
 University of Strathclyde

Department of Electronic & Electrical Engineering

On The Realisation of Sequential Fast Fourier

Transform for Orthogonal Frequency Division

Multiplexing Based on Field Programmable Gate

Array

By

Yousif Awad

A thesis presented in partial fulfilment of the

requirements for the degree of Doctor of

Philosophy

2012

i

Abstract

In the last 25 years Digital Signal Processing (DSP) has become one of the key

components in the development of mobile and wireless technologies. One of the

core DSP algorithms widely used in many applications is the Fourier Transform, in

both the standard Discrete Fourier Transform (DFT) and the Fast Fourier Transform

(FFT) implementation. The DFT and FFT are widely used for many applications

such as spectral analysis, but in modern mobile and wireless communications

standards, their particular significance is in the context of the signalling strategy of

Orthogonal Frequency Division Multiplexing (OFDM), where the FFT and Inverse

FFT (IFFT) are deployed at the transmit and receive sides of both uplink and

downlink.

Over the last few years the physical layer of many 4
th

 generation wireless standards,

such as IEEE 802.20, IEEE 802.16, and 3GPP2, Ultra Mobile Broadband (UMB), as

well as 3G Long Term Evaluation (LTE), all rely heavily on using OFDM

multicarrier modulation. OFDM is now favoured in many physical layers for mobile

and wireless radio systems, given that it has good properties for mitigating multipath

propagation and operating in fading channels.

In the implementation of OFDM, FFTs and IFFTs are required at various lengths,

word lengths, speeds of operation, and on a variety of platforms such as DSP

processors, Application Specific Integrated Circuits (ASICs) and – in basestations,

mostly likely – on Field Programmable Gate Arrays (FPGAs). Therefore in this

thesis we have focused on methods of efficient implementation of the FFT and IFFT

on FPGAs, taking very clear note of issues such as resource costs, speeds, word

length, and programmability.

In this thesis, two FFT architectures have been introduced, the first based on the

classic butterfly computation and the use of look-up tables to store FFT

trigonometric constants, and the second based on using a COordinate Rotation

Digital Computer (CORDIC) method to generate the trigonometric constant values.

In this work, the FFT Radix-2 Decimation in Frequency (DIF) algorithm has been

chosen and efficiently implemented on a Xilinx FPGA in a programmable form to

suit a variety of PHY layer standards requirements. The design implements a

ii

pipelined sequential architecture to reduce the resource area and maintain high

throughput. A key contribution is the introduction of an optimized butterfly

processor that uses only two multipliers for the twiddle factor multiply, rather than

the more conventional four as found in the designs available from FPGA vendors and

IP repositories. The direct implementation of the butterfly requires four multipliers

(to perform a complex data multiplication) and four corresponding block RAMs to

store the input and output data. The proposed architecture utilises the 2 multipliers

technique to reduce the resource cost, albeit it a cost of maximum throughput. For

the CORDIC based design, no hardware multipliers are required since the CORDIC

can directly implement the twiddle factor multiply. For both architectures to

increase the speed of the FFT sequential architecture, a dual clock method has been

used. To verify and generate demonstrable designs, the architectures have been

simulated, synthesized and implemented on a Virtex 5/Xilinx FPGA.

iii

Acknowledgment

This thesis would not have been possible without the support of many people. I wish

to express my gratitude to my supervisor, Prof. Robert W. Stewart who was

abundantly helpful and offered invaluable assistance, support and guidance. My

thanks also go to Dr. Stephan Weiss for many helpful suggestions on the thesis. My

deepest gratitude to Ousman Sadiq and Dr. Louise Crockett whose knowledge and

assistance made this study successful and a special thanks also to all of the DSP

Enabled Communication Group and University of Strathclyde.

 I would like to thank my parents for supporting and encouraging me to pursue this

degree.

I would also like to convey thanks to the Ministry of Higher Education and Scientific

Research/Iraq and Iraqi Embassy Cultural Attaché/London for providing financial

support.

iv

Table of Contents

1 INTRODUCTION AND OVERVIEW .. 1

1.1 Introduction ... 1

1.2 Mobile and Wireless Networks Overview .. 3

1.2.1 Open System Interconnection (OSI) ... 6

1.2.2 IEEE 802.20 and 3GPP2_UMB Standards Overview 7

1.2.3 Mobile Broadband with IEEE802.16e (Mobile WiMax) 9

1.2.4 Long Term Evolution (LTE) ... 10

1.3 Principles of Multicarrier Techniques ... 12

1.3.1 Basic OFDM System ... 12

1.3.2 OFDM Advantages and Disadvantages... 16

1.3.3 OFDM Transceiver .. 17

1.4 Field Programmable Gate Array Technology ... 19

1.5 Thesis Objectives and Contributions .. 22

1.6 Thesis Outline ... 23

2 FAST FOURIER TRANSFORM (FFT) AND COORDINATE ROTATION

DIGITAL COMPUTER (CORDIC) ALGORITHMS ... 24

2.1 Introduction ... 24

2.2 Fast Fourier Transform ... 25

2.2.1 FFT Decimations ... 27

2.2.2 FFT Radices... 34

2.2.3 FFT Architectures .. 36

2.3 Coordinate Rotational Digital Computer (CORDIC) 39

2.3.1 CORDIC Algorithm .. 41

2.3.2 CORDIC Errors ... 44

2.3.3 CORDIC Based FFT ... 45

2.4 The Fundamental DSP System - Definitions .. 47

v

2.5 FPGA Design Steps... 49

2.5.1 Virtex 5 Technology .. 51

2.6 Summary ... 53

3 FPGA IMPLEMENTATIONS OF HIGH SPEED FFTS 54

3.1 FFT Optimised For Area ... 54

3.2 FFT Optimised For Speed ... 61

3.3 OFDM System .. 64

3.4 Summary ... 70

4 FAST FOURIER TRANSFORM IMPLEMENTATION ON FPGA BASED ON

BUTTERFLY ... 71

4.1 Introduction ... 71

4.2 FFT Butterfly Processor Implementation.. 72

4.2.1 FFT Entity ... 72

4.2.2 FFT Based Butterfly Architecture ... 74

4.2.3 FFT RAMs... 76

4.2.4 FFT ROMs... 78

4.3 Butterfly Radix-2 .. 79

4.3.1 Radix-2 Butterfly Serial Implementation .. 82

4.3.2 Radix-2 Butterfly Serial Pipelined Implementation 84

4.4 FFT Logic Control Unit .. 87

4.5 Finite State Machine ... 88

4.6 Address Generation Unit ... 90

4.7 FFT Based Butterfly MATLAB Scripts .. 93

4.8 FFT Based Butterfly Test .. 97

4.9 Impact Effect of Twiddle Factor Precision on Signal to Noise Ratio 100

5 FAST FOURIER TRANSFORM IMPLEMENTATION ON FPGA BASED ON

CORDIC ... 109

vi

5.1 Introduction ... 109

5.2 FFT Based on CORDIC .. 110

5.2.1 CORDIC ROM .. 111

5.2.2 CORDIC For Radix-2.. 111

5.2.3 CORDIC Scaling Factor Implementation ... 112

5.3 FFT Based CORDIC Test ... 112

5.4 Upgraded FFT based CORDIC with Generated Angles 114

5.5 The Effect of CORDIC Iterations on Signal to Noise Ratio 120

5.6 Comparison to Xilinx FFT Version 7.1 .. 121

5.7 Upgrade with Two Clocks for OFDM Requirements 126

6 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

TRANSMITTER ON FPGA USING XILINX SYSTEM GENERATOR 132

6.1 Introduction ... 132

6.2 Mapping Schemes ... 133

6.3 Reconfigurable OFDM Transmitter .. 138

7 CONCLUSION AND DISCUSSION .. 142

7.1 Introduction ... 142

7.2 Summary Contributions of the Research .. 143

7.2.1 FFT Based Serial Butterfly .. 144

7.2.2 FFT Based Serial Pipelined Butterfly.. 145

7.2.3 FFT Based Full Parallel CORDIC ... 147

7.2.4 FFT Based CORDIC Calculated Angles ... 148

7.2.5 Reconfigurable OFDM Transmitter .. 148

7.2.6 Floating Points Models Verification and Validation 149

7.3 Conclusion... 150

vii

List of Figures

FIGURE ‎1.1: CELLULAR NETWORKS BACKGROUND .. 4

FIGURE ‎1.2 : OPEN SYSTEM INTERCONNECTION (OSI) REFERENCE MODEL 7

FIGURE ‎1.3: SINGLE CARRIER FREQUENCY DIVISION MULTIPLE ACCESS TRANSMITTER

BLOCK DIAGRAM OF LTE STANDARD ... 11

FIGURE ‎1.4: BASIC OFDM TRANSMITTER .. 14

FIGURE ‎1.5: BASIC OFDM RECEIVER .. 15

FIGURE ‎1.6: OFDM TRANSCEIVER BLOCK DIAGRAM ... 18

FIGURE ‎1.7: SPECTRUM OVERLAPPED IN OFDM [2] ... 18

FIGURE ‎1.8: OFDM WITH CYCLIC PREFIX .. 19

FIGURE ‎2.1: DIF BUTTERFLY TOPOLOGY .. 28

FIGURE ‎2.2: DIT BUTTERFLY TOPOLOGY .. 28

FIGURE ‎2.3: 8-POINT DECIMATION IN FREQUENCY ALGORITHM 31

FIGURE ‎2.4: 8-POINT DECIMATION IN TIME ALGORITHM .. 33

FIGURE ‎2.5: SEQUENTIAL FFT ARCHITECTURE USING SINGLE BUTTERFLY 37

FIGURE ‎2.6: 8-POINT R2MDC ... 38

FIGURE ‎2.7: R2SDF ARCHITECTURE ... 39

FIGURE ‎2.8: GENERAL CORDIC BLOCK DIAGRAM .. 40

FIGURE ‎2.9 : VECTOR ROTATION... 42

FIGURE ‎2.10: RADIX-2 BUTTERFLY FLOW GRAPH ... 46

FIGURE ‎2.11 : BASIC DSP SYSTEM .. 47

FIGURE ‎2.12: FPGA DESIGN STEP .. 50

FIGURE ‎2.13: BASIC LOGIC ELEMENT OF VIRTEX 5 FPGA.. 52

FIGURE ‎2.14: VIRTEX 5 CONFIGURABLE LOGIC BLOCK .. 52

FIGURE ‎2.15:XILNX VIRTEX 5 FAMILY DSP48E SLICE[1] .. 53

FIGURE ‎3.1 : ANGLE GENERATOR FOR CORDIC ... 56

FIGURE ‎3.2: SEQUENTIAL FFT ARCHITECTURE BASED ON CORDIC WITH SPLIT-RADIX

 .. 60

FIGURE ‎3.3 : RECURSIVE FFT ARCHITECTURE .. 61

FIGURE ‎3.4 : PIPELINED FFT ARCHITECTURE FOR TWO OUTPUTS FOR EACH CLOCK 64

FIGURE ‎4.1: FFT ENTITY BLOCK DIAGRAM .. 73

FIGURE ‎4.2: SEQUENTIAL FFT ARCHITECTURE BASED ON BUTTERFLY 76

FIGURE ‎4.3: FFT IN PLACE RAM BLOCK DIAGRAM .. 77

FIGURE ‎4.4 : ROM TWIDDLE FACTOR ENTITY .. 79

FIGURE ‎4.5: RADIX-2 BUTTERFLY DIRECT IMPLEMENTATION 79

file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613599
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613601
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613601
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613602
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613603
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613604
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613605
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613606
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613607
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613608
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613609
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613610
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613611
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613612
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613613
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613614
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613615
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613616
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613617
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613618
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613619
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613620
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613621
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613622
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613623
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613623
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613624
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613625
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613626
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613627
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613628
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613629
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613630

viii

FIGURE ‎4.6: SERIAL BUTTERFLY RADIX-2 .. 82

FIGURE ‎4.7: PIPELINED BUTTERFLY PART A ... 85

FIGURE ‎4.8: PIPELINED BUTTERFLY PART B ... 86

FIGURE ‎4.9: PIPELINED BUTTERFLY PART C ... 86

FIGURE ‎4.10: FINITE STATE MACHINE FFT... 89

FIGURE ‎4.11: INPUT DATA INDEX .. 90

FIGURE ‎4.12: ADDRESS GENERATION FLOW CHART ... 92

FIGURE ‎4.13 : FLOATING-POINT ACCURACY OF FFT BASED ON BUTTERFLY 95

FIGURE ‎4.14: MATLAB FLOW CHART FOR FFT BASED ON BUTTERFLY 96

FIGURE ‎4.15: SIGNAL TO NOISE RATIO FOR VARIOUS TWIDDLE FACTOR PRECISIONS

(SERIAL BUTTERFLY FFT) ... 102

FIGURE ‎4.16: VARIABLE TWIDDLE FACTOR IFFT TEST WITH QAM 102

FIGURE ‎4.17: QAM CONSTELLATION DIAGRAM (6 BIT TWIDDLE FACTOR) 103

FIGURE ‎4.18: QAM CONSTELLATION DIAGRAM (7 BIT TWIDDLE FACTOR) 103

FIGURE ‎4.19: QAM CONSTELLATION DIAGRAM (9 BIT TWIDDLE FACTOR) 104

FIGURE ‎4.20: QAM CONSTELLATION DIAGRAM (8 BIT TWIDDLE FACTOR) 104

FIGURE ‎4.21: QAM CONSTELLATION DIAGRAM (10 BIT TWIDDLE FACTOR) 105

FIGURE ‎4.22: QAM CONSTELLATION DIAGRAM (11 BIT TWIDDLE FACTOR) 105

FIGURE ‎4.23: QAM CONSTELLATION DIAGRAM (12 BIT TWIDDLE FACTOR) 106

FIGURE ‎4.24: QAM CONSTELLATION DIAGRAM (13 BIT TWIDDLE FACTOR) 106

FIGURE ‎4.25: QAM CONSTELLATION DIAGRAM (14 BIT TWIDDLE FACTOR) 107

FIGURE ‎4.26: QAM CONSTELLATION DIAGRAM (15 BIT TWIDDLE FACTOR) 107

FIGURE ‎4.27 : QAM CONSTELLATION DIAGRAM (16 BIT TWIDDLE FACTOR) 108

FIGURE ‎5.1: SEQUENTIAL FFT ARCHITECTURE BASED ON CORDIC 110

FIGURE ‎5.2: CORDIC FOR FFT .. 112

FIGURE ‎5.3: CORDIC FLOATING POINT MODEL TEST COMPARED WITH MATLAB

FFT FUNCTION .. 114

FIGURE ‎5.4: FFT TWIDDLE FACTOR ANGLES GENERATION 115

FIGURE ‎5.5: FFT BASED CORDIC TEST WITH QAM .. 116

FIGURE ‎5.6: CONSTELLATION DIAGRAM OF 128 POINT FFT BASED ON CORDIC 117

FIGURE ‎5.7 : CONSTELLATION DIAGRAM OF 256 POINT FFT BASED ON CORDIC 117

FIGURE ‎5.8: CONSTELLATION DIAGRAM OF 512 POINT FFT BASED ON CORDIC 118

FIGURE ‎5.9: CONSTELLATION DIAGRAM OF 1024 POINT FFT BASED ON CORDIC ... 118

FIGURE ‎5.10: CONSTELLATION DIAGRAM OF 2048 POINT FFT BASED ON CORDIC . 119

FIGURE ‎5.11: VARIATION OF SNR WITH NUMBER OF CORDIC CELLS 121

FIGURE ‎5.12: NUMBER OF FLIP FLOPS FOR VARIOUS FFT ARCHITECTURES 123

FIGURE ‎5.13: NUMBER OF LOOK-UP TABLES FOR VARIOUS FFT ARCHITECTURES ... 124

FIGURE ‎5.14: NUMBER OF SLICES FOR VARIOUS FFT ARCHITECTURES 124

FIGURE ‎5.15:NUMBER OF DSP48ES VARIOUS FFT ARCHITECTURES 125

FIGURE ‎5.16: NUMBER OF BLOCK RAMS FOR VARIOUS FFT ARCHITECTURES 125

FIGURE ‎5.17: FFT FOR OFDM .. 126

file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613631
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613632
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613633
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613634
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613635
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613636
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613637
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613638
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613639
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613640
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613640
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613641
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613642
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613643
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613644
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613645
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613646
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613647
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613648
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613649
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613650
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613651
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613652
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613653
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613654
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613655
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613655
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613656
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613657
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613658
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613659
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613660
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613661
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613662
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613663
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613664
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613665
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613666
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613667
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613668
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613669

ix

FIGURE ‎5.18: LATENCY IMPROVEMENT FOR FFT .. 127

FIGURE ‎5.19: COMPARISON OF MAXIMUM SAMPLING RATES SUPPORTED BY

CONSIDERED FFT ARCHITECTURES ... 131

FIGURE ‎6.1: BLOCK DIAGRAM OF OFDM TRANSMITTER .. 133

FIGURE ‎6.2: VARIABLE MODULATION SCHEMES BLOCK DIAGRAM 135

FIGURE ‎6.3: FIXED POINT QPSK CONSTELLATION DIAGRAM 136

FIGURE ‎6.4: FIXED POINT 8PSK CONSTELLATION DIAGRAM 137

FIGURE ‎6.5: FIXED POINT 16QAM CONSTELLATION DIAGRAM 137

FIGURE ‎6.6: FIXED POINT 64QAM CONSTELLATION DIAGRAM 138

FIGURE ‎6.7: BLOCK DIAGRAM OF VARIABLE IFFT .. 139

FIGURE ‎6.8: MATLAB SCRIPT TRANSMITTER FLOW CHART 141

file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613670
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613671
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613671
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613672
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613673
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613674
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613675
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613676
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613677
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613678
file:///C:/Users/ALFA/Desktop/Yousif%20PhD%20Thesis_Final_2012.doc%23_Toc339613679

x

List of Tables

TABLE ‎1.1: OFDM SYMBOL PARAMETERS FOR IEEE802.20 AND UMB STANDARDS .. 9

TABLE ‎1.2: OFDM SYMBOL PARAMETER OF IEEE 802.16E 10

TABLE ‎1.3: OFDM MODULATION PARAMETERS FOR LTE RELEASE 8 11

TABLE ‎2.1: 8-POINT BIT REVERSED ORDER .. 34

TABLE ‎3.1: RESOURCE UTILISATION OF PIPELINED 64-POINT FFT ON CYCLONE II

DEVICE .. 57

TABLE ‎3.2: MEAN ERROR FOR VC, STR, STM METHODS .. 58

TABLE ‎3.3: RESOURCE UTILISATION ON VIRTEX-II XC2V2000 FPGA FOR VC, STR,

STM METHODS ... 59

TABLE ‎3.4: FFT ARCHITECTURE REQUIREMENTS FOR MULTIPLICATIONS, ADDITIONS,

MEMORY AND CONTROLS ... 62

TABLE ‎3.5: RESOURCES OCCUPIED BY 1024 R2
2
 SDF ON SPARTAN 3......................... 62

TABLE ‎3.6: RESOURCE UTILISATION OF 1024-POINT RADIX-2 FFT ON VIRTEX-4 LX25

FPGA .. 63

TABLE ‎3.7: RESOURCE UTILISATION OF AN OFDM TRANSCEIVER FOR IEEE802.11A/G

WLAN STANDARDS ... 65

TABLE ‎3.8: RESOURCE UTILISATION OF OFDM MODULATOR FOR IEEE 802.11A

STANDARDS ... 66

TABLE ‎3.9: RESOURCE UTILISATION OF OFDM MODULATOR FOR IEEE 802.16

STANDARDS ... 66

TABLE ‎3.10: RESOURCE UTILISATION OF AN OFDM MODULATOR FOR IEEE 802.15.3A

STANDARDS ... 67

TABLE ‎3.11: RESOURCE UTILISATION OF FORWARD ERROR CORRECTION USING

ALTERA IP ... 68

TABLE ‎3.12: RESOURCE UTILISATION OF CONSTELLATION MAPPER/DE-MAPPER IP

CORE FROM ALTERA .. 68

TABLE ‎3.13: RADIX-4 FFT IP FUNCTION FROM ALTERA .. 69

TABLE ‎3.14: TRANSMITTER AND RECEIVER RESOURCE UTILISATION FOR OFDM

MODEM FOR IEEE 802.11A STANDARD.. 69

TABLE ‎3.15: SYNCHRONIZER RESOURCE UTILISATION FOR OFDM MODEM FOR IEEE

802.11A STANDARD ... 69

TABLE ‎4.1: RESOURCE AREA OF SERIAL BUTTERFLY FFT ARCHITECTURE ON VIRTEX 5

X110T .. 97

TABLE ‎4.2: RESOURCE AREA OF SERIAL PIPELINED BUTTERFLY FFT ON VIRTEX 5 ... 98

TABLE ‎4.3: THE MEAN SQUARE ERROR AND THE SIGNAL TO NOISE RATIO FOR SERIAL

BUTTERFLY ARCHITECTURE .. 99

../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860223
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860224
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860225
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860226
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860227
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860227
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860228
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860229
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860229
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860230
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860230
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860231
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860232
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860232
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860233
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860233
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860234
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860234
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860235
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860235
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860236
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860236
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860237
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860237
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860238
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860238
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860239
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860240
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860240
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860241
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860241
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860242
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860242
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860243
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860244
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860244

xi

TABLE ‎4.4: MEAN SQUARE ERROR AND SIGNAL TO NOISE RATIO FOR SERIAL

PIPELINED BUTTERFLY FFT ARCHITECTURE ... 100

TABLE ‎5.1: RESOURCES UTILISATION OF FULLY PARALLEL, PIPELINED CORDIC FFT

ARCHITECTURE ON VIRTEX 5 X110T .. 113

TABLE ‎5.2: MEAN SQUARE ERROR AND SIGNAL TO NOISE RATIO FOR PARALLEL

CORDIC FFT .. 113

TABLE ‎5.3 : RESOURCE UTILISATION OF FFT BASED ON CORDIC WITH GENERATED

ANGLES ON VIRTEX 5 .. 115

TABLE ‎5.4: RESOURCE UTILISATION OF FFT 7.1 ON VIRTEX 5 X110T 123

TABLE ‎5.5: PERFORMANCE OF FFT BASED ON SERIAL BUTTERFLY ARCHITECTURE,

WITH RESPECT TO 4G WIRELESS STANDARDS .. 129

TABLE ‎5.6: PERFORMANCE OF FFT BASED ON SERIAL PIPELINED BUTTERFLY, WITH

RESPECT TO 4G WIRELESS STANDARDS ... 129

TABLE ‎5.7: PERFORMANCE OF FFT BASED ON CORDIC, WITH RESPECT TO 4G

WIRELESS STANDARDS .. 130

TABLE ‎5.8: PERFORMANCE OF FFT BASED ON CORDIC WITH GENERATED ANGLES,

WITH RESPECT TO 4G WIRELESS STANDARDS .. 130

TABLE ‎5.9: PERFORMANCE OF XILINX FFT 7.1 CORE WITH RESPECT TO 4G WIRELESS

STANDARDS ... 131

TABLE ‎6.1: RESOURCE UTILISATION AND PERFORMANCE OF MODULATOR 136

TABLE ‎6.2 : MEAN SQUARED ERROR FOR SUPPORTED MODULATION SCHEMES 138

TABLE ‎6.3: IFFT_SIZE SELECTION TABLE... 140

TABLE ‎6.4: RESOURCE UTILISATION OF CONFIGURABLE IFFT 140

TABLE ‎6.5: MEAN SQUARED ERROR OF RECONFIGURABLE OFDM TRANSMITTER ... 140

../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860245
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860245
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860246
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860246
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860247
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860247
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860248
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860248
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860249
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860250
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860250
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860251
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860251
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860252
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860252
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860253
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860253
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860254
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860254
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860255
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860256
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860257
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860258
../Downloads/Yousif%20PhD%20Thesis_26_Augest_2012.doc#_Toc333860259

1

1 Introduction and Overview

1.1 Introduction

Over the last two decades significant progress has been made in the extensive

deployment and update of cellular mobile and wireless networks. In 2011 there are

now estimated to be over four billion subscribers worldwide receiving voice and data

services through the wireless and cellular networks. For many people getting access

to the internet in a “anywhere”‎and‎“anyway”‎manner is the key goal in both business

and customer markets and to provide these services the continuing development and

data rate increase of the mobile internet technology is essential. In 2011 the new 4G

wireless networks such as LTE offer high-speed network access with potential data

rates of greater than 10 Mbits/sec. One of the core computational signal processing

components of the physical layers (PHY) in many 4G wireless standards is

Orthogonal Frequency Division Multiplexing (OFDM), used as a modulation and

multiplexing technique in both up and down links for many wireless standards [3-4],

including the new emerging LTE global standard.

In OFDM systems, one stage of the modulation and demodulation are performed by

using the Fast Fourier Transform (FFT) and its inverse (the IFFT) to orthogonalise

the transmit signals [5-6].

2

For implementation of 4G standards on base stations, FPGAs have become one of

the key components for implementation. Therefore in considering only the FFT and

IFFT components in this thesis, the need for high speed FFTs for multiple standards

and data streams is clear. The FPGAs have a key advantage over single core DSP

processors due to the extensive parallelism available on the device; albeit exploiting

this parallelism efficiently is something that system designer must do carefully.

To produce initial designs, and in common with other engineers designing for OFDM

on FPGAs, in the research work of this thesis we have used the Xilinx FPGA, and

made use where appropriate of the FFT support tools (System Generator [7] and

Core Generator), to‎ produce‎ “vendor”‎ designs.‎ ‎ (Other‎ tools‎ used‎ for‎ design‎ and‎‎

investigation include, Synplicity [8] and Modelsim [9]). In using these tools it is

often the case that many of the DSP blocks are pre-configured and not necessarily

optimised for particular algorithms and architectures being implemented for a

particular radio standard. Hence for the research work in this thesis we have focused

on the FFT algorithm implementation as used for OFDM, and considered its use in

various 4G standards with respect to FFT size, word length, throughput etc, and

hence aiming to recommend the optimal method for implementation of the FFT.

This choice includes decisions on resources (amount of hardware), flexibility and

programmability and generally on providing architectures that will achieve the speed

of implementation required by a given 4G standard.

The core output of this research works has been to evaluate available FFT IP blocks

and standard FPGA implementations, to then investigate and design an efficient,

high-speed optimized FFT/IFFT dedicated to the OFDM system and applicable and

programmable for the current 4G standards. The properties of the presented FFT

designs are novel, programmable, extendable and integratable into the physical layer

of a number of 4G radio designs. In particular in this thesis we will benchmark the

designs against achieving timing and performance for LTE, 802.16 and 802.20

standards.

Therefore we will show the design of an optimized dynamic OFDM transmitter to

accommodate different physical layers of the 4G wireless standards.

3

1.2 Mobile and Wireless Networks Overview

To set the scene of mobile and wireless evolution in this section, the historical

background of cellular networks is briefly reviewed. Figure ‎1.1 summarises the

mobile and wireless evaluation from 1
st
 to 4

th
 generation. The 1

st
 generation of

mobile/wireless was of course analogue and essentially a Frequency Division

Multiple Access (FDMA) system. The emergence of 2G network was the first digital

implementation to feature Time Division Multiple Access (TDMA), frequency

division multiple access (FDMA), and classic modulation methods. The Global

System for Mobile communications (GSM) in particular was the main standard

during this era in the 1990’s.‎ The‎ single‎ carrier‎Gaussian‎Minimum‎Shift‎ Keying‎

(GMSK) modulation technique was used in GSM due its resistance to Inter symbol

interference (ISI). The Gaussian shape impulse response filter spreads the input bits

width, achieving a narrower transmission spectrum and an improved resistance to

ISI [10]. Developments in GSM then targeted an increase in data rate and

established 2.5G with its General Packet Radio System (GPRS).

The 3G cellular release was largely based on spread spectrum and brought Code

Division Multiple Access (CDMA) principles. One of the key reasons of moving to

CDMA was the demonstration that spread spectrum helped minimise the multipath

problem that limited data rates with 2G. Despite its success it is interesting to then

note that most of the 4G access technologies moved to OFDM based techniques,

with one of the key motivations being, again, the mitigating of multipath problems.

OFDM splits the available spectrum into a number of narrowband transmission

channels known as subcarriers which, independent of the transmission channel being

frequency-selective or frequency-flat, are not subject to ISI and only change

amplitude and phase of OFDM-multiplexed symbols At the receiver the data

streams received on all subcarriers can be de-multiplexed to form the original data

stream. In OFDM systems this was achieved by IFFT/FFT essentially channelizing

4

the transmit bandwidth and allowing simple FFT-bin-based complex equalisers to be

used.

Figure ‎1.1 also summarises some of the different issues related to multiplexing,

technologies, systems and features. The upper layer of the diagram gives the

multiplexing and bit rate while the middle layer shows the technologies used. The

lower layer summarises some of the systems that have then been established and

deployed.

The first generation (1G) analogue cellular system supported voice communication

but with limited roaming. It used FDMA as multiplexing technology and analogue

frequency modulation from baseband to carrier. The first available 1G cellular

telephone system, the Advanced Mobile Phone System (AMPS), was introduced in

1979 in the United States.

1G

Analogy

Spectral

Efficiency

FDMA

2G

Digital

Modulation

Convolution

Coding

Power Control

0.15 bps/Hz

Max. rate 64

kbps

TDMA&CDM

A

3-4 bps/Hz

Max. rate ~200

Mbps

WCDMA

0.30 bps/Hz

Max. rate

2Mbps

TDMA,CDMA

&

WCDMA

3G

Hierarchal Cell

Structure

Turbo Coding

4G

Smart Antenna

MIMO

Adaptive System

OFDM

Modulation

AMPS

TACS

NMT

C-450

PDC GSM

HSCSD

GPRS

PHS

CDMA

3GPP2

Cdma2000

3GPP

WCDMA

IEEE 802.16e

IEEE 802.20

3GPP2-UMB

3GPP-LTE

Figure ‎1.1: Cellular Networks Background

5

Several other analogue cellular systems including TACS, NMT, C450, were

introduced in Western Europe, albeit all were independent and not inter-operable.

The second generation (2G) systems were based on Time Division Multiple Access

(TDMA) and also featured the introduction of Code Division Multiple Access

(CDMA) technologies. The 2G was primarily designed to improve voice quality and

provide a set of rich voice features, but also brought limited data in the form of text

options. The two most widely deployed 2G systems are the Global System for

Mobile communications (GSM) and Code Division Multiple Access (CDMA). Both

the GSM and CDMA standards groups followed their 2G success by forming their

own separate 3G partnership projects (3GPP and 3GPP2, respectively) to then

research on the next (i.e. third) generation of mobile systems based on spread

spectrum techniques and using much wider bandwidths than 2G. The 3G standard in

3GPP was referred to as Wideband Code Division Multiple Access (WCDMA)

because it uses a larger 5MHz bandwidth compared to the 1.25MHz bandwidth used

in 3GPP2’s‎cdma2000‎system‎[11-12].

In‎ today’s‎ society, access to networked data and information services has become

critically important to users of business, entertainment, and social networking

applications. Users look for high-speed, high-reliability, and high-quality access to

this information while they are fully mobile [4]. As such Fourth generation (4G)

wireless standards are developed to meet these requirements of high speed data (> 10

Mbits/sec) anywhere and anytime. Some of the more popular 4G standards are

Mobile WiMAX (IEEE 802.16e), MobileFi (IEEE 802.20), 3Generation Partnership

Project 2-Ultra Mobile Broadband (3GPP2-UMB) and 3Generation Partnership

Project- Long Term Evaluation (3GPP-LTE). The Standards use Orthogonal

Frequency Division Multiplexing (OFDM) techniques for modulation and

multiplexing. It is interesting to note however that the adoption of a standard has as

much to do with politics as it do with technology and efficiency.

6

1.2.1 Open System Interconnection (OSI)

Virtually all modern wireless networks consist of Medium Access Control (MAC)

and physical (PHY) layers, with the MAC responsible for setting the rules which

determine how to access the medium and send data, while the Physical (PHY)

component deals with details of transmission and reception. MAC and PHY are part

of a primary architecture 7 layers model for solving problems in communication

networks, as developed by the International Organization of Standardization (ISO).

The layer model is called Open System Interconnection (OSI) model, and is shown

in Figure ‎1.2. Beyond the above PHY and MAC layers, the Data Link layer breaks

up the input data into data frames – typically a few hundred or a few thousand bytes

– and transmits the fames sequentially. The data link layer in the receiver returns

acknowledgement frames to confirm correct receipt of each frames. The network

layer determines and controls how packets are routed from source to destination. The

Transport layer accepts data from the Session Layer and split it up into smaller units

that are then passed to the Network Layer. The Session Layer allows users on

different machines to establish sessions between them. The Presentation Layer is

concerned with the syntax and semantics of the information transmitted. Finally, the

Application Layer has a variety of protocols that are commonly needed by users such

as HyperText Transfer Protocol (HTTP)[13].

7

 Figure ‎1.2 : Open System Interconnection (OSI) reference Model

1.2.2 IEEE 802.20 and 3GPP2_UMB Standards Overview

IEEE 802.20 was ratified in 2008 and is a standard offering high-speed, highly

reliable and cost-effective broadband communication; the IEEE 802.20 Mobile

Broadband Wireless Access (MBWA) Working Group was first established in

December 2002. 802.20 was claimed to be a superior and more flexible standard to

what was currently offered elsewhere [4], and a clear candidate for providing 4G

wireless levels of service. The standard is Internet Protocol (IP) based and provides

a broadband packet-based air interface for mobile users with speeds up to 250 km/h

[3]. The use of Internet Protocol (IP)-based technologies is a strategic element in the

design of many 4G standards including 802.20. 802.20 aim for the production of

low-cost, always-on, and mobile broadband wireless networks. Interestingly this

standard changed the direction of wireless networking, by coming up with a strategy

to sit on existing cellular towers, and provide coverage area the same as that of a

mobile phone system but providing data rates and connection techniques that are

more equivalent to a Wi-Fi connection [14].

Application Layer Layer 7

Presentation Layer Layer 6

Session Layer Layer 5

Transport Layer Layer 4

Network Layer Layer 3

Datalink Layer Layer 2

Physical Layer Layer 1

8

The next system driving OFDM usage for wireless connectivity was the 3GPP2 Ultra

Mobile Broadband (UMB), (which in fact was integrated as a core part of 802.20).

The standard is designed to provide high speed Frequency Division Duplex (FDD)

and Time Division Duplex (TDD) mobile broadband access and optimized for high

spectral efficiency and short latencies, using OFDM modulation, link adaptation and

multi-antenna communication techniques. Other features in UMB included provision

for fast handoff and fast power control. The inter-sector interference management is

embedded in the design, which helps to facilitate communication in highly mobile

environments [15].

IEEE 802.20 specifies two modes of operation, either wideband mode or a 625k-MC

mode while the UMB uses wideband mode only.

The wideband mode is based on Orthogonal Frequency Division Multiple Access

(OFDMA) techniques. This standard can use one of two techniques: either the FDD

or the TDD. The bandwidths that can be occupied are from 5 MHz to 20 MHz in the

case of IEEE 802.20 standard, and from 1.25 MHz to 20 MHz in UMB. The 625k-

multicarrier (625k-MC) mode is a TDD air interface mode only. It was developed to

obtain maximum benefit from adaptive, multiple-antenna signal processing [4, 16-

17].

The OFDM in IEEE 802.20 and UMB is based on a scalable bandwidth. The

modulation can change the FFT size based on the bandwidth of transmission and the

length of FFT range from 128 points up to 2048 points. The subcarrier spacing is

kept constant within different bandwidths by changing the chip rate of each FFT size.

There are different lengths of cyclic prefix; Table ‎1.1 shows the OFDM symbol

parameters. The chip rate is the sampling rate that the FFT is required to work with.

The maximum sampling rate actually required for both standards is around 20 MHz

in 2048 FFT point.

9

1.2.3 Mobile Broadband with IEEE802.16e (Mobile WiMax)

IEEE 802.16e has the ability to support movement up to 150 km/h and operate in

both Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) environments. The IEEE

802.16e air interface is based on Orthogonal Frequency Division Multiple Access

(OFDMA), the main aim of which is to achieve better performance in non-line-of-

sight environments. In an NLOS link, the transmitted signals arrive at the receiver

over multiple reflected paths. OFDM provides efficient means to overcome such

challenges of NLOS propagation thought the use of a cyclic prefix in the OFDM

symbols, which eliminates inter-symbol interference (ISI) and the resulting added

complexities through the need for adaptive equalisation. Because the OFDM

waveform is consisted of multiple narrowband orthogonal subcarriers, frequency

Table ‎1.1: OFDM Symbol Parameters for IEEE802.20 and UMB Standards

Parameter NFFT=

128

NFFT=

256

NFFT

= 512

NFFT =

1024

NFFT =

2048

Chip Rate

Mcps

1.2288 2.4576 4.9152 9.8304 19.6608

Subcarrier Spacing

khz

9.6 9.6 9.6 9.6 9.6

Bandwidth of

OperationMHz

1.25 1.25-2.5 2.5-5 5-10 10-20

Cyclic

Prefix Duration

µs

6.51,

13.02,

19.53, or

26.04

6.51,

13.02,

19.53, or

26.04

6.51, 13.02,

19.53, or

26.04

6.51,

13.02,

19.53, or

26.04

6.51, 13.02,

19.53, or

26.04

Guard Interval

µs

3.26 3.26 3.26 3.26 3.26

OFDM Symbol Duration

µs

113.93,

120.44,

126.95, or

133.46

113.93,

120.44,

126.95, or

133.46

113.93,

120.44,

126.95, or

133.46

113.93,

120.44,

126.95, or

133.46

113.93,

120.44,

126.95, or

133.46

10

selective fading only results on amplitude changes and phase rotations of symbols,

which can be corrected by a single-coefficient equaliser per subcarrier [18].

The IEEE 802.16e introduced scalable channel bandwidth up to 20 MHz and using

Multiple Input Multiple Output (MIMO) strategies. In mobile WiMAX, the FFT size

can vary between 128 and 2048, keeping the subcarrier spacing at 11.16 KHz. Table

‎1.2 summarises the OFDM symbol parameters [19-20].

1.2.4 Long Term Evolution (LTE)

Universal Mobile Telecommunications System (UMTS) Long Term Evolution

(LTE) Release 8 (2009) provides improved system capacity and coverage, high peak

data rates, low latency, reduced operating costs, multi-antenna support, flexible

bandwidth operation and seamless integration with existing systems. The air

interface of LTE is based on OFDMA (Orthogonal Frequency Division Multiple

Access) and MIMO (Multiple-Input Multiple Output) in downlink (DL) and uses SC-

FDMA (Single Carrier Frequency Division Multiple Access) in the uplink (UL)

direction. LTE Release 8 also supports scalable bandwidth up to 20 MHz. In the

UL SC-FDMA is implemented via Discrete Fourier Transform Spread OFDM (DFT-

SOFDM). DFT-SOFDM has similar algorithm structure and implementation to that

of the OFDM transmission scheme used on the DL, the main difference being that

the constellation symbols are DFT precoded before mapping to the different

Table ‎1.2: OFDM Symbol Parameter of IEEE 802.16e

FFT length 128 256 1024 2048

Transmission

Bandwidth(MHz)
1.25 5 10 20

Subcarrier

Spacing(kHz)
11.16 11.16 11.16 11.16

Symbol Duration

us

100.8 100.8 100.8 100.8

11

subcarriers. A block diagram for SC-FDMA implemented via DFT-SOFDM is

shown in Figure ‎1.3 [21-22].

Table ‎1.3: OFDM Modulation Parameters for LTE Release 8

Transmission

Bandwidth

MHz

1.25 2.5 5 10 15 20

Sub-carrier

spacing KHz
15

Sampling

frequency MHz
1.92 3.84 7.68 15.36 23.04 30.72

FFT size

128 256 512 1024 1536 2048

Figure ‎1.3: Single Carrier Frequency Division Multiple Access Transmitter Block

Diagram of LTE Standard

Input

Data
Output

OFDM

Bit to

Constellation

Mapping

M-point

FFT

N-point

IFFT

Add

Cyclic

Prefix

Parallel to

Serial

Convertor

12

1.3 Principles of Multicarrier Techniques

In the continually growing world of wireless telecommunications, a number of

technology and algorithm trends are gaining widespread popularity in the

development of radio PHY layers. In the last few years there has been a clear

increase of interest in multi-carrier communications and their application to efficient

wireless multiple-access systems development. In particular, there has been a great

deal of research and subsequent deployment of OFDM, and MC-CDMA (Multi-

Carrier Code Division Multiple Access). Both of these methods are based on

orthogonalisation methods and as such require the implementation of Fourier

transforms and inverse Fourier transforms [23]. A well known benefit of multicarrier

systems is that they can be used provide excellent adaptability to the time and

frequency selectivity of radio propagation channels, they allow for simpler

narrowband equalization for multipath mitigation, and generally are less susceptible

to impulsive noise. Generally these methods can also be structured to provide full

and efficient use of available bandwidth.

Although first reviewed and developed in the 1960s OFDM took a number of

decades before processing technology was sufficiently fast to allow real time

implementation. In the last 10 years with advent of 802.11, 802.16, and LTE to

name a few, OFDM is now widely deployed and accepted as the best multicarrier

technology for robust and reliable high-rate and high-speed data transmission.

Interestingly it is not just found in wireless, but is also used for wired communication

systems because of its spectral efficiency, and ability to mitigate the effects of delay

spread and inter symbol interference (ISI) [24-25].

1.3.1 Basic OFDM System

To review the concept of OFDM, an incoming data stream, most likely with a high-

data rate, enters (D) at the transmitter side as in Figure ‎1.4. From a hardware

perspective this incoming data enters a serial to parallel converter which is used for

13

mapping the high rate input data stream into N lower rate parallel data streams. Sets

of pulse shaping filters are used to band limited the spectra of the impulses of the

input data (D). The pulse shaping filter form Nyquist systems, which, if correctly

synchronised in time and by selection of appropriate subcarrier frequencies, can be

overlapped in both time and frequency without causing interference. Each data

stream is then placed on its own quadrature carrier (f1, f2, ..., fN). The carrier spacing

is carefully selected to ensure orthogonality. The multicarrier modulator generates

subcarriers spaced by (1/T) Hz. The values of (f1, f2, ..., fN) are as shown in Equations

(‎1.1), (‎1.2) and (‎1.3):

T

f
1

1
 (‎1.1)

T

f
2

2
 (‎1.2)

T

N
f

N
 (‎1.3)

where T is the fundamental period. The orthogonality between carriers is necessary

to ensure that carriers can be perfectly separated from each other at the receiver side.

The N modulated streams are next added together, and the final stage would be a

modulation to carrier (or Intermediate Frequency IF) frequency modulated up to the

transmit radio carrier frequency (fc) to output the D_out) signal which would then

pass through a (very) high speed DAC (digital to analogue converter) to produce the

radio frequency signal. (Note that the DAC is more likely in current systems to

include an IF‎stage‎(10’s‎of‎MHz)‎before‎the‎carrier‎frequency‎(fc)‎modulator‎(100’s‎

of MHz); however in future software defined radio systems we can expect the DAC

to be at the RF output stage).

14

At the receiver side, the incoming OFDM symbol is first returned to baseband

by use of a radio frequency mixer at the carrier frequency fc as shown in the basic

OFDM receiver in Figure ‎1.5. For the next receiver stage,

the incoming OFDM signal is separated into its N streams and the N frequency bands

and demodulated back to baseband. (Note in these figures of the transceiver, we

assume that other necessary receiver stages such as synchronisation and phase

locking are appropriately performed.)

After each mixer a low pass filter would be required to remove the higher order

demodulation frequencies and leave the original baseband. Thereafter once the data

streams have been separated from each other a simple decision device is applied

consists of resample, threshold detector and parallel to serial convertor.

In multi-carrier systems, the arrays of sinusoidal generators and coherent

demodulators for a large number of channels would clearly be required to be

implemented in powerful parallel processing systems and the implementation of such

arrays by the traditional techniques using oscillators and modulators/demodulators is

computationally very expensive. However a key observation is that the multi-

carrier data signal is effectively the inverse Fourier transform of the original serial

Figure ‎1.4: Basic OFDM Transmitter

Serial

To

Parallel

Input

Data (D)

Output

D_out

e
tj f

2
2

e
tj f

1
2

e
tj f

N
2

e
tj f

c
2

Filter

Filter

Filter

15

data string when the evenly spaced quadrature amplitude modulators (QAM) are

used as above. Similarly the bank of coherent demodulators is effectively a Fourier

transform computation. This view of the multicarrier QAM system suggests

a completely digital modem built by using FFT and its inverse [25] to achieve the

modulation (therefore orthogonalisation) of the signal in the baseband. [26].

Therefore as is well known, the Figure ‎1.4 and Figure ‎1.5 implementations

effectively show the OFDM transceiver where the baseband modulation or

orthogonalisation stages can be greatly simplified by the use of the FFT and the

IFFT. Given the availability of high speed processors and fast algorithm

implementation the efficiency of implementation through using FFT and its inverse

combined with its properties makes the OFDM an attractive modulation and

multiplexing technique for fourth generation wireless networks [23].

The idea of using parallel-data communication and Frequency Division Multiplexing

(FDM) was developed in the mid-1960s (i.e. OFDM is an idea and technology from

Figure ‎1.5: Basic OFDM Receiver

OFDM

Signal Output

Low Pass

Filter

Low Pass

Filter

Low Pass

Filter

Sampler

Sampler

Sampler

e
tj f

2
2

e
tj f

N
2

e
tj f

1
2

e
tj f

c
2

Threshold

Detector

 Threshold

Detector

 Threshold

Detector

P/S

16

50 years ago!) [27]. In OFDM techniques, parallel data and frequency division

multiplexing (FDM) with overlapping sub channels are used and one key benefit is

the avoidance of the use of full band (high speed) data equalization; this can now be

performed in the smaller frequency bands (or in each FFT bin). The

immunity to combat impulsive noise has increased, making it possible to fully

utilize the available bandwidth [28]. OFDM is therefore a multicarrier modulation

technique which enables robust, high data rate communication over time varying

and noise wireless communication channels and in the decade of 2000-2010 its time

for deployment has arrived [29].

1.3.2 OFDM Advantages and Disadvantages

OFDM’s‎many‎ advantages‎ over‎ single‎ carrier‎ modulations‎ can‎ be‎ summarized as

follows:

1. In OFDM, the band is divided into a number of overlapping frequency

channels. This technique results in better use of the available spectrum [30].

2. OFDM is based on orthogonality between the subcarriers. This means that

each subcarrier does not interfere with others; thus no guard bands are

required.

3. Parallel data systems required complex circuits. The use of FFT and its inverse

algorithms eliminates arrays of sinusoidal generators and coherent

demodulation. This makes the implementation of the technology cost-

effective [28].

Of course OFDM still has many problems that could affect its performance and it

will be useful to explain some of these problems before going into more detail and

describing the steps of the OFDM generation and demodulation process. (Also to

specifically mention one disadvantage of OFDM is the cost of implementing the FFT

and IFFT in the transceiver – hence the investigation of this thesis.)

17

One way to address the implementation complexity issues of the Fourier transform

and inverse Fourier transform in the OFDM transceiver has been simply achieved by

simply using FFT and its inverse rather than the standard DFT – this does of course

limit the flexibility of different data lengths that can be used (and largely limits to

power of 2 for radix-2 efficient implementation). However other more difficult to

resolve issues are identifiable as:

1) Large peak-to-average ratio (PAR) of the transmitted signal. Different

techniques are used to decrease PAR. These techniques are incorporated to control

the resulting nonlinear distortion at the power-amplification stage.

2) The data symbols are transmitted on subcarriers. The OFDM transceiver is

sensitive to mismatch and Doppler effects of transmit–receive oscillators. This leads

to subcarrier frequency offset (CFO).

3) Uncoded OFDM does not enable the available multipath (or frequency)

diversity. In fact, only diversity order one is possible through multipath Rayleigh

fading channels [31].

1.3.3 OFDM Transceiver

The general block diagram for the OFDM transceiver is shown in Figure ‎1.6. In this

block diagram, the Analogy to Digital Convertor (ADC) and the up/down

converter have been omitted largely because this work focuses on the baseband

implementation of the OFDM transceiver on FPGA, rather than optimising these

other very important components.

As discussed in OFDM systems, the FFT and IFFT pair is used to modulate and

demodulate the data constellation onto the subcarriers [32] and hence the heart of an

OFDM modulator and demodulator consists of the inverse FFT (IFFT) and FFT

respectively [33]. The orthogonality between carriers is necessary to ensure that

carriers can be perfectly separable one from another at the receiver side and a simple

OFDM style spectrum is shown in Figure ‎1.7 [2].

18

A copy of the last NIFFT * 1/G samples is appended to the beginning of the symbol,

called CP, which increases symbol duration so that multipath mitigation can be more

likely achieved, (where NIFFT is the IFFT size and G is a carefully chosen positive

integer [34]).

Figure ‎1.7: Spectrum Overlapped in OFDM [2]

Data

input

Data

Output

S/p
Symbol

Mapping
IFFT

Cyclic

Prefix

Insertion

Channel

Noise

Cyclic

Prefix

Removal

FFT Equalizer
Symbol

Demapping

P/S

Window

Figure ‎1.6: OFDM Transceiver Block Diagram

19

After the samples of the symbol have been processed by the IFFT block, to avoid

Inter Symbol Interference (ISI) and Inter Channel Interference (ICI), guard period

samples must be formed by a cyclic extension of the symbol period. CP insertion is

carried out by taking symbol samples from the end of every symbol and appending

them to the front of the symbol, as shown in Figure ‎1.8 [27].

1.4 Field Programmable Gate Array Technology

Field-programmable gate arrays (FPGAs) have become an extremely popular

implementation technology since they were first introduced in 1989 by Xilinx. Many

modern digital communication systems require a combination of high performance,

low cost, and flexibility of design and compared to ASICS, this can be afforded by

FPGAs (albeit the power consumption is higher and cost per device for high volumes

is also higher). FPGAs will support designs at very high clock rates (approaching

1GHz at time of writing), and depending on the actual device selected offer very high

levels of parallelism – note the latest and largest FPGA offers more than 2000 (two

thousand) multipliers on a single chip, although at a very high per device cost. More

affordable devices with perhaps order of 10 or a 100 multipliers per device are also

available [35].

In a modern FPGA, the PHY layer design concept is that a single programmable

chip can implement a complete transceiver system, i.e. the OFDM, the

channelization, the equalisation, synchronisation, framing and so on are all

implemented on the FPGA in hardware [36].

IFFT Block CP

OFDM Symbol

Figure ‎1.8: OFDM with Cyclic Prefix

20

FPGAs are now driving DSP and communications in the direction of single chip

designs, capable of implementing true software radio. Many digital signal

processing algorithms/components, such as FFTs, Finite Impulse Response (FIR)

filters, numerically controlled oscillators are very efficiently implemented by the

FPGAs. In recent year these algorithms were built with ASICs or parallel DSPs [25-

26] for very high volume applications, however as the power consumption of FPGAs

drops, we may see the SDR enabling FPGA move from basestation to handset or user

device and be capable of using one chip to implement all radio standards. (Note that

modern smart phones (in the USA) can contain up to seven radios, and therefore

seven transceiver chips including the likes of GSM/GPRS, cdmaONE, 3GPP,

Bluetooth, LTE, 802.11, cdma2000).

FPGA Generic Forms

FPGAs belong to a group of devices called Field Programmable Logic (FPL),

defined as programmable devices containing repeated fields of small switch-

interconnectable logic blocks and elements. The logic structures of today’s‎

FPGAs consists of regular arrays of logic blocks (from a few 100 to a few 10000s)

containing small look up tables, registers, multiplexers, and larger segments of the

chip containing functionally components of block RAMs, and parallel

multiplier/adder.

In 2011 the two largest FPGA vendors are Xilinx and Altera (around 95% of the

market); other vendors include Lattice Semiconductor, Actel, Atmel and Achronix.

All of these companies offer a wide variety of Intellectual Property (IP) core

solutions for communication and DSP applications including FFT, FIR,

Convolutional Encoder, Puncture and Depuncture, Viterbi Decoder, Interleaver and

Deinterleaver and so on. Furthermore in recent years very easy to use high level

block based tools such as Xilinx System Generator or Altera DSP Builder have been

introduced [32].

21

Software Design Environments/Tools for FPGAs

The Xilinx System Generator tool, which runs under the Matlab/Simulink

environment, has very obvious use for the simulation and design of an OFDM

transmitter and receiver given the design environment and provision of FFT and

IFFT blocks. (In this thesis we will refer to and use some of these blocks, however

one aim herein is to have a generic FFT block that is reconfigurable for different

standards and programmable for different FFT lengths and speeds, hence the need to

design the FFT computation from first principles based on parameters extracted from

PHY layer radio standards).

Xilinx also provide the ISE environment which we will use to synthesize and

download the design to the targeted board, as well as to synthesize the VHDL code

of FFT designs. The synthesis stage is a variable in any FPGA design, and

synthesising with different vendor’s tools may give different implementations and

efficiencies. (For example a VHDL design could be targeted at a Xilinx FPGA

Virtex 5, with the synthesis done either by say Xilinx XST/ISE or Synopsys Synplify

– and one design may be more efficient than the other). However in this thesis all

designs will be targeted at the FPGAs using the ISE tool, and the inference is that

designs can be compared fairly. Similarly the actual FPGA device chosen has some

effect on efficiency, but to address this variability ALL designs will be targeted at a

Virtex 5 chip with sufficient hardware resources to easily accommodate all circuits

and therefore to minimise any second order cost-effects (such as place and route

issues, or resource exhaustion issues).

At the higher level of design, the Simulink tool provides a computation block based

design environment for communication systems. It has widespread use in algorithm

development, design and verification and the Xilinx System Generator can be used to

easily implement PHY layer SDR type designs [37]. However, for lower level

efficient implementations VHDL and Verilog languages are used to program the

FPGAs. In this thesis, VHDL is the core language used to design first principles

efficient, high-speed FFT for the OFDM core of 4G physical layer wireless

networks.

22

1.5 Thesis Objectives and Contributions

This work has two core objectives leading to the two areas of main contribution:

The first is the research to develop efficient, high-speed, optimized Fast Fourier

Transform/Inverse Fast Fourier Transform (FFT/IFFT) processors suitable for an

array of 4G PHY layer standards implementation. For this a Radix 2 Decimation in

Frequency (DIF) algorithm has been chosen and implemented from first principles

on an FPGA. The designs are based on two architectures, one on a‎ “butterfly

processor”‎using‎multiply/adders‎and the second on a COordinate Rotational DIgital

Computer (CORDIC) implemented butterfly. We can show the

design offers variable FFT/IFFT size from 128 up to 2048 points (suitable for the

entire range of current 4G standards). An optimized butterfly processor (compared

to the standard butterfly available from Xilinx and other vendors) has also been

introduced which is based around using two multiplier, rather than the more

traditional four. To achieve this design two clock techniques have been used to

control the calculation inside the FFTs. Both designs have been simulated,

synthesized and implemented on the Virtex 5 Xilinx board (Note that the V5 was

chosen as the standard reference FPGA to use in this work to give comparative

costs). The resource areas, maximum frequency achieved by the designs and

immunity to noise have been reported to all architectures.

The second objective is the design, validation and FPGA implementation of a

dynamically programmable (i.e. software defined) OFDM transmitter which could

form the core of the generic PHY layer of a 4G wireless software defined radio

running on an FPGA. The design offers the current array of different types of

modulation, such as Quaternary Phase Shift Keying (QPSK), 8PSK, 16 Quadrature

Amplitude Modulation (16QAM and 64QAM) and has variable FFT/ IFFT size from

128 up to 2048 with a control circuit to switch between different FFT sizes. The

design can generate different cyclic prefix sizes as required by the standards. The

thesis will aim to show the efficiency of having a Software Defined Radio (SDR)

23

type front end PHY for 4G standards and compare to the costs/timings obtained from

more standard tools used by other designers.

Therefore we conclude that that research introduces FFT/IFFT/OFDM systems that

are novel, programmable, extendable and highly integrable into the physical layer of

modern 4G radio systems likely to be seen over the next few years to allow one radio

front end for all implemented standards (e.g., the single smart phone running 802.16,

802.11z, LTE, LTE-advanced, 3G, and so on).

1.6 Thesis Outline

This research looks at the implementation and evaluation of FFT algorithms and the

physical layers of wireless networks. It is organized into seven chapters as follows:

Chapter‎1 : serves as an introduction to the thesis. Descriptions of 4G wireless

standards and OFDM algorithms and tools for implementation on FPGA are given.

Chapter‎2 : provides a detailed analysis of the FFT and CORDIC algorithms, and

architectures that can be implemented on an FPGA.

Chapter‎3: reviews previous work, in relation to the implementation of FFT

algorithms and the OFDM transceiver for different wireless standards on FPGA.

Chapter ‎4 : discusses the FFT implementation on an FPGA based on Butterfly

architecture.

Chapter ‎5: provides a detailed analysis and discussion of FFT implementations on

FPGAs based on CORDIC.

Chapter ‎6 : describes a dynamic OFDM transmitter implementation on FPGAs.

Chapter ‎7: Summarises the results, draws conclusions, and highlights paths for

further research in this area.

24

2 Fast Fourier Transform (FFT) and

Coordinate Rotation Digital

Computer (CORDIC) Algorithms

2.1 Introduction

Generic Digital Signal Processing (DSP) has many widespread applications in many

different areas of science and engineering, with digital communications being one of

the key fields. Many discrete-time digital communication systems are based on the

Fast Fourier Transform (FFT) for analysis, design and implementation [38], and

FFTs are widely used in satellites, radars, wideband digital receivers and so on.

Whereas many applications have fixed length FFT calculations to implement, a

number of authors have developed reconfigurable FFTs for many real-time

applications [39]. One important contributor‎to‎the‎OFDM‎transmitter’s‎low cost is

the ability to perform the mapping of an input data stream

25

to individual subcarriers via the use of an inverse FFT in the transmitter, and by an

FFT in the receiver.

This chapter reviews the FFT algorithms and architectures relevant to the research

work presented later in this thesis. The Decimation in Frequency (DIF) and

Decimation in Time (DIT) variations of the FFT are considered, and common forms

of the FFT for hardware implementation are reviewed: Radix-2, Radix-4, Radix-8,

and Split Radix. There follows a discussion of hardware implementation issues, such

as serialisation and pipelining, as applied to the FFT. As the theme of this research

work is a serial version of a Radix-2, DIF form of the FFT, the discussion is focussed

accordingly.

Two methods of implementing the FFT are the butterfly technique, where a

“butterfly‎engine”‎ is‎used‎ to‎perform the required complex multiplications, and the

CORDIC algorithm. The CORDIC algorithm is a shift-and-add technique capable of

calculating a variety of trigonometric and other functions, but in this context is used

to rotate a vector in the complex plane, effectively performing the complex

multiplication in the FFT. Appropriate background on the CORDIC algorithm is

presented, including its principles of operation, parameters and modes.

The fundamental aim of this research is to develop fast and efficient FFT structures,

and therefore it is useful to review here the metrics by which these aspects are

evaluated. In particular, parameters relating to execution speed and resource

utilisation are explained, and definitions are also provided for the system clock,

throughput, latency and sampling rate.

2.2 Fast Fourier Transform

The Discrete Fourier Transform (DFT) is a key component of many systems used in

the fields of engineering and science. Many of these applications employ the DFT for

spectral analysis; for instance, signal processing, voice analysis, and data acquisition.

In wireless communications, the DFT can also be used to perform modulation and

demodulation in multi-carrier systems.

26

The DFT is a useful and widely used computation, and therefore has received

considerable attention from the research community. In particular, algorithms have

been developed to minimise the computational complexity of implementing the DFT,

and to create efficient hardware structures for real time implementation.

The algorithm introduced by Cooley and Tukey in 1965 is one of the most common

methods of realising the DFT [40-41], and achieves a significant computational

saving compared to the direct implementation. In fact, the original DFT requires a

number of operations proportional to N
2
, where N is the number of points in the

FFT, whereas the Cooley-Tukey algorithm requires only computations of the order

of N1og2N. This optimised calculation is known as the Fast Fourier Transform (FFT)

[42].

The inverse Fourier transform can also be implemented using the Cooley-Tukey

algorithm, resulting in the Inverse Fast Fourier Transform (IFFT). The computations

performed by the FFT and IFFT are very similar, and consequently can be

implemented using the same architecture with minor modifications. There are two

differences between the FFT and its inverse: firstly, for the FFT the twiddle factor is

equal to e
-j2π/N

 while for the IFFT it is equal to e
j2π/N

, where N is the FFT size. For

more details about FFT and DFT fundamentals see [43] and equations below.

Secondly, the normalization factor 1/N. This is shown in Equations (‎2.1),(‎2.2),(‎2.3)

and (‎2.4) [43-44].

 




1

0

)()(
N

n

nk

NWnxkX (‎2.1)

 





1

0

)(
1

)(
N

n

nk
NWnX

N
kx (‎2.2)

)
2

sin()
2

cos(
N

kn
j

N

kn
W

nk
N


 (‎2.3)

)
2

sin()
2

cos(
N

kn
j

N

kn
W

nk
N


 (‎2.4)

27

Where x(n) is the time domain discrete input signal. X (K) is the DFT and it

represent the frequency-domain of x(n). n represents the discrete-time domain index.

K is the normalized frequency-domain index.

The Cooley-Tukey algorithm can be implemented as both decimation-in-time and

decimation-in-frequency fast algorithms[43] . These variations are considered in the

next section.

2.2.1 FFT Decimations

The FFT algorithm has two types of decimation, the Decimation in Frequency (DIF)

and the Decimation in Time (DIT). The DIF has some advantages over DIT and in

particular for issues related to finite word length effects. A truncation noise is

necessarily introduced by the multiplication when implemented with fixed point.

The word length of the input data grows during the calculation of the FFT. The

butterfly calculation includes complex multiplication, addition and subtraction.

Adding /Subtracting two N bits numbers will results in up to N+1 bits word length.

Multiplying two N bits numbers can produce up to 2N bits number. The bit growth

occurs through all stages of the FFT. An un-scaled strategy is used to control the

word length grows inside the FFT. A growth of one bit is accounted for at the output

of each stage, with the remainder truncated (i.e. after the multiplication of two N bit

numbers, a 2N bit product is obtained but truncated back to N bits). Using the DIF

slightly reduces the truncation noise and the complexity of the whole system. Note

that the butterfly topology in the DIF sets the truncation stage to be after one of the

butterfly outputs while in the DIT the two butterfly outputs are affected by the

truncation noise as shown in Figure ‎2.1 and Figure ‎2.2 [45]For this reason, in this

work, the DIF algorithm is chosen. In the two main sequential architectures that

have been designed and investigated in this thesis both are based on the DIF butterfly

engine.

28

B

A

W

Out1

Out2

−

T
r
u

n
c
a
ti

o
n

Figure ‎2.1: DIF Butterfly Topology

B

A

W

Out1

Out2

−

T
r
u

n
c
a
ti

o
n

Figure ‎2.2: DIT butterfly Topology

29

 To derive the classic FFT algorithm, the standard DFT is divided into sequences of

smaller DFTs [38], and this decomposition can be based on either time or frequency,

thus yielding the decimation-in-time or decimation-in-frequency. In this section,

decimation-in-frequency (DIF) and decimation-in-time (DIT) are reviewed as

applied to the Radix-2 FFT; other radix algorithms can implemented, along with

prime factor methods, however in this thesis, to derive a pragmatic, programmable

and implementable design we focus on radix-2.

Decimation in Frequency – DIF

The DIF form of the FFT separates the N-sample input sequence into two arrays,

each of length N/2: the first consists of the first N/2 data samples, while the other

comprises the last N/2 data samples. The calculation is then performed in two

sections, as shown in Equation (‎2.5).

WN
Nk/2

 can be expressed as (-1)
k
 since e

-j2πkN/2N
 =‎(cos(π)‎–j*sin(π))

k
 = (-1)

k
 as in

Equation (‎2.6):

2

)1()()(
12/

0
W

N
nxnxkX kn

N

N

n

k
 






















 (‎2.6)

At this point, X(k) can be decomposed into even and odd-numbered samples. The

altered expressions can be seen in Equations (‎2.7) and (‎2.8) for the general case of an

N-point FFT. X(k) of Equation (‎2.6) can be split into even and odd samples as shown

in Equations (‎2.7) and (‎2.8). This is now two N/2 point DFTs and this can be

2

)()(
12/

0

12/

0

2/
  


















N

n

N

n

kn
N

Nk
N

kn
N W

N
nxWWnxkX (‎2.5)

30

repeatedly decimated until there is only a 2 point DFT. This is illustrated in the flow

graph below.

 Figure ‎2.3 provides a signal flow graph to illustrate how this DIF approach would be

applied to an 8-point FFT [46]. The computation of the 8-point FFT is divided into

three stages, and the input samples to stage 1 in Figure ‎2.3 are in normal order [x(0),

x(1), x(2)......x(7)].

In stage one, each sample is processed with its N/2 sample, i.e., 0, 4, 1, 5 and so on.

In the second stage each sample from the previous stage is processed with its N/4

offset sample and in the final stage these are processed with the N/8 offset samples.

The output of the final stage is reordered.

 1
2

0 ,
2

)()2(
12/

0
2/ 






















N

n

kn
N

N
kW

N
nxnxkX (‎2.7)

 1-
2

0

, W
2

)()12(
12/

0

n
N

kn
2/

N
k

W
N

nxnxkX
N

n
N



 




















 (‎2.8)

31

Decimation in Time (DIT):

In the DIT form of the FFT, the N-sample window of the input signal x(n) is also

divided into two equal sections, but by a different method than the DIF form. In the

DIT form of the FFT algorithm, the first section comprises the odd indexed samples

and the second the even indexed samples. This is shown by Equations (‎2.9), (‎2.10),

(‎2.11) and (‎2.12), where x1(r) represents the even indexed samples of x(n), and x2(r)

represents the odd indexed samples [47].

W8
0
 W8

2

W8
3
 W8

2
 W8

0

W8
1
 W8

0

W8
0

W8
0
 W8

2

W8
0

W8
0

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

Figure ‎2.3: 8-point Decimation in Frequency Algorithm

-1

-1

-1

-1 -1

-1

-1

-1

-1

-1

-1

-1

32

In Equation (‎2.13), the new index m is created. A signal flow graph of an 8-

point DIT FFT is shown in Figure ‎2.4.

 1K0 ,)()(
1

0






NWnxKX
N

n

Kn
N (‎2.9)

 








1

0)(

1

0)(

)(2)(1)(
N

oddn

Kn
N

N

evenn

Kn
N WnxWnxKX (‎2.10)

 12/,........1,0r ,
)12()(2

)2()(1













N

rxrx

rxrx
 (‎2.11)

 WrxWrxKX rK
N

N

r

N

r

Kr
N

)()12()2()(12
1)2/(

0

1)2/(

0

2 








  (‎2.12)

 WmxWWmxKX Km
N

N

m

K
N

Km
N

N

m

2
1)2/(

0

2
1)2/(

0

)12(2)2(1)( 








 (‎2.13)

33

W8
0
 W8

2
 W8

3

W8
0
 W8

2

W8
0
 W8

1

W8
0

W8
0
 W8

2

W8
0

W8
0

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Figure ‎2.4: 8-point Decimation in Time Algorithm

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

34

In summary, the DIF and DIT algorithms calculate the same result, but by different

methods. In the DIF FFT, the output is calculated by splitting the output sequence

X(n) into odd and even indexed elements, while in DIT, FFT algorithms are obtained

by splitting the input sequence x(n) into odd and even indexed elements. FFT

reorders the data from normal to bit reversed order. This is shown in Table ‎2.1 [38,

48].

2.2.2 FFT Radices

For a 2
n
-point DFT, there are several possible ways of implementing the algorithm as

an FFT, using the butterfly method. These are Radix-2, Radix-4, Radix-8, and

Radix-16 and Split-Radix algorithms [49]. Based on the butterfly size, the FFT is

divided into a collection of smaller DFT points. Two points in Radix-2, four points

in Radix -4, sixteen points for Radix-16 and four points for Split-Radix. Figure ‎2.3

and Figure ‎2.4 shows an FFT implementation based on Radix-2. The FFT output is

calculated by using a number of 2-point DFT called a Butterfly. The minimum

number of point that the FFT is split into represents the radix. Radix-2 has the

Table ‎2.1: 8-Point Bit Reversed Order

Decimal Binary Bit reverse Decimal

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

35

smallest butterfly unit size, and is the most flexible method of implementing the FFT.

The total number of arithmetic operations can be reduced by using another radix, but

this increases the complexity of the architecture and reduces its flexibility [50].

In the Radix-4 algorithm, the N-point DFT is decomposed into four N/4-point DFTs,

each of which are then broken down into smaller point DFTs, as shown in Equation

(‎2.14).





















1

4/3

1-3N/4

N/2n

12/

4/

14/

0

1

0

)(Wx(n)

)()()()(

N

Nn

Kn
N

Kn
N

N

Nn

Kn
N

N

n

Kn
N

N

n

Kn
N

Wnx

WnxWnxWnxKX

(‎2.14)

According to the periodicity and symmetry properties of the twiddle factor, Equation

(‎2.14) can be rewritten as shown in Equation (‎2.15), where the summation is

performed over the index range from 0 to N/4-1. The data segment x(n) is changed to

meet the same range of Equation (‎2.14) to be x(n), x(n+N/4), x(n+N/2) and

x(n+3N/4), which also affects the twiddle factor.

W
N

nxj
N

nx

N
nxjnxKX

Kn
N

KK

K
N

n

)]
4

3
()()

2
()1(

)
4

()()([)(
14/

0



 




(‎2.15)

The twiddle factor in Equation (‎2.15) depends on N. By dividing K into four

subgroups, K= 4m, K= 4m+1, K= 4m+2, and K= 4m+3, where m = 0, 1, 2,,

N/4-1, the Radix-4 butterfly operation is represented by Equations (‎2.16), (‎2.17),

(‎2.18) and (‎2.19) [41, 51-52].

36

  




14/

0
4/)]

4

3
()

2
()

4
()([)4(

N

n

mn
NW

N
nx

N
nx

N
nxnxmX (‎2.16)

  




14/

0
4/)]

4

3
()

2
()

4
()([)14(

N

n

mn
N

n
NWW

N
njx

N
nx

N
njxnxmX (‎2.17)

  




14/

0
4/

2)]
4

3
()

2
()

4
()([)24(

N

n

mn
N

n
N WW

N
nx

N
nx

N
nxnxmX (‎2.18)

  




14/

0
4/

3)]
4

3
()

2
()

4
()([)34(

N

n

mn
N

n
N WW

N
njx

N
nx

N
njxnxmX (‎2.19)

The Split-Radix FFT is a combination of two FFT radices: Radix-2 and Radix-4.

Radix-2 is used to obtain the even DFT results of N inputs, whereby it is found that

in the Radix-2 DIF the computation of even samples is independently of odd

samples, while Radix-4 is used to compute the DFT of odd samples. To reduce the

number of computations, a Split Radix uses both Radix-2 and Radix-4

decomposition in the same FFT algorithm. The Split-Radix algorithm

is appropriate for software design, but has disadvantages for hardware design [43,

49].

The Radix-2 and Radix-4 implementations of the FFT are widely used in hardware

design due to their relative simplicity. Radix-8 has the advantage of fewer

multiplications and reduced memory access, resulting in lower power consumption,

but at the expense of a more complex butterfly element and control unit [49].

2.2.3 FFT Architectures

Two popular styles of hardware architecture are used to implement the FFT for

OFDM systems: the pipeline-based architecture, and the sequential architecture [53]

Implementation of the pipelined architecture requires more hardware resources than

the equivalent sequential architecture. The pipeline architecture uses a single

37

butterfly in each stage. It is not fully parallel. The fully parallel architecture is very

expensive as it needs N/2 butterflies in each stage. The sequential architecture uses a

single butterfly unit, with one or two memory units to store the results computed by

the butterfly, and a fixed value memory (or ROM) is required to store the twiddle

factor coefficients. In the sequential architecture, the butterfly unit is time shared

and thus the hardware cost of implementation is lower, but the throughput is reduced

accordingly [54].

Even assuming that a sequential architecture is chosen, there are variations possible

on the detailed implementation of the FFT processor, for example the choice of

adopting a single or a double memory. The memory is used to store input, output

and intermediate values calculated during computing the FFT. Single RAM offer

area more than two RAM design but slower in speed as it need double clocks to

complete each butterfly output [55]. A block diagram of a sequential architecture is

shown in Figure ‎2.5.

Figure ‎2.5: Sequential FFT Architecture Using Single Butterfly

DATA RAMs

Input,

Intermediate,

Output

Butterfly

Processer

ROMs

Twiddle

Factor

FSM

Address

Generator

38

Next, some pipeline architectures are introduced. The Radix-2 Multi-path Delay

Commutator (R2MDC) is a straightforward method of implementing the Radix-2

FFT algorithm using a pipelined architecture. The data stream is divided into two

parts. A delay line is used between stages in order to manage

the butterfly processing in the correct order, as shown in Figure ‎2.6 [56-57]. As

shown for an 8-point FFT, it is required a butterfly in each stage so that gives three

butterflies. To manage the orders of input samples to each Butterfly, a delay register

and a commutative switch are required, with system block separated by a one clock

period delay.

Another pipeline architecture called Radix-2 Single-path Delay Feedback (R2SDF)

stores one output of each butterfly in a feedback shift register. The block diagram of

R2SDF architecture is shown in Figure ‎2.7 [58].

Output

Output

Figure ‎2.6: 8-point R2MDC

C
o
m

m
u
ta

to
r

2T

bfly2

T

T

bfly2

C
o
m

m
u
ta

to
r

4T

bfly2

2T

Input

Stream

39

2.3 Coordinate Rotational Digital Computer (CORDIC)

The Coordinate Rotational Digital Computer (CORDIC) algorithm was proposed by

J.E. Volder [59] as a useful and flexible approach to evaluate mathematical (and

mainly trigonometric) functions. The CORDIC is capable of performing divisions,

square roots, trigonometric functions (cosine and sine), and inverse-trigonometric

functions (inverse tangent) [60]. The core implementation operations are based on

the rotation of a vector using only additions and shifts operation [61],

which makes CORDIC very suitable for simple hardware realisation for both ASIC

and FPGA implementations [62]. For implementation of the FFT and IFFT the

requirement to calculate sine and cosine values can be effectively performed by the

CORDIC instead of using a look-up table, or using some other series expansion

calculation of sine and cosine. Hence, the CORDIC is an important algorithm in the

context of FFTs and IFFTs.

The generic CORDIC (Figure ‎2.8) has three input ports, Xin, Yin, and Zin, and three

output ports, Xout, Yout and Zout. X and Y for input and output represent the vector in

two dimensions while Z represents an angle. CORDIC has two operating modes,

namely the rotation mode and the vectoring mode. In rotation mode, Xin, Yin is the

Figure ‎2.7: R2SDF Architecture

Input

Output

Radix-2

Butterfly

4T

Radix-2

Butterfly

2T

Radix-2

Butterfly

T

40

initial vector location in the Cartesian plane and Zin is the angle by which it requires

to be rotated. In vectoring mode, the Xin, Yin vector is rotated to the x-axis by

choosing rotations to drive the Yin value to zero.

In the FFT, the rotation mode CORDIC is used to implement the twiddle factor

multiplication, where this is equivalent to a rotation of a 2-D input vector by the

twiddle factor phase.

 CORDIC algorithms are very suitable for twiddle factor multiplication and an FFT

based on CORDIC can be constructed virtually free of multipliers [62]. In this

research, we will show in later chapters how the parallel CORDIC architecture has

been used to implement the multiplication within the FFT.

The CORDIC algorithm is based on the principles of two-dimensional geometry

[63], and was first published by Volder [59] in 1959 as a procedure for efficiently

implementing trigonometric functions, and was subsequently extended by Walther

[64] to compute other functions, including multiplication, division, square root, and

logarithmic and hyperbolic functions [65]. CORDIC is also capable of performing

polar-to-Cartesian and Cartesian-to-polar coordinate system conversions.

The method of CORDIC is to iterate through a set of progressively smaller vector

rotations towards an arbitrary angle. This is achieved using a series of shift and add

operations, which can be implemented in hardware at low cost [66]. The CORDIC

algorithm is therefore very suitable for implementation on FPGAs [67].

CORDIC

Xin

Yin

Zin

Xout

Yout

Zout

Figure ‎2.8: General CORDIC Block Diagram

41

The CORDIC technique can play an important role in OFDM systems and can be

found in a number of places. For example it can be used to

determine and compensate for frequency offset, on calculate the division in the

channel estimation stage. The linear vectoring mode is used to calculate the division

in the channel estimation stage and as progressed in this document it can perform

IFFT and FFT butterfly computations to modulate and demodulate data onto the

OFDM subcarriers [68].

2.3.1 CORDIC Algorithm

The CORDIC algorithm has two modes of operation: the Rotation and Vectoring

modes. It can also be used in three different coordinate systems: linear, circular, and

hyperbolic [60]. In this thesis Rotation mode circular coordinate CORDIC is used to

calculate Twiddle factor multiplication.

The CORDIC algorithm is an iterative procedure requiring simple arithmetic

operations. Additions and binary shifting are the main operations required to

implement the algorithm. Thus, it has no direct multiplications (other than the final

scaling stage multiplier), nor does it have explicit square roots or divides [69].

The CORDIC algorithm achieves vector rotation by an arbitrary angle using a series

of m micro-rotations by basic angles [70]. At every iteration (indexed by i, where i =

0,‎1,‎2…‎m-1), the vector is rotated by the angle arctan(2
-i
). A small angular error

remains at the end of the series of micro-rotations, but this approaches zero as m 

∞‎[71].

In Rotation mode, the original vector and desired angle of rotation are provided as

inputs to the CORDIC processor, which then rotates the original vector through the

specified angle to a new position. This forms the primary output of the CORDIC

unit.

In Vectoring mode, the CORDIC processor rotates the input vector towards the X

axis. The magnitude and angular position of the original vector are computed, and

these form the outputs.

To demonstrate CORDIC, consider the example depicted in Figure ‎2.9. Here, the

vector V1 (X1,Y1) is rotated by‎an‎angle‎Ф,‎from‎its‎original‎position‎α,‎to‎obtain‎the‎

42

new vector V2 (X2,Y2). To achieve this, the total rotation is divided to several micro-

rotations, each of the fixed angle arctan(2
-i
). These angles of rotation are stored in a

ROM, and subtracted from or added to the accumulated angle‎of‎rotation,‎θ,‎through‎

the series of rotations [61, 72]. The angular inputs and outputs from the CORDIC

unit are denoted by the symbol Z.

The new vector position can be calculated using trigonometry, as in Equations

(‎2.20), (‎2.21), (‎2.22), (‎2.23), (‎2.24) and (‎2.25).

)sinsincos(cos)cos(1   rrX i (‎2.20)

  sin.cos.1 YXX iii  (‎2.21)

)sincoscos(sin)sin(1   rrY i (‎2.22)

  sin.cos.1 XYY iii  (‎2.23)

The key of the CORDIC algorithm is to restrict rotations to angles of ϕ, where

tan-1 ϕ‎=‎2-i. The tan function is generated due to taking cosϕ‎‎as common as shown

in Equations below.

α

Figure ‎2.9 : Vector Rotation

x

y

Ф

V1 (X1 , Y1)

V2 (X2 ,Y2)

43

)2.(cos1
i

iii YXX


   (‎2.24)

)2.(cos1
i

iii XYY


   (‎2.25)

By omitting the cosϕ the computation by simple and this can be equalized by

multiplying the final output value by scale value to make the rotation correct.

The value di is the direction of rotation, chosen to be either +1 or -1 as appropriate

to the required direction of rotation.

)2arctan.(1
i

iii dZZ


  (‎2.28)

The CORDIC equations can be expressed in a generalised form applicable to any of

the three coordinate systems, as given by Equations (‎2.30), (‎2.31) and (‎2.32). Note

that the values of e and µ are chosen according to the desired coordinate system.

).2.(1 YdXX
ii

iii


   (‎2.30)

)2..(1
i

iiii dYXX


  (‎2.26)

)2..(1
i

iiii dXYY


  (‎2.27)














 0 Z if 1

0Z if 1

i

i

d i (‎2.29)

)2(1 XdYY i
i

iii


  (‎2.31)

 edZZ
i

iii 1 (‎2.32)

44

For circular coordinates:

 2tan , 1 1 ii
e

 (‎2.33)

For linear coordinates:

 2 , 0 ii
eu  (‎2.34)

For hyperbolic coordinates:

 2tanh , 1 1 ii
e

 (‎2.35)

In this thesis only one coordinate system of CORDIC will be used, namely the

circular coordinates – hence no further review of hyperbolic and linear will be

presented.

2.3.2 CORDIC Errors

The CORDIC algorithm is subject to two sources of error, and these can be analysed

mathematically [73]. The first is due to the finite number of CORDIC iterations,

which leave a residual angular error after the last iteration; this error is referred to as

the (angle) approximation error. The second source of error is the finite-precision

arithmetic used to represent the signals, which results in a conventional rounding

error [73]. These two errors are related given that whereas each additional rotation

will input more angle accuracy, each angle is represented to a finite number of binary

digits, and as such introduced a low level of round-off noise.

45

2.3.3 CORDIC Based FFT

The FFT algorithm can be implemented using the CORDIC technique to calculate

the butterfly processor outputs, rather than the direct implementation of the butterfly

processor using appropriate arithmetic and stored cosine and sine values [74]. To

explain this, the Radix-2 butterfly decimation in frequency (DIF) processor is

considered below.

One of the motivations for using the CORDIC method is that, for large FFT sizes,

considerable memory is required for storing the twiddle factors. For every

multiplication by a twiddle factor, the multipliers need two values to be stored, one

for the real term and the other for the imaginary term of the twiddle factor. To avoid

the need for large amounts of memory in larger FFTs, a complex multiplier based on

the CORDIC algorithm can be employed [75]. Although this thesis has a focus on

implementing FFTs on FPGAs (which invariably has available memory), there are

also other semi-custom technologies (from companies like e-ASIC [76]) which have

no direct block RAM available, and either function with distributed memory, or

would favour CORDIC type strategies to calculate twiddle factors on-line rather than

storing in memory.

The Radix-2 butterfly processor is shown in Figure ‎2.10, where Ar + jAi, and Br + jBi,

are the two complex inputs to the butterfly; and Cr + jCi, and Dr + jDi, are the two

complex outputs of the butterfly; Wr + jWi is the twiddle factor; and Xr + jXi is the

output of the subtractor.

To perform multiplication by the twiddle factor in real time, two ROMs are used to

store the twiddle factors, while four multipliers and two adders are required to

perform the arithmetic.

In an FFT processor based on CORDIC, the multiplication of Xr + jXi by the

twiddle factor can be implemented using CORDIC. The twiddle factor multiplication

is the rotation of a 2-D vector (Xr + jXi) by the phase of the twiddle factor, which is

given by arctan (Wi /Wr) [62].

46

In the FFT, the twiddle factor multiplication by a complex vector can be expressed in

matrix form as shown in Equation (‎2.36), where X and W represent two complex

vectors, of which W is‎the‎twiddle‎factor,‎and‎θ‎is‎the‎phase‎of‎the‎twiddle‎factor.

CORDIC can implement Equation (‎2.36) in the usual way, by implementing a series

of rotations of fixed angles‎to‎accomplish‎the‎overall‎rotation‎of‎the‎angle‎θ,‎which‎

corresponds to the phase of the twiddle factor. The angle θ is divided to sub-angles

θq. Sq represents the direction of summation as either addition or subtraction. The

substitution of Equation (‎2.39) into (‎2.37) gives Equation (‎2.38). For simplicity the

multiplication of the cosine term is replaced by 0.6073 constant as shown in

Equation (‎2.38) assuming‎the‎number‎of‎iterations‎are‎∞.‎‎For‎iterations‎less‎than‎‎∞‎

which is the practical case this constant can be calculated [77].

 






 














cossin

sincos

X

X
WX

im

re
 (‎2.36)

  








 










 1tan

tan1
cos

0 




q

qm

q
q

im

re

X

X
WX (‎2.37)

  











 














m

q
q

q

q
q

im

re

S

S

X

X
WX

0 12

21
6073.0 (‎2.38)

Ar + jAi

Br + jBi

Xr + jXi

Wr + jWi

Dr + jDi

Cr + jCi

Figure ‎2.10: Radix-2 Butterfly Flow graph

-1

47

2.4 The Fundamental DSP System - Definitions

The general block diagram of a digital signal processing (DSP) system is shown in

Figure ‎2.11. In this section we will review some of the terminology used later in the

thesis (on sampling rates, clock rates, quantisation, throughput etc). The signal is

converted to a digital signal using an analogue-to-digital (A/D) converter. It is

processed in a DSP system, with an FPGA or DSP processor, before being

converted back to an analogue signal [78].

The A/D converter includes two steps: sampling and quantisation. In the sampling

step, the analogue signal is sampled every Ts seconds. The sampling rate fs is

defined in Equation ‎ (‎2.40) and expressed in units of Hertz (or samples per second).

T

f
s

s

1
 (‎2.40)

Quantisation is the process of representing the sampled value by B-bits.

An appropriate choice of sampling rate is determined by the Nyquist sampling

theorem. When implementing a DSP system, the designer needs to ensure that

)2arctan(..
00

q
m

q
q

m

q
qq SS





  (‎2.39)

Figure ‎2.11 : Basic DSP System

Input
Output

A/D Converter DSP System D/A Converter

48

samples are processed at the correct sampling rate, in order to implement the

algorithm accurately [78-79].

Another term that represents speed is throughput. This refers to the amount of data

that is processed per clock cycle, and is expressed in samples per second [80]. The

term‎“throughput”‎is‎similar‎to‎“sampling‎rate”,‎but‎is‎usually‎used‎when‎referring‎to‎

the processing undertaken by a particular component of a DSP system. Finally, the

clock rate is the operating speed of the system implementation, which may be greater

than the sampling rate [78].

The best way to reduce the area of a design is to roll up the pipeline area to share

logic resources. Sharing logic resources often requires special control circuitry. In the

FFT design, single butterfly has been pipelined and shared many times to complete

the calculation. Pipeline technique is used to increase throughput and achieve

maximum performance. When the loop is unrolled to create a pipeline, more

resource area is required to hold intermediate values and replicate computational

structures that need to run in parallel [80].

When implementing an FFT processor on FPGA, a common approach is to share a

single butterfly structure‎ over‎ time,‎ hence‎ considering‎ the‎ “processor”‎ to‎ be‎ a‎

butterfly,‎ then‎ sequentially‎ use‎ the‎ “processor”‎ to‎ implement‎ each‎ butterfly‎ in‎ the‎

overall FFT. Additionally in this sequential structure, a two-port RAM is used to

store the intermediate data computed , and a memory is required to store the twiddle

factors (if not being calculated), and an address generator and control logic are

required. For computing a large number of point FFT , it is clear that the area or

cost of the single-butterfly architecture (i.e. a sequential implementation)

is significantly lower than a fully parallel implementation [81], albeit it will have a

lower throughput.

In the sequential FFT architecture design, N/2 butterfly operations are included at

every stage, and one butterfly unit can be used to perform all of them sequentially

[82]. This lead to increase the computation time (latency) required for the FFT input

vector. In this cause the overall throughput of the design is decreased.

49

2.5 FPGA Design Steps

The FPGA design steps are shown in Figure ‎2.12. At the Design Entry stage in an

FPGA implementation, the designer creates design files using a schematic editor, or

a Hardware Description Language (normally Verilog or VHDL). In this work, design

of an FFT has been undertaken in VHDL using the Modelsim software development

tool, while Xilinx block based System Generator has been used to develop the

OFDM design [7, 9]. The System Generator allows designs to be made based on

configuring of parameterisable blocks to implement DSP components such as filters,

FFTs and so on, as well as simple elements such as multipliers and adders. After the

design entry, the next step is synthesis. In this step, the VHDL and System Generator

files are analysed and descriptions created at a lower level of logic abstraction, using

a library of primitives. The XST tool from Xilinx has been used for this stage [83].

In the Partition stage, a particular physical element is assigned to each

logic element. The Place level maps logic into specific locations in the target FPGA

chip. At the Route level are the connections of the mapped logic. In the

programming file generation step, a bit-stream file is generated to program the

device. The subsequent device programming step downloads the bit-stream file to the

FPGA, thus configuring it to implement the designed circuit.

50

D
esig

n
 Im

p
lem

en
tatio

n

Design

Verification

Design

Entry

Design

Synthesis

Partition

Place

Route

Program

Generation

Device

Programming

Functional

Simulation

Area and
Static timing

Reports

Timing

Simulation

In-circuit

Verification

Back

Annotation

Figure ‎2.12: FPGA Design Step

51

Design verification can be undertaken via simulation, and simulation can be done at

different levels. Various reports are generated to verify implementation results, such

as maximum frequency and resource utilisation. The translate, map, and place and

route processes are commonly referred to as design implementation [84-85]. The

classic Xilinx design flow above was the process used in this thesis to generate the

results for many of the different architectures.

2.5.1 Virtex 5 Technology

The Virtex 5 FPGA family from Xilinx [86] has many advanced features, and

different variations of the device are offered. These features include multiplier-adder

blocks‎ (the‎ so‎ called‎ “DSP48”)‎ which‎ is‎ a‎ pipelinable‎ unit‎ capable‎ of‎ being‎

configured for operation at the FPGA clock rate, performing a multiply-accumulate

(MAC) on 25 bit and 18 bit input data (the multiplier is 25 x 18 bits). The LX family

has been optimized for high-performance logic. The LXT has been optimized for

high-performance logic with low-power serial connectivity. The SXT has been

optimized for DSP and memory-intensive applications with low-power serial

connectivity.

The current Xilinx Virtex 5 family can be clocked at 550 MHz [78] and consists of a

classic FPGA fabric of gates, flip-flops, LUT (look up tables) and arithmetic blocks

(DSP48s). The basic logic elements and Configurable Logic Block of Virtex 5 are

illustrated in Figure ‎2.13 and Figure ‎2.14. The basic logic elements consist of a 6-input

look-up table (LUT) that can be configured as a small RAM, called a distributed

RAM, a configurable flip-flop/latch, and multiplexers to control the combinational

logic output and the registered output (flip-flop/latch input). Fast carry logic is

included to perform special logic and arithmetic functions using the slices. The slices

consist of two basic elements grouped together, with each pair of two slices grouped

to create Configurable Logic Block (CLB). The CLB is connected to programmable

routing resources by a switch matrix. Identical CLBs are tiled in columns and rows

in the device [87].

52

The block RAM is a true dual-port RAM. In this case both ports can access any

memory location at any time. The dual port memory stores up to 36 Kbits of data and

Figure ‎2.14: Virtex 5 Configurable Logic Block

CIN CIN

COUT COUT

Switch

Matrix

Memory

Slice (0)

Slice M

Memory

Slice (1)

Slice L

CLB

Cin

Figure ‎2.13: Basic Logic Element of Virtex 5 FPGA

COUT

6

Carry

Logic

LUT/RAM

FF/LAT

53

can be configured as either two independent 18 kb RAMs or one 36 kb RAM. Block

RAMs are placed in columns, and the total amount of block RAM memory depends

on the size of the device [88].

The Virtex 5 family introduced the DSP48E slice, a schematic of which is shown in

Figure ‎2.15. The new DSP slice increased the multiplier input width to 25 x 18 bits,

which compares to 18 x 18 bits in Virtex-4 devices. This offers more flexibility and

easier implementation of DSP algorithms.

2.6 Summary

In this chapter we have reviewed the core computation required of the FFT and

introduced the FPGA architecture and CORDIC. In order to now implement

efficient and high speed FFTs we need critically evaluate the different algorithms,

arithmetic architectures, and FPGA structures in order to aim to derive the most

efficient implementation that will use resources optimally and where possible

implement an FFT that is applicable for performing OFDM on the various radio

standards mentioned in earlier chapters.

Figure ‎2.15:Xilnx Virtex 5 Family DSP48E Slice[1]

54

3 FPGA Implementations of High

Speed FFTs

This chapter reviews and evaluates some relevant and recent work in the areas of

FPGA implementation of FFT and IFFT algorithms, and OFDM for wireless

networks on FPGAs. In Section ‎3.1, a collection of FFT implementations optimised

for area is presented. While Section ‎3.2 presents FFT optimised for speed, Section

‎3.3 focuses on OFDM transceivers for different wireless standards. Section ‎3.4

summarises this chapter.

3.1 FFT Optimised For Area

In this section, FFTs that use minimum resource area are presented. This work is

based on a sequential architecture FFT that relies on a single butterfly.

Xin Xiao [61] presents an FFT implementation based on CORDIC which reduces the

memory required in an FFT architecture by eliminating the memory required to store

the CORDIC angles . The design is applicable for FFT processors of any radix. The

CORDIC algorithm is designed to eliminate the need to store the twiddle factor

values or angles in memories, and instead generates the twiddle angles successively

55

using an accumulator. In this technique, the memory requirements of the whole FFT

are reduced by more than 20%. The angle of CORDIC that is stored in ROM is

generated by a simple circuit to save resource area, but the design still requires

ROMs to store input and output data.

The Rotation mode CORDIC operation for an iteration i is summarised by Equations

(‎3.1), (‎3.2), (‎3.3) and (‎3.4), where (xi, yi) is the initial location of the vector in

Cartesian coordinates, and (xi+1, yi+1) is the new location after a rotation through the

angle arctan(2
-i
). For each iteration, the direction of rotation depends on the sign of

di in Equation (‎3.3). The angle Zi+1 is the angle after the iteration, as stated in

Equation (‎3.4).

)2(1

i
iiii dyxx


  (‎3.1)

)2(

1

i
iiii dxyy 


 (‎3.2)

 














0z if 1

0z if 1

i

i

d i (‎3.3)

  2arctan.1

i
iii dzz


  (‎3.4)

56

An interesting feature of this work is the method of generating the twiddle factor

angles. The angle generator circuit is implemented by a circuit composed of an

accumulator, a register and a latch, as shown in Figure ‎3.1.‎ The‎ 2π/N is the

fundamental angle feed to the adder, where N is the FFT size. The sequential

addition of the fundamental CORDIC angle is stored in flip flop registers and this

generates all possible angles required by CORDIC to implement the multiplication

by the twiddle factors. At each stage of the FFT computation, the generated angle

streams need to change. The latch and its control signal are responsible for enabling

and disabling the adder output based on the FFT stage.

Bingrui Wang [45] focuses on a 64-point Radix-2 FFT processor, implemented on

FPGA and targeted at WLAN (Wireless Local Area Network) applications.

The design uses a DIF algorithm, and succeeds in reducing the number of

multiplications to three instead of four. The complex multiplication by the twiddle

factor requires four real multipliers. This number is reduced to three by using the

simplification shown below. To illustrate the outputs of this paper, Equations (‎3.5)

and (‎3.6) represent two complex numbers which, in the FFT algorithm, represent the

data sample (z1) being multiplied by the twiddle factor (z2). By using factorization,

the number of real multiplications is reduced from four to three as shown in

Equations (‎3.7), (‎3.8) and (‎3.9). This simplification can be easily implemented in

hardware.

Figure ‎3.1 : Angle Generator for CORDIC

Angle

Control

CLK

2π/N Register Latch

57

 111 jyxz  (‎3.5)

 222 jyxz  (‎3.6)

 jyxzzz  21 (‎3.7)

Equations (‎3.8) and (‎3.9) are holding the real and imaginary parts of the

multiplication. The first terms of both these equations are identical, and the result

can be obtained by one multiplier, therefore reducing the number of to three. A

pipelined FFT architecture is used to improve the throughput of the design. The

architecture consists of four units: a control unit, a butterfly unit, two dual port

RAMs, and an address generation unit. Verilog hardware description language is

used within the Quartus II development environment to create the design, which is

targeted‎at‎ the‎EP2C70F896C6‎part‎ from‎Altera’s‎Cyclone‎ II‎ family.‎The‎ resource‎

utilisation of the design is summarised in Table ‎3.1.

The novel Radix-2 FFT processor based on FPGA meets the requirements of the

802.11g WLAN standard. The design has a low clock frequency, and occupies a

large amount of resources but it is using three multipliers instead of four for each

complex multiplication.

)11(2)22(1 yxyyxxx  (‎3.8)

)11(2)22(1 yxxyxxy  (‎3.9)

Table ‎3.1: Resource Utilisation of Pipelined 64-point FFT on Cyclone
II Device

total logic 562

total pins 563

total embedded multipliers 48

Clock frequency 31.69 MHz

58

The work of J. Viejo, reported in [89], is a methodological comparison of FFT/IFFT

implementations on FPGA. Three methods are used: VHDL coding (VC), System-

level tools at RT level (STR), and System-level tools at macro block level (STM).

The first method is the VHDL coding method, and an FFT is designed with Radix-8

butterfly, RAMs, ROMs and control unit. In this method only VHDL code is used to

create the design. The verification of the design is carried out using a combination of

Simulink and Modelsim, using the Black Box facility of the Xilinx System Generator

tool. Using the system levels tools at RT level, the System Generator blockset from

Xilinx and VHDL code are jointly used to design the FFT/IFFT. In the last method,

only System Generator's FFT block is used. In this methodology, it is only necessary

to design an interface that adapts the input/output signals of the FFT block to the

module interface. A comparison of accuracy with the number of clock cycles

required is shown in Table ‎3.2. As shown in the table below the implementation of

64 point FFT with 26 bits data (13 bits for the real part and13 bits for the imaginary

one) are tested to find which better accuracy with different style of implementation.

These results show that the VC and STR methods are more accurate than the STM

method. However, the STM method requires the fewest clock cycles to complete the

FFT calculation. This is because Xilinx implement the FFT architecture with

minimum clock cycles. The designs were synthesised and implemented using Xilinx

ISE, targeting a Virtex-II XC2V2000 FPGA, and the results are shown in Table ‎3.3.

Table ‎3.2: Mean Error for VC, STR, STM Methods

 VC STR STM

Clock Cycles 291 291 262

Mean Error 1.0% 1.0% 2.1%

59

The hardware implementation results show that VC and STR require about 4% fewer

slices relative to STM. STM achieves the highest maximum operating frequency

(122 MHz compared to 40 MHz for VC and STR). Based on this, VHDL code design

can offer lower resource area while depending on Xilinx core can meet the high

speed.

In the work of T.Y. Sung [90], an OFDM system is developed which supports FFT

ranges from 2048 to 8192, in accordance with European digital video/audio

broadcasting standards [77, 91]. In this work, 2048, 4096 and 8192 point FFT/IFFT

processors are designed. The author presents an efficient, CORDIC-based Split-

Radix FFT architecture suitable for the OFDM system under consideration. The

processor is shown to perform an 8192-point FFT/IFFT every 138 ms, and a 2048-

point FFT/IFFT every 34.5 ms, which exceeds the orthogonal frequency

division multiplexing symbol rate.

A Split-Radix butterfly processor is used for the FFT calculation, and CORDIC is

used to perform multiplication. This technique reduces the ROM size required for

storing the twiddle factors. Figure ‎3.2 shows the proposed FFT architecture. To avoid

conventional multiplier in the butterfly a rotational mode CORDIC is used and the

required angles for CORDIC are generated to reduce the ROM required by the

Table ‎3.3: Resource Utilisation on Virtex-II XC2V2000 FPGA for
VC, STR, STM Methods

Parameters VC STR STM

Slices 1187 (23%) 1188 (23%) 1393 (27%)

Flip Flops 624 (6%) 624 (6%) 2041 (19%)

4 Input LUT 1984 (19%) 2030 (19%) 1380 (13%)

Bonded IOBs 58 (33%) 58 (33%) 57 (33%)

Block RAMs 2 (5%) 4 (10%) 3 (7%)

MULT18x18 12 (30%) 4 (10%) 7 (17%)

GCLKs 1 (6%) 1 (6%) 1 (6%)

Maximum operation

frequency
39.53 MHz 40.15 MHz 122.65 MHz

60

design. In this paper the author also introduced a modified pipelined CORDIC

arithmetic unit. The number of iterations or stages of the CORDIC processor is

determined to be 12.

In Fangming Liu [47], a 32-point, Radix-2 DIT FFT is introduced and a comparison

made between three different butterfly implementations. The first is

the traditional butterfly unit with four multipliers for the complex multiply; the

second uses an alternative method of calculating the result it is similar to one used in

[45], and has three multipliers; while the third uses only two hardware multipliers,

taking two clock cycles to implement the four-multiplier operation. A recursive

architecture is used, which contains the butterfly unit, data storage unit and address

generator unit. The design is coded in VHDL and synthesized using Altera’s‎Quartus‎

II tools.

The 32-point FFT is designed with 8-bit precision using only 280 logic elements, and

can be clocked at a frequency of 100 MHz. The implemented FFT architecture is

shown in Figure ‎3.3.

Figure ‎3.2: Sequential FFT Architecture Based on CORDIC with Split-Radix

DATA RAMs

Input,

Intermediate,

Output

CORDIC

Split Radix

Angles

Generator

Unite

FSM

Address

Generator

61

3.2 FFT Optimised For Speed

In this section, FFT based on pipelined architectures are presented. The pipelined

architecture can achieve the FFT calculation faster than the sequential architecture

due to using a butterfly in each stage of calculation instead of using only one

butterfly for all stages.

K. Harikrishna [32] introduces an FFT and IFFT based on the Radix-2
2
 butterfly

processor. The design uses an R2
2
SDF Single path Delay Feedback pipelined

architecture. The author makes a hardware utilisation comparison for different

architectures, as shown in Table ‎3.4.

Figure ‎3.3 : Recursive FFT Architecture

Address Generation Unit

Butterfly Unit

Storage

RAM

Unit

Twiddle

Factor

ROM

Result

Storage

RAM

Data

Input

Data

Output

62

Verilog code for an R2
2
 SDF decimation in frequency 1024-point FFT/IFFT has

been written. The design is targeted at a Spartan 3 FPGA. The resources occupied by

the design are shown in Table ‎3.5. The maximum frequency for the design is 92.366

MHz. In this work, the resource area occupied by the design is high compared to

Xilinx or the FFT introduced in this thesis.

The contribution of Zahra Haddad [36] is to introduce a design for a 1024-point

Radix-2 DIF FFT. The FFT processor is shown to perform the FFT calculation in

5120 clock cycles. Of interest in the design is the fact that it uses one block dual port

RAM, and completes the FFT calculation in 5120 clock cycles instead of 10240.

The block RAM stores the calculated values in complex form, with 16-bits for real

and 16-bits for imaginary (thus the RAM is 32-bit precision). The design is targeted

at the Virtex-4 LX25 FPGA from Xilinx. The resources occupied by the design are

shown in Table ‎3.6. Notably the design uses large numbers of block RAMs and

Table ‎3.5: Resources Occupied by 1024 R2
2
 SDF on Spartan 3

Logic Utilization Used

No. of Slices 3155

No. of Slice Flip Flops 1514

No. of 4 input LUTs 5916

No. of bonded IOBs 32

No. of Mult18x18s 16

No. of GCLKs 1

Table ‎3.4: FFT Architecture Requirements for multiplications, additions,
memory and controls

Parameters Multiplier Adder Memory Control

R2MDC 2(log4N-1) 4log4 N 3N/2 -2 Simple

R2SDF 2(log4N-1) 4log4 N N-1 Simple

R4SDF log4N-1 8log4 N N-1 Medium

R4MDC 3(log4N-1) 8log4 N 5N/2 -4 Simple

R4SDC log4N-1 3log4 N 2N-2 Complex

R2
2
SDF log4N-1 4log4 N N-1 Simple

63

DSP48 multipliers compared to the designs introduced in this thesis and the Xilinx

FFT core.

 Abdullah, S. S [92], A 1024-point Radix-2 DIF FFT based on the CORDIC

processor is presented. It is pipelined, single path delay feedback architecture,

featuring a simple controller and efficient pipelining. The design has no multipliers

because it is based on CORDIC, and can reach a speed of up to 198 MHz.

In the work of Sheng Li, presented in [51], a 1024-point Radix-4 DIF FFT processor

is implemented on a Xilinx Virtex II pro 70 FPGA. VHDL has been used in the

development of the core. The design is divided into five pipelined stages, and each

stage includes a butterfly and RAM memory. The design uses 30 block RAMs and

12 multipliers, and its maximum frequency is 164 MHz.

Also of interest is an FFT architecture for Radix-2 DIF which can produce two FFT

transform samples every clock cycle by Christos Meletis in [82]. The architecture

requires Nlog2N multipliers, 2Nlog2N complex adders, and N+2log2 (N-2) delay

elements to compute an N-point FFT in N/2 clock cycles. A block diagram of the

suggested pipelined architecture is shown in Figure ‎3.4. Each stage includes a

butterfly and two shuffling units which are responsible for managing the delays

required between stages. These delays work as pipelined registers as well.

Table ‎3.6: Resource Utilisation of 1024-point Radix-2 FFT on Virtex-

4 LX25 FPGA

Logic Utilization Used

Number of Slice Flip Flops 38

Number of occupied Slices 2472

Number of 4 input LUTs 10841

Number used as 32x1 RAMs 2048

Number of DSP48s 10

64

3.3 OFDM Transceiver Design

In this section, OFDM transceiver design based on FPGA are presented. Many

wireless standard use OFDM as modulation and multiplexing technique.

The work of Mª José Canet in [93] describes the design and implementation of an

intermediate frequency (IF) OFDM transceiver based on FPGA. The Xilinx

XC3S400-4 Spartan III board is used in the design, which supports Hiperlan 2 and

IEEE802.11a/g WLAN standards. This design generates baseband OFDM symbols

with a 20MHz sampling rate, and the baseband OFDM symbol is upconverted to a

120 MHz sampling rate. The upconverter comprises two interpolating filters of

factors 2 and 3, and a quadrature mixer. At the receiver side, the downconverter

consists of a mixer and decimator. A decimation by 3 from a sampling rate of

50MHz is used obtain a 20MHz baseband OFDM symbol. The design supports

several modulation schemes, covering BPSK to 64-QAM. The baseband OFDM

symbol is built using a 64-point IFFT, and 16 samples of cyclic prefix. The

FFT/IFFT processors consist of 3 dual port memories and Radix-2 DIF butterfly

processor. Two of the dual port memories are used to store the FFT/IFFT input,

intermediate and output data, while the other memory stores the twiddle factor

coefficients.

Figure ‎3.4 : Pipelined FFT Architecture for two outputs for each clock

Input Data

Bfly1

Shuffling

Multiplexer

Bfly2

Shuffling

BflyN

Output Data

Demultiplexer

65

An autocorrelation circuit is used for frame detection: the received signal is

correlated with a version of itself delayed by 16 samples. OFDM is sensitive to

carrier frequency offset (CFO). The estimated frequency offset calculated by

Equation (‎3.10) is used to remove the CFO:

TN

R
f

c

o
...2

)(




 (‎3.10)

– where T is the sampling period and Nc is 16. The angle R is calculated by a circular

vectoring mode CORDIC processor.

Channel estimation is performed in the frequency domain. The design is good for

FPGA implementation, because the resource cost is low (as shown in Table ‎3.7), and

it could be updated to other standards.

In work by Garcia, J. Q. [30], the authors present an FPGA design of an OFDM

modulator for IEEE 802.11a standards. Xilinx System Generator is used as a design

tool. The mapping circuit offers BPSK, QPSK, 16-QAM and 64-QAM modulations,

and is realised by a number of memories which store the constellation of each

scheme. Two multiplexers are used for selection between different modulation

Table ‎3.7: Resource Utilisation of an OFDM transceiver for
IEEE802.11a/g WLAN standards

Circuits Slices BRAMs Multipliers

Up converter 273 0 0

Down converter 140 0 0

Mapping/Demapping 82 0 0

FFT/IFFT 340 3 3

Autocorrelator 431 0 9

CORDIC 363 0 2

Channel estimation 85 0 0

Control 95 1 0

66

schemes one multiplexer for real and the other for imaginary The output is stored in

two First In First Out (FIFO) buffers, and an Interleaver circuit is

used to combine data, pilots and zero pads (a multiplexer and a counter are

used to construct the interleaver). A Radix-4 IFFT and a couple of FIFOs are used to

generate the OFDM symbol. The resources occupied by the design are

summarised by Table ‎3.8. An advantage of the design is that it could be updated to

other standards.

The work reported by Garcia, J. Q. [94] is dedicated to the physical layer of the IEEE

802.16 OFDM modulator. It is smaller than the work in [30], and provides an update

to meet the requirements of IEEE 802.16. The resources occupied by the design are

summarised in Table ‎3.9. The design has used more resources than the

previous design [30] due to the FFT size, which is 256-point for IEEE 802.16.

Table ‎3.8: Resource Utilisation of OFDM Modulator for IEEE 802.11a

standards

Parameter Used

Number of Slices 1678

Number of Slice Flip Flops 2353

Number of 4 input LUTs 2814

Number of bonded IOBs 29

Number of BRAMs 12

Number of GCLKs 1

Table ‎3.9: Resource Utilisation of OFDM Modulator for IEEE 802.16

standards

Parameter Used

Number of Slices 2614

Number of Slice Flip Flops 3566

Number of 4 input LUTs 4304

Number of bonded IOBs 29

Number of BRAMs 12

Number of GCLKs 1

67

In Xu, Jinsong [95], a Multi Band MB-OFDM is part of the physical layer of

Wireless Personal Area Network (WPAN) IEEE 802.15.3a. Work is presented on

the design and implementation of a MB-OFDM transmitter on FPGA for IEEE

802.15.3a. The VHDL language is been used to implement the design on a Xilinx

Virtex 2 FPGA. The transmitter chain consists of scrambler, encoder, and puncture

block; bit interleaving, QPSK and IFFT. A Radix-2 DIT butterfly processor is

used in the FFT core. The multiplication is implemented using the CORDIC

algorithm. A summary of the resource utilisation is given in Table ‎3.10, showing that

the design is relatively expensive as it use large number of slices, flip flops, look up

tables and multipliers.

The work of Aifeng Ren presented in [96] reports on the design of an OFDM

transceiver based on FPGA. Intellectual property (IP) cores from Altera have been

used to realise the design, which focuses on the baseband structure of OFDM. The

paper describes different types of Forward Error Correction (FEC) IP cores from

Altera, including the Reed-Solomon encoder/decoder,Convolutional Encoder/Viterbi

Decoder, and Turbo encoder/decoder. The performances of the turbo encode/decode

IP core is shown in Table ‎3.11.

Table ‎3.10: Resource Utilisation of an OFDM Modulator for IEEE

802.15.3a standards

Parameters Used

Number of Slices 2885

Number of Flip Flops 3694

Number of 4 in LUTs 4811

Number of GCLKs 1

Number of DSP48s 12

68

For the interleaver / deinterleaver section of the design, the convolutional

interleaver/Deinterleaver provides reduced delay and lower memory usage compared

to the block interleaver/deinterleaver. A performance comparison of the constellation

mapper/demapper IP-core is also made, and the results generated using Quartus II

8.0 software targeting the EP1C20F400C7 device is as shown in Table ‎3.12. A

Radix-4 DIF design is used for the IFFT transmitter and FFT receiver. The

performance characteristics of the FFT IP core targeted at two different FPGA

devices are given in Table ‎3.13. The proposed architectures are suitable for rapid

design of fourth generation wireless communication devices.

Table ‎3.11: Resource Utilisation of Forward Error Correction using
Altera IP

Device
Logic Elements

(LES)

Memory

(Bits)

Frequency

(MHz)

EP1S10F780C6 7517 73216 95

EP1C20F400C7 7517 73216 83

Table ‎3.12: Resource Utilisation of Constellation Mapper/De-

mapper IP Core from Altera

Demodulation

Scheme

Decoding

Scheme

Eb/No

(dB)

Logic

Elements

(LEs)

Frequency

(MHz)

BPSK
Binary

Decoding
15 347 274.53

8-PSK
User-

Defined
15 452 256.87

16-QAM
Gray

Decoding
15 376 245.22

256-QAM
User-

Defined
15 413 228.50

69

The work described by Manavi, F. [97] is the development of an OFDM modem for

the IEEE 802.11a standard, based on FPGA. A synchronization circuit

for packet detection and time synchronization is created. The design process

involves a number of steps. Firstly, a floating-point model is designed using Cadence

Signal Processing Worksystem (SPW). The floating-point model is then

transformed to a fixed-point model in SPW. Finally, the fixed-point blocks are

replaced with Hardware Design System (HDS) blocks, from which VHDL code can

be generated automatically.

The resources required for the transmitter and receiver are shown in Table ‎3.14. For

the synchronizer circuit, the occupied resources are shown in Table ‎3.15. Xilinx

Virtex 2 is used to target the design.

This work represents rapid prototyping of the OFDM algorithm. The design is

modelled in floating and fixed point, and meets the requirements of the IEEE

802.11a standard.

Table ‎3.13: Radix-4 FFT IP Function from Altera

Device Points
Logic

Elements

Frequency

(MHz)

Clock

Cycle

Count

Transform

Time (us)

EP1S10F780C6 512 4510 255.62 512 1.03

EP1C20F400C7 512 4671 243.18 512 2.0

Table ‎3.14: Transmitter and Receiver Resource Utilisation for OFDM

modem for IEEE 802.11a standard

 Slices RAM Blocks Total Gates

Transmitter 1115 10 690048

Receiver 1150 10 690533

Table ‎3.15: Synchronizer Resource Utilisation for OFDM modem for

IEEE 802.11a standard

 Slices Multiplier Blocks Total Gates

Synchronizer 1409 18 97003

70

3.4 Summary

In this chapter we have reviewed a number of architectures for implementation of

high speed FFTs. As discussed FFTs are important for the implementation of OFDM

based architectures and the number of data points is always a power of 2, as specified

in the appropriate standards documents for different radios (LTE, WiMax, Wi-Fi

etc). In the above work, the aim of most authors and designers is to present FFTs

that use minimum resources, and will achieve the necessary clock frequencies. This

is of course a function of a number of things – first, the actual FPGA being used

(technology, speed grade and so on), and the efficiency of the architecture. In this

thesis we target the former and aim to produce architectures that will achieve speeds

to implement various radio standards, but at a minimum cost. Hence in chapter 5, we

will compare some‎“off-the-shelf”‎FFTs,‎with‎some‎custom‎designed‎architecture‎in‎

order to demonstrate that careful optimisation will lead to faster and cheaper

architectures.

71

4 Fast Fourier Transform

Implementation on FPGA Based on

Butterfly

4.1 Introduction

In this chapter, a full description, analysis, and hardware implementation of

FFT/IFFT based on the butterfly operation is presented. The discussion focuses on

the Radix-2 FFT algorithm. The FFT function and its inverse are implemented

within the same architecture, in order to demonstrate that the design is indeed

capable of implementing both functions as required by general OFDM transceivers.

Prior to implementing the FFT architecture, a MATLAB script was developed to

provide golden reference floating-point and bit-accurate models for the forward and

inverse FFT, and presents the benchmark for debugging and validating the design.

The custom VHDL code for the FFT and inverse FFT was created and tested in the

ModelSim environment, and the code was simulated and compared with the golden

reference MATLAB FFT implementation. Thereafter, the Mean Squared Error

72

(MSE) was found, together with the signal to noise ratio for the implementations of

QAM transceivers. All designs were synthesized using the Xilinx ISE tool, and

the resource utilisation and speed are reported as parameters of merit.

4.2 FFT Butterfly Processor Implementation

In this section, the butterfly-based, Decimation in Frequency Radix-2 FFT is

introduced. It has a sequential architecture consisting of a single butterfly engine,

two dual port RAMs, two ROMs and control unit.

Two types of butterflies are introduced here for analysis: the first is the serial

butterfly FFT (to be discussed in Section ‎4.3.1), whereas the second is the serial

pipelined butterfly FFT (covered in Section ‎4.3.2). Both butterflies use two

multipliers rather than the usual four of standard Xilinx FFT cores, and one of them

is highly pipelined to achieve higher speed. We will demonstrate that the sequential

architecture (serial architecture that use only single butterfly) offers a reduction in

resource utilisation compared to a pipelined architecture, and this work focuses

on minimising the area occupied by the design. In the pipelined FFT implementation

each stage requires a butterfly as shown in section ‎2.2.3.

4.2.1 FFT Entity

The FFT entity represents the input and output ports available for the user interface

to the FFT, as defined by the VHDL design. A graphical representation of the

FFT entity is provided in Figure ‎4.1 . It is a complex input FFT, where fft_in_re

represents the real input and fft_in_im represents the imaginary input. Both

inputs are‎ specified‎ as‎ the‎ “std_logic_vector” type with variable length, thus

supporting inputs of any word length. The operation mode can selected as either the

forward or inverse Fast Fourier Transform, using a pair of input signals. FFT_IFFT

and FFT_IFFT_we are decided on, where FFT_IFFT and FFT_IFFT_we are

73

std_logic one bit assigned, with logic one for FFT, logic zero for IFFT. This will

be active when FFT_IFFT_we is set to one as shown in Figure ‎4.1.

The operation of the FFT proceeds in three steps: reading the input vector,

processing, and unloading the output. The start signal, which is of type

std_logic, is activated (to logic 1) and this initiates the reading of input data. The

length of the input vector is equal to the FFT size. After processing, the unload

signal, which is also of type std_logic, is activated (to logic 1) to begin the writing of

data to the output. All operations within the FFT core are synchronous to the clock,

which is supplied via the std_logic signal clk_main.

The output ports fft_out_re and fft_out_im provide the results generated by

the FFT core. These ports are both of type std_logic_vector, and in each case their

length is defined as the input wordlength, plus log2(NFFT), where NFFT is the FFT

size. This represents unscaled FFT fixed point precision, allowing wordlength

growth of one bit at each stage. Equation (‎4.1) shows the maximum wordlength

growth based on unscalled technique. There are different ways to have control on

wordlength growth, the unscalled is the cheapest way. For example for a 1024-point

FFT with input vector word length 16 bits, the Maximum_Worldlength would be 26

bits.

Figure ‎4.1: FFT Entity Block Diagram

fft_out_re

fft_out_im

in_index

out_index

bsy

fft_in_re

fft_in_im

start

unload

fft_ifft

fft_ifft_we

clk_main

FFT_Fixed

74

Three additional output ports are provided for monitoring the status of the core. The

first two are in_index and out_index, which are of type std_logic_vector and

dimension log2(NFFT). These represent count values corresponding to the input and

output data indices. The bsy port is a 1-bit flag (std_logic type), which is set high

during the processing phase. in_index begins counting when start port is logic

one, while out_index begins counting when unload is logic one. Both ports are

used to monitor the input and output complex vector position to the FFT.

This chapter will introduce two FFT/ IFFT implementations: serial butterfly and

serial pipelined butterfly.

4.2.2 FFT Based Butterfly Architecture

The architecture considered is a sequential, butterfly-based FFT/IFFT. This

architecture is particularly suitable for low-cost design on an FPGA. It consists of

two RAMs, two ROMs, a radix-2 butterfly, a Finite State Machine (FSM), and an

address generator unit. A block diagram of the sequential butterfly architecture is

shown in Figure ‎4.2 and this architecture has been implemented via‎ “golden‎

reference”‎ MATLAB‎ scripts‎ and‎ custom‎ VHDL‎ code.‎ In‎ the following sections,

descriptions of each part in the FFT architecture are given.

Note that in the direct implementation of the FFT algorithm, the design requires a

large number of butterflies, as given in Equation (‎4.2).

  NFFTWordlengthVectorInputWordlengthMaximum log___
2

 (‎4.1)

)(log
2

_
2

NFFT
NFFT

numbersButterfly 







 (‎4.2)

75

where Butterfly_numbers is the number of butterflies required to calculate the FFT.

As stated in Equation (‎4.2), this depends on the FFT size (NFFT).

The number of butterflies required by the FFT is large as the FFT size increase. The

advantage, of course, of the sequential architecture is that it uses only one butterfly

and thus minimises resource utilisation (albeit is slower than a parallel

implementation) but it also requires smart control and scheduling to be efficient.

Hence a controller Finite State Machine (FSM) and an address generator unit are

required for this purpose.

 To review the general operation of the architecture in Figure ‎4.2, noting that the input

vector first is loaded into RAM and the address generator then invokes a pair of

values for user over two consecutive clocks, and the appropriate twiddle factor is

read from the ROM. The numerical calculation is then performed using one butterfly

processor, and the calculated values are written back to the same addresses in the

RAM. This is done sequentially for all stages of the FFT design. One immediate

disadvantage of this architecture is its large latency in evaluating the output, which

implies a substantial time delay required for the sequential FFT architecture to

conclude its calculation.‎ Hence‎ a‎ “double‎ clock”‎ technique‎ has‎ been‎ used‎ to‎

overcome the latency issue, which will be presented in Chapter ‎5.

76

4.2.3 FFT RAMs

FPGAs provide two types of RAM: Block RAM and distributed RAM. The Block

RAM is a dedicated memory block, while the distributed RAM is built from look-up

tables distributed over the entire logic fabric. For large FFT designs, it is usually

more efficient to use the Block RAMs (BRAMSs), however in many DSP systems

there is not enough block RAM and hence distributed RAM may often be used. In

Xilinx Virtex 5 (xc5vlx110t-3ff1136) devices used in this work, there are 148

BRAMS. A block diagram for the RAM that has been used in the design is shown in

Figure ‎4.3. This RAM is used to store the input, intermediate and output data. One

RAM is used for the real part, and the other for the imaginary part.

Referring to the interface as depicted in Figure ‎4.3 , din_a is the input port, which is

used to write data to the RAM. It receives its first input from the interface and then

from the output of the butterfly component until the calculation is finished. The input

addr_a provides the address location at which data is stored in the RAM when the

write enable port, we, is high. While the address specified by addr_a is used for

write only, the addr_b port is used to specify the address for read only operations,

Figure ‎4.2: Sequential FFT Architecture Based on Butterfly

DATA RAMs

Input,

Intermediate,

Output

Radix_2

Butterfly

ROM

Twiddle

Factors

FSM

Address

Generator

77

which result in the output data presented through the dout_b port. The values

supplied to both the addr_a and addr_b ports are obtained from the address

generation unit (to be covered in Section ‎4.6).

In‎ this‎ design,‎ an‎ “in place” algorithm has been‎ implemented.‎The‎ term‎ “in‎ place”‎

means that during the execution of the FFT, the same memory can be reused to store

the results of intermediate calculations. This method is used to reduce the resource

utilisation of the design.

The area occupied by the RAMs, i.e. the number of Block RAMs required by the

FFT, is proportional to the precision of the input, and to the FFT size. The depth of

the Block RAM is equivalent to the FFT size, while its precision is set to the

maximum wordlength of the FFT output, as specified in Equation (‎4.3) below,

)(log___
2

NFFTprecisioninputFFTprecisionRAM  (‎4.3)

where RAM_precision is equal to the maximum output wordlength required for the

FFT.

As the input precision of the FFT is less than the output precision, sign extension is

used to permit constant wordlength operations.

All of the above description applies to both the real and imaginary RAMs.

Figure ‎4.3: FFT in place RAM Block Diagram

din_a

addr_a

addr_b

we

clk

dout_b

RAM_in_Place

78

4.2.4 FFT ROMs

Two ROMs are assigned to store the twiddle factor values; one each for the real and

imaginary parts. The complex twiddle factor is obtained from the two ROMs, and

provided as an input to the butterfly processor, along with two complex data samples.

Equation (‎4.4) is used to calculate the real part of the twiddle factor, W_re, while

Equation (‎4.5) is used to calculate the imaginary part, W_im.

 1,........,2,1,0,
2

cos)(_ 







 NFFTn

NFFT

n
nreW


 (‎4.4)

 1...........,.........2,1,0,
2

sin)(_ 







 NFFTn

NFFT

n
nimW


 (‎4.5)

In these equations, n is the index which ranges from 0 to NFFT-1, where NFFT is the

size of the FFT. A MATLAB script has been used to generate the values of W_re

and W_im according to Equations (‎4.4) and (‎4.5), and these values have been

stored in hexadecimal form in two ROMs. The precision is the number of bits used to

represent the twiddle factor; for example using the 8 bit format <1, 7>, one integer

bit and seven fractional bits are used to represent the twiddle factor, values in the

range -1 to +0.99999 can be expressed. The precision of the twiddle factor has an

impact on the FFT accuracy (signal to noise ratio) as discussed in Section ‎4.9.

Block RAMs are used to store the twiddle factor values; the number of Block RAMs

required depends on the FFT size (NFFT) and the precision of W_re and W_im. A

block diagram of the ROM entity is shown in Figure ‎4.4. The input port addr is of

type std_logic_vector, and its word length is log2(NFFT). The address length

depends on the maximum twiddle factor stored in the ROMs. The en port is of type

std_logic, and represents an active-high enable (note that the ROM is enabled during

the calculation of FFT stages, and is disabled during the input and output phases).

The ROM is clocked by clk_main, or clk_cal when high throughput FFT is

required, as described in Section ‎5.7. A more accurate FFT will require more precise

79

representation of the twiddle factor, potentially requiring more Block RAMs on the

FPGA. Note that all of the above description applies to both the real and imaginary

ROMs.

4.3 Butterfly Radix-2

In this section, a description of the traditional 4-multiplier implementation of a single

butterfly is given. This is full parallel butterfly, as shown in Figure ‎4.5.

Twiddle_Factor

ROM

Figure ‎4.4 : ROM Twiddle Factor Entity

addr

en

clk

dout

Figure ‎4.5: Radix-2 Butterfly Direct Implementation

FFT_IFFT

ADD/SUB D_re

ADD/SUB D_im

m

C_re

C_im

W_re

W_im

X_re

X_im

Subtract

A_re

A_im

B_re

B_im

Adder

Adder

Subtract

80

This butterfly calculation is performed several times in the FFT, according to

Equation (‎4.2), and in a fully serial implementation a single butterfly unit can be

time-shared to perform all of the calculations. In the remainder of this section, the

operation of an individual, directly implemented butterfly processor is described

(later, Sections ‎4.3.1 and ‎4.3.2 will detail an alternative design of the butterfly, which

uses fewer resources).

Each butterfly operation requires two complex data values and one complex twiddle

factor. The inputs to the butterfly are denoted by A and B, and the twiddle factor by

W. Their real and imaginary parts are indicated by the suffixes _re and _im,

respectively, hence A, B and W are given by Equations (‎4.6), (‎4.7) and (‎4.8).

 imjAreAA __  (‎4.6)

 imjBreBB __  (‎4.7)

 imjWreWW __  (‎4.8)

The complex quantities C and D are calculated by the butterfly as given in Equations

(‎4.9), (‎4.10), (‎4.11) and (‎4.12).

 reBreAreC ___  (‎4.9)

 imBimAimC ___  (‎4.10)

 reBreAreX ___  (‎4.11)

 imBimAimX ___  (‎4.12)

Therefore, implementing the calculation of C_re and C_im requires one adder each,

while X_re and X_im require one subtract each.

To complete the calculations, Equations (‎4.13) and (‎4.14) are used in the case of the

forward FFT, while (‎4.15) and (‎4.16) are used for the inverse FFT. These equations

81

correspond to multiplication with the twiddle factor, and show that a total of four

multiplication operations are required for both the forward and inverse FFTs.

 imWimXreWreXreD _____  (‎4.13)

 imWreXreWimXimD _____  (‎4.14)

 imWimXreWreXreD _____  (‎4.15)

 imWreXreWimXimD _____  (‎4.16)

A key development in this thesis is to investigate butterflies with only two real

multipliers, and which use CORDIC (Chapter ‎5) to perform the multiplication so

that the design can be implemented without explicitly using multipliers, and thus

achieving a variety of designs that can run on different FPGA structures and can be

chosen and balanced according to available resources and speed requirements.

By just negating the sign of the twiddle factor it is well known that we can use the

FFT architecture to calculate the inverse FFT, thus using a single architecture with a

selectable control line to negate or otherwise the twiddle factor. Clearly this is

another method of minimising the overall resource cost.

As shown in Figure ‎4.5, the direct implementation of the butterfly required six

adder/subtractors and four multipliers all of appropriate word lengths corresponding

to a pre-specified word length to achieve a certain level of desired accuracy. In the

next sections, two new butterfly implementations are introduced to obtain minimum

resource for the FFT.

82

4.3.1 Radix-2 Butterfly Serial Implementation

One of the options considered is a modified butterfly architecture which reduces

resource consumption. The new architecture has reduced the number of multipliers

and Block RAMs to two each – this will clearly have some impact on the maximum

achievable speed, however the decision of the designer is to use the FFT that can

achieve the appropriate sample rate of the wireless standard, and at the minimum

cost (so to confirm - using the off-the-shelf‎low‎cost‎or‎“efficient”‎FFT‎cores‎is‎not‎

always the right choice). The direct implementation of the butterfly, as presented in

Section ‎4.3, required for example four RAMs to read and write the data, and four

multipliers: this constitutes a fully parallel implementation of the butterfly processor.

The‎ alternative‎ here‎ is‎ a‎ “serial”‎ butterfly,‎ which‎ could‎ be‎ utilised to reduce the

resource cost. The block diagram of the serial Radix-2 butterfly is shown in Figure

‎4.6.

Figure ‎4.6: Serial Butterfly Radix-2

FFT_IFFT

W_re

W_im

C_re

C_im

X_re

X_im

Subtract

A_re

A_im

B_re

B_im

Adder

Adder

Subtract

M1

M2

ADD/SUB D_re

ADD/SUB D_im

m

Flag

83

In this technique, A_re and B_re are‎stored‎in‎the‎same‎RAM‎(the‎“real‎RAM”),‎and‎

likewise, A_im and B_im are‎stored‎in‎a‎single‎RAM‎(the‎“imaginary‎RAM”);‎in‎this‎

case only two RAMs are used in total. As both A_re and B_re need to be available

for calculation at the same time, two clock cycles are required to read, and to write,

the calculated butterfly values. A control signal of length two clock cycles is used for

co-ordination purposes. Using this style of memory access, it is not necessary to use

four multipliers, as they would not be fully utilised. Therefore, an architecture which

uses two RAMs and two multipliers is possible.

The calculations of C_re, C_im, X_re, X_im are implemented using the same

resources as required for the direct implementation, taking two clock cycles.

Multiplexers are used to select inputs for the two multipliers, which in each case are

one of the outputs from the subtractors, X_re and X_im.‎A‎control‎signal,‎“Flag”, is

used to make the choice and this takes two clock cycles. In the first multiplexer,

while Flag is equal to one, the input X_re is selected, and while Flag is zero, the

input X_im is selected and vice versa in the second multiplexer. The output of

multiplexers, which are X_re, X_im and X_im, X_re, are multiplied by the twiddle

factor W_re and W_im. M1 holds W_re multiplied by X_re and X_im while M2

holds W_im multiplied by X_re and X_im successively as shown in Equations (‎4.17)

and (‎4.18).

0 Flag when __1

1 Flag when __1





imXreWM

reXreWM
 (‎4.17)

0 Flag when __2

1 Flag when __2





reXimWM

imXimWM
 (‎4.18)

In this case, full utilization of the multipliers has been achieved, and the set of

outputs produced corresponds to the results of Equations (‎4.13), (‎4.14), (‎4.15) and

(‎4.16). The‎“Add/Sub” blocks perform addition or subtraction based on the choice of

84

transform, where they accept the outputs of M1 and M2, and perform addition or

subtraction as required to compute the FFT or IFFT (the FFT is generated by adding

M1 and M2, while the IFFT is generated by subtracting M1 and M2).

The important point to mention is the word length growth during the multiplication,

as it can go up with each calculation. To limit this growth, truncation techniques are

used. For sixteen bits input precision the RAMs are set to be 27 bits in the case of

NFFT, equal to 2048 based on Equation (‎4.3). In the twiddle factor case with eight

bit precision, the output of multipliers grows to 35 bits so it is truncated to 27 bits

again. The next section introduces another variation of the serial butterfly, which has

the advantage of using more pipeline registers, so as to increase the frequency at

which the design can operate successfully on the FPGA.

4.3.2 Radix-2 Butterfly Serial Pipelined Implementation

In this section, a pipelined butterfly architecture is presented which can support a

higher FPGA clock frequency than the serial butterfly of Section ‎4.3.1.

The pair of RAMs used in the architecture store the real part of the input vector in the

form:

 [A_re(0), B_re(0), A_re(1), B_re(1),A_re(NFFT-1), B-re(NFFT-1)]

and the imaginary part as:

 [A_im(0), B_im(0), A_im(1), B_im(1), A_im(NFFT-1), B_im(NFFT-1)].

This means that A_re and B_re appear one after the other delayed by one clock. The

values of A and B appear sequentially and need to be processed in the same time to

calculate C_re and C_im. To do this, a Flag signal, which takes two clock cycles, is

used to extend the times of A_re, B_re, A_im, B_im. A vector is [(A_re(0)A_im(0),

A_re(1)A_im(1),A_re(NFFT-1)A_im(NFFT-1)] and B vector is

[(B_re(0)B_im(0), B_re(1)B_im(1),B_re(NFFT-1)B_im(NFFT-1)]. To find out

85

the X_re and X_im in Equations (‎4.11) and (‎4.12), only one subtract is required in

this case as the input is complex. Two ROMs are used to store the twiddle factor

values, one for real twiddle factors W_re and the second for W_im. Two multiplexers

are used to generate complex twiddle factors, two multiplied by the complex X, to

have all the combinations required to calculate C_re and D_re as shown in Figure

‎4.7, Figure ‎4.8 and Figure ‎4.9.

Figure ‎4.7: Pipelined Butterfly Part A

Subtract

Register

A1

C_re

C_im

Register

B_re

Register

A_re Real RAM

A_re, B_re

Values

Register

Real RAM

Imag RAM

A_im, B_im

Values

Register

Imag RAM

Register

A_im

Register

B_im

Register

A2

Register

B1

Register

B2

Subtract

Register

X1

Register

X2

86

FFT-IFFT

Register

Register
Add

Subtract

Register

Register
Add

Subtract

Figure ‎4.9: Pipelined Butterfly Part C

Z1

Z2

D_re

D_im

Figure ‎4.8: Pipelined Butterfly Part B

0

1

Z1

Z2

ROM

Real

W_re
0

1

Register

W_re,W_im

latch

ROM

Image

W_im

Register

W_im,W_re

Register

Real ROM

latch

Register

W_re,W_im

latch Register

X1

latch

Register

X2

latch

Register

Imag ROM

latch

Register

W_re,W_im

latch

87

4.4 FFT Logic Control Unit

 The logic control unit is responsible for co-ordinating the operation of the FFT

processor (with variations depending on whether a forward or inverse transform is

required), and the scheduling of reading inputs and writing outputs. As reviewed in

Section ‎4.2.1 a 1-bit input is used to choose between the FFT or IFFT modes of

operation. The add/sub blocks in the previous butterfly sections are set to add

or subtract in response to this input (and this is achieved using if statements

in the VHDL code). Referring to the equations presented previously, the effect is to

switch between Equations (‎4.13) and (‎4.14) which implement the FFT, and (‎4.15)

and (‎4.16) which implement the IFFT. The FFT/IFFT functionality is implemented

either using the serial butterfly, or the serial pipelined architecture as presented in

Sections ‎4.3.1 and ‎4.3.2, respectively. Note that this is an efficient way to implement

the two functions (FFT and IFFT) within a single architecture; another possibility

would be to store (Wr + jWi) and (Wr-jWi) twiddle factors but this would double the

cost of the ROM.

In the logic control unit, initial operation is prompted by the 1-bit input start going

high, at which point a counter begins to increment from 0 up to (NFFT-1), and this

corresponds to the index of the input sequence in_index. The signal in_index

is used to address the RAMs which store the complex input vector as well as the

twiddle factors, while the FFT is processing the input data.

The logic control unit sets the bsy port to logic 1 while processing, and to logic 0

when the calculation is finished. During the calculation phase bsy stack is logic one.

The number of clock cycles that bsy is logic one represents the latency of the FFT

required to produce the output. Latency is an important performance metric and is

evaluated in the FFT testing and a significant latency can negatively affect the ability

of the FFT to process a high OFDM sampling rate.

88

The 1-bit input, unload, is used to prompt writing of the calculated outputs of the

transform to the output ports. When logic 1 is received on unload, the logic

control unit checks whether the calculation is finished. If the calculation has

completed, the output of the FFT is written to the output port of the FFT unit by

generating a counter, out_index, that counts from 0 up to (NFFT-1), and

addresses RAMs holding the computed output. The logic control unit works

synchronously with the finite state machine, as described in Section ‎4.5.

4.5 Finite State Machine

The Finite State Machine (FSM) built in the core is responsible for

management, control and operation synchronous with the logic control unit.

The FSM has five states: S0, S1, S2, S3 and S4. The state machine starts in the S0

state, which allows the FFT core to read the input data from the interface. During this

time, no processing of data takes place. In the S0 state, the status of the in_index

signal generated by the logic control unit is checked, and when in_index = NFFT

– 1, the FSM transitions to state S1.

The S1 state is dependent on other processes in the FFT to generate internal counters

and look-up tables for the number of stages required to calculate the FFT and the

length that each stage requires. Each stage requires NFFT clock cycles to achieve the

butterfly operation between the two complex inputs to the butterfly. The output is

back to the same address of RAMs that it was collected from. Each stage takes NFFT

instead of NFFT/2 cycles because this is serial implementation of the FFT, offering

50% of the resources area on the FPGA.

It requires considerable effort to manage and control the operation inside the FFT. To

keep monitoring the calculation process in the butterfly in each stage, a Flag signal is

generated, taking two clocks. This is used to achieve the multiplexing necessary for

the butterfly registers to implement serially, producing the NFFT cycles for each

stage instead of NFFT/2 in the normal case. The number of stages is equal to

89

log2(NFFT). For reasons related to delays and pipelined stages, the FFT needs a few

extra clocks, not to exceed 10, to complete the calculation of the stages. To monitor

this state S2 is assigned and a register with size equal to 11 bits is used to fix that.

When this register bit six goes high the calculation is finished. S3 state is

one clock before the output finishes. S4 state is when the output is ready. At this

point the FFT returns to state S0 to dump the output to the interface. The variable

out_index is used to count and control this process, no calculation operation is

performed in state S0. The flow state diagram of the FSM is shown in Figure ‎4.10.

Figure ‎4.10: Finite State Machine FFT

in_index< NFFT

stage< log2NFFT

Reg(6)= 1

in_index=NFFT

stage= log2NFFT

Reg (6) =0

S0

S1

S2

S3

S4

90

4.6 Address Generation Unit

The address generation unit is responsible for generating the addresses for both pairs

of RAMs and ROMs. The RAMs are used to store the input, output and

intermediates values during the FFT stages calculations, while the ROMs are used to

store the complex twiddle factor. The orders of reading values from RAMs and

ROMs differ based on the stage of the calculation, and hence the implementation of

the address generation unit is non-trivial.

As mentioned in Section ‎4.4, there are three basic phases of operation, namely:

reading the data from the interface, processing the data, and dumping the output to

the interface. When reading and writing data, the RAM address is generated by the

in_index and out_index counters, after the data has entered the RAMs as

shown in Figure ‎4.11, where data x(n) is represented as a one-dimensional array.

NFFT can be factored as a product of two integers as shown in Equation (‎4.19).

 21 NNNFFT  (‎4.19)

NFFT may be expressed as the product of N1 and N2, where N1 and N2 are both

positive integers.

Equation (‎4.20) is used to generate the index mapping for the RAMs.

 













1220

1110
211

Nk

Nk
kNkAdd_A (‎4.20)

 stepAAddBAdd  __ (‎4.21)

Figure ‎4.11: Input data index

x(n) x(0) x(1) x(N-1)

n 0 1 N-1

91

2

1


stage

NFFT
step (‎4.22)

Equation (‎4.23) is used to generate the address for accessing the ROMs storing the

twiddle factor.

 2
2

mod1_ stage

stage

NFFT
kwAdd 








 (‎4.23)

A flow chart describing the operation of the address generation unit is provided in

Figure ‎4.12. The algorithm is efficient in terms of implementation, and can be

applied to any FFT/IFFT size; this is defined in the VHDL code.

V is the maximum number of stages for the FFT, i.e. 11 stages for 2048, 10 stages for

1024, 9 stages for 512, 8 stages for 256 and 7 stages for 128. A counter is used to

increment through the FFT processing stages, and this increment is performed every

NFFT clock cycles, as was explained in Section ‎4.5. The stage counter, stage, is

compared with the maximum number of stages, V, and if they are equal then this

indicates that the FFT processor has completed the calculation.

N1 represents the distance between the A_re and B_re, or A_im and B_im, RAM

memory locations. Its value depends on the FFT size (NFFT) and the current stage of

the computation, i.e. the value of stage.

Recalling Figure ‎4.11, where x(0) represents A_re(0)+jA_im(0). This value is

processed in the butterfly along with x(4), which represents B_re(4)+jB_im(4). The

next value x(1) is processed with x(5) and so on. At stage zero of the calculation, the

difference between values is four in the case of eight points FFT; which is equivalent

NFFT/2. At the next stage, the difference between the processed samples changes to

two, and in the final stage, to one. Within the VHDL implementation of the address

generation unit, N1 is a look-up table which carries all possible step differences

between the samples that are processed, based on the FFT size and stage.

92

k1=k1+1

Figure ‎4.12: Address Generation Flow Chart

End

Start

NFFT, V, stage=0,

step,Add_A,Add_B,Add_w

V=log2 NFFT

Stage <= V

Stage=stage+1
 step=NFFT/2

stage+1

k1<=NFFT/2

Add_A =k1+step* integer (k1/step)

Add_B =Add_A +step

Add_w=(k1mod NFFT/2
stage

)2
stage

93

4.7 FFT Based Butterfly MATLAB Scripts

For large FFT sizes, it is necessary to use a floating-point model for debugging

and validation purposes, and MATLAB scripts have been written for the

architecture shown in Figure ‎4.2.

The bit-accurate model has been derived from the floating-point model. The bit-

accurate model is an integer valued representation of the design. This can be

compared to the signed integer representation which may be viewed in the HDL

waveform, for example in Modelsim or Isim.

The scripts consist of a main file and functions. A flow chart of the design is shown

in Figure ‎4.14.

The complex input vector function is responsible for generating a complex random

input vector to the FFT. Its length is equal to the FFT size. The generated complex

numbers are floating point. To obtain an integer representation, the values are

multiplied by 2
no_bit-1

, where no_bit is the number of bits used to represent the input

to the FFT. For sixteen bits the precision is 32768, and so on.

The Twiddle Factor Generator function is responsible for generating the real and

imaginary parts of the twiddle factors. The values have been generated based on

Equations (‎4.4) and (‎4.5). The floating point values are converted to Hexadecimal

and stored in the ROMs within the VHDL design. The Address Generator function

is responsible for generating the addresses for the buffers that store the complex

input vector and the twiddle factors. The butterfly function is responsible for

implementing the Radix-2 butterfly.

 The output of the FFT is in bit-reversed order. A MATLAB function is

used to generate it in the natural order. If the IFFT is calculated, then the output is

divided by the FFT size.

94

The floating point model is tested to prove its accuracy as shown in Figure ‎4.13.

MATLAB’s‎built‎in‎FFT‎function‎is‎considered‎as‎a‎golden‎reference‎model,‎and‎the‎

signal to noise ratio demonstrates that the floating point model is working properly.

The average signal power, average error power (noise power) and the signal to noise

ratio are calculated according to Equations (‎4.24), (‎4.25) and (‎4.26). The signal

y_Matlab(n) of Matlab's built-in function, while y_float(n) is the floating point

model output.

NFFT

nMatlaby

powersignalaverage

NFFT

n






1

0

2

))(_(

__
(‎4.24)

NFFT

nfloatynMatlaby

powererroraverage

NFFT

n










1

0

2

))(_)(_(

__
(‎4.25)

)
__

__
(10__ log

10 powererroraverage

powersignalaverage
noisetosignal  (‎4.26)

95

Figure ‎4.13 : Floating-Point accuracy of FFT based on Butterfly

S
ig

n
al

 t
o
 N

o
is

e
(d

B
)

FFT Size

96

Figure ‎4.14: Matlab Flow Chart for FFT Based on Butterfly

Stage=log2 (NFFT)

no_stage<

= Stage

no_stage = no_stage+1

Butterfly

Start

Input

NFFT, FFT_IFFT

Complex

in vector

Return

Twiddle

Factor

Return

Address

Generation

Return

Reorder

FFT_IFFT=1

End

Divide by

NFFT

97

4.8 FFT Based Butterfly Test

VHDL code was written for the FFT architecture shown in Figure ‎4.2 and the design

was synthesised using the Xilinx ISE tool. The resources occupied by the design are

summarised in Table ‎4.1 for the serial butterfly implementation, and Table ‎4.2 for the

serial pipelined butterfly. The designs have been tested with 128, 256, 512, 1024 and

2048 FFT sizes. The input complex vector precision is <1, 15>, i.e. one integer and

fifteen fractional bits. The twiddle factor precision is <1, 7>, i.e. one integer and

seven fractional bits. The output of the complex FFT is permitted to grow to <12,

15> bits.

Table ‎4.1: Resource Area of Serial Butterfly FFT Architecture on

Virtex 5 X110t

Parameters

FFT SIZE

128 256 512 1024 2048

Flip Flops 450 473 496 600 625

LUTs 652 702 752 873 992

Slices 276 284 324 364 444

DSP48Es 2 2 2 2 2

RAMB18 2 2 2 2 2

Maximum

frequency

(MHz)

197.316 191.314 186.359 142.025 144.718

Latency

(clock cycles)
896 2048 4608 10240 22528

98

The Mean Square Error (MSE) was tested, i.e. a comparison was made between the

output‎of‎MATLAB’s‎ FFT‎ function, and the output of the FFT as implemented in

VHDL code (y_VHDL). A random input complex vector was used as the input to

both, and the average error power is calculated, divided by the FFT size as in

Equation (‎4.27).

NFFT

nVHDLynMatlaby

MSEpowererroraverage

NFFT

n










1

0

2

))(_)(_(

__
(‎4.27)

The signal to noise ratio was calculated by dividing the average power of the

MATLAB FFT (y_Matlab) output by the average error power (MSE), as shown in

Equations (‎4.28) and (‎4.29).

NFFT

nMatlaby

powersignalaverage

NFFT

n






1

0

2

))(_(

__

(‎4.28)

Table ‎4.2: Resource Area of Serial Pipelined Butterfly FFT on Virtex 5

Parameters

FFT SIZE

128 256 512 1024 2048

Flip Flops 434 456 478 619 646

LUTs 616 641 676 767 826

Slices 260 272 290 336 348

DSP48Es 2 2 2 2 2

RAMB18 4 4 4 4 4

Maximum

frequency

(MHz)

233.754 221.043 179.244 217.817 192.160

Latency

(clock cycles)
896 2048 4608 10240 22528

99

powererroraverage

powersignalaverage
noisetosignal

__

__
__  (‎4.29)

The MSE and SNR for both FFTs (based on the butterfly architecture) are shown in

Table ‎4.3 and Table ‎4.4, for different FFT sizes. The error is seen to increase with

the FFT size. The input vector precision is 16 bits, with bits <1, 15>, while the

twiddle factor precision is 8 bits, also denoted as <1, 7> bits. There are slight

differences in the SNR of the two architectures due to the different input sequence

vectors that are applied.

Table ‎4.3: The Mean Square Error and the Signal to Noise Ratio for Serial

Butterfly Architecture

Parameters

FFT SIZE

128 256 512 1024 2048

Mean Square

Error
0.0832 0.17 0.555 1.237 3.02

Signal to Noise

Ratio
509.55 479.61 321.94 273.96 228.12

Signal to Noise

Ratio (dB)
62.3353 61.7297 57.7437 56.1298 54.2987

100

4.9 Impact Effect of Twiddle Factor Precision on Signal to Noise Ratio

This research focuses on fixed point design for FPGA implementation. The

FFT based on the serial butterfly, and the FFT based on the serial pipelined butterfly,

both have equal response to the signal to noise ratio test, as shown in Table ‎4.3 and

Table ‎4.4 .

This section describes how a test for one of those architectures was performed

to evaluate the effect of twiddle factor precision on the accuracy of the FFT. The

twiddle factor is generated as in Equations (‎4.30) and (‎4.31).

))))__(max(/)12(__(int__ _ flrewabsflrewfixrew prcisionTwddl  (‎4.30)

))))__(max(/)12(__(int__ _ flrewabsflimwfiximw prcisionTwddl  (‎4.31)

Table ‎4.4: Mean Square Error and Signal to Noise Ratio for Serial Pipelined

Butterfly FFT Architecture

Parameters

FFT SIZE

128 256 512 1024 2048

Mean Square

Error
0.0714 0.19 0.55 1.14 3.021

Signal to Noise

Ratio
543.12 442.054 321.94 277.724 228.126

Signal to Noise

Ratio (dB)
62.9733 60.9143 57.7437 56.2663 54.2813

101

The basic idea is to convert the floating point number to a Q format number. Q

format numbers are fixed point numbers that are stored and operated upon as regular

binary numbers (i.e. signed integers), where w_re_int and w_im_int are signed

integers for the twiddle factor in Q format. To convert a number from floating point

to Q format, it is multiplied by 2
n
 and rounded to the closest integer, where n is the

number of the bits used to represent the floating point number in fixed point format;

here this is denoted by Twddl_prcision.

The natural binary representation of an n-bit word length is an unsigned

integers from 0 to 2
n
-1. The range of the twiddle factor is from -1 to 1, hence a

signed integer representation is required; two's complement is used to represent

signed integers. In 2's complement representation, an n-bit word represents integers

from −2
n−1

to 2
n−1
−1. To find this, the floating point number is multiplied by power

two of the twiddle factor precision subtracted from one. To improve the accuracy the

value is divided by the maximum absolute value of the floating point numbers.

To evaluate the effect of the word length of the twiddle factor on the accuracy of the

FFT, several twiddle factor precisions were specified for the FFT, and the signal to

noise ratio was calculated.

102

From Figure ‎4.15, two points are apparent. The first is that, as the FFT size increases,

the signal to noise ratio decreases. The second is that, as the twiddle factor

wordlength increases, the signal to noise ratio increases.

The FFT was also tested with a QAM modulation scheme as shown in Figure ‎4.16,

where the unit under test was a fixed point IFFT core specified in VHDL code with

variable twiddle factor precision. The constellation diagrams for each level of

precision are provided, and these correspond to the precisions considered in Figure

‎4.15.

Figure ‎4.15: Signal to Noise Ratio for Various Twiddle Factor Precisions (Serial

Butterfly FFT)

S
ig

n
al

 t
o
 N

o
is

e
(d

B
)

Twiddle Factor Precision (Bits)

QAM

Modulator

Floating Point

IFFT

VHDL

FFT

Floating

Point

QAM

De-Modulator

Floating Point

Figure ‎4.16: Variable Twiddle Factor IFFT Test with QAM

Binary

input

Binary

Output

103

Figure ‎4.17: QAM Constellation Diagram (6 bit Twiddle Factor)

Figure ‎4.18: QAM Constellation Diagram (7 bit Twiddle Factor)

104

Figure ‎4.20: QAM Constellation Diagram (8 bit Twiddle Factor)

Figure ‎4.19: QAM Constellation Diagram (9 bit Twiddle Factor)

105

Figure ‎4.21: QAM Constellation Diagram (10 bit Twiddle Factor)

Figure ‎4.22: QAM Constellation Diagram (11 bit Twiddle Factor)

106

Figure ‎4.24: QAM Constellation Diagram (13 bit Twiddle Factor)

Figure ‎4.23: QAM Constellation Diagram (12 bit Twiddle Factor)

107

Figure ‎4.26: QAM Constellation Diagram (15 bit Twiddle Factor)

Figure ‎4.25: QAM Constellation Diagram (14 bit Twiddle Factor)

108

In this test, a variable twiddle factor precision is used to explore the twiddle factor

word length effect on the efficiency of the FFT. The received samples are

represented by green diamonds, while the transmitted symbols are denoted by black

star. The test uses floating point models for both the QAM transmitter and receiver

and for the FFT. The test unit is the VHDL IFFT fixed point model as shown in

Figure ‎4.16, which is the only possible error source in the test. In the case of using a

fixed point VHDL model for both the FFT and IFFT, the error is doubled. The worst

case for the IFFT calculation is when the twiddle factor precision is 6 bits <1, 5> as

Figure ‎4.17. While the ideal case for the IFFT calculation is when the twiddle factor

precision is 16 bits <1, 15> as shown in Figure ‎4.27, we can conclude from Figure

‎4.15 and the constellation diagrams that as the twiddle factor word length decreases,

the efficiency of the FFT decreases, and as the twiddle factor word length increase,

the FFT efficiency increases as well. In the hardware design, this is related to cost,

and hence an 8 bits twiddle factor is preferred as a trade-off for the FFT efficiency

and complexity.

Figure ‎4.27 : QAM Constellation Diagram (16 bit Twiddle Factor)

109

5 Fast Fourier Transform

Implementation on FPGA Based on

CORDIC

5.1 Introduction

In this Chapter, an FFT implementation based on the CORDIC algorithm is

presented. The CORDIC is used to perform complex multiplication with shift-add

processes. The FFT architecture is modified to generate the phase angle in section

‎5.4. This technique can offer resource area instead of using two large ROMs to store

phase angles. In section ‎5.6, the FFT based on Butterfly and FFT based on CORDIC

are compared based on the Xilinx 7.1 FFT core. The designs are upgraded to use two

clocks to improve the throughput in order top to meet the requirement of 4
th

generation standards in section ‎5.7.

110

5.2 FFT Based on CORDIC

Another approach, based on CORDIC, has been used to implement the

FFT function and its inverse. In this approach, CORDIC is used to perform

multiplication. The aim is to design an FFT without any explicit multiplier. The

architecture developed is for the radix-2 decimation-in-frequency FFT.

Sequential architecture has been used as shown Figure ‎5.1. It consists of two RAMs, a

ROM, a CORDIC processor, an FSM, and an address generator unit.

The architecture has been implemented using MATLAB scripts and VHDL code.

The design has the interface shown previously in Figure ‎4.1.

Figure ‎5.1: Sequential FFT Architecture Based on CORDIC

DATA RAMs

Input,

Intermediate,

Output

CORDIC

ROM

Rotation

Angles

FSM

Address

Generator

111

5.2.1 CORDIC ROM

A single ROM is used to store the angles of twiddle factor rotation. Equation

(‎5.1) is used to calculate the angles.

 1210
2

)(







 ..., NFFT,.........,, , n

NFFT

n
n


 (‎5.1)

A MATLAB script was used to implement Equation (‎5.1), and the calculated

values stored in Hexadecimal format in the ROM. The precision used was <1, 15>,

i.e. one integer and fifteen fractional bits. The ROM size is log2(NFFT). For the

IFFT, the angle is inverted. In this case, the same FFT architecture is used to perform

the FFT and its inverse.

5.2.2 CORDIC For Radix-2

The CORDIC processor is used to perform multiplication. The CORDIC performs

multiplications by rotating the input vector by discrete angles. A pipelined parallel

architecture is used to create the CORDIC processor inside the FFT. The CORDIC is

operated in rotation mode with eleven cells. A block diagram of the CORDIC

architecture is shown in Figure ‎5.2 . The angles that CORDIC needs to rotate by are

larger than 90
o
, so a mapping and de-mapping circuit is required. The X_re and X_im

values are as given in Equations (‎4.11) and (‎4.12).

112

5.2.3 CORDIC Scaling Factor Implementation

The output of the CORDIC processor is multiplied by a constant gain of

0.6073 as given in Equation (‎2.38). A shifts and adds operation is used to implement

this multiplication, and as a result the synthesised design has no multipliers.

5.3 FFT Based CORDIC Test

VHDL code was written for the FFT architecture shown in Figure ‎5.1, and the

design was synthesised using the Xilinx ISE tool. The resources occupied by the

design are summarised in Table ‎5.1. The design has been tested with 128, 256, 512,

1024 and 2048 FFT sizes. The complex input vector precision is <1, 15>, i.e. one

integer bit and fifteen fractional bits. The angles used by CORDIC are stored in a

ROM with <1, 15> bits precision. The complex output of the FFT is permitted to

grow to <12, 15> bits. The CORDIC-based FFT has no multipliers. The maximum

clock frequency the design can attain is around 200 MHz, which is sufficient for

many OFDM applications.

Figure ‎5.2: CORDIC for FFT

X_re

X_im

θ

Y_re

Y_im

Angle

Mapper

Cell 0

De-Mapper

Delay Line

Cell 1

Cell N

113

 The MSE and SNR of the design were evaluated, and the relevant figures are

given in Table ‎5.2. The error increases with the FFT size.

The floating point model is tested to prove its accuracy as shown in Figure ‎5.3.

The FFT Matlab built in function is considered as a golden model of the signal to

Table ‎5.2: Mean Square Error and Signal to Noise Ratio for parallel CORDIC

FFT

Parameters

FFT SIZE

128 256 512 1024 2048

Mean Square

Error
0.056 0.16 0.369 0.856 2.09

Signal to Noise

Ratio
678.25 579.501 485.84 399.48 334.65

Signal to Noise

Ratio (dB)
65.1952 63.6217 61.8588 59.9016 58.1309

Table ‎5.1: Resources utilisation of fully parallel, pipelined CORDIC
FFT Architecture on Virtex 5 X110T

Parameters

FFT SIZE

128 256 512 1024 2048

Flip Flops 1,122 1,165 1,208 1,251 1,294

LUTs 1,453 1,515 1,570 1,628 1,697

Slices 481 482 504 528 560

DSP48Es - - - - -

RAMB18 3 3 3 3 5

Maximum frequency

(MHz)
216.076 228.206 181.324 204.082 199.720

Latency

(clock cycles)
896 2048 4608 10240 22528

114

noise ratio that show the floating point model is working properly. The SNR figures

obtained indicate that the floating point model is accurate.

5.4 Upgraded FFT based CORDIC with Generated Angles

In the CORDIC-based FFT design in Section ‎5.2.1, a look-up table is used to store

the twiddle factor angles that are used to rotate the input vectors to implement

multiplication. This section describes a circuit which was designed to generate these

angles, instead of storing them, as depicted in Figure ‎5.4 . The FFT twiddle factor

angles follow Equation (‎5.1) in Section ‎5.2.1, and are equivalent to a constant value

equal to 2π/NFFT, multiplied by n, where NFFT represents the FFT size, and n is the

index, i.e. an integer ranging from 0 up to NFFT-1. These values were stored in a

ROM in the previous CORDIC-based FFT design.

For a more efficient design that can offer a resource cost reduction, the angles may

be calculated by generating the values of n using a controlled counter, and

multiplying them by a constant. The controller circuit is responsible for constraining

Figure ‎5.3: CORDIC Floating point Model Test Compared With MATLAB FFT

Function

S
ig

n
al

 t
o
 N

o
is

e
(d

B
)

FFT Size

115

the counter values to be within the specific range required by each stage of the FFT.

The resource utilisation of the CORDIC-based FFT with generated angles is

summarised in Table ‎5.3. A shift and add technique is used to implement the

multiplication, rather than using an explicit multiplier. The design saves one Block

RAM compared to the CORDIC-based FFT with stored angles.

Table ‎5.3 : Resource Utilisation of FFT based on CORDIC with

Generated Angles on Virtex 5

Parameters

FFT SIZE

128 256 512 1024 2048

Flip Flops 1,232 1,288 1,353 1,386 1,436

LUTs 1,593 1,679 1,759 1,796 1,867

Slices 504 542 595 583 594

DSP48Es - - - - -

RAMB18 2 2 2 2 2

Maximum

frequency

(MHz)

209.468 211.506 208.377 209.952 223.714

Latency

(clock cycles)
896 2048 4608 10240 22528

Figure ‎5.4: FFT Twiddle Factor Angles Generation

CONTROLLER Counter

2π/NFFT

Angles

116

The CORDIC-based FFT with generated and stored angles was tested using the

circuit shown in Figure ‎5.5. Binary data was applied to a floating point QAM

modulator to generate test symbols for the FFT designed in VHDL. This QAM

constellation was taken as a reference of accuracy, as shown in the figures which

follow.

QAM

Modulator

Floating Point

FFT

VHDL

IFFT

Floating

Point

QAM

De-Modulator

Floating Point

Figure ‎5.5: FFT Based CORDIC Test with QAM

Input

Binary

Output

Binary

117

Figure ‎5.7 : Constellation Diagram of 256 Point FFT based on CORDIC

Figure ‎5.6: Constellation Diagram of 128 Point FFT based on CORDIC

118

Figure ‎5.9: Constellation Diagram of 1024 Point FFT based on CORDIC

Figure ‎5.8: Constellation Diagram of 512 Point FFT based on CORDIC

119

In this test, two FFT based CORDIC architectures are compared. The first one uses a

look-up table to stores the twiddle factor angles required by CORDIC. Its received

signal is represents by red squares. The second architecture calculates the twiddle

factor based on Figure ‎5.4. Its received signal is represented by green squares. The

black stars denote the values of the transmitted signal. The generated angles do not

match the stored angles, and give different results in the test. The mismatch between

the two techniques is due to the accuracy of the generated sequence of the counter in

Figure ‎5.4. The stored angle method is more accurate than the generated angles as

shown in Figure ‎5.6, Figure ‎5.7, Figure ‎5.8, Figure ‎5.9 and Figure ‎5.10. As the FFT

size increases, the error increases due to the increase in the number of stages. Whilst

the test uses floating point models for QAM transmitter and receiver as well as for

the IFFT, VHDL FFT test unit relies on a fixed point model and is therefore the only

possible source of error. In the case of using a fixed point VHDL model for both the

Figure ‎5.10: Constellation Diagram of 2048 Point FFT based on CORDIC

120

FFT and IFFT, the error doubles. With a higher modulation index such as 64QAM,

it has been observed that the error can increase further.

5.5 The Effect of CORDIC Iterations on Signal to Noise Ratio

The principles of CORDIC algorithms have been explained in Section ‎2.3.1. Each

iteration in CORDIC represents a cell. As the number of the cells increases, the

accuracy of the calculation increases. In this section, the FFT based on CORDIC

was tested to evaluate the relationship between the number of cells and the resulting

SNR. The SNR is calculated as previously in (‎4.27),(‎4.28) and (‎4.29), between

Matlab's floating point FFT function and VHDL code FFT but based on different

numbers of cells. The range of the cells is selected in the range between six and 16.

The SNR was seen to increase dramatically from around 60dB for six CORDIC cells,

to around 150dB for eleven cells. Beyond that, at twelve cells and above, the effect

of increasing the number of iterations was less significant, reaching a maximum of

around 160dB. The reason for this phenomenon is that the angle cells are represented

with 8 only bits, which makes the last five cells ineffective. Based on this

observation, the number of cells was therefore limited to eleven. A graph of SNR

against CORDIC iterations – which is equivalent to the number of cells -- is shown

in Figure ‎5.11.

121

5.6 Comparison to Xilinx FFT Version 7.1

 Xilinx LogiCORE offers Intellectual property (IP) cores that can be synthesised and

implemented on Xilinx FPGAs. FFT v7.1 is an IP core for the Fast Fourier

Transform and its inverse. It has different architectures, but the architecture

corresponding to the FFT being researched is the Radix-2 burst I/O architecture. The

latest version of the core is 7.1, and the results of synthesising this core are as shown

in Table ‎5.4.

These results have been generated for several different FFT sizes, with the complex

input vector set to sixteen bit precision <1, 15>, while the twiddle factor precision is

set to eight bits <1, 7>. The output order is selected as natural order, and the output

precision is selected as growth with no scaling, and carries all significant integer bits

to the end of the computation, which is as defined in Equation (‎4.3).

Figure ‎5.11: Variation of SNR with Number of CORDIC Cells

S
ig

n
al

 T
o
 N

o
is

e
(d

B
)

CORDIC Cells

122

The FFT 7.1 core is compared to the serial butterfly FFT, serial pipelined FFT and

CORDIC FFT architectures. In terms of the number of flip flops used, the serial

pipelined architecture is seen to be the cheapest, as shown in Figure ‎5.12, while the

serial butterfly uses the next fewest, followed by the Xilinx FFT 7.1 core. The

CORDIC-based FFT implements the CORDIC cells in a fully parallel, pipelined

architecture, and therefore uses the most flip flops. Notably the serial pipelined and

serial FFT architectures use around 50% of the flip flops required by the Xilinx FFT

7.1 core, and as the FFT size increases, the flip flops required increase dramatically.

The flip flop is one of the critical points in the design on Virtex 5 as its number is

less than that offered by Virtex 4. The pipelined butterfly architecture maintains its

advantages over other architectures, in terms of the number of look-up tables (LUTs)

occupied, while the CORDIC FFT architecture requires the largest number of LUTs,

as shown in Figure ‎5.13. The number of occupied slices for the serial pipelined

butterfly and serial butterfly architectures are lower than for the Xilinx FFT 7.1 core,

as shown in Figure ‎5.14.

The CORDIC FFT architecture has an advantage over the other styles of FFT

implementation, as it does not use any multipliers; whereas the serial pipelined and

serial butterfly architectures both use two multipliers, and the FFT 7.1 core requires

up to six multipliers, depending on the size of the FFT. The serial butterfly

implementation uses the fewest of Block RAMs of all the architectures considered,

while the FFT 7.1 core uses up to eight, again depending on the FFT size.

123

Figure ‎5.12: Number of Flip Flops for various FFT Architectures

Table ‎5.4: Resource Utilisation of FFT 7.1 on Virtex 5 X110t

Parameters

FFT SIZE

128 256 512 1024 2048

Flip Flops 959 835 1,149 1,202 1,258

LUTs 712 645 849 891 932

Slices 347 319 403 427 490

DSP48Es 3 4 6 6 6

RAMB18 4 4 4 5 8

Maximum

frequency MHZ
392.619 459.348 350.385 273.598 292.141

124

Figure ‎5.13: Number of Look-Up Tables for various FFT

Architectures

Figure ‎5.14: Number of Slices for various FFT Architectures

125

Figure ‎5.15:Number of DSP48Es various FFT Architectures

Figure ‎5.16: Number of Block RAMs for various FFT Architectures

126

5.7 Upgrade with Two Clocks for OFDM Requirements

The FFT is widely used to implement OFDM modulation and demodulation. Each

wireless standard has defined OFDM parameters, as was discussed in Chapter 2. To

allow both the FFT based on Butterfly, and the FFT based on CORDIC, to meet the

requirements of the OFDM standard, the design was upgraded to use two clocks, one

to read and write data from the interface (clk_main) and the other to perform the

calculation inside the FFT (clk_cal), as shown in Figure ‎5.17. The interface clock,

clk_main, is set to the sampling or chip rate, according to the OFDM parameters

of the wireless standard, while clk_cal is set to the maximum frequency the clock

can achieve.

According to the operational steps of the FFT, there are five states, as mentioned in

‎4.5. The first state, S0, is assigned to read and write data from the interface. S0 is

responsible for generating the position of the input and output data, in_index and

out_index. When this state is set to work with clk_main, the input and output can

match the sampling rate of the wireless standards. On the other hand, all of the

calculation processing undertaken inside the FFT (as controlled by states S1, S2, S3

and S4) uses the faster clk_cal to decrease the latency of the calculation.

Input

clk_main

Output

In
te

rf
ac

e
R

eg
is

te
r

FFT based

BFLY/CORDIC

In
te

rf
ac

e
R

eg
is

te
r

clk_cal

Figure ‎5.17: FFT for OFDM

127

The latency improvement achievable for a sequential architecture through the use of

two clocks can be illustrated as in Figure ‎5.18. In this example, the OFDM symbol of

IEEE 802.20 is considered. The chip rate for a 2048-point FFT is 20MHz. In case A,

the FFTs based on CORDIC, serial butterfly and serial pipelined, all operate at the

sampling rate. To calculate the output frame 22528 clock cycles are needed, and this

is equivalent to 1.1ms for completing the calculation. In case B, the FFTs operate

with two clocks: the first, which is responsible for reading from and writing to the

interface, is operated at 20MHz, while the second, which is responsible for

calculation inside the FFTs, is operated at 180MHz. In this case the output frame can

be calculated in 125.1s.

In
p
u
t

O
u
tp

u
t

B

O
u
tp

u
t

A

t

125.1 us

1.1 ms

Figure ‎5.18: Latency Improvement for FFT

128

The achievable OFDM symbol rate decreases as the FFT size, NFFT, increases. To

evaluate which FFT architectures can meet the requirements of 4G wireless

standards, Equation (‎5.2) is used to calculate the maximum OFDM Symbol rate that

the FFT can process.

CyclesClockTotal

NFFTcalclk
RateSampling

__

_
_


 (‎5.2)

In Equation (‎5.2), clk_cal is the maximum clock frequency that can be used; it

should not exceed the maximum frequency stated in Table ‎4.1, Table ‎4.2, or Table

‎5.1, depending on the architecture being evaluated. Also, Total_Clock_Cycles is

equal to the latency, and NFFT is the FFT size. The three FFT architectures (FFT

based on serial butterfly, FFT based on serial pipelined butterfly, and FFT based on

CORDIC), are considered to determine whether each can meet the requirements of

the 4G wireless standards IEEE 802.20, IEEE 802.16e, 3GPP2_UMB and LTE, as

shown below.

Setting clk_cal to the maximum frequency will show the maximum OFDM symbol

rates that can be processed.

129

Table ‎5.6: Performance of FFT based on Serial Pipelined Butterfly, with

respect to 4G Wireless Standards

NFFT
Clk_cal

(MHz)

Sampling

Rate

(MHz)

IEEE802.20 UMB
IEEE

802_16e
LTE

128 233 33 Yes Yes Yes Yes

256 221 27 Yes Yes Yes Yes

512 179 19 Yes Yes Yes Yes

1024 217 21 Yes Yes Yes Yes

2048 192 17 No No No No

Table ‎5.5: Performance of FFT based on Serial Butterfly Architecture, with
respect to 4G Wireless Standards

NFFT
Clk_cal

(MHz)

Sampling

Rate

(MHz)

IEEE802.20 UMB
IEEE

802_16e
LTE

128 196 28 Yes Yes Yes Yes

256 191 23 Yes Yes Yes Yes

512 186 20 Yes Yes Yes Yes

1024 142 14 Yes Yes Yes yes

2048 144 13 No No No No

130

Table ‎5.8: Performance of FFT based on CORDIC with Generated Angles,

with respect to 4G Wireless Standards

NFFT
Clk_cal

(MHz)

Sampling

Rate

(MHz)

IEEE802.20 UMB
IEEE

802_16e
LTE

128 209 29 Yes Yes Yes Yes

256 211 26 Yes Yes Yes Yes

512 208 23 Yes Yes Yes Yes

1024 209 20 Yes Yes Yes Yes

2048 223 20 Yes Yes Yes NO

Table ‎5.7: Performance of FFT based on CORDIC, with respect to 4G
Wireless Standards

NFFT
Clk_cal

(MHz)

Sampling

Rate

(MHz)

IEEE802.20 UMB
IEEE

802_16e
LTE

128 216 30 Yes Yes Yes Yes

256 228 28 Yes Yes Yes Yes

512 181 20 Yes Yes Yes Yes

1024 204 20 Yes Yes Yes Yes

2048 198 18 No No No No

131

Figure ‎5.19: Comparison of Maximum Sampling Rates Supported by Considered

FFT Architectures

Table ‎5.9: Performance of Xilinx FFT 7.1 Core with respect to 4G Wireless
Standards

NFFT
Clk_cal

(MHz)

Sampling

Rate

(MHz)

IEEE802.20 UMB
IEEE

802_16e
LTE

128 392 112 Yes Yes Yes Yes

256 459 114 Yes Yes Yes Yes

512 350 77 Yes Yes Yes Yes

1024 273 54 Yes Yes Yes Yes

2048 292 53 Yes Yes Yes Yes

132

6 Orthogonal Frequency Division

Multiplexing Transmitter on FPGA

Using Xilinx System Generator

6.1 Introduction

OFDM modulation is part of the physical layer of most recent wireless networks.

This chapter considers the design of an OFDM transmitter. The OFDM scheme can

support different mapping schemes, including QPSK, 8PSK, 16QAM and 64QAM.

In section ‎6.2 the different modulation schemes are introduced. In section ‎6.3, the

design features a dynamic IFFT that can dynamically change its size from 128 point

up to 2048 point. The design can achieve variable lengths of cyclic prefix, as defined

in the standards considered. This corresponds to the requirements of IEEE 802.20

133

and 3GPP_UMB wireless networks, and also covers most other standards. Figure ‎6.1

shows the block diagram of the OFDM transmitter.

Therefore in summary, this design has three variable aspects: the first is in the

modulation scheme, the second is in the IFFT size, and the third is the cyclic prefix

length.

System Generator and ISE (Integrated Software Environment) tools from Xilinx

were used in the design, implementation and synthesis of the OFDM system. The

design was targeted at a Xilinx Virtex 5 device, and all of the variable features were

tested. The resources utilisation for each part of the design is given.

A floating point model was created in the form of MATLAB scripts for

debugging and validation purposes. The mean square error was calculated.

6.2 Mapping Schemes

The QPSK, 8PSK, 16QAM, 64 QAM modulation schemes were implemented on the

FPGA, with each modulator consisting of a serial to parallel converter, and pairs of

ROMs. The number of bits involved in the serial to parallel conversion is

set according to the modulation type: 2 bits for QPSK, 3 bits for 8PSK, 4 bits for

16QAM, and 6 bits for 64QAM. A pair of ROMs is assigned to each modulation

scheme: one to store the in-phase values, and the other to store the quadrature values.

Two multiplexers are assigned to choose between modulation schemes, to manage

Figure ‎6.1: Block Diagram of OFDM Transmitter

Data

Input

Mapping

Schemes

IFFT

Cyclic

Prefix

Addition

OFDM

Symbol

134

which task a control signal with two bits is used. A block diagram of the variable

modulation scheme is shown in Figure ‎6.2.

The resource utilisation of the modulator is shown in Table ‎6.1. The design has

sixteen bit precision < 1, 15 >, i.e. one integer bit and fifteen fractional bits. The

report shows that the area occupied by the circuit is small and that it can achieve very

high speed.

The MSE is calculated as shown in Table ‎6.2. For QPSK, 8PSK and 16QAM the

MSE is acceptable but for 64QAM is significantly increased due to the fixed point

limitation <1, 15> which restricts amplitude values to the interval (-1, 0.9999). With

64QAM having values > 1, this inevitably leads to an increase in MSE.

For validation purposes, the signal constellations produced by the fixed point design

for each modulation scheme are given. Figure ‎6.3 shows the constellation diagram

for QPSK modulation, Figure ‎6.4 shows the 8PSK constellation diagram; Figure ‎6.5

the fixed 16QAM constellation diagram; and finally Figure ‎6.6, the 64QAM

constellation diagram.

135

Figure ‎6.2: Variable Modulation Schemes Block Diagram

in-phase

16QAM

I-Symbol

16QAM

Q-Symbol
M

u
lt

ip
le

x
er

quadrant

M
u
lt

ip
le

x
er

Input

Data

Serial-to-

parallel

2-bits

QPSK

I-Symbol

QPSK

Q-Symbol

Serial-to-

parallel

3-bits

8PSK

I-Symbol

8PSK

Q-Symbol

Serial-to-

parallel

4-bits

Serial-to-

parallel

6-bits

64QAM

I-Symbol

64QAM

Q-Symbol

136

Table ‎6.1: Resource Utilisation and Performance of Modulator

Parameters Used on Virtex 5

Number of Slice Registers 147

Number of Slice LUTs 89

Number of occupied Slices 79

Maximum frequency 484.262 MHz

Figure ‎6.3: Fixed Point QPSK Constellation Diagram

137

Figure ‎6.4: Fixed Point 8PSK Constellation Diagram

Figure ‎6.5: Fixed Point 16QAM Constellation Diagram

138

6.3 Reconfigurable OFDM Transmitter

The new generation of standards require variable length Inverse Fast Fourier

Transforms, and the addition of variable length cyclic prefixes. The output produced

by the modulator is presented to the variable length IFFT.

Figure ‎6.6: Fixed Point 64QAM Constellation Diagram

Table ‎6.2 : Mean Squared Error for Supported Modulation Schemes

Modulation Schemes Mean Square Error

QPSK 5.95783329002397e-11

8PSK 1.05208187103746e-10

16QAM 6.26153516768136e-11

64QAM 0.00148347991492249

139

For this purpose, the Xilinx FFT core, version 7.1 is used, offering variable FFT size

and variable cyclic prefix length. Figure ‎6.7 gives the block diagram of the

reconfigurable OFDM transmitter. The IFFT has a dynamic range from 128 up to

2048 points, and this is set using the unsigned vector IFFT_size, with length

log2(NFFT). Table ‎6.3 gives the values for setting the IFFT size. The addition of the

cyclic prefix is set using the unsigned vector Cyclic_Prefix_size, also with length

log2(NFFT).

The inverse FFT was synthesized with variable length ranging up to 2048, and with

the input complex precision specified as sixteen bits, in the form <1, 15>. The

resource utilisation of the design is summarised in Table ‎6.4. Matlab floating point

flow graph of the OFDM transmitter is shown in Figure ‎6.8.

Figure ‎6.7: Block Diagram of variable IFFT

IFFT_size

IFFT_size_we

I_Symbol

Q_Symbol

IFFT_out_i

IFFT_out_q

Xk_index

Xn_index

 IFFT

Cyclic_Prefix_size

Cyclic_Prefix_we

140

Table ‎6.4: Resource Utilisation of Configurable IFFT

Parameters Used

Number of Slice Registers 1,349

Number of Slice LUTs 1,117

Number of occupied Slices 529

Number of BlockRAM/FIFO 8

Number of DSP48Es 6

Maximum frequency 372.024 MHz

Table ‎6.5: Mean Squared Error of Reconfigurable OFDM Transmitter

IFFT

Mean Square Error

QPSK 8PSK 16 QAM 64 QAM

128 7.902e-08 7.269e-08 7.136e-08 1.142e-05

256 5.067e-08 5.580e-08 4.604e-08 6.287e-06

512 2.985e-08 2.926e-08 2.968e-08 2.914e-06

1024 1.72e-08 1.744e-08 1.862e-08 1.425e-06

2048 1.03e-08 9.507e-09 1.027e-08 7.00e-07

Table ‎6.3: IFFT_size Selection Table

IFFT_size setting IFFT

11 2048

10 1024

9 512

8 256

7 128

141

Start

NFFT, Mod, CP

QPSK

Mod =2

2-bit group

8PSK

Mod =3

3-bit group

QPSK

Mod =4

4-bit group

QPSK

Mod =6

6-bit group

IFFT

CP addition

OFDM Symbol

End

Figure ‎6.8: Matlab Script Transmitter Flow Chart

142

7 Conclusion and Discussion

7.1 Introduction

This research has been applied to the study, design and analysis of efficient

sequential Fast Fourier Transform Architectures aimed at implementation on high

speed FPGA devices. Many 3G and most 4G wireless networks now use the FFT as

part of the physical layer of modulation and multiplexing. This research has focused

on how to meet the requirements of the 4G FFT implementation for OFDM

algorithms based on using FPGA hardware devices that will use minimum resource

area but have a speed capability that they can implement all FFT lengths required in

the various 4G implementations. A key effort in this research has been to find the

best way of optimizing and/or minimising the resources area required on the FPGA,

but maintaining performance. Noting that many designers using FPGAs for 4G will

likely choose to use off-the-shelf FFT and IFFT components from FPGA vendors the

thesis has aimed to show this may not always be best suited and clear note must be

143

taken of the actual 4G PHY layer standard, wordlength and resolution required, and

also the actual resources available, i.e. is there memory blocks, or multipliers, etc

available.

The research work has designed architectures working with fixed point and

comparing against golden reference implementations which were specifically written

in floating point models for the various design validation and verification.

In the course of the research two specific architectures have been used to calculate

the FFTs. One depends on an efficient serialised butterfly using two multipliers and

the second is based on CORDIC to perform the multiplies and various trigonometric

calculations. A comparison between these architectures and the recent version of

Xilinx FFT 7.1 core was been performed to highlight the advantages and

disadvantages of the design and provide researchers with ideas as to which points can

be modified.

The OFDM transmitter designed was based on the Xilinx System Generator

software tool, and aimed to be reconfigurable with variable FFT size, cyclic prefix

and modulation schemes and as such be full adaptable to any OFDM aspect of

modern 4G PHY layer wireless standards.

7.2 Summary Contributions of the Research

The trade-off among the resources area, speed and accuracy of FPGA design is one

of the important topics that have been studied in this research. To obtain better

results, three architectures for FFTs have been introduced and researched. One used

serial butterfly (section ‎4.3.1), the second used serial pipelined butterfly (section

‎4.3.2), while the third used CORDIC (Section ‎5.2). At the same time, an OFDM

transmitter with reconfigurable property has been designed (Chapter ‎6). A summary

of main contributions made by this research and design work are given below.

144

7.2.1 FFT Based Serial Butterfly

The best way to achieve minimum resource area in the FPGA design is to implement

the required design serially – assuming the required processing speeds can be

attained. Therefore to gain full advantage of the serial implementation, the butterfly

and the entire architecture of the FFT have been implemented serially. Given that

the design will slow down in the calculation speed but use less resource area, it is

important for optimization purposes to think of the architecture serially. In the serial

butterfly situation, not only is the butterfly implemented serially but the design uses

only a pair of RAMs and ROMs. In the eight bits twiddle factor case study, the FFT

based on serial butterfly utilized flip flops between 450 for 128 points FFT up to 625

flip flops in 2048 points FFT, as was shown in Table ‎4.1. The number by which the

flip flops increase is only 175, which is very efficient compared to the off the shelf

option from Xilinx, where the number of flip flops for 128 points is 959, and for

2048 points 1258 (Table ‎5.4), i.e., an increase of 299. In the serial butterfly, the

look-up tables start from 652 for 128 points and rise to 992 for 2048 points, an

increase of 340. In the Xilinx case the LUTs start at 712 for 128 points and end with

932 for 2048 points, i.e. a cost increase increments are 220. Here Xilinx maintained

the increments better than serial butterfly, but this occurred because the serial

butterfly used minimum block RAMs compared to all the other architectures in this

research. Where Xilinx goes up from four in 128 points to eight in 2048 points, the

serial butterfly keeps two for different FFT sizes. In the DSP48Es multipliers

numbers, the serial butterfly shared two multipliers to calculate the FFT efficiently in

terms of resource area. So it uses only two throughout the varying sizes of the FFT.

In the Xilinx case, the multipliers start with 3 in 128 points and grow to six in 2048

points. In Slices terms, the serial butterfly starts with 276 for 128 points and ends

with 444 for 2048, giving an increment of around 177 slices. In the Xilinx case, it

starts with 347 for 128 points and goes up to 490 for 2048. This gives an increment

of 143. It seems to maintain the number of slices, but is bigger in values.

In respect of speed, Xilinx has the best design as it is optimized for Virtex 5 boards

where it starts from 392 MHz for 128 points, while serial butterfly is at about 197

145

MHz. It could be half; this is because of the serial nature of the design and because

Xilinx is optimized for Xilinx boards. As the FFT size increases the speed goes

down: for 2048 point Xilinx gives 292 MHz, while the serial butterfly gives 144

MHz. For latency, Xilinx is twice as good since it needs half the number of clocks to

complete the calculations, taking 448 clock cycles for 128 points and going up to

11264 for 2048 points. In the serial FFT butterfly it is double these values.

In the serial butterfly architecture, the main advantage is that it minimizes the

resources. The numbers of Flip Flops, Look-up Tables, Slices and Block RAMs are

much lower than for the Xilinx Core generator solution. It uses only two multipliers

to implement the Radix-2 butterfly. For the wireless 4G application case study, in

section ‎5.7, Table ‎5.5 shows the maximum OFDM sampling rate that the serial FFT

can perform, the networks and FFT size that can be used. The requirements of the

standards for OFDM symbols are mentioned in chapter ‎1, Table ‎1.1, Table ‎1.2 and

Table ‎1.3. The sampling rate is the speed that the FFT design is required to meet.

For the serial butterfly the maximum speed at which the sampling OFDM symbol

can be processed is given in Table ‎5.5. For IEEE802.20, UMB and IEEE 802.16e

standards, the serial butterfly can meet the OFDM requirements up to 1024 FFT

points. For LTE this is possible for up to 512 points.

7.2.2 FFT Based Serial Pipelined Butterfly

In the previous section, serial butterfly architecture has been discussed. One of the

important parameters that the FFT for OFDM needs to meet is the sampling rate.

This parameter depends on the speed that can be achieved by the design. The serial

pipelined butterfly is designed to improve the speed of the design and keep the cost

as low as possible. The key development achieved here is in the butterfly engine. In

serial pipelined butterfly for eight bits twiddle factor precision, the speed of the

design is 233 MHz for 128 point, compared to 192 MHz in serial butterfly: an

improvement of around 41 MHz. For 256 points it is 30 MHz, for 512 points

11MHz, and for 1024 points 70 MHz. At this size, the improvement towards

146

meeting the requirements of all 4G wireless networks with FFT goes up to 1024, as

shown in Table ‎5.6, where the LTE standard requirement is met at 1024 FFT points.

In the resource area analysis, the main difference between the serial pipelined

butterfly architecture and serial butterfly architecture is the number of slices and

block RAMs occupied by the designs. Here, the number of slices starts with 260 for

128 points for serial pipelined butterfly and goes up to 348 for 2048 points; while in

serial butterfly, it starts from 276 at 128 points and goes up to 444 at 2048. But the

main difference appears in the number of block RAMs used to achieve the

architectures, with the serial using only two compared with four in the serial

pipelined case.

With respect to the Xilinx study case, the flip flop numbers used by serial pipelined

butterfly reach 646 at 2048, while in Xilinx they rise to 1258 at 2048, which is about

double. For the look-up tables the range starts from 616 for 128 points and ends with

826 at 2048 points, while in Xilinx it ranges from 712 up to 932. The difference is

around one hundred LUTs in each case. The number of slices occupied by serial

pipelined butterfly is from 260 up to 348 while in Xilinx it starts from 347 and goes

up to 490. In Xilinx the loss level (347) at 128 equals the serial pipelined higher

level (348). For DSP48Es, the serial pipelined butterfly is designed to use only two

multipliers, and this covers the whole range of FFTs under research, while in Xilinx

it starts from three and goes up to six. The block RAM numbers give it another

advantage over Xilinx, since it consistently utilizes four while Xilinx ranges from

four to eight. For the maximum frequency that can be achieved on the FPGA board,

The Xilinx design though does have advantages over the serial pipelined butterfly,

the clocking range for Xilinx being 392, 495, 350, 273, 292 MHz, (for FFT orders of

11, 10, 9, 8, 7 respectively) while for serial pipelined it is 233, 221, 179, 217, 192

MHz. The latency of the design in Xilinx is better as well, since it needs half the

number of clocks required by serial pipelined butterfly.

In the serial pipelined butterfly architecture, the main advances are that it increases

the speed of operations and keeps the resource area small compared to serial

butterfly. It uses only two multipliers and pipelines the input and output and each

147

operation inside the butterfly very well. It uses only two multipliers to implement the

Radix-2 butterfly. It can operate in OFDM with sampling rate up to 33 M

sample/second and meets the requirements of all 4G wireless networks with FFT

lengths up to 1024.

7.2.3 FFT Based Full Parallel CORDIC

This part of the research was focused on FFT sequential architecture. To discover

more about this architecture and its ability to meet the requirements of 4G wireless

standards, the engine that performs the calculation has been changed with CORDIC

used instead of butterfly. The changed requirements have been studied, analyzed

and compared with FFT based on butterfly. The twiddle factor values in FFT based

butterfly that were stored in a couple of ROMs (section ‎4.2.4) have changed to

twiddle factor angles as in section ‎5.2.1. This has not extended the resource area on

FPGA for the small FFT size, but the twiddle factor values are between (-1, 0.999)

while the twiddle factor angles are between 0 and 360 degrees. This leads to more

bits required to represent the values on the twiddle factor angles, from eight for

twiddle factor values to sixteen on twiddle factor angles. Result as the angles are

real while the values of twiddle factor are complex. The block RAMs used in the

design are shown in Figure ‎5.16. At large numbers FFT 2048, the block RAMs

number in the CORDIC case goes up to five as a reflection of previous effects. The

CORDIC engine is implemented fully parallel, and uses eleven pipelined cells (to

obtain enough iterative resolution) based on Figure ‎5.11. It was noted that increasing

the number of cells beyond 11 did not improve the signal to noise ratio. The

CORDIC required Mapper, Demapper pulse CORDIC cells. The resource area

analysis shows that CORDIC needs more flip flops compared with the other design

(Figure ‎5.12) and reach 1200 flip flops in 2048 point FFT. The number of look-up

tables and slices are high as was shown in Figure ‎5.13 and Figure ‎5.14. However the

very clear advantage of CORDIC FFT is that it needs no multipliers; since the

CORDIC implements the multiplication by add shift process (Figure ‎5.15). The

design can operate on 30 M sample/second and meet 4G wireless networks up to

148

1024 FFT points as in Table ‎5.7. Another point to note is that it gives a better signal

to noise ratio compared to the above architectures given the architecture chosen does

in fact operate with higher wordlength.

7.2.4 FFT Based CORDIC Calculated Angles

On this architecture one key advantage and useful attributes were demonstrated. It

uses just one block ROM compared with the storage angles required by the FFT

CORDIC design. The design also uses no multipliers (Figure ‎5.15). In overall cost

the design uses more Flip flops, Look up tables and Slices that the other

architectures, however a specific advantage is it can be use for variable size FFT

more easily that other architectures.

7.2.5 Reconfigurable OFDM Transmitter

This OFDM transmitter architecture has the ability to control three important

parameters in the OFDM system. The transmitter can change the modulation

schemes to QPSK, 8PSK, QAM and 64 QAM. The values of constellation signals are

stored in distributed RAMs instead of block RAMs, as their size is not large, making

the former more efficient to use (Table ‎6.1). A couple of multiplexers are used to

collect the real and imaginary values of the symbol generated by the modulators.

The second and third levels of reconfigurable parameters are offered by Xilinx FFT

7.1. The FFT size and cyclic prefix can be set directly in the IP core. The mean

square error test for the design compared with floating point for the OFDM

transmitter demonstrated good performance, as in Table ‎6.2 and Table ‎6.5.

149

7.2.6 Floating Points Models Verification and Validation

Verification and Validation (V&V) form an essential step in the progress of

successful research. Verification and validation were performed at all stages to

prove that the sequential FFT models are programmed correctly. The procedure can

be used to estimate many parameters in the design and in debugging the VHDL

codes. The signal to noise ratio parameter is used to prove the accuracy of the FFT

based on butterfly and CORDIC architectures. Figure ‎4.13 shows the FFT based

butterfly signal to noise ratio test comparing the double precision floating point FFT

with the FFT of Matlab built in function. The figure shows that the model is

programmed correctly and has a high signal to noise ratio, around 715 dB on 128

point, decreasing to 700 dB as the FFT size goes up to 2048. The second aim of the

V&V floating point model is to ensure that the VHDL model has been implemented

properly. For this purpose a bit-accurate model is driven that converts the floating

point values to two complement (signed integer values) for use in V&V.

In the sequential FFT based on CORDIC, the floating point model is used. The

algorithm is programmed correctly as shown in Figure ‎5.3. The signal to noise ratio

test shows 163 dB at 128 FFT point and 154 dB at 2048. This model is used to

verify and validate the VHDL code that has been written correctly. To obtain a

match with the signed integers shown in Modelsim or Isim software packages from

Xilinx, the floating point model values are changed to tow’s‎complement.

The verification process of the FFT models ensures that mistakes have not been

made in implementing them by using the VHDL codes. Generating random values,

creating VHDL test benches, and simulating the test benches including FFT models

have been achieved successfully. The VHDL test bench is used to the random values

generated by floating point models and fed into the FFT VHDL entity (unit under

test); it then collects the FFTs output as in section ‎4.8 and section ‎5.3.

150

7.3 Conclusion

 In the signal processing field, many algorithms play a substantial role in the

development of wireless communication. Among these algorithms, this thesis has

focused on the Fast Fourier Transform. The FFTs have been used as an efficient

means of implementing multicarrier modulation and demodulation for 4G wireless

networks. The OFDM is a multicarrier modulation used as part of the physical

layers to obtain air interface between the base station and the access terminal.

Many design tools have been used to implement the signal processing algorithms and

the FFTs. The programmable DSPs processors, ASIC and the FPGAs are the most

common tools in this field. The FPGA makes it possible to combine the advantages

of the DSP processor and ASIC. This project aims at efficient design of sequential

FFTs based on FPGA for 4G wireless networks

There are many architectures for FFTs that can be implemented on FPGAs with

differing features and requirements. Two things are important and need to be kept in

balance: cost and efficiency. This research aimed to give meaningfull and real time

implementable results with minimum cost. The most common FFT architectures are

the sequential and pipelined. This research has used the sequential architecture to

achieve minimum cost and meet the requirements of the 4G wireless networks on

FPGA boards (section ‎5.7). For the sequential architecture, Radix-2 FFT

decimation-in-frequency has been chosen for its simplicity of implementation on the

FPGA. To obtain better compression and result, the FFT has been implemented

based on butterfly and CORDIC.

This thesis focuses on the use of FPGAs in two applications. One is for FFT

algorithms, which absorb the most interest. The second is for the OFDM system

design using System Generator. Many parameters have been taken into

consideration while working on the FPGA. Achieving high speed and minimizing the

resource area were the most important. For speed, three factors are taken into

account: throughput, latency and the critical path. The approach of adding pipeline

registers has been used to reduce the critical path. This approach is powerful for

increasing the design speed.

151

The two clocks technique has been used to reduce the latency and increase the

throughput. The resource area is reduced by using pipelined sequential architecture.

152

References

[1] Xilinx, "Virtex-5 FPGA XtremeDSP Design Considerations User Guide

Virtex-5 FPGA User Guide, v3.2,," September, 2008.

[2] B. R. S. Ahmad R. S. Bahai, Multi-Carrier Digital Communications Theory

and Applications of OFDM. New York: Kluwer Academic Publishers, 2002.

[3] W. Y. Bolton, Xiao Guizani, M., "IEEE 802.20: mobile broadband wireless

access," Wireless Communications, IEEE, vol. 14, pp. 84-95, 2007.

[4] A. K. Greenspan, M. Tomcik, J. Canchi, R. Wilson, J., "IEEE 802.20: Mobile

Broadband Wireless Access for the Twenty-First Century," Communications

Magazine, IEEE, vol. 46, pp. 56-63, 2008.

[5] M. Merlyn, "FPGA implementation Of FFT processor with OFDM

transceiver," in Signal and Image Processing (ICSIP), 2010 International

Conference on, 2010, pp. 483-489.

[6] J. M. L. Rudagi, R. Patil, P. Biraj, N. Nesaragi, N., "An Efficient 64-point

Pipelined FFT Engine," in Advances in Recent Technologies in

Communication and Computing (ARTCom), 2010 International Conference

on, 2010, pp. 204-208.

[7] Xilinx, "System Generator for DSP User Guide," 2010.

[8] Xilinx,‎"Synplify‎Pro™‎User‎Guide‎and‎Tutorial,"‎2001.

[9] Xilinx,‎"ModelSim‎XE‎User’s‎Manual,"‎2000.

[10] S. A. Ltd, "Signal Processing and Communication Notes Book," ed: Steepest

Ascent Ltd

[11] FAROOQ KHAN, LTE for 4G Mobile Broadband Air Interface Technologies

and Performance. Cambridge: Cambridge University Press, 2009.

[12] Vijay K. Garg, WIRELESS COMMUNICATIONS AND NETWORKING.

Boston: Elsevier Inc., 2007.

[13] D. J. W. Andrew S. Tanenbaum, Computer Networks, 5th Edition ed. Boston:

Prentice Hall, 2011.

[14] A. Jalili, et al., "Performance Evaluation of IEEE 802.20 PHY Layer,"

presented at the 2009 International Conference on Computer Engineering and

Technology, Vol Ii, Proceedings, Los Alamitos, 2009.

[15] M. Wang, "Ultra Mobile Broadband Technology Overview," in

Communication Networks and Services Research Conference, 2008. CNSR

2008. 6th Annual, 2008, pp. 8-9.

[16] 3GPP2, "Physical Layer for Ultra Mobile Broadband (UMB) Air Interface

Specification," August 2007.

[17] "IEEE Standard for Local and Metropolitan Area Networks Part 20: Air

Interface for Mobile Broadband Wireless Access Systems Supporting

Vehicular Mobilityphysical and Media Access Control Layer Specification,"

IEEE Std 802.20-2008, pp. 1-1039, 2008.

[18] W.‎forum.‎WiMAX’s‎technology‎for LOS and NLOS environments.

[19] J. M. Gazi Ahmed, Imran Hasan "Performance Evaluation of IEEE 802.16e

(Mobile WiMAX) in OFDM Physical Layer," Master, Department of

Telecommunication, Blekinge Institute of Technology, August 2009.

153

[20] F. Wang, et al., "IEEE 802.16e system performance: analysis and

simulations," in Personal, Indoor and Mobile Radio Communications, 2005.

PIMRC 2005. IEEE 16th International Symposium on, 2005, pp. 900-904

Vol. 2.

[21] A. Ghosh, et al., "LTE-advanced: next-generation wireless broadband

technology [Invited Paper]," Wireless Communications, IEEE, vol. 17, pp.

10-22, 2010.

[22] J. Berkmann, et al., "On 3G LTE Terminal Implementation - Standard,

Algorithms, Complexities and Challenges," in Wireless Communications and

Mobile Computing Conference, 2008. IWCMC '08. International, 2008, pp.

970-975.

[23] Carl R. Nassar, et al., Multi-Carrier Technologies For Wireless

Communication. New York: Kluwwe Academic Publishers, 2002.

[24] C. Xiaoxin and Y. Dunshan, "Digital OFDM transmitter architecture and

FPGA design," in ASIC, 2009. ASICON '09. IEEE 8th International

Conference on, 2009, pp. 477-480.

[25] S. Weinstein and P. Ebert, "Data Transmission by Frequency-Division

Multiplexing Using the Discrete Fourier Transform," Communication

Technology, IEEE Transactions on, vol. 19, pp. 628-634, 1971.

[26] J. Haining, et al., "Design of an efficient FFT Processor for OFDM systems,"

Consumer Electronics, IEEE Transactions on, vol. 51, pp. 1099-1103, 2005.

[27] Q. Wang, et al., "Efficient Implementation of Synchronization in OFDM

System Based on FPGA," in Advanced Communication Technology, The 9th

International Conference on, 2007, pp. 178-181.

[28] W. Y. Zou and W. Yiyan, "COFDM: an overview," Broadcasting, IEEE

Transactions on, vol. 41, pp. 1-8, 1995.

[29] K. E. Nolan, "Reconfigrabale OFDM Systems," Doctor of Philosophy,

Electronic and Electrical Engineering, University of Dublin, Dublin, 2005.

[30] J. Q. Garcia, et al., "On the design of an FPGA-based OFDM modulator for

IEEE 802.11a," in 2005 2nd International Conference on Electrical &

Electronics Engineering, New York, 2005, pp. 114-117.

[31] Zhengdao, et al., "OFDM or single-carrier block transmissions,"

Communications, IEEE Transactions on, vol. 52, pp. 380-394, 2004.

[32] K. Harikrishna, et al., "An FFT Approach for Efficient OFDM

Communication Systems," in Signal Acquisition and Processing, 2010.

ICSAP '10. International Conference on, 2010, pp. 117-119.

[33] C. Dick and F. Harris, "FPGA implementation of an OFDM PHY," in

Signals, Systems and Computers, 2003. Conference Record of the Thirty-

Seventh Asilomar Conference on, 2003, pp. 905-909 Vol.1.

[34] S. Abbas, et al., "Implementation of OFDM Baseband Trasmitter Compliant

IEEE Std 802.16d on FPGA," in Communication Software and Networks,

2010. ICCSN '10. Second International Conference on, 2010, pp. 22-26.

[35] C. Ebeling, et al., "Implementing an OFDM receiver on the RaPiD

reconfigurable architecture," Computers, IEEE Transactions on, vol. 53, pp.

1436-1448, 2004.

154

[36] Z. H. Derafshi, et al., "A High Speed FPGA Implementation of a 1024-Point

Complex FFT Processor," in Computer and Network Technology (ICCNT),

2010 Second International Conference on, 2010, pp. 312-315.

[37] M. Serra, et al., "IFFT-FFT core architecture with an identical stage structure

for wireless LAN communications," in Signal Processing Advances in

Wireless Communications, 2004 IEEE 5th Workshop on, 2004, pp. 606-610.

[38] X. S. Xiangyang Liu1, and Yuke Wang1, "Performance Evaluation on FFT

Software Implementation," in Proceedings of the International

MultiConference of Engineers and Computer Scientists, Hong Kong, March

18 - 20, 2009.

[39] Q. Wu and H. Chen, "The Design of a Large Point Reconfigured FFT Based

on FPGA," in Intelligent Information Technology and Security Informatics,

2009. IITSI '09. Second International Symposium on, 2009, pp. 64-67.

[40] S. Bouguezel, et al., "An improved radix-16 FFT algorithm," in Electrical

and Computer Engineering, 2004. Canadian Conference on, 2004, pp. 1089-

1092 Vol.2.

[41] K. M. Nadehara, T. Kuroda, I, "Radix-4 FFT implementation using SIMD

multimedia instructions," presented at the Acoustics, Speech, and Signal

Processing, 1999. ICASSP '99. Proceedings., 1999 IEEE International

Conference, 1999.

[42] A. M. Despain, "Very Fast Fourier Transform Algorithms Hardware for

Implementation," Computers, IEEE Transactions on, vol. C-28, pp. 333-341,

1979.

[43] John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing

Principles, Algorithms, and Applications. USA: Prentice Hall, Inc., 1996.

[44] L. Hsin-Lei, et al., "A novel pipelined fast Fourier transform architecture for

double rate OFDM systems," in Signal Processing Systems, 2004. SIPS 2004.

IEEE Workshop on, 2004, pp. 7-11.

[45] W. Bingrui, et al., "Design of Pipelined FFT Processor Based on FPGA," in

Computer Modeling and Simulation, 2010. ICCMS '10. Second International

Conference on, 2010, pp. 432-435.

[46] R. T. BONE, "FPGA DESIGN OF A HARDWARE EFFICIENT

PIPELINED FFT PROCESSOR," SCHOOL OF GRADUATE STUDIES,

Wright State University, 2005.

[47] L. Fangming and P. Xiaozhong, "Research on implementation of FFT based

on FPGA," in Computer Application and System Modeling (ICCASM), 2010

International Conference on, 2010, pp. V7-152-V7-155.

[48] X.-f. Wang and Z.-l. Hou, "Design and implement of FFT processor for

OFDMA system using FPGA," in Mechanical and Electronics Engineering

(ICMEE), 2010 2nd International Conference on, 2010, pp. V2-297-V2-299.

[49] Z. Kai, et al., "An ultra high-speed FFT processor," in Signals, Circuits and

Systems, 2003. SCS 2003. International Symposium on, 2003, pp. 37-40

vol.1.

[50] K. S. Hemmert and K. D. Underwood, "An analysis of the double-precision

floating-point FFT on FPGAs," in Field-Programmable Custom Computing

Machines, 2005. FCCM 2005. 13th Annual IEEE Symposium on, 2005, pp.

171-180.

155

[51] L. Sheng, et al., "A broadband FFT processor core based on FPGA," in

Antennas, Propagation and EM Theory, 2008. ISAPE 2008. 8th International

Symposium on, 2008, pp. 1546-1549.

[52] S. Zhijian, et al., "The Design of Radix-4 FFT by FPGA," in Intelligent

Information Technology Application Workshops, 2008. IITAW '08.

International Symposium on, 2008, pp. 765-768.

[53] M. Petrov and M. Glesner, "Optimal FFT architecture selection for OFDM

receivers on FPGA," in Field-Programmable Technology, 2005.

Proceedings. 2005 IEEE International Conference on, 2005, pp. 313-314.

[54] Z. Qihui and M. Nan, "A Low Area Pipelined FFT Processor for OFDM-

Based Systems," in Wireless Communications, Networking and Mobile

Computing, 2009. WiCom '09. 5th International Conference on, 2009, pp. 1-

4.

[55] K. Jen-Chih, et al., "Implementation of a programmable 64∼2048-point

FFT/IFFT processor for OFDM-based communication systems," in Circuits

and Systems, 2003. ISCAS '03. Proceedings of the 2003 International

Symposium on, 2003, pp. II-121-II-124 vol.2.

[56] H. Shousheng and M. Torkelson, "A new approach to pipeline FFT

processor," in Parallel Processing Symposium, 1996., Proceedings of IPPS

'96, The 10th International, 1996, pp. 766-770.

[57] Y. M. W. Li, and L. Wanhammar, "Word Length Estimation for Memory

Efficient Pipeline FFT/IFFT Processors," presented at the the Int. Conf. on

Signal Processing Applications & Technology (ICSPAT), Nov., 1999.

[58] A. M. Sule, "Design of Pipeline Fast Fourier Transform Processors using 3

Dimensional Integrated Circuit Technology," Computer Engineering, North

Carolina State University, Raleigh, North Carolina, 2007.

[59] J. E. Volder, "The CORDIC Trigonometric Computing Technique,"

Electronic Computers, IRE Transactions on, vol. EC-8, pp. 330-334, 1959.

[60] J. Yang, et al., "A New Design and Implementation of the Butterfly Unit on

FPGA," in Image and Signal Processing, 2009. CISP '09. 2nd International

Congress on, 2009, pp. 1-6.

[61] X. Xin, et al., "Reduced memory architecture for CORDIC-based FFT," in

Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International

Symposium on, 2010, pp. 2690-2693.

[62] Y. Cheng-Ying, et al., "Efficient CORDIC Designs for Multi-Mode OFDM

FFT," in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006

Proceedings. 2006 IEEE International Conference on, 2006, pp. III-III.

[63] P. K. Meher, et al., "50 Years of CORDIC: Algorithms, Architectures, and

Applications," Circuits and Systems I: Regular Papers, IEEE Transactions

on, vol. 56, pp. 1893-1907, 2009.

[64] J. S. Walther, "A Unified Algorithm for Elementary Functions," presented at

the Spring Joint computer conf., 1971.

[65] Scott Hauck and Andr´e DeHon, RECONFIGURABLE COMPUTING THE

THEORY AND PRACTICE OF FPGA-BASED COMPUTATION. BOSTON:

Elsevier Inc, 2008.

156

[66] T. Adiono and R. S. Purba, "Scalable pipelined CORDIC architecture design

and implementation in FPGA," in Electrical Engineering and Informatics,

2009. ICEEI '09. International Conference on, 2009, pp. 646-649.

[67] L. Huan and X. Yan, "Modified CORDIC Algorithm and Its Implementation

Based on FPGA," in Intelligent Networks and Intelligent Systems (ICINIS),

2010 3rd International Conference on, 2010, pp. 618-621.

[68] O. A. Alim, et al., "FPGA implementation for an optimized CORDIC module

for OFDM system," in Computer Engineering & Systems, 2008. ICCES 2008.

International Conference on, 2008, pp. 21-26.

[69] D. Timmermann, et al., "A programmable CORDIC chip for digital signal

processing applications," Solid-State Circuits, IEEE Journal of, vol. 26, pp.

1317-1321, 1991.

[70] B. Lakshmi and A. S. Dhar, "High speed architectural implementation of

CORDIC algorithm," in TENCON 2008 - 2008 IEEE Region 10 Conference,

2008, pp. 1-5.

[71] M. Kuhlmann and K. K. Parhi, "A novel CORDIC rotation method for

generalized coordinate systems," in Signals, Systems, and Computers, 1999.

Conference Record of the Thirty-Third Asilomar Conference on, 1999, pp.

1361-1367 vol.2.

[72] J. Valls, et al., "Efficient mapping of CORDIC algorithms on FPGA," in

Signal Processing Systems, 2000. SiPS 2000. 2000 IEEE Workshop on, 2000,

pp. 336-345.

[73] Y. H. Hu, "The quantization effects of the CORDIC algorithm," Signal

Processing, IEEE Transactions on, vol. 40, pp. 834-844, 1992.

[74] A. M. Despain, "Fourier Transform Computers Using CORDIC Iterations,"

Computers, IEEE Transactions on, vol. C-23, pp. 993-1001, 1974.

[75] Sang Yoon Park, et al., "DESIGN OF 2W4WSK-POINT FFT PROCESSOR

BASED ON CORDIC ALGORITHM IN OFDM RECEIVER," presented at

the PACRIM. 2001 IEEE Pacific Rim Conference Pacific, 2001.

[76] eASIC. Available: http://www.easic.com/

[77] R. M. Jiang, "An Area-Efficient FFT Architecture for OFDM Digital Video

Broadcasting," Consumer Electronics, IEEE Transactions on, vol. 53, pp.

1322-1326, 2007.

[78] Roger Woods, et al., FPGA-based Implementation of Signal Processing

Systems. United Kingdom: John Wiley & Sons, Ltd, 2008.

[79] E. Lai, Practical Digital Signal Processing for Engineers and Technicians.

London: all Newnes publications, 2003.

[80] Steve Kilts, Advanced FPGA Design Architecture, Implementation, and

Optimization. Hoboken, New Jersey: John Wiley & Sons, Inc.,, 2007.

[81] T. Sansaloni, et al., "Area-efficient FPGA-based FFT processor," Electronics

Letters, vol. 39, pp. 1369-1370, 2003.

[82] Christos Meletis, et al., "High-Speed Pipeline Implementation of Radix-2

DIF Algorithm," in World Academy of Science, Engineering and Technology

2 2005, 2005.

[83] Xilinx, "ISE Design Suite Software Manuals and Help - PDF Collection,"

2010.

http://www.easic.com/

157

[84] G. R. J. JEAN-PIERRE, GUSTAVO D. SUTTER, SYNTHESIS OF

ARITHMETIC CIRCUITS. New Jersey.: John Wiley & Sons, Inc, 2006.

[85] P. P.Chu, FPGA Prototyping By VHDL Examples. New Jersey: John Wiley &

Sons, 2008.

[86] Xilinx. Available: http://www.xilinx.com/

[87] Bradley F. Dutton and C. E. Stroud, "Built-In Self-Test of Configurable

Logic Blocks in Virtex-5 FPGAs," presented at the Proc. IEEE Southeastern

Symp. on System Theory, 2009.

[88] H. Sarmento, "Virtex platforms comparison," 2008.

[89] J. Viejo, et al., "Implementation of a FFT/IFFT module on FPGA:

Comparison of methodologies," presented at the 2008 4th Southern

Conference on Programmable Logic, Proceedings, New York, 2008.

[90] T. Y. Sung, "Memory-efficient and high-speed split-radix FFT/IFFT

processor based on pipelined CORDIC rotations," presented at the Iee

Proceedings-Vision Image and Signal Processing, 2006.

[91] Walter Fischer, Digital Video and Audio Broadcasting Technology.

Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.

[92] S. S. Abdullah, et al., "A high throughput FFT processor with no multipliers,"

in Computer Design, 2009. ICCD 2009. IEEE International Conference on,

2009, pp. 485-490.

[93] M. J. Canet, et al., "FPGA implementation of an if transceiver for OFDM-

based WLAN," presented at the 2004 Ieee Workshop on Signal Processing

Systems Design and Implementation, Proceedings, New York, 2004.

[94] J. Garcia and R. Cumplido, "On the design of an FPGA-based OFDM

modulator for IEEE 802.16-2004," in 2005 International Conference on

Reconfigurable Computing and FPGAs, Los Alamitos, 2005, pp. 153-156.

[95] J. Xu, et al., "Implementation of MB-OFDM Transmitter Baseband Based on

FPGA," in Circuits and Systems for Communications, 2008. ICCSC 2008. 4th

IEEE International Conference on, 2008, pp. 50-54.

[96] A. Ren, et al., "FPGA implementation of an OFDM modem," in Wireless

Mobile and Computing (CCWMC 2009), IET International Communication

Conference on, 2009, pp. 761-764.

[97] F. Manavi and Y. R. Shayan, "Implementation of OFDM modem for the

physical layer of IEEE 802.11a standard based on Xilinx Virtex-II FPGA," in

Vehicular Technology Conference, 2004. VTC 2004-Spring. 2004 IEEE 59th,

2004, pp. 1768-1772 Vol.3.

http://www.xilinx.com/

