metabolising enzymes found in the liver. Compound $\mathbf{1 6 5 c}$ was tested in rat, human and mouse microsomes, and shown to have high clearance in the mouse and moderate clearance in rat and human microsomes (Table 39).

Table 39: Microsomal clearance for compound 165c.

Species	Clearance value (mg/min/g liver)
Rat	2.69
Human	0.89
Mouse	3.02

Compound $\mathbf{1 6 5 c}$ was potent in the cellular assay with a chromatographic free-fraction of 5%. However it was cleared in the rat and mouse microsomes, and presented a small potential cardiovascular risk to patients. For these reasons, this series was terminated.

5.7 3-Fluoropiperidine core

The retrosynthesis of compound $\mathbf{1 7 2}$ is shown in Scheme 45; it is similar to that for pyrrolidine (\boldsymbol{R})-70a. The key difference is that there is a quaternary carbon atom on the central core ring with a fluorine atom as one of the substituents. The β-fluorine atom might cause problems in the synthesis, as the inductive effect of the fluorine atom may affect the reactivity of iodide $\mathbf{1 7 4}$.

[^3]The first step in the synthesis was the conversion of commercially available alcohol $\mathbf{1 7 3}$ to an electrophile. Attempts to make the iodide using the Appel reaction were unsuccessful. This may be due to the sterically hindered intermediate formed, or the electronic effect of the fluorine atom, or both. The triflate had been prepared elsewhere, ${ }^{82}$ by reacting alcohol 173 with triflic anhydride. Triflate $\mathbf{1 7 9}$ was reacted with the lithium salt of methylnaphthyridine but the only products from the reaction were unreacted starting materials.

Scheme 46: Reagents and conditions: (i) $\mathrm{PPh}_{3}, \mathrm{I}_{2}$, Imidazole $\mathrm{DCM}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$, no reaction (ii) $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DCM, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (iii) BuLi, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, no reaction, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, no reaction.

The problem of synthesising compound $\mathbf{1 7 5}$ via a nucleophilic attack in an $\mathrm{S}_{\mathrm{N}} 2$ reaction was circumvented by using a different approach (Scheme 47). The alternative synthetic route started from aldehyde 180, which was then converted to alkene 181 via a Wittig reaction. The final step is a Friedländer synthesis to give compound 175.

Scheme 47: Retrosynthesis of compound 175.

Alcohol $\mathbf{1 7 3}$ was oxidised using Swern oxidation conditions in the presence of DIPEA to give aldehyde 180. Attempts to isolate aldehyde $\mathbf{1 8 0}$ were unsuccessful as it degraded to a mixture of unidentifiable compounds. When the reaction was repeated, aldehyde $\mathbf{1 8 0}$ was not isolated;
ylid $\mathbf{1 8 2}$ was added into the reaction mixture to give compound $\mathbf{1 8 1}$ in $\mathbf{4 1 \%}$ overall yield (Scheme 48).

Scheme 48: Reagents and conditions: (i) Oxalyl chloride, DMSO, DIPEA, DCM, $-70{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$ (ii) Compound 182, THF, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}, 41 \%$.

Compound 180 (Scheme 49) was reacted with aldehyde 183 in a Friedländer reaction to give compound 184 in 40% yield. Compound 184 was hydrogenated using Pd/C then the Boc protecting group was removed using TFA to give compound 176. The purity of compound 176 was too low to calculate a yield for this sequence.

Scheme 49: Reagents and conditions: (i) Aldehyde 183, KOH, EtOH, $90^{\circ} \mathrm{C}, 1 \mathrm{~h}, 40 \%$; (ii) $\mathrm{Pd} / \mathrm{C}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 2$ days then (iii) TFA, DCM $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

The enantiomers of compound $\mathbf{1 7 6}$ were separated using chiral HPLC. Each enantiomer was alkylated with (E)-methyl 4-bromobut-2-enoate 107 to give compounds 177 a and 177 b (Scheme 50). Due to previous failed attempts at purifying α, β-unsaturated esters these compounds were not purified. The crude reaction mixtures contained approximately 20% by mass of DIPEA and this was carried forward in the next reaction. The impure esters 177a and 177b underwent a Rh-catalysed 1,4-addition using standard conditions to give diastereomers

178a-b and 178c-d respectively. Each pair of diastereomers was separated using chiral HPLC and 178b and 178c were hydrolysed to give compounds 172a and 172b. Methyl esters 178a and 178d were not hydrolysed as it was presumed these isomers would be less potent based on previous SAR.

Scheme 50: Reagents and conditions: (i), (E)-Methyl 4-bromobut-2-enoate 107, DIPEA, DCM, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$, (ii) $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 9{ }^{\circ} \mathrm{C}, 100 \mathrm{~min}, 178 \mathrm{a} 15 \%$, 178b 48%, 178c 4%, 178d 40%; (iii) $\mathrm{LiOH}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 18$ h then $\mathrm{HCl}, 172 \mathrm{a} 62 \%, \mathbf{1 7 2 b} 74 \%$.

The biological data for compounds 172a and $\mathbf{1 7 2 b}$ are presented in Table 40. The two compounds are diastereomers and differ at the stereogenic centre bearing the fluorine atom. Compound 172a has a $\mathrm{pIC}_{50}=6.9$ in the $\alpha_{v} \beta_{6}$ cellular assay and compound $\mathbf{1 7 2 b}$ has a pIC_{50} $=6.7$ in the $\alpha_{v} \beta_{6}$ cellular assay. The ChromLogD ${ }_{7.4}$ for both compounds is similar at around 2.7 and the permeability is very high $>200 \mathrm{~nm} / \mathrm{s}$. There is a difference in the $\%$ ChromPPB but both compounds have low \%ChromPPB with values < 95%.

Table 40: Biological data for compounds 172a and 172b.

Compound	Cellular Number $\left(\mathbf{p I C}_{50}\right)$	ChromLogD ${ }_{7.4}$	Permeability $(\mathbf{n m} / \mathbf{s})$	\%ChromPPB	$\mathbf{p K}_{\mathrm{a}}$
$\mathbf{1 7 2 a}$	6.9	2.65	215	90	8.73
$\mathbf{1 7 2 b}$	6.7	2.68	380	83	8.44

5.8 Summary to 3-fluoropiperdine series

Both compounds 172a and 172b are permeable and have low \%ChromPPB; however this programme of work was terminated due to the poor potencies in the cellular assay, and in favour of other series. This low potency in the $\alpha_{v} \beta_{6}$ cellular assay was not consistent with previous SAR. It was assumed that either compound 172a or $\mathbf{1 7 2 b}$ would have a $\mathrm{pIC}_{50} \sim 8$ in the $\alpha_{v} \beta_{6}$ cellular assay, based on modelling and previous SAR. Upon further analysis of the data it was found that the concentration at which compound 172a was screened at was 2 mM whereas it should have been screened at 10 mM , and therefore further investigation is ongoing to find the true potency of compound 172a.

5.9 4-Difluoropiperidine core

Compound 185 was proposed in addition to the other cores because it contains a difluoropiperidine core and would further test the hypothesis that decreasing the pK_{a} of the core would increase permeability. The predicted pK_{a} value of compound $\mathbf{1 8 5}$ was calculated ${ }^{83}$ as 5.67 , the lowest pK_{a} value of all the compounds proposed. The retrosynthesis of compound $\mathbf{1 8 5}$ is in Scheme 51 and follows a similar synthetic pathway to other cores (vide supra).

Scheme 51: Retrosynthesis of compound 185.

Commercially available alcohol 186 was converted to iodide $\mathbf{1 8 7}$ using the Appel reaction in 68% yield. The iodide was reacted with the lithium salt of 2-methylnaphthyridine to give compound 188 in quantitative yield (Scheme 52). The yields for these two steps were significantly higher than the same reactions in the 3-fluoropiperidine series. The fluorine atoms in compound $\mathbf{1 8 8}$ are one carbon atom further away from the reactive centre and therefore will have less of an effect on the reaction.

Scheme 52 Reagents and conditions : (i) $\mathrm{PPh}_{3}, \mathrm{I}_{2}, \mathrm{PhMe}, 25{ }^{\circ} \mathrm{C}, 72 \mathrm{~h}, 68 \%$; (ii) 2-Methyl-1,8-naphthyridine, LiHMDS, THF, $-10^{\circ} \mathrm{C}, 1 \mathrm{~h}, 100 \%$.

The enantiomers of compound $\mathbf{1 8 8}$ were separated by chiral HPLC. The Boc group was removed using HCl in 1,4-dioxane. As the fluorine atoms in compound 188a and 188b are non-equivalent, the expected ${ }^{19} \mathrm{~F}$ NMR spectrum was a roofed $d d$; however, the spectrum consisted of a doublet at -93.0 ppm with a ${ }^{2} J_{\mathrm{F}-\mathrm{F}}$ coupling of 231 Hz , and a multiplet between -
109.0 and -114.0 ppm. Amines 189a and 189b were alkylated with (E)-methyl 4-bromobut-2enoate to give esters 190a and 190b (Scheme 53).

Scheme 53 Reagents and conditions : (i) 4 M HCl in 1,4-dioxane $\mathrm{DCM}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}, \mathbf{1 8 9 a} 17 \%$; 189b 12% (ii) (E)-methyl-4-bromobut-2-enoate 107, DCM, $0^{\circ} \mathrm{C}, 4 \mathrm{~h}, \mathbf{1 9 0 a} 97 \%$; 190b 97\%.

Esters 190a and 190b underwent a Rh-catalysed 1,4-addition using standard conditions. The diastereomers were separated using chiral HPLC to give methyl esters 191a and 191b from 190a and 191c and 191d from 190b. Esters 191b and 191d were hydrolysed using LiOH to give compounds $\mathbf{1 8 5 a}$ and $\mathbf{1 8 5} \mathrm{b}$. The ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{1 8 5 a}$ a showed a doublet corresponding to one fluorine atom, but the other signal was not observed. In this series the second signal has been a broad multiplet and in the ${ }^{19} \mathrm{~F}$ NMR spectrum of compound 185a it was not possible to distinguish this signal from the baseline noise.

Scheme 54 Reagents and conditions : (i) $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{KOH}, 9{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, 191a 15%, 191b 49%; 191c 6\%, 191d 40%; (ii) $\mathrm{LiOH}, \mathrm{MeCN}, 25^{\circ} \mathrm{C}, 4$ h 185a 85%, 185b 72%.

The biological data for compound $\mathbf{1 8 5 a}$ and $\mathbf{1 8 5 b}$ is presented in Table 41. Compound 185b is more potent in cellular assay than compound $\mathbf{1 8 5 a}$. The ChromLogD ${ }_{7.4}$ of compound $\mathbf{1 8 5 b}$
is 4.62 and this translates to a high permeability measurement and a high \%ChromPPB. The basic pK_{a} of these molecules is around 5.6 and is the lowest of the all the compounds measured in this chapter. The difference in the ChromLogD ${ }_{7.4}$ for the different diastereomers is 0.6 log units; it is unclear why there is such a large difference.

Table 41: Biological data for compounds $185 a$ and 185b.

Compound	Cellular Number $\left(\mathbf{p I C}_{50}\right)$	ChromLogD $_{7.4}$	Permeability $(\mathbf{n m} / \mathbf{s})$	\%ChromPPB	$\mathbf{p K}_{\mathbf{a}}$
$\mathbf{1 8 5 a}$	5.7	4.02	370	98	7.86
$\mathbf{1 8 5 b}$	6.3	4.62	560	97	7.94

5.10 Conclusions to difluoropiperidine core

Compounds 185a and 185b were made to test the hypothesis of lower pK_{a} giving increased permeability. The pK_{a} of these compounds is around 7.9 and as a result the permeabilities are very high (>300 nm/s). This increase in permeability has come at a cost, as decreasing the pK_{a} has increased the $\mathrm{ChromLog}_{7.4}$ and as a result the $\%$ ChromPPB is very high. The potencies of these compounds were also much lower than other series; there will therefore be no further work in this series.

5.11 4-Fluoropiperidine core

One of the other cores of interest was the 4-fluoropiperidine; the first part of the retrosynthesis of the 4-fluoropiperidine core is in Scheme 55. The disconnections to form intermediate $\mathbf{1 3 8}$ are similar to those described on other cores.

Scheme 55: Retrosynthesis of compound 138.

There are a number of disconnections of compound 192 which would enable its synthesis (Scheme 56). Disconnection A would produce alkynyl fluoride 197 and the forward synthesis would couple this in a Sonogashira reaction to a halo-tetrahydronaphthyridine. Disconnection B converts the alkynyl fluoride to the alkyne alcohol 198. This alcohol could be formed in two ways, the first via disconnection C , which gives similar synthons to disconnection A . Finally disconnection D would give alkyne 200 and a piperidinone 201. The forward synthesis of compound 198, would involve deprotonating alkyne 200 and adding it to piperidinone 201.

Scheme 56: Retrosynthesis of compound 192.

The first approach to intermediate $\mathbf{1 9 2}$ was $v i a$ an addition of a terminal acetylene to the ketone of 4-piperidinone 201. Attempts to make the terminal acetylene 200 using Sonogashira conditions were unsuccessful (Scheme 57). The major by-product was the alkyne homocoupling product 202. The problem was partly resolved when the number of equivalents of TMS acetylene was increased to six. However, although the desired product formed, the TMS protecting group was cleaved over time and the compound was converted to the homocoupled product 202. The route was abandoned in favour of an alternative.

Scheme 57: Reagents and conditions: TMS acetylene, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, XPhos, DMA, $60 \rightarrow 100^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

The next approach involved the coupling of a chloronaphthyridine 203 and ethynylpiperidinol 199. The latter was formed in a two step reaction, the first step adding the
lithium salt of TMS acetylene to piperidine-4-one followed by cleavage of the silyl protecting group with TBAF (Scheme 58).

Scheme 58: Reagents and conditions: (i) BuLi, TMSacetylene, THF, $-78^{\circ} \mathrm{C}, 31 \%$; (ii) TBAF, THF, $25^{\circ} \mathrm{C}, 99 \%$.

Alkyne $\mathbf{1 9 9}$ was coupled to chloride $\mathbf{2 0 3}$ via a Sonogashira reaction to give $\mathbf{1 9 8}$ in 70% yield. Alkyne 198 was then reduced using catalytic Pd / C under an atmosphere of H_{2} to give compound 205 (Scheme 59). The material at the end of the reaction was a mixture of compound 203 and an impurity which was identified by LCMS. The impurity had a mass ion consistent with the incomplete hydrogenolysis of the CBZ protecting group of compound 198.

Scheme 59: Reagents and conditions: (i) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, XPhos, DMA, $100^{\circ} \mathrm{C}, 4 \mathrm{~h}, 70 \%$; (ii) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}, 24 \mathrm{~h}$.

All attempts to convert alcohol 205 into fluoride 194 resulted in elimination to obtain a mixture of alkenes of which only one is shown (206). The structures were not isolated, but the LCMS showed three distinct peaks with the same m / z.

Scheme 60: Reagents and conditions: (i) DAST, DCM, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

One way of addressing the problematic fluorination was to add the fluorine atom earlier in the synthesis. Alkynyl fluoride 197 was synthesised following the procedure developed by Van Niel et al.. ${ }^{84}$ The authors state the fluorination step requires protection of the alkyne in order to prevent elimination of the hydroxyl group to an alkene. Alkyne 204 was protected with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ to give compound 207 in 95% yield. Compound 207 was treated with DAST to give the fluoride 208 in 100% yield. Due to the paramagnetic nature of Co it was not possible to confirm its structure by NMR as the peaks were broad. The only evidence for this reaction is based on the change in retention time in the LCMS and a weak mass ion. Finally the protecting groups were removed; the alkyne protecting group was removed first by oxidation with cerium ammonium nitrate to give compound $\mathbf{2 0 9}$ in 94% yield, followed by removal of the silyl protecting group to give compound 197 (Scheme 61).

Scheme 61: Reagents and conditions: (i) $\mathrm{Co}_{2}(\mathrm{CO})_{8}, \mathrm{Et}_{2} \mathrm{O}, 1 \mathrm{~h}$; (ii) DAST, DCM, 1 h ; (iii) $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}$, acetone, 1 h ; (iv) TBAF, THF, $1 \mathrm{~h} ; 42 \%$ (2 steps).

With compound 197 in hand, attention turned towards the coupling of alkyne 197 and chloronaphthyridine 203. The Sonogashira reaction using $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and XPhos as a catalyst resulted in a poor 36% yield of compound 192 with recovered starting material. Addition of fresh catalyst and ligands to the reaction mixture resulted in no further product being formed (Scheme 62).

Scheme 62: Reagents and conditions: (i) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, $\mathrm{XPhos}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMA, $100^{\circ} \mathrm{C}, 15 \mathrm{~h}, 36 \%$.

The reduction of the alkynyl group in fluoride 192 proved to be the lowest yielding step in the reaction sequence. Treatment of compound 192 with H_{2} in the presence of Pd / C resulted in 99% mass recovery but upon further analysis, only 19% of the desired product formed, with the rest of the mass attributed to the dehalogenated product $\mathbf{2 1 0}$ (Scheme 63). This step was later optimised and an explanation of how the dehalogenated product $\mathbf{2 1 0}$ was made is presented later.

Scheme 63: Reagents and conditions: (i) Pd/C, $\mathrm{H}_{2}, \mathrm{EtOH}, 18 \mathrm{~h}, \mathbf{1 9 4 : 2 1 0}$ 19:81 .

The remaining steps to form compound $\mathbf{1 3 8}$ have been described previously. Compound $\mathbf{1 9 4}$ was alkylated with (E)-methyl 4-bromobut-2-enoate 107 to give compound 195 (Scheme 64). The next step was the Rh-catalysed 1,4-addition, followed by an ester hydrolysis to give compound 138.

Scheme 64: Reagents and conditions: (i) DIPEA, DCM, $25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (ii) $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2},(R)$-BINAP, 3cyclopropylphenyl boronic acid, 1,4-dioxane; 30 min ; then $\mathrm{LiOH}, 12 \mathrm{~h}, 5 \%$ (3 steps).

The biological data for compound $\mathbf{1 3 8}$ is summarised in Table 42. The $\alpha_{v} \beta_{6}$ cell potency is 7.0, an acceptable level of potency which meets the criteria; however the compound is lipophilic with a ChromLogD ${ }_{7.4}$ of 4.10 and as a result the artificial membrane permeability is high. The plasma protein binding assay showed 98% binding and the hERG assay measured a potency of 6.0. Due to the activity in the hERG (barracuda) assay the compound was not progressed any further as the compound had the potential to cause cardiac arrhythmia.

Table 42: Biological data for compound 138.

Assay	Compound 138
$\alpha_{v} \beta_{6}$ Cell assay $\left(\mathrm{pIC}_{50}\right)$	7.0
ChromLogD ${ }_{7.4}$	4.10
Permeability $(\mathrm{nm} / \mathrm{s})$	320
Plasma protein binding (\%)	98
hERG Barracuda assay $\left(\mathrm{pIC}_{50}\right)$	6.0

5.12 3-Fluoropyrrolidine series

As compound $\mathbf{1 3 8}$ showed potency in the hERG Barracuda assay, it was decided that the 3fluoropyrroldine target $\mathbf{1 3 9}$ would not be synthesised as it was also likely to be active in the hERG assay. The cyclopropyl substituent on compound 139 was causing the molecule to have a high ChromLogD ${ }_{7.4}$ value; it was therefore replaced with a morpholine to give more suitable properties. Compound $\mathbf{2 1 1}$ is the morpholine equivalent of compound $\mathbf{1 3 9}$ and was proposed as it would have a lower ChromLogD ${ }_{7.4}$ than compound 138, and therefore be less likely to have activity in the hERG assay.

The retrosynthesis for compound 211 is outlined in Scheme 65 and is similar to that for compound 138. The reduction of the alkyne to the alkane was problematic in compound 192; the proposed synthesis of compound 211 contains a similar synthetic transformation so further optimisation may be required.

Scheme 65: Retrosynthesis of compound 211.

Compound 213 was synthesised using conditions previously described for the piperidine series. ${ }^{85}$ TMS acetylene was deprotonated using BuLi; the conjugate base was added to ketone 212 to give alcohol 219 (Scheme 66). Alcohol 219 was treated with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ to give compound 220, followed by DAST treatment to give compound $\mathbf{2 2 1}$ which was deprotected with $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}$ to alkynyl fluoride 222. The TMS protecting group was removed with TBAF to give compound 213.

Scheme 66: Reagents and conditions: (i) TMSacetylene, BuLi, THF, $-60^{\circ} \mathrm{C}, 3 \mathrm{~h}, 97 \%$; (ii) $\mathrm{Co}_{2}(\mathrm{CO})_{8}, \mathrm{Et}_{2} \mathrm{O}, 1 \mathrm{~h}$ 94%; (iii) DAST, DCM, $1 \mathrm{~h}, 86 \%$; (iv) $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}$, acetone, $2 \mathrm{~h}, 100 \%$; (v) TBAF, THF, $40 \mathrm{~min}, 31 \%$.

The ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 213 showed additional signals which were attributed to rotamers. A variable temperature NMR spectrum was recorded at 373 K and the rotameric peaks coalesced. The ${ }^{19} \mathrm{~F}$ NMR spectrum run at 273 K showed two apparent septets; however these were assigned as two triplets of triplets (tt), one for each rotamer, where J_{1} is twice the size of J_{2} (Figure 58). The ${ }^{19} \mathrm{~F}$ NMR spectrum run at 373 K showed a single $t t$.

Figure 58: Left : ${ }^{19} \mathrm{~F}$ NMR spectrum of compound 213 (top at 373 K , bottom at 272 K). Right : representation of the $t t$ in the ${ }^{19} \mathrm{~F}$ NMR of compound $213, J_{1}$ (blue), $J_{2}($ red $)$.

Attempted Sonogashira coupling of acetylene $\mathbf{2 1 3}$ with aryl chloride $\mathbf{2 0 3}$ failed (Scheme 67). A low yield was also seen in the 4-fluoropiperidine series, however in that case there was enough material to continue the synthesis.

Scheme 67: Reagents and conditions: (i) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{XPhos}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMA}, 100^{\circ} \mathrm{C}, 15 \mathrm{~h}$.

One hypothesis for the low yield in this Sonogashira reaction is that the fluorine atom is inductively affecting the $\mathrm{C}-\mathrm{H}$ alkyne bond. This effect could have implications for the reaction, as it is likely to stabilise the $\mathrm{Pd}-\mathrm{C}$ bond which might be unable to reductively eliminate. To overcome this problem an alternative alkyne coupling reagent was proposed. Tertiary alcohol $\mathbf{2 2 3}$ could be coupled to the tetrahydronaphthyridine using similar chemistry carried out in the piperidine series, then the alcohol could be replaced with fluorine using a fluorinating agent later in the synthesis.

Pyrrolidin-3-one 212 was reacted with the lithium salt of TMS acetylene (vide supra); then the silyl group was removed with TBAF to give compound 223 (Scheme 68). The product was contaminated with a tetrabutylammonium salt which was evident in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Scheme 68: Reagents and conditions: (i) TBAF, THF, $30 \mathrm{~min}, 93 \%$.

Alkyne $\mathbf{2 2 3}$ was coupled to compound $\mathbf{2 0 3}$ under Sonogashira conditions described above to give alkyne 224 in a modest 23% yield (Scheme 69). The yield was lower than expected but higher than from the coupling with alkynyl fluoride 213. This reaction gave enough material to complete the synthesis, but this step would need to be optimised if a scale up was required.

Scheme 69: Reagents and conditions: (i) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{XPhos}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMA, $100^{\circ} \mathrm{C}, 15 \mathrm{~h}, 23 \%$.

The next step in the synthesis was the conversion of the alcohol 224 to fluoride 214. The alkyne was protected with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ using conditions described previously to give alcohol 225, which was then converted to fluoride 226 using DAST; finally the protecting group was removed using $\mathrm{Ce}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}$ to give alkynyl fluoride 214. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of an impurity of around 19%; this impurity contains an alkene proton and is a mixture of rotamers, indicating the presence of a CBZ group.

Scheme 70: Reagents and conditions: (i) $\mathrm{Co}_{2}(\mathrm{CO})_{8}, \mathrm{Et}_{2} \mathrm{O}, 1 \mathrm{~h} 99 \%$; (ii) DAST, DCM, $1 \mathrm{~h}, 94 \%$; (iii) $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}$, acetone, 1 h .

Catalytic hydrogenation of compound $\mathbf{2 1 4}$ over Pd / C in EtOH resulted in an inseparable mixture of the desired compound 215 and the hydrogenolysis product 227 (Scheme 71). When compound 214 was hydrogenated over $\mathrm{PtO}_{2} / \mathrm{C}$ in EtOH , the only product to be produced was compound 227. Van Niel et al. ${ }^{84}$ reported similar results when reducing an alkynyl fluoride. LCMS indicated a rapid reduction of the alkyne to the alkene 228 and a slower reduction to the alkane. It is possible that alkene $\mathbf{2 2 8}$ can bind to the Pd catalyst in an η^{2} complex 230 or η^{3}-complex 229. The η^{3}-complex can add hydrogen across the double bond and hydride to the tertiary carbon to give the by-product 227.

Scheme 71: Reagents and conditions: (i) $5 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h} \mathbf{2 2 7}: 95 \%$ yield, 215: 5\% yield.

The proposed mechanism for the dehalogenation pathway goes via an ionic intermediate. One hypothesis to overcome this pathway was to explore different solvents which could make its formation less favourable. Gumina et al. ${ }^{86}$ showed that it was possible to reduce a β-allylic fluoride with Pd / C in a low polarity solvent like cyclohexane. To test this hypothesis a number of solvents with a range of dielectric constants were used to see if there was a decrease in the amount of hydrogenolysis product formed (Table 43). As described previously, when EtOH was the solvent the majority of the product was the undesired alkane 227. When the solvent was changed to THF, which has a slightly lower dielectric constant,
20% of the desired fluoroalkane 215 was formed. When EtOAc was used as the solvent, the yield of compound 215 increased to 31%. There was a significant improvement in the yield (58%) of compound 215 when CHCl_{3} was used. This reaction was complicated by the fact that under these conditions there was evidence that the Boc protecting group had been removed from compounds 215 and 227. Disappointingly, the results of Gumina et al. ${ }^{86}$ could not be repeated with compound 214 because no product formed when cyclohexane was used as solvent; this could be partly due to the insolubility of compound 214 in cyclohexane (Table 43). A reaction in 90% cyclohexane and $10 \% \mathrm{CHCl}_{3}$ did produce a solution but showed no improvement over the reaction when neat CHCl_{3} was used as a solvent.

Table 43 Results from the hydrogenation of compound 214 with different solvents.

Solvent	Dielectric constant (\&) at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$	Ratio
EtOH	25^{87}	Fluorinated / Unfluorinated
THF	7.4^{88}	$<5 \%: 90 \%$
EtOAc	6.0^{89}	$20 \%: 73 \%$
CHCl_{3}	4.8^{90}	$31 \%: 65 \%$
Cyclohexane	2.0^{91}	$58 \% \%^{*}: 27 \% \%^{*}$
9:1 Cyclohexane : CHCl_{3}	NM	$<5 \%:<5 \%$

[^4]Although the reaction conditions were not optimal, enough material was obtained from the hydrogenation in CHCl_{3} to continue the synthesis of compound 211. The resulting material was a mixture of compound 215, compound 217 and the corresponding compounds without the Boc protecting group. This mixture was simplified by the conversion of compounds $\mathbf{2 1 5}$ and $\mathbf{2 2 7}$ to compounds $\mathbf{2 3 1}$ and $\mathbf{2 3 2}$ using TFA in DCM for 76 h (Scheme 72). The mixture was purified by achiral HPLC and then the enantiomers were separated by chiral HPLC to give enantiomers 231a and 231b in 21% and 22% yields, respectively from the alkynyl fluoride.

Scheme 72: Reagents and conditions: (i) $5 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{CHCl}_{3}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (ii) TFA, DCM, 76 h ; (iii) Chiral HPLC 231a 21% yield, 231b 22\%.

Compounds 231a and 231b were deprotected using Pd/C in EtOH to give compounds 233a and 233b. These were then alkylated using (E)-methyl 4-bromobut-2-enoate to give compounds 234a and 234b. Compounds 235a, 235b, 236a and 236b were formed from an asymmetric Rh-catalysed 1,4-addition described previously; the $e e$ for the latter reaction was >90\% by analytical chiral HPLC. After chiral HPLC, the esters 235a, 235b, 236a and 236b were deprotected using $\mathrm{LiOH}_{(\mathrm{aq})}$ in THF to afford compounds 237a, 237b, 211a and 211b after an acidic work-up. ${ }^{7} \mathrm{Li}$ NMR confirmed that there was no lithium in the products.

Scheme 73: Reagents and conditions: (i) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}, 18 \mathrm{~h}, \mathbf{2 3 2 a} 74 \%, 232 \mathrm{~b}, 80 \%$; (ii) (E)-methyl 4-bromobut-2-enoate, DIPEA, DCM, $0 \rightarrow 25{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, \mathbf{2 3 4 a} 97 \%$, 234b 79%; (iii) [$\left.\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}\right]_{2},(R)$-BINAP, boronic acid, 1,4-dioxane; $30 \min$ 235a 10%, 235b 45%, 235c 9%, 235d 58%, 236a 5%, 236b 51%, 236c 6\%, 236d 35\%; (iv) LiOH, 18 h, 211a 81\%, 211a 88\%, 237b 84\%, 237b 68\%.

For completeness, all four diastereomers of compound 211 were required. In a subsequent synthesis of compound 211a and 211b, chiral HPLC was conducted at the end of the synthesis rather than at intermediate 235. Compounds 211c and 211d were both produced in 5\% yield from 234a and 234b, respectively (Scheme 74).

Scheme 74: Reagents and conditions: (i) $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2},(R)$-BINAP, boronic acid, 1,4-dioxane; 30 min , (ii) LiOH, 18 h, 211c 5\%, 211d 5\%.

The biological data for compounds 211a-d, 237a and 237b is shown in Table 44. Compounds 211a, 211b, and 237a had a $\mathrm{pIC}_{50}>7.9$ in the $\alpha_{v} \beta_{6}$ cellular assay. Compound 237b had a slightly lower value with a $\mathrm{pIC}_{50}=7.6$. Compounds 211c and 211d were nearly 100 -fold less active with $\mathrm{pIC}_{50}=6.3$ and 6.5 , respectively. The selectivity of compounds 211a-b, 237a and 237b at the $\alpha_{v} \beta_{3}$ and $\alpha_{v} \beta_{5}$ integrin against the $\alpha_{v} \beta_{6}$ integrin was at least 10fold. There was at least $0.5 \log$ unit of selectivity window at the $\alpha_{v} \beta_{8}$ integrin over the $\alpha_{v} \beta_{6}$ integrin.

Table 44: Biological data for compounds 211a-d, 237a and 237b.

Compound number	Stereochemistry	$\alpha_{v} \beta_{6}\left(\mathrm{pIC}_{50}\right)$	$\alpha_{v} \beta_{3}\left(\mathrm{pIC}_{50}\right)$	$\alpha_{v} \beta_{5}\left(\mathrm{pIC}_{50}\right)$	$\alpha_{v} \beta_{8}\left(\mathrm{pIC}_{50}\right)$
211a	Diastereomer A	7.9	6.9	7.1	7.6
211b	Diastereomer B	7.9	6.2	6.8	7.6
211c	Diastereomer C	6.3	5.5	6.0	5.9
211d	Diastereomer D	6.5	5.0	NT	NT
237a	Diastereomer A	8.0	6.5	6.7	7.7
237b	Diastereomer B	7.6	6.0	6.7	7.2

NT: Not tested
All these compounds were potent at the $\alpha_{v} \beta_{6}$ integrin and therefore the permeabilities and protein binding values were determined (Table 45). The \%ChromPPB correlates with the ChromLogD ${ }_{7.4}$, compounds 211a and 211b have a ChromLogD ${ }_{7.4}$ of 2.62 and 2.66 respectively and have a $\%$ ChromPPB of 88% and 84%, respectively. Compounds 237a and 237b with higher ChromLogD $_{7.4}$ values of 3.33 and 3.16 , respectively and have a $\%$ ChromPPB of 99%. The compounds were also incubated in human whole blood for 4 h at $37^{\circ} \mathrm{C}$ and the percentage of the compound which was not bound to the protein was measured. Compounds 211a and 211b had a low-to-moderate whole blood binding value, whereas compound 237a had high whole blood binding of 99%. The permeabilities of compounds 211a, 237a, and 237b were high with values of $>100 \mathrm{~nm} / \mathrm{s}$. Compound 237b had a moderate permeability of $93 \mathrm{~nm} / \mathrm{s}$ as measured in the artificial membrane permeability assay. All of the compounds were put through the MDCK permeability assay and compounds 211a, 237a, and 237b were moderate-to-high. Compound 211b had a value of $26 \mathrm{~nm} / \mathrm{s}$ and has moderate permeability.

Table 45: Permeability and blood binding assay results for compounds 211a, 211b, 237a and 237b.

Compound					
number	ChromLogD ${ }_{7.4}$	\%ChromPPB	Whole blood binding (\%)	Permeability $(\mathrm{nm} / \mathrm{s})$	MDCK permeability $(\mathrm{nm} / \mathrm{s})$
211a	2.66	88	83	230	87
211b	2.66	84	85	93	26
237a	3.33	99	99	330	177
237b	3.16	99	NT	160	70

NT: Not tested
An explanation for the difference in the permeabilities of the pyrrolidine diastereomers was sought with molecular modelling. The two enantiomers were energy minimised in a lipophilic environment using MOE (2012.10, forcefield MMFF94x), which would mimic the lipophilic interior of the cell membrane. The S, R-diastereomer (S at the fluoropyrrolidine stereogenic centre) shown in Figure 59) shows three salt bridges between the carboxylic acid and the protonated species. This enantiomer is able to adopt a conformation where all the polar groups are away from the lipophilic environment by orientating the lipophilic groups on the outside surface of the molecule.

Figure 59: Lowest energy conformer in lipophilic environment of (R)-4-((S)-3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-phenylbutanoic acid.

The R, R-diastereomer of the fluoropyrrolidine is shown in Figure 60. This compound is unable to fold the polar groups together without incurring a large energy penalty; there is therefore a large exposed polar surface area resulting in lower permeability.

Figure 60: Lowest energy conformer in lipophilic environment of (R)-4-((R)-3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-phenylbutanoic acid.

5.13 Summary of results obtained with fluorine containing cores

A number of cores containing a fluorine atom were synthesised and tested. The original hypothesis was to see if the pK_{a} of the core correlated with the permeability of the compound. The physicochemical data for one example of each core is in Table 46. The original starting point was compound $\mathbf{2 3 8}$ which contained a basic nitrogen in the core of the molecule. The measured pK_{a} was 9.63 and the permeability was low ($30 \mathrm{~nm} / \mathrm{s}$) as a result of the highly basic core. Compound 154 has a seven-membered core with a fluorine atom four carbon atoms away from the nitrogen; as a result the pK_{a} is similar to compound 238. The artificial membrane permeability of compound $\mathbf{1 5 4}$ is low ($49 \mathrm{~nm} / \mathrm{s}$). The pK_{a} of the core of compound $\mathbf{1 3 8}$ is 8.64 , which is lower than that of compound $\mathbf{2 3 8}$ because the fluorine atom has a greater effect on the basicity of the nitrogen. The permeability of compound $\mathbf{1 3 8}$ should not be compared with the other compounds in Table 46 because there is a different R group on

Property of GSK - Confidential - Do not copy

the benzene ring and there is no direct comparison for this compound. Compounds $\mathbf{1 7 2}$ and 211 have lower pK_{a} values due to the increasing effect of the fluorine atom on the nitrogen in the core; these compounds also have very high levels of permeability. The \%ChromPPB for the compounds in Table 46 are around 80% with the exception of compound 138. This compound has a \%ChromPPB of 98% but this could arise because it has a different R group. This compound also has a considerably higher ChromLogD ${ }_{7.4}$ value which may be affecting the $\%$ ChromPPB.

Table 46: Summary of data for compounds 238, 138, 154, 172 and 211.

Compound number	Core	R	ChromLogD ${ }_{7.4}$	pK_{a}	Artificial membrane Permeability (nm/s)	\% ChromPPB
238		Morpholine	2.28	9.63	30	81
154		Morpholine	2.84	9.21	49	82
138		Cyclopropyl	4.10	8.64	320	98
172		Morpholine	2.68	7.63	380	83
211		Morpholine	2.66	8.09	230	80

Graph 5 shows a correlation between the permeability and the pK_{a} for the compounds in Table 46. This correlation supports the hypothesis that changing the pK_{a} of the core nitrogen can increase the permeability of the compound.

Graph 5: pK_{a} and permeability data for compounds $\mathbf{2 3 8}, \mathbf{1 5 4}, 172$ and 211.

Graph 6 shows compounds 238, 138, 154, $\mathbf{1 7 2}$ and $\mathbf{2 1 1}$ plotted on the oral design guide discussed in chapter 4. There is good correlation between the measured (red) and the calculated (blue) data. Compounds $\mathbf{2 3 8}$ and $\mathbf{1 7 2}$ were predicted to be the least permeable and these results have been confirmed with the measured data. Compound $\mathbf{2 1 1}$ was predicted to have the best chance of being permeable and have a low $\%$ ChromPPB and this has also been confirmed by the measured results.

Graph 6 : Compounds 238, 138, 154, 172 and 211 plotted on the oral design guide showing the difference between measured (Red) and calculated (Blue) results.

Compound 211a had excellent in vitro properties; it was potent at the $\alpha_{v} \beta_{6}$ integrin, was permeable and had a reasonable free fraction. It was therefore decided to test the hypothesis in vivo. Compound 211a was dosed by intravenous infusion (30 min infusion time) at 1 $\mathrm{mg} / \mathrm{kg}$ to the Wister Hann rat; the compound possessed moderate-high blood clearance (49 $\mathrm{mL} / \mathrm{min} / \mathrm{Kg}$), a moderate volume of distribution ($4.1 \mathrm{~L} / \mathrm{kg}$) and a moderate half-life (1.9 h). A mean oral bioavailability of 77% was achieved following oral solution dosing at $1 \mathrm{mg} / \mathrm{kg}$ (Table 47).

Table 47: Rat PK data for compound 211a.

Dose route	Intravenous infusion $(30 \mathrm{~min})(\mathrm{n}=3)$		Oral ($\mathrm{n}=2$)
	Mean	Std Dev	Mean
Dose level (mg/kg)	1.01	0.02	1.01
$\begin{gathered} \mathrm{Cl} \\ (\mathrm{~mL} / \mathrm{min} / \mathrm{kg}) \end{gathered}$	49	9	ND
Vss (L/Kg)	4.1	2.1	ND
T¹/2 (h)	1.9	1.1	2.3
Cmax (ng/mL)	351	65	105
Tmax (h)*	0.5	0.5-0.5	0.63
$\begin{gathered} \hline \text { AUC (0-inf) } \\ \text { (ng.h/mL) } \end{gathered}$	352	64	258
\%F	ND	ND	77

ND: Not determined; * median and range

After analysis of rat urine collected following the IV dose, the amount of the administered dose present in the urine after 12.5 h ranged from 14% to 28% and accounted for $\sim 22 \%$ of the total clearance (Table 48). Overall the rat profile of compound 211a shows promise and the compound has the potential to deliver a drug suitable for oral administration.

Table 48: Urine Collection and Analysis following the IV dose for compound 211a.

Rat ID	Total parent in the urine ($\mathbf{0}-\mathbf{1 2 . 5} \mathbf{h})$ $(\boldsymbol{\mu g})$	\% dose in urine	Renal clearance $\mathbf{m L} / \mathbf{m i n} / \mathrm{kg}$	Mean \% of total clearance
$\mathbf{1}$	80.7	28	13	
$\mathbf{2}$	74.2	24	9.7	22
$\mathbf{3}$	36.7	14	8.3	

Compound 211a showed good rat PK, therefore it was progressed into a dog PK study. Three dogs were dosed to determine the suitability of oral administration in a non-rodent species. There were two arms to the study; the first was a 1 h IV infusion at a dose level of $1 \mathrm{mg} / \mathrm{kg}$ and the second an oral administration at the same dose. The IV data was used to determine clearance and the volume of distribution; the mean value for the clearance was 5.6 $\mathrm{mL} / \mathrm{min} / \mathrm{Kg}$ which is low compared to the dog liver blood flow and the volume of distribution was $2.5 \mathrm{~L} / \mathrm{Kg}$. When the compound was dosed orally the mean AUC was $2200 \mathrm{ng} . \mathrm{h} / \mathrm{mL}$ and the mean bioavailability was 74%. These results indicate that the compound can easily pass the intestinal wall. The mean half life ($\mathrm{t}_{1 / 2}$) for compound 211a when delivered intravenously was 6.1 h (Table 49).

Table 49: Dog PK data for compound 211a.

Dose route	Intravenous infusion $(30 \mathrm{~min})(\mathrm{n}=3)$		Oral ($\mathrm{n}=3$)	
	Mean	Std Dev	Mean	Std Dev
Dose level (mg/kg)	1.1	0	1.0	0
$\mathrm{Cl}(\mathrm{mL} / \mathrm{min} / \mathrm{kg})$	5.6	0.7	ND	ND
Vss (L/Kg)	2.5	0.4	ND	ND
T¹/2 (h)	6.1	0.8	ND	ND
$\begin{gathered} \hline \text { AUC (0-inf) } \\ (\text { ng.h/mL) } \end{gathered}$	3180	465	2203	337
\%F	ND	ND	74	1

ND : Not detemined
Compound 211a showed excellent dog PK, however a predicted human dose was required to progress the compound further. The normal human bronchial epithelium (NHBE) assay is the most representative in vitro assay of an in vivo simulation. In this assay the compound is

Property of GSK - Confidential - Do not copy

incubated with NHBE cells which have the $\alpha_{v} \beta_{6}$ integrin and TGF_{β} on the cell surface; then after 48 h the supernatants were removed and assayed for the protein plasminogen-activating inhibition 1 (PAI-1). PAI-1 is a fibrotic mediator downstream of the activated TGF_{β} receptor through the $\alpha_{v} \beta_{6}$ integrin. This assay is the most representative assay of human $\alpha_{v} \beta_{6}$ inhibition and this value will be used for the dose prediction. Compound 211a was progressed through this assay and showed a $\mathrm{pIC}_{50}=6.1$ (concentration required to inhibit 50% of protein) and a $\mathrm{pIC}_{90}=7.8$ (concentration required to inhibit 90% of protein).

The human dose prediction of compound 211a is shown in Table 50. ${ }^{92}$ The oral profile of compound 211a in rat and dog was scaled to human; taking into consideration the renal and hepatic clearance based on glomerular filtration rates and liver blood flow from in vivo experiments. The calculation is based on achieving a maximum free blood concentration equivalent to the cell adhesion IC_{95} for at least 1 h . The human predicted dose of compound 211a is 275 mg or 55 mgs per dose based on rat or dog, respectively. Comparing this to the only currently available treatment for IPF (Pirfenidone) the predicted dose is around an order of magnitude lower. If the predicted dose were to be the clinical dose it could provide a number of significant benefits to the current standard; not only is less active pharmaceutical ingredient required, but the compound is predicted to be dosed twice a day (instead of three times).

Table 50: Dose predictions for compound 211a.

Dose $(m g$ b.i.d $)$		Total daily dose of Compound 211a (mg)	Total daily dose of Pirfenidone (mg)	
Rat	Dog	Rat	Dog	2403
275	55	550	110	

The next steps in the progression of compound 211a were to test the compound in the AMES assay to determine genotoxicity. The compound was dosed at a range of concentrations up to $5000 \mathrm{mg} / \mathrm{mL}$ to a number of mutagenic strains of bacteria and showed $<2 \%$ revertant colony counts compared with positive controls suggesting the compound was not genotoxic.

Compound 211a was a potent inhibitor of the integrin receptor $\alpha_{v} \beta_{6}$. The compound was also permeable and had a high free-fraction. When the compound was tested in vitro it showed excellent permeability in the MDCK and free-fraction in the whole blood binding assays. Compound 211a showed excellent oral bioavailability in an in vivo rat PK study and also showed excellent PK in the dog. This compound is currently being considered as a small molecule anti-fibrotic medicine to be delivered to patients with fibrotic diseases dosed at around 100 mg per day. The only concern with compound 211a was the potential metabolite that could be an aniline fragment which could potentially cause toxic side-effects (Figure 61); even though this compound had been shown not to be genotoxic attention turned towards finding a compound with similar (ideally lower) predicted daily dose than compound 211a but without the aniline fragment.

Figure 61: Compound 211a highlighting aniline fragment

A (2-methoxy)ethoxy substituent was considered as an morpholine replacement. The (2methoxy)ethoxy group occupies the same space as the morpholine in compound 211a, but does not mimic the exact binding mode, as seen in Figure 62. This is because in the open chain there is no preference for the torsion angle (C-O-Ar) to be in a gauche conformation.

Figure 62: Compounds 211a and 239 docked into the $\alpha_{v} \beta_{6}$ homology model

The torsion angles and distances between the atoms on a (2-methyoxy)ethoxy system needed to be examined to ensure that the values obtained from the molecular modelling were consistent with known values from X-ray crystal structures. The Cambridge Structural Database (CSD) was searched for any compounds containing a (2-methoxy)ethoxy group and the dihedral angles and distance between the two oxygens were retrieved. Table 51 shows the results retrieved from the CSD and the torsion angles between atoms on compound 239. The dihedral angles (Tor 2, Tor 3) and the distance between the two oxygen atoms (Dist 1) of the binding mode of compound $\mathbf{2 3 9}$ in the $\alpha_{v} \beta_{6}$ homology model lie close to the distributions in CSD. There is about a 20° difference in the Tor 1 angle in compound 239 and the compounds in the CSD. This indicates that the (2-methoxy)ethoxy substituent in compound $\mathbf{2 3 9}$ should not be subject to significant conformational penalties. Based on this analysis it was hypothesised that compound $\mathbf{2 3 9}$ would be a suitable morpholine replacement.

Table 51: Dihedral angles and distances of (2-methoxy)ethoxy containing compounds from the CSD

Torsion angle/Distance	CSD result	Mean result from CSD	$\begin{aligned} & \text { Result } \\ & \text { from } \\ & \text { docking } \end{aligned}$
 Tor1		173	155.1
		81	77.1
 Tor 3		176	171.9
 Dist 1		2.89	2.82

The physicochemical properties of compound $\mathbf{2 3 9}$ were predicted using the same methods described in Chapter 5 and the compound was plotted in the oral design guide (Figure 63). Compound 239 is predicted to be suitable for oral drug delivery; it is likely to have a greater drug efficiency maximum and have a similar permeability to compound 211a. Based on this
analysis and the modelling it was hypothesised that compound $\mathbf{2 3 9}$ would be a suitable morpholine replacement.

Figure 63: Compounds 211a and 239 plotted in the oral design guide.

The synthesis of compound 239 is similar to that of 211a. The first step requires a Rhcatalysed addition of boronic acid 241 to compound 234a to give compound 240; which was not isolated. Methyl ester $\mathbf{2 4 0}$ was hydrolysed to give compound $\mathbf{2 3 9}$ which underwent chiral HPLC separation to give compounds 239a and 239b in 75\% and 9\% yield, respectively.

Scheme 75: Reagents and conditions: (i) $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2},(R)$-BINAP, $\mathrm{KOH}, 1,4$-dioxane; (ii) LiOH, THF; Chiral HPLC 239a 75\%, 239b 9\%.

The biological data for compound 239a and 239b is depicted in Table 52; the data for compound 211a is also included for comparison. Compound 239a is more potent than compound 239b in the four integrin assays. Compound 239a is equipotent with compound 211a in the $\alpha_{v} \beta_{6}$ integrin cell assay; however it is less selective in the $\alpha_{v} \beta_{6}$ integrin assay
showing only $0.4 \log$ units difference rather than the $1 \log$ unit seen with compound 211a. Compound 239a has a similar ChromLogD ${ }_{7.4}$ value to compound 211a and is inactive in the hERG (Qpatch) assay. For these reasons it was decided to progress compound 239a into other in vitro assays.

Table 52: Potency and physicochemical properties of compound 239a, 239b and 211a

	$\alpha_{v} \beta_{6}$ $\mathbf{p I C}_{50}$	$\alpha_{v} \beta_{3}$ $\mathbf{p I C}_{50}$	$\alpha_{v} \beta_{5}$ $\mathbf{p I C}_{50}$	$\alpha_{v} \beta_{8}$ $\mathbf{p I C}_{50}$	ChromLogD ${ }_{7.4}$	MW	hERG (Qpatch)
239a	7.9	7.4	7.4	7.5	2.85	485	<4.52
239b	6.2	5.9	6.6	5.8	2.77	485	NT
211a	8.0	7.0	7.2	7.6	2.66	496	<4.52

NT : Not tested
Compound 239a was progressed into permeability and binding assays. The results suggested it is both permeable and with a high free-fraction; with a result of $88 \mathrm{~nm} / \mathrm{s}$ in the MDCK assay and 74% protein binding in human whole blood, respectively (Table 53). The binding data is consistent across species with a value lower than 85% blood binding in human, rat, dog and mouse blood. A comparison of compounds 211a and 239a suggests they have a similar in vitro data therefore a rat PK study was initiated to examine the differences of the structural motif.

Table 53: Permeability and binding data for compounds 239a and 211a.

Assay	Compound 239a	Compound 211a
AMP permeability (nm/s)	213.7	230
MDCK (nm/s)	88	87
\%PPB	90.4	83
\%Whole blood binding	74	83

Before the rat PK study could be undertaken a number of in vitro assays were completed. Compound 239a was stable in rat microsomes and also human and dog hepatocytes. The compound was metabolised by rat hepatocytes but at a low level (Table 54)

Property of GSK - Confidential - Do not copy

Table 54: Microsomal clearance for compound 239a.

Species	Clearance (mg/min/g of tissue)
Rat microsomes	<0.53
Rat hepatocytes*	$<0.8-0.98$
Human hepatocytes	<0.87
Dog hepatocytes	<1.73

*One value was 0.98 a second value was < 0.8 , a range is therefore quoted
The pharmacokinetics of compound 239a in the male Wister Hann rats following IV infusion ($1 \mathrm{mg} / \mathrm{kg}$; 1 h infusion) and oral administration ($2 \mathrm{mg} / \mathrm{kg}$) are shown in Table 55. Compound 239a has low blood clearance ($20 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$); a moderate volume of distribution ($3.6 \mathrm{~L} / \mathrm{kg}$) and a moderate-to-long half life (4.3 h). Following oral administration at $2 \mathrm{mg} / \mathrm{kg}$ a mean oral bioavailability of 93% was calculated.

Table 55: Rat PK results for compound 239a

Dose route	Intravenous infusion$(30 \mathrm{~min})(\mathrm{n}=3)$		Oral ($\mathrm{n}=3$)	
	Mean	Std Dev	Mean	Std Dev
Dose level (mg/kg)	1.0	0	2.0	0.1
$\mathrm{Cl}(\mathrm{mL} / \mathrm{min} / \mathrm{kg})$	20	2	ND	ND
Renal clearance (mL/min/kg)	3.7	0.6	ND	ND
Vss (L/kg)	3.6	1.0	ND	ND
T1/2 (h)	4.3	1.2	ND	ND
$\mathrm{C}_{\text {max }}(\mathrm{ng} / \mathrm{mL})$	ND	ND	530	77
AUC (ng.h/mL)	ND	ND	1551	325
\%F	ND	ND	93	27

ND : Not determined
Compound 239a had a more desirable PK profile when compared to compound 211a with two-fold lower clearance and an increase in oral bioavailability from 70% to 90%. The lower clearance results in lower first pass metabolism, which is driving the increase in oral bioavailability. The increase in $\mathrm{C}_{\text {max }}$ along with an increase in free-fraction leads to the

Property of GSK - Confidential - Do not copy

prediction of a lower human dose ($55 \mathrm{mg} /$ dose) compared to compound 211a ($275 \mathrm{mg} /$ dose). Rat hepatocyte data for compound 239a predicted a clearance of $<24 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$ compared to the measured hepatic clearance of $16 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$ (total clearance minus renal clearance). Compound 239a is stable in human hepatocytes, therefore predicting low-to-moderate clearance in human. As compound 239a has a superior PK profile and the fact that there is no potential aniline risk a dog PK study was undertaken.

The pharmacokinetics of compound 239a in the male beagle dog following IV infusion (1 h duration) and oral administration at a nominal dose of $1 \mathrm{mg} / \mathrm{kg}$ are shown in Table 56 . Compound 239a has low blood clearance ($3.7 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$) of which $3.2 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$ is due to hepatic clearance; a moderate volume of distribution ($1.4 \mathrm{~L} / \mathrm{kg}$) and a moderate to long halflife (4.8 h). Following oral administration at $1 \mathrm{mg} / \mathrm{kg}$ compound 239a showed complete oral bioavailability.

Table 56 Dog PK results for compound 239a

Dose route	Intravenous infusion $(30 \mathrm{~min})(\mathrm{n}=3)$		Oral ($\mathrm{n}=3$)	
	Mean	Std Dev	Mean	Range
Dose level (mg/kg)	1.0	0	1.0	± 0
Cl (mL/min/kg)	3.7	1.0	ND	ND
Renal clearance (mL/min/kg)	0.55	0.23	ND	ND
Vss (L/kg)	1.4	0.2	ND	ND
T1/2 (h)	4.8	0.8	ND	ND
$\mathrm{C}_{\text {max }}(\mathrm{ng} / \mathrm{mL})$	ND	ND	760	± 124
AUC (ng.h/mL)	ND	ND	5100	1717
\% F	ND	ND	104	10

ND : Not determined

Property of GSK - Confidential - Do not copy

Compound 239a has been shown to be an suitable molecule for oral delivery, showing excellent properties from the rat and dog PK studies. The predicted dose based on the PK studies is around 16-55 mg b.i.d.(based on dog and rat predictions, respectively) which is about three-fold less than compound 211a and considerably less than current treatment (Table 57). Both compounds are now being considered as small molecule anti-fibrotic medicines and on-going work is looking at exploring scale-up and toxicological studies. The major rationale for progressing both compounds is due to the unknown risks associated with each compound. Compound 211a is a selective $\alpha_{v} \beta_{6}$ integrin antagonist, but must be used at a higher dose than compound 239a, whereas compound 239a is less selective, but has a lower predicted dose.

Table 57: Predicted daily dose of compound 211a, 239a and Pirfenidone.

Predicted daily dose of compound 211a	Predicted daily dose of compound 239a	Daily dose of Pirfenidone
$110-550 \mathrm{mg}$	$32-110 \mathrm{mg}$	2403 mg

5.14 Conclusion

This thesis has discussed a range of potent and selective $\alpha_{v} \beta_{6}$ compounds, both for oral and inhaled delivery. The inhaled programme started with compound 7 which contained an aniline. Over a period of two years and several medicinal chemistry iterations, compound $\mathbf{1 2}$ was developed. Compound $\mathbf{1 2}$ was one of the first $\alpha_{v} \beta_{6}$ selective compounds developed, but was not suitable for inhaled delivery, partly due to the high lipophilicity and molecular weight. Efforts towards making a smaller compound resulted in compound 52a which has more desirable physical properties, but was not potent enough. The discovery that replacing the core with a pyrrolidine resulted in high levels of potency enabled the team to develop compounds such as compound (\boldsymbol{R})-70a which was a selective and potent compound. Compounds $(\boldsymbol{R})-78 \mathbf{a}$ and $(\boldsymbol{R})-\mathbf{8 0 a}$ were developed in parallel. Compound ($\boldsymbol{R})$-78a was
selected as an inhaled candidate and was progressed in preference to $(\boldsymbol{R})-\mathbf{8 0 a}$ for largely commercial reasons.

In the oral programme efforts were focused on decreasing the basicity of the core using a fluorine atom. The addition of a fluorine atom to decrease the pK_{a} of the core nitrogen atom increased the permeability of these compounds. The fraction of these compounds that were protonated in the GI tract were reduced, allowing more neutral species to cross the gut wall membrane. Early efforts to find a compound which was both permeable and had a reasonable free-fraction resulted in compounds which were either permeable or had a reasonable free fraction but not both. A more detailed analysis of the physical properties of the molecule was therefore undertaken, resulting in the oral design guide. A range of new fluorinated cores were modelled in the oral design guide and the compounds predicted to be the most permeable and have a high free-fraction were made. The addition of the fluorine atom did have an effect on the basic nitrogen in the core. The azepine series showed a small decrease in pK_{a} but the permeability was low-to-moderate. The 4-fluoropiperidine series had a larger impact on the physicochemical properties; however, the one compound made in the 4 fluoropiperidine series showed a high level of inhibition at the hERG channel which would not be acceptable. The 3-fluoropiperidine series did not meet the potency criteria required for an oral profile.

Compound 211a was a potent inhibitor of the integrin receptor $\alpha_{v} \beta_{6}$. The compound was also permeable and had a high free fraction. When the compound was tested in vitro it showed excellent permeability in the MDCK and free-fraction in the whole blood binding assays. Compound 211a showed excellent oral bioavailability in an in vivo rat PK study and also showed excellent PK in the dog. The concern about an aniline metabolite being produced stimulated work to find an alternative replacement. The suggestion that a 2-(methoxy)ethoxy
could replace the morpholine in compound 211a and this resulted in compound 239a. This compound showed superior PK properties when compared with compound 211a. Both compounds are currently being considered as small molecule anti-fibrotic medicines to be delivered to patients with fibrotic diseases with a dose around $30-550 \mathrm{mg}$ per day. On-going experiments include a CT SPECT study, which will show if the compound binds to the $\alpha_{v} \beta_{6}$ integrin on the damaged epithelium or not. If it does bind, it may inhibit the activation of TGF_{β} and the production of collagen by active myofibroblasts. In doing so, it is expected to slow or stop the progression of fibrosis, providing significant benefits to patients allowing them to do more, feel better and live longer.

6. Experimental

6.1 General experimental

All reactions with moisture sensitive reagents were performed under a nitrogen atmosphere and with glassware that was dried in an oven at $>150^{\circ} \mathrm{C}$ and cooled under reduced pressure. Reactions were heated by means of DrySyn hotplates under nitrogen unless otherwise stated. All organic layers were dried over MgSO_{4} or by passage through a hydrophobic frit unless otherwise stated. Crude reaction mixtures were purified on a Flashmaster ${ }^{\mathrm{TM}}$ II apparatus using Silica gel or C18 reverse phase columns, unless otherwise stated. All solvents were reagent grade and supplied by Sigma-Aldrich or Fisher Scientific unless otherwise stated. Anhydrous solvents were used as supplied, stored either under argon or nitrogen, and were transferred under an inert atmosphere using syringe technique. All microwave reactions were carried out on the Biotage Initiator EXP EU in sealed vials (unless otherwise stated). All animal studies were ethically reviewed and carried out in accordance with U.K. Animals (Scientific Procedures) Act 1986 as amended 2012 and the GSK Policy on the Care, Welfare and Treatment of Laboratory Animals. The human biological samples were sourced ethically and their research use was in accord with the terms of the informed consents.

6.2 Analysis of experiments

Melting points were recorded on a SMP40 Bibby Scientific automatic melting point apparatus and are uncorrected. Carbon, hydrogen and nitrogen elemental analyses were conducted by Butterworth Laboratories and are quoted to the nearest 0.1%. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DPX-400 (400 MHz) spectrometers or AVC-600 (600 MHz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DPX-400 (100.4 MHz) spectrometer or on an AVC$600(151 \mathrm{MHz})$ spectrometer. ${ }^{19}$ F NMR spectra were recorded on Bruker DPX-400 (376

MHz). Spectra recorded on the AVC-600 spectrometer were obtained by Stephen Richards, Sean Lynn or Richard Upton, Platform Technology and Science department, GSK Stevenage. ${ }^{7}$ Li NMR spectra were recorded on a Bruker DPX-400 $(156 \mathrm{MHz})$ and spectra were obtained by Sean Lynn. Chemical shifts are reported in parts per million and are referenced to the residual solvent peak. Coupling constants (J) are measured in Hertz. High resolution mass spectra (HRMS) Positive ion mass spectra were acquired as accurate mass centroided data using a Micromass Q-Tof Ultima hybrid quadrupole time-of-flight mass spectrometer, equipped with a Z-spray (ESI) interface, over a mass range of $100-1100 \mathrm{Da}$, with a scan time of 0.9 s and an interscan delay of 0.1 s . Reserpine was used as the external mass calibrant $\left([\mathrm{M}+\mathrm{H}]^{+}=609.2812 \mathrm{Da}\right)$. The Q -Tof Ultima mass spectrometer was operated in W reflection mode to give a resolution (FWHM) of 16000-20000. Ionisation was achieved with a spray voltage of 3.5 kV , a cone voltage of 100 V , with cone and desolvation gas flows of 25 and $600 \mathrm{~L} / \mathrm{hr}$ respectively. The source block and desolvation temperatures were maintained at $120^{\circ} \mathrm{C}$ and $250^{\circ} \mathrm{C}$ respectively. The elemental composition was calculated using MassLynx v4.1 for the $[\mathrm{M}+\mathrm{H}]^{+}$and the mass error quoted as ppm. HRMS were recorded by Bill Leavens, Analytical Chemistry Mass Spectrometry Department, GSK, Stevenage. Only the major molecular ion is listed unless otherwise stated. Optical rotations were carried out on Optical Activity Ltd. $80-05-02 / \mathrm{A} / 589$ polarimeter. Concentration is expressed in g in 100 mL of solvent; the optical path of the cell was 1 dm (units $\mathrm{mL} / \mathrm{g} / \mathrm{dm}$) and all measurements were made at $20^{\circ} \mathrm{C}$. All purity measurements are by UV as determined from LCMS and quoted as minimum purities.

6.3 HPLC Purification

Liquid chromatography mass spectrometry

High pH Generic Analytical Ultra Performance Liquid Chromatography (UPLC) Open Access LCMS 2 Minute (System High pH 2 min)

The UPLC analysis was conducted on an Acquity UPLC bridged ethylene hybrid (BEH) C18 column ($2.1 \mathrm{~mm} \times 50 \mathrm{~mm}$ i.d. $1.7 \mu \mathrm{~m}$ packing diameter) at $40^{\circ} \mathrm{C}$. The flow rate employed was $1 \mathrm{~mL} / \mathrm{min}$. The solvents employed were: $\mathrm{A}=10 \mathrm{mM}$ ammonium bicarbonate in water adjusted to pH 10 with ammonia solution. $\mathrm{B}=\mathrm{MeCN}$. The gradient employed was: time 0 $\min (\% A=99 \%, \% B=1 \%) ;$ time $1.5 \min (\% A=3 \%, \% B=97 \%) ;$ time $1.9 \min (\% A=3 \%$, $\% \mathrm{~B}=97 \%)$ time $2.0 \mathrm{~min}(\% \mathrm{~A}=1 \%, \% \mathrm{~B}=99 \%)$.

High pH Generic Analytical UPLC Open Access LCMS 5 Minute (System High pH 5 min)

The UPLC analysis was conducted on an Acquity UPLC BEH C18 column ($2.1 \mathrm{~mm} \times 50$ mm i.d. $1.7 \mu \mathrm{~m}$ packing diameter) at $40^{\circ} \mathrm{C}$. The flow rate employed was $1 \mathrm{~mL} / \mathrm{min}$. The solvents employed were: $\mathrm{A}=10 \mathrm{mM}$ ammonium bicarbonate in water adjusted to pH 10 with ammonia solution. $\mathrm{B}=\mathrm{MeCN}$. The gradient employed was: time $0 \mathrm{~min}(\% \mathrm{~A}=97 \%$, $\% \mathrm{~B}=3 \%) ;$ time $4.5 \mathrm{~min}(\% \mathrm{~A}=0 \%, \% \mathrm{~B}=100 \%)$; time $4.9 \mathrm{~min}(\% \mathrm{~A}=0 \%, \% \mathrm{~B}=100 \%)$ time $5.0 \mathrm{~min}(\% \mathrm{~A}=97 \%, \% \mathrm{~B}=3 \%)$.

TFA Generic Analytical UPLC Open Access LCMS 2 Minute (System TFA 2 min)

The UPLC analysis was conducted on an Acquity UPLC BEH C18 column ($2.1 \mathrm{~mm} \times 50$ mm i.d. $1.7 \mu \mathrm{~m}$ packing diameter) at $40{ }^{\circ} \mathrm{C}$. The solvents employed were: $\mathrm{A}=0.1 \%$ trifluoroacetic acid in water. $\mathrm{B}=\mathrm{MeCN}$. The gradient employed was: time $0 \mathrm{~min}(\% \mathrm{~A}=$
$99 \%, \% \mathrm{~B}=1 \%)$; time $1.5 \min (\% \mathrm{~A}=3 \%, \% \mathrm{~B}=97 \%) ;$ time $1.9 \min (\% \mathrm{~A}=3 \%, \% \mathrm{~B}=97 \%)$ time $2.0 \mathrm{~min}(\% \mathrm{~A}=99 \%, \% \mathrm{~B}=1 \%)$.

Formic acid Generic Analytical UPLC Open Access LCMS 2 Minute (System formic 2 min)

The UPLC analysis was conducted on an Acquity UPLC BEH C18 column ($2.1 \mathrm{~mm} \times 50$ mm i.d. $1.7 \mu \mathrm{~m}$ packing diameter) at $40^{\circ} \mathrm{C}$. The solvents employed were: $\mathrm{A}=0.1 \%$ formic acid in water. $\mathrm{B}=\mathrm{MeCN}$. The gradient employed was: time $0 \min (\% \mathrm{~A}=99 \%, \% \mathrm{~B}=1 \%)$; time $1.5 \mathrm{~min}(\% \mathrm{~A}=3 \%, \% \mathrm{~B}=97 \%)$; time $1.9 \mathrm{~min}(\% \mathrm{~A}=3 \%, \% \mathrm{~B}=97 \%)$ time 2.0 min $(\% \mathrm{~A}=99 \%, \% \mathrm{~B}=1 \%)$.

Mass directed auto prep (MDAP)

Mass directed auto prep (MDAP) Method A

The MDAP analysis was conducted on an XBridge C18 column ($100 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature. The flow rate employed was $40 \mathrm{~mL} / \mathrm{min}$. The solvents employed were: $\mathrm{A}=10 \mathrm{mM}$ ammonium bicarbonate in water adjusted to pH 10 with ammonia solution. $\mathrm{B}=$ MeCN . The gradient employed was: time $0 \mathrm{~min}(\% \mathrm{~A}=99 \%, \% \mathrm{~B}=1 \%)$; time $1 \mathrm{~min}(\% \mathrm{~A}=99 \%, \% \mathrm{~B}$ $=1 \%)$; time $20 \mathrm{~min}(\% \mathrm{~A}=70 \%, \% \mathrm{~B}=30 \%)$; time $21 \mathrm{~min}(\% \mathrm{~A}=1 \%, \% \mathrm{~B}=99 \%) ;$ time $25 \mathrm{~min}(\% \mathrm{~A}$ $=1 \%, \% \mathrm{~B}=99 \%)$.

Mass directed auto prep (MDAP) Method B

The MDAP analysis was conducted on an XBridge C18 column ($100 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature. The flow rate employed was $40 \mathrm{~mL} / \mathrm{min}$. The solvents employed were: $\mathrm{A}=10 \mathrm{mM}$ ammonium bicarbonate in water adjusted to pH 10 with ammonia solution. $\mathrm{B}=\mathrm{MeCN}$. The gradient employed was: time $0 \min (\% \mathrm{~A}=85 \%, \% \mathrm{~B}=$
$15 \%)$; time $1 \mathrm{~min}(\% \mathrm{~A}=85 \%, \% \mathrm{~B}=15 \%)$; time $20 \mathrm{~min}(\% \mathrm{~A}=45 \%, \% \mathrm{~B}=55 \%)$; time 21 $\min (\% \mathrm{~A}=1 \%, \% \mathrm{~B}=99 \%)$; time $25 \min (\% \mathrm{~A}=1 \%, \% \mathrm{~B}=99 \%)$.

Mass directed auto prep (MDAP) Method C

The MDAP analysis was conducted on an XBridge C18 column ($100 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature. The flow rate employed was $40 \mathrm{~mL} / \mathrm{min}$. The solvents employed were: $\mathrm{A}=10 \mathrm{mM}$ ammonium bicarbonate in water adjusted to pH 10 with ammonia solution. $\mathrm{B}=\mathrm{MeCN}$. The gradient employed was: time $0 \mathrm{~min}(\% \mathrm{~A}=70 \%, \% \mathrm{~B}=$ $30 \%)$; time $1 \mathrm{~min}(\% \mathrm{~A}=70 \%, \% \mathrm{~B}=30 \%) ;$ time $10 \mathrm{~min}(\% \mathrm{~A}=15 \%, \% \mathrm{~B}=85 \%) ;$ time 11 $\min (\% \mathrm{~A}=1 \%, \% \mathrm{~B}=99 \%) ;$ time $15 \min (\% \mathrm{~A}=1 \%, \% \mathrm{~B}=99 \%)$.

Mass directed auto prep (MDAP) Method D

The MDAP analysis was conducted on an XBridge C18 column ($100 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature. The flow rate employed was $40 \mathrm{~mL} / \mathrm{min}$.The solvents employed were: $\mathrm{A}=10 \mathrm{mM}$ ammonium bicarbonate in water adjusted to pH 10 with ammonia solution. $\mathrm{B}=\mathrm{MeCN}$. The gradient employed was: time $0 \min (\% \mathrm{~A}=50 \%, \% \mathrm{~B}=$ $50 \%)$; time $1 \mathrm{~min}(\% \mathrm{~A}=50 \%, \% \mathrm{~B}=50 \%)$; time $14 \mathrm{~min}(\% \mathrm{~A}=1 \%, \% \mathrm{~B}=99 \%) ;$ time 21 $\min (\% \mathrm{~A}=1 \%, \% \mathrm{~B}=99 \%) ;$ time $25 \min (\% \mathrm{~A}=1 \%, \% \mathrm{~B}=99 \%)$.

Mass directed auto prep (MDAP) Method E

The MDAP analysis was conducted on an XBridge C18 column ($100 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature. The flow rate employed was $40 \mathrm{~mL} / \mathrm{min}$. The solvents employed were: $\mathrm{A}=$ water adjusted to pH 1 with TFA. $\mathrm{B}=\mathrm{MeCN}$. The gradient employed was: time $0 \min (\% \mathrm{~A}=100 \%, \% \mathrm{~B}=0 \%)$; time $1 \mathrm{~min}(\% \mathrm{~A}=100 \%, \% \mathrm{~B}=0 \%)$;
time $14 \min (\% \mathrm{~A}=70 \%, \% \mathrm{~B}=30 \%)$; time $21 \mathrm{~min}(\% \mathrm{~A}=1 \%, \% \mathrm{~B}=99 \%)$; time 25 min $(\% \mathrm{~A}=1 \%, \% \mathrm{~B}=99 \%)$.

Chiral HPLC

Chiral HPLC was carried out by Steve Jackson, Andy Knaggs, Sean Hindley or Eric Hortense, Platform Technology and Science, GSK Stevenage.

Dog in vivo experiments

Prior to dosing a temporary cannula (angiocath) will be inserted into the cephalic vein and remain there for the first 2 h of blood sampling to minimise the number of venepunctures. Prior to IV dosing, 1.1 mL of control blood (1 mL for pooling +0.1 mL wastage due to sample transfer) was taken from each dog using the angiocath and collected into heparinised containers. 1 mL from each dog's control blood (3 mL in total) will be pooled into one sterilin pot and mixed with 3 mL of sterile water containing 0.02% phosphoric acid $(0.01 \%$ final concentration). The IV dose was given at a rate of $1 \mathrm{mg} / \mathrm{kg} / \mathrm{h}$. The dogs were kept in slings for no longer than 2 h following the end of dosing on each phase of the study. After dosing blood samples (ca 0.1 mL) were taken at the time-points $0,20,4060,65,75,90,120$, 180, 300, 420, 720, 1320 and 1540 min from the IV dosed animals and $0,5,15,30,60,90$, $120,180,240,420,720,1320$ and 1540 min from the PO dosed animals. Urine samples were collected following IV administration by the use of metabolism cages. Sample urine was collected over dry ice to cover the following time intervals $2 \mathrm{~h}-7 \mathrm{~h}, 7 \mathrm{~h}-12 \mathrm{~h}, 12 \mathrm{~h}-24 \mathrm{~h}$. At the end of the study all animals were returned to stock and, after veterinary health checks, and made available for use in future studies.

1,1-Dimethylethyl
7-(3-\{4-[(2E)-4-(methyloxy)-4-oxo-2-buten-1-yl]-1-piperazinyl\}-3-oxopropyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (14)

(E)-Methyl 4-(piperazin-1-yl)but-2-enoate ($4.66 \mathrm{~g}, 21.1 \mathrm{mmol}$) was suspended in EtOAc (100 $\mathrm{mL})$, DIPEA ($18 \mathrm{~mL}, 100 \mathrm{mmol}$) was added until the reaction formed a solution. 3-(8-\{[(1,1dimethylethyl)oxy]carbonyl \}-5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propanoic acid (6.47 $\mathrm{g}, 21.1 \mathrm{mmol})$ and then $\mathrm{T} 3 \mathrm{P}^{\mathrm{TM}}(18 \mathrm{~mL}$ of a 50% solution in EtOAc, 31 mmol$)$ were added. The solution was stirred for 21 h at $50^{\circ} \mathrm{C}$. The reaction was concentrated under reduced pressure and re-suspended in $\mathrm{MeOH}(5 \mathrm{~mL})$. The crude material was purified using reverse phase chromatography ($330 \mathrm{~g}, 40-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 11 CV). The appropriate fractions were collected to give the title compound ($4.16 \mathrm{~g}, 42 \%$) as a brown gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 473 ; \mathrm{R}_{\mathrm{t}}$ 1.03 min , purity $98 \% ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.34-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{dt}, J=$ $15.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-5.96(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.73(\mathrm{~m}, 5 \mathrm{H}), 3.67$ - 3.60 (m, 2 H), $3.56-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.14$ (dd, $J=6.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2$ H), $2.88-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{dd}, J=16.8,4.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.93$ (quin, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.53(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=170.9,166.4$, $156.7,153.8,151.0,144.7,137.3,123.2,121.9,118.6,80.6,59.0,53.2,53.0,51.5,45.3,44.8$, 41.4, 33.0, 32.4, 28.3, 26.2, 23.2; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{5}, 473.2764$ found 473.2763.

1,3-Dicyclopropylbenzene (24)

1,3-Dibromobenzene ($1.0 \mathrm{~mL}, 8.5 \mathrm{mmol}$), cyclopropyl boronic acid ($2.19 \mathrm{~g}, 25.4 \mathrm{mmol}$), $\operatorname{Pd}(\mathrm{OAc})_{2}(0.09 \mathrm{~g}, 0.4 \mathrm{mmol})$, XPhos $^{\mathrm{TM}}(0.42 \mathrm{~g}, 0.89 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(11.1 \mathrm{~g}, 33.9 \mathrm{mmol})$ and THF (12 mL) was heated in a microwave oven ($1 \mathrm{~h}, 130^{\circ} \mathrm{C}$, high power). This procedure was repeated a further 22 times. The resulting mixtures were combined and filtered through Hyflo ${ }^{\mathrm{TM}}$. The residual solid was dissolved in DCM $(500 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 500$ mL). The organic layer was evaporated under reduced pressure then suspended in cyclohexane (20 mL). The mixture was split into 8 batches and purified by flash chromatography ($340 \mathrm{~g}, 100 \%$ cyclohexane, 7 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound (16.5 g) as a colourless oil : LCMS (System formic 2 min) $\mathrm{R}_{\mathrm{t}} 1.33 \mathrm{~min}$, purity $76 \% ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.23-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.79(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.90(\mathrm{~m}, 4 \mathrm{H}), 0.79-$ 0.64 (m, 4 H).

2-(3,5-Dicyclopropylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21)

A mixture of 1,3-dicyclopropylbenzene ($16 \mathrm{~g}, 100 \mathrm{mmol}$), bis(pinacolato)diboron) (28.2 g , $111.0 \mathrm{mmol}),[\operatorname{Ir}(\mathrm{COD}) \mathrm{OMe}]_{2}(1.0 \mathrm{~g}, 1.6 \mathrm{mmol}), 4,4$ '-di-tert-butyl-2,2'-bipyridine $(0.8 \mathrm{~g}, 3.0$ mmol) and TMBE (18 mL) was heated in a microwave oven ($1 \mathrm{~h}, 80^{\circ} \mathrm{C}$, high power). A further seven equal-sized batches were prepared and treated in the same way. The eight solutions were combined and concentrated under reduced pressure. The residue was recrystallised from hot DMSO (50 mL) over 4 h . The precipitate was filtered and dried for 18 h under reduced pressure $(\sim 10 \mathrm{mmHg})$ to give the title compound $(8.61 \mathrm{~g}, 28 \%)$ as a white solid : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 285 ; \mathrm{R}_{\mathrm{t}} 1.54 \mathrm{~min}$, purity $95 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.31(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 2 \mathrm{H})$, $1.34(\mathrm{~s}, 12 \mathrm{H}), 0.96-0.85(\mathrm{~m}, 4 \mathrm{H}), 0.76-0.65(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=$ $144.5,129.5,127.5,85.0,40.5,25.0,16.0,9.0$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BO}_{2}, 285.2020$ found 285.2022.
tert-Butyl 7-(3-(4-(2-(3,5-dicyclopropylphenyl)-4-methoxy-4-oxobutyl)piperazin-1-yl)-3-oxopropyl)-3,4-dihydro-1,8-naphthyridine-1 2 H)-carboxylate ($\mathbf{1 5 a}$ and $\mathbf{1 5 b}$)

1,1-Dimethylethyl 7-(3-\{4-[(2E)-4-(methyloxy)-4-oxo-2-buten-1-yl]-1-piperazinyl\}-3-oxopropyl)-3,4-dihydro-1,8-naphthyridine-1(2 H)-carboxylate (1.2 g , 2.6 mmol), 2-(3,5-dicyclopropylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane $(0.94 \mathrm{~g}, 3.3 \mathrm{mmol}), 3,5$ dicyclopropyl phenyl boronic acid ($2.8 \mathrm{~g}, 9.9 \mathrm{mmol}$) and $\mathrm{KOH}_{(\mathrm{aq})}(1.22 \mathrm{~mL}$ of a 3.8 M solution, 4.65 mmol) were dissolved in 1,4-dioxane (50 mL). The solution was stirred under nitrogen for five min., then the flask was evacuated then flushed with nitrogen (this was repeated 3 times). $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}(64 \mathrm{mg}, 0.13 \mathrm{mmol})\right.$ was added to the solution and the reaction mixture was heated to $95^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was concentrated under reduced pressure. The crude material was dissolved in $\mathrm{EtOH}(2 \mathrm{~mL})$ and heptane (1 mL) and the enantiomers separated by chiral HPLC (Injection; 3 mL of the solution was injected onto the column. $15 \% \mathrm{EtOH} /$ Heptane, $\mathrm{f}=75 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column $2 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak AD (self packed)).

Enantiomer A: tert-Butyl 7-(3-(4-(2-(3,5-dicyclopropylphenyl)-4-methoxy-4-oxobutyl)piperazin-1-yl)-3-oxopropyl)-3,4-dihydro-1,8-naphthyridine-1 $(2 \mathrm{H})$-carboxylate (514 mg, 32\%) as a gum : Analytical chiral HPLC ($15 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine)/Heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 10 mm id $\times 15 \mathrm{~cm}$ Chiralcel AD (self packed)) $e e=97 \% \mathrm{R}_{\mathrm{t}}=8.1 \mathrm{~min}$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+}$ $631 ; \mathrm{R}_{\mathrm{t}} 1.44 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1$
H), $6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=$ $5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 4 \mathrm{H}), 3.26-3.15(\mathrm{~m}, 1 \mathrm{H})$, $2.89-2.74(\mathrm{~m}, 3 \mathrm{H}), 2.73-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 3 \mathrm{H}), 1.86-$ $1.74(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 0.94-0.84(\mathrm{~m}, 4 \mathrm{H}), 0.69-0.55(\mathrm{~m}, 4 \mathrm{H})$.

Enantiomer B: tert-Butyl 7-(3-(4-(2-(3,5-dicyclopropylphenyl)-4-methoxy-4-oxobutyl)piperazin-1-yl)-3-oxopropyl)-3,4-dihydro-1,8-naphthyridine-1 $(2 \mathrm{H})$-carboxylate (508 mg, 31\%) as a gum : Analytical chiral HPLC ($15 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine)/Heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 10 mm id $\times 15 \mathrm{~cm}$ Chiralcel AD (self packed)) $e e=98 \% \mathrm{R}_{\mathrm{t}}=10.5 \mathrm{~min}$.

3-(3,5-Dicyclopropylphenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propanoyl)piperazin-1-yl)butanoic acid ((12a) 71% ee)

1,1-Dimethylethyl 7-(3-\{4-[(2E)-4-(methyloxy)-4-oxo-2-buten-1-yl]-1-piperazinyl\}-3-oxopropyl)-3,4-dihydro-1,8-naphthyridine-1 2 H$)$-carboxylate $(200 \mathrm{mg}, \quad 0.4 \mathrm{mmol}$), (R)-BINAP ($53 \mathrm{mg}, 0.085 \mathrm{mmol}$) (3,5-dicyclopropylphenyl)boronic acid ($100 \mathrm{mg}, 0.5$ $\mathrm{mmol})$, and $\mathrm{KOH}_{(\mathrm{aq})}(0.13 \mathrm{~mL}$ of a 3.8 M solution, 0.50 mmol$)$ were dissolved in 1,4-dioxane (5 mL). The solution was stirred under nitrogen for 5 minutes, then the flask was evacuated then flushed with nitrogen three times. $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added to the solution and the reaction mixture was heated to $95{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was
filtered through Celite ${ }^{\mathrm{TM}}$, washed with EtOH (10 mL) and evaporated. The reaction mixture was resuspended in DMSO $(2 \times 1 \mathrm{~mL})$ and purified on by MDAP (Method D, high pH$)$. The appropriate fractions were combined and evaporated. under reduced pressure (using a freezedryer) to give tert-butyl 7-(3-(4-(2-(3,5-dicyclopropylphenyl)-4-methoxy-4-oxobutyl) piperazin-1-yl)-3-oxopropyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate as a white solid : Analytical chiral HPLC ($15 \% \mathrm{EtOH} /$ Heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 10 mm id $\times 15 \mathrm{~cm}$ Chiralcel AD (self packed)) $e e=71 \% \mathrm{R}_{\mathrm{t}}=10.5 \mathrm{~min}$. The material was dissolved in $\mathrm{HCl}(0.5 \mathrm{~mL}$ of a 4 M solution in 1,4-dioxane, 2 mmol) and the mixture was stirred for 3 h at ambient temperature. The reaction mixture was evaporated and resuspended in DMSO $(200 \mu \mathrm{~L})$ and purified by reverse phase chromatography (C18, $12 \mathrm{~g}, 5-95 \%$ MeCN (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 12 CV), the appropriate fractions were combined and freeze-dried to give the title compound (33 mg , 15%) as a white solid : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 517 ; \mathrm{R}_{\mathrm{t}} 0.84 \mathrm{~min}$, purity 93%; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.53(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.29-3.20(\mathrm{~m}, 2 \mathrm{H})$, $3.28-3.10(\mathrm{~m}, 3 \mathrm{H}), 2.72-2.53(\mathrm{~m}, 7 \mathrm{H}), 2.53-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.40-$ $2.30(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.16(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.80$ $(\mathrm{m}, 4 \mathrm{H}), 0.72-0.53(\mathrm{~m}, 4 \mathrm{H})$ (the proton arising from the carboxylic acid was not observed due to exchange).

3-(3,5-Dicyclopropylphenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-
yl)propanoyl)piperazin-1-yl)butanoic acid ((12b) Enantiomer B)

tert-Butyl 7-(3-(4-(2-(3,5-dicyclopropylphenyl)-4-methoxy-4-oxobutyl)piperazin-1-yl)-3-oxopropyl)-3,4-dihydro-1,8-naphthyridine-1(2 H)-carboxylate Enantiomer A (100 mg, 0.16 mmol) was dissolved in DCM (3 mL). $\mathrm{HCl}(4 \mathrm{M}$ in 1,4-dioxane, $0.16 \mathrm{~mL}, 0.63 \mathrm{mmol}$) was added to the reaction mixture and it was stirred for 18 h . The reaction mixture was concentrated under reduced pressure and re-suspended in THF (1 mL) and $\mathrm{LiOH}_{(\mathrm{aq})}(1 \mathrm{~mL}$ of a 1 M solution, 1 mmol) was added. The reaction mixture was stirred for 5 days at ambient temperature. The crude material was concentrated and purified by reverse phase chromatography ($\mathrm{C} 18,13 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 20 CV). The appropriate fractions were combined and freeze dried to give the title compound ($38 \mathrm{mg}, 46 \%$) : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 517 ; \mathrm{R}_{\mathrm{t}}$ 0.84 min , purity $98 \% ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.18(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.37(\mathrm{~m}, 4 \mathrm{H}), 3.26-$ $3.06(\mathrm{~m}, 4 \mathrm{H}), 2.74-2.55(\mathrm{~m}, 7 \mathrm{H}), 2.49-2.18(\mathrm{~m}, 6 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.95-0.78(\mathrm{~m}, 4 \mathrm{H}), 0.70-0.52(\mathrm{~m}, 4 \mathrm{H})$ (the proton arising from the carboxylic acid was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=$ $174.4,170.8,157.2,156.4,143.9,136.9,130.6,128.4,122.6,113.4,110.7,64.7,53.9,53.4$, 45.7, 41.5, 41.2, 33.6, 27.1, 22.3, 16.0, 10.2, 1.07.

3-(3,5-Dicyclopropylphenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-
yl)propanoyl)piperazin-1-yl)butanoic acid ((12c) Enantiomer C)

tert-Butyl 7-(3-(4-(2-(3,5-dicyclopropylphenyl)-4-methoxy-4-oxobutyl)piperazin-1-yl)-3-oxopropyl)-3,4-dihydro-1,8-naphthyridine-1($2 H$)-carboxylate Enantiomer B (100 mg, 0.16 mmol) was dissolved in DCM (3 mL). $\mathrm{HCl}(4 \mathrm{M}$ in 1,4-dioxane, $0.16 \mathrm{~mL}, 0.63 \mathrm{mmol}$) was added to the reaction mixture and it was stirred for 18 h . The reaction mixture was concentrated under reduced pressure and re-suspended in THF (1 mL) and $\mathrm{LiOH}_{(\mathrm{aq})}(1 \mathrm{~mL}$ of a 1 M solution, 1 mmol) was added. The reaction mixture was stirred for 5 days at ambient temperature. The crude material was concentrated and purified by reverse phase chromatography ($\mathrm{C} 18,13 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 20 CV). The appropriate fractions were combined and freeze dried to give the title compound ($25 \mathrm{mg}, 31 \%$) : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 517 ; \mathrm{R}_{\mathrm{t}}$ 0.84 min , purity 98%; IR (solid) $3377,3001,2932,1614,1598,1441,1001 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H})$, $6.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.46(\mathrm{~m}, 4 \mathrm{H}), 3.37-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.28(\mathrm{~m}, 1 \mathrm{H})$, $2.82-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.65-$ $2.60(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{dd}, J=12.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=15.5,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 2 \mathrm{H}), 0.92-0.86(\mathrm{~m}, 4$ H), $0.64-0.59(\mathrm{~m}, 4 \mathrm{H})$ (the protons arising from the amine and carboxylic acid were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=173.7,170.3,156.9,156.2$,
$143.8,143.7,136.4,122.3,112.9,110.5,64.3,53.6,53.3,45.4,41.4,41.2,36.7,33.3,32.6$, 26.5, 21.5, 15.5, 9.7.

1-Cyclopropyl-4-fluorobenzene (30)

1-Bromo-4-fluorobenzene $(5.34 \mathrm{~mL}, 48.6 \mathrm{mmol})$ was added dropwise to cyclopropylmagnesium bromide (97 mL of a 0.5 M solution in $\mathrm{THF}, 49 \mathrm{mmol}$) then $\mathrm{PdCl}_{2}(\mathrm{dppf})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct ($1.36 \mathrm{~g}, 1.66 \mathrm{mmol}$) was added and then the mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled and diluted with cyclohexane (100 mL) and then cooled in an ice bath and the solution was decanted from the precipitated salt and evaporated gently ($150 \mathrm{mbar}, 30^{\circ} \mathrm{C}$). The resulting red oil was passed through a 50 g silica pad eluting with DCM (250 mL). The resulting fraction was evaporated to give the title compound (3.9 g) as an orange oil (total sample mass is 5.7 g but contains residual THF/DCM/cyclohexane \sim $25 \mathrm{wt} \%$ as determined by NMR : LCMS (System formic 2 min) $\mathrm{R}_{\mathrm{t}} 1.17 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.13-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 1$ H), $1.02-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.77-0.57(\mathrm{~m}, 2 \mathrm{H})$. Data consistent with Xu et al. ${ }^{93}$

2-(5-Cyclopropyl-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (31)- chemistry carried out by Benoit Rhone

1-Cyclopropyl-4-fluorobenzene ($1 \mathrm{~g}, 7 \mathrm{mmol}$), bis(pinacolato)diboron ($2.1 \mathrm{~g}, 8 \mathrm{mmol}$), 4,4'-di-tert-butyl-2,2'-bipyridine ($59 \mathrm{mg}, 0.22 \mathrm{mmol}$) and $[\operatorname{Ir}(\mathrm{COD}) \mathrm{OMe}]_{2}(78 \mathrm{mg}, 0.12 \mathrm{mmol})$ were dissolved in TBME (8 mL) and heated in a microwave oven ($1 \mathrm{~h}, 80^{\circ} \mathrm{C}$, normal power). The resulting red mixture was pre-adsorbed onto Florisil ${ }^{\mathrm{TM}}$ and the residue was purified by chromatography on silica ($100 \mathrm{~g}, 0-100 \% \mathrm{DCM}$ in cyclohexane, 10 CV) to give the title compound ($1.55 \mathrm{~g}, 81 \%$) as a yellow oil : LCMS (System High pH) $\mathrm{R}_{\mathrm{t}} 0.66 \mathrm{~min}$; purity 56% (by LCMS, impurity attributed to ester cleavage on the LCMS to give the boronic acid (see R\&D)); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.35(\mathrm{dd}, J=5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{ddd}, J=$ $8.5,5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H}), 0.96-$ $0.86(\mathrm{~m}, 2 \mathrm{H}), 0.67-0.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=168.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=247\right.$ Hz,$) 134.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 131.5,129.5,115.6,85.2,25.5,15.4$, 8.9; ${ }^{19}$ F NMR ($\left.376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-109.5)-(-110.0)(\mathrm{m}) ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BFO}_{2}$, 263.1613 found 263.1611 .

1-Cyclopropyl-2-fluorobenzene (33)- chemistry carried out by Ian Campbell

1-Bromo-2-fluorobenzene ($1.75 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added to cyclopropylmagnesium bromide (2 mL of a 0.5 M solution in THF, 1 mmol) and PdCl_{2} (dppf) $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct ($300 \mathrm{mg}, 0.4 \mathrm{mmol}$) was subsequently added. The mixture was evacuated and refilled with nitrogen three times and heated in a sealed vessel at $70^{\circ} \mathrm{C}$ for 4 h . The cooled mixture was diluted with cyclohexane $(4 \mathrm{~mL})$ and the solution was decanted from the precipitated salt and evaporated under reduced pressure. The resulting oil was purified by flash chromatography $(20 \mathrm{~g}, 100 \% \mathrm{DCM}, 10 \mathrm{CV})$. The appropriate fractions were combined and evaporated to give the title compound ($1.4 \mathrm{~g}, 100 \%$) as a colourless oil : LCMS (System formic) $\mathrm{R}_{\mathrm{t}} 1.41 \mathrm{~min}$, purity $89 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.18-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.09-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.97$ $-6.83(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.79-0.71(\mathrm{~m}, 2 \mathrm{H})$.

1-Chloro-3-cyclopropyl-2-fluorobenzene (38)- chemistry carried out by Ian Campbell

A mixture of 1,3-dichloro-2-fluorobenzene ($660 \mathrm{mg}, 4.00 \mathrm{mmol}$) and $\mathrm{PdCl}_{2}(\mathrm{dppf})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct ($98 \mathrm{mg}, 0.12 \mathrm{mmol}$) was added to cyclopropylmagnesium bromide (12 mL of a 0.5 M solution in THF, 6.0 mmol$)$. The mixture was heated in a microwave oven $\left(2 \mathrm{~h}, 110{ }^{\circ} \mathrm{C}\right.$, normal power). The cooled mixture was diluted with cyclohexane (120 mL) and filtered through a silica pad - washing with cyclohexane - DCM (4:1,50 mL). The solution was
evaporated to give the title compound (750 mg) as an orange oil containing 20% disubstituted material : ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.19-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80-6.71(\mathrm{~m}, 1 \mathrm{H}), 2.16-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.76-0.64(\mathrm{~m}, 2 \mathrm{H})$.

2-(3-Cyclopropyl-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (34) - chemistry carried out by Ian Campbell

A mixture of 1-chloro-3-cyclopropyl-2-fluorobenzene (640 mg, 3.75 mmol), bis(pinacolato)diboron ($1.14 \mathrm{~g}, 4.50 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(17 \mathrm{mg}, 0.075 \mathrm{mmol})$, Xphos (71.5 $\mathrm{mg}, 0.15 \mathrm{mmol}$), KOAc ($736 \mathrm{mg}, 7.50 \mathrm{mmol}$) and 1,4 -dioxane (4 mL) were heated in a microwave oven ($40 \mathrm{~min}, 110^{\circ} \mathrm{C}$, normal power). The cooled mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ (20 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The organic layer was filtered through a pad of silica, washed with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and evaporated under reduced pressure. The residue was purified on a silica cartridge (20 g , cyclohexane - DCM 9:1, 10 CV then DCM 10 CV). The dissolved in DMSO ($4 \times 1 \mathrm{~mL}$) and purified by MDAP (Method C, formic acid). The appropriate fractions were combined and evaporated to give the title compound (295 mg , 30%) as a white solid : LCMS (System High pH) $[\mathrm{M}+\mathrm{H}]^{+} 262 ; \mathrm{R}_{\mathrm{t}} 1.35 \mathrm{~min}$, purity 56% (by LCMS, impurity attributed to ester cleavage on the LCMS to give the boronic acid (see R\&D) $)^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.58-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.12-6.91(\mathrm{~m}, 2 \mathrm{H}), 2.17-$ $2.02(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 12 \mathrm{H}), 1.01-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.63(\mathrm{~m}, 2 \mathrm{H})$.

3-(3-Cyclopropyl-2-fluorophenyl)-4-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)butanoic acid - unknown stoichiometric salt (28)

(E)-tert-Butyl 7-((4-(4-methoxy-4-oxobut-2-en-1-yl)-1,4-diazepan-1-yl)methyl)-3,4-dihydro-1,8-naphthyridine-1 $(2 \mathrm{H})$-carboxylate $(150 \quad \mathrm{mg}, \quad 0.34 \mathrm{mmol})$, 2-(3-cyclopropyl-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($265 \mathrm{mg}, 1.01 \mathrm{mmol}$), $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ $(8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{KOH}_{(\mathrm{aq})}(178 \mu \mathrm{~L}$ of a 3.8 M solution, 0.675 mmol$)$ were suspended in 1,4-dioxane (2 mL). The reaction was heated in a microwave oven ($30 \mathrm{~min}, 95^{\circ} \mathrm{C}$, normal power). The solvent was evaporated under a stream of N_{2}. The sample was dissolved in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and loaded onto pre-conditioned SCX column (1 g , MeOH 1 CV , MeCN 1 CV , load compound, $\mathrm{MeOH} 2 \mathrm{CV}, 2 \mathrm{M} \mathrm{NH}_{3} / \mathrm{MeOH} 2 \mathrm{CV}$). The appropriate fractions were combined and evaporated under a stream of N_{2}. The crude material was dissolved in DCM $(200 \mu \mathrm{~L})$ and TFA $(200 \mu \mathrm{~L})$ and stirred for 2 h at ambient temperature. The solvent was removed under a stream of N_{2}. The crude material was dissolved in THF ($500 \mu \mathrm{~L}$) and $\mathrm{NaOH}_{\text {(aq) }}\left(130 \mu \mathrm{~L}\right.$ of a 10 M solution) was added. The solution was stirred at $70^{\circ} \mathrm{C}$ for 4 h . The solvent was then removed under a stream of N_{2}. The samples were dissolved in DMSO $(1 \mathrm{~mL})$ and purified by MDAP (Method C, high pH). The appropriate fractions were combined and evaporated under a stream of N_{2} to give the title compound ($9.3 \mathrm{mg}, 5 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 467 ; \mathrm{R}_{\mathrm{t}} 0.93 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.45(\mathrm{~m}, 2$
H), $3.17(\mathrm{~s}, 2 \mathrm{H}), 2.98-2.78(\mathrm{~m}, 8 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.69-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.97$ $(\mathrm{m}, 1 \mathrm{H}), 1.88-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.76-0.60(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the carboxylic acid and the amine were not observed due to exchange); ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left.\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)\right) \delta=-126.3(\mathrm{~s})$.

3-(5-Cyclopropyl-2-fluorophenyl)-4-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)butanoic acid (27) - unknown stoichiometric salt

(E)-tert-Butyl 7-((4-(4-methoxy-4-oxobut-2-en-1-yl)-1,4-diazepan-1-yl)methyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (150 mg, 0.337 mmol), 2-(5-cyclopropyl-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($265 \mathrm{mg}, 1.01 \mathrm{mmol}$), $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ $(8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{KOH}_{(\mathrm{aq})}(178 \mu \mathrm{~L}$ of a 3.8 M solution, 0.675 mmol$)$ were suspended in 1,4-dioxane (2 mL). The reaction was heated in a microwave oven $\left(95^{\circ} \mathrm{C}, 30 \mathrm{~min}\right.$, normal power). The solvent was evaporated under a stream of N_{2}. The sample was dissolved in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and loaded onto pre-conditioned SCX column (1 g , MeOH 1 CV , MeCN 1 CV , load compound, MeOH $2 \mathrm{CV}, 2 \mathrm{M} \mathrm{NH}_{3} / \mathrm{MeOH}(2 \mathrm{CV})$). The appropriate fractions were combined and evaporated under a stream of N_{2}. The crude material was dissolved in DCM (200 $\mu \mathrm{L}$) and TFA ($200 \mu \mathrm{~L}$) and stirred for 2 h at ambient temperature. The solvent was removed under a stream of N_{2}. The crude material was dissolved in THF ($500 \mu \mathrm{~L}$) and (aq) ($130 \mu \mathrm{~L}$ of a 10 M solution) was added. The solution was stirred at $70^{\circ} \mathrm{C}$ for 4 h . The solvent was then removed under a stream of N_{2}. The samples were dissolved in DMSO $(1 \mathrm{~mL})$ and
purified by MDAP (Method C , high pH). The appropriate fractions were combined and evaporated under a stream of N_{2} to give the title compound ($7.2 \mathrm{mg}, 4 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 467 ; \mathrm{R}_{\mathrm{t}} 0.89 \mathrm{~min}$, purity $97 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=8.28(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-$ $6.94(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ (br. s, 1 H$), 3.50-3.42$ (m, 2 H), $3.28-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.53(\mathrm{~m}, 14 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1$ H), $1.80-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.67-0.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=173.5,156.5,155.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=242 \mathrm{~Hz}\right), 139.5,136.0,129.5$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=15 \mathrm{~Hz}\right), 128.5,125.5,124.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right), 115.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 113.0,110.0$, $75.5,63.5,62.5,55.0,54.5,54.0,53.5,33.5,29.0,26.5,26.0,21.0,14.5,9.0{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left.\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)\right) \delta=-123.5(\mathrm{~s})$.

1-Cyclopropyl-3-fluorobenzene (45)

1-Bromo-3-fluorobenzene ($1.4 \mathrm{~g}, 8.0 \mathrm{mmol}$) was added to cyclopropylmagnesium bromide (1.6 mL of a 1 M solution in THF, 8.0 mmol) and $\mathrm{PdCl}_{2}(\mathrm{dppf})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct ($240 \mathrm{mg}, 0.30$ mmol) was subsequently added. The mixture was heated in a microwave oven (4 h , $70^{\circ} \mathrm{C}$, normal power). The cooled mixture was diluted with cyclohexane (4 mL) and the solution was decanted from the precipitated salt and evaporated. The resulting oil was purified by chromatography on silica ($20 \mathrm{~g}, 100 \% \mathrm{DCM}, 10 \mathrm{CV}$). The resulting fractions were combined and evaporated to give the title compound ($835 \mathrm{mg}, 77 \%$) as a colourless oil :
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.60(\mathrm{~m}, 3 \mathrm{H}), 2.06-1.77(\mathrm{~m}, 1$ H), $1.08-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.79-0.57(\mathrm{~m}, 2 \mathrm{H})$.

2-(3-Cyclopropyl-5-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (46)

1-Cyclopropyl-3-fluorobenzene ($800 \mathrm{mg}, 5.88 \mathrm{mmol}$) in TMBE (8 mL) was treated with bis(pinacolato)diboron ($1.49 \mathrm{~g}, 5.88 \mathrm{mmol}$), 4,4'-di-tert-butyl-2,2'-bipyridine ($50 \mathrm{mg}, 0.19$ $\mathrm{mmol})$ and $\left[\operatorname{Ir}(\mathrm{COD}) \mathrm{OMe}_{2}(80 \mathrm{mg}, 0.12 \mathrm{mmol})\right.$ and was heated in a microwave oven (90 $\min , 80^{\circ} \mathrm{C}$, normal power). The solution was cooled and the resulting red mixture was evaporated. The residue was purified by chromatography on silica ($10 \mathrm{~g}, 100 \% \mathrm{DCM}, 10$ CV), the appropriate fractions were combined and evaporated to give a colourless oil. The residual oil was purified by MDAP (Method D, formic acid), the appropriate fractions were combined and freeze-dried to give the title compound ($150 \mathrm{mg}, 10 \%$) as an oil : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 263 ; \mathrm{R}_{\mathrm{t}} 1.44 \mathrm{~min}$, purity 74% (the major impurity is attributed to the boronic acid resulting from the hydrolysis of the boronic ester in the LCMS mobile phase); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.33-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dt}, J=10.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.22(\mathrm{~m}, 12 \mathrm{H})$, $1.07-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.81-0.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=163.5(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=244 \mathrm{~Hz}\right), 146.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}\right), 127.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}\right), 124.0,116.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=19\right.$ $\mathrm{Hz}), 114.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 84.0,24.5,14.5,9.5$.

3-(3-Cyclopropyl-5-fluorophenyl)-4-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)butanoic acid (42)

(E)-tert-Butyl 7-((4-(4-methoxy-4-oxobut-2-en-1-yl)-1,4-diazepan-1-yl)methyl)-3,4-dihydro-1,8-naphthyridine-1 $(2 H)$-carboxylate $(150 \mathrm{mg}, \quad 0.337 \mathrm{mmol})$, 2-(3-cyclopropyl-5-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($265 \mathrm{mg}, 1.01 \mathrm{mmol}$), $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ $(8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{KOH}_{(\mathrm{aq})}(178 \mu \mathrm{l}$ of a 3.8 M solution, 0.675 mmol$)$ were suspended in 1,4-dioxane (2 mL). The reaction was heated in a microwave oven ($30 \mathrm{~min}, 95^{\circ} \mathrm{C}$, normal power). The solvent was evaporated under a stream of N_{2}. The sample was dissolved in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and loaded onto pre-conditioned SCX column (1 g , MeOH $1 \mathrm{CV}, \mathrm{MeCN} 1$ CV , load compound, $\mathrm{MeOH} 2 \mathrm{CV}, 2 \mathrm{M} \mathrm{NH}_{3} \mathrm{MeOH} 2 \mathrm{CV}$). The appropriate fractions were combined and evaporated under a stream of N_{2}. The crude material was dissolved in DCM $(200 \mu \mathrm{~L})$ and TFA $(200 \mu \mathrm{~L})$ and stirred for 2 h at ambient temperature. The solvent was removed under a stream of N_{2}. The crude material was dissolved in THF ($500 \mu \mathrm{~L}$) and $\mathrm{NaOH}_{\text {(aq) }}\left(130 \mu \mathrm{~L}\right.$ of a 10 M solution) was added. The solution was stirred at $70^{\circ} \mathrm{C}$ for 4 h . The solvent was then removed under a stream of N_{2}. The samples were dissolved in DMSO (1 mL) and purified by MDAP (Method C , high pH). The appropriate fractions were combined and evaporated under a stream of N_{2} to give the title compound ($32 \mathrm{mg}, 18 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 467 ; \mathrm{R}_{\mathrm{t}} 0.90 \mathrm{~min}$, purity $99 \% ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=8.29(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 4$
H), $2.88-2.69(\mathrm{~m}, 6 \mathrm{H}), 2.66-2.55(\mathrm{~m}, 6 \mathrm{H}), 2.38(\mathrm{dd}, J=7.2,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.85$ $(\mathrm{m}, 1 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.74-0.63(\mathrm{~m}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=173.5,164.0,162.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=242 \mathrm{~Hz}\right), 155.5,146.5$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 146.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 136.0,121.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}\right), 113.0,111.0(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 110.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 109.5,63.5,63.0,55.0,54.5,54.0,53.5,40.5,40.0$, 38.5, 26.5, 26.0, 21.0, 15.0, 10.0; ${ }^{19} \mathrm{~F}$ NMR $\left.\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)\right) \delta=(-114.3)-(-114.6)$ (m).

Methyl 3-(5-cyclopropyl-2-fluorophenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propanoyl)piperazin-1-yl)butanoate (51a (Enantiomer A) and 51b (Enantiomer B))

(E)-Methyl 4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propanoyl)piperazin-1-yl)but-2enoate ($370 \mathrm{mg}, 0.993 \mathrm{mmol}$) and 2-(5-cyclopropyl-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($391 \mathrm{mg}, 1.49 \mathrm{mmol}$) were dissolved in 1,4-dioxane (8 mL). $\mathrm{KOH}_{(\mathrm{aq})}$ (0.39 mL of a 3.8 M solution, 1.49 mmol$),[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(147 \mathrm{mg}, 0.298 \mathrm{mmol})$ were added and the mixture was stirred for 2 h at $95{ }^{\circ} \mathrm{C}$. A further portion of 2-(5-cyclopropyl-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($50 \mathrm{mg}, 0.19 \mathrm{mmol})$ and $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ were added, the reaction was stirred for 1 h . The reaction mixture was cooled then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$ were added. The organic layer was extracted and evaporated under reduced pressure. The crude material was redissolved in DMSO/MeOH (1:1, 4 mL) and purified by reverse phase chromatography (C18, $30 \mathrm{~g}, 5-$
$50 \% \mathrm{MeCN}$ (containing $0.1 \% \mathrm{TFA}$) in water (containing $0.1 \% \mathrm{TFA}$). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound as a racemate. The mixture was dissolved in EtOH (2 mL) and heptane (1 mL) and the enantiomers were separated using chiral HPLC (Injection; $3 \mathrm{~mL}, 15 \% \mathrm{EtOH} / H e p t a n e, ~ f=15$ $\mathrm{mL} / \mathrm{min}$, detecting at 215 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OD-H (self packed)) to give two enantiomers.

Methyl 3-(2-fluoro-5-morpholinophenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propanoyl)piperazin-1-yl)butanoate - Enantiomer A (21 mg, 4\%) as a gum : Analytical chiral HPLC ($20 \% \mathrm{EtOH} /$ Heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id \times 25 cm Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=8.5 \mathrm{~min},>99 \% e e ;$ LCMS (System TFA 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 509 ; \mathrm{R}_{\mathrm{t}} 0.71 \mathrm{~min}$, purity $98 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.13-7.08(\mathrm{~m}, 1$ H), $6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 1$ H), $3.61(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{dd}, J$ $=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.51(\mathrm{~m}, 6 \mathrm{H}) 2.47-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.38-$ $2.30(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.02-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.66-0.58(\mathrm{~m}$, $2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange).

Methyl 3-(2-fluoro-5-morpholinophenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propanoyl)piperazin-1-yl)butanoate - Enantiomer B (18 mg, 4\%) as a gum : Analytical chiral HPLC ($20 \% \mathrm{EtOH} /$ Heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id \times 25 cm Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=14.0 \mathrm{~min},>99 \% e e ;$ LCMS (System TFA 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 509 ; \mathrm{R}_{\mathrm{t}} 0.71 \mathrm{~min}$, purity $91 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.62(\mathrm{~m}, 1$ H), 3.61 (s, 3 H), $3.57-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.42(\mathrm{~m}, 3 \mathrm{H}), 3.41-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.75$ (m, 3 H), $2.74-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.64-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 1$
H), $1.96-1.81(\mathrm{~m}, 3 \mathrm{H}), 0.98-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.66-0.58(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange).

3-(5-Cyclopropyl-2-fluorophenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propanoyl)piperazin-1-yl)butanoic acid - unknown stoichiometric salt ((52a) Enantiomer A)

Methyl 3-(5-cyclopropyl-2-fluorophenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propanoyl)piperazin-1-yl)butanoate ($21 \mathrm{mg}, 0.04 \mathrm{mmol}$) was dissolved in 1,4-dioxane (1 $\mathrm{mL})$ and $\mathrm{LiOH}_{(\mathrm{aq})}(0.081 \mathrm{~mL}$ of a 1 M solution, 0.081 mmol$)$ was added. The mixture was stirred for 12 h then $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added. The reaction mixture was purified by MDAP $(\operatorname{method} \mathrm{B}$, high pH$)$ to give the title compound $(8.2 \mathrm{mg}, 41 \%)$ as a gum : $[\alpha]_{\mathrm{D}}=+5(c=$ $1.19, \mathrm{EtOH}$) , LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 495 ; \mathrm{R}_{\mathrm{t}} 0.78$ min, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.85$ (m, 2 H), $6.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{quin}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.55-$ $3.44(\mathrm{~m}, 3 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{q}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 5 \mathrm{H}), 2.60-$ $2.50(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 3 \mathrm{H}), 0.94-0.87$ $(\mathrm{m}, 2 \mathrm{H}), 0.64-0.59(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the amine and carboxylic acid were not observed due to exchange).

3-(5-Cyclopropyl-2-fluorophenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-
yl)propanoyl)piperazin-1-yl)butanoic acid - unknown stoichiometric salt ((52b) Enantiomer
B)

Using the method above, the title compound was prepared from methyl 3-(5-cyclopropyl-2-fluorophenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propanoyl)piperazin-1yl)butanoate ($18 \mathrm{mg}, 0.04 \mathrm{mmol}$) to give the title compound ($1.4 \mathrm{mg}, 8 \%$) as a gum : $[\alpha]_{\mathrm{D}}=-6(c=1.24, \mathrm{EtOH})$.

4-(4-Fluorophenyl)morpholine (58)

$\mathrm{PdCl}_{2}(1,3$-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-imidazole)(2-chloropyidine) (3.14 mL , 28.6 mmol), morpholine ($2.99 \mathrm{~mL}, 34.3 \mathrm{mmol}$), 1-bromo-4-fluorobenzene ($0.412 \mathrm{~g}, 0.606$ mmol) was dissolved in 1,2-dimethoxyethane (5 mL). $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}(42.9 \mathrm{~mL}$ of a 1 M solution in THF, 42.9 mmol) was added slowly over 2 min . The reaction was heated to $50^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was poured into water $(100 \mathrm{~mL})$, the product was extracted with DCM $(100 \mathrm{~mL})$, the aqueous layer was washed with DCM $(2 \times 100 \mathrm{~mL})$. The combined organic layer was evaporated under reduced pressure. The residue was redissolved in DCM (10 mL)
and purified by chromatography on silica $(3 \times 100 \mathrm{~g}, 0-100 \%$ EtOAc in cyclohexane, 14 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($4.68 \mathrm{~g}, 90 \%$) as a yellow oil : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 182 ; \mathrm{R}_{\mathrm{t}} 0.82 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.06-6.93(\mathrm{~m}, 2$ H), $6.92-6.80(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.19-2.99(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=157.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=235 \mathrm{~Hz}\right), 147.5,116.5,115.5,66.0,49.0 ;{ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=(-125.0)-(-125.5)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNO}, 182.0976$ found 182.0981.

4-(4-Fluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)morpholine (59)

4-(4-Fluorophenyl)morpholine ($2 \mathrm{~g}, 11 \mathrm{mmol}$), bis(pinacolato)diboron ($1.6 \mathrm{~g}, 6.3 \mathrm{mmol}$), 4,4'-di-tert-butyl-2,2'-bipyridine $(0.2 \mathrm{~g}, 0.7 \mathrm{mmol})$ and $[\operatorname{Ir}(\mathrm{COD}) \mathrm{OMe}]_{2}(0.2 \mathrm{~g}, 0.3 \mathrm{mmol})$ were dissolved in TMBE (8 mL) and heated in a microwave oven $\left(80^{\circ} \mathrm{C}, 1 \mathrm{~h}\right.$, normal power). The resulting mixture was adsorbed on Florisil ${ }^{\mathrm{TM}}$ and purified by chromatography on silica (2 $\times 100 \mathrm{~g}, 0-50 \%$ EtOAc in cyclohexane, 10 CV) to give the title compound $(1.6 \mathrm{~g}, 84 \%)$ as a yellow oil. LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 308 ; \mathrm{R}_{\mathrm{t}} 1.07$ min, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.13-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 4 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 12 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=160.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=242 \mathrm{~Hz}\right), 147.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 126.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right)$, $121.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right), 121.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}\right), 115.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.3 \mathrm{~Hz}\right), 83.6,66.1$,
49.2, 24.5; ${ }^{19} \mathrm{~F}$ NMR $\left.\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)\right) \delta=(-116.0)-(-116.5)(\mathrm{m}) ;$ HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BFNO}_{3}, 226.1045$ found 226.1044 (The m / z observed in the HRMS was the corresponding boronic acid, which is believed to form under the aqueous HRMS conditions)

4-(3-Bromophenyl)morpholine (61)

1,3-Dibromobenzene ($3.9 \mathrm{~mL}, 32 \mathrm{mmol}$), morpholine ($1.4 \mathrm{~mL}, 16 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.74 \mathrm{~g}$, $0.80 \mathrm{mmol}), \mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}(1.6 \mathrm{~g}, 17 \mathrm{mmol})$ and $\operatorname{BINAP}(0.75 \mathrm{~g}, 1.2 \mathrm{mmol})$ were dissolved in PhMe (8 mL) and heated in a microwave oven ($1 \mathrm{~h}, 50^{\circ} \mathrm{C}$, normal power). Water (20 mL) was added to the reaction mixture, the organic layer was separated and then evaporated under reduced pressure. The residue was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$, and the solution was loaded on a pre-conditioned aminopropyl column ($10 \mathrm{~g}, \mathrm{MeOH} 1 \mathrm{CV}, \mathrm{MeCN} 1 \mathrm{CV}$, load compound, MeCN 2 CV , then 2 M NH 3 in MeOH 2 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound (2.3 g) as an oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 242$; $\mathrm{R}_{\mathrm{t}} 1.08 \mathrm{~min}$; purity 75%; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.18-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.76(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.17-3.05(\mathrm{~m}$, $4 \mathrm{H})$. NMR in agreement with reported, ${ }^{94}$ data run on higher spectrometer frequency and in CDCl_{3}.

4-(3-Cyclopropylphenyl)morpholine (62)

4-(3-Bromophenyl)morpholine ($2.3 \mathrm{~g}, 9.50 \mathrm{mmol}$) was dissolved in THF (10 mL) and the solution was added to cyclopropylmagnesium bromide (22.8 mL of a 0.5 M solution in THF, $11.4 \mathrm{mmol}) . \mathrm{PdCl}_{2}(\mathrm{dppf})-\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.27 \mathrm{~g}, 0.32 \mathrm{mmol})$ was added and the mixture was heated to $60^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{DCM}(50 \mathrm{~mL})$ were added. The organic layer was separated and then the aqueous layer was washed with DCM (2 $\times 10 \mathrm{~mL})$. The combined organic layers were evaporated under reduced pressure. The residue was redissolved in DCM (5 mL) and purified by chromatography on silica ($100 \mathrm{~g}, 0-50 \%$ EtOAc, 10 CV). The appropriate fractions were combined an evaporated under reduced pressure to give the title compound ($1.7 \mathrm{~g}, 88 \%$) as an orange oil : LCMS (System High pH 2 $\min)[\mathrm{M}+\mathrm{H}]^{+}$204; $\mathrm{R}_{\mathrm{t}} 1.08$ min, purity 93%; IR (film) 2820, 1600, 1240, $1119 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.15-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.61-6.46(\mathrm{~m}, 1 \mathrm{H})$, $3.93-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.19-2.99(\mathrm{~m}, 4 \mathrm{H}), 2.02-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.81(\mathrm{~m}, 2 \mathrm{H}), 0.78-$ $0.50(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=151.1,144.4,128.8,116.1,112.5,112.3$, 66.1, 48.6, 15.4, 9.1.

4-(3-Cyclopropyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)morpholine (63)

4-(3-Cyclopropylphenyl)morpholine ($1.0 \mathrm{~g}, 4.9 \mathrm{mmol}$), bispinacolatodiboron ($0.75 \mathrm{~g}, 3.0$ $\mathrm{mmol}), 4,4$ '-di-tert-butyl-2,2'-bipyridine $(0.08 \mathrm{~g}, 0.3 \mathrm{mmol})$ and $[\operatorname{Ir}(\mathrm{COD}) \mathrm{OMe}]_{2}(0.098 \mathrm{~g}$, $0.148 \mathrm{mmol})$ was dissolved in TMBE (8 mL) and heated in a microwave oven $\left(1 \mathrm{~h}, 80^{\circ} \mathrm{C}\right.$, high power). The reaction mixture was adsorbed onto Florisil ${ }^{\mathrm{TM}}$ and purified by silica chromatography ($100 \mathrm{~g}, 0-50 \%$ EtOAc in cyclohexane, 10 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound (845 mg , 52%) as a white solid : LCMS (High pH) $[\mathrm{M}+\mathrm{H}]^{+} 330 ; \mathrm{R}_{\mathrm{t}} 1.34$ Min, purity 53% (the major impurity is attributed to the boronic acid resulting from the hydrolysis of the boronic ester in the LCMS mobile phase); LCMS (Method High pH) $[\mathrm{M}+\mathrm{H}]^{+}$248; $\mathrm{R}_{\mathrm{t}} 1.31 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.12(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.69$ (m, 4 H$), 3.19-2.99(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}), 1.01-0.79(\mathrm{~m}, 2 \mathrm{H})$, $0.73-0.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=152.5,145.5,124.5,120.5,118.5$, 85.0, 68.0, 51.0, 25.0, 16.5, 9.5 (the carbon environment adjacent to the boronic was not observed); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BNO}_{3}, 248.1452$ found 248.1447 (Boronic acid)

3-(2-Fluoro-5-morpholinophenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-
yl)propanoyl)piperazin-1-yl)butanoic acid (56)

4-(4-Fluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)morpholine (71.8 mg, $0.234 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(4 \mathrm{mg}, 9 \mu \mathrm{~mol}), 4-(4-f l u o r o-3-(4,4,5,5-$ tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)morpholine ($72 \mathrm{mg}, 0.23 \mathrm{mmol}$) and $\mathrm{KOH}_{(\mathrm{aq})}(0.291 \mathrm{~mL}$ of a 3.8 M solution, 1.10 mmol) was heated in the microwave ($30 \mathrm{~min}, 90^{\circ} \mathrm{C}$, high power). The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$ and purified using MDAP (Method C, high $\mathrm{pH} 3 \times 1$ $\mathrm{mL})$. The appropriate fractions were combined and evaporated under reduced pressure. The crude mixture was dissolved in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1: 1,70 \mathrm{~mL})$ and $\mathrm{LiOH}_{(\mathrm{aq})}(1.54 \mathrm{~mL}$ of a 1.0 M solution, 1.54 mmol) was added. The reaction mixture was stirred for 3 h . The mixture was freeze-dried and then re-dissolved in $\mathrm{DMSO} / \mathrm{MeOH}(1: 1,2 \mathrm{~mL})$ and purified by reverse phase chromatography ($\mathrm{C} 18,4 \mathrm{~g}, 5-50 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 10 CV). The appropriate fractions were combined and freeze-dried to give the title compound ($32 \mathrm{mg}, 20 \%$) as a lyophilate : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 540 ; \mathrm{R}_{\mathrm{t}} 0.68 \mathrm{~min}$; purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.15(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=6.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dt}, J=8.6,3.6 \mathrm{~Hz}, 1$ H), 6.38 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.86-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.65$ (quin, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.56$ (m, 1 H), $3.56-3.44(\mathrm{~m}, 3 \mathrm{H}), 3.39-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 4 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 3$ H), $2.73-2.66(\mathrm{~m}, 5 \mathrm{H}), 2.61-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H})$, $1.88-1.83(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the amine and the carboxylic acid were not
observed due to exchange); ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=178.5,173.1,156.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $240 \mathrm{~Hz}), 156.9,156.0,149.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}\right), 138.9,131.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=15 \mathrm{~Hz}\right), 118.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}\right.$ $=5 \mathrm{~Hz}), 117.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 116.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 116.4,112.3,68.1,64.0,54.2,54.1$, 51.6, 46.6, 42.4, 41.4, 35.5, 33.6, 27.3, 21.8; ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=-130.5$ (s).

3-(3-Cyclopropyl-5-morpholinophenyl)-4-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propanoyl)piperazin-1-yl)butanoic acid (57)

(E)-tert-butyl \quad-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propanoyl)piperazin-1-yl)but-2-enoate ($50 \mathrm{mg}, 0.12 \mathrm{mmol}$), and 4-(3-cyclopropyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)morpholine ($79 \mathrm{mg}, 0.24 \mathrm{mmol}$) were dissolved in 1,4-dioxane (2 $\mathrm{mL}) . \mathrm{KOH}_{(\mathrm{aq})}(0.063 \mathrm{~mL}$ of a 3.8 M solution, 0.241 mmol$)$ and $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(6 \mathrm{mg}, 0.01$ mmol) were added to the solution and the reaction mixture was heated in the microwave (30 $\mathrm{min}, 100^{\circ} \mathrm{C}$, high power). The reaction mixture was cooled and $\mathrm{HCl}(0.17 \mathrm{~mL}$ of a 4 M solution in 1,4-dioxane, 0.68 mmol) was added and the reaction mixture was stirred overnight. The reaction mixture was partioned between $\mathrm{DCM}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the aqueous layer was evaporated under reduced pressure. The residue was then dissolved in DMSO (1 mL) and purified by MDAP (method B, high pH). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($7 \mathrm{mg}, 11 \%$) as a gum : LCMS (System TFA 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 562 ; \mathrm{R}_{\mathrm{t}} 0.58 \mathrm{~min}$; purity $94 \% ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.31$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.35-3.19(\mathrm{~m}, 7 \mathrm{H}), 3.13(\mathrm{~s}, 1 \mathrm{H}), 3.12-2.99(\mathrm{~m}$, $4 \mathrm{H}), 2.79-2.54(\mathrm{~m}, 7 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.69(\mathrm{~m}, 3 \mathrm{H})$, $0.93-0.81(\mathrm{~m}, 2 \mathrm{H}), 0.68-0.58(\mathrm{~m}, 2 \mathrm{H})$ (the signals arising from the amine and carboxylic acid proton were not observed due to exchange).
(R)-tert-butyl 3-(iodomethyl)pyrrolidine-1-carboxylate ((\boldsymbol{R})-66)

Iodine ($1.82 \mathrm{~g}, 7.17 \mathrm{mmol}$) was added to a solution of $\mathrm{PPh}_{3}(1.81 \mathrm{~g}, 6.90 \mathrm{mmol})$ and imidazole $(0.84 \mathrm{~g}, 12 \mathrm{mmol})$ in $\mathrm{PhMe}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at ambient temperature for 15 min and then (R)-tert-butyl 3-(hydroxymethyl)pyrrolidine-1-carboxylate $(1.2 \mathrm{~g}, 6.0 \mathrm{mmol})$ was added portionwise over $5 \mathrm{~min} . \mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ was added to the mixture and a precipitate started to form. The mixture was stirred for 72 h then the precipitate was collected by filtration. The solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, then the filtrate was concentrated under reduced pressure until about 50 mL was remaining. The sample was purified by chromatography on silica ($100 \mathrm{~g}, 0-50 \%$ TBME in cyclohexane, 10 CV). The appropriate fractions were collected (UV set to 210 nm) and evaporated under reduced pressure to give the title compound (R)-tert-butyl 3-(iodomethyl)pyrrolidine-1-carboxylate $(1.51 \mathrm{~g}, 81 \%)$ as a colourless oil : $[\alpha]_{\mathrm{D}}=+26(c=1.02, \mathrm{EtOH})$; LCMS (System formic 2 min) $\mathrm{R}_{\mathrm{t}} 1.23 \mathrm{~min}$; purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=3.49-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.34$ $-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.34$ $(\mathrm{m}, 1 \mathrm{H}), 2.05-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$.
(R)-tert-Butyl 3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidine-1-carboxylate ((\boldsymbol{R})-67)

(R)-tert-Butyl 3-(iodomethyl)pyrrolidine-1-carboxylate ($28.1 \mathrm{~g}, 90 \mathrm{mmol}$) and 2-methyl-1,8naphthyridine ($13 \mathrm{~g}, 90 \mathrm{mmol}$) were dissolved in THF (200 mL). LiHMDS (90 mL of a 1 M solution in THF, 90 mmol) was added at $-10^{\circ} \mathrm{C}$ over 1 h . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 90 min . The reaction mixture was quenched using sat. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ then EtOAc $(500 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ were added. The organic layer was separated and evaporated under reduced pressure. The residue was dissolved in EtOAc (30 mL) (heating was required) and purified by chromatography on silica ($1500 \mathrm{~g}, \mathrm{EtOAc}$ to $5 \% \mathrm{MeOH}$ in $\mathrm{EtOAc}, 10 \mathrm{CV}$). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound $(18.33 \mathrm{~g}, 62 \%)$ was an orange solid : $[\alpha]_{\mathrm{D}}=+19(c=1.06, \mathrm{EtOH})$; LCMS (System TFA 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 328 ; \mathrm{R}_{\mathrm{t}} 0.72 \mathrm{~min}$; purity 93%; IR (solid) 3046, 2971, 1683, $1405,1122 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.03(\mathrm{dd}, J=4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.48-$ $8.23(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.27(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.19-$ $3.11(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H})$, $1.92-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $166.1,155.8,153.9,153.6,138.1,137.7,123.0,122.1,121.4,78.5,51.4,45.7,37.8,37.4$, 32.5, 30.9, 28.7; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}, 328.2020$ found 328.2023.
(R)-2-(2-(Pyrrolidin-3-yl)ethyl)-1,8-naphthyridine. Monohydrochloride ((\boldsymbol{R})-71)

(R)-tert-Butyl 3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidine-1-carboxylate ($1.7 \mathrm{~g}, 5.2 \mathrm{mmol}$) was dissolved in DCM $(40 \mathrm{~mL})$ at ambient temperature. $\mathrm{HCl}(5.19 \mathrm{~mL}$ of a 4 M solution in 1,4-dioxane, 20.8 mmol) was added dropwise and then the reaction mixture was stirred for 18 h. The reaction mixture was concentrated under reduced pressure to give the title compound $(1.24 \mathrm{~g}, 91 \%)$ as a purple hydroscopic solid : Analytical chiral HPLC ($3 \mu \mathrm{~L}, 15 \%$ EtOH/heptane $(+0.1 \% \mathrm{TFA}), \mathrm{f}=1 \mathrm{~mL} / \mathrm{min}$, wavelength $=215 \mathrm{~nm}, 4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed) $\mathrm{R}_{\mathrm{t}}=21.5 \mathrm{~min}$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 228 ; \mathrm{R}_{\mathrm{t}} 0.52$ min; purity $>99 \%$; IR (solid) $3389,2984,16091453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ $=9.73$ (br. s, 1 H), 9.60 (br. s, 1 H), $9.28(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-7.90(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.12(\mathrm{~m}, 3$ H), $3.14-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 1 \mathrm{H})$, $2.02-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=167.5,151.5$, $148.5,142.5,141.5,124.5,123.5,122.0,48.5,43.5,37.0,35.0,31.0,29.5$.
(R, E)-Methyl 4-(3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate $((\boldsymbol{R})-\mathbf{6 8})$

(E)-Methyl 4-bromobut-2-enoate ($0.435 \mathrm{~mL}, 3.64 \mathrm{mmol}$) was dissolved in DCM (3 mL) and added dropwise to a solution of (R)-2-(2-(pyrrolidin-3-yl)ethyl)-1,8-naphthyridine, monohydrochloride ($1.2 \mathrm{~g}, 4.6 \mathrm{mmol}$) and DIPEA ($3.18 \mathrm{~mL}, 18.2 \mathrm{mmol}$) in DCM (40 mL) at $0^{\circ} \mathrm{C}$ over 30 min . The solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then at ambient temperature for 4 h . The reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{DCM}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was washed with further DCM $(2 \times 10$ $\mathrm{mL})$. The combined organic layers were combined and concentrated under reduced pressure. The crude material was redissolved in $\operatorname{EtOAc}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The organic layer was extracted and concentrated under reduced pressure to give the title compound ($1 \mathrm{~g}, 77 \%$) as an oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 326 ; \mathrm{R}_{\mathrm{t}} 0.85 \mathrm{~min}$; purity $84 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.03(\mathrm{dd}, J=4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=$ $8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.39-8.33(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{dt}, J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00(\mathrm{dt}, J=16.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.77$ - $2.71(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.33(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=$ $165.5,165.0,155.5,153.0,146.5,137.5,137.0,122.5,121.5,121.0,120.5,59.5,56.0,53.5$, 51.5, 37.0, 36.5, 34.5, 30.5 .

Methyl 4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-cyclopropyl-5morpholinophenyl)butanoate $((\boldsymbol{R})$-69a (Diastereomer A) and (R)-69b (Diastereomer B))

4-(3-Cyclopropyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)morpholine
$\mathrm{mg}, \quad 1.2 \mathrm{mmol}),(R, E)$-methyl 4-(3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2enoate ($230 \mathrm{mg}, 0.57 \mathrm{mmol}$), $\mathrm{KOH}_{(\mathrm{aq})}(0.298 \mathrm{~mL}$ of a 3.8 M solution, 1.13 mmol) were dissolved in 1,4-dioxane (3 mL) and stirred at ambient temperature for 5 min under nitrogen, and $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(84 \mathrm{mg}, 0.17 \mathrm{mmol})$ was added. The reaction mixture was heated in a microwave oven ($1 \mathrm{~h}, 95^{\circ} \mathrm{C}$, normal power). The mixture was cooled and the solvent evaporated under reduced pressure. The residue was redissolved in EtOAc (10 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ was added. The organic layer was separated and filtered through a hydrophobic frit. The aqueous layer was washed with further EtOAc $(2 \times 5 \mathrm{~mL})$ and the combined organic layers were concentrated under reduced pressure. The mixture was dissolved in $\mathrm{EtOH}(4 \mathrm{~mL})$ (containing 0.2% isopropylamine) and heptane (3 mL) and the enantiomers separated by chiral HPLC (Injection; 0.75 mL , eluting with $40 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine): 60% heptane (containing 0.2% isopropylamine), $\mathrm{f}=20 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column $5 \mathrm{~cm} \times 20 \mathrm{~cm}$ Chiralpak AD-H (self packed), 45 min) to give two diastereomers.

Diastereomer A: Methyl 4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-cyclopropyl-5-morpholinophenyl)butanoate ($47 \mathrm{mg}, 16 \%$) as a gum : Analytical chiral HPLC ($50 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine) / 50% heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at

215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=8.7 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 529 ; \mathrm{R}_{\mathrm{t}} 1.15 \mathrm{~min}$; purity $>99 \%$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, (CD $\left.{ }_{3} \mathrm{OD}\right) \delta=9.05-8.99(\mathrm{~m}, 1 \mathrm{H}), 8.44-8.39(\mathrm{~m}, 1 \mathrm{H}), 8.39-8.27(\mathrm{~m}, 1 \mathrm{H})$, $7.65-7.52(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.59-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.51-6.43(\mathrm{~m}, 1 \mathrm{H}), 3.87-$ 3.75 (m, 4 H), 3.56 ($\mathrm{s}, 3 \mathrm{H}$), $3.13-3.08(\mathrm{~m}, 4 \mathrm{H}), 3.06-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.84(\mathrm{~m}, 1 \mathrm{H})$, $2.84-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.96-$ $1.73(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.84(\mathrm{~m}, 2 \mathrm{H}), 0.70-0.60$ (m, 2 H)

Diastereomer B: Methyl 4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-cyclopropyl-5-morpholinophenyl)butanoate ($47 \mathrm{mg}, 16 \%$) as a gum : Analytical chiral HPLC (50\% EtOH (containing 0.2% isopropylamine) $/ 50 \%$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=14.2 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System TFA 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 529 ; \mathrm{R}_{\mathrm{t}} 0.65 \mathrm{~min}$; purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right) \mathrm{OD}\right) \delta=9.00(\mathrm{dd}, J=4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.48(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.39(\mathrm{~m}, 4 \mathrm{H}), 3.87-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}$, 3 H), $3.12-3.04$ (m, 4 H), $3.04-2.96$ (m, 2 H), $2.92-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.70(\mathrm{~m}, 2 \mathrm{H})$, $2.70-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.53-$ $1.38(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.69-0.55(\mathrm{~m}, 2 \mathrm{H})$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{3}, 529.3173$ found 529.3175 .

Methyl 3-(3-cyclopropyl-5-morpholinophenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate - (($\boldsymbol{R})$-72a Diastereomer A)

Methyl
4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-cyclopropyl-5morpholinophenyl)butanoate - Diastereomer A ($80 \mathrm{mg}, 0.15 \mathrm{mmol}$) was dissolved in EtOH $(2 \mathrm{~mL})$ and EtOAc (2 mL) and added to a hydrogenation flask containing 10% Degussa $^{\mathrm{TM}}$ $\mathrm{Pd} / \mathrm{C}(32 \mathrm{mg})$. The reaction mixture was stirred under an atmosphere of H_{2} (supplied from a burette) for 12 h . The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with EtOAc and evaporated under reduced pressure to give the title compound ($65 \mathrm{mg}, 81 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+}$533; $\mathrm{R}_{\mathrm{t}} 1.34 \mathrm{~min}$; purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.33$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.16(\mathrm{~m}$, 1 H), $3.12-3.04(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.74(\mathrm{~m}, 3 \mathrm{H}), 2.74-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.53(\mathrm{~m}, 1 \mathrm{H})$, $2.53-2.36(\mathrm{~m}, 4 \mathrm{H}), 2.26-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.91-$ $1.78(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.72-0.55$ ($\mathrm{m}, 2 \mathrm{H}$) (the signal arising from the amine was not observed due to exchange).

Methyl 3-(3-cyclopropyl-5-morpholinophenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate (($\boldsymbol{R})$-72b Diastereomer B)

Using the method above, the title compound was prepared from methyl 4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-cyclopropyl-5-morpholinophenyl)butanoate Diastereomer B ($78 \mathrm{mg}, 0.151 \mathrm{mmol}$) to give the title compound $(74 \mathrm{mg}, 94 \%)$ as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+}$533; $\mathrm{R}_{\mathrm{t}} 1.34 \mathrm{~min}$; purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right) \mathrm{OD}\right) \delta=7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.36$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.15-$ 3.08 (m, 4 H), $2.82(\mathrm{~s}, 3 \mathrm{H}), 2.71$ (t, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.42(\mathrm{~m}, 4$ H), $2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.93-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.30(\mathrm{~m}, 1 \mathrm{H})$, $0.93(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.66(\mathrm{dd}, J=5.0,2.0 \mathrm{~Hz}, 2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange).

3-(3-Cyclopropyl-5-morpholinophenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoic acid - unknown stoichiometric salt (($\boldsymbol{R})$-70a Diastereomer A)

Methyl 3-(3-cyclopropyl-5-morpholinophenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate - Enantiomer A ($65 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in $\mathrm{MeCN}(2 \mathrm{~mL})$ and $\mathrm{LiOH}_{(\mathrm{aq})}(0.244 \mathrm{~mL}$ of a 1 M solution, 0.244 mmol$)$ was added. The reaction mixture was stirred for 4 h at ambient temperature. The reaction mixture was purified by MDAP (method B , high pH) and the appropriate fractions were evaporated under nitrogen flow to give a brown gum. The product was redissolved in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and freeze-dried overnight to give the title compound ($53 \mathrm{mg}, 84 \%$) as a white lyophilate. LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 519 ; \mathrm{R}_{\mathrm{t}} 0.88 \mathrm{~min}$; purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.48(\mathrm{dd}, J=12.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 3 \mathrm{H})$, $3.26-3.19(\mathrm{~m}, 3 \mathrm{H}), 3.13(\mathrm{dd}, J=12.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.04(\mathrm{~m}, 4 \mathrm{H}), 2.93$ (br. s, 1 H$)$, $2.74(\mathrm{dd}, J=16.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.46$ (m, 2 H), 2.27 (dquin, $J=15.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.78$ $-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{dq}, J=13.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.92-0.81(\mathrm{~m}, 2 \mathrm{H}), 0.67-0.57(\mathrm{~m}, 2 \mathrm{H})$ (the signals arising from the amine and carboxylic acid protons were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=180.4,157.6,157.3,153.7,147.3,144.7$,
$138.7,117.1,115.9,113.5,113.2,112.3,68.2,63.4,59.9,55.1,50.9,46.2,42.6,41.3,38.2$, 36.5, 34.7, 31.0, 27.5, 22.5, 16.7, 9.7; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{3}, 519.3322$ found 519.3330 .

3-(3-Cyclopropyl-5-morpholinophenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoic acid - unknown stoichiometric salt ((\boldsymbol{R})-70b Diastereomer B)

Using the method above, the title compound was prepared from methyl 3-(3-cyclopropyl-5-morpholinophenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1yl)butanoate Enantiomer B ($74 \mathrm{mg}, 0.14 \mathrm{mmol}$) gave the title compound ($27 \mathrm{mg}, 39 \%$) as a gum : LCMS (System TFA 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 519 ; \mathrm{R}_{\mathrm{t}} 0.64 \mathrm{~min}$; purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.11(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.36$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.54-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.44-$ $3.36(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=$ 12.7, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 - 3.08 (m, 4 H), 2.81 (br. s, 1 H), 2.76 (dd, $J=16.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.68(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{dd}, J=16.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{td}, J=7.4,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.33$ (dquin, $J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2$ H), $1.71-1.64(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.70-0.60(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from
the amine and carboxylic acid were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=180.3,157.9,157.5,153.7,147.3,144.7,138.6,117.2,115.7,113.5,113.2$, $112.3,68.2,63.2,60.2,55.0,50.9,46.2,42.6,41.3,38.2,36.6,35.0,30.7,27.6,22.5,16.7$, 9.6; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{3}$, 519.3322 found 519.3330.

Methyl 4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)butanoate - $((\boldsymbol{R})$-76a (Diastereomer A) and (\boldsymbol{R})-76b (Diastereomer B))

(R, E)-Methyl 4-(3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate $(1 \mathrm{~g}, 3.07$ mmol) was dissolved in 1,4-dioxane (16 mL) and (3-(3,5-dimethyl-1H-pyrazol-1yl)phenyl)boronic acid ($1.33 \mathrm{~g}, 6.15 \mathrm{mmol}$), $\mathrm{KOH}_{(\text {(aq) }}(1.2 \mathrm{~mL}$ of a 3.8 M solution, 4.6 mmol$)$ and $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(0.15 \mathrm{~g}, 0.31 \mathrm{mmol})$ were added and the solution was heated in a microwave oven ($1 \mathrm{~h}, 95^{\circ} \mathrm{C}$, high power). The reaction mixture was then filtered through Celite ${ }^{\mathrm{TM}}$ and evaporated under reduced pressure, then suspended in EtOH (3 mL). The diastereomers were separated by chiral HPLC (Injection; 3 mL , eluting with $30 \% \mathrm{EtOH}$ ($+0.2 \%$ isopropylamine): 70% heptane (containing 0.2% isopropylamine), $\mathrm{f}=20 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak AD-H (self packed), 45 min) to give two diastereomers.

Diastereomer A: Methyl 4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(3,5-dimethyl-1 H-pyrazol-1-yl)phenyl)butanoate ($320 \mathrm{mg}, 21 \%$) : Analytical chiral HPLC (30% EtOH (containing 0.2% isopropylamine) $/ 70 \%$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=8.0 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System high pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+}$497; $\mathrm{R}_{\mathrm{t}} 1.07 \mathrm{~min}$; purity $>95 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.02(\mathrm{dd}, J=4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.34-$ $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}$, $1 \mathrm{H}), 2.98-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.53$ (m, 2 H), 2.48-2.37(m, 2 H), 2.25(s, 3H), 2.17(s, 3H), 2.12-2.00(m, 1 H$), 1.96-1.86$ (m, 1 H$), 1.86-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 1 \mathrm{H})$.

Diastereomer B: Methyl 4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(3,5-dimethyl-1 H-pyrazol-1-yl)phenyl)butanoate ($388 \mathrm{mg}, 25 \%$) : Analytical chiral HPLC (30% EtOH (containing 0.2% isopropylamine) / 70% heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=12.0 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System high pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 497 ; \mathrm{R}_{\mathrm{t}} 1.07 \mathrm{~min}$; purity $63 \%,{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.02(\mathrm{dd}, J=4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.38-8.31(\mathrm{~m}$, $1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 1$ H), $6.04(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.72(\mathrm{~m}, 2$ H), $2.72-2.52(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 2$ H), $1.96-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 2 \mathrm{H})$.

3-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoic acid Lithium salt (\boldsymbol{R})-78a

Methyl 4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)butanoate - Diastereomer A ($320 \mathrm{mg}, 0.64 \mathrm{mmol}$) was dissolved in EtOH (3 mL) and the solution was added to 5% Degussa ${ }^{\mathrm{TM}} \mathrm{Pd} / \mathrm{C}(68 \mathrm{mg}$) under inert atmosphere. The reaction mixture was stirred under an atmosphere of hydrogen (supplied from a burette) for 3 h . The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$ under nitrogen, then washed with EtOAc (15 mL) and the filtrate was evaporated under reduced pressure to give the methyl ester intermediate as a yellow gum. The crude material was dissolved in THF $(1 \mathrm{~mL})$ then $\mathrm{LiOH}_{(\mathrm{aq})}(1.05 \mathrm{~mL}$ of a 1 M solution, 1.05 mmol$)$ was added and the reaction was stirred for 18 h . The reaction mixture was concentrated under reduced pressure to give the crude product. The crude material was suspended in DMSO : $\mathrm{MeOH}(1: 1,2 \times 1 \mathrm{~mL})$ and purified using MDAP (high pH , Method B). The appropriate fractions were collected and freeze - dried to give the title compound ($150 \mathrm{mg}, 58 \%$) as a lyophilate. LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 488 ; \mathrm{R}_{\mathrm{t}} 0.60 \mathrm{~min}$; IR (film) 2923, 1586, $1386 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.19(\mathrm{~m}$, $2 \mathrm{H}), 2.73(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.53(\mathrm{~m}, 4 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1$ H), $2.26(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{dd}, J=14.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.95-$
$1.86(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.18(\mathrm{~m}, 1 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{7} \mathrm{Li}$ NMR $\left(156 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ $=-0.7(\mathrm{~s})$.

1-(3-bromophenyl)-3,5-dimethyl-1 H -pyrazole (82)

(3-Bromophenyl)hydrazine, hydrochloride ($8.2 \mathrm{~g}, 36 \mathrm{mmol}$) and pentane-2,4-dione (5.65 $\mathrm{mL}, 55.0 \mathrm{mmol})$ were dissolved in $\mathrm{DCM}(20 \mathrm{~mL}) . \mathrm{H}_{2} \mathrm{SO}_{4}(0.195 \mathrm{~mL}$ of an 18 M solution, 3.67 mmol) was added dropwise and the reaction stirred at ambient temperature for 18 h . The reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the organic phase was dried over MgSO_{4} to give the title compound ($4.7 \mathrm{~g}, 51 \%$) was an oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 251,253 ; \mathrm{R}_{\mathrm{t}} 1.12 \mathrm{~min}$, purity $93 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.79-7.63$ (m, 1 H$), 7.61-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$.

4-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenyl)morpholine (83)

1-(3-Bromophenyl)-3,5-dimethyl-1 H -pyrazole ($4.08 \mathrm{~g}, 16.2 \mathrm{mmol}$), morpholine (1.41 mL ,
$16.2 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.744 \mathrm{~g}, 0.812 \mathrm{mmol}), \mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}(1.56 \mathrm{~g}, 16.2 \mathrm{mmol}),(R)$-BINAP $(0.76 \mathrm{~g}, 1.22 \mathrm{mmol})$ were dissolved in $\mathrm{PhMe}(20 \mathrm{~mL})$ and heated in a microwave oven $(1 \mathrm{~h}$, $50{ }^{\circ} \mathrm{C}$, normal power). The mixture was filtered through a pad of Celite ${ }^{\mathrm{TM}}$ and then concentrated under reduced pressure. The crude material was dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{MeOH}(5 \mathrm{~mL})$ and it was purified using reverse phase chromatography (C18, $130 \mathrm{~g}, 5-95 \%$ MeCN (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 10 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($2.94 \mathrm{~g}, 70 \%$) as an oil : LCMS (System formic 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 258 ; \mathrm{R}_{\mathrm{t}} 0.92 \mathrm{~min}$, purity $91 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.36-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H})$, $6.90-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.11(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, $2 \cdot 16$ (s, 3 H).

1-(3,5-Dibromophenyl)-3,5-dimethyl-1 H -pyrazole (86)

3,5-Dibromoaniline ($2.11 \mathrm{~g}, 8.41 \mathrm{mmol}$) was dissolved in $\mathrm{MeCN}(50 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{H}_{2} \mathrm{SO}_{4}(3.41 \mathrm{~mL}$ of a 2 M aqueous solution, 6.14 mmol$)$ and $\mathrm{NaNO}_{2}(0.64 \mathrm{~g}, 9.3 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ were added slowly to the reaction mixture and this was stirred at $0^{\circ} \mathrm{C}$ for 50 min . L-Ascorbic acid ($1.63 \mathrm{~g}, 9.25 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were then added and the reaction mixture was stirred for 18 h . Pentane-2,4-dione ($1.72 \mathrm{~mL}, 16.8 \mathrm{mmol}$) added dropwise, then the reaction was stirred at ambient temperature for 72 h , then at $80^{\circ} \mathrm{C}$ for 5 h . The reaction was cooled to ambient temperature then $\operatorname{EtOAc}(100 \mathrm{~mL})$ was added. The organic layer was
separated and washed with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL}), \mathrm{HCl}_{(\mathrm{aq})}(40 \mathrm{~mL}$ of a 1 M solution, 40 mmol$)$ and then $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The organic layer was dried and then concentrated under reduced pressure. The sample was redissolved in $\mathrm{DCM}(5 \mathrm{~mL})$ and purified using chromatography on silica ($100 \mathrm{~g}, 0-25 \% \mathrm{EtOAc}$ in cyclohexane, 10 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($1.75 \mathrm{~g}, 63 \%$) as a yellow oil : LCMS (System high pH) $[\mathrm{M}+\mathrm{H}]^{+} 328,330,332 ; \mathrm{R}_{\mathrm{t}} 1.35 \mathrm{~min}$, purity $98 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.85(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{~s}$, $1 \mathrm{H}), 2.37$ (s, 3 H), 2.18 ($\mathrm{s}, 3 \mathrm{H}$).

4-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)morpholine (84)

1-(3,5-Dibromophenyl)-3,5-dimethyl-1 H -pyrazole ($1.70 \mathrm{~g}, 5.16 \mathrm{mmol}$) was dissolved in PhMe (40 mL) and added to a solution of morpholine ($0.499 \mathrm{~mL}, 5.67 \mathrm{mmol}$), (R)-BINAP $(1.05 \mathrm{~g}, 1.68 \mathrm{mmol}), \mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}(0.496 \mathrm{~g}, 5.16 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.978 \mathrm{~g}, 1.07 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was filtered through a Celite ${ }^{\mathrm{TM}}$ pad, then washed with $\mathrm{PhMe}(50 \mathrm{~mL})$ and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ (2 $\times 100 \mathrm{~mL})$. The organic layer was then concentrated under reduced pressure, then dissolved in DCM (5 mL) and purified by chromatography on silica ($100 \mathrm{~g}, 0-50 \%$ EtOAc/cyclohexane, 8 CV). The appropriate fractions were combined and evaporated under
reduced pressure. The material contained impurities related to the catalyst, however this was taken forward in the next step. 4-(3-Bromo-5-(3,5-dimethyl-1H-pyrazol-1yl)phenyl)morpholine ($2 \mathrm{~g}, 6 \mathrm{mmol}$), bis(pinacolato)diboron (1.66 g , 6.54 mmol), KOAc $(1.459 \mathrm{~g}, 14.87 \mathrm{mmol}), \mathrm{XPhos}{ }^{\mathrm{TM}}(0.136 \mathrm{~g}, 0.286 \mathrm{mmol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.082 \mathrm{~g}, 0.089 \mathrm{mmol})$ were dissolved in 1,4-dioxane (20 mL). The reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was evaporated under reduced pressure and dissolved in DCM (10 mL). The organic layer was filtered and then washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ then brine $(100 \mathrm{~mL})$. The organic layer was dried over magnesium sulfate and evaporated under reduced pressure. The sample was dissolved in DCM (5 mL) and purified on silica ($100 \mathrm{~g}, 0-50 \%$ EtOAc in cyclohexane, 8CV). The appropriate fractions were combined and concentrated under reduced pressure to give the title compound ($878 \mathrm{mg}, 49 \%$) as an orange oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 384, \mathrm{R}_{\mathrm{t}} 1.19 \mathrm{~min}$, purity 6% (the major impurity is attributed to the boronic acid resulting from the hydrolysis of the boronic ester in the LCMS mobile phase) $[\mathrm{M}+\mathrm{H}]^{+} 302, \mathrm{R}_{\mathrm{t}} 0.69 \mathrm{~min}$, purity 86%; IR (solid) $1586,1318,1119,969 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.38(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1$ H), $6.05(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.22-3.19(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.35$ (s, 12 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=159.0,157.0,154.5,142.0,141.5,123.0,122.0$, $121.5,116.5,107.5,85.5,67.5,25.0,13.0,12.0$; HRMS (boronic acid) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BN}_{3} \mathrm{O}_{3}, 302.1670$ found 302.1670 .
(R),(E)-tert-Butyl 4-(3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate ((R)-88)

(E)-tert-Butyl 4-acetoxybut-2-enoate ($19 \mathrm{~g}, 95 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(6.24 \mathrm{~g}, 8.53 \mathrm{mmol})$ were dissolved in DCM (180 mL) was stirred for 15 min . (R)-2-(2-(Pyrrolidin-3-yl)ethyl)-1,8-naphthyridine dihydrochloride ($22.5 \mathrm{~g}, 85.0 \mathrm{mmol}$) in DIPEA ($74.5 \mathrm{~mL}, 427 \mathrm{mmol}$) and DCM (360 mL) were added dropwise, then the solution was stirred for 24 h . The mixture was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 220 \mathrm{ml})$. The organic phase was passed through a phase-separator cartridge and the solvent was removed under reduced pressure. The residue was loaded in DCM (20 mL) and purified by flash chromatography (aminopropyl, $900 \mathrm{~g}, 0-100 \%$ EtOAc/cyclohexane, 10 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound $(15.5 \mathrm{~g}, 50 \%)$ as a brown oil which solidified : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 368 ; \mathrm{R}_{\mathrm{t}} 1.03 \mathrm{~min}$; purity >99\%; IR (film) 2957, $1719,1602,1122,843 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.02(\mathrm{dd}, J=4.2,2.0 \mathrm{~Hz}, 1$ $\mathrm{H}, 8.40(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dt}, J=15.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.47-$ $2.39(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.78$ $(\mathrm{m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=165.8,164.8,155.3,153.1$, $145.4,137.5,137.2,123.1,122.4,121.5,120.8,79.6,59.8,55.9,53.3,37.1,36.8,34.7,30.4$, 27.7; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}, 368.2333$ found 368.2328 .
tert-Butyl 4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)-5-morpholinophenyl)butanoate ((\boldsymbol{R})-89a (Diastereomer A) and ($\boldsymbol{R})$-89b (Diastereomer B))

(R),(E)-tert-Butyl 4-(3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate (350 mg , $0.76 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(19 \mathrm{mg}, 0.04 \mathrm{mmol})$, (3-(3,5-dimethyl-1H-pyrazol-1-yl)-5morpholinophenyl)boronic acid ($459 \mathrm{mg}, 1.52 \mathrm{mmol}$) and $\mathrm{KOH}_{\text {(aq) }}(0.401 \mathrm{~mL}$ of a 3.8 M solution, 1.52 mmol) were dissolved in 1,4-dioxane (5 mL) and the solution was heated in a microwave oven ($100 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$ and washed with EtOAc (20 mL). The reaction mixture was concentrated under reduced pressure then dissolved in DMSO: $\mathrm{H}_{2} \mathrm{O}(1: 1,3 \mathrm{~mL})$, the compound was purified by reverse phase chromatography ($\mathrm{C} 18,40 \mathrm{~g}, 25-40 \%(1 \mathrm{CV})$ then $40-75 \%(15 \mathrm{CV}) \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate). The appropriate fractions were combined and evaporated to give an oil (120 mg) : The crude mixture was dissolved in DMSO: $\mathrm{H}_{2} \mathrm{O}(1: 1,3 \mathrm{~mL})$, the compound was purified using reverse phase chromatography (C18, $40 \mathrm{~g}, 25-40 \%(1 \mathrm{CV})$ then $40-75 \%$ (15 CV) MeCN (containing 0.1\% ammonia) in 10 mM ammonium bicarbonate). The appropriate fractions were combined and evaporated, then dissolved in EtOH (3 mL) and heptane (3 mL). The diastereomers were separated by chiral HPLC (Injection; 1 mL , eluting with $15 \% \mathrm{EtOH}: 85 \%$ heptane, $\mathrm{f}=30 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak AD-H (self packed), 45 min) to give two diastereomers.

Diastereomer A: tert-butyl 4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(3,5-dimethyl-1 H -pyrazol-1-yl)-5-morpholinophenyl)butanoate ($44 \mathrm{mg}, 3 \%$) as a brown oil : Analytical chiral HPLC (20% EtOH (containing 0.2% isopropylamine)/heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel IA (self packed)) $\mathrm{R}_{\mathrm{t}}=10.5 \mathrm{~min}$; chiral purity $>99 \%$.

Diastereomer B: tert-butyl 4-((R)-3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)-5-morpholinophenyl)butanoate ($70 \mathrm{mg}, 5 \%$) as a brown oil : Analytical chiral HPLC (20% EtOH (containing 0.2% isopropylamine)/heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel IA (self packed)) $\mathrm{R}_{\mathrm{t}} 13.2$ min; chiral purity $>99 \%$; achiral purity 93%, HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{6} \mathrm{O}_{3}, 625.3861$ found 625.3844.
tert-Butyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)-5-morpholinophenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate ((R)-90a)

tert-Butyl 4-(3-(2-(1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)-5-morpholinophenyl)butanoate - Diastereomer A ($46 \mathrm{mg}, 0.074 \mathrm{mmol}$) was dissolved in a solution of EtOAc (10 mL). The compound was stirred at ambient temperature under an atmosphere of hydrogen (supplied from a burette) in the presence of 5\% Degussa ${ }^{\mathrm{TM}}$ $\mathrm{Pd} / \mathrm{C}(40 \mathrm{mg})$ for 18 h . The reaction was filtered through Celite ${ }^{\mathrm{TM}}$ and washed with EtOAc

Property of GSK - Confidential - Do not copy

$(30 \mathrm{~mL})$ and $\mathrm{EtOH}(20 \mathrm{~mL})$. The solution was concentrated under reduced pressure to give the title compound (34 mg) as a white solid : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 629$; $\mathrm{R}_{\mathrm{t}} 1.39 \mathrm{~min}$; purity $>63 \%$ (the only impurity is attributed to EtOAc); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (br. s, 1 H), 6.02 ($\mathrm{s}, 1 \mathrm{H}$), $3.81-3.67$ (m, 4 H), $3.25-3.19$ (m, 2 H), 3.16 - 3.11 (m, 4 H), 2.77 - 2.61 (m, 3 H), 2.61 - 2.56 (m, 3 H), 2.48 - 2.30 (m, 5 H), 2.25 (s, 3 H), $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.53$ (m, 2 H), $1.43-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H})\left({ }^{1} \mathrm{H}\right.$ NMR courtesy of Seble Lemma).

3-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-morpholinophenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoic acid ((R)-80a)

tert-Butyl 3-(3-(3,5-dimethyl-1 H -pyrazol-1-yl)-5-morpholinophenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate ($34 \mathrm{mg}, 0.053 \mathrm{mmol}$) was dissolved in DCM (1 mL) and TFA ($50 \mu \mathrm{~L}, 0.7 \mathrm{mmol}$). The reaction mixture was stirred for 18 h . The solvent and TFA had evaporated (as the flask was left open), so a further DCM (1 mL) and TFA ($50 \mu \mathrm{~L}, 0.7 \mathrm{mmol}$) were added, the reaction mixture was stirred for 3 h . TFA $(50 \mu \mathrm{~L}, 0.7 \mathrm{mmol})$ was added and the reaction mixture was stirred for 22 h . TFA ($50 \mu \mathrm{~L}, 0.7$ mmol) was added and the reaction mixture was stirred for 72 h . The reaction mixture had evaporated so was suspended in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. The mixture was purified using reverse phase chromatography (C18, $12 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM
ammonium bicarbonate, 20 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($19 \mathrm{mg}, 61 \%$) as a gum : LCMS (System TFA 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 573, \mathrm{R}_{\mathrm{t}} 0.63 \mathrm{~min}$, purity 95%; IR (film) $2924,2223,1678,1594,1118$, $725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}$, $1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.27-3.19$ (m, 4 H), $3.18-3.12$ (m, 4 H), $2.99-2.88$ (m, 2 H), $2.85-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.67(\mathrm{~m}, 1$ H), $2.63-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 3 \mathrm{H})$, $2.19-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.75(q u i n, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.69-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 1 \mathrm{H})$ (the protons arising from the amine and the carboxylic acid were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=$ 173.7, 157.6, 156.3, 151.7, 147.6, 145.3, 140.7, 139.5, 136.5, 114.3, 113.2, 112.8, 110.3, $109.3,107.2,66.4,62.1,59.7,53.7,48.6,41.3,41.1,40.8,37.0,36.3,35.3,30.5,26.5,21.4$, 13.6, 12.5, HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{3}, 573.3534$ found 573.3548.

7-((6-Fluoro-1,4-diazepan-1-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine (($\mathbf{\pm})$-103)

tert-Butyl 7-formyl-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate ($0.15 \mathrm{~g}, 0.56 \mathrm{mmol}$) and tert-butyl 6-fluoro-1,4-diazepane-1-carboxylate $(0.12 \mathrm{~g}, 0.54 \mathrm{mmol})$ were dissolved in DCM (4 mL). Sodium triacetoxyborohydride $(0.29 \mathrm{~g}, 1.4 \mathrm{mmol})$ was added and the reaction mixture was stirred at ambient temperature under nitrogen for $24 \mathrm{~h} . \mathrm{HCl}(0.68 \mathrm{~mL}$ of a 4 M in 1,4-dioxane solution, 2.7 mmol) was added to the reaction mixture, which was stirred at ambient temperature for 48 h . The reaction mixture was partitioned between water (10 mL)
and DCM (10 mL). The product was extracted with DCM $(2 \times 10 \mathrm{~mL})$. The aqueous layer was basified using $\mathrm{NaOH}_{(\mathrm{aq})}(10 \mathrm{M})$ to about pH 12 . DCM was added $(10 \mathrm{~mL})$ and the organic layer was extracted and evaporated under reduced pressure to afford the title compound (117 mg, 82%) as a yellow solid : mp $129-131^{\circ} \mathrm{C}$; LCMS (System High pH 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 265 ; \mathrm{R}_{\mathrm{t}} 0.75 \mathrm{~min}$, purity $90 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.09(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26$ (br. s, 1 H), $4.73-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H})$, $3.25-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.79(\mathrm{~m}, 3 \mathrm{H}), 2.79-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.64-$ 2.54 (m, 4 H), $2.38-2.19$ (m, 1 H), $1.83-1.67$ (m, 2 H).

7-((6,6-Difluoro-1,4-diazepan-1-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine (104)

tert-Butyl 7-formyl-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (1.03 g, 3.92 mmol) and tert-butyl 6,6-difluoro-1,4-diazepane-1-carboxylate ($0.89 \mathrm{~g}, 3.8 \mathrm{mmol}$) was dissolved in DCM (30 mL). Sodium triacetoxyborohydride $(2.00 \mathrm{~g}, 9.45 \mathrm{mmol})$ was added and the reaction mixture was stirred at ambient temperature under nitrogen for 18 h . Water (20 mL) was added and the aqueous layer was extracted with DCM $(2 \times 10 \mathrm{~mL})$. The organic fractions were combined and concentrated under reduced pressure. The residue was suspended in 2MeTHF (30 mL) and HCl (4.7 mL of a 4 M in 1,4-dioxane solution, 19 mmol) was added. The reaction mixture was stirred at ambient temperature for 24 h . Water (20 mL) and DCM $(20 \mathrm{~mL})$ were added and the aqueous phase was washed with further DCM $(2 \times 10 \mathrm{~mL})$. The aqueous layer was basified using $\mathrm{NaOH}_{(\mathrm{aq})}(10 \mathrm{M})$ to about pH 12 then extracted with DCM $(10 \mathrm{~mL})$. The organic layers were combined and concentrated under reduced pressure to give
the title compound $(0.99 \mathrm{~g}, 90 \%)$ as a white solid : mp $110-117{ }^{\circ} \mathrm{C}$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 283 ; \mathrm{R}_{\mathrm{t}} 0.85 \mathrm{~min}$, purity $92 \% ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.10$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.28-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.14-2.99$ $(\mathrm{m}, 4 \mathrm{H}), 2.84-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.64(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the amines were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=$ $156.1,155.0,136.5,127.6\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=235.8,232.1 \mathrm{~Hz}\right), 113.6,110.4,64.1,62.3\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ $30.5 \mathrm{~Hz}), 60.3,56.4\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.6 \mathrm{~Hz}\right), 52.1,41.1,26.5,21.4,{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=(-95.5)-(-96.0)(\mathrm{m})$.
(E)-Methyl 4-(6-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)but-2-enoate ((\pm)-105)

7-((6-Fluoro-1,4-diazepan-1-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine ($0.12 \mathrm{~g}, 0.44$ mmol) and DIPEA ($0.12 \mathrm{~mL}, 0.67 \mathrm{mmol}$) were dissolved in DCM (10 mL), (E)-methyl 4-bromobut-2-enoate ($0.05 \mathrm{~mL}, 0.44 \mathrm{mmol}$) was added and the reaction mixture was stirred at ambient temperature for 18 h . Water (10 mL) was added to the reaction mixture and the organic layer was separated. The aqueous phase was extracted with DCM $(2 \times 5 \mathrm{~mL})$. The combined organic layers were concentrated to give the title compound $(0.16 \mathrm{~g}, 100 \%)$ as a yellow oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 363 ; \mathrm{R}_{\mathrm{t}} 1.02 \mathrm{~min}$, purity $87 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=$
$7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.46(\mathrm{~m}, 2 \mathrm{H})$, $3.30-3.23(\mathrm{~m}, 6 \mathrm{H}), 3.01-2.74(\mathrm{~m}, 4 \mathrm{H}), 2.69-2.54(\mathrm{~m}, 5 \mathrm{H}), 1.83-1.63(\mathrm{~m}, 2 \mathrm{H})$.
(E)-Methyl $\quad 4$-(6,6-difluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)but-2-enoate (106)

7-((6,6-Difluoro-1,4-diazepan-1-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine
$3.49 \mathrm{mmol})$ and DIPEA ($2.44 \mathrm{~mL}, 14.0 \mathrm{mmol}$) were dissolved in DCM (50 mL). (E)-methyl 4-bromobut-2-enoate ($0.63 \mathrm{~mL}, 3.5 \mathrm{mmol}$) was added. The resulting mixture was stirred for 18 h under an atmosphere of nitrogen. (E)-Methyl 4-bromobut-2-enoate ($0.08 \mathrm{~mL}, 0.4 \mathrm{mmol}$) was added and the reaction mixture was stirred for 16 h . The reaction mixture was concentrated and re-suspended in DCM (10 mL), the solution was purified by chromatography on silica ($100 \mathrm{~g}, 0-100 \% \mathrm{EtOAc}$ in cyclohexane then $0-25 \% \mathrm{MeOH}$ in EtOAc, 14 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($0.74 \mathrm{~g}, 56 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 381 ; \mathrm{R}_{\mathrm{t}} 1.11 \mathrm{~min}$, purity $89 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.89(\mathrm{dt}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.43-3.33(\mathrm{~m}, 6 \mathrm{H}), 3.15-2.96(\mathrm{~m}, 4 \mathrm{H}), 2.75(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.87 (quin, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$) (the proton arising from the amine was not observed due to exchange).

3-(3-Cyclopropylphenyl)-4-(6-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)butanoic acid (($\mathbf{\pm}$)-113)

(E)-Methyl 4-(6-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)but-2-enoate ($150 \mathrm{mg}, 0.41 \mathrm{mmol}$), (3-cyclopropylphenyl)boronic acid ($120 \mathrm{mg}, 0.75$ mmol) and $\mathrm{KOH}_{(\mathrm{aq})}(0.2 \mathrm{~mL}$ of a 3.8 M solution, 0.8 mmol) were dissolved in 1,4-dioxane (4 $\mathrm{mL}) .[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added to the reaction mixture under an atmosphere of nitrogen. The reaction was heated in a microwave oven ($30 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). Water (10 mL) was added to the reaction mixture and the product was extracted using DCM $(3 \times 10 \mathrm{~mL})$. The combined organic layers were concentrated, and then suspended in THF (3 mL). $\mathrm{LiOH}_{(\mathrm{aq})}(2.07 \mathrm{~mL}$ of a 1 M solution, 2.07 mmol), was added to the reaction mixture and stirred for 18 h . The reaction mixture was neutralised by adding 5% citric $\operatorname{acid}_{(\mathrm{aq})}($ until $\mathrm{pH}=7)$ and partitioned between water $(10 \mathrm{~mL})$ and $\mathrm{DCM}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was washed with ${ }^{n} \mathrm{BuOH}(2 \times 20 \mathrm{~mL})$. The organic layers were concentrated under reduced pressure. The product was purified using reverse phase chromatography ($\mathrm{C} 18,40 \mathrm{~g}, 10-60 \% \mathrm{MeCN}$ (containing $0.1 \% \mathrm{TFA}$) in water (containing $0.1 \% \mathrm{TFA})$). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($70 \mathrm{mg}, 36 \%$) as a gum : LCMS (System High $\mathrm{pH} 2 \mathrm{~min})[\mathrm{M}+\mathrm{H}]^{+} 467 ; \mathrm{R}_{\mathrm{t}} 0.89 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.56(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (dd, $J=7.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.36(\mathrm{~m}, 14 \mathrm{H}), 2.17-2.13(\mathrm{~m}, 4 \mathrm{H}), 2.06-1.85(\mathrm{~m}, 3 \mathrm{H})$,
$1.18-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.63(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the carboxylic acid and the amine were not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-179.0)-(-179.5)(\mathrm{m}, 0.5 \mathrm{~F}),(-180.0)-(-180.5)(\mathrm{m} 0.5 \mathrm{~F})$.

3-(3,5-Dicyclopropylphenyl)-4-(6-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)butanoic acid ($\mathbf{\pm}$)-115)

(E)-Methyl 4-(6-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)but-2-enoate ($100 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2-(3,5-dicyclopropylphenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane $(141 \mathrm{mg}, 0.50 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(7 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{KOH}_{(\text {aq })}(0.13$ mL of a 3.8 M solution, 0.50 mmol) were dissolved in 1,4-dioxane (4 mL). The reaction mixture was heated in a microwave oven ($30 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). $\mathrm{LiOH}_{(\text {aq })}(1.38 \mathrm{~mL}$ of a 1 M solution, 1.38 mmol) was added to the reaction mixture and it was stirred at ambient temperature for 18 h . The reaction mixture was neutralised by adding citric acid then partitioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{DCM}(10 \mathrm{~mL})$. The aqueous layer was washed with DCM $(2 \times 10 \mathrm{~mL})$. The organic layer was combined and concentrated under reduced pressure. The crude material was purified by reverse phase chromatography (C18, $4 \mathrm{~g}, 5-$ $65 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate in water. The appropriate fractions were concentrated under reduced pressure, giving the title compound $(23 \mathrm{mg}, 17 \%)$ as a brown gum : LCMS (System high pH$)[\mathrm{M}+\mathrm{H}]^{+} 507 ; \mathrm{R}_{\mathrm{t}} 0.93 \mathrm{~min}$, purity
$82 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.66-$ $6.29(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.35(\mathrm{~m}, 3 \mathrm{H}), 3.03-2.59(\mathrm{~m}, 11 \mathrm{H}), 2.56-2.27(\mathrm{~m}, 5 \mathrm{H}), 2.02-1.71$ $(\mathrm{m}, 5 \mathrm{H}), 1.08-0.79(\mathrm{~m}, 4 \mathrm{H}), 0.79-0.27(\mathrm{~m}, 4 \mathrm{H})$ (the protons arising from the amine and the carboxylic acid were not observed due to exchange).

3-(3-Cyclopropylphenyl)-4-(6,6-difluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)butanoic acid - unknown stoichiometric salt (114)

$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(11 \mathrm{mg}, 0.02 \mathrm{mmol})$ and (3-cyclopropylphenyl)boronic acid ($130 \mathrm{mg}, 0.80$ $\mathrm{mmol})$ were dissolved in 1,4-dioxane $(4 \mathrm{~mL}) . \mathrm{KOH}_{(\mathrm{aq})}(0.21 \mathrm{~mL}$ of a 3.8 M solution, 0.80 $\mathrm{mmol})$ and (E)-methyl 4-(6,6-difluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)but-2-enoate ($170 \mathrm{mg}, 0.45 \mathrm{mmol}$) were added. The reaction mixture was heated in a microwave oven ($30 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). The reaction mixture was cooled, partitioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{DCM}(10 \mathrm{~mL})$, and the organic phase was separated and concentrated under reduced pressure. The product was re-suspended in 2MeTHF (4 mL) and $\mathrm{LiOH}_{\text {(aq) }}(2.1 \mathrm{~mL}$ of a 1 M solution, 2.1 mmol) was added. The reaction mixture was stirred for 4 h . The reaction mixture was concentrated and the residue was re-suspended in THF (4 mL) $\mathrm{LiOH}_{(\text {aq })}(2.1 \mathrm{~mL}$ of a 1 M solution, 2.1 mmol$)$ was added and the reaction mixture was stirred for another 2 h . The product was extracted with DCM (20 mL), the organic layer was evaporated under reduced pressure. The residue was dissolved in MeOH :

DMSO ($1: 1,1 \mathrm{~mL}$). The crude material was purified by reverse phase chromatography (C18, $13 \mathrm{~g}, 5-65 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate. The appropriate fractions were concentrated under reduced pressure. The fractions containing the product were concentrated to give the title compound ($50 \mathrm{mg}, 23 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 485 ; \mathrm{R}_{\mathrm{t}} 0.88 \mathrm{~min}$, purity 97\%; IR (film) 3383, 2931, 2495, $1667,1601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.62-$ $3.52(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.88(\mathrm{~m}, 3 \mathrm{H}), 2.86-2.69$ $(\mathrm{m}, 8 \mathrm{H}), 2.43(\mathrm{dd}, J=14.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.94-$ $0.87(\mathrm{~m}, 2 \mathrm{H}), 0.68-0.62(\mathrm{~m}, 2 \mathrm{H})$ (the two protons arising from the amine and carboxylic acid were not observed due to exchange). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=179.8,165.1$, $156.1,145.2,145.0,139.3,129.2,126.5,125.8,124.5,118.2,112.4,64.3,63.7\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31\right.$ $\mathrm{Hz}), 62.4,61.7\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31 \mathrm{~Hz}\right), 58.6,57.7,42.9,42.3,40.4,27.3,21.8,16.2,9.5$ (the carbon atom attached with two fluorine atoms could not be observed due to the splitting and the difficulty distinguishing it from the baseline noise); ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=$ -98.6 (s).

3-(3,5-Dicyclopropylphenyl)-4-(6,6-difluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)butanoic acid - unknown stoichiometric salt (116)

$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(8 \mathrm{mg}, 0.02 \mathrm{mmol})$ and 2-(3,5-dicyclopropylphenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($175 \mathrm{mg}, 0.621 \mathrm{mmol}$) were dissolved in 1,4-dioxane $(4 \mathrm{~mL}) . \mathrm{KOH}_{\text {(aq) }}(0.16$ mL of a 3.8 M solution, 0.62 mmol$)$ and (E)-methyl 4-(6,6-difluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)but-2-enoate ($130 \mathrm{mg}, 0.34 \mathrm{mmol}$) were added. The reaction mixture was heated in a microwave oven ($30 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). The mixture was extracted with water $(10 \mathrm{~mL})$ and $\mathrm{DCM}(2 \times 10 \mathrm{~mL})$. The combined organic layers were concentrated under reduced pressure. The product was re-suspended in THF (4 $\mathrm{mL})$ and $\mathrm{LiOH}_{(\mathrm{aq})}(2.1 \mathrm{~mL}$ of a 1 M solution, 2.1 mmol$)$ was added to the reaction mixture. The reaction mixture was concentrated under reduced pressure. The crude mixture was dissolved in $\mathrm{MeOH}: \operatorname{DMSO}(1: 1,1 \mathrm{~mL})$. The crude material was purified by MDAP (Method C, high pH). The fractions containing the product were concentrated, giving the title compound ($165 \mathrm{mg}, 92 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 525 ; \mathrm{R}_{\mathrm{t}} 0.93$ min, purity 99%; IR (film) $3428,1677,1603,1426,1199,1135 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.54(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 2 \mathrm{H}), 3.51-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.20-2.98(\mathrm{~m}, 6 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.68$ (m, 4 H), $2.63-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.25(\mathrm{~m}, 2$ H), $0.98-0.83(\mathrm{~m}, 4 \mathrm{H}), 0.72-0.57(\mathrm{~m}, 4 \mathrm{H})$ (the proton arising from the carboxylic acid
was not observed due to exchange). HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}, 525.3036$ found 525.3015.

7-(((3aR,6aS)-3a,6a-difluorohexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine hydrochloride (119)

A mixture of tert-butyl 7-formyl-3,4-dihydro-1,8-naphthyridine-1(2 H)-carboxylate $(0.30 \mathrm{~g}$, 1.1 mmol) and (3aR,6aS)-tert-butyl 3a,6a-difluorohexahydropyrrolo[3,4-c]pyrrole-2(1H)carboxylate ($0.28 \mathrm{~g}, 1.1 \mathrm{mmol}$) in DCM (4 mL) was stirred at ambient temperature under nitrogen for 10 min then sodium triacetoxyborohydride $(0.60 \mathrm{~g}, 2.8 \mathrm{mmol})$ was added and the reaction mixture was stirred at ambient temperature under nitrogen for 24 h . The reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{DCM}(10 \mathrm{~mL})$. The aqueous phase was extracted with further DCM $(2 \times 10 \mathrm{~mL})$. The organic layers were combined and concentrated under reduced pressure. $\mathrm{HCl}(1.14 \mathrm{~mL}$ of a 4 M solution in 1,4-dioxane, 4.56 mmol) was added to the reaction mixture which was stirred at ambient temperature for 48 h . The mixture was concentrated under reduced pressure to give the title compound (333 mg , 100%) as a yellow gum : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 295 ; \mathrm{R}_{\mathrm{t}} 0.33 \mathrm{~min}$, purity $>99 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=10.35$ (br. s, 1 H), 9.89 (br. s, 1 H), 8.96 (br. s, 1 H), $7.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H})$, $3.79-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.36(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.71(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=-164.5(\mathrm{~s})$.
(E)-Methyl 4-((3aR,6aS)-3a,6a-difluoro-5-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-
yl)methyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)but-2-enoate (120)

7-(((3aR,6aS)-3a,6a-difluorohexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine $(0.33 \mathrm{~g}, 0.91 \mathrm{mmol})$ was dissolved in DMF (10 mL), DIPEA ($0.633 \mathrm{~mL}, 3.63 \mathrm{mmol}$) and (E-methyl 4-bromobut-2-enoate ($0.107 \mathrm{~mL}, 0.907 \mathrm{mmol}$). The reaction mixture was stirred for 18 h . (E)-Methyl 4-bromobut-2-enoate ($0.05 \mathrm{~mL}, 0.4 \mathrm{mmol}$) was added. The reaction mixture was stirred for 3 h before an additional portion of (E) methyl 4-bromobut-2-enoate ($0.02 \mathrm{~mL}, 0.2 \mathrm{mmol}$) was added and the reaction mixture stirred for a further 3 h . The reaction mixture was poured into $\mathrm{LiCl}_{(\mathrm{aq})}(100 \mathrm{~mL}$ of a 1% solution) and the product extracted with DCM $(2 \times 100 \mathrm{~mL})$. The organic extracts were combined and concentrated under reduced pressure. The crude material was re-suspended in DCM (2 mL) and purified by chromatography on silica ($20 \mathrm{~g}, 0-100 \%$ EtOAc in DCM, 10 CV , then 100% EtOAc 5 CV). The appropriate fractions were collected and combined to give the title compound ($223 \mathrm{mg}, 63 \%$) as a yellow oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 393 ; \mathrm{R}_{\mathrm{t}}$ 1.03 min, purity $90 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dt}$, $J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 6.08-5.97(\mathrm{~m}, 1 \mathrm{H}), 3.72-$ $3.63(\mathrm{~m}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H}), 2.96-2.81(\mathrm{~m}, 6 \mathrm{H}), 2.80-2.61(\mathrm{~m}, 8 \mathrm{H}), 1.76-174(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=165.5,155.5,153.5,145.0,136.0,122.0,113.5,110.0$, $102.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=218,{ }^{2} J_{\mathrm{C}-\mathrm{F}}=13 \mathrm{~Hz}\right), 67.0,61.5-61.0(\mathrm{~m}), 59.5,54.5,51.5,40.5,26.0$, 20.5; ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=-165.0(\mathrm{~s})$.

3-(3-Cyclopropylphenyl)-4-((3aR,6aS)-3a,6a-difluoro-5-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)butanoic acid (121)

(E)-Methyl 4-((3aR,6aS)-3a,6a-difluoro-5-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl) hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)but-2-enoate (110 mg, 0.28 mmol) and (3cyclopropylphenyl)boronic acid ($156 \mathrm{mg}, 0.963 \mathrm{mmol}$) were dissolved in 1,4-dioxane (1.6 $\mathrm{mL}) \cdot[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(53 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added to the solution and the reaction mixture was heated in a microwave oven ($30 \mathrm{~min}, 100{ }^{\circ} \mathrm{C}$ high power). Water (5 mL) and DCM (5 mL) were added to the reaction mixture and the organic layer was extracted. $\mathrm{LiOH}_{(\mathrm{aq})}(1.4$ mL of a 1 M solution, 1.4 mmol) was added to the reaction mixture and it was stirred for 18 h. The reaction mixture was concentrated under reduced pressure and dissolved in DMSO : $\mathrm{MeOH}(1: 1,1 \mathrm{~mL})$ and purified by reverse phase chromatography ($13 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 10 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound $(0.9 \mathrm{mg}, 0.7 \%)$ as an orange gum : LCMS (System High pH 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 497 ; \mathrm{R}_{\mathrm{t}} 0.85$ min, purity $>99 \%$; IR (film) 3270, 2949, 2810, 1673, $1603 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.18-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 2.98-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.80-2.54(\mathrm{~m}, 10 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 2 \mathrm{H})$, $1.95-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.71(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.78(\mathrm{~m}, 1 \mathrm{H}), 0.76-0.56(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the amine and carboxylic acid were not observed due to exchange). HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}, 497.2701$ found 497.2692.

3-(3,5-Dicyclopropylphenyl)-4-((3aR,6aS)-3a,6a-difluoro-5-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)butanoic acid (97)

(E)-Methyl 4-((3aR,6aS)-3a,6a-difluoro-5-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl) hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)but-2-enoate (110 mg, 0.28 mmol), and (3,5dicyclopropylphenyl)boronic acid ($170 \mathrm{mg}, 0.84 \mathrm{mmol}$) were dissolved in 1,4-dioxane (1.6 $\mathrm{mL}) \cdot[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(53 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added to the solution and the reaction mixture was heated in a microwave oven ($30 \mathrm{~min}, 100^{\circ} \mathrm{C}$, high power). $\mathrm{LiOH}_{(\mathrm{aq})}(1.4 \mathrm{~mL}$ of a 1 M solution, 1.4 mmol) was added to the reaction mixture which was stirred at ambient temperature for 18 h . The reaction mixture was concentrated and EtOAc (10 mL) was added. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and concentrated under reduced pressure, then dissolved in DMSO : $\mathrm{MeOH}(1: 1,1 \mathrm{~mL}$). The solution was purified using MDAP (Method C, high pH). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($3 \mathrm{mg}, 2 \%$) as a yellow gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 537 ; \mathrm{R}_{\mathrm{t}} 0.92 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=$ $7.15-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.45-6.38(\mathrm{~m}, 1 \mathrm{H}), 6.35-$ $6.28(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 3.25-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.86(\mathrm{~m}, 2 \mathrm{H})$, $2.85-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.69-2.54(\mathrm{~m}, 6 \mathrm{H}), 2.46-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.79-$ $1.70(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.82(\mathrm{~m}, 4 \mathrm{H}), 0.68-0.56(\mathrm{~m}, 4 \mathrm{H})$ (the proton arising from the carboxylic acid was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=$ $(-165.0)-(-165.5)(m)$.
tert-Butyl 7-(hydroxymethyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (122)

1,1-Dimethylethyl 7-formyl-3,4-dihydro-1,8-naphthyridine-1(2 H)-carboxylate (5.4 g, 21 mmol) was dissolved in 2MeTHF (12 mL). Sodium borohydride ($0.8 \mathrm{~g}, 20 \mathrm{mmol}$) was added to the mixture at $0{ }^{\circ} \mathrm{C}$ and the suspension was stirred for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and concentrated under reduced pressure. The crude mixture was dissolved in DCM (2 mL) and purified by chromatography on silica ($70 \mathrm{~g}, 0-100 \% \mathrm{EtOAc}$ in cyclohexane, 12 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($5.0 \mathrm{~g}, 71 \%$) as an off-white solid : mp $98{ }^{\circ} \mathrm{C}$; LCMS (System High pH) $[\mathrm{M}+\mathrm{H}]^{+} 265 ; \mathrm{R}_{\mathrm{t}} 0.88 \mathrm{~min}$, purity $>97 \%$; IR (solid) 3411, 2932, 1696, 1576, 1367, $1152 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), $7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.58$ (m, 2 H), $2.71(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=157.5,153.5,150.0,137.5,122.0,115.0,79.5,59.5,44.5,27.5,26.5,20.5$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}, 265.1552$ found 265.1549.
tert-Butyl 7-(bromomethyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (123)

tert-Butyl 7-(hydroxymethyl)-3,4-dihydro-1,8-naphthyridine-1($2 H$)-carboxylate ($5.0 \mathrm{~g}, 19$ $\mathrm{mmol}), \mathrm{PPh}_{3}(4.9 \mathrm{~g}, 19 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(6.3 \mathrm{~g}, 19 \mathrm{mmol})$ were dissolved in $\mathrm{DCM}(30 \mathrm{~mL})$. The reaction mixture was stirred at ambient temperature for 18 h . The reaction mixture was concentrated under reduced pressure and dissolved in DCM (24 mL). The crude mixture was purified by chromatography on silica ($330 \mathrm{~g}, 0-40 \%$ EtOAc in cyclohexane, 14 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($3.5 \mathrm{~g}, 56 \%$) as a pink oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 328,330, \mathrm{R}_{\mathrm{t}}$ 1.19 min ; purity $>99 \%$; IR (film) $1684,1572,1365,1155 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.76-3.49(\mathrm{~m}$, $2 \mathrm{H}), 2.73(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=153.5,152.5,150.5,138.0,124.0,119.0,80.5,44.5,35.0,27.5,25.5$, 22.5; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2}, 328.0708$ found 328.0697 ; elemental analysis calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2}, \mathrm{C}, 51.4 ; \mathrm{H}, 5.9 ; \mathrm{N}, 8.6$ found : C, $51.6 ; \mathrm{H}, 5.8 ; \mathrm{N}, 8.4 \%$.
tert-Butyl 7-((4-(tert-butoxycarbonyl)-2-oxo-1,4-diazepan-1-yl)methyl)-3,4-dihydro-1,8-naphthyridine-1 $(2 \mathrm{H})$-carboxylate (125)

tert-Butyl 3-oxo-1,4-diazepane-1-carboxylate ($500 \mathrm{mg}, 2 \mathrm{mmol}$) was dissolved in DMF (12 mL) under nitrogen and cooled to $0^{\circ} \mathrm{C}$. Sodium hydride (112 mg of a 60% dispersion in mineral oil), 2.80 mmol) was added to the reaction mixture and the solution was warmed to ambient temperature for 25 min . A solution of tert-butyl 7-(bromomethyl)-3,4-dihydro-1,8-naphthyridine- $1(2 H)$-carboxylate ($840 \mathrm{mg}, 2.57 \mathrm{mmol}$) in DMF (12 mL) was added and the reaction mixture was left to stir at ambient temperature under nitrogen for 18 h . The reaction mixture was partitioned between $\mathrm{DCM}(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the organic phase separated. The aqueous phase was washed with EtOAc (50 mL). The combined organic fractions were washed with brine $(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and concentrated. The crude product was purified by chromatography on silica ($100 \mathrm{~g}, 0-10 \% \mathrm{MeOH}$ in DCM, 15 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($1.02 \mathrm{~g}, 95 \%$) as a yellow solid : mp $124^{\circ} \mathrm{C}$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 461 ; \mathrm{R}_{\mathrm{t}} 1.14 \mathrm{~min}$, purity $95 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1$ H), $6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.30-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.57-$ $3.44(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9$ H), 1.45 ($\mathrm{s}, 9 \mathrm{H}$).

1-((5,6,7,8-Tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-2-one (126)

$\mathrm{HCl}(2.71 \mathrm{~mL}$ of a 4 M solution in 1,4-dioxane, 10.8 mmol$)$ was added to a solution of tertbutyl 7-((4-(tert-butoxycarbonyl)-2-oxo-1,4-diazepan-1-yl)methyl)-3,4-dihydro-1,8-naphthyridine-1- $(2 H)$-carboxylate $(1.02 \mathrm{~g}, 2.71 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$. The reaction mixture was stirred for 18 h . The reaction mixture was concentrated under reduced pressure to give the title compound ($724 \mathrm{mg}, 100 \%$) as an off-white solid : mp $184-188^{\circ} \mathrm{C}$; LCMS $($ System TFA 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 261 ; \mathrm{R}_{\mathrm{t}} 0.31 \mathrm{~min}, 98 \% ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=$ 10.07 (br. s, 1 H), 8.53 (br. s, 1 H), 7.64 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.63 (s, 2 H), 3.96 (br. s, 2 H), $3.76-3.64$ (m, 2 H), $3.44(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.23 (br. s, 2 H), $2.80-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=167.5,151.5,142.5,140.5,120.0,109.5,66.5,54.5,49.5,48.0,47.5,47.0$, 24.5, 18.5.
(E)-Methyl \quad 4-(3-oxo-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)but-2-enoate (127)

1-((5,6,7,8-Tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-2-one (723 mg, 2.17 mmol) was dissolved in DCM (20 mL) and DIPEA ($1.52 \mathrm{~mL}, 8.69 \mathrm{mmol}$). (E)-methyl 4-bromobut-2-enoate ($0.26 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was added to the reaction mixture and stirred for 3 h at ambient temperature. Water $(10 \mathrm{~mL})$ and $\operatorname{DCM}(10 \mathrm{~mL})$ were added and the organic layer was separated. The aqueous phase was extracted with DCM $(2 \times 10 \mathrm{~mL})$, the combined organic extracts were evaporated, then purified by chromatography on silica ($100 \mathrm{~g}, 0-$ 100% DCM in cyclohexane then $0-25 \% \mathrm{MeOH}$ in $\mathrm{DCM}, 15 \mathrm{CV}$). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound (500 mg , 64%) as a yellow gum. LCMS (System High pH) $[\mathrm{M}+\mathrm{H}]^{+} 359 ; \mathrm{R}_{\mathrm{t}} 0.85$ min, purity $99 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dt}, J=15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.33 (br. s, 1 H$), 6.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.44$ - 3.36 (m, 4 H), 3.31 (dd, $J=5.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.83$ $2.77(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 2 \mathrm{H})$.

3-(3-Cyclopropylphenyl)-4-(3-oxo-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)butanoic acid (128)

(E)-Methyl 4-(3-oxo-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)but-2-enoate ($150 \mathrm{mg}, 0.42 \mathrm{mmol}$), (3-cyclopropylphenyl)boronic acid ($122 \mathrm{mg}, 0.751$ mmol) and $\mathrm{KOH}_{\text {(aq) }}(0.2 \mathrm{~mL}$ of a 3.8 M solution, 0.8 mmol) were dissolved in 1,4-dioxane (4 $\mathrm{mL}) .[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added and the reaction mixture was heated in a microwave oven (30 min , $95^{\circ} \mathrm{C}$, high power). The mixture was partitioned with water (10 $\mathrm{mL})$ and DCM $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were concentrated. The product was re-suspended in $2 \mathrm{MeTHF}(4 \mathrm{~mL})$ and $\mathrm{LiOH}_{(\mathrm{aq})}(2.1 \mathrm{~mL}$ of a 1 M solution, 2.1 mmol$)$. The reaction mixture was stirred for 20 h then concentrated under reduced pressure and dissolved in MeOH : DMSO (1:1, 1 mL) and water $(1 \mathrm{~mL})$. The crude material was purified by reverse phase chromatography ($\mathrm{C} 18,13 \mathrm{~g}, 5-60 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate). The appropriate fractions were concentrated under reduced pressure to give the title compound ($0.12 \mathrm{~g}, 64 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 463 ; \mathrm{R}_{\mathrm{t}} 0.76 \mathrm{~min}$, purity $90 \% ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.13-7.06(\mathrm{~m}, 2$ H), $7.06-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.31(\mathrm{~m}$, 2 H), $3.60-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.31(\mathrm{~m}, 6 \mathrm{H}), 2.95-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 2 \mathrm{H})$, $2.71-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.68(\mathrm{~m} 2 \mathrm{H}), 1.63-1.49(\mathrm{~m}, 1 \mathrm{H}), 0.94-$ $0.81(\mathrm{~m}, 2 \mathrm{H}), 0.73-0.63(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the carboxylic acid and the amine were not detected due to exchange); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=180.0,174.9$,

3-(3,5-Dicyclopropylphenyl)-4-(3-oxo-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)butanoic acid (129)

(E)-Methyl \quad 4-(3-oxo-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4-diazepan-1-yl)but-2-enoate ($150 \mathrm{mg}, 0.42 \mathrm{mmol}$), 2-(3,5-dicyclopropylphenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($214 \mathrm{mg}, 0.751 \mathrm{mmol}$), $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{KOH}_{(\mathrm{aq})}(0.2$ mL of a 3.8 M solution, 0.8 mmol) were dissolved in 1,4-dioxane (4 mL). The reaction mixture was heated in a microwave oven ($30 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). The crude product was extracted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic layers were concentrated under reduced pressure. The product was re-suspended in $2 \mathrm{MeTHF}(4 \mathrm{~mL})$ and $\mathrm{LiOH}_{(\mathrm{aq})}(2.1 \mathrm{~mL}$ of a 1 M solution, 2.1 mmol) was added and the reaction mixture was stirred for 18 h . The reaction mixture was concentrated under reduced pressure. It was then dissolved in MeOH : DMSO ($1 \mathrm{~mL}, 1: 1$). The crude material was purified by reverse phase chromatography ($\mathrm{C} 18,13 \mathrm{~g}, 5-65 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 10 CV). The appropriate fractions were concentrated under reduced pressure to give the title compound ($54 \mathrm{mg}, 29 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 503 ; \mathrm{R}_{\mathrm{t}} 0.85 \mathrm{~min}$, purity $89 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.36-3.28$ (m, 4 H), 2.89 (br. s, 2 H), $2.79-2.70$ (m, 2 H), $2.70-2.61$ (m, 2 H), $2.56(\mathrm{dd}, J=14.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=14.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 5 \mathrm{H})$, $1.63-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.93-0.79(\mathrm{~m}, 4 \mathrm{H}), 0.70-0.56(\mathrm{~m}, 4 \mathrm{H})$ (the protons arising from the amine and the carboxylic acid were not observed due to exchange).

Benzyl 4-((1,8-naphthyridin-2-yl)methyl)-4-hydroxyazepane-1-carboxylate (146)

2-Methyl-1,8-naphthyridine ($7.8 \mathrm{~g}, 54 \mathrm{mmol}$) was dissolved in anhydrous dry THF (150 mL). The solution was cooled at $0^{\circ} \mathrm{C}$, then LiHMDS (65 mL of a 1 M solution in THF, 65 mmol) was added dropwise over 30 min . The solution was stirred for 15 min then benzyl 4-oxoazepane-1-carboxylate ($3.8 \mathrm{~g}, 15 \mathrm{mmol}$) in THF (100 mL) was added over 15 min . The reaction mixture was stirred for 3 h , warmed to ambient temperature, then stirred for a further 30 min. Sat. $\mathrm{NH}_{4} \mathrm{Cl}(250 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$ and then $\mathrm{EtOAc}(250 \mathrm{~mL})$ were added. The organic phase was separated and the aqueous phase was washed with sat. $\mathrm{NaHCO}_{3 \text { (aq) }}(250$ $\mathrm{mL})$, then washed with EtOAc $(2 \times 250 \mathrm{~mL})$. The organic extracts were combined, dried, and evaporated under reduced pressure to give the title compound ($18.7 \mathrm{~g}, 85 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 392 ; \mathrm{R}_{\mathrm{t}} 0.93 \mathrm{~min}$, purity $85 \% ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.09-8.93(\mathrm{~m}, 1 \mathrm{H}), 8.48-8.25(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.20$ (m, 5H), $5.13-4.93(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.07$ $-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.41(\mathrm{~m}, 1 \mathrm{H})$.

Benzyl 4-((1,8-naphthyridin-2-yl)methyl)-4-fluoroazepane-1-carboxylate ((147), (147a) (enantiomer A) and (147b) (enantiomer B))

Benzyl 4-((1,8-naphthyridin-2-yl)methyl)-4-hydroxyazepane-1-carboxylate (12.0 g, 30.6 mmol) was dissolved in DCM (300 mL) and added dropwise to a solution of DAST (8.1 mL , $61.3 \mathrm{mmol})$ in DCM $(300 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred for 1.5 h then warmed to 0 ${ }^{\circ} \mathrm{C}$ over $1 \mathrm{~h} . \mathrm{Sat} . \mathrm{NaHCO}_{3}(250 \mathrm{~mL})$ was added slowly and the phases were separated. DCM (300 mL) was added to the aqueous phase and the layers were separated. The organic phases were combined and washed with brine (300 mL), dried and evaporated. The crude mixture was dissolved in DCM (10 mL) and purified by chromatography on silica ($330 \mathrm{~g}, 100-95 \%$ EtOAc in acetone, 10 CV), the appropriate fractions were combined to give the racemic title compound ($15.2 \mathrm{~g}, 98 \%$) as a brown oil. The solution was dissolved in IPA (13 mL) and the enantiomers separated by using chiral HPLC (Injection; 0.5 mL , eluting with $40 \% \mathrm{EtOH} /$ hexane (containing 0.2% isopropylamine, $\mathrm{f}=50 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 3 cm $\times 25 \mathrm{~cm}$ Chiralpak OJ (self packed) to give two enantiomers. The combined fractions containing pure Enantiomer A from the first 26 injections were evaporated under reduced pressure and the residue was partitioned between DCM (300 mL) and a solution of $\mathrm{NH}_{4} \mathrm{OH}_{(\text {aq })}(@ \mathrm{pH} 10 ; 200 \mathrm{~mL})$. The aqueous layer was extracted with DCM $(2 \times 300 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure followed by drying in a vacuum oven at $45^{\circ} \mathrm{C}$ for 4 h and then at ambient temperature for 24 h to give the title compound Enantiomer A (1.285 g, 11\%) as a red viscous oil : Analytical chiral HPLC ($40 \% \mathrm{EtOH}$ (containing 0.2\% isopropylamine)/heptane,
$\mathrm{f}=0.6 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed) $) \mathrm{R}_{\mathrm{t}}=3.7 \mathrm{~min}$; chiral purity $>99 \% ;[\alpha]_{\mathrm{D}}=-23(c=1.0, \mathrm{EtOH}) ;$ LCMS $($ System High pH 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 394 ; \mathrm{R}_{\mathrm{t}} 1.06 \mathrm{~min}$, purity $91 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.06$ (dd, $J=4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.08-5.03(\mathrm{~m}, 2$ H), $3.67-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=20 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.28-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.58$ $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=(-147.5)-(-148.0)(\mathrm{m}),(-148.0)-(-148.5)(\mathrm{m})$ (two peaks due to rotamers on the NMR timescale).

The combined fractions containing pure Enantiomer B from all 34 injections were evaporated under reduced pressure and the residue was partitioned between $\mathrm{DCM}(300 \mathrm{~mL})$ and a solution of $\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}$ (@ $\left.\mathrm{pH} 10 ; 200 \mathrm{~mL}\right)$. The aqueous layer was extracted with DCM $(2 \times$ $300 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure followed by drying in a vacuum oven at $45^{\circ} \mathrm{C}$ for 4 h and then at ambient temperature for 24 h to give the title compound Enantiomer B ($1.453 \mathrm{~g}, 12 \%$) as a red viscous oil : Analytical chiral HPLC (40\% EtOH (containing 0.2\% isopropylamine)/heptane, $\mathrm{f}=0.6 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=5.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}=+22(c=1.0, \mathrm{EtOH})$; other analytical data is consistent with Enantiomer A. .
(\pm)-7-((4-Fluoroazepan-4-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine (($\mathbf{\pm}$)-148)

Benzyl 4-((1,8-naphthyridin-2-yl)methyl)-4-fluoroazepane-1-carboxylate ($1.0 \mathrm{~g}, 2.5 \mathrm{mmol}$) was dissolved in EtOH (50 mL) and 5% Degussa $^{\mathrm{TM}} \mathrm{Pd} / \mathrm{C}(0.54 \mathrm{~g})$ was added and the suspension stirred under an atmosphere of hydrogen (supplied from a burette) for 5 h . The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$ under a blanket of nitrogen, the solution was evaporated under reduced pressure to give the title compound (0.79 g) as a golden oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 264 ; \mathrm{R}_{\mathrm{t}} 0.80 \mathrm{~min}$., purity $95 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left(\mathrm{CDCl}_{3}\right) \delta=7.12-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.48-6.43(\mathrm{~m}, 1 \mathrm{H}), 4.86($ br. s, 1 H$), 3.40(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2$ H), $3.13-2.74(\mathrm{~m}, 8 \mathrm{H}), 2.74-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.77(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{19}$ F NMR (376 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=(-136.0)-(-136.5)(\mathrm{m})$.
(+)-7-((4-Fluoroazepan-4-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine (Enantiomer A))

Using the method above, the title compound was prepared from benzyl 4-((1,8-naphthyridin-2-yl)methyl)-4-fluoroazepane-1-carboxylate ($1.285 \mathrm{~g}, 2.5 \mathrm{mmol}$) gave the title compound $(0.70 \mathrm{~g}, 81 \%)$ as an oil. Purity $>99 \% ;[\alpha]_{\mathrm{D}}+5(c=1.06, \mathrm{EtOH})$.

7-((4-Fluoroazepan-4-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine (148b) (Enantiomer B))

Using the method above, the title compound was prepared from benzyl 4-((1,8-naphthyridin-2-yl)methyl)-4-fluoroazepane-1-carboxylate enantiomer B ($1.454 \mathrm{~g}, 2.5 \mathrm{mmol}$) gave the title compound $(0.61 \mathrm{~g}, 68 \%)$ as an oil. $[\alpha]_{\mathrm{D}}=-6(c=1.03, \mathrm{EtOH})$.
(\pm)-(E)-tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl) azepan-1-yl)but-2-enoate ((\pm)-(149))

PdCl_{2} (dppf) $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct ($171 \mathrm{mg}, 0.209 \mathrm{mmol}$), (\pm)-7-((4-fluoroazepan-4-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine ($550 \mathrm{mg}, 2.09 \mathrm{mmol}$) and (E)-tert-butyl 4-acetoxybut-2enoate $(418 \mathrm{mg}, 2.09 \mathrm{mmol})$ were dissolved in DCM $(15 \mathrm{~mL})$. The solution was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 5 min then DIPEA ($1.09 \mathrm{~mL}, 6.27 \mathrm{mmol}$) was added. After 90 min , the reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with $\mathrm{DCM}(15 \mathrm{~mL})$ and water $(2 \times 15 \mathrm{~mL})$. The organic layer was separated, concentrated to give the title compound ($0.732 \mathrm{~g}, 87 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 404 ; \mathrm{R}_{\mathrm{t}} 1.28 \mathrm{~min}$, purity 89%; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dt}, J=15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28-6.19(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.27-$
$3.19(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.57$
 NMR (101 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=164.5,155.5,152.5,152.0,145.5,135.5,123.5,112.5,99.0$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=171 \mathrm{~Hz}\right), 79.5,58.5,56.5,55.0,48.6-48.4(\mathrm{~m}), 40.5,38.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 36.5$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 27.5,26.0,22.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right), 20.5$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{FN}_{3} \mathrm{O}_{2}$, 404.2702 found 404.2708 .
(\pm)-3-(3-Cyclopropylphenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-
yl)methyl)azepan-1-yl)butanoate.TFA ((\pm)-(136))

(\pm)-(E)-tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate ($200 \mathrm{mg}, 0.5 \mathrm{mmol}$) and (3-cyclopropylphenyl)boronic acid ($234 \mathrm{mg}, 1.45$ mmol) were dissolved in 1,4-dioxane (2 mL) and $\mathrm{KOH}_{(\mathrm{aq})}(0.26 \mathrm{~mL}$ of a 3.8 M solution, 0.99 $\mathrm{mmol})$. The solution was degassed with nitrogen before $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(2.5 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ was added. The reaction mixture was heated in a microwave oven $\left(1 \mathrm{~h}, 95^{\circ} \mathrm{C}\right.$, normal power). The mixture was filtered and evaporated under reduced pressure. The resulting solid was dissolved in MeOH : DMSO ($1: 1,4 \mathrm{~mL}$) and purified by reverse phase chromatography (C18, $60 \mathrm{~g}, 15-70 \% \mathrm{MeCN}$ (containing $0.1 \% \mathrm{TFA}$) in water (containing $0.1 \% \mathrm{TFA}$), 10 CV) The appropriate fractions were combined and evaporated under reduced pressure. The residual gum was dissolved in $\mathrm{DCM}(3 \mathrm{~mL})$ and purified by chromatography on silica (10 g , $0-30 \% \mathrm{MeOH}$ (containing $0.1 \% \mathrm{Et}_{3} \mathrm{~N}$) in $\mathrm{DCM}, 16 \mathrm{CV}$). The appropriate fractions were
combined and evaporated under reduced pressure to give a yellow gum. The gum was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL}$) and loaded onto a pre-conditioned SCX column ($5 \mathrm{~g}, \mathrm{MeOH} 1$ CV , MeCN 1 CV , load compound, $\mathrm{MeOH} 4 \mathrm{CV}, 2 \mathrm{M} \mathrm{NH}_{3}$ in MeOH 3 CV). The resulting solution was evaporated under reduced pressure to give the title compound ($46 \mathrm{mg}, 18 \%$). This gum was suspended in 1,4-dioxane $(0.6 \mathrm{~mL})$ and $\mathrm{HCl}(0.22 \mathrm{~mL}$ of a 4 M solution in $1,4-$ dioxane, 0.88 mmol) was added and the reaction stirred at ambient temperature for 18 h . The reaction mixture was heated to $40^{\circ} \mathrm{C}$ and stirred for $5 \mathrm{~h} . \mathrm{HCl}(0.11 \mathrm{~mL}$ of a 4 M solution in 1,4-dioxane, 0.44 mmol) was added and the reaction stirred at $40^{\circ} \mathrm{C}$ for 2 h . The solvent was removed under a stream of nitrogen and then the sample was dissolved in DMSO (0.6 mL) and purified by MDAP (Method E, TFA). The appropriate fractions were combined and evaporated under a stream of nitrogen to give the title compound ($16 \mathrm{mg}, 31 \%$) as a gum : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 466 ; \mathrm{R}_{\mathrm{t}} 0.56 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.28($ br. s, 1 H$), 8.48$ (br. s, 1 H$), 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 1$ H), $7.14-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.33(\mathrm{~m}$, 4 H), $3.33-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 7 \mathrm{H})$, $2.31-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.61(\mathrm{~m}, 5 \mathrm{H}), 0.97-0.81(\mathrm{~m}, 2 \mathrm{H}), 0.69-$ $0.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=172.5,159.2,158.9,144.5,144.4,142.0$, $140.9,140.2,137.2,128.8,125.3,124.9,124.5,120.5,120.2,117.7,114.8,113.1,96.5$ (d, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=176 \mathrm{~Hz}\right), 50.5,50.0,49.5,37.3,25.1,19.0,15.3,9.7 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $=-76.0(\mathrm{~s}, 15 \mathrm{~F}),-147.0(\mathrm{~s}, 1 \mathrm{~F})($ over integration was observed at -76.0 ppm due to excess TFA present in the sample); HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{FN}_{3} \mathrm{O}_{2}, 466.2864$ found 466.2859 .
(\pm)-3-(3,5-Dicyclopropylphenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid.TFA ((\pm)-(153))

(\pm)-(E)-methyl 4 -(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate $(215 \mathrm{mg}, \quad 0.60 \mathrm{mmol}), \quad[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2} \quad(3 \mathrm{mg}, 6 \mu \mathrm{~mol}), \quad 2-(3,5-$ dicyclopropylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($370 \mathrm{mg}, 1.30 \mathrm{mmol}$) and $\mathrm{KOH}_{(\mathrm{aq})}(0.313 \mathrm{~mL}$ of a 3.8 M solution, 1.19 mmol$)$ were dissolved in 1,4-dioxane (3 mL) and the solution was heated in a microwave oven $\left(1 \mathrm{~h}, 95^{\circ} \mathrm{C}\right.$, normal power). Water (10 mL) was added at the solution and the product is extracted from the water phase with DCM $(2 \times$ $15 \mathrm{~mL})$. The organic phase was evaporated and dissolved in 1:1 DMSO : $\mathrm{MeOH}(2 \mathrm{~mL})$ and purified by MDAP (Method B, TFA). The appropriate fractions were collected and evaporated under reduced pressure to give the title compound ($20 \mathrm{mg}, 7 \%$) as a gum : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 506 ; \mathrm{R}_{\mathrm{t}} 0.75 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.32$ (br. s, 1 H), 8.60 (br. s, 1 H), $7.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.78(\mathrm{~m}, 2$ H), $6.68-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.20(\mathrm{~m}, 9 \mathrm{H}), 3.13-2.94(\mathrm{~m}, 3$ H), $2.82-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.65(\mathrm{~m}, 9 \mathrm{H}), 1.01-0.82(\mathrm{~m}, 4 \mathrm{H})$, $0.74-0.52(\mathrm{~m}, 4 \mathrm{H})$ (the proton arising from the carboxylic acid was not observed due to exchange); ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=-76.0$ (s, 5 F), -146.0 (s, 1 F) (over integration was observed at -76.0 ppm due to excess TFA present in the sample); HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{FN}_{3} \mathrm{O}_{2}, 506.3177$ found 506.3166.
(\pm)-(E)-Methyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate ((\pm)-155)

(\pm)-7-((4-Fluoroazepan-4-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine $(0.79 \mathrm{~g}, 3.0 \mathrm{mmol})$ and DIPEA ($0.79 \mathrm{~mL}, 4.5 \mathrm{mmol}$) were dissolved in DCM (20 mL), (E)-methyl 4-bromobut-2-enoate $(0.59 \mathrm{~g}, 3.3 \mathrm{mmol})$ was added dropwise at ambient temperature under an atmosphere of N_{2} for 3 h . Water (60 mL) was added to the reaction mixture and the layers were separated. The aqueous phase was extracted with $\mathrm{DCM}(30 \mathrm{~mL})$ and the organic layers were combined, dried, filtered and evaporated under reduced pressure. The crude mixture was dissolved in DCM (5 mL) and purified by chromatography on silica ($50 \mathrm{~g}, 0-50 \% \mathrm{MeOH}$ in DCM, 8 CV). The appropriate fractions were combined and evaporated to give the title compound $(0.29 \mathrm{~g}, 26 \%)$ as an orange gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 362 ; \mathrm{R}_{\mathrm{t}} 1.07 \mathrm{~min}$, purity $92 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96\left(\mathrm{td},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=15.5\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.0, \mathrm{~Hz}, 1 \mathrm{H}\right), 6.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96\left(\mathrm{dt},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=15.5,{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 4.82 (br. s, 1 H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.24\left(\mathrm{td},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.0,{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2\right.$ H), $2.93-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.59(\mathrm{~m}, 5 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.16-1.67(\mathrm{~m}, 7 \mathrm{H})$, $1.61-1.49(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=(-134.0)-(-134.5)(\mathrm{m})$;
(E)-Methyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate (155a) (Enantiomer A))

Using the method above, the title compound was prepared from 7-((4-fluoroazepan-4-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine - Enantiomer A ($0.70 \mathrm{~g}, 2.5 \mathrm{mmol}$) to give the title compound ($304 \mathrm{mg}, 32 \%$) as an orange gum : purity 84%.
(E)-Methyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate ($\mathbf{1 5 5 b}$) (Enantiomer B))

Using the method above, the title compound was prepared from 7-((4-fluoroazepan-4-yl)methyl)-1,2,3,4-tetrahydro-1,8-naphthyridine - Enantiomer B ($0.61 \mathrm{~g}, 2.5 \mathrm{mmol}$) to give the title compound $(1.11 \mathrm{~g}, 98 \%)$ as an orange gum : purity 86%.

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3morpholinophenyl)butanoic acid $((\pm)-(\mathbf{1 5 4}))$

(E)-Methyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate $\quad(215 \mathrm{mg}, \quad 0.595 \mathrm{mmol}), \quad[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2} \quad(3 \mathrm{mg}, \quad 6 \quad \mu \mathrm{~mol}), \quad(3-$ morpholinophenyl)boronic acid ($360 \mathrm{mg}, 1.74 \mathrm{mmol}$) and $\mathrm{KOH}_{(\mathrm{aq})}(0.313 \mathrm{~mL}$ of a 3.8 M solution, 1.190 mmol) were dissolved in 1,4-dioxane (3 mL) and the solution was heated in a microwave oven ($1 \mathrm{~h}, 95^{\circ} \mathrm{C}$, normal power). The solution was filtered through a MgSO_{4} column, washed with EtOH (10 mL) then evaporated under reduced pressure. The crude material was dissolved in MeOH : $\mathrm{DMSO}(1: 1,1 \mathrm{~mL})$ and was purified by reverse phase chromatography $\left(\mathrm{C} 18,30 \mathrm{~g}, \mathrm{H}_{2} \mathrm{O}(3 \mathrm{CV})\right.$ then $\mathrm{MeCN}(3 \mathrm{CV})$. The appropriate fractions were combined and the product was extracted with DCM (30 mL). The organic phase was separated, evaporated under reduced pressure and dissolved in MeOH : DMSO (1:1) (3mL) and purified by MDAP (Method B, High pH). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($19 \mathrm{mg}, 6 \%$) as a yellow gum : LCMS (High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 511 ; \mathrm{R}_{\mathrm{t}} 0.82 \mathrm{~min}$, purity $93 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.74$ (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24$ (br. $\mathrm{s}, 1 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 4 \mathrm{H}), 3.27-3.20(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 4$ H), $2.84-2.64(\mathrm{~m}, 6 \mathrm{H}), 2.62(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.30(\mathrm{~m}, 1 \mathrm{H})$, $2.07-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 1 \mathrm{H})($ the
proton arising from the carboxylic acid was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-136.0)-(-136.5)(\mathrm{m}, 0.5 \mathrm{~F}),(-136.5)-(-137.0)(\mathrm{m}, 0.5 \mathrm{~F})$.
tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3morpholinophenyl)butanoate (157a-d) (Diastereomers A-D)

(\pm)-(E)-tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate ($200 \mathrm{mg}, 0.496 \mathrm{mmol}$) (3-morpholinophenyl)boronic acid ($300 \mathrm{mg}, 1.447$ $\mathrm{mmol})$ and $\mathrm{KOH}_{(\mathrm{aq})}(0.261 \mathrm{~mL}$ of a 3.8 M solution, 0.991 mmol$)$ were dissolved in $1,4-$ dioxane (2 mL) and the solution was degassed. $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(3 \mathrm{mg}, 5 \mu \mathrm{~mol})$ was added the solution was heated in a microwave oven $\left(1 \mathrm{~h}, 95^{\circ} \mathrm{C}\right.$, normal power). The mixture was filtered and the solution evaporated under reduced pressure. The crude mixture was dissolved in DMSO : MeOH (1:1, 4 mL) and purified by reverse phase chromatography ($\mathrm{C} 18,30 \mathrm{~g}, 70$ - $95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 12 CV). The appropriate fractions were combined and evaporated under reduced pressure to give (\pm)-tertbutyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3morpholinophenyl)butanoate ($107 \mathrm{mg}, 38 \%$) as a yellow oil. The mixture was dissolved in $\mathrm{EtOH}(5 \mathrm{~mL})$ and the diastereomers were separated by chiral HPLC (Injection; 0.5 mL , eluting with $95 \% \mathrm{EtOH} / 4.8 \%$ heptane $/ 0.2 \%$ isopropylamine, $\mathrm{f}=42.5 \mathrm{~mL} / \mathrm{min}$, detecting at 320 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak AD-H (self packed), 45 min), to give

Diastereomer A: tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-morpholinophenyl)butanoate (19 mg, 7\%). Analytical chiral HPLC ($95 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine)/heptane, $\mathrm{f}=0.6 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=7.2 \mathrm{~min}$; chiral purity $>99 \%$.

Diastereomer B: tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-morpholinophenyl)butanoate (17 mg, 6\%). Analytical chiral HPLC (Method (as diastereomer A)) $\mathrm{R}_{\mathrm{t}}=9.5 \mathrm{~min}$; chiral purity $>99 \%$.

Diastereomer \quad : tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-morpholinophenyl)butanoate (19 mg, 7\%). Analytical chiral HPLC (Method (as diastereomer A)) $\mathrm{R}_{\mathrm{t}}=11.5 \mathrm{~min}$; chiral purity $>99 \%$.

Diastereomer D: tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-morpholinophenyl)butanoate (18 mg, 6\%). Analytical chiral HPLC (Method (as diastereomer A)) $\mathrm{R}_{\mathrm{t}}=16.5 \mathrm{~min}$; chiral purity $>99 \%$.

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3morpholinophenyl)butanoic acid (154a) (Diastereomer A)

tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3morpholinophenyl)butanoate - Diastereomer A ($19 \mathrm{mg}, 0.03 \mathrm{mmol}$) was dissolved in THF $(0.3 \mathrm{~mL})$ and $\mathrm{HCl}_{\text {(aq) }}(0.12 \mathrm{~mL}$ of a 2 M solution, 0.24 mmol$)$ was added. The solution was stirred at $50^{\circ} \mathrm{C}$ for 6 h , then at ambient temperature for 66 h , then at $50^{\circ} \mathrm{C}$ for 6 h , then at ambient temperature for 17 h , then $50^{\circ} \mathrm{C}$ for 6 h and finally ambient temperature for 17 h . The solvent was evaporated then the crude mixture was dissolved in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ and purified by reverse phase chromatography (C18, $4.3 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 10 CV). The appropriate fractions were combined and dried under a stream of nitrogen to give the title compound ($8 \mathrm{mg}, 47 \%$) as a yellow gum : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 511 ; \mathrm{R}_{\mathrm{t}} 0.49 \mathrm{~min}$, purity $98 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 1$ H), $6.73-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$, $3.90-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.44(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 4 \mathrm{H})$, $3.13-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.65(\mathrm{~m}, 8 \mathrm{H}), 2.31-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.97-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.66(\mathrm{~m}, 3 \mathrm{H})$ (the proton arising from the carboxylic acid was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=(-137.0)-(-137.5)(\mathrm{m})$.

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3morpholinophenyl)butanoic acid (154b) (Diastereomer B)

Using the method above, the title compound was prepared from tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-morpholinophenyl) butanoate - Diastereomer B ($17 \mathrm{mg}, 0.03 \mathrm{mmol}$) gave the title compound ($11 \mathrm{mg}, 72 \%$) as a gum : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 511 ; \mathrm{R}_{\mathrm{t}} 0.49 \mathrm{~min}$, purity $98 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 1 \mathrm{H})$, $6.72(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32-6.15$ (br. s, 1 H), $3.90-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.48-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.14(\mathrm{~m}, 4 \mathrm{H})$, $3.13-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.71(\mathrm{~m}, 8 \mathrm{H}), 2.34-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.98-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.67(\mathrm{~m}, 3 \mathrm{H})$ (the proton arising from the carboxylic acid was not observed due to exchange); ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-136.5(\mathrm{~s})$.

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3morpholinophenyl)butanoic acid (154c) (Diastereomer C)

Using the method above, the title compound was prepared from tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-morpholinophenyl) butanoate - Diastereomer C ($19 \mathrm{mg}, 0.03 \mathrm{mmol}$) gave the title compound ($11 \mathrm{mg}, 64 \%$) as a gum : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 511 ; \mathrm{R}_{\mathrm{t}} 0.49 \mathrm{~min}$, purity $98 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 1 \mathrm{H})$, $6.72(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.06$ (br. s, $1 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 4$ H), $3.12-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.68(\mathrm{~m}, 8 \mathrm{H}), 2.33-1.99(\mathrm{~m}, 3 \mathrm{H})$, $1.98-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.66(\mathrm{~m}, 3 \mathrm{H})$, (the proton arising from the carboxylic acid was not observed due to exchange); ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-136.5$ (s); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{FN}_{4} \mathrm{O}_{3}, 511.3068$ found 511.3079.

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3morpholinophenyl)butanoic acid (154d) (Diastereomer D)

Using the method above, the title compound was prepared from tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-morpholinophenyl) butanoate - Diastereomer D ($18 \mathrm{mg}, 0.03 \mathrm{mmol}$) gave the title compound ($12 \mathrm{mg}, 74 \%$) as a gum : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 511 ; \mathrm{R}_{\mathrm{t}} 0.48 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} \mathrm{CDCl}_{3}\right) \delta=7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 1 \mathrm{H})$, $6.72(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28-6.03$ (br. s, 1 H), $3.90-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 4 \mathrm{H})$, $3.13-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.69(\mathrm{~m}, 8 \mathrm{H}), 2.40-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.97-$ $1.88(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.60(\mathrm{~m}, 3 \mathrm{H})$ (the proton arising from the carboxylic acid was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=(-136.0)-(137.0)(\mathrm{m})$.
tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3-methylmorpholino)phenyl)butanoate (158a-d) (Diastereomers A-D)

(\pm)-(E)-tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate $(150 \mathrm{mg}, \quad 0.37 \mathrm{mmol}), \quad(R)-3$-methyl-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)morpholine ($329 \mathrm{mg}, 1.085 \mathrm{mmol}$) and $\mathrm{KOH}_{(\mathrm{aq})}(0.20 \mathrm{~mL}$ of a 3.8 M solution, 0.74 mmol) were dissolved in 1,4-dioxane (1.5 mL), then the solution was degassed. $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}(2.0 \mathrm{mg}, 3.8 \mu \mathrm{~mol})\right.$ was added and the solution and the vessel was flushed with nitrogen, sealed and heated in a microwave oven $\left(1 \mathrm{~h}, 95^{\circ} \mathrm{C}\right.$, normal power) $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(4 \mathrm{mg}, 8 \mu \mathrm{~mol})$ was added and the reaction vessel flushed with nitrogen, sealed and heated in a microwave oven ($1 \mathrm{~h}, 95^{\circ} \mathrm{C}$, normal power). The solution was filtered and the solvent was evaporated under reduced pressure. The reaction mixture was dissolved in DMSO (4 mL) and purified by reverse phase chromatography (C18, 30 g , using a $65-$ $95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 13 CV). The appropriate fractions were combined and evaporated under reduced pressure to give (\pm)-tertbutyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3-methylmorpholino)phenyl)butanoate ($57 \mathrm{mg}, 26 \%$) as a yellow gum: LCMS (System formic 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 581 ; \mathrm{R}_{\mathrm{t}} 1.47 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.22$ - $7.03(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=7.5,4.5 \mathrm{~Hz}, 1$ H), $3.91(\mathrm{dt}, J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=11.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.58(\mathrm{~m}, 3 \mathrm{H})$,
$3.23-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.52(\mathrm{~m}, 11 \mathrm{H}), 2.52-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.05$ $-1.67(\mathrm{~m}, 7 \mathrm{H}), 1.54-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.07-0.88(\mathrm{~m}, 3 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange).

A 55 mg portion was dissolved in $\mathrm{EtOH}(5 \mathrm{~mL})$ and the diastereomers were separated by chiral HPLC (Injection; 0.5 mL , eluting with EtOH/heptane : isopropylamine (1000:30:2), $\mathrm{f}=42.5 \mathrm{~mL} / \mathrm{min}$, detecting at 320 nm ; column $2 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak AD-H (self packed), 45 min) to give :

Diastereomer A: tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3-methylmorpholino)phenyl)butanoate (11 mg, 5\%) : Analytical chiral HPLC ($5 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine) $/ \mathrm{Heptane}$, $\mathrm{f}=1.0$ $\mathrm{mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AD-H (self packed)) R_{t} $=9.2 \mathrm{~min}$; chiral purity $>99 \%$.

Diastereomer B: tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3-methylmorpholino)phenyl)butanoate (10 $\mathrm{mg}, 5 \%)$: Analytical Chiral HPLC (Method (as diastereomer A)) $\mathrm{R}_{\mathrm{t}}=10.2 \mathrm{~min}$; chiral purity $>99 \%$. Diastereomer C: tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3-methylmorpholino)phenyl)butanoate (11 mg, 5\%) : Analytical Chiral HPLC (Method (as diastereomer A)) $\mathrm{R}_{\mathrm{t}}=13.5 \mathrm{~min}$; chiral purity $>99 \%$. Diastereomer D: tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3-methylmorpholino)phenyl)butanoate (12 $\mathrm{mg}, 6 \%$) : Analytical Chiral HPLC $($ Method $($ as diastereomer $A)) \mathrm{R}_{\mathrm{t}}=22.5 \mathrm{~min}$; chiral purity $>99 \%$.

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3methylmorpholino)phenyl)butanoic acid (161a) (Diastereomer A)

tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-$((R)$-3-methylmorpholino)phenyl)butanoate - Diastereomer A (11 mg, 0.02 mmol$)$ was dissolved in THF (0.2 mL) and $\mathrm{HCl}_{(\mathrm{aq})}(0.05 \mathrm{~mL}$ of a 2 M solution, 0.10 mmol$)$. The suspension was stirred at ambient temperature for 18 h then $50^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{HCl}_{\text {(aq) }}(0.02 \mathrm{~mL}$ of a 2 M solution, 0.05 mmol) was added to the solution and the reaction was heated to $50^{\circ} \mathrm{C}$ for 5 h . The solution was evaporated and dissolved in $\mathrm{H}_{2} \mathrm{O}(300 \mu \mathrm{~L})$. The solution were purified by reverse phase chromatography (C18, $4.3 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 10 CV). The appropriate fractions were combined and dried under a stream of nitrogen to give the title compound ($5 \mathrm{mg}, 50 \%$) as a gum : $[\alpha]_{\mathrm{D}}=-5\left(c=0.45, \mathrm{CDCl}_{3}\right) ;$ LCMS $($ System formic 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 525 ; \mathrm{R}_{\mathrm{t}} 0.49 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta={ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.22(\mathrm{t}, J=$ $7.5,1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.35$ (m, 4 H), $3.31-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.09(\mathrm{~m}, 3 \mathrm{H}), 2.95-2.85(\mathrm{~m}, 3$ H), $2.72(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 2 \mathrm{H}), 2.46-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.22-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.93-$ $1.85(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$ (the protons arising from the
amine and carboxylic acid were not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=(-144.0)-(-145.0)(\mathrm{m})$.

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3methylmorpholino)phenyl)butanoic acid (161b) (Diastereomer B)

Using the method above, the title compound was prepared from tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3-
methylmorpholino)phenyl)butanoate - Diastereomer B ($10 \mathrm{mg}, 0.02 \mathrm{mmol}$) gave the title compound ($6 \mathrm{mg}, 66 \%$) as a gum : $[\alpha]_{\mathrm{D}}=+3(c=0.51$, EtOH); LCMS (System formic 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 525 ; \mathrm{R}_{\mathrm{t}} 0.49 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.24-7.17$ $(\mathrm{m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.34$ (m, 4 H), 3.17 - 3.03 (m, 4 H), 2.96 - 2.77 (m, 3 H), 2.75 - 2.54 (m, 6 H), 2.38 - 2.06 (m, 2 H), $2.06-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$ (the protons arising from the amine and carboxylic acid were not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=(-144.0)-(-145.0)(\mathrm{m})$.

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3methylmorpholino)phenyl)butanoic acid (161c) (Diastereomer C)

Using the method above, the title compound was prepared from tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3-
methylmorpholino) phenyl)butanoate - Diastereomer C ($11 \mathrm{mg}, 0.02 \mathrm{mmol}$) gave the title compound ($5 \mathrm{mg}, 50 \%$) as a gum : $[\alpha]_{\mathrm{D}}=+3(c=0.48$, EtOH); LCMS (System formic 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 525 ; \mathrm{R}_{\mathrm{t}} 0.49 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.07$ (br. s, 1 H), $7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-$ $6.58(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.80-$ $3.63(\mathrm{~m}, 4 \mathrm{H}), 3.54-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.37-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.03(\mathrm{~m}, 4 \mathrm{H}), 2.87(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.82-2.68(\mathrm{~m}, 3 \mathrm{H}), 2.68-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.00(\mathrm{~m}$, $2 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.76(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 1.12-1.01(\mathrm{~m}, 3 \mathrm{H})$ (the proton arising from the carboxylic acid could not be observed due to exchange).

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3methylmorpholino)phenyl)butanoic acid (161d) (Diastereomer D)

Using the method above, the title compound was prepared from tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-((R)-3-
methylmorpholino) phenyl)butanoate - Diastereomer D ($12 \mathrm{mg}, 0.02 \mathrm{mmol}$) gave the title compound ($8 \mathrm{mg}, 74 \%$) as a gum. $[\alpha]_{\mathrm{D}}=-5\left(c=0.81, \mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta=7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.71(\mathrm{~m}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.64(\mathrm{~m}, 2 \mathrm{H})$, $3.51-3.35(\mathrm{~m}, 4 \mathrm{H}), 3.33-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.10(\mathrm{~m}, 3 \mathrm{H}), 2.96-$ $2.84(\mathrm{~m}, 3 \mathrm{H}), 2.72(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 2 \mathrm{H}), 2.40-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 4$ $\mathrm{H}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$ (the protons arising from the amine and the carboxylic acid were not observed due to exchange).

Methyl 3-(3-((2S,6R)-2,6-dimethylmorpholino)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro -1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate (159a) (Diastereomer A)

(E)-Methyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate Diastereomer A $(150 \mathrm{mg}, 0.33 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(9 \mathrm{mg}, 0.02 \mathrm{mmol}),(3-((2 S$, $6 R$)-2,6-dimethylmorpholino)phenyl)boronic acid ($234 \mathrm{mg}, 1.00 \mathrm{mmol}$) and $\mathrm{KOH}_{(\text {aq) }}(0.175$ mL of a 3.8 M solution, 0.664 mmol) were dissolved in 1,4-dioxane (2 mL) and the solution was heated in a microwave oven ($100 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$ then washed with EtOAc (20 mL). The reaction mixture was evaporated and dissolved in DMSO : $\mathrm{MeOH}(1 \mathrm{~mL})$, the crude reaction mixture was purified using reverse phase chromatography (C18, $12 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 15 CV). The appropriate fractions were combined and evaporated. The solid was dissolved in $\mathrm{EtOH}(2 \mathrm{~mL})$ and heptane (1 mL) and the diastereomers separated by using chiral HPLC (Injection; 0.5 mL , eluting with 20% $\mathrm{EtOH} /$ heptane (containing 0.2% isopropylamine, $\mathrm{f}=30 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OJ-H (self packed), 15 min) to give the title compound (diastereomer A) ($20 \mathrm{mg}, 11 \%$) as a gum, diastereomer B was not collected. Analytical chiral HPLC (20% EtOH (containing 0.2% isopropylamine) $/$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OJ (self packed)) $\mathrm{R}_{\mathrm{t}}=14.8 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 553 ; \mathrm{R}_{\mathrm{t}} 1.38 \mathrm{~min}$, purity 94%; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.20-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.40$
(d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{ddd}, J=10.0,6.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.72(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{t}, \mathrm{J}=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{dd}, J=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H})$, $2.33-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.68(\mathrm{~m}, 7 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-139.5)-(-140.0)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{FN}_{4} \mathrm{O}_{3}, 553.3528$ found 553.3548.

3-(3-((2S,6R)-2,6-dimethylmorpholino)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid unknown stoichiometric salt (162a) (Diastereomer A)

Methyl 3-(3-((2S,6R)-2,6-dimethylmorpholino)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate - Diastereomer A ($20 \mathrm{mg}, 0.04 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL}) . \mathrm{LiOH}_{(\mathrm{aq})}(0.3 \mathrm{~mL}$ of a 1 M solution, 0.3 mmol$)$ was added to the reaction mixture. The reaction mixture was stirred for 18 h at ambient temperature. The solution was purified using reverse phase chromatography (C18, 5-95\% MeCN (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 15 CV). The appropriate fractions were collected and evaporated to give the title compound ($16 \mathrm{mg}, 82 \%$) as a gum : $[\alpha]_{\mathrm{D}}=+9(c=$ $1.08, \mathrm{EtOH}$); LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 539 ; \mathrm{R}_{\mathrm{t}} 0.56 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$

NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.14$ (br. s, 1 H), 8.28 (br. s, 1 H), $7.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{ddd}, J=10.0,6.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-$ $3.37(\mathrm{~m}, 6 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 2 \mathrm{H}) 3.07-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.52$ (m, 2 H), $2.24(\mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}), 1.93-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}$, 3 H) (the protons arising from the amine and carboxylic acid were not observed due to exchange); HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{FN}_{4} \mathrm{O}_{3}, 539.3392$ found 539.3380.

Methyl 3-(3-((2S,6R)-2,6-dimethylmorpholino)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate (159b) (Diastereomer B)

(E)-Methyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate - Diastereomer B ($80 \mathrm{mg}, 0.22 \mathrm{mmol}$) was dissolved in 2MeTHF (2.1 mL) and the solution was degassed. ($2 S, 6 R$)-2,6-dimethyl-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)morpholine ($211 \mathrm{mg}, 0.664 \mathrm{mmol}$), (R)-BINAP ($83 \mathrm{mg}, 0.13 \mathrm{mmol}$), $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(33 \mathrm{mg}, 0.066 \mathrm{mmol})$ and $\mathrm{KOH}_{(\mathrm{aq})}(0.116 \mathrm{~mL}$ of a 3.8 M solution, 0.443 mmol) were added. The solution was heated in a microwave oven ($45 \mathrm{~min}, 90^{\circ} \mathrm{C}$, high power). The reaction mixture was diluted with MeOH (3 mL), loaded onto an SCX silica cartridge (5 g, MeOH 1 CV , MeCN 1 CV , load compound, MeCN $2 \mathrm{CV}, 2 \mathrm{M} \mathrm{NH}_{3}$ in MeOH 3 CV). The appropriate fractions were evaporated to give a gum. The crude gum was dissolved in $1: 1 \mathrm{MeOH}: \operatorname{DMSO}(300 \mu \mathrm{~L})$ and purified by reverse phase column
chromatography ($\mathrm{C} 18,60 \mathrm{~g}, 50-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 12 CV). The appropriate fractions were evaporated under reduced pressure. The solid was dissolved in $\mathrm{EtOH}(2 \mathrm{~mL})$ and heptane $(1 \mathrm{~mL})$ and the diastereomers were separated by using chiral HPLC (Injection; 0.5 mL , eluting with $20 \% \mathrm{EtOH} /$ heptane (containing 0.2% isopropylamine, $\mathrm{f}=30 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OJ-H (self packed), 15 min) to give the title compound ($28 \mathrm{mg}, 15 \%$). Analytical chiral HPLC ($20 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine) $/$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OJ (self packed)) $\mathrm{R}_{\mathrm{t}}=10.0$; chiral purity $>99 \%$, achiral purity 88%.

3-(3-((2S,6R)-2,6-Dimethylmorpholino)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid.TFA salt (162b) (Diastereomer B)

Methyl 3-(3-((2S,6R)-2,6-dimethylmorpholino)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate ($28 \mathrm{mg}, 0.051 \mathrm{mmol}$) was dissolved in $\mathrm{MeCN}(380 \mu \mathrm{l})$ and $\mathrm{NaOH}_{(\mathrm{aq})}(127 \mu \mathrm{~L}$ of a 2 M solution, 0.253 mmol$)$ was added dropwise. The reaction mixture was heated in a microwave oven ($30 \mathrm{~min}, 50^{\circ} \mathrm{C}$, very high power). The reaction mixture was evaporated under reduced pressure and the resulting white solid was dissolved in $\mathrm{H}_{2} \mathrm{O}$: DMSO (1:1, 1 mL). The solution was purified by reverse phase chromatography (C18, $12 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing $0.1 \% \mathrm{TFA}$) in water (containing
$0.1 \% \mathrm{TFA}$). The appropriate fractions were combined and concentrated to give the title compound ($8.0 \mathrm{mg}, 25 \%$) as a gum : $[\alpha]_{\mathrm{D}}=-10(c=1.14, \mathrm{EtOH})$; LCMS (System High pH $2 \mathrm{~min})[\mathrm{M}+\mathrm{H}]^{+} 539 ; \mathrm{R}_{\mathrm{t}} 0.91 \mathrm{~min}$, purity $93 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.33$ (br. s, 1 H), 8.55 (br. s, 1 H), $7.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 1 \mathrm{H})$, $6.84(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (ddd, $J=10.0,6.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.38(\mathrm{~m}, 6 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 2 \mathrm{H})$, $2.82-2.72(\mathrm{~m}, 4 \mathrm{H}), 2.60-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{dd}, J=12.0,10.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-1.96(\mathrm{~m}$, $2 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 5 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H})$.

3-(3-(8-Oxa-3-azabicyclo[3.2.1]octan-3-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid (160a) (Diastereomer A)

(E)-Methyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate - Enantiomer A (150 mg, 0.33 mmol$),[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(8 \mathrm{mg}, 0.02 \mathrm{mmol}),(3-(8-$ oxa-3-azabicyclo[3.2.1]octan-3-yl)phenyl)boronic acid ($232 \mathrm{mg}, 0.100 \mathrm{mmol}$) and $\mathrm{KOH}_{(\mathrm{aq})}$ (0.175 mL of a 3.8 M solution, 0.664 mmol) were dissolved in 1,4-dioxane (2 mL) and the solution was heated in a microwave oven ($100 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with EtOAc (20 mL), then the appropriate fractions were evaporated under reduced pressure. The crude solid was dissolved in DMSO : MeOH $(1: 1,1 \mathrm{~mL})$ and purified using reverse phase chromatography $(\mathrm{C} 18,30 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 15 CV). The appropriate
fractions were combined and evaporated to give methyl 3-(3-(8-oxa-3-azabicyclo[3.2.1]octan-3-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate (45 mgs). The solid was dissolved in EtOH (3 mL) and the diastereomers were separated by chiral HPLC (Injection; 0.5 mL , eluting with $50 \% \mathrm{MeOH}$ (containing 0.2% isopropylamine) / $50 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine) ($\mathrm{f}=20$ $\mathrm{mL} / \mathrm{min}$, detecting at 280 nm ; column $2 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OJ (self packed), 45 min) to give the title compound ($21 \mathrm{mg}, 11 \%$) : Analytical chiral HPLC $(\mathrm{EtOH} / \mathrm{MeOH}, \mathrm{f}=1.0$ $\mathrm{mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OJ (self packed)) $\mathrm{R}_{\mathrm{t}}=$ 20.8 min ; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 551 ; \mathrm{R}_{\mathrm{t}} 1.33 \mathrm{~min}$, purity $97 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.16-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.44-6.39$ (m, 1 H), 4.44 (br. s, 1 H), $3.58-3.53$ (m, 3 H), $3.43-3.33$ (m, 5 H), $3.27-3.17$ (m, 1 H), $2.86(\mathrm{dd}, J=11.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.72-$ 2.67 (m, 4 H), $2.66-2.55(\mathrm{~m}, 6 \mathrm{H}), 2.48(\mathrm{dd}, J=15.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{ddd}, J=13.5,7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.51-1.36(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=175.0,157.0,153.5,153.0,152.5,145.0,137.5,130.0,119.0,115.5$, $114.5,113.5,99.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=173 \mathrm{~Hz}\right), 75.5,65.5,58.0,54.5,52.0,50.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}\right), 42.5$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right), 40.5,40.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 39.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 38.5,30.5,29.0,27.5$, $23.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}\right), 22.5 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-139.5)-(-140.0)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{FN}_{4} \mathrm{O}_{3}, 551.3392$ found 551.3372.

3-(3-(8-Oxa-3-azabicyclo[3.2.1]octan-3-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid (163a) (Diastereomer A)

Methyl 3-(3-((1R,5S)-8-oxa-3-azabicyclo[3.2.1]octan-3-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate - Diastereomer A (21 mg, $0.04 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL}) . \mathrm{LiOH}_{(\mathrm{aq})}(0.08 \mathrm{~mL}$ of a 1 M solution, 0.08 mmol) was added to the reaction mixture. The reaction mixture was stirred for 18 h at ambient temperature. Water $(0.5 \mathrm{~mL})$ was added and the reaction mixture was stirred for 72 h. $\mathrm{HCl}_{(\mathrm{aq})}(0.3 \mathrm{~mL}$ of a 2 M solution, 0.6 mmol$)$ was added to the reaction mixture, then it was loaded onto a pre-conditioned SCX column (5 g, MeOH 1 CV , MeCN 1 CV , load compound, $\mathrm{MeOH} 2 \mathrm{CV}, 2 \mathrm{M} \mathrm{NH}_{3}$ in MeOH 2 CV). The ammonical fractions were combined and evaporated. The residue was purified using reverse phase chromatography (C18, $12 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 15 CV). The appropriate fractions were collected and evaporated to give the title compound $(16 \mathrm{mg}, 0.030 \mathrm{mmol}, 78 \%)$ as a gum : $[\alpha]_{\mathrm{D}}=-4(c=1.09, \mathrm{EtOH}) ;$ LCMS $($ System High pH $2 \mathrm{~min})[\mathrm{M}+\mathrm{H}]^{+} 537 ; \mathrm{R}_{\mathrm{t}} 0.89 \mathrm{~min}$, purity $94 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.21-7.08$ (m, 2 H), $6.77-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-$ $3.32(\mathrm{~m}, 8 \mathrm{H}), 3.28-3.06(\mathrm{~m}, 4 \mathrm{H}), 2.97-2.78(\mathrm{~m}, 6 \mathrm{H}), 2.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-$ $2.58(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 5 \mathrm{H}), 1.90-$ $1.82(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 1 \mathrm{H})$ (the protons arising from the amine and carboxylic acid were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=180.5,157.0,154.0$,
$153.5,150.5,144.5,142.5,138.0,131.0,118.0,117.0,116.0,115.0,114.5,114.0,96.5(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=175 \mathrm{~Hz}\right), 75.5,65.5,54.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 46.5,43.5,42.5,40.0,38.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22\right.$ $\mathrm{Hz}), 29.0,27.5,22.5,20.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-144.5)-$ (-145.0) (m); HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{FN}_{4} \mathrm{O}_{3}, 537.3235$ found 537.3219.

3-(3-(8-Oxa-3-azabicyclo[3.2.1]octan-3-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid (160b) (Diastereomer B)

3-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate ($80 \mathrm{mg}, 0.22 \mathrm{mmol}$) was dissolved in 2MeTHF (2.1 mL) and the solution was degassed. 3-(3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-8-oxa-3-azabicyclo[3.2.1]octane $(209 \mathrm{mg}, 0.664 \mathrm{mmol}),(R)$-BINAP $(83 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{KOH}_{(\mathrm{aq})},(0.12 \mathrm{~mL}$ of a 3.8 M solution, 0.44 mmol) were then added to the reaction mixture. The solution was heated in a microwave oven ($45 \mathrm{~min}, 90^{\circ} \mathrm{C}$, high power). The reaction mixture was diluted with MeOH (3 mL), loaded onto an SCX silica column (5 g , MeOH $1 \mathrm{CV}, \mathrm{MeCN} 1 \mathrm{CV}$, load compound, $\mathrm{MeOH} 2 \mathrm{CV}, 2 \mathrm{M} \mathrm{NH}_{3}$ in MeOH 3 CV). The appropriate fractions were evaporated to give a gum. The crude gum was dissolved in 1:1 MeOH:DMSO ($300 \mu \mathrm{~L}$) and purified by reversephase column chromatography ($\mathrm{C} 18,60 \mathrm{~g}, 50-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 14 CV). The appropriate fractions were evaporated then dissolved in EtOH (3 mL) and the diastereomers were separated by chiral HPLC (Injection; 0.5 mL , eluting with $50 \% \mathrm{MeOH}$ (containing 0.2% isopropylamine) / $50 \% \mathrm{EtOH}$ (containing
0.2% isopropylamine $)(\mathrm{f}=20 \mathrm{~mL} / \mathrm{min}$, detecting at 280 nm ; column $2 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OJ (self packed), 45 min) to give the title compound ($24 \mathrm{mg}, 11 \%$) : Analytical chiral HPLC $(\mathrm{EtOH} / \mathrm{MeOH}, \mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column $4.6 \mathrm{~mm} \mathrm{id} \times 25 \mathrm{~cm}$ Chiralcel OJ (self packed)) $\mathrm{R}_{\mathrm{t}}=31.0 \mathrm{~min} ; \operatorname{LCMS}($ System High pH 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 551 ; \mathrm{R}_{\mathrm{t}} 1.33 \mathrm{~min}$, purity 55% (the major impurity was related to (R)-BINAP); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.61(\mathrm{~m}, 2 \mathrm{H})$, $6.47-6.38(\mathrm{~m}, 1 \mathrm{H}), 4.86$ (br. s, 1 H), $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~d}, J=11.5$ Hz, 2 H), 3.29-3.17(m, 1 H), 3.04-2.97(m, 2H), 2.92-2.83(m, 2H), 2.83-2.78(m, 1 H), $2.75-2.64(\mathrm{~m}, 4 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.84(\mathrm{~m}, 10 \mathrm{H})$, $1.84-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.16(\mathrm{~m}, 1 \mathrm{H})$.

3-(3-(8-Oxa-3-azabicyclo[3.2.1]octan-3-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid (163b) (Diastereomer B)

Using the method above, the title compound was prepared from methyl 3-(3-((1R,5S)-8-oxa-3-azabicyclo[3.2.1] octan-3-yl)phenyl)-4-((R)-4-fluoro-4-((5,6,7,8-tetrahydro-1,8-
naphthyridin-2-yl)methyl)azepan-1-yl)butanoate - Diastereomer B ($24 \mathrm{mg}, 0.04 \mathrm{mmol}$) to give the title compound ($19 \mathrm{mg}, 82 \%$) as a gum. $[\alpha]_{\mathrm{D}}=+7(c=1.06, \mathrm{EtOH})$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 537 ; \mathrm{R}_{\mathrm{t}} 0.90 \mathrm{~min}$, purity $94 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.29-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.52-3.34(\mathrm{~m}, 10 \mathrm{H}), 3.18(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.83$
(m, 6 H), $2.80-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.21-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 4$ $\mathrm{H}), 1.91-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.66(\mathrm{~m}, 1 \mathrm{H})$ (the proton arising from carboxylic acid was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=180.5,156.5,153.5,151.5$, $145.0,144.5,138.5,130.5,121.0,118.0,116.5,114.5,114.0,113.5,98.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=175 \mathrm{~Hz}\right)$, $75.5,66.0,57.0,54.5,46.5,42.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right) 39.5,36.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 35.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}\right.$ $=26 \mathrm{~Hz}), 29.0,27.5,22.0,20.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-144.0)$ $-(-144.5)(\mathrm{m}) ;$ HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{FN}_{4} \mathrm{O}_{3}, 537.3235$ found 537.3228 .

3-(3-Cyclopropyl-4-methoxyphenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate (165a-d) (Diastereomers A-D)

(\pm)-(E)-tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate ($200 \mathrm{mg}, \quad 0.496 \mathrm{mmol}$), 2-(3-cyclopropyl-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($397 \mathrm{mg}, 1.45 \mathrm{mmol}$) and $\mathrm{KOH}_{\text {(aq) }}(0.261 \mathrm{~mL}$ of a 3.8 M solution, 0.991 mmol) were dissolved in 1,4-dioxane (2 mL) and the solution was degassed. $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(2.5 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ was added and the reaction vessel flushed with nitrogen, sealed and heated in a microwave oven $\left(1 \mathrm{~h}, 95^{\circ} \mathrm{C}\right.$, normal power). The reaction mixture was filtered and the solution evaporated. The residual solid was dissolved in MeOH : DMSO ($1: 1,4 \mathrm{~mL}$) and purified by reverse phase chromatography ($\mathrm{C} 18,60 \mathrm{~g}, 5-50 \% \mathrm{MeCN}$ (containing $0.1 \% \mathrm{TFA}$) in water (containing $0.1 \% \mathrm{TFA}$), 10 CV). The appropriate fractions
were combined and concentrated under reduced pressure to give (\pm)-tert-butyl 3-(3-cyclopropyl-4-methoxyphenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate ($175 \mathrm{mg}, 64 \%$) as a black oil. A 50 mg portion was dissolved in EtOH (5 mL) and the diastereomers separated by using chiral HPLC (Injection; 0.5 mL , eluting with $3 \% \mathrm{EtOH} /$ heptane (containing 0.2% isopropylamine, $\mathrm{f}=42.5 \mathrm{~mL} / \mathrm{min}$, detecting at 320 nm ; column $2 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak AD-H (self packed), 30 min) to give mixed fractions of diastereomers A and B (21 mg) and fractions containing pure diastereomer C (11 mg) and D (11 mg). Fractions containing diastereomer A and B were evaporated and dissolved in EtOH (3 mL) and the diastereomers were re-separated by chiral HPLC (Injection; 0.25 mL , eluting with $3 \% \mathrm{EtOH} /$ heptane (containing 0.2% isopropylamine, $\mathrm{f}=20$ $\mathrm{mL} / \mathrm{min}$, detecting at 280 nm ; column $2 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak AS (self packed), 10 min) to give diastereomer A (11 mg) and diastereomer B (10 mg). Diastereomer A : Analytical chiral HPLC ($3 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine) $/$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AD (self packed)) $\mathrm{R}_{\mathrm{t}}=10.5 \mathrm{~min}$; chiral purity > 99\%; Diastereomer B : Analytical chiral HPLC (Method (as diastereomer A)) $\mathrm{R}_{\mathrm{t}}=9.0 \mathrm{~min}$; chiral purity > 99\%; Diastereomer C : Analytical chiral HPLC (Method (as diastereomer A)) $\mathrm{R}_{\mathrm{t}}=11.5 \mathrm{~min}$; chiral purity $>99 \%$; Diastereomer D : Analytical chiral HPLC (Method (as diastereomer A)) $\mathrm{R}_{\mathrm{t}}=24.2 \mathrm{~min}$; chiral purity $>99 \%$. The four esters were hydrolysed separately by dissolving the solid in 2-MeTHF $(0.2 \mathrm{~mL})$ and $\mathrm{HCl}_{(\mathrm{aq})}(0.01 \mathrm{~mL}$ of a 12 M solution, 0.10 mmol). The suspension was stirred at ambient temperature for 16 h then $50^{\circ} \mathrm{C}$ for 2 h . The solution was evaporated under reduced pressure and dissolved in water ($300 \mu \mathrm{~L}$). The individual solutions were purified by reverse phase chromatography (C18, 4.3 g, 5 $95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 10 CV). The appropriate fractions were combined and dried under a stream of nitrogen to give the title compound.

Diastereomer A: 3-(3-cyclopropyl-4-methoxyphenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid ($5 \mathrm{mg}, 51 \%$); LCMS (System formic 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 495 ; \mathrm{R}_{\mathrm{t}} 0.60 \mathrm{~min}$, purity $>99 \% ;[\alpha]_{\mathrm{D}}=+2(c=1.06, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.40(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 1 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 2$ $\mathrm{H}), 3.31-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.12-2.87(\mathrm{~m}, 4 \mathrm{H}), 2.87-2.67(\mathrm{~m}, 4 \mathrm{H}), 2.46-2.23(\mathrm{~m}, 1 \mathrm{H})$, $2.23-2.01(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 0.99-$ $0.90(\mathrm{~m}, 2 \mathrm{H}), 0.73-0.58(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the amine and the carboxylic acid were not observed due to exchange).

Diastereomer B: 3-(3-cyclopropyl-4-methoxyphenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid (7 mg, 78\%); LCMS (System formic 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 495 ; \mathrm{R}_{\mathrm{t}} 0.60$ min, purity $>99 \% ;[\alpha]_{\mathrm{D}}=-2(c=1.09, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 2$ H), $3.31-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.01(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.67(\mathrm{~m}, 8 \mathrm{H})$, $2.45-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.21-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.98-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 1 \mathrm{H}), 0.98-$ $0.86(\mathrm{~m}, 2 \mathrm{H}), 0.68-0.55(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the amine and the carboxylic acid were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=176.0,156.5$, $154.5,137.5,134.5,132.5,123.5,123.0,119.5,113.5,110.0,96.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=174 \mathrm{~Hz}\right), 73.5$, $67.0,63.0,56.5,55.5,49.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}\right), 46.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 44.5,41.0,38.5,35.5(\mathrm{~d}$, ${ }^{2} J_{\text {C-F }}=24 \mathrm{~Hz}$), 25.5, 23.5, $19.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right), 9.0,7.5$ (one carbon environment not observed); ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=(-136.5)-(-137.0)(\mathrm{m})$.

Diastereomer C: 3-(3-cyclopropyl-4-methoxyphenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid ($8 \mathrm{mg}, 81 \%$); LCMS (System formic 2
$\min)[\mathrm{M}+\mathrm{H}]^{+} 495 ; \mathrm{R}_{\mathrm{t}} 0.60 \mathrm{~min}$, purity $>99 \% ;[\alpha]_{\mathrm{D}}=-7(c=1.01, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.27-$ $3.15(\mathrm{~m}, 1 \mathrm{H}), 3.15-2.91(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.63(\mathrm{~m}, 8 \mathrm{H}), 2.34-2.03(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.79$ $(\mathrm{m}, 4 \mathrm{H}), 1.79-1.64(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.71-0.54(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the amine and the carboxylic acid were not observed due to exchange); ${ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=(-136.5)-(-137.0)(\mathrm{m})$.

Diastereomer D: 3-(3-cyclopropyl-4-methoxyphenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid ($8 \mathrm{mg}, 81 \%$); LCMS (System formic 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 495 ; \mathrm{R}_{\mathrm{t}} 0.60 \mathrm{~min}$, purity $99 \% ;[\alpha]_{\mathrm{D}}=+6(c=0.98, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.15(\mathrm{~m}$, $1 \mathrm{H}), 3.14-2.90(\mathrm{~m}, 4 \mathrm{H}), 2.89-2.65(\mathrm{~m}, 8 \mathrm{H}), 2.35-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.79(\mathrm{~m}, 4 \mathrm{H})$, $1.79-1.64(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.72-0.55(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the amine and the carboxylic acid were not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=(-136.5)-(-137.0)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{FN}_{3} \mathrm{O}_{3}, 496.2970$ found 496.2970.
tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-(5-methyl-1H-pyrazol-1-yl)phenyl)butanoate (167a-d) (Diastereomers A-D)

(\pm)-(E)-tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)but-2-enoate ($200 \mathrm{mg}, 0.5 \mathrm{mmol}$), (3-(5-methyl-1H-pyrazol-1-yl)phenyl)boronic acid (292 $\mathrm{mg}, 1.44 \mathrm{mmol})$ and $\mathrm{KOH}_{(\mathrm{aq})}(0.26 \mathrm{~mL}$ of a 3.8 M solution, 0.99 mmol$)$ were dissolved in 1,4-dioxane (3 mL). The solution was degassed with nitrogen, then $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(2.5 \mathrm{mg}, 5$ $\mu \mathrm{mol})$ was added. The solution was heated in a microwave oven ($1 \mathrm{~h}, 95^{\circ} \mathrm{C}$, normal power). The mixture was filtered and the filtrate was evaporated under reduced pressure. The resulting solid was dissolved in 1,4-dioxane (3 mL), $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5 \mathrm{mg}, 10 \mu \mathrm{~mol})$ was added and the reaction mixture was heated in a microwave oven (normal power, $95^{\circ} \mathrm{C}, 1 \mathrm{~h}$). The mixture was filtered and the filtrate evaporated under reduced pressure. The crude mixture was dissolved in DMSO (5 mL) and purified by reverse phase chromatography (C18, $30 \mathrm{~g}, 70-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 11 CV). The appropriate fractions were combined and evaporated under reduced pressure to give (\pm)-tert-butyl $\quad 4$-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-(5-methyl-1H-pyrazol-1-yl)phenyl)butanoate ($80 \mathrm{mg}, 28 \%$) as a yellow gum. The gum was dissolved in EtOH (5 mL) and the diastereomers separated by chiral HPLC (Injection; 0.5 mL , eluting with $90 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine)/ 10% hexane (containing 0.2% isopropylamine), then $25 \% \mathrm{EtOH}, \mathrm{f}=42.5 \mathrm{~mL} / \mathrm{min}$, detecting at 320 nm ; column 3 cm $\times 25 \mathrm{~cm}$ Chiralpak AD-H (self packed), 45 min) to give mixed fractions of diastereomer A
and B and diastereomer C and D. The two mixed fractions were evaporated and dissolved in EtOH (5 mL), diastereomers A and B were separated (Injection; 0.5 mL , eluting with 92.5% EtOH (containing 0.2% isopropylamine) $/ 7.5 \%$ hexane (containing 0.2% isopropylamine), then $25 \% \mathrm{EtOH}, \mathrm{f}=42.5 \mathrm{~mL} / \mathrm{min}$, detecting at 320 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak ODH (self packed), 20 min) to give diastereomer $\mathrm{A}(8 \mathrm{mg})$ and diastereomer $\mathrm{B}(9 \mathrm{mg})$. Diastereomers C and D were separated using a method of (Injection; 0.5 mL , eluting with $95 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine) $/ 5 \%$ hexane (containing 0.2% isopropylamine), then $25 \% \mathrm{EtOH}, \mathrm{f}=42.5 \mathrm{~mL} / \mathrm{min}$, detecting at 320 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak ODH (self packed), 30 min) to give diastereomer $\mathrm{C}(9 \mathrm{mg})$ and diastereomer $\mathrm{D}(9 \mathrm{mg})$. Diastereomer A : Analytical chiral HPLC (10\%EtOH(containing 0.2\% isopropylamine)/Heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=15.8 \mathrm{~min}$; chiral purity $>99 \%$. Diastereomer B : Analytical Chiral HPLC (Method (as diastereomer A)) $\mathrm{R}_{\mathrm{t}}=20.5 \mathrm{~min}$; chiral purity $>99 \%$. Diastereomer C : Analytical Chiral HPLC (Method (as diastereomer A)) $\mathrm{R}_{\mathrm{t}}=17.0 \mathrm{~min}$; chiral purity $>99 \%$. Diastereomer D : Analytical Chiral HPLC $\left(\right.$ Method $($ as diastereomer A) $) \mathrm{R}_{\mathrm{t}}=$ 21.5 min ; chiral purity $>99 \%$.

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-(5-methyl-1 H-pyrazol-1-yl)phenyl)butanoic acid (168a) (Diastereomer A)

tert-Butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-(5-methyl-1H-pyrazol-1-yl)phenyl)butanoate - Diastereomer A ($8 \mathrm{mg}, 0.01 \mathrm{mmol}$) was dissolved in THF (0.2 mL) and $\mathrm{HCl}_{(\mathrm{aq})}(0.05 \mathrm{~mL}$ of a 2 M solution, 0.1 mmol) was added. The solution was stirred at $50^{\circ} \mathrm{C}$ for 7 h then at ambient temperature for 16 h , then at $50{ }^{\circ} \mathrm{C}$ for 7 h , then 16 h at ambient temperature and finally 6 h at $50^{\circ} \mathrm{C}$. The solution was evaporated and then dissolved in $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ and purified by reverse phase chromatography ($\mathrm{C} 18,4.3 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 8 CV). The appropriate fractions were combined and evaporated under a stream of N_{2} to give the title compound $(5 \mathrm{mg}, 69 \%)$ as a gum : $[\alpha]_{\mathrm{D}}=-3(c=0.53$, CDCl_{3}); LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 506 ; \mathrm{R}_{\mathrm{t}} 0.52 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 4 \mathrm{H})$, $7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.19(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.43(\mathrm{~m}, 3$ H), $3.20-2.96(\mathrm{~m}, 3 \mathrm{H}), 2.96-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.65(\mathrm{~m}, 8 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.31-1.99$ $(\mathrm{m}, 3 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.67(\mathrm{~m}, 3 \mathrm{H})$ (the proton arising from the carboxylic acid was not observed due to exchange).

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-(5-methyl-1H-pyrazol-1-yl)phenyl)butanoic acid (168b) (Diastereomer B)

Using the method above, the title compound was prepared from tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-(5-methyl-1 H -pyrazol-1-yl)phenyl)butanoate - Diastereomer B ($9 \mathrm{mg}, 0.02 \mathrm{mmol}$) gave the title compound (7 mg , $86 \%)$ as a gum : $[\alpha]_{\mathrm{D}}=+3\left(c=0.71, \mathrm{CDCl}_{3}\right) ;$ LCMS (System formic 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 506 ; \mathrm{R}_{\mathrm{t}}$ 0.52 min , purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.59(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.38$ (m, 1 H), $7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17$ (m, 2 H$), 6.47$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=$ $1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.41(\mathrm{~m}, 3 \mathrm{H}), 3.18-2.96(\mathrm{~m}, 3 \mathrm{H}), 2.96-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.83-$ $2.65(\mathrm{~m}, 7 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.33-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.64(\mathrm{~m}, 3 \mathrm{H})$ (the protons arising from the carboxylic acid and amine were not observed due to exchange); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{FN}_{5} \mathrm{O}_{2}, 506.2926$ found 506.2907.

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-(5-methyl-1H-pyrazol-1-yl)phenyl)butanoic acid (168c) (Diastereomer C)

Using the method above, the title compound was prepared from tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-(5-methyl-1 H -pyrazol-1-yl)phenyl)butanoate - Diastereomer C ($9 \mathrm{mg}, 0.02 \mathrm{mmol}$) gave the title compound (5.5 mg , $68 \%)$ as a gum : $[\alpha]_{\mathrm{D}}=-7\left(c=0.55, \mathrm{CDCl}_{3}\right) ;$ LCMS $($ System formic 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 506 ; \mathrm{R}_{\mathrm{t}}$ 0.52 min , purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.38$ (m, 1 H), $7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.20$ (m, 1 H), $3.49-3.37(\mathrm{~m}, 3 \mathrm{H}), 3.20-2.96(\mathrm{~m}, 3 \mathrm{H}), 2.96-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.61(\mathrm{~m}, 8$ H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.27-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.64(\mathrm{~m}, 3 \mathrm{H})$ (the protons arising from the carboxylic acid and amine were not observed due to exchange).

4-(4-Fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-(5-methyl-1H-pyrazol-1-yl)phenyl)butanoic acid (168d) (Diastereomer D)

Using the method above, the title compound was prepared from tert-butyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)-3-(3-(5-methyl-1 H -pyrazol1 -yl)phenyl)butanoate - Diastereomer D ($9 \mathrm{mg}, 0.02 \mathrm{mmol}$) gave the title compound (5.5 mg , $68 \%)$ as a gum : $[\alpha]_{\mathrm{D}}=+6.5\left(c=0.55, \mathrm{CDCl}_{3}\right) ;$ LCMS $($ System formic 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 506 ;$ $\mathrm{R}_{\mathrm{t}} 0.52 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-$ $7.39(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.22-2.97(\mathrm{~m}, 3 \mathrm{H}), 2.96-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.61$ $(\mathrm{m}, 8 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.00(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.65(\mathrm{~m}, 3 \mathrm{H})$ (the protons arising from the carboxylic acid and the amine were not observed due to exchange).

Methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate (($\mathbf{\pm} \mathbf{) 1 7 0}$) and (170a-d) (Diastereomers AD)

(\pm)-(E)-Methyl 4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl) but-2-enoate ($140 \mathrm{mg}, 0.387 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(19 \mathrm{mg}, 0.039 \mathrm{mmol}), \mathrm{KOH}_{(\mathrm{aq})}(0.306$ of a 3.8 M solution $\mathrm{mL}, 1.16 \mathrm{mmol}$) and 3,5-dimethyl-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1 H -pyrazole ($346 \mathrm{mg}, 1.16 \mathrm{mmol}$) were dissolved in 1,4-dioxane $(2 \mathrm{~mL})$ and heated in a microwave oven $\left(1 \mathrm{~h}, 95^{\circ} \mathrm{C}\right.$, high power). The reaction mixture was purified without work-up by reverse phase chromatography (C18, 30 g, 5-95\% MeCN (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 10 CV). The fractions were combined and evaporated to give the title compound ($130 \mathrm{mg}, 63 \%$) as a gum. The solution was dissolved in $\mathrm{EtOH}(10 \mathrm{~mL})$ and the diastereomers separated by using chiral HPLC (Injection; 0.5 mL , eluting with $80 \% \mathrm{EtOH} /$ hexane (containing 0.2% isopropylamine, $\mathrm{f}=75$ $\mathrm{mL} / \mathrm{min}$, detecting at 215 nm ; column $2 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak AD-H (self packed), 15 min) to give diastereomer $D(11 \mathrm{mg})\left(\mathrm{R}_{\mathrm{t}}=13.0 \mathrm{~min}\right)$ and mixed fractions $(33 \mathrm{mg})$. The mixed fractions were evaporated and dissolved in EtOH (3 mL) and the diastereomers separated by using chiral HPLC (Injection; $0.5 \mathrm{~mL}, 95 \% \mathrm{EtOH} /$ hexane (containing 0.2% isopropylamine, f $=42.5 \mathrm{~mL} / \mathrm{min}$, detecting at 280 nm ; column $2 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OD-H (self packed),
$25 \mathrm{~min})$ to give diastereomer $\mathrm{A}(10 \mathrm{mg})\left(\mathrm{R}_{\mathrm{t}}=16.5 \mathrm{~min}\right)$ and mixed fractions $(18 \mathrm{mg})$. The mixed fractions were evaporated and dissolved in $\mathrm{EtOH}(1.5 \mathrm{~mL}$) and the remaining diastereomers were separated by using chiral HPLC (Injection; 0.5 mL , eluting with 50% $\mathrm{EtOH} /$ hexane (containing 0.2% isopropylamine, $\mathrm{f}=35 \mathrm{~mL} / \mathrm{min}$, detecting at 280 nm ; column $2 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OJ-H (self packed), 35 min) to give diastereomer B $(10 \mathrm{mg})\left(\mathrm{R}_{\mathrm{t}}=\right.$ $13.0 \mathrm{~min})$ and diastereomer $\mathrm{C}(10 \mathrm{mg})\left(\mathrm{R}_{\mathrm{t}}=20.0 \mathrm{~min}\right)$.

Diastereomer A: Methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate (10 mg, 5\%) as a gum: Analytical chiral HPLC (2.5\% EtOH (containing 0.2% isopropylamine)/Heptane, $\mathrm{f}=1 \mathrm{~mL} / \mathrm{min}$, detecting at 250 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=16.5 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 534 ; \mathrm{R}_{\mathrm{t}}$ 1.31 min , purity $98 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=7.44-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}$, $3 \mathrm{H}), 7.08$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.38 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.04 (s, 1 H), 5.09 (br. s, 1 H), 3.59 $-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.29(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{F}}=20.0\right.$ Hz, 2 H), 2.72 - $2.49(\mathrm{~m}, 8 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.77(\mathrm{~m}, 8 \mathrm{H}), 1.77$ $-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=(-136.8)-(-137.1)$ (m).

Diastereomer B: Methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate (10 mg, 5\%) as a gum. Analytical chiral HPLC (as above) $\mathrm{R}_{\mathrm{t}}=19.5 \mathrm{~min}$; chiral purity $=96 \%$ (contains 2% diastereomer A); LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 534 ; \mathrm{R}_{\mathrm{t}} 1.31$ min, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=7.44-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 3$
H), $2.85(\mathrm{dd}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{F}}=20 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.73-2.43(\mathrm{~m}, 8 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.66(\mathrm{~m}, 9 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=(-136.5)-(-136.8)(m)$.

Diastereomer C: methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate (10 mg, 5\%) as a gum: Analytical chiral HPLC (as above) $\mathrm{R}_{\mathrm{t}}=20.2 \mathrm{~min}$; chiral purity >99\%; LCMS (System High $\mathrm{pH} 2 \mathrm{~min})[\mathrm{M}+\mathrm{H}]^{+} 534 ; \mathrm{R}_{\mathrm{t}} 1.31 \mathrm{~min}$, purity $98 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=7.44-$ $7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$ (s, 1 H), 5.13 (br. s, 1 H), 3.55 (s, 3 H), $3.40-3.29$ (m, 3 H), 2.89 (dd, $J=15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{F}}=20 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.72-2.48(\mathrm{~m}, 8 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.05-$ $1.77(\mathrm{~m}, 8 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=$ $(-136.8)-(-137.1)(m)$.

Diastereomer D: methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate (11 mg, 5\%) as a gum. Analytical chiral HPLC (as above) $\mathrm{R}_{\mathrm{t}}=21.2 \mathrm{~min}$; chiral purity >99\%; LCMS (System High $\mathrm{pH} 2 \mathrm{~min}),[\mathrm{M}+\mathrm{H}]^{+} 534 ; \mathrm{R}_{\mathrm{t}} 1.31 \mathrm{~min}$; purity $>99 \%,{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=7.43-$ $7.37(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$ (s, 1 H), 5.13 (br. s, 1 H), 3.54 (s, 3 H), $3.40-3.30(\mathrm{~m}, 3 \mathrm{H}), 2.85(\mathrm{dd}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{F}}=20 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.72-2.41(\mathrm{~m}, 8 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.66(\mathrm{~m}$, $9 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=(-136.5)-(-136.8)(\mathrm{m})$.

3-(3-(3,5-Dimethyl-1 H -pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid (171a) (Diastereomer A)

Methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoate - Diastereomer A (10 mg, 0.02 mmol) was dissolved in 1,4-dioxane (0.5 mL). $\mathrm{HCl}_{(\mathrm{aq})}(50 \mu \mathrm{~L}$ of a 4 M solution in 1,4-dioxane, 0.2 mmol) was added to the reaction mixture and it was stirred for 18 h . The solution was evaporated and dissolved in THF (0.5 mL) and $\mathrm{LiOH}_{(\mathrm{aq})}(200 \mu \mathrm{~L}$ of a 1 M solution, 0.2 mmol) and stirred for 18 h . The crude material was evaporated and was dissolved in DMSO : $\mathrm{H}_{2} \mathrm{O}(1: 1 ; 300 \mu \mathrm{~L})$ and purified by reverse phase ($12 \mathrm{~g}, 5-75 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 10 CV). The appropriate fractions were collected and evaporated to give the title compound ($6 \mathrm{mg}, 61 \%$) : LCMS (System High pH 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 520 ; \mathrm{R}_{\mathrm{t}} 0.88 \mathrm{~min}$, purity $85 \% ;[\alpha]_{\mathrm{D}}=+16(c=1.01, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=7.44-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.21(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1$ H), $3.48-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.77(\mathrm{~m}, 8 \mathrm{H}), 2.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 4 \mathrm{H})$, $1.87-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 1 \mathrm{H})$ (the protons arising from the amine and the carboxylic acid were not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=$ $(-136.9)-(-137.1)(m)$.

3-(3-(3,5-Dimethyl-1 H -pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid (171b) (Diastereomer B)

Using the method above, the title compound was prepared from methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-
yl)methyl)azepan-1-yl)butanoate - Diastereomer B ($10 \mathrm{mg}, 0.02 \mathrm{mmol}$) to give the title compound ($6 \mathrm{mg}, 61 \%$); LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 520 ; \mathrm{R}_{\mathrm{t}} 0.88 \mathrm{~min}$, purity $93 \% ;[\alpha]_{\mathrm{D}}=+9(c=1.03, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=7.48-7.40(\mathrm{~m}, 1 \mathrm{H})$, $7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.64$ (br. s, 1 H$), 3.47-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.31(\mathrm{~m}$, $2 \mathrm{H}), 3.14-2.77(\mathrm{~m}, 8 \mathrm{H}), 2.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.52(\mathrm{~m}, 1$ H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 1$ H) (the proton arising from the carboxylic acid were not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=(-137.6)-(-137.7)(\mathrm{m})$.

3-(3-(3,5-Dimethyl-1 H -pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid (171c) (Diastereomer C)

Using the method above, the title compound was prepared from methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-
yl)methyl)azepan-1-yl)butanoate - Diastereomer C ($10 \mathrm{mg}, 0.02 \mathrm{mmol}$) to give the title compound ($6 \mathrm{mg}, 61 \%$) : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 520 ; \mathrm{R}_{\mathrm{t}} 0.88 \mathrm{~min}$, purity $95 \% ;[\alpha]_{\mathrm{D}}=-16(c=1.08, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=7.48-7.40(\mathrm{~m}, 1 \mathrm{H})$, $7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.52-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.31(\mathrm{~m}$, $2 \mathrm{H}), 3.13-2.79(\mathrm{~m}, 8 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.19-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H})$ (the proton arising from the carboxylic acid were not observed due to exchange); ${ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=(-137.0)-(-137.2)(\mathrm{m}) ;$ HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{FN}_{5} \mathrm{O}_{2}, 520.3082$ found 520.3068.

3-(3-(3,5-Dimethyl-1 H -pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)azepan-1-yl)butanoic acid (171d) (Diastereomer D)

Using the method above, the title compound was prepared from methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(4-fluoro-4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-
yl)methyl)azepan-1-yl)butanoate - Diastereomer D (11 mg, 0.02 mmol) to give the title compound ($8 \mathrm{mg}, 82 \%$) : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 520 ; \mathrm{R}_{\mathrm{t}} 0.88 \mathrm{~min}$, purity $93 \% ;[\alpha]_{\mathrm{D}}=-10(c=1, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=7.48-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.33$ (dd, $J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.61$ (br. s, 1 H$), 3.47-3.38(\mathrm{~m}, 1 \mathrm{H})$, $3.38-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.18-2.79(\mathrm{~m}, 8 \mathrm{H}), 2.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.57(\mathrm{~m}, 1 \mathrm{H})$, $2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.73(\mathrm{~m}, 4 \mathrm{H})$, $1.70-1.59(\mathrm{~m}, 1 \mathrm{H})$ (the proton arising from the carboxylic acid were not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=(-137.4)-(-137.8)(\mathrm{m})$.

(E)-tert-Butyl 3-fluoro-3-(3-oxobut-1-en-1-yl)piperidine-1-carboxylate (180)

Oxalyl chloride (1.12 mL 12.8 mmol) was dissolved in DCM (40 mL) and the solution was cooled to $-70^{\circ} \mathrm{C}$. DMSO ($1.21 \mathrm{~mL}, 17.2 \mathrm{mmol}$) was added to the mixture and the reaction was stirred for 20 min . tert-Butyl 3-fluoro-3-(hydroxymethyl)piperidine-1-carboxylate (2.0 g , 8.6 mmol) dissolved in DCM (10 mL) and added dropwise to the solution. The mixture was stirred at $-70{ }^{\circ} \mathrm{C}$ for 20 min , then DIPEA ($7.48 \mathrm{~mL}, 42.9 \mathrm{mmol}$) was added dropwise. The mixture was stirred at $-70^{\circ} \mathrm{C}$ for 20 min then warmed to $0^{\circ} \mathrm{C}$ and quenched with water $(0.1$ mL). The organic layer was separated and washed with brine (100 mL) and evaporated under reduced pressure. The crude product was dissolved in THF (30 mL) and 1triphenylphosphoranylidene ($5.19 \mathrm{~g}, 16.3 \mathrm{mmol}$) was added. The mixture was stirred at ambient temperature for 18 h . The solvent was removed under reduced pressure, then dissolved in DCM (2 mL) and purified by flash chromatography ($100 \mathrm{~g}, 50: 50 \mathrm{EtOAc}$: heptane, 10 CV) to give the title compound ($960 \mathrm{mg}, 41 \%$) as a gum : LCMS (System formic $2 \mathrm{~min})[\mathrm{M}+\mathrm{H}]^{+} 272 ; \mathrm{R}_{\mathrm{t}} 1.00 \mathrm{~min}$, purity $94 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=6.87(\mathrm{dd}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{F}}=19.0,{ }^{3} J_{\mathrm{H}-\mathrm{H}}=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.34(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.90(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3$ H), $1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=199.0,156.5,146.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right), 130.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 93.5$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=184 \mathrm{~Hz}\right), 81.5,43.5,34.5,34.0,28.5,27.5,21.5 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=$ (-164.0) - (-164.4); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{FNO}_{3}, 272.1657$ found 272.1650.
(E)-tert-Butyl 3-(2-(1,8-naphthyridin-2-yl)vinyl)-3-fluoropiperidine-1-carboxylate (183)

(E)-tert-Butyl 3-fluoro-3-(3-oxobut-1-en-1-yl)piperidine-1-carboxylate (200 mg, 2 mmol) was dissolved in EtOH (5 mL) and $\mathrm{KOH}(48 \mathrm{mg}, 0.89 \mathrm{mmol})$ and 2-amino-3pyridinecarboxaldehyde ($322 \mathrm{mg}, 2.60 \mathrm{mmol}$) were added. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then cooled and the solvent evaporated. The crude material was dissolved in DCM (2 mL) and purified by flash chromatography ($20 \mathrm{~g}, 100 \%$ EtOAc, 10 CV). The appropriate fractions were combined and evaporated to give the title compound (104 mg, 40\%) : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 358 ; \mathrm{R}_{\mathrm{t}} 1.22 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=9.04(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.50-8.33(\mathrm{~m}, 2 \mathrm{H}), 7.81$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 1$ H), $4.03(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.73(\mathrm{~m}, 3$ H), $1.73-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=158.5,155.5$, $155.0,153.5,139.0,138.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}\right), 137.5,129.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 122.5,122.0$, 121.0, $92.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=179 \mathrm{~Hz}\right), 80.0,69.5,34.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 27.5,21.5,15.2 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=-162.5$ (s); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{FN}_{3} \mathrm{O}_{2}, 358.1925$ found 358.1927.

7-(2-(3-Fluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine ((\pm)176) and (176ab) $($ Enantiomers A and B)

(E)-tert-butyl 3-(2-(1,8-naphthyridin-2-yl)vinyl)-3-fluoropiperidine-1-carboxylate ($5.0 \mathrm{~g}, 140$ mmol) was dissolved in THF (100 mL). This was added to a hydrogenation flask containing 10% Degussa $^{\mathrm{TM}} \mathrm{Pd} / \mathrm{C}(148 \mathrm{mg})$. The reaction mixture was stirred under an atmosphere of hydrogen (supplied from a burette) for 18 h . The suspension was filtered and the solvent evaporated. The crude material was dissolved in THF (100 mL) and then added to a hydrogenation flask containing 10% Degussa $^{\mathrm{TM}} \mathrm{Pd} / \mathrm{C}(148 \mathrm{mg})$ and the suspension was stirred for 2 days under an atmosphere of hydrogen (supplied from a burette). The suspension was filtered and the solvent evaporated. The crude material was dissolved in DCM (3 mL) and purified by flash chromatography ($100 \mathrm{~g}, 1: 1$ heptane/EtOAc to $100 \% \mathrm{EtOAc}, 10 \mathrm{CV}$). The appropriate fractions were combined and evaporated under reduced pressure to give the intermediate. This crude intermediate was dissolved in DCM (50 mL) and TFA ($2.12 \mathrm{~mL}, 27$ $\mathrm{mmol})$ was added. The reaction mixture was stirred for 1 h , then the solvent was evaporated. The crude material was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and loaded onto an amino propyl column ($10 \mathrm{~g}, \mathrm{MeOH}, 5 \mathrm{CV}$). The appropriate fractions were combined and evaporated to give the title compound (\pm)-7-(2-(3-fluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8naphthyridine ($610 \mathrm{mg}, 17 \%$). LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 264 ; \mathrm{R}_{\mathrm{t}} 0.84 \mathrm{~min}$, purity 77\%; (\pm)-7-(2-(3-fluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine (5.0 $\mathrm{g}, 14 \mathrm{mmol})$ was dissolved in $\mathrm{EtOH}(10 \mathrm{~mL})$ and heptane (1 mL) and the enantiomers separated by using chiral HPLC (Injection; 1 mL , eluting with $40 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine): 70% hexane (containing 0.2% isopropylamine), $\mathrm{f}=30 \mathrm{~mL} / \mathrm{min}$, detecting at
215.4 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak AD-H (self packed), 45 min) to give two enantiomers.

Enantiomer A : 7-(2-(3-fluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine Enantiomer A (1.35 g, 27\%) : Analytical chiral HPLC (40\% EtOH (containing 0.2\% isopropylamine)/heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=19.0$ min chiral purity >99\%; LCMS (System High pH 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 264 ; \mathrm{R}_{\mathrm{t}} 0.83 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.11(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.71-$ $2.65(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.48(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.49$ $(\mathrm{m}, 2 \mathrm{H})$ (the protons arising from the amines were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=158.5,157.5,138.5,115.5,112.0,93.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=172 \mathrm{~Hz}\right), 54.0(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 46.0,42.5,39.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 34.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 31.5,27.5,22.5(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=1.5 \mathrm{~Hz}\right), 18.5 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-164.0)-(-165.0)(\mathrm{m}) ;$ HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{FN}_{3}, 264.1868$ found 264.1871.

Enantiomer B : 7-(2-(3-fluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine Enantiomer B (1.5 g, 30\%) : Analytical chiral HPLC (Method (same as enantiomer A)) $\mathrm{R}_{\mathrm{t}}=$ 24.0 min chiral purity $>99 \%$; LCMS $($ System High pH 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 264 ; \mathrm{R}_{\mathrm{t}} 0.83 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.46(\mathrm{~m}, 6 \mathrm{H}), 2.02-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.90-1.69(\mathrm{~m}, 5 \mathrm{H}), 1.69-1.49(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the amines were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=158.5,157.5,138.5,115.5$, 112.0, $93.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=173 \mathrm{~Hz}\right), 54.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 46.5,42.5,39.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right)$, $34.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 31.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}\right), 27.5,23.5,18.5 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta=(-164.0)-(-165.0)(\mathrm{m}) ;$ HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{FN}_{3}, 264.1868$ found 264.1871.
(E)-Methyl \quad-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)but-2-enoate (177a) (Enantiomer A)

7-(2-(3-Fluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine - Enantiomer A $(500 \mathrm{mg}, 2 \mathrm{mmol})$ and DIPEA ($0.497 \mathrm{ml}, 2.85 \mathrm{mmol}$) were dissolved in DCM $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. (E)-methyl 4-bromobut-2-enoate $(0.223 \mathrm{ml}, 1.899 \mathrm{mmol})$ was then added dropwise to the solution. The reaction was stirred for 18 h and the solvent evaporated, to give the title compound (898 mg). The mixture was taken forward without purification and the NMR spectrum contained the following significant peaks : 80% of the title compound and 20% of DIPEA. LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 362 ; \mathrm{R}_{\mathrm{t}} 1.07 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dt}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1$ H), $6.06-5.99(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 3 \mathrm{H}), 2.86-2.76$ (m, 1 H), $2.76-2.65(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.78(\mathrm{~m}, 6$ $\mathrm{H}), 1.67-1.42(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{FN}_{3} \mathrm{O}_{2}, 362.2238$ found 362.2237.
(E)-Methyl \quad-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)but-2-enoate (177b) (Enantiomer B)

Using the method above, the title compound was prepared from 7-(2-(3-fluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine - Enantiomer B ($500 \mathrm{mg}, 2 \mathrm{mmol}$) to give the title compound ($840 \mathrm{mg}, 98 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 362 ; \mathrm{R}_{\mathrm{t}}$ $1.06 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.90(\mathrm{~m}, 1 \mathrm{H})$, $6.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.44$ - $3.41(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.13-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.69$ (m, 2 H), 2.69-2.60(m, 1 H), 2.33-2.16(m, 2H), 2.05-1.85(m, 4H), $1.85-1.65(\mathrm{~m}, 2$ H) (the proton arising from the amine was not observed due to exchange); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{FN}_{3} \mathrm{O}_{2}, 362.2238$ found 362.2237 .

Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl)butanoate (178a-b) (Diastereomers A and B)

(E)-Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)but-2-enoate - Enantiomer A ($85 \mathrm{mg}, 0.22 \mathrm{mmol}$), $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5 \mathrm{mg}, 0.01 \mathrm{mmol}),(3-$ morpholinophenyl)boronic acid ($139 \mathrm{mg}, 0.672 \mathrm{mmol}$) and $\mathrm{KOH}_{(\mathrm{aq})}(0.12 \mathrm{~mL}$ of a 3.8 M solution, 0.45 mmol) were dissolved in 1,4-dioxane (2 mL) and the solution was heated in a microwave oven ($100 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with EtOAc (10 mL) and evaporated. The reaction mixture was suspended in $\mathrm{MeOH}(300 \mu \mathrm{~L})$ and purified by reverse phase chromatography (C18, $40 \mathrm{~g}, 5-95 \%$ MeCN (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 20 CV). The appropriate fractions were combined and evaporated to give methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-
morpholinophenyl)butanoate ($85 \mathrm{mg}, 58 \%$) as a gum. The mixture was dissolved in EtOH (1 mL) and heptane (1 mL) and the diastereomers were separated by chiral HPLC (Injection; 2 $\mathrm{mL}, 50 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine): 50% hexane (containing 0.2% isopropylamine), $\mathrm{f}=30 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OD-H (self packed), 45 min) to give two diastereomers.

Diastereomer A: 7-Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl)butanoate (18 mg, 15%) : Analytical chiral

HPLC ($50 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine) $/ 50 \%$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=4.0 \mathrm{~min}$; chiral purity $=99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 543 ; \mathrm{R}_{\mathrm{t}} 1.31 \mathrm{~min}$, purity $>99 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.31-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.69(\mathrm{~m}$, $1 \mathrm{H}), 6.49-6.32(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.69-3.55(\mathrm{~m}, 5 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 2 \mathrm{H})$, $3.20-3.10(\mathrm{~m}, 4 \mathrm{H}), 3.02-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.66-2.31(\mathrm{~m}, 5 \mathrm{H}), 2.07-1.79(\mathrm{~m}, 6 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 3 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=175.0,158.5,157.5,155.5,153.0,145.5,138.5,130.5,120.5,117.0,115.5$, 112.0, $94.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=174 \mathrm{~Hz}\right), 68.0,65.5,62.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 55.0,52.0,51.0,42.5$, $41.5,40.5,39.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 34.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 31.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 27.5,23.5$ (d, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}$), 22.5; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{FN}_{4} \mathrm{O}_{3}, 543.3125$ found 543.3141.

Diastereomer B: 7-Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl)butanoate (59 mg, 48%): Analytical chiral HPLC ($50 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine) / 50% heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel $\mathrm{OD}-\mathrm{H}$ (self packed)) $\mathrm{R}_{\mathrm{t}}=12.5$ min; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 543 ; \mathrm{R}_{\mathrm{t}} 1.30$ min, purity $>99 \%$; IR (film) $1733,1601,1121 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.33(\mathrm{~m}, 3$ H), $3.28-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.07(\mathrm{~m}, 4 \mathrm{H}), 2.87-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.70(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.63-2.44(\mathrm{~m}, 5 \mathrm{H}), 2.24(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.72(\mathrm{~m}, 6$ $\mathrm{H}), 1.60-1.44(\mathrm{~m}, 1 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-156.0)-(-157.0)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{FN}_{4} \mathrm{O}_{3}, 543.3125$ found 543.3141.

Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl)butanoate (178c-d) (Diastereomers C and D)

(E)-Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)but-2-enoate $\quad(56 \mathrm{mg}, \quad 0.148 \mathrm{mmol}), \quad[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2} \quad(4 \mathrm{mg}, \quad 8 \quad \mu \mathrm{~mol}), \quad(3-$ morpholinophenyl)boronic acid ($92 \mathrm{mg}, 0.44 \mathrm{mmol}$) and $\mathrm{KOH}_{(\mathrm{aq})}(0.08 \mathrm{~mL}$ of a 3.8 M solution, 0.30 mmol) were dissolved in 1,4-dioxane (2 mL) and the solution was heated in a microwave oven ($95^{\circ} \mathrm{C}$, 100 min , normal power). The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with EtOAc (10 mL) and evaporated. The reaction mixture was suspended in $\mathrm{MeOH}(300 \mu \mathrm{~L})$ and purified by reverse phase chromatography (C18, $40 \mathrm{~g}, 5-95 \%$ MeCN (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 20 CV). The appropriate fractions were combined and evaporated to give methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl) butanoate ($77 \mathrm{mg}, 96 \%$) as a gum. The crude material was dissolved in EtOH (2 mL) and purified by chiral HPLC (Injection; $1 \mathrm{~mL}, 50 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine): 50% hexane (containing 0.2% isopropylamine), $\mathrm{f}=20 \mathrm{~mL} / \mathrm{min}$, detecting at 215.4 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OD-H (self packed), 45 min) to give two diastereomers.

Diastereomer C: Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl) piperidin-1-yl)-3-(3-morpholinophenyl)butanoate ($6 \mathrm{mg}, 4 \%$) : LCMS (System High pH 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 543$; $\mathrm{R}_{\mathrm{t}} 1.30 \mathrm{~min}$, purity $>99 \%$; Analytical chiral HPLC (50\% EtOH
(containing 0.2% isopropylamine) $/ \mathrm{Heptane}, \mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=5.0 \mathrm{~min}$; chiral purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-$ $3.77(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.34(\mathrm{~m}, 3 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 4 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 2.85(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.34(\mathrm{~m}, 6 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 1$ H), $1.93-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.47(\mathrm{~m}, 5 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=173.5,157.0,155.5,151.5$, $143.5,137.0,129.0,119.0,115.5,114.0,113.5,110.5,93.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=174 \mathrm{~Hz}\right), 67.0,64.0$, $60.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 53.5,50.5,49.5,40.0,38.5,37.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 33.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23\right.$ Hz), $30.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right), 26.0,22.0,21.5,21.0 ;{ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-156.0)$ - (-157.0) (m); HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}, 543.3141$ found 543.3145.

Diastereomer D: Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl) piperidin-1-yl)-3-(3-morpholinophenyl)butanoate ($32 \mathrm{mg}, 40 \%$) : LCMS (System High pH 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 543 ; \mathrm{R}_{\mathrm{t}} 1.30 \mathrm{~min}$, purity 98%; Analytical chiral HPLC (50\% EtOH (containing 0.2% isopropylamine) / Heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id \times 25 cm Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=9.2 \mathrm{~min}$; chiral purity > 99\%; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 543 ; \mathrm{R}_{\mathrm{t}} 1.30 \mathrm{~min}$, purity $>99 \%$; IR (film) $1734,1601,1121 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.18(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J$ $=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 4 \mathrm{H})$, $3.57(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=5.9,3.7 \mathrm{~Hz}, 4 \mathrm{H})$, $2.87(\mathrm{dd}, J=15.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.29(\mathrm{~m}, 10 \mathrm{H}), 1.99-1.86$ $(\mathrm{m}, 4 \mathrm{H}), 1.80\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{F}}=8.6, J_{\mathrm{H}-\mathrm{H}}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 1$ H), $1.52\left(\mathrm{ddd},{ }^{3} J_{\mathrm{H}-\mathrm{F}}=13.0, J_{\mathrm{H}-\mathrm{H}}=6.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$ (the proton arising from the amine was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=173.6,157.0,155.6,151.4$,
143.8, 137.0, 128.7, 118.9, 115.4, 113.9, 113.7, 110.6, $93.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=174 \mathrm{~Hz}\right) 66.5,63.9$, $60.5,53.7,50.5,49.5,41.0,40.2,38.6,37.4,33.0,30.2,25.9,21.7,21.0 ;{ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-154.5)-(-155.5)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{FN}_{4} \mathrm{O}_{3}, 543.3141$ found 543.3145.

Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3morpholinophenyl)butanoate (171a) (Diastereomer A)

Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3morpholinophenyl)butanoate - Enantiomer A ($28 \mathrm{mg}, 0.053 \mathrm{mmol}$) was dissolved in MeOH $(1 \mathrm{~mL}) . \mathrm{LiOH}_{(\mathrm{aq})}(0.5 \mathrm{~mL}$ of a 1 M solution, 0.5 mmol$)$ was added to the reaction mixture. The reaction mixture was stirred for 18 h at ambient temperature. $\mathrm{HCl}_{(\mathrm{aq})}(0.5 \mathrm{~mL}$ of a 2 M solution) was added to the reaction mixture. The reaction mixture was then added to a preconditioned SCX column (5 g, MeOH 1 CV , MeCN 1 CV , load compound, MeOH $2 \mathrm{CV}, 2$ $\mathrm{M} \mathrm{H}_{3}$ in MeOH 2 CV). The ammonical fractions were evaporated and redissolved in MeOH $(300 \mu \mathrm{~L})$. The reaction mixture was purified by reverse phase chromatography ($12 \mathrm{~g}, 5-95 \%$ MeCN (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 20 CV). The appropriate fractions were evaporated to give the title compound ($17 \mathrm{mg}, 62 \%$) as a gum : Analytical Chiral HPLC (Method (40\% EtOH ($+0.1 \%$ isopropylamine)/heptane, $\mathrm{f}=1.0$ $\mathrm{mL} / \mathrm{min}$, detecting at 235 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=$
8.4 min ; chiral purity $>99 \%$; LCMS (System High pH) $[\mathrm{M}+\mathrm{H}]^{+} 511 ; \mathrm{R}_{\mathrm{t}} 0.80 \mathrm{~min}$, purity $>99 \%$; IR (film) $3335,2945,1672,1600,1180,1118 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=$ $7.26-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.45-3.33(\mathrm{~m}, 3 \mathrm{H}), 3.27-3.05(\mathrm{~m}, 6 \mathrm{H})$, $2.93-2.51(\mathrm{~m}, 10 \mathrm{H}), 2.18-1.78(\mathrm{~m}, 6 \mathrm{H}), 1.78-1.54(\mathrm{~m}, 2 \mathrm{H})$ (the protons arising from the amine and carboxylic acid were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=180.5,156.0,155.5,153.0,145.5,139.5,130.5,119.5,116.5,116.0,115.5$, $112.0,94.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=174 \mathrm{~Hz}\right), 68.0,65.5,59.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right), 54.5,50.5,45.5,42.5$, $40.5,38.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 33.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right), 30.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 27.0,22.0,21.5$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-151.0)-(-153.0)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{FN}_{4} \mathrm{O}_{3}, 511.3079$ found 511.3071.

Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3morpholinophenyl)butanoate (171b) (Diastereomer B)

Using the method above, the title compound was prepared from methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl) butanoate - Enantiomer B ($32 \mathrm{mg}, 0.061 \mathrm{mmol}$) gave the title compound 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-
morpholinophenyl)butanoic acid ($23 \mathrm{mg}, 74 \%$ yield) as a gum : Analytical Chiral HPLC
$\left(\right.$ Method $\left(\right.$ as Diastereomer A)) $\mathrm{R}_{\mathrm{t}}=13.8 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 511 ; \mathrm{R}_{\mathrm{t}} 0.80 \mathrm{~min}$, purity $>99 \%$; IR (film) $3347,2946,1675,1601,1181,1120$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.27-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.51-3.32(\mathrm{~m}, 3 \mathrm{H}), 3.27-$ $3.16(\mathrm{~m}, 4 \mathrm{H}), 3.03-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{dd}, J=16.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.52(\mathrm{~m}, 9 \mathrm{H})$, $2.02-1.91(\mathrm{~m}, 6 \mathrm{H}), 1.91-1.56(\mathrm{~m}, 2 \mathrm{H})$ (The protons arising from the carboxylic acid and the amine protons were not observed due to exchange); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=180.2$, $154.9,151.3,143.0,139.1,130.2,120.6,119.1,116.9,116.5,116.3,111.7,94.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $172 \mathrm{~Hz}), 66.7,62.8,58.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 52.5,49.9,43.6,41.1,38.4,36.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21\right.$ $\mathrm{Hz}), 30.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right), 28.7,25.5,20.3,18.9 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=$ (-151.5) - (-152.0) (m); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{FN}_{4} \mathrm{O}_{3}, 511.3079$ found 511.3071.
tert-Butyl 4,4-difluoro-3-(iodomethyl)piperidine-1-carboxylate (187)

Imidazole ($142 \mathrm{mg}, 2.09 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(548 \mathrm{mg}, 2.09 \mathrm{mmol})$ were suspended in $\mathrm{DCM}(10$ mL). Iodine ($530 \mathrm{mg}, 2.1 \mathrm{mmol}$) was added portionwise over 5 min using an ice bath to control the exotherm. The mixture was stirred for 1 h , tert-butyl 4,4-difluoro-3-(hydroxymethyl)piperidine-1-carboxylate ($500 \mathrm{mg}, 2 \mathrm{mmol}$) was added and the suspension was stirred at ambient temperature for 96 h . The solvent was evaporated under reduced pressure then $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to the residue and the mixture was stirred at ambient
temperature for 3 h . The resulting suspension was filtered and the filtrate concentrated under reduced pressure. The residue was purified by chromatography on silica ($20 \mathrm{~g}, 0-50 \%$ EtOAc / cyclohexane, 10 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($484 \mathrm{mg}, 68 \%$) as a colourless gum : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 347 ; \mathrm{R}_{\mathrm{t}} 1.26 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=4.01-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.43$ (s, 9 H).
tert-Butyl 3-(2-(1,8-naphthyridin-2-yl)ethyl)-4,4-difluoropiperidine-1-carboxylate (188)

2-Methyl-1,8-naphthyridine ($201 \mathrm{mg}, \quad 1.40 \mathrm{mmol}$) and tert-butyl 4,4-difluoro-3-(iodomethyl)piperidine-1-carboxylate ($480 \mathrm{mg}, 1.3 \mathrm{mmol}$) were dissolved in THF (10 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ then LiHMDS (1.4 mL of a 1 M solution in THF, 1.4 mmol) was added dropwise at a rate to ensure the solution temperature was maintained below $0{ }^{\circ} \mathrm{C}$. The solution was stirred for 30 min at $0^{\circ} \mathrm{C}$, then quenched by slow addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$ (7.5 mL), followed by the addition of $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$. The suspension was partitioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ and the aqueous layer separated and re-extracted with EtOAc (10 mL). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, brine (10 mL) and dried. The resulting solution was evaporated under reduced pressure to give the title compound ($501 \mathrm{mg}, 100 \%$) as an orange gum : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 378$;
$\mathrm{R}_{\mathrm{t}} 0.93 \mathrm{~min}$, purity $98 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=9.08-8.95(\mathrm{~m}, 1 \mathrm{H}), 8.49-$ $8.27(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.47(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.19-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.28-1.98$ $(\mathrm{m}, 2 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.31(\mathrm{~m}, 12 \mathrm{H})$.

7-(2-(4,4-Difluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine
(189a-b) (Enantiomers A and B)

(\pm)-tert-Butyl 3-(2-(1,8-naphthyridin-2-yl)ethyl)-4,4-difluoropiperidine-1-carboxylate (500 $\mathrm{mg}, 1.33 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}(20 \mathrm{~mL})$ and added to a flask containing 10% Degussa ${ }^{\mathrm{TM}} \mathrm{Pd} / \mathrm{C}(155 \mathrm{mg})$. The reaction mixture was stirred under an atmosphere of H_{2} (supplied from a burette) for 70 h . The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with $\mathrm{EtOH}(20 \mathrm{~mL})$ and the resulting solution evaporated under reduced pressure to give an orange oil. The oil was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{HCl}(2.2 \mathrm{~mL}$ of a 3 M solution in CPME, 6.6 mmol) was added to the solution which was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The solvent was evaporated under reduced pressure to give the title compound (398 mg , 99%). LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 282 ; \mathrm{R}_{\mathrm{t}} 0.36 \mathrm{~min}$. The mixture was dissolved in EtOH (2 mL) and heptane (2 mL) and the enantiomers separated by using chiral HPLC (Injection; 1 mL , eluting with $20 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine): 80% hexane (containing 0.2% isopropylamine), $\mathrm{f}=30 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column $3 \mathrm{~cm} \times 25$ cm Chiralpak AD-H (self packed), 45 min) to give two enantiomers.

Enantiomer A: 7-(2-(4,4-difluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine ($65 \mathrm{mg}, 17 \%$) : Analytical chiral HPLC ($50 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine) / 50\% heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=12.0 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+}$ 282; $\mathrm{R}_{\mathrm{t}} 0.36 \mathrm{~min}$, purity $>99 \%$; IR (film) 2932, 1596, 1461, $953 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.09$ (dt, $J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.42(\mathrm{~m}, 6 \mathrm{H}), 2.11-1.93(\mathrm{~m}, 2 \mathrm{H})$, $1.93-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 1 \mathrm{H})$ (the peaks arising from the amines were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=158.0,157.5,138.5,124.0$, $115.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=242.5,242.0 \mathrm{~Hz}\right), 112.0,44.5\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.0,23.5 \mathrm{~Hz}\right), 44.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9\right.$ $\mathrm{Hz}), 42.5,35.5,35.0\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.0,21.5 \mathrm{~Hz}\right), 27.5,26.5\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 22.5,18.5 ;{ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right) \mathrm{SO}\right) \delta=-93.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{FF}}=231 \mathrm{~Hz}, 1 \mathrm{~F}\right),(-109.0)-(-114.0)(\mathrm{m}, 1 \mathrm{~F})$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{3}, 282.1776$ found 282.1773

Enantiomer B: 7-(2-(4,4-difluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine (43 mg, 12%) : Analytical chiral HPLC (Method (as enantiomer A)) $\mathrm{R}_{\mathrm{t}}=14.5 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 282$; $\mathrm{R}_{\mathrm{t}} 0.36 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.33$ (m, 2 H), 3.09 (dt, $J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.03-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.42(\mathrm{~m}, 6 \mathrm{H}), 2.11-$ $1.93(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 1 \mathrm{H})$ (the peaks arising from the amines were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=158.0,157.5,138.5$, $124.0,115.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=242.5,242.0 \mathrm{~Hz}\right), 112.0,44.5\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.0,23.5 \mathrm{~Hz}\right), 44.0(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 42.5,35.5,35.0\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.0,21.5 \mathrm{~Hz}\right), 27.5,26.5\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 22.5$, 18.5; ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right) \mathrm{SO}\right) \delta=-93.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}}=231 \mathrm{~Hz}, 1 \mathrm{~F}\right),(-109.0)-(-114.0)$ (m, 1 F); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{3}, 282.1776$ found 282.1769.
(E)-Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl) piperidin-1-yl)but-2-enoate (190a) (Enantiomer A)

7-(2-(4,4-Difluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine - Enantiomer A $(65 \mathrm{mg}, 0.23 \mathrm{mmol})$ was dissolved in DIPEA $(0.06 \mathrm{~mL}, 0.4 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. (E)-Methyl 4-bromobut-2-enoate ($0.03 \mathrm{~mL}, 0.2 \mathrm{mmol}$) was added dropwise. The resulting mixture was stirred for 21 h . The solvent had evaporated under a stream of nitrogen to give the title compound ($85 \mathrm{mg}, 97 \%$) : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 380 ; \mathrm{R}_{\mathrm{t}} 1.12$ min, purity $96 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dt}, J=$ $15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.39-$ $3.33(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 3 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.74$ $(\mathrm{m}, 3 \mathrm{H}), 2.68(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}$, $1 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 1 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange).
(E)-Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl) piperidin-1-yl)but-2-enoate (190b) (Enantiomer B)

Using the method above, the title compound was prepared from 7-(2-(4,4-difluoropiperidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine - Enantiomer B ($43 \mathrm{mg}, 0.15 \mathrm{mmol}$) to give the title compound ($56 \mathrm{mg}, 97 \%$) : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 380 ; \mathrm{R}_{\mathrm{t}} 1.12$ min, purity $95 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dt}, J=$ $15.5,6.0, \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.39-$ $3.33(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 3 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.74$ (m, 3 H), $2.68(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}$, $1 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 1 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=166.5,156.5,155.5,144.5,137.0,122.5,122.5$ $\left(\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=242.0 \mathrm{~Hz}\right), 114.0,111.0,57.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=1.5 \mathrm{~Hz}\right), 54.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 53.5,51.0$, $50.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.5 \mathrm{~Hz}\right), 42.0\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.0 \mathrm{~Hz}\right), 41.0,34.0,33.0\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.0 \mathrm{~Hz}\right), 26.0$, 21.0; ${ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=-101.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}}=236.0 \mathrm{~Hz}, 1 \mathrm{~F}\right),(-115.0)-$ (-117.0) (m, 1 F); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}, 380.2138$ found 380.2144.

Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl)butanoate (191a-b) (Diastereomers A and B)

(E)-Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)but-2-enoate - Enantiomer A ($85 \mathrm{mg}, 0.224 \mathrm{mmol}$), $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5.52 \mathrm{mg}, 0.011$ mmol), (3-morpholinophenyl)boronic acid ($139 \mathrm{mg}, 0.672 \mathrm{mmol}$) and $\mathrm{KOH}_{\text {(aq) }}(0.118 \mathrm{~mL}$ of a 3.8 M solution, 0.448 mmol) were dissolved in 1,4-dioxane (2 mL) and the solution was heated in a microwave oven ($100 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with EtOAc (10 mL) and the solvent evaporated. The reaction mixture was suspended in $\mathrm{MeOH}(300 \mu \mathrm{~L})$ and purified by reverse phase chromatography (C18, $40 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 20 CV). The appropriate fractions were combined and evaporated to give a gum. The gum was dissolved in EtOH (1 mL) and heptane (1 mL) and the diastereomers were separated by chiral HPLC (Injection; 2 mL , eluting with $50 \% \mathrm{EtOH}: 50 \%$ heptane, $\mathrm{f}=30 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column $3 \mathrm{~cm} \times 30 \mathrm{~cm}$ Chiralpak OD-H (self packed), 45 min) to give two isomers.

Diastereomer A: Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer A (18 mg, 15\%) as a gum : Analytical chiral HPLC ($50 \% \mathrm{EtOH} / 50 \%$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=4.5 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 543 ; \mathrm{R}_{\mathrm{t}} 1.31 \mathrm{~min}$, purity 93%; ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.31-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.49-$ $6.32(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.69-3.55(\mathrm{~m}, 5 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.02-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-$ $2.31(\mathrm{~m}, 5 \mathrm{H}), 2.07-1.79(\mathrm{~m}, 5 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 3 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $=175.0,158.0,153.0,145.0,138.5,130.5,130.0,121.0,120.5,116.5,115.5,112.0\left(\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $304 \mathrm{~Hz}), 68.0,64.5,58.5,55.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 52.5,52.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 50.5,43.5,42.5$, $42.0,40.5,35.5,27.5,26.5,22.5,18.5 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=-100.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}}=\right.$ $236 \mathrm{~Hz} 1 \mathrm{~F}),(-114.0)-(-117.0)(\mathrm{m}, 1 \mathrm{~F})$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}, 543.3125$ found 543.3141.

Diastereomer B: Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer B (59 mg, 49\%) as a gum : Analytical chiral HPLC (Method (as Diastereomer A)) $\mathrm{R}_{\mathrm{t}}=12.5 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 543$; $\mathrm{R}_{\mathrm{t}} 1.30 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.76(\mathrm{~m}, 2$ H), 6.73 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.65-3.56(\mathrm{~m}$, 2 H), $3.55(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 4 \mathrm{H}), 2.87-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.70(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.42(\mathrm{~m}, 5 \mathrm{H}), 2.32-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.43$ $(\mathrm{m}, 1 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=-100.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}}=236 \mathrm{~Hz} 1 \mathrm{~F}\right),(-114.0)-(-117.0)(\mathrm{m}, 1 \mathrm{~F}) ;$ HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}, 543.3125$ found 543.3141.

Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl)butanoate (191c-d) (Diastereomers C and D)

Using the method above, the title compound was prepared from (E)-methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)but-2-enoate - Enantiomer B ($56 \mathrm{mg}, 0.16 \mathrm{mmol}$) to give two diastereomers.

Diastereomer C: Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer C (5 mg, 6\%) as a gum. LCMS (System high pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 543 ; \mathrm{R}_{\mathrm{t}} 1.30 \mathrm{~min}$, purity $>99 \%$; Analytical chiral HPLC (50\% EtOH (+0.2\% isopropylamine) / heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column $4.6 \mathrm{mmid} \times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=5.0 \mathrm{~min}$; chiral purity $=98 \% ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=7.20(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{~s}, 1 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-$ $3.81(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.90-2.79(\mathrm{~m}, 3 \mathrm{H})$, $2.73(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.47(\mathrm{~m}, 5 \mathrm{H}), 2.28(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$, $2.06-1.75(\mathrm{~m}, 7 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 1 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=-100.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}}=236 \mathrm{~Hz}, 1 \mathrm{~F}\right),(-114.0)$ $-(-117.0)(\mathrm{m}, 1 \mathrm{~F}) ;$ HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}, 543.3141$ found 543.3145 .

Diastereomer D: Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer D (32 mg, 40\%) as
a gum : Analytical chiral HPLC $\left(\right.$ Method $\left(\right.$ as Diastereomer C)) $\mathrm{R}_{\mathrm{t}}=9.2 \mathrm{~min}$; chiral purity > 99%; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 543 ; \mathrm{R}_{\mathrm{t}} 1.30 \mathrm{~min}$, purity $>99 \%$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.20(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{dd}$, $J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.81$, (m, 4 H), $3.59(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=15.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.64-2.47(\mathrm{~m}, 5$ H), $2.46-2.38(\mathrm{~m}, 1 \mathrm{H}) ; 2.09-1.81(\mathrm{~m}, 6 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 1 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=-100.5$ (d, $\left.J_{\mathrm{F}-\mathrm{F}}=236 \mathrm{~Hz} 1 \mathrm{~F}\right),(-114.0)-(-117.0)(\mathrm{m}, 1 \mathrm{~F}) ;$ HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}, 543.3141$ found 543.3145.

4-(4,4-Difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3morpholinophenyl)butanoic acid (185a) (Diastereomer A)

Methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer B ($59 \mathrm{mg}, 0.11 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL}) . \mathrm{LiOH}_{(\mathrm{aq})}(0.5 \mathrm{~mL}$ of a 1 M solution, 0.5 mmol$)$ was added to the reaction mixture. The reaction mixture was stirred for 18 h at ambient temperature. $\mathrm{HCl}_{(\mathrm{aq})}(0.5 \mathrm{~mL}$ of a 2 M solution) was added to the reaction mixture. The reaction mixture was then added to a pre-conditioned SCX column (5 g , MeOH 1 CV , MeCN 1 CV , load compound, MeOH 2 CV ,
$2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH}, 2 \mathrm{CV}$). The ammonical fractions were evaporated and redissolved in $\mathrm{MeOH}(300 \mu \mathrm{~L})$. The reaction mixture was purified by reverse phase chromatography (12 g , $5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 20 CV). The appropriate fractions were evaporated to give the title compound ($49 \mathrm{mg}, 85 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 529 ; \mathrm{R}_{\mathrm{t}} 0.84 \mathrm{~min}$, purity $98 \% ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.85-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1$ H), $3.89-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.45-3.36(\mathrm{~m}, 3 \mathrm{H}), 3.20-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.78$ (br. s, 2 H), $2.74(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.69-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.53-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.03-1.81(\mathrm{~m}, 6$ H), 1.59 (br. s, 1 H) (the protons arising from the amine and the carboxylic acid were not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=-101.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}}=236.0 \mathrm{~Hz}\right)$, second signal not observed (see R\&D).

4-(4,4-Difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3morpholinophenyl)butanoic acid (185b) (Diastereomer B)

Using the method above, the title compound was prepared from methyl 4-(4,4-difluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)-3-(3-
morpholinophenyl)butanoate - Diastereomer D ($32 \mathrm{mg}, 0.061 \mathrm{mmol}$) to give the title compound ($24 \mathrm{mg}, 72 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 529 ; \mathrm{R}_{\mathrm{t}} 0.87$ min, purity $>99 \%$; IR (film) 2949, 2822, 1675, 1600, $1118 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=$ 8.0, 2.0 Hz, 1 H$), 6.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 4 \mathrm{H})$, 3.66 (br. s, 1 H), $3.59-3.49$ (m, 1 H), 3.44 (t, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.25(\mathrm{~m}, 4 \mathrm{H}), 2.89-$ $2.72(\mathrm{~m}, 4 \mathrm{H}), 2.71-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.76(\mathrm{~m}, 7 \mathrm{H}), 1.73-1.57$ $(\mathrm{m}, 1 \mathrm{H})$ (The peaks arising from the carboxylic acid proton and the amine proton were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=174.0,157.0,156.0,151.0$, $144.5,136.5,128.5,124.0\left(\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=245.0 \mathrm{~Hz}\right), 118.5,114.5,113.5,112.5,110.5,66.0,63.0$, $55.5-55.0(\mathrm{~m}), 50.0-49.5(\mathrm{~m}), 49.0,42.0\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=19.0 \mathrm{~Hz}\right), 41.0,40.5,35.0,33.0,26.5$, 25.5, 24.5, 21.5; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=-101.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}}=234.0 \mathrm{~Hz}\right),(-117.5)-$ (-121.0) (m, 1 F); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}, 529.2985$ found 529.2968.

Benzyl 4-hydroxy-4-((trimethylsilyl)ethynyl)piperidine-1-carboxylate (204)

Butyl lithium (32.2 mL of a 1.6 M solution in hexanes, 51.4 mmol) was added slowly at -40 ${ }^{\circ} \mathrm{C}$ to a stirred solution of ethynyltrimethylsilane ($7.32 \mathrm{~mL}, 51.4 \mathrm{mmol}$) in THF (80 mL). The mixture was stirred at $-40{ }^{\circ} \mathrm{C}$ for 1 h , then cooled to $-60{ }^{\circ} \mathrm{C}$. A solution of benzyl 4-oxopiperidine-1-carboxylate ($10 \mathrm{~g}, 40 \mathrm{mmol}$) in THF (20 mL) was added. The reaction mixture was stirred for 3 h . The reaction mixture was warmed to ambient temperature. Sat. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added and the solution was extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The organic fractions were combined and evaporated under reduced pressure. The residue was purified by chromatography on silica ($100 \mathrm{~g}, 0-100 \%$ EtOAc in cyclohexane, 10 CV). The
appropriate fractions were combined and evaporated to give the title compound ($4.2 \mathrm{~g}, 31 \%$) as a yellow oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 332 ; \mathrm{R}_{\mathrm{t}} 1.27 \mathrm{~min}$, purity $93 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz, (CD $\left.)_{2} \mathrm{SO}\right) \delta=7.44-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.74-3.56$ (m, 2 H$), 3.36-3.16(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H})$.

Benzyl 4-ethynyl-4-hydroxypiperidine-1-carboxylate (199)

Benzyl 4-hydroxy-4-((trimethylsilyl)ethynyl)piperidine-1-carboxylate ($4.42 \mathrm{~g}, 13.3 \mathrm{mmol}$) was dissolved in THF (60 mL). Tetrabutylammonium fluoride (14.67 mL of a 1 M solution in THF, 14.67 mmol) was added and the reaction was stirred at ambient temperature for 1 h . The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, then EtOAc $(100 \mathrm{~mL})$ was added and the organic layer was extracted. The aqueous layer was washed with EtOAc $(2 \times 50 \mathrm{~mL})$ and the combined organic fractions were concentrated under reduced pressure to give the title compound ($3.4 \mathrm{~g}, 99 \%$) as an oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 260 ; \mathrm{R}_{\mathrm{t}} 0.92 \mathrm{~min}$, purity 92%; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.45-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.69(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 5.07$ (s, 2 H), $3.67-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 3.32-3.21(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.63-$ 1.45 (m, 2 H).
tert-Butyl 7-((1-((benzyloxy)carbonyl)-4-hydroxypiperidin-4-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (198)

$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.124 \mathrm{~g}, 0.135 \mathrm{mmol}), \mathrm{XPhos}{ }^{\mathrm{TM}}(0.142 \mathrm{~g}, 0.297 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(5.60 \mathrm{~g}, 40.5$ mmol), tert-butyl 7-chloro-3,4-dihydro-1,8-naphthyridine-1 $(2 \mathrm{H})$-carboxylate ($13.1 \mathrm{~mL}, 33.7$ mmol) and benzyl 4-ethynyl-4-hydroxypiperidine-1-carboxylate ($3.50 \mathrm{~g}, 13.5 \mathrm{mmol}$) were dissolved in DMA (80 mL). The reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 4 h , the cooled to ambient temperature. The reaction mixture was then concentrated, partitioned between $\mathrm{H}_{2} \mathrm{O}$ (200 mL) and DCM (200 mL), the aqueous layer was separated and washed with further DCM $(2 \times 100 \mathrm{~mL})$. The combined organic phases were then evaporated under reduced pressure then redissolved in DCM (30 mL) and purified by chromatography on silica ($3 \times$ $100 \mathrm{~g}, 0-100 \%$ EtOAc in cyclohexane, 8 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($4.6 \mathrm{~g}, 70 \%$) as a yellow solid : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 492 ; \mathrm{R}_{\mathrm{t}} 1.24 \mathrm{~min}$, purity $89 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}$, $2 \mathrm{H}), 3.90-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.72(\mathrm{~m}, 2 \mathrm{H})$, $2.01-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$ (the proton arising from the alcohol was not observed due to exchange).
tert-Butyl 7-(2-(4-hydroxypiperidin-4-yl)ethyl)-3,4-dihydro-1,8-naphthyridine-1(2H)carboxylate (205)

tert-Butyl 7-((1-((benzyloxy)carbonyl)-4-hydroxypiperidin-4-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine- $1(2 H)$-carboxylate ($3.6 \mathrm{~g}, 7.3 \mathrm{mmol}$) and 10% Degussa $^{\mathrm{TM}} \mathrm{Pd} / \mathrm{C}(0.779 \mathrm{~g})$ were suspended in $\mathrm{EtOH}(30 \mathrm{~mL})$ and stirred under an atmosphere of hydrogen for 24 h . The reaction was then filtered through Celite ${ }^{\mathrm{TM}}$, washed with EtOAc (50 mL) and evaporated under reduced pressure to give the title compound (2.92 g). LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 362 ; \mathrm{R}_{\mathrm{t}} 0.81$ min, purity 86%; IR (film) 3372, 2934, 1689, $1148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31($ br. s, 1 H$)$, 4.12 (br. s, 1 H), $3.67-3.55$ (m, 2 H), $2.85-2.73$ (m, 2 H), $2.73-2.65$ (m, 4 H), $2.65-2.57$ (m, 2 H$), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 4 \mathrm{H})$.

Benzyl 4-hydroxy-4-((trimethylsilyl)ethynyl)piperidine-1-carboxylate (Cobalt carbonyl complex) (207)

Dicolbalt octacarbonyl ($7.8 \mathrm{~g}, 23 \mathrm{mmol}$) was added portionwise to a solution of benzyl 4-hydroxy-4-((trimethylsilyl)ethynyl)piperidine-1-carboxylate ($6.9 \mathrm{~g}, 21 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (10 $\mathrm{mL})$. The reaction mixture was stirred for 1 h . The reaction mixture was concentrated under
reduced pressure (400 mbar) to give the title compound $(12.8 \mathrm{~g}, 100 \%)$ as a solid : It was noted that some coloured material ended up in the trap (at 72 mbar). LCMS (System High pH $2 \mathrm{~min})[\mathrm{M}+\mathrm{H}]^{+} 618 ; \mathrm{R}_{\mathrm{t}} 1.31 \mathrm{~min}$, purity 95%.

Benzyl 4-fluoro-4-((trimethylsilyl)ethynyl)piperidine-1-carboxylate (Cobalt carbonyl complex) (208)

Benzyl 4-hydroxy-4-((trimethylsilyl)ethynyl)piperidine-1-carboxylate (cobalt carbonyl complex) ($12.8 \mathrm{~g}, 20.8 \mathrm{mmol}$) was dissolved in anhydrous DCM $(120 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. DAST $(2.75 \mathrm{~mL}, 20.8 \mathrm{mmol})$ was added dropwise over 5 min . The reaction mixture was stirred for 1 h. The reaction mixture was warmed to ambient temperature. Sat. $\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})(20 \mathrm{~mL})$ was added and the mixture was stirred for 10 min . The organic layer was separated and concentrated under reduced pressure to give the title compound ($12.95 \mathrm{~g}, 100 \%$) as a red oil : Due to the quadrapolar nature of Co no NMR was taken, LCMS shows no m / z, the only evidence for this reaction working is based on the change in R_{t} from 1.31 (benzyl 4-hydroxy-4-((trimethylsilyl)ethynyl)piperidine-1-carboxylate (Cobalt carbonyl complex)). The crude mixture was taken forward to the next step. LCMS (System High pH 2 min) $\mathrm{R}_{\mathrm{t}} 1.72 \mathrm{~min}$, purity 91%.

Benzyl 4-ethynyl-4-fluoropiperidine-1-carboxylate (197)

Benzyl 4-fluoro-4-((trimethylsilyl)ethynyl)piperidine-1-carboxylate (cobalt carbonyl complex) ($2.17 \mathrm{~g}, 3.50 \mathrm{mmol}$) was dissolved in acetone (20 mL). Ceric ammonium nitrate $(5.76 \mathrm{~g}, 10.51 \mathrm{mmol})$ was added to the mixture portionwise over 20 min . The reaction was stirred at ambient temperature for 1 h . The reaction mixture was concentrated and the residue was dissolved DCM (300 mL). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$, filtered through Celite ${ }^{\mathrm{TM}}$ and evaporated under reduced pressure to give the silyl protected title compound $(1.1 \mathrm{~g}, 94 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.49-7.23(\mathrm{~m}, 5 \mathrm{H})$, $5.17-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.70(\mathrm{~m}, 4 \mathrm{H}), 0.25-$ 0.23 (s, 9 H). Benzyl 4-fluoro-4-((trimethylsilyl)ethynyl)piperidine-1-carboxylate (1.11 g , 3.33 mmol) was dissolved in THF (10 mL). Tetrabutylammonium fluoride (3.66 mL of a 1 M in a solution of THF, 3.66 mmol) was added and the reaction was stirred at ambient temperature for 1 h . The reaction mixture was poured into water $(100 \mathrm{~mL})$ and the product was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), the organic layer was concentrated under reduced pressure and resuspended in $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}: \mathrm{DMSO}(1: 1: 1)(4 \mathrm{~mL})$ and purified by reverse phase chromatography ($130 \mathrm{~g}, 30-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 10 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($365 \mathrm{mg}, 42 \%$) as an oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 262 ; \mathrm{R}_{\mathrm{t}} 1.16 \mathrm{~min}$, purity 97%; IR (film) 2971, 1697, 1422, 1055, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, (CD $\left.)_{2} \mathrm{SO}\right) \delta=7.52-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.75-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 4 \mathrm{H})$.
tert-Butyl 7-((1-((benzyloxy)carbonyl)-4-fluoropiperidin-4-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (192)

Benzyl 4-ethynyl-4-fluoropiperidine-1-carboxylate ($353 \mathrm{mg}, 1.35 \mathrm{mmol}$), tert-butyl 7-chloro-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate, Hydrochloride (412 mg, 1.35 mmol), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(13.6 \mathrm{mg}, 0.0154 \mathrm{mmol})$, XPhos $(14 \mathrm{mg}, 0.031 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(560 \mathrm{mg}, 4.05$ mmol) were dissolved in DMA (10 mL) and the reaction heated to $100^{\circ} \mathrm{C}$ for 15 h . The reaction solvent was evaporated, partitioned between $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{DCM}(50 \mathrm{~mL})$, the aqueous layer was separated and washed with further DCM $(2 \times 50 \mathrm{~mL})$. The combined organic phases were then evaporated under reduced pressure and purified by chromatography on silica ($100 \mathrm{~g}, 0-100 \%$ EtOAc in cyclohexane, 10 CV). The appropriate fractions were combined and evaporated under reduced pressure to give the title compound ($240 \mathrm{mg}, 36 \%$) as a yellow oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 494 ; \mathrm{R}_{\mathrm{t}} 1.41 \mathrm{~min}$, purity $95 \% ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.76-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.49-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.63(\mathrm{~m}, 2 \mathrm{H})$, $2.15-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$.
tert-Butyl 7-(2-(4-fluoropiperidin-4-yl)ethyl)-3,4-dihydro-1,8-naphthyridine-1(2H)carboxylate (194)

tert-Butyl 7-((1-((benzyloxy)carbonyl)-4-fluoropiperidin-4-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine- $1(2 H)$-carboxylate $(240 \mathrm{mg}, 0.49 \mathrm{mmol})$ was dissolved in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and added to a flask containing 10% Degussa ${ }^{\text {TM }} \mathrm{Pd} / \mathrm{C}(51.7 \mathrm{mg})$ the reaction mixture was stirred under an atmosphere of H_{2} (supplied from a burette) for 12 h . The reaction mixture was then filtered through Celite ${ }^{\mathrm{TM}}$, washed with EtOAc $(20 \mathrm{~mL})$ and evaporated under reduced pressure to give the title compound (183 mg, 99\%) as an oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 364 ; \mathrm{R}_{\mathrm{t}} 0.77$ min, purity 19% (major impurity is compound 206 (see $\mathrm{R} \& \mathrm{D}$));

3-(3-Cyclopropylphenyl)-4-(4-fluoro-4-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)butanoic acid unknown stoichiometric salt (138)

tert-Butyl 7-(2-(4-fluoropiperidin-4-yl)ethyl)-3,4-dihydro-1,8-naphthyridine-1(2H)carboxylate ($187 \mathrm{mg}, 0.514 \mathrm{mmol}$) and DIPEA ($0.135 \mathrm{ml}, 0.772 \mathrm{mmol}$) were dissolved in DCM (3 mL). (E)-Methyl 4-bromobut-2-enoate ($0.068 \mathrm{ml}, 0.57 \mathrm{mmol}$) was added dropwise over 5 minutes then the resulting mixture was stirred for 2 h . Water (10 mL) was added to the
reaction mixture and the organic layer was separate. The aqueous phase was re-extracted with DCM (5 mL). The combined organic layers were evaporated and the redissolved in MeOH (2 $\mathrm{mL})$. The crude material was purified by reverse phase chromatography (C18, $12 \mathrm{~g}, 10-50 \%$ MeCN (containing $0.1 \% \mathrm{TFA}$) in $\mathrm{H}_{2} \mathrm{O}$ (containing $0.1 \% \mathrm{TFA}$), 10 CV) The appropriate fractions were combined and evaporated under reduced pressure to give the title compound $(110 \mathrm{mg})$ containing an impurity of (E)-methyl 4-(4-fluoro-4-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)piperidin-1-yl)but-2-enoate. LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+}$ 462; $\mathrm{R}_{\mathrm{t}} 0.99 \mathrm{~min}$, purity 63%. (E)-tert-Butyl 7-(2-(4-fluoro-1-(4-methoxy-4-oxobut-2-en-1-yl)piperidin-4-yl)ethyl)-3,4-dihydro-1,8-naphthyridine-1(2 H)-carboxylate (100 $\mathrm{mg}, 0.217$ mmol), (3-cyclopropylphenyl) boronic acid ($65 \mathrm{mg}, 0.40 \mathrm{mmol}$), $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(6 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ and $\mathrm{KOH}_{(\mathrm{aq})}(0.103 \mathrm{~mL}$ of a 3.8 M solution, 0.390 mmol$)$ were dissolved in 1,4dioxane (4 mL). The reaction mixture was heated in a microwave oven ($30 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). The Boc group was removed in the reaction. $\operatorname{LiOH}_{(a q)}(1 \mathrm{~mL}$ of a 1 M solution, 1 mmol) was added to the reaction mixture and it was stirred for 12 h . The reaction mixture was concentrated under reduced pressure and redissolved in DMSO : $\mathrm{MeOH}(1: 1,1 \mathrm{~mL})$, and purified by reverse phase chromatography (C18, $12 \mathrm{~g}, 20-70 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate in water, 10 CV). The appropriate fractions were evaporated under nitrogen flow to give the title compound ($5 \mathrm{mg}, 5 \%$) as a gum : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 466 ; \mathrm{R}_{\mathrm{t}} 0.96 \mathrm{~min}$, purity 96%; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.18-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (s, 1 H$), 6.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ (br. s, 1 H), $3.29-3.15(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.69(\mathrm{~m}, 2$ H), $2.69-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.43-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.80(\mathrm{~m}, 4 \mathrm{H})$, $1.80-1.48(\mathrm{~m}, 6 \mathrm{H}), 0.96-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.70-0.58(\mathrm{~m}, 2 \mathrm{H})$ (one exchangeable proton not observed).

Benzyl 3-hydroxy-3-((trimethylsilyl)ethynyl)pyrrolidine-1-carboxylate (219)

Ethynyltrimethylsilane ($11.6 \mathrm{~mL}, 82.0 \mathrm{mmol}$) was dissolved in THF (30 mL) and cooled to $-60{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{n}} \mathrm{BuLi}(51.3 \mathrm{~mL}$ of a 1.6 M solution in hexanes, 82.0 mmol) was added dropwise and the solution was stirred at $-60^{\circ} \mathrm{C}$ for 30 min before a solution of benzyl 3-oxopyrrolidine-1-carboxylate ($15 \mathrm{~g}, 68.4 \mathrm{mmol}$) in THF (25 mL) was added dropwise. The reaction mixture was stirred for 2 h and then warmed to ambient temperature. Water (0.5 mL was added to the reaction mixture then sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(250 \mathrm{~mL})$ and $\mathrm{EtOAc}(250 \mathrm{~mL})$ were added. The aqueous layer was extracted with ethyl acetate $(2 \times 250 \mathrm{~mL})$. The combined organic extracts were evaporated under reduced pressure to give the title compound ($21 \mathrm{~g}, 97 \%$) as a brown oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 318 ; \mathrm{R}_{\mathrm{t}} 1.22 \mathrm{~min}$, purity 86%; \mathbb{R} (solid) 2957, 2143, 1692, 1432, 1138, $846 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.46-7.16(\mathrm{~m}, 5 \mathrm{H})$, $5.24-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.23(\mathrm{~m}, 4 \mathrm{H}), 2.16-1.99(\mathrm{~m}, 2 \mathrm{H}), 0.24-0.09(\mathrm{~s}, 9 \mathrm{H})$ (the proton arising from the alcohol was not observed due to exchange), ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=156.5,138.5,130.0,129.5,129.0,129.0,121.5,107.5,89.5,72.5,68.5,60.5$, 46.0, 41.5, -0.1; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{Si}, 318.1520$ found 318.1515.

Benzyl 3-hydroxy-3-((trimethylsilyl)ethynyl)pyrrolidine-1-carboxylate cobalt complex (220)

Benzyl 3-hydroxy-3-((trimethylsilyl)ethynyl)pyrrolidine-1-carboxylate ($2.7 \mathrm{~g}, 8.5 \mathrm{mmol}$) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. Dicobalt octacarbonyl ($3.20 \mathrm{~g}, 9.36 \mathrm{mmol}$) was added portionwise and the reaction was stirred for 1 h . The reaction mixture was filtered to give the title compound ($4.79 \mathrm{~g}, 94 \%$) as a pink solid. LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 604 ; \mathrm{R}_{\mathrm{t}} 1.53$ min, purity $>99 \%$.

Benzyl 3-fluoro-3-((trimethylsilyl)ethynyl)pyrrolidine-1-carboxylate cobalt complex (221)

Benzyl 2-hydroxy-2-((trimethylsilyl)ethynyl)pyrrolidine-1-carboxylate dicobalt hexacarbonyl $(4.79 \mathrm{~g}, 7.94 \mathrm{mmol})$ was dissolved in $\mathrm{DCM}(40 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. DAST $(1.05 \mathrm{~mL}$, 7.94 mmol) was added and the reaction mixture was warmed to ambient temperature for 3 h . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and DAST ($1.05 \mathrm{~mL}, 7.94 \mathrm{mmol}$) was added and the reaction mixture was warmed to ambient temperature for 2 h . The reaction mixture was
cooled to $0^{\circ} \mathrm{C}$ and Sat. $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ was added. The reaction mixture was partitioned between DCM (50 mL) and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The aqueous layer was washed with further fractions of DCM $(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL), then evaporated to give the title compound ($4.14 \mathrm{~g}, 86 \%$) as a red-brown oil : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 606 ; \mathrm{R}_{\mathrm{t}} 1.60 \mathrm{~min}$, purity 94%.

Benzyl 3-fluoro-3-((trimethylsilyl)ethynyl)pyrrolidine-1-carboxylate (222)

Benzyl 2-fluoro-2-((trimethylsilyl)ethynyl)pyrrolidine-1-carboxylate dicobalt hexacarbonyl ($3.92 \mathrm{~g}, 6.48 \mathrm{mmol}$) was dissolved in acetone (40 mL). Ceric ammonium nitrate (10.65 g , 19.43 mmol) was added portionwise, then the reaction mixture was stirred at ambient temperature for 2 h . Ceric ammonium nitrate ($3.50 \mathrm{~g}, 6.39 \mathrm{mmol}$) was added and the mixture was stirred for 2 h . The solvent was evaporated, then the crude mixture was dissolved DCM $(60 \mathrm{~mL})$ and EtOAc (300 mL). The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$. The aqueous layer was washed EtOAc (100 mL). The combined organic fractions were washed with brine (50 mL), then evaporated under reduced pressure to give the title compound (2.10 $\mathrm{g}, 100 \%$) as an green oil : LCMS (System formic 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 320 ; \mathrm{R}_{\mathrm{t}} 1.39 \mathrm{~min}$, purity $90 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.51-7.32(\mathrm{~m} .5 \mathrm{H}), 5.18(\mathrm{~d}, J=26.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.96$ $(\mathrm{s}, 1 \mathrm{H}), 3.81-3.49(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.16(\mathrm{~m}, 1 \mathrm{H}), 0.21(\mathrm{~s}, 9 \mathrm{H})$.

Benzyl 3-fluoro-3-((trimethylsilyl)ethynyl)pyrrolidine-1-carboxylate (3.92 g, 12.27 mmol) was dissolved in THF (40 mL) then was added TBAF (13.5 mL of a 1 M solution in THF, $13.5 \mathrm{mmol})$. The reaction mixture was stirred for 40 min , then poured into $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and the product was extracted EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organics were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$ and evaporated under reduced pressure. The crude mixture was dissolved in DCM (200 mL) and flashed through a 20 g silica column. The appropriate fractions were combined and evaporated under reduced pressure to give the title compound $(0.96 \mathrm{~g}, 31 \%)$ as an oil : LCMS (System formic 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 248 ; \mathrm{R}_{\mathrm{t}} 1.05 \mathrm{~min}$, purity 85%; IR (oil) 3293, 3125, 2124, 1697, 1416, $695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=$ $7.47-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.70-$ $3.52(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.18(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 373$ K) $\delta=154.5,139.0,129.0,128.0,127.5,92.70\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=174.0 \mathrm{~Hz}\right), 79.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.5 \mathrm{~Hz}\right)$, $79.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31 \mathrm{~Hz}\right), 66.5,57.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}\right), 44.5,38.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 273 \mathrm{~K}\right) \delta=-140.0\left(\mathrm{tt},{ }^{3} J_{\mathrm{F}-\mathrm{H}}=40,20 \mathrm{~Hz}, 1 \mathrm{~F}\right.$, rotamer 1) $-140.5(\mathrm{tt}$, ${ }^{3} J_{\mathrm{F}-\mathrm{H}}=40,20 \mathrm{~Hz}, 1 \mathrm{~F}$, rotamer 2); ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 393 \mathrm{~K}\right) \delta=$ -139.5 (tt, $\left.{ }^{3} J_{\mathrm{F}-\mathrm{H}}=40,20 \mathrm{~Hz}\right)$, HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FNO}_{2}, 248.1073$ found 248.1081.

Benzyl 3-ethynyl-3-hydroxypyrrolidine-1-carboxylate (223)

Benzyl 3-hydroxy-3-((trimethylsilyl)ethynyl)pyrrolidine-1-carboxylate ($6.89 \mathrm{~g}, 21.7 \mathrm{mmol}$) was dissolved in THF (100 mL). Tetrabutylammonium fluoride (23.9 mL of a 1 M in a solution in THF, 23.9 mmol) was added and the reaction was stirred at ambient temperature for 30 min . The reaction mixture was poured slowly into $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the product was extracted using EtOAc ($3 \times 100 \mathrm{~mL}$). The organic layer was evaporated under reduced pressure to give the title compound benzyl 3-ethynyl-3-hydroxypyrrolidine-1-carboxylate $(4.95 \mathrm{~g}, 93 \%)$ as a brown oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 246 ; \mathrm{R}_{\mathrm{t}} 0.84 \mathrm{~min}$, purity 86%; IR (film) $3288,3957,2111,1677,1420,1127,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.53-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.63-3.22(\mathrm{~m}, 5 \mathrm{H}), 2.19-2.01(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the alcohol was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=155.5,136.5,128.0,127.5,127.5,83.5,72.5,70.0,67.0,58.0,44.0,39.0 ;$ HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}, 246.1125$ found 246.1119.
tert-Butyl 7-((1-((benzyloxy)carbonyl)-3-hydroxypyrrolidin-3-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (224)

Benzyl 3-ethynyl-3-hydroxypyrrolidine-1-carboxylate (17.6 \quad g, 71.8 mmol), dicyclohexyl(2',4',6'-triisopropyl-[1,1'-biphenyl]-2-yl)phosphine, ($0.753 \mathrm{~g}, 1.58 \mathrm{mmol})$, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (29.8 g, 215 mmol), tert-butyl 7-chloro-3,4-dihydro-1,8-naphthyridine-1(2H)carboxylate ($69.9 \mathrm{~mL}, 179 \mathrm{mmol}$) and benzyl 3-ethynyl-3-hydroxypyrrolidine-1-carboxylate $(17.6 \mathrm{~g}, 71.8 \mathrm{mmol})$ were dissolved in DMA $(200 \mathrm{~mL})$ and the reaction heated at $100^{\circ} \mathrm{C}$ for 2 h. The reaction mixture was cooled to ambient temperature and the solvent was evaporated. The reaction mixture was partitioned between water (500 mL) and DCM (500 mL), the aqueous layer was separated and washed with further DCM $(2 \times 250 \mathrm{~mL})$. The combined organic phases were then evaporated, redissolved in DCM (30 mL) and purified by chromatography on silica ($1500 \mathrm{~g}, 0-100 \%$ EtOAc in cyclohexane, 10 CV). The appropriate fractions were evaporated under reduced pressure to give the title compound $(7.86 \mathrm{~g}, 23 \%)$: LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 478 ; \mathrm{R}_{\mathrm{t}} 1.19 \mathrm{~min}$, purity 98%; IR (film) 3382, 2931, 2224, 1704, 1626, 1414, $1152 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.36-7.22(\mathrm{~m}, 6 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.82-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.67-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.79-$ $2.66(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$ (the proton arising from the alcohol was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=$ 156.7, 155.3, 152.7, 139.4, 139.2, 138.2, 129.6, 129.1, 128.9, 127.8, 124.4, 89.6, 84.0, 82.8,
72.4, 71.7, 68.2, 46.2, 45.7, 41.1, 28.5, 27.4, 24.1 HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5}, 478.2337$ found 478.2325 .
tert-Butyl 7-((1-((benzyloxy)carbonyl)-3-hydroxypyrrolidin-3-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (Cobalt carbonyl complex) (225)

$\mathrm{Co}_{2}(\mathrm{CO})_{8}(6.19 \mathrm{~g}, 18.1 \mathrm{mmol})$ was added portionwise to a solution of tert-butyl 7-((1-((benzyloxy)carbonyl)-3-hydroxypyrrolidin-3-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine$1(2 \mathrm{H})$-carboxylate $(7.86 \mathrm{~g}, 16.5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the reaction mixture was stirred for 1 h . The reaction mixture was concentrated under reduced pressure (600 mbar) and the resulting a oil was taken forward to the next step without purification (12.3 g, 99\%) : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 764 ; \mathrm{R}_{\mathrm{t}} 1.62 \mathrm{~min}$, purity 93%; HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{Co}_{2} \mathrm{~N}_{3} \mathrm{O}_{11} 764.0695$ found 764.0703 . Due to the quadropolar nature of Co the NMR is very broad.
tert-Butyl 7-((1-((benzyloxy)carbonyl)-3-fluoropyrrolidin-3-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (Cobalt carbonyl complex) (226)

tert-Butyl 7-((1-((benzyloxy)carbonyl)-3-hydroxypyrrolidin-3-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine-1 2 H)-carboxylate (Cobalt carbonyl complex) ($12.56 \mathrm{~g}, 16.45 \mathrm{mmol}$) was dissolved in anhydrous DCM (120 mL) at $-78{ }^{\circ} \mathrm{C}$. DAST ($2.17 \mathrm{~mL}, 16.5 \mathrm{mmol}$) was added dropwise over 5 min and the reaction mixture was warmed to ambient temperature and stirred for 18 h . An additional portion of DAST ($2.17 \mathrm{~mL}, 16.5 \mathrm{mmol}$) was added to the reaction mixture and stirred for 3 h . An additional portion of DAST ($0.5 \mathrm{~mL}, 3.8 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 3 h. Sat. $\mathrm{K}_{2} \mathrm{CO}_{3(\text { aq) }}(60 \mathrm{~mL})$ was added and the mixture was stirred for 10 min . The organic layer was separated and evaporated under reduced pressure to give the title compound (11.9 g, 94%) as a red oil : LCMS (System High $\mathrm{pH} 2 \mathrm{~min})[\mathrm{M}+\mathrm{H}]^{+} 766 ; \mathrm{R}_{\mathrm{t}} 1.66 \mathrm{~min}$, purity 86%, Due to the quadropolar nature of Co the NMR is very broad.
tert-Butyl 7-((1-((benzyloxy)carbonyl)-3-fluoropyrrolidin-3-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (214)

tert-Butyl 7-((1-((benzyloxy)carbonyl)-3-fluoropyrrolidin-3-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine-1 $(2 \mathrm{H})$-carboxylate (Cobalt complex) ($11.9 \mathrm{~g}, 15.6 \mathrm{mmol}$) was dissolved in acetone (200 mL) and ceric ammonium nitrate ($25.6 \mathrm{~g}, 46.6 \mathrm{mmol}$) was added portionwise over 10 min . The reaction was stirred at ambient temperature for 1 h . EtOAc (200 mL) and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was further washed with EtOAc $(2 \times 100 \mathrm{~mL})$. The combined fractions were evaporated under reduced pressure to give the title compound ($6.89 \mathrm{~g}, 92 \%$) as a red oil : LCMS (System High $\mathrm{pH} 2 \mathrm{~min})[\mathrm{M}+\mathrm{H}]^{+} 480 ; \mathrm{R}_{\mathrm{t}} 1.34 \mathrm{~min}$, purity $69 \% ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.56$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.98-$ $3.85(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.39$ $(\mathrm{m}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{quin}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=153.7,153.0,151.4,137.5,136.7,136.1,128.4$, $127.8,127.5,126.1,122.7,92.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=173.6 \mathrm{~Hz},\right), 87.4,81.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 80.2(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=28 \mathrm{~Hz}\right), 66.1,57.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}\right), 44.4,44.1,37.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 27.8,25.9$, 22.3; ${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-138.0)-(-138.5)(\mathrm{m}),(-139.0)-(-139.5)(\mathrm{m})$ (mixture of rotamers, see $R \& D$)

Benzyl 3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidine-1carboxylate (215a-b) (Enantiomers A and B)

tert-Butyl 7-((1-((benzyloxy)carbonyl)-3-fluoropyrrolidin-3-yl)ethynyl)-3,4-dihydro-1,8-naphthyridine- $1(2 \mathrm{H})$-carboxylate (2.7 g , 5.6 mmol) was dissolved in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and added to a hydrogenation flask containing 5\% Degussa ${ }^{\mathrm{TM}} \mathrm{Pd} / \mathrm{C}(0.6 \mathrm{~g})$. The reaction mixture was stirred under an atmosphere of hydrogen (supplied from a burette) for 18 h . The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$ and washed with EtOAc (50 mL). The organic layer was evaporated and the residue was dissolved in DCM (20 mL) and TFA ($1 \mathrm{~mL}, 13 \mathrm{mmol}$) and left to stir for 72 h . A further TFA ($1 \mathrm{~mL}, 13 \mathrm{mmol}$) was added and the reaction mixture was stirred for 3 h . TFA ($1 \mathrm{~mL}, 13 \mathrm{mmol}$) was added to the reaction mixture and the reaction mixture was stirred for 1 h . The reaction mixture was concentrated, redissolved in MeCN (10 mL) and purified using an amino propyl SPE column (20 g , MeOH 1 CV , MeCN 1 CV , load compound, MeCN $3 \mathrm{CV}, 2 \mathrm{M} \mathrm{NH}_{3}$ in MeOH 3 CV). The appropriate fractions were evaporated under reduced pressure. The mixture was dissolved in EtOH (5 mL) and the enantiomers separated by using chiral HPLC (Injection; $0.5 \mathrm{~mL}, 50 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine): 50% hexane (containing 0.2% isopropylamine), $\mathrm{f}=50 \mathrm{~mL} / \mathrm{min}$, wavelength 320 nm ; column $5 \mathrm{~cm} \times 20 \mathrm{~cm}$ Chiralpak IA (self packed), 45 min) to give two enantiomers.

Enantiomer A: Benzyl 3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidine-1-carboxylate - Enantiomer A (410 mg, 21\%) : Analytical Chiral HPLC (Analytical chiral HPLC ($15 \% \mathrm{EtOH} /$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column
4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=8.0 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 384 ; \mathrm{R}_{\mathrm{t}} 1.18 \mathrm{~min}$, purity 86%; IR (film) 3253, 2936, 1701, $1599,1420,1117 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.44-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-6.20(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.34(\mathrm{~m}, 4 \mathrm{H}), 3.27-3.17(\mathrm{~m}$, $2 \mathrm{H}), 2.67-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.23-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=156.5$, $156.0,139.5,138.5,129.5,129.0,128.5,116.5,112.0,102.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=177 \mathrm{~Hz}\right), 68.0,56.5$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=27 \mathrm{~Hz}\right), 45.5,42.5,37.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 36.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 36.0,31.5,27.5$, 22.0; ${ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=(-154.0)-(-154.5)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{FN}_{3} \mathrm{O}_{2} 384.2082$ found 384.2081 .

Enantiomer B: benzyl 3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidine-1-carboxylate - Enantiomer B ($440 \mathrm{mg}, 22 \%$ yield) : Analytical Chiral HPLC (Method (as enantiomer A)) $\mathrm{R}_{\mathrm{t}}=10.0 \mathrm{~min}$; chiral purity $>99 \%$. LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 384$; $\mathrm{R}_{\mathrm{t}} 1.17 \mathrm{~min}$, purity 84%; IR (film) 3250, 2936, 1701, 1599, 1420, $1117 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.44-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1$ H), $6.35-6.18(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.34(\mathrm{~m}, 4 \mathrm{H}), 3.27-3.23(\mathrm{~m}, 2 \mathrm{H})$, $2.67-2.53(\mathrm{~m}, 4 \mathrm{H}), 2.21-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=156.5,156.0$, $139.5,138.5,129.5,129.0,128.5,116.5,112.0,102.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=177 \mathrm{~Hz}\right), 68.0,56.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}\right.$ $=27 \mathrm{~Hz}), 45.5,42.5,37.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 36.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 36.0,31.5,27.5,22.0$; ${ }^{19}$ F NMR ($\left.376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=(-154.0)-(154.5)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{FN}_{3} \mathrm{O}_{2}$ 384.2082 found 384.2081 .
tert-Butyl
7-(2-(1-((benzyloxy)carbonyl)pyrrolidin-3-yl)ethyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate (232)

Compound 363 was isolated during the purification of compound 351 .
LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 465 ; \mathrm{R}_{\mathrm{t}} 0.94 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.13(\mathrm{~s}, 2 \mathrm{H}), 3.85-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.76$ $(\mathrm{m}, 4 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.74(\mathrm{~m}, 2$ $\mathrm{H}), 1.70-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$.

7-(2-(3-Fluoropyrrolidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine (233a) (Enantiomer
A)

Benzyl 3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidine-1carboxylate - Enantiomer A (410 mg, 1.1 mmol$)$ was dissolved in $\mathrm{EtOH}(10 \mathrm{~mL})$ and added to a hydrogenation flask containing $5 \% \operatorname{Degussa}^{\mathrm{TM}} \mathrm{Pd} / \mathrm{C}(114 \mathrm{mg})$. The reaction mixture was stirred under an atmosphere of hydrogen (supplied from a burette) for 18 h . The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with $\mathrm{EtOH}(30 \mathrm{~mL})$ and evaporated under
reduced pressure to give the title compound 7-(2-(3-fluoropyrrolidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine ($198 \mathrm{mg}, 74 \%$) as an oil : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 250 ; \mathrm{R}_{\mathrm{t}} 0.76 \mathrm{~min}$, purity 97%; IR (film) $3253,2928,2843,1587,1460,1321 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (br s, 1 H), $3.02-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.45(\mathrm{~m}, 8 \mathrm{H}), 2.13-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.59(\mathrm{~m}, 2$ H) (one of the exchangeable protons was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=156.5,155.5,137.0,114.0,110.5,104.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=175.0 \mathrm{~Hz}\right), 57.0,56.5$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25.5 \mathrm{~Hz}\right), 45.0,41.0,37.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.0 \mathrm{~Hz}\right), 36.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.0 \mathrm{~Hz}\right), 32.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}}\right.$ $\mathrm{F}=3.0 \mathrm{~Hz}), 26.0 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-143.5)-(-144.0)(\mathrm{m}) ;$ HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{FN}_{3} 250.1714$ found 250.1718 .

7-(2-(3-Fluoropyrrolidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine
(Enantiomer B)

Using the method above, the title compound was prepared from benzyl 3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidine-1-carboxylate - Enantiomer B $(440 \mathrm{mg}, 1.147 \mathrm{mmol})$ to give the title compound $(230 \mathrm{mg}, 80 \%)$ as an oil. Purity 87% spectroscopic data as enantiomer A.
(E)-Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate (234a) (Enantiomer A)

(E)-Methyl 4-bromobut-2-enoate ($0.085 \mathrm{~mL}, 0.72 \mathrm{mmol}$) was added dropwise during 30 min to a solution of 7-(2-(3-fluoropyrrolidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine Enantiomer A (198 mg, 0.794 mmol$)$ and DIPEA ($0.416 \mathrm{~mL}, 2.38 \mathrm{mmol}$) in DCM (20 mL) at $0^{\circ} \mathrm{C}$. The solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then warmed to ambient temperature for 2 h. (E)-Methyl 4-bromobut-2-enoate ($0.1 \mathrm{~mL}, 0.9 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred at ambient temperature for 3 h . The reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{DCM}(20 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50$ mL) then evaporated under reduced pressure to give the title compound ($267 \mathrm{mg}, 97 \%$) : LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 348 ; \mathrm{R}_{\mathrm{t}} 1.01 \mathrm{~min}$, purity 90%. IR (film) 3407, 2948, 2843, 2663, 1721, 1662, 1597, 1435, $1276 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.11(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dt}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=16.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.19-2.83(\mathrm{~m}, 3 \mathrm{H}), 2.75-2.44(\mathrm{~m}, 7 \mathrm{H}), 2.19-1.93(\mathrm{~m}, 5 \mathrm{H})$, $1.93-1.77(\mathrm{~m}, 3 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange).
(E)-Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate (234b) (Enantiomer B)

Using the method above, the title compound was prepared from 7-(2-(3-fluoropyrrolidin-3-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine - Enantiomer B ($230 \mathrm{mg}, 0.922 \mathrm{mmol}$) to give the title compound ($318 \mathrm{mg}, 79 \%$), as a yellow gum, purity 98%.

Methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate (236a-b) (Diastereomers A and B)

(E)-Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate - Enantiomer A ($145 \mathrm{mg}, 0.334 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$, (3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)boronic acid ($271 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{KOH}_{(\mathrm{aq})}(0.18$ mL of a 3.8 M solution, 0.67 mmol), and (R)-BINAP ($31 \mathrm{mg}, 0.05 \mathrm{mmol}$) were dissolved in 1,4-dioxane (2 mL). The reaction mixture was heated in a microwave oven $\left(1 \mathrm{~h}, 95^{\circ} \mathrm{C}\right.$, high power). The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with EtOAc (20 mL) and was evaporated under reduced pressure. The crude gum was redissolved in DMSO : MeOH
$(1 \mathrm{~mL})$ and purified using reverse phase chromatography (C18, 30 g, 5-95\% MeCN (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 15 CV). The appropriate fractions were combined and evaporated to give (\pm)-methyl 3-(3-(3,5-dimethyl-1 H -pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1yl)butanoate ($120 \mathrm{mg}, 69 \%$) as a gum. Analytical chiral HPLC ($30 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine)/heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) chiral purity 95\%. The mixture was dissolved in EtOH (2 mL) and heptane (1 mL) and the enantiomers separated by using chiral HPLC (Injection; 1 mL , $30 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine): 70% Hexane (containing 0.2% isopropylamine), $\mathrm{f}=30 \mathrm{~mL} / \mathrm{min}$, detecting at 215.4 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak ODH (self packed), 45 min) to give two diastereomers.

Diastereomer A: Methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate - Diastereomer A ($9 \mathrm{mg}, 5 \%$) : Analytical chiral HPLC ($30 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine)/Heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=7.0 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 520 ; \mathrm{R}_{\mathrm{t}}$ 1.25 min , purity $>99 \%$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=7.48-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.23$ $(\mathrm{m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.40$ - 3.33 (m, 3 H), $2.94-2.71$ (m, 4 H), 2.71 - $2.49(\mathrm{~m}, 8 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.09$ $1.89(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange).

Diastereomer B: methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate - Diastereomer B ($88 \mathrm{mg}, 51 \%$) : Analytical chiral HPLC (method (as Diastereomer A)) $\mathrm{R}_{\mathrm{t}}=8.5 \mathrm{~min}$; chiral
purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 520 ; \mathrm{R}_{\mathrm{t}} 1.25 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.48-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.39-3.33(\mathrm{~m}, 3 \mathrm{H}), 2.92$ - $2.72(\mathrm{~m}, 4 \mathrm{H}), 2.72-2.43(\mathrm{~m}, 8 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.89-$ $1.80(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-141.5)-(-142.0)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{FN}_{5} \mathrm{O}_{2}$, 520.3082 found 520.3066 .

Methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate (236c-d) (Diastereomers C and D)

Using the method above, the title compound was prepared from (E)-methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate - Enantiomer B ($145 \mathrm{mg}, 0.334 \mathrm{mmol}$) gave two isomers

Diastereomer C: Methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate - Diastereomer C ($9 \mathrm{mg}, 5 \%$) : Analytical chiral HPLC (Method (as Diastereomer A)) $\mathrm{R}_{\mathrm{t}}=5.0 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 520 ; \mathrm{R}_{\mathrm{t}} 1.26 \mathrm{~min}$, purity $97 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.52-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 3 \mathrm{H}), 2.95-2.50$ $(\mathrm{m}, 12 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.81(\mathrm{~m}, 6 \mathrm{H})$ (the protons arising from the amine were not observed due to exchange).

Diastereomer D: methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate - Diastereomer D $(88 \mathrm{mg}, 50 \%)$: Analytical chiral HPLC (Method (as Diastereomer A)) $\mathrm{R}_{\mathrm{t}}=7.2 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 520 ; \mathrm{R}_{\mathrm{t}} 1.26 \mathrm{~min}$, purity $97 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.49-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.35(\mathrm{~m}, 3 \mathrm{H}), 2.96-2.74$ (m, 4 H), $2.74-2.53(\mathrm{~m}, 8 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.13-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.83$ ($\mathrm{m}, 2 \mathrm{H}$) (the protons arising from the amine were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=174.0,158.0,157.0,150.0,145.5,141.5,140.5,138.5,130.5,128.5$, $125.5,124.5,115.5,112.0,107.5,105.5,103.5,97.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=164 \mathrm{~Hz}\right), 65.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25\right.$ $\mathrm{Hz}), 62.5,54.5,51.5,42.5,39.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right), 38.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 33.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4\right.$ $\mathrm{Hz})$, 27.5, 22.5, 13.0, 11.5; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{FN}_{5} \mathrm{O}_{2}$, 520.3082 found 520.3066.

3-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoic acid (237a) (Diastereomer A)

Methyl 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate - Diastereomer B ($88 \mathrm{mg}, 0.17 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL}) . \mathrm{LiOH}_{(\mathrm{aq})}(0.5 \mathrm{~mL}$ of a 1 M solution, 0.5 mmol$)$ was added to the reaction mixture. The reaction mixture was stirred for 18 h at ambient temperature. $\mathrm{HCl}_{(\mathrm{aq})}$ (0.3 mL of a 2 M solution, 0.6 mmol) was added to the reaction mixture, then it was loaded onto a pre-conditioned SCX column (10 g, MeOH 1 CV , MeCN 1 CV , load compound, $\mathrm{MeOH} 2 \mathrm{CV}, 2 \mathrm{M} \mathrm{NH}_{3}$ in MeOH 2 CV). The ammonical fractions were combined and evaporated. The residue was purified using reverse phase chromatography (C18, $5-95 \%$ MeCN (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 15 CV). The appropriate fractions were collected and evaporated to give the title compound ($72 \mathrm{mg}, 84 \%$) as a gum : Analytical Chiral HPLC (Method (50\% EtOH (containing 0.2\% isopropylamine)/heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=5.3 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 $\min)[\mathrm{M}+\mathrm{H}]^{+} 506 ; \mathrm{R}_{\mathrm{t}} 0.82 \mathrm{~min}$, purity $99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.51-7.44$ $(\mathrm{m}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.05(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.32(\mathrm{~m}$, $1 \mathrm{H}), 3.31-3.13(\mathrm{~m}, 3 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.78(\mathrm{~m}, 1 \mathrm{H})$, $2.77-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.00(\mathrm{~m}, 4 \mathrm{H})$,
$1.92-1.84(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the carboxylic acid was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=178.5,154.5,153.0,148.5,144.5,140.0$, $139.5,138.5,129.0,126.5,124.0,123.0,116.0,110.0,106.5,102.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=179 \mathrm{~Hz}\right), 62.0$, $62.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right), 52.5,43.5,40.5,40.0,37.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 35.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right)$, $30.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 25.5,20.0,11.5,11.0$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{FN}_{5} \mathrm{O}_{2}, 506.2926$ found 506.2907.

3-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoic acid - (237b) (Diastereomer B)

Methyl 3-(3-(3,5-dimethyl-1 H-pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoate - Diastereomer D (77 mg, 0.148 mmol) was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL}) . \mathrm{LiOH}_{(\mathrm{aq})}(0.5 \mathrm{~mL}$ of a 1 M solution, 0.5 mmol$)$ was added to the reaction mixture. The reaction mixture was stirred for 18 h at ambient temperature. The sample was concentrated under reduced pressure to give 3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1yl)butanoic acid, Lithium salt ($62 \mathrm{mg}, 82 \%$) ${ }^{1} \mathrm{H}$ NMR $\left.\left(400 \mathrm{MHz},(\mathrm{CD})_{3}\right)_{2} \mathrm{SO}\right) \delta=7.49-7.42$ (m, 1 H), $7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 3.52-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=6.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.31$ (m, 1 H), $3.31-2.92(\mathrm{~m}, 6 \mathrm{H}), 2.82(\mathrm{dd}, J=15.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.57$
(dd, $J=15.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.23-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.81(\mathrm{~m}$, 2 H) (the protons arising from the amine and the carboxylic acid were not observed due to exchange); ${ }^{7} \mathrm{Li}$ NMR $\left(156 \mathrm{MHz},\left((\mathrm{CD})_{3}\right)_{2} \mathrm{SO}\right) \delta=0.86$ QUANTAS shows $1: 1$ (compound : $\mathrm{Li}) . \mathrm{HCl}_{(\mathrm{aq})}(0.3 \mathrm{~mL}$ of a 2 M solution, 0.6 mmol$)$ was added to the reaction mixture, then it was loaded onto a pre-conditioned SCX column (10 g, MeOH 1 CV , MeCN 1 CV , load compound, $\mathrm{MeOH} 2 \mathrm{CV}, 2 \mathrm{M} \mathrm{NH}_{3}$ in MeOH 2 CV). The ammonical fractions were combined and evaporated. The residue was purified using reverse phase chromatography (C18, $12 \mathrm{~g}, 5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 15 CV). The appropriate fractions were collected and evaporated to give the title compound (51 mg, 68% yield) as a gum : Analytical Chiral HPLC (Method (as isomer 1)) $\mathrm{R}_{\mathrm{t}}=7.6 \mathrm{~min}$; chiral purity $=98 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.33$ $(\mathrm{m}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ (br. s, $1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 3.31-3.21(\mathrm{~m}, 4 \mathrm{H}), 2.90-2.65(\mathrm{~m}, 5 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 3 \mathrm{H}), 2.58-$ 2.53 (m, 2 H), $2.51-2.45$ (m, 1 H), 2.28 (s, 3 H), 2.19 (s, 3 H), 2.04 - 1.81 (m, 4 H), 1.80 $1.70(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the carboxylic acid was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-142.5)-(-143.0)(\mathrm{m}) ;{ }^{7} \mathrm{Li} \mathrm{NMR}(156 \mathrm{MHz}$, $\left.\left((\mathrm{CD})_{3}\right)_{2} \mathrm{SO}\right) \delta=$ No peaks detected QUANTAS no Li present; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{FN}_{5} \mathrm{O}_{2}, 506.2926$ found 506.2907.

Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl)butanoate (235a-b) (Diastereomers A and B)

(E)-Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate - Enantiomer A ($145 \mathrm{mg}, 0.334 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$, (3-morpholinophenyl)boronic acid ($259 \mathrm{mg}, 1.25 \mathrm{mmol}$) and $\mathrm{KOH}_{\text {(aq) }}(0.22 \mathrm{~mL}$ of a 3.8 M solution, 0.84 mmol) were dissolved in 1,4-dioxane (2 mL) and the solution was heated in a microwave oven ($100 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with EtOAc (10 mL) and evaporated. The reaction mixture was suspended in $\mathrm{MeOH}(300 \mu \mathrm{~L})$ and purified by reverse phase chromatography ($\mathrm{C} 18,40 \mathrm{~g}, 5-95 \%$ MeCN (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 20 CV). The appropriate fractions were combined and evaporated to give (\pm)-methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl) butanoate ($99 \mathrm{mg}, 58 \%$) as a gum : The mixture was dissolved in EtOH (2 mL) and heptane (1 mL) and the enantiomers separated by using chiral HPLC (Injection; 1 mL , eluting with 30% EtOH (containing 0.2% isopropylamine): 70% hexane (containing 0.2% isopropylamine), $\mathrm{f}=30 \mathrm{~mL} / \mathrm{min}$, detecting at 215.4 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak ODH (self packed), 45 min) to give two diastereomers.

Diastereomer A : methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer A (17 mg, 10\%) : Analytical chiral HPLC (30% EtOH (containing 0.2% isopropylamine)/heptane, $\mathrm{f}=1.0$
$\mathrm{mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=$ 8.0 min ; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 511 ; \mathrm{R}_{\mathrm{t}} 1.21 \mathrm{~min}$, purity 99%; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1$ H), $6.88-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}$, 4 H), $3.58(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.90-2.49(\mathrm{~m}, 12 \mathrm{H}), 2.11-$ $1.84(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange).

Diastereomer B: methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer B (77 mg, 45%) : Analytical chiral HPLC (Method (as Diastereomer A)) $\mathrm{R}_{\mathrm{t}}=17.2 \mathrm{~min}$; chiral purity $>99 \%$; LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 511 ; \mathrm{R}_{\mathrm{t}} 1.21$ min purity $=86 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.74$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.34$ (m, 2 H), $3.28-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.07(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.74(\mathrm{~m}, 4 \mathrm{H}), 2.74-2.44(\mathrm{~m}, 9$ $\mathrm{H}), 2.07-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=174.5,158.5,157.5,153.0$, $145.0,138.5,130.5,120.5,116.5,115.5,115.0,112.0,105.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=177 \mathrm{~Hz}\right), 68.0,65.5$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right), 63.5,54.5,52.0,43.0,42.5,40.5,39.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right), 38.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ $24 \mathrm{~Hz}), 32.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 28.0,27.5,22.5 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-141.0)-$ (-141.5) (m); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{FN}_{4} \mathrm{O}_{3}, 511.3084$ found 511.3066.

Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl)butanoate ($\mathbf{2 3 5} \mathbf{c} \mathbf{- d}$) (Diastereomers C and D)

(E)-Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate - Diastereomer B ($145 \mathrm{mg}, 0.334 \mathrm{mmol}$), $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(10 \mathrm{mg}, 0.02$ mmol), (3-morpholinophenyl)boronic acid ($259 \mathrm{mg}, 1.25 \mathrm{mmol}$) and $\mathrm{KOH}_{(\mathrm{aq})}(0.22 \mathrm{~mL}$ of a 3.8 M solution, 0.84 mmol) were dissolved in 1,4-dioxane (2 mL) and the solution was heated in a microwave oven ($100 \mathrm{~min}, 95^{\circ} \mathrm{C}$, high power). The reaction mixture was filtered through Celite ${ }^{\mathrm{TM}}$, washed with EtOAc (10 mL) and evaporated. The reaction mixture was suspended in $\mathrm{MeOH}(300 \mu \mathrm{~L})$ and purified by reverse phase chromatography (C18, $40 \mathrm{~g}, 5-$ $95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 20 CV). The appropriate fractions were combined and evaporated to give methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl) butanoate ($120 \mathrm{mg}, 70 \%$) as a gum. The mixture was dissolved in $\mathrm{EtOH}(2 \mathrm{~mL})$ and heptane (1 mL) and the enantiomers separated by using chiral HPLC (Injection; 1 mL , eluting with $30 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine): 70% hexane (containing 0.2% isopropylamine), $\mathrm{f}=30$ $\mathrm{mL} / \mathrm{min}$, detecting at 215.4 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OD-H (self packed), 45 min) to give two isomers.

Diastereomer C: Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer C (15 mg, 9\%) : Analytical chiral HPLC $(30 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine)/heptane, $\mathrm{f}=1.0$
$\mathrm{mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=$ 8.0 min ; chiral purity $>99 \%$; LCMS $($ System High pH 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 511 ; \mathrm{R}_{\mathrm{t}} 1.21 \mathrm{~min}$ purity $=86 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.19(\mathrm{~m}, 1 \mathrm{H})$, $3.14-3.08(\mathrm{~m}, 4 \mathrm{H}), 2.87-2.70(\mathrm{~m}, 5 \mathrm{H}), 2.68(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.44(\mathrm{~m}, 6 \mathrm{H})$, $2.07-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange).

Diastereomer D: Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer D (88 mg, 58\%) : Analytical chiral HPLC (Method (same as Diastereomer C)) $\mathrm{R}_{\mathrm{t}}=17.2 \mathrm{~min} ;$ LCMS (System High pH 2 min) $[\mathrm{M}+\mathrm{H}]^{+} 511 ; \mathrm{R}_{\mathrm{t}} 1.21 \mathrm{~min}$, purity $>99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=$ $7.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{~s}, 3$ H), $3.40-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.94-2.72(\mathrm{~m}, 5 \mathrm{H})$, $2.69(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.47(\mathrm{~m}, 6 \mathrm{H}), 2.11-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 2 \mathrm{H})$ (the proton arising from the amine was not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=174.5,158.0,157.0,153.0,144.5,138.5,130.5,120.5,116.5,115.5,115.0$, $112.0,102.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=177 \mathrm{~Hz}\right), 68.0,65.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right), 63.5,54.5,52.0,50.5,43.5$, $42.5,40.5,39.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right), 37.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right), 32.5,27.5,22.5 ;{ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-140.5)-(-141.0)(\mathrm{m})$.

4-(3-Fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3morpholinophenyl)butanoic acid (211a) (Diastereomer A)

Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer B ($77 \mathrm{mg}, 0.15 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL}) . \mathrm{LiOH}_{(\mathrm{aq})}(0.452 \mathrm{~mL}$ of a 1 M solution, 0.452 mmol$)$ was added to the reaction mixture. The reaction mixture was stirred for 18 h at ambient temperature. $\mathrm{HCl}_{(\mathrm{aq})}(0.226 \mathrm{~mL}$ of 2 M solution, 0.452 mmol) was added to the reaction mixture, then it was loaded onto a pre-conditioned SCX column (10 g, MeOH $1 \mathrm{CV}, \mathrm{MeCN} 1 \mathrm{CV}$, load compound, MeOH 2 $\mathrm{CV}, 2 \mathrm{M} \mathrm{NH}_{3}$ in MeOH 2 CV). The ammonical fractions were combined and evaporated. The residue was purified using reverse phase chromatography (C18, $5-95 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 15 CV). The appropriate fractions were collected and evaporated to give the title compound ($61 \mathrm{mg}, 81 \%$) as a gum : Analytical chiral HPLC ($50 \% \mathrm{EtOH}$ (containing 0.2% isopropylamine)/heptane, $\mathrm{f}=1.0$ $\mathrm{mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel OD-H (self packed)) $\mathrm{R}_{\mathrm{t}}=$ 7.0 min; chiral purity $>99 \% ;[\alpha]_{\mathrm{D}}=+17(c=0.53, \mathrm{EtOH}) ;$ LCMS $($ System High pH 2 min$)$ $[\mathrm{M}+\mathrm{H}]^{+} 497 ; \mathrm{R}_{\mathrm{t}} 0.76 \mathrm{~min}$, purity $98 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=7.22-7.14(\mathrm{~m}, 2$ H), $6.86-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.40-3.32(\mathrm{~m}, 3 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.06$ $(\mathrm{m}, 6 \mathrm{H}), 3.02-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.78\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}-\mathrm{F}}=16.0 \mathrm{~Hz}, J=9.0,1 \mathrm{H}\right), 2.72-2.63(\mathrm{~m}, 5 \mathrm{H})$, $2.55\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}-\mathrm{F}}=16.0 \mathrm{~Hz}, J=3.5,1 \mathrm{H}\right), 2.27-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 2 \mathrm{H})$ (the
protons arising from the amine and carboxylic acid were not observed due to exchange); ${ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=174.0,157.0,156.5,152.0,145.0,137.0,128.0,118.5$, $115.0,113.5,113.0,110.5,104.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=175.0 \mathrm{~Hz}\right), 66.5,64.5,62.0,53.5,49.5,41.5$, $41.0,38.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23.0 \mathrm{~Hz}\right), 37.0,36.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23.0 \mathrm{~Hz}\right), 31.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 26.5$, $21.5 ;{ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=(-138.0)-(-138.5)(\mathrm{m}) ;$ HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{FN}_{4} \mathrm{O}_{3}, 497.2906$ found 497.2922.

4-(3-Fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3morpholinophenyl)butanoic acid (211b) (Diastereomer B)

Using the method above, the title compound was prepared from methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-
morpholinophenyl)butanoate - Diastereomer D ($88 \mathrm{mg}, 0.17 \mathrm{mmol}$) gave the title compound $(75 \mathrm{mg}, 88 \%)$ as a gum : Analytical Chiral HPLC (Method as Diastereomer A)) $\mathrm{R}_{\mathrm{t}}=12.0$ min; chiral purity $=98 \%$; LCMS (System High pH 2 min$)[\mathrm{M}+\mathrm{H}]^{+} 497 ; \mathrm{R}_{\mathrm{t}} 0.76$ min, purity $99 \% ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta=12.63-11.80(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1$ H), $6.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.77-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.25-3.22(\mathrm{~m}, 2 \mathrm{H})$, $3.16-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 4 \mathrm{H}), 2.92-2.32(\mathrm{~m}, 12 \mathrm{H}), 2.06-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.75$ (quin, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=180.0,156.5,155.5,153.5,145.5$, $139.5,130.5,119.5,116.5,116.0,115.5,111.5,103.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=178 \mathrm{~Hz}\right), 68.0,64.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}\right.$
$=26 \mathrm{~Hz}), 63.5,54.5,50.5,45.0,42.0,41.5,37.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 36.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right)$, $31.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 27.5,22.0 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-143.5)-(-144.0)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{FN}_{4} \mathrm{O}_{3}, 497.2906$ found 497.2922.

4-(3-Fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3morpholinophenyl)butanoic acid (211c) (Diastereomer C)

(E)-Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate ($110 \mathrm{mg}, 0.25 \mathrm{mmol}$) and (3-morpholinophenyl)boronic acid ($157 \mathrm{mg}, 0.760$ $\mathrm{mmol})$ were dissolved in 1,4-dioxane (2 mL) under nitrogen. $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(13.4 \mathrm{mg}, 0.027$ mmol) and (R)-BINAP ($38.2 \mathrm{mg}, 0.061 \mathrm{mmol}$) were dissolved in 1,4-dioxane (1 mL)and nitrogen was bubbled through for 2 minutes. This dark red solution was added to the main reaction flask. $\mathrm{KOH}_{\text {(aq) }}(0.2 \mathrm{~mL}$ of a 3.8 M solution, 0.760 mmol$)$ was added, then the reaction mixture was heated to $50{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~h} .[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(13.4 \mathrm{mg}, 0.027 \mathrm{mmol})$ was added to the reaction mixture and was heated to $90{ }^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h} . \mathrm{LiOH}_{(\mathrm{aq})}(1 \mathrm{~mL}$ of a 1 M solution, 1 mmol) was added to the reaction mixture and the reaction mixture was stirred for 15 h . The reaction mixture was filtered through celite, washed with $\mathrm{EtOH}(10 \mathrm{~mL})$ and evaporated. The reaction mixture was suspended in $\mathrm{MeOH}(1 \mathrm{~mL})$ and purified by reverse phase chromatography (C18, $13 \mathrm{~g}, 5-50 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 30 CV), the appropriate fractions were combined and evaporated.

The enantiomers were separated by chiral HPLC (Injection; 0.5 mL , eluting with $50 \% \mathrm{EtOH}$: 50% heptane, $\mathrm{f}=15 \mathrm{~mL} / \mathrm{min}$, detecting at 215.4 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OD-H (self packed), 45 min) to give two isomers.

Diastereomer B: Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer B (5 mg, 4\%) Analytical chiral HPLC ($50 \% \mathrm{EtOH} /$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AS-H (self packed)) $\mathrm{R}_{\mathrm{t}}=13.0 \mathrm{~min}$, chiral purity $>99 \%$; See compound 211b:

Diastereomer C: Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer C (6 mg, 5\%)

Analytical chiral HPLC ($50 \% \mathrm{EtOH} /$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AS-H (self packed)) $\mathrm{R}_{\mathrm{t}}=26.5 \mathrm{~min}$, chiral purity $>99 \%$; analytical data consistent with compound 211b.

4-(3-Fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3morpholinophenyl)butanoic acid (211d) (Diastereomer D)

(E)-Methyl \quad-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate ($110 \mathrm{mg}, 0.25 \mathrm{mmol}$) and (3-morpholinophenyl)boronic acid ($157 \mathrm{mg}, 0.760$ $\mathrm{mmol})$ were dissolved in 1,4-dioxane (2 mL) under nitrogen. $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(13.4 \mathrm{mg}, 0.027$
$\mathrm{mmol})$ and (R)-BINAP ($38.2 \mathrm{mg}, 0.061 \mathrm{mmol}$) were dissolved in 1,4-dioxane (1 mL) and nitrogen was bubbled through for 2 minutes. This dark red solution was added to the main reaction flask. $\mathrm{KOH}_{(\mathrm{aq})}(0.2 \mathrm{~mL}$ of a 3.8 M solution, 0.8 mmol$)$ was added, then the reaction mixture was heated to $50{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~h} .[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(13.4 \mathrm{mg}, 0.027 \mathrm{mmol})$ was added to the reaction mixture and was heated to $90{ }^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h} . \mathrm{LiOH}_{(\mathrm{aq})}(1 \mathrm{~mL}$ of a 1 M solution, 1 mmol) was added to the reaction mixture and the reaction mixture was stirred for 12 h . The reaction mixture was cooled to $-20^{\circ} \mathrm{C}$ for 63 h . The reaction mixture was warmed to room temperature then was filtered through celite, washed with $\mathrm{EtOH}(10 \mathrm{~mL})$ and evaporated. The reaction mixture was acidified with $\mathrm{HCl}_{(\mathrm{aq})}(0.5 \mathrm{~mL}$ of a 2 M solution). The crude mixture was loaded onto an SCX (1 g, MeOH 1 CV , MeCN 1 CV , load compound, MeOH $2 \mathrm{CV}, 2 \mathrm{M}$ $\mathrm{NH}_{3} / \mathrm{MeOH} 2 \mathrm{CV}$). The ammonical fractions were evaporated. The crude mixture was suspended in $\mathrm{MeOH}(1 \mathrm{~mL})$ and was purified by reverse phase chromatography ($\mathrm{C} 18,30 \mathrm{~g}, 5$ $-70 \% \mathrm{MeCN}$ (containing 0.1% ammonia) in 10 mM ammonium bicarbonate, 10 CV). The appropriate fractions were combined and evaporated. The enantiomers were separated by chiral HPLC (Injection; 1.5 mL , eluting with $50 \% \mathrm{EtOH}: 50 \%$ heptane, $\mathrm{f}=15 \mathrm{~mL} / \mathrm{min}$, detecting at 215.4 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak AS (self packed), 45 min) to give two diastereomers.

Diastereomer A: Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer A (32 mg, 25\%) Analytical chiral HPLC ($50 \% \mathrm{EtOH} /$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AS-H (self packed)) $\mathrm{R}_{\mathrm{t}}=7.5 \mathrm{~min}$, chiral purity $>99 \%$; See compound 211a:

Diastereomer D: Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-morpholinophenyl)butanoate - Diastereomer D (6 mg, 5\%)

Analytical chiral HPLC ($50 \% \mathrm{EtOH} /$ heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id $\times 25 \mathrm{~cm}$ Chiralcel AS-H (self packed)) $\mathrm{R}_{\mathrm{t}}=12.0 \mathrm{~min}$, chiral purity $>99 \%$; analytical data consistent with compound 211a.

4-(3-Fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(2methoxyethoxy)phenyl)butanoic acid (239a-b) (Diastereomers A and B)

(E)-Methyl 4-(3-fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)but-2-enoate ($626 \mathrm{mg}, 1.80 \mathrm{mmol}$), (3-(2-methoxyethoxy)phenyl)boronic acid (1.06 g , $5.41 \mathrm{mmol})$ and $\mathrm{KOH}_{(\mathrm{aq})}(1.42 \mathrm{~mL}$ of a 3.8 M solution, 5.41 mmol$)$ were dissolved in $1,4-$ dioxane (3 mL) and the solution was degassed. $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(44 \mathrm{mg}, 0.09 \mathrm{mmol})$ and (R) BINAP ($135 \mathrm{mg}, 0.216 \mathrm{mmol}$) were dissolved in 1,4-dioxane (1.5 mL), nitrogen was bubbled through for 2 min then the dark red solution was added to the main reaction flask. The mixture was heated to $90^{\circ} \mathrm{C}$ for 12 h . The solution was cooled and purified using an SCX column (20 g) (MeOH $1 \mathrm{CV}, \mathrm{MeCN} 2 \mathrm{CV}$, load compound, DMSO 10 CV , MeCN 8 CV , (2 $\mathrm{M} \mathrm{NH}_{3}$) in MeOH 2 CV). The ammonical fractions were combined and evaporated. This crude mixture was dissolved in THF (3 mL). $\mathrm{LiOH}_{(\mathrm{aq})}(6.24 \mathrm{~mL}$ of a 1 M solution, 6.24 $\mathrm{mmol})$ was added and the solution was stirred at ambient temperature for $24 \mathrm{~h} . \mathrm{HCl}_{(\mathrm{aq})}(3.75$ mL of a 2 M solution, 7.5 mmol) was added and the solution was loaded onto an SCX column (20 g) (MeOH 1 CV , MeCN 1 CV , load compound, MeCN $5 \mathrm{CV}, \mathrm{H}_{2} \mathrm{O} 2 \mathrm{CV}$, (2 M NH_{3}) in MeOH 2 CV). The ammonical fractions were combined and evaporated. The mixture was dissolved in EtOH (1.5 mL) and the enantiomers separated by using chiral HPLC (Injection; 1.5 mL , eluting with $40 \% \mathrm{EtOH}: 60 \%$ heptane, $\mathrm{f}=30 \mathrm{~mL} / \mathrm{min}$, detecting at
215.4 nm ; column $3 \mathrm{~cm} \times 25 \mathrm{~cm}$ Chiralpak OJ-H (self packed), 25 min) to give two diastereomers.

Diastereomer A: (2-(5,6,7,8-Tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(2methoxyethoxy)phenyl)butanoic acid - Diastereomer A (456 mg, 75 \%) : Analytical chiral HPLC ($40 \% \mathrm{EtOH} / 60$ \%heptane, $\mathrm{f}=1.0 \mathrm{~mL} / \mathrm{min}$, detecting at 215 nm ; column 4.6 mm id \times 25 cm Chiralcel OJ-H (self packed)) $\mathrm{R}_{\mathrm{t}}=9.5 \mathrm{~min}$, chiral purity $>99 \% ;[\alpha]_{\mathrm{D}}=+52(c=0.72$, EtOH); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.73(\mathrm{~m}, 3 \mathrm{H}), 6.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.08$ (br s, 1 H), $3.80-3.72$ (m, 2 H), $3.73-3.68$ (m, 1 H), 3.47 (br s, 2 H), 3.46 (d, $J=1.1 \mathrm{~Hz}, 2$ H), $3.42(\mathrm{brt}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 1$ H), $2.73-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{q}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=11.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-$ $1.97(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=(-146.0)-(-146.5)$ (m) HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{FN}_{3} \mathrm{O}_{4}, 486.2763$ found 486.2769.

Diastereomer B: (2-(5,6,7,8-Tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(2methoxyethoxy)phenyl)butanoic acid - Diastereomer B (51 mg, 9%) : Analytical chiral (same as diastereomer A) $\mathrm{R}_{\mathrm{t}}=14.0 \mathrm{~min}$, chiral purity $>99 \% ;[\alpha]_{\mathrm{D}}=-28(c=0.5, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.26-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (dd $J=5.4,4.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.77-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.38-$ $3.30(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{td}, J=8.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=12.3,10.1$ Hz, 1 H), $2.91-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.63(\mathrm{~m}, 7 \mathrm{H}), 2.60(\mathrm{dd}, J=14.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-$ $1.93(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H})$ (the proton arising from the carboxylic acid was not observed due to exchange); ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=(-141.5)-(-142.5)(\mathrm{m})$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{FN}_{3} \mathrm{O}_{4}, 486.2763$ found 486.2766.

7. References

(1) Coward, W.; Jenkins, G. Ther. Adv. Respir. Med. 2010, 4, 367.
(2) https://www.pinterest.com/pin/13018286397630513/
(3) http://newnurseblog.com/2011/04/12/end-stage-idiopathic-pulmonary-fibrosis/
(4) Ashley Groves, UCL unpublished results.
(5) Hubbard, R.; Venn, A.; Smith, C.; Cooper, M.; Johnston, I.; Britton, A. J. Am. J. Respir. Crit. Care Med. 1998, 157, 743.
(6) Navaratnam, V. F.; West, J.; Smith, C. J. P.; Jenkins, R. G; Fogarty, A; Hubbard, R. Thorax 2011, 66, 462.
(7) Schaefer, C.; Pan, L.; Seiwert, S. D.; Kossen, K. Eur. Respir. Rev. 2011, 20, 85.
(8) Lin, X.; Wu, K.; Yuan, H.; Zhong, H. Invest. Ophthalmol. Vis. Sci. 2009, 50.
(9) Jenkins, G. Thorax 2013, 68, 603.
(10) King, J.; Bradford, W. Z.; Castro-Bernardini, S.; Fagan, E. A.; Glaspole, I.;

Glassberg, M. K.; Gorina, E.; Hopkins, P. M.; Kardatzke, D.; Lancaster, L.; Lederer, D. J.; Nathan, S. D.; Pereira, C. A.; Sahn, S. A.; Sussman, R.; Swigris, J. J.; Noble, D. A. N. Engl. J. Med. 2014, 12, 2083.
(11) Leng, G. 2012; Vol. 2012.
http://guidance.nice.org.uk/TA/Wave23/25/Consultation/DraftGuidance
(12) NICE http://www.nice.org.uk/guidancelta282/resources/ta282-idiopathic-pulmonary-fibrosis-pirfenidone-information-for-the-public2 2013.
(13) Ye G.; Herzog, E. G., Therapeutics and Clinical Risk Management 2011, 7, 39.
(14) Hauber, H. P. Inflamm. Allergy - Drug Targets 2010, 9, 158.
(15) Walter, N.; Collard, H. R.; King, T. Ann. Am. Thorac. Soc. 2006, 3, 330.
(16) U.S. National Heart, Lung and Blood Institute, http://www.daviddarling.info/encyclopedia/I/idiopathic_pulmonary fibrosis.html.
(17) Gogali, A.; Wells, A. U. Ther. Adv. Respir. Dis. 2010, 4, 353.
(18) Leask, A.; Abraham, D. J. FASEB J. 2004, 18, 816.
(19) Blobe, G. C.; Schiemann, W. P.; Lodish, H. F. N. Engl. J. Med. 2000, 342, 1350.
(20) Sheppard, D. Eur Respir Rev 2008, 17, 157.
(21) http://www.spampinatolab.unibo.it/images/integrin.jpg.
(22) Huang, X.-Z.; Wu, J. F.; Cass, D.; Erle, D. J.; Corry, D.; Young, S.; Farese, R.;

Sheppard, D. J. Cell Biol. 1996, 133, 921.
(23) Kulkarni, A. B.; Huh, C. G.; Becker, D.; Geiser, A.; Lyght, M.; Flanders, K. C.;

Roberts, A. B.; Sporn, M. B.; Ward, J. M.; Karlsson, S. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 770.
(24) Wipff, P.-J.; Hinz, B. J. Bodyw. Mov. Ther. 2009, 13, 121.
(25) Carron, C. P. M.; Pegg, J. A.; Engleman, V.W.; Nickols, M. A.; Settle, S.L.; Westlin, W. F.; Ruminski, P.G.; Nickols, G.A.; Cancer Res. 1998, 1930.
(26) Zartmana, A. E.; Duong, T.; Fernandez-Metzlerc, C.; Hartmana, G.D.; Leub, C-T.; Prueksaritanontc, T.; Rodanb, G.A.; Rodanb, S.B.; Duggana, M.E.; Meissnera, R.S.; Bioorg. Med. Chem. Lett. 2005, 15, 1647.
(27) http://stromedix.com/science.html.
(28) Woodcock, H. V.; Maher, T. M. F1000Prime Reports 2014, 6, 1.
(29) Shull, M. M.; Ormsby, I.; Kier, A. B.; Pawlowski, S.; Diebold, R. J.; Yin, M.; Allen, R.; Sidman, C.; Proetzel, G. Nature 1992, 359, 693.
(30) In 2007 three people diagnosed with IPF by their doctors visited GSK Stevenage and discussed their condition and what treatment they prefer.
(31) GSK unpublished results.
(32) GSK unpublished results.
(33) Xiong, J.-P.; Stehle, T.; Diefenbach, B.; Zhang, R.; Dunker, R.; Scott, D. L.; Joachimiak, A.; Goodman, S. L.; Arnaout, M. A. Science (Washington, DC, U. S.) 2001, 294, 339.
(34) Brown, J. K.; McAleese, S. M.; Thornton, E. M.; Pate, J. A.; Schock, A.; Macrae, A. I.; Scott, P. R.; Miller, H. R. P.; Collie, D. D. S. J. Histochem. Cytochem. 2006, 54, 807.
(35) Edge, C. GSK unpublished results.
(36) de Melker, A. A.; Sonnenberg, A. Bioessays 1999, 21, 499.
(37) Shahin, M. M. International Journal of Cosmetic Science 1989, 11, 129.
(38) Mortelmans, K.; Zeiger, E. Mutat. Res. 2000, 455, 29.
(39) Keller, M. B. J. Clin. Psychiatry 2000, 61, 896.
(40) Yevtushenko, V. Y.; Belous, A. I.; Yevtushenko, Y. G.; Gusinin, S. E.; Buzik, O. J.; Agibalova, T. V. Clin. Ther. 2007, 29, 2319.
(41) Anderson, N. A. GSK, unpublished results.
(42) Nilsson, K. U., C. Tetrahedron 1994, 50, 13173.
(43) Brown, D. 2005; Piperidine derivatives as ccr5 receptor modulators, WO2005009959
(44) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390.
(45) Murphy, J. M.; Tzschucke, C. C.; Hartwig, J. F. Organic Letters 2007, 9, 757.
(46) Anderson, N. A.; Fallon., B. J.; Valverde, E.; MacDonald, S. J. F.; Pritchard, J. M.; Suckling, C. J.; Watson, A. J. B. Synlett 2012, 23, 2817.
(47) Mazzanti, A.; Lodovico, L.; Minzoni, M.; Anderson, J. E. J. Org. Chem. 2006, 71, 5474.
(48) Fuerstner, A. Organic Letters 2002, 4, 541.
(49) Anderson, N. A., University of Strathclyde, 2013.
(50) Parekh, V. Tetrahedron: Asymmetry 2010, 21, 1549.
(51) William, A. S., A Bioorganic and Medicinal Chemistry Letters 2002, 12, 3235.
(52) http://www.moleculardevices.com/documents/general-documents/mkt-appnotes/autoephys-appnotes/App\ Protocol\ IonWorks\ Barracuda\ hERG-VGIC.pdf.
(53) Sorrentino, R.; Pallante, P. L.; Troncone, G.; Palombini, L.; Bavetsias, V.; SpallettiCernia, D.; Laccetti, P.; Linardopoulos, S.; Chieffi, P.; Fusco, A.; Portella, G. J Clin. Endocrinol. Metab. 2005, 90, 928.
(54) Youdim, M. Weinstock, M. Neurotoxicology 2004, 25, 243.
(55) This experiment was carried out by Josie Morell but included here for completeness.
(56) A quantitative programme developed at GSK to determine concentrations of NMR solutions.
(57) Shamovsky, I. C., S.; David, L.; Ivanova, S.; Nordén, B.; Springthorpe, B.; Urbahns, K. J. Med. Chem. 2008, 51, 1162.
(58) Ohyama, M.; Tabata, Y.; Kaneda, K.; 2012; Topical antifungal agent, WO2012102404.
(59) Kelloway, J. S.; Wyatt, R. A.; Adlis, S. A. Arch. Intern. Med. 1994, 154, 1349.
(60) Definition from Oxford English Dictionary online.
(61) Irvine, J. D.; Lockhart, K.; Cheong, J.; Tolan, J. W.; Selick, H. E.; Grove, J. E. J. Pharm. Sci. 1999, 88, 28.
(62) Sriran, D.; Medicinal Chemistry, $2^{\text {nd }}$ Ed (India Dorling Kindersley, 2010) 33.
(63) A ChemAxon programme.
(64) Calculations performed by Jonathan Percy.
(65) Chai, J.-D. Phys. Chem. 2008, 10, 6615.
(66) Breslin, M. J.; Halczenko, W.; Hartman,G. D.; Duong, T. E.; Fernandez-Metzler, C.; Gentile, M. A.; Kimmel, D. B. Leu, C-T.; Merkle, K.; Prueksaritanont, T.; Rodan, G.A.; Rodan, S. B.; Hutchinson, J. H. Bioorg. Med. Chem. Lett. 2004, 14, 4515.
(67) Brashear, K. M.; Kucer, B. T.; Duggan, M. E.; Hartman, G. D.; Rodan, G. A.; Rodan, S. B.; Leu, C-T.; Prueksaritanont, T.; Fernandez-Metzler, C.; Barrish, A.; Homnick, C. F.; Hutchinson, J. H.; Coleman, P. J.; Venn, A. Bioorg. Med. Chem. Lett. 2002, 3483.
(68) Van de Waterbeemd, H. Chemistry \& Biodiversity 2009, 6, 1760.
(69) Lipinski, C. A. Pharmacol. Toxieol. Methods 2000, 44, 235.
(70) Lindup, W. E. Br Med J (Clin Res Ed) 1981, 282, 212.
(71) Gleeson, M. P. J. Med. Chem. 2008, 51, 817.
(72) Braggio, S.; Rossi, T.; Ratti, E. Exp. Opin. Drug. Discov. 2010, 609.
(73) Valko, K.; Nunhuck, S.; Montanari, D. J. Pharm. Sci. 2012, 101, 4155.
(74) Olah, G. A.; Vankar, Y.D.; Nojima, M.; Kerekes, I.; Olah, J. A. J. Org. Chem. 1979, 44, 3872.
(75) Middleton, W. J. J. Org. Chem. 1975, 40, 574.
(76) Goswami, R. H.; Heiman, D. F.; Katzenellenbogen, J. A. J. Med. Chem. 1980, 23, 1002.
(77) Buist, P. H.; Adeney, R. A. J. Org. Chem. 1991 56, 3449.
(78) Van Robays, M.; Vanderhaeghe, H.; J. Chem. Soc. Perkin Trans. 1 1986, 251.
(79) Johnson, A. J. Org. Chem. 1982, 47, 5222.
(80) Baumann, M. B.; Ley, S. Synlett 2008, 14, 2111.
(81) Connell, R. D.; Akermark, B.; Helquist, P. J. Org. Chem. 1988, 53, 3845.
(82) Campbell, I GSK unpublished results.
(83) Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (1994).
(84) Van Niel, M. B.; Beer, M. S.; Broughton, H. B.; Cheng, S. K. F.; Goodacre, S. C.; Heald, A; Locker, K. L.; MacLeod, A. M.; Morrison, D.; Moyes, C. R.; O'Connor, D; Pike, A.; Rowley, M.; Russell, M. G. N.; Sohal, B.; Stanton, J. A.; Thomas, S.; Verrier, H.; Watt, A. P.; Castro, J. L. J. Med. Chem. 1999, 42, 2087.
(85) This chemistry was initially carried out by Andy Craven but included here for completeness.
(86) Gumina, G. C., Y.; Choi, Y.; Chu, C. K.; Org. Lett. 2000, 2, 1229-1231.
(87) Akerlof, G. J. Am. Chem. Soc. 1932, 54, 4125.
(88) Critchfield, F.; Hall, J. L. J. Am. Chem. Soc. 1953, 75, 6044.
(89) Krchma, I. J.; Williams., J. W. J. Am. Chem. Soc. 1927, 49, 2408.
(90) Raju, G. G. Dielectrics in electric fields; Taylor and Francis, 2009.
(91) French, H. T.; Marshb K. N.; J. Chem. Thermodyn. 1988, 20, 1175.
(92) This calculation was carried out by Becky Graves and is included here for completeness.
(93) Xu, X.; Jialiang, W. Zhenyu, Z.; Wen, H.; Xigeng, Z. Organometallics 2008, 27, 1959.
(94) Larsen, S. B.; Johansen, T. N.; Jørgensen, M. Tetrahedron 2008, 64, 2938.

[^0]: Scheme 32: Reagents and conditions: (i) DAST, DCM, $-30^{\circ} \mathrm{C}$.

[^1]: Scheme 33: Retrosynthesis of compound 136.

[^2]: Scheme 35 : Reagents and conditions: (i) DAST, DCM, $-78{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$, then $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 98 \%$.

[^3]: Scheme 45: Retrosynthesis of compound 172.

[^4]: NM : Not measured

 * mixture of fluorinated and unfluorinated material with and without the Boc protecting group.

