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Abstract

An epidemic of an infectious disease can be modelled by using either a deterministic model
or a stochastic model. In this thesis, we consider the effect that different types of noise
has on the dynamical behaviour of deterministic SIS models and SIR/SIRS models as well
as an HIV model.

We start off with a literature review giving previous work and the mathematical back-
ground to the area. Next, we introduce demographic stochasticity into the well-established
deterministic SIS model with births and deaths and derive a stochastic differential equa-
tion (SDE). We assume that an infected individual or a susceptible individual who dies
is immediately replaced by a susceptible individual and thus the population size is kept
constant. In order for our model to make sense, we then prove that the SDE has a strong
unique nonnegative solution which is bounded above and establish the conditions needed
for the disease to become extinct. Based on the idea of the Feller test, we also calculate
the respective probabilities of the solution first hitting zero or the upper limit. Numer-
ical simulations are then produced using the Milstein method with both theoretical and

realistic parameter values to confirm our theoretical results.

Motivated by the model discussed in the first topic, we then continue our study on
the effect of demographic stochasticity on the deterministic SIS model by now assuming
that the births and deaths of individuals are independent of each other and thus the
population size can vary with respect to time. In this case, the per capita disease contact
rate may be dependent on the population size and we have shown that this model allows
us to consider the cases when the population size tends to a large number and when the
population size tends to a small number. First we look at the SDE model for the total

population size and show that there exists a strong unique nonnegative solution. Then
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we look at the two-dimensional SDE SIS model and show that there also exists a strong
unique nonnegative solution which is bounded above given the total population size. We
then obtain the conditions needed in order for the disease to become extinct in finite time
almost surely. Numerical simulations with both theoretical and realistic parameter values

are also produced to confirm our theoretical results.

Next we look at a different type of noise, namely the telegraph noise, which is an ex-
ample of an environmental noise. Telegraph noise could be modelled as changing between
two or more regimes of environment which differ by factors such as rainfalls or nutrition.
This form of switching can be modelled using a finite-state Markov Chain. We incorpo-
rate the telegraph noise into the SIRS epidemic model. First we start with a two-state
Markov Chain and show that there exists a unique nonnegative solution and establish
the conditions for extinction and persistence for the stochastic SIRS model. We then
explain how the results can be generalised to a finite-state Markov Chain. Furthermore
we also show that the results for the SIR model with Markov switching are a special case
of the SIRS model. Numerical simulations are produced using theoretical and realistic

parameter values to confirm our theoretical results.

Lastly we look at the modified Kaplan HIV model amongst injecting drug users. We
introduce environmental stochasticity into the deterministic HIV model by the well-known
standard technique of parameter perturbation. We then prove that the resulting SDE has
a unique global nonnegative solution. As well as constructing the conditions required for
extinction and persistence we also show that there exists a stationary distribution for the
persistence case. Simulations using the Euler-Maruyama method with realistic parameter

values are then constructed to illustrate and support our theoretical results.

A brief discussion and summary section is given at the end to conclude the thesis.
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Notation

Rde
dem

o —
o~ S B

: almost surely, or P-almost surely, or with probability 1.

: A is defined by B or A is denoted by B.

: A(z) and B(x) are identically equal, i.e. A(x) = B(x) for all z.
: the empty set.

. the indicator function of a set A, i.e. 14(z) = 1 if z € A or otherwise 0.
: the complement of A in €2, i.e. A° = — A.

: AN B =.

: the minimum of a and b.

: the maximum of a and b.

: the mapping f from A to B.

. the set of all nonnegative real numbers, i.e. Ry = [0, 00).

: the d-dimensional Euclidean space.

: the o-algebra generated by C.

: the Borel o-algebra on R

: the space of real d x m-matrices.

. the Borel-o-algebra on R%*™,

: the Euclidean norm of a vector x.

: Dirac’s delta function, that is d;; = 1 if i = j or otherwise 0.
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L*([a,b];R?)  : the family of Borel measurable functions h : [a, b] — R? such that
[P n@)|Pdt < oo

LP([a,b];RY)  : the family of R%-valued Fi-adapted processes {f(t)}a<i<p such that
[P1f)Pdt < oo as.

MP([a,b];RY)  : the family of processes {f(t)}a<i<p in LP([a, b]; RY) such that
E [7]f(t)|Pdt < oo.

LP(R; RY) . the family of processes {f(t)}:>o such that for every T' > 0,
{f(®)}o<er € L7([0, T]; RY).

MP(R ;R : the family of processes {f(#)}i>0 such that for every T > 0,
{f () }oze<r € MP([0, T];RY).

Other notations will be explained where they first appear.
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Chapter 1

Introduction and Literature Review

1.1 Epidemic Models

Epidemics of infectious diseases have been a constant threat to our society. In the past,
Europe suffered from 25 million deaths out of a population of 100 million due to the Black
Death [10]; Russia suffered from about 25 million cases of typhus with a death rate of
about 10 percent, whilst smallpox wiped out half of the population of the Aztecs of three
and a half million in 1520 [9]. Although in the 21st century, diseases such as smallpox no
longer pose a threat towards mankind, there is still a high proportion of the population

that is under threat of diseases such as malaria and HIV (e.g. [10, 28]).

As a result mathematical models have been constructed in order to predict the be-
haviour of a disease and help to control a particular epidemic. Epidemics can be modelled
by compartmental models such as SIS and SIR models where each individual has been
assigned to a different subgroup representing a specific stage of disease. In 1927, Kermack
and McKendrick [70] constructed the Susceptible-Infected-Removed (SIR) model to de-
scribe the behaviour of diseases such as chickenpox and measles [57]. A typical individual
starts off susceptible, at some stage catches the disease and after a short infectious period
becomes completely immune. Another type of epidemic model which describes a different
scenario than the SIR model is the susceptible-infected-susceptible (SIS) epidemic model.
This is one of the simplest possible models for how diseases spread amongst a population.

In this model a typical individual starts off susceptible, at some stage catches the disease



and after a short infectious period becomes susceptible again. Such a model is appropri-
ate for a bacterial disease such as pneumococcus or sexually transmitted diseases such as
gonorrhea. It is sometimes used as an approximate model for tuberculosis and can also
be used to model the common cold [5, 86, 93]. The SIS model is strictly speaking not
applicable for tuberculosis as infection provides partial immunity to re-infection but it

can be used as an approximate model [38].

In the next section, we would like to introduce the three different types of epidemic
models that we work with in this thesis. Let S(¢) denote the number of susceptibles at
time ¢, I(t) denote the number of infecteds at time ¢ and R(¢) denote the number of

recovered individuals at time ¢.

1.2 The SIS Model

The spread of the disease is described by the pair of differential equations

B~ UN = BSIOI) +I(0) — (1), (1.2.1)
= BSWI0) ~ e+ I), (122

with appropriate starting values S(0) and 7(0) with S(0) + I(0) = N. In these equations
i is the per capita rate at which a single individual dies and + is the per capita rate at
which a single individual recovers. Hence assuming that the infectious period follows an
exponential distribution the average infectious period is 1/v. [ is the rate at which a
single infected individual makes contact with and infects each susceptible individual, so

that 8 = A/N, where X is the per capita disease contact rate of a single infected individual.

A key concept in mathematical epidemiology is the idea of the basic reproduction
number Ry. This is defined as the expected number of secondary cases produced by a

single newly infected individual entering a disease-free population at equilibrium [14]. We

find that
BN

Ry = .
pty

If a single newly infected individual enters a disease free population then this person dies

at rate u and becomes susceptible at rate v and stays in this state for time 1/(u + 7).
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During this time he or she makes potentially infectious contacts with the susceptible
individuals present each at rate § and if IV is large there are approximately N of them.
So the average number of infections made during the infectious period is SN/(u + )

which is thus Ry as stated above.

This model is discussed by Hethcote [57] and Brauer et al. [14]. It is equivalent to

the well-known logistic equation for population growth and has a solution given by

—1
B (1 — e BN=p=t) 4 Lo=(BN=p=mt| = if Ry £ 1,
I(t) = [BN‘“‘V B fo (1.2.3)
[5t+ﬂ , if Ry =1,

[40]. Hence if Ry < 1, I(t) — 0 as t — oo whereas if Ry > 1, I(t) — N(l — RLO) as

t — 0o.

Another situation where SIS models can be used is for pneumococcus amongst young
schoolchildren. Pneumococcus is a bacterial disease which does not cause permanent im-
munity hence SIS models are appropriate although there are several strains or serotypes.
Lipsitch [84] models vaccination against pneumococcus and his work is based on an SIS
model. In a series of three papers Greenhalgh, Lamb and Robertson [51, 52] and Lamb,
Greenhalgh and Robertson [77] study SIS mathematical epidemic models for pneumococ-
cus transmission where transmission depends on serotype and genetic multilocus sequence
type (which is genetic material within the serotype), and the Ph.D. theses of Lamb [76]

and Weir [125] are based on SIS models for pneumococcus.

Another disease which can be modelled by using the SIS model is the common cold
[5, 86, 93]. The common cold (rhinovirus) is a viral infectious disease of the upper respi-
ratory tract which has symptoms such as sneezing and sore throat [55]. Rhinovirus is the
predominant cause of common cold, it is responsible for around 30-50 percent of colds each
year [55] with over 100 known serotypes, thus making it impossible to produce a unifying
vaccine [55, 123]. Most importantly, exposure to one rhinovirus does not confer significant
immunity against other serotypes [39]. Consequently, there have been papers that suggest
that an SIS model would be suitable in analysing the behaviour of the common cold (e.g.

[5, 86, 93]).



1.3 The SIR/SIRS Model

In the 1920s, Kermack and McKendrick [70] constructed the SIR and SIRS epidemic
models to illustrate respectively diseases where there is a permanent acquired immunity
such as measles [57] and where there is a temporary acquired immunity such as rubella.

The SIR model is a special case of the SIRS model.

Let us consider the following deterministic SIRS epidemic model:

%ﬁﬂ = —BI()S(t) + uN — pS(t) + vR(),
MO 510)5(6) ~ (u-+1)10) (1:31)
d};—it) = I(t) — pR(t) — vR(t),

where S, I and R denote respectively the number of susceptible, infected and recovered
individuals in the population. N is the total size of the population, 3 is the disease
transmission coefficient and f = A/N where X is the disease contact rate for each indi-
vidual, that is the rate at which susceptible individuals come into contact with infected
individuals. g is the per capita birth and death rate and ~ is the rate at which an infected
individual becomes cured and thus moves to the recovery group. v is the rate of loss
of immunity and thus making the recovered individuals susceptible to catching the virus
again.

By setting the rate of loss of immunity parameter v to zero to illustrate diseases with

a permanent acquired immunity such as measles chickenpox, we have the Susceptible-

Infected-Removed (SIR) model

B _ _sr)5(0) + nx — (1)
T _ 510)5(0) — (n+ 100, (132
MO _ 1) - nr().

1.4 Deterministic Model and Stochastic Model

An epidemic of an infectious disease can be modelled by using either a deterministic

model or a stochastic model. The deterministic model is often formulated as a system of

4



differential equations where its solution is uniquely dependent on the initial value. On
the other hand a stochastic model is a stochastic process with a collection of random
variables where its solution is a probability distribution for each of the random variables.
By running a stochastic model many times, we can also build up a distribution of the
possible outcomes which allows us to identify the number of infectives at a particular time
t, whereas for a deterministic model we will only get a single outcome. There has been
much work done on deterministic models already, however there are some limitations in
using these in analysing infectious diseases. A deterministic model is more suitable than
a stochastic model when we are dealing with a large population. However, if we consider
an epidemic outbreak in a small community such as a school, a stochastic model would
be more appropriate as the element of variability would become significant [10, 11, 15]. In
addition, the real world is not deterministic, and there are many factors that can influence
the behaviour of a disease and thus it is not always possible to predict with certainty what
would happen. Consequently, a stochastic model is introduced to compensate for this
problem. There are also many properties that are unique to the stochastic epidemic model
which could enhance our understanding towards the behaviour of a particular disease,
for example, the probability that an epidemic will not occur, the final size distribution
of an epidemic and the expected duration of an epidemic [2]. Clearly, we can see that
introducing stochasticity into an epidemic model will provide some additional information

that will improve the realism of our results compared to the deterministic approach.

There are three different types of stochastic models commonly used in population
biology, namely the discrete time Markov chain (DTMC), continuous time Markov chain
(CTMC) and stochastic differential equations (SDEs) [2, 3]. In a DTMC model, the time
and the state space variables are discrete. In a CTMC model, the time is continuous
but the state variables are discrete, while the SDE is based on a diffusion process where
both the time and the state variables are continuous [2]. These three stochastic models
all consider the random behaviour occurring within the birth and death process of an
individual [2, 3]. The SDE model is preferred over the CTMC model when it comes to
computing numerical simulations to illustrate the behaviour of the model [3], which we
will do later on in this thesis. This is because in order to get a good estimation of the

probability distribution for the CTMC model, computational costs can be very high. The



SDE model is especially useful in situations where there are several random variables and
several interacting populations as setting up the transmission matrix may be complicated
when there are several random variables [3]. Allen and Allen [3] made a thorough com-
parison between these three epidemic models with respect to the persistence time. They
found that, when consistently formulated, the three stochastic models produced similar

results for the mean and variance of persistence time.

There are several ways that stochasticity can be introduced into an epidemic model.
In this thesis we have introduced stochasticity into various types of epidemic model such
as the SIS model, SIRS/SIR model using different approaches. In the next sections, we

will discuss each stochastic model in detail.

1.5 Stochastic SIS Model with Demographic Stochas-
ticity

Demographic stochasticity is when we introduce births and deaths into the population
and derive a stochastic model. The stochastic aspects of the SIS model for infectious
diseases have been studied by many authors. In [20], Cavender considered the SIS model
as an example of a birth and death process, which is a stochastic population model used
to model demographic stochasticity [13]. Norden [101] described the stochastic SIS model
as a stochastic logistic population model and aimed to investigate the distribution of the
extinction times both numerically and theoretically. Kryscio and Lefévre 73] also looked
at the stochastic SIS logistic model (also known as the stochastic SIS model). They
extended and combined the results mentioned by Norden and Cavender. Kryscio and
Lefévre obtained the approximations of the quasi-stationary distribution by studying two
approximations of the process as well as the approximation to the mean time to extinction
for the stochastic SIS logistic model. Furthermore, Clancy and Pollett [23] also considered
the SIS logistic model as a birth and death process with a different death/recovery rate,
w; = pi, than the one mentioned in [73], namely p; = pu(i —1). By using Theorem 1 men-
tioned in Clancy and Pollett’s paper, they have managed to prove one of the conjectures

mentioned by Kryscio and Lefévre which Kryscio and Lefévre did not prove in their paper



<57 m, where q and m represent the quasi-stationary distribution and the

(73], namely g
stationary distribution of the process respectively. The notation <7 represents the con-
cept of stochastic ordering where it denotes the idea of one random variable being bigger
than another random variable. In other words, if A <°7 B where A and B are random
variables then it means that P(A > z) < P(B > z) for all z and P(A > z) < P(B > )
for some z, and that A is stochastically strictly less than B (e.g. [108]). Ovaskainen
[102] looked at the other aspect of the quasi-stationary distribution of the stochastic SIS
model with a different infection rate of susceptible individuals, \; = Ai(N — @), than the
conventional one mentioned in most papers, namely \; = (\/N)i(N —1) [2, 23, 73], where
N denotes the total population size. This is because by scaling A by N it implies that the
number of contacts per person is independent of the population size while the one used
by Ovaskainen [102] will take into account that there are more contacts per person in a
large population than in a small population. Ovaskainen improved on previous approxi-
mation formulae and obtained a rigorous mathematical formula for the quasi-stationary
distribution as N — oo. Nasell [96] showed that for the stochastic SIS model with no
demography, both the quasi-stationary distribution and the expected time to extinction
from quasi-stationarity have three qualitatively different behaviours as a function of N
and Ry where Ry is the basic reproduction number which determines whether or not a
disease will die out or persist. Other than the papers we have mentioned above, there are

still many other papers that dealt with the stochastic SIS model [4, 97, 98, 126].

Nasell [95] mentioned that an SIS model without demography is based on the assump-
tion that an individual will live forever and is clearly unrealistic. So adding demography
makes the SIS model more realistic and stochasticity makes the SIS model more realistic
in a different way by adding random fluctuation in the population size, as the birth and

death of an individual is a discrete and probabilistic event [92].

Some of the literature has dealt with the stochastic SIS model with demographic
stochasticity, for example Lindenstrand and Andersson [83] looked at a two dimensional
Markov process and analysed the behaviour of the model close to quasi-stationarity and
the time it took for the system to become extinct with the help of a diffusion approxi-
mation. On the other hand, Nasell [95] focused on finding approximations of the quasi-

stationary distribution and the time to extinction for his SIS model of the form of a bivari-



ate Markov population process with appropriate transition rates. In addition, Nasell also
derived an approximation for the expected time to extinction in the stochastic SIR model
with demography, where he looked at two SIR models which each vary with a different

demographic force.

In this thesis, we have introduced demographic stochasticity using two different ways
into the deterministic SIS epidemic model given in Section 1.2 resulting in having two
different types of SDE SIS model with demographic stochasticity. We will split the next
section into two parts each discussing the two resulting stochastic SIS model with demo-

graphic stochasticity.

1.5.1 Stochastic SIS Model with Constant Population Size

While most commonly studied epidemic models are deterministic, real life must take
account of random effects to account for phenomena such as diseases dying out by chance.
One way to do this is outlined by Bailey [10]. The simplest deterministic epidemic model
assumes that the population size is constant so that when an infected individual dies he
or she is replaced by another susceptible individual. If we make the same assumption in

a stochastic model then if
pi(t) = P(There are exactly i infected individuals at time t),

assuming that all events in the stochastic model occur according to a Markov process
with rate the same as the corresponding rate in the deterministic model we can derive

the differential equations satisfied by the probabilities p;(t) as

dpo .

P (1 +7)m(t), (1.5.1)

iﬁf = Bli—1)(N =i+ Dpis — Bi(N — i)p; + (n+ ) + Dpigr — (1 +7)ipi,
1<i<N-—-1, (1.5.2)

dg;;\/ = B(N - 1)pN—l - (,U + ’Y)NpN, (153)

[10]. We could then numerically solve these equations, however this is difficult if the

number of equations involved is large.



Allen [1] and Allen [2] outline an alternative approach, namely to consider possible
changes A7 in a small time interval At and then find the mean change F(Ai) as well as
E((Ai7)?) for the time interval At and define

pit.iy = 00y iy = EOD

and B(t,i) = \/V(t,1).

Then an SDE is inferred for this process by similarities in the forward Kolmogorov

equations between the discrete and continuous stochastic processes [2]

dIl = (BI(N —1I) — (u+~)I)dt + /BI(N — I) + (u+~)I dW, (1.5.4)
where WW is a Brownian motion.

We have changed Allen’s 5 to SN for consistency of notation. McCormack and Allen [91]
construct an SDE approximation similar to an SIS multihost epidemic model and explore

the deterministic and stochastic models numerically.

Most of the classical work on epidemiological models has assumed that the population
size remains constant (e.g. [9, 10, 58]). Such an assumption is appropriate if the disease
spreads rapidly in a short period of time and that disease-related deaths are insignificant

in terms of their effect on the whole population [139].

In Chapter 3, we will look at the SDE SIS model with demographic stochasticity
where we have assumed that an infected individual or a susceptible individual who dies
is immediately replaced by a susceptible individual or an infected individual and thus
the population size is kept constant. This SDE SIS model is an approximation to the
continuous time Markov Chain (CTMC) model which has been derived fully in detail in
[1]. This model is discussed in detail in Chapter 3, where most of the work has been

published in [47].

1.5.2 Stochastic SIS model with Varying Population Size

In the past humans have experienced many diseases that have caused a dramatic impact
on the size of populations resulting in disease-related mortality. In this case, it would no
longer be reasonable to consider the population size as a constant. Another example of
a mathematical model in which the population size is not a constant is given by Derrick

and van den Driessche [31].



As a result, in Chapter 4, we shall be looking at the two dimensional SDE SIS
model system (S, I') with demographic stochasticity introduced into both birth and death
processes, replacing the unrealistic assumption that the population size remains constant.
We model births and deaths of individuals independently and it is no longer the case that
an infected individual or a susceptible individual who dies is immediately replaced by a
susceptible individual or an infected individual and thus the population size will vary with

respect to time.

Quite a bit of previous work has been done on SIS epidemic models with varying
population sizes. For example in Hethcote and van den Driessche’s paper [56] they looked
at an SIS epidemic model with varying population size and a time delay. The model
contained an exponential demographic structure, disease-related deaths and a delay cor-
responding to the infectious period. Lahrouz and Settati [74] looked at the asymptotic
properties of an SDE SIS epidemic model with standard incidence and variable population
size where white vector noise and telegraph noise modelled by Markovian switching are
included. Busenberg, Cooke and Pozio [17] focused on analysing the SIS model of a ver-
tically transmitted disease with varying population size. They also performed a complete
global stability analysis of their model. Apart from the SIS epidemic model with varying

population size work has been done on SIR and SIRS models.

Busenberg and van den Driessche [16] analysed global stability for an SIRS epidemic
model with vital dynamics in a varying size population. Li et al. [81] gave a detailed
analysis of the global stability of a unique equilibrium for the fractions of susceptibles,
exposed, infected and removed and the global dynamics of an SEIR model with varying

population size, where SEIR stands for Susceptible-Exposed-Infected-Removed /Recovery.

Note that this implies that whereas in the deterministic model the population size
remains constant, in the stochastic model the population size may vary. Most determin-
istic models for infectious diseases assume that the population size remains constant but
there has been some work done on epidemic models with variable population size. This
is usually for a different reason, because either there is disease-related mortality so in-
fected individuals die at an increased rate compared to susceptible ones or there is some

sort of population density dependence in either the birth rate or the death rate, due to,
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for example, competition for scarce resources. However in our case, the population size
varies due to the effect of demographic stochasticity. This model is discussed in detail in

Chapter 4 where most of the work has been published in [48].

1.6 Stochastic SIR/SIRS Model with Environmental

Stochasticity

In Chapter 5, we introduce environmental stochasticity into the deterministic SIRS and

the SIR models given in Section 1.3.

The dynamics of population systems are often influenced by different types of environ-
mental noise such as the white noise, which has already been studied by various authors
(e.g. [36, 40, 89, 90]). Therefore, it is important for us to consider the impact that the
environmental noise has on any type of population system model. As an example, let us

consider a Lotka-Volterra predator-prey model.

#(t) = z(t)(a = by(t)),
y(t) = y(t)(—c+ dx(t)),

where a, b, c and d are positive numbers. It is well-known that in the absence of envi-

(1.6.1)

ronmental noise, the population develops periodically (e.g. [61, 114]). However, if there
was environmental noise, it could have a huge impact on the behaviour of the population
system. In this thesis, we will focus on another type of environmental noise, namely
telegraph noise, which is an example of a simple colour noise. Telegraph noise could be
demonstrated as changing between two or more regimes of environment, which differ by
factors such as rainfalls or nutrition (e.g. [35, 110, 114]). The changing is memoryless
and the waiting time follows an exponential distribution. As a result, the switching be-
tween two or more regimes of environment could be modelled by a finite-state Markov
Chain with state space S = {1,2, ..., M'}. There are already various papers which looked
at the effect of telegraph noise in a population system model. For example, Takeuchi et
al. [115] studied a two-species population system described by (1.6.1) perturbed by the
telegraph noise. They have shown that if two equilibrium states of the subsystems differ,

all positive trajectories of this system always exit from any compact set of R with prob-
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ability one. On the other hand, if the two equilibrium states coincide, then the trajectory
either leaves from any compact set of R3 or converges to the common equilibrium point.
These properties imply that the population system (1.6.1) under the telegraph noise is
neither permanent nor dissipative [115]. Du et al. [36] investigated the impact that tele-
graph noise has on the behaviour of Lotka-Volterra competition systems. The oscillatory

behaviour of the solution to the systems with telegraph noise was observed.

Inspired by Takeuchi et al. [115], Gray et al. [41] introduced the effect of telegraph
noise into the well-known Susceptible-Infected-Susceptible (SIS) epidemic model [57, 58]
using a finite state Markov Chain. The SIS epidemic model is used to model diseases
which do not develop immunity once infected individuals recover, for example gonorrhea,
meningitis [57] and pneumococcus [77, 84]. Gray et al. [41] established the conditions
required for almost sure (a.s.) extinction and persistence for their solution to the stochas-
tic SIS model with finite state Markovian switching. There has been much research done
on different aspects of both SIR and SIRS epidemic models already. Tornatore et al.
[118] looked at the stability of the SIR model with or without delay, while Lu [87] later
extended their results into a SIRS model. Yang et al. [133] looked at the stochastic SIR
and SEIR epidemic models with saturated incidence while later Zhao and Jiang [138] also
worked with saturated incidence but on the SIRS epidemic model instead. In this thesis,
I have focused on applying Markov switching to epidemic models, but it is important to
note that there are also other applications of Markov switching, for example on interest

rates or on neural networks [42, 109].

Motivated by the work done in [41, 115], we will extend the results given in [41]
by introducing the effect of telegraph noise into a more complicated three-dimensional
SIRS epidemic model as well as the SIR epidemic model. Note that Wei et al. [124]
also looked at the stochastic SIR model under regime switching but their model contains
environmental noise and saturated incidence rate which is different to the classic SIRS
and SIR models that we will be looking at in this thesis. This model is discussed in detail
in Chapter 5 where most of the work has been published in [49].
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1.7 Stochastic HIV Model

So far, we have been talking about epidemic modelling using compartmental models. In
Chapter 6 we will look at a more specific type of disease namely the HIV virus and the
effect of introducing environmental stochasticity on the spread of the HIV amongst a

particular risk group, namely people who inject drugs (PWIDs).

HIV, Human Immunodeficiency Virus, is a deadly and infectious lentivirus which
attacks and weakens the immune system by especially attacking the CD4 cells. As a result,
HIV causes AIDS (Acquired Immune Deficiency Syndrome). Since the first discovery of
HIV in 1981, it has already infected almost 78 million people with about 39 million lives
having been taken [130]. Despite the massive improvement in technology and medical
equipment, we are still unable to fully find a cure for the HIV virus. In 2014, according
to the reports by the World Health Organization, there were still approximately 36.9
million people living with HIV, with around 2 million new cases globally [131]. In order
to control the epidemic, it is crucial to understand the dynamical behaviour of HIV and
how it spreads within our community. There are various routes by which HIV can be
transmitted, for example transmission via unprotected sexual intercourse, vertically from
infected mothers to their unborn children and people who inject drugs (PWIDs) sharing
contaminated needles. Amongst all the possible routes of HIV transmission, PWIDs have
become a significant risk group with around 3 million of them living with HIV [132]. For
every 10 new cases of HIV infection, on average, one of them is caused by injecting drug
use. In regions of Central Asia and Eastern Europe, injecting drug use accounts for 80
percent of HIV infections [132]. As a result, in Chapter 6, we will focus on looking at this

particular risk group.

Over the past years, mathematical models have been used successfully to analyse and
predict the dynamical behaviour in biological systems. The first mathematical model for
the spread of HIV and AIDS amongst PWIDs in shooting galleries was created by Kaplan
[66], where a shooting gallery is a place for PWIDs to purchase and inject drugs. Kaplan
incorporated many factors into his model such as the injection equipment sharing rate
and the effect of cleaning injection equipment in order to better understand how HIV

is transmitted within this type of community. Based on the original model created in
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[66], Greenhalgh and Hay [43] modified the model by changing some of the assumptions
made by Kaplan to make them more realistic. These assumptions include having different
visiting rates to the shooting galleries for PWIDs who have been diagnosed positive for
the HIV virus and thus may have been advised to stop sharing injections and for those
who either are not HIV positive or are but do not know it. The modified Kaplan model
in [43] also allows for the possibility that an infected PWID may not always leave a
needle infected before cleaning, as well as introducing different transmission probabilities
for flushed and unflushed needles. The term “flushing” refers to the process where an
infectious piece of injecting equipment is used by an uninfected PWID and thus after
injecting the syringe is left uninfected. In other words, it is possible for an infectious
needle to become uninfected after getting used by a susceptible PWID by getting rid of
the infectious residue with the clean blood during the injecting process. The HIV model
that we will be looking at in this paper is based on the modified Kaplan model given in
[43]. There have been many papers that have already looked at the connection between
the spread of HIV and PWIDs [12, 19, 50, 67, 44, 80]. However the models used are all

deterministic models.

HIV infection is a behavioural disease and thus there are many environmental factors
that can influence the spread of HIV. Rhodes et. al [106] have mentioned in detail how
factors such as injecting environments, social network and neighbourhood deprivation
and poverty can affect the spread of HIV amongst PWIDs. There are also other papers
which emphasised how the dynamical behaviour of HIV is highly correlated with other
factors [34, 54, 112]. Consequently, it is crucial for us to understand how HIV would
spread under those environmental influences, especially amongst PWIDs. In this case, a
stochastic model would be useful. There is also natural biological variation within people
in their response to HIV. Using a stochastic model with environmental perturbation in

the disease transmission parameter as we will do is one way to include this.

The stochastic aspects of the HIV model have been studied by many authors. For
example, in [29], Dalal, Greenhalgh and Mao considered a stochastic model for internal
HIV dynamics. They incorporated environmental stochasticity into their model by us-
ing the standard technique of parameter perturbation. They proved that the solution

(representing the concentrations of uninfected cells, infected cells and virus particles) is
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nonnegative and have looked at the stability aspect of their model by establishing the
conditions required in order for the numbers of infected cells and virus particles to tend
asymptotically to zero exponentially almost surely. Ding, Xu and Hu [34] looked at a
stochastic model for AIDS transmission and control taking into consideration the treat-
ment rate of HIV patients. They have also examined the effect that knowledge, attitude
and behaviour of patients have on the spread of AIDS. Tuckwell and Le Corfec [119] used
a stochastic model to analyse the behaviour of HIV-1 but focus only on the early stage
after infection. Dalal, Greenhalgh and Mao [28] have also used a stochastic model to
look at another aspect of HIV. Once again, by using parameter perturbation, they in-
troduced environmental randomness into their HIV model which allows them to examine
the effect that condom use has on the spread of AIDS among a homogeneous homosexual
population which is split into distinct risk groups according to the tendency of individ-
uals to use condoms. The stochastic aspects of the spread of HIV in particularly for
injecting drug users have also been studied by various authors, for example, Peterson et.
al [103] constructed a population-based simulation of a community of PWIDs using the
Monte-Carlo technique. Similarly, Kretzchmar and Wiessing [127] also used a stochastic
simulation model to describe the spread of HIV in a hypothetical population of PWIDs
as well as investigating the effect of contact patterns and the frequency of needle sharing
have on the spread of HIV in PWIDs. Greenhalgh and Lewis [46] modelled the spread of
HIV amongst PWIDs using a set of behavioural assumptions due to Kaplan and O’Keefe
[67]. They use a branching process approximation to show that if the basic reproduction
number Ry is less than or equal to unity then the disease will always go extinct. They
calculate an expression for the probability of extinction. They discuss an extended model
which incorporates a three-stage incubation period and again examine a branching pro-
cess approximation. They then compare them to investigate whether the deterministic
model provides a good approximation to the simulated stochastic model. Although there
have been papers that looked at the stochastic aspect of the spread of HIV, as far as we
know there are not many studies that focus on the stochastic aspect of the spread of HIV
amongst PWIDs despite this particular risk group being responsible for many new HIV
cases around the world. Thus it is crucial for us to examine the effect of environmental

noise on this type of community.
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Inspired by the model constructed in [43], in this thesis we will introduce environmen-
tal stochasticity into the model by parameter perturbation which is a standard technique
in stochastic population modelling [28, 29, 40, 63]. To the best of our knowledge, this is
the first time where the environmental stochasticity has been introduced into the modified
Kaplan model [43]. The techniques used in this thesis are inspired by the work done in
[40]. The model is discussed in detail in Chapter 6 where most of the work shown has

been published in [82].

In this chapter we have introduced and discussed various types of epidemic model that
we will be looking at in this thesis as well as discussing some of the work that has already
been done on those models. We have discussed various ways in which stochasticity can be
introduced into the epidemic models and the advantage of using a stochastic model and
thus our motivation for the work carried out in this thesis. In the next chapter we will
introduce some of the mathematical properties and results which will be useful throughout

the thesis.
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Chapter 2

Mathematical Background

This chapter gives an introduction to the properties and theorems for the SDEs as well
as Markov switching which will become useful later on in the chapters. There are many
books available which include the properties and the applications of SDEs, such as [64, 89,
136]. In this chapter we will talk about the basic probability theory, stochastic processes,
Brownian motion, SDE, stability and convergence and stochastic integrals as well as

Markov switching.

2.1 Probability Theory

There are many books that are available on probability theory, for example [53, 89, 136].

The materials given in this section is mainly from [89].

A stochastic process is a collection of random variables. In order to understand what
a random variable is, we will begin this section by looking at the probability theory, which
deals with mathematical models of experiments where the outcomes are random. Let us
define €2 to be a set of all possible outcomes from a random experiment. In general, not
all subsets of €2 are observable or interesting and thus we will group the subsets that we
are interested in and are observable and form a family, F, of subsets of 2. A family F

which has the following three properties is called a o-algebra:

1. 0 e F,
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2. Aec F= A® € F, where A =Q — A,

3. {Aitisi CF= U2 A e F,

where () denotes the empty set and A® is the complement of A in Q. The pair (Q, F) is
called a measurable space and the elements of F are now called measurable sets. If C is
a family of subsets of {2, then there exists a smallest o-algebra on €2 which contains C.
This is denoted by o(C) where it is called the o-algebra generated by C. If Q = R? and C
is the family of all open sets in R%, then B = ¢(C) is called the Borel o-algebra and the
elements of B¢ are known as the Borel sets. A B%measurable function is called a Borel

measurable function if the measurable space is (R, BY).

Let us define a real-valued function X such that X : €2 — R. This function is said to

be F-measurable if

{w: X(w) <b} e F, forallbeR.

Such a function X is also called the real-valued (F-measurable) random variable. An
Ré-valued function X(w) = (X;(w),..., Xg(w))T is said to be F-measurable if all the
elements X; are F-measurable. Similarly this can be extended to a n x m matrix-valued
function X(w) = (X;j(w))nxm where it is said to be F-measurable if all the elements X;

are F-measurable.

A probability measure P on a measurable space (2, F) is a function P : F — [0, 1]

such that

2. for any disjoint sequence {A;};>1 C F (i.e. A;NA; =0if i # j)
}P’(UAZ) = P(A).
i=1 i=1

The triple (2, F,P) is called a probability space. If (Q,F,P) is a probability space,

then there exists a o-algebra, F which is called the completion of F where F is set to be

F={ACQ:3B,C€F suchthat BC Ac C,P(B)=P(C)}.
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If 7 = F, then the probability space (2, F,P) is said to be complete. Otherwise,
P can be extended to F by defining P(A) = P(B) = P(C) for A € F where B,C € F
with the properties that B C A C C and P(B) = P(C). Then (Q,F,P) is a complete
probability space and is called the completion of (Q, F,P).

The indicator function 1,4 of a set A C € is defined by

1, forw € A,
La(w) =
0, forw ¢ A.

The indicator function 1,4 is F-measurable if and only if A € F, i.e. A is an F-

measurable set.

Let (2, F,P) be a probability space. The number

EX = /Q X (w)dP(w)

is called the expectation of X with respect to P if X is a real-valued random variable and
is integrable with respect to the probability measure P. Furthermore, the variance of the

random variable X is defined as
V(X)=E(X - EX).

For p > 0, the term E|X|P represents the pth moment of X. Let us define another
real-valued random variable, Y, where the covariance of the random variables X and Y
is given as

Cov(X,Y) = E[(X — EX)(Y — EY)].

If Cov(X,Y) = 0, then X and Y are said to be uncorrelated. The expectation of
an R%valued random variable X = (X1,...,X,)7 is given as EX = (EXy,...,EXy)T.
For a n x m-matrix-valued random variable X = (X;;)nxm, the expectation is defined as
EX = (EXj;)nxm- The covariance matriz for X and Y where they are both R%valued

random variables is given as
Cov(X,Y) = E[(X - EX)(Y —EY)’],

and it is a symmetric nonnegative definite d x d matrix.
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Let A,B € F with P(B) > 0. Then the conditional probability of A given the

condition of B is
P(AN B)

PIAIB) = 55

Let us now introduce a more general concept of conditional expectation as very often
we will have a number of conditions. Let X € L'(Q,R) and G C F where G is a sub-o-
algebra of F and thus (£2,G) is a measurable space. In general, X is not G-measurable.
We now want to find an integrable G-measurable random variable Y such that it has the

same values as X on the average in the sense that
E(1¢Y)=E(1cX) ie. /Y(w)dIP’(w) = / X(w)dP(w) VG e€Gg.
G G

By the Radon-Nikodym theorem [22], there exists one such Y, almost surely unique.

It is called the conditional expectation of X under the condition G, and we write this as
Y =E(X|G).

Now that we have covered the basic theorems in probability theory, we will next focus

on the main results on stochastic processes.

2.2 Stochastic Processes

The materials given in this section are mainly from [136] and [89].

Let (€2, F,P) be a probability space. The term filtration is used to describe a family
{Fi}i>0 of increasing sub-o-algebra of F (i.e. F; C Fs C Fforall 0 <t < s < o0).
The filtration is said to be right continuous if F; = ﬂs>t Fs for all t > 0. When the
probability space is complete, the filtration is said to satisfy the usual conditions if it is
right continuous and JF( contains all P-null sets.

From now on, unless stated otherwise, we shall always work on a given complete
probability space (2, F,P) with a filtration {F;};>¢ satisfying the usual conditions.

A stochastic process is a family of R%-valued random variables { X; };,c; with parameter

set (or index set) I and state space RY, where I is usually the halfline R, = [0, 00), but
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it may also be an interval [a, b], the nonnegative integers or even subsets of R?. For each

fixed t € I, we have a random variable such that

Q3w — X (w) € RE

On the other hand, for each fixed w € {2 we have a function
I>t— X,(w)eRY,

which is known as a sample path of the process. We will denote the path by using the
notation X.(w). Note that sometimes it is easier to use the notation X (t,w) instead of
Xi(w) and the stochastic process may be treated as a function of two variables (¢,w)
from I x Q to R We often write a stochastic process {X;};>0 as {X;}, X; or X(t). Let
us define an R%valued stochastic process as {Xi}t>0. Then it is said to be continuous
(resp. right continuous, left continuous) if for almost all w € €, the function X;(w) is
continuous (resp. right continuous, left continuous) on ¢ > 0. If for every ¢ > 0, X is
an integrable random variable then {X;};>¢ is said to be integrable. If for every ¢, X
is Fi-measurable, then it is said to be {F;}-adapted (or simply, adapted). A real-valued
stochastic process {A;}i>¢ is called an increasing process if for almost all w € Q,; A;(w) is
nonnegative nondecreasing right continuous on ¢ > 0.

Another important property that is useful when dealing with a stochastic process is
stopping time. A random variable 7 : Q — [0, 00| (it is possible to take the value c0) is
called an {F;}-stopping time (or simply stopping time) if {w : 7(w) < t} € F; for any
t>0.

A martingale is a stochastic process which originated from betting strategies. An
Re-valued {F;}-adapted integrable process {M;};>o is called a martingale with respect to
{F:} (or simply martingale) if

E(M:|Fs) = My asforall 0 <s<t<oo.

In other words, the martingale definition states that the conditional expectation of

the next value, given the current and the preceding values is the current value.
Let us define a stochastic process where X = {X;};50. If E[X;|? < oo for every

t > 0, then the stochastic process is said to be square-integrable. If M = {M;};>¢ is a
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real-valued square-integrable continuous martingale, then there exists a unique continuous
integrable adapted increasing process denoted by {(M, M),} such that {M? — (M, M)}
is a continuous martingale vanishing at t = 0. The process {(M, M)} is known as the
quadratic variation of M. Note that EM? = E(M, M), where 7 is any finite stopping

time.

Let us define a right continuous adapted process M = {M;};>o. If there exists a
nondecreasing sequence {7x}r>1 of stopping times with 7, 1 co almost surely such that
every {M, nt — Mo}i>0 is a martingale, then M = {M,},>¢ is called a local martingale.

Every martingale is a local martingale but the opposite is not true.

Theorem 2.2.1 (Strong law of large numbers) Let M = {M;}i>0 be a real-valued

continuous local martingale vanishing at t = 0. Then

. . M,
tli)r{.lo<M; M>t =0 a.s. = tli>I£10 m =0 a.s.
and also
M, M M,
lim sup (M, M), <00 as = lim—"t=0 as
t—o00 t—o00

In general, if A= {A;}+>0 is a continuous adapted increasing process such that
< d{M,M
lim A; =00 and / <—>2t<oo a.s.
0

then

2.3 Brownian Motion and Stochastic Integrals

The term Brownian motion is named after the Scottish botanist Robert Brown, who first
observed the random movement of pollen grains suspended in water using a microscope
in 1827. However, at that point he could not explain why this occurred. It was not
until 1905, when Albert Einstein explained that the pollen grains were being moved by
individual water molecules. In mathematics, Brownian motion is described by using the
Wiener process which is a continuous-time stochastic process. Most of the materials given

in this section can be found in [136] and [89].
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2.3.1 Brownian Motion

Let (€2, F,P) be a probability space with a filtration { F; };>0. A (standard) one-dimensional
Brownian motion is a real-valued continuous {F; }-adapted process { B; }:>o satisfying the

following properties:

1. Bp=0 as;

2. for 0 < s <t < o0, the increment B; — B is normally distributed with mean zero

and variance t — s;

3. for 0 < s <t < 00, the increment B; — B, is independent of Fj.

In addition, the following results hold for Brownian motion.

{—B;} is a Brownian motion with respect to the same filtration {F;}.

Let ¢ > 0. For t > 0, define
Bct

7e

Then { X} is a Brownian motion with respect to the filtration {F.}.

Xt:

{B;} is a continuous square-integrable martingale and its quadratic variation (B, B); =

tforall ¢ > 0.

The strong law of large numbers states that

. t
lim — =0 a.s.
t—o0

For almost every w € 2, the Brownian sample path B.(w) is nowhere differentiable.

A d-dimensional process {B; = (B},..., B?)}i>o is called a d-dimensional Brownian
motion if every {B!} is a one-dimensional Brownian motion, and {B},},...,{B%} are
independent.
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2.3.2 Stochastic Integrals

In this section, we will introduce the stochastic integral. Recall that the Brownian motion
sample path is nowhere differentiable and thus the integral cannot be defined in the
ordinary way. However we can define the integral for a large class of stochastic processes
by making use of the stochastic nature of Brownian motion. As a result, the Japanese

mathematician Kiyosi [to defined the [to stochastic integral to overcome this problem.

Let us define the stochastic integral

/ ' (s)dB,

with respect to an m-dimensional Brownian motion { B, } for a class of n x m-matrix-valued

stochastic processes { f(t)}.

Before we begin with the mathematical definition of It6’s integral, let us first introduce

the concept of simple processes.

Definition 2.3.1 A real-valued stochastic process g = {g(t) }a<t<p s called a simple (or
step) process if there exists a partition a =ty < t; < --- < tx, = b of [a,b], and bounded

random variable £,0 <1 < k — 1 such that &; is F;,-measurable and

k-1
g(t) = 501[t0,t1}(t) + Zfil(ti,ti+1}(t)‘ (231>
=1
The notation My([a,b];R) represents the family of all such processes.

Definition 2.3.2 Define

k—1

b
/ g(t)dBy = &(Bi,, — By,

=0
where g is a simple process in the form of (2.3.1) in My(la,b];R). This is known as the

stochastic integral of g with respect to the Brownian motion {B;} or the Ito’s integral.
If the simple process g € Moy([a, b]; R), then the following properties hold:
o E[*g(t)dB; =0,

o E| [} g(t)dBi> = & [} |g(t) *dt.
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Furthermore, if g1, g0 € My([a,b];R), let ¢1,¢c2 be two real numbers. Then ¢y, +
292 € Mo([a,b];R), and

b b b
/ e101(t) + esga(D]dB, = ¢4 / 01 (0)dBs + e / 4o(t)dB,

We will now extend the integral definition from simple processes to processes in

M?([a, b]; R).

Definition 2.3.3 Let f € M?([a,b];R). The Ito’s integral of [ with respect to {B;} is
defined by

b b
/ f(t)dB, = lim / g.(t)dB; in L*(Q,R),
a n—oo a

where {gn} is a sequence of simple processes such that

n—oo

b
lim ]E/ F(£) — gu(t)2dt = 0.

The stochastic integral has many useful properties. Let f,g € M?([a,b];R) and let

«, B be two real numbers, then the following properties hold for the stochastic integral:
1. fab f(t)dB; is Fy-measurable;
2. E [7 f(t)dB; = 0;
3. E| [} f(0)dB* =E| [} f(t)Pdt;

4. [Paf(t) + Bgt)|dB, = a [ f(£)dB; + 5 [ g(t)dB;.

2.3.3 The Ito Formula

In this section we will begin by introducing the one-dimensional It formula. Let {B;}+>0
be a one-dimensional Brownian motion defined on the complete probability space (€2, F,P)

adapted to the filtration {F;}>o.

Definition 2.3.4 A continuous adapted process z(t) ont > 0 of the form

o) =20+ [ r6)is+ [ o(s)a,
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where f € LY(R,,R) and g € L*(R,,R) is called a one-dimensional Ité process. We say
that x(t) has stochastic differential dz(t) ont >0 given by

dx(t) = f(t)dt + g(t)dB;.

Let V € C*'(R x Ry, R). Then V(z(t),t) is again an It6 process with the stochastic

differential given by
dV(x(t),t) = | Vi(z(t),t) + Va(x(2), 2) f (1) + %Vm(ﬂf(t),t)gz(t) dt+Vy(x(t),0)g(t)dB;  a.s.

The above definition for the one-dimensional 1t6 formula can be generalised and
extended to the multi-dimensional case. Let B(t) = (B (t),..., B, (t))*,t > 0 be an m-
dimensional Brownian motion defined on the complete probability space (2, F,P) adapted

to the filtration {ft}tzo.

Definition 2.3.5 An R-valued continuous adapted process x(t) = (x1(t),...,zq(t))T on
t > 0 of the form
x(t) = x(0) + /Otf(s)ds + /Otg(s)dB(s),
where £ = (f1,..., f2)7 € LY(R,RY) and g = (gij)axm € LEHRL,R>™) is called a d-
dimensional Ito process. We say that x(t) has stochastic differential dx(t) ont > 0 given
by
dx(t) = f(t)dt + g(t)dB(t).

Let V € C*Y(R?*x R, ,R). Then V(x(t),t) is again an Ité process with the stochastic

differential given by

AVEt)t) = [Vix(),0) + Valox(0), 08(0) + trace(g” (Vo (x(0). 0g(1) ]
+ Vi(x(t),t)g(t)dB(t) a.s.

2.4 Stochastic Differential Equations

In this section, we will introduce some of the main results for SDEs given in [89]. Let
(Q, F,P) be a complete probability space with a filtration {F;};>¢ satisfying the usual

conditions. Let B(t) = (Bi(t),..., Bn(t))*,t > 0 be a m-dimensional Brownian motion
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defined on the space. Let 0 <ty < T < oco. Let xy be an F;,-measurable R%valued ran-
dom variable such that E|zg|? < co. Let f: R x [tg, T] — R% and ¢ : R¢ x [to, T] — R¥>*™
be both Borel measurable. Consider the d-dimensional stochastic differential equation of
Ito type

dx(t) = f(x(t),t)dt + g(x(t),t)dB(t), onty<t<T (2.4.1)

with initial value z(tg) = zo. By the definition of the stochastic differential, (2.4.1) is the
same as the following stochastic integral equation:
¢ ¢
z(t) = xg +/ f(z(s),s)ds +/ g(x(s),s)dB(s), onty<t<T. (2.4.2)
to to
One of the most important and useful properties for SDEs is the conditions that
ensure the existence and uniqueness of the solution to the SDE given by (2.4.1). Before

we begin, it is important that we understand what we mean by solution.

Definition 2.4.1 If an R%-valued stochastic process {x(t)},<i<r has the following prop-

erties, then it is called a solution of equation (2.4.1):

o {xz(t)} is continuous and F;-adapted;
o {f(z(t),1)} € L[to, T RY) and {g(x(t),t)} € L2([to, T]; R™™);
o cquation (2.4.2) holds for every t € [ty, T] with probability one.

A solution {x(t)} is said to be unique if any other solution {Z(t)} is indistinguishable
from {z(t)}, that is
P{z(t) =z(t) forallty<t<T}=1.

A solution is called a strong solution if the probability space (£2, F,P), the filtration
{Fi}i>0, the Brownian motion B(t) and the coefficients f(x,t), g(z,t) are all provided in
advance and then the solution z(t) is constructed. On the other hand, a solution is called
a weak solution if only the coefficients f(z,t) and g(x,t) are given and we are allowed
to construct a suitable probability space, a filtration, a Brownian motion and obtain a
solution to the equation. If two weak solutions found under whatever probability space
with a filtration and a Brownian motion are indistinguishable, then we say that pathwise

uniqueness holds for the equation (2.4.1). The next theorem is obtained from [89].
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Theorem 2.4.2 Assume there exist two positive constants K, and K. Then there exists
a unique solution x(t) to the SDE (2.4.1) and the solution belongs to M?([ty, T],RY) if
it satisfies the (uniform) Lipschitz condition and the linear growth condition given below

respectively:
1. for allz,y € R? and t € [ty,T]
[f(@. ) = fu, OV g(z,t) — gy, O < K|z — yl?, (24.3)
2. for all (x,t) € R x [to, T
[f(@ O] V gz, )] < Ka(1+ |2f). (2.4.4)
There are some restrictions when using the (uniform) Lipschitz condition especially
for functions which have discontinuities in them. As a result, we have the following

theorem where the (uniform) Lipschitz condition is replaced by a less restrictive local

Lipschitz condition. The next theorem is obtained from [64].

Theorem 2.4.3 Assume that the linear growth condition (2.4.4) holds but f(x) and g(x)
are now locally Lipschitz continuous, i.e. for every integer n > 1, there exists a positive

constant K,, such that for all t € [to, T and all x,y € R* with |z|V |y| < n,

|f(z,t) = f(y, )PV lg(z,t) — gy, t)]* < K|z —y|*. (2.4.5)

Then there exists a unique pathwise solution x(t) to the SDE (2.4.1) in M?([to, T],R%).

The localised Lipschitz condition for the pathwise uniqueness of solutions given above
can be simplified in the one-dimensional case as shown below. Note that the following

theorem is obtained from [64].

Theorem 2.4.4 Suppose f(x) and g(z) are bounded. Assume further that the following

conditions are satisfied:

1. there exists an increasing and concave function k(u) on [0,00) such that
1(0) =0, [y 571 (w)du = 00 and |f(x) = f(y)| < k(|lx —y]) for all z,y € R
and t € [to, T],
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2. there exists a strictly increasing function p(u) on [0,00) such that p(0) = 0,
Jor P2 (w)du = o0 and |g(x) — g(y)| < p(|z —yl|) for all z,y € R and t € [to, T).

Then the solution is pathwise unique for the SDE (2.4.1).

If g(z) is Holder continuous with exponent 1/2 and f(x) is Lipschitz continuous, then
the pathwise uniqueness of solutions holds for the SDE (2.4.1) in the one-dimensional

case.

We will now introduce the useful Martingale Representation Theorem. Let (2, F,P)
be a complete probability space and B(t) be an m-dimensional Brownian motion on it
without filtration. Let {FP};>o be the natural filtration generated by the Brownian mo-
tion, i.e. FP = o0{B(s) : 0 < s < t}. Let {F;}i>0 be the augmentation under P of this
natural filtration. Then {F;}:> is a filtration on (2, F,P) satisfying the usual conditions
and B(t) is a Brownian motion with respect to the filtration. The martingale represen-
tation theorem states that any continuous square-integrable martingale with respect to

{Fi} can be represented as an Ito integral.

Theorem 2.4.5 Let T' > 0 and {M,}o<i<r be a continuous R*-valued square-integrable

martingale with respect to {F;}. Then there is a unique stochastic process

e M2([0, T]; R™>*™) such that
M, = My + /tf(s)dB(s) ont e [0,T].
0
By uniqueness we mean that if there is any other process g € M?([0,T]; R¥™) such that
M, = My + /tg(s)dB(s) ont e [0,T],
0

then

E / F(s) — g(s)Pds = 0.

2.5 Stability of the Solution

Another important property for a system to have is the stability of the solution. The term

“stability” refers to the insensitivity of the system to small changes in the initial state
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or the parameter of the systems. For a stable system, the trajectories which are “close”
to each other at a particular point should remain close to each other at all subsequent
instants. In this section, we will recall some of the important types of stability which will
be useful in this thesis. Most of the materials mentioned in this section can be found in
[89].

Let us consider a d-dimensional SDE given as in (2.4.1). Let us assume that the
assumptions of the existence and uniqueness conditions given in Theorem 2.4.2 are sat-
isfied. For any given initial value z(tg) = 7o € R?, (2.4.1) has a unique global solution
x(t, to, xo). We know that the solution has continuous sample paths and every moment is
finite. Let us also assume that for all £ > ¢,

f(0,)=0 and g¢(0,t) =0.
Thus (2.4.1) has solution x = 0 corresponding to the initial value o = 0, which is the

trivial solution or equilibrium point.

We will split this section into three parts, each describing a type of stability for the

solution.

2.5.1 Stability in Probability

(a) If for every pair of € € (0,1) and r > 0, there exists a 6 = (e, r,tg) > 0 such that
P{|z(t, to, zo)| <7Vt > to} > 1 —¢,

whenever |zy| < ¢, then the trivial solution of the SDE (2.4.1) is stochastically stable or

stable in probability. Otherwise, it is said to be stochastically unstable.

(b) If the trivial solution is stochastically stable and for every ¢ € (0,1) there exists
do = do(e, to) > 0 such that

P{tlgr)lo z(t, to,x0) =0} > 1 —¢,

whenever |xg| < dg, then the trivial solution is said to be stochastically asymptotically

stable.

(c) If the trivial solution is stochastically stable and for all zy € R,
P{lim x(t,to,z9) =0} =1,
t—o0
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then it is said to be stochastically asymptotically stable in the large.

2.5.2 Almost Sure Exponential Stability
The trivial solution of (2.4.1) is said to be almost surely exponentially stable if
_ 1
lim sup — log |z (¢, to, z9)| <0, a.s.
t—o0 t

for all z, € R%.

2.5.3 Moment Exponential Stability

In this section we will always let p > 0. The trivial solution of (2.4.1) is said to be pth
moment exponentially stable if there is a pair of positive constants A and C such that for
all zg € Rd,

E|z(t, to, 20)|P < ClaolPe >0 on t > t,.

When p = 2, it is usually said to be exponentially stable in mean square.

The pth moment exponential stability means that the pth moment of the solution

will tend to zero exponentially fast. From the above definition, we also have that
) 1
tlgn sup log(E|(x(t, to, z0)|?) < 0. (2.5.1)

The left hand side of (2.5.1) is called the pth moment Lyapunov exponent. Therefore

in this case, the pth moment Lyapunov exponent is negative.

2.6 Numerical Approximation

Recall in Section 2.4 we have defined the existence and uniqueness conditions required
for the solution to the SDE (2.4.1), however sometimes it is not always possible to solve
(2.4.1) exactly and obtain explicit solutions. As a result, we would need to approximate
the solution numerically. All the simulations that are produced in this thesis are carried
out using R. In this section we will give the definitions of some of the useful schemes

which we could use to approximate a solution as well as their rate of convergence [60].
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But first we shall remind the reader of the Euler method which is used to numerically

integrate ordinary differential equations (ODEs).

Definition 2.6.1 (Euler Method) Let us define a differential equation

dx(t)
dt

with initial condition x(0) = xo. Sometimes it is not always possible to find the exact

= f(%,t)

solution and thus numerical method would be useful to approzimate the solution instead.
One way to approximate the solution is by using the Euler method. Let us choose a value

h for the step size and set t,, = tg + nh, then
Tpt1 = Tp + hf(xm tn)a

where x, is an approximation of the solution to the differential equation at time t,.
Now we return to stochastic differential equations.

Definition 2.6.2 (Euler-Maruyama) Let us divide a time interval [0,T] into N subin-
tervals by setting At = T/N and t, = nAt = n% where n = 0,...,N. Let us also define
x(tg) = o, then

Tpt+1 = Tn + f(l'na tn)At + g(xna tn)AWn

where AW,, = W (t,11) — W(t,).

Definition 2.6.3 (Milstein) Let us divide a time interval [0,T] into N subintervals by
setting At = T/N and t, = nAt = nt wheren =0,...,N. Let us also define x(ty) = o,
then

1
Try1 = Tn + f(20, 1) AL 4 g(2n, 1) AW, + 59(37717 tn)g/(l’n, tn)((AWn)z — At)

where AW,, = W (t,+1) — W (t,) and g' denotes the first derivative of g(x) with respect to

xZ.

Note that the Euler-Maruyama method and the Milstein method mentioned above do
not preserve positivity in solution. However, sometimes it might be useful to work with a
numerical scheme that does preserve positivity. As a result, for the purpose of completion,
we will mention one of the positive preserving numerical schemes. More details can be

found in [104, 107].
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Definition 2.6.4 (Balancing Implicit Method) By using the same notations as be-
fore, the integration scheme for the Balancing Implicit Method (BIM) is given as follows:

Tp+l = Tp + f(xn)At + g(xn)AW + (xn - anrl)Cn(mn)a
Co(zy) = co(xn)A + c1(xy,) |[AW],
where ¢y and c1 are the control functions which must be bounded and have to satisfy

1+ co(@n) At + 1 () |[AW| > 0.

2.7 Order of Convergence

Definition 2.7.1 (Strong Convergence) A numerical method is said to have an order

of strong convergence equal to « if there exists a constant C such that
E| X, — X(7)| < CAt?, (2.7.1)

where T = nAt € [0,T] and At is sufficiently small. In other words, (2.7.1) measures the

rate at which the mean of the error decays as At — 0.

Definition 2.7.2 (Weak Convergence) A numerical method is said to have an order
of weak convergence equal to o if there exists a constant C such that for all functions fin

some class
[Ef(Xn) —Ef(X(7))] < CAL%, (2.7.2)
at any fived T = nAt € [0,T] and where At is sufficiently small. In other words (2.7.2)

measures the rate of decay of the error of the means as At — 0.

It is well known that the Euler-Maruyama method has a strong convergence rate of
order 1/2 but a weak convergence rate of order 1, while the Milstein method has a strong

and a weak convergence rate of order 1.

2.8 Markov Processes and Markov Chains

The results shown in this section are mainly obtained from [89] and [136].
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If the following Markov property is satisfied then a d-dimensional F;-adapted process
{X (%) }+>0 is called a Markov process: for all 0 < s <t < oo and A € B(R"),

P(X(t) € A|F,) = P(X(t) € AIX(s)). (2.8.1)

The Markov property means that given a Markov process, the past and the future
are independent when the present is known. One of the equivalent formulations of the
Markov property is as follows: for any bounded Borel measurable function ¢ : R® — R
and 0 < s <t < oo,

E(p(X ()1 F) = E(e(X (1)1 X(5)). (2.82)

The transition probability or function of the Markov process is a function P(s, z;t, A),

defined on 0 < s <t < 0o,z € R” and A € B(R"), with the following properties:

1. For every 0 < s <t < oo and A € B(R"),

P(s, X(s);t, A) =P(X(t) € A|X(s)).

2. P(s,z;t,-) is a probability measure on B(R"™) for every 0 < s <t < oo and x € R™.
3. P(s,+;t, A) is Borel measurable for every 0 < s <t < oo and A € B(R").

4. The Kolmogorov-Chapman equation

P(s, 2:t, A) = / Plu, y; t, A)B(s, 73, dy)

n

holds for any 0 < s <u <t < oo,z € R” and A € B(R").
A Markov process X = {X(t)}:>0 is said to be homogeneous with respect to time if
its transition probability P(s, x;t, A) is stationary, i.e.
P(s 4+ u, z;t + u, A) = P(s, x;t, A)

forall 0 < s <t <oo,z€R" u>0and A€ BR").

A n-dimensional process {X;}i>¢ is called a strong Markov process if the following
strong Markov property holds: for any bounded Borel measurable function ¢ : R” — R,

any finite {F; }-stopping time 7 and ¢ > 0,
E(p(X(t + 7))|F7) = E(p(X(t + 7))[X(7)).
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In the homogeneous case, the above expression becomes
E(p(X(t + 7))[Fr) = Exr)e(X(1)).

A stochastic process X = {X(¢)}+>o defined on a probability space (2, F,P), with
values in a countable set = (to be called the state space of the process), is called a
continuous-time Markov chain if for any finite set 0 < t; < to < --- < t,, < tpuq of
“times”, and corresponding set 4,14, ...,i,_1,%,J of states in = such that P{X(¢,) =

iy X (th-1) = tn-1,..., X (t1) =41} > 0, then we have that

P{X (tn1) = j| X (tn) = 4, X (tn-1) = n-1,..., X(t1) = i1}

= P{X (tn11) = jIX(tn) = i} (2.8.3)

The process X = {X(t)}+>0 is homogeneous if for all s,t such that 0 < s <t < o0
and all 4, j € Z, the conditional probability P{X (¢) = j| X (s) =i} depends only on ¢ — s.
Then in the homogeneous case, P{X (t) = j|X(s) =i} = P{X(t — s) = j|X(0) = i} and

the transition function or transition probability of the process is given as
Fij(t) = P{X(t) = jIX(s) = i}, 1,j €E,1 =0,

where P;(t) is called standard if lim, .o P;(t) = 1 for all i € =.

Let P;;(t) be a standard transition function, then v; = lim;_,o[1 — P;;(t)]/t exists (but
may be oo) for all i € Z. Furthermore, if we let j be a stable state then ~;; = P;;(0) exists
and is finite for all ¢ € =. A state ¢ € = is stable if v; < oo.

Let v;; = —v; and I' = (945): jez where I is called the generator of the Markov chain.
Let us define a finite state space S = {1,2,..., N}, then the process is a continuous-time
finite Markov chain. Unless stated otherwise, from now on we assume that all Markov

chains are finite and all states are stable. For this type of Markov chain, almost every

sample path is a right continuous step function.

Theorem 2.8.1 Let P(t) = (P,;;(t))nxn be the transmission probability matriz and I' =

(7ij)Nxn be the generator of a finite Markov chain. Then
P(t) = €.
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Note that a continuous-time Markov chain X () with generator I' = {7;;} yxn can be
represented as a stochastic integral with respect to a Poisson random measure. Let A;;
be consecutive, left closed, right open intervals of the real line each having length «;; such

that

Ay = [07 712)»

A1z = |72, 712 + M3),

Ay = Z’hpZ’Ylg);

L j=2

Ay = 2713,27134-’721)7
Lj=2

Aoy = Z%j +721>Z%j + Y21 +723> )
[ j=2 =2

E N N
AT Z’Ylg Z 72;»271] Z ’Yzj)>
Lj=2 J=1,j#2 J=1,j#2
(2.8.4)

and so on. Let us define a function

—i ifye A,
hiy) =4 7 =

0 otherwise,

where h: S x R — R. Then

aX (1) = / R(X (1), y)o(dt, dy),

with initial condition X (0) = iy where v(dt, dy) is a Poisson random measure with inten-

sity dt x p(dy), in which p is the Lebesgue measure on R.

2.8.1 The Generalised Ito’s Formula

Let (Q, F,{F}t>0,P) be a complete probability space with filtration {F;}s>o satisfying

the usual conditions (i.e. it is increasing and right continuous while Fy contains all P-null
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sets.) Let B(t) = (Bl,..., B™)T be an m-dimensional Brownian motion defined on the
probability space. Let r(t),t > 0 be a right-continuous Markov chain on the probability
space taking values in a finite state space S = {1,2,..., N} with generator I' = (v;; ) nxn
given by

POt 1 0) = gy =iy = 4 0T TS

1+7v0 4+ 0(5) ifi=j,
where 6 > 0. Here if ¢ # j, then 7,; > 0 is the transition rate from ¢ to j, while
Yii = — Z Vij -
i#

We assume that the Markov chain 7(-) is independent of the Brownian motion B(-).

Let z(t) be a d-dimensional It6 process on ¢t > 0 with the SDE
da(t) = f(t)dt + g(t)dB(t),

where f € LY(R,;R?) and g € L*(R,;R™™). By using the results on the It6 formula
given in Section 2.3.3, we know that a C>!'(R? x R, ; R, )-function V maps the It6 process
x(t) into another It6 process V(x(t),t). Nonetheless we will consider the paired process
(z(t),r(t)) and we need to know how a function V : R?x R, xS — R will map this paired
process into another process V(x(t),t,r(t)). In this case, let us denote the family of all
real-valued functions V' (x,t,7) on R? x R, x S which are continuously twice differentiable
in z and once in ¢t by C*'(R? x R, x S;R). If V € C>}(R? x R, x S;R), let us define an
operator LV from R? x R, x S to R such that

LV (x,t,i) = Vi(x,t,i)+ Ve(z,t,0)f(t)

+ %WGCG[QT@)%(% t,i)g(t)] + ﬁ: vV (2, t, ), (2.8.5)
j=1
where
Via,t, ) = W, Vi(a,t, i) = (%%ﬁ)
and

Voo (o1 4) = OV (z,t,1)
reth B Ox;0x; d><d.

Let us now introduce the useful generalised It6 formula which reveals how V' maps

the paired process (z(t),7(t)) into a new process V (z(t),t,r(t)).
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Theorem 2.8.2 IfV € C>'(RY x R, x S;R), then for anyt >0
¢
V(z(t),t,r(t)) = V(x(0),0,7(0)) +/ LV (x(s),s,r(s))ds
0

+ /0 Ve(x(s),s,7(s))g(z(s), s,r(s))dB(s)
-

where the function h is defined as in Section 2.8 and p(ds,dl) = v(ds,dl) — u(dl)ds is a

/R(V(x(s), s,i0 + h(r(s),1))
V(z(s),s,r(s))u(ds,dl), (2.8.6)

martingale measure while v and p have been defined in the end of Section 2.8.

2.9 Other Useful Properties

In this section we will mention some of the useful properties and theorems which we use

in this thesis. The materials given in this section can be found in [89].

Theorem 2.9.1 (Gronwall inequality) Let T > 0 and ¢ > 0. Let u(-) be a Borel mea-
surable bounded nonnegative function on [0,T], and let v(-) be a nonnegative integrable

function on [0,T]. If
t
u(t) <c +/ v(s)u(s)ds, forall0 <t <T,
0

then
t
u(t) < cexp/ v(s)ds, forall0<t<T.
0

2.9.1 Square Root Process

The purpose of this section is to give the readers the basic framework and idea for which
the work in Theorem 3.3.3 in Chapter 3 is based on. The detailed workings are given in

Theorem 3.3.3. Let us consider the square root process
dS(t) = AS(t)dt + o+/S(t)dB(t). (2.9.1)

If equation (2.9.1) becomes negative then the term /S5(t) would become a complex

number and thus this would not make sense in modelling a population dynamic system.
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Therefore we will show that this is not possible. This nonnegative property is clearly the

equivalent to the solution of equation

dS(t) = AS(t)dt + o+/[SH)[dB(t) (2.9.2)

never becoming negative as long as the initial value Sy > 0. Let ap = 1 and a;, = e *(*+1)/2

ap—1
/ du_
ag u

Let or(u) be a continuous function such that its support is contained in the interval

for every integer £ > 1. Note that

(ag, ax—1) where 0 < g (u) < 2/ku and

ak—1
/ or(u)du = 1.
ay

Such a function exists. Define ¢y (z) =0 for > 0 and for z < 0,

et) = [ ay [ ontwan

It is easy to see that ¢, € C*(R,R),
-1 < ¢(x) <0, if —oo <z < —ay or otherwise o) (z) =0,

if —aj_; <x < —a; or otherwise ¢j.(z) = 0.

In addition, for all z € R,

T —ap-1 < () <2y

where = = —x if x < 0 or otherwise = = 0. For any ¢t > 0, by the Ito6 formula we have

that
alSW) = wulsi)+ [ NSOIAS) + SISO ar
+ o [ AUse)VEIB),
< /Ot AS™(r)dr + "%t + a/ot A(SENVISOIBG),  (29.3)
where Sy = S(0) is the initial condition. Hence
ot

BS (1)~ s S B, (50) <A [ BS-(yar + %
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which becomes

o’t t
ES_(t) < ap_1+ ? + /\/ ES_(T‘)dT.
0

By using the Gronwall inequality shown in Theorem 2.9.1, we have that

- o’t At
ES™(t) < ak,l—i—? e, forallt > 0.

Letting k — oo, we get that ES™(¢) < 0 and hence we must have that
ES™(t) =0 forallt>0.

Thus
P{S(t) <0} =0 forallt>0.

Since S(t) is continuous we must have that for all ¢ > 0,5(¢) > 0 almost surely. This
proves the nonnegative property of the solution of (2.9.2) and as a result we can write

(2.9.2) as (2.9.1).

2.9.2 Feller Test for Explosions

For the purpose of completion, the purpose of this section is to introduce some useful
properties in [68] that we use in Section 3.5. The materials and notations used in this

section are obtained from [68].

Let us consider the one-dimensional, time-homogeneous SDE
dX(t) =bX(t)dt + o X (t)dB(t). (2.9.4)

Let us consider an interval I = (I,r) where —oo < | < r < oo and assume that the

coefficients of the SDE 0 : I — R, b: I — R satisfy
o*(z) >0, forallzel, (2.9.5)

T+e 1 b
for all z € I, > 0 such that/ Mdy < 00. (2.9.6)

e 02Y)
Let us define the scale function p(x) such that

p(x) = /x exp {—2 /j bg()?)g} dg, (2.9.7)
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where the number ¢ in this case is in /. The function p has a continuous, strictly positive

derivative and p”(z) exists almost everywhere and satisfies

2b(x)
" _ /
p (gj) - 02(.1')]) (gj)v
where p/(z) is the first derivative of the function (2.9.7). We also introduce the speed
measure
2dz
dr) = 1
= ey €

and the Green’s function

(p(z Ay) = p(a))(p(b) — plz Ay))
p(b) — p(a) ’

Let us now define S = inf{t > 0: X(¢) ¢ (I,r)} = lim,,» S, and p be given by (2.9.7).
Now assume that (2.9.5) and (2.9.6) hold and let X be a weak solution to the SDE (2.9.4)

Gap(r,y) = x,y € [a,b] C I. (2.9.8)

in [ with initial condition Xg = x € I. Then the following properties hold:

1. P(I4+) = —o0,P(r—) = oo. Then

IP’[S:oo]:]P){sup X(t):r} :P[ inf X(t):l} ~ 1

0<t<oco 0<t<co
2. P(I+) > —o0,P(r—) = co. Then

P [limX(t) :z] P [ sup X(¢) <r|=1.

A 0<t<S

3. P(I+) = —o0,P(r—) < co. Then

P [13%1 X(t) = 7} =F {oi?isx(t) g l} B

4. P(l+) > —o0,P(r—) < co. Then

P {%X(z) = z} =1-P {13%1 X(t) = ,,,] _ ;(Sﬂr_—))_— ;i(li))’

where p(z) is defined as in (2.9.7), [+ represents tending towards [ from above and

r— denotes reaching r from below.
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Theorem 2.9.2 (Feller Test for Explosions) Assume that (2.9.5) and (2.9.6) hold
and let (X, W), (Q, F,P),{F} be a weak solution in I = (I,r) of the SDE (2.9.4) with
nonrandom initial condition Xg = x € I, where W is a standard one dimensional Brow-

nian motion. Then the equation
v(l+) =v(r—) =

determines whether P(S = o0) =1 or P(S = 00) < 1, where

v Yo 2dz [T o) -
o(z) = / ) / el / (p(z) — pl(y))m(dy),

for some fixed number c in I.

2.9.3 Mean Reverting Square Root Process

By using some of the ideas mentioned in Section 2.9.1 and Section 2.9.2, in this section we
will introduce another property which will be useful in Section 3.5. The purpose of this
section is to give the reader the basic framework and idea in [89] on which the proof of

Theorem 3.5.1 is based. The detailed workings are shown in Section 3.5. Let us consider

the following SDE
dS(t) = AMp — S(t))dt + o+/S(t)dB(t). (2.9.9)

By carrying out the same procedure as we did in Section 2.9.1, it is clear that (2.9.9) will
never be negative. In fact, by using the Ito’s formula given in Section 2.3.3 we have that
2 2t

Egi(S(8)) < pr(S0) +E / [Am — SIS + ZISONeLSE) | dr < 22

Consequently,
ot
—ap_1 <ES™(t) — g1 < 7

where S~ (t) = —=S(t) if S(t) < 0 or otherwise S™(t) = 0. By letting k& — oo, we have
that ES~(¢) = 0 for all ¢ > 0. Thus we have that S(¢) > 0 for all ¢ > 0 almost surely,
where ay, is defined as in Section 2.9.1. Note that if 2 < 2\p then S(t) > 0 for all ¢ > 0
almost surely. The diffusion coefficient of (2.9.9), g(x) := o4/x, is continuous and obeys

g*(z) > 0 on z € (0,00) while the shift coefficient, f(x) := A(u — ), is continuous on
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x € (0,00). By the standard result of ordinary differential equations, we know that there
is a unique solution M (x) to the equation

flx)M'(z) + %gQ(x)M”(x) =-1, a<z<b

for any given pair of positive constants a and b with a < Sy < b, with boundary condition
M (a) = M(b) = 0. The explicit formula for M (x) is given in terms of the Green’s function
defined in (2.9.8), namely

b
Ma,b - /Ga7b($7y)m(dy)a

Y R, p)=pla) [* W o
=~ [ 0le) = pwmian) + B =L [ 0 = ts)mian). 20,10

where p(z) is the scale function defined in (2.9.7). Let us define the stopping times
T,=inf{t >0:5(t) <a} and 7, =inf{t >0:S5(t) > b}.
By the Ito6 formula, it is easy to show that for any ¢ > 0,
EM(StANTaATy)) = M(So) —E(tATa ATp), (2.9.11)
which gives
E(tA1a A1) < M(Sp).

Letting ¢ — oo gives

E(r, A1) < M(Sp) < 0.

In other words, S(t) exits from every compact subinterval of (0,00) in finite expected
time. Thus P(7, A 7, < co) = 1. By returning to (2.9.11), observe from the boundary
condition that lim; . EM (s(t A 7, A 7)) = 0 and thus

E(1, A ) = M(Sp).

Let us define a function V(z) such that

V(m):/lxexp{—/ly 295((3@}@, 2 € (0, 00). (2.9.12)

This function has continuous, strictly positive derivatives V'(z), and V" (z) which exist

everywhere and obey

V”(x) _ _2f<x) V/(JZ)




By using the It6 formula, we have that for any ¢ > 0,
tATGNATY
V(S(tATaAT)) =V (So) + / V'(S(u))g(S(u))dB(u).
0
Now taking the expectation and letting t — oo gives that
V(So) =EV(S(1, A1) = V(a)P(1, < 1) + V(O)P(1, < Ta)-

Since two probabilities must add up to one, we have that

V(b) = V(So)

(O

and P(n, <7,) = 7. (2.9.13)

By substituting f(z) and g(x) in (2.9.12) by the corresponding shift and drift coeffi-

cients given in (2.9.9) and computing we have that

V() = /p{—/ %dz}dy,

T [2)
= / y 2Ap/ exp <0_—2'u<y - 1)) dy. (2914)
1
For the case when 2\u > o2, we have that
liﬁ)l V(z) = —o0 and liTm V(z) = oo.

Let us define

To=Ilim7, and 7, =Ilimm7
al0 btoo

and set T = Ty A Too. From (2.9.13) we have that

1 —V(So)/V(b)
1—V(a)/V(b)

P < inf S(t) < a) >P(r, <m) = (2.9.15)

0<t<t
Letting b 1 0o, then
IP’( inf S(t) < a) = 1.
0<t<r

This holds for any a > 0 and thus we must have that

IP’( inf S(t) :0) =1

o<t<r

A dual argument shows that

P ( sup ()=o) =1

o<t<rt



Let us now suppose that P(7 < co) > 0, then

P (hm S(t) exists and is equal to 0 or oo) > 0.

t—=T1

Thus it is clear that {info<;<,S(t) = 0} and {supy,., S(t) = oo} cannot both have

probability one. This is clearly a contradiction and thus
P(1 < 00) = 0.
To sum up for the case 2 \u > o2, we have

P@:aﬂzp(mfS@zO)zP(mpﬂﬂz@)zL

0<t<r 0<t<r

For the case 2\u < 02, we have that

V(0+) == lig)l V(z) > —oco and liTm V(z) = oc.

Similarly we can show from (2.9.15) that

]P( inf S(t) = 0) ~1.
o<t<r

By letting a | 0 in the second equality of (2.9.13) gives

V(So) — V(0+)

P <m) = T oy —vion)

Letting b — oo then implies that P(7., < 7o) = 0, namely P (sup,,, S(t) = oo) = 0.

Hence we can conclude that if 2 \p < 02, then

P (05{75“) = 0) =P (OSSgETS(t) < oo> = 1.

Note that the mean reverting square root process given in equation (2.9.9) is also
known as the Cox-Ingersoll-Ross model [24]. This equation is meant to model instan-
taneous interest rates and has applications in financial markets. The equation can be

written as

dr = k(0 —r)dt + o/r dW.
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The density function of r(s) at time s conditional on its value at time ¢ is given by

N

—u—v E 1
() sir(t)t) = e (2) L 2(un)?),
L B 2k
where c = e
u = cr(t)e ¥,
v o= cr(s),
2k6
q = PEI L,

and I,(.) is the modified Bessel function of the first kind of order ¢. This is the non-
central chi-square distribution x?[2cr(s); 2q + 2, 2u]. The non-centrality parameter is 2u

proportional to the present interest rate.

The mean and variance of r(s), the interest rate at time s, are

B(r(s)lr(t) = rt)e™70 4+ 0(1 — ko),

Var(r(s)|r(t)) = r(t)(%)(e_k(s_t)—e_2k(s_t))+9<§>(1—e_k(s_t))2.

As k becomes small (relevant to our model) the conditional mean goes to r(¢) and the
variance to o?r(t)(s — t).

In this chapter we introduced some of the mathematical properties which will be
useful for us in this thesis. In the next chapter we will look at the effect of introducing
demographic stochasticity on the dynamical behaviour of the SIS epidemic model given

in Section 1.2.
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Chapter 3

Demographic SIS Model

3.1 Introduction

In this chapter, we will look at the effect that introducing demographic stochasticity has
on the dynamical behaviour of the deterministic SIS epidemic model given in Section 1.2
where we make the assumption that an infected individual or a susceptible individual who
dies is immediately replaced by a susceptible individual or an infected individual, in other

words, the population size is kept constant.

This chapter is organised as follows: in the next section we shall describe the basic
model. In the following section we shall show the existence of a unique nonnegative
solution. In Section 3.4, we shall look at conditions for extinction and in Section 3.5 we
shall look at the Feller test which gives probabilities of hitting the top and bottom limits.
In Section 3.6 we perform some simulations with theoretical parameter values to verify the

results and simulations with realistic parameter values for gonorrhea and pneumococcus.

Most of the work mentioned in Chapter 3 has been written up as a paper and is

published in [47].
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3.2 Demographic Stochasticity for the SDE SIS Epi-
demic Model

Throughout this chapter, we let (Q, F, {F:}+>0, P) be a complete probability space with
filtration {F; }+>¢ satisfying the usual conditions (i.e. it is increasing and right continuous
while Fy contains all P-null sets). Let us consider the following deterministic SIS model

with two populations S(t) and I(t):

%Et) — BI(1)S(t) +AL(E) + uN — pS(2), (32.1)
O _ 510)5(0) — (n+ )10,

Here, S and I denote two populations representing respectively the number of susceptible
and infected individuals in the population. N is the total size of the population, 3 is
the disease transmission coefficient and 5 = A/N where X is the disease contact rate for
each individual, that is the rate at which susceptible individuals come into contact with
and are infected by infected individuals. p is the per capita death rate and ~ is the rate
at which an infected individual becomes cured. By looking at the interaction occurring
between the two populations, Allen [1] constructed a list of possible changes with their
corresponding probabilities p;(t), ¢ = 1, 2, 3 ... as shown in Table 3.1. Note that we
have assumed that the per capita death rate is the same as the per capita birth rate, in

other words the total population size remains constant.

In order to introduce demographic stochasticity into the deterministic SIS model
(3.2.1), the mean change F(Ax) and the covariance matrix V for the time interval At

are calculated [1] where V = E(Ax(Ax)T)/At. The stochastic SIS model has the form:
dx = p(t, S, D)dt + B(t, S, 1) AW (1), (3.2.2)
with x = (8, 1)", x(0) = (S(0), I(0)",

—BLS + (p+ )1
—(u+7)I+BIS

p=E(Ax)/At =

BIS+ (n+v)1 —BLS—(n+7)1I
=BIS = (p+y)I  BIS + (n+)1

B=V/= JV2BIS + (n+)I)
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Change Probability
Axy = [=1,0]" | p1 = pSAt

AXQ = —]_, 1]T P2 = BSIAt

[
Axz = [0,—1]" | ps = pIAt
Axy = [0,1]" | ps = pIAt
Ay = [L—1]" | py = (u+7)IAE
Axg = [1,0]" | ps = pSAt
Ax; =1[0,017 | pr=1- Zlepi

Table 3.1: Possible changes between two populations with their corresponding probabili-

ties where x = (S, I)7.

and W (t) is the two dimensional Brownian motion, namely W (t) = (W1 (¢), Wa(¢))". In

other words:

dS(t) = (=BST + (11 +)1)dt + /BST + (a + 1 (dwl;ﬂd%), (3.2.3)
A1) = (951 — (u+ )it = ST+ G )T (),

If we write B = (W, — W5)/+/2 then B is a Brownian motion so the SDE SIS model

with demographic stochasticity becomes:

dS(t) = [=BI(t)S(t) +vI(t) + uN — uS(t)]dt — /BI)S(t) + (1 +~)I(t)dB, (3.2.4)

dI(t) = [BI()S(t) = (u+)I(]dt + /BI)S(t) + (1 + ) (t)dB.

In fact if in equations (5.8) and (5.9) on p.147 of [1] we replace v by (1 + ) and « by
BN then equations (5.10) and (5.11) on p.148 of [1] are our equations (3.2.4). By using
S(t) + I(t) = N, we can combine the two SDEs shown in (3.2.4) into one SDE for I(t),

namely:

dI(t) = [BI()(N = I(t)) = (n+)I(O)dt + /BIE)(N = 1(8)) + (u+7)I(t)dB. (3.2.5)

The corresponding deterministic SIS model to the SDE SIS model (3.2.5) is given by:

dI(t)

S = 10BN ~ BI() ~ ) (3.2.6)
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An alternative derivation of equation (3.2.5) based on (3.2.6) is given by Allen [2] who
applies the procedure outlined above to (3.2.6). Equations (3.2.4) then follow from S+1 =
N. Note that the diffusion coefficient of the SDE SIS model (3.2.5) vanishes when I(t) =
N + “TT” It is appropriate to take an initial value I(0) = I € (0, N). For the rest of the
chapter, we shall focus on analysing the SDE SIS model with demographic stochasticity
(3.2.5). Note also that since the diffusion coefficient vanishes when 7(¢) = N + “TT, this
implies that it is possible for I(t) to exceed N, which is slightly unusual as normally we
would expect I(t) € (0, N). However it is important to note that this is caused by the
way we have introduced demographic stochasticity into the model, using the techniques
illustrated in [1], and this is indeed a well-established model and thus it is crucial for
us to analyse the behaviour of such a model as a result of demographic stochasticity.
Throughout this chapter, unless stated otherwise, we shall assume that the unit of time

is one day, and the population sizes are measured in units of one million.

3.3 Existence of Unique Nonnegative Solution

In order to prove the existence and uniqueness of the solution to the SDE SIS model

(3.2.5), let us denote
Az) = (N —x) = (p+ )z,

o(z) = /Bx(N — ) + (1 +7)z,

where A\(x) and o(x) are the drift and diffusion coefficients of the SDE SIS model (3.2.5)

respectively and x € [0, N + “Tf”] We shall now extend the domain of our SDE SIS model
(3.2.5) into the whole domain, i.e. A(z), o(z): R — R, by considering the following
definitions:

0, for x < 0,

) = ¢ \z2), for 0 <o < N+ 452, (3.3.1)

Zaa] Bty
K)\(]\74— 71), forz > N+ £52,
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and
.

0, for x <0,
o(r) =qo(x), for0<z<N+ ”’#, (3.3.2)
0, forx > N + "Tﬁ

\
As this SDE is a special case, the standard existence and uniqueness theorems on SDEs

are not applicable here (e.g. [89] and Section 2.4.2) and other methods [40] do not adapt
here as well. We are now ready to prove the existence and uniqueness of the solution
for the SDE SIS model (3.2.5) by using the following lemma which is mentioned in [64]
(Theorem 3.2 of Chapter IV) and also given as Theorem 2.4.4 in this thesis:

Lemma 3.3.1 Suppose o(x) and \(x) are bounded. Then there exists a strong pathwise

unique solution to the scalar SDE

dx(t) = Ma(t))dt + o(x(t))dB(t) (3.3.3)
if (i) [Mz) — Ay)| < k(|Jz —y|), where k(u) is a strictly increasing and concave function
on [0,00) such that £(0) =0 and [, &' (u)du = oo for all x,y € R,

(i1) |o(z) —o(y)| < p(|Jz—y|), where p(u) is a strictly increasing function on [0, 00) such
that p(0) =0 and [, p~*(u)du = oo for all x,y € R.

Theorem 3.3.2 For any initial value x(0) = o € [0, N + “Té”], the SDE (3.5.3) with its
coefficients defined by (3.3.1) and (3.3.2) has a strong pathwise unique solution.

Proof. ~ We shall split the proof into two sections by showing condition (i) is satisfied
first.

(i) The first derivative of equation (3.3.1) is defined as:

.

0, for z < 0,
N(z)=1q =282+ BN — w—ry, for0<ax< N+ “TT, (3.3.4)
0, for x > N + “TTV

\

For x,y € (O, N + ’%7), by the Mean Value Theorem we have that for some £ € (z, )

M — |X(£)| < M= sup ’)\,(5)|7

[z =y ge(0,N+£47)
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since N () is a continuous function in (0, N + %) Letting x — 07,y — (N + “Tﬁ)_, we
deduce that the same result is true if z,y € [0, N + "Tﬁ] It is easy to see that the result
follows for z,y in (—00, 00). Therefore, condition (i) is satisfied with x(u) = Mu for some
constant M for all z,y € R and A(x) is Lipschitz continuous. Note that a linear function
can be regarded as either a concave or a convex function, and this does not contradict

Lemma 3.3.1 as we do not require the function to be strictly concave.
We will now complete the proof by looking at the second condition:

(i) From equation (3.3.2), it is clear that the Mean Value Theorem does not apply in
this case. In addition, if we are able to show condition (ii) is satisfied for z,y € [0, N+ ”Tﬁ]
then the rest will follow. In other words, if we could find a constant L such that

lo@) = o)l ) (3.3.5)

Viz =yl

for x,y € [0, N + /%7], then condition (ii) is proved. By choosing ¢ = (N + “;—7)
and considering separately the regions ¢ < x < N + “—ZV —c,e<y< N+ “Tﬁ — &,
0<x,y§e,N+“%—5§x,y§N~l—“Tﬂ,N+“—;§7—5<a7§N+“TJ§7and0<y<5
and N + % —e<y< N+ % and 0 < = < g, it is straightforward to show that (3.3.5)
holds. As a result, condition (ii) is satisfied with p(u) = L\/u for some constant L for
all z,y € R. In other words, o(x) is Holder continuous with exponent 1/2. Moreover,
by definitions (3.3.1) and (3.3.2) both A(z) and o(z) are bounded so the theorem follows

from Lemma 3.3.1.

Note that by Theorem 2.4 of Chapter IV of [64] (given in Theorem 2.4.3), since
o(I(t)) and A(I(t)) are bounded, the solution to the SDE SIS model (3.2.5) will not
(1(t)) :

explode. Hence, we have shown that a unique strong pathwise non-explosive solution

does in fact exist for our SDE SIS model (3.2.5).

All we have left to show now is the non-negativity of our solution. Note that in order
for this SDE SIS model (3.2.5) to make sense, the term inside the square root has to be
nonnegative. We consider the SDE (3.3.3). We show that provided that I, € (0, N) then
I(t) € [0, N + =5].
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Theorem 3.3.3 For any given initial value 1(0) = Iy € (0,N), the probability that the
SDE (8.3.3) has a unique and nonnegative solution I(t) € [0, N + #TJEW] for allt > 0 is
one, 1.e.,

0<I(t)<N+HITT (3.3.6)

B

almost surely for allt > 0.

Note that this result is slightly unusual as based on biological considerations we would
have expected I(t) € (0, N). This is the result of introducing stochasticity into the model
using the technique mentioned in [1] and this SDE SIS model (3.2.5) is a well-established
model. In Section 3.6, we shall show that although it is theoretically possible for I(t) to
exceed IV, in the numerical simulations which we performed we have not observed such a

case.

Proof. The following proof for Theorem 3.3.3 is established based on the framework of
the “Square Root Process” illustrated in [89] and mentioned in Section 2.9.1. We shall
divide this proof into two parts. First of all, we shall prove the left hand side inequality,
I(t) > 0 and by using a similar strategy we shall prove the right hand side inequality and

thus complete the proof. Let ap = 1 and aj, = e ***1)/2 for every integer k& > 1. Note

ak-1
[
ag u

where a; = e #*~1/2 Let W (u) be a continuous function such that its support is con-

that

u
k ku’

ap—1

ag

and \I/k(ak_l) = \Ifk(ak) =0

It can be shown that such a function exists. Define i (z) = 0 for x > 0 and

e y
or(z) = / dy/ Uy (u)du, for x < 0. (3.3.7)
0 0

It is easy to see that ¢ € C%(R, R). Furthermore, by using Leibniz integral rule we have
that

() = —/O_w W (u)du, (3.3.8)
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and o) = Vi(—2),

(3.3.9)
respectively. As in [89]:
—1 < pi(z) <0if —oo <z < —ay or otherwise ¢ (z) = 0; (3.3.10)
2
lop(x)] < Tl if —agp_1 <z < —ay or otherwise ¢} (z) = 0; (3.3.11)
x
and T —ap1 < pp(x) <z forall x € R, (3.3.12)
where we define += = —xz if z < 0 or otherwise = = 0. Now, by Itd’s formula, we get
that for any ¢ > 0:
t o(I(s))?
alit) = et + [ AN + g a
0
t
+/ a(I(s))g,(1(s))dB(s), (3.3.13)
0
where A\, 0 : R — R are defined as before.
As ¢, (I) =0 and ¢{(I) =0 for I > 0, from (3.3.13)
t
aull(0) < [ o)A TE)IBG), (33.14)
0
Taking the expectation yields:
Epr(1(t)) <O0. (3.3.15)
Hence,
EI(t) — ap_1 < Epy(I(t)) < 0. (3.3.16)
We get that as k — oo,
EI-(t) < 0. (3.3.17)

Now for all ¢, I~ (t) > 0, so EI~(t) > 0, hence from our result (3.3.17), we must have:
EI-(t)=0 Vt>0. (3.3.18)

Furthermore, by using equation (3.3.18) and proof by contradiction, it is straightforward

to show that for all t > 0,

= P(I(t) > 0) = L. (3.3.19)



Therefore, I(t) > 0 almost surely and this completes the left hand side of the proof for
equation (3.3.6).

To complete the proof we shall now show that I(¢t) < N + “TJEV Let us define

) = N+ B 1),
_ AN Eu ZV — A1) (3.3.20)

Then, we want to show that J(I(t)) > 0. From Itd’s formula on equation (3.3.20), we

get:

dI(I() = (~DAJI(D) - o(J(I(1)))dB.

where
)
_2(M+7)<N+“TJ§7>, for J <0,
AUM) = (N +e2 - J(I(t))) (BI(I(t) = 2(p+7)), for 0<J<N 4582
0, for J > N + #42,
\
and
(
0, for J <0,
o(J(I(t) = \/,BJ(M)) (N + J(I(t))), for 0 < J <N+ &2,
0, for J > N + =52
\

By Ito’s formula, we derive that:

SDk(J(t)):SDk(JO)+/O [P(J(S))+Q(J(S))]d8—/o a(J(s))er(J(5))dB(s), (3.3.21)

where P, Q) : R — R are defined by:

’

20+ 7) (N + 52 ) i (@), for < 0,
P(z) = (N o :1:) (2 +7) — Br)gh(x), for 0< o < N 4 142,(3.3.22)
0, for x > N + %7

\

E N — Y(z), for 0 <ax < N+ LT
Qr) = ST =t n)aile), for D= N+ (3.3.23)

, otherwise.

=)

\
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So P(x) <0 and Q(z) = 0 for all z.

Thus
(1)) < - / o(J(3)) (I (5))dB(s).

Now take the expectations to get Epy(J(t)) < 0. Hence, EJ(t) — ap_1 < Epr(J(t)) < 0.
As k — oo, ap_1 — 0, thus EJ~(¢) < 0. Similarly to the argument we used for proving

the left hand side of equation (3.3.6), it is clear that for all £ > 0,

P(J(t) < 0) = 0,
= P(J(t) >0) =1, (3.3.24)

e, I(t) < N+ "Tﬁ almost surely Vt > 0, which completes the entire proof. O

Hence we have proven the nonnegative property of the solution of the SDE SIS model
with demographic stochasticity (3.3.3) and provided that I(t) € [0, N +“Tf7] we can express
equation (3.3.3) as equation (3.2.5). This has completed our proof on the existence of a

unique nonnegative solution for the SDE SIS model (3.2.5).

3.4 Extinction of Our Solution

In this section, we shall focus on the extinction aspect of the nonnegative solution I(¢) €
0, N + “TJEW] to the SDE SIS model (3.2.5). Let us define the basic reproduction number

Ry as:
_ BN
Aty

where the parameters as denoted as before.

Ry (3.4.1)

Theorem 3.4.1 For any given initial value 1(0) = Iy € (0,N), if Ry < 1, orif Ryg > 1
and N < 1 + MTJEV’ then I(t) will hit zero with probability one in finite time. In other

words, the disease will certainly die out in finite time.

Proof. Let us define the stopping time
T, = inf{t: I(t) < n}
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for 0 < n < Iy, where we set inf ) = co. We need to show that
P(1p < 00) = 1. (3.4.2)

We will show this by using proof by contradiction. If (3.4.2) were false, then P(1y = 00) >

0. Noting that lim,, .o 7, = 79, we could find an n sufficiently small so that

5 :=P(r, = o0) > 0. (3.4.3)

By It6’s formula, we have that

d(\/1(t)) = \/1(0) ))dt + = \/BN BI(t) + pu+ vdB(t) (3.4.4)

for 0 <t <7, where ¢ : R — R is defined by:

JT

q(2) = 5= (BN —p =7 = ) = o—=(BN — B+ p+7). (3.4.5)

8\/_
In order to prove this theorem, we will now show that there exists a negative upper bound

for ¢(z) when z € [n, N + m]

e Casel: Ry = < 1. By using Theorem 3.3.6, it is clear that the second term in

_l’_
equation (3.4.5) is negative. In addition, due to the fact that % < 1, then the first term

for (3.4.5) is negative, which makes ¢(z) in (3.4.5) negative. Therefore, we have that for
€ [n, N + =],

JT

5 (BN —p—=7) = (3.4.6)

q(z) < §x3/2 < —§n3/2.

As aresult from (3.4.6), we could conclude that for z € [n, N + %} , ¢(x) is negative
and thus there must exist some ¢ > 0 such that ¢(z) < —e < 0 for t > 0 for = €
[n, N + “Tfy] )

Now by substituting the negative upper bound of ¢(z) into equation (3.4.4) and
integrating, we get that:

VItAT) <AVI0) - / o edt + % o VBN — BI(s) +p+~dB(s).  (3.4.7)

By taking the expectation of equation (3.4.7) and using the result given by (3.4.3), we
obtain that:

tATh

0 < I(0)— E/ eds < \/I1(0) —edt, Vt>0. (3.4.8)
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Now letting ¢ — oo, we have that 0 < —oo, which clearly is a contradiction. Therefore
the result given by (3.4.2) must be true, in other words the disease will die out almost
surely for the case where Ry < 1. Similarly, we shall apply the same argument to the

second case:
e Case 2: Ry = % > 1 where N < % + “’# First of all we shall rewrite equation
(3.4.5) as:
q(z) = —=U(x), (3.4.9)

where U(x) is defined as:

Ux) = 40(BN — (j+7) — Bz) — (BN — B+ +7), (3.4.10)

for x € [n, N+ “%} . Clearly, U(x) is a quadratic function so therefore it must have at

most two real roots. From (3.4.10),

U(n) = 4n(BN — (u+7) — Bn) — (BN = Bn+ p+ 7). (3.4.11)

We can choose n sufficiently small, thus making U (n) negative. Additionally U (N + %)

is negative. So

o< Um) <0, —oco<U (N + “—ﬂ) <0. (3.4.12)

p

B

Also, U(x) has a maximum turning point at z* = % (}1 + N — ’“‘—ﬂ> Now suppose
that x* € [n, N + “Tfy] , then by substituting z* into (3.4.10) we could see that the second

term of (3.4.10) is negative. Furthermore, the first term of (3.4.10) becomes:
N
4" (ﬂ— Bty é) , (3.4.13)

which is negative as N < 1 + “;—7 So U(x) < 0 when x € [n,N + %} :

Now consider the case where x* > N + ”Tﬁ By using the fact that U(n) < 0 and
U(N + “%) < 0 and that U(x) has one unique turning point, at x = z*, U(x) is negative
for x € [n, N + %} . By combining both results we could conclude from equation (3.4.10)
that, for Ry > 1, 3¢ > 0 such that ¢(z) < —e < 0 for x € [n,N + “%}

Arguing as in case 1, we deduce that P(7y < co) = 1. This completes the proof.
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3.5 Probabilities of Hitting the Top and Bottom Lim-
its

Now that we know under certain situations, the number of infected individuals will die

out, it is also useful to know the probability of it hitting zero and the probability of it

hitting N + #52. For the rest of this chapter, we shall work on the SDE SIS model (3.2.5),

unless stated otherwise. Let a A b represent the minimum of {a, b} and a V b represent the

maximum of {a,b}. For a < Iy < b define
=inf{t > 0:I(t) < a},
m, = inf{t > 0: I(t) > b},

where 7y = lim, g 7q, TNJFMZV = thN+ i) Ty and T = To A Ty, 4y

Theorem 3.5.1 For any given initial value I1(0) = Iy € (0, N), we have that

e For W > 1,
P (Oggg[(t) = ) =1, (3.5.1)
P ( sup I(t) = N + M) —0. (3.5.2)
o<t<r 6

OFOT4(M‘+’Y)<1Z'][]P(T<OO):1,

—a(uty)
. o BN =By+pt) T ey
P (OgtlETIt = 0) Ifwm o >0, (3.5.3)
- Jo (BN =By +p+v)" 7 e vdy
—a(uty)
]P’(Sup I(t)—N+u+7) - fl (BN = By+p+v)" 7 e ¥y
— LI P = - 7
0<t<r 5 B BN ﬁy +p+ 7)4(T@—2ydy
= ( inf I(t ) > 0. (3.5.4)
0<t<r
Furthermore, for the case when (’”V) <1 if P(r = 00) >0, then
—a(uty)
N — By + p+ e d
P (Oi<rt1£7_f(t) — o) > ff;wm (BN = Byt +1) — ) (3.5.5)
l o T BN = Byt k)T ey
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P(sup I(t)= N+

o<t<r 6

u+7) > YO(BN = By + i+ ) =5 dey (3.5.6)
I

N+”+"’ —4(pty)
(BN =By +p+~v) 7 " 20y

Proof. The proof of Theorem 3.5.1 is established based on the framework of the “Mean
Reverting Square Root Process” illustrated in [89] and mentioned in Section 2.9.3. Let

us define the drift and diffusion coefficients of our SDE SIS model (3.2.5) as
v(@) = BN — 2)z — (4 + e, (3.5.7)

and

=Vx(B(N —2) +pu+7), (3.5.8)

respectively.

As mentioned in Section 2.9.3 and [89], we know that for any given pair of nonnegative
constants a and b with a < Iy < b there is a unique solution, say M (x) satisfying the
equation

v(z)M'(z) + éwQ(x)M”(s) =—1, a<z<b, (3.5.9)

with boundary conditions M (a) = M (b) = 0. This equation for M (z) is solved in [68] and
we shall outline the important aspects of the working for the purpose of completeness.

Let us introduce the speed measure

m(dx) = x € |a, b, (3.5.10)

and the Green’s function

(p(z Ay) — pla))(p(b) — p(z Vy))
p(b) — p(a)

where the scale function p(x) is defined in [68] as

o [ (2258 e

where ¢ € R is a fixed number. This scale function p(z) is a monotonic increasing function

Ga,b(x>y) = y T, Y € [aa b]a (3511)

of z. By using equations (3.5.10), (3.5.11) and applying the boundary conditions, we could
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obtain the explicit solution M (x) as illustrated in [68] that satisfies the equation (3.5.9),

namely:
Masle) = [ Guslary)m(dy),
P o I )
= [ )~ pe)miay) + B
b
[ 60 stsmay) (35.12)

= M(x).

Since G,p(x,y) is a nonnegative function, it is clear that M(x) = M,,(x) is also a

nonnegative function. Now, let us define the stopping times:
7, =1inf{t > 0:I(t) < a},
T, = inf{t > 0: I(t) > b},
where a < Iy < b. By the Ito formula we get that:
tATG ATy tATG ATy
M(I(tNT, ATp)) = M(lp) —/ dt+/ w(I)M'(1)dB,
’ ° tATLA\Th
= M(ly) — (tATaAT) +/ w(I)M'(I)dB. (3.5.13)
0

Taking the expectations yields the following results which are similar to the ones that

have been illustrated in [89]:
EM{I(tANT,AT) =My —E(tAT, A7) >0,
which gives
E(t A1, A7) < M(1y) < oo.

Consequently this indicates that I(t) exits from every compact subinterval of (O, N+ “;—7)
in finite expected time, which means that we must have P(7, A 7, < 00) = 1. In addition,

by referring to the boundary conditions we get that

lim EM(I(t A1, AT)) =0,

t—o0

and so E(7, A1) = M(Iy). Let us now define

V(z) = /m: exp (— /: Zzz)) dz) dy, (3.5.14)

o1




where z € (O, N+ ’%7) and we define zo = (N + “%) This function has continuous
first and second derivatives V’'(x) and V”(x) in (0, N + “E—”) with strictly nonnegative
V'(z), and V" (x) satisfies

V() = S Vie),

where v(z) and w(x) are defined as equation (3.5.7) and (3.5.8) respectively. By the It6

formula, we could derive that:
tATG ATy
VI({tANTaAT)) =V (1) + / V'(I(uw))w(I(u))dB. (3.5.15)
0
Taking the expectations and letting ¢ — oo yields that:

V(ly) = EV(I(1,AT)),
= V(a)P(r, < 1) + V(O)P(1, > 7). (3.5.16)
By using the fact that the two probabilities must add up to one, we obtain from equation
(3.5.16) that:

V(b) = V(L)

, (3.5.17)

and Pn, <71) = ma

Io Yy 2v(z)

_ e (S B d (3519
Fom (7 B0y g
a OXP Iy w2(2) Yy

where equation (3.5.17) represents the probability of hitting a before it reaches b and vice

versa for equation (3.5.18). Now by substituting v(z) and w(z) into equation (3.5.14), we

get that:
T (o [N =) = (et
V(x)‘/m p( 2 Lo BN )+ ()" )dy' (3519

In order to simplify the above expression (3.5.19), let us focus on the integral

VBN —2z)—(n+7)
w0 BN = 2) + (n+7)

dz. (3.5.20)
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By making a simple substitution of the numerator by S(N — z) + (u+~) — 2(x + ) and
integrating, (3.5.20) becomes

YB(N —2) = (u+7) 2(p+ ) (BN—ﬁerquv)
o BN = 2)+ (1 +7) 5 8\ BN Baotp+y) (3:5.21)

Now by substituting (3.5.21) into (3.5.19) and recalling that zo = (N + ‘“;—V), we get

= (y — o) +

that

_ Apty)

_Alpty) * ﬂN—ﬁy—}-M+7> B _
V(x) = e?™02 "5 / 2y, 3.5.22
(@) =e o ( BN +p+ © W ( )

For the case where w > 1, we have that V(x) tends to a finite (strictly negative)

limit as z — 0% and that V(z) tends to infinity as z — |N + £%|  namely:
B

—00 < V(") <0 and V ({N + #th ) = 00. (3.5.23)
Recall that:
To = lciLE]lTa, TNJFMTJEW = bTJ\lfiin“T” 7 and T =71 A TN+%.

Define 7jq5) = 7, A 7. From equations (3.5.17) and (3.5.18) and the above notations, we

can work out the probability of /(t) hitting the bottom limit which is as follows:

For a € <0,N—|—“TJE7),

i < >
P (st 105 a) > Pl <)

_ 1-V(L)/V(b)
= TTV@ ) (3.5.24)

By letting b 1+ N + %7, we get that

P (it 10 <a) -1

o<t<r

But since this holds for any a > 0 we must therefore have

P (Oglgf(t) = 0) = 1. (3.5.25)

Similarly, the probability of I(¢) hitting the top limit NV + ”;g—” is:

P ( sup I(t) > b) > P < 7a),

o V() - V(a)
- YO Vi (3.5.26)
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By letting a | 0 we get that

V(L) - V(oY)
v (QEET”” S b) SV v

But since this holds for any b < N + “’#, then letting b T N + ;%77

P ( sup I(t) =N + ”—ﬂ) = 0. (3.5.27)

o<t<r 6

As a result, for the case 4("%7) > 1, I(t) will reach 0 first before it reaches N + “—Z,v almost

surely.

By applying a similar argument for the case where W < 1, we get that as z — 0T,

V(z) tends to a finite strictly negative limit, whereas as x — [N + ’%7] _, V(z) tends to

pty
<N+ 3 )

Furthermore, the probability of I(¢) reaching 0 before it reaches N + “Tﬁ is given as

a finite strictly nonnegative limit. In other words:

—00o<V(0") <0 and 0<V < 0. (3.5.28)

follows:

P < inf I(t) < a) > P(1, < 1),

o<t<t

b —4(pty)
N — By + p+ 7 e d
N (BN By+putn) e vdy
Letting b T N + % in equation (3.5.29), we get that:
N4 & +V —4(ut
N — By +p+ e ¥d
]P)< inf I(t) S CL) > fl](i/v H+ B By 1% ’y) s Yy 0’ (353())
T SO (BN =By +p4)T 7 e dy
and since this holds for any a > 0 we have that
Jn T BN =By + ) ‘“f” e
P( inf I(t)=0] > 20 yreTa Y~ (3.5.31)
o<t<r N4 + —4(uty) 9
oo T (BN =By+puty) 7 vdy
Similarly, the probability that I(t) reaches N + “T before it reaches 0 is given as:
IP’(sup I(t) = N—i—'u—ﬂ) Zl—P(To<TN+m)7
0<t<T B s
—4(u+)
N — By + p+ e Wd
_ Nﬂff By +nt) 7 (3532
Jo (BN =By +u+9)" 7 e 2dy
> 0.
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If P(7 < o00) =1, then
IP’( inf I(t) :0) +P(Sup I(t) :N+m> <1,
0<t<r 0<t<r 5 B

and thus the inequalities (3.5.31) and (3.5.32) are actually equalities. This indicates that
wherever [(t) starts, there is a nonnegative probability that I(¢) will first hit each of zero
and N + “’# If I(t) starts exactly halfway between zero and N + “’#, then there is a
higher probability that (t) will hit zero before it hits N + % However, if P(7 = 00) > 0

then all that we can say is as described in inequalities (3.5.31) and (3.5.32), namely

SN BN = By + ) e
. B I —By+p+~y e dy
P (051571(15) — 0) > B ETre— 0, (3.5.33)
o (BN =By +p+7) 7 e 2dy
Io —4(pty) —2y
P(sup I(t)—N+“+7>> Jo (BN =Byt putn) 7 edy (3.5.34)
- = Bty —4(p+y e
0<t<r /3 f0N+ B (5]\[ _ ﬁy + e+ 7) 4(6+ : e—2ydy
0

Hence in this section we have used the Feller test to calculate the probabilities that
I(t) will hit zero before it hits N + “Tﬁ and vice versa. In the next section we shall look

at some of our analytical results using computer simulations.

3.6 Simulations

In this section we shall use the Milstein numerical simulation method for SDEs (e.g. [121]
and Definition 2.6.3) to numerically illustrate Theorem 3.4.1 and Theorem 3.5.1. The Mil-
stein method is superior to the simpler Euler-Maruyama method given in Definition 2.6.2,
for example used in [40], because as the integration time-step goes to zero the Milstein
method is strongly convergent with order 1 as opposed to 0.5 for the Euler-Maruyama
method [60]. Our numerical integration program was written in R and comprehensively
verified using a large number of runs. Note that as the Milstein scheme does not preserve
positivity, and since we have shown that in this particular model it is theoretically possi-
ble for I(t) > N, therefore it will cause the simulation to stop if the solution does in fact

go below zero.
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For Theorem 3.4.1, we first show that the disease will die out in finite time if Ry < 1,

or Ry > 1 and N < }l + “—;7, and explore numerically the situation where Ry > 1 and

N>1i+ “’#.
3.6.1 Simulations on Extinction
In this section, we shall focus on highlighting the results shown in Theorem 3.4.1.
Example 3.6.1 (Ry < 1) Let the following parameters be given as:
N =100, u = 25, = 35,5 = 0.5, (3.6.1)

so the SDE SIS model (3.2.5) becomes

dI(t) = [0.5(100 — I(£))I(t) — 60I(t)]dt + \/0.51(£)(100 — I(£)) + 60I(t)dB.  (3.6.2)

Clearly Ry = % = 0.833 < 1, when we could conclude from Theorem 3.4.1 that for any
initial value 1(0) = Iy € (0,100), the disease will die out in finite time.

Moreover, by substituting the parameters (3.6.1) into the corresponding SIS determin-
istic model (3.2.6), we have:

%(;) = I(t)[~10 — 0.5I(1)]. (3.6.3)

By applying the Milstein method to the SDE SIS model (3.6.2) and its corresponding
SIS deterministic model (3.6.3), we have managed to construct the computer simulations

illustrated in Figure 3.1 for parameters given by (3.6.1).

Figure 3.1 illustrates two different simulations constructed with different initial values.
The simulation on the left hand side represents the behaviour of the model when I(0) = 90,
while the one on the right hand side represents the behaviour of the model when I(0) = 1.
For both cases we could see that no matter what we choose our initial value to be, I(t)
will eventually die out and hit zero and thus the disease will go extinct. The simulation
was repeated for about 50 times with different parameter values satisfying the condition
Ry < 1 and different initial conditions and in each case the disease died out in finite time.
This supports the results of Theorem 3.4.1 on extinction. More examples of simulation

where Ry < 1 are given in Figure 3.2. Further information can also be obtained from the
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Figure 3.1: Computer simulations of the path I(¢) for the SDE SIS model (3.6.2) and the
corresponding deterministic SIS model (3.6.3), using the Milstein method with step size
A = 0.0001 days with initial values I(0) = 90 (the left hand side) and I(0) = 1 (the right
hand side).

simulations, such as the mean of the solution path, for example for Figure 3.2, the solution
path on the left hand side with initial value I(0) = 50 has mean value of I(t) = 6.295, a
minimum value of 1(t) = 0 and a mazimum value I(t) = 55.680. On the right hand side
of Figure 3.2, the solution path with initial value I1(0) = 70 has mean value of 1(t) = 12.2,
a minimum value of I(t) =0 and a mazximum value of I(t) = 70. The simulations could
also be repeated many times with a given initial value and fixed parameter values, to obtain
similar statistics as well as the mean time to extinction and the variance of this time, for

example.
Example 3.6.2 (Ry > 1,N < 1 + ’*;—7) Let us use parameters
N =42, 1 =09,~=20,5=0.5, (3.6.4)

so the SDE SIS model (3.2.5) becomes

dI(t) = [0.5(42 — I(£))I(t) — 20.91(t)]dt + \/0.51(£)(42 — I(t)) + 20.91(t)dB, (3.6.5)

and the corresponding SIS deterministic model (3.2.6) becomes:

dI(t)

— - =101~ 0.51(1)]. (3.6.6)
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Figure 3.2: Computer simulations of the path I(¢) for the SDE SIS model (3.6.2) and the
corresponding deterministic SIS model (3.6.3), using the Milstein method with step size
A = 0.0001 days with initial values I(0) = 50 (the left hand side) and I(0) = 70 (the
right hand side).

It is easy to see that Ry = 1.005 > 1, N < }l—l—“Tf'y = 42.05 and thus according to Theorem
3.4.1, for any initial value I1(0) = Iy € (0,42), the disease will die out in finite time.

The simulation was repeated with different parameter values satisfying Ry > 1 and
N < %%— “% and in each case the disease died out in finite time as predicted by Theorem
3.4.1. One such simulation is shown in Figure 3.3 with parameter values as in (3.6.4).
More simulations are also given in Figure 3.4 where the solution path on the left hand side
has mean value of 1(t) = 3.256, a minimum value of I(t) = 0 and a maximum value of
I(t) =9.315. On the right hand side of the same figure, the solution path has mean value
of I(t) = 8.751, a minimum value of I(t) =0 and a mazimum value of I(t) = 30.570.

Example 3.6.3 (Ry > 1, N > %L—i— “—;7) From Theorem 3.4.1, we have obtained extinc-
tion results on the two cases where Ry < 1 or where Ry > 1 and N < 4—11 + “—ZV but we
cannot determine any theoretical results for the case where Ry > 1 and N > }1 + ”Tﬁ
However, our simulations were also inconclusive. For some parameter values the disease
died out in finite time, whereas for others they did not appear to. For example for the pa-

rameter values N = 100, u = 10,y = 30, 8 = 0.5, in this case we have that Ry = 1.25 > 1
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Figure 3.3: Computer simulation of the path I(¢) for the SDE SIS model (3.6.5) and its
corresponding deterministic SIS model (3.6.6), using the Milstein method with step size
A = 0.0001 days with initial value 7(0) = 10.
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Figure 3.4: Computer simulation of the path I(¢) for the SDE SIS model (3.6.5) and its
corresponding deterministic SIS model (3.6.6), using the Milstein method with step size
A = 0.0001 days with initial values 7(0) = 2 (the left hand side) and I(0) = 30 (the right
hand side).
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Figure 3.5: Computer simulations of the path I(¢) for the SDE SIS model (3.2.5) and
the corresponding deterministic SIS model (3.2.6) with parameter values N = 100, u =
10,v = 30 and S = 0.5, using the Milstein method with step size A = 0.0001 days with
initial values I(0) = 1 (the left hand side) and 1(0) = 90 (the right hand side).

and N > % + “Tfy = 80.25 and the simulations produced by substituting these parameters
into the SDE SIS model (3.2.5) died out in finite time. For the purpose of illustration, an

example of the simulations is shown in Figure 3.5.

On the other hand, for the parameter values N = 100, = 10,y = 20,8 = 0.5, in
this case we have that Ry = 1.667 > 1 and N > i + % = 60.25 and here the stochastic
simulations seemed to oscillate indefinitely. Here it was not clear that the disease died
out in finite time. Again for the purpose of illustration, an example of the simulations is

shown wn Figure 3.6.

3.6.2 Simulations on the Feller Test

Similar to Section 3.6.1, we shall apply the Milstein method to reinforce the results that

we have shown in Theorem 3.5.1.

Example 3.6.4 (W > 1) We use parameter values
N =100, 4 = 25,7 = 30, 8 = 0.5, (3.6.7)
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Figure 3.6: Computer simulations of the path I(t) for the SDE SIS model (3.2.5) and the
corresponding deterministic SIS model (3.2.6) with N = 100, x = 10,y = 20 and g = 0.5,
using the Milstein method with step size A = 0.0001 days with initial values I(0) = 1
(the left hand side) and 7(0) = 90 (the right hand side).

and by substituting these parameters into the SDE SIS model (3.2.5) and its corresponding
SIS deterministic model (3.2.6) we get that:

dI(t) = [0.5(100 — I(t))I(t) — 551(t)]dt + 1/0.51(t)(100 — I(t)) + 551(t)dB,  (3.6.8)

and

dIt)
— - = 1()[=5—051(1)]. (3.6.9)

It is easy to see that w = 440 > 1 and thus from Theorem 3.5.1, we conclude that
the disease hits zero before N + “TJg” The numerical simulations support these results as
expected. Two typical simulations are shown in Figure 3.7. The numerical simulations

were repeated with a variety of parameter values and initial conditions.
Example 3.6.5 (W < 1) Consider the parameter values
N =1, =0.025,7=0.09, 8 = 0.5, (3.6.10)

so the SDE SIS model (3.2.5) becomes:

dI(t) = [0.5(1 — I(£))I(t) — 0.1151(t)|dt + /0.5I(£)(1 — I(t)) + 0.1151(£)dB, (3.6.11)

71



—— Stochastic © —— Stochastic
. - - Deterministic - - - Deterministic
g -
© -
o _|
©
= o | = o«
<
o _| N
N
o o M e el o~ 1 b e eee
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.7: Computer simulations of the path I(¢) for the SDE SIS model (3.6.8) and the
corresponding deterministic SIS model (3.6.9) with parameters N = 100, u = 25, v = 30,
£ = 0.5, using the Milstein method with step size A = 0.0001 days with initial values
I(0) =90 (the left hand side) and I(0) = 1 (the right hand side).

and its corresponding SIS deterministic model (3.2.6) becomes:

dI(t
% = I(t)[0.385 — 0.5I(t)]. (3.6.12)
For this example, Theorem 3.5.1 says that it is possible for I(t) to hit either zero or

N + “‘# first. Figure 3.8 illustrates simulations which clearly show that this is the case.

3.6.3 Realistic Examples Simulations

In Sections 3.6.1 and 3.6.2, we have been focusing on using arbitrary parameters to sup-
port our theories proved in Theorems 3.4.1 and 3.5.1 respectively. However, it would be
better to use parameters for real-life diseases. In this section, we shall look at two dif-
ferent diseases for which an SIS model is suitable: gonorrhea amongst homosexuals and
pneumococcus amongst very young children in Scotland. We shall first look at gonorrhea
amongst homosexuals. Throughout the section the unit of time is still one day but the
population sizes are not scaled as previously. Note that the step size in this section has
now changed from A = 0.0001 to A = 0.001. This is because when running realistic exam-

ple simulations, the computation time can be very long and thus by choosing a different
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Figure 3.8: Computer simulations of the path I(¢) for the SDE SIS model (3.6.11) and
the corresponding deterministic SIS model (3.6.12) with parameters N = 1, u = 0.025,
v =0.09, 8 = 0.5, using the Milstein method with step size A = 0.0001 days with initial
value 1(0) = 0.5.

step size, we hope to reduce the computation time.

Note that the demographic SDE SIS epidemic model (3.2.5) is a well established
model. This model approximates the system of ordinary differential equations describ-
ing the probabilities that there are exactly I infected individuals at time ¢ by a single
stochastic differential equation. In the system of ordinary differential equations I never
exceeds N but we have shown that in the stochastic differential equation approximation
I may possibly exceed N. However, it is important to note that for each example in this
section, we have carried out around 50 simulations with realistic parameter values and we
have not experienced the case where [(t) exceeds N, although the theoretical possibility

remains that it could do so.

Example 3.6.6 (Gonorrhea Model) From Hethcote and Yorke [58] and Yorke, Heth-
cote and Nold [135], we have the following parameters:

N =10,000, Ry = 1.4, = (1/(40 x 365.25))/day,~y = (1/55)/day

which from the above and the equation for Ry defined by (4.1) we can derive the value
for B, namely B = 2.55503 x 107° /day. By numerically simulating equations (3.2.5) and
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Figure 3.9: Computer simulation of the path I(¢) for the Gonorrhea Model with param-
eters N = 10,000, u = (1/(40 x 365.25))/day, v = (1/55)/day, 8 = 2.55503 x 1075 /day,
using the Milstein method with step size A = 0.001 days with initial values I(0) = 1,000
(the left hand side) and (0) = 5,000 (the right hand side).

(3.2.6), Figure 3.9 is produced.

For this case, as Ry > 1 and N > }1—1-“—;57, Theorem 3.4.1 is inconclusive. For this case
Theorem 3.5.1 predicts that I(t) will almost surely hit zero in finite time. However, as the
time realistically looks likely to be very high it is not feasible to run the simulations for that
long. For the simulations shown and the other simulations not shown with both different
starting values, and different realistic parameter values with Ry > 1 and N > % + “‘#,
after an nitial transient stage the stochastic simulations oscillated about the deterministic

level.

To illustrate the situation where Ry < 1, we shall change the value of N which real-

istically could change. Consider the parameter values
N = 17,000, 1 = (1/(40%x365.25)) /day,y = (1/55) /day, B = 2.55503x107° /day. (3.6.13)

Clearly in this case, Ry = 0.98 < 1 when we could conclude from Theorem 3.4.1 that for
any given initial value 1(0) € (0,N), the solution I(t) of the SDE SIS model (3.2.5) will
die out almost surely with probability one. Furthermore W > 1 whence, from Theorem

3.5.1 we could also conclude that I(t) will hit zero before N + % with probability one.
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Figure 3.10: Computer simulation of the path I(t) for the Gonorrhea Model with param-
eters N = 7,000, u = (1/(40 x 365.25))/day, v = (1/55)/day, 8 = 2.55503 x 1075 /day,
using the Milstein method with step size A = 0.001 days with initial value I(0) = 1, 000.

The simulation produced by the Milstein method for SDE SIS model (3.2.5) and the
corresponding SIS deterministic model (3.2.6) with parameters given by (3.6.13) supports
both Theorems 3.4.1 and 3.5.1. One example of the simulations is shown in Figure 3.10.
In other words the disease almost surely hits zero before the upper bound and hits zero in

finite time almost surely.

The numerical simulations were repeated for around 50 times with different values of

N where Ry < 1, and similar results were obtained each time.

Next, we shall look at pneumococcus, especially focussing on children under two years

old in Scotland mentioned in Greenhalgh, Lamb and Robertson [51].

Example 3.6.7 (Pneumococcus Model) In Greenhalgh, Lamb and Robertson’s paper

[51], they have chosen N = 150,000, p = 1/104/week = 1.37363 x 1073 /day. In Weir’s

thesis [125], she chosey = 1/7.1/week = 0.02011/day and in Zhang et al. [137] they chose

B =2x107%/week = 2.857 x 107" /day. It is easy to see that in this case Ry = 2 > 1

and N > %%— MTT and thus from Theorem 3.4.1 we are unable to conclude anything. For
(

these parameter values 4“‘# > 1 and so ultimately the disease goes extinct, but the time

taken for this to happen again seems very large. A numerical simulation produced by these
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Figure 3.11: Computer simulation of the path I(t) for the Pneumococcus Model with
parameters N = 150,000, p = 1.37363 x 1073 /day, v = 0.02011/day and 3 = 2.8650 x
1077/ day, using the Milstein method with step size A = 0.001 days and with initial
values 1(0) = 70,000 (the left hand side) and I(0) = 40,000 (the right hand side).

parameters is shown in Figure 3.11. Again for other simulations not shown with different
wnitial values and different parameter values with Ry > 1 and N > i—l— “%, after an initial

transient stage the stochastic simulations oscillated about the deterministic level.

For illustrative purposes, we change N to 68,000 so that Ry = 0.904 < 1 and that
W > 1. The numerical simulation produced for this case support both our results in
Theorems 3.4.1 and 3.5.1 and thus the disease almost surely hits zero before the upper
bound and hits zero in finite time almost surely. Again the numerical simulations were
repeated for about 50 times with different values of N where Ry < 1, and similar results

were obtained each time. For the purpose of illustration, an example of the simulations is

gwen in Figure 3.12.

As we mentioned in Section 3.2 the theoretical results show that if we use the stochas-
tic differential equation approximation suggested by Allen [1] to incorporate demographic
stochasticity it becomes theoretically possible for the number of infected individuals to
exceed the population size and the number of susceptibles to become negative. This may

make us question whether the model is practically useful. However extensive simulations
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Figure 3.12: Computer simulation of the path I(t) for the Pneumococcus Model with
parameters N = 68,000, u = 1.37363x 1073 /day, v = 0.02011/day and 3 = 2.8650x 10~7/
day, using the Milstein method with step size A = 0.001 days and with initial value
1(0) = 5, 000.

with realistic parameter values for real diseases were performed (some examples have been
illustrated above) and in these simulations we never once actually observed the number
of susceptibles become negative, although it remains a theoretical possibility. Thus this
approximate model may still be useful to illustrate the effect of inherent stochasticity in

population dynamics.

3.7 Conclusion and Discussion

The use of epidemic models to control infectious diseases is becoming increasingly com-
mon. The SIS epidemic model is one of the simplest epidemic models possible and has
been widely used practically to predict the spread of infectious diseases such as gonor-
rhea and pneumococcus and examine the effect of control strategies. However it ignores
random variability in the population. One way to include random variation into the SIS
epidemic model is to model the transitions as Markov processes with the appropriate
rates and then either perform Monte-Carlo simulations, or derive the differential equa-

tions satisfied by p;(t), the probability that there are exactly ¢ individuals infected by the
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disease at time ¢. The latter approach is illustrated by Bailey [10]. However for realisti-
cally large population sizes these approaches rapidly become very cumbersome and use a
lot of computational power. Allen [1] suggested to use a stochastic differential equation
approximation to simplify the analytical stochastic model so that one had essentially a
single stochastic differential equation instead of a very large set of ordinary differential
equations. This model has previously been formulated but never analysed. In this chap-
ter we have filled this gap. We showed that this SDE SIS epidemic model has a unique
nonnegative bounded solution. Then we derived sufficient conditions for the disease to
go extinct in a finite time. This behaviour is different than the behaviour for the SIS
model with environmental stochasticity studied in [40] where environmental noise altered
the threshold value R, from the deterministic model. If the stochastic threshold value Rj
exceeded one then the disease would persist and oscillate about a non-zero level. In our

model, the demographic noise does not alter the threshold value.

Next we used the Feller test to establish the probabilities of the number of infectious
individuals hitting the lower and upper boundaries. Finally we used numerical simulations
to confirm our analytical results and examine the behaviour of the model for realistic

parameter values for gonorrhea and pneumococcus.

The analytical results show that it is theoretically possible for the number of suscep-
tibles to become negative in the solution to the stochastic differential equation model.
However in many simulation runs with realistic parameter values this was never actually
observed so the stochastic differential equation model remains a useful approximation to

illustrate the possible effects of demographic stochasticity on population dynamics.

Motivated by the work done in this chapter, in Chapter 4 we also introduce de-
mographic stochasticity into the deterministic SIS model but now in a different way by
modelling births and deaths of individuals independently. Consequently this removes the
assumption that an infected individual or a susceptible individual who dies is immedi-
ately replaced by a susceptible individual or an infected individual and instead we have
a more realistic (and complicated) assumption where the total population size will vary

with respect to time.
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Chapter 4

Demographic SIS Model with
Varying Population Size

4.1 Introduction

In this chapter we will look at the two dimensional SDE SIS model system (S, ) with
demographic stochasticity introduced into both birth and death processes, replacing the
unrealistic assumption that the population size remains constant. We model births and
deaths of individuals independently and it is no longer the case that an infected individual
or a susceptible individual who dies is immediately replaced by a susceptible individual
or an infected individual and thus the population size will vary with respect to time.
However the reader might argue that the SIS epidemic model given by (1.2.1)-(1.2.2) with
transmission term (5S(t)I(t), corresponding to per capita disease contact rate A = SN,
might not be realistic when analysing models where population size is allowed to change
as the transmission rate § may not remain constant especially when N is large. The
transmission term [FS(t)I(t) is more suitable for describing diseases in a closely packed
community such as a school or a large city where doubling the population size could
arguably double the number of contacts [30, 139]. However, there are many diseases such
as gonorrhea and AIDS, where doubling the population size would not realistically have
a significant effect on the number of contacts, and thus 3 should vary with respect to the

population size (e.g. [58]). As a result, it is reasonable to assume that the per capita
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disease contact rate A depends on the population size N [30, 117, 139]. Inspired by this, we

obtain the following alternative SIS epidemic model with transmission term WS (t)I(t):

% - “N_ws(tﬂ(tHﬂ(ﬂ—uS(t% (4.1.1)
% B ws(t)l(t)—(uﬂ)l(t)- (4.1.2)

There are various choices for A(N), for example Anderson and May [6] assume that
A(NN) is linearly proportional to N for small population size while Busenberg and van den
Driessche [16] assume that A(/V) does not depend on N. One important conclusion that
Anderson [7] obtained is that as N becomes sufficiently large, the function A(/N) becomes
less dependent on N. In other words, the correlation between N and A(N) becomes
weaker for sufficiently large N. This further highlights the fact that the previous SIS
epidemic model with transmission term 3S5(¢)I(t) might not be realistic if N(¢) continues
to increase in size with respect to time. The assumption we make for A(/V) in this chapter
aims to take into consideration cases when the population size tends to a large number and
when the population size tends to a small number. We will show that the SIS epidemic
model (1.2.1)-(1.2.2) could be derived from (4.1.1)-(4.1.2) for when N(t) is sufficiently

small.

To the best of our knowledge there has not been any work done previously on the
resulting two dimensional SDE system. Consequently, we hope this work would fill the

gap by providing a thorough analysis of the behaviour of this model.

The chapter is organised as follows: In Section 4.2 we will discuss the formulation of
our two dimensional SDE SIS epidemic model and the assumptions we imposed on the
contact rate A(N). In Section 4.3, we will focus on analysing the behaviour of the SDE
model for the total population size N(t) = S(t) + I(t). The existence and uniqueness
of a nonnegative non-explosive solution is also shown. In Section 4.4 we shall look at
the existence of a unique nonnegative solution (S(t),1(t)) to the two dimensional SDE
SIS epidemic model. In Section 4.5 we examine the conditions for our disease in the two
dimensional SDE SIS model to go extinct in finite time. Lastly numerical simulations
with theoretical parameter values and realistic parameter values for pneumococcus and

the common cold are given in Sections 4.6 and 4.7 respectively.
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Most of the work in this chapter has been written up as a paper and is published in

148].

4.2 Demographic Stochasticity for the Two-Dimensional

SDE SIS Epidemic Model

Throughout this chapter, we let (2, F, {F;}+>0, P) be a complete probability space with
filtration {F;}+>o satisfying the usual conditions (i.e., it is increasing and right continuous
while Fy contains all P-null sets). Let us consider the deterministic SIS model (4.1.1)-

(4.1.2) where A(N) has the following properties:

(i) A(IV) is a continuous function of N > 0 and continuously differentiable in N > 0,

(ii) A(N) is a monotone increasing function of N,

(i) A(N) > 0if N(t) > 0.

Let us also define A(0) = limy_,0 A(IV), where it is biologically reasonable to assume
that it represents a small population.

We follow the model of Allen [1] outlined above. Unlike the model discussed in
Chapter 3, in this case the births and deaths are introduced independently where we are
now assuming all individuals (susceptible and infected) are born susceptible which then
later may become infected. Furthermore, we have removed the assumption in Chapter 3
that a susceptible or an infected individual who dies is immediately replaced by another
susceptible individual. As a result, we have five possible interactions that could occur in
the overall population.

These changes and their probabilities to the first order in At are shown in Table 4.1
with x = (S, I)” and x(0) = (5(0), 1(0))7.
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Change Probability
Axy = [=1,0]" | p1 = pSAt

Axy = [0, =1]" | po = pIAt
Axz = [1,017 | p3=p(S+I)At
Axy = [1,=1]" | ps = yIAt
Axs = [-1,1]T | ps = (AL A

Table 4.1: Possible changes between two populations with their corresponding probabili-

ties with births and deaths introduced independently of each other where x = (S, I)7.

Similar to Chapter 3, the mean change F(Ax) and the covariance matrix V for the

time interval At are calculated. We use the notation

LB A+ ()]
At M — (p+ NI

V: p—
At b e ’
B:V%zl a+w b |
d b c+w

where a = W—l—(u#—y)I%—QuS, b= —W—’yl, c= %4—(#4—7)[, w = Vac — b?
and d = v/a+ ¢+ 2w. Then following Allen [1] and Allen [2], the SDE SIS model with

demographic stochasticity for the dynamics of two interacting populations takes the form:

A(N)SI b

ds(t) = {— ( N> + (uﬂ)f] dt + “Tw AWy + = AW, (4.2.1)
A(N)SI b

() = { ( N) _ (,u~|—7)[} dt-+ - iy + <5, (4.2.2)

where W (t) = (W, Ws)T is a two-dimensional Brownian motion. Let us integrate (4.2.1)

to get
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t N(s) t (4.2.3)
o [ w4 [ 2 awge

Now we define t t
M(t) = /0 % AW, (s) + /O % dW,(s). (4.2.4)
This is a martingale with respect to the filtration [89]. Hence its quadratic variation is

given by:
<M(t)> = /0 (a(s)d?—s;z;(s)) ds +/0 % ds,

= /0 ()\(Ni\f((j;[((s) +(u+7)I(s) + QMS(S)) ds. (4.2.5)

By the Martingale Representation Theorem in terms of Brownian motion [89], equation
(4.2.5) could be written as an It integral (e.g. [89]). Hence there exists a Brownian

motion W3 such that

/\/ MU 1 (i 3)1(s) + 208(s) Vi), (4.2.6)

As a result, equation (4.2.3) becomes

S(t) = S(0) +/t —%—l—(u—kv)](s)]ds

(4.2.7)

S

/ \/ N)S(s)I + (u4Y)I(s) +2uS(s) dWs(s),

and thus, equation (4.2.1) could be written as

ds(t) = {—W\;\;SI + (1 + 7)1} dt + \/A(A]]V)SI + (u+ ) +2uS dWs. (4.2.8)

Similarly, the same procedure could be applied to equation (4.2.2) to get

dI(t) = [% — (e + 7)]} dt + \/w + (p+y)L dWy, (4.2.9)

where W, is also a Brownian motion.
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By using (4.2.1)-(4.2.2) and the fact that S+ = N, we have constructed the following
SDE model illustrating the behaviour for V:

b b
AN(t) = W AW, + # AW (4.2.10)

Again, by using the same technique as we have done to obtain equations (4.2.8)-(4.2.9),
equation (4.2.10) could be simplified to get

AN (t) = /2uN(t) dWs (4.2.11)

where W; is also a Brownian motion. Note that we could have derived this equation

directly using the method outlined above.

By letting u = log, (V) and applying [t6’s formula to (4.2.11) we get that N (t) satisfies

the implicit equation

N(t) = Nyexp [/Ot (-%)dw/ﬂt\/%dwl.

Note that equation (4.2.11) is a very specialised case (with k& = 0) of the mean-
reverting square root process or Cox-Ingersoll-Ross model [24, 89] which is given in Section

2.9.3.

The system of SDEs

ds(t) = [_/\(1\]7\7)51 + (1 + 7)11 dt + \/AU\]]V)SI + (u+ ) +2uS dWs,

and dI(t) = {w - (,u—i—*y)]} dt + \/)\(]\][V)SI + (p+ ) dWy,

describe how the number of susceptible and infected individuals change with time for

N(t) > 0. However the same system can be more simply described by the SDEs

dI(t) = {%1@\/ —D—(u+ ’y)[] dt + \/$I(N — D+ (p+9)1 dWy,
(4.2.12)
and dN(t) = +/2uN(t) dWs, (4.2.13)

where N(t) = S(t) + I(t) > 0. In the remainder of the chapter we shall focus on showing

existence, uniqueness, boundedness, extinction and persistence of the system of equations
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(4.2.12)-(4.2.13). In the next section we focus solely on the second of these equations
(4.2.13). Throughout this chapter, unless stated otherwise, we shall assume that the unit

of time is one day, and the population sizes are measured in units of one million.

4.3 Existence of a Unique Nonnegative Solution for

the Total Number of Individuals

Before we begin illustrating some of the important theorems for our two-dimensional SDE
SIS model, it is important we understand the behaviour of the solution for our SDE for
N(t) (4.2.13). Let aAn represent the minimum of {a,n} and aVn represent the maximum

of {a,n}. For a < Ny < n define
T, = inf{t > 0: N(t) < a},
T, =inf{t > 0: N(t) > n},

where 79 = limg 0 74, Too = liMpjeo 7, and 7 = 79 A oo

Theorem 4.3.1 For any given initial value N(0) = Ny > 0, the probability that the SDE
(4.2.13) has a unique and nonnegative solution N(t) for all t > 0 is one, i.e., N(t) > 0

almost surely for allt > 0 and that the solution is non explosive.

Proof. It is easy to see that our SDE (4.2.13) is a special case of the SDE considered
in the “Mean reverting square root process” mentioned by Mao [89] and illustrated in
Section 2.9.3 with parameters A = i = 0 and & = /2u. Thus, it is easy to see that
N(t) > 0 for all t+ > 0 almost surely. Furthermore, since 6% > 2\, we could conclude
from [89] that supy<,., N(t) < oo almost surely where 7 is defined as above. Our SDE
(4.2.13) also satisifies the localised version of Theorem 3.2 and condition (2.18) mentioned
in Chapter IV of [64] which represent the uniqueness theorem and the sufficient condition
for non-explosion of solutions respectively. These two requirements are given in Theorem
2.4.3 and Theorem 2.4.4 respectively in this thesis. As a result, we have reached our
desired result that there exists a unique, nonnegative and non-explosive solution to the

SDE (4.2.13).
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As a result, this completes our proof on the properties for the SDE (4.2.13), and that

we have shown there exists a unique and nonnegative solution N (t) for the SDE (4.2.13).

4.4 Existence of a Unique Nonnegative Solution for

the Two-Dimensional SDE SIS Model

In this section, we will focus on proving that there exists a unique and nonnegative solu-
tion for our two-dimensional SDE SIS model (4.2.12)-(4.2.13). The existence, uniqueness
and non-explosivity of a solution to the SDE (4.2.13) was discussed above. We refer to
Ikeda and Watanabe [64] as it is a classic work on this topic. The existence theorem men-
tioned in [64] (Theorem 2.2 in Chapter IV) holds for a d-dimensional stochastic process,
so as a result the existence of a (possibly explosive) solution for our two-dimensional SDE
SIS model (4.2.12) -(4.2.13) (or (4.2.8)-(4.2.9)) follows directly. However, the unique-
ness theorem mentioned in [64] (Theorem 3.2, Chapter IV) cannot be applied directly
to our model as () it applies only for a one-dimensional process and (ii) the coefficients
b(z) : R — R and o(x) : R — R of the SDE mentioned in this theorem are purely de-
terministic functions not time dependent stochastic functions. Consequently we will con-
struct a localised version of the uniqueness proof mentioned in [64] and show that it can
be extended to a one-dimensional SDE where the coefficients b(z,t,w) : Rx Rt x Q@ — R
and o(z,t,w) : R x RT x Q@ — R are time-dependent stochastic functions where w € .
For the purposes of the uniqueness theorem proof we will consider the one-dimensional
SDE SIS model (4.2.12) with N(t,w) as a given stochastic function R x © — R (which
is the unique nonnegative non-explosive solution to (4.2.13)). We will then prove that
the solution to the SDE SIS model (4.2.12) has a unique solution, hence as S is given by

N — I the solution for S is also unique.

Note that the derivation of the SDE SIS model (4.2.12)-(4.2.13) is valid only for
I(t,w) € [O, N(t,w) (1 + f/ﬁ)] , as otherwise the term under the square root is negative.
Furthermore, as N — 0, A(N) — A(0). As mentioned before, all biologically reasonable

disease contact rates increase at most linearly with the number of individuals when the
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population size is small (e.g. [6, 7]). In Section 4.2, we have also assumed that A\(N) is
a continuously differentiable monotone increasing function of N. Therefore, if A(0) = 0,
then it is also biologically reasonable to assume that A'(0) > 0. We have the following

two cases:

(i) Case A.If A(0) > 0 then A(N) = A(0) + o(1) in a neighbourhood of N — 0, or

(ii)) Case B. If A(0) = 0 and A (0) > 0, then A(NV) = X(0)N 4 o(N) in a neighbourhood
of N = 0.

Suppose that n is a given nonnegative integer with n > |N(0)|. We now extend the
domain of (4.2.12)-(4.2.13) into the whole domain by defining \,(z,t,w), o,(z,t,w) :
R xRt x Q — R by

(

0, for x < 0,

;

An(z,t,w) = ’\(%)I(N(t/\Tn,w)—x)—(u—i—”y)x, for 0 <z < N(tATp,w) (1—1—(

£5).
An <N(t/\7'n,w) (1—1—%) ,t,w), for x > N(t A 1, w) <1+“(L),
(4.4.1)

32

>
)

~

and

0, for x <0,
on(z,t,w) = \/’\(%)x(N(t ATpyw) —x)+ (p+7)x, for 0 <ax < N(AT,w) <1 + %) ,
+
\O, for z > N(t A 7y, w) (1+%>,
(4.4.2)

in Case A, or in Case B if N(t) > 0. In Case A, if N(t) — 0 and z > 0 we interpret
An(z,t,w) as zero, and if N(t) — 0 and x = 0 we interpret o, (x,t,w) as zero. It is easy
to see from (4.4.1)-(4.4.2) that in Case A then as N(¢) — 0, then \,(z,t,w) — 0 and
on(x,t,w) — 0,Vz,t,w. In Case B then in the limit as N(¢) — 0, (4.4.1)-(4.4.2) become

.

0, for x <0,
(2, 6,w) = ¢ —N(0)2? — (u+7)z, for0<z< %, (4.4.3)
—2(u+v)? bty
SRIONE for x > N(0)

87



and
)

0, for z < 0,
on(7,t,w) = Va{(u+v) = N(0)z}, for0<z< f\‘,J(FJ), (4.4.4)
+
\07 for z > %.

Hence here we take (4.4.3)-(4.4.4) as the definitions of A\, (z,t,w) and o, (x,t,w) at N(t) —
0. Note that equations (4.4.3)-(4.4.4) also represent the case with disease transmission
term ST as N(t) — 0. Throughout the rest of the chapter in Case B for N(t) — 0 we

interpret N (1 + /@%) as f\‘,J(FOV).

Also if m >n, 7, > 7, and
(2, t,w) = Ap(2,t,w) and o, (x,t, w) = op(z, t,w)

for ¢ < 7,,. Moreover if we define functions A(z,t,w) and o(z,t,w) : R x R x Q — R by

4

0, for x <0,
Mz, t,w) = /\(x)m(N@,w) — 1) — (u+7)z, for0<z<N(tw) (1 + )\(ﬂ) (4.4.5)
)\(N(t,w) (1+f(’;\7)>,t,w>, for x > N(t,w) ( )
and
(
0, for x <0,

oz, t,w) = \/A(x)x(N(t,w) —z)+ (u+ )z, for 0 <z < N(t,w) <1+L>

Y
0, for x > N(t,w) ( )
(4.4.6)

then A, (z,t,w) = Nz,t,w) and o, (z,t,w) = o(x,t,w), for t < 7,.
The following is the localised version of the uniqueness theorem mentioned in [64]:

Theorem 4.4.1 (Localised version of Uniqueness Theorem) Suppose that z : Rt x Q —
R. Consider the SDE

dz(t) = Ap(z, t,w)dt + o, (2, t,w) dW (), (4.4.7)

with given initial condition x,(0), for t < 7,, and note that A\, (z,t,w) and o,(z,t,w) are
bounded. Then there exists a unique strong pathwise solution x,(t,w) to the SDE (4.4.7)

fort < 1, if for each nonnegative integer M > 1:
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(1) [An(z,t,w) =N (y, t, w)| < K (|z—y|), where ka2 [0, M] — R is a strictly increasing
and concave function on [0, M] such that k, (0) =0 and foj\f /{;75\/[(u)du =00 for all x,y
with |z| V ly] < M,Vt € RT,w € Q,

(i1) |op(z,t,w) — on(y, t,w)| < pom(lz — y|), where ppar = [0, M] — R is a strictly
increasing function on [0, M| such that p, (0) = 0 and foj\f p;%w(u)du = 00 for all x,y

with x| V |y] < M,Vt € RT,w € Q.

Proof. 'This is a straightforward modification of the proof of Theorem 3.2 in Chapter IV
of [64].

The next stage is to show that our SDE SIS model (4.2.12) satisfies the conditions
mentioned in Theorem 4.4.1, in other words the functions x, s and p, as exist for each

n, M.

Lemma 4.4.2 \,(z,t,w) and o,(z,t,w) defined by (4.4.1) and (4.4.2) satisfy conditions
(i) and (ii) of Theorem 4.4.1.

Proof. (i) We shall show that there exists a constant K, such that

lz—y|
for |z | V| y|< M, where K, is independent of w, z,y and M. Note that the first partial

<K,

derivative of (4.4.1) is given as

0, for x < 0,
Aealrst) = Y XY - 055 . or 0.2 < Nt ) (14455
\0, for z > N(t A7, w) (1+%>,
(4.4.8)

for N(t) > 0 and A, , = 0 for Vz,t,w at N = 0 in Case A. For 0 < z(t,w) < y(t,w) <
N(t A T, w) (1 + %), by the Mean Value Theorem we have that for some {(t,w) €
(x,y) C [0, N(t A1y, w) (1 + %)}
| An(z,t,w) — An(y, t, w) |
| 2(t,w) —y(t,w) |

&9

= |/\n,x(€> ta W)‘



Moreover, since A(IV) is a monotone increasing function, we have that

| A& t,w) | < Nsel[lop ]maX(l AN) = (e +79) LIAN) +3(+7) 1),

< max(| A0) —p =[] A(n) = p = [ [ AMn) +3(u+7) ),
= K,.

Letting x — 07,y — (N(t A Tp,yw) <1 + %)) , we deduce that the same result is true if

x,y € [0, N(t A Tp,w) (1 + m)] It is easy to see that the result follows for (z,y) € R?

N)
in Case A.

We will now show that the condition (7) is also satisfied for Case B. Before we begin,

N@nrnw)
A(N)

recall A(N) = N (0)N+o(N) for N(t) > 0, N(t) — 0 and A(0) = 0 where X'(0) > 0. Let

it is important for us to show that the term is bounded away from zero. Let us

us consider the following expression

. N{tAT,w) , Nt ATy, w)
lim ————— =1 = 4.4.9
Noor A(N) No0+t N(O)YN(EA 7, w) + 0o(N) N (0) (4:4.9)

then 32 > 0 such that for N(t A 7,,w) < &,
1 N(t A Tp,w) 2

0< < < < 0. 4.4.10
27 (0) AN) () =% (4.4.10)
In other words, for N(t A 7., w) € [0,2], the term X™2) js hounded above and below

V)

away from zero, while if N(t A 7,,,w) € [, n], then

£ <N(t/\Tn,w)< n
A(n) A(N) AE)

It is easy to see that for N(t A 7,,w) € [0, n],

_ 1 £\ N(t A Tp,w) 2 no\|
0< mm{m,m} =k < Tn) < max{w, @} =kopn. (4.4.12)

0<

(4.4.11)

Now by applying a similar method as in Case A, we can show that the condition is also
satisfied for Case B. Therefore, condition (7) is satisfied for all N(¢A7,) > 0 in both cases
with k, a(u) = K,u for some constant K, for all z,y with |z|V]y| < MVt e R T w € Q.

(#7) In order to prove the second condition, we only need to consider the case where

z,y € |0, N(tATp,w) (1 %)}, as the rest will follow. Therefore, if there exists a

constant L, independent of w,x,y and M such that

|0n(x,t,w) _O-n(y’tvw” < Ln; (4413)

\/|x(t7w) - y(t7w)| B
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for x(t,w), y(t,w) € [O, N(t ATy, w) (1 + %)} , then the proof is complete. By choosing

€= }1]\7 (t ATy, w) <1 + %) we then consider separately the regions:

s
~—
™

§1'7y§N(t/\7—nvw) <1+%> - &,

—e<z,y< N{tAT,w) (1—1—“—“),

“—Jr"’>—5<x§N(t/\Tn,w)<1+% 0<y<e,

(e)0<z<e, N(tAT,w) (1—1—%) —e<y< N({tAT,w) <1+%>,
it is straightforward to show that (4.4.13) holds VN > 0 in both cases. For (a) similarly to
above we find an upper bound for the derivative of o, (¢, z,w) in [5, N(tAT,) (1—1—%) —6} )
Case B where N = 0 needs a separate argument but follows the same basic idea. For (b)
we multiply the top and bottom of (4.4.13) by |o,(t, z,w) + 0,(t,y,w)| and proceed to
find the upper bound L,, that way. (¢) follows from (b) by making the transformation

g:N(1+%>—x, n:N(H’;(—}D—y

For (d) and (e) we note that in these ranges |0, (z,t,w) — 0,(t,y,w)| is bounded above,

and +/|z(t,w) — y(t,w)] is bounded below by a strictly positive lower bound, and the ratio
of these depends only on n. As a result, condition (ii) is satisfied with p, as(u) = L,\/u
for some constant L, independent of w,x,y and M for all z,y with |z| V |y| < M,
vVt € R, w € Q. This completes the proof of Lemma 4.4.2.

We wish to extend the localised uniqueness Theorem 4.4.1 to show that there exists

a unique strong pathwise non-explosive solution to the SDE
dz(t) = Mz, t,w)dt + o(x,t,w) dW,

with given initial condition x(0). However before we can do this we need to show non-
explosivity of the solution to (4.2.12). We cannot use Theorem 2.4 in Chapter IV of [64]
directly to do this as the solution does not satisfy condition (2.18) there. However the

result is still true in our case.
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For any strictly nonnegative integer p >| 1(0) | define the stopping time for I(¢)
v, = inf{t > 0:| I(t) |> p}. (4.4.14)

Our next step is to show that given N(t,w) : t € RT,w € Q, the solution of the lo-
calised version of equation (4.2.12) is nonnegative and bounded. We can then deduce

non-explosivity of the SDEs (4.2.12)-(4.2.13) as a corollary.

Theorem 4.4.3 For any given initial value 1(0) = Iy € (0, N(0)) and any nonnegative
integer p >| 1(0) |,

0<I(tAv,) <N(tAuvy) (1 + %) , a.s. (4.4.15)

for allt > 0.

Note that the result (4.4.15) differs from what one might expect on biological con-
siderations, namely I(t A v,) € (0, N(t A v,)). However, this is caused by the method we
adopted using the idea illustrated in [1] to introduce stochasticity into our two-dimensional
process (I, N) given by (4.2.12) - (4.2.13). This is a well-established technique for devel-
oping an SDE approximation to an infinite system of differential equations. The resulting
SDE system is much easier to handle than the original version so it is important to study
the properties of the solution to the SDE approximation. We performed around 50 sim-
ulations with realistic parameter values with some illustrated and discussed later in the
chapter and although it is theoretically possible for I(t) to exceed N(t), in practice this
was not observed for the simulations with realistic parameter values that we performed.
Furthermore, the result (4.4.15) in Case B applies to the important special case where

the disease transmission term is 5S(¢)1(t).

Proof. Note that as we are dealing with the localised version for any fixed nonnegative
integers n and p by Theorem 4.4.1 the equation (4.2.12) has a unique non-explosive
solution in [0, 7" A 7, A v,]. The proof for Theorem 4.4.3 is established based on a similar
mechanism as the “Square root process” mentioned in [89]. In order to clarify the proof,

we will recall this mechanism. Let ag = 1 and a, = e **+D/2 for every integer k > 1,

ap—1
/ du_
ag u

92

where



Let Wi(u) be a continuous function such that its support is contained in the interval
(ak,ap_1) where
2
0 < Up(u) < —
> k( )_ ku’

/ . Uy (u)du = 1.

ag

and Wi (ag_1) = Yi(ar) =0

We have shown that such a function exists however since the proof is very long and we
do not use the workings in the rest of the chapter, the proof is omitted. Define ¢ (z) = 0

for x > 0 and
- v
or(x) = / dy/ Uy (u)du, for z < 0. (4.4.16)
0 0

It is easy to see that ¢y € C*(R,R). As in [89]:

—1 < pl(z) <0if —oo < x < —ay or otherwise ¢} (z) = 0; (4.4.17)
2
lor(x)] < ] if —ag_1 <z < —ay or otherwise ¢j.(z) = 0; (4.4.18)
and T —apq < pp(x) <z forall x € R, (4.4.19)
where we define z= = —xz if x < 0 or otherwise = = 0. Now that we have set up this

framework, we can proceed to show the bounds for I(t A v,) given by (4.4.15). We shall
first show that the left hand side of expression (4.4.15) in Theorem 4.4.3 holds. By using

[t6’s formula, we obtain that for any ¢ > 0:

op(L(t N T AUp))

— i+ [ {An(I(S),s,w)%(I(s,w))JrM

r(I(s,w))| ds
+ /0 T (s, 5, )l (I(5,w)) W (s), (4.4.20)

Now from results (4.4.17) and (4.4.18), we know that for I(t A7, Av,) > 0, @ (L(t A
To AUp)) = 0 and @ (I(t A1, Av,)) = 0, thus for all N > 0 in both cases, (4.4.20) yields:

tATRAUp
(Lt A Th Avp)) < / on(1(5), s, w)er(I(s,w)) dW(s). (4.4.21)
0
Then by taking the expectations of both sides, we have that:

Eorp(I(t A7, Avy)) < 0. (4.4.22)
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Thus,
EI"(t A7y Avy) —ap—1 < Egp(I(t AT, ANvp)) <0. (4.4.23)

As k — 0o, we get that
EI"(t A1, Avp) < 0. (4.4.24)

Noting that I~ (t A 7,, Av,) > 0, we have that EI~ (¢t A7, Av,) >0,
EI"(t A7, Avy) =0. (4.4.25)
By using proof by contradiction and equation (4.4.25), it is easy to see that for all ¢ > 0
P(I(t AT, Avy) < 0) =0,

which implies that P(/(t A7, Av,) > 0) = 1. As a result, I(t A7, Avy,) > 0 almost surely.
But we have shown in Theorem 4.3.1 that 7,, — oo as n — oo almost surely. Hence the

left hand side of (4.4.15) holds for all ¢ where N (¢t A v,) > 0.

By using the same framework and a similar technique as we did previously to prove
I(t A7y, Avp) > 0, we will now complete the boundedness proof by proving that I(¢ A7, A
vy) < N(EA T, Avyp) (1 + “—’p) a.s. Let us define

A(N)
. [t
T AT A ) = N AT A ) (14570 ) =10 AT Av,), (4.4.26)
if A(0) >0, N(t A7, Avp) > 0 and
JAEAT ALY =2 1t AT A wy), (4.4.27)

X(0)
if A\(0) =0, N(t A1, Av,) > 0 and N'(0) > 0. Note that (4.4.27) is similar to the case with
transmission rate 551 with N (¢t A 7, A v,,w) — 0. Let us now focus on Case A where
A(0) > 0 for N(t AT, Avy,) > 0, as we will show later that the results for the case A(0) =0

will follow. Then, from Itd’s formula on equation (4.4.26), we get:
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dJ(I(tNT, Avy)) = (“DANJUIEAT, Avy)))dt —a(J(L(ENA T, Avy))) dWV.

Here
—2(p +7) [N(t/\Tn/\vp,w) (1 + fﬁ)} )
for J(t AT, Avp) <0,
NN T, AUy, w) <1+m> —JUI{t AT AV ))} X
\term ) = 1 ' " !
(A(N)J(I(Jtvmnmp)) — o+ 7)) ’
for 0 < J(t AT, Avy) S NEAT, Avp,w) <1+%>’
0, fOI'J(t/\Tn/\Up)>N(t/\7-n/\vpaw)<]‘+%>’
and
o(J(I(t A TAvp))

(

0, for J(t A1, Avp) <0,

\/ AIIrIe) | N (1A 7y A ) (14455 ) = JUEAT) Ay))],

for 0 < J(t AT Avy) S NEATH AUy, w) <1+%>’

0, forJ(t/\Tn/\Up)>N(t/\Tn/\UpaW)<1+%>'

\
Note that for the case where A(0) = 0, we can obtain the corresponding A(J(I(t AT, Avy))
and o(J(I(t A 7, A vp)) by simply setting A(N) = N(0)N(t A 7, A vp,w) + o(N) in the
above expressions. Again the result in this case is similar to the model with transmission

term ST with N(t A 7, A vy, w) — 0.

By Ito’s formula, we derive that:
tATRAUp
er(J(EA T Aup)) = @i (o) +/ [P(J(s)) + Q(J(s))] ds
0

_ /0 T (I(5), 5,0) 0k (J(s)) AW (s), (4.4.28)
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where P, : R x R* x Q — R are defined by:

2ps+ YN (EA 0 A vy, w) (14455 ) (@),

for x < 0,
Pz, t,w) = SNEAT, Avy,w )<1+%—x> (2(,u—|—7 % ) ), (4.4.29)
for 0 <2 < N(t ATy Avy,w <+L)
\0, fOI'!L’>N(t/\Tn/\Up,w><1+%

—

(5) [2R2N (AT A vy, 0) = ) + (7)),

Qz,t,w) = for 0<z< NEATS AUy, w) (1 n ;(ﬂ)) (4.4.30)

0, otherwise.

Again, we can obtain the expressions for P(x,t,w) and Q(x,t,w) for the case A(0) = 0
by simply setting A(N) = N(0)N(t A 7, A vp,w) + o(NN) in the above expressions. So
P(z,t,w) <0 and Q(z,t,w) =0 for all z.
Thus
tATRAUp
aIAT A <= [ o) s wI(s) W (),
0

Now take the expectations to get Epy(J(t AT, Avy)) < 0. Hence, EJ ™ (¢ AT, Avp) —ag—1 <
Eop(J(EA T, Avp)) < 0. As k — 0o, ag—1 — 0, thus EJ (¢t A 7, A v,) < 0. Similarly to
the argument we used for proving the left hand side of equation (4.4.15), it is clear that
for all t > 0,

P(J(t AT, ANvp) <0) =0,

which implies that P(J(t A 7, Av,) > 0) = 1. In other words, I(t A7, Avy) < N(tAT, A

Up) (1 + %) a.s. Once again, since 7,, — 00 as n — 00, I(tAv,) < N(tAv,) (1 + %)

a.s.
Theorem 4.4.4 lim,_, v, = 00.

Proof.  Clearly v, is increasing in p. Define vy = lim, o v, (possibly infinite). We will

prove this theorem by proof by contradiction. Let us assume that the opposite is true.
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If P(voo < 00) > 0 then as (Vo < 00) = U (Voo < T') IT < 00 with P(ve < T') =
d > 0. Hence 3 an integer py such that for p > py, P(v, <T) >6/2 > 0. So

E(I(T/\Up)z)zgﬁooasp%oo.

However now consider the one dimensional SDE (4.2.13) for N(¢). By the proof of Theo-
rem 2.4 in Chapter IV of [64],

Mr = sup E(N(t)?) < co.
t€[0,T]

Hence for t € [0, 7]

1

EIN(0)| < [EINO)P]" <

sup E(N(t)z)] = My < 0.
t€[0,T]

For any nonnegative integer p > |I(0)| and ¢ € [0, T, we have that:

(i) In Case A

E[I(t A v,)2] < E[N(t Av,)?] (1 + M)Q < My (1 + %)2 — My < o0, (4.431)

or

(i7) In Case B by considering the regions N € [0,1] and N € [1,00) separately it is
straightforward to show that there is a constant K such that [ < K(1 + N). Hence

E(I(tAv,)?) < K*(142E|N(tAv,)| + EN(tAv,)?) < K*(1+2Myr + My) = Msp < oo.
(4.4.32)

In both cases, this is a contradiction, hence P(vy, < 00) = 0, i.e. vo = 00 almost surely.

This completes the proof of Theorem 4.4.4. O

Corollary 4.4.5 The solution (I(t), N(t)) to the SDE system (4.2.12)-(4.2.13) is non-

explosive.

Proof. This is straightforward. Given 7" > 0 we already know that

My = sup E(N(t)?) < oo.

t€[0,T]
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Letting p — oo in (4.4.31) and (4.4.32) we deduce that

sup E(I(t)?) < max(Maor, M3r) < o0o.
te[0,7

Hence if x(t) = (I(t), N(t)),

sup E[x(t)x(t)'] < oo,
te€[0,7

as required.

Corollary 4.4.6 0 < I(t) < N(t) (1 + fﬁ) a.s.

Proof. 'This is straightforward letting p — oo in Theorem 4.4.3.

Corollary 4.4.7 There exists a unique strong pathwise solution to the SDFEs (4.2.12)-
(4.2.13) for all t.

Proof.  Suppose that there are two distinct solutions x;(t,w) = (Ni(t,w), [1(t,w)),
xo(t,w) = (Nao(t,w), Io(t,w)) to (4.2.12)-(4.2.13) with the same initial conditions, then
they must differ on a set €; where P(€2;) > 0. Hence they must differ for ¢ € [0, T, where
T < oo, on a set {2y where P(§22) > 0. However 7,, — 0o as n — oo and v, — 00 as
p — oo so for some strictly nonnegative integers n and p the solutions x;(t A 7, A v, w)
and x2(t A 7, A vy, w) must differ on a set (23 with P(€23) > 0. This contradicts Theorem

4.4.1. Hence the solution is unique.

So we have shown that there is a unique pathwise strong non-explosive solution to
the SDEs (4.2.12) and (4.2.13). The same result is true for the system (S, I, N) given by
S =N —1,(4.2.12) and (4.2.13). In the next section we shall look at extinction of our
SDE system.

4.5 Extinction of the Number of Infecteds and the

Total Number of Individuals

For the rest of this chapter we shall focus on analysing the behaviour for the two dimen-

sional SDE SIS model (4.2.12)-(4.2.13). When looking at an epidemic model, one of the
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key aspects that we would like to look at is the extinction condition on our SDE SIS
model. Therefore, throughout this section we shall investigate this key aspect and show
that the solution for N(t) to our SDE model (4.2.13) does become extinct almost surely

and then deduce that I(¢) becomes extinct almost surely.

Corollary 4.5.1 For any given initial value of No = N(0) > 0, there exists some t > 0

such that N(t) will reach 0 with probability one in finite time. In other words, P(my <
o0) = 1.

Proof. Recall that the SDE model (4.2.13) is a special case of the mean-reverting square

root process with zero drift coefficient and thus from [89]

IP’( sup N(s) < oo) =1

0<s<T
We shall show that P(79 < oo) = 1 by contradiction. Let us assume that the opposite
is true i.e. P(1p = 00) = d > 0. For given ¢, lim, oP(r, > t) = P(1p > t) > 6. So by
choosing a, with 0 < a < N(0), small enough P(Q;) > 2 > 0 where Oy = {w : 7, > t}.
Now M such that P(Qs) > 1— 2 where

QQZ{O): sup N(S)SM}

0<s<t

SO ]P(Ql ﬂQQ) > g > 0.

Then we apply Ité’s formula choosing V = /N for N > 0. We have that

VNt ATh,w) = +/N(0) /MT& q(N(s,w))ds + o @dW(s), (4.5.1)

0

where q(x,w):—#ig 4f = —¢ for M > x. Heres—4r>0 Hence

E(VNEAmD) < VN + / " B(g(N(s,w))ds,

< JNO) + /O " B (Tay0,0(N (5, )))ds,
< N(O)—%&.

Letting ¢ — oo we deduce a contradiction. Thus we must have P(7y < 00) = 1, so 3ty < 0o

such that N(tg) =0 a.s.
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Theorem 4.5.2 For any given initial value 1(0) = Iy € (0, N), the solution to our two-
dimensional SDE SIS model (4.2.12)-(4.2.13), 1(t), will reach zero with probability one

in finite time and thus the disease will die out almost surely.

Proof. From Corollary 4.5.1, we have shown that 3ty < oo such that N(t;) = 0 almost
surely. From Corollary 4.4.6, we have that in Case A, and in Case B if N > 0

0 < I(t) < N(t) <1+i(—m) .

In Case A as N(t) — 0, N(t) (1 + %) — 0, so there exists ty such that N(ty) = 0

almost surely. By letting ¢ — to, I(to) = 0 almost surely.
In order to complete the proof, let us now consider Case B. Let us define the stopping
time

vy = inf{t > 79 : I(t) < b},

where we set inf () = co. The aim of our proof is to show that P(vy < o0) = 1, where
vo = limyo v, and this can be shown by proof by contradiction. Let us assume the opposite
is true, i.e. P(ug = o0) =& > 0. As 75 < oo almost surely, we can choose T such that
Plro <T)>1- g. For t > T, limyoP(vy, > t) = P(vy > t) > 0. So by choosing b > 0

small enough P(v, > t) > %5 > 0. Hence

61 =P, >tand 70 <T) >

W >

By using It6’s formula and choosing V (1) = v/I, we have that for N(t) > 0,

tAvy

\/I(Zf/\vb)_\/[(t/\To)—i‘/

tATo

U(I(s), 5, w)ds—l—% /MMb \/W(z\r D)ty dW(s),
b (4.5.2)

where U : R x RT x  — R is defined by:

Here % is interpreted as \'(0) as N = 0. Taking expectations of (4.5.2) we deduce that

(N—z)+ pu+ fy) . (4.5.3)

tAvy

0§E<I@AWD§E(1ﬁAmD+E/‘ U(I,s,w)ds. (4.5.4)

tATo
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For s € [t A 1o, t A vp),

x 1
Uz, s,w) = 7(—X(0)$ — =) = m(—)\,(o)x +u+7),
N(0
< _%x‘; — (u+ 7)73:, by letting p — oo in (4.4.15) with N = 0.
/
< —)\éo)bg, if 2 > b,

Hence there exists an e; > 0 such that U(x,s,w) < —e; when > b. From (4.5.4) we

deduce that for t > T,
0< IE( I(EA TO)) ~ St —T),
50 St —T) < E(x/I(t A TO)). (4.5.5)
But by the Fatou-Lebesgue Theorem

limsupE( I(t/\m)) < E(limsup\/](t/\To))a

t—o0 t—o00

Bt
X(0)

< oQ.

This contradicts (4.5.5) hence we have P(vy = oco) = 0 and this completes the proof of
Theorem 4.5.2. 0J

So in the two dimensional SIS model both N(¢) and I(t) (hence also S(t)) die out
almost surely in finite time. Note that the extinction results given in Corollary 4.5.1
and Theorem 4.5.2 are caused by the assumptions that we made at the beginning of this
chapter where individuals are all introduced as susceptibles and we have introduced deo-
mographic stochasticity into the model by assuming the births and deaths are independent

of each other.

In the next section we will be using the Milstein numerical simulation method to

produce analytical results to reinforce the results we have shown in Section 4.5.

4.6 Simulations to Illustrate the Analytical Results

In the previous sections, we managed to prove several theorems for our two-dimensional

SDE SIS model (4.2.12)-(4.2.13). In this section, we will focus on applying the Milstein
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method (e.g. [121]) to produce simulations using R to support the results that we have
shown. In this chapter, we have decided to use the Milstein method instead of the simpler
Euler-Maruyama method which is commonly used in many papers, for example [40]. The
reason is that the Milstein method is strongly convergent with order 1 as the integration
time-step goes to zero, which is better than the Euler-Maruyama method which only has
a convergence order of 0.5 [60]. Note that since we are using the Milstein method which
does not preserve positivity, therefore the simulations will stop if the solution path goes

below zero.

We shall apply our results to the case where A\(N) = SN corresponding to Case B
and disease transmission term $SI as in the classical epidemic model. We simulate this

model

dI(t) = [BI(0)(N(t) = 1(8)) — (u+ ) L)dt + /BN = 1)+ (u + )T dWs,  (4.6.1)

and dN(t) = \/2uN(t) dW+, (4.6.2)
where again Wy and W5 are Brownian motions and illustrate the result given by Corollary
4.5.1, namely there exists some ¢ > 0 such that N(¢) = 0 almost surely. Then we will
integrate the two-dimensional system for (I(t), N(t)) given by (4.6.1)-(4.6.2). Simulations
are produced to support the results shown in Theorem 4.5.2 that the disease will die out
in finite time. Our numerical simulation program was comprehensively verified using
detailed output from a large number of runs (with around 50 simulations being carried
out for each example) and also in both cases the simulations were repeated using different
parameter values and in each case the analytical results were verified. Note that in some
examples we have chosen a different step size At in order to improve on the computation

time.

4.6.1 Simulations on the Total Number of Individuals

In this section, we will use simulation produced by the Milstein method to show the results

given in Corollary 4.5.1.
Example 4.6.1 Suppose that the population size is measured in units of one million. By
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Figure 4.1: Computer simulation of the path N(¢) for the SDE model (4.6.3) using the
Milstein method with step size A = 0.001 days with initial value N(0) = 100.

choosing u = 25, the SDE model for N(t) (4.6.2) becomes

AN (t) = /50N () dW (¢). (4.6.3)

By Corollary 4.5.1, we could conclude that there exists t > 0 such that N(t) = 0 almost

surely.

Clearly, Figure 4.1 supports the result illustrated in Corollary 4.5.1 and that the solu-
tion N(t) to the SDE model for N (4.2.13) does in fact die out in finite time. In addition,
Figure 4.1 also supports the results shown in Theorem 4.3.1 by showing that the solution
N(t) will not explode in finite time. The simulation was repeated around 50 times with
different values of  and similar results were obtained each time to support the results

shown in Corollary 4.5.1 and Theorem 4.53.1.

4.6.2 Simulations on the Total Number of Infecteds

In this section we will use the combined integration program for the system (I(t), N(t))
given by the system of differential equations (4.6.1)-(4.6.2) to support the results given in
Theorem 4.5.2.
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Example 4.6.2 (R, < 1) Again suppose that the population size is measured in units of

one million. Let us choose the following parameter values
Ny =80, =15,v= 35,8 = 0.5, (4.6.4)

where Ny is the N wvalue we choose for our deterministic SIS model given by (1.2.1)-
(1.2.2) with Ry = 0.8. By substituting the parameter values (4.6.4) into the SDE SIS
model (4.6.1) - (4.6.2) we have that

dI(t) = [0.5I(t)(N(t) — I(t)) — 50I(t))dt + \/0.5I(t)(N(t) — I(t)) + 50I(t) dWg(t),
and
AN(t) = V30 dWx(2), (4.6.5)

with the corresponding SIS deterministic model as:

%f) 1200 — 0.5S()1(t) + 351(t) — 155(1),
and
%t) =504 0.55())1(1). (4.6.6)

Based on the result shown in Theorem 4.5.2, we would expect to see the solution
I(t) to the SDE SIS model (4.6.1)-(4.6.2) die out in finite time almost surely. From
both figures illustrated in Figure 4.2, we can see that the numerical simulations support
the result given in Theorem 4.5.2 by illustrating that the solution I(t) dies out in finite
time. Similarly, the numerical simulations were repeated around 50 times with different
parameter values where Ry < 1 and the same conclusion is obtained verifying the results

obtained in Corollary 4.5.1 and Theorem 4.5.2 for our two-dimensional SDE SIS model
(4.6.1)-(4.6.2).

Next we would like to verify that the result illustrated in Theorem 4.5.2 also holds

for the case where Ry > 1.

Example 4.6.3 (Ry > 1) Suppose that the population size is measured in units of one

million. Let us now choose the following parameter values
Ny =100, 0 =10,y = 25,8 = 0.5, (4.6.7)
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Figure 4.2: Computer simulations of the path I(¢) for the SDE SIS model (4.6.5) and
the solution I(¢) for the corresponding deterministic SIS model (4.6.6), using the Milstein
method with step size A = 0.0001 days with initial values I(0) = 70 (the left hand side)
and 1(0) =1 (the right hand side) both with N(0) = 80.

where Ny is the N walue we choose for our deterministic SIS model given by (1.2.1)-
(1.2.2) where now Ry = 1.43. Similar to Example 4.6.2, by substituting the parameter
values (4.6.7) into the SDE SIS model (4.6.1) - (4.6.2) we have that

dI(t) = [0.51(t)(N(t) — I(t)) — 35I(t)|dt + \/O.5I(t)(N(t) — I(t)) + 351(t) dWs(t),
and
AN(t) = V20 dWx(t), (4.6.8)

with the corresponding SIS deterministic model as:

%@ 1000 — 0.55(t)(t) + 251(t) — 10S(1),
and
%f) = [-35+0.55(t)]1(t). (4.6.9)

For the case where Ry > 1, we could see from Figure 4.3 that the simulations produced
once again support our results mentioned in Theorem 4.5.2, namely the solution I(t) to
(4.6.1)-(4.6.2) dies out in finite time. Similar to Example 4.6.2, the numerical simulations

were carried out about 50 times with different parameter values where Ry > 1, and the
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Figure 4.3: Computer simulations of the path I(¢) for the SDE SIS model (4.6.8) and
the solution I(¢) for the corresponding deterministic SIS model (4.6.9), using the Milstein
method with step size A = 0.001 days with initial values I(0) = 90 (the left hand side)
and 1(0) =1 (the right hand side) both with N(0) = 100.

same conclusion is drawn to support the results obtained in Corollary 4.5.1 and Theorem

4.5.2 for (4.6.1)-(4.6.2).

4.7 Realistic Simulations

In Section 4.6 we have been focusing on using theoretical parameter values to show that the
solution (I, N) to (4.6.1)-(4.6.2) shown in Corollary 4.5.1 and Theorem 4.5.2 are supported
by our numerical simulation produced using the Milstein method. As mentioned before the
SIS model is suitable for modelling diseases such as the common cold, and pneumococcus
where infected individuals, once recovered, will not obtain immunity to the disease. In this
section we will focus on producing numerical simulations using realistic parameter values
for the common cold, and pneumococcus amongst children aged two years and under in
Scotland. A similar situation but examining the spread of Streptococcus pneumoniae
with transmission due to genetic sequence type (part of the genetic material) is discussed
in Greenhalgh, Lamb and Robertson [51] and we have taken some of their parameter

values to use in our simulations. Throughout this section, the unit of time is still one day
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Figure 4.4: Computer simulation of the path N(¢) for the SDE model (4.6.2) for pneu-
mococcus, using the Milstein method with parameter value y = 1.37363 x 1073 /day with
step size A = 0.05 days with initial value N(0) = 150, 000.

but the population sizes are not scaled as previously.

Example 4.7.1 (Pneumococcus Model) The population of Scottish children under
two years old is of approzimate size 150,000. The per capita death rate is p = ﬁ/week:9.615><
1073 /week=1.37363 x 1073 /day [51]. For the per capita rate v at which infected individ-
uals become immune we note that in her Ph.D. thesis Weir [125] deduces from a system-
atic review that v = 0.02011 /day, (1/v) = 49.7 days. The basic reproduction number
for pneumococcus is estimated to be 1.49 [37], 1.4 [62] and 1.8-2.2 [137] so we take

B =2.857 x 1077 /day corresponding to a basic reproduction number of 2.0.

Based on the result shown in Corollary 4.5.1, we would expect the solution N(t) to die
out in finite time. QOur simulations do not contradict this but it appears that the time taken
to die out with realistic parameter values is very large and thus we suspect the solution

N(t) might not die out in a realistic time period with these parameter values.

The numerical simulation produced for the solution of N(t) is illustrated in Figure
4.4.
From Theorem 4.5.2, we would also expect the solution I(t) to equations (4.6.1)-

(4.6.2) to die out in finite time almost surely. The simulations for I(t) are shown in
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Figure 4.5: Computer simulations of the path I(¢) for the SDE SIS model with N(t) as
a random variable for pneumococcus, using the Milstein method with parameter values
B = 2.857 x 1077 /day, v = 0.02011/day and p = 1.37363 x 1073 /day with step size
A = 0.01 days with initial values 7(0) = 100,000 (the left hand side) and I(0) = 5,000
(the right hand side) both with N(0) = 150,000 and N; = 150,000, where N; is the N

value for the deterministic model.
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Figure 4.5. We observe that after an initial transient stage, the stochastic simulations
appear to oscillate about the deterministic endemic equilibrium level which acts as a quasi-
equilibrium [105], This does not contradict our theoretical result, we expect that the disease
dies out eventually after a long but finite time [105]. Note that on the timescale shown,
the total population size is still large, therefore it seems the disease might not die out in a
more realistic time frame. The numerical simulations were repeated with different starting

values and similar results were obtained each time.

Next we shall look at the simulations for the common cold.

Example 4.7.2 (Common Cold Model) Heikkinen and Jirvinen [55], mentioned that
the mean duration of the common cold is around 7-10 days. For our simulation, we choose
the mean duration of the common cold to be 8 days and thus v = 0.125/day. Sun et al.
[113], calculated the estimated basic reproduction number of the common cold, Ry, in a
dormitory to be between 0.7-1.6 depending on the number of people in each dormaitory.
For our simulations, we shall demonstrate two cases: (i) where Ry < 1, so we choose Ry
to be 0.7 which corresponds to 3 people per dormitory [113] and (ii) where Ry > 1, so we
choose Ry = 1.6 which corresponds to 6 people per dormitory [118]. According to statistics
of WHO [128] the crude death rate per year per 1,000 population in the UK was 8.9 in
2012, hence = 0.000024384 /day. By using the above parameter values and the definition
for Ry, we derived (B for both cases: (i) B = 0.02917 /day where N = 3 to correspond to
Ry =0.7 and (i1) = 0.03334 /day where N = 6 to correspond to Ry = 1.6.

The numerical simulation on the solution N(t) to the SDE model (4.6.2) with the
realistic parameter values for the common cold is shown in Figure 4.6. Based on the
results in Corollary 4.5.1 we would expect the solution N(t) to die out in finite time.
However, from Figure 4.6, it appears that the computation time required in order for it to
happen might be too large. The simulations were repeated around 50 times with different

itial values and the same conclusion is drawn.

We will now show the simulations for the solution 1(t) to the SDE SIS model (4.6.1)
for the two cases where Ry = 0.7 and Ry = 1.6 corresponding to N = 3 and N = 6

respectively as mentioned in [113].
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Figure 4.6: Computer simulation of the path N(¢) for the SDE model (4.6.2) for the
common cold, using the Milstein method with parameter value

p = 0.000024384/day with step size A = 0.1 days with initial value N(0) = 10.
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Figure 4.7: Computer simulation of the path I(¢) for the SDE SIS model with N(t) as
a random variable for the common cold, using the Milstein method where Ry < 1 with
parameter values 5 = 0.02917/day, v = 0.125/day and g = 0.000024384/day with step
size A = 0.001 days with initial values I(0) = 1, N(0) = 3, N; = 3, where N; is the N

value for the deterministic model.
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Figure 4.8: Computer simulation of the path I(t) for the SDE SIS model with N(¢) as
a random variable for the common cold, using the Milstein method where Ry > 1 with
parameter values 5 = 0.03334/day, v = 0.125/day and g = 0.000024384/day with step
size A = 0.001 days with initial values I(0) = 4, N(0) = 6, N; = 6, where N; is the N

value for the deterministic model.

From Theorem 4.5.2 we would expect the solution to the SDE SIS model (4.6.1),
I(t) with N(t) as a random variable to become extinct in finite time almost surely. This
1s clearly the case illustrated in Figure 4.7 and Figure 4.8 for the case where Ry < 1
and Ry > 1 respectively. The solution path illustrated in Figure 4.7 has mean value of
I(t) = 1.22, a minimum value of 1(t) = 0 and a mazimum value of I(t) = 3.27. The
solution path illustrated in Figure 4.8 has mean value of 1(t) = 2.54, a minimum value of
I(t) = 0 and a mazimum value of 1(t) = 6.03. Our simulations for the common cold have
verified our results shown in Theorem 4.5.2. Again, numerical simulations were repeated
with different initial values and the same conclusion is obtained for both cases. Note that
we have also carried out simulations with larger population size such as N(0) = 100 and
the simulations obtained do not contradict with our theorems but again the time taken to

die out with realistic parameter values is very large.

Recall from Theorem 4.4.3, although theoretically, I(¢) might exceed N (), as far as
we could see from our realistic simulations produced based on realistic parameter values

we never practically encounter the situation where I(t) does exceed N(t), even though it
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is theoretically possible.

From the simulations created using theoretical and realistic parameter values, we
could see that the results obtained for the SDE SIS model (4.2.12)-(4.2.13) do indeed
apply to the SDE SIS model (4.6.1)-(4.6.2) with transmission term 5S(t)1(t).

4.8 Conclusion and Discussion

Epidemiological models have become increasingly important in predicting and controlling
the spread of infectious diseases. The SIS epidemic model is one of the simplest models
which is suitable in analysing diseases where individuals do not gain immunity after

recovery, for example gonorrhea, pneumococcus, tuberculosis or the common cold.

In this chapter we have constructed the SDE SIS model with full demographic stochas-

AMN)S(@)I(t)

NGO The deterministic SDE SIS model assumes that

ticity with transmission term
the total population size is constant thus susceptible or infected individuals who die are
immediately replaced by new susceptible individuals. Allen [1] and Allen [2] discuss an
SDE model which retains this assumption and this is a direct analogue of the determin-
istic SIS epidemic model. However this assumption was made in the deterministic model
to maintain a tractable model structure. In the stochastic model it is not really necessary
to retain this assumption so in this chapter we have assumed that births and deaths of
infected individuals were completely independent, so that the total number of individ-
uals formed a stochastic birth and death process. We derived a pair of coupled SDEs
which describe how the number of susceptible and infected individuals vary with time.
However it was more convenient to work with the SDEs in terms of the total number of
individuals and the total number of infected individuals. We showed that there was a
unique nonnegative, non-explosive solution and obtained an upper bound for the number
of infected individuals at time ¢ in terms of the total number of individuals. We then
showed that both the total number of individuals and the number of infected individuals
will become extinct in finite time almost surely. This is a surprising result as we have
shown theoretically that the total population size will become extinct and as a result of

that the disease will die out in finite time. We believe this is caused by the assumptions
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which we made on the formulation of this stochastic SIS model, where we have intro-
duced births and deaths independently of each other. We next demonstrated that that
SDE SIS model with transmission term 3S(¢)I(t) is a special case of our SDE SIS model.
The analytical results were confirmed with numerical simulations. Finally examples of
pneumococcus and the common cold with real-life parameters were discussed, providing

further numerical verification of our analytical results.

SDEs are increasingly being used in a wide range of areas, for example finance and
biology. There has recently been a large explosion in the number of papers using SDEs to
model how diseases spread (e.g. [33], [40], [87] and [118]). However these papers introduce
stochasticity in a different way by parameter perturbation which is appropriate if one of
the parameters is a random variable. In this chapter the SDEs look similar but have a
different explanation as they are an SDE approximation to the continuous time Markov
Chain models that have traditionally been used to introduce stochasticity into epidemic
models ([1], [2], [10]). Although similar models have been formulated, but not analysed,

previously ([1], [2]) our work is one of the first to analyse such models.

In the next chapter we move onto looking at the effect of environmental stochasticity

on the deterministic SIRS/SIR epidemic model introduced in Section 1.3.
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Chapter 5

Modelling the Effect of Telegraph
Noise in the SIRS Epidemic Model
Using Markovian Switching

5.1 Introduction

Motivated by the work done in [41, 115], in this chapter we will introduce the effect of
telegraph noise into a more complicated three-dimensional SIRS epidemic model as well

as the SIR epidemic model introduced in Section 1.3.

The chapter is organised as follows. In Section 5.2, we will introduce the SIRS
epidemic model with Markovian switching. A recap of some of the fundamental concepts
of finite state Markov Chains will also be given. In Section 5.3, the existence of a unique
nonnegative solution will be proven. In Section 5.4, we will look at the conditions needed
for extinction for the SIRS model with Markovian switching. In Section 5.5, we will obtain
the conditions needed for persistence. In Section 5.6, by using the Lyapunov Theorem,
we continue to get a better understanding of the persistence conditions on the stochastic
SIRS model. In Section 5.7 we explain how the results for the SIR model are a special case
of our results and in Section 5.8 we explain how the results can be extended from a two-
state Markov Chain to an M-state Markov Chain. Throughout this chapter, numerical

simulations with theoretical parameter values and realistic parameter values for measles
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are produced in R to support our theoretical results.

Most of the work mentioned in Chapter 5 has been written up as a paper and is

published in [49].

5.2 SIRS Epidemic Model with Markovian Switching

Throughout this chapter, unless stated otherwise, we let (2, F, {F;}i>0, P) be a complete
probability space with filtration {F; };>¢ satisfying the usual conditions (i.e. it is increasing
and right continuous while Fy contains all P-null sets). Let us consider the following

deterministic SIRS epidemic model:

M) — —51(0)5(0) + N — (1) + vR(0),
MO _ 510)5(6) ~ (u-+1)10) (521)
dR(t)

— = =71(t) = uR(t) — vR(t),

where S, I and R denote respectively the number of susceptible, infected and recovered
individuals in the population. N is the total size of the population, 3 is the disease
transmission coefficient and § = A/N where X is the disease contact rate for each indi-
vidual, that is the rate at which susceptible individuals come into contact with infected
individuals. p is the per capita birth and death rate and - is the rate at which an infected
individual becomes cured and thus moves to the recovery group. v is the rate of loss
of immunity and thus making the recovered individuals susceptible to catching the virus
again.

Throughout this chapter, unless stated otherwise, we shall assume that the unit of
time is one day, and the population sizes are measured in units of one million. Before
we begin analysing the SIRS model with Markovian switching, it is important to recall
some of the fundamental theories of Markov Chains with a finite state space. Some other

useful properties can be found in Section 2.8.
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5.2.1 M-State Markov Chain

Let r(t), t > 0, be a right-continuous Markov Chain on the probability space taking values
in finite state space S = {1,2, ..., M'} with the generator I' = (v;;) prxns defined as

Bir(t 48) = jlr(t) =iy — 4 90 T A (5.2.2)

1+ vy +0(0), ifi=j,
where 0 > 0, v;; > 0 is the transition rate from state ¢ to j for ¢« # j and v; =
=D i< j<arjiVij- 1t is well known that almost every sample path of r(-) is a right-
continuous step function with a finite number of sample jumps in any finite subinterval

of Ry = [0,00) [9]. There is a sequence {7y }x>0 of finite-valued F;-stopping times such

that 0 =19 < 11 < ... < T — o0 almost surely and

= (1) (1), (5.2.3)
k=0

where 1, denotes the indicator function of set A. The switching is memoryless and the
waiting time for the next switch has an exponential distribution. Therefore if r(7,) = 1,
the random variable 75,1 — 73 will follow the exponential distribution with parameter —uv;,
namely

Vij Vij

]P)(Tk—l—l = ]|7—k = Z) = Z U = . i 7& j7 (524)
G£i Vi i

P(7py1 — 1 > Tlr(m) = i) = 7, vT > 0. (5.2.5)

In addition, let us define IT = (7, 7o, ..., mpr) to be the unique stationary distribution of

this Markov Chain where

M
I'=0 and Y m=1. (5.2.6)

In order to make the theories easier to understand and follow, we will begin by only
looking at a two-state Markov Chain, namely S = {1,2}. In the next section we will give

the fundamental concepts for a two-state Markov Chain.
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5.2.2 Two-State Markov Chain

Similarly, let r(¢), ¢ > 0, be a right-continuous Markov Chain on the probability space

taking values in finite state space S = {1, 2} with the generator

—lV12 V12

Va1 —UV921

where vy, > 0 is the transition rate from state 1 to state 2 and v, > 0 is the transition

rate from state 2 to state 1, in other words for § > 0,
P{r(t+9) =2|r(t) =1} =v12d + 0(6) and P{r(t+9) = 1r(t) =2} = v216 + 0(0).

If r(mx) = 1, the random variable 7.1 — 75 will follow the exponential distribution

with parameter —vy5, namely
P(rpq — 76 > Tlr(me) = 1) =e 2, VYT >0, (5.2.7)

and similarly if () = 2.
This Markov Chain has a unique stationary distribution IT = (7, m2) given by
Va1

v
=2 and  my=—2 (5.2.8)
V1g + U2y Vg + Vg

Note that 32, m; = 1.

Now that we have finished recalling the important concepts for M-state and two-
state Markov Chains we will introduce the two-state Markov switching into the SIRS
epidemic model (5.2.1). Consequently, (5.2.1) will evolve into the SIRS epidemic model

with two-state Markovian switching, namely

ds
d_iw = =By [(1)S(t) + pey N — 1y S(t) + vy R(1),
dI
d_Sf) = By 1) S () = (kety + 1)) L (2), (5:29)
dR
dgt)‘ = Y (t) = sy R(E) = vry R(2),

where r(t) is a Markov Chain with a finite state space S = {1,2}. For the rest of

this chapter, unless stated otherwise, we will focus on analysing this SIRS model with
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Markovian switching (5.2.9). We will later describe an extension of the results to a more

generalised case and an SIR epidemic model with Markovian switching.

5.3 Existence of Unique Nonnegative Solution

Theorem 5.3.1 For any given initial value S(0) = Sy € (0,N),1(0) = Iy € (0, N) and
R(0) = Ry € (0, N), there ezists a unique and nonnegative solution for the SIRS model
with Markovian switching (5.2.9) for all t.

Proof. Fix any sample path of the Markov Chain. Without loss of generality, we may
assume 7(t) = 1 in [0, 1) where 71 < oo is the first switching time. Let us rewrite (5.2.9)
as

dU(t)

— = flu) (5.3.1)

where U(t) = (S(t),I(t), R(t)). Let us define (z1,29,73) = (S,I,R), then f: R® — R?
such that
fi(z1, 20, 23) = —BryT172 + fry N — pr()T1 + V() T3,
fo(z1, 22) = BryTr22 — (o) + Vr()) T2 (5.3.2)
f3(xg, 23) = Yr()T2 — Hr)T3 — Up(t)L3-
It is easy to show that fi, fo and f3 are Lipschitz continuous functions and thus f{ U(t))

is also a Lipschitz continuous function where

AUL) = AU0))] < proy (|21 = 1] + |2 = yol + |3 — ys]),

for some constant p,), where Uy = (21,72, 23) and Uy = (y1,¥2,¥3). By the Picard-
Lindel6f Theorem, there exists a unique local solution for r(t) = 1 for all ¢ or r(t) = 2 for
all ¢. Let us now define [0,7.) to be the maximum interval where a solution exists and
S(t),I(t) and R(t) remain in (0, N) for each time & in [0, 7.). We will now show by using
the Picard-Lindel6f Theorem that 7. > 0 and S(t), I(t), R(t) € (0, N) on [0, 7.] and then
using continuity we will extend this to the whole region [0,00). We will split the proof

into three different cases. Let us assume that 7, < 7.

Case (7): Let us assume /(0) > 0. By the Picard-Lindel6f Theorem, 3At > 0 such
that a solution exists in [0, At]. For S(0) > 0,1(0) > 0 and R(0) > 0, it is easy to see that
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S(t) > 0,I(t) > 0 and R(t) > 0 in [0, At] if At is small enough. If R(0) = 0 then from
(5.2.9) we have that
R(At) =y 1(0)At + o(At) > 0. (5.3.3)

Thus it is clear that R(t) > 0 in [0, At] for At small enough. Similarly, if S(0) =0, S(t) =0
then we have that

S(At) = n NAt + v1 R(0)At + o(At) > 0, (5.3.4)
where we have that S(t) > 0 in [0, At] for At small enough. Hence we have shown that
Te > 0.

Now by integrating the expression of dI(t)/dt given in (5.2.9), we have that for ¢ €

[0, 7.), where 7, < 00,

I(t) = 1(0)exp [/Ot p1S — (u1 +1)ds| > 0. (5.3.5)

Let us define I(7.) = limy_,,, I(t), then it is obvious from above that I(t) > 0 in
0, 7]. Similarly by integrating the expression of dS(t)/dt given in (5.2.9), we deduce the

following

1
exp(BiN +

S(t) > ; [sm) n / N exp(BiN + mg)dg} -0 (5.3.6)

By defining S(7.) = lim;_,,, S(t), we have that S(¢) > 0 in [0, 7.]. Similarly we can show
the same for R(t). Thus we have shown that S(t), I(t), R(t) € (0, N) on [0,7.]. If 7. <7
then by continuity, we could extend the interval of existence to [0, 7.+ At] for some At > 0.
This is clearly a contradiction, thus 7. > 7. The same procedure follows for r(t) = 2,
and allows us to extend the region of existence to [0, 72]. Continuing in this manner we

extend the existence region to [0, 00).

The other two cases where we look at the situation where 7(0) = 0, R(0) > 0 and
I(0) = R(0) = 0 can be carried out in a similar manner as above and we obtain the same

result.
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5.4 Extinction

Extinction is one of the most important aspects when studying the behaviour of a par-
ticular disease. It is important for us to find out the conditions that are needed in order
for a disease to die out. Therefore, in this section we will focus on discussing the con-
ditions for extinction for our SIRS model with Markovian switching (5.2.9). For the
deterministic SIRS model, the criterion used to determine whether a disease will go ex-
tinct or persist is based on the basic reproduction number Ry = % This represents
the expected number of secondary infections caused by an infected individual entering
the disease free equilibrium (DFE) which consists of susceptible and removed individuals
only (e.g. [9, 32, 57, 59]). If RY > 1 then we expect that the disease will persist, while
REP <1 indicates that the disease will die out. Note that the basic reproduction number
for the stochastic SIRS model with Markovian switching (5.2.9), Rj, could be derived
exactly the same way as in [41] for their stochastic SIS model with Markovian switching.

Detailed calculations can be found in [41]. In this chapter we will be using another type

of threshold to determine whether the disease will die out or persist almost surely, namely

TS = TN + e N ‘ (5.4.1)
™ (1 + ) + ma(p2 +72)

This threshold Ty is used by Gray et al. in their paper [41] to analyse the extinction
and persistence issue for their SIS model with Markovian switching. By working with the
same threshold we will extend the results Gray et al. have already obtained to a more

complex three-dimensional stochastic SIRS model (5.2.9).

Proposition 5.4.1 Let us define o,y = BryN — pirt) — Vr(r), then we have the following

alternative ways of interpreting Ty :

° Tég <1 ma + masy <0,

o TJ =1 ma; + may =0,

o TY > 1 & ma; + may > 0.
Proof. 'The proof is straightforward.
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Theorem 5.4.2 If Ty < 1, then for any given initial value (So, Iy, Ry) € (0, N)3, the
solution of the stochastic SIRS epidemic model (5.2.9) obeys

(i) limsup,_,, 1log(I(t)) < aymi + asma <0 a.s.,
(i1) limy_,oo R(t) =0 a.s.,

(111) limy,0o S(t) = N a.s.

By Proposition 5.4.1, we hence conclude that I(t) tends to zero exponentially and R(t)
tends to zero as t — oo, thus making S(t) tend to N as t — oo almost surely. In other
words, the disease will die out with probability one and the solution will tend to its DFE

(N, 0,0).

Proof. We will prove the three results separately.
(1) Recall from (5.2.9) that

dI(t)

— = = B SOI(E) — (rey + %001 (#),

then by making the substitution that S(t) = N — I(t) — R(t), it is easy to see that

dlog(I(t))

dt = ) — Brp((t) + R(1)), (5.4.2)

< A (t)s

where a,.(t) is defined as in Proposition 5.4.1. This implies that for any ¢ > 0

log I(t log I 1/t
0

since B, > 0 and I(t), R(t) € (0, N). By letting t — oo, we hence obtain

1 1 [
lim sup n log I(t) < tliglo sup - /0 Qp(s)dS. (5.4.4)

t—o00

Hence by using the ergodic theory of the Markov Chain (e.g. [9]), we have that

1 t
lim — [ apds = oqm + agma,  as. (5.4.5)
t—oo t 0

Therefore equation (5.4.4) becomes

1
tlim sup n logI(t) < aym + aems, a.s. (5.4.6)
—00
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As a result we have shown that I(¢) tends to zero exponentially almost surely. Note that

this proof is similar to the proof for Theorem 4.2 in [41].

We will now prove Theorem 5.4.2(ii). Suppose that limsup, ., R(t) > 0 on a set
2y where P(Q;) = 6 for some 6 > 0. Then I(t) — 0 as t — oo on a set 2y where
P(Qy) >1— %. For w € Q5 then given ¢ > 0 let us choose ¢; small enough so that

e1 max(7y1,72) _€
min(py + vy, e +vy) 2

(5.4.7)

Jto such that for t > t5, 0 < I(t) < €. Let us now recall the R(t) equation in (5.2.9),

namely

dR(1)

o = wwl(t) = (ke + or) R(E). (5.4.8)

By integrating the above R(t) equation, we have that for ¢ > ¢,
t
R(t) = R(ty)e %W + e_Q(t)/ Y, (5)1(5)e?®ds,
to

t
< Ne @04 / Yo(syere Je e trre) i, (5.4.9)

to
where Q(t) = Li(ur(s) + vp(8))ds > min(uy + vy, po + v2)(t — ). By carrying out the
integrations, (5.4.9) becomes

t
R(t) S N@fQ(t) + &5 maX(Vh’m)/ 67min(#l+v1,u2+v2)(t75)ds’

to
t

_ Ne_Q(t) + — €1 maX(717 72) |:6_ min(u1+v1,pu2+v2)(t—s)
min(gy + vy, iz + v2)

9
to

€1 max(vi, 72)
min(uy + v, 2 + vg)

< Ne 90 4 (5.4.10)

By choosing t; > to such that for ¢t > ¢;, Ne Q® < %5 and using (5.4.7) we have
that for t > t;, R(t) < e. Hence for w € Q,limsup,_,., R(t) = 0. This is a contradiction.
Hence we have obtained our desired result that as ¢t — oo, R(t) — 0 almost surely.

Theorem 5.4.2(7ii) is obvious by using the fact that S+ I + R = N. Thus we have
completed the entire proof by showing that for Ty < 1, the disease will die out almost

surely and that the solution to the SIRS model with Markovian switching will tend to its
DFE (N, 0,0). U
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Note that if both oy < 0 and ay < 0, then clearly the corresponding R{)D’Z- values for
both subsystems (state 1 and state 2) are less than one, thus both subsystems will die
out. However, the readers may wonder what would happen if one subsystem, say state
1, has a; < 0 while in state 2 ay > 07 In other words, one subsystem will go extinct
whilst the other subsystem will persist, what would happen to the overall model? This
interesting idea highlights the significance of the Markov Chain in dealing with extinction,
as in real life it is possible for a particular disease to switch between two or more regimes
of environment. It turns out that if the time it takes for the Markov Chain to switch from
state 2 to state 1 is relatively faster than from state 1 to 2, so that miaq + mas < 0, then

the effect from state 1 will predominate, thus making the overall system die out.

Example 5.4.3 Let us define the system parameters to be
= 0.65, po=0.10, v =045, v =0.25, v =0.15, vy =0.75
B =0.01, [By=0.002, v13=0.5, vy =08 and N =100.

Thus by using the definition of ay) defined in Proposition 5.4.1 and (5.2.8), we deduce
that oy = —0.10,0 = —0.15,m; = 8/13 and my = 5/13, where clearly m oy + moay =
—0.1192 < 0 to four d.p. As a result, from Theorem 5.4.2, we expect that for any initial
value (S(0),1(0), R(0)) € (0, N)3, the solution to (5.2.9) satisfies:

1. limsup,_,, log(I(t)) < —0.1192 <0 a.s.,
2. limy o R(t) =0 a.s.,

3. limy_,o, S(t) =N a.s.

So the disease will die out almost surely.

The numerical simulations generated by using the Euler method given in Definition
2.0.1 as shown in Figure 5.1 clearly support our theoretical results given in Theorem 5.4.1
by illustrating that the solution path for S(t) tends towards N while 1(t) and R(t) tend
to zero as t — oo, in other words, the disease will die out almost surely. Furthermore, in

this example, both ay < 0 and ay < 0. This implies that both the subsystems will die out.
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Figure 5.1: Numerical simulations for our solution to (5.2.9) with T < 1 and the corre-
sponding Markov Chain r(t) using the system parameter values given in Example 5.4.3

with A = 0.001 days and initial values S(0) = 10, I(0) = 65, R(0) = 25 and r(0) = 1.
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Figure 5.2: Numerical simulations for our solution to (5.2.9) with Ty < 1 and the corre-

sponding Markov Chain r(t) using the system parameter values given in Example 5.4.3

with A = 0.001 days and initial values S(0) = 40, I(0) = 25, R(0) = 25 and r(0) = 1.
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In order to reinforce our theoretical results given in Theorem 5.4.1, we have produced two

more simulations with different initial values than the ones used in Figure 5.1.

Figure 5.2 shows another simulation with the same system parameter values given in
Example 5.4.3 but with a different initial values. In order to understand the simulation
better, we have obtained some useful information such as the mean and the variance of the
solution path illustrated in Figure 5.2. The solution path for S(t),I(t) and R(t) has mean
values of 96.6,1.659, 1.737 and variance values (to four d.p.) of 65.8613,11.4337,22.7255

respectively.

Another simulation with the system parameter values given in Example 5.4.3 with
initial values S(0) = 70,1(0) = 20, R(0) = 10 is shown in Figure 5.3. The solution path
for S(t),I(t) and R(t) has mean values of 97.16,1.74,1.098 and variance values (to four
d.p.) of 29.2736,10.5544, 4.7510 respectively.

The numerical simulations were repeated around 50 times with different parameter

values and initial values and all supported our results.

Example 5.4.4 Let us now define the system parameters to be
H1 = 065, Mo = 010, Y1 = 045, Yo = 025, v = 015, Vo = 0.75
51 = 0002, 62 = 0005, Vig = 05, Vo1 = 0.8 and N = 100.

Again, by using the definition of o,y defined in Proposition 5.4.1 and (5.2.8), we
deduce that oy = —0.90, ag = 0.15, 1 = 8/13 and my = 5/13, where clearly oy + maan =
—0.4962 < 0 to four d.p. Similarly, by using Theorem 5.4.2, we expect that for any
initial value (S(0),1(0), R(0)) € (0, N)3, the solution to our stochastic SIRS model (5.2.9)

satisfies

1. limsup,_,, tlog(I(t)) < —0.4962 <0 a.s.,
2. limy_,oo R(t) =0 a.s.,
3. limy_,oo S(t) = N a.s.
In other words, the disease will die out almost surely.
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Figure 5.3: Numerical simulations for our solution to (5.2.9) with Ty < 1 and the corre-

sponding Markov Chain r(t) using the system parameter values given in Example 5.4.3

with A = 0.001 days and initial values S(0) = 70, 1(0) = 20, R(0) = 10 and r(0) = 1.
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Figure 5.4: Numerical simulations for our solution to (5.2.9) with T < 1 and the corre-

sponding Markov Chain r(t) using the system parameter values given in Example 5.4.4

with A = 0.001 days with initial values S(0) = 20, I(0) = 60, R(0) = 20 and r(0) = 1.
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Again, the numerical simulations produced by using the Euler method support our
results in Theorem 5.4.2, namely the disease dies out almost surely. Note that in this
case, ay < 0 while ag > 0. This represents that one subsystem will die out while the
other subsystem will persist. This scenario is clearly illustrated in Figure 5.4, where we
see clearly that there are points where the solution path of I(t) increases then decreases,

but the overall number of cases of the disease tends to zero as time becomes large.

In order to illustrate the results given in Theorem 5.4.2 better, we will now produce
more simulations with the same system parameter values given in Fxample 5.4.4 but in-
creasing the population size from N = 100 to N = 200 and changing the initial values for
So, Iy and Ry. As a result, we now have aqy = —0.7, g = 0.65 while m; and ™ and other
parameter values stay the same as before and thus we have maq 4+ meay = —0.1808 < 0 to
four d.p. By using Theorem 5.4.2, we expect that for any initial value (S(0),1(0), R(0)) €
(0, N)3, the solution to our stochastic SIRS model (5.2.9) satisfies

1. limsup,_,, tlog(I(t)) < —0.1808 <0  a.s.,
2. limy oo R(t) =0 a.s.,

3. limy 00 S(t) = N a.s.

In other words, the disease will die out almost surely.

The stmulation produced is illustrated in Figure 5.5 and clearly we can see that the
simulation supports our theoretical results. Again since we have oy < 0 but as > 0,
we have the situation again where one subsystem dies out while the other subsystem per-
sists. Similarly to Figure 5.4, we can see the solution path of 1(t) in Figure 5.5 increases
then decreases, but the overall number of cases of the disease tends to zero as time be-
comes large. This is again expected. The solution path S(t),I(t) and R(t) has mean
values 196.9,1.733,1.384 and variance values (to four d.p.) 56.3394,15.1458,14.2500 re-
spectively.

In order to illustrate that the results given in Theorem 5.4.2 also apply to large popu-
lation size, we will now increase the total population size again from N = 200 to N = 300.
Let us now choose vi5 = 0.3 and vy, = 0.8. As a result, we have m; = 8/11 and m = 3/11,

and keeping other parameter values the same as before we have that oy = —0.5, 9 = 1.15

129



150
]

S
|
I(t)

50

I I I I I I I
0O 10 20 30 40 50 60

t

R(t)
r(t)

10 20 30
1.4

0

I I I I I I I
0 10 20 30 40 50 60

t

25

15

1.8

1.0

I I I I I I I
0O 10 20 30 40 50 60

t

I I I I I I I
0O 10 20 30 40 50 60

t

Figure 5.5: Numerical simulations for our solution to (5.2.9) with Ty < 1 and the corre-

sponding Markov Chain r(t) using the system parameter values given in Example 5.4.4

with A = 0.001 days, N = 200 with initial values S(0) = 150, 7(0) = 20, R(0) = 30 and

r(0) = 1.
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and hence Ty +maay = —0.05 < 0. Simalarly, by using Theorem 5.4.2, we expect that for
any nitial value (S(0),1(0), R(0)) € (0, N)3, the solution to our stochastic SIRS model
(5.2.9) satisfies

1. limsup,_,, tlog(I(t)) < —0.05 <0 a.s.,
2. limy_,oo R(t) =0 a.s.,

3. limy oo S(t) = N a.s.

In other words, the disease will die out almost surely.

The stmulation produced is illustrated in Figure 5.6 and clearly we can see that the
simulation supports our theoretical results. Similarly since we have aq < 0 but ag > 0, we
have the situation again where one subsystem dies out while the other subsystem persists.
Similarly to Figures 5.4 and 5.5, we can see the solution path of I(t) in Figure 5.6 increases
then decreases, but the overall number of cases of the disease tends to zero as time becomes
large. This is again expected. The solution path S(t),I(t) and R(t) has mean values
280.9,12.41,6.659 and variance values 1553.49,771.3875,157.9767 respectively.

Similarly, the numerical simulations were repeated around 50 times with different

parameter values and initial values and all support our results.

5.5 Persistence

Apart from extinction, the aspect of persistence of a disease is very important when
analysing an epidemic model for a particular disease. As a result, in this section we
will be looking at different types of conditions on persistence for the SIRS model with
Markovian switching (5.2.9) when T > 1. Note that there are two possible cases that

could arise from the condition T(f > 1, i.e. may + meag > 0, namely:

(a) Both oy and ay are positive. Without loss of generality, we will assume that 0 < o<
g
B2°
(b) Ome of a; and ay is positive. Without loss of generality, we will assume that 3L <
o
0 <3
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Figure 5.6: Numerical simulations for our solution to (5.2.9) with 7y < 1 and the
corresponding Markov Chain r(t) using the system parameter values given in Exam-
ple 5.4.4 with A = 0.001 days, N = 300, v15 = 0.3 and v5; = 0.8 with initial values
S(0) =100, 1(0) = 150, R(0) = 50 and r(0) = 1.
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First, we will examine in detail the persistence condition Ty > 1 by looking at the
above two cases separately in order to give us a better understanding of the persistence
results for the SIRS model with Markovian switching (5.2.9). Before we begin with the
main theorems in this section, we will look at another aspect of persistence which is given
by using the uniform persistence theorem (e.g [18, 122]). We will prove that our solution
I(t) for our stochastic SIRS model (5.2.9) under both cases for T; > 1 is uniformly strong

persistent.

Theorem 5.5.1 (Uniform strong persistence) Suppose that 1(0) > 0.

Case (a): If 0 < % < %, 3¢’ > 0 independent of the initial conditions such that

liminf I(t) > ¢ >0 a.s. (5.5.1)

t—00

In other words the SIRS model with Markov switching is almost surely uniformly persis-
tent.
Case (b): If% <0< %, given &1 > 0,3’ > 0 such that Vt, >0, I(t) > &' for some

t >t; on a set Qy where P(Qy) > 1 —0,. To put this another way,

litminf I(t) >0 a.s.

— 00

Proof. Case (a): Let us choose € > 0 small enough such that

ai min(uy + vy, p2 + v2)
B min(py + vy, po + V) + 2max(y1, v2)

e<

Suppose that (t) < e for all t > tq and I(0) > 0. Then from the third equation in (5.2.9)

for t > t,

dR(t .

% < max(v1,Y2)e — min(uy + vy, o + ve) R(t). (5.5.2)
By integrating (5.5.2), it is easy to obtain the following expression:

R(t) < R(t)e™ mintutvrpatva)(t=to)

max(ﬁ)/b 72)5 (1 — e min(ul—l—vl,ug—‘rvg)(t—to))
min(py + o1, fio + ) ’

< R(to)e_ min(p1+v1,p2+v2)(t—to) + — Hlax(’yl, 72)5 7
- min(p + vr, s + 03)

< Ne-min(utupave)(t—to) . maX(’Yb ’Yz)e . (5‘5‘3)
min(p; + vy, pg + v2)
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Let us choose t; > tg such that for t > ¢;, we have

Nefmin(u1+v1,u2+vg)(t7t0) < . maX(’hﬁz)a ‘ (554)
~ min(py + vr, pg + v2)

By using (5.5.4), (5.5.3) becomes
2max(vy,72)e

R(t) < — , 5.5.5
() < min (i + vi, fig + va) (5:55)
for t > t;.
Recall from (5.4.2), we have that
1 dI(t
I(t) dsf) ey = Bripy(1(t) + R(t)) = cu(e) — Broy (€ + R(1)). (5.5.6)

By substituting (5.5.5) into the above equation, we have that

1 dI(t) . 2 max(71,72)
A LA =B 1+ — = K; > 0. 5.5.7
I(t) dt — rgﬁg} |:Oé /B c ( + mln(,ul + U1, U2 + Ug) ! ( )

This implies that /(t) is an increasing function and it must eventually increase above e.

Moreover, from our argument we know that by time ¢, R(¢) must drop to a level at most

mii(max(m”ms , where from (5.5.4) we have that
p1+v1,p2+v2)

i —1 lOg ( .max(’Yl,’Yz)E ) ’ if — max(v1,72)€ ’
t —t = min(p1+v1,u2+v2) N min(u1+v1,p2+v2) min(u1+v1,p2+v2) (5.5.8)
0, if —maxiele >

min(p+vr,puatve) —
Furthermore, from the second equation of (5.2.9) I(t;) > I(0)e™™ax(m+mmet2)t 5 0,
For t > ty, I(t) > I(t;)ef =1 > [(0)e~max(mtyipetrn)tickit=t) hence I(t) must reach
level ¢ by a time at most t, where ¢ = [(0)e”max(mtynztrltieki(t=t) and thus by

rearranging we have that

to =1 + - 1 —_— + (H, + Y1, + ) )1’; (5 5 9)
(0] max . J.
2 1 Frl g Z—(O) 1 1, M2 2)t1

As a result, we have shown that if 7(0) < e, then I(¢) will reach the level £ by at
most time ¢5. In other words, I(t) will always at some time be greater than ¢ provided
we start below it. However the proof is not finished as it is possible for I(¢) to go below
¢ again later. Consequently, we will now assume that /(0) = ¢ and from the above if I(¢)

does go below ¢, it will eventually rise back up again by time at most

1
th=1, |1+ 7 max(fy + Y1, 2 + 72) | (5.5.10)
1
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where t| is defined by (5.5.8) with to = 0.

In general, let us define ¢t* with I(t*) = e to be the first time that I(¢) drops beneath

€. Recall again that
dI(t
T B SOI0) — masx(ir + o)1),

> —max(p + 1, p2 + 72)I(1). (5.5.11)

Then a similar argument as before and by integrating will show that for ¢t > t*,

e~ max(uity1,p2+92) (E-t7)

I(t)

v

?

> 66—max(,u1+717/t2+72)t'2 = > 0, (5.5.12)

where t* <t < t* + t},. So we have shown that our solution () to the stochastic SIRS

model (5.2.9) is uniformly strong persistent in case (a).

Case (b): In this case, we have that oy < 0, which indicates that Rf, < 1 in state 1
while in state 2 we have R(’fQ > 1. In other words, if we stay in state 1 long enough, I(t)
will tend to 0 thus making our solution (S(t), I(t), R(t)) for (5.2.9) tend towards the DFE
(N,0,0). As a result, unlike in case (a), the uniform strong persistence result will not
hold for all the domain as there will be a region where it is possible for I(¢) to approach
0 arbitrarily closely with a small but non-zero probability. However, we can make the

probability of that happening as small as we want it to be.

Choose € small enough so that

2 max(y1,72) )}

min(ju + vi, pg + vz)
+ o |:Oz2 — 528 (1 +

1 {Ozl — 616 <]. +

2 max (71, 72)
min(uy + vy, o + Vs

)ﬂ > Ky > 0. (5.5.13)

Now suppose that liminf; ,,, I(t) = 0 on a set ; where P(2;) = d; > 0. By the ergodic
theory of the Markov Chain, 4 7" independent of the initial state such that on a set 2
where P(€s) > 1 — g fort > T,

1/ 2
lim — {ar(s) — Brs)€ (1 + — max(y, 72) ) } ds
t—oo t J, min(py + vy, po + v2)

o (14 2]

min(p + v1, po + v2)

2max(v1,7Y2)
+ o — PBoe [ 1+ — > K5. (5.5.14
2 { 2= P2 ( min(py + vy, o + vg) 2 ( )
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Consider any w € £; NQy. Suppose that 3 to(w) such that I(t) < e for all ¢t > ty(w). Sim-

2max(y1,72)e

. from time
min(p4v1,p2+v2)

ilarly to case (a) we have that R(t) falls beneath a level at most
t1(w) = to(w) + ' onwards. Again similarly to case (a), I(t;) > 1(0)e™ max(mFrneta2)t >
0. By integrating (5.4.2) and substituting R(t) by its upper bound given by (5.5.5) and
substituting I(¢) by its upper bound, namely &, we have that for ¢ > t;(w),

ORI 2 max(,7)
log <I(t1)) > /tl |:Olr(8) — Br(s)€ (1 + min( + o1, s + U2>>} ds. (5.5.15)

Lologl(t) /tl(r(s)zl) [al—ﬂle(H _ 2max(m, %) ))}ds

t—tl logf(tl) 1 t—tl (M1+U1,M2+U2

+/tt 1(r(s) = 2) [a2 e <1+ mm2max(vm2) ))1 s,

., t—t (p1 + 1, pho + Vo

where 1 is the indicator function. Hence using (5.5.14) for ¢t > t;(w) + T,

. A ()
lim s o] log (I(t1<w))) > K, >0, (5.5.16)

so for t > t(w) + T, I(t) > I(t;)eX2t=) In other words, from time ¢, + T onwards, I(t)
is bounded below by an increasing unbounded function and thus we have a contradiction
and I(t) must rise above the level ¢ by a time at most max(tz(w),t;(w) + T') where
g = I(t;(w))eK2lt2(@)=t1(w),

Starting at max(ts(w), t1(w) +7'), I t3(w) > max(tz(w),t1(w) +71') with I(t3(w)) = €.
Moreover arguing as previously every time that I(¢) drops beneath ¢ it must rise up again

to this level by time at most ¢, where

1
ty=(ty + 1) (1 + A max (i + 1, f2 + ’72)) > 1.
2

Then similarly to (a) we have that liminf; ., I(t) > £ for some € > 0, contradicting

w € ;. This completes the proof of Theorem 5.5.1. U

Let us now look at more conditions on persistence for our SIRS model with Markovian

switching (5.2.9).

Theorem 5.5.2 If T5 > 1, then for any given initial value (S(0),1(0), R(0)) € (0, N)3,
then the solution S(t) of the stochastic SIRS model has the properties that:
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(a) liminf, . S(t) < N — % a.s.,

(b) limsup, ., S(t) > N — 29222 g5

In other words, the number of susceptibles will reach the neighbourhood of the level N —

mo o ; ;
ey Ty infinitely many times almost surely.

Proof.

Case (a): Assume the statement given in Theorem 5.5.2(a) is not true, then 3¢ > 0

sufficiently small such that P(€2;) > 0 where

0, = {weQ: lim inf S(t) >N—M+25}.
t—00 181 + T3

In addition, by the ergodic theory of the Markov Chain, we have that P(2;) = 1

where for any w € )y,
1 t{ (7’(’10(1 -+ o )}
lim — Op(sy — Brisy | ——————— —¢ | p ds
t=oo b Jg = Prts 151 + T2
- o —B 7T1051+7T2062_8 g o —B 7T1051+7T2042_8
T ! 1531 + T2 2177 ? 1531 + w2 ’
= (7T151 —{—71'252)5. (5517)

Now consider any w € €; N Q. Then there is a positive number 7' = T'(w) such that

nesl + wies)

S =N T + T2

+e, Vt>T(w), (5.5.18)

which we can easily rearrange by setting N = S(t) 4+ I(t) + R(t) to get

TiQ + Ta0iy
IH)+R(t) < ——————=—¢, Vt>T(w). 5.5.19
1)+ Rlt) < DT (@) (5:5.19)

By integrating (5.4.2) and using (5.5.19), we have that for all ¢t > T'(w),

log(1(t)) =

T t
log(1(0)) +/0 sy = Bris)(L(s) + R(s))]ds +/T [ams) = Br(s) (% - 5)] ds.

Dividing both sides by ¢ and letting t — oo, we could simplify the above expression to

1
tlim inf i log(I(t)) > (w11 + m2fs2)e > 0 (5.5.20)
—00
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by using (5.5.17). So I(t) — oo as t — oo, which clearly contradicts our statement
(5.5.19). As a result, it is obvious that our assumption at the beginning is false and thus
we must have

TiQ + a0

liminf S(t) < N — ———=  a.s.

t—o0 T 51 4 Ty
as required.
Case (b): This can be proven in a similar way as in (a). By following the same

technique as in (a), we will assume that there exists ¢ > 0 sufficiently small such that

P(Q3) > 0 where

) T + Moy
Qe =<ZweQ:limsupS(t) < N — ——== _2¢>.
’ { Hoop Q T 51 + T2 }

Consider any w € Qy N Q3. Then there is a positive number 7' = T'(w) such that

T + Ta0u

S(t) < N — —e, Vt>T(w), 5.5.21
(1)< 101 + T2 ) ( )

which can be easily rearranged to get
1)+ R(t) > O™ s ), (5.5.22)

— mpB+ mf ’
By integrating (5.4.2) and using (5.5.22) , we have that for all t > T'(w),

log(I(t)) <

T t
100100+ [ e = Brot1) + BEs + [ oy = Py (25192 12 ]
(5.5.23)

Dividing both sides by ¢ and letting ¢ — co, we deduce that,

lim sup % log(I(t)) < —(mif1 + maf2)e < 0. (5.5.24)

t—o0

Hence, I(t) — 0 as t — oo. Thus by using this result and integrating the equation for

R(t) given in (5.2.9), namely %ﬁt) = Yy (t) — (re) + Ury) R(t), then it is easy to see

also that R(t) — 0 as t — oo. This again contradicts (5.5.22). We have arrived at our

desired result,

. T + otk
lim sup S(t) > N — ——22% g
t—o00 m161 + T2

As a result we have proved that the number of susceptibles will persist and it will reach

the neighbourhood of the level N — % infinitely many times almost surely. O
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Figure 5.7: Numerical simulation for our solution S(t) to (5.2.9) with Ty > 1 and the

corresponding Markov Chain r(t) using the system parameter values given in Example

5.5.3 with initial values S(0) = 60, 1(0) = 20, R(0) = 20 and r(0) = 1.

Example 5.5.3 Let us now define the system parameters to be
1 =0.65, puy=0.10, v =0.45 % =0.25 v; =0.15, vy =0.75
51 == 003, 62 == 0012, Vig = 05, Vo1 = 0.8 and N = 100.

By using the definition of a,) defined in Proposition 5.4.1 and (5.2.8), we deduce that
a; = 1.90,a9 = 0.85,m = 8/13 and my = 5/13, where clearly m oy + moay = 1.4962 >
0 to four d.p. Similarly, by using Theorem 5.5.2, we expect that for any initial value
(5(0),1(0), R(0)) € (0, N)3, the solution to (5.2.9) satisfies the following:

(a) liminf; .o S(t) < N — % = 35.1667 a.s.,

(b) limsup,_, S(t) > N — TeU7282 = 351667 a.s.

In other words, the number of susceptibles will oscillate around the level 35.1667 (to four

d.p.) almost surely.

The numerical simulation shown in Figure 5.7 clearly supports our results in Theorem

5.5.2.

In order to prove our results in Theorem 5.5.2 further, we will show another example

where we have increased the total population size N from 100 to 200 but keeping all the
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Figure 5.8: Numerical simulation for our solution S(t) to (5.2.9) with Ty > 1 and the
corresponding Markov Chain r(t) using the system parameter values given in Example
5.5.3 with A = 0.001 days, N = 200 and initial values S(0) = 100, I(0) = 70, R(0) = 30
and r(0) = 1.

other parameter values the same as in Fxample 5.5.3. As a result we have that o =
4.90, as = 2.05 and maq + mas = 3.8038 > 0 to four d.p. Therefore by using Theorem
5.5.2, we expect that for any initial value (S(0),1(0), R(0)) € (0,N)3, the solution to
(5.2.9) satisfies the following:

: : mioltmeas
(a) liminf, o S(¢) < N — 2257282 = 351667 a.s.,

(b) limsup,_ . S(t) > N — % = 35.1667 a.s.

In other words, the number of susceptibles will oscillate around the level 35.1667 (to four

d.p.) almost surely.

The numerical simulation shown in Figure 5.8 clearly supports our results in Theorem
5.5.2. In addition, the solution path shown in Figure 5.8 has mean and variance values

of 35.36 and 21.0859 to four d.p. respectively.

The numerical simulations were repeated around 50 times with different initial values

and the same result was observed.

Before we look at the persistence theorem for I(t) we need the following lemma:
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Lemma 5.5.4 Given e; > 0,

(1) If I(t) > & fort > ty, 3ty > to such that fort > ty,

. gl "2
R(t) > £ min , 1—eq).
0z gnin (2 Yoy

(ii) If I(t) < & fort > to,3t; >ty such that fort > tq,

i V2
R(t) < £ max , 14¢€q).
() ¢ <M1+U1 M2+U2)< 1)

Proof. Case (i): Let us define a sequence of stopping times to =79 <71 < ... < Ty, < 1
where 7,11 is interpreted as t. Then for the case I(t) > &, the equation %ﬁt) for our

stochastic SIRS model defined in (5.2.9) gives:

d
7 (R()e" ™) > ~,née™™, (5.5.25)

t
where Ft) = / Hr(e) + Ur(nyds,
Tk+1
- Z/ /“['T(Tk) + Ur(Tk))l[TvakH)ds’

= Z(Mr(m) + UT(Tk))(Tk—i—l - k), (5.5.26)
k=0

and 1 represents the indicator function. By integrating equation (5.5.25), replacing the

term F'(t) with (5.5.26) and some rearranging, we deduce that:
R(t)ef® — R(ty)

t
> / Vo()€ €XP [(Ltr(ro) + Ur(ro)) (71 = T0) + oo + (Bo(rs,) + Vrrr)) (s — 7o) ] ds,

to

where to =10 <711 < ... <7 <5 ..<7, <t,

m Thtl
Z/ Yr(s) §exp [(MT(T@) + Ur(To))(Tl - 7_0) + .t (Mr(‘rk) + UT(Tk))(S - 77<:)] ds,
k=0 YTk

Tk+1

m f)/ -
E () ———————§exp [(Mr(m) + UT(To))<Tl - 7_0) +o Tt (l‘r(m) + UT(Tk))(S - Tk)Lk
k=0 lu’T (1) + ,UT(Tk)

_ r(70) F(r) _ _F(ro) Vr(rm) F(t) _ _F(tm)
= ——F—¢ (e ="V + L+ ¢ (e —e
:U’T(TO) + U’I‘(TO) ( ) Hor (7)) + U’I”(Tm) ( )

Y

where () = 1,

> ¢min < RE N ) (eF® — 1), (5.5.27)
M1+ U1 2 + U2
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As a result,

R(t) > R(t)e F® + min( noo_ e ) 1 — e F®). 5.5.28
(1) 2 Rt 4+ ganin (2 ) (1 ) (5:529)

Given €; > 0 by choosing t large enough, we have that for ¢ > ¢4,

. T 2
R(t) > ¢ min , 1—e). 5.5.29
R e L (5529
We have thus completed the proof for Lemma 5.5.4(7). The proof for case (ii) follows
similarly. In this case we have that I(t) < &, and thus the expression (5.5.25) becomes

d

- (R(t)e" D) < e’ @, (5.5.30)

where F'(t) is defined as in (5.5.26). Now by carrying out a similar procedure as in case

(1), it is easy to obtain our desired result. O

Theorem 5.5.5 If Ty > 1, then for any given initial value (S(0),1(0), R(0)) € (0, N)3,
the solution 1(t) of the stochastic SIRS model has the properties that:

. : T+ 1
(a) liminfy o0 I(t) < <7r11/31+7r§6§) i (2 2 @55

(b) limsup,_,_ I(t) > (2%11225) v R joas

pn1tvy ’ patvg

So given € > 0 the number of infectives will enter between the levels

mogFmoae } 1 {7r1a1+7r2a2 } 1
i S () M et T s )

infinitely often almost surely.

Proof.

Case (a): Suppose that the assertion is false. Then there exists ¢ > 0 such that
P(Q5) > 0 where

Q5 = {w € Q:liminfy o I(1) > (DT ) =t 25} .

K1tv1’ potvg

Now by considering any w € 25, there is a positive number 7" = T'(w) such that

I(t) S <7T10£1 +7T20{2) 1
T\ mbi+ 7202/ 1 4 min (7_1 7_2)

p1+v1? petvz

+e, (5.5.31)
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for all ¢ > T'(w). From Lemma 5.5.4(i), given €; > 0 and I(t) > € + ¢, IT1(w) > T(w)
such that for ¢t > T} (w) > T'(w),

. M1 V2
R(t) > (£ + &) min (Ml o Tt U2) (1 —ey), (5.5.32)

where £ = (2%112;;) i T } By using the fact S(t) + I(t) + R(t) = N,

pn1tvy ' potv
(5.5.32) becomes e

. g 2
S(t) <N —(£+¢) |1+ min , 1—e1)]|, 5.5.33
0N =+ |trmn (222 (5:5:3)
whence
limsup S(t) < N — (£ +¢) {1 + min ( n : 12 ) (1— 81)1 . (5.5.34)
t—00 U1+ U1 o+ U

Now let e; — 0 as it is arbitrary. By making a substitution using the result shown in

Theorem 5.5.2, we have that

T + Ty . 4! 2
N——— < N-—(£+¢ {1+m1n( , )] 5.5.35
T 51 + T Bs (E+e) p1+ U1 g 4 Vo ( )

Then by rearranging and replacing & by its definition defined above, we arrive at the

following contradiction

0< —¢ {1+min< RES— )} (5.5.36)
M1+ U1 f2 U2

and we must therefore have

liminf 7(t) <

t—o00

(7’(10&1 +7T2062) 1
TP+ B2/ 1 4 min (V_l 7_2>

pitvr? patvu

a.s. (5.5.37)

Case (b): Similarly by using a similar method as in Case (a), we will now assume

that there exists € > 0 sufficiently small such that P(£26) > 0 where

_ .15 + 1
Q6 = {w € Q: limsup,_,. I(t) < (2%1;;;;) ] 25}.

m1tvl’ patvg
Now by considering any w € g, there is a positive number 7" = T'(w) such that

(7’(’1@1 +7T2062) 1
181 + w3 1—|—maX< adl 72 )

p1+vr? p2tvz

I(t) <

—¢, (5.5.38)

Now by using Lemma 5.5.4(ii), it is easy to see that given ey > 0 and I(t) < & + ¢,
ATy (w) > T'(w) such that for ¢t > Th(w) > T'(w),

gi! 72
R(t) < (& — €) max <,u1 T UQ) (14 &), (5.5.39)
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Figure 5.9: Numerical simulation for our solution I(¢) to (5.2.9) Ty > 1 and the corre-

sponding Markov Chain r(t) using the system parameter values given in Example 5.5.3

with A = 0.001 days, initial values S(0) = 15,7(0) = 60, R(0) = 25 and r(0) = 1.

— [ miraatmean 1
where 52 - (wlﬁl+7r2,82> 1+max( 1 2
H1tv1 p2+Ug

we did in Case (a), it is straightforward to see that the result follows.

). Now by carrying out the same procedure as

O

Example 5.5.6 By using the same parameter values we used in Fxample 5.5.3, we would

expect the solution I(t) to our Markov switching SIRS (5.2.9) to obey

(a) Timinf o I(t) < (Dgme) — iy =009 e,

p1tvy’pgtug

(b) limsup, . I(t) > (:ﬁiiggﬁ) = T ) =41.4933 a.s.,

p1tvy’ potug

to four d.p.

The numerical simulation produced using the Euler method shown in Figure 5.9 clearly
supports our results in Theorem 5.5.5 by showing that the solution path for I(t) does in
fact enter into the region between the lower and upper levels, namely 41.4933 and 50.0985

(to four d.p.) respectively, almost surely.

Let us now change the total population size from N = 100 to N = 200 but keeping all

the other parameter values the same. Again, in this case we would have oy = 4.90, ay =
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Figure 5.10: Numerical simulation for our solution 7(t) to (5.2.9) Ty’ > 1 and the corre-
sponding Markov Chain r(t) using the system parameter values given in Example 5.5.3
with A = 0.001 days, N = 200 and initial values S(0) = 70, 1(0) = 90, R(0) = 40 and
r(0) = 1.

2.05 and thus maq + maan = 3.8038 > 0 to four d.p. By Theorem 5.5.5, we would expect

our solution I(t) to obey

(a) Timinfy o 1(t) < (2552 ) ()~ 1272 s,

pn1tvy’ patvg

. T +ma 1 _
(b) limsup,,.. I(t) > (;1 o +W;B;> ey~ 1054983 e

In other words, the solution path for I(t) would enter the region bounded above and below

by 127.3712 and 105.4933 respectively almost surely.

This is clearly confirmed by the results shown in Figure 5.10. In addition, the solution
path in Figure 5.10 has mean and variance values of 113.30 and 59.6727 to four d.p.

respectively.

The numerical simulations were repeated about 50 times with different initial values

and the same conclusion was drawn.

Theorem 5.5.7 If Ty > 1, then for any given initial value (S(0),1(0), R(0)) € (0, N)3,
then the solution R(t) of the stochastic SIRS model (5.2.9) has the properties that:

(a) liminf; .o R(t) >0 a.s.,
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. N max(y1,72)
(b) limsup,_, . R(t) < T TG oty <AV as.

In other words, the limiting value of the number of recovered individuals will be strictly

N max(vy1,72)

. almost surely.
max(v1,y2)+min(p1+v1,p2+ve) Yy

positive and will not ultimately exceed

Proof.

Case (a): We will prove this case using proof by contradiction. Let us assume that
liminf; ;o R(t) = 0 on a set ; where P(€2;) > § > 0, then by the uniform strong
persistence results shown in Theorem 5.5.1, 3¢ > 0 and ¢y such that I(t) > & > 0 for
t > to on a set {2y where P(5) > 1 — g > 0. By Lemma 5.5.4 3¢’ > 0 and t; > {3 such

that for ¢ > tq,

R(t)Zsmin( n : e )(1—51):€’>0
f1 U1 g U2

on Q. In other words, liminf, ,., R(t) > 0 which clearly is a contradiction and thus
proves the result.
Case (b): Let us choose

€ = Nrnax('yl,%) <N

max (71, v2) + min(u; + vy, o + v2)

From (5.2.9),
dR(t) :
—— < max(v,7%)(N — R) — min(uy + vy, go + v9) R(t), (5.5.40)
= Nmax(y1,72) — [max(y1,72) + min(ug + vy, pe + ve)|R(t). (5.5.41)

By integrating the above equation for R(t) and rearranging, we have that

R(t) < R(to)6—(max(’y1,72)+min(u1+v1,uz—i—vz))(t—to) + 57 (5542)

where ¢ is defined above. Then by letting ¢ — oo, the result of Theorem 5.5.7(b) follows. [

Example 5.5.8 Again, by using the same parameter values given in Example 5.5.3, the

following conclusion can be concluded from the results in Theorem 5.5.7:

(a) liminf; ,c R(t) >0 a.s.,
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Figure 5.11: Numerical simulation for our solution to (5.2.9) Ty > 1 and the corresponding
Markov Chain r(t) using the system parameter values given in Example 5.5.3 where

A = 0.001 days with initial values S(0) = 25,1(0) = 15, R(0) = 60 and r(0) = 1.

(b) limsup,_,. R(t) < IV max(y1,72) =36<N as.

max(y1,72)+min(pi+v1,u2+v2)

In other words, whatever the starting values, the value of R(t) asymptotically approaches
the region (0, 36).

The numerical simulation given in Figure 5.11 clearly supports the results given in
Theorem 5.5.7 as expected.

Let us now change the N = 100 to N = 300 to show that the results shown in Theorem
5.5.7 also applies for large population size but keeping all the other parameter values the
same. As a result of increasing the population size, we have c; = 7.90 and as = 3.25.
Thus myoy + Moy = 6.1115 to four d.p. By using Theorem 5.5.7 we would expect the
solution R(t) to obey

(a) liminf, .o R(t) >0 a.s.,

. N max(v1,72) _
(b) limsup,_,., R(t) < ) tmm e orgaten — 108 <N as.

In other words, whatever the starting values, the value of R(t) asymptotically ap-

proaches the region (0, 108).

Again the simulation shown in Figure 5.12 confirmed the result. In addition the solu-

tion path R(t) shown in Figure 5.12 has mean and variance values of 86.18 and 128.3396
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Figure 5.12: Numerical simulation for our solution to (5.2.9) Ty > 1 and the corresponding
Markov Chain r(t) using the system parameter values given in Example 5.5.3 where
A = 0.001 days and N = 300 with initial values S(0) = 100, I(0) = 50, R(0) = 150 and
r(0) = 1.

respectively.

The numerical simulations were repeated around 50 times with different initial values
and the same conclusion was drawn. Note that for the simulations that we have done and
the ones that are shown in Figures 5.11 and 5.12, we suspect that maybe it is possible
to improve on the lower and upper bounds for R(t) given in Theorem 5.5.7 to reduce the
region that R(t) will enter. We are unable to prove this analytically though the simulations

seem to suggest this could be the case.

We will continue to investigate the persistence aspect of the model by looking at the

two cases that could possibly arise from T > 1.

Theorem 5.5.9 Assume that Ty > 1 and let 1(0) € (0, N) be arbitrary. If g+ <0<,

then the following statements hold almost surely:

(i) timinf, oo S(8) > N = 32 (14 max (2, 2220

p1tv1? petug

(it) limsup,_, I(t) < 3.

Coy . a 5 ~
(Z“) lim SUP; 00 R(t) < 5_; max (,u1+1v1’ /,szv2> ’
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Proof. ~ We will prove this using proof by contradiction. Note that I(¢t) > 0 for all ¢.
Let us assume that limsup,_,, /() > 2. Then using Theorem 5.5.5(b), 3¢; and ¢, with
t1 < ta, such that §2 < I(t1) < I(t2) and I(t) is strictly monotonic increasing in [tl,tz]
Let us now choose t3 € (t1,ts), not a jump point of the Markov Chain such that 2480 > 0.
For r(t) =1 and r(t) = 2, from (5.2.9):

1(19%(;) = a; — Bi(I(ts) + R(ts)) <0, for i=1,2. (5.5.43)

3

For r(t) = 1, equation (5.5.43) becomes

1 dI(t)
I(t;) dt

= —51 B1(I(t3) + R(t3)) <0, since e < 0. (5.5.44)
Io I

Similarly for r(¢) = 2, equation (5.5.43) becomes

1 dI(t)
— = — I(t R(t
M |, ~ B 5,0~ () + RGs)
< By (— - p) <0 for 2 < p < I(ts). (5.5.45)
Ba Ba
Thus clearly, for both states we have that 2% < 0 which is a contradiction. Theorem

5.5.9(ii) follows. Subsequently, by using Lemma 5.5.4(%), we have that

. 71 V2
lim sup R(t < 2 max , , 5.5.46
e 0 B2 (M1+U1 M2+U2> ( )

whence by using the fact that S(t) + I(t) + R(t) = N, we obtain the desired result that

liminf S(t) > N——(l—l—max( n : 12 >) O
t—»00 ﬁ

2 p1 v e + U

Example 5.5.10 Let us now define the system parameters to be
M1 = 065, M2 = 040, Y1 = 045, Yo = 020, v = 015, Vg = 0.75
51 = 0009, 52 = 0012, Vig = 05, Vo1 = 0.8 and N = 100.

We see that o = —0.2,a0 = 0.60,m = 8/13 and m = 5/13, where clearly moy +
mocrg = 0.1077 > 0 to four d.p. From Theorem 5.5.9, we expect that for any initial value
(5(0), 1(0), R(0)) € (0, N)3, the solution to our stochastic SIRS model (5.2.9) satisfies the
following:
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Figure 5.13: Numerical simulations for our solution to (5.2.9) Ty’ > 1 and the correspond-

ing Markov Chain 7(t) using the system parameter values given in Example 5.5.10 where

A = 0.001 days with initial values S(0) = 60, I(0) = 20, R(0) = 20 and r(0) = 1.

(i) liminf, .0 S(t) > N — 2 (1 + max ( n_ 1 )) — 21.875,

p1tvr? patvz

(i) limsup,_, I(t) < 52 = 50,

(iii) Timsup, ., R(t) < % max (;ﬁw ﬁ) — 98.125,

to three d.p.

Again, the numerical simulations generated by the Fuler method illustrated in Figure

5.13 support our results in Theorem 5.5.9.

We will continue to look at the case where ng > 1 and % <0< % but with a

different set of parameter values than the ones mentioned in Example 5.5.10.
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Example 5.5.11 Let us now define the system parameters to be
 =0.95, pe =080, v =090, 7 =0.20, v =0.85 vy=0.65
61 = 0009, /32 = 0012, V1ig = 057 Vo1 = 0.8 and N = 200.

We see that oy = —0.05,9 = 1.40,m = 8/13 and my = 5/13, where clearly may +
moae = 0.5077 > 0 to four d.p. From Theorem 5.5.9, we expect that for any initial value
(5(0),1(0), R(0)) € (0, N)3, the solution to our stochastic SIRS model (5.2.9) satisfies the
following:

2
2 p1+vr? p2tvz

(i) liminf oo S() = N = % (1+max (525, 725 ) ) =25,

(ii) limsup, . I(t) < 92 = 116.6667,

(iti) limsup, ., R(t) < 32 max (mﬁvl’ ﬁ) = 58.3333,

to four d.p.

The results shown in Figure 5.14 clearly confirm the results given in Theorem 5.5.9.
In addition, the solution path for S(t),1(t) and R(t) illustrated in Figure 5.14 has mean
values of 132.70,53.40,13.920 and variance values of 1226.131,1022.368, 66.8854 (to four
d.p.) respectively.

The results shown in Example 5.5.10 and Example 5.5.11 indicate that regardless
of where we choose our starting values, whether they begin above or below the required

bound, the results given in Theorem 5.5.9 are still satisfied.

Theorem 5.5.12 (a) Assume that Ty > 1 and let I1(0) € (0,N) be arbitrary. If 0 <

% < %, then the following statements hold a.s.:

2
2

() timinfioe S0 2 N = 52 (1+ max (27 25%5)) -

(i) limsup,_, I(t) < 32.

. o Y1 Y2
(1ii) limsup,_,, R(t) < 3 max <m+vla u2+v2> :

(b) If I(0) > 0 under the same conditions the following statements hold almost surely:
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Figure 5.14: Numerical simulations for our solution to (5.2.9) T’ > 1 and the correspond-
ing Markov Chain r(t) using the system parameter values given in Example 5.5.10 where

A = 0.001 days with initial values S(0) = 15,7(0) = 120, R(0) = 65 and r(0) = 1.
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(i) timsup, o, S() < N — (5 = 52 max (2 7)) < (1 +min (2 225 )
(i) Timinfisoo 1(6) > 5 — 5 max (52, 128 ).

Cy e > (o _ a oa Y2 ; 71 72 )
(111) liminf, . R(t) > (Bl 5 max (e, S ) ) xomin (s,

Proof.  The proof for case (a) follows as in Theorem 5.5.9. In order to prove Theorem

5.5.12(b), without loss of generality we may assume that

aq (o7 < 71 2 )
— > —max , .
f1 U1 fe + U2

Suppose that Theorem 5.5.12(bii) is false and choose € > 0 such that

.. o Qg T Y2
liminf I(t) < — — — max , —€ 5.5.47
t=o0 Q Br B ( U1 +vr o+ ’Ug) ( )

on a set (; where P(Q;) = 6; > 0. Moreover by the results of Theorem 5.5.5(b) and
Theorem 5.5.12(aiii)

1
limsup I(t) > <7T1%1 ::__ W222)
i T ™ o m
t= 1 272 1 4+ max <u1+v1’ M2+v2>
and limsup R(t) < 22 m X< n ; > ) ;
t—00 B2 p1+ U1 p2 + U2

on a set {2y where P(25) = 1.

For w € O N Qy, Jt4(w) such that for ¢ > t4,

R(t) < —max( n : 12 ) +e. (5.5.48)
Do p1+ UL ple £ U2
Also by using - < 32, (5.5.47) becomes
liminf I(t) < %2 ax ( n , 72 ) ,
t=ro0 bi o P H1t+ U1 e+ Vs
< ﬂ(1—max< n ) Bt )),
5 p1+ U1 ple £ U2
< limsup I(t). (5.5.49)
t—o00

Hence from (5.5.47) there must exist some t5 and tg where t4 < t5 < tg such that

Q.  Q 4! 2
I(ts) < I(t;) < —— =2 : _e,
(ts) (ts) 51 B2 e (/M + v e +U2> ©
< & (1 — max ( n P )> _ (5.5.50)
B P+ U1 pg + v
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and I(t) is strictly monotonic decreasing in [t5, tg].

Let us now choose t; € (t5,16), not a jump point of the Markov Chain, such that

%(tt)h? < 0. Similar to the proof for Theorem 5.5.9, for r(¢) = 1 we have that

1 dI(t) B
I(t7)7 t = 0 — 51([(t7) + R(t7))7
%) i V2
> o — [il(ty) — By (Emax (/M o +v2) +€) ;
> a1+ (I(t5) - % - I(t7)) > 0, from (5.5.50). (5.5.51)
1

Similarly for r(t) = 2, by using 5 < 5, we have that

> ag—ﬁzl(h)—@(%max( n 12 )‘1‘5)7

pa + v pg + v
a2 %) 4! 2
= ﬁ(--[ﬁ——max( ) >—€),
? B2 (t7) Bo H1+ v g + U2
o1 (%) 4! 2
16} (——[t ——max( , )—E),
? B (t7) B2 p1+ v g+ Vo

Bo &%) T Y2
E |:051_61](t7)_ﬁl <Ema‘x (M1+U1’M2+U2)+6>:|7
> 0 from (5.5.50).

1 dIt)

I(tr) dt

t7

v

v

As a result we have d{i—g)‘ by > 0 which again is a contradiction proving Theorem
5.5.12(bit).

Again, by using Lemma 5.5.4 and that S(t)+ I(t)+ R(t) = N, we obtain the required
results (bi) — (biii). O

Therefore for the case 0 < % < %, we have obtained both an upper and lower bound

for our solution (S, I, R) for our stochastic SIRS model (5.2.9), which is a better result

than in the case % <0< 2.
1 B2

Example 5.5.13 Let us define the system parameter values to be
= 0.85, ps =050, v =0.55, 7 =0.20, v;=0.15, wvy=0.75
61 = 0027 52 = 0012, V19 = 05, V91 = 0.8 and N = 100.
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By using the definition of o, defined in Proposition 5.4.1 and (5.2.8), we deduce that
a; = 0.6,y = 0.5,m = 8/13 and my = 5/13, where clearly m oy + Ty = 0.5615 > 0 to
four d.p. By substituting the appropriate parameter values into Theorem 5.5.12, we would

expect that for any initial value (S(0), 1(0), R(0)) € (0, N)3,

(a) 35.4167 < liminf; ,. S(t) < limsup,_, ., S(t) < 91.7833,
(b) 7.0833 < liminf; ., I(t) < limsup,_,. I(t) < 41.6667,

(c) 1.1333 < liminf; , R(t) < limsup, . I(t) < 22.9167,

to four d.p. almost surely. This implies that regardless of whatever the initial values, the

solution (S(t),1(t), R(t)) asymptotically approaches the appropriate region above.

Once again, we could conclude from Figures 5.15 - 5.16 that the numerical simulations
support our results proved in Theorem 5.5.12. The numerical simulations were repeated

many times with various initial values and the same conclusion was obtained.

We will continue to look at the case where T3 > 1 with 0 < % < 3 but in the

next example we will show that the results given in Theorem 5.5.12 also hold for a larger

population size.

Example 5.5.14 Let us define the system parameter values to be
=085, py =070, 1 =0.75, 9 =0.50, v =0.15, vy =0.75
Bl = 002, ﬁg = 0009, V19 = 05, V91 = 0.8 and N = 300.

By using the definition of o,y defined in Proposition 5.4.1 and (5.2.8), we deduce that
a; = 44,09 = 1.5,m = 8/13 and my = 5/13, where clearly may + T = 3.2846 > 0 to
four d.p. By substituting the appropriate parameter values into Theorem 5.5.12, we would

expect that for any initial value (S(0),1(0), R(0)) € (0, N)3,

(a) 8.3333 < liminf, ,o S(t) < limsup,_,. S(t) < 172.2414,

(b) 96 < liminf, o I(¢) < limsup,_,., I(t) < 166.6667,
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Figure 5.15: Numerical simulations for our solution (S(¢),I(t), R(t)) to (5.2.9) Ty > 1
and the corresponding Markov Chain r(¢) using the system parameter values given in
Example 5.5.13 where A = 0.001 days with initial values S(0) = 60, 1(0) = 25, R(0) = 15
and r(0) = 1.
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Figure 5.16: Numerical simulations for our solution (S(¢),I(t), R(t)) to (5.2.9) Ty > 1
and the corresponding Markov Chain r(¢) using the system parameter values given in
Example 5.5.13 where A = 0.001 days with initial values S(0) = 20, 1(0) = 45, R(0) = 35
and r(0) = 1.
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Figure 5.17: Numerical simulations for our solution (S(t), I(t), R(t)) to (5.2.9) Ty > 1 and
the corresponding Markov Chain 7(¢) using the system parameter values given in Example
5.5.14 where A = 0.001 days with initial values S(0) = 190, 1(0) = 85, R(0) = 25 and
r(0) = 1.

(c¢) 32.7586 < liminf; ,, R(t) < limsup,_ . I(t) < 125,

to four d.p. almost surely. This implies that regardless of whatever the initial values, the

solution (S(t),1(t), R(t)) asymptotically approaches the appropriate region above.

The results are again confirmed by Figure 5.17 showing clearly that even if we choose
some initial values that are outside the regions, the solution path for S(t),I(t) and R(t)
will eventually enter the appropriate required region. Moreover, the solution path S(t), I(t)
and R(t) shown in Figure 5.17 has mean values 101.70,128,70.34 and variance values
646.6665, 119.3072, 381.0576 respectively.
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5.5.1 Ty =1 case

So far, we have looked into great detail on the dynamic behaviour of (5.2.9) under the
thresholds Ty < 1 and Ty > 1. The reader may ask what about the case when Ty = 17
Unfortunately, we are unable to prove the behaviour of our solution (S(t),(t), R(t)) in
this situation. We have however carried out some numerical simulations using the Euler

method to hopefully illustrate the possible behaviour and thus attempt to fill the gap.

Example 5.5.15 Let us define the system parameter values to be
= 0.60, po =025 v =030, 7 =0.15 vy =0.15, vy =0.75,
51 = 0005, ﬂg = 001, V19 = 06, Vo1 = 0.9 and N =100.

Consequently we deduce that oy = —0.40,a5 = 0.60, 7 = 0.60 and m = 0.40, where
clearly moq + mae = 0.

From the numerical simulations shown in Figure 5.18, it appears that the disease will
die out in the case for Ty = 1. Note that in this case, we have oy < 0 and cg > 0, thus we
can see that there are some increasing and decreasing patterns to the solution path for I(t)
gwen in Figure 5.18 which exactly demonstrates the situation where one subsystem dies
out while the other persists. The numerical simulations were repeated around 50 times

with different initial values and the same result was concluded for each simulation.

In order to help us understand the situation where Tj = 1 better, in the next example
we will increase the total population size from N = 100 to N = 200 and analyse the

behaviour of our system with a different set of parameter values.

Example 5.5.16 Let us define the system parameter values to be
= 0.80, ps =025~ =030, 7 =0.15, vy =0.15, vy =0.75,
B1 =0.005, [y =0.00275, v =0.40, 15 =0.60 and N = 200.

Consequently we deduce that oy = —0.10,a0 = 0.15, 7 = 0.60 and m = 0.40, where

clearly m oy + maan = 0.
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Figure 5.18: Numerical simulations for our solution to (5.2.9) with 75 = 1 and the

corresponding Markov Chain r(t) using the system parameter values given in Example
5.5.15 where A = 0.001 days with initial values S(0) = 50,1(0) = 25, R(0) = 25 and
r(0) = 1.

160



150
]

S(®)
|
I(t)
0 20 40 60 80

o |
3 -
o
T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
t t
| © |
o _| —
Q
g € <
& < 7
o —_ L L
° | | | | T | | | |
0 20 40 60 80 0 20 40 60 80
t t
Figure 5.19: Numerical simulations for our solution to (5.2.9) with 75 = 1 and the

corresponding Markov Chain r(t) using the system parameter values given in Example
5.5.16 where A = 0.001 days with initial values S(0) = 70,1(0) = 80, R(0) = 50 and
r(0) = 1.

161



From Figure 5.19, it appears that the disease will also die out in this case for Ty = 1.
Similarly since we have oy < 0 and ay > 0 we have the case where one subsystem will
die out while the other will persist. This is again shown clearly by the increasing and
decreasing pattern in the solution path I(t) illustrated in Figure 5.19. In addition the
solution path S(t),I(t) and R(t) has mean values 191,6.6650,2.353 and variance values
of 228.6190,101.3616, 29.8320 to four d.p. respectively.

In the next section, we will continue to investigate the persistence aspect of our SIRS
model with Markovian switching (5.2.9), but we will be using the theory of Lyapunov
stability (e.g. [69, 72, 120]) as well as the uniform strong persistence theorem, Theorem
5.5.1, to obtain results on the convergence of the solution (S, I, R) to its corresponding
endemic and disease-free equilibria in both state 1 and state 2 under the persistence

it al «~ az ar az
conditions 0 < 5 < 5 and 5 <0< 5

5.6 Lyapunov Stability

When analysing the behaviour of a dynamical system, one of the significant aspects would
be the stability of the solution. There are various types of stability, but the most important
one is the stability of a solution near its equilibrium point, in other words will the solution
converge to its equilibrium point or will it diverge? This aspect of stability could be
discussed by using a Lyapunov Theorem, which is what we shall look at in this section.
By combining the results from the uniform strong persistence theorem, Theorem 5.5.1, we
have obtained some very useful results which further enhance our understanding about
the SIRS model with Markovian switching. Before we begin, it is important to find out
what are our endemic and disease-free equilibria for both states 1 and state 2. By setting

digt) = d;gt) = dlzgt) = 0, it is easy to see that the DFE is (NNV,0,0) while the endemic

equilibria for state 1 and 2 are:

N
G — 5.6.1
1 RO,'L’ ( )
i T U 1 i T U i
[ i (1— )N:—“ v (3) (5.6.2)
i + Ui + Y Ry i +v; + v \ B
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i 1 i i
R=— 1" (1 - ) N=_ T (3) , (5.6.3)
Wi + U + Y Ry i + v + v \ B

where RD = 5; is the basic reproduction number when the Markov Chain is in state ¢
fori=1,2.

Theorem 5.6.1 Assume that Ty > 1 and 0 < 7 < F and let (5(0),1(0), R(0)) €
(0, N)? be arbitrary and let the switching times of the Markov Chain be 0 = 19 < 7 <

.. < 1 where T, — 00 as k — 0o. Define the Lyapunov function to be:

Vi(e) = — I* — I*log ([> 257’1(3 RY)?, (5.6.4)
where x = (S(t),I(t), R(t)), for i =1,2. Let us define
U=y
H) = Tar
R =112 - g (12,
— J*)? Z

R

Then it is easy to see that fi(I}) = fo(IF) = f3(IF) = fi(I}) = fA(I}) = fi(I}) =0 and
e\ L "erEy i * 2

Note that by considering the Taylor series expansion about I = I for € small enough,
say € < &1 then

1
AT

I [ —I7)?
(I—I)2<I—1I—1Ilog (1) < % (5.6.5)

in (I} —e, I} +¢), fori=1,2.
For any e < &1 sufficiently small, the Lyapunov function (5.6.4) for our SIRS model

with Markovian switching has the properties that:

2 2
P {lim inf Vi (t) < 5—51 (1 + (1 + v+ ’Yl))} > ¢ vi2Ti(E) (5.6.6)
t—>00 2(#1 + Ul) aq
and
2 2
P {hm ll’lf‘/z(t) < 8—52 (1 + (/’L2 + vg + 72)) } > €_V21T2(8), (567)
t—o0 2(,&2 + Ug) &%)

where Ty (e) = % >0 and Ty(e) =

w
€282
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Proof. By differentiating the Lyapunov function (5.6.4) and using that R} = o + , thus
—vilF 4+ (1 +v;) Rf = 0 we have that
dV; ov;dl ~ 0V;dR
g~ oldt  ORdt
= (BST — (i +i)I) (1 - 7) (
= (8BS — i — ) = I}),

Bi

%) (R~ R = G+ )R

/874 * * *
#(2) (= RO = 1) = -+ v) (R - R (5.6
After some simple algebraic manipulations, consequently, (5.6.8) becomes
dV; i T Vi) Di
= =B I) - M(H — RN <. (5.6.9)

Thus, V;(x) > 0 and Vj(x) < 0 with equality if and only if I = I* and R = R?. If there
is no switching then V;(x) is a Lyapunov function and the endemic equilibria (S}, I, R})

given by (5.6.1)-(5.6.3) are globally asymptotically stable, i.e. S — Sf, I — I} and

R — R} as t — oo, whatever the initial condition.

We shall now prove the results with switching time involved. The proof will split into
two parts, corresponding to the Lyapunov functions for state 1 and state 2. First of all,

we will show that the result holds in state 1.

(i) By the uniform strong persistence result shown in Theorem 5.5.1, Jt;, W < oo

such that for ¢ > t,

Vilx)=1-1;— [*log<I*) ﬁ;(R R})?<W < o0, (5.6.10)

and max(Vi(t), Va(t)) < W.

Define a stopping time
=inf{t >t :r(t)=1}.

Clearly, P(0; < oo) = 1, and by the right-continuity of the Markov Chain, (o) = 1.

Define
_ Vi)

Ti(e) 24, < 00, (5.6.11)
and note that
Vilo w
Ti(e) = ;2<511) <Ti(e) = 25, a.s. (5.6.12)



By the memoryless property of an exponential distribution, the probability that the
Markov Chain will not jump to state 2 before o1 + T7(¢) is

P() = e~ Ti(E),

where Q) = {w:r(oy +1t) =1,forall t € [0,7](¢)]}. Consider any w € Qy on [o1,01 +

T} ()] and suppose that

(1 + Ul)ﬁl(
M

—B(I = 1) - R— R} < =By, (5.6.13)

in this region, which by rearranging implies that

(11 +v1)

I_]*2+
(1 -1 +

(R—R})?>e*>0, (5.6.14)

for t € [o1,01 + T](g)]. As a result, for t € [0y, 01 + T](g)], (5.6.9) becomes

dV;
- < —£28,. (5.6.15)

Thus, after integrating we deduce the following:
0 < Vi(or +T1(e)) < Vi(or) — e2Bi(T7(e)), (5.6.16)
from which by substituting 77 (¢) by its definition in (5.6.11), we could conclude that

Vi(oy + Ti(e)) = 0. (5.6.17)

However, if we recall the Lyapunov function given by (5.6.4), it is only equal to zero
if and only if I(0q + T7(¢)) = If and R(oy + 1{(¢)) = R}j. This clearly contradicts our
assumption given by (5.6.14) for t € [0y, 01 + T{(¢)]. Thus, we must have instead

ot — 1+ P e <, (5.6.18)
1
for some s € [0y, 01 + T](¢)]. Note that at time s, from (5.6.18) we have that

(I —1I7)? &2 v

<— and (R-R})’< : 5.6.19
Tt W= 619
Therefore, if € < €1, then by using (5.6.5)
IN (-2 &
0<I-—-Ify-1I1 — < — < . 5.6.20
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By using (5.6.19) and (5.6.20), the Lyapunov function (5.6.4) at time s is bounded above
by

g2 g2
Vi(S) < — + ﬁl ( 7 ) :
I 2y \ + vy

= 2 (l n L) . (5.6.21)

It 2(py + 1)

Recall from (5.6.2) that I} = ﬁ (%) hence (5.6.21) becomes

(5.6.22)

Vi(s) < 22 {(M + v+ 1) n B } '

(1 + 1) 2(p1 +v1)

Consequently, if 7" > 0,

IP’{ i Vi) < -0t (Mlﬂﬁ%)

T<t<oo 2(p1 + v1) o

i 1>} >P() = el

> e 2@ (5.6.23)

where T} (e) = % defined as before.

Note that
2 2
i—¥co 2(p1 + 1) aq
2 2
_ ﬂ ( inf Vi(t) < eb ( (M1+U1+71)+1)>'
b ey \TSt<00 2(p1 + v1) Q1

By letting " — oo in (5.6.23), we have obtained our desired result (5.6.6).
(ii) The proof for state 2 follows similarly and thus we have the desired result (5.6.7).
U

Theorem 5.6.1 shows that our solution (S(¢), I(t), R(t)) can approach either endemic
equilibrium (S}, I, R}),i = 1,2 arbitrarily closely with strictly positive probability.

17

From Theorem 5.6.1, we could derive another way of analysing the rate of convergence.
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Corollary 5.6.2 Ife < ey, then

P { li%ninfmaxﬂS —Si, I - I{|,|R — Ri|}
—0Q
— . \/4+ 201 i M (2(N1+U1+’71) +1>
1+ v +m M1+ U1 Qaq

> e2Ti(e) (5.6.25)

and

IP{li%ninfmax{|S—S§|,|I—]§|,|R—R§|}
— 00
2 2
<e \/4+—a2 + 7 ( (“2+U2+%)+1>
o + V2 + 72 Mo + U Qg

(5.6.26)

> 6*1/21T2(€)

- Y

where Ty(e) = %,Tg(e) = Y and &, is defined as in Theorem 5.6.1. Recall that

5252 )

o = BN — pi — .

Proof. Similar to the proof for Theorem 5.6.1, we shall split this proof into two parts,
each dealing with the results for state 1 and state 2. We shall begin by looking at state

1 and the result will follow similarly for state 2.
(1) Recall from (5.6.5) that for [ € (I} — ¢, +¢) and € < ¢y

1 I I — %)
- npsn-n -y (1) < L (56.27)
1 7 7

which implies that if (5.6.18) holds for ¢ € [0, 01 +T7(¢)] then for some s € [0y, 01417 (€)],

1 26 2(p1 +v1 +m)
I-I)°< < 1. 6.2
4[1-*( Z) - Vi(S) - 2(/111 + ’Ul) ( aq + (5 0 8)

By rearranging the above expression, and taking the square root we deduce that

20(1

e S (5.6.29)
w1+ v +m

I — I} gg\/ll—i—
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Recall again from (5.6.4) that

I
Vi(s)=1—1IF — I*log <I—) + %(R — R})?, (5.6.30)
1

which by using (5.6.28) and some simple rearrangement gives that

yR(s)—Rﬂss\/ il (2(“1+U1+%)+1). (5.6.31)

H1+ U1 (%

By using S(s) = N — I(s) — R(s) and S} = N — I — Rj, then

15(s) =51l = [N —=1I(s) = R(s) = (N = I = Ry)],

< () = [T+ [R(s) — Ry,

) 2
< e \/4+ R i ( i + 01+ 7) +1) . (5.6.32)
M1+ +m H1 U1 (e%1

So max{[S(s) — S|, [1(s) = I{], [ R(s) — R}

2 2
<e \/4+L+ I ((“”LU”L%)H) .
1+ v +m p1+ v Qaq

Arguing as in the proof of Theorem 5.6.1 it is easy to see that (5.6.25) holds.

(17) The proof for state 2 follows similarly. O

Corollary 5.6.2 shows similarly to Theorem 5.6.1, but using the Euclidean metric in-
stead of the metric induced by the Lyapunov function, that the solution (S(t), I(t), R(t))
can approach either endemic equilibrium (S}, I}, R}) arbitrarily closely with strictly pos-
itive probability.

In Theorem 5.6.1 and Corollary 5.6.2 we have been focusing on analysing the persis-
tence condition where 0 < o< % by using Lyapunov stability. We will now complete
the results on persistence by obtaining results on the convergence of the solution (S, I, R)

to its corresponding disease-free and endemic equilibria under the condition % <0< %

Theorem 5.6.3 Assume that Ty > 1 (namely moq + maan > 0) and % <0< % Let

(So, Io, Ro) € (0, N) be arbitrary. Then the solution to (5.2.9) has the properties that
(i) If € > 0, then

2
P <hm inf max(|N — S|, |I|,|R|) < ¢ (1 + =1 )) > e7v12Ti(e), (5.6.33)
t—00 H1 4+ v1
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where Ty () = t1(e) + t2(e) and t1(g) and t2(g) are defined as:

azlog (¥), ifN=e T log (Gt ) Y > e
3 (8) _ ) b (6 ) and 1?2(6) _ ) mtu (p1+v1)N 7
0, if N < e. 0, z'fwﬂ%w<5,
(5.6.34)
respectively.

(i1) If € > 0 is small enough such that

2 max(y1,72) ﬂ

min(pn + vy, o + v2)

1 |:041 — 5125 (1 +

2 max(7v1,72)
+ — fo2e | 1+ — >0, (5.6.35
" [ozg e ( min(u; + vy, pa + vg) ( )
? 2
then P { lim inf Va(t) < &P (1 i (12 + v2 +72)>} > v Tale),
fmro0 2(p2 + v2) Qg
(5.6.36)
where Ty(e) = ‘;;/2(;) and W (e) = max{N — I} — I} log(%), e—0L -1 log(%) }Jr%]\ﬂ <

0o. Note that Vi(x) denotes the Lyapunov function which is defined as in (5.6.4) in
Theorem 5.6.1, fori=1,2.

Proof. As mentioned previously, due to the condition % <0< %, we have Ré?l <1lin
state 1 and thus if we stay in state 1 long enough, the system will tend towards its DFE
which is illustrated by (5.6.33) in case (¢). If, however, the system stays in state 2 long
enough, then the solution will tend to its endemic equilibrium and thus the disease will

persist, which is given by (5.6.36) in case (ii). First we will prove the result in case (7).

(7): Suppose that € > 0. Define a stopping time such that
oy =1inf{t > 0:7(t) =1}.

Clearly, P(0; < o0) = 1 and by the right-continuity of the Markov Chain, r(o;) = 1. By
the memoryless property of an exponential distribution, the probability that the Markov
Chain will not jump to state 2 before oy + T3 (¢) is

P(Qy) = e 121,
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where ; = {w: (0 +1t) =1,for all t € [0, (¢)]}. Consider any w € € on [0, T} (e)],
then by using S(t) = N — I(t) — R(t), it is easy to see that
dI(t)

dt

BSOI(t) — (pn +n)I(1),

all(t) = Bul(t)?,

—BuI(t)?

— el (t). (5.6.37)

INIA

IN

provided I > ¢ > 0, which after integration becomes
I(oy +1t) < I(o))e ¥t < NemPet, (5.6.38)

If N > ¢ then (5.6.38) shows that by time ¢;(g), I(t) must drop to a level at most ¢ where

F(e) = é log (g) | (5.6.39)

On the other hand if N < ¢ then I(0) < N < ¢ and thus #;(¢) = 0. Arguing as in the
uniform strong persistence theorem, Theorem 5.5.1, and using (5.5.8) we know that for

t > ti(e) + t2(e),

2’)/15

R(o1 + 1) < : 5.6.40
o4t <205 (5:6.40)

—L_Jog < L ) | if e < N
where  f(e) =< M Nlurton) " (5.6.41)

0 if £ > (ol

Y 1 *

Hence for t > t;(g) + ta(¢), we have that
2
IN = S(o1+t)|=1(01+t)+ Ry +t) <e (1 =1 ) . (5.6.42)
p1 + 1
Thus we could see from (5.6.42) that
max [N — S(O’l + 51(8) + 1?2(6)), I(O’l + 51(8) + 52(6)), R(O’l + 1?1(6) + 2?2(8))]
2
<e (1 Sl > . (5.6.43)
B+ v

As this result is true for each w € €, we have that

]P{ max [|[N — S(o1 + t1(e) + t2(€))|, I (01 + t1(g) + ta(e)), R(o1 + t1(g) + t2(e))]

<e (1 4 _2m ) } > 71211 (5.6.44)

M1+ 1
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where T1(g) = t1(¢) + t2(¢). Consequently, if 7' > 0, then

IP’{ inf max ([N — S(t)],I(t), R(t)) < ¢ (1 4 2m )} > 72D (5.6.45)

T<t<oo M1+ Ur

Note that

(liminfmaX(|N— S|, I(t), R(t)) < e <1 L n ))

t—00 M1+ U1

- N (Tgigm max ([N — S(0)]. I(t), R(t)) < ¢ (1 + uffful)) |
<T'<oo (5.6.46)

By letting 7" — oo in (5.6.45), we have obtained our desired result (5.6.33).

(77) Recall that (5.6.35) holds which is inequality (5.5.13) with ¢ replaced by 2¢ since
¢ is small and thus we can extend the result to 2. Note also that when r(t) = 1, Ré?l <1
and also 4 < (oq — B11(t))I(t) < 0. Hence, if 2 denotes the whole sample space, given
w € Q and t3(w) > 0, for ¢t > t3(w), I(t) must rise up and over the level ¢ at some time
ty(w) > t3(w). So Fts(w) > t3(w) with I(t5(w)) = € and r(t5(w)) = 2. Also note that
Va(ts(w)) < W(e) where Vi(t) denotes the Lyapunov function in state 2 given by (5.6.4)
in Theorem 5.6.1 and W (e) is a constant.

Now arguing as in the proof of Theorem 5.6.1 but now starting at ¢s5(w) not oy, i.e.

define a new stopping time
ts(w) = 1inf{t > 0:r(t5(w)) =2, I(t5(w)) = €},

we will have the required result namely,

2 2
P {tim inf Va(t) < —= 22 (2t v £92) |\ s ommte) (5.6.47)
t—o0 2(,[12 + Ug) (6%
where Ty(e) = ) and W (e) = max{N — I3 = I log (). [ =I5 — I3 log () | } + 22 N? <
0o, which could be easily derived from (5.6.10). O

In this theorem, we have obtained interesting probabilistic results on the convergence
of the solution (S(¢), I(t), R(t)) to the stochastic SIRS model (5.2.9) to its corresponding

disease-free and endemic equilibria.

The following corollary follows from Theorem 5.6.3.
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Corollary 5.6.4 Ife < ¢y, then:

P { li%ginfmaxﬂS - S3|,|I = I|,|R — R3|}
< \/4 i 2042 I Y2 (2(/112 + U9 + ’}/2) + 1)
M2 + V2 + Y2 o + Vo Qo

: (5.6.48)

> e—l/leQ(E)

where Ty(e) = gi) and €1 is defined as in Theorem 5.6.1.

Proof. The proof is similar to the proof for Corollary 5.6.2.

5.7 SIR Model with Markovian Switching and Measles

The Susceptible-Infected-Removed (SIR) model with two-state Markovian switching

ds(t

% = =By I(O)St) + ey N — pirnyS(2),

dI

# = B ()S() = (v +30) (1), (5.7.1)
dR(t

% =Y (1) — ey R(2),

is a special case of the SIRS model (5.2.9) which we have been looking at throughout
the chapter. In fact, we could easily derive the corresponding extinction and persistence
results for the SIR model with Markovian switching by simplying setting one of the
parameters, namely vy, in (5.2.9) to zero. In order to illustrate the results for the SIR
model with two-state Markovian switching (5.7.1), we have constructed realistic numerical

simulations using realistic parameter values based on the real life disease measles.

5.7.1 Measles

The measles virus is a single stranded RNA paramyxovirus, genus Morbillivirus where
its nucleocapsid is surrounded by two types of envelopes, the lipid- and glycoprotein-
containing envelope (e.g. [94, 111]). As mentioned before, there are many environmental

factors that could affect the behaviour of a virus, for example temperature, humidity,
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pollution and sunlight [116]. It turns out that airborne viruses with lipid envelopes such
as measles virus are more likely to survive better and longer at a lower relative humidity
(20 — 30%) condition as opposed to a higher relative humidity (70 — 90%) condition
(65, 116]. As a result switching between two seasons where the relative humidity differs
greatly could have an impact on the measles virus survival rate in the air and thus
possibly affect the disease transmission rate to switch. Although in real life, things are
more complex, we hope that by choosing the appropriate parameter values for measles
in the UK, we could construct numerical simulations to illustrate such a situation. Note
that in this section, the unit of time is still one day but the population sizes are now

unscaled.

Example 5.7.1 According to the Global Health Observatory Data Repository of the World
Health Organisation [129], the total UK population size in 2012 was 62,783,000 while
the UK crude death rate per 1,000 population in the same year was 8.9, hence making
p = 2.43836 x 107°/day. The average infection period for measles in the UK is T days,
thus making v1 = o = 1/7/day [9]. Furthermore, let us now define 5, = 3.072x 1078 /day
(to four significant figures) corresponding to RE = 13.5 and B, = 3.641 x 1078 /day (to
four significant figures) corresponding to RE, = 16. Note that both By and By are chosen
so that R, and RE) lie in the range 11 — 18, which is the Ry range for measles [9].

As a result, we have that oy = 1.785812/day and ay = 2.143048 /day. Moreover, let
us set vio = 0.0005/day and ve; = 0.0008/day, then m = 8/13 and my = 5/13. As a
result, we deduce that aqm + agmy = 1.92321 > 0. In other words, we have that TOS > 1.
Note that for this case we have Z—i = % By setting v, = 0, we could conclude from
Theorems 5.5.2-5.5.7 that, for any given initial value (S(0),1(0), R(0)) € (0,N)3, the
solution to the stochastic SIR model (5.7.1) satisfies

(a) liminf, o S(t) < N — DOEm02 — 4 341 787 a.s.,

(b) limsup, . S(t) > N — TLatmaz — 4 341 787 a.s.,

mp1+m282
. . + 1 _
() liminf, oo 1(t) < Btz Ty %9 .
- + 1 _
(d) limsup,_, . I(t) > <7;11%1+:§g§> —Cey 9,973 a.s.,
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(¢) R =liminf, ,oc R(t) >0 a.s.,

(f) R =limsup, . R(t) < smporosdids) . — 62,772,286 < N a.s.

max(y1,72)+min(p1, 12

In other words, the number of susceptible and infected individuals will always return to
the vicinity of the level 4,341,787 and 9,973 respectively almost surely, while the limiting
number of recovered individuals has almost surely a strictly positive limiting lower limait

whilst its limiting upper limit is at most 62,772,286 almost surely.

From Figure 5.20, we could see clearly that the numerical simulations support our
theoretical results by showing our solution to the SIR model with Markov switching (5.7.1)
oscillating about the levels we expected. Again the numerical simulations were repeated

for around 50 times with different initial values and the same conclusion was achieved.

5.8 Generalisation

As mentioned at the beginning, in order to allow us to understand the results better,
we have been focusing on analysing the behaviour of our SIRS model with two-state
Markovian switching (5.2.9). However, all the results we have obtained in this chapter
could be easily extended to a finite state space Markov Chain S = {1, 2, ..., M} by using the
fundamental concepts for finite state Markov Chains mentioned in Section 5.2.1. Note that
by following a similar procedure as for the two-state Markov switching, we can show that
for any given initial values (Sp, Iy, Ry) € (0, V), there exists a unique solution such that
(S(t),I(t), R(t)) € (0, N) with probability 1 for all ¢ > 0. In the general finite state space
Markov Chain, it is possible to derive an explicit expression for the basic reproduction
number R in the stochastic Markov switching model analogues to the corresponding R3

for the two-state Markov switching case [41], namely

a; + ag + \/(al + a9)? — dajas(1 — p)
2(1-p) ’

expressed as the largest eigenvalue of a positive matrix.

Ry = (5.8.1)

Let us first generalise the expression T;) given in (5.4.1) as
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Figure 5.20: Numerical simulations for our solution to (5.7.1) Ty > 1 and the correspond-
ing Markov Chain r(t) using the system parameter values given in Example 5.7.1 with
A = 0.001 days with initial values S(0) = 2,779,000, I(0) = 4,000, R(0) = 60,000, 0000
and r(0) = 1.
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TS _ Soniy mBk N
O — .
224:1 (i + Vi)

Similar to Proposition 5.4.1, we have the following alternative conditions on the value

(5.8.2)

Ty for a finite state space Markov switching.

Proposition 5.8.1 Let us define o,y as before, then we have the following alternative

ways of interpreting T, 69

e T¥ <1 S may <0,
° T§:1@Z£4:17Tk04k20,

° Tég > 1<:>Z£ilﬂ'kak > 0.
For Ty < 1, Theorem 5.4.2 can be generalised as follows:

Theorem 5.8.2 If Ty < 1, then for any given initial value (Sy, Iy, Ry) € (0,N)3, the
solution of the stochastic SIRS epidemic model obeys

(i) limsup,_,., 1log(I(t)) < SM o <0 a.s.,
(11) limy_oo R(t) =0 a.s.,
(117) limy_,oo S(t) = N a.s.
By the above result, we hence conclude that I1(t) tends to zero exponentially and R(t)

tends to zero as t — oo, thus making S(t) tend to N as t — oo almost surely. In other

words, the disease will die out with probability one and the solution will tend to its DFE
(N,0,0).

For the case of T > 1, the uniform strong persistence result given in Theorem 5.5.1

can be generalised as follows:
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Theorem 5.8.3 (Generalised uniform strong persistence) Suppose that 1(0) > 0

Case (a): If 0 < % < % <. < %—;‘j, I >0 independent of the initial conditions
such that

liminf I(t) > & >0 a.s. (5.8.3)

t—o0
In other words the SIRS model with Markov switching is almost surely uniformly persis-
tent.
Case (b): If Ty > 1, that is Z]k\ilmak > 0 and g—j < 0 for some j € (1, M — 1),
then given 61 > 0,3’ > 0 such that Vt; > 0, I(t) > &' for some t > t; on a set ; where

P(Qq) > 1 —06,. To put this another way,

liminf I(t) > 0 a.s.

t—o00

The results shown in Theorem 5.5.2 for the two-state Markov switching can be ex-

tended to a more generalised case.

Theorem 5.8.4 If T3 > 1, then for any given initial value (S(0),1(0), R(0)) € (0, N)3,
then the solution S(t) of the stochastic SIRS model has the properties that:

Mﬂ'Oc
@HmmhmﬂﬂgN—%ﬁii a.s.,

. _ E:Qilﬂkak
(b) limsup, . S(t) > N > A

In other words, the number of susceptibles will reach the neighbourhood of the level N —

M
Ek:l TR

S infinitely many times almost surely.
k=1T

Lemma 5.5.4 can be generalised as follows:
Lemma 5.8.5 Given g1 > 0,

(1) If I(t) > & fort > ty,3t1 > to such that fort > ty,

mwzgmm( LY — L )a—&y
M1+ U1 f2 + U2 M+ U

(1) If I(t) < & fort > tg, 3ty >ty such that fort > tq,

R(t)ggmax< n : e e el )(1+61).
M1+ U1 g + v My + vy
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Theorem 5.5.5 and Theorem 5.5.7 respectively can be generalised as follows:

Theorem 5.8.6 If Ty > 1, then for any given initial value (S(0),1(0), R(0)) € (0, N)3,
the solution 1(t) of the stochastic SIRS model has the properties that:

M
. . _ 1 O
(a) liminf, o I(t) < (Z’f\zl k ’“) L - a.s.,
Zk:l Tk Bk 1+min( ol s 72 yeeny M )
w1tvy’patug KA tUN

: S b ROk 1
(b) limsup,_, . I(t) > a.s.

Z)Iy:lﬂ'kﬂk> 1+max( 1 s 2 M )

pitvy T potue T ppr v

So given € > 0 the number of infectives will enter between the levels

M
Zk 1 Tk 1 D k1 Tk 1
and + €
M oq 1 2 YM M o . ( 1 72 YV )
k=1 & Bk l—l—max<u1_‘_v1 rrewy ,..A,#M+UM> k=1 Bk 1+min PEETRyTEET R rrymwrrys

infinitely often almost surely.

Theorem 5.8.7 If Ty > 1, then for any given initial value (S(0),1(0), R(0)) € (0, N)3,
then the solution R(t) of the stochastic SIRS model has the properties that:

(a) liminf, o, R(t) >0 a.s.,

: N max(y1,72,.-,YM)
(b) limsup, o R(t) < max (71,72, Ya ) tmin(p1 +v1,p2+v2,... LA +UM) <N as

In other words, the limiting value of the number of recovered individuals will be strictly

N max(y1,72,--,YMm)
max(y1,y2,--,Yar ) +min(p +v1,p2+ve,..o o

positive and will not ultimately exceed ) almost surely.

Theorem 5.5.9 can be generalised as follows:

Theorem 5.8.8 Assume that Ty > 1 and let 1(0) € (0, N) be arbitrary. If % <0 for

some j € (1, M — 1) and F<F<< M - then the following statements hold almost

B2 — Bm
surely:
0 02 3 1 ()
fii) limsup, . (1) < 2.
i) Nnsspe o R(0) < 5 e (o )
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Theorem 5.5.12 can be generalised as follows:

Theorem 5.8.9 (a) Assume that Ty > 1 and let 1(0) € (0, N) be arbitrary. If 0 < o<

e} [}

=<, then the following statements hold almost surely:

(i) liHlinft%oo S<t) > N — g_]\l\j <1 + max <u1ﬁv1’ B MI\]iIU]M)> ’
(it) limsup,_,, I(t) < GA.
(ii) lim sup, ., R(t) < 3 max <MEU1 e #waw> :

(b) If 1(0) > 0 under the same conditions the following statements hold almost surely:

1 < (o1 am o M
(Z) limsup,_, S(t) <N (51 B AKX o umtvm
: Y1 Ym
X 1+mm<u1+v1"”’uM+vM>>'

1) lim i > 8 _ oM U i .

(1) liminfy o I(t) =2 G+ — G max { -, e

. . . > o1 apm Y1 YM : Y1 YM
(Z”) lim 1nft—>0<> R(t) = <51 B max S AR S VE S 5V X i pitor? " pptun )T

The results on Lyapunov stability shown in Section 5.6 can also be extended to the
finite state Markov chain. Theorem 5.6.1 can be generalised as follows:
Theorem 5.8.10 Assume that TOS >1and0 < % <22 L. S ogpgd et
1 B2 Bm
(5(0),1(0), R(0)) € (0, N)? be arbitrary and let the switching times of the Markov Chain

be 0 =19 <71 <...<T where 7, — 00 as k — o0o. Define the Lyapunov function to be:

1 i
Vi(eg) =1—1I— I} log (F) + 2ny<R — R})?, (5.8.4)

where & = (S(t), I(t), R(t)), fori=1,2,..., M. Let us define

u-ry
fill) = A
Ry = 11170 (1)
— [*)? Z
fsI) = %

)

(5.8.5)
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Then it is easy to see that fi(I}) = fo(IF) = f3(IF) = fi(I}) = fA(I}) = fi(I}) =0 and

1 1 2

"I = — @ o — I = —.
1(1) 2_[2*7 2(1) IZ'*’ f3(2> I,L*

Note that by considering the Taylor series expansion about I = I for € small enough,
say € < g1 then

I

(I—I)?<I-1I—1Ilog (I—) <

1
AT

(L= 17)
I

(5.8.6)

in (I —e, I} +¢), fori=1,2,... M.
For any e < &1 sufficiently small, the Lyapunov function (5.8.4) for our SIRS model
with Markovian switching has the properties that:

23, 2 11 ) .
P Lliminfvi(t) < — <0 (14 2t s EWN LS e (5.8.7)
t—00 2(p; + vy) o

where T;(g) W_ >0 fori=1,2,...,M and for some constant W. Note that ®; = v;;

B

where vy is defined as in Section 5.2.1.
Corollary 5.6.2 can be generalised as follows:

Corollary 5.8.11 Ife < ey, then

P { li{ninfmax{\s =S, |1 =1I}|,|R— R;|}
— 00

20 i 2(ps + v + 7
S e TR PR ETETE IR
i + Vi £ i Hi + v Q;

> e®ilile), (5.8.8)

where T;(g) = %, fori=1,2,..., M and for some constant W. Note that €1 is defined
as in Theorem 5.8.10. Recall that a; = B;N — p; — ;.

Theorem 5.6.3 can be generalised as follows:

Theorem 5.8.12 Assume that TS > 1 (namely Yoo, mpay, > 0) and ;—j < 0 for some
je€ (1,M—1). Let (So, Ly, Ro) € (0,N) be arbitrary. Then the solution of the stochastic
SIRS model has the properties that
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(i) If e > 0, then

Iy
P (tlim inf max(|N — S|, |I|,|R]) < e <1 TR )) > ®isT1(e) (5.8.9)
—00

i+

where Ty (e) = t1(e) + t2(e) and t1(g) and t2(e) are defined as:

azlog (%), fN=>e fl_log( - ) if WatedN o
fl(g) = Bje (6) and 52(5) = it (j+v;)N pp
07 ZfN < E, 0’ Zf (/Lj-‘t:y':j)N < 87
(5.8.10)
respectively.

(i) If € > 0 is small enough such that

2 max(y1, - . ., yar) >]

min(ul + Uty ooy Upr + UM)

2max(vi, ..., Ym) )}
4+ 47 ang — 2¢ | 1+ - >0, 5.8.11
M{ = Bu < min(uy + vy, ..., par + ag) ( )

1 |:Oél — 5128 (1 +

23, 2 11 ) A
then P oiminfvi) < —=0 (14 20 e NS ene 5819
t—00 2(pi + vi) Q;

where Ty(e) = 519 and W (e) = max{N — I} — I} log (%), |e —I; — I} log (=) JN? <
oco. Note that V;(x) denotes the Lyapunov function which is defined as in (5.8.4) in

Theorem 5.8.10, fori=1,2,..., M.

Corollary 5.6.4 can be generalised as follows:
Corollary 5.8.13 Ife < ey, then:

P{ligninfmaxﬂS— SH I = IF|,|R— R;|}
—00
20 i 2(ps + v + 7
<5<\/4+$+\/ o] ((u+v+7)+1>)}
Hi + Ui + i Hi + U; Q;

> Pulz(e) (5.8.13)

where Ty(e) = V:;(;) and &1 is defined as in Theorem 5.8.10, fori=1,2,..., M.
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5.9 Summary

There are many environmental factors that could affect the behaviour of a population
system such as the availability of food and temperature [116]. Motivated by Gray et al.
[41] we have examined the effect of environmental noise on a more complicated model, the
SIRS model, by using the concept of Markovian switching to include telegraph noise into
the SIRS model with two-state Markov switching (5.2.9). We have obtained the conditions
needed for almost surely extinction and persistence using the threshold 7y which was also
used in [41]. In Theorem 5.4.2, we showed that if Ty < 1 then the disease will go extinct
almost surely. On the other hand if T > 1, then the disease will persist almost surely
(Theorems 5.5.2, 5.5.5 and 5.5.7). In Theorems 5.5.9 and 5.5.12 we obtained two sets of

persistence conditions for the two possible cases in which T} > 1, namely % <0< B

and 0 < 3+ < 32 Furthermore by using the uniform strong persistence result for / (1),
(Theorem 5.5.1) and the Lyapunov stability theorem, we managed to obtain probabilistic
results on convergence of our solution to the disease-free and endemic equilibria in Section

5.6.

Throughout the chapter, numerical simulations were produced to support and il-
lustrate our theoretical results. The results obtained for the two-state Markov Chain
S = {1,2} could be easily extended into a more general Markov Chain S = {1,2,..., M }.
Furthermore the SIR model with Markov switching is a special case of the SIRS model
and more importantly the extinction and persistence results for the SIR model could be
obtained simply by setting v; = v, = 0. As a practical example, we constructed a nu-
merical simulation using realistic parameter values for measles to support the theoretical

results for the SIR model with Markov switching after setting v; = vy = 0.

Most of the work mentioned in this chapter has been written up as a paper and has

been submitted to a journal and is currently under review.

In the next chapter we will look at a more specific model with environmental stochas-

ticity introduced using a different method than we have done in Chapter 5.
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Chapter 6

A Stochastic Differential Equation

Model for the Spread of HIV
Amongst People Who Inject Drugs

6.1 Introduction

Inspired by the model constructed in [43], in this chapter we will introduce environmental
stochasticity into the model by parameter perturbation which is a standard technique
in stochastic population modelling [28, 29, 40, 63]. To the best of our knowledge, we
are the first to examine the effect that environmental stochasticity has on the dynamical
behaviour of the modified Kaplan model [43]. The techniques used in this chapter are
inspired by the work done in [40]. The chapter is organised as follows. In the next section,
we will describe the formulation of the stochastic HIV model amongst PWIDs. In Section
6.3, we shall prove the existence of a unique nonnegative solution. In Sections 6.4 and 6.5,
we will investigate two of the main important properties of any biological system, namely
the conditions required for extinction and persistence respectively. Then in Section 6.6,
we shall show that there exists a stationary distribution for our system. Finally, we will

perform some numerical simulations with realistic parameter values to verify the result.

Most of the work in this chapter has been written up as a paper and has been published
in [82].
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6.2 The Stochastic HIV Model

Throughout this chapter, we let (2, F, {F:}+>0, P) be a complete probability space with

filtration {F; }+>¢ satisfying the usual conditions (i.e. it is increasing and right continuous

while Fy contains all P-null sets). Let us consider the following deterministic HIV model,

which has been constructed by Greenhalgh and Hay [43] based on the model of Kaplan

[66]. Define the following parameters:

)\12

/\22
Pll

shooting gallery visiting rate for susceptible PWIDs and the PWIDs who are
infected but do not know they are infected;

shooting gallery visiting rate for infected PWIDs who know that they are infected;
probability that the needle is flushed and the PWID is infected;

probability that the needle is flushed and the PWID remains uninfected;
probability that the PWID becomes infected without the needle being flushed;
probability that the PWID remains uninfected and the needle is not flushed;
probability that an infected PWID leaves uninfected a syringe that was initially
uninfected;

probability that an infected PWID leaves uninfected a syringe that was initially
infected;

fraction of all PWIDs (susceptible or not) who bleach their injection equipment
after use;

gallery ratio, where v = * and n represents the PWID population and m rep-
resents the number of shooting galleries or syringes that each PWID visits at
random,;

probability that infected PWIDs know that they are infected;

per capita rate at which infected PWIDs cease to share injection equipment (in-

cluding those who cease sharing because of developing AIDS).

Note that P, + P, + Ps + P, = 1. In real life situation, whether or not a needle is

left infectious after being used by an infected addict may depend on various factors, for

example the volume of blood left in the needle and the average viral load of that blood.

As a result, it is possible for ¢; > 0 though the probability might be small.

184



Define the following new composite parameters:

o= [M(1—=p)+Xap]y(1 = (1 = ¢),
n=[A(1—=p)+Xep] v [+ 0:i(1 =),
p=My[1-(1-8A - P —P),

v =M (P, + P).

(6.2.1)

In the expression for ¢ the factor (1 — &)(1 — ¢1) represents the probability that an
initially uninfected syringe is left infected and not cleaned by an infected PWID. The term
A1(1 — p) + Aop represents the average rate at which an infected PWID visits syringes.
Hence 0 = 70 where v = 7 is the gallery ratio and ¢ is the rate at which an infected PWID
visits syringes multiplied by the probability that he or she leaves an uninfected syringe
infected after use. Similarly 1 = 7 where 7 is the rate at which an infected PWID visits
syringes multiplied by the probability that he or she leaves an infected syringe uninfected

after use.

A1 represents the rate at which a susceptible PWID visits syringes and 1 — (1 —¢&)(1 —
P, — P,) represents the probability that an initially infected syringe is left uninfected after
use by that PWID. Hence p = vp where p is the rate at which a susceptible PWID visits
syringes multiplied by the probability that he or she leaves an infected syringe uninfected
after use. v represents the rate at which a susceptible PWID visits syringes multiplied by
the probability that he or she becomes infected given that the syringe which they visit is
infected. Thus v represents the rate at which a susceptible PWID visits syringes and
becomes infected. v can thus be regarded as the “potential” infection rate of a susceptible

PWID.

Let m(t) and () denote the proportion of infected PWIDs and proportion of infected
needles respectively. Thus the absolute numbers of infected PWIDs and infected needles
are nm(t) and mfB(t). The spread of the disease amongst syringes can be described by the

following differential equation:
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Dividing by m,

PO _ #(1)0(1 - B(0) - 78D — (1 = =(1)0BL0),
(6.2.2)
= w(t)(o —75(t)) — (1 —=(t))pB(1),
where
T=0+n=90+7), (6.2.3)

is the gallery ratio multiplied by the rate at which an infected PWID visits syringes
multiplied by the sum of the probability that he or she leaves an uninfected syringe
infected after use plus the probability that he or she leaves an infected syringe uninfected

after use.

The spread of the disease amongst PWIDs can be described by the differential equa-

tion:
W = n(1 =7 (t))vB(t) — p(nm(t)).
Dividing by n,
dtlit) = (1 =m()vp(t) — pm(t). (6.2.4)

So in summary the equations describing the deterministic HIV model are:

B _ w0 —~8(0)) — (1~ (0)0B(0).
& (6.2.5)
) _ (1~ n(t)o80) - prlt).

Greenhalgh and Hay define the basic reproduction number for the modified Kaplan
model to be
vo

RP = —, 6.2.6
o= o (6.2.6)

where in Section 4.5 they have shown in detail that it corresponds to the usual biological
definition, that is the expected number of secondary infected PWIDs (infected PWIDs
who became infected from sharing a syringe with the original infected PWID) caused
during his or her entire infectious period by a single newly infected PWID entering a
disease free population at equilibrium. They also point out that it is also the expected
number of secondary infected needles caused by a single newly infected needle entering

the disease free population at equilibrium.
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Greenhalgh and Hay then show that the disease dies out if RY < 1 or RY =1 and
7 > p. If RP > 1 there are two possible equilibria, one with no disease present and the
other with disease present. Thus this value of RY clearly satisfies the usual properties
of the deterministic threshold value in epidemic models. There is a unique endemic

equilibrium

« 9 PH « _ U —pl
Fr==(1-=|, m=—-—"
T ov UT +ov — pu

If RY > 1 then the unique endemic equilibrium is locally stable. If 7 > p and Ry > 1
then S(t) — f* and w(t) — 7* as t — oo provided that 7(0) > 0 or 5(0) > 0.

Note that the average rate at which PWIDs leave the sharing, injecting population is
around 0.25/year [43] so they each share for on average four years. P;+ P, the probability
of HIV transmission to a susceptible PWID on making a single injection with an infected
syringe is quite small (for example one estimate is 0.01 [43]). On the other hand PWIDs
inject on a timescale of every few days. Hence changes in the fraction of syringes infected
will typically happen a lot faster than changes in the fraction of PWIDs infected. In other
words, 7(t) is more likely to remain constant over an intermediate timescale, whereas the
rate of change for £(t) will happen much faster and thus it is more likely for §(¢) to

approach its equilibrium value from equation (6.2.5)

t
LIOLAN. (6.2.7)
m(t) + p — pr(t)
By substituting (6.2.7) into the second equation in (6.2.5) we deduce that
dm(t 1 —m(t t
m(t) _ (L=n@®))mtjvo e (t). (6.2.8)

dt — w(t)r+p—7(t)p
A similar technique of reducing the dimensions of the model by assuming that the needle
equations are at equilibrium is used in models of variable infectivity of spread of HIV
amongst PWIDs discussed by Greenhalgh and Lewis [44, 80] and Corson, Greenhalgh
and Hutchinson [26, 27].

In this section, we introduce environmental stochasticity into the system (6.2.8) by

dB(t)
dt

replacing the parameter v by v + © where B(t) is a Brownian motion and © > 0 is
the intensity of the noise which is associated with the potential rate of infection v. It

is therefore clear that the total number of new PWIDs infected during the small time
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interval [t,t + dt) is normally distributed with mean

n(l —n(t))r(t)vo
T

and variance
n?(1 —n(t))?m(t)*v?0?

((t)7 + p = w(t)p)?

Notice that both this mean and variance tend to zero as dt goes to zero which is

dt.

a biologically desirable property. This is a standard technique of introducing random
noise in stochastic modelling [28, 29, 87, 88, 134, 133] and corresponds to some stochastic

environmental factor acting on each individual in the population.

To justify why simple white noise is appropriate for our model suppose that we
consider a timescale on which §(t) and 7(t) are approximately constant. We consider
the changes in a small time interval [t,t + Tj) and divide it into a series of ng equal
width subintervals [t,t +T),[t + T\t + 2T), ... [t + (no — 1)T,t + nyT") where noT = Tj
and ng is very large. Then the number of new infections caused by a single susceptible
PWID visiting one infected syringe during each of the subintervals [¢t,t + T'), [t + T, t +
27), ... [t+(no—1)T', t+noT) are identically distributed random variables say with common
mean g and common variance o2. We assume that o7 < co. So by the Central Limit
Theorem the total number of PWIDs who visit infected syringes and become infected in
[t,t4+noT) = [t,t+T}) is approximately normally distributed with mean ngpy and variance
nooa. Moreover keeping T fixed and doubling Ty doubles ng, thus the mean and variance
of the number of susceptible PWIDs who become infected from visiting an infected syringe
in [¢t,t+ Tp) are both proportional to Ty. Hence it is appropriate to consider simple white
noise where the mean number of infections in [t,t + dt) caused by a given susceptible
PWID visiting a given infected syringe is vdt (hence proportional to dt), the same as in

the deterministic model, and the variance of this number is also proportional to dt.
As a result, we obtain the following SDE HIV model:

(1 —7m(t))m(t)vo
m(t)T+p—7(t)p

(1 —7m(t))m(t)vo

dn(t) = ) T ——r

dB(t). (6.2.9)

‘WW4“+[

The reason why we chose to peturb the parameter v, corresponding to the total rate

at which PWIDs visit syringes and potentially become infected is because as it multiplies
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the term 7(1 — 7) in (6.2.8) it is a key parameter in the transmission of HIV amongst
PWIDs and we thought that this would be the most interesting and important parameter

when analysing the effect that environmental noise would have on the spread of HIV.

There are some environmental factors which can cause a perturbation in v, for exam-
ple natural biological variation between people and between HIV viruses. These factors
affect the probability P, + P53 of HIV transmission to a susceptible PWID. It is possi-
ble that environmental noise causes variation in other parameters too, but it would be
quite complicated to include these as well. Analysis of the model with environmental
stochasticity in v provides theoretical insight into the behaviour of the model. A similar
approach of introducing environmental stochasticity into only the disease transmission
prameter was discussed in stochastic studies of epidemic models by Ding, Xu and Hu [34],

Gray et al. [40], Lu [87], Tornatore, Buccellato and Vetro [118] and others.

For the rest of the chapter, we shall focus on analysing the SDE HIV model (6.2.9).
Throughout this chapter, unless stated otherwise, we shall assume that the unit of time

is one day.

6.3 Existence of Unique Nonnegative Solution

Before we begin to investigate the dynamical behaviour of the SDE HIV model (6.2.9), it
is important for us to show whether this SDE has a unique global nonnegative solution.
It is well known that in order for an SDE to have a unique global solution for any given
initial value, the coefficients of the equation are generally required to satisfy the linear
growth condition and the local Lipschitz conditions [89]. It is clear that our coefficients in
(6.2.9) satisfy the linear growth condition and they are locally Lipschitz continuous. As
a result there is a unique, non-explosive solution to (6.2.9). The following theorem shows

that the solution remains in (0,1) if it starts there.

Theorem 6.3.1 For any given initial value w(0) = my € (0,1), the SDE HIV model
(6.2.9) has a unique global nonnegative solution w(t) € (0,1) for all t > 0 with probability
one, namely

P{r(t) € (0,1),V¢t >0} = 1. (6.3.1)

189



Proof. For any given initial value 7y € (0,1), there is a unique global solution 7 (t) for

t > 0. Let ky > 0 be sufficiently large so that m lies within the interval (1/kg, 1 — (1/ko)).

Then for each integer k > kg, define the stopping time

e =inf {¢>0:7(t) ¢ (1/k, 1= (1/k))},

where inf() = co. It is easy to see that 7, is increasing as kK — oo. Let us also define

Too = limy_o Tx. To complete the proof, we need to show that 7., =

oo almost surely. We

will carry this proof out by contradiction. Let us therefore assume that the statement is

false and thus there exists a pair of constants 7' > 0 and ¢ € (0, 1) such that

P{ro <T} >e.
Hence, there is an integer k; > kg such that
]P’{Tk < T} >e¢ forall k> k.

Let us define a function V' : (0,1) — R,

Now by It6’s formula, we have that for any ¢ € [0,7] and k > ky,
tATY
EV(m(t A1) = V(mo) + E/ LV (m(s))ds,
0

where LV : (0,1) — R is defined by

—(1 —x)vo TUo 1 p
LV(z) = L2
(z) z(zr+p—xp) (x7+p—zp)(l—2) =z (1—21)
(1 — )%*0%0? N 220%0?
(a7 +p—xp)2x (1 —2x)(aT+p—xp)?
Furthermore, since z7 + p(1 — ) > min(7, p), then it is easy to see that
22 2 1 )2 2
We) < —o  _p, vo (-2, o |
min(7, p)(1 —2) 2  min(7,p)? x l—z
22 2
vo 7 vio 1
< -t |- <CV
~ min(7,p)(1 —x) N r  min(T, p)? L:‘ 1-— a:} - (),

where

(6.3.2)

(6.3.3)

(6.3.4)

(6.3.5)

(6.3.6)

(6.3.7)



Here a V b denotes the maximum of a and b. By substituting this into (6.3.5), we have

that for any ¢t € [0, T]
EV(n(t A1) < V(m) +C /Ot EV(m(s A\ Tx))ds. (6.3.8)
Then by using the Gronwall inequality we have that
EV (n(t A7k)) < V(mo)e < V(mp)e".

Let us set Qi = {7 < T} for k > ky, and so by (6.3.3), we have that P(€) > e. For every
w € U, m(T,w) equals either 1/k or 1 — (1/k) and thus V(7 (7, w)) > k. Consequently

we have that

v

V (m)eC” E [lgk (W)V (7 (7%, w))] ,

kP(),

Y

v

ek. (6.3.9)

T = o0. Therefore, our

Letting & — oo, we have a contradiction where oo > V(m)e
assumption at the beginning must be false and thus we obtained our desired result that

Too = 00 almost surely. O

In this section we have managed to show that there exists a unique nonnegative global

solution for the SDE HIV model (6.2.9) which remains in (0,1).

6.4 Extinction

When studying the dynamical behaviour of a population system, it is important for us
to consider the conditions required in order for the HIV amongst PWIDs to die out,
in other words when the disease will become extinct. We will split this proof into two
parts, each considering two different scenarios of the noise intensity, namely v. Before we
begin the proof, let us recall the basic reproduction number for the deterministic model
of Greenhalgh and Hay [43]:

RY = — (6.4.1)
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where all the parameters are defined as before.

For the stochastic model we define the stochastic basic reproduction number

0202

Ry = RJ — o

This is the deterministic basic reproduction number RE corrected for the effect of stochas-
tic noise and plays a role in the stochastic model with many similarities to RY in the

deterministic one.

Theorem 6.4.1 If the stochastic reproduction number

222
R§=RP— <1, and 0* <L, (6.4.2)
2p° 1 o
then for any given initial value w(0) = my € (0, 1), the solution of (6.2.9) obeys
I L g () < 2 vt (RS —1) <0 (6.4.3)
fim sup — log m(t) < p 27 = p(Ry a.s. 4.

In other words, w(t) will tend to zero exponentially almost surely. Thus the fraction of

the population that is infected with HIV at time t will approach zero.

Proof. Let us define a function V (z) = log(z), where by It6’s formula we have that

! (1 —7(s))vo
log(7(t)) = log(mo) + /0 f(m(s))ds + /0 S P 7r( )de(s). (6.4.4)
Here f:(0,1) — R is defined as
(=)o (1 —x)*v%0?
@) = xT+p—xp B 2(xT + p — xp)?’ (6.4.5)
vo v20?
T oot T 2p (040

where ¢ = z7/(1 — x). Moreover

Vo 0202
f/(SO) = - + 3
(e+p)? (p+p)?
vo vpo )
S T e YU
Vo p
- G )
(¢ +p) o+p
_ __vowr
(o +p)?
< 0.
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Hence f(p) is a monotone decreasing function of ¢ for ¢ > 0, and thus we must have that

F(#) < F(@)lpmo = (RS —1) <0, (6.4.7)

where RS is the stochastic reproduction number defined in Theorem 6.4.1. As a result,
equation (6.4.4) becomes

(1 —m(s))vo
ST+ p—()p

log(7(t)) < log(mo) + tu(Ry — 1) + /Ot - dB(s). (6.4.8)

This implies that
(1 —m(s))vo
S)T+p—7(s)p

: 1 s : 1
tlgilo sup - log(m(t)) < w(Ry — 1) + tliglo sup ;/0 " dB(s). (6.4.9)

However, since
A-n(s) _ 1

~ w(s)T+ p—m(s)p ~ min(r,p)’

then by the large number theorem of martingales (e.g. [134]), we have that

. 1[0 (1—m(s))vo =0 as
tlg]élosup t/o 7r(s)7-+p—7r(s)de( )=0 as. (6.4.10)

Hence, we have arrived at our desired result where

1
tlim sup;log(ﬂ(t)) <Ry —1)<0 as. (6.4.11)
—00
In other words, 7(t) tends to zero exponentially almost surely. O

In Theorem 6.4.1, we have focused on discussing the extinction conditions for our
SDE HIV model (6.2.9) and we have considered a partial case where the noise intensity
satisfies the condition v? < “2. In order to get a better picture of the dynamical behaviour
of our SDE HIV model (6.2.9), it is important for us to investigate what happens to the

. 72 'Up
population system when 0 > “£.

Theorem 6.4.2 If

_9 9 2
RS=RP -7 <1, and ©*>2LvL, (6.4.12)
2p°p o 2p
then for any given initial value m(0) = my € (0, 1), the solution of (6.2.9) obeys
I Liog () < & 0 6.4.13
Jim sup - 0g7r()_2—62—,u< a.s. (6.4.13)

In other words, w(t) will tend to zero exponentially almost surely. Thus the fraction of

the population that are infected with HIV at time t will become zero.
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Proof. 1In order to simplify the computation, throughout this proof, we will be working
with equation (6.4.6). It is easy to see that this function has a maximum turning point
at

Vo

p=¢=—"—=r (6.4.14)

Note that, by substituting (6.4.14) back into the expression ¢ = z7/(1 —z), we could
easily obtain the same result as we would if we decided to work with the alternative

function
v%0 — pu
(T — p+ 0%0)’

(6.4.15)

r=I=

where € (0,1). Note also that ¢ > 0 by (6.4.12). Furthermore, by substituting the
maximum turning point ¢ given in (6.4.14) into (6.4.6), we have that f(z)|,—p = % — 1
which is negative by condition (6.4.12). Therefore, arguing as before in Theorem 6.4.1,

we have that

log(m(t)) < log(mo) + t<2v—; — ,u) +/0 W((l — mls))oo dB(s), (6.4.16)

v?

In other words, 7 (¢) will also tend to zero exponentially almost surely for % > 22V o

and thus we have completed the proof. O

Note that Ry < RE, which implies that the condition for extinction is weaker in
the stochastic case compared to the deterministic case. In addition, as © increases, the
stochastic reproduction number R5 will become smaller and thus it will be more likely for
the HIV virus to die out for large noise intensity. As a result, this highlights the fact that
environmental factors play an important role in the dynamical behaviour of HIV amongst

PWIDs.

Note also that there is a gap in our results. We have not shown what will happen
if RS <1 and L << % orif RS = 1 and 9% < Y2 but we conjecture that in both
cases the disease will die out almost surely. This is confirmed by the simulations shown

in Section 6.7.

194



6.5 Persistence

Another very important aspect of the behaviour of a dynamical system is the conditions

for persistence. In this section we will discuss the persistence conditions required for our

SDE HIV model (6.2.9).

Theorem 6.5.1 If
%0
201

then for any given initial value 7w(0) = m € (0, 1), the solution of (6.2.9) satisfies

Ry = RY — > 1, (6.5.1)

lim sup7(t) >n a.s. (6.5.2)
t—o00

and
lim inf7(t) <n a.s. (6.5.3)
t—o00

where

vo = 2up + \/v20? — 2uv%0?

- 0, 6.5.4
K 2UT 4+ vo — 2up + /v20? — 2uio? ( )
which is the unique root in (0,1) of the function
(1 —z)vo (1 —x)*v%0?
_ o —0 6.5.5
/() T+ p—xp a 2(zT + p — xp)? ’ ( )

defined in (6.4.5). In other words, the solution m(t) will persist and oscillate around the
level n infinitely often with probability one.

Proof.  Let us recall the function f : (0,1) — R defined in (6.4.6). Throughout this

proof, we will be working with this function in order to simplify the computation.

By setting f(x) = 0 and rearranging, we have the following quadratic function of ¢,
namely
1?4+ o (2up — vo) + pp? — vop + 0.50%0% = 0.
By solving for ¢ using the quadratic formula, we obtain one positive and one negative
root where the positive root is

1
" = 5| V(0o = 2up)* + dp(vop — pp? = 0.50%0%) + (vo —2up) | > &, (6.5.6)
,u
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where ¢ is the maximum turning point of (6.4.6) defined in (6.4.14). Note that (vop —

up* — 0.50%0%) > 0 by (6.5.1). For the purpose of consistency, we will now substitute

(6.5.6) into the expression ¢* = x*7/(1 — x*) to get that

_9 252 — 9,002
gt =p=—"2 pp + V20?20t > 7, (6.5.7)
2UT +va — 2up + \/v20? — 2ui202

where z* € (0,1) and that Z is the equivalent maximum turning point of (6.4.5) defined

in (6.4.15). Moreover, it is easy to see that

Vo %02
f(0) S TRy >0 an f(1)=—-p<
As a result we have that
f(z) >0 is strictly increasing on z € (0,0V ), (6.5.8)
f(z) >0 is strictly decreasing on z € (0V Z,z"), (6.5.9)
f(x) <0 is strictly decreasing on x € (z*,1), (6.5.10)

where again & and z* are the maximum turning point and the positive root of (6.4.5)
respectively as defined as before. Let us now prove that result (6.5.2) is true by contra-
diction. Assume that (6.5.2) is false and thus there must exist an ¢ € (0, 1) small enough
such that

P(Qy) > ¢

where O = {w € Q : limy_,osup7(t) < n — 2e}. Hence for every w € €y, there is a
T =T(w) > 0 such that

m(t,w) <n—e for t>7T(w). (6.5.11)

Clearly we can choose an € so small such that f(0) > f(n —¢). Therefore, from
(6.5.8), (6.5.9) and (6.5.11), we have that f(w(t,w)) > f(n—¢) for t > T(w). Let us now
recall that for ¢t > 0,

(1 —n(s))vo
S)T+p—m(s)p

log(7(t)) = log(mo) —i—/o f(ﬂ(s))ds—l—/o ; dB(s),

then arguing as before, by the large number theorem of martingales, there is an 2y C )
with P(€3) = 1, such that for every w € Qy,

liml (1 —=n(s))vo
t=oo t Jo m(s)T +p—7(s)p

dB(s) = 0. (6.5.12)
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Therefore by fixing any w € 1 N Qs, then for ¢t > T'(w),

T(w)
log(r(t,w)) > log(m) + / f(m(s,w))ds + f(n— )t — T(w))

t o —
+ / L=7()T ps 0, (6.5.13)
o T(8)T+p—m(s)p
which implies that
1
tlim inf i log(m(t,w)) > f(n—¢e) >0, (6.5.14)
—00

and thus we have that lim; . 7(t,w) = oco. This is clearly a contradiction to (6.5.11).
Thus, our assumption at the beginning must be wrong and therefore we obtained our
desired result that

lim supm(t) >n a.s.
t—ro0

Similarly, we will prove (6.5.3) by assuming again that it is false and thus there must exist
a d € (0,1) such that
P(Q?)) > 57

where Q3 = {w € Q : limy,inf7(t) > n + 20}. Hence for every w € (3, there is a
7 = 7(w) > 0 such that

w(t,w) >n+0 for t>7(w). (6.5.15)
Thus, we have from (6.5.10) that f(7(¢,w)) < f(n+ ) for ¢ > 7(w). Let us now fix any
w € Q5 N Q3, then similarly to before, we would get that for t > 7(w),
7(w)
log(r(t, ) < log(m)+ [ frls.w))ds+ fln+ 5t - 7(w)
0

(1 —n(s))vo
+ /0 S P W(s)de(S’ w), (6.5.16)

1
= tlim sup - log(m(t,w)) < f(n+46) <0, (6.5.17)
—00

and thus

= lim 7(t,w) = 0.

t—o00

This is clearly a contradiction to (6.5.15) and thus we have completed our proof. [
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In order to allow us to better understand the effect of the noise intensity © on the dy-
namical behaviour of our SDE HIV model (6.2.9) and its connection to the corresponding

deterministic model (6.2.8), we have the following proposition.

Proposition 6.5.2 Suppose that R > 1. Consider n as defined by (6.5.4) as a function

of v for
2 _
0<v< pluo = 1p) =0, (6.5.18)
o
then n 1s strictly decreasing and
limp= 2 M (6.5.19)

=0 Uo‘—ﬂp—k;ﬂ”

which is the equilibrium state of the deterministic HIV model (6.2.8) and

. 0 if1<RP <2,
limn = (6.5.20)

0—0 vo—2up : D
Y v if Ry > 2.

In other words, n lies between the deterministic equilibrium value for w(t), namely

vo—pp

) . . . .
o Tl ) Furthermore, if the noise intensity decreases to zero,

and max (0, m .

then n will increase to the deterministic equilibrium value, namely %. If RY is large

then n will be close to but beneath the deterministic equilibrium value for 7(t).

Proof. Let us recall that

_9 252 — 92,0202
n=—20 pot+ V20?200t (6.5.21)
2UT 4+ vo — 2up + \/v20? — 2uio?

Then,

dn —4p’vo*r (6.5.22)
Ao~ (v20% — 2u0%02)2(2uT + vo — 2up + (V202 — 2u202)1/2)2 -9

Clearly, % < 0 since o > 0 and thus 7 is strictly decreasing as © increases. By letting
v tend to zero in the function for 7 defined above, we have the desired result given in

(6.5.19). Moreover, as © — 0, we have that

lim 1 — Vo — 2up + V202 — 2uD202

: 6.5.23
=0 2uUT 4+ vo — 2up + /v20? — 2ui?0? ( )
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By substituting © by its definition given in (6.5.18) and rearranging, the numerator of the
above expression is equal to

|lvo — 2up| + vo — 2up. (6.5.24)

As a result, if 1 < RP < 2, in other words, 1 < % < 2, then it is obvious that
limg 51 = 0. On the other hand, if RY > 2, then limg_,sn = %. We have

completed the proof. O

6.6 Stationary Distribution

In this section, we will use the well known Khasminskii theorem [71] to prove that there
exists a stationary distribution for our stochastic HIV model (6.2.9). Before we begin, let

us recall the conditions for the existence of a stationary distribution mentioned in [71].

Lemma 6.6.1 The SDE HIV model (6.2.9) has a unique stationary distribution if there
is a strictly proper subinterval (a,b) of (0,1) such that E(1) < oo for all my € (0,a)U(b, 1),
where

7=1inf{t > 0:7(t) € (a,b)}, (6.6.1)

and

sup E(7) < oo for every interval [a,b] C (0,1). (6.6.2)

mo€la,b]
Note that in the original Khasminskii theorem, there is an additional condition which
states that the square of the diffusion coefficient of the SDE HIV model (6.2.9), namely

( (1 —7(t))7(t)vo )2

()T + p—7(t)p

is bounded away from zero for 7(t) € (a,b). However, recall from the proof of Theorem
6.3.1, we have already shown that the denominator, (7 (t)7 + p — w(t)p), is bounded away
from zero (it is at least min(7, p)). Thus it is therefore clear that this condition holds for

our model.

Theorem 6.6.2 If RS > 1, then the SDE HIV model (6.2.9) has a unique stationary

distribution.
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Proof. Let us fix any 0 < a < 7(t) < b < 1. From conditions (6.5.8)-(6.5.10) in the proof

for Theorem 6.5.1 we can see that
f@) > fO)Afla)>0 if O<z<a, f(z)<fb)<0 if b<x<l (6.6.3)

Let us now define the stopping time 7 as we did in Lemma 6.6.1. Recall that

(1 —n(s))vo
S)T+p—m(s)p

log(7(t)) = log(mo) —i—/o f(?T(S))dS—i—/O 7r( dB(s),

then by using (6.6.3), we have that for all ¢ > 0 and for any m € (0, a),

log(a) > Elog(m(t A 7)) > log(mo) + (f(0) A f(a))E(t AT), (6.6.4)
then
log (%) > (F(0) A f(a)E(t AT). (6.6.5)
By letting t — oo, we have that for all m € (0, a)
log(a/m)
E() < o) A T (6.6.6)

Similarly, for any 7y € (b, 1), we have that
log(b) < Elog(m(t A 7)) <log(m) — |f(B)|E(tAT), Vt>0 (6.6.7)
then
log <%> < _IfB)E( A T). (6.6.8)
By letting ¢ — oo, we have that

log(mo/b) _ log(1/b)
MO O]

Clearly, the conditions required for existence of a unique stationary distribution men-

E(r) <

Vo € (b, 1). (6.6.9)

tioned in Lemma 6.6.1 are satisfied by (6.6.6) and (6.6.9) and thus we have completed

our proof and our SDE HIV model (6.2.9) has a unique stationary distribution. U
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6.7 Simulations

In this section we will support our analytical results using numerical simulations produced
in R. Throughout this section, various simulations are produced using realistic parameter
values but our main objective is to verify the analytic results. Before we begin, let us
make the same assumptions as in [43]. Without loss of generality, let us take p = 0 and
assume that all PWIDs visit shooting galleries at the same rate whether or not they are
infected and thus \; = A\y. In addition, we take ¢; = 6; = 0 as these probabilities are very
small. Note that it is also possible for us to carry out simulations by choosing alternative
values for p, ¢; and #,, however since the simulations are produced for illustrative purpose

we have decided to make the same assumptions as in [43] and setting them to be zero.

Note that the numerical simulations produced in this section are carried out using
the Euler-Maruyama method which is different to the Milstein method that we used

in Chapter 3 and Chapter 4. This is because the diffusion term in the stochastic HIV

(1—7(t))w(t)vo

model given in (6.2.9), namely P Pl

is slightly complicated and thus we might
end up with a complicated first derivative of the diffusion term which is needed as part of
the computations in the Milstein method. Furthermore, the computational time for the
simulations are relatively fast and thus we feel the Euler-Maruyama method is sufficient

in this case especially when the simulations are only for illustrative purposes.

6.7.1 Simulations on Extinction

In this section, we will focus on looking at the numerical simulations produced which

support the analytical results given in Theorems 6.4.1 and 6.4.2.

Example 6.7.1 (R < 1, v < “2.) Let us choose realistic parameter values p =
0.258 fyear =7.06849x10~* /day [19], \ = X» = 0.143,0 = (P, + P;) = 0.01,0 =
(Pi+P,) =0.25,7 =1 (based on [43]) and & = 0.6 [67], then from (6.2.1) and (6.2.3), we
have that o = 0.0572/day, T = 0.143 /day, p = 0.1001 /day and v = 0.00143 /day. Then
by choosing © = 0.046 /day~"/? we have that

5% = 0.002116 < £ = 0.0025025,
o
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Figure 6.1: Computer simulation of the path m(t) for the SDE HIV model (6.2.9) and
its corresponding deterministic HIV model (6.2.8) with step size A = 0.01 days with

parameter values given in Example 6.7.1 with initial value 7(0) = 0.5.

where Ry = 0.66729 < 1 while RY = 1.156. Note that in this case we have Ry < 1 while
REY > 1, in other words in the deterministic case the disease will persist, however due to the
effect of environmental stochasticity the disease will actually die out in the stochastic case.
This once again highlights the importance and the effect of environmental stochasticity

on the spread of HIV amongst PWIDs. Recall that we have introduced environmental

stochasticity by replacing v by v + ’Ddi—f) where v + ﬂd]flt(t) is per unit time. Here, dB(t)

is v/ unit time , v is per unit time and thus v is (unit time)~"/% which in this case is per
day.
By Theorem 6.4.1, we would expect the solution 7(t) to reach zero with probability

one.

The computer simulation produced in R using the Euler-Maruyama method ([40, 89])
with the above parameter values is given in Figure 6.1, which clearly illustrates that w(t)
hits zero in finite time almost surely. The numerical simulations were repeated around

50 times with different initial value of my € (0,1) and similar results were obtained each

time.
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Figure 6.2: Computer simulation of the path m(t) for the SDE HIV model (6.2.9) and
its corresponding deterministic HIV model (6.2.8) with step size A = 0.01 days with

parameter values given in Example 6.7.2 with initial value 7(0) = 0.5.

In the next example we will now confirm one of the two conjectures that we made,

namely the case where Rg =1and 9% < %.

Example 6.7.2 (Rj =1, ©* < “2.) Let us use the same parameter values as in Example

6.7.1 but now choosing v = 0.02599131 /day~'/? such that

92 = 0.0006755479 < 2L = 0.0025025,
g

where RS = 1 while RY = 1.156035 > 1.
Figure 6.2 clearly supports our conjecture by showing that the disease dies out in finite
time. The solution path shown in Figure 6.2 has mean 0.08256 and variance 0.01460998.

The numerical simulations were again repeated around 50 times with different values
and similar results were obtained each time.

Example 6.7.3 (R} < 1, ©? > LV %) By using the same parameter values as in

Ezample 6.7.1 but choosing © to be 0.07/day=? and thus v* = 0.0049 /day, we have that

2

v
1_}2>_va_
o 2u
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Figure 6.3: Computer simulation of the path m(t) for the SDE HIV model (6.2.9) and
its corresponding deterministic HIV model (6.2.8) with step size A = 0.01 days using

parameter values given in Example 6.7.3 with initial value 7(0) = 0.5.

where R = 0.02425249 < 1 while RY = 1.156035. As a result, by Theorem 6.4.2, we

could conclude that for any initial value ©(0) = 7y € (0,1), the solution w(t) obeys

1
tlim sup log(7(t)) < —0.000498186 < 0 a.s.
—00

Clearly Figure 6.3 supports this result by showing that the solution w(t) reaches zero at
finite time. Again, the numerical simulations were repeated around 50 times with different

iatial values and the same results were concluded.

We will now confirm the other conjecture which we made, namely for R§ < 1, L <

0?2 < % using the following example.

Example 6.7.4 (Rf <1, <v* < %) Let us use the same parameter values as in Ex-
ample 6.7.1 but again changing pu to 0.125 /year and thus 3.42466 x 10~ /day [66]. Let us
now define © = 0.054/day~/? such that

% = 0.002502 < 0 = 0.002916 < % = 0.002985554.

In this case, we have that RY = 2.386057 and R5 = 0.9958988 < 1.
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Figure 6.4: Computer simulation of the path 7(¢) for the SDE HIV model (6.2.9) and
its corresponding deterministic HIV model (6.2.8) with step size A = 0.01 days using

parameter values given in Example 6.7.4 with initial value 7(0) = 0.5.

Figure 6.4 clearly supports our conjecture by showing that the fraction of population
that is infected with HIV at time t approaches zero almost surely. Again the numerical

simulations were repeated and the same conclusion could be drawn each time.

6.7.2 Simulations on Persistence

We will now move on to the numerical simulations for results given in Theorem 6.5.1 and

Proposition 6.5.2.

Example 6.7.5 (RS > 1) Let us use the same parameter values as in Example 6.7.1 but
changing p1 to 0.125 /year and thus 3.42466 x 10~* /day [66]. Let us define © = 0.05/day/?
and thus RY = 2.386057 and Ry = 1.1942 > 1. Therefore by Theorem 6.5.1, for any given
initial value mo = 7(0) € (0,1), the solution 7(t) for the SDE HIV model (6.2.9) should
obey

lim inf 7(¢) < n = 0.3206092 < tlim supm(t) a.s.
—00

t—o0

Figure 6.5 clearly supports our analytical results given in Theorem 6.5.1 by showing

the solution path of m(t) oscillates around the level n in finite time. Again the numerical
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Figure 6.5: Computer simulation of the path 7(t) for the SDE HIV model (6.2.9) and
its corresponding deterministic HIV model (6.2.8) with step size A = 0.01 days using
parameter values given in Example 6.7.5 with initial value 7(0) = 0.3 and n = 0.3206092.

simulations were repeated and the same conclusion could be drawn each time.

In order to further illustrate the effect of the noise intensity © has on the solution, in
the next example we will keep all the parameter values the same as in Example 6.7.5 but

reducing the noise intensity.

Example 6.7.6 By keeping the parameter values the same as in Example 6.7.5 and reduc-
ing © to 0.02/day='/?, we have that RY = 2.38605, R§ = 2.195363 > 1 and n = 0.4770654.
By Theorem 6.5.1 and Proposition 6.5.2, we would expect the solution w(t) to persist and
oscillate around the level . Furthermore by Proposition 6.5.2, as © — 0/day™'/?, we
would expect n to tend towards the deterministic equilibrium value for the corresponding

deterministic model given by (6.2.8), namely % = 0.4924476.

From Figure 6.6, we can clearly see that the solution path w(t) does indeed oscillate
about the level n. Moreover, by comparing Figure 6.5 and Figure 6.6, we can also see that
as we reduce the noise intensity from 0.05/day=/? to 0.02/day="/2, the level n does indeed

tend towards the deterministic equilibrium value as expected.
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Figure 6.6: Computer simulation of the path m(t) for the SDE HIV model (6.2.9) and
its corresponding deterministic HIV model (6.2.8) with step size A = 0.01 days using
parameter values given in Example 6.7.6 with initial value 7(0) = 0.3 and n = 0.4770654.

In the next example we will use histograms to see how the solution of the SDE HIV

model oscillates around the level 1 as we vary the noise intensity ©.

Example 6.7.7 Let us use the same parameter values as in Example 6.7.5 and choose
0 to be 0.05,0.04,0.03,0.005 and 0.001/day=/%2. We then let the simulations run for 1
million iterations but disregard the first 800,000 iterations in order to allow 7(t) to reach

its recurrent level.

From Figure 6.7, we can see from the histograms that for larger U, the distribution
of the solution is more skewed, while for smaller v, the distribution is more normally
distributed about the level n. This is further confirmed by the sample skewness coefficients,
namely 0.8380437,0.7711584,0.299269, 0.2371403 and —0.1524738 corresponding to © =
0.05,0.04,0.03,0.005 and O.OOl/day_l/2 respectively.

Figure 6.8 shows the corresponding normal QG plot for the histograms shown in Fig-
ure 6.7 for © = 0.03,0.005 and 0.001/day='/2. There is clearly curvature in those plots,

indicating some departure from normality.
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Figure 6.7: Histograms for the solution path 7(¢) for the SDE HIV model (6.2.9) with

step size A = 0.01 days using parameter values given in Example 6.7.7 with initial value

7(0) = 0.5 and © = 0.05,0.04, 0.03,0.005 and 0.001 /day /2.
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Figure 6.8: QQ plot for the solution path 7(¢) for the SDE HIV model (6.2.9) correspond-
ing to the histograms shown in Figure 6.7 for © = 0.03,0.005 and 0.001 /day~'/2.

6.8 Conclusion and Discussion

In this chapter we have introduced environmental stochasticity into the extended Kaplan
model for the spread of HIV amongst PWIDs constructed by Greenhalgh and Hay [43].
Inspired by the work done on introducing stochasticity by parameter perturbation into
the SIS epidemic model in [40], we explored the properties for the resulting stochastic
HIV model by first proving that there exists a unique nonnegative solution 7 (t) for any
given initial value my € (0,1). Furthermore, we have constructed the basic reproduction
number for the stochastic model, namely R, and the conditions required for extinction
and persistence for our solution 7(¢). In general, if RS < 1, the solution will almost surely
go extinct as shown in Theorems 6.4.1 and Theorem 6.4.2. There is a gap in our results if
R <1 and L < % orif R§ =1 and ©? < Y2 but here we conjecture that disease
will always die out. Both conjectures were supported by simulations. On the other hand,
the solution will almost surely persist and oscillate around the level 7 if R > 1 as shown
in Theorem 6.5.1. Most importantly, we have shown that by altering the noise intensity

v, it will affect the dynamical behaviour of our system.

By using the well-known Khasminskii theorem [71], we have shown that the SDE HIV

model has a unique stationary distribution. Lastly, numerical simulations using realistic
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parameter values are constructed to support our analytical results.

Note that RS has a natural interpretation as follows: If we consider introducing a
single newly infected individual into the disease-free equilibrium (DFE) and consider the
number of secondary cases that he or she produces then near the DFE equation (6.2.9)

becomes
dr(t) = v w|dt + Y rdB.
p p
By using the It6’s formula and choosing a function V' (z) = log(x), we have the solution

vo 1 v%0? vo
7(t) = moexp [{ (7 - ,u) 3 }t + 73(75)

Also limy_, |B(t)|/t = 0 almost surely. Hence we expect that if

RS =2 —62§2<1
P 2p°p

then the disease dies out whereas if RS > 1 the disease takes off. Thus this is a natural

biological interpretation of the stochastic basic reproduction number R3. Note that RS
is negative if 0% > 2’%”.

Deterministic models have in the past proved very useful in describing the spread
of HIV amongst PWIDs but they have their faults. The real world is stochastic and in
general stochastic models are more realistic than deterministic ones. Recall that

0202

RS = RY — o (6.8.1)

where RY represents the basic reproduction number in the deterministic model. So in
the deterministic model RY is the expected number of secondary cases caused by a single
newly infected PWID entering a population consisting entirely of susceptible PWIDs and
uninfected needles. The second term in (6.8.1) is an adjustment factor for the stochastic

model.

In the deterministic model we have a straightforward scenario where if the basic
reproduction number RY < 1 then it is known that the disease will die out, whereas if
RE > 1 then the disease will persist. The results in this section show that in the stochastic
model, if RS < 1 then the disease dies out (almost surely), whereas if RS > 1 then the

disease ultimately persists and oscillates about a non-zero level. These theoretical results
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are confirmed by numerical simulations. Moreover the argument above shows that if a
single newly infected PWID enters the DFE then we expect the disease to die out if
RS < 1 and take off if Ry > 1.

These findings provide new insights into the spread of HIV amongst PWIDs. This is
because as the stochastic basic reproduction number R} is less than the deterministic one
it is possible for the noise to drive the disease to extinction, that is if R}’ > 1 so that in the
deterministic model the disease will persist, then if the stochastic noise is large enough, in
the stochastic model the disease will die out. This has important implications for control
strategies. Deterministic models have often been used to predict control strategies, for
example the fraction of PWIDs who must clean their needles after use, the effects of HIV
testing, or the amount that PWIDs need to decrease their syringe sharing rates in order to
reduce RY beneath one and eliminate disease. Examples of this applied to HIV amongst
PWIDs include Greenhalgh and Lewis [45], Lewis [79] and Lewis and Greenhalgh [78].
Examples applied to hepatitis C virus (HCV) control include Corson [25] and Corson,
Greenhalgh and Hutchinson [26].

The analytical and numerical results of this chapter provide new insight into this. If
there is significant stochastic noise in the system then these estimates will be overesti-
mated, that is a smaller fraction of PWIDs cleaning their needles, or a smaller reduction in

PWID syringe sharing rates will still be sufficient for elimination of disease transmission.

In the next chapter we would like to conclude the thesis by summarising the work we

have done.
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Chapter 7

Conclusion and Summary

In this thesis we have explored the effect that demographic stochasticity and environ-
mental stochasticity has on the dynamical behaviour of four different types of stochastic
models. The real world is stochastic, with many factors that can influence the behaviour
of an infectious diease. Very often we cannot predict with certainity what would hap-
pen to an epidemic. Therefore in order to fully understand and thus control a particular

epidemic, stochasticity plays an important role.

In Chapter 3 we discuss the stochastic differential equation (SDE) susceptible-infected-
susceptible (SIS) epidemic model with demographic stochasticity. First we prove that the
SDE has a unique nonnegative solution which is bounded above. Then we give conditions
needed for the solution to become extinct. Next we use the Feller test to calculate the
respective probabilities of the solution first hitting zero or the upper limit. We confirm
our theoretical results with numerical simulations and then give simulations with realistic
parameter values for two example diseases: gonorrhea and pneumococcus. This SDE SIS
model is a well established model constructed in [1]. As far as we know, this is the first
piece of work that gives a detailed analysis on this model and therefore we hope to have

filled this gap.

Motivated by the work done in Chapter 3, we continue to look at the effect that de-
mographic stochasticity has on the deterministic SIS model but introducing stochasticity
in a different way and thus causing the population size to vary with respect to time. In

this chapter we work with a more challenging and complicated two dimensional stochas-

212



tic differential equation (SDE) susceptible-infected-susceptible (SIS) epidemic model with
demographic stochasticity where births and deaths are regarded as stochastic processes
with per capita disease contact rate depending on the population size. First we look at
the SDE model for the total population size and show that there exists a unique nonneg-
ative solution. Then we look at the two dimensional SDE SIS model and show that there
exists a unique nonnegative solution which is bounded above given the total population
size. Furthermore we show that the number of infecteds and the number of susceptibles
become extinct in finite time almost surely. Lastly, we support our analytical results with
numerical simulations using theoretical and realistic disease parameter values. Due to
the fact that the population size can vary, then the transmission term SS(t)I(t) that we
used in Chapter 3 corresponding to per capita disease contact rate A = SN might not be
realistic and suitable when analysing models where population size is allowed to change as
the transmission rate § may not remain constant when N is large. Consequently, in this
chapter we decide to work with an alternative transmission term, namely %S (t)I(t),
where we have made some assumptions on the parameter \(N) to take into consideration
both of the extreme population sizes and it is reasonable to assume that the per capita
disease contact rate A\ depends on the population size. Later on we have shown that pro-
vided that the population size is small, the results we obtained with the transmission term
%S(t)](t) can be applied to the SIS epidemic model with transmission term 5S(¢)1(t),
as expected.

In Chapter 5 we discuss the effect of introducing the telegraph noise, which is an exam-
ple of an environmental noise, into the susceptible-infected-recovered-susceptible (SIRS)
model by examining the model using a finite-state Markov Chain. First we start with a
two-state Markov Chain and show that there exists a unique nonnegative solution and
establish the conditions for extinction and persistence for the stochastic SIRS epidemic
model. We then explain how the results can be generalised from a two-state Markov Chain
to a finite-state Markov Chain. The results for the SIR (susceptible-infected-removed)
model with Markovian switching are a special case of the SIRS model. Numerical sim-
ulations are produced to confirm our theoretical results on the SIRS epidemic model.
Realistic simulation on a real-life disease, measles, is also given as an example for the SIR

epidemic model. In this chapter we constructed a new threshold value T which deter-
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mines whether a particular disease would die out or persist in the stochastic environment.
In general, if Ty < 1 then the disease would die out, otherwise it would persist. For the
persistence case we have obtained two further sets of persistence conditions for the two
possible cases in which Ty > 1. One important thing we have discovered is that although
in a deterministic environment, if RY < 1 then the disease would always die out, this is
not always the case when we incorporated telegraph noise into the SIRS/SIR epidemic
model. If one subsystem has R < 1 while the other has R} > 1, in other words one
subsystem will go extinct while the other subsystem will persist, then the behaviour of
the overall system is not so straightforward in the stochastic environment. The behaviour
of the disease will then depend on the average time it takes for the disease to switch from
one environment to the other. If for example, the average time it takes for the Markov
Chain to switch from state 2 to state 1 is relatively faster than from state 2 to state 1,
then the effect from state 1 will predominate. This interesting scenario highlights the
important effect that environmental stochasticity has on the dynamical behaviour of an
infectious disease as there are various types of factor such as rainfall or nutrition that

could cause a particular disease to switch between two or more regimes of environment.

From Chapter 3 to Chapter 5 we have looked at three different types of epidemic
models. Another epidemic model which will be interesting to look at is the Susceptible-
Exposed-Infectious-Susceptible (SEIS) model. In this case the term “Exposed” referred
to exposed individuals in the latent period. In other words, the individual is infected
but not yet infective. This model would be suitable for infectious diseases which have
a significantly long incubation period such as AIDS and schistosomiasis. It would be
interesting to find out how stochasticity will affect the behaviour of such disease. We
believe that the techniques we developed in this thesis can be applied to the SEIS model

and other more complicated epidemic models with more compartments.

In Chapter 6, we introduced environmental stochasticity using the well-known stan-
dard technique of parameter perturbation into the modified Kaplan model given in [43],
which describes the spread of HIV amongst PWIDs. We derive a stochastic differential
equation (SDE) for the fraction of PWIDs who are infected with HIV at time ¢. We first
prove that the resulting SDE for the fraction of infected PWIDs has a unique solution

in (0,1) provided that some infected PWIDs are initially present, and next construct the
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conditions required for extinction and persistence. We have obtained a new basic repro-

duction number in the stochastic case, namely Ry = R — gzgj where RE is the basic
reproduction number in the deterministic model. If R < 1, then we have shown that
the disease will die out and if B§ > 1 then the disease will persist. Note that in this
case R < RY, which means if the environmental noise is large enough then it is possible
for the disease to persist in the deterministic case (RY > 1) but it will die out in the

stochastic case (R; < 1). This has once again highlighted the importance of taking into

consideration the effect of environmental factors.

Furthermore, we also show that there exists a stationary distribution for the persis-
tence case. Simulations using realistic parameter values are then constructed to illustrate

and support our theoretical results.

Our results provide new insight into the spread of HIV amongst PWIDs. The results
show that the introduction of stochastic noise into a model for the spread of HIV amongst
PWIDs can cause the disease to die out in scenarios where deterministic models predict
disease persistence. Hence in situations where stochastic noise is important predictions
of control measures such as needle cleaning or reduction of needle sharing rates needed to
eliminate disease may be overly conservative. As far as we know this is the first literature
which looks at the effect of environmental stochasticity on the extended Kaplan model

and we hope this would fill the gap.

We believe that the technique used in this chapter can be applied to other types of
HIV models which deal with different risk groups to examine the effect that environmental

stochasticity has on the dynamical behaviour of the disease.
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