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Abstract  

In the last 25 years Digital Signal Processing (DSP) has become one of the key 

components in the development of mobile and wireless technologies.  One of the 

core DSP algorithms widely used in many applications is the Fourier Transform, in 

both the standard Discrete Fourier Transform (DFT) and the Fast Fourier Transform 

(FFT) implementation.   The DFT and FFT are widely used for many applications 

such as spectral analysis, but in modern mobile and wireless communications 

standards, their particular significance is in the context of the signalling strategy of 

Orthogonal Frequency Division Multiplexing (OFDM), where the FFT and Inverse 

FFT (IFFT) are deployed at the transmit and receive sides of both uplink and 

downlink.   

Over the last few years the physical layer of many 4
th

  generation wireless standards, 

such as IEEE 802.20, IEEE 802.16, and 3GPP2, Ultra Mobile Broadband (UMB), as 

well as 3G Long Term Evaluation (LTE), all  rely heavily on using OFDM 

multicarrier modulation.  OFDM is now favoured in many physical layers for mobile 

and wireless radio systems, given that it has good properties for mitigating multipath 

propagation and operating in fading channels.   

In the implementation of OFDM, FFTs and IFFTs are required at various lengths, 

word lengths, speeds of operation, and on a variety of platforms such as DSP 

processors, Application Specific Integrated Circuits (ASICs) and – in basestations, 

mostly likely – on Field Programmable Gate Arrays (FPGAs).  Therefore in this 

thesis we have focused on methods of efficient implementation of the FFT and IFFT 

on FPGAs, taking very clear note of issues such as resource costs, speeds, word 

length, and programmability. 

In this thesis, two FFT architectures have been introduced, the first based on the 

classic butterfly computation and the use of look-up tables to store FFT 

trigonometric constants, and the second based on using a COordinate Rotation 

Digital Computer (CORDIC) method to generate the trigonometric constant values.   

In this work, the FFT Radix-2 Decimation in Frequency (DIF) algorithm has been 

chosen and efficiently implemented on a Xilinx FPGA in a programmable form to 

suit a variety of PHY layer standards requirements.  The design implements a 
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pipelined sequential architecture to reduce the resource area and maintain high 

throughput.  A key contribution is the introduction of an optimized butterfly 

processor that uses only two multipliers for the twiddle factor multiply, rather than 

the more conventional four as found in the designs available from FPGA vendors and 

IP repositories.  The direct implementation of the butterfly requires four multipliers 

(to perform a complex data multiplication) and four corresponding block RAMs to 

store the input and output data.  The proposed architecture utilises the 2 multipliers 

technique to reduce the resource cost, albeit it a cost of maximum throughput.  For 

the CORDIC based design, no hardware multipliers are required since the CORDIC 

can directly implement the twiddle factor multiply.   For both architectures to 

increase the speed of the FFT sequential architecture, a dual clock method has been 

used.  To verify and generate demonstrable designs, the architectures have been 

simulated, synthesized and implemented on a Virtex 5/Xilinx FPGA. 
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1 Introduction and Overview 
 

1.1 Introduction 

 

Over the last two decades significant progress has been made in the extensive 

deployment and update  of cellular mobile and wireless networks.  In 2011 there are 

now estimated to be over four billion subscribers worldwide receiving voice and data 

services through the wireless and cellular networks.  For many people getting access 

to the internet in a “anywhere”‎and‎“anyway”‎manner is the key goal in both business 

and customer markets and to provide these services the continuing development and 

data rate increase of the mobile internet technology is essential.  In 2011 the new 4G 

wireless networks such as LTE offer high-speed network access with potential data 

rates of greater than 10 Mbits/sec. One of the core computational signal processing  

components of the physical layers (PHY) in many 4G wireless standards is 

Orthogonal Frequency Division Multiplexing (OFDM), used as a modulation and 

multiplexing technique in both up and down links for many wireless standards [3-4], 

including the new emerging LTE global standard.  

In OFDM systems, one stage of the modulation and demodulation are performed by 

using the Fast Fourier Transform (FFT) and its inverse (the IFFT) to orthogonalise 

the transmit signals [5-6]. 
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For implementation of 4G standards on base stations, FPGAs have become one of 

the key components for implementation.  Therefore in considering only the FFT and 

IFFT components in this thesis, the need for high speed FFTs for multiple standards 

and data streams is clear.  The FPGAs have a key advantage over single core DSP 

processors due to the extensive parallelism available on the device; albeit exploiting 

this parallelism efficiently is something that system designer must do carefully.    

To produce initial designs, and in common with other engineers designing for OFDM 

on FPGAs, in the research work of this thesis we have used the Xilinx FPGA, and 

made use where appropriate of the FFT support tools (System Generator [7] and 

Core Generator), to‎ produce‎ “vendor”‎ designs.‎ ‎ (Other‎ tools‎ used‎ for‎ design‎ and‎‎

investigation include, Synplicity [8]  and Modelsim [9]).  In using these tools it is 

often the case that many of the DSP blocks are pre-configured and not necessarily 

optimised for particular algorithms and architectures being implemented for a 

particular radio standard.  Hence for the research work in this thesis we have focused 

on the FFT algorithm implementation as used for OFDM, and considered its use in 

various 4G standards with respect to FFT size, word length, throughput etc, and 

hence aiming to recommend the optimal method for implementation of the FFT.  

This choice includes decisions on resources (amount of hardware), flexibility and 

programmability and generally on providing architectures that will achieve the speed 

of implementation required by a given 4G standard. 

The core output of this research works has been to evaluate available FFT IP blocks 

and standard FPGA implementations, to then investigate and design an efficient, 

high-speed optimized FFT/IFFT dedicated to the OFDM system and applicable and 

programmable for the current 4G standards. The properties of the presented FFT 

designs are novel, programmable, extendable and integratable into the physical layer 

of a number of 4G radio designs. In particular in this thesis we will benchmark the 

designs against achieving timing and performance for LTE, 802.16 and 802.20 

standards.   

Therefore we will show the design of an optimized dynamic OFDM transmitter to 

accommodate different physical layers of the 4G wireless standards.  
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1.2 Mobile and Wireless Networks Overview 

 

To set the scene of mobile and wireless evolution in this section, the historical 

background of cellular networks is briefly reviewed. Figure ‎1.1 summarises the 

mobile and wireless evaluation from 1
st
 to 4

th
 generation. The 1

st
 generation of 

mobile/wireless was of course analogue and essentially a Frequency Division 

Multiple Access (FDMA) system. The emergence of 2G network was the first digital 

implementation to feature Time Division Multiple Access (TDMA), frequency 

division multiple access (FDMA), and classic modulation methods. The Global 

System for Mobile communications (GSM) in particular was the main standard 

during this era in the 1990’s.‎ The‎ single‎ carrier‎Gaussian‎Minimum‎Shift‎ Keying‎

(GMSK) modulation technique was used in GSM due its resistance to Inter symbol 

interference (ISI).   The Gaussian shape impulse response filter spreads the input bits 

width, achieving a narrower transmission  spectrum  and an improved resistance to 

ISI [10].  Developments in GSM then targeted an increase in data rate and 

established 2.5G with its General Packet Radio System (GPRS). 

The 3G cellular release was largely based on spread spectrum and brought Code 

Division Multiple Access (CDMA) principles. One of the key reasons of moving to 

CDMA was the demonstration that spread spectrum helped minimise the multipath 

problem that limited data rates with 2G.  Despite its success it is interesting to then 

note that most of the 4G access technologies moved to OFDM based techniques, 

with one of the key motivations being, again, the mitigating of multipath problems. 

OFDM splits the available spectrum into a number of narrowband transmission 

channels known as subcarriers which, independent of the transmission channel being 

frequency-selective or frequency-flat, are not subject to ISI and only   change 

amplitude and phase of OFDM-multiplexed symbols  At the receiver the data 

streams received on all subcarriers can be de-multiplexed to form the original data 

stream. In OFDM systems this was achieved by IFFT/FFT essentially channelizing 



4 
 

the transmit bandwidth and allowing simple FFT-bin-based complex equalisers to be 

used.  

Figure ‎1.1 also summarises some of the different issues related to multiplexing, 

technologies, systems and features. The upper layer of the diagram gives the 

multiplexing and bit rate while the middle layer shows the technologies used. The 

lower layer summarises some of the systems that have then been established and 

deployed. 

The first generation (1G) analogue cellular system supported voice communication 

but with limited roaming.  It used FDMA as multiplexing technology and analogue 

frequency modulation from baseband to carrier. The first available 1G cellular 

telephone system, the Advanced Mobile Phone System (AMPS), was introduced in 

1979 in the United States. 
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Figure ‎1.1: Cellular Networks Background 
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Several other analogue cellular systems including TACS, NMT, C450, were 

introduced in Western Europe, albeit all were independent and not inter-operable. 

The second generation (2G) systems were based on Time Division Multiple Access 

(TDMA) and also featured the introduction of Code Division Multiple Access 

(CDMA) technologies. The 2G was primarily designed to improve voice quality and 

provide a set of rich voice features, but also brought limited data in the form of text 

options.   The two most widely deployed 2G systems are the Global System for 

Mobile communications (GSM) and Code Division Multiple Access (CDMA).  Both 

the GSM and CDMA standards groups followed their 2G success by forming their 

own separate 3G partnership projects (3GPP and 3GPP2, respectively) to then 

research on the next (i.e. third) generation of mobile systems based on spread 

spectrum techniques and using much wider bandwidths than 2G. The 3G standard in 

3GPP was referred to as Wideband Code Division Multiple Access (WCDMA) 

because it uses a larger 5MHz bandwidth compared to the 1.25MHz bandwidth used 

in 3GPP2’s‎cdma2000‎system‎[11-12]. 

In‎ today’s‎ society, access to networked data and information services has become 

critically important to users of business, entertainment, and social networking 

applications. Users look for high-speed, high-reliability, and high-quality access to 

this information while they are fully mobile [4].  As such Fourth generation (4G) 

wireless standards are developed to meet these requirements of high speed data (> 10 

Mbits/sec) anywhere and anytime. Some of the more popular 4G standards are 

Mobile WiMAX (IEEE 802.16e), MobileFi (IEEE 802.20), 3Generation Partnership 

Project 2-Ultra Mobile Broadband (3GPP2-UMB) and 3Generation Partnership 

Project- Long Term Evaluation (3GPP-LTE). The Standards use Orthogonal 

Frequency Division Multiplexing (OFDM) techniques for modulation and 

multiplexing.  It is interesting to note however that the adoption of a standard has as 

much to do with politics as it do with technology and efficiency.   
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1.2.1 Open System Interconnection (OSI) 

 

Virtually all modern wireless networks consist of Medium Access Control (MAC) 

and physical (PHY) layers, with the MAC responsible for setting the rules which 

determine how to access the medium and send data, while the Physical (PHY) 

component deals with details of transmission and reception. MAC and PHY are part 

of a primary architecture 7 layers model for solving problems in communication 

networks, as developed by the International Organization of Standardization (ISO).   

The layer model is called Open System Interconnection (OSI) model, and is shown 

in Figure ‎1.2. Beyond the above PHY and MAC layers,  the Data Link layer breaks 

up the input data into data frames – typically a few hundred or a few thousand bytes 

– and transmits the fames sequentially. The data link layer in the receiver returns 

acknowledgement frames to confirm correct receipt of each frames.  The network 

layer determines and controls how packets are routed from source to destination. The 

Transport layer accepts data from the Session Layer and split it up into smaller units 

that are then passed to the Network Layer.  The Session Layer allows users on 

different machines to establish sessions between them. The Presentation Layer is 

concerned with the syntax and semantics of the information transmitted. Finally, the 

Application Layer has a variety of protocols that are commonly needed by users such 

as HyperText Transfer Protocol (HTTP)[13]. 
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           Figure ‎1.2 : Open System Interconnection (OSI) reference Model 

 

1.2.2 IEEE 802.20 and 3GPP2_UMB Standards Overview 

 

IEEE 802.20 was ratified in 2008 and is a standard offering high-speed, highly 

reliable and cost-effective broadband communication; the IEEE 802.20 Mobile 

Broadband Wireless Access (MBWA) Working Group was first established in 

December 2002.  802.20 was claimed to be a superior and more flexible standard to 

what was currently offered elsewhere [4], and a clear candidate for providing 4G 

wireless levels of service.  The standard is Internet Protocol  (IP) based and provides 

a broadband packet-based air interface for mobile users with speeds up to 250 km/h 

[3].  The use of Internet Protocol (IP)-based technologies is a strategic element in the 

design of many 4G standards including 802.20.   802.20 aim for the production of 

low-cost, always-on, and mobile broadband wireless networks.   Interestingly this 

standard changed the direction of wireless networking,  by coming up with a strategy 

to sit on existing cellular towers, and provide coverage area the same as that of a 

mobile phone system but providing data rates and connection techniques that are 

more equivalent to a Wi-Fi connection [14]. 

Application Layer Layer 7 

Presentation Layer Layer 6 

Session Layer Layer 5 

Transport Layer Layer 4 

Network Layer Layer 3 

Datalink Layer Layer 2 

Physical Layer Layer 1 
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The next system driving OFDM usage for wireless connectivity was the 3GPP2 Ultra 

Mobile Broadband (UMB), (which in fact was integrated as a core part of 802.20). 

The standard is designed to provide high speed Frequency Division Duplex (FDD) 

and Time Division Duplex (TDD) mobile broadband access and optimized for high 

spectral efficiency and short latencies, using OFDM modulation, link adaptation and 

multi-antenna communication techniques. Other features in UMB included provision 

for fast handoff and fast power control.   The inter-sector interference management is 

embedded in the design, which helps to facilitate communication in highly mobile 

environments [15].  

IEEE 802.20 specifies two modes of operation, either wideband mode or a 625k-MC 

mode while the UMB uses wideband mode only. 

The wideband mode is based on Orthogonal Frequency Division Multiple Access 

(OFDMA) techniques. This standard can use one of two techniques: either the FDD 

or the TDD. The bandwidths that can be occupied are from 5 MHz to 20 MHz in the 

case of IEEE 802.20 standard, and from 1.25 MHz to 20 MHz in UMB.  The 625k-

multicarrier (625k-MC) mode is a TDD air interface mode only.  It was developed to 

obtain maximum benefit from adaptive, multiple-antenna signal processing [4, 16-

17].   

The OFDM in IEEE 802.20 and UMB is based on a scalable bandwidth. The 

modulation can change the FFT size based on the bandwidth of transmission and the 

length of FFT range from 128 points up to 2048 points.   The subcarrier spacing is 

kept constant within different bandwidths by changing the chip rate of each FFT size. 

There are different lengths of cyclic prefix; Table ‎1.1 shows the OFDM symbol 

parameters. The chip rate is the sampling rate that the FFT is required to work with. 

The maximum sampling rate actually required for both standards is around 20 MHz 

in 2048 FFT point.  
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1.2.3 Mobile Broadband with IEEE802.16e (Mobile WiMax) 

 

IEEE 802.16e has the ability to support movement up to 150 km/h and operate in 

both Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) environments. The IEEE 

802.16e air interface is based on Orthogonal Frequency Division Multiple Access 

(OFDMA), the main aim of which is to achieve better performance in non-line-of-

sight environments. In an NLOS link, the transmitted signals arrive at the receiver 

over multiple reflected paths. OFDM provides efficient means to overcome such 

challenges of NLOS propagation thought the use of a cyclic prefix in the OFDM 

symbols, which eliminates inter-symbol interference (ISI) and the resulting added 

complexities through the need for adaptive equalisation.  Because the OFDM 

waveform is consisted of multiple narrowband orthogonal subcarriers, frequency 

Table ‎1.1: OFDM Symbol Parameters for IEEE802.20 and UMB Standards 

Parameter NFFT= 

128 

NFFT= 

256 

NFFT  

= 512 

NFFT = 

1024 

NFFT = 

2048 

Chip Rate 

Mcps 

1.2288 2.4576 4.9152 9.8304 19.6608 

Subcarrier Spacing 

khz 

9.6 9.6 9.6 9.6 9.6 

Bandwidth of 

OperationMHz 

1.25 1.25-2.5 2.5-5 5-10 10-20 

Cyclic 

Prefix  Duration 

µs 

6.51, 

13.02, 

19.53, or 

26.04 

6.51, 

13.02, 

19.53, or 

26.04 

6.51, 13.02, 

19.53, or 

26.04 

6.51, 

13.02, 

19.53, or 

26.04 

6.51, 13.02, 

19.53, or 

26.04 

Guard Interval 

µs 

3.26 3.26 3.26 3.26 3.26 

OFDM Symbol Duration 

µs 

113.93, 

120.44, 

126.95, or 

133.46 

113.93, 

120.44, 

126.95, or 

133.46 

113.93, 

120.44, 

126.95, or 

133.46 

113.93, 

120.44, 

126.95, or 

133.46 

113.93, 

120.44, 

126.95, or 

133.46 
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selective fading only results on amplitude changes and phase rotations of symbols, 

which can be corrected by a single-coefficient equaliser per subcarrier [18]. 

The IEEE 802.16e introduced scalable channel bandwidth up to 20 MHz and using 

Multiple Input Multiple Output (MIMO) strategies. In mobile WiMAX, the FFT size 

can vary between 128 and 2048, keeping the subcarrier spacing at 11.16 KHz. Table 

‎1.2 summarises the OFDM symbol parameters [19-20]. 

 

 

 

1.2.4 Long Term Evolution (LTE) 

 

Universal Mobile Telecommunications System (UMTS) Long Term Evolution 

(LTE) Release 8 (2009) provides improved system capacity and coverage, high peak 

data rates, low latency, reduced operating costs, multi-antenna support, flexible 

bandwidth operation and seamless integration with existing systems. The air 

interface of LTE is based on OFDMA (Orthogonal Frequency Division Multiple 

Access) and MIMO (Multiple-Input Multiple Output) in downlink (DL) and uses SC-

FDMA (Single Carrier Frequency Division Multiple Access) in the uplink (UL) 

direction.   LTE Release 8 also supports scalable bandwidth up to 20 MHz.   In the 

UL SC-FDMA is implemented via Discrete Fourier Transform Spread OFDM (DFT-

SOFDM).   DFT-SOFDM has similar algorithm structure and implementation to that 

of the OFDM transmission scheme used on the DL, the main difference being that 

the constellation symbols are DFT precoded before mapping to the different 

Table ‎1.2: OFDM Symbol Parameter of IEEE 802.16e 

FFT length 128 256 1024 2048 

Transmission 

Bandwidth(MHz) 
1.25 5 10 20 

Subcarrier 

Spacing(kHz) 
11.16 11.16 11.16 11.16 

Symbol Duration 

us 

100.8 100.8 100.8 100.8 
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subcarriers. A block diagram for SC-FDMA implemented via DFT-SOFDM is 

shown in Figure ‎1.3 [21-22].  

 

 

 

 

 

 

 

 

 

Table ‎1.3: OFDM Modulation Parameters for LTE Release 8 

Transmission 

Bandwidth 

MHz 

1.25 2.5 5 10 15 20 

Sub-carrier 

spacing KHz 
15 

Sampling 

frequency MHz 
1.92 3.84 7.68 15.36 23.04 30.72 

FFT size 

 
128 256 512 1024 1536 2048 

 

Figure ‎1.3: Single Carrier Frequency Division Multiple Access Transmitter Block 
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1.3 Principles of Multicarrier Techniques  

 

In the continually growing world of wireless telecommunications, a number of 

technology and algorithm trends are gaining widespread popularity in the 

development of radio PHY layers.   In the last few years there has been a clear 

increase of interest in multi-carrier communications and their application to efficient 

wireless multiple-access systems development.  In particular, there has been a great 

deal of research and subsequent deployment of OFDM, and MC-CDMA (Multi-

Carrier Code Division Multiple Access).  Both of these methods are based on 

orthogonalisation methods and as such require the implementation of Fourier 

transforms and inverse Fourier transforms [23].  A well known benefit of multicarrier 

systems is that they can be used provide excellent adaptability to the time and 

frequency selectivity of radio propagation channels, they allow for simpler 

narrowband equalization for multipath mitigation, and generally are less susceptible 

to impulsive noise.   Generally these methods can also be structured to provide full 

and efficient use of available bandwidth.  

Although first reviewed and developed in the 1960s OFDM took a number of 

decades before processing technology was sufficiently fast to allow real time 

implementation.  In the last 10 years with advent of 802.11, 802.16, and LTE to 

name a few, OFDM is now widely deployed and accepted as the best multicarrier 

technology for robust and reliable high-rate and high-speed data transmission.   

Interestingly it is not just found in wireless, but is also used for wired communication 

systems because of its spectral efficiency, and ability to mitigate the effects of delay 

spread and inter symbol interference (ISI) [24-25]. 

 

1.3.1 Basic OFDM System 

 

To review the concept of OFDM, an incoming data stream, most likely with a high-

data rate, enters (D) at the transmitter side as in Figure ‎1.4.  From a hardware 

perspective this incoming data enters a serial to parallel converter which is used for 



13 
 

mapping the high rate input data stream into N lower rate parallel data streams. Sets 

of pulse shaping filters are used to band limited the spectra of the impulses of the 

input data (D).  The pulse shaping filter form Nyquist systems, which, if correctly 

synchronised in time and by selection of appropriate subcarrier frequencies, can be 

overlapped in both time and frequency without causing interference.  Each data 

stream is then placed on its own quadrature carrier (f1, f2, ..., fN). The carrier spacing 

is carefully selected to ensure orthogonality. The multicarrier modulator generates 

subcarriers spaced by (1/T) Hz. The values of (f1, f2, ..., fN) are as shown in Equations 

(‎1.1), (‎1.2) and (‎1.3):  

 

 
T

f
1

1
     (‎1.1) 

 
T

f
2

2
  (‎1.2) 

 
T

N
f

N
  (‎1.3) 

 

where T is the fundamental period.  The orthogonality between carriers is necessary 

to ensure that carriers can be perfectly separated from each other at the receiver side. 

The N modulated streams are next added together, and the final stage would be a 

modulation to carrier (or Intermediate Frequency IF) frequency modulated up to the 

transmit radio carrier frequency (fc) to output the D_out) signal which would then 

pass through a (very) high speed DAC (digital to analogue converter) to produce the 

radio frequency signal.  (Note that the DAC is more likely in current systems to 

include an IF‎stage‎(10’s‎of‎MHz)‎before‎the‎carrier‎frequency‎(fc)‎modulator‎(100’s‎

of MHz); however in future software defined radio systems we can expect the DAC 

to be at the RF output stage). 
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At the receiver side, the incoming OFDM symbol is first returned to baseband 

by use of a radio frequency mixer at the carrier frequency fc  as shown in the basic 

OFDM receiver in Figure ‎1.5. For the next receiver stage, 

the incoming OFDM signal is separated into its N streams and the N frequency bands 

and demodulated back to baseband.   (Note in these figures of the transceiver, we 

assume that other necessary receiver stages such as synchronisation and phase 

locking are appropriately performed.) 

After each mixer a low pass filter would be required to remove the higher order 

demodulation frequencies and leave the original baseband.  Thereafter once the data 

streams have been separated from each other a simple decision device is applied 

consists of resample, threshold detector and parallel to serial convertor.  

In multi-carrier systems, the arrays of sinusoidal generators and coherent 

demodulators for a large number of channels would clearly be required to be 

implemented in powerful parallel processing systems and the implementation of such 

arrays by the traditional techniques using oscillators and modulators/demodulators is 

computationally very expensive. However a key observation is that the multi-

carrier data signal is effectively the inverse Fourier transform of the original serial 

Figure ‎1.4: Basic OFDM Transmitter 
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data string when the evenly spaced quadrature amplitude modulators (QAM) are 

used as above. Similarly the bank of coherent demodulators is effectively a Fourier 

transform computation. This view of the multicarrier QAM system suggests 

a completely digital modem built by using FFT and its inverse [25] to achieve the 

modulation (therefore orthogonalisation) of the signal in the baseband.  [26]. 

 

 

Therefore as is well known, the Figure ‎1.4 and Figure ‎1.5 implementations 

effectively show the OFDM transceiver where the baseband modulation or 

orthogonalisation stages can be greatly simplified by the use of the FFT and the 

IFFT.  Given the availability of high speed processors and fast algorithm 

implementation the efficiency of implementation through using FFT and its inverse  

combined with its properties makes the OFDM an attractive modulation and 

multiplexing technique for fourth generation wireless networks [23]. 

The idea of using parallel-data communication and Frequency Division Multiplexing 

(FDM) was developed in the mid-1960s (i.e. OFDM is an idea and technology from 

 

Figure ‎1.5:  Basic OFDM Receiver 
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50 years ago!) [27]. In OFDM techniques, parallel data and frequency division 

multiplexing (FDM) with overlapping sub channels are used and one key benefit is 

the avoidance of the use of full band (high speed) data equalization; this can now be 

performed in the smaller frequency bands (or in each FFT bin). The 

immunity to combat impulsive noise has increased, making it possible to fully 

utilize the available bandwidth [28]. OFDM is therefore a multicarrier modulation 

technique which enables robust, high data rate communication over time varying 

and noise wireless communication channels and in the decade of 2000-2010 its time 

for deployment has arrived [29].  

 

1.3.2 OFDM Advantages and Disadvantages  

 

OFDM’s‎many‎ advantages‎ over‎ single‎ carrier‎ modulations‎ can‎ be‎ summarized as 

follows: 

1. In OFDM, the band is divided into a number of overlapping frequency 

channels. This technique results in better use of the available spectrum [30]. 

2. OFDM is based on orthogonality between the subcarriers. This means that 

each subcarrier does not interfere with others; thus no guard bands are 

required. 

3. Parallel data systems required complex circuits. The use of FFT and its inverse 

algorithms eliminates arrays of sinusoidal generators and coherent 

demodulation. This makes the implementation of the technology cost- 

effective [28]. 

Of course OFDM still has many problems that could affect its performance and it 

will be useful to explain some of these problems before going into more detail and 

describing the steps of the OFDM generation and demodulation process.   (Also to 

specifically mention one disadvantage of OFDM is the cost of implementing the FFT 

and IFFT in the transceiver – hence the investigation of this thesis.) 
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One way to address the implementation complexity issues of the Fourier transform 

and inverse Fourier transform in the OFDM transceiver has been simply achieved by 

simply using FFT and its inverse rather than the standard DFT – this does of course 

limit the flexibility of different data lengths that can be used (and largely limits to 

power of 2 for radix-2 efficient implementation).   However other more difficult to 

resolve issues are identifiable as: 

1)  Large peak-to-average ratio (PAR) of the transmitted signal.  Different 

techniques are used to decrease PAR. These techniques are incorporated to control 

the resulting nonlinear distortion at the power-amplification stage. 

2)  The data symbols are transmitted on subcarriers. The OFDM transceiver is 

sensitive to mismatch and Doppler effects of transmit–receive oscillators. This leads 

to subcarrier frequency offset (CFO). 

3)    Uncoded OFDM does not enable the available multipath (or frequency) 

diversity. In fact, only diversity order one is possible through multipath Rayleigh 

fading channels [31]. 

 

1.3.3 OFDM Transceiver 

 

The general block diagram for the OFDM transceiver is shown in Figure ‎1.6.  In this 

block diagram, the Analogy to Digital Convertor (ADC) and the up/down 

converter have been omitted largely because this work focuses on the baseband 

implementation of the OFDM transceiver on FPGA, rather than optimising these 

other very important components.   

As discussed in OFDM systems, the FFT and IFFT pair is used to modulate and 

demodulate the data constellation onto the subcarriers [32] and hence the heart of an 

OFDM modulator and demodulator consists of the inverse FFT (IFFT) and FFT 

respectively [33]. The orthogonality between carriers is necessary to ensure that 

carriers can be perfectly separable one from another at the receiver side and a simple 

OFDM style spectrum is shown in Figure ‎1.7 [2]. 
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A copy of the last NIFFT * 1/G samples is appended to the beginning of the symbol, 

called CP, which increases symbol duration so that multipath mitigation can be more 

likely achieved, (where NIFFT is the IFFT size and G is a carefully chosen positive 

integer [34]). 

 

Figure ‎1.7: Spectrum Overlapped in OFDM [2] 
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Figure ‎1.6: OFDM Transceiver Block Diagram 
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After the samples of the symbol have been processed by the IFFT block, to avoid 

Inter Symbol Interference (ISI) and Inter Channel Interference (ICI), guard period 

samples must be formed by a cyclic extension of the symbol period. CP insertion is 

carried out by taking symbol samples from the end of every symbol and appending 

them to the front of the symbol, as shown in Figure ‎1.8 [27]. 

 

 

1.4   Field Programmable Gate Array Technology  
 

Field-programmable gate arrays (FPGAs) have become an extremely popular 

implementation technology since they were first introduced in 1989 by Xilinx.  Many 

modern digital communication systems require a combination of high performance, 

low cost, and flexibility of design and compared to ASICS, this can be afforded by 

FPGAs (albeit the power consumption is higher and cost per device for high volumes 

is also higher).   FPGAs will support designs at very high clock rates (approaching 

1GHz at time of writing), and depending on the actual device selected offer very high 

levels of parallelism – note the latest and largest FPGA offers more than 2000 (two 

thousand) multipliers on a single chip, although at a very high per device cost.  More 

affordable devices with perhaps order of 10 or a 100 multipliers per device are also 

available [35]. 

In a modern FPGA, the PHY layer design concept is that a single programmable 

chip can implement a complete transceiver system, i.e. the OFDM, the 

channelization, the equalisation, synchronisation, framing and so on are all 

implemented on the FPGA in hardware [36]. 

IFFT Block CP 

OFDM Symbol 

Figure ‎1.8: OFDM with Cyclic Prefix 
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FPGAs are now driving DSP and communications in the direction of single chip 

designs, capable of implementing true software radio.  Many digital signal 

processing algorithms/components, such as FFTs, Finite Impulse Response (FIR) 

filters, numerically controlled oscillators are very efficiently implemented by the 

FPGAs.   In recent year these algorithms were built with ASICs or parallel DSPs [25-

26] for very high volume applications, however as the power consumption of FPGAs 

drops, we may see the SDR enabling FPGA move from basestation to handset or user 

device and be capable of using one chip to implement all radio standards. (Note that 

modern smart phones (in the USA) can contain up to seven radios, and therefore 

seven transceiver chips including the likes of GSM/GPRS, cdmaONE, 3GPP, 

Bluetooth, LTE, 802.11, cdma2000). 

FPGA Generic Forms 

FPGAs belong to a group of devices called Field Programmable Logic (FPL), 

defined as programmable devices containing repeated fields of small switch-

interconnectable logic blocks and elements. The logic structures of today’s‎

FPGAs consists of regular arrays of logic blocks (from a few 100 to a few 10000s) 

containing small look up tables, registers, multiplexers, and larger segments of the 

chip containing functionally components of block RAMs, and parallel 

multiplier/adder.  

In 2011 the two largest FPGA vendors are Xilinx and Altera (around 95% of the 

market); other vendors include Lattice Semiconductor, Actel, Atmel and Achronix. 

All of these companies offer a wide variety of Intellectual Property (IP) core 

solutions for communication and DSP applications including FFT, FIR, 

Convolutional Encoder, Puncture and Depuncture, Viterbi Decoder, Interleaver and 

Deinterleaver and so on.  Furthermore in recent years very easy to use high level 

block based tools such as Xilinx System Generator or Altera DSP Builder have been 

introduced [32]. 
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Software Design Environments/Tools for FPGAs 

The Xilinx System Generator tool, which runs under the Matlab/Simulink 

environment, has very obvious use for the simulation and design of an OFDM 

transmitter and receiver given the design environment and provision of FFT and 

IFFT blocks.  (In this thesis we will refer to and use some of these blocks, however 

one aim herein is to have a generic FFT block that is reconfigurable for different 

standards and programmable for different FFT lengths and speeds, hence the need to 

design the FFT computation from first principles based on parameters extracted from 

PHY layer radio standards).    

Xilinx also provide the ISE environment which we will use to synthesize and 

download the design to the targeted board, as well as to synthesize the VHDL code 

of FFT designs. The synthesis stage is a variable in any FPGA design, and 

synthesising with different vendor’s tools may give different implementations and 

efficiencies.  (For example a VHDL design could be targeted at a Xilinx FPGA 

Virtex 5, with the synthesis done either by say Xilinx XST/ISE or Synopsys Synplify 

– and one design may be more efficient than the other).  However in this thesis all 

designs will be targeted at the FPGAs using the ISE tool, and the inference is that 

designs can be compared fairly.  Similarly the actual FPGA device chosen has some 

effect on efficiency, but to address this variability ALL designs will be targeted at a 

Virtex 5 chip with sufficient hardware resources to easily accommodate all circuits 

and therefore to minimise any second order cost-effects (such as place and route 

issues, or resource exhaustion issues). 

At the higher level of design, the Simulink tool provides a computation block based 

design environment for communication systems. It has widespread use in algorithm 

development, design and verification and the Xilinx System Generator can be used to 

easily implement PHY layer SDR type designs [37].   However, for lower level 

efficient implementations VHDL and Verilog languages are used to program the 

FPGAs. In this thesis, VHDL is the core language used to design first principles 

efficient, high-speed FFT for the OFDM core of 4G physical layer wireless 

networks. 
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1.5 Thesis Objectives and Contributions 

 

This work has two core objectives leading to the two areas of main contribution:  

The first is the research to develop efficient, high-speed, optimized Fast Fourier 

Transform/Inverse Fast Fourier Transform (FFT/IFFT) processors suitable for an 

array of 4G PHY layer standards implementation.  For this a Radix 2 Decimation in 

Frequency (DIF) algorithm has been chosen and implemented from first principles 

on an FPGA. The designs are based on two architectures, one on a‎ “butterfly 

processor”‎using‎multiply/adders‎and the second on a COordinate Rotational DIgital 

Computer (CORDIC) implemented butterfly.  We can show the 

design offers variable FFT/IFFT size from 128 up to 2048 points (suitable for the 

entire range of current 4G standards).  An optimized butterfly processor (compared 

to the standard butterfly available from Xilinx and other vendors) has also been 

introduced which is based around using two multiplier, rather than the more 

traditional four.  To achieve this design two clock techniques have been used to 

control the calculation inside the FFTs. Both designs have been simulated, 

synthesized and implemented on the Virtex 5 Xilinx board (Note that the V5 was 

chosen as the standard reference FPGA to use in this work to give comparative 

costs). The resource areas, maximum frequency achieved by the designs and 

immunity to noise have been reported to all architectures. 

The second objective is the design, validation and FPGA implementation of a 

dynamically programmable (i.e. software defined) OFDM transmitter which could 

form the core of the generic PHY layer of a 4G wireless software defined radio 

running on an FPGA. The design offers the current array of different types of 

modulation, such as Quaternary Phase Shift Keying (QPSK), 8PSK, 16 Quadrature 

Amplitude Modulation (16QAM and 64QAM) and has variable FFT/ IFFT size from 

128 up to 2048 with a control circuit to switch between different FFT sizes. The 

design can generate different cyclic prefix sizes as required by the standards.  The 

thesis will aim to show the efficiency of having a Software Defined Radio (SDR) 
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type front end PHY for 4G standards and compare to the costs/timings obtained from 

more standard tools used by other designers. 

Therefore we conclude that that research introduces FFT/IFFT/OFDM systems that 

are novel, programmable, extendable and highly integrable into the physical layer of 

modern 4G radio systems likely to be seen over the next few years to allow one radio 

front end for all implemented standards (e.g., the single smart phone running 802.16, 

802.11z, LTE, LTE-advanced, 3G, and so on). 

 

1.6 Thesis Outline 

 

This research looks at the implementation and evaluation of FFT algorithms and the 

physical layers of wireless networks. It is organized into seven chapters as follows: 

Chapter‎1 : serves as an introduction to the thesis. Descriptions of 4G wireless 

standards and OFDM algorithms and tools for implementation on FPGA are given. 

Chapter‎2 : provides a detailed analysis of the FFT and CORDIC algorithms, and 

architectures that can be implemented on an FPGA.  

Chapter‎3: reviews previous work, in relation to the implementation of FFT 

algorithms and the OFDM transceiver for different wireless standards on FPGA.  

Chapter ‎4 : discusses the FFT implementation on an FPGA based on Butterfly 

architecture.  

Chapter ‎5:  provides a detailed analysis and discussion of FFT implementations on 

FPGAs based on CORDIC. 

Chapter ‎6 : describes a dynamic OFDM transmitter implementation on FPGAs. 

Chapter ‎7: Summarises the results, draws conclusions, and highlights paths for 

further research in this area. 
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2  Fast Fourier Transform (FFT) and 

Coordinate Rotation Digital 

Computer (CORDIC) Algorithms 
 

2.1  Introduction 

 

Generic Digital Signal Processing (DSP) has many widespread applications in many 

different areas of science and engineering, with digital communications being one of 

the key fields.  Many discrete-time digital communication systems  are based on the 

Fast Fourier Transform (FFT) for analysis, design and implementation [38], and 

FFTs are widely used in satellites, radars, wideband digital receivers and so on.  

Whereas many applications have fixed length FFT calculations to implement, a 

number of authors have developed reconfigurable FFTs for many real-time 

applications  [39].   One important contributor‎to‎the‎OFDM‎transmitter’s‎low cost is 

the ability to perform the mapping of an input data stream 
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to individual subcarriers via the use of an inverse FFT in the transmitter, and by an 

FFT in the receiver. 

This chapter reviews the FFT algorithms and architectures relevant to the research 

work presented later in this thesis. The Decimation in Frequency (DIF) and 

Decimation in Time (DIT) variations of the FFT are considered, and common forms 

of the FFT for hardware implementation are reviewed: Radix-2, Radix-4, Radix-8, 

and Split Radix. There follows a discussion of hardware implementation issues, such 

as serialisation and pipelining, as applied to the FFT. As the theme of this research 

work is a serial version of a Radix-2, DIF form of the FFT, the discussion is focussed 

accordingly.   

Two methods of implementing the FFT are the butterfly technique, where a 

“butterfly‎engine”‎ is‎used‎ to‎perform the required complex multiplications, and the 

CORDIC algorithm. The CORDIC algorithm is a shift-and-add technique capable of 

calculating a variety of trigonometric and other functions, but in this context is used 

to rotate a vector in the complex plane, effectively performing the complex 

multiplication in the FFT.  Appropriate background on the CORDIC algorithm is 

presented, including its principles of operation, parameters and modes. 

The fundamental aim of this research is to develop fast and efficient FFT structures, 

and therefore it is useful to review here the metrics by which these aspects are 

evaluated. In particular, parameters relating to execution speed and resource 

utilisation are explained, and definitions are also provided for the system clock, 

throughput, latency and sampling rate.   

2.2 Fast Fourier Transform  

 

The Discrete Fourier Transform (DFT) is a key component of many systems used in 

the fields of engineering and science. Many of these applications employ the DFT for 

spectral analysis; for instance, signal processing, voice analysis, and data acquisition. 

In wireless communications, the DFT can also be used to perform modulation and 

demodulation in multi-carrier systems.  
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The DFT is a useful and widely used computation, and therefore has received 

considerable attention from the research community.  In particular, algorithms have 

been developed to minimise the computational complexity of implementing the DFT, 

and to create efficient hardware structures for real time implementation.  

The algorithm introduced by Cooley and Tukey in 1965 is one of the most common 

methods of realising the DFT [40-41], and achieves a significant computational 

saving compared to the direct implementation.  In fact, the original DFT requires a 

number of operations proportional to N 
2
, where N is the number of points in the 

FFT, whereas the Cooley-Tukey algorithm requires only computations of the order 

of N1og2N. This optimised calculation is known as the Fast Fourier Transform (FFT) 

[42].  

The inverse Fourier transform can also be implemented using the Cooley-Tukey 

algorithm, resulting in the Inverse Fast Fourier Transform (IFFT).  The computations 

performed by the FFT and IFFT are very similar, and consequently can be 

implemented using the same architecture with minor modifications.  There are two 

differences between the FFT and its inverse: firstly, for the FFT the twiddle factor is 

equal to e
-j2π/N

 while for the IFFT it is equal to e
j2π/N

, where N is the FFT size.  For 

more details about FFT and DFT fundamentals see [43] and equations below. 

Secondly, the normalization factor 1/N.  This is shown in Equations (‎2.1),(‎2.2),(‎2.3) 

and (‎2.4) [43-44].  
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Where x(n) is the time domain discrete input signal.  X (K) is the DFT and it 

represent the frequency-domain of x(n).  n represents the discrete-time domain index. 

K is the normalized frequency-domain index. 

The Cooley-Tukey algorithm can be implemented as both decimation-in-time and 

decimation-in-frequency fast algorithms[43] . These variations are considered in the 

next section. 

 

2.2.1 FFT Decimations 

 

The FFT algorithm has two types of decimation, the Decimation in Frequency (DIF) 

and the Decimation in Time (DIT). The DIF has some advantages over DIT and in 

particular for issues related to finite word length effects.  A truncation noise is 

necessarily introduced by the multiplication when implemented with fixed point.  

The word length of the input data grows during the calculation of the FFT. The 

butterfly calculation includes complex multiplication, addition and subtraction. 

Adding /Subtracting two N bits numbers will results in up to N+1 bits word length. 

Multiplying two N bits numbers can produce up to 2N   bits number. The bit growth 

occurs through all stages of the FFT. An un-scaled strategy is used to control the 

word length grows inside the FFT. A growth of one bit is accounted for at the output 

of each stage, with the remainder truncated (i.e. after the multiplication of two N bit 

numbers, a 2N bit product is obtained but truncated back to N bits). Using the DIF 

slightly reduces the truncation noise and the complexity of the whole system.  Note 

that the butterfly topology in the DIF sets the   truncation stage to be after one of the 

butterfly outputs while in the DIT the two butterfly outputs are affected by the 

truncation noise as shown in Figure ‎2.1 and Figure ‎2.2 [45]For this reason, in this 

work, the DIF algorithm is chosen.   In the two main sequential architectures that 

have been designed and investigated in this thesis both are based on the DIF butterfly 

engine. 
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Figure ‎2.1: DIF Butterfly Topology 
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 To derive the classic FFT algorithm, the standard DFT is divided into sequences of 

smaller DFTs [38], and this decomposition can be based on either time or frequency, 

thus yielding the decimation-in-time or decimation-in-frequency. In this section, 

decimation-in-frequency (DIF) and decimation-in-time (DIT) are reviewed as 

applied to the Radix-2 FFT; other radix algorithms can implemented, along with 

prime factor methods, however in this thesis, to derive a pragmatic, programmable 

and implementable design we focus on radix-2.     

Decimation in Frequency – DIF 

 

The DIF form of the FFT separates the N-sample input sequence into two arrays, 

each of length N/2: the first consists of the first N/2 data samples, while the other 

comprises the last N/2 data samples. The calculation is then performed in two 

sections, as shown in Equation (‎2.5). 
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Equation (‎2.6): 
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At this point, X(k) can be decomposed into even and odd-numbered samples. The 

altered expressions can be seen in Equations (‎2.7) and (‎2.8) for the general case of an 

N-point FFT.  X(k) of Equation (‎2.6) can be split into even and odd samples as shown 

in Equations (‎2.7) and (‎2.8). This is now two N/2 point DFTs and this can be 
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repeatedly decimated until there is only a 2 point DFT.  This is illustrated in the flow 

graph below. 

 Figure ‎2.3 provides a signal flow graph to illustrate how this DIF approach would be 

applied to an 8-point FFT [46]. The computation of the 8-point FFT is divided into 

three stages, and the input samples to stage 1 in Figure ‎2.3 are in normal order [ x(0), 

x(1), x(2)......x(7)]. 

In stage one, each sample is processed with its N/2 sample, i.e., 0, 4, 1, 5 and so on.  

In the second stage each sample from the previous stage is processed with its N/4 

offset sample and in the final stage these are processed with the N/8 offset samples. 

The output of the final stage is reordered.  
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Decimation in Time (DIT): 

 

In the DIT form of the FFT, the N-sample window of the input signal x(n) is also 

divided into two equal sections, but by a different method than the DIF form.  In the 

DIT form of the FFT algorithm, the first section comprises the odd indexed samples 

and the second the even indexed samples.  This is shown by Equations (‎2.9), (‎2.10), 

(‎2.11) and (‎2.12), where x1(r) represents the even indexed samples of x(n), and x2(r) 

represents the odd indexed samples [47]. 
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In Equation (‎2.13), the new index m is created.  A signal flow graph of an 8-

point DIT FFT is shown in Figure ‎2.4. 
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In summary, the DIF and DIT algorithms calculate the same result, but by different 

methods.  In the DIF FFT, the output is calculated by splitting the output sequence 

X(n) into odd and even indexed elements, while in DIT, FFT algorithms are obtained 

by splitting the input sequence x(n) into odd and even indexed elements. FFT 

reorders the data from normal to bit reversed order. This is shown in Table ‎2.1 [38, 

48]. 

 

 

2.2.2 FFT Radices 
 

 

For a 2
n
-point DFT, there are several possible ways of implementing the algorithm as 

an FFT, using the butterfly method.  These are Radix-2, Radix-4, Radix-8, and 

Radix-16 and Split-Radix algorithms [49].  Based on the butterfly size, the FFT is 

divided into a collection of smaller DFT points.  Two points in Radix-2, four points 

in Radix -4, sixteen points for Radix-16 and four points for Split-Radix.  Figure ‎2.3 

and Figure ‎2.4   shows an FFT implementation based on Radix-2.  The FFT output is 

calculated by using a number of 2-point DFT called a Butterfly. The minimum 

number of point that the FFT is split into represents the radix.  Radix-2 has the 

 

Table ‎2.1: 8-Point Bit Reversed Order 

Decimal Binary Bit reverse Decimal 

0 000 000 0 

1 001 100 4 

2 010 010 2 

3 011 110 6 

4 100 001 1 

5 101 101 5 

6 110 011 3 

7 111 111 7 
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smallest butterfly unit size, and is the most flexible method of implementing the FFT. 

The total number of arithmetic operations can be reduced by using another radix, but 

this increases the complexity of the architecture and reduces its flexibility [50].  

In the Radix-4 algorithm, the N-point DFT is decomposed into four N/4-point DFTs, 

each of which are then broken down into smaller point DFTs, as shown in Equation 

(‎2.14). 
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According to the periodicity and symmetry properties of the twiddle factor, Equation 

(‎2.14)  can be rewritten as shown in Equation (‎2.15), where the summation is 

performed over the index range from 0 to N/4-1. The data segment x(n) is changed to 

meet the same range of Equation (‎2.14) to be x(n), x(n+N/4), x(n+N/2) and 

x(n+3N/4), which also affects the twiddle factor.   
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The twiddle factor in Equation (‎2.15) depends on N.  By dividing K into four 

subgroups, K= 4m, K= 4m+1, K= 4m+2, and K= 4m+3, where m = 0, 1, 2, ........., 

N/4-1, the Radix-4 butterfly operation is represented by Equations (‎2.16), (‎2.17), 

(‎2.18) and (‎2.19) [41, 51-52]. 
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The Split-Radix FFT is a combination of two FFT radices: Radix-2 and Radix-4. 

Radix-2 is used to obtain the even DFT results of N inputs, whereby it is found that 

in the Radix-2 DIF the computation of even samples is independently of odd 

samples, while Radix-4 is used to compute the DFT of odd samples. To reduce the 

number of computations, a Split Radix uses both Radix-2 and Radix-4 

decomposition in the same FFT algorithm. The Split-Radix algorithm 

is appropriate for software design, but has disadvantages for hardware design [43, 

49].  

The Radix-2 and Radix-4 implementations of the FFT are widely used in hardware 

design due to their relative simplicity. Radix-8 has the advantage of fewer 

multiplications  and reduced memory access, resulting in lower power consumption, 

but at the expense of a more complex butterfly element and control unit [49]. 

 

2.2.3 FFT Architectures  

 

Two popular styles of hardware architecture are used to implement the FFT for 

OFDM systems: the pipeline-based architecture, and the sequential architecture [53] 

Implementation of the pipelined architecture requires more hardware resources than 

the equivalent sequential architecture. The pipeline architecture uses a single 
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butterfly in each stage.  It is not fully parallel.  The fully parallel architecture is very 

expensive as it needs N/2 butterflies in each stage.  The sequential architecture uses a 

single butterfly unit, with one or two memory units to store the results computed by 

the butterfly, and a fixed value memory (or ROM) is required to store the twiddle 

factor coefficients.  In the sequential architecture, the butterfly unit is time shared 

and thus the hardware cost of implementation is lower, but the throughput is reduced 

accordingly [54]. 

Even assuming that a sequential architecture is chosen, there are variations possible 

on the detailed implementation of the FFT processor, for example the choice of 

adopting a single or a double memory.  The memory is used to store input, output 

and intermediate values calculated during computing the FFT.  Single RAM offer 

area more than two RAM design but slower in speed as it need double clocks to 

complete each butterfly output [55].  A block diagram of a sequential architecture is 

shown in Figure ‎2.5.  

 

 

 
Figure ‎2.5: Sequential FFT Architecture Using Single Butterfly 
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Next, some pipeline architectures are introduced.  The Radix-2 Multi-path Delay 

Commutator (R2MDC) is a straightforward method of implementing the Radix-2 

FFT algorithm using a pipelined architecture.  The data stream is divided into two 

parts.  A delay line is used between stages in order to manage 

the butterfly processing in the correct order, as shown in Figure ‎2.6 [56-57].  As 

shown for an 8-point FFT, it is required a butterfly in each stage so that gives three 

butterflies.  To manage the orders of input samples to each Butterfly, a delay register 

and a commutative switch are required, with system block separated by a one clock 

period delay.  

 

 

 

Another pipeline architecture called Radix-2 Single-path Delay Feedback (R2SDF) 

stores one output of each butterfly in a feedback shift register.  The block diagram of 

R2SDF architecture is shown in Figure ‎2.7 [58].   
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Figure ‎2.6: 8-point R2MDC 
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2.3 Coordinate Rotational Digital Computer (CORDIC)  

 

The Coordinate Rotational Digital Computer (CORDIC) algorithm was proposed by 

J.E. Volder [59] as a useful and flexible approach to evaluate mathematical (and 

mainly trigonometric) functions. The CORDIC is capable of performing divisions, 

square roots, trigonometric functions (cosine and sine),  and inverse-trigonometric 

functions (inverse tangent) [60].  The core implementation operations are based on 

the rotation of a vector using only additions and shifts operation [61], 

which makes CORDIC very suitable for simple hardware realisation for both ASIC 

and FPGA implementations [62].    For implementation of the FFT and IFFT the 

requirement to calculate sine and cosine values can be effectively performed by the 

CORDIC instead of using a look-up table, or using some other series expansion 

calculation of sine and cosine.  Hence, the CORDIC is an important algorithm in the 

context of FFTs and IFFTs. 

The generic CORDIC (Figure ‎2.8) has three input ports, Xin, Yin, and Zin, and three 

output ports, Xout, Yout and Zout. X and Y for input and output represent the vector in 

two dimensions while Z represents an angle. CORDIC has two operating modes, 

namely the rotation mode and the vectoring mode. In rotation mode, Xin, Yin is the 

Figure ‎2.7: R2SDF Architecture 
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initial vector location in the Cartesian plane and Zin is the angle by which it requires 

to be rotated. In vectoring mode, the Xin, Yin vector is rotated to the x-axis by 

choosing rotations to drive the Yin value to zero.    

 

 

 

 

In the FFT, the rotation mode CORDIC is used to implement the twiddle factor 

multiplication, where this is equivalent to a rotation of a 2-D input vector by the 

twiddle factor phase. 

 CORDIC algorithms are very suitable for twiddle factor multiplication and an FFT 

based on CORDIC can be constructed virtually free of multipliers [62].  In this 

research, we will show in later chapters how the parallel CORDIC architecture has 

been used to implement the multiplication within the FFT.  

The CORDIC algorithm is based on the principles of two-dimensional geometry 

[63], and  was first published by Volder [59] in 1959 as a procedure for efficiently 

implementing trigonometric functions, and was subsequently extended by Walther 

[64] to compute other functions, including multiplication, division, square root, and 

logarithmic and hyperbolic functions [65]. CORDIC is also capable of performing 

polar-to-Cartesian and Cartesian-to-polar coordinate system conversions. 

The method of CORDIC is to iterate through a set of progressively smaller vector 

rotations towards an arbitrary angle. This is achieved using a series of shift and add 

operations, which can  be implemented in hardware at low cost [66]. The CORDIC 

algorithm is therefore very suitable for implementation on FPGAs [67]. 

 

CORDIC 

Xin 

Yin 

Zin 

Xout 

Yout 

Zout 

Figure ‎2.8: General CORDIC Block Diagram 
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The CORDIC technique can play an important role in OFDM systems and can be 

found in a number of places.  For example it can be used to 

determine and compensate for frequency offset, on calculate the division in the 

channel estimation stage. The linear vectoring mode is  used to calculate the  division 

in the channel estimation stage and as progressed in this document it can perform 

IFFT and FFT butterfly computations to modulate and demodulate data onto the 

OFDM subcarriers [68]. 

2.3.1 CORDIC Algorithm 

 

The CORDIC algorithm has two modes of operation: the Rotation and Vectoring 

modes. It can also be used in three different coordinate systems: linear, circular, and 

hyperbolic [60]. In this thesis Rotation mode circular coordinate CORDIC is used to 

calculate Twiddle factor multiplication.  

The CORDIC algorithm is an iterative procedure requiring simple arithmetic 

operations. Additions and binary shifting are the main operations required to 

implement the algorithm. Thus, it has no direct multiplications (other than the final 

scaling stage multiplier), nor does it have explicit square roots or divides [69]. 

The CORDIC algorithm achieves vector rotation by an arbitrary angle using a series 

of m micro-rotations by basic angles [70]. At every iteration (indexed by i, where i = 

0,‎1,‎2…‎m-1), the vector is rotated by the angle arctan(2
-i
). A small angular error 

remains at the end of the series of micro-rotations, but this approaches zero as m  

∞‎[71]. 

In Rotation mode, the original vector and desired angle of rotation are provided as 

inputs to the CORDIC processor, which then rotates the original vector through the 

specified angle to a new position. This forms the primary output of the CORDIC 

unit. 

In Vectoring mode, the CORDIC processor rotates the input vector towards the X 

axis. The magnitude and angular position of the original vector are computed, and 

these form the outputs.  

To demonstrate CORDIC, consider the example depicted in Figure ‎2.9.  Here, the 

vector V1 (X1,Y1) is rotated by‎an‎angle‎Ф,‎from‎its‎original‎position‎α,‎to‎obtain‎the‎
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new vector V2 (X2,Y2). To achieve this, the total rotation is divided to several micro-

rotations, each of the fixed angle arctan(2
-i
). These angles of rotation are stored in a 

ROM, and subtracted from or added to the accumulated angle‎of‎rotation,‎θ,‎through‎

the series of rotations [61, 72]. The angular inputs and outputs from the CORDIC 

unit are denoted by the symbol Z. 

 

 

The new vector position can be calculated using trigonometry, as in Equations 

(‎2.20), (‎2.21), (‎2.22), (‎2.23), (‎2.24) and (‎2.25).  

 

 )sinsincos(cos)cos(1   rrX i  (‎2.20) 

 

  sin.cos.1 YXX iii   (‎2.21) 

 

 )sincoscos(sin)sin(1   rrY i  (‎2.22) 

 

  sin.cos.1 XYY iii   (‎2.23)
 

The key of the CORDIC algorithm is to restrict rotations to angles of ϕ, where  

tan-1 ϕ‎=‎2-i. The tan function is generated due to taking cosϕ‎‎as common as shown 

in Equations below.  

 

α 

Figure ‎2.9 : Vector Rotation 
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 )2.(cos1
i

iii YXX
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By omitting the cosϕ the computation by simple and this can be equalized by 

multiplying the final output value by scale value to make the rotation correct. 

 

 

                              

    

The value di is the direction of rotation, chosen to be either +1 or -1 as appropriate 

to the required direction of rotation. 
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The CORDIC equations can be expressed in a generalised form applicable to any of 

the three coordinate systems, as given by Equations (‎2.30), (‎2.31) and (‎2.32). Note 

that the values of e and µ are chosen according to the desired coordinate system. 

 ).2.(1 YdXX
ii

iii


    (‎2.30) 

 

 )2..(1
i

iiii dYXX


   (‎2.26)
 

 )2..(1
i

iiii dXYY


   (‎2.27) 

 













               0 Z if                1

0Z if         1

i

i

d i  (‎2.29) 

 )2(1 XdYY i
i

iii


   (‎2.31) 

 edZZ
i

iii 1  (‎2.32) 



44 
 

For circular coordinates:  

 2tan     ,    1 1 ii
e

  (‎2.33)
 

                     
 

For linear coordinates:  

 

 2   ,   0 ii
eu   (‎2.34) 

                    
 

For hyperbolic coordinates:  

 2tanh  ,    1 1 ii
e

  (‎2.35) 

 

In this thesis only one coordinate system of CORDIC will be used, namely the 

circular coordinates – hence no further review of hyperbolic and linear will be 

presented. 

                    
 

2.3.2 CORDIC Errors 

 

The CORDIC algorithm is subject to two sources of error, and these can be analysed 

mathematically [73].  The first is due to the finite number of CORDIC iterations, 

which leave a residual angular error after the last iteration; this error is referred to as 

the (angle) approximation error.  The second source of error is the finite-precision 

arithmetic used to represent the signals, which results in a conventional rounding 

error [73].  These two errors are related given that whereas each additional rotation 

will input more angle accuracy, each angle is represented to a finite number of binary 

digits, and as such introduced a low level of round-off noise.   
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2.3.3 CORDIC Based FFT 

 

The FFT algorithm can be implemented using the CORDIC technique to calculate 

the butterfly processor outputs, rather than the direct implementation of the butterfly 

processor using appropriate arithmetic and stored cosine and sine values [74]. To 

explain this, the Radix-2 butterfly decimation in frequency (DIF) processor is 

considered below.  

One of the motivations for using the CORDIC method is that, for large FFT sizes, 

considerable memory is required for storing the twiddle factors. For every 

multiplication by a twiddle factor, the multipliers need two values to be stored, one 

for the real term and the other for the imaginary term of the twiddle factor. To avoid 

the need for large amounts of memory in larger FFTs, a complex multiplier based on 

the CORDIC algorithm can be employed [75].   Although this thesis has a focus on 

implementing FFTs on FPGAs (which invariably has available memory), there are 

also other semi-custom technologies (from companies like e-ASIC [76]) which have 

no direct block RAM available, and either function with distributed memory, or 

would favour CORDIC type strategies to calculate twiddle factors on-line rather than 

storing in memory. 

The Radix-2 butterfly processor is shown in Figure ‎2.10, where Ar + jAi, and Br + jBi, 

are the two complex inputs to the butterfly; and  Cr + jCi, and  Dr + jDi, are the two 

complex outputs of the butterfly; Wr + jWi is the twiddle factor; and Xr + jXi is the 

output of the subtractor. 

To perform multiplication by the twiddle factor in real time, two ROMs are used to 

store the twiddle factors, while four multipliers and two adders are required to 

perform the arithmetic.  

In an FFT processor based on CORDIC, the multiplication of Xr + jXi by the 

twiddle factor can be implemented using CORDIC. The twiddle factor multiplication 

is the rotation of a 2-D vector (Xr + jXi) by the phase of the twiddle factor, which is 

given by arctan (Wi /Wr) [62].  
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In the FFT, the twiddle factor multiplication by a complex vector can be expressed in 

matrix form as shown in Equation (‎2.36), where X and W represent two complex 

vectors, of which W is‎the‎twiddle‎factor,‎and‎θ‎is‎the‎phase‎of‎the‎twiddle‎factor. 

 

 

 

CORDIC can implement Equation (‎2.36)  in the usual way, by implementing a series 

of rotations of fixed angles‎to‎accomplish‎the‎overall‎rotation‎of‎the‎angle‎θ,‎which‎

corresponds to the phase of the twiddle factor. The angle θ is divided to sub-angles 

θq. Sq represents the direction of summation as either addition or subtraction. The 

substitution of Equation (‎2.39) into (‎2.37) gives Equation (‎2.38).  For simplicity the 

multiplication of the cosine term is replaced by 0.6073 constant as shown in 

Equation (‎2.38) assuming‎the‎number‎of‎iterations‎are‎∞.‎‎For‎iterations‎less‎than‎‎∞‎

which is the practical case this constant can be calculated [77]. 
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2.4 The Fundamental DSP System - Definitions 

 

The general block diagram of a digital signal processing (DSP) system is shown in 

Figure ‎2.11.  In this section we will review some of the terminology used later in the 

thesis (on sampling rates, clock rates, quantisation, throughput etc).  The signal is 

converted to a digital signal using an analogue-to-digital (A/D) converter. It is 

processed in a DSP system, with an FPGA or DSP processor, before being 

converted back to an analogue signal [78]. 

 

 

 

The A/D converter includes two steps: sampling and quantisation.   In the sampling 

step, the analogue signal is sampled every Ts seconds. The sampling rate fs is 

defined in Equation ‎ (‎2.40) and expressed in units of Hertz (or samples per second).  

 
T

f
s

s

1
  (‎2.40) 

Quantisation is the process of representing the sampled value by B-bits.                                                

An appropriate choice of sampling rate is determined by the Nyquist sampling 

theorem. When implementing a DSP system, the designer needs to ensure that 
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Figure ‎2.11 : Basic DSP System 
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samples are processed at the correct sampling rate, in order to implement the 

algorithm accurately [78-79].  

Another term that represents speed is throughput. This refers to the amount of data 

that is processed per clock cycle, and is expressed in samples per second [80]. The 

term‎“throughput”‎is‎similar‎to‎“sampling‎rate”,‎but‎is‎usually‎used‎when‎referring‎to‎

the processing undertaken by a particular component of a DSP system.   Finally, the 

clock rate is the operating speed of the system implementation, which may be greater 

than the sampling rate [78].  

The best way to reduce the area of a design is to roll up the pipeline area to share 

logic resources. Sharing logic resources often requires special control circuitry. In the 

FFT design, single butterfly has been pipelined and shared many times to complete 

the calculation.   Pipeline technique is used to increase throughput and achieve 

maximum performance. When the loop is unrolled to create a pipeline, more 

resource area is required to hold intermediate values and replicate computational 

structures that need to run in parallel  [80].  

When implementing an FFT processor on FPGA, a common approach is to share a 

single butterfly structure‎ over‎ time,‎ hence‎ considering‎ the‎ “processor”‎ to‎ be‎ a‎

butterfly,‎ then‎ sequentially‎ use‎ the‎ “processor”‎ to‎ implement‎ each‎ butterfly‎ in‎ the‎

overall FFT. Additionally in this sequential structure, a two-port RAM is used to 

store the intermediate data computed , and a memory is required to store the twiddle 

factors (if not being calculated), and an address generator and control logic are 

required. For computing a large number of point FFT , it is clear that the area or 

cost of the single-butterfly architecture (i.e. a sequential implementation) 

is significantly lower than a fully parallel implementation [81], albeit it will have a 

lower throughput.  

In the sequential FFT architecture design, N/2 butterfly operations are included at 

every stage, and one butterfly unit can be used to perform all of them sequentially 

[82]. This lead to increase the computation time (latency) required for the FFT input 

vector. In this cause the overall throughput of the design is decreased.   
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2.5 FPGA Design Steps  

 

The FPGA design steps are shown in Figure ‎2.12.  At the Design Entry stage in an 

FPGA implementation, the designer creates design files using a schematic editor, or 

a Hardware Description Language (normally Verilog or VHDL). In this work, design 

of an FFT has been undertaken in VHDL using the Modelsim software development 

tool, while Xilinx block based System Generator has been used to develop the 

OFDM design [7, 9].  The System Generator allows designs to be made based on 

configuring of parameterisable blocks to implement DSP components such as filters, 

FFTs and so on, as well as simple elements such as multipliers and adders. After the 

design entry, the next step is synthesis. In this step, the VHDL and System Generator 

files are analysed and descriptions created at a lower level of logic abstraction, using 

a library of primitives. The XST tool from Xilinx has been used for this stage [83].  

In the Partition stage, a particular physical element is assigned to each 

logic element. The Place level maps logic into specific locations in the target FPGA 

chip. At the Route level are the connections of the mapped logic.  In the 

programming file generation step, a bit-stream file is generated to program the 

device. The subsequent device programming step downloads the bit-stream file to the 

FPGA, thus configuring it to implement the designed circuit.  
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Design verification can be undertaken via simulation, and simulation can be done at 

different levels. Various reports are generated to verify implementation results, such 

as maximum frequency and resource utilisation. The translate, map, and place and 

route processes are commonly referred to as design implementation [84-85]. The 

classic Xilinx design flow above was the process used in this thesis to generate the 

results for many of the different architectures. 

 

2.5.1 Virtex 5 Technology 

 

The Virtex 5 FPGA family from Xilinx [86]  has many advanced features, and 

different variations of the device are offered. These features include multiplier-adder 

blocks‎ (the‎ so‎ called‎ “DSP48”)‎ which‎ is‎ a‎ pipelinable‎ unit‎ capable‎ of‎ being‎

configured for operation at the FPGA clock rate, performing a multiply-accumulate 

(MAC) on 25 bit and 18 bit input data (the multiplier is 25 x 18 bits).  The LX family 

has been optimized for high-performance logic. The LXT has been optimized for 

high-performance logic with low-power serial connectivity. The SXT has been 

optimized for DSP and memory-intensive applications with low-power serial 

connectivity.  

The current Xilinx Virtex 5 family can be clocked at 550 MHz [78] and consists of a 

classic FPGA fabric of gates, flip-flops, LUT (look up tables) and arithmetic blocks 

(DSP48s). The basic logic elements and Configurable Logic Block of Virtex 5 are 

illustrated in Figure ‎2.13 and Figure ‎2.14. The basic logic elements consist of a 6-input 

look-up table (LUT) that can be configured as a small RAM, called a distributed 

RAM, a configurable  flip-flop/latch, and multiplexers to control the combinational  

logic output and the registered output (flip-flop/latch input). Fast carry logic is 

included to perform special logic and arithmetic functions using the slices. The slices 

consist of two basic elements grouped together, with each pair of two slices grouped 

to create Configurable Logic Block (CLB).  The CLB is connected to programmable 

routing resources by a switch matrix. Identical CLBs are tiled in  columns and rows 

in the device [87].   
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The block RAM is a true dual-port RAM. In this case both ports can access any 

memory location at any time. The dual port memory stores up to 36 Kbits of data and 

Figure ‎2.14: Virtex 5 Configurable Logic Block 
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can be configured as either two independent 18 kb RAMs or one 36 kb RAM. Block 

RAMs are placed in columns, and the total amount of block RAM memory depends  

on the size of the device [88]. 

The Virtex 5 family introduced the DSP48E slice, a schematic of which is shown in 

Figure ‎2.15. The new DSP slice increased the multiplier input width to 25 x 18 bits, 

which compares to 18 x 18 bits in Virtex-4 devices. This offers more flexibility and 

easier implementation of DSP algorithms.   

 

2.6 Summary 

 

In this chapter we have reviewed the core computation required of the FFT and 

introduced the FPGA architecture and CORDIC.   In order to now implement 

efficient and high speed FFTs we need critically evaluate the different algorithms, 

arithmetic architectures, and FPGA structures in order to aim to derive the most 

efficient implementation that will use resources optimally and where possible 

implement an FFT that is applicable for performing OFDM on the various radio 

standards mentioned in earlier chapters. 

 

 

 

Figure ‎2.15:Xilnx Virtex 5 Family DSP48E Slice[1] 

 



54 
 

 

 

 

 

 

 

 

  

3 FPGA Implementations of High 

Speed FFTs 

 

This chapter reviews and evaluates some relevant and recent work in the areas of 

FPGA implementation of FFT and IFFT algorithms, and OFDM for wireless 

networks on FPGAs. In Section ‎3.1, a collection of FFT implementations optimised 

for area is  presented. While Section ‎3.2 presents FFT optimised for speed, Section 

‎3.3 focuses on OFDM transceivers for different wireless standards. Section ‎3.4  

summarises this chapter. 

3.1 FFT Optimised For Area 

 

In this section, FFTs that use minimum resource area are presented. This work is 

based on a sequential architecture FFT that relies on a  single butterfly. 

Xin Xiao [61] presents an FFT implementation based on CORDIC which reduces the 

memory required in an FFT architecture by eliminating the memory required to store 

the CORDIC angles . The design is applicable for FFT processors of any radix. The 

CORDIC algorithm is designed to eliminate the need to store the twiddle factor 

values or angles in memories, and instead generates the twiddle angles successively 
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using an accumulator. In this technique, the memory requirements of the whole FFT 

are reduced by more than 20%. The angle of CORDIC that is stored in ROM is 

generated by a simple circuit to save resource area, but the design still requires 

ROMs to store input and output data.  

The Rotation mode CORDIC operation for an iteration i is summarised by Equations 

(‎3.1), (‎3.2), (‎3.3) and (‎3.4), where (xi, yi) is the initial location of the vector in 

Cartesian coordinates, and (xi+1, yi+1) is the new location after a rotation through the 

angle arctan(2
-i
). For each iteration, the direction of rotation depends on the sign of 

di in Equation (‎3.3). The angle Zi+1 is the angle after the iteration, as stated in 

Equation (‎3.4).   
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An interesting feature of this work is the method of generating the twiddle factor 

angles. The angle generator circuit is implemented by a circuit composed of an 

accumulator, a register and a latch, as shown in Figure ‎3.1.‎ The‎ 2π/N is the 

fundamental angle feed to the adder,  where N is the FFT size. The sequential 

addition of the fundamental CORDIC angle is stored in flip flop registers and this 

generates all possible angles required by CORDIC to implement the multiplication 

by the twiddle factors.  At each stage of the FFT computation, the generated angle 

streams need to change. The latch and its control signal are responsible for enabling 

and disabling the adder output based on the FFT stage. 

 

 

  

Bingrui Wang [45]  focuses on a 64-point Radix-2 FFT processor, implemented on 

FPGA and targeted at WLAN ( Wireless Local Area Network) applications. 

The design uses a DIF algorithm, and succeeds in reducing the number of 

multiplications to three instead of four. The complex multiplication by the twiddle 

factor requires four real multipliers. This number is reduced to three by using the 

simplification shown below.  To illustrate the outputs of this paper, Equations (‎3.5) 

and (‎3.6) represent two complex numbers which, in the FFT algorithm, represent the 

data sample (z1) being multiplied by the twiddle factor (z2). By using factorization, 

the number of real multiplications is reduced from four to three as shown in 

Equations (‎3.7), (‎3.8) and (‎3.9). This simplification can be easily implemented in 

hardware.  

 

Figure ‎3.1 : Angle Generator for CORDIC 
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 111 jyxz   (‎3.5) 

 

                   222 jyxz   (‎3.6) 

                 

 jyxzzz  21  (‎3.7) 

                                

 

Equations (‎3.8) and (‎3.9) are holding the real and imaginary parts of the 

multiplication.  The first terms of both these equations are identical,  and the result 

can be obtained by one multiplier, therefore reducing the number of to three. A 

pipelined FFT architecture is used to improve the throughput of the design. The 

architecture consists of four units: a control unit, a butterfly unit, two dual port 

RAMs, and an address generation unit. Verilog hardware description language is 

used within the Quartus II development environment to create the design, which is 

targeted‎at‎ the‎EP2C70F896C6‎part‎ from‎Altera’s‎Cyclone‎ II‎ family.‎The‎ resource‎

utilisation of the design is summarised in Table ‎3.1.  

 

The novel Radix-2 FFT processor based on FPGA meets the requirements of the 

802.11g WLAN standard. The design has a low clock frequency, and occupies a 

large amount of resources but it is using three multipliers instead of four for each 

complex multiplication. 

 )11(2)22(1 yxyyxxx   (‎3.8) 

 )11(2)22(1 yxxyxxy   (‎3.9) 

Table ‎3.1: Resource Utilisation of Pipelined 64-point FFT on Cyclone 
II Device 

total logic 562 

total pins 563 

total embedded multipliers 48 

Clock frequency 31.69 MHz 

 



58 
 

The work of J. Viejo, reported in [89], is a methodological comparison of FFT/IFFT 

implementations on FPGA. Three methods are used: VHDL coding (VC), System-

level tools at RT level (STR), and System-level tools at macro block level (STM). 

The first method is the VHDL coding method, and an FFT is designed with Radix-8 

butterfly, RAMs, ROMs and control unit. In this method only VHDL code is used to 

create the design. The verification of the design is carried out using a combination of 

Simulink and Modelsim, using the Black Box facility of the Xilinx System Generator 

tool.  Using the system levels tools at RT level, the System Generator blockset from 

Xilinx and VHDL code are jointly used to design the FFT/IFFT.  In the last method, 

only System Generator's FFT block is used. In this methodology, it is only necessary 

to design an interface that adapts the input/output signals of the FFT block to the 

module interface. A comparison of accuracy with the number of clock cycles 

required is shown in Table ‎3.2. As shown in the table below the implementation of 

64 point FFT with 26 bits data (13 bits for the real part and13 bits for the imaginary 

one) are tested to find which better accuracy with different style of implementation.    

 

These results show that the VC and STR methods are more accurate than the STM 

method. However, the STM method requires the fewest clock cycles to complete the 

FFT calculation. This is because Xilinx implement the FFT architecture with 

minimum clock cycles. The designs were synthesised and implemented using Xilinx 

ISE, targeting a Virtex-II XC2V2000 FPGA, and the results are shown in Table ‎3.3. 

Table ‎3.2: Mean Error for VC, STR, STM Methods 

 VC STR STM 

Clock Cycles 291 291 262 

Mean  Error 1.0% 1.0% 2.1% 
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The hardware implementation results show that VC and STR require about 4% fewer 

slices relative to STM. STM achieves the highest maximum operating frequency 

(122 MHz compared to 40 MHz for VC and STR). Based on this, VHDL code design 

can offer lower resource area while depending on Xilinx core can meet the high 

speed. 

 

In the work of T.Y. Sung [90], an OFDM system is developed which supports FFT 

ranges from 2048 to 8192, in accordance with European digital video/audio 

broadcasting standards [77, 91]. In this work, 2048, 4096 and 8192 point FFT/IFFT 

processors are designed. The author presents an efficient, CORDIC-based Split-

Radix FFT architecture suitable for the OFDM system under consideration. The 

processor is shown to perform an 8192-point FFT/IFFT every 138 ms, and a 2048-

point FFT/IFFT every 34.5 ms, which exceeds the orthogonal frequency 

division multiplexing symbol rate.  

A Split-Radix butterfly processor is used for the FFT calculation, and CORDIC is 

used to perform multiplication. This technique reduces the ROM size required for 

storing the twiddle factors. Figure ‎3.2 shows the proposed FFT architecture. To avoid 

conventional multiplier in the butterfly a rotational mode CORDIC is used and the 

required angles for CORDIC are generated to reduce the ROM required by the 

Table ‎3.3: Resource Utilisation on Virtex-II XC2V2000 FPGA for 
VC, STR, STM Methods 

Parameters VC STR STM 

Slices 1187 (23%) 1188 (23%) 1393 (27%) 

Flip Flops 624 (6%) 624 (6%) 2041 (19%) 

4 Input LUT 1984 (19%) 2030 (19%) 1380 (13%) 

Bonded IOBs 58 (33%) 58 (33%) 57 (33%) 

Block RAMs 2 (5%) 4 (10%) 3 (7%) 

MULT18x18 12 (30%) 4 (10%) 7 (17%) 

GCLKs 1 (6%) 1 (6%) 1 (6%) 

Maximum operation 

frequency 
39.53 MHz 40.15 MHz 122.65 MHz 

 



60 
 

design. In this paper the author also introduced a modified pipelined CORDIC 

arithmetic unit. The number of iterations or stages of the CORDIC processor is 

determined to be 12.  

 

In Fangming Liu [47], a 32-point, Radix-2 DIT FFT is introduced and a comparison 

made between three different butterfly implementations. The first is 

the traditional butterfly unit with four multipliers for the complex multiply; the 

second uses an alternative method of calculating the result it is similar to one used in 

[45], and has three multipliers; while the third uses only two hardware multipliers, 

taking two clock cycles to implement the four-multiplier operation. A recursive 

architecture is used, which contains the butterfly unit, data storage unit and address 

generator unit. The design is coded in VHDL and synthesized using Altera’s‎Quartus‎

II tools.  

 

The 32-point FFT is designed with 8-bit precision using only 280 logic elements, and 

can be clocked at a frequency of 100 MHz. The implemented FFT architecture is 

shown in Figure ‎3.3. 

 

 

Figure ‎3.2: Sequential FFT Architecture Based on CORDIC with Split-Radix 
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3.2 FFT Optimised For Speed 

 

In this section, FFT based on pipelined architectures are presented. The pipelined 

architecture can achieve the FFT calculation faster than the sequential architecture 

due to using a butterfly in each stage of calculation instead of using only one 

butterfly for all stages. 

K. Harikrishna [32] introduces an FFT and IFFT based on the Radix-2
2
 butterfly 

processor. The design uses an R2
2
SDF Single path Delay Feedback pipelined 

architecture. The author makes a hardware utilisation comparison for different 

architectures, as shown in Table ‎3.4.  

Figure ‎3.3 : Recursive FFT Architecture 
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Verilog code for an R2
2
 SDF decimation in frequency 1024-point FFT/IFFT has 

been written. The design is targeted at a Spartan 3 FPGA.  The resources occupied by 

the design are shown in Table ‎3.5. The maximum frequency for the design is 92.366 

MHz. In this work, the resource area occupied by the design is high compared to 

Xilinx or the FFT introduced in this thesis. 

 

The contribution of Zahra Haddad [36] is to introduce a design for a 1024-point 

Radix-2 DIF FFT. The FFT processor is shown to perform the FFT calculation in 

5120 clock cycles.  Of interest in the design is the fact that it uses one block dual port 

RAM, and completes the FFT calculation in 5120 clock cycles instead of 10240.  

The block RAM stores the calculated values in complex form, with 16-bits for real 

and 16-bits for imaginary (thus the RAM is 32-bit precision). The design is targeted 

at the Virtex-4 LX25 FPGA from Xilinx. The resources occupied by the design are 

shown in Table ‎3.6. Notably the design uses large numbers of block RAMs and 

Table ‎3.5: Resources Occupied by 1024 R2
2
 SDF on Spartan 3 

Logic Utilization Used 

No. of Slices 3155 

No. of Slice Flip Flops 1514 

No. of 4 input LUTs 5916 

No. of bonded IOBs 32 

No. of Mult18x18s 16 

No. of GCLKs 1 

 

Table ‎3.4: FFT Architecture Requirements for multiplications, additions, 
memory and controls 

Parameters Multiplier Adder Memory Control 

R2MDC 2(log4N-1) 4log4 N 3N/2 -2 Simple 

R2SDF 2(log4N-1) 4log4 N N-1 Simple 

R4SDF log4N-1 8log4 N N-1 Medium 

R4MDC 3(log4N-1) 8log4 N 5N/2 -4 Simple 

R4SDC log4N-1 3log4 N 2N-2 Complex 

R2
2
SDF log4N-1 4log4 N N-1 Simple 
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DSP48 multipliers compared to the designs introduced in this thesis and the Xilinx 

FFT core.  

 

 Abdullah, S. S [92], A 1024-point Radix-2 DIF FFT based on the CORDIC 

processor is presented. It is pipelined, single path delay feedback architecture, 

featuring a simple controller and efficient pipelining. The design has no multipliers 

because it is based on CORDIC, and can reach a speed of up to 198 MHz. 

In the work of Sheng Li, presented in [51], a 1024-point Radix-4 DIF FFT processor 

is implemented on a Xilinx Virtex II pro 70 FPGA. VHDL has been used in the 

development of the core. The design is divided into five pipelined stages, and each 

stage includes a butterfly and RAM memory. The design uses 30 block RAMs and 

12 multipliers, and its maximum frequency is 164 MHz. 

Also of interest is an FFT architecture for Radix-2 DIF which can produce two FFT 

transform samples every clock cycle by Christos Meletis in [82].  The architecture 

requires Nlog2N multipliers, 2Nlog2N complex adders, and N+2log2 (N-2) delay 

elements to compute an N-point FFT in N/2 clock cycles. A block diagram of the 

suggested pipelined architecture is shown in Figure ‎3.4. Each stage includes a 

butterfly and two shuffling units which are responsible for managing the delays 

required between stages. These delays work as pipelined registers as well.  

 

 

 

Table ‎3.6: Resource Utilisation of 1024-point Radix-2 FFT on Virtex-

4 LX25 FPGA 

Logic Utilization Used 

Number of Slice Flip Flops 38 

Number of occupied Slices 2472 

Number of 4 input LUTs 10841 

Number used as 32x1 RAMs 2048 

Number of DSP48s 10 
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3.3 OFDM Transceiver Design  

 

In this section, OFDM transceiver design based on FPGA are presented. Many 

wireless standard use OFDM as modulation and multiplexing technique. 

The work of Mª José Canet in [93] describes the design and implementation of an 

intermediate frequency (IF) OFDM transceiver based on FPGA. The Xilinx 

XC3S400-4 Spartan III board is used in the design, which supports Hiperlan 2 and 

IEEE802.11a/g WLAN standards. This design generates baseband OFDM symbols 

with a 20MHz sampling rate, and the baseband OFDM symbol is upconverted to a 

120 MHz sampling rate. The upconverter comprises two interpolating filters of 

factors 2 and 3, and a quadrature mixer. At the receiver side, the downconverter 

consists of a mixer and decimator. A decimation by 3 from a sampling rate of 

50MHz is used obtain a 20MHz baseband OFDM symbol. The design supports 

several modulation schemes, covering BPSK to 64-QAM.  The baseband OFDM 

symbol is built using a 64-point IFFT, and 16 samples of cyclic prefix. The 

FFT/IFFT processors consist of 3 dual port memories and Radix-2 DIF butterfly 

processor. Two of the dual port memories are used to store the FFT/IFFT input, 

intermediate and output data, while the other memory stores the twiddle factor 

coefficients.  

Figure ‎3.4 : Pipelined FFT Architecture for two outputs for each clock 
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An autocorrelation circuit is used for frame detection: the received signal is 

correlated with a version of itself delayed by 16 samples. OFDM is sensitive to 

carrier frequency offset (CFO). The estimated frequency offset calculated by 

Equation (‎3.10) is used to remove the CFO: 
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o
...2

)(




  (‎3.10) 

                                                                      

– where T is the sampling period and Nc is 16. The angle R is calculated by a circular 

vectoring mode CORDIC processor.  

Channel estimation is performed in the frequency domain. The design is good for 

FPGA implementation, because the resource cost is low (as shown in Table ‎3.7), and 

it could be updated to other standards. 

 

 

In work by Garcia, J. Q.  [30], the authors present an FPGA design of an OFDM 

modulator for IEEE 802.11a standards. Xilinx System Generator is used as a design 

tool.  The mapping circuit offers BPSK, QPSK, 16-QAM and 64-QAM modulations, 

and is realised by a number of memories which store the constellation of each 

scheme. Two multiplexers are used for selection between different modulation 

Table ‎3.7: Resource Utilisation of an OFDM transceiver for 
IEEE802.11a/g WLAN standards 

Circuits Slices BRAMs Multipliers 

Up converter 273 0 0 

Down converter 140 0 0 

Mapping/Demapping 82 0 0 

FFT/IFFT 340 3 3 

Autocorrelator 431 0 9 

CORDIC 363 0 2 

Channel estimation 85 0 0 

Control 95 1 0 
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schemes one multiplexer for real and the other for imaginary The output is stored in 

two First In First Out (FIFO) buffers, and an Interleaver circuit is 

used to combine data, pilots and zero pads (a multiplexer and a counter are 

used to construct the interleaver). A Radix-4 IFFT and a couple of FIFOs are used to 

generate the OFDM symbol. The resources occupied by the design are 

summarised by Table ‎3.8. An advantage of the design is that it could be updated to 

other standards. 

 

The work reported by Garcia, J. Q. [94] is dedicated to the physical layer of the IEEE 

802.16 OFDM modulator. It is smaller than the work in [30], and provides an update 

to meet the requirements of IEEE 802.16. The resources occupied by the design are 

summarised in Table ‎3.9. The design has used more resources than the 

previous design [30]  due to the FFT size, which is 256-point for IEEE 802.16. 

 

Table ‎3.8: Resource Utilisation of OFDM Modulator for IEEE 802.11a 

standards 

Parameter Used 

Number of Slices 1678 

Number of Slice Flip Flops 2353 

Number of 4 input LUTs 2814 

Number of bonded IOBs 29 

Number of BRAMs 12 

Number of GCLKs 1 

 

Table ‎3.9: Resource Utilisation of OFDM Modulator for IEEE 802.16 

standards 

Parameter Used 

Number of Slices 2614 

Number of Slice Flip Flops 3566 

Number of 4 input LUTs 4304 

Number of bonded IOBs 29 

Number of BRAMs 12 

Number of GCLKs 1 
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In Xu, Jinsong [95], a Multi Band MB-OFDM is part of the physical layer of 

Wireless Personal Area Network (WPAN) IEEE 802.15.3a.  Work is presented on 

the design and implementation of a MB-OFDM transmitter on FPGA for IEEE 

802.15.3a. The VHDL language is been used to implement the design on a Xilinx 

Virtex 2 FPGA. The transmitter chain consists of scrambler, encoder, and puncture 

block; bit interleaving, QPSK and IFFT. A Radix-2 DIT butterfly processor is 

used in the FFT core. The multiplication is implemented using the CORDIC 

algorithm. A summary of the resource utilisation is given in Table ‎3.10, showing that 

the design is relatively expensive as it use large number of slices, flip flops, look up 

tables and multipliers. 

 

The work of Aifeng Ren  presented in [96] reports on the design of an OFDM 

transceiver based on FPGA. Intellectual property (IP) cores from Altera have been 

used to realise the design, which focuses on the baseband structure of OFDM. The 

paper describes different types of Forward Error Correction (FEC) IP cores from 

Altera, including the Reed-Solomon encoder/decoder,Convolutional Encoder/Viterbi 

Decoder, and Turbo encoder/decoder. The performances of the turbo encode/decode 

IP core is shown in Table ‎3.11. 

Table ‎3.10: Resource Utilisation of an OFDM Modulator for IEEE 

802.15.3a standards 

Parameters Used 

Number of Slices 2885 

Number of Flip Flops 3694 

Number of 4 in LUTs 4811 

Number of GCLKs 1 

Number of DSP48s 12 
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For the interleaver / deinterleaver section of the design, the convolutional 

interleaver/Deinterleaver provides reduced delay and lower memory usage compared 

to the block interleaver/deinterleaver. A performance comparison of the constellation 

mapper/demapper IP-core is also made, and the results generated using Quartus II 

8.0 software targeting the EP1C20F400C7 device is as shown in Table ‎3.12. A 

Radix-4 DIF design is used for the IFFT transmitter and FFT receiver. The 

performance characteristics of the FFT IP core targeted at two different FPGA 

devices are given in Table ‎3.13. The proposed architectures are suitable for rapid 

design of fourth generation wireless communication devices. 

 

 

Table ‎3.11: Resource Utilisation of Forward Error Correction using 
Altera IP 

Device 
Logic Elements 

(LES) 

Memory 

(Bits) 

Frequency 

(MHz) 

EP1S10F780C6 7517 73216 95 

EP1C20F400C7 7517 73216 83 

 

Table ‎3.12: Resource Utilisation of Constellation Mapper/De-

mapper IP Core from Altera 

Demodulation 

Scheme 

Decoding 

Scheme 

Eb/No 

(dB) 

Logic 

Elements 

(LEs) 

Frequency 

(MHz) 

BPSK 
Binary 

Decoding 
15 347 274.53 

8-PSK 
User-

Defined 
15 452 256.87 

16-QAM 
Gray 

Decoding 
15 376 245.22 

256-QAM 
User-

Defined 
15 413 228.50 
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The work described by Manavi, F. [97] is the development of an OFDM modem for 

the IEEE 802.11a standard, based on FPGA. A synchronization circuit 

for packet detection and time synchronization is created.  The design process 

involves a number of steps. Firstly, a floating-point model is designed using Cadence 

Signal Processing Worksystem (SPW). The floating-point model is then 

transformed to a fixed-point model in SPW. Finally, the fixed-point blocks are 

replaced with Hardware Design System (HDS) blocks, from which VHDL code can 

be generated automatically.  

The resources required for the transmitter and receiver are shown in Table ‎3.14. For 

the synchronizer circuit, the occupied resources are shown in Table ‎3.15. Xilinx 

Virtex 2 is used to target the design. 

This work represents rapid prototyping of the OFDM algorithm. The design is 

modelled in floating and fixed point, and meets the requirements of the IEEE 

802.11a standard. 

 

 

Table ‎3.13: Radix-4 FFT IP Function from Altera 

Device Points 
Logic 

Elements 

Frequency 

(MHz) 

Clock 

Cycle 

Count 

Transform 

Time (us) 

EP1S10F780C6 512 4510 255.62 512 1.03 

EP1C20F400C7 512 4671 243.18 512 2.0 

 

Table ‎3.14: Transmitter and Receiver Resource Utilisation for OFDM 

modem for IEEE 802.11a standard 

 Slices RAM Blocks Total Gates 

Transmitter 1115 10 690048 

Receiver 1150 10 690533 

 

Table ‎3.15: Synchronizer Resource Utilisation for OFDM modem for 

IEEE 802.11a standard 

 Slices Multiplier Blocks Total Gates 

Synchronizer 1409 18 97003 
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3.4 Summary 

 

In this chapter we have reviewed a number of architectures for implementation of 

high speed FFTs.  As discussed FFTs are important for the implementation of OFDM 

based architectures and the number of data points is always a power of 2, as specified 

in the appropriate standards documents for different radios (LTE, WiMax, Wi-Fi 

etc).  In the above work, the aim of most authors and designers is to present FFTs 

that use minimum resources, and will achieve the necessary clock frequencies.  This 

is of course a function of a number of things – first, the actual FPGA being used 

(technology, speed grade and so on), and the efficiency of the architecture.  In this 

thesis we target the former and aim to produce architectures that will achieve speeds 

to implement various radio standards, but at a minimum cost.  Hence in chapter 5, we 

will compare some‎“off-the-shelf”‎FFTs,‎with‎some‎custom‎designed‎architecture‎in‎

order to demonstrate that careful optimisation will lead to faster and cheaper 

architectures. 
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4 Fast Fourier Transform 

Implementation on FPGA Based on 

Butterfly  
 

4.1 Introduction 

 

In this chapter, a full description, analysis, and hardware implementation of 

FFT/IFFT based on the butterfly operation is presented. The discussion focuses on 

the Radix-2 FFT algorithm.  The FFT function and its inverse are implemented 

within the same architecture, in order to demonstrate that  the design is indeed 

capable of implementing both functions as required by general OFDM transceivers. 

Prior to implementing the FFT architecture, a MATLAB script was developed to 

provide golden reference floating-point and bit-accurate models for the forward and 

inverse FFT, and presents the benchmark for debugging and validating the design.  

The custom VHDL code for the FFT and inverse FFT was created and tested in the 

ModelSim environment, and the code was simulated and compared with the golden 

reference MATLAB FFT implementation. Thereafter, the Mean Squared Error 
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(MSE) was found, together with the signal to noise ratio for the implementations of 

QAM transceivers. All designs were synthesized using the Xilinx ISE tool, and 

the resource utilisation and speed are reported as parameters of merit.  

 

4.2 FFT Butterfly Processor Implementation 

 

In this section, the butterfly-based, Decimation in Frequency Radix-2 FFT is 

introduced. It has a sequential architecture consisting of a single butterfly engine, 

two dual port RAMs, two ROMs and control unit.  

Two types of butterflies are introduced here for analysis: the first is the serial 

butterfly FFT (to be discussed in Section ‎4.3.1), whereas the second is the serial 

pipelined butterfly FFT (covered in Section ‎4.3.2). Both butterflies use two 

multipliers rather than the usual four of standard Xilinx FFT cores, and one of them 

is highly pipelined to achieve higher speed. We will demonstrate that the sequential 

architecture (serial architecture that use only single butterfly) offers a reduction in 

resource utilisation compared to a pipelined architecture, and this work focuses 

on minimising the area occupied by the design.  In the pipelined FFT implementation 

each stage requires a butterfly as shown in section ‎2.2.3.   

 

4.2.1 FFT Entity 

 

The FFT entity represents the input and output ports available for the user interface 

to the FFT, as defined by the VHDL design. A graphical representation of the 

FFT entity is provided in Figure ‎4.1 . It is a complex input FFT, where fft_in_re 

represents the real input and fft_in_im represents the imaginary input. Both 

inputs are‎ specified‎ as‎ the‎ “std_logic_vector” type with variable length, thus 

supporting inputs of any word length. The operation mode can selected as either the 

forward or inverse Fast Fourier Transform, using a pair of input signals. FFT_IFFT 

and FFT_IFFT_we are decided on, where FFT_IFFT and FFT_IFFT_we are 
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std_logic one bit assigned, with logic one for FFT, logic zero for IFFT. This will 

be active when FFT_IFFT_we is set to one as shown in Figure ‎4.1. 

The operation of the FFT proceeds in three steps: reading the input vector, 

processing, and unloading the output. The start signal, which is of type 

std_logic, is activated (to logic 1) and this initiates the reading of input data. The 

length of the input vector is equal to the FFT size. After processing, the unload 

signal, which is also of type std_logic, is activated (to logic 1) to begin the writing of 

data to the output.   All operations within the FFT core are synchronous to the clock, 

which is supplied via the std_logic signal clk_main.  

 

 

The output ports fft_out_re and fft_out_im provide the results generated by 

the FFT core. These ports are both of type std_logic_vector, and in each case their 

length is defined as the input wordlength, plus log2(NFFT), where NFFT is the FFT 

size. This represents unscaled FFT fixed point precision, allowing wordlength 

growth of one bit at each stage. Equation (‎4.1)  shows the maximum wordlength 

growth based on unscalled technique. There are different ways to have control on 

wordlength growth, the unscalled is the cheapest way. For example for a 1024-point 

FFT with input vector word length 16 bits, the Maximum_Worldlength would be 26 

bits. 

Figure ‎4.1: FFT Entity Block Diagram 
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Three additional output ports are provided for monitoring the status of the core. The 

first two are in_index and out_index, which are of type std_logic_vector and 

dimension log2(NFFT). These represent count values corresponding to the input and 

output data indices. The bsy port is a 1-bit flag (std_logic type), which is set high 

during the processing phase.  in_index begins counting when start port is logic 

one, while out_index begins counting when unload is logic one. Both ports are 

used to monitor the input and output complex vector position to the FFT.  

This chapter will introduce two FFT/ IFFT implementations: serial butterfly and 

serial pipelined butterfly. 

 

4.2.2 FFT Based Butterfly Architecture 

 

The architecture considered is a sequential, butterfly-based FFT/IFFT. This 

architecture is particularly suitable for low-cost design on an FPGA.  It consists of 

two RAMs, two ROMs, a radix-2 butterfly, a Finite State Machine (FSM), and an 

address generator unit. A block diagram of the sequential butterfly architecture is 

shown in Figure ‎4.2 and this architecture has been implemented via‎ “golden‎

reference”‎ MATLAB‎ scripts‎ and‎ custom‎ VHDL‎ code.‎ In‎ the following sections, 

descriptions of each part in the FFT architecture are given.  

Note that in the direct implementation of the FFT algorithm, the design requires a 

large number of butterflies, as given in Equation (‎4.2). 

  NFFTWordlengthVectorInputWordlengthMaximum log___
2

  (‎4.1) 
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where Butterfly_numbers is the number of butterflies required to calculate the FFT. 

As stated in Equation (‎4.2), this depends on the FFT size (NFFT).  

The number of butterflies required by the FFT is large as the FFT size increase. The 

advantage, of course, of the sequential architecture is that it uses only one butterfly 

and thus minimises resource utilisation (albeit is slower than a parallel 

implementation) but it also requires smart control and scheduling to be efficient. 

Hence a controller Finite State Machine (FSM) and an address generator unit are 

required for this purpose. 

 To review the general operation of the architecture in Figure ‎4.2, noting that the input 

vector first is loaded into RAM and the address generator then invokes a pair of 

values for user over two consecutive clocks, and the appropriate twiddle factor is 

read from the ROM. The numerical calculation is then performed using one butterfly 

processor, and the calculated values are written back to the same addresses in the 

RAM. This is done sequentially for all stages of the FFT design. One immediate 

disadvantage of this architecture is its large latency in evaluating the output,  which 

implies a substantial  time delay required for the sequential FFT architecture to 

conclude its calculation.‎ Hence‎ a‎ “double‎ clock”‎ technique‎ has‎ been‎ used‎ to‎

overcome the latency issue, which will be presented in Chapter ‎5. 
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4.2.3 FFT RAMs 

 

FPGAs provide two types of RAM: Block RAM and distributed RAM. The Block 

RAM is a dedicated memory block, while the distributed RAM is built from look-up 

tables distributed over the entire logic fabric. For large FFT designs, it is usually 

more efficient to use the Block RAMs (BRAMSs), however in many DSP systems 

there is not enough block RAM and hence distributed RAM may often be used.  In 

Xilinx Virtex 5 (xc5vlx110t-3ff1136) devices used in this work, there are 148 

BRAMS. A block diagram for the RAM that has been used in the design is shown in 

Figure ‎4.3. This RAM is used to store the input, intermediate and output data. One 

RAM is used for the real part, and the other for the imaginary part.  

Referring to the interface as depicted in Figure ‎4.3  , din_a is the input port, which is 

used to write data to the RAM. It receives its first input from the interface and then 

from the output of the butterfly component until the calculation is finished. The input 

addr_a provides the address location at which data is stored in the RAM when the 

write enable port, we, is high. While the address specified by addr_a is used for 

write only, the addr_b port is used to specify the address for read only operations, 

Figure ‎4.2: Sequential FFT Architecture Based on Butterfly 
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which result in the output data presented through the dout_b port. The values 

supplied to both the addr_a and addr_b ports are obtained from the address 

generation unit (to be covered in Section ‎4.6). 

 

 

In‎ this‎ design,‎ an‎ “in place” algorithm has been‎ implemented.‎The‎ term‎ “in‎ place”‎

means that during the execution of the FFT, the same memory can be reused to store 

the results of intermediate calculations. This method is used to reduce the resource 

utilisation of the design. 

The area occupied by the RAMs, i.e. the number of Block RAMs required by the 

FFT, is proportional to the precision of the input, and to the FFT size. The depth of 

the Block RAM is equivalent to the FFT size, while its precision is set to the 

maximum wordlength of the FFT output, as specified in Equation (‎4.3) below,  

 )(log___
2

NFFTprecisioninputFFTprecisionRAM   (‎4.3) 

where RAM_precision is equal to the maximum output wordlength required for the 

FFT. 

As the input precision of the FFT is less than the output precision, sign extension is 

used to permit constant wordlength operations. 

All of the above description applies to both the real and imaginary RAMs. 

 

Figure ‎4.3: FFT in place RAM Block Diagram 
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4.2.4 FFT ROMs 

 

Two ROMs are assigned to store the twiddle factor values; one each for the real and 

imaginary parts. The complex twiddle factor is obtained from the two ROMs, and 

provided as an input to the butterfly processor, along with two complex data samples. 

Equation (‎4.4) is used to calculate the real part of the twiddle factor, W_re, while 

Equation (‎4.5) is used to calculate the imaginary part, W_im. 

 1,........,2,1,0,   
2

cos)(_ 





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n
nimW
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 (‎4.5) 

 

In these equations, n is the index which ranges from 0 to NFFT-1, where NFFT is the 

size of the FFT.  A MATLAB script has been used to generate the values of W_re 

and W_im according to Equations (‎4.4) and (‎4.5), and these values have been 

stored in hexadecimal form in two ROMs. The precision is the number of bits used to 

represent the twiddle factor; for example using the 8 bit format <1, 7>, one integer 

bit and seven fractional bits are used to represent the twiddle factor, values in the 

range -1 to +0.99999 can be expressed. The precision of the twiddle factor has an 

impact on the FFT accuracy (signal to noise ratio) as discussed in Section ‎4.9.  

Block RAMs are used to store the twiddle factor values; the number of Block RAMs 

required depends on the FFT size (NFFT) and the precision of W_re and W_im.  A 

block diagram of the ROM entity is shown in Figure ‎4.4. The input port addr is of 

type std_logic_vector, and its word length is log2(NFFT). The address length 

depends on the maximum twiddle factor stored in the ROMs. The en port is of type 

std_logic, and represents an active-high enable (note that the ROM is enabled during 

the calculation of FFT stages, and is disabled during the input and output phases). 

The ROM is clocked by clk_main, or clk_cal when high throughput FFT is 

required, as described in Section ‎5.7. A more accurate FFT will require more precise 
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representation of the twiddle factor, potentially requiring more Block RAMs on the 

FPGA. Note that all of the above description applies to both the real and imaginary 

ROMs.   

 

4.3 Butterfly Radix-2  

 

In this section, a description of the traditional 4-multiplier implementation of a single 

butterfly is given. This is full parallel butterfly, as shown in Figure ‎4.5. 
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This butterfly calculation is performed several times in the FFT, according to 

Equation (‎4.2), and in a fully serial implementation a single butterfly unit can be 

time-shared to perform all of the calculations. In the remainder of this section, the 

operation of an individual, directly implemented butterfly processor is described 

(later, Sections ‎4.3.1 and ‎4.3.2 will detail an alternative design of the butterfly, which 

uses fewer resources).  

Each butterfly operation requires two complex data values and one complex twiddle 

factor. The inputs to the butterfly are denoted by A and B, and the twiddle factor by 

W. Their real and imaginary parts are indicated by the suffixes _re and _im, 

respectively, hence A, B and W are given by Equations (‎4.6), (‎4.7) and (‎4.8).  

 imjAreAA __   (‎4.6) 

 imjBreBB __   (‎4.7) 

 imjWreWW __   (‎4.8) 

 

The complex quantities C and D are calculated by the butterfly as given in Equations 

(‎4.9), (‎4.10), (‎4.11) and (‎4.12).  

 reBreAreC ___   (‎4.9) 

 imBimAimC ___   (‎4.10) 

 reBreAreX ___   (‎4.11) 

 imBimAimX ___   (‎4.12) 

Therefore, implementing the calculation of C_re and C_im requires one adder each, 

while X_re and X_im require one subtract each.  

To complete the calculations, Equations (‎4.13) and (‎4.14) are used in the case of the 

forward FFT, while (‎4.15) and (‎4.16) are used for the inverse FFT. These equations 
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correspond to multiplication with the twiddle factor, and show that a total of four 

multiplication operations are required for both the forward and inverse FFTs.  

 

 imWimXreWreXreD _____   (‎4.13) 

 imWreXreWimXimD _____   (‎4.14) 

 imWimXreWreXreD _____   (‎4.15) 

 imWreXreWimXimD _____   (‎4.16) 

                

A key development in this thesis is to investigate butterflies with only two real 

multipliers, and which use CORDIC ( Chapter ‎5) to perform the multiplication so 

that the design can be implemented without explicitly using multipliers, and thus 

achieving a variety of designs that can run on different FPGA structures and can be 

chosen and balanced according to available resources and speed requirements.  

By just negating the sign of the twiddle factor it is well known that we can use the 

FFT architecture to calculate the inverse FFT, thus using a single architecture with a 

selectable control line to negate or otherwise the twiddle factor. Clearly this is 

another method of minimising the overall resource cost. 

As shown in Figure ‎4.5, the direct implementation of the butterfly required six 

adder/subtractors and four multipliers all of appropriate word lengths corresponding 

to a pre-specified word length to achieve a certain level of desired accuracy. In the 

next sections, two new butterfly implementations are introduced to obtain minimum 

resource for the FFT. 
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4.3.1 Radix-2 Butterfly Serial Implementation 

 

One of the options considered is a modified butterfly architecture which reduces 

resource consumption.  The new architecture has reduced the number of multipliers 

and Block RAMs to two each – this will clearly have some impact on the maximum 

achievable speed, however the decision of the designer is to use the FFT that can 

achieve the appropriate sample rate of the wireless standard, and at the minimum 

cost (so to confirm - using the off-the-shelf‎low‎cost‎or‎“efficient”‎FFT‎cores‎is‎not‎

always the right choice). The direct implementation of the butterfly, as presented in 

Section ‎4.3, required for example four RAMs to read and write the data, and four 

multipliers: this constitutes a fully parallel implementation of the butterfly processor. 

The‎ alternative‎ here‎ is‎ a‎ “serial”‎ butterfly,‎ which‎ could‎ be‎ utilised to reduce the 

resource cost. The block diagram of the serial Radix-2 butterfly is shown in Figure 

‎4.6. 

 

 

Figure ‎4.6: Serial Butterfly Radix-2 
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In this technique, A_re and B_re are‎stored‎in‎the‎same‎RAM‎(the‎“real‎RAM”),‎and‎

likewise, A_im and B_im are‎stored‎in‎a‎single‎RAM‎(the‎“imaginary‎RAM”);‎in‎this‎

case only two RAMs are used in total. As both A_re and B_re need to be available 

for calculation at the same time, two clock cycles are required to read, and to write, 

the calculated butterfly values. A control signal of length two clock cycles is used for 

co-ordination purposes. Using this style of memory access, it is not necessary to use 

four multipliers, as they would not be fully utilised. Therefore, an architecture which 

uses two RAMs and two multipliers is possible.  

The calculations of C_re, C_im, X_re, X_im are implemented using the same 

resources as required for the direct implementation, taking two clock cycles. 

Multiplexers are used to select inputs for the two multipliers, which in each case are 

one of the outputs from the subtractors, X_re and X_im.‎A‎control‎signal,‎“Flag”, is 

used to make the choice and this takes two clock cycles. In the first multiplexer, 

while Flag is equal to one, the input X_re is selected, and while Flag is zero, the 

input X_im is selected and vice versa in the second multiplexer. The output of 

multiplexers, which are X_re, X_im and X_im, X_re, are multiplied by the twiddle 

factor W_re and W_im.  M1 holds W_re multiplied by X_re and X_im while M2 

holds W_im multiplied by X_re and X_im successively as shown in Equations (‎4.17) 

and (‎4.18).  

 
0  Flag    when __1

1  Flag     when __1





imXreWM

reXreWM
 (‎4.17) 

 

 
0  Flag    when __2

1  Flag     when __2





reXimWM

imXimWM
 (‎4.18) 

 

In this case, full utilization of the multipliers has been achieved, and the set of 

outputs produced corresponds to the results of Equations (‎4.13), (‎4.14), (‎4.15) and 

(‎4.16). The‎“Add/Sub” blocks perform addition or subtraction based on the choice of  
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transform, where they accept the outputs of M1 and M2, and perform addition or 

subtraction as required to compute the FFT or IFFT (the FFT is generated by adding 

M1 and M2, while the IFFT is generated by subtracting M1 and M2). 

The important point to mention is the word length growth during the multiplication, 

as it can go up with each calculation. To limit this growth, truncation techniques are 

used. For sixteen bits input precision the RAMs are set to be 27 bits in the case of 

NFFT, equal to 2048 based on Equation (‎4.3). In the twiddle factor case with eight 

bit precision, the output of multipliers grows to 35 bits so it is truncated to 27 bits 

again. The next section introduces another variation of the serial butterfly, which has 

the advantage of using more pipeline registers, so as to increase the frequency at 

which the design can operate successfully on the FPGA.  

 

4.3.2 Radix-2 Butterfly Serial Pipelined Implementation 

 

In this section, a pipelined butterfly architecture is presented which can support a 

higher FPGA clock frequency than the serial butterfly of Section ‎4.3.1.  

The pair of RAMs used in the architecture store the real part of the input vector in the 

form: 

 [A_re(0), B_re(0), A_re(1), B_re(1), ...............A_re(NFFT-1), B-re(NFFT-1)]  

and the imaginary part  as: 

 [A_im(0), B_im(0), A_im(1), B_im(1), ........ A_im(NFFT-1), B_im(NFFT-1)].  

This means that A_re and B_re appear one after the other delayed by one clock. The 

values of A and B  appear sequentially and need to be processed in the same time to 

calculate C_re and C_im. To do this, a Flag signal, which takes two clock cycles, is  

used to extend the times of A_re, B_re, A_im, B_im. A vector is [(A_re(0)A_im(0), 

A_re(1)A_im(1), ..........A_re(NFFT-1)A_im(NFFT-1)] and  B vector is 

[(B_re(0)B_im(0), B_re(1)B_im(1), ..........B_re(NFFT-1)B_im(NFFT-1)]. To find out 
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the X_re and X_im in Equations (‎4.11) and (‎4.12), only one subtract is required in 

this case as the input is complex. Two ROMs are used to store the twiddle factor 

values, one for real twiddle factors W_re and the second for W_im. Two multiplexers 

are used to generate complex twiddle factors, two multiplied by the complex X, to 

have all the combinations required to calculate C_re and D_re as shown in Figure 

‎4.7, Figure ‎4.8 and Figure ‎4.9.   

 

 

 

 

 

 

 

 

Figure ‎4.7: Pipelined Butterfly Part A 
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Figure ‎4.9: Pipelined Butterfly Part C 
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4.4 FFT Logic Control Unit 

 

 The logic control unit is responsible for co-ordinating the operation of the FFT 

processor (with variations depending on whether a forward or inverse transform is 

required), and the scheduling of reading inputs and writing outputs.  As reviewed in 

Section ‎4.2.1 a 1-bit input is used to choose between the FFT or IFFT modes of 

operation. The add/sub blocks in the previous butterfly sections are set to add 

or subtract in response to this input (and this is achieved using if statements 

in the VHDL code).  Referring to the equations presented previously, the effect is to 

switch between Equations (‎4.13) and (‎4.14) which implement the FFT, and (‎4.15) 

and (‎4.16) which implement the IFFT. The FFT/IFFT functionality is implemented 

either using the serial butterfly, or the serial pipelined architecture as presented in 

Sections ‎4.3.1 and ‎4.3.2, respectively. Note that this is an efficient way to implement 

the two functions (FFT and IFFT) within a single architecture; another possibility 

would be to store (Wr + jWi) and (Wr-jWi) twiddle factors but this would double the 

cost of the ROM.  

In the logic control unit, initial operation is prompted by the 1-bit input start going 

high, at which point a counter begins to increment from 0 up to (NFFT-1), and this 

corresponds to the index of the input sequence in_index. The signal in_index 

is used to address the RAMs which store the complex input vector as well as the 

twiddle factors, while the FFT is processing the input data.  

The logic control unit sets the bsy port to logic 1 while processing, and to logic 0 

when the calculation is finished. During the calculation phase bsy stack is logic one. 

The number of clock cycles that bsy is logic one represents the   latency of the FFT 

required to produce the output. Latency is an important performance metric and is 

evaluated in the FFT testing and a significant latency can negatively affect the ability 

of the FFT to process a high OFDM sampling rate.  
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The 1-bit input, unload, is used to prompt writing of the calculated outputs of the 

transform to the output ports. When logic 1 is received on unload, the logic 

control unit checks whether the calculation is finished. If the calculation has 

completed, the output of the FFT is written to the output port of the FFT unit by 

generating a counter, out_index, that counts from 0 up to (NFFT-1), and 

addresses RAMs holding the computed output. The logic control unit works 

synchronously with the finite state machine, as described in Section ‎4.5.  

 

4.5 Finite State Machine  

 

The Finite State Machine (FSM) built in the core is responsible for 

management, control and operation synchronous with the logic control unit.  

The FSM has five states: S0, S1, S2, S3 and S4. The state machine starts in the S0 

state, which allows the FFT core to read the input data from the interface. During this 

time, no processing of data takes place. In the S0 state, the status of the in_index 

signal generated by the logic control unit is checked, and when in_index = NFFT 

– 1, the FSM transitions to state S1.   

The S1 state is dependent on other processes in the FFT to generate internal counters 

and look-up tables for the number of stages required to calculate the FFT and the 

length that each stage requires. Each stage requires NFFT clock cycles to achieve the 

butterfly operation between the two complex inputs to the butterfly.  The output is 

back to the same address of RAMs that it was collected from. Each stage takes NFFT 

instead of NFFT/2 cycles because this is serial implementation of the FFT, offering 

50% of the resources area on the FPGA.  

It requires considerable effort to manage and control the operation inside the FFT. To 

keep monitoring the calculation process in the butterfly in each stage, a Flag signal is 

generated, taking two clocks. This is used to achieve the multiplexing necessary for 

the butterfly registers to implement serially, producing the NFFT cycles for each 

stage instead of NFFT/2 in the normal case. The number of stages is equal to 
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log2(NFFT). For reasons related to delays and pipelined stages, the FFT needs a few 

extra clocks, not to exceed 10, to complete the calculation of the stages. To monitor 

this state S2 is assigned and a register with size equal to 11 bits is used to fix that. 

When this register bit six goes high the calculation is finished. S3 state is 

one clock before the output finishes. S4 state is when the output is ready. At this 

point the FFT returns to state S0 to dump the output to the interface. The variable 

out_index is used to count and control this process, no calculation operation is 

performed in state S0. The flow state diagram of the FSM is shown in Figure ‎4.10.  

 

 

 

Figure ‎4.10: Finite State Machine FFT 
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4.6  Address Generation Unit 

 

The address generation unit is responsible for generating the addresses for both pairs 

of RAMs and ROMs. The RAMs are used to store the input, output and 

intermediates values during the FFT stages calculations, while the ROMs are used to 

store the complex twiddle factor. The orders of reading values from RAMs and 

ROMs differ based on the stage of the calculation, and hence the implementation of 

the address generation unit is non-trivial.  

As mentioned in Section ‎4.4, there are three basic phases of operation, namely: 

reading the data from the interface, processing the data, and dumping the output to 

the interface. When reading and writing data, the RAM address is generated by the 

in_index and out_index counters, after the data has entered the RAMs as 

shown in Figure ‎4.11, where data x(n) is represented as a one-dimensional array. 

NFFT can be factored as a product of two integers as shown in Equation (‎4.19).  

 

 21 NNNFFT   (‎4.19) 

                                                      

NFFT may be expressed as the product of N1 and N2, where N1 and N2 are both 

positive integers. 

   

Equation (‎4.20)  is used to generate the index mapping for the RAMs.  

 

 













1220

1110
211

Nk

Nk
kNkAdd_A  (‎4.20) 

 

 stepAAddBAdd  __  (‎4.21) 

Figure ‎4.11: Input data index 
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2

1


stage

NFFT
step  (‎4.22) 

 

Equation (‎4.23) is used to generate the address for accessing the ROMs storing the 

twiddle factor. 

 2
2

mod1_ stage

stage

NFFT
kwAdd 








  (‎4.23) 

A flow chart describing the operation of the address generation unit is provided in 

Figure ‎4.12. The algorithm is efficient in terms of implementation, and can be 

applied to any FFT/IFFT size; this is defined in the VHDL code.  

V is the maximum number of stages for the FFT, i.e. 11 stages for 2048, 10 stages for 

1024, 9 stages for 512, 8 stages for 256 and 7 stages for 128. A counter is used to 

increment through the FFT processing stages, and this increment is performed every 

NFFT clock cycles, as was explained in Section ‎4.5. The stage counter, stage, is 

compared with the maximum number of stages, V, and if they are equal then this 

indicates that the FFT processor has completed the calculation.  

N1 represents the distance between the A_re and B_re, or A_im and B_im, RAM 

memory locations. Its value depends on the FFT size (NFFT) and the current stage of 

the computation, i.e. the value of stage.  

Recalling Figure ‎4.11, where x(0) represents A_re(0)+jA_im(0). This value is 

processed in the butterfly along with x(4), which represents B_re(4)+jB_im(4). The 

next value x(1) is processed with x(5) and so on. At stage zero of the calculation, the 

difference between values is four in the case of eight points FFT; which is equivalent 

NFFT/2. At the next stage, the difference between the processed samples changes to 

two, and in the final stage, to one. Within the VHDL implementation of the address 

generation unit, N1 is a look-up table which carries all possible step differences 

between the samples that are processed, based on the FFT size and stage. 



92 
 

 

 

 

 

 

 

k1=k1+1 

Figure ‎4.12: Address Generation Flow Chart 
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4.7  FFT Based Butterfly MATLAB Scripts  

 

For large FFT sizes, it is necessary to use a floating-point model for debugging 

and validation purposes, and MATLAB scripts have been written for the 

architecture shown in Figure ‎4.2.  

The bit-accurate model has been derived from the floating-point model. The bit-

accurate model is an integer valued representation of the design. This can be 

compared to the signed integer representation which may be viewed in the HDL 

waveform, for example in Modelsim or Isim. 

The scripts consist of a main file and functions. A flow chart of the design is shown 

in Figure ‎4.14. 

The complex input vector function is responsible for generating a complex  random 

input vector to the FFT. Its length is equal to the FFT size. The generated complex 

numbers are floating point. To obtain an integer representation, the values are 

multiplied by 2 
no_bit-1

, where no_bit is the number of bits used to represent the input 

to the FFT. For sixteen bits the precision is 32768, and so on.  

The Twiddle Factor Generator function is responsible for generating the real and 

imaginary parts of the twiddle factors. The values have been generated based on 

Equations (‎4.4) and (‎4.5). The floating point values are converted to Hexadecimal 

and  stored in the ROMs within the VHDL design. The Address Generator function 

is responsible for generating the addresses for the buffers that store the complex 

input vector and the twiddle factors. The butterfly function is responsible for 

implementing the Radix-2 butterfly. 

 The output of the FFT is in bit-reversed order. A MATLAB function is 

used to generate it in the natural order.  If the IFFT is calculated, then the output is 

divided by the FFT size. 
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The floating point model is tested to prove its accuracy as shown in Figure ‎4.13. 

MATLAB’s‎built‎in‎FFT‎function‎is‎considered‎as‎a‎golden‎reference‎model,‎and‎the‎

signal to noise ratio demonstrates that the floating point model is working properly. 

The average signal power, average error power (noise power) and the signal to noise 

ratio are calculated according to Equations (‎4.24), (‎4.25) and (‎4.26). The signal 

y_Matlab(n) of Matlab's  built-in function, while y_float(n) is the floating point 

model output. 

 

 

 

NFFT

nMatlaby

powersignalaverage

NFFT

n






1

0

2

))(_(

__  
(‎4.24) 
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Figure ‎4.13 : Floating-Point accuracy of FFT based on Butterfly 
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Figure ‎4.14: Matlab Flow Chart for FFT Based on Butterfly 
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4.8  FFT Based Butterfly Test 

 

VHDL code was written for the FFT architecture shown in Figure ‎4.2 and the design 

was synthesised using the Xilinx ISE tool. The resources occupied by the design are 

summarised in Table ‎4.1 for the serial butterfly implementation, and Table ‎4.2 for the 

serial pipelined butterfly. The designs have been tested with 128, 256, 512, 1024 and 

2048 FFT sizes. The input complex vector precision is <1, 15>, i.e. one integer and 

fifteen fractional bits. The twiddle factor precision is <1, 7>, i.e. one integer and 

seven fractional bits. The output of the complex FFT is permitted to grow to <12, 

15> bits. 

 

 

 

Table ‎4.1: Resource Area of Serial Butterfly FFT Architecture on 

Virtex 5 X110t 

Parameters 

FFT SIZE 

128 256 512 1024 2048 

Flip Flops 450 473 496 600 625 

LUTs 652 702 752 873 992 

Slices 276 284 324 364 444 

DSP48Es 2 2 2 2 2 

RAMB18 2 2 2 2 2 

Maximum 

frequency 

(MHz) 

197.316 191.314 186.359 142.025 144.718 

Latency 

(clock cycles) 
896 2048 4608 10240 22528 
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The Mean Square Error (MSE) was tested, i.e. a comparison was made between the 

output‎of‎MATLAB’s‎ FFT‎ function, and the output of the FFT as implemented in 

VHDL code (y_VHDL). A random input complex vector was used as the input to 

both, and the average error power is calculated, divided by the FFT size as in 

Equation (‎4.27).  

 

NFFT

nVHDLynMatlaby

MSEpowererroraverage

NFFT
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))(_)(_(

__  
(‎4.27) 

The signal to noise ratio was calculated by dividing the average power of the 

MATLAB FFT (y_Matlab) output by the average error power (MSE), as shown in 

Equations (‎4.28) and (‎4.29). 

 

NFFT

nMatlaby

powersignalaverage

NFFT

n


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__  

   

(‎4.28) 

 

Table ‎4.2: Resource Area of Serial Pipelined Butterfly FFT on Virtex 5 

Parameters 

FFT SIZE 

128 256 512 1024 2048 

Flip Flops 434 456 478 619 646 

LUTs 616 641 676 767 826 

Slices 260 272 290 336 348 

DSP48Es 2 2 2 2 2 

RAMB18 4 4 4 4 4 

Maximum 

frequency 

(MHz) 

233.754 221.043 179.244 217.817 192.160 

Latency  

(clock cycles) 
896 2048 4608 10240 22528 
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powererroraverage

powersignalaverage
noisetosignal

__

__
__   (‎4.29) 

 

The MSE and SNR for both FFTs (based on the butterfly architecture) are shown in  

Table ‎4.3 and Table ‎4.4, for different FFT sizes. The error is seen to increase with 

the FFT size. The input vector precision is 16 bits, with bits <1, 15>, while the 

twiddle factor precision is 8 bits, also denoted as <1, 7> bits.  There are slight 

differences in the SNR of the two architectures due to the different input sequence 

vectors that are applied.   

 

 

Table ‎4.3: The Mean Square Error and the Signal to Noise Ratio for Serial 

Butterfly Architecture 

Parameters 

FFT SIZE 

128 256 512 1024 2048 

Mean Square 

Error 
0.0832 0.17 0.555 1.237 3.02 

Signal to Noise 

Ratio 
509.55 479.61 321.94 273.96 228.12 

Signal to Noise 

Ratio (dB) 
62.3353 61.7297 57.7437 56.1298 54.2987 
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4.9 Impact Effect of Twiddle Factor Precision on Signal to Noise Ratio 

 

This research focuses on fixed point design for FPGA implementation. The 

FFT based on the serial butterfly, and the FFT based on the serial pipelined butterfly, 

both have equal response to the signal to noise ratio test, as shown in Table ‎4.3 and 

Table ‎4.4 . 

This section describes how a test for one of those architectures was performed 

to evaluate the effect of twiddle factor precision on the accuracy of the FFT. The 

twiddle factor is generated as in Equations (‎4.30) and (‎4.31).  

 ))))__(max(/)12(__(int__ _ flrewabsflrewfixrew prcisionTwddl   (‎4.30) 

 

 ))))__(max(/)12(__(int__ _ flrewabsflimwfiximw prcisionTwddl   (‎4.31) 

 

 

Table ‎4.4: Mean Square Error and Signal to Noise Ratio for Serial Pipelined 

Butterfly FFT Architecture 

Parameters 

FFT SIZE 

128 256 512 1024 2048 

Mean Square 

Error 
0.0714 0.19 0.55 1.14 3.021 

Signal to Noise 

Ratio 
543.12 442.054 321.94 277.724 228.126 

Signal to Noise 

Ratio (dB) 
62.9733 60.9143 57.7437 56.2663 54.2813 
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The basic idea is to convert the floating point number to a Q format number. Q 

format numbers are fixed point numbers that are stored and operated upon as regular 

binary numbers (i.e. signed integers), where w_re_int and w_im_int are signed 

integers for the twiddle factor in Q format. To convert a number from floating point 

to Q format, it is multiplied by 2
n
 and rounded to the closest integer, where n is the 

number of the bits used to represent the floating point number in fixed point format; 

here this is denoted by Twddl_prcision.  

The natural binary representation of an n-bit word length is an unsigned 

integers from 0 to 2
n
-1. The range of the twiddle factor is from -1 to 1, hence a 

signed integer representation is required; two's complement is used to represent 

signed integers. In 2's complement representation, an n-bit word represents integers 

from −2
n−1 

to 2
n−1
−1. To find this, the floating point number is multiplied by power 

two of the twiddle factor precision subtracted from one. To improve the accuracy the 

value is divided by the maximum absolute value of the floating point numbers. 
 

To evaluate the effect of the word length of the twiddle factor on the accuracy of the 

FFT, several twiddle factor precisions were specified for the FFT, and the signal to 

noise ratio was calculated. 
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From Figure ‎4.15, two points are apparent. The first is that, as the FFT size increases, 

the signal to noise ratio decreases. The second is that, as the twiddle factor 

wordlength increases, the signal to noise ratio increases.   

The FFT was also tested with a QAM modulation scheme as shown in Figure ‎4.16, 

where the unit under test was a fixed point IFFT core specified in VHDL code with 

variable twiddle factor precision. The constellation diagrams for each level of 

precision are provided, and these correspond to the precisions considered in Figure 

‎4.15.    

 

 

Figure ‎4.15: Signal to Noise Ratio for Various Twiddle Factor Precisions (Serial 

Butterfly FFT) 
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Figure ‎4.17: QAM Constellation Diagram (6 bit Twiddle Factor) 

 

 

Figure ‎4.18: QAM Constellation Diagram (7 bit Twiddle Factor) 
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Figure ‎4.20:  QAM Constellation Diagram (8 bit Twiddle Factor) 

 

 

Figure ‎4.19: QAM Constellation Diagram (9 bit Twiddle Factor) 

 



105 
 

 

 

 

 

Figure ‎4.21: QAM Constellation Diagram (10 bit Twiddle Factor) 

 

 

Figure ‎4.22: QAM Constellation Diagram (11 bit Twiddle Factor) 
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Figure ‎4.24: QAM Constellation Diagram (13 bit Twiddle Factor) 

 

 

Figure ‎4.23: QAM Constellation Diagram (12 bit Twiddle Factor) 
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Figure ‎4.26: QAM Constellation Diagram (15 bit Twiddle Factor) 

 

 

Figure ‎4.25: QAM Constellation Diagram (14 bit Twiddle Factor) 
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In this test, a variable twiddle factor precision is used to explore the twiddle factor 

word length effect on the efficiency of the FFT. The received samples are 

represented by green diamonds, while the transmitted symbols are denoted by black 

star. The test uses floating point models for both the QAM transmitter and receiver 

and for the FFT. The test unit is the VHDL IFFT fixed point model as shown in 

Figure ‎4.16, which is the only possible error source in the test. In the case of using a 

fixed point VHDL model for both the FFT and IFFT, the error is doubled. The worst 

case for the IFFT calculation is when the twiddle factor precision is 6 bits <1, 5> as 

Figure ‎4.17. While the ideal case for the IFFT calculation is when the twiddle factor 

precision is 16 bits <1, 15> as shown in Figure ‎4.27, we can conclude from Figure 

‎4.15 and the constellation diagrams that as the twiddle factor word length decreases, 

the efficiency of the FFT decreases, and as the twiddle factor word length increase, 

the FFT efficiency increases as well. In the hardware design, this is related to cost, 

and hence an 8 bits twiddle factor is preferred as a trade-off for the FFT efficiency 

and complexity. 

 

Figure ‎4.27 : QAM Constellation Diagram (16 bit Twiddle Factor) 
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5 Fast Fourier Transform 

Implementation on FPGA Based on 

CORDIC  
 

 

5.1 Introduction 

 

In this Chapter, an FFT implementation based on the CORDIC algorithm is 

presented.  The CORDIC is used to perform complex multiplication with shift-add 

processes. The FFT architecture is modified to generate the phase angle in section 

‎5.4. This technique can offer resource area instead of using two large ROMs to store 

phase angles. In section ‎5.6, the FFT based on Butterfly and FFT based on CORDIC 

are compared based on the Xilinx 7.1 FFT core. The designs are upgraded to use two 

clocks to improve the throughput in order top to meet the requirement of 4
th

 

generation standards in section ‎5.7.   
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5.2 FFT Based on CORDIC  

 

Another approach, based on CORDIC, has been used to implement the 

FFT function and its inverse. In this approach, CORDIC is used to perform 

multiplication. The aim is to design an FFT without any explicit multiplier. The 

architecture developed is for the radix-2 decimation-in-frequency FFT.   

Sequential architecture has been used as shown Figure ‎5.1. It consists of two RAMs, a 

ROM, a CORDIC processor, an FSM, and an address generator unit. 

The architecture has been implemented using MATLAB scripts and VHDL code. 

The design has the interface shown previously in Figure ‎4.1.  

 

 

 

 

Figure ‎5.1: Sequential FFT Architecture Based on CORDIC 
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5.2.1 CORDIC ROM 

 

A single ROM is used to store the angles of twiddle factor rotation. Equation 

(‎5.1) is used to calculate the angles.  

 1210       
2

)( 







 ...,  NFFT,.........,, , n

NFFT

n
n


  (‎5.1) 

 

A MATLAB script was used to implement Equation (‎5.1), and the calculated 

values stored in Hexadecimal format in the ROM. The precision used was <1, 15>, 

i.e. one integer and fifteen fractional bits. The ROM size is log2(NFFT). For the 

IFFT, the angle is inverted. In this case, the same FFT architecture is used to perform 

the FFT and its inverse. 

 

5.2.2 CORDIC For Radix-2 

 

The CORDIC processor is used to perform multiplication. The CORDIC performs 

multiplications by rotating the input vector by discrete angles. A pipelined parallel 

architecture is used to create the CORDIC processor inside the FFT. The CORDIC is 

operated in rotation mode with eleven cells. A block diagram of the CORDIC 

architecture is shown in Figure ‎5.2 . The angles that CORDIC needs to rotate by are 

larger than 90
o
, so a mapping and de-mapping circuit is required. The X_re and X_im 

values are as given in Equations (‎4.11) and (‎4.12).  
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5.2.3 CORDIC Scaling Factor Implementation 

 

The output of the CORDIC processor is multiplied by a constant gain of 

0.6073 as given in Equation (‎2.38). A shifts and adds operation is used to implement 

this multiplication, and as a result the synthesised design has no multipliers.  

 

5.3 FFT Based CORDIC Test 

 

VHDL code was written for the FFT architecture shown in Figure ‎5.1, and the 

design was synthesised using the Xilinx ISE tool. The resources occupied by the 

design are summarised in Table ‎5.1. The design has been tested with 128, 256, 512, 

1024 and 2048 FFT sizes. The complex input vector precision is <1, 15>, i.e. one 

integer bit and fifteen fractional bits. The angles used by CORDIC are stored in a 

ROM with <1, 15> bits precision. The complex output of the FFT is permitted to 

grow to <12, 15> bits. The CORDIC-based FFT has no multipliers. The maximum 

clock frequency the design can attain is around 200 MHz, which is sufficient for 

many OFDM applications. 

Figure ‎5.2: CORDIC for FFT 
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  The MSE and SNR of the design were evaluated, and the relevant figures are 

given in Table ‎5.2. The error increases with the FFT size. 

 

The floating point model is tested to prove its accuracy as shown in Figure ‎5.3. 

The FFT Matlab built in function is considered as a golden model of the signal to 

Table ‎5.2: Mean Square Error and Signal to Noise Ratio for parallel CORDIC 

FFT 

Parameters 

FFT SIZE 

128 256 512 1024 2048 

Mean Square 

Error 
0.056 0.16 0.369 0.856 2.09 

Signal to Noise 

Ratio 
678.25 579.501 485.84 399.48 334.65 

Signal to Noise 

Ratio (dB) 
65.1952 63.6217 61.8588 59.9016 58.1309 

 

Table ‎5.1: Resources utilisation of fully parallel, pipelined CORDIC 
FFT Architecture on Virtex 5 X110T 

Parameters 

FFT SIZE 

128 256 512 1024 2048 

Flip Flops 1,122 1,165 1,208 1,251 1,294 

LUTs 1,453 1,515 1,570 1,628 1,697 

Slices 481 482 504 528 560 

DSP48Es - - - - - 

RAMB18 3 3 3 3 5 

Maximum frequency 

(MHz) 
216.076 228.206 181.324 204.082 199.720 

Latency  

(clock cycles) 
896 2048 4608 10240 22528 
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noise ratio that show the floating point model is working properly. The SNR figures 

obtained indicate that the floating point model is accurate. 

 

5.4 Upgraded FFT based CORDIC with Generated Angles 

 

In the CORDIC-based FFT design in Section ‎5.2.1, a look-up table is used to store 

the twiddle factor angles that are used to rotate the input vectors to implement 

multiplication.  This section describes a circuit which was designed to generate these 

angles, instead of storing them, as depicted in Figure ‎5.4 . The FFT twiddle factor 

angles follow Equation (‎5.1)  in Section ‎5.2.1, and are equivalent to a constant value 

equal to 2π/NFFT, multiplied by n, where NFFT represents the FFT size, and n is the 

index, i.e. an integer ranging from 0 up to NFFT-1. These values were stored in a 

ROM in the previous CORDIC-based FFT design.  

For a more efficient design that can offer a resource cost reduction, the angles may 

be calculated by generating the values of n using a controlled counter, and 

multiplying them by a constant. The controller circuit is responsible for constraining 

 

Figure ‎5.3: CORDIC Floating point Model Test Compared With MATLAB FFT 
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the counter values to be within the specific range required by each stage of the FFT. 

The resource utilisation of the CORDIC-based FFT with generated angles is 

summarised in Table ‎5.3. A shift and add technique is used to implement the 

multiplication, rather than using an explicit multiplier. The design saves one Block 

RAM compared to the CORDIC-based FFT with stored angles.   

 

 

 

 

 

Table ‎5.3 : Resource Utilisation of FFT based on CORDIC with 

Generated Angles on Virtex 5 

Parameters 

FFT SIZE 

128 256 512 1024 2048 

Flip Flops 1,232 1,288 1,353 1,386 1,436 

LUTs 1,593 1,679 1,759 1,796 1,867 

Slices 504 542 595 583 594 

DSP48Es - - - - - 

RAMB18 2 2 2 2 2 

Maximum 

frequency 

(MHz) 

209.468 211.506 208.377 209.952 223.714 

Latency  

(clock cycles) 
896 2048 4608 10240 22528 

 

Figure ‎5.4: FFT Twiddle Factor Angles Generation 
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The CORDIC-based FFT with generated and stored angles was tested using the 

circuit shown in Figure ‎5.5. Binary data was applied to a floating point QAM 

modulator to generate test symbols for the FFT designed in VHDL. This QAM 

constellation was taken as a reference of accuracy, as shown in the figures which 

follow.    
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Figure ‎5.5: FFT Based CORDIC Test with QAM 
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Figure ‎5.7 : Constellation Diagram of 256 Point FFT based on CORDIC 

 

Figure ‎5.6: Constellation Diagram of 128 Point FFT based on CORDIC 
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Figure ‎5.9: Constellation Diagram of 1024 Point FFT based on CORDIC 

 

 

Figure ‎5.8: Constellation Diagram of 512 Point FFT based on CORDIC 
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In this test, two FFT based CORDIC architectures are compared. The first one uses a 

look-up table to stores the twiddle factor angles required by CORDIC. Its received 

signal is represents by red squares. The second architecture calculates the twiddle 

factor based on Figure ‎5.4. Its received signal is represented by green squares. The 

black stars denote the values of the transmitted signal. The generated angles do not 

match the stored angles, and give different results in the test. The mismatch between 

the two techniques is due to the accuracy of the generated sequence of the counter in 

Figure ‎5.4.   The stored angle method is more accurate than the generated angles as 

shown in Figure ‎5.6, Figure ‎5.7, Figure ‎5.8, Figure ‎5.9 and Figure ‎5.10. As the FFT 

size increases, the error increases due to the increase in the number of stages. Whilst 

the test uses floating point models for QAM transmitter and receiver as well as for 

the IFFT, VHDL FFT test unit relies on a fixed point model and is therefore the only 

possible source of error. In the case of using a fixed point VHDL model for both the 

 

Figure ‎5.10: Constellation Diagram of 2048 Point FFT based on CORDIC 
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FFT and IFFT, the error doubles.  With a higher modulation index such as 64QAM,  

it has been observed that the error can increase further. 

 

 

5.5 The Effect of CORDIC Iterations on Signal to Noise Ratio 

 

The principles of CORDIC algorithms have been explained in Section ‎2.3.1. Each 

iteration in CORDIC represents a cell. As the number of the cells increases, the 

accuracy of the calculation increases.  In this section, the FFT based on CORDIC 

was tested to evaluate the relationship between the number of cells and the resulting 

SNR. The SNR is calculated as previously in (‎4.27),(‎4.28) and (‎4.29), between 

Matlab's floating point FFT function and VHDL code FFT but based on different 

numbers of cells. The range of the cells is selected in the range between six and 16. 

The SNR was seen to increase dramatically from around 60dB for six CORDIC cells, 

to around 150dB for eleven cells. Beyond that, at twelve cells and above, the effect 

of increasing the number of iterations was less significant, reaching a maximum of 

around 160dB. The reason for this phenomenon is that the angle cells are represented 

with 8 only bits, which makes the last five cells ineffective. Based on this 

observation, the number of cells was therefore limited to eleven. A graph of SNR 

against CORDIC iterations – which is equivalent to the number of cells -- is shown 

in Figure ‎5.11. 
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5.6 Comparison to Xilinx FFT Version 7.1 

 

 Xilinx LogiCORE offers Intellectual property (IP) cores that can be synthesised and 

implemented on Xilinx FPGAs. FFT v7.1 is an IP core for the Fast Fourier 

Transform and its inverse. It has different architectures, but the architecture 

corresponding to the FFT being researched is the Radix-2 burst I/O architecture. The 

latest version of the core is 7.1, and the results of synthesising this core are as shown 

in Table ‎5.4.  

These results have been generated for several different FFT sizes, with the complex 

input vector set to sixteen bit precision <1, 15>, while the twiddle factor precision is 

set to eight bits <1, 7>. The output order is selected as natural order, and the output 

precision is selected as growth with no scaling, and carries all significant integer bits 

to the end of the computation, which is as defined in Equation (‎4.3).   

 

Figure ‎5.11: Variation of SNR with Number of CORDIC Cells 
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The FFT 7.1 core is compared to the serial butterfly FFT, serial pipelined FFT and 

CORDIC FFT architectures. In terms of the number of flip flops used, the serial 

pipelined architecture is seen to be the cheapest, as shown in Figure ‎5.12, while the 

serial butterfly uses the next fewest, followed by the Xilinx FFT 7.1 core. The 

CORDIC-based FFT implements the CORDIC cells in a fully parallel, pipelined 

architecture, and therefore uses the most flip flops. Notably the serial pipelined and 

serial FFT architectures use around 50% of the flip flops required by the Xilinx FFT 

7.1 core, and as the FFT size increases, the flip flops required increase dramatically. 

The flip flop is one of the critical points in the design on Virtex 5 as its number is 

less than that offered by Virtex 4. The pipelined butterfly architecture maintains its 

advantages over other architectures, in terms of the number of look-up tables (LUTs) 

occupied, while the CORDIC FFT architecture requires the largest number of LUTs, 

as shown in Figure ‎5.13. The number of occupied slices for the serial pipelined 

butterfly and serial butterfly architectures are lower than for the Xilinx FFT 7.1 core, 

as shown in Figure ‎5.14.  

The CORDIC FFT architecture has an advantage over the other styles of FFT 

implementation, as it does not use any multipliers; whereas the serial pipelined and 

serial butterfly architectures both use two multipliers, and the FFT 7.1 core requires 

up to six multipliers, depending on the size of the FFT. The serial butterfly 

implementation uses the fewest of Block RAMs of all the architectures considered, 

while the FFT 7.1 core uses up to eight, again depending on the FFT size.  
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Figure ‎5.12: Number of Flip Flops for various FFT Architectures 

 

Table ‎5.4: Resource Utilisation of FFT 7.1 on Virtex 5 X110t 

Parameters 

FFT SIZE 

128 256 512 1024 2048 

Flip Flops 959 835 1,149 1,202 1,258 

LUTs 712 645 849 891 932 

Slices 347 319 403 427 490 

DSP48Es 3 4 6 6 6 

RAMB18 4 4 4 5 8 

Maximum 

frequency MHZ 
392.619 459.348 350.385 273.598 292.141 
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Figure ‎5.13: Number of Look-Up Tables for various FFT 

Architectures 

 

 

Figure ‎5.14: Number of Slices for various FFT Architectures  
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Figure ‎5.15:Number of DSP48Es various FFT Architectures  

 

 

Figure ‎5.16: Number of Block RAMs for various FFT Architectures  
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5.7 Upgrade with Two Clocks for OFDM Requirements 

 

The FFT is widely used to implement OFDM modulation and demodulation. Each 

wireless standard has defined OFDM parameters, as was discussed in Chapter 2. To 

allow both the FFT based on Butterfly, and the FFT based on CORDIC, to meet the 

requirements of the OFDM standard, the design was upgraded to use two clocks, one 

to read and write data from the interface (clk_main) and the other to perform the 

calculation inside the FFT (clk_cal), as shown in Figure ‎5.17. The interface clock, 

clk_main, is set to the sampling or chip rate, according to the OFDM parameters 

of the wireless standard, while clk_cal is set to the maximum frequency the clock 

can achieve.  

According to the operational steps of the FFT, there are five states, as mentioned in 

‎4.5. The first state, S0, is assigned to read and write data from the interface. S0 is 

responsible for generating the position of the input and output data, in_index and 

out_index. When this state is set to work with clk_main, the input and output can 

match the sampling rate of the wireless standards. On the other hand, all of the 

calculation processing undertaken inside the FFT (as controlled by states S1, S2, S3 

and S4) uses the faster clk_cal to decrease the latency of the calculation.   
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Figure ‎5.17: FFT for OFDM 
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The latency improvement achievable for a sequential architecture through the use of 

two clocks can be illustrated as in Figure ‎5.18. In this example, the OFDM symbol of 

IEEE 802.20 is considered. The chip rate for a 2048-point FFT is 20MHz. In case A, 

the FFTs based on CORDIC, serial butterfly and serial pipelined, all operate at the 

sampling rate. To calculate the output frame 22528 clock cycles are needed, and this 

is equivalent to 1.1ms for completing the calculation. In case B, the FFTs operate 

with two clocks: the first, which is responsible for reading from and writing to the 

interface, is operated at 20MHz, while the second, which is responsible for 

calculation inside the FFTs, is operated at 180MHz. In this case the output frame can 

be calculated in 125.1s.  
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Figure ‎5.18: Latency Improvement for FFT 
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The achievable OFDM symbol rate decreases as the FFT size, NFFT, increases. To 

evaluate which FFT architectures can meet the requirements of 4G wireless 

standards, Equation (‎5.2) is used to calculate the maximum OFDM Symbol rate that 

the FFT can process. 

    

 
CyclesClockTotal

NFFTcalclk
RateSampling

__

_
_


  (‎5.2) 

 

In Equation (‎5.2), clk_cal is the maximum clock frequency that can be used; it 

should not exceed the maximum frequency stated in Table ‎4.1, Table ‎4.2, or Table 

‎5.1, depending on the architecture being evaluated. Also, Total_Clock_Cycles is 

equal to the latency, and NFFT  is the FFT size. The three FFT architectures (FFT 

based on serial butterfly, FFT based on serial pipelined butterfly, and FFT based on 

CORDIC), are considered to determine whether each can meet the requirements of 

the 4G wireless standards IEEE 802.20, IEEE 802.16e, 3GPP2_UMB and LTE, as 

shown below. 

Setting clk_cal to the maximum frequency will show the maximum OFDM symbol 

rates that can be processed. 
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Table ‎5.6: Performance of FFT based on Serial Pipelined Butterfly, with 

respect to 4G Wireless Standards 

NFFT 
Clk_cal 

(MHz) 

Sampling 

Rate 

(MHz) 

IEEE802.20 UMB 
IEEE 

802_16e 
LTE 

128 233 33 Yes Yes Yes Yes 

256 221 27 Yes Yes Yes Yes 

512 179 19 Yes Yes Yes Yes 

1024 217 21 Yes Yes Yes Yes 

2048 192 17 No No No No 

 

Table ‎5.5: Performance of FFT based on Serial Butterfly Architecture, with 
respect to 4G Wireless Standards 

NFFT 
Clk_cal 

(MHz) 

Sampling 

Rate 

(MHz) 

IEEE802.20 UMB 
IEEE 

802_16e 
LTE 

128 196 28 Yes Yes Yes Yes 

256 191 23 Yes Yes Yes Yes 

512 186 20 Yes Yes Yes Yes 

1024 142 14 Yes Yes Yes yes 

2048 144 13 No No No No 
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Table ‎5.8: Performance of FFT based on CORDIC with Generated Angles, 

with respect to 4G Wireless Standards 

NFFT 
Clk_cal 

(MHz) 

Sampling 

Rate 

(MHz) 

IEEE802.20 UMB 
IEEE 

802_16e 
LTE 

128 209 29 Yes Yes Yes Yes 

256 211 26 Yes Yes Yes Yes 

512 208 23 Yes Yes Yes Yes 

1024 209 20 Yes Yes Yes Yes 

2048 223 20 Yes Yes Yes NO 

 

Table ‎5.7: Performance of FFT based on CORDIC, with respect to 4G 
Wireless Standards 

NFFT 
Clk_cal 

(MHz) 

Sampling 

Rate 

(MHz) 

IEEE802.20 UMB 
IEEE 

802_16e 
LTE 

128 216 30 Yes Yes Yes Yes 

256 228 28 Yes Yes Yes Yes 

512 181 20 Yes Yes Yes Yes 

1024 204 20 Yes Yes Yes Yes 

2048 198 18 No No No No 
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Figure ‎5.19: Comparison of Maximum Sampling Rates Supported by Considered 

FFT Architectures 

 

Table ‎5.9: Performance of Xilinx FFT 7.1 Core with respect to 4G Wireless 
Standards 

NFFT 
Clk_cal 

(MHz) 

Sampling 

Rate 

(MHz) 

IEEE802.20 UMB 
IEEE 

802_16e 
LTE 

128 392 112 Yes Yes Yes Yes 

256 459 114 Yes Yes Yes Yes 

512 350 77 Yes Yes Yes Yes 

1024 273 54 Yes Yes Yes Yes 

2048 292 53 Yes Yes Yes Yes 
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6 Orthogonal Frequency Division 

Multiplexing Transmitter on FPGA 

Using Xilinx System Generator 
 

6.1 Introduction 

 

OFDM modulation is part of the physical layer of most recent wireless networks. 

This chapter considers the design of an OFDM transmitter. The OFDM scheme can 

support different mapping schemes, including QPSK, 8PSK, 16QAM and 64QAM. 

In section ‎6.2 the different modulation schemes are introduced. In section ‎6.3, the 

design features a dynamic IFFT that can dynamically change its size from 128 point 

up to 2048 point. The design can achieve variable lengths of cyclic prefix, as defined 

in the standards considered.    This corresponds to the requirements of IEEE 802.20 
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and 3GPP_UMB wireless networks, and also covers most other standards. Figure ‎6.1 

shows the block diagram of the OFDM transmitter.  

 

 

Therefore in summary, this design has three variable aspects: the first is in the 

modulation scheme, the second is in the IFFT size, and the third is the cyclic prefix 

length.  

System Generator and ISE (Integrated Software Environment) tools from Xilinx 

were used in the design, implementation and synthesis of the OFDM system. The 

design was targeted at a Xilinx Virtex 5 device, and all of the variable features were 

tested. The resources utilisation for each part of the design is given.  

A floating point model was created in the form of MATLAB scripts for 

debugging and validation purposes.  The mean square error was calculated. 

 

6.2 Mapping Schemes 

 

The QPSK, 8PSK, 16QAM, 64 QAM modulation schemes were implemented on the 

FPGA, with each modulator consisting of a serial to parallel converter, and pairs of 

ROMs. The number of bits involved in the serial to parallel conversion is 

set according to the modulation type: 2 bits for QPSK, 3 bits for 8PSK, 4 bits for 

16QAM, and 6 bits for 64QAM. A pair of ROMs is assigned to each modulation 

scheme: one to store the in-phase values, and the other to store the quadrature values. 

Two multiplexers are assigned to choose between modulation schemes, to manage 

Figure ‎6.1: Block Diagram of OFDM Transmitter 
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which task a control signal with two bits is used. A block diagram of the variable 

modulation scheme is shown in Figure ‎6.2. 

The resource utilisation of the modulator is shown in Table ‎6.1. The design has 

sixteen bit precision < 1, 15 >, i.e. one integer bit and fifteen fractional bits. The 

report shows that the area occupied by the circuit is small and that it can achieve very 

high speed.  

The MSE is calculated as shown in Table ‎6.2. For QPSK, 8PSK and 16QAM the 

MSE is acceptable but for 64QAM is significantly increased due to the fixed point 

limitation <1, 15> which restricts amplitude values to the interval (-1, 0.9999). With 

64QAM having values > 1, this inevitably leads to an increase in MSE.  

For validation purposes, the signal constellations produced by the fixed point design 

for each modulation scheme are given. Figure ‎6.3 shows the constellation diagram 

for QPSK modulation, Figure ‎6.4 shows the 8PSK constellation diagram; Figure ‎6.5 

the fixed 16QAM constellation diagram; and finally Figure ‎6.6, the 64QAM 

constellation diagram. 
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Figure ‎6.2: Variable Modulation Schemes Block Diagram 
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Table ‎6.1: Resource Utilisation and Performance of Modulator 

Parameters Used on Virtex 5 

Number of Slice Registers 147 

Number of Slice LUTs 89 

Number of occupied Slices 79 

Maximum frequency 484.262 MHz 

 

 

 

Figure ‎6.3: Fixed Point QPSK Constellation Diagram 

 



137 
 

 

 

 

 

Figure ‎6.4: Fixed Point 8PSK Constellation Diagram 

 

 

Figure ‎6.5: Fixed Point 16QAM Constellation Diagram 
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6.3 Reconfigurable OFDM Transmitter 

 

The new generation of standards require variable length Inverse Fast Fourier 

Transforms, and the addition of variable length cyclic prefixes. The output produced 

by the modulator is presented to the variable length IFFT.  

 

Figure ‎6.6: Fixed Point 64QAM Constellation Diagram 

 

Table ‎6.2 : Mean Squared Error for Supported Modulation Schemes 

Modulation Schemes Mean Square Error 

QPSK 5.95783329002397e-11 

8PSK 1.05208187103746e-10 

16QAM 6.26153516768136e-11 

64QAM 0.00148347991492249 
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For this purpose, the Xilinx FFT core, version 7.1 is used, offering variable FFT size 

and variable cyclic prefix length. Figure ‎6.7 gives the block diagram of the 

reconfigurable OFDM transmitter. The IFFT has a dynamic range from 128 up to 

2048 points, and this is set using the unsigned vector IFFT_size, with length 

log2(NFFT). Table ‎6.3 gives the values for setting the IFFT size. The addition of the 

cyclic prefix is set using the unsigned vector Cyclic_Prefix_size, also with length 

log2(NFFT).  

The inverse FFT was synthesized with variable length ranging up to 2048, and with 

the input complex precision specified as sixteen bits, in the form <1, 15>.  The 

resource utilisation of the design is summarised in Table ‎6.4. Matlab floating point 

flow graph of the OFDM transmitter is shown in Figure ‎6.8. 

 

 

 

Figure ‎6.7: Block Diagram of variable IFFT 
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Table ‎6.4: Resource Utilisation of Configurable IFFT 

Parameters Used 

Number of Slice Registers 1,349 

Number of Slice LUTs 1,117 

Number of occupied Slices 529 

Number of BlockRAM/FIFO 8 

Number of DSP48Es 6 

Maximum frequency 372.024 MHz 

 

Table ‎6.5: Mean Squared Error of Reconfigurable OFDM Transmitter 

IFFT 

Mean Square Error 

QPSK 8PSK 16 QAM 64 QAM 

128 7.902e-08 7.269e-08 7.136e-08 1.142e-05 

256 5.067e-08 5.580e-08 4.604e-08 6.287e-06 

512 2.985e-08 2.926e-08 2.968e-08 2.914e-06 

1024 1.72e-08 1.744e-08 1.862e-08 1.425e-06 

2048 1.03e-08 9.507e-09 1.027e-08 7.00e-07 

 

Table ‎6.3: IFFT_size Selection Table 

IFFT_size setting IFFT 

11 2048 

10 1024 

9 512 

8 256 

7 128 
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Figure ‎6.8: Matlab Script Transmitter Flow Chart 
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7 Conclusion and Discussion 
 

7.1 Introduction 

 

This research has been applied to the study, design and analysis of efficient 

sequential Fast Fourier Transform Architectures aimed at implementation on high 

speed FPGA devices.  Many 3G and most 4G wireless networks now use the FFT as 

part of the physical layer of modulation and multiplexing.  This research has focused 

on how to meet the requirements of the 4G FFT implementation for OFDM 

algorithms based on using FPGA hardware devices that will use minimum resource 

area but have a speed capability that they can implement all FFT lengths required in 

the various 4G implementations.  A key effort in this research has been to find the 

best way of optimizing and/or minimising the resources area required on the FPGA, 

but maintaining performance.   Noting that many designers using FPGAs for 4G will 

likely choose to use off-the-shelf FFT and IFFT components from FPGA vendors the 

thesis has aimed to show this may not always be best suited and clear note must be 
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taken of the actual 4G PHY layer standard, wordlength and resolution required, and 

also the actual resources available, i.e. is there memory blocks, or multipliers, etc 

available.   

The research work has designed architectures working with fixed point and 

comparing against golden reference implementations which were specifically written 

in floating point models for the various design validation and verification.  

In the course of the research two specific architectures have been used to calculate 

the FFTs.  One depends on an efficient serialised butterfly using two multipliers and 

the second is based on CORDIC to perform the multiplies and various trigonometric 

calculations.  A comparison between these architectures and the recent version of 

Xilinx FFT 7.1 core was been performed to highlight the advantages and 

disadvantages of the design and provide researchers with ideas as to which points can 

be modified.   

The OFDM transmitter   designed was based on the Xilinx System Generator 

software tool, and aimed to be reconfigurable with variable FFT size, cyclic prefix 

and modulation schemes and as such be full adaptable to any OFDM aspect of 

modern 4G PHY layer wireless standards.  

 

7.2 Summary Contributions of the Research 

 

The trade-off among the resources area, speed and accuracy of FPGA design is one 

of the important topics that have been studied in this research.  To obtain better 

results, three architectures for FFTs have been introduced and researched. One used 

serial butterfly (section ‎4.3.1), the second used serial pipelined butterfly (section 

‎4.3.2), while the third used CORDIC (Section ‎5.2). At the same time, an OFDM 

transmitter with reconfigurable property has been designed (Chapter ‎6).   A summary 

of main contributions made by this research and design work are given below. 
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7.2.1 FFT Based Serial Butterfly 

 

The best way to achieve minimum resource area in the FPGA design is to implement 

the required design serially – assuming the required processing speeds can be 

attained.  Therefore to gain full advantage of the serial implementation, the butterfly 

and the entire architecture of the FFT have been implemented serially.  Given that 

the design will slow down in the calculation speed but use less resource area, it is 

important for optimization purposes to think of the architecture serially.   In the serial 

butterfly situation, not only is the butterfly implemented serially but the design uses 

only a pair of RAMs and ROMs.   In the eight bits twiddle factor case study, the FFT 

based on serial butterfly utilized flip flops between 450 for 128 points FFT up to 625 

flip flops in 2048 points FFT, as was shown in Table ‎4.1.   The number by which the 

flip flops increase is only 175, which is very efficient compared to the off the shelf 

option from Xilinx, where the number of flip flops for 128 points is 959, and for 

2048 points 1258 (Table ‎5.4), i.e., an increase of 299.   In the serial butterfly, the 

look-up tables start from 652 for 128 points and rise to 992 for 2048 points, an 

increase of 340.   In the Xilinx case the LUTs start at 712 for 128 points and end with 

932 for 2048 points, i.e. a cost increase increments are 220.   Here Xilinx maintained 

the increments better than serial butterfly, but this occurred because the serial 

butterfly used minimum block RAMs compared to all the other architectures in this 

research.   Where Xilinx goes up from four in 128 points to eight in 2048 points, the 

serial butterfly keeps two for different FFT sizes.  In the DSP48Es multipliers 

numbers, the serial butterfly shared two multipliers to calculate the FFT efficiently in 

terms of resource area.   So it uses only two throughout the varying sizes of the FFT. 

In the Xilinx case, the multipliers start with 3 in 128 points and grow to six in 2048 

points.   In Slices terms, the serial butterfly starts with 276 for 128 points and ends 

with 444 for 2048, giving an increment of around 177 slices. In the Xilinx case, it 

starts with 347 for 128 points and goes up to 490 for 2048. This gives an increment 

of 143. It seems to maintain the number of slices, but is bigger in values. 

In respect of speed, Xilinx has the best design as it is optimized for Virtex 5 boards 

where it starts from 392 MHz for 128 points, while serial butterfly is at about 197 
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MHz.  It could be half; this is because of the serial nature of the design and because 

Xilinx is optimized for Xilinx boards.  As the FFT size increases the speed goes 

down: for 2048 point Xilinx gives 292 MHz, while the serial butterfly gives 144 

MHz. For latency, Xilinx is twice as good since it needs half the number of clocks to 

complete the calculations, taking 448 clock cycles for 128 points and going up to 

11264 for 2048 points.  In the serial FFT butterfly it is double these values. 

In the serial butterfly architecture, the main advantage is that it minimizes the 

resources.   The numbers of Flip Flops, Look-up Tables, Slices and Block RAMs are 

much lower than for the Xilinx Core generator solution. It uses only two multipliers 

to implement the Radix-2 butterfly. For the wireless 4G application case study, in 

section ‎5.7, Table ‎5.5 shows the maximum OFDM sampling rate that the serial FFT 

can perform, the networks and FFT size that can be used.   The requirements of the 

standards for OFDM symbols are mentioned in chapter ‎1, Table ‎1.1, Table ‎1.2 and 

Table ‎1.3.  The sampling rate is the speed that the FFT design is required to meet.   

For the serial butterfly the maximum speed at which the sampling OFDM symbol 

can be processed is given in Table ‎5.5.  For IEEE802.20, UMB and IEEE 802.16e 

standards, the serial butterfly can meet the OFDM requirements up to 1024 FFT 

points.   For LTE this is possible for up to 512 points.  

 

7.2.2  FFT Based Serial Pipelined Butterfly 

 

In the previous section, serial butterfly architecture has been discussed.   One of the 

important parameters that the FFT for OFDM needs to meet is the sampling rate. 

This parameter depends on the speed that can be achieved by the design.   The serial 

pipelined butterfly is designed to improve the speed of the design and keep the cost 

as low as possible.  The key development achieved here is in the butterfly engine.   In 

serial pipelined butterfly for eight bits twiddle factor precision, the speed of the 

design is 233 MHz for 128 point, compared to 192 MHz in serial butterfly: an 

improvement of around 41 MHz.  For 256 points it is 30 MHz, for 512 points 

11MHz, and for 1024 points 70 MHz.  At this size, the improvement towards 
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meeting the requirements of all 4G wireless networks with FFT goes up to 1024, as 

shown in Table ‎5.6, where the LTE standard requirement is met at 1024 FFT points. 

In the resource area analysis, the main difference between the serial pipelined 

butterfly architecture and serial butterfly architecture is the number of slices and 

block RAMs occupied by the designs.   Here, the number of slices starts with 260 for 

128 points for serial pipelined butterfly and goes up to 348 for 2048 points; while in 

serial butterfly, it starts from 276 at 128 points and goes up to 444 at 2048.   But the 

main difference appears in the number of block RAMs used to achieve the 

architectures, with the serial using only two compared with four in the serial 

pipelined case. 

With respect to the Xilinx study case, the flip flop numbers used by serial pipelined 

butterfly reach 646 at 2048, while in Xilinx they rise to 1258 at 2048, which is about 

double. For the look-up tables the range starts from 616 for 128 points and ends with 

826 at 2048 points, while in Xilinx it ranges from 712 up to 932.   The difference is 

around one hundred LUTs in each case.  The number of slices occupied by serial 

pipelined butterfly is from 260 up to 348 while in Xilinx it starts from 347 and goes 

up to 490.   In Xilinx the loss level (347) at 128 equals the serial pipelined higher 

level (348).  For DSP48Es, the serial pipelined butterfly is designed to use only two 

multipliers, and this covers the whole range of FFTs under research, while in Xilinx 

it starts from three and goes up to six. The block RAM numbers give it another 

advantage over Xilinx, since it consistently utilizes four while Xilinx ranges from 

four to eight. For the maximum frequency that can be achieved on the FPGA board, 

The Xilinx design though does have advantages over the serial pipelined butterfly, 

the clocking range for Xilinx being 392, 495, 350, 273, 292 MHz, (for FFT orders of 

11, 10, 9, 8, 7 respectively) while for serial pipelined it is 233, 221, 179, 217, 192 

MHz.  The latency of the design in Xilinx is better as well, since it needs half the 

number of clocks required by serial pipelined butterfly.  

In the serial pipelined butterfly architecture, the main advances are that it increases 

the speed of operations and keeps the resource area small compared to serial 

butterfly.   It uses only two multipliers and pipelines the input and output and each 
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operation inside the butterfly very well. It uses only two multipliers to implement the 

Radix-2 butterfly. It can operate in OFDM with sampling rate up to 33 M 

sample/second and meets the requirements of all 4G wireless networks with FFT 

lengths up to 1024.  

 

7.2.3 FFT Based Full Parallel CORDIC 

 

This part of the research was focused on FFT sequential architecture. To discover 

more about this architecture and its ability to meet the requirements of 4G wireless 

standards, the engine that performs the calculation has been changed with CORDIC 

used instead of butterfly.   The changed requirements have been studied, analyzed 

and compared with FFT based on butterfly.   The twiddle factor values in FFT based 

butterfly that were stored in a couple of ROMs (section ‎4.2.4) have changed to 

twiddle factor angles as in section ‎5.2.1.   This has not extended the resource area on 

FPGA for the small FFT size, but the twiddle factor values are between (-1, 0.999) 

while the twiddle factor angles are between 0 and 360 degrees.  This leads to more 

bits required to represent the values on the twiddle factor angles, from eight for 

twiddle factor values to sixteen on twiddle factor angles.   Result as the angles are 

real while the values of twiddle factor are complex.  The block RAMs used in the 

design are shown in Figure ‎5.16.  At large numbers FFT 2048, the block RAMs 

number in the CORDIC case goes up to five as a reflection of previous effects.   The 

CORDIC engine is implemented fully parallel, and uses eleven pipelined cells (to 

obtain enough iterative resolution) based on Figure ‎5.11.  It was noted that increasing 

the number of cells beyond 11 did not improve the signal to noise ratio. The 

CORDIC required Mapper, Demapper pulse CORDIC cells.  The resource area 

analysis shows that CORDIC needs more flip flops compared with the other design 

(Figure ‎5.12) and reach 1200 flip flops in 2048 point FFT. The number of look-up 

tables and slices are high as was shown in Figure ‎5.13 and Figure ‎5.14.   However the 

very clear advantage of CORDIC FFT is that it needs no multipliers; since the 

CORDIC implements the multiplication by add shift process (Figure ‎5.15).  The 

design can operate on 30 M sample/second and meet 4G wireless networks up to 
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1024 FFT points as in Table ‎5.7.   Another point to note is that it gives a better signal 

to noise ratio compared to the above architectures given the architecture chosen does 

in fact operate with higher wordlength.   

 

7.2.4 FFT Based CORDIC Calculated Angles 

 

On this architecture one key advantage and useful attributes were demonstrated.  It 

uses just one block ROM compared with the storage angles required by the FFT 

CORDIC design.  The design also uses no multipliers (Figure ‎5.15).  In overall cost 

the design   uses more Flip flops, Look up tables and Slices that the other 

architectures, however a specific advantage is it can be use for variable size FFT 

more easily that other architectures.  

 

7.2.5 Reconfigurable OFDM Transmitter 

 

This OFDM transmitter architecture has the ability to control three important 

parameters in the OFDM system. The transmitter can change the modulation 

schemes to QPSK, 8PSK, QAM and 64 QAM. The values of constellation signals are 

stored in distributed RAMs instead of block RAMs, as their size is not large, making 

the former more efficient to use (Table ‎6.1).   A couple of multiplexers are used to 

collect the real and imaginary values of the symbol generated by the modulators.  

The second and third levels of reconfigurable parameters are offered by Xilinx FFT 

7.1.  The FFT size and cyclic prefix can be set directly in the IP core. The mean 

square error test for the design compared with floating point for the OFDM 

transmitter demonstrated good performance, as in Table ‎6.2 and Table ‎6.5.  
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7.2.6 Floating Points Models Verification and Validation 

 

Verification and Validation (V&V) form an essential step in the progress of 

successful research.  Verification and validation were performed at all stages to 

prove that the sequential FFT models are programmed correctly.   The procedure can 

be used to estimate many parameters in the design and in debugging the VHDL 

codes.   The signal to noise ratio parameter is used to prove the accuracy of the FFT 

based on butterfly and CORDIC architectures.  Figure ‎4.13  shows the FFT based 

butterfly signal to noise ratio test comparing the double precision floating point FFT 

with the FFT of Matlab built in function.  The figure shows that the model is 

programmed correctly and has a high signal to noise ratio, around 715 dB on 128 

point, decreasing to 700 dB as the FFT size goes up to 2048.  The second aim of the 

V&V floating point model is to ensure that the VHDL model has been implemented 

properly.  For this purpose a bit-accurate model is driven that converts the floating 

point values to two complement (signed integer values) for use in V&V.  

In the sequential FFT based on CORDIC, the floating point model is used. The 

algorithm is programmed correctly as shown in Figure ‎5.3.  The signal to noise ratio 

test shows 163 dB at 128 FFT point and 154 dB at 2048.  This model is used to 

verify and validate the VHDL code that has been written correctly.  To obtain a 

match with the signed integers shown in Modelsim or Isim software packages from 

Xilinx, the floating point model values are changed to tow’s‎complement.  

The verification process of the FFT models ensures that mistakes have not been 

made in implementing them by using the VHDL codes.  Generating random values, 

creating VHDL test benches, and simulating the test benches including FFT models 

have been achieved successfully.  The VHDL test bench is used to the random values 

generated by floating point models and fed into the FFT VHDL entity (unit under 

test); it then collects the FFTs output as in section ‎4.8 and section ‎5.3. 
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7.3 Conclusion  

 In the signal processing field, many algorithms play a substantial role in the 

development of wireless communication.  Among these algorithms, this thesis has 

focused on the Fast Fourier Transform.  The FFTs have been used as an efficient 

means of implementing multicarrier modulation and demodulation for 4G wireless 

networks.   The OFDM is a multicarrier modulation used as part of the physical 

layers to obtain air interface between the base station and the access terminal.   

Many design tools have been used to implement the signal processing algorithms and 

the FFTs. The programmable DSPs processors, ASIC and the FPGAs are the most 

common tools in this field. The FPGA makes it possible to combine the advantages 

of the DSP processor and ASIC. This project aims at efficient design of sequential 

FFTs based on FPGA for 4G wireless networks 

There are many architectures for FFTs that can be implemented on FPGAs with 

differing features and requirements. Two things are important and need to be kept in 

balance: cost and efficiency. This research aimed to give meaningfull and real time 

implementable results with minimum cost. The most common FFT architectures are 

the sequential and pipelined. This research has used the sequential architecture to 

achieve minimum cost and meet the requirements of the 4G wireless networks on 

FPGA boards (section ‎5.7).   For the sequential architecture, Radix-2 FFT 

decimation-in-frequency has been chosen for its simplicity of implementation on the 

FPGA.   To obtain better compression and result, the FFT has been implemented 

based on butterfly and CORDIC.  

This thesis focuses on the use of FPGAs in two applications.  One is for FFT 

algorithms, which absorb the most interest.  The second is for the OFDM system 

design using System Generator.  Many parameters have been taken into 

consideration while working on the FPGA. Achieving high speed and minimizing the 

resource area were the most important. For speed, three factors are taken into 

account: throughput, latency and the critical path. The approach of adding pipeline 

registers has been used to reduce the critical path. This approach is powerful for 

increasing the design speed.   
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The two clocks technique has been used to reduce the latency and increase the 

throughput. The resource area is reduced by using pipelined sequential architecture.  
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