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Abstract 
 

From the network management approach, the term network efficiency signifies the 

effective utilization of network resources. The critical aspect of managing the Multi-Protocol 

Label Switch (MPLS) networks is to compute the best routes across the network that guarantees 

the cohesive traffic flow with the effective use of network resources. Considering the optimal 

routes in multiple switching based MPLS networks, comprised of multiple domains, serves as a 

complex and challenging task. Technically, the computation of optimal routes that can be 

depending on multiple objectives along with constraints introduces the concept of multi-

objective subject to multiple constraints (MCOP) optimization problem in the field of 

optimization, which is considered as a computationally complex optimization problem.  

Metaheuristic optimization algorithms have raised as a mainstream approach for solving MCOP 

based complex optimization problems. However, metaheuristic algorithms can generate sub-

optimal solutions because rooted problems within algorithms that badly disturbs the algorithm`s 

performance. Therefore, extensive research on the improvement of algorithms has become 

necessary. This thesis investigates the particle swarm optimization (PSO), bat, and dolphin 

echolocation (DEA) algorithms, highlights the problems in the algorithms and offers novel 

versions of these algorithms as a proposed methodology for the MPLS optimization problem. For 

MPLS optimization, the offers the MCOP based optimization models which consist of multiple 

objective functions and are mathematically formulated for experimental setups. For the 

considered optimization problems, the new metaheuristic algorithms are suggested as the 

modified and hybrid versions of PSO, Bat, and DEA algorithms. The numbers of experiments 

are conducted along with extensive results analysis, which demonstrates the performance of 
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presented algorithms for MPLS optimization, and to validate these algorithm performances, an 

exclusive comparative analysis is established with other familiar metaheuristic algorithms. 
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Chapter 1 

Introduction 

1.1 Background 

During recent years, the telecommunication networks are integrated with advance and 

diverse applications which highlighted the status of efficient utilization of resources and network 

optimization. Conventional IP (Internet Protocol) based networks face major issues for the 

incorporation and operation of miscellaneous applications that have various traffic characteristics 

that require exceptional quality of services [1] – [2]. The common problem with IP systems is to 

attach IP address to each packet across the network, which in return influence network 

management. Even if all packets are forwarded towards the same destination, each packet would 

need to be individually reviewed from the routing table to decide the next routing stage in the 

route towards that destination. This has increased the demand for strategies to manage the 

congestion and reduce network delays [3] – [5].  

Over the past few years, MPLS (Multi-Protocol Label Switched) networks were 

introduced as an advanced strategy that uses short path labels between network nodes for 

communication [6]. MPLS networks have maintained a remarkable reputation because they 

supported combined switching techniques and providing several QoS (Quality-of-Service) 

parameters with efficient utilization of network resources. The major benefit that MPLS offers is 

the improved speed of packets across the network [6] – [7]. This higher flow of packets is 

because of the utilization of labels for setting up a virtual connection between nodes rather than 

decelerate checking the content of each packet for deciding its destination. For such mechanism 

of packets forwarding in MPLS networks, the LSR (Label Switch Routers) are employed to 

forward packets over defined routes. The packets that have the same destination moved from 

ingress router to its destined egress router without the lookup of routing tables [7] – [10]. The 

primary approach of TE (Traffic Engineering) is associated with the effective usage of network 

resources, decreasing the routing costs, improve the network reliability, and fast recovery of 

unexpected link failures across the network [11] – [13]. Modern applications may require large 
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data transfer that may produce network congestion, packet losses, and cause poor service 

provision. For this reason, to structure efficient routing, the optimization techniques are offered 

to packet forwarding mechanism in the MPLS network domain. The efficient utilization of 

network resources and performance optimization has become a complex task for network 

vendors [14] – [16].  

In-network phrasing, network efficiency term is used for the effective utilization of 

network resources. Along these lines, the goal is therefore to determine the optimal path in the 

network that guarantees the effective usage of network resources. To compute the optimal paths, 

the objective functions need to be defined that ensures the optimization of the network [17] – 

[18]. In network optimization, the objective function will be the mathematical optimization 

function that needs to be optimized (minimized or maximized) according to the optimization 

model of the network.  For the computation of optimal paths in the network, the optimization 

algorithms are engaged [19] – [20]. Advanced applications based network optimization models 

are usually dependent on multiple objective functions along with multiple constraints, which 

introduces the concept of MCOP (Multi-Objectives with Multiple Constrained-based 

Optimization) problems, which is considered as highly complex optimization problems [20] – 

[22].  

Recently, metaheuristic optimization algorithms have shown up as a popular approach to 

manage this kind of complex optimization problems. These metaheuristic algorithms are applied 

for those applications where achieving the optimal solutions are either not possible or 

computationally too complicated to be accomplished [20], [23]. Metaheuristic algorithms are 

classified into various groups, in which one of the noticeable classes is the nature-inspired 

algorithms. Several nature-inspired algorithms are being introduced in the last few years, in 

which some of them have got noteworthy attention due to presenting the impressive solutions for 

the optimization problem in various applications [24]. However, there is a complex problem that 

exists in these algorithms that stimulate researchers to offer either new models or modified 

models of metaheuristic optimization algorithms. Metaheuristic algorithms have to maintain a 

balance between their exploring and exploiting the solutions in searching space of the 

optimization problem domain. The failure of maintaining this balance causes the algorithm to 

produce sub-optimal solutions for any complex optimization problem [25] – [26]. This challenge 
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introduces an open field of research to propose such adjustments in the algorithms that can 

support an algorithm`s performance in terms of producing optimal solutions.  

1.2 Research Objectives 

When the metaheuristic optimization algorithm suffers from exploration and exploitation 

problem, then the significance of the algorithm becomes ineffective as it comes with an 

unproductive methodology that can only offer sub-optimal solutions for the optimization 

problem. Therefore, before targeting the optimization problem, there is a need to focus on the 

problems of metaheuristic optimization algorithms and try to understand their important 

parameters. The parameters used in each algorithm have the vital role of controlling the 

algorithm`s performance, which requires comprehensive review and then modifies them to 

improve the algorithm. The improved algorithm then can become a feasible method for the 

optimization problem.  

With the presented scenario, this doctoral dissertation is therefore focused on the 

development of new or modified/hybrid models of metaheuristic algorithms, which will be 

applied over the presented optimization models of MPLS networks. For this research, the 

number of metaheuristic algorithms is considered and is proposed with their modified versions as 

a methodology for the given MPLS optimization problems. More specifically, the main 

objectives of the thesis are; 

1. To offer MCOP based optimization models for MPLS networks and offer the novel 

metaheuristic algorithms for the given optimization problem. 

2. PSO algorithm suffers with local and global optima problem, which makes it an 

unacceptable technique for optimization. The research is to develop the new version of the PSO 

for MPLS optimization problem and generate better results compare to other techniques.  

3. Bat algorithm has a slow convergence problem and thus fails to generate optimal 

solutions for various optimization problems. The objective is to investigate the essential 

parameters in the Bat algorithm, which can play a vital role for improvement in algorithm and 

then offered a new bat algorithm for the MPLS optimization. 
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4.  Bat and DEA (Dolphin Echolocation) algorithms, both are dependent on their 

echolocation feature for solution searching in the optimization domain. Thus, the objective is to 

propose the hybrid model of the Bat and DEA which can generate better solutions for MPLS 

optimization compare to traditional techniques.  

5. To investigate the offered algorithms performance with other metaheuristic algorithms 

with comprehensive comparative analysis by implementing several experiments in different 

scenarios. 

1.3 Main Contributions and Research Publications 

During the investigation of PSO, Bat, and DEA algorithms, the improved versions of 

these algorithms are projected as novel algorithms (methodology) for the proposed MCOP based 

optimization problems of MPLS networks. The work presented in this thesis resulted in several 

contributions that complement the state of the art in the field of metaheuristic algorithms as well 

as for MPLS network optimization. Specifically, this research has contributed as; 

1. Developed the MCOP based optimization models for MPLS networks, in which multiple 

objective functions are considered which includes; III). Resource reservation costs, II). Traffic 

load balancing costs, III). Routing delay costs, IV). Load balancing cost, V). Energy 

consumption costs and, VI). Constrained based routing costs objective functions. 

2. Pioneered a novel version of the PSO algorithm as PMLG-PSO (Pareto based Modified 

Local Global PSO) algorithm for the developed model for the MPLS network. The PMLG-PSO 

has been proposed with the Pareto front approach for conflicted based objective function in the 

optimization model and thus, offered not only non-dominated solutions but also optimal 

solutions. The proposed method is verified with a comprehensive comparative analysis while 

applied to the MPLS optimization problem. 

3. Investigated the significance of the loudness parameter in bat algorithm, highlight its 

importance for the improvement of algorithm, and thus offered a new improved version as ABAT 

(Adjustable Bat Algorithm). The LO (Loudness Optimizer) is offered as a new parameter that 

supports the improvement in the convergence of the algorithms and produced optimal solutions 

compared to Bat and other familiar metaheuristic algorithms. 
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4. Proposed a novel hybrid model of the Bat and DEA algorithm, named as HBD (Hybrid 

Bat Dolphin Echolocation Algorithm). The HBD has provided much improved solutions 

compared to Bat and DEA algorithms for the developed optimization model of the MPLS 

network. The proposed algorithm also showed its superiority for mathematical optimization 

functions in terms of generating optimal solutions. The offered algorithm is briefly discussed in 

comparative analysis with Bat, DEA, and other well-known algorithms for both mathematical as 

well as MPLS optimization problems. 
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1.4 Organization of the Thesis 

This thesis is structured into seven chapters, chapter one provides a summarized 

background of the research, research aims, and objectives, research contributions along with a 

list of publications and thesis outline. 

Chapter two introduces the MPLS networks and their structure. The chapter provides a 

basic understanding of MPLS using label switched paths over label switching routers based 

network. The importance of traffic management is discussed in the chapter in the form of traffic 

engineering based MPLS networks and highlighted the multi-objective based optimization 

problem in MPLS networks in the discussion section. 

Chapter three briefly explained the proposed methodology that will be used for the 

optimization of MPLS networks. The chapter can be categorized into two groups, where the first 

group describes the concept of optimization, its types such as single objective and multi-

objective based optimization, and computational complexity. The second section of the chapter 

presents nature inspired metaheuristic algorithms as an approach for MPLS optimization 

problem. The problems in metaheuristic algorithms are debated here and provide the platform for 

research in the field of metaheuristic algorithms. 

Chapter four provides the optimization model for MPLS networks in the form of a 

multi-objective based optimization problem. The chapter proposed a novel PMLG-PSO 

algorithm for network optimization and the experiments are conducted for presenting non-

dominant Pareto solutions as well as optimal solutions for each objective function. The Pareto 

front is presented with various versions of PMLG-PSO and the results of proposed algorithms are 

also compared with other metaheuristic algorithms to validate the efficiency of the algorithm. 

Chapter five highlights the significance of the loudness parameter by implementing the 

various versions of the proposed ABAT algorithm. The experimental setup is defined for the 

optimization model of MPLS, which consists of load balancing costs and routing costs objective 

functions. For MCOP based MPLS network optimization problem, the proposed ABAT is applied 

for various experimental setups and the results are discussed in the chapter in terms of ABAT 

performance for MPLS optimization as well as with comparative analysis. 
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Chapter six introduced a new hybrid model of HBD algorithm for the proposed MCOP 

optimization problem of MPLS networks which consists of energy consumption costs and 

constrained based routing costs objective functions. The proposed HBD algorithm is applied for 

the MPLS optimization model with various numbers of experiments and the results are discussed 

in the form of Pareto front and comparative analysis (including convergence rate and statistical 

parameters). Furthermore, to validate the HBD superior performance in terms of convergence 

and generating optimal solutions, the algorithm is also tested in the experiments of mathematical 

optimization functions and compared with other famous metaheuristic optimization algorithms.  

Finally, chapter seven is a summary of the thrust of the findings of all research aspects 

presented in this thesis, conclusion, direction, and recommendations for future work.  
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Chapter 2 

Research Background 

2.1 Introduction to MPLS Networks 

Traditional IP switching is based on the method of transmitting data packets over the 

network where the packets are embedded with an identifier or a tag [5], [27]. In some aspects, 

standard IP routing is considered to be a type of packet switching where each packet is loaded 

with the destination IP address. This destination IP address is used for looking up information in 

the routing table to decide on the next hop en-route to the destination [28]. However, IP routing 

has had issues regarding scalability and speed. This has led researchers to investigate alternative 

methods to data packet switching. Added to the aforementioned concerns is the need to promote 

additional functions such as traffic engineering and traffic aggregation [29]. 

Multiprotocol Label Switching based networking has been used for years now. MPLS is 

famous for its unique networking methodology in which the labels used are attached to the 

packets to forward them within the network. It is defined as the set of protocols used in 

sophisticated telecommunication networks in which the data packets are tagged with unique 

labels in the path from the source to the destination node. Instead of using a destination address, 

labels are used as an identifier of the short path from one node to another. In MPLS, the labels 

are advertised across the routers in the network to build label-to-label mapping. IP packets that 

are tagged with labels enable routers to transmit the traffic across the network by identifying 

their labels. Thus in MPLS-based networking, the packets are routed by the label switching 

instead of IP switching. MPLS networks further assist the frame relay, ATM (Asynchronous 

Transport Mode), and internet protocols. For instance, an LSP (Label Switch Path) can be 

established for any of the aforementioned protocols. With the growing prevalence of MPLS 

networks, the concept of the MPLS network is now extended. It not only includes lambda 

(photonic or wavelength) switching but also TDM (Time Division Multiplexing) switching, 

Layer 2 switching, fiber 8 switching, and the current packet of cell and frame switching 

technologies. Lambda switching based MPLS is used in optical networking to switch 
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wavelengths of light onto separate paths. In TDM based MPLS networking, two TDM networks 

or devices are connected using MPLS domain.  This idea gives rise to the introduction of 

Generalized Multiprotocol Label Switched (GMPLS/ Generalized MPLS) networks that support 

all of the aforementioned technologies [30] – [33]. 

2.2 MPLS Architecture  

MPLS-based networks do not use IP destination addresses in their routing mechanism. 

The routers in this type of network are independent of traditional IP address look-ups in terms of 

their routing table.  Therefore an MPLS network uses a different mechanism for routing which 

depends on the different modules in its architecture [30] – [33]. These are discussed in the 

following sections. 

2.2.1 Label Switch Router 

A label switch router is an MPLS-supported router. It is used to recognize MPLS labels 

in terms of receiving and forwarding labeled packets across the network. There are three types of 

LSR used in MPLS networks [30] – [33]: 

 Ingress LSRs:  

An ingress LSR is the edge router of the MPLS network on the source side of the 

network, also known as an LER (Label Edge Router). At the ingress LSR, the packet received is 

not tagged yet. A label (stack) is inserted in the front of the packet at the ingress LSR and then it 

is forwarded to the data link. 

 Egress LSRs 

An egress LSR is an LER that is at the destination end of the LSP in the MPLS network. 

Labeled packets are received at the egress router which then removes the tagged label from the 

packet and forwards the packet to the destination node. 

 Intermediate LSRs 

Intermediate LSRs or LSRs are intermediate routers within the MPLS domain that 

receive labeled packets, conduct an action on it, switch the packet and then transfer it to the 
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appropriate data link or the next LSR in an established LSP. An LSR can execute three 

operations such as push, pop, and swap. 

In the MPLS domain, every LSR is capable of popping/removing one or multiple labels 

from the top of the label stack before switching the packet. In the same way, every LSR must be 

able to push/ insert one or multiple labels into a packet before transmitting it to the MPLS 

network. If the packet is not labeled, then the LSR creates a label stack and pushes it onto the 

received packet before transmitting it to the next stop. If the packet received is already labeled, 

then the LSR pushes one or more labels into the label stack before switching out the packet [30] 

– [33].  

An LSR pushes a label onto a packet that has not yet been tagged with a label. The LSR 

that pushes the label is also known as an          LSR. This is as it imposes the label onto the 

packet. Ingress LSRs come under the definition of an          LSR. This is ingress LSRs as 

the first LSR in the MPLS domain that imposes/push a label onto a packet. The LSR that 

disposes of all of the labels from the packet before switching it is considered to be a           

LSR. From this perspective, an egress LSR is a           LSR [30], [32] – [33].   

2.2.2 Label Switched Path 

In an MPLS-based network, before transmitting the data, a path is created between the 

label edge routers (ingress and egress LSRs) through any intermediate LSRs. In other words, an 

LSP is an established path across the MPLS network that consists of a sequence of intermediate 

LSRs between the LERs used to transmit only labeled packets. The LSR that only pushes labels 

onto a packet such as ingress LSRs is the first LSR in the LSP. The egress LSRs are the last LSR 

in this path and it is the LSP that supports only labeled packet transmission [31], [33]. Fig. 2. 1 

shows the unidirectional established LSP in the MPLS domain. In this figure, the labeled packet 

flow is from left to right while for the left to the right direction, another LSP can be established if 

required. 
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Fig. 2. 1: An LSP in MPLS Network [33] 

Only ingress LSRs do not need to be the first LSR that supports LSP establishment. 

There is a chance that an LSP can be established between many intermediate LSRs. This is 

considered to be a        LSP concept. An LSP inside another LSP is called a        LSP, as 

shown in Fig. 2. 2. In Fig. 2. 2, an LSP is established from the second intermediate LSR (right 

side) to the fourth intermediate LSR within the MPLS domain. It is worth noting here that 

although the packet is already labeled from the ingress (first) LSR when the packet is received by 

the second LSR of the network, the LSR pushes another label onto the packet. This means that 

the label stack of the packet has two labels; the upper label is for the        LSP while the 

bottom label is associated with the first LSP (that covers the entire MPLS network). 

 

Fig. 2. 2: Nested LSP in MPLS Network [33] 
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2.2.3 Label Switching 

 

The MPLS network relies on the label switching concept which can be described as a 

small and fixed-format label tagging a packet so then the packet can transmit in the MPLS 

domain. In other words, each packet/cell or frame needs an identifier so then the packet can be 

forwarded to the network. Within the MPLS network, at each hop, the packet transmission is 

dependent on the information tagged as an incoming label. It is then transmitted onward based on 

the new label. In the network at each intermediate LSR, the incoming label is swapped and the 

data is switched and supported based on the label value. This concept comes with two new 

terms; label swapping and label switching. In an MPLS-based network, the label is pushed onto a 

packet with a supplementary piece of information, known as the shim header [31], [33]. The 

shim header is inserted between the network header and IP header, as shown in Fig. 2. 3.  

 

 

Fig. 2. 3: The shim header between the network header and IP header [31] 

The shim header contains a 20-bit label and this label is used for path identification 

followed by a packet. Each intermediate LSR maintains a look-up table. This is known as the 

LFIB (Label Forwarding Information Base). The look-up table (LFIB) is used by the LSR for the 

identification of the next hop in the data transmission taking place in the network. Principally, 

the LFIB is comprised of the mapping of incoming labels and the incoming interface through to 

the outgoing label and outgoing interface. This means that when the LSR receives an incoming 

packet, it detects the incoming interface from which the packet is received and it finds the label 

in the packet shim header. The LSR then looks up the label values in the LFIB and finds the 

outgoing interface for where the packet needs to be sent. The new label value is placed in the 

shim header and the packet is then sent to the next hop. This procedure continues for each 
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intermediate LSR of the network and the path followed by this procedure is called a label switch 

path. Once the LSP is established from the LER/ingress LSR to the LER/ egress LSR, every 

intermediate LSR maintains this LFIB as its look-up table. The data follows this particular LSP 

path-based technique. However, the only complication occurs at the LER/ ingress LSR where the 

packet must be categorized according to its destination and the service offered. This may depend 

on the form of application or the level of service requested before being allocated to a particular 

path/ LSP [31], [33]. 

 

2.2.3.1 Packet Transmission in MPLS Networks 

 

Fig. 2. 4: Packet Forwarding Mechanism in an MPLS Network [31] 

The packet transmission mechanism in MPLS based network can be explained with help 

of an example as shown in Fig. 2. 4. In Fig. 2. 4, two LSPs are established. There is one LSP 

from Host A to Host B and another LSP from Host A to Host C. In the given example, there are 

four intermediate LSRs and they are used for packet forwarding in the MPLS domain. In the 
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beginning, with the support of the routing table or default route, Host A sends the IP packets to 

the next connected LSR V. In the MPLS network, LSR V works as ingress LSR, whose job is to 

categorize the packets according to their particular destination. The ingress LSR supports the 

LSP establishment towards the specific egress LSR. To do this, the ingress LSR allocates the 

LSP to a packet and tags them with labels by adding a shim header and set the label values. 

According to Fig. 2. 4, the packets that are targeted towards Host B are allocated to the upper 

LSP, called LSP 1, and the packets that are going towards Host C are assigned to the lower LSP, 

called LSP 2. At the ingress LSR, it can be seen that the LSP 1 packets are labeled with a value 

of 15 while the packets going over to LSP 2 are assigned with a label value of 10. Once the 

packets, according to their appropriate LSPs, are labeled, then they are forwarded out of their 

relevant interface towards the next intermediate LSR. As an intermediate LSR, LSR W‘s first job 

is to examine each labeled packet from the incoming interface for its incoming label. LSR W 

finds the outgoing label and appropriate outgoing interface for each packet using the look-up in 

the LFIB. The label values are swapped, such that the incoming label value is replaced with the 

outgoing label value. The packets are then forwarded out of their specified outgoing interfaces. 

In Fig. 2. 4, at LSR W, the old packet label value of 15 is replaced and forwarded towards the 

interface of LSR X with the swapped new label value of 19. Note that the transmission of this 

packet is done on LSP 1. Similarly, the packet label value of 10 received at the incoming 

interface of LSR X is replaced with a new label value of 62 before it is forwarded out to the 

interface of LSR Y over LSP 2. In the given MPLS network, LSR X and LSR Y are egress LSRs 

and they are specified as LSP 1 and LSP 2 respectively. As egress LSRs, the LSRs also use the 

look-up in the LFIB when they receive a labeled packet in their incoming interfaces. The egress 

LSRs (LSR X and LSR Y) remove the shim header along with the label values and forward the 

packet as a plain IP packet. The packet forwarding from the egress LSRs (LSR X and LSR Y) 

can be done with the support of a routine IP routing table. LFIB helps to optimize this method by 

providing the appropriate outgoing interface for the packet transmission. This means that there is 

no need to use a normal IP routing table at this stage. In the given example of Fig. 2. 4, it can be 

concluded that the packets are transmitted optimally within the MPLS domain using two separate 

LSPs according to their particular destination from a single sender host through the label 

terminology pathway.   
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2.4 Traffic Engineering  

The fundamental concept of traffic engineering is the optimal utilization of network 

resources, particularly the links that are underutilized as they do not sit on the chosen path. This 

implies that TE will provide a way of directing traffic on these routes across the network. This is 

different from the chosen routes that are computed in the least-cost methodology provided by IP 

routing [33], [34]. In networking, the least-cost is considered to be the shortest path that is 

computed by dynamic routing protocols [33]. With the implementation of the TE concept in the 

MPLS network, the traffic can have a specific QoS flow from one point (say point A) to another 

point (say point B) through a path that will be different from the least-cost path. As a 

consequence, the traffic will be distributed more uniformly across the available links to allow for 

the better use of any underutilized links in the network.  

MPLS with a TE enabled concept can be explained with the help of Fig. 2. 5. In Fig. 2. 5, 

using the TE concept, the traffic can be directed from Host A to destination Host B using the 

lower path (LSR P, LSR Q, and LSR S) instead of the upper path (based on LSR X and LSR Y). 

Note that the lower path (LSR P, LSR Q, and LSR S) will not be considered the shortest path as 

there are four hops compared to the three hops in the upper path. This may lead to a uniform 

distribution of any traffic over the underutilized links across the network.  
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Fig. 2. 5: Traffic Engineering (TE) Enabled network [33] 

2.5 MPLS Traffic Engineering 

The function of TE is to direct traffic from one edge to another edge in the most optimal 

way across the network. Routing methodology supports the IP networks when they are routing 

the traffic within the network. The routing concept depends on the least-cost rule in which the 

shortest path is computed and then the traffic is routed through the computed least-cost routes. 

Each IP routing protocol has a cost related to the network links. The aggregation of each link 

cost is considered to be a path and it is used for the computation of the shortest cost path. The 

shortest path (based on the number of connected links with the least-cost) is computed using the 

shortest path algorithm. Once the shortest path is computed, the traffic is routed using this path 

across the network [33] – [36].  

 MPLS-TE (MPLS paired with the Traffic Engineering) concept employs the traffic 

engineering rule by establishing an optimal path (known as LSP) that is based on the optimal 
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route computation from the ingress LSR towards the egress LSR. For optimal path computation, 

the ingress router must contain information about the updated network topology. The ingress 

LSR must also contain information on the remaining bandwidth of all of the network links. In 

conclusion, LSPs can be established across the MPLS network. MPLS-TE provides source-based 

routing as a replacement for IP destination-based routing. This is because MPLS uses label 

switching. This is where MPLS forwards the packet in the data plane and matches the incoming 

label in the LFIB before swapping it with the outgoing label. This means that the head-end LSR 

of the LSP is the entity that is used to determine the routing of the labeled packet, where all 

LSRs agree on what label is used for what LSP [33] – [34].  

Any network that has label switch routers (LSRs) can use the MPLS-TE methodology. 

However, it is also noteworthy that the head-end LSR of the LSP must-have information on the 

link bandwidth and other attributes. In addition to this, the link-state routing protocols are used 

between the head end and tail-end LSRs in the deployed MPLS-TE network. The reason for 

using link-state routing protocols in an MPLS-TE based network is that each LSR maintains the 

information of the current state of its connected links which is then flooded as a form of 

information across the LSRs of the network. In other words, in an MPLS-TE-based network, all 

LSRs have updated information about the network topology available to them [33] – [34].  

In summary, MPLS-TE provides the following benefits [33]: 

 MPLS-TE guarantees the effective distribution of traffic across the network by avoiding 

over-utilized and under-utilized links in the network. 

 MPLS-TE considers many link attributes (for example, delay or jitter) when computing 

paths. 

 MPLS-TE has the capability of automatically changing the link attributes and bandwidth. 

 Source-based routing supports traffic engineering in MPLS as opposed to IP destination-

based routing. 
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2.6 MPLS Network Optimization 

In recent years, there has been a significant development in terms of information systems 

and communication networks dealing with complex optimization problems in the fields of 

network architecture and routing. Advanced network routing technologies deal with multiple 

QoS requirements. This leads to designing routing models to compute the number of network 

routes while satisfying the quality of service constraints and optimizing the route-related 

objective functions. Routing problems in communication networks can be defined as the 

computation of a series of network routes or paths that are computed by the optimization of some 

of the objective functions while satisfying the constraints in the network. Various routing 

decisions related to performance can be measured using route-related selected metrics. The 

potential benefit of formulating routing problems in communication networks as multiple 

objective-based optimization problems is the creation of trade-offs between the different network 

costs and metrics that are conflicting to each other. This allows them to be analyzed in a coherent 

manner [37] – [40]. For MPLS networks, various routing models dependent on multiple 

objective functions have been proposed in the context of emerging routing problems in MPLS 

networks. The optimization problems in MPLS networks can be formulated as a combinatorial 

optimization problem that involves the computation of optimal paths/routes with either single or 

multiple objective functions subject to the multiple constraints within a discrete set of feasible 

paths in the network. MPLS networks, which offer advanced and diverse services, deal with 

routing problems related to path computation that are considered to be NP-hard (Non-

Polynomial) class optimization problems. This means that an optimal path computation that is 

dependent on multiple objectives and multiple network constraints in MPLS networks cannot be 

solved optimally in a feasible computational time. For this situation, optimization approaches 

have been adopted by researchers to solve the MPLS optimization problems encountered with 

approximate optimal solutions [20], [41] – [43].  
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2.7 Conclusion 

Network service providers and network vendors usually prefer to offer MPLS-based 

networking to their customers as it offers advanced and miscellaneous applications to the end-

users without sacrificing the QoS requirements. An MPLS network uses labels instead of the IP 

destination address. This reduces the complexity of the look-up table and routing table at each 

router. This method reduces the complexity of the network, thus it uses a label switch path to 

forward the data traffic within the network. MPLS networks can also be loaded with a traffic 

engineering entity that is used for traffic management. Offering multi-objectives-based routing in 

an MPLS network can be considered an optimization problem in an MPLS network. This means 

that while taking on the routing decision in an MPLS network, the network considers multiple 

objective functions and multiple constraints in route computation.  Most of the objective 

functions are conflicted with each other and also dependent on multiple constraints. This makes 

it an NP-hard class optimization problem. Therefore the idea is to find an approach that can not 

only offer an optimization model for MPLS networks but also generate optimal routes using an 

appropriate and effective path computation algorithm. 
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Chapter 3 

Network Optimization 

3.1 Optimization 

Optimization is related to the field of statistical analysis and applied mathematics. 

Problems related to achieving better solutions in the searching domain of different fields such as 

engineering sciences, economics, and life can be designed as an optimization problem. 

Optimization is the problem of finding the optimal solutions from all feasible solutions. 

Technically, it is the process of finding the decision variables that result in a maximization or 

minimization of an objective function. Several terms are used when designing optimization 

problems such as constants, parameters, constraints, and objectives that need to be achieved. The 

job of the problem designer is to craft the problem and to quantify the benefits of the proposed 

design. The designer also presents the initial design or baseline line for the optimization 

algorithm (used for the optimization problem) [20], [43]. The optimization process can be 

illustrated in the form of a figure designed by an engineer, as shown in Fig. 3. 1. In Fig. 3. 1, it 

can be seen that the designer describes the optimization process as including modules such as the 

initial design, evaluating performance, a condition, and a change in the design. All modules 

mentioned in the optimization process work with the support of the optimization algorithm that 

helps to optimize the solution in the problem searching space.  

 

Fig. 3. 1: Optimization Model [43] 
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To find an optimal solution, optimization can comprise of a broad variety of problems. 

Consequently, the identification and classification of optimization problems can be done in 

different ways, and in general, the optimization approaches may often vary greatly from problem 

to problem. For this reason, a unitary solution is not feasible. This is why the nature of the 

optimization problem relies primarily on the practical aspects of its objectives, functions, and 

constraints [43].  

Most optimization problems can be written in a general mathematical form as follows [43]: 

                            
                                                                   

  ( )          (               ) (   ) 

                                                  ( )                         (             ) (   ) 

                                      ( )                         (           ) (   ) 

        ( )   ( )       ( )                                    (   ) 

  (             )
  (   ) 

In the aforementioned equations, there are important components presented that are used 

for the mathematical formulation of the optimization process. These include variables, the 

objective function(s), and constraints. In equation 3.5,    of   are the variables known as the 

decision variables and they can be in either discrete or continuous form. They may also be a 

mixture of these two forms. Eq. (3.1) symbolizes the function   ( ), which is the minimization of 

the function. This function is the objective function, which can be one objective function    

   . It can be two or more than two objective functions       . The objective function(s) 

can also be referred to as either a fitness function or a cost function. The space utilized by the 

decision variables is known as the searching space, denoted as    and the space that is formed 

by the objective function(s) is called the response space or solution space. The constraints linked 

to the objective function(s) can be classified into equality-based constraints and inequality 

constraints, which are denoted as   ( ) and   ( ) respectively.  
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It is should be noted here that in Fig. 3. 1, the minimization of the objective function is 

applied. This can be formulated as the maximization of the given function, and this depends on 

the optimization problem at hand. The decision variables help us to categorize the optimization 

problem formulation. This means that if the decision variables are discrete, then the optimization 

is known as a discrete optimization. If the decision variables are continuous, then the 

optimization problem is in the continuous optimization problem domain. Discrete optimization 

can also be categorized as a combinatorial optimization problem. A combinatorial optimization 

problem can be defined as finding the optimal solutions from within a feasible set of given 

solutions. Combinatorial optimization has gained significant popularity among researchers from 

various fields because this optimization class is linked with graph theory. It is used to solve 

different optimization problems such as those of traveling salesman, network routing, vehicle 

routing, airline scheduling, minimum spanning trees, and knapsack problems [43] – [44]. 

3.2 Computational Complexity of Optimization Problems  

Computational complexity theory focuses on the classification of computational 

problems according to their underlying complexities and on connecting these groups. 

Computational problems refer to a job that needs to be solved by a computer with the support of 

a sequence of well-defined steps, known as algorithms. The problem complexity or difficulty 

depends on the number of resources used and whatever algorithm is used to solve the problem. 

In other words, the question referring to the reliability and usefulness of the algorithm depends 

on how complex the optimization problem is. This theory introduces the mathematical models of 

computations that are used to study the problems and measure their computational complexity 

such as the number of resources required to solve the problem. In the computational field, these 

resources are focused on time and memory requirements. An algorithm is required to run 

according to the number of resources available, which varies with the size of the input 

problem ( ). [20], [43] – [45]. 
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3.2.1 P, NP, NP-Hard and NP Compete 

In computational complexity theory, there are some problems where the answer can 

either be       or     . These problems are known as decision problems. The process of finding 

the answer to a decision problem with the help of an algorithm is known as the decision 

procedure of that problem. A complexity class contains a set of computational problems and 

these problems can only be solved using a specific amount of resources. There are four well-

known classes of problem, explained below [20], [43] – [45]: 

 P- Class:  

P-class is the class of decision problems that can be solved by an algorithm in polynomial 

time. In other words, this class problem is solvable in polynomial time if an appropriate 

algorithm is used.  

 NP- Class: 

A decision class problem that gives a solution to the problem which can be verified in 

polynomial time is called an NP-class problem. It is a class of problems in which the solution 

computation in polynomial time is not necessary but the solution must be verifiable in 

polynomial time.   

 NP-Hard: 

A problem is considered to be an NP-hard class problem if it is at least as hard as the 

hardest problems in NP. For example, problem A is considered to be an NP-Hard if problem B in 

NP can be reduced to problem A in polynomial time. 

 NP-Complete: 

A problem is known as NP-complete if it is NP-hard as well as NP. 

The relationship between the four aforementioned classes of problems is shown in Fig. 3. 2.  
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Fig. 3. 2: The Relationship between the P, NP, NP-Hard and NP-Complete Classes [45] 

 

3.3 Multi-Objective Optimization 

Optimization problems with a single objective function/fitness function are known as 

scalar optimization problems [103]. This is as the objective function of these problems always 

approaches a single value as the globally optimal solution (a scalar). As discussed before, 

optimization problems may have more than one objective function, known as multi-objective 

functions, which form a vector. This is known as vector optimization. In a MOP (Multi-

Objectives Optimization) problem, the task is to find the variable vector   in the problem domain 

  that optimizes the objective vector  ( ). In simpler words, the MOP is the optimization of 

multiple conflicting objectives. Mathematically, the MOP can be expressed as follows [44] – 

[47]: 

 

               ( )  (  ( )  ( )   ( )       ( ))                  (   ) 

                               ( )                          (   ) 

                                       ( )                                    (   ) 

Where multiple objective functions are mentioned as  ( )             ) and they are 

subject to multiple equality-based constraints and inequality-based constraints such as   ( ) 

and   ( ), respectively. In the case of conflict-based objective functions, the quality of one 

objective function will compromise or decrease compared to the other objective function. 

Therefore for conflict-based MCOP problems, there is no single optimal solution. Instead, there 
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is a balanced trade-off between the objective functions. Let us summarize the various 

optimization problems with multiple objectives below [44] – [47]: 

 MOP (Multi-Objectives Optimization) Problem: 

Computation of an optimal solution subject to multiple objective functions. 

 MCOP (Multi-Objectives with Multiple Constraints-based Optimization) Problem: 

Finding an optimal solution with multiple objective functions subject to multiple constraints. 

To solve either a MOP or MCOP optimization problem, the Pareto method has significant 

popularity, which will be explained in the following sections. 

 

3.1 Non-dominant Solutions and the Pareto Front for 

Multi-Objective Optimization 

Pareto Front provides a set of solutions for multi-objective optimization problems in 

which there is a balanced tradeoff between conflict-based multiple objective functions. The 

Pareto approach is used for contrary objective functions where there is no way of improving one 

objective function without weakening another objective function. In multi-objective functions, 

the dominance concept is very useful for understanding the comparison between multiple 

solutions and their respective ranking. During the optimization process, the Pareto method stores 

the elements of the solution vector separately and then uses the methodology of dominance in the 

form of dominant and non-dominant solutions. Dominant solutions represent the set of optimal 

values that can be produced when one objective function increases with the reduction of another 

objective function in value. In simple words, one objective function value dominates the 

solutions to the other objective functions, which is a Pareto optimal condition. The set of optimal 

solutions is known as a Pareto optimal solution. The non-dominant alternative represents a 

solution in which one objective function is improved without the reduction of another objective 

function. This is known as a non-Pareto optimal solution. Therefore for the given state, a Pareto 

Front model is used that displays a set of non-dominant solutions for multi-objective functions 

[43], [45].  
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Understanding the Pareto Front concept with the help of an example can be seen in the 

form of Fig. 3. 3. Consider two multi-objective functions (opposed to each other) and the non-

dominant solutions depicted in the two-dimensional space of Pareto-Front. The objective 

function is the minimization of two objective functions   ( ) and   ( ). The dominant solutions 

generated by both objective functions are represented as               while the non-dominant 

solutions are                and   . The Pareto front is formed by the combination of the 

aforementioned non-dominant solutions, as shown in Fig. 3. 3. 

 

 

 

Fig. 3. 3: Demonstration of the Pareto Front 

3.4 Nature-Inspired Computation 

Optimization is the process of searching for optimal solutions in the problem searching 

space. Searching is an important concept used in AI. Searching spaces are used for searching for 

solutions with the assistance of intelligent agents from which originated the standards for 

computational intelligence. Computational intelligence is the branch of the AI field that explores 

the adaptive mechanisms used to assist intelligent actions in diverse environments [44] – [45]. 

Unlike AI which relies on human knowledge and intelligence mechanisms, computational 
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intelligence depends on the amount of data that is obtained. This field contains a collection of 

nature-inspired computational models. Some of the major subjects in computational intelligence 

encompass the fuzzy system (used for reasoning in uncertain situations), neural networks for the 

recognition of the patterns and evolutionary computation for stochastic optimization searches 

[48] – [50].  

Nature is the key source of motivation for modern computational models. Wiener`s 

cybernetics, for example, is influenced by the feedback control operations that can be found in 

biological systems. Various changes in nature on either a microscopic scale or on a biological 

level can be viewed from a computational approach. Natural systems regularly maintain an ideal 

balance to reach an optimal equilibrium. These analogies may be used to consider practical 

approaches to search and optimization. Natural computing paradigms include the examples of SI 

(Swarm Intelligence), GA (Genetic Algorithms), SA (Simulated Annealing), quantum 

computing, artificial immune systems, artificial neural networks, DNA-based molecular 

computing, membrane computing, and cellular automata Biological species maintain social 

interactions varying from collaboration to rivalry. Mutual actions in a biological population 

originate from the concept of SI [44], [51] – [53].  

Cooperative problem solving is a strategy that helps to accomplish a particular goal 

through the coordination of a community of independent bodies.  In agent-oriented computing 

paradigms, cooperation mechanisms are popular, regardless of whether or not they are 

biologically dependent. Researchers in the field of biology, economics, and multi-agent systems 

are motivated by cooperative behavior. Game theory explores both competitive conditions and 

the level of cooperation between different groups. It has numerous uses in military strategy, 

culture, and social issues, in addition to animal behavior and democratic voting. The microscopic 

cell structure of life offers inspirational knowledge in the fields of evolutionary computing, 

membrane computing, and DNA computing.  Evolutionary computation involves the 

evolutionary process in a community of individuals over the generations. It produces offspring 

through mutation and recombination and chooses the fittest to survive from each generation. 

Membrane computing and DNA computing are new molecular-level computational paradigms. 

Quantum computing is defined by the concepts of quantum physics merged with computational 

intelligence [44], [54] – [55].  
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3.5 Metaheuristic Algorithms 

Exact optimization techniques are known for solving the optimization problems of low 

complexity, whereas most real-life optimization problems are very complex and therefore 

impossible to be solved through exact optimization approaches [56] – [57]. On the contrary, 

approximate algorithms have gained noteworthy attention for solving complex optimization 

problems that reside in the complexity class of NP-Hard.  Approximate algorithms can be 

classified into heuristic and meta-heuristic techniques/algorithms. Heuristic signifies the art of 

finding new approaches. Heuristic techniques relate to the methods of problem-solving and 

learning that are dependent on knowledge. This approach provides an acceptable solution in a 

feasible amount of computational time, but the solution might not be optimal. Heuristic 

approaches are problem dependent; this means that they are designed to solve specific problems 

[45], [58] – [62].  

 The word      is derived from old Greek, meaning            .  In 1986, Glover 

coined the word meta-heuristic to refer to the set of approaches that are conceptually graded 

above heuristic in the sense that they provide strategies that can be used to develop heuristic 

algorithms [133]. Metaheuristics are a high-level technique that is built to discover, produce or 

choose a lower-level (heuristic) technique that is in turn used to generate satisfactorily a better 

solution to an optimization problem. Compared to heuristic methods, metaheuristic methods 

generate improved solutions with less computational effort or fewer computer resources [45], 

[61] – [63]. Metaheuristics can be categorized as either a single-solution method or as a 

population-based strategy. Single-solution dependent meta-heuristics are focused on a single 

solution at any time and they include local-search dependent meta-heuristics algorithms such as 

tabu search, random search, iterated local search, solis-wets algorithm, variable neighborhood 

search and guided local search [64] – [69]. Population-based metaheuristics offer several 

solutions that can be improved over progressive iterations until the condition of termination is 

satisfied.  Population-based metaheuristics are commonly classified into either swarm-based or 

evolutionary-based algorithms [70] – [71]. Single solution-based metaheuristics are known to be 

more exploitation-oriented methods, in which the algorithm is inclined towards the local 

searching space. In contrast, population-based metaheuristics are considered to be a more 

exploration-oriented approach, where the algorithm tends towards global searching. Furthermore, 
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metaheuristics are problem independent. This means that they can be applied to solve any 

complex optimization problem heuristic [45], [70], [72] – [73].  

Metaheuristic algorithms are used as a choice of optimization approach for complex 

optimization problems where a heuristic algorithm fails to provide an acceptable solution. 

Several studies have discovered that metaheuristic algorithms have proven to be an efficient 

alternative with complex and large time-computational dependent problems [74] – [75]. Over the 

last few years, metaheuristic algorithms have obtained significant attention by solving 

engineering and communication network-based optimization problems. The significance of these 

algorithms relies on several factors such as (i) easy implementation and dependency on simple 

approaches, (ii) easy to escape from the local optima or the ability of more exploration, (iii) 

problem independent, hence they can be used for complex optimization problems, particularly 

NP-Hard class problems, (iv) and they can be used in various science disciplines [76] – [78]. 

Nature-inspired algorithms are one of the well-known classes of metaheuristic algorithms that 

imitate the biological behavior of animals. These algorithms have been using various engineering 

optimization problems. Many nature-inspired metaheuristic algorithms have been introduced and 

this area of research is still open to coining new algorithms of this type. Some of the nature-

inspired algorithms are very popular among researchers from various fields because by using 

these algorithms, most common optimization problems have been solved. Some well-known 

algorithms are PSO, GA, bat algorithm, ACO (Ant Colony Optimization) algorithm, DEO 

(Dolphin Echolocation) algorithm, GWO (Grey-Wolf Optimizer) algorithm, CS (Cuckoo Search) 

algorithm and honey bee algorithm [79] – [86]. All of these algorithms have gained incredible 

admiration from various field researchers because they offered effective solutions to various 

complex optimization problems.  
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3.5.1 Exploration and Exploitation 

In a real-life situation, there is no single methodology or technique which stands without 

having a problem or issue related to it. Although metaheuristics approaches have achieved 

noticeable admiration among researchers for solving a complex problem in numerous fields, 

these algorithms severely suffer from exploration and exploitation problems. Exploration and 

exploitation problems such as diversification and intensification are associated with their 

searching capability concerning optimal solutions in the problem searching space. By definition, 

exploration or diversification describes the capability of searching tending towards the global 

searching domain, thus exploring a wide range of different places in search of the space of the 

problem. Intensification or exploitation is the searching ability of the algorithm to search more in 

its local searching domain to obtain a high-quality solution. In metaheuristic algorithms, there 

should be a balanced tradeoff with the effective utilization of the algorithm, generating optimal 

solutions. Nevertheless, preserving this tactical balance between exploration and exploitation is a 

complex challenge [87]. In simple words, metaheuristic algorithms are either searching more in 

the global searching domain and they do not find solutions in their local searching area (known 

as n exploration problem) or they are mostly searching in the local searching domain and thus do 

not explore or search well in the problem searching space globally, known as an exploitation 

problem. In any case (exploration or exploitation), the algorithm fails to maintain the balance 

between exploration and exploitation.  Failing to maintain this tradeoff balance between 

exploration and exploitation severely affects the capabilities of the metaheuristic algorithm and 

the algorithm can go on to produce sub-optimal solutions to the optimization problem at hand. In 

other words, if the algorithm cannot manage this balance, then the algorithm becomes useless 

when it comes to providing optimal solutions to optimization problems [87] – [91]. Researchers 

in the field of metaheuristic algorithms understand this problem and therefore various studies 

have been conducted offering new metaheuristic algorithms, hybrid models and modified models 

of metaheuristic algorithms. All of these attempts have been made to solve exploration and 

exploitation problems in metaheuristic algorithms and then to apply them to real-world 

optimization problems.  



32 
 

3.6 Discussion 

In the updated/modified versions of metaheuristic algorithms, the work typically equips 

algorithms with various mathematical operators and stochastic approaches to enhance the 

algorithm‘s efficiency. In this group of developments, local searches, chaotic maps and 

evolutionary operators are the common models that are used. Another popular solution is to 

hybridize various metaheuristic algorithms. Some popular hybrid models of metaheuristic 

algorithms are PSO-ACO, PSO-DE, PSO-GA, KH-BBO, KH-CS, ACO-DE, GA-DE, and ACO-

GA [92] – [99]. Many researchers also take an interest in proposing new metaheuristic 

algorithms. However, new algorithms are also inspired by nature, physical rules, swarm 

intelligence, evolutionary phenomenon, and some biological behaviors. With the existence of 

plenty of new, modified, and hybrid algorithms, the query emerges as to whether there is still a 

research space for more metaheuristic algorithms and the answer lies in the (NFL) No-Free-

Lunch theorem. The NFL theorem states that no metaheuristic algorithm can solve all 

optimization problems [100] – [101]. This means that a metaheuristic algorithm can produce an 

optimal solution for a specific optimization problem but it may fail to generate optimal values for 

other optimization problems. Thus we should use either popular metaheuristic algorithms for 

every kind of optimization problem or introduce new or modified algorithms to produce optimal 

solutions [101]. The NFL theorem and exploration and exploitation problems encourage 

researchers to conduct research into metaheuristic algorithms and how to apply them to various 

optimization problems.  

Network optimization terminology is the efficient utilization of network resources 

without compromising the quality of services provided. However, the network can only be 

resourceful when the routes used for the data flow are computed optimally without 

compromising the various network quality requirements. MPLS networks are dependent on 

advanced and multiple network constraints and the objective functions used for route 

computation are formulated as multiple objectives subject to multiple constrained-based 

optimization problems. These are considered to be NP-hard class optimization problems [102] – 

[104]. For this class of optimization problems, metaheuristic approaches have become a popular 

choice over the last few years. Researchers have offered various optimization models for 

communication networks along with new, modified, or hybrid models of metaheuristic 
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algorithms. The situation not only relates to the optimization of the MPLS networks but also to 

the offering of improved or new versions of metaheuristic algorithms. The reason for offering 

new metaheuristic algorithms is related to the discussed exploration and exploitation problem. 

As discussed before, metaheuristic algorithms suffer from either exploration or exploitation 

problems that can generate a sub-optimal solution. Thus, having a metaheuristic algorithm that 

generates a sub-optimal solution for the NP-hard optimization of an MPLS network will not 

solve the optimization problem. In other words, less efficient algorithms cannot solve network 

optimization problems. Therefore the research question arises to offer a new or modified version 

of a metaheuristic algorithm that can balance its searching capability as exploration and 

exploitation and generate optimal solutions for the optimization model of the MPLS network. 
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Chapter 4 

Pareto based Modified Local Global 

Particle Swarm Optimization Algorithm for 

MPLS Optimization 

MPLS optimization is NP hard problem, for which metaheuristic algorithms will be the 

feasible approach to be used. There are numerous metaheuristics that can be applied for the 

mentioned optimization problem. However, the selection of metaheuristic principally depends on 

the algorithm popularity for various applications, its approach of dealing with exploration and 

exploitation, and success of generating optimal solutions. PSO algorithm is one of the well-

known metaheuristic, which is used for many applications but still have poor convergence issue 

while applying to various applications.  

In this chapter, the basic introduction of PSO is given along with its pseudo code. The 

exploration and exploitation problem will also be briefly explained. The state of the art literature 

review of PSO algorithm for network optimization will be the part of the chapter.  Then, the 

problem formulation of MPLS network optimization is given along with objective functions. For 

the given optimization problem of MPLS, an algorithm is proposed along with flow-chart and 

pseudo code. In the last section of the chapter, the results will be discussed with conclusion. 

4.1 Introduction to the PSO Algorithm 

Metaheuristics can be categorized using several aspects; one of which is classifying them 

according to population-based algorithms. PSO belongs to the group of metaheuristic algorithms, 

introduced by Kennedy, and Eberhart , that depend on the methodology of swarms or population 

searching concerning the optimal solutions in the problem searching domain. The PSO algorithm 

stimulates the technique practiced by synchronized bird flocking, bees swarming, and fish 

https://en.wikipedia.org/wiki/James_Kennedy_(social_psychologist)
https://en.wikipedia.org/wiki/Russell_C._Eberhart
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schooling. The algorithm uses the concept of a swarm or population, where the searching agents 

are known as particles. The particles share their current position with the other particles in the 

swarm using social behavior. During iterations, each particle in the swarm moves towards the 

new position and adjusts its position to the       (Particle Best Position) through cognitive 

behavior. The       is computed based on the condition that    the particle‘s new or current 

position is better than the previous position, then the current position will be updated as the 

particle best position. Otherwise, the previous position will be taken as      . Once all of the 

particles in the swarm update their      , then the particles‘       positions are compared with 

each other using social behavior to compute the       (Global Best Position) during the current 

iteration [79]. Compared to other population-based algorithms, the PSO algorithm is governed by 

basic mathematical operators and it has less computational complexity as it can be implemented 

using fewer lines of code. The properties of PSO make it a resourceful algorithm concerning the 

aspects of memory and speed. The simplicity of its implementation and the ability of a quick and 

effective convergence make PSO a prevalent choice for various optimization problems [79], 

[105] – [108]. 

4.1.1 Basic PSO Algorithm 

The origin of the PSO algorithm depends on the socio-cognitive behavior of the particle`s 

own experience and the knowledge of the successful particle in the swarm. In the optimization 

problem, there is   number of particles (           ) in the swarm, which are initially 

positioned randomly in               searching space of the problem as candidate solutions. 

During the first iteration  , each particle     has flown towards its random position and velocity, 

indicated as   ( )  and   ( ), respectively. During the next iteration    , each particle     in the 

population moves in the searching space and update its trajectory as updated    (   )  and   (   ). 

In the swarm, particles have fitness values that are measured by the fitness function to be 

optimized. During every single iteration     of the algorithm, each particle     compares its 

current position   (   )with its previous position   ( )  using computed fitness values. Based on the 

judgment of the position that has optimal fitness value, the particle progress its best position so 

far as      . After achieving the        values from each particle, the best position value is 

obtained known as the global best position      , which represents the optimal position obtained 
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so far by any particle in the swarm. During the next iteration    , particles in the population 

update their position   (   )  and velocity   (   ) by using following mathematical expression as 

[79], [105] – [108];  

  (   )    ( )             .        ( )/              .        ( )/ (4.1) 

  (   )    (   )     ( )  (4.2) 

where the acceleration constants      and      represent the cognitive and social behavior. 

Both      and      have constant values of 2, whereas      and     are the random numbers with the 

range of ,   -[79], [105] – [108].  

By using the social learning ability, all particles move towards the global optimum      , 

while cognitive learning makes particle to keep its information [79], [105] – [108]. The pseudo-

code of the basic PSO algorithm is given in Algorithm 4. 1. 

Algorithm 4. 1: PSO Algorithm Pseudo code 

   Input 

             initialize number of searching agents as particles with random positions  

             initialize velocities of initial positions 

   compute particles position values using objective function 

   take initial random positions as                    

   compute        based on present                                

  set iteration       

   Repeat 

   compute the fitness function for each particle position  

       fitness function for particle   position is optimal than its best fitness value so far, update                   

    compute the best position among the particles having optimal fitness value,  as           

    update each particle  velocity according to Eq. (4.1)   

    update particle  position based on Eq. (4.2)  
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    update iteration        

    Until the stopping criteria met  

    Output 

              optimal solutions from the optimization problem domain 

 

4.1.2 Balancing Exploration and Exploitation in the PSO 

Algorithm 

In the PSO algorithm, all of the particles in the swarm rely on two basic parameters such 

as the self-learning (cognitive) and the social-interaction capability of the particle with the other 

particles during the collective iterations. For each iteration of the algorithm, each particle in the 

population discovers its optimal position compared to its previous best position, which is 

theoretically acknowledged as particle`s local best position or local optima. The optimal position 

of every particle      is compared with the other particles‘       in the swarm to determine the 

global best position as the global optima. This implies that cognitive behavior in the algorithm is 

used to discover the local optima and that the social-interaction parameter is considered for the 

global optima. Following the next iteration, the global optimum is treated as a reference position 

to be followed by the other particles in the population [79], [108], [109].  

 All of the particles in the swarm consider        as their global optimum or the targeting 

position during the current iteration even though the        maybe so far from the optimal 

position. This problem usually occurs in multimodal optimization problems where particles can 

easily get trapped by the local optimum. Furthermore, if a suboptimal solution is obtained in an 

early stage of the algorithm, then all of the particles can easily fly around the suboptimal position 

without continuing the exploration in the searching space. One of the common problems that 

occur in the PSO algorithm is the trapping of the particle into its local optima. This is a condition 

in which the particle lies or follows the same position without an exploration of the searching 

space during iterations. This problem is acknowledged as a local optimal problem. On the flip 

side, there is a state where the particles concentrate more on exploration in the searching space, 

thus compromising the local search and thus producing repetitive or suboptimal solutions during 
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several iterations. It should be noted that this local and global optima problem discussion is also 

under investigation for other well-known optimization algorithms such as ACO and GA. For 

PSO, there is a challenging conversation among researchers to maintain the balance between 

local search (local optima) and global search (global optima) when applying the algorithm to 

various optimization problems. When dealing with multimodal optimization problems, PSO 

converges quickly towards a local search while missing out on the exploration of other search 

areas. For this problem, techniques like non-global best neighborhoods have been introduced that 

enhance the exploration capability of the algorithm but at the cost of a slow convergence towards 

the optimal position in the algorithm overall [108], [110] – [113].  

According to Dong et al.,[114] the PSO is not a suitable algorithm for higher dimension 

complex optimization problems as it produces premature or suboptimal solutions because of its 

local optima problem. In addition to this, the researcher stated that with a lack of global 

exploration capability, the PSO algorithm is a poor choice for complicated and complex 

optimization problems. As a consequence, optimization algorithm engineers concentrate on the 

fundamental enhancement of the PSO algorithm in terms of its local and global optima problems 

to maintain the balance between explorations locally and globally in the searching domain. One 

of the common strategies used to improve the searching capability of the PSO algorithm is to 

enhance search space diversity.  Despite these problems, this algorithm has been widely 

recognized as the superior choice for solving various real-valued optimization problems but with 

some modifications either in the form of fine-tuning its parameters or hybridizing it with other 

algorithms [115] – [120].  

Several studies have revealed that PSO has inherited a global searching capability but its 

local search varies on a case by case basis [121]. To balance the local and global searching 

capability of PSO, the research in [122] presented a time decreasing factor modification to the 

algorithm. Recently, the hybridization model of PSO with other algorithms is a well-liked 

approach to enhance the algorithm‘s performance. Comprehensive learning particle swarm 

optimization (CLPSO) has been introduced by Liang et al. [113], in which the particles in the 

population preserve each of the particle`s best position and then utilize it for velocity updating. 

Parsopoulos and Vrahatis [123] suggested the modification in PSO in the form of a combination 

of local and global searches, called a unified particle swarm optimizer (UPSO).  A fully 

informed version of PSO was presented by Mendes and Kennedy, in which all of the neighboring 
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particles update their velocities instead of updating their local and global positions [124]. In 

simple terms, the particle`s fitness function is dependent on its neighbor‘s size. The distance of a 

particle from its near neighborhood is an interaction technique is offered by Peram et al. [125] by 

introducing a FDR-PSO (Fitness Distance Ratio-based PSO) algorithm. There is a long list of 

literature available in which numerous researchers have developed different versions of 

enhanced or hybridized PSO to improve the PSO‘s performance while proposing solutions to the 

exploration and/ or exploitation problem [126] – [130].  Furthermore, the improvement of PSO 

for various topologies is also an active research area of interest.  

In real communication networks, network optimization usually relies on MCOP. This is 

considered to be a complex optimization problem, designated as NP-hard [37] – [40], [104], 

[108]. For the given complex network optimization problems, metaheuristic algorithms are an 

appealing approach as they offer acceptable solutions with less computational complexity. The 

PSO algorithm in its enhanced form has been applied to various MCOP network optimization 

problems [131] – [135]. 

4.2 Literature Review 

The optimal route computation in MPLS networks, which are modern multiservice based 

networks, is complex optimization model and thus, belongs to the group of NP hard 

computational complexity problem. Routing problem in MPLS networks include the selection of 

a sequence of optimum routes (satisfying network resources), which seek the optimization of 

multiple objectives having multiple constraints. Formulation of routing problems in MPLS 

networks has potential advantages, as the trade-off between conflicted objectives functions can 

be analyzed in a consistent manner. Formulation for multi-objectives is also considered as global 

routing problem, in which simultaneous LSPs computation is taken [131] – [135]. In the context 

of MPLS networks, the stochastic multi-objectives optimization model was proposed by 

Craveirinha et al [136]. This was the meta-model for routing formulation in MPLS networks in 

which hierarchical multiple objectives were considered. In addition to this, a specialized 

metaheuristic strategy for computing optimal solutions related to multiple objectives was 

proposed by Girao-Silva et al [137]. A comprehensive review of multi-objectives based routing 

optimization models for modern communication networks are presented by Climaco et al [138]. 
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Several classical exact methods are presented for multi-objective optimization models in [139] – 

[140]. However, exact techniques are too costly in terms of execution time and memory 

requirements. Recently, metaheuristics have got momentous attention for multi-objective 

optimization problems. For modern networks optimization problem, there are a vast number of 

bibliographical references for heuristic and metaheuristics. For instance, Kim et al. [141] 

modified simulated annealing algorithm for the allocation of nominal   channels to the cells in 

the cellular system in which the objective functions was to minimize the average call blocking in 

the network. The transportation cost of the traffic flow across the network was done by utilizing 

simulated annealing in [142]. Two methods of greedy procedure and table search algorithm are 

developed by Amaldi et al. [143], in which the maximization of traffic covered by base station 

and installation costs are minimized. The optimization model of least-cost communication 

network was proposed by Cox and Sanchez [144], in which the network capacity according to 

traffic demand was maximized. Fink et al. [145] presented optimization model for ring network 

design problems by using simulated annealing and tabu search algorithms. Gendron et al. [146] 

proposed a heuristic technique for a network load balancing problem. For discrete cost multi-

commodity network optimization problem, a metaheuristic optimization technique is offered by 

Gabrel et al [147]. Resend and Ribeiro [148] presented a group of heuristics algorithms for 

routing problem in private virtual communication networks. For route traffic on self-healing 

links (stack ring design problem), the genetic algorithm as metaheuristic approach was 

implemented by Armony et al. [149], in which the objective functions was to minimize the trade-

off between equipment costs and traffic flow cost in ring topology. Hybrid genetic algorithm is 

presented by Buriol et al. [150] for solving the OSPF (Open Shortest Path First) weight setting 

problem in MPLS networks. Ant colony optimization algorithm was applied by Varela and 

Sinclair [151] for the routing and wavelength allocation problem in virtual wavelength path 

routing in transport networks. Wittner et al. [152] presented swarm intelligence based 

metaheuristic for the resource reservation optimization problem in communication networks. The 

modified version of PSO algorithm as parallel PSO is presented by Bo Li et al. [153] for 

improving the communication networks latency. PSO based multiuser detector for CDMA (Code 

Division Multiple Access) communication system was presented by Soo et al. [154], in which 

the modified PSO is applied for detecting the received data bit by optimizing an objective 
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function incorporating the linear system of the LMMSE (linear minimum mean square error) 

detector.   

It is important to note here that all these metaheuristic algorithms are applied to 

communication networks optimization in their modified versions. In other words, the basic 

algorithms for each metaheuristic suffers with exploitation and/ or exploration and poor 

convergence problem while applying to NP hard base optimization problems.  There are vast 

amount of literature available for the enhanced versions of each metaheuristic, but PSO is one of 

the famous metaheuristic algorithm. The reputation of PSO resides in its less complex 

parameters, easy implementation, less computational cost and flexibility for optimization 

problems for various applications. However, PSO severely suffers with premature convergence 

due to its exploration and/ or exploitation problem. Numerous attempts have been taken for 

solving mentioned problem in PSO. For instance, A. Rezaee Jordehi [155] presented ELPSO 

(Enhanced Leader PSO), which is manly based on five-staged successive mutation strategy for 

solving traditional PSO premature convergence problem. Khan et al. [156] proposed a GPSO 

(Global PSO) for the optimization of electromagnetic design problem. Yasir Mehmood [157] 

proposed ESPSO (Exploration Strategy PSO), which enhanced the exploitation capability of the 

basic PSO and the effectiveness of the proposed algorithm was proved over benchmark 

optimization function. A-PSO (Ameliorated PSO) is presented by Ke Chen et al. [158], in which 

the different strategy is applied for position and velocity updating in PSO and the algorithm 

performance is verified over 20 benchmark functions. Ekkarat et al. [159] presented the 

improved version of PSO in which the mechanism of global best position is modified and the 

algorithm is tested over 27 benchmark functions. A comprehensive survey is presented by Yasir 

mehmood et al. [160] for clustering-based modified PSO techniques to solve multimodal 

optimization problem. PSO in its enhanced forms are applied for various modern communication 

networks      a novel distributed and dynamic version of PSO was proposed for UAVs 

(Unmanned Aerial Vehicles) in [161]. PSO used for shortest path problem in communication 

networks literature is presented in [162]. For MPLS based optical networks, a modified version 

of PSO was proposed by Yu et al. [163], in which the author presented the global optimization 

model to achieve the optimal traffic node distribution.  

 



42 
 

4.3 Problem Formulation 

Several studies made by researchers for the PSO algorithm revealed that the application 

of       is superior compare to      . This conveys that the       as local best has better 

exploration capability and enhance algorithm performance in terms of improved early 

convergence. On the contrary, the PSO version that more tends towards the        the model 

supports for unimodal optimization problems but can easily be trapped into local optima problem 

while dealing with multi-modal optimization problems. For multimodal optimization 

problems,       supported versions of PSO can be used as a better choice but offers poor 

convergence rate for unimodal optimization problems [108], -[164]. 

To address the above, this chapter proposes a modified version of PSO which has the 

support of both local-best and the global-best versions of the PSO algorithm. The method is 

entitled “PMLG-PSO (Pareto based Modified Local Global Particle Swarm Optimization)” 

algorithm embedded with the Pareto approach for solving the MPLS optimization problem. In 

the following sections, the optimization problem of the MPLS network is formulated in the form 

of presented multi-objective functions. 

4.3.1 Objective Functions for MPLS Optimization 

In recent days, network vendors and internet service providers prefer to deploy MPLS 

based routers in the networks.  In the optimization model, the MPLS network is represented as a 

graph by using graph theory, where nodes/ routers are vertices and links signify edges. A route is 

a computed path between the LERs. Each path indicates the sequentially connected links 

between intermediate LSRs. Therefore, the MPLS network can be represented by G, which 

indicates the graph/ network. The set of routers (vertices) are denoted by     , where each router 

  is the member of      and      is the set of connected links  . Each link has a fixed capacity for 

traffic denoted as   . In the experiments, several traffic requests will be arriving at ingress LSR, 

which computes the optimal path (s) based on the proposed algorithm between ingress and the 

egress LSRs.  

In the experimental setup for the optimization model of MPLS networks; two objective 

functions are considered though out the optimization approach, such as; the optimal resource 
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provisioning and the load balancing within the constructed network along with constraints, since 

it is MCOP problem. The following subsection is a detailed explanation of the mentioned 

objective functions. 

4.3.1.1 Resource Reservation Objective Function 

In the experimental setup, the MPLS domain-based network is designed, which receives 

traffic demands at ingress LSR of the network. The objective function for the routing algorithm 

is to compute the optimal path(s), where resources can be provisioned optimally without 

compromising on QoS, to be granted to end-users. In the network, each link   has assigned a 

specific cost per unit of traffic flow symbolized as     , which is assigned by the service provider. 

Whereas   
 

 is the total routing cost of a path   for traffic requests over a selected link  . The 

bandwidth price for the connection between each router of the network is   
  and thus, the 

bandwidth   cost is     
  over the link  . Similarly, there is also a delay    on each link   for 

forwarding the data traffic in the network. Let     be used as an indicator to show whether the 

link   is selected for forwarding traffic from   to  .      
 

 used as an indicator that shows the traffic 

flow over the path; which will be 1 if there is a traffic flow. 

    {
                                   
                                

 (4.3) 

                                                 (4.4) 

               ( ∑       
 

      

) (4.5) 

           ( ∑   
      

) (4.6) 
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             ( ∑         
 

      

) (4.7) 

                                                                       (            )   (4.8) 

Subject to following constraints; 

∑      

      

                     
    

Constraint (4.8a) 

∑                             
 
  

      

 
Constraint (4.8b) 

∑   
          

      

 
Constraint (4.8c) 

∑  
                        

            
  *      +

    

 

 Constraint (4.8d) 

                                 Constraint (4.8e) 

 

      is the total routing cost of a path   for traffic requests over a selected link  ;      

and   are the positive constants that are used to indicate the weight of each component. The 

objective function for resource provisioning problem is given by Eq. (4.8); Constraint (4.8a) 

ensures that all the links belonging to a set of links which can only be selected if      , and 

when the variable   
 
 for the selection of the path value is greater than  . From Constraint (4.8b), 

the constraint identifies that the link   from      can only be chosen if link   is used for the traffic 

request. Constraint (4.8c) verifies that all selected links for the computed path must 

accommodate all number of traffic requests in the given topology. Constraint (4.8d) as 

verification of bandwidth price is added on each selected link within limited bounds of ,      -. 

Constraint (4.8e) recognizes that traffic delay    must be present to all links. 
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4.3.1.2 Traffic Load Balancing Objective Function 

There are many choices to accomplish the traffic load balancing metric and implement a 

piecewise approximation of a cost function as described by Fortz and Thorup . Each connecting 

link between routers in the network is associated with two parameters known as a link load (link 

utilization)    and a link capacity   . The Link utilization    represents traffic flows over the link. 

While the link capacity    can be defined as a capacity of the link to handle unit traffic. By 

having these two functions, the traffic load balancing    the cost can be illustrated as the link 

utilization according to its capacity as following; 

  
                 (  )

              (  )
 (4.9) 

To achieve a resourceful use of links for traffic flows in the network, the links load 

balancing can be used as an objective function that is to be minimized. This approach leads to 

efficient utilization of network resources as well as to minimum packets loss, bound delays, and 

jitter, etc. Consequently, this objective function can be described to minimize the sum of traffic 

load balancing costs for all the links in the network as demonstrated by Eq. (4.10). 

                               ( ∑   
      

) (4.10) 

Subject to constraints: 
 

      
 Constraint (4.10a) 

                        Constraint (4.10b) 

   ∑∑  
   

 

    

      

 

 

Constraint (4.10c) 
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                    Constraint (4.10d) 

                    Constraint (4.10e) 

                    Constraint (4.10f) 

                      Constraint (4.10g) 

                        Constraint (4.10h) 

  
                                     Constraint (4.10i) 

                        Constraint (4.10j) 

           *    + Constraint (4.10k) 

 

 Constraint (4.10a) ensures that the link utilization    in the network must have either the 

same or less than the link's capacity   . In modest wordings, the traffic flows over the link must 

not exceed the link's capacity. Constraint (4.10b) states that traffic load balancing    must be 

greater than or equal to the link utilization    for all links. Further, this constraint guarantees that 

difference between the link utilization    and link capacity    must not be very high. Constraint 

(4.10c) precisely explains features of the link utilization    in the given topology. Link   can only 

be considered as utilized for a traffic flow, when the traffic flow is the member of the set of 

traffic demands, and the link   is also the member of the set in admissible links of the network. 

While   
 
 is the indicator which identifies the link   can be used for traffic flow over a path, such 

that a link   can be used for path computation. Constraint (4.10d) to Constraint (4.10h) define 

some specific linear load balancing cost function within a feasible region, in which the numbers 

multiplying with     and     define the constraints taken within the lower and upper bound of the 

searching domain.. Constraint (4.10i) represents the identifier of traffic flow over a path when it 

is more than   value. In other words, a path can be used for a traffic request. Moreover, 
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Constraint (4.10j) and Constraint (4.10k) identify the connected links and routers in the topology, 

which are used for the requested path. 

4.4 Particle Encoding 

A Particle encoding is the first step towards the further evaluation of the proposed 

algorithm. In the MPLS optimization network model, the particles travel over the two-

dimensional matrix, where each row represents a “from-node” and each column describes the 

“to-node”, in a searching matrix. Each particle represents the traffic flow over each selected link 

for a given traffic request. To elaborate on this section, let us consider a 6-nodes network as 

shown in Fig. 4. 1, the adjacency and demand matrices, as shown in Fig. 4. 2 and Fig. 4. 3. In the 

given example of six nodes network (from node 1 to node 6)three traffic demands (packets per 

unit sec) are considered as    (      )    (      )  and    (      ). For example, in 

   (      ) case, the traffic flow must be from node 1 to node 6 with 30 packets. For the first 

traffic demand   , the traffic will be split over three paths     , first path as (1, 3, 6), 2
nd

 path (1, 

4, 6) and (1, 2, 5, 6) as 3
rd

 path. This means, for     the traffic flow is from node 1 to node 6 via 

node 3, for     the traffic flow is from node 1 to 6 via node 4 and similarly, for     the packets 

will flow from node 1 to 6 through node 2 and node 5. For   , traffic splits over two paths such 

as       (     ), and       (     ). Similarly for   , the traffic will be split over two equal 

paths as       (   ) and       (       ). This can be seen in Fig. 4. 3, for example in the 

case of    (      ) , the traffic of total 30 packets splits into 10 packets from node 1 to node 

2 and node 3, from node 2 to node 5, node 3 to 6, node 4 to 6 and node 5 to 6.  

 
Fig. 4. 1: Network Model 
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Fig. 4. 1: Adjacency Matrix for Traffic Model  

 

 
 

Fig. 4. 2: Demand Matrices  
 

4.5 Proposed PMLG-PSO Approach for Network 

Optimization 

This section proposes a novel meta-heuristic approach, entitled PMLG-PSO algorithm for 

the MCOP optimization problem in MPLS networks. The flow chart of the proposed PMLG-PSO 

algorithm is shown in Fig. 4. 4. The flow chart is segmented into three main phases; initialization 

phase, processing phase, and post-processing phase. Each of the phases will be described with 

pseudo code along with an explanation in the following subsections. 
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4.5.1 Initial Phase  

This phase discusses the initial stage or pre-processing stage of the algorithm, where the 

searching agents (particles), searching space (matrix/ graph), and the algorithm's initial 

operations are engaged. In the pre-processing stage, the constraints have been applied to limit the 

searching space and as a result, obtain a skeleton matrix. A Skeleton matrix is used as a 

searching constrained dependent graph, where particles can hunt for feasible solutions. In the 

experiments, the skeleton matrix is applied as an MPLS network that is the collection of 

permissible links between connected nodes and can be used for traffic requests. Furthermore, the 

particles are initialized with random initial positions in the searching matrix for both fitness 

functions (resource provisioning and traffic load balancing). This section explores the case for a 

resource provisioning fitness function along with its constraints, where the random initial 

positions of particles are loaded as      . 
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Fig. 4. 3: Proposed PMLG-PSO Algorithm Flow Chart  
 

Whereas, for traffic load balancing fitness functions with its constraints, the initial particle 

positions are loaded in      .  

A Particle best position for a resource provision function is       . The particle best 

position for a load balancing function is       . Global-best-positions        and        that is 

achieved by       (        and        ) group. Solutions for (       and       ) are collected as 

non-dominant solutions from both objective functions for generating the graph of Pareto front. 

However, the algorithm's optimal solutions are obtained as global-best-positions       from the 

foundation of the linear combination fitness function       . According to [108], [165]– [166], 

for optimal solutions collection various tactics can be used for MCOP optimization problems. 

They are criteria-based, aggregation-based, Pareto-based dominant ranking, and linear 
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combination-based methods. In this chapter, the parametric linear combination of fitness 

functions for the computation of optimal solutions      ) is applied, which can mathematically 

derive as; 

                      (            )    (    ) ( ∑   
      

)     (4.11) 

In Eq. (4.11),   is a weight variable and   is plenty.       of the linear combination 

fitness function (                            ) will be considered as the optimal solution. The 

pseudo-code for the initialization phase is given below as Algorithm 4. 2. 

Algorithm 4. 2: Initialization Stage of PMLG-PSO Algorithm 

INPUT: 

1: initialize number of particles   in the population with respect to objective functions      and      
  

2:    initialize weight inertia parameter      and      
with the value of 2 

3:         initialize with the initial values of 2 for both  

REPEAT 

4:           population    

5:         initialize for       subject to constraints using Eq. (4. 1) 

6:          initialize for       subject to constraints using Eq. (4. 1) 

7:         initialize for       using Eq. (4. 2) 

8:          initialize for       using Eq. (4. 2) 

9:         compute                              according to Eq. (4. 8) 

10:       
  compute                                            according to Eq. (4. 10) 

11:          update particle best position based on       

12:          update particle best position based on     
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13:      

14:         update global best position for       

15:         update global best position for     
  

16:           population    

17:  compute                    using Eq. (4. 11) 

18:           update particle best position based on                     

19:      

OUTPUT 

20:          update global best position for                     

4.5.2 Processing Phase 

The processing phase contains all those key components which help the proposed PMLG-

PSO algorithm to resolve the traditional PSO algorithm's discussed problems and thus, discover 

the optimal solutions for MCOP optimization in the MPLS network. During the processing stage, 

the algorithm's traditional parameters such as      and    will contribute to the algorithm's 

convergence activity for             and       . The updated positions and velocities 

for             and        are evaluated concerning their fitness functions separately. The 

feasible solutions are referred to here as feasible paths in the network. A condition is applied that 

if the updated fitness function used for path computation is optimal than the previous solution, 

then update the particle's position (solution) as the particle's best solution      . This exercise 

occurs in              as        and        respectively. This step ensures that the updated 

position is better than the previous position. If the latest position of the particle is not optimal 

then particle keeps the previous position as its best position and from       positions in the 

updated swarm choose the global best solution      . The algorithm uses ESE (Evolutionary 

State Estimation) technique, which is dependent on the particle's distribution information in the 

swarm. The evolutionary factor is developed on the fuzzy classification method and is directed 
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by evolutionary factor   . The steps that have been followed for ESE terminology can be 

described as following [108],[167]: 

1. Find each particle's mean distance    from all other particles in the swarm, using the 

following expression; 

    
 

   
 ∑ √∑(  

     
 )
 

 

   

 

        

 

 

(4.12) 

where   another particle position from    particle,    each dimension in the matrix, 

and    total dimensions in the matrix. 

2. Compare all computed distances (for each particle) for both       and       matrices and 

define the maximum distance     , minimum distance     , and distance of the computed 

global best position of the particle   . 

3. Now, evaluate the evolutionary factor   by the following expression; 

  
        

          
   ,    -  (4.13) 

4. After computing evolutionary factor  , calculate the   as follow  

  
 

(            )
   ,        -       ,    -  (4.14) 

5. Evaluate    and    with the following expression; 

  
      

       (4.15) 

Where        for    and   , but       values must lie within the range of ,        - 

which decrements during each iteration. An extensive research has been conducted for 

specifying the values range for   and for      ,  and it is observed that these variables give 

support the algorithm`s convergence when having these values [108]. APSO (Adaptive PSO) 

used ELS (Elitist Learning Strategy) method to target the global optima problem in the PSO 

technique. In APSO based ELS model the random dimension, from the particle's global historical 

best positions, is selected and denoted as   . Thereafter, find the maximum dimension 
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value     
  and minimum dimension value     

   from the dimension ranges. From the values, 

compute the dimension value    based on the following equation: 

        (    
       

 )           (     ) (4.16) 

 Where        (          ) ,        and         .          represents here 

as Gaussian distribution with mean value of     and   is the time varying standard deviation 

value.      and      values based on empirical studies made in [108], [167]. 

Regardless of the use of an ELS model in APSO, the algorithm can still suffer intense 

exploration problem, as the local-optima problem still exist during number of iterations. Such as, 

if only global optima problem is supervised with the assistance of ELS model (as proposed in 

[167]), then the local optima problem can still occur. This situation disturbs the overall 

performance of the PSO algorithm with poor convergence and thus, generates sub-optimal 

solutions, which will be monitored in the results section. Furthermore, during iterations the 

increasing number of particles undergoing local optima may results the ELS technique as 

ineffective model. In simple words, the ELS model that targets only global optima problem, does 

not guarantee the provision of optimal solutions. The research contribution work presented in 

this paper proposes an algorithm that targets both local and global optima problems 

simultaneously, and to certify the algorithm's rationality on real-world application, and is applied 

for MCOP optimization in MPLS networks. The pseudo code for processing stage of PMLG-

PSO algorithm is given as Algorithm 4. 3: Pseudo code for Processing Stage of PMLG-PSO 

Algorithm. 
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Algorithm 4. 3: Pseudo code for Processing Stage of PMLG-PSO Algorithm 

INPUT: 

1:     objective functions      and      
 

REPEAT: 

2:            population    

3:                                 

4:     update                                  

5:    store    register (     )   empty  

6:    store    register (     )   empty  

7:         

8:                   update                          

9:    update                          

10:                   (    ) method for       

11:                      
    and                 

       

12:     initialize random      from         dimensions 

13:     initialize       
   and     

   from         dimensions 

14:     compute     using Eq. (4.16) 

15:          

16:     initialize random      from     Register 

17:     initialize random      from     Register 

18:            

19:    update        register   (     ) 
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20:    update        register   (     ) 

21:    update                                register 

22:           

23:   stored                          

24:   update                          

25:   update          as       (              )             (              ) 

26:          fitness function of                                     

27:    update         (              )  

28:    store       (              )  in         Register 

29:    store      (     )   empty  

30:    store      (     )   empty  

31:         

32:    evaluate             Repairing Box 

33:    Repairing Box  (      method  for       ) 

34:                       
    and                  

       

35:     initialize random      from         dimensions 

36:      initialize       
   and     

   from         dimensions 

37:     compute     using Eq. (4.16) 

38:          

39:     initialize random      from         Register 

40:     initialize       
   and     

   from         dimensions 
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41:     compute     using Eq. (4.16) 

42:            

43:    update      register for        

44:    update      register for        

45:    update         (              )   register 

46:            

47:           

48:  stored       (              )   register 

49:          

OUTPUT: 

50: Optimal Solutions for      and      
 

4.5.2.1 Registers used in PMLG-PSO Algorithm 

In the proposed PMLG-PSO algorithm, a modified model of ELS is offered, which is 

loaded with so called “Repairing Box”. Once the algorithm identifies the exploration problem at 

any stage, it goes to its repairing box (implanted with six registers). The repairing box is used to 

drag out the particle or group of particles which is either stacked in its local optima or its global 

optima. This repairing process of the local/ global optima problem within the repairing box is 

briefly explained in the pseudo code along with description. However, before solving the 

problem, it is important to vigilantly detect the local/optima problem. Having such goal, six 

registers are implanted into the algorithm. Each register is specifically used for the detection of 

local and global optima problem during different stages of the algorithm. The purposes and 

names of the registers are mentioned in Table 4. 1. 
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Table 4. 1: Registers used for the detection of exploration problem 

 Register Names Registers Working 

i.                                      Register for each particle‘s local best position(     ) 

ii.         
                       Register of               

  values 

iii.         
                      Register for         

  values 

iv.                                     Storing register for global best position(     ) 

v.         
                      Register of global best position     values 

vi.         
                     Stored register for        

  values 

 

Registers presented in Table 4. 1 worked as a memory registers that store previous values 

thus help the algorithm to spot the exploration problem. For instance, during algorithm's 

implementation, each particle   in the swarm keeps storing its       values in the       register. If 

particle`s best position       fell into its local optima, then       register identifies this problem 

with the support of its repetitive value/ position for       . In addition to this, it is also possible 

that those         
  register and        

  register may also help to detect the local optima 

problem. Similar situations can be reflected in       register,         
  register and        

  

register for the identification of global optima problem during algorithm's processing stages. 

Once the local and/ or global optima problem is identified at any stage with the help of 

aforementioned registers, and then the algorithm jumps towards the repairing box. Repairing box 

contains the modified version of ELS model and is entitled as AELS (Adaptive Elitist learning 

Strategy) model. In the repairing box, the offered AELS model will be used to fix the local/ 

global optima problem.  

For example, if the       register discovered a local optima problem, this information will 

be send to repairing box in which this issue will be resolved with the support of AELS model. If 
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in some way the         
  register couldn‘t resolve the problem in its 1

st
 iteration and records 

still show the local optima problem, then the proposed AELS technique will further choose 

another random   value and then computes the final    value. And, if the problem still occurs, 

the algorithm will repeat the random replacement of other    values until the condition is not 

satisfied. In worst-case scenario, when    can also be trapped with repetitive fixed value, then 

the new    will be fetched from        register. Global optima problems can be exposed in 

               
  and        

  registers and henceforth, can be resolved with the help of AELS 

model in the repairing box. Once the exploration and / or exploitation problem is resolved, the 

updated solution is sent back to the processing stage of the algorithm. 

Similar procedure of the proposed repairing box (along with AELS) and the algorithm 

will be followed for the linear combination function       . If there is no local/ global optima 

problem raised, then Pareto based feasible solutions are stored the in the appropriate storage 

boxes of               and optimal solutions in       . The pseudo code in the processing stage of 

the PMLG-PSO algorithm is given as follow. 

4.5.3 Post processing Phase 

In the algorithm, two separate initializations       and       are used to collect non-

dominated solutions, in order to create the archive for the Pareto front. Whereas the algorithm`s 

optimal solutions are stored in the form of       solutions from       . These optimal solutions 

are a collection of connected links (paths). The        solutions are preserved in the form of an 

archive and stored in the        storing box, as a number of available optimal solutions, as it is 

shown in Algorithm 4. 5. 

Algorithm 4. 4: Pseudo code for Post Processing Stage of the PMLG-PSO Algorithm 

Input :         from objective functions       and      
 

Output :  Optimal path (s) for the traffic requests 

1:           maximum iterations for           

2:                 
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3:          representing solutions of the problem 

4:   select link with minimum (optimal) value in       matrix 

5:   initialize path from the selected links 

6:   path(s) for requested traffic 

7:            

8:  achieve the selected links as optimal 

9:          

4.6 Empirical Assessment 

To assess the effectiveness of the proposed PMLG-PSO algorithm, the two brief 

performance analysis investigations are made. The first evaluation appears in the outcomes of 

solving the MCOP optimization problem in MPLS networks by using the Pareto Front graphs. 

The second investigation is a comparative study analysis; where the offered algorithm 

performance is compared against renowned metaheuristic algorithms such as PSO, APSO, Bat, 

and DA (Dolphin Algorithm) [108]. Both researches focus on an algorithm convergence ratio 

(particularly the trapping in local/ global optima problem domain) to test how successfully the 

proposed algorithm fixed the exploration problem when compared to the other optimization 

algorithms. The MPLS network-based topology is used for the experiments, where objective 

functions; resource provisioning costs and traffic load balancing costs are considered, as 

described in the problem formulation section. Demonstration of the conducted experiments along 

with results breakdown are discussed in the proceeding sections. 

4.6.1 Experiments for Pareto Front and Result Analysis 

For conducting simulations, the MATLAB R2016a package is used to develop the Pareto 

based solutions as well as optimal solutions based on described algorithms. The experiments 

were scheduled in such a manner that the proposed PMLG-PSO algorithm was categorized into 

six versions, such as            where                  . In each version, various 

approaches are applied in terms of the number of particles or number of algorithm iterations as it 
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is categorized in Table 4. 2. These classes of PMLG-PSO are implemented for a predefined 

number of nodes for MPLS networks such as              and     nodes. The purpose of 

making these variations is to inspect the success of the algorithm on different network size for 

generating optimal solutions. The basic structure of the algorithm (described in Algorithm 4. 3, 

Algorithm 4. 4, and Algorithm 4. 5) towards obtaining a minimization of the objective functions, 

is the same for all network's settings. Fig. 4. 5 shows the results of the Pareto archive that has 

been collected in the post-processing stage, which produced Pareto front-based solutions from 

          to           for a different scale of MPLS networks. 

Table 4. 2: PMLG-PSO Algorithm Versions 

Version Number of particles Number of Iterations 

              

                

              

                

             

   
             

 

A set of Pareto solutions from the Pareto archive, for two objective functions, are 

collected and presented in Fig. 4. 5 (a)   (d). As formerly explained, for each           

(          to          ) class, dissimilar values are presented as Pareto solutions. For 

the ease of understanding, the obtained non-dominated solutions are presented in separate figures 

for each case and are linked by lines to highlight different           classes‘ results. Fig. 4. 

5 indicate that the proposed algorithm is eligible to provide feasible Pareto based solutions with 

the contrast objective functions. Fig. 4. 5  also confirms that once the traffic load balancing costs 

increases, the resource provisioning costs decreases and vice versa. 
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Fig. 4. 4: Pareto-Front Graphs, P              and     nodes Network 

 

4.6.2 PMLG-PSO Algorithm`s Convergence 

Investigation 

To investigate the PMLG-PSO success ratio in terms of monitoring its convergence, the 

results are composed as the optimal solutions from the linear combination fitness function       . 

To discover the algorithm convergence activity with various network scale, the algorithm has 

been run on          and     nodes network (see Fig. 4. 6 (a, b, c and d)). The purpose of this 

investigation is to discover the PMLG-PSO convergence capability while approaching towards 

the optimal solutions without any interruption of the exploration/ exploitation problem and 

creating optimal solutions during iterations. The results shown in Fig. 4. 6 (a, b, c and d) 

illustrates the convergence activity of PMLG-PSO and portray the local/ global optima problem 



63 
 

(if one existed) during the convergence. In the experiments, each version of           is 

simulated using various network sizes. From the results obtained in Fig. 4. 6, it is found that the 

algorithm does not experience a local/ global problem at any stage and thus, smoothly converges 

towards its optimal solutions. This concludes that the algorithm successfully overcomes the 

exploration and / or exploitation problem and produces optimal solutions with the coherent 

convergence. In its nature PMLG-PSO is a stochastic algorithm, therefore the Pareto curves 

change.  

 

Fig. 4. 5: Analysis of Convergence of PMLG-PSO Algorithm 
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4.6.3 Krushkal-Wallis Test 

To examine these statistical variations, the chapter uses a non-parametric test, the 

Kruskal-Wallis Test [108], [168]. The purpose of the Kruskal-Wallis test was to identify if at 

least one sample stochastically dominates over the others. Table 4. 3 show the simulation results 

for each version of            which were conducted for a different number of nodes; it 

also includes resulted   values. In the simulations, all           versions had the same 

number of iterations but a different number of particles.      represents a number of 

simulations for each           algorithm version. Using the Kruskal-Wallis test, six groups 

of data           (          to          ) have tested. Based on test rules, two 

  values     ,    and    were considered.    indicates that there is no significant difference 

between           (          to          ) data, while     identifies a major 

difference. In the Kruskal-Wallis test a value of        is used for the identification of    

or   . The degree of freedom    for   value is calculated where        and   represents 

a number of data sets [40]. In this case study (           versions),   value is 6 (as    ). 

For these data sets, by taking into account        and     and applying a state decision 

rule we get        . This means,   values less than         satisfy    hypothesis. On other 

hand,   values more than         satisfy    hypothesis. Having this in mind, when examining 

Table 4. 3, it can be noticed that for each case study shown, the computed   value is less 

than        . Therefore, according to Kruskal-Wallis test, there is no statistically significant 

difference among solutions produced by individual           versions. The experiment 

thus provides a proof that even a stochastic nature of the PMLG- PSO algorithm can produce 

optimal solutions that will not stochastically dominate over each other solutions. By other words, 

the algorithm does not produce abrupt solutions. 
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                Table 4. 3: Kruskal-Wallis Test Results 

      Method                                 

         

80           3.8881 5.8994 4.2613 0.0046 2.2354 0.9687 4.61 

           10.02 7.0455 2.126 3.4187 1.8147 4.1999  

           5.9603 5.2494 6.908 1.1467 4.3732 1.7449  

           4.0994 2.8054 0.5452 3.5105 1.0819 6.2051  

           0.7129 0.489 0.802 3.992 7.6533 1.2524  

           2.5965 4.064 2.8822 1.5261 2.3465 2.5549  

 

         

90           3.2645 0.4765 4.5702 7.0599 0.0219 0.0532 2.25 

           2.0391 5.555 2.3688 1.6442 4.0108 4.56  

           1.0528 0.7591 4.0091 2.1252 1.1673 3.1  

           3.8526 2.8964 1.1428 4.9318 3.1934 0.6237  

           1.1671 1.5639 3.4349 2.1304 3.4083 2.0638  

           3.1653 3.089 6.4102 2.7346 0.7212 2.5105  

 

         

100           0.0164 6.0832 4.7698 0.8023 5.8092 1.0933 1.75 

           2.0559 3.731 0.1134 3.7552 1.3694 7.1996  

           0.1987 7.1935 0.6988 5.5008 4.5798 0.2009  

           1.2743 1.8725 9.7466 2.2404 1.7511 3.5788  

           2.6096 1.9812 2.7777 1.8384 3.5714 3.5314  

           8.4271 4.3661 2.2835 2.6985 2.867 4.063  
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110           0.1169 5.847 0.6445 3.7258 4.5795 0.6803 4.66 

           6.1731 3.8477 0.5514 0.3387 0.4063 1.4105  

           1.7349 5.2295 6.4817 1.3506 5.1806 2.0496  

           2.4049 1.6217 4.8202 3.3051 6.1764 1.9375  

           3.3695 0.7787 0.9641 2.7674 2.1304 0.886  

           2.5208 2.0252 0.849 4.4458 3.9305 1.8917  

 

 

4.6.4 Comparative Study of PMLG-PSO with 

Metaheuristic Algorithms 

The purpose of making comparison with the other popular metaheuristic approaches is to 

scrutinize the PMLG-PSO efficiency competing with other optimization techniques. For this 

assessment, this work uses PSO, an advance version as APSO, DA and bat algorithms. The 

experiments included a development of PSO, APSO, BAT and DA algorithms for the described 

MCOP optimization problem in MPLS networks. Each algorithm is simulated using the same 

MATLAB 2016a version, and results are collected to figure out the problems in the algorithms (if 

exists during the iterations). The results for both fitness functions (traffic load balancing and 

resource provisioning costs) were collected separately, as shown in Fig. 4. 7 and Fig. 4. 8, 

respectively. Fig. 4. 7 and Fig. 4. 8 show the results of the algorithms convergence, when any 

algorithm could not maintain balance between exploration and exploitation. In Fig. 4. 7, for all 

its cases (a, b, c, and d), algorithms (PSO, APSO, DA and BAT), apart from PMLG-PSO, had 

drastically failed to deal with the exploration and/ or exploitation problem and once their 

searching agents were trapped in their local/ global optima, the algorithms could not converge 

properly to find the optimal solutions for the resource provision fitness function. Consequently, 

these algorithms failed to find optimal solutions, and the result in this case is sub-optimal 
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solution. For example, in Fig. 4. 7 (d), the figure shows that PSO, APSO, DA and BAT 

algorithms, are poorly deteriorated to converge properly until the end of iteration. As a reference, 

it is appeared that PSO and APSO cannot converge after the      iteration.  

Likewise, for the traffic load balancing costs function, it can be seen in Fig. 4. 8, that 

PSO, APSO, DA and BAT algorithms had generated sub-optimal solutions and produced worse 

convergence activity with respect to the fitness function. As a case study, let us consider Fig. 4. 8 

(a), where PSO algorithm cannot converge after      iteration and repeats (produces) the same 

fitness function values. DA algorithm experiences the failure in various stages of convergence 

during the iterations, such as      to     ,      to     , and      to      iterations. While on 

the other side, proposed PMLG-PSO algorithm has better convergence rate when compared to 

other algorithms (PSO, APSO, DA and BAT) in forms of generating a number of optimal 

solutions. It can be concluded from Fig. 4. 7 and Fig. 4. 8 that the proposed PMLG-PSO has not 

only solved local/ global optima problem but also has fastest convergence rate, for different 

MPLS network sizes, compare to other mentioned algorithms (PSO, APSO, BAT and DA). 
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Fig. 4. 6: Comparison of Meta-heuristic Algorithms w.r.t Convergence for Resource 

Provisioning Function 
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Fig. 4. 7: Comparison of Meta-heuristic Algorithms w.r.t Convergence Ratio for Load Balancing 

Function 

4.6.5 Statistical Analysis 

For further investigation, the same setup of the PMLG-PSO algorithm is run for     

times to extract and then evaluate the overall performance of the algorithms using statistical 

parameters such as optimal fitness function costs, MEAN value and Standard Deviation values. 

The output results are given in the following tables. Table 4. 4 to Table 4. 7 represent the 

comprehensive comparative analysis of optimization algorithms over          and     nodes 

networks. While reviewing each algorithm output in the form of an optimal solution in the given 

tables, it can be concluded that for each network scale, the optimum solutions are obtained from 

the proposed PMLG-PSO algorithm. As the minimum function costs are obtained from the 
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proposed algorithm and compare to other techniques. Similarly, for MEAN values, PMLG-PSO 

provides optimal MEAN values compare to other algorithms (PSO, APSO, DA and BAT). Here, 

minimum MEAN values are considered as the optimal values. As all mentioned algorithms have 

stochastic nature, therefore, the standard deviation parameters were used to monitor the deviation 

values of each run during all     iterations. For this case, DA algorithm has got the minimum 

standard deviation value but has sub-optimal values, whereas the other acceptable choice as for 

standard deviation values along with optimal solutions are from PMLG-PSO algorithm. The 

tables (Table 4. 4 to Table 4. 7) provide a conclusion that the proposed PMLG-PSO algorithm 

has maximum probability for generating optimal solutions even after implementing it into 

multiple numbers of simulations. 

 

Table 4. 4: Statistical based Comparative Analysis of 30 Nodes Network 

Resource Provisioning Costs Objective Function 

 PSO APSO BAT DA PMLG-PSO 

Optimal Sol.                                      

Means                                              

Std Dev.                                             

Traffic Load Balancing Costs Objective function 

 PSO APSO BAT DA PMLG-PSO 

Optimal Sol.                                         

Means                                        

Std Dev.                                              

 

 



71 
 

Table 4. 5: Statistical based Comparative Analysis of 50 Nodes Network 

Resource Provisioning Costs Objective Function 

 PSO APSO BAT DA PMLG-PSO 

Optimal Sol.                                    

Means                                        

Std Dev.                                            

Traffic Load Balancing Costs Objective function 

 PSO APSO BAT DA PMLG-PSO 

Optimal Sol.                                        

Means                                        

Std Dev.                                              

Table 4. 6: Statistical based Comparative Analysis of 80 Nodes Network 

Resource Provisioning Costs Objective Function 

 PSO APSO BAT DA PMLG-PSO 

Optimal Sol.                                  

Means                                    

Std Dev.                                             

Traffic Load Balancing Costs Objective function 

 PSO APSO BAT DA PMLG-PSO 

Optimal Sol.                                   

Means                                        

Std Dev.                                              
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Table 4. 7: Statistical based Comparative Analysis of 100 Nodes Network 

Resource Provisioning Costs Objective Function 

 PSO APSO BAT DA PMLG-PSO 

Optimal Sol.                                  

Means                                      

Std Dev.                                            

Traffic Load Balancing Costs Objective function 

 PSO APSO BAT DA PMLG-PSO 

Optimal Sol.                                  

Means                                    

Std Dev.                                              

4.7 Summary 

 

The exponential growth in the data traffic across the network require significant 

throughput enhancement to prevent network congestion. To address this issue, various 

approaches in the form of algorithms were introduced. The objective of these algorithms is to 

spread the network traffic that guarantees network reliability and efficiency. PSO algorithm is 

famous for solving such type of complex optimization problems in different fields. However, 

PSO itself has an intense problem of balancing exploration and exploitation searching that 

undergoes its capability of generating optimal solutions in various conditions. Therefore, there 

was a need to offer such version of PSO that not only enhances its searching abilities but also 

helps to provide optimal solutions for complex optimization problems of networking. In this 

chapter, an optimization model of MPLS network has been presented in the form of two contrast 

objective functions loaded with multiple networking constraints, which is considered as MCOP 

problem that belongs to the class of NP-hard optimization problem.  The two objective function 
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that are considered for MPLS optimization model were ( ) resource provisioning cost, and (  ) 

traffic load balancing cost objective functions. For the given complex MPLS optimization model 

a novel “Pareto based Modified Local Global Particle Swarm Optimization (PMLG-PSO)” 

algorithm is offered as an approach for solving optimization problem. In additional to this, a 

Pareto approach is also adapted for contrasted objective functions in order to create non-

dominant solutions and then plot then as Pareto front. In the chapter, number of experiments was 

conducted for solving MPLS network optimization problem by proposing optimal solutions and 

then also makes comparative analysis with other algorithms. In numbers, five experiments were 

conducted such as ( ) producing Pareto front as non-dominant solutions, (  ) convergence 

analysis of proposed PMLG-PSO with various network scales, (iii) comparison of PMLG-PSO 

with PSO, APSO, BAT and DA in terms of convergence activity, (iv) Statistical parameters test 

using MEAN, standard deviation and optimal values in competence to other aforementioned 

algorithms, and (v) Khushkal-Wallis test for testing stochastic nature of PMLG-PSO.  

While exploring the results obtained from the above mentioned experiments, it is shown 

that proposed PMLG-PSO outclass its competitive algorithms (PSO, APSO, BAT, and DA) in 

terms of convergence and also with statistical data obtained. PMLG-PSO has successfully 

generated Pareto front for objective functions that is shown in Fig. 4. 6 and also produces 

optimal solutions for various considered versions of the algorithm (         ), as shown in 

Fig. 4. 7. While comparing the PMLG-PSO with its rival algorithms (PSO, APSO, BAT, and 

DA), the proposed algorithm smartly handle local/ global optima problem and converge 

effectively towards optimal solutions compared to other algorithms (see Fig. 4. 8 and Fig. 4. 9). 

Moreover, for statistical results obtained in the form of data also showed the superiority of 

PMLG-PSO compared to its competing algorithms, as shown in the form of Table 4. 4 to Table 

4. 7. As PMLG-PSO is stochastic nature algorithm, therefore, the Khushkal-Wallis test was 

conducted and the results were given in Table 4. 3. From the test, it is settled that the PMLG-

PSO does not suffer with producing abrupt solutions. From all the experiments conducted and 

the results obtained in different form conclude that the proposed PMLG-PSO can smartly handle 

the local/ global optima problem which exists in standard PSO algorithm and it produce optimal 

solutions for the complex optimization problem in MPLS network having multiple objective 

functions. PMLG-PSO also shows its dominance by providing optimal solutions in various 

experiments with its competing algorithms (PSO, APSO, BAT, and DA). 
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Chapter 5 

Adjustable Bat Algorithm for Multi-

Objective Multiple Constrained Based 

Optimization Network Problem 

Bat algorithm has got momentous popularity in recent years for its success of solving 

various optimization problems, specifically for multi-objective dependent problems. 

Nevertheless, the algorithm has various parameters that have not been explored before. This 

chapter will first describe the bat algorithm and its parameters that are used for optimal solutions 

searching in problem domain. The work in this chapter will highlight the significance of bat 

algorithm parameters and discuss them with experimental results.  The limitations to the bat 

algorithm are also discussed. The literature review related to bat algorithm for network 

optimization is briefly discussed in the chapter. The multi-objectives based optimization model 

of MPLS network is presented and mathematically formulated. For the given optimization 

model, the novel version of bat algorithm is proposed in the later sections. The task of the 

proposed technique is to generate the optimal solutions for the MPLS optimization model. A 

comprehensive comparison study is included in the last section of the chapter, in which the 

proposed technique is compared with other metaheuristics in order to validate its performance. 

5.1 Introduction to the Bat Algorithm 

In 2010, X. Yang [81] contributed a novel bat algorithm in the family of swarm 

metaheuristics that collected remarkable recognition because of to its efficient convergence 

during its initial stage when fixing different optimization problems. Bat algorithm imitates the 

echolocation strategy of a bat searching for its prey. Bats emits calling signals inside a searched 

space as well as examine the collected echoes of these calls arrived from a prey. This plan of 

action assists the bat to reach in the direction of its prey. The bat algorithm is put into practice by 
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applying subsequent instructions that are given in the form of mathematical expressions. During 

the course of the initialization phase, the algorithm determines the initial frequency of the bat 

signals, given as follows [81], [169] – [170]; 

  
          (           )   (5.1) 

where   represents the random number in the range of ,    - and     ,      are used for 

minimum and maximum frequencies, respectively. At the processing stage, the   value changes 

with the random values defined within the range. In addition to this, the velocities   
     and 

positions   
    in each iteration update by the following equations [81], [169] – [170];   

  
      

   (   
                )   

    (5.2) 

  
       

     
    (5.3) 

In the Eq. (5.2),              is referred to the global best position. In the next stage of the 

algorithm, each     bat takes a random walk step to produce local best position, denoted 

as              
 , by fulfilling the condition of        

  [81], [169] – [170];  

             
    

          (5.4) 

The process of echolocation in bat algorithm is highly reliant on its pulse rate (  
 ) and 

loudness parameter (  
 ). In cases where the bat gets near in the direction of its prey (towards 

optimal solution), the pulse rate (  
 ) grows and loudness (  

 ) reduces, by the following 

expression [81], [169] – [170]; 

  
         

  (5.5) 

  
      

  [       (   )] (5.6) 

where  ,  and   are the constants, which ranges between ,    -, whereas    represents the 

Average Loudness.   
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5.2 Literature Review  

In recent years, researchers are intensively searching for metaheuristic optimization 

techniques that can offer fast convergence rate and generates optimal solutions for various 

complex optimization problems. It has also been discussed in the previous chapters that 

metaheuristic algorithms usually fails to maintain tradeoff balance between exploration and 

exploitation process and thus, come up with poor convergence rate. Even the popular 

metaheuristics suffer with this convergence problem during different iterations of the algorithm 

[171], [172].Despite the fact that the bat algorithm is well-liked due to its fast search approach to 

with optimal results in the beginning, there is always a space for improvements. Supported by 

the research carried out in [169], [173] - [174], it was discovered that the bat algorithm has a 

slower convergence rate during the later stages of the algorithm. It was additionally observed 

that shortly after the first couple of initial iterations, the algorithm can tends towards exploitation 

more than exploration in the searching space (unbalance exploration and exploitation). Bat 

algorithm offers better convergence in its local exploitation process by using its loudness and 

pulse rate parameters, while the exploration process is dependent on the random searching of bat 

population [175] - [176]. Although, Bat algorithm offers impressive convergence compared to 

other metaheuristics, but it contains the high risk of local optima problem after few iteration and 

consequently, the algorithm convergence slow down and reduce accuracy [177] -  [179].  

Since the optimization problems continued to become more complex, the researchers 

have come up with various versions of Bat algorithm. These attempts of improvements were 

done to enhance algorithm`s performance for solving various complex optimization problems 

[180]. At the early stages of improvements of Bat algorithm, Yang [181] (the founder of Bat 

algorithm), offered the improved version of bat for multi-objective optimization problems. 

Komarasamy and Wahi [182] offered a clustering based bat algorithms, called as KMBA (K-

Means Bat Algorithm), A fuzzy logic based bat algorithm is presented by Khan et al. [183], 

named as FLBA (Fuzzy Logic Bat Algorithm), in which the fuzzy logic techniques were 

incorporated with bat algorithm`s parameters. To solve feature selection and classification 

problems, a BBA (Binary Bat Algorithm) was proposed by Nakamura et al. [184]. Fister et al. 

[185] presented QBA (Quaternion Bat Algorithm) for solving large-scale optimization problems 
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and computational geometry.  IBA (Improved Bat Algorithm) is presented by Yilmaz et al. [186] 

for solving continues constrained and unconstrained optimization problems.  

Some researchers adopted levy flight technique for improving bat algorithm. Using levy 

flights and chaotic maps inside the Bat algorithm, the CBA (Chaotic Bat Algorithm) is offered 

by Lin et al. [187]. On the other hand, with the combination of levy flights and differential 

operations into the bat algorithm, Xie et al. [188] proposed DLBA (Differential Operator and 

Levy Flight Bat Algorithm).Another improved version of bat algorithm which was implanted 

with levy flights and subtle loudness level variations and pulse rates were presented by Jamil et 

al. [189] and named as IBA (Improved Bat Algorithm). Zhou et al.  [190] improved the 

exploration process of bat algorithm. For optimum design of a power system stabilizer, Ali et al. 

[191] presented a new version of bat algorithm.  

In addition to this, some researchers offered the hybrid versions of bat algorithm with 

other metaheuristics for solving various complex optimization problems [192] - [196]. To 

improve the global search, a chaos mechanism based bat algorithm was presented by Gandomi 

and Yang [197]. For continuous and combinatorial optimization problems, Iztok Fister Ji. et al. 

[198] developed the self-adaptive bat algorithm. Fister et al. [199] also presented hybridized 

model of bat and DE strategies. A hybrid algorithm of bat and HS (Harmony Search) was 

presented by Gaige Wang and Lihong Guo [200] in order to solve the global numerical 

optimization problems. While some authors make a comprehensive analysis of bat algorithm 

with other metaheuristics to understand the behavior of the algorithm while applying to various 

benchmark functions and optimization problems of different applications [201] - [202].  

This aim of this chapter is to investigate various parameters of bat algorithm and 

improved its convergence by proposing a novel version and applies for MPLS optimization. The 

matter of effective convergence in the bat algorithm in relation to the MCOP optimization 

problem is still an open and unsettled research problem. The significance of the bat algorithm's 

loudness parameter has not been thoroughly studied yet. 
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5.3 MPLS Optimization Model  

This chapter highlights the significance of loudness parameter with the support of 

experimental results and will demonstrate the usefulness of the loudness parameter to enhance 

the bat algorithm functionality regarding improved solutions for the MPLS network optimization 

problem. The chapter is going to propose a modified model of the bat algorithm which is 

integrated with a loudness optimizer and named as the Adjustable Bat (ABAT) algorithm. The 

ABAT will be applied for producing both, optimal and non-dominated, solutions in the form of 

the Pareto front by taking into consideration of two objective functions: The Load Balancing 

Costs and Routing Costs. In the case of applying the ABAT algorithm, various loudness levels 

will be taken into consideration and then apply them to a various number of nodes in the MPLS 

network to examine the algorithm overall performance. In verification experiments that will be 

discussed in the future, a variety of traffic flows is supposed to be directed towards ingress LSRs 

in MPLS domain. The goal of ingress LSRs is going to determine multiple paths dependent on 

the quantity of traffics, which will be accomplished through the recommended ABAT algorithm 

by ingress LSRs. 

The simulation of MPLS networks is conducted by employing graph theory notations; 

    (   ). The network structure was symbolized as a graph   in which its vertices   signify 

routers, together with its edges   is indicated as links in between vertices. The total number of 

   
   routers used to be assembled as       or    *              +, and the number of links    

collection can be signified as      or   *  (   )    (   )    (   )        (   )  +. Each individual   (   ) 

symbolizes a link between a source node   to an adjacent or interconnected node  . The offered 

bandwidth is going to be signified by      (   )  *      (   )           (   )               +. As 

soon as the traffic demand          
   is collected at ingress LSR, a quadruple approach 

(                  ) is taken into account, in which     is taken as an identification (ID) towards 

a particular traffic request,     is the ID for the source (ingress LSR) router,     is the destination 

(egress LSR) router ID and     is a bandwidth ID for a specified LSP. Here it is assumed that all 

the QoS specifications are integrated in to available bandwidth ranges. The experiments made 

use of two objectives functions, and are described in the next sections. 
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5.3.1 Computing Routing Delay Cost Objective Function 

For MPLS networks, the network vendors and service suppliers receive the cost per 

packet flow through a link and described as the routing cost. The delay of traffic movement 

within network is often experienced simply because of the excessive traffic chunks, which is 

acknowledged as the routing delay cost. Due to this fact, the objective function‘s task is to 

minimize this routing delay cost to optimize network traffic flow. It is believed that an amount of 

traffic demands is delivered at the ingress LSR, in which every traffic          
   is associated to 

the total traffic set           ;             
              . The task for the proposed algorithm is 

to do computations for a number of optimal paths for all traffic requests          
   by means of 

minimizing the described routing cost objective function. The optimal paths is supposed to be 

computed for the traffic demands obtained and link costs that are correlated together with some 

other constraints. This approach can be expressed mathematically as follow; 

    {                 }   ∑  

        
               

  ∑                

  (   )
    

           
           (5.7) 

Subject to constraints; 

        
    ∑        

        
             

 

   {
                        

           

                         
 (5.7 a) 

         
              (   )      (5.7 b) 

 

                    (   )      (5.7 c) 

 

∑               
               

              (   )

 
(5.7 d) 
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In the above equations,      signifies a set of paths and this set contain the number of 

computed paths         
   . The constraint associated with these paths;     there must be a routing/ 

network delay        with each computed path          
    which has traffic         

   . Eq. (5.7) 

mathematically describes the routing cost objective function, which is to minimize the routing 

delay cost in order to compute the optimal paths along with abovementioned constraints. 

According to constraint illustrated in Eq. (5.7 a), every link   (   ) that has selected for path 

computation must have a traffic flow         
    over it and also contains network/ link delay 

(denoted with link delay variable        ).When the delay is added in the path computation that 

is, the delay variable         value is  , in that case the path         
    is added in the optimal paths 

set      alternatively;          
    will not be regarded as the optimal path if          . Based 

upon constraint Eq. (5.7 b), whenever          
   , it means that there will be traffic flow over 

nominated links   (   ) for path computation. In plain terms, this constraint guarantees the 

existence of traffic flow over the particular links chosen for the path calculation. According to 

constraint Eq. (5.7 c), there has be a routing delay (symbolized by         variable) across the 

links; for this reason, the condition of           must be satisfied for each link   (   ) . In 

constraint Eq. (5.7 d), the link   (   ) will only be chosen for LSP computation that has a traffic 

flow, if the link   (   ) comprises the bandwidth which should be greater than   and is 

consequently qualified for path computation having minimum routing cost function. 

5.3.2 Finding Load Balancing Routing Cost Objective 

Function 

Regarding MPLS dependent networks, the traffic-engineering (TE) assists as the 

procedural framework which governs the load balancing strategy. Broadly speaking, the source 

routing is commonly executed in MPLS networks, in which only edge LSRs are put into use for 

the path computation. This type of strategy of path computation can easily have immense 

damaging impacts on the system of accomplishing the optimal load balancing as well as lead to 

network overload. In the chapter, the hierarchical methodology of the load balancing routing in 
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the MPLS network is recommended. Let us simply take the subset of border routers as      
  

or    *  
    

    
       

 +, in which each    
  acts as LER and     . The traffic flow          

   

routed by     is written as   . The routed traffic flow     coming from the source LER towards 

the destination router is      and    , correspondingly. When it comes to the operation of the 

source routing for each LER   
 , let us allocate a routing variable as  (   )

  . Each of these   (   )
   

variables recognizes the chunk of the traffic movement rate coming from a    
  router which is 

transmitted through the link   (   ) . With regard of accomplishing a multipath routing within 

MPLS network; it is necessary to apply the appropriate following constraints; 

       (   )
         (5.8) 

For avoiding the packet loss across the network, the following constraints are implemented as; 

∑  (   )
  

 (   )     

  ∑  (   )
  

 (   )     

               
       

(5.9) 

∑  (   )
  

 (   )     

  ∑  (   )
  

 (   )     

               
           

(5.10) 

∑  (   )
  

 (   )     

  ∑  (   )
  

 (   )     

                
      

(5.11) 

The constraint defined in Eq. (5.9) gives the demonstration of the traffic movement      

coming from the source router LER    
  which must have the value of  . In addition to this, the 

constraint of Eq. (5.10) verifies the data flow direction between the LSRs as    
         , and 

the opposite data flow     from     while having value of   , as given in Eq. (5.11). The most 

critical stage in the hierarchical routing is considered as the avoidance of a link overload by 

bringing in the concept load balancing using Eq. (5.12); 

∑     ∑  (   )
             

        
                     

 
(5.12) 
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wherein   can be described as control variable for balancing, and it decides the upper 

border threshold degree of the link utilization regarding the link capacity, given that   

                

             
. In keeping with the specifications for traffic engineering, the objective of load 

balancing is actually to minimize the described threshold value of   at each    
  router. In this 

case, the load balancing function which is formulated on the hierarchical routing model, having 

   
      

  will be reported as; 

    {                     }   ∑  

  
        

 

 
(5.13) 

In the subsequent sections, the chapter offers a novel ABAT algorithm for determining 

both the optimal (minimum) routing costs and the load balancing costs as objective functions for 

MPLS networks. 

5.4 Proposed Adjustable Bat (ABAT) for the Optimization 

Problem 

This particular section will propose ABAT algorithm along with Pareto plan. The mission 

is to improve the searching functionality     , impressively enhance the convergence rate of the 

bat algorithm by integrating with some new parameters. In the standard bat algorithm, the 

average Loudness     factor is determined on the computation of average loudness levels of bats 

having difference of the maximum loudness       and minimum loudness      , and in which 

the     value fluctuates throughout the iterations. In simple terms     is calculated to be the 

average between       and       during algorithm‘s iterations. As mentioned in to [169], 

whenever the difference between       and       appears to be high, the convergence factor of 

the algorithm is going to be improved in relation to “offer” the optimal solutions. This implies 

that the significance of the average Loudness     parameter has been “ignored” so far. In other 

words, the standard bat algorithm could not take advantage of this important and vital parameter 

for improving its convergence rate. Therefore, a ―LO (Loudness Optimizer)” is introduced into 

our proposed ABAT algorithm for the computation of the optimal average loudness     value. 

This helps the algorithm performance in terms of improved convergence rate. In the suggested 
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approach of ABAT, when the algorithm trapped at its local optima and as a result does not search 

the global searching space, then a new parameter LO is launched. When it comes to the 

computation of LO, a random average value of Loudness     will be chosen from the historical 

average loudness     values mentioned as   .    is then integrated in the mathematical statement 

as follows; 

       (            )            (    
 ) (5.14) 

In Eq. (5.14),         (    ) indicates a Gaussian distribution involving the mean of 

    and time-varying standard deviation. This equation supports the escape of searching agent 

from local optima using LO during number of iterations. 

        (          ) (5.15) 

While        and         , as as revealed based on the scientific study made in 

[108]. The predicted LO value is then utilized as an average Loudness   , and will be employed 

for the calculation of              
 , as displayed in Eq. (5.4). The pseudo-code of the offered 

ABAT is provided in the format of Algorithm 5. 1 along with the method of LO computation 

which is being discussed by the following steps; 

1. According to Algorithm 5. 1, when            
    is achieved with the support of objective 

function     and     values, at this stage the              will be applied. 

2.    the fitness value of            
    is found to be an optimal solution, compare to its 

previous            
 , then the algorithm will store its optimal solutions. 

3. On the other hand, if            
    is not optimal, then the algorithm will jump towards LO 

process. 

4. The LO will be computed based on the given Eq. (5.14) and then will be considered 

as   . 

5. The    value will be used to compute             
    by using Eq. (5.4) 

6. Then again comparison between fitness values of            
    and            

  will be 

taken and this    continues until the condition met 
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Algorithm 5. 1: Pareto based Adjustable Bat (ABAT) Algorithm for MPLS Network Optimization  

INPUT: fitness functions and searching agents for ABAT algorithm 

        Optimal Paths for MPLS networks for                   (  ) and                   (  ) 

        and       

     bats   in each dimension       

  initialize random positions                     

  initialize random velocities                   

  initialize frequencies (maximum and minimum frequency with ranges)    ,          - 

  initialize loudness levels as (maximum and minimum loudness with ranges)    ,            - 

  compute initial frequency by using Eq.(5.1) 

  compute fitness function solutions for    and     

  compute              
   

      

       number of iterations   maximum number of iterations    

          and    ,       in each      

   update frequency      using Eq. (5.1) with random   value 

   update velocities    using Eq. (5.2)  

   update positions    using Eq. (5.3)  

   compute     and     based on updated     

   store non-dominant solutions as Pareto solutions  

               
     

    compute              
  based on Eq. (5.4) 

              

   compute              
    

      updated             
                              

       

     

    update    
  with    

     and    
   with    

    

    update             
   with              
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    minimize loudness   
    using Eq.(5.5) 

    increase pulse rate   
    using Eq.(5.6) 

    compute average loudness   
   

         

    take random value from previous average loudness values    

    compute loudness optimizer    using Eq. (5.14) and Eq. (5.15) 

    take    as average loudness value    

    compute              
     

    update    
  with    

     and    
   with    

    

    update             
   with              

    

    minimize loudness   
    using Eq.(5.5) 

    increase pulse rate   
    using Eq.(5.6) 

        

       

      

     

 

5.5 Experimental Arrangement and Analysis of Obtained 

Results 

With the implementation the suggested ABAT algorithm, two objectives functions 

(Routing Delay Cost and Load Balance Routing Cost) happen to be examined in order to 

determine the optimum together with Pareto front solutions as for MPLS networks optimization 

problem. In the later sections, the short notation for the routing delay costs will be routing costs, 

and load balancing routing costs will likely to be load balancing costs. The application of the 

ABAT algorithm is considered to measure its effectiveness of finding optimal and non-dominated 

solutions for MPLS networks in opposition to Yang‘s bat algorithm notated as PSO, standard 

bat, DEA, and CBA [79], [81], [83], [203], in order to test its convergence rate for a variety of 
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network scales. Variety of experiments has been carried out on different experimental setups. 

Such setups differ with regards to network conditions and sizes, testing parameters, proposed 

ABAT versions along with loudness configurations and so on, for delivering the results in the 

form of graphic representation together with tables (statistical evaluation). Five well-adjusted 

versions of the ABAT algorithm had been examined. For each single version, the variants of an 

established loudness level are applied, minimum       and maximum loudness level      . 

Table 5. 1 displays the different experimental setups whilst Table 5. 2 provide the parameter 

controls of algorithms utilized in experimental research work. 

Table 5. 1: Experimental Setups 

5.5.1   Pareto Front Graph 

5.5.2   Investigation of Various Versions of ABAT Algorithm 

ABAT 

Versions 

      ,        

Range 

No. of Nodes in MPLS 

Network 

  No. of Iterations 

ABAT           , 

        

  

ABAT            , 

        

  

ABAT            , 

        

           and     Nodes     

ABAT            , 

        

  

ABAT            , 

        

  

5.5.3   Comprehensive Analysis of ABAT versions using Statistical Parameters 

ABAT 

Versions 

Measuring 

Parameters 

No. of Nodes in MPLS Network No. of       

ABAT      



87 
 

ABAT   Mean   

ABAT   Standard 

Deviation 

           and     Nodes     

ABAT   Optimal Value   

ABAT      

5.5.4   Comparative Study of ABAT Algorithms with Standard Bat, CBA, PSO, and DEA 

Algorithms 

5.5.4.1   Investigation of ABAT Convergence Curves 

Algorithm No. of 

iterations 

No. of       Objective Functions 

ABAT    

BAT                   Routing Costs 

CBA                     Load Balancing Cost 

PSO                      

DEA    

5.4.4.2       Mean of Optimal Solutions Obtained Through Different Number of  

Algorithm No. of 

iterations 

No. of       Means Optimal Values 

ABAT 
  

∑                            
   

                
 BAT                   

CBA                     

PSO                     

DEA   

5.4.4.3       Data Analysis based on Statistical Techniques 

Algorithm Measuring 

Parameters 

No. of Nodes MPLS 

Networks 

No. of        
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ABAT 
   

BAT Mean   

CBA Standard 

Deviation 

           and     Nodes     

PSO Optimal Value   

DEA    

 

Table 5. 2: Parameter Settings for Algorithms 

Algorithm Parameter Value 

ABAT Topology 

Minimum and Maximum frequencies(         ) 

  range 

Initial velocity limit 

Minimum and Maximum Loudness 

ranges(            ) 

     and   constants 

Fully connected 

                

  ,    -  

    of dimensional range 

             Changes as 

Table 5. 2  

Random values ranges 

 ,    - 

BAT    limits 

Minimum and Maximum frequencies  (         ) 

Minimum and Maximum Loudness ranges  

(            ) 

Initial velocity limit 

  ,    -  

                

                  

    of dimensional range 

CBA Minimum and Maximum frequencies  (         )                 
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  constants 

Minimum and Maximum Loudness ranges  

(            ) 

   and   constants 

Value ranges  ,       - 

                  

Both Value ranges  

,           -  

PSO Cognitive and social behavior constants (      )  

Weight inertia ( ) 

Velocity limit 

      

Linear reduction from     to 

    

    of dimensional range 

DEA Predefined Probability (PP)     value 

5.5.1 Pareto Front Graph 

As previously explained that the bat algorithm has often referred for its inferior 

exploration ability and because of this, the algorithm may possibly get stuck into local optima 

with regard to multimodal functions [204]. Concerning these types of circumstances, in which 

the optimization problem corresponding with multi-objective functions, the Pareto-based 

technique can potentially be put into practice that balances the two contradictory objective 

functions and therefore providing solutions in the format of Pareto front [205] - [209] . It should 

be taken into consideration that updating the loudness level is mandatory during iterations 

because the bat‘s echolocation signals (loudness level) decrease as the bat comes closer towards 

its prey (solution). For that particular reason,       and       levels must be identified at the 

initiating stage, however this critical stage can be utilized by offering with those       and       

values that aids algorithm`s efficiency . This idea has not been researched or practiced before. In 

addition to this, to examine the effectiveness of the proposed ABAT for seeking out the Pareto 

front based solutions; the experiments were therefore carried out for various loudness levels as 

listed in Table 5. 1. Fig. 5. 1 (a   d) reflects the Pareto front solutions using the various sizes of 

the MPLS networks. During assessing the Pareto fronts graphs, it is discovered that irrespective 
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of the variations in ABAT versions and network sizes, all ABAT versions have successfully 

establish Pareto based solutions when considering both mentioned objective functions. On top of 

this, it was also experienced from the results that both objective functions are opposite to each 

other, as routing cost function decrease with the increase of load balancing cost function 

regarding ABAT versions. As for instance, in Fig. 5. 1 (c), it is often noticed that the load 

balancing costs increases with the decrease of the routing cost for ABAT-2 version. Similar 

performance can be observed as a result of other versions (ABAT- 1, ABAT-3, ABAT-4, and 

ABAT-5). Whilst the other ABAT versions graphs are displayed in Fig. 5. 1 (a   d) that indicates 

similar outcomes. As a consequence, it can be deducted that at various loudness levels, the 

offered ABAT algorithm is a favorable choice for networking administration and this algorithm 

can auspiciously deliver results as Pareto based solutions for MCOP optimization problems in 

different scales of MPLS networks. 

 

Fig. 5. 1: Pareto based ABAT Algorithm for 22, 44, 70, and 100 nodes MPLS Networks 
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5.5.2 Investigation of Various Versions of ABAT 

Algorithm 

In order to explore the influential role of loudness parameter in the form of proposed 

loudness optimizer in the ABAT for the considered optimization problem, the convergence rate 

per each loudness level is investigated, as presented in Fig. 5. 2 (a   d). The experimental setup 

is specified in Table 5. 1. The findings collected from Fig. 5. 2 (a   d) recognizes the importance 

of the loudness parameter, in which the variation of loudness helps to improve the exploration 

process during a number of iterations. Regarding the considered different network sizes in the 

experiments, it is observed that the convergence rate of ABAT-5 is more effective in comparison 

to the last ABAT-1. Technically speaking, this particular development is discussed as follows: 

whenever the loudness parameter       increases contrast to      , the algorithm converges 

rapidly in direction of its optimal solution, whereas, the       having lower value or close 

to       value, will negatively affect the algorithm‘s convergence and for that reason, the 

algorithm will come up with sub-optimal solutions for small to large scales of networks. As an 

example,  Fig. 5. 2 (d), it can comfortably be noticed that ABAT-1  (                ) has 

poorer convergence rate or low-quality exploration function around optimal solutions. On the 

other hand, ABAT-2 (                 ) has more effective convergence rate compare to 

ABAT-1. In identical fashion, ABAT-3 has improve convergence rate versus ABAT-2, ABAT-4 

comes with improved results as compared to ABAT-3 and at the end, ABAT- 5 (      

           ) has the most effective convergence rate and as a consequence yields optimal 

solutions. Very similar results are achieved for all sizes of the available MPLS networks, as 

mirrored in Fig. 5. 2 (a, b, and c). By exploring the results of Fig. 5. 2 (a   d), it is also revealed 

that ABAT-1 (has very low       value) not solely deals with low convergence rate but may 

possibly be trapped in the local minima problem. It is noticed via investigation of results that the 

algorithm shouldn't be implemented with a very low value of       for any network size, 

because in this scenario, the algorithm will possibly drop into its local optima and will be 

continuously trapped there till the ending of iterations. These particular results therefore describe 

an improvement to the claim made in [204]. 
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Fig. 5. 2: Convergence Analysis of Proposed ABAT in 22, 44, 70, and 100 nodes networks 

5.5.3 Comprehensive Analysis of ABAT versions using 

Statistical Parameters 

By using MATLAB R2016a, the presented ABAT algorithm was going to be 

implemented for MCOP based optimization problem in MPLS networks along with different 

range of nodes. To analyze the algorithm efficiency, the algorithm had been implemented in 

MATLAB for 100 times (annotated as         ). Statistical variables (parameters) which 

include Mean, SD (Standard Deviation), MR (Minimum Routing Cost), and MB (Minimum 

Load Balancing Cost) as the optimal solutions, are then recorded to examine the algorithm 

overall performance, provided in Table 5. 3   Table 5. 6 comprise the measurements collected. 
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Table 5. 3: Analysis of ABAT Algorithm for    Nodes network 

Routing Costs Objective Functions 

 ABAT   ABAT   ABAT   ABAT   ABAT   

Mean 2222.8 2138 1857.7 1640.4 1381.7 

SD 215.6606 224.1177 279.7278 310.1194 365.5272 

MR 1754.9 1634.9 1005.4 909.84 150.08 

Load Balancing Costs Objective Functions 

 ABAT   ABAT   ABAT   ABAT   ABAT   

Mean 2727.2 2492.4 2214.1 2012.6 1787.3 

SD 332.0824 374.3274 420.8805 453.7138 507.9096 

MR 1691.7 1518.6 1185.7 1052.2 403 

 

Table 5. 4: Analysis of ABAT Algorithm for    Nodes network 

Routing Costs Objective Functions 

 ABAT   ABAT   ABAT   ABAT   ABAT   

Mean 3887.4 3587 3282.1 3035.7 2645.3 

SD 237.2402 307.8458 335.9810 403.6638 543.3792 

MR 3149.3 2702.9 2345.3 1781.7 1257.9 

Load Balancing Costs Objective Functions 

 ABAT   ABAT   ABAT   ABAT   ABAT   

Mean 4258.5 4062.5 3736.7 3434.3 2833 

SD 510.0274 409.4460 568. 3467 590.7590 632.9439 

MR 2927.1 2845 2088.3 1767.6 1355.6 
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Table 5. 5: Analysis of ABAT Algorithm for    Nodes network 

Routing Costs Objective Functions 

 ABAT   ABAT   ABAT   ABAT   ABAT   

Mean 3124.3 2792.5 2415.8 1954.1 1607.2 

SD 188.9614 222.1953 279.4749 417.1811 563.9224 

MR 2450.1 2194.4 1715.8 1005.1 301.41 

Load Balancing Costs Objective Functions 

 ABAT   ABAT   ABAT   ABAT   ABAT   

Mean 3383.7 3013.4 2618.2 2161.3 1678 

SD 283.0054 241.0311 341.1794 490.7355 634.5006 

MR 2701.4 1952.3 1883.4 900.2 102.37 

 

Table 5. 6: Analysis of ABAT Algorithm for     Nodes network 

Routing Costs Objective Functions 

 ABAT   ABAT   ABAT   ABAT   ABAT   

Mean 4572.3 4129.8 3664.5 3223.8 2869.5 

SD 197.7087 244.5379 372.9312 505.0768 539.2802 

MR 4061.1 3422.8 2537.4 1763.1 1585.8 

Load Balancing Costs Objective Functions 

 ABAT   ABAT   ABAT   ABAT   ABAT   

Mean 4802.9 4462.1 3938.1 3564.3 2974.4 

SD 351.6230 365.0745 453.3740 512.0764 680.9660 

MR 3971.8 3205.4 2717.9 2453.3 1280.8 



95 
 

Evaluating these results, the ABAT-5 values can be proclaimed as the optimal solutions 

for          and     nodes networks. In essence, ABAT-5 (using the maximum value of       

contrast to other remaining ABAT versions), provided minimum (Mean, routing and load 

balancing costs) values. Please note, the optimal solutions are assumed as minimum values. 

ABAT-1 delivered the worst solutions (    , maximum values of Mean, routing and load 

balancing costs) regarding both objective functions for all scales of network optimization. 

Having said that, it is worth noting that the standard deviation (indicating the deviation from the 

Mean values) of ABAT-1 is minimum, while ABAT-5 has maximum. In the simulations it is also 

discovered that standard deviation values increase from the ABAT-1 version to ABAT-5 version. 

Very much the same results have been noticed for all regarded scales of networks. In depth 

analysis of Table 5. 3   Table 5. 6, it came to the conclusion that the proposed ABAT algorithm 

delivers optimal solutions for larger       values (    ABAT-5), and comes with minimum 

(optimal) routing and load balancing costs for any scale of MPLS network after     iterations. 

Comparable outcomes are observed for minimum Mean values (as optimal solutions) for ABAT-5 

versions. Whereas       along with its growing values (from ABAT-1 to ABAT-5) will produce 

maximum standard deviation values for ABAT-5. In addition, for the large networks having 

maximum       value, there is a maximum possibility of distinct solutions, which indicates the 

stochastic feature of the algorithm. Last but not least, depending on Fig. 5. 2  (a   d) and the 

results of Table 5. 3   Table 5. 6 results, it can be concluded that in ABAT-5 (having 

maximum      ) value results helps to improve exploration plan of action of the proposed ABAT 

algorithm. On the other hand the ABAT version with lower       value provides the worst 

performance regarding poor convergence rate from a smaller to a bigger scale of MPLS 

networks. 

5.5.4 Comparative Study of ABAT Algorithms with 

Standard Bat, CBA, PSO, and DEA Algorithms 

To conclusively illustrate the crucial role of the LO in the projected ABAT, a wide variety 

of experiments were performed to validate the effectiveness of LO towards the generation of the 

optimal solutions (for both objective functions). The foundation of the following experiments 
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were to put together a comprehensive comparative research between the offered Adjustable Bat 

algorithm and some other well-known metaheuristic algorithms which include standard Bat, 

CBA, PSO, and DEA algorithms. Performance experiments were carried out by examining 

routing and load balancing costs objective functions. This comparative investigation was 

conducted in three sets of experiments which are briefly explained in the following sections of 

the chapter. Fig. 5. 3 and Fig. 5. 4 depict the comparative study convergence curves, while Fig. 

5. 5 and Fig. 5. 6 present the Mean Optimal values for both objective functions. Aside from this, 

the collected data of ABAT and other reported algorithms (Bat, CBA, PSO, and DEA) are 

empirically reviewed by using statistical parameters, presented in Table 5. 7   Table 5. 10. 

5.5.4.1 Investigation of ABAT Convergence Curves 

Fig. 5. 3 and Fig. 5. 4 contrasts the convergence curves gained by implementing the 

ABAT algorithm with standard Bat, CBA, PSO, and DEA algorithms for the optimization of 

         and     MPLS nodes networks. The experimental setup variables (parameters) are 

shown in Table 5. 1. As of collected results for both objective functions, as displayed in Fig. 5. 3 

and Fig. 5. 4, it looks obvious that the convergence curves of ABAT outclass its competitive 

algorithms (standard Bat, CBA, PSO, and DEA). 

However, standard Bat, CBA, PSO, and DEA algorithms have actually come with poor 

convergence and are unsuccessful to generate optimal solutions contrast to ABAT. It was also 

witnessed in the results that the weak convergence of these algorithms (standard Bat, CBA, 

PSO, and DEA) resulted in repetitive and suboptimal solutions for a number of iterations. As an 

instance, in Fig. 5. 3 (c), the DEA algorithm fails to converge in between 15th and 50th iterations 

and as a result, brings repetitious/ suboptimal solutions. The identical routines can be detected 

for the standard Bat, CBA, and PSO algorithms which do not succeed to converge anywhere 

between       and     ,      and      or      and      iterations, respectively. In a similar 

manner, the outcomes of Fig. 5. 3 (a, b and d) were received, in which standard Bat, CBA, PSO, 

and DEA algorithms drastically unsuccessful to have better convergence rate compared to ABAT 

algorithm. Fig. 5. 4 (a, b, c, and d) portraying the results for load balancing costs functions, 

which demonstrates the similar behavioral routine received by the offered ABAT in contrast to 

the competitive algorithms. According to the results in Fig. 5. 4, an excellent convergence rate is 
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accomplished by the ABAT in comparison to the standard Bat, CBA, PSO, and DEA algorithms. 

As an illustration, in Fig. 5. 4 (d), the ABAT algorithms outperforms its competing algorithms 

with regards to far better convergence curves in direction of optimal solutions for a provided 

number of iterations. The standard Bat, CBA, PSO, and DEA algorithms are seriously affected 

from problems of repetitive values (as sub-optimal solutions) which influence their convergence 

rate. In a similar way, Fig. 5. 4 (a, b, and c) show that the ABAT convergence rate is more 

effective when compared with the other stated algorithms. Exploration and exploitation problems 

“disturb” the convergence rate of the algorithms with the exception of ABAT, as observed in Fig. 

5. 3 and Fig. 5. 4. 

All these results confirm that the offered ABAT algorithm manages the exploration and 

exploitation problem considerably better by using LO and therefore, come with an excellent 

convergence rate when put side by side with various other mentioned algorithms in the 

experiments. 
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Fig. 5. 3: Comparison of ABAT & BAT, CBA, PSO, DEA for Routing Costs Function in 22, 44, 

70, 100 Nodes  

 

 
Fig. 5. 4: Comparison of ABAT, BAT, CBA, PSO, DEA of Load Balancing Function in 22, 44, 

70, 100 Nodes 

 

5.4.4.2 Mean of Optimal Solutions Obtained Through 

Different Number of Runs 

To broaden the research about ABAT algorithm, another experimental setup is designed 

(see Table 5. 1), in which all the algorithms taken into account were operated for a various 

number of times (termed as    ) to collect statistics related data. The Mean values stand for the 

optimal Mean values following allocated number of       and are then showcased in Fig. 5. 5 

and Fig. 5. 6, in order to do a comparison of Mean optimal values of ABAT and standard Bat, 
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CBA, PSO, and DEA algorithms, correspondingly. The aim of this analysis was to create a 

comparative investigation between the mentioned algorithms and ABAT. Based on the results 

provided in  Fig. 5. 5 and Fig. 5. 6, it is found that the ABAT come with optimal solutions for 

Mean values for           and     MPLS nodes network in accordance with both objective 

functions. It needs to be noted here, that minimum Mean values are taken into account of optimal 

solutions in the experiment. Both in  Fig. 5. 5 and Fig. 5. 6, ABAT delivered minimum Mean 

values for all number of iterations. This particular experiment verified that the recommended 

ABAT algorithm provides optimal solutions contrast to its “opponents” algorithms, the standard 

Bat, CBA, PSO, and DEA, no matter what the number of simulations and continuously generated 

the same outcomes from smaller to wide scale MPLS networks. 

 
Fig. 5. 5: Mean Routing Function for analysis of ABAT, BAT, CBA, PSO, DEA on 22, 44, 70, 

100 Nodes  
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Fig. 5. 6: Mean Load Balancing Function for ABAT, BAT, CBA, PSO, DEA on 22, 44, 70, 100 

Nodes  

 

5.4.4.3 Data Analysis based on Statistical Techniques 

To facilitate further comparison with critical analysis, the experiments continued by 

compiling the data as a result of     times iterations for both objective function. The compiled 

data was going to be analyzed by using statistical parameters which include Mean, Standard 

Deviation (SD), and Optimal solutions (minimum routing cost (MRC) and load balancing cost 

(MLBC)) for           and     nodes MPLS networks. The compiled data is received in the 

form of results which are then structured in Table 5. 7   Table 5. 10 for both objective functions. 
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Table 5. 7: Comparative Study of ABAT & BAT, CBA, PSO, DEA Algorithms for     Nodes 

Network 

Routing Costs (RC) and Load Balancing Costs (LBC) Objective Functions 

Algorithms MRC Means (RC) SD (RC) MLBC Means (LBC) SD(LBC) 

ABAT 906.04 1219.99 206.04 582.45 851.78 164.85 

BAT 1502.32 1895.48 240.32 1053.96 1380.71 182.74 

CBA 1673.20 2068.43 246.77 922.61 1334.73 251.98 

PSO 1125.68 1400.47 179.80 894.94 1449.03 320.34 

DEA 1811.27 2248.18 306.74 1350.10 2086.65 423.45 

 

Table 5. 8: Comparative Study of ABAT & BAT, CBA, PSO, DEA Algorithms for     Nodes 

Network 

Routing Costs (RC) and Load Balancing Costs (LBC) Objective Functions 

Algorithms MRC Means (RC) SD (RC) MLBC Means (LBC) SD(LBC) 

ABAT 2521.94 2936.03 215.35 2651.27 3235.28 338.11 

BAT 3932.76 4366.60 259.25 3855.41 4291.89 266.17 

CBA 2965.05 3422.29 288.24 2929.63 3475.10 326.72 

PSO 2815.68 3243.38 224.63 3129.37 3559.60 252.09 

DEA 4015.30 4295.31 171.54 3123.98 3866.59 403.33 
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Table 5. 9: Comparative Study of ABAT & BAT, CBA, PSO, DEA Algorithms for     Nodes 

Network 

Routing Costs (RC) and Load Balancing Costs (LBC) Objective Functions 

Algorithms MRC Means (RC) SD (RC) MLBC Means (LBC) SD(LBC) 

ABAT 5173.08 5656.22 278.69 5455.48 6035.24 346.27 

BAT 6836.80 7538.14 421.51 5662.95 6335.85 394.29 

CBA 5525.37 6292.02 455.77 6058.53 6689.46 389.82 

PSO 5791.05 6351.15 353.56 5892.58 6519.28 375.48 

DEA 6925.95 7610.13 351.21 6116.69 6845.79 400.41 

 

Table 5. 10: Comparative Study of ABAT & BAT, CBA, PSO, DEA Algorithms for      Nodes 

Network 

Routing Costs (RC) and Load Balancing Costs (LBC) Objective Functions 

Algorithms MRC Means (RC) SD (RC) MLBC Means (LBC) SD(LBC) 

ABAT 7734.29 8359.70 387.95 7671.31 8291.48 392.61 

BAT 7933.28 8812.44 546.30 7905.28 8694.99 446.22 

CBA 8003.59 8997.32 609.33 8067.90 8918.60 532.62 

PSO 7923.68 8969.13 590.75 7916.65 8894.25 559.64 

DEA 8004.35 8880.00 471.66 8123.17 9068.55 563.36 

 

It was soon revealed that the projected ABAT algorithm provided optimal solutions on 

the subject of minimum routing and load-balancing costs, and minimum Mean and standard 

deviation values in contrast to standard Bat, CBA, PSO, and DEA algorithms. When looking at 

the data received from a “network optimization perspective”, the final results reveals the 

information that the scale of MPLS network can play a major factor in network management. It 

is found, that as the network size grows the algorithm convergence is going to be extremely 
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affected. By checking out the statistics in  Table 5. 7   Table 5. 10 for both functions, the Mean 

and Standard Deviation values increase for big network size. It should be taken into note here 

that in the experiments the lower limit values are regarded as optimal values. For instance, taking 

a look at ABAT algorithm in  Table 5. 7 (22 nodes network), the minimum routing costs:        

is the optimal (minimum) value contrast to the         routing costs in Table 5. 8 (44 nodes 

network). The same outcome was obtained for on increased network size (Table 5. 9 and Table 

5. 10), wherein for the ABAT, the routing costs         for a    nodes network (Table 5. 9) is 

the optimal value contrast to the         routing costs value of a     nodes network (Table 5. 

10). A very similar routine is noted for the minimum (optimal) and Mean values of both load 

balancing costs function. For a comparison, the exact same pattern is also put into practice by 

standard Bat, CBA, PSO, and DEA algorithms, which provided sub-optimal solutions 

comparing to the ABAT algorithm (having optimal solutions from Table 5. 7   Table 5. 10. 

Having said that, Standard deviation values are random and, the network size doesn't necessarily 

influence this parameter. 

5.6 Summary 

The chapter presented an optimization model for MPLS network by considering routing delay 

and load balancing costs objective function. The MPLS optimization problem is formulated as 

MCOP optimization problem. For the given optimization version of MPLS networks, the chapter 

come up with a novel model of an Adjustable Bat algorithm, integrated with loudness optimizer 

parameter for MCOP optimization in MPLS network. ABAT algorithm was tailored to discover 

both, the optimal and non-dimensional solutions as available paths in the form of Pareto frontier 

curves for the given objective functions. ABAT was simulated operating upon a variety of ABAT 

versions     , ABAT-1, ABAT-2, ABAT-3, ABAT-4, and ABAT-5. Information coming from the 

results reported that the offered Pareto based ABAT converged rapidly and provide an optimal 

solution when       value is maximum. In addition to this,  an overall performance 

comparability between the Pareto based ABAT and standard Bat, CBA, PSO, and DEA 

algorithms is demonstrated in various experiments while applying to different MPLS network 

sizes. The findings obtained in the form of results proves the superiority of the ABAT relating to 

the convergence rate enhancement and it is also discovered that the LO parameter can play a 
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crucial part for enhancing the convergence rate of the ABAT algorithm. It has also verified from 

the results that ABAT-5 (with its higher      ) delivers improve results as optimal solutions but 

that the standard deviation will increased while contrasted to ABAT-1 (with its lower      ).  
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Chapter 6 

Hybrid Model of Bat and Dolphin 

Echolocation-based Algorithm for Solving 

Optimization Problem 

Dolphin Echolocation algorithm is proposed in 2017, which relies on its echolocation 

parameter for prey searching in the problem domain analogous to Bat algorithm. In other words, 

both algorithms principally depend on their echolocation feature for prey searching. 

Nevertheless, the significance of this feature has never been debated and highlighted before. 

Furthermore, both algorithms have some limitations that cause them to converge slowly and thus 

limit them to produce sub-optimal solutions for various optimization problems. The work in this 

chapter will discuss the echolocation feature of both algorithms and also highlight the slow 

convergence problem. The focus of the chapter is to propose a hybrid model of bat and dolphin 

echolocation algorithm for the MPLS optimization which is a complex optimization problem. 

The state-of-the-art literature review for network optimization using metaheuristic algorithms is 

discussed in the chapter. Then, the optimization model of MPLS network is mathematically 

formulated. For the given optimization model, a proposed hybrid model as an algorithm will be 

applied and compare it`s performance with other metaheuristics. For further verification of 

algorithm`s performance, the proposed algorithm will also be investigated over benchmark 

mathematical optimization functions in the last section of the chapter along with conclusion. 

6.1 Introduction  

A large number of researchers, working in the field of AI-based optimization algorithms 

have been fascinated by nature, thus they express their inspiration by developing or working on 

nature-inspired algorithms. Nature-inspired algorithms belong to a family of metaheuristic 

algorithms formulated by learning from nature. These algorithms can be further classified on the 
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basis of biology, chemistry and physics-inspired algorithms [210] – [213].  Within these sub-

classes, bio-inspired algorithms have got the attention of researchers working in the 

metaheuristic field. Some of the popular algorithms here may include the PSO [79], bat [81], 

ACO [82], DEA [83], GWO [84] and glow-warm optimization algorithm [214]. Bio-inspired 

algorithms can further be categorized into swarm-intelligence-based and non-swarm-

intelligence-based algorithms [215] – [216]. Irrespective of these algorithm groups and nature, 

metaheuristic algorithms normally suffer from the exploration and exploitation problem. This is 

described as the complex task of balancing between the exploitation and exploration capabilities 

of the algorithm [217] – [219]. This means that the endeavor continues in this particular field of 

study of proposing new or modified hybrid-model metaheuristic algorithms. 

In recent years, two bio-inspired algorithms have been proposed in [81] and [83], known 

as the BA (Bat Algorithm) and DEA (Dolphin Echolocation Algorithm) respectively. Although 

BA is SI-based and DEA is not SI-based algorithm, both algorithms rely on the common feature 

of echolocation for the purpose of prey searching (finding optimal solutions) [81], [83], and 

[220]. The bat echolocation process uses sound waves and echoes in space while the DEA 

algorithm uses a form of echolocation known as sonar, usually underwater. Comprehensive 

research has been presented regarding the similarities and differences between BA and DEA 

[221] – [224]. Both algorithms have been substantially accepted due to producing effective 

optimal solutions for various optimization problems. Nevertheless, both (BA and DEA) suffer 

from the exploration and exploitation problem and various attempts have been made to improve 

their performance [204], [225].  The research in this chapter focuses on the hybridizing modeling 

of the algorithm concept in order to solve premature convergence, producing sub-optimal 

solutions usually caused by the effect of the exploration/ exploitation problem. This chapter 

proposes a hybrid model of the BA and DEA algorithms. The aim was to emphasize the 

powerful features of both algorithms and thus develop a new hybrid model. This proposed hybrid 

algorithm takes advantage of the echolocation of both BA and DEA. 
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6.2 Echolocation-based Metaheuristic Algorithms 

Griffin [226] was the first researcher who used the term “echolocation”. This depicts the 

searching ability of flying bats to detect obstacles and find their prey by simply listening to the 

echoes coming from high frequency clicks that they release. Some mammals and birds rely on 

echolocation when searching for prey and navigating locations. One of the best echolocation-

dependent marine mammals is the dolphin[227] . Both the BA and DEA algorithms rely on the 

echolocation technique to search for their prey‘s position in the searching space. The section 

below briefly describes each algorithm. 

6.2.1 Bat Algorithm  

In 2010, Yang came with new metaheuristic algorithm named bat algorithm. Bat 

algorithm (BA) belongs to the family of swarm-intelligence algorithms, which uses echolocation 

system of the micro bats.. As a metaheuristic algorithm, BA imitates the searching behavior of 

bats using echolocation system for finding prey (optimal solution) [81],[169]. BA algorithm is 

already briefly discussed in chapter 5, therefore, in this section the algorithm will be shortly 

reviewed with the support of its pseudo code as given in Algorithm 6. 1. 

Algorithm 6. 1: Pseudo code of Bat Algorithm 

INPUT: 

   initialize the objective function as  ( ) 

   initialize random bat population of    *             +  

        each bat    in the swarm     

     initialize random velocities     pulse-rate   
  and loudness    parameter  

     initialize frequency    using Eq. (5.1)   
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          till number maximum number of iterations  

        each bat    in the swarm     

     update new solutions as   
      

      
     through Eq. (5.1), Eq. (5.2), and Eq. (5.3)   

                   
   

                            update Local best as              
  using Eq. (5.4) 

                         

                                

       updated solution of       
    

    

       update           

       decrease    
  and increase   

  through Eq. (5.5) and Eq. (5.6)  

                  

            

                                             

OUTPUT: 

                                                                                   

 

6.2.2 Dolphin Echolocation Algorithm 

In 2013, a nature-inspired metaheuristic algorithm influenced by the echolocation system 

was proposed by Kahev and Farhoudi, given the name the dolphin echolocation algorithm [83]. 

With the guidance of a bio-sonar system, dolphins detect, distinguish between and move towards 

their prey. Dolphins generate a special sound in the form of clicks. When a click strikes its prey, 

the sound-wave energy is reflected back to the dolphin. The time interval between the click and 
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echo assists the dolphin in calculating the distance to its prey. By making use of the echolocation 

feature, the dolphin first explores the searching space and then restricts the trace to discover the 

exact position of the prey. This particular strategy facilitates the dolphin by limiting the random 

search space proportional to the distance to its prey. The dolphin produces high frequency clicks, 

where the first click is used for targeting searching while the other click helps in terms of 

distance estimation between the dolphin and its prey. In the DEA, there are two stages used for 

prey or optimal solution searching. The first stage is to conduct a global search in the searching 

space (to look for unexplored regions) while the second stage concentrates on searching for 

better solutions compared to the previously searched solutions. In other words, the global search 

gradually changes to local search over the course of the algorithm iterations. In DEA, the 

algorithm operator defines a curve according to which the optimization convergence is managed, 

and the algorithm parameters will be set to follow along the curve. This means that for every 

single variable, there are a variety of alternatives in the feasible region. During the iterations, the 

algorithm follows the best alternative according to the predefined convergence curve. DEA 

defines the CF (Convergence Factor) index in order to control the exploration and exploitation 

process. With the assistance of this curve, the convergence criterion influences the algorithm; 

therefore the convergence of the algorithm has become less dependent on the parameters 

involved [83]. 

Before starting optimization process with DEA, the first step is the sorting of searching 

space by using “ordering searching space rule”.  During initial searching processing of the 

DEA, the algorithm employs this rule, in which random variables are initialized in searching 

space. For optimizing each variable, sort the alternatives in either ascending or descending order 

matrix. Using this technique, for     variable (as columns in searching matrix), vector    having 

length      is created.     contains all possible alternatives of     variable and organize these 

vectors next to each other in the form of columns in matrix.                           matrix 

is created, where   (                              ) is     (   )       having 

  (                   ). A curve should be assigned, according to which convergence 

factor (CF) will change during algorithm`s loops. The changes of CF will be change according to 

the following curve Eq.(6. 1)  [83]: 
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  (     )      (     )
     

       

(               )       
  (6. 1) 

Where;  

    Predefined Probability 

     CF during the first loop, in which the solutions are selected randomly 

           (current) loop 

       Degree of the curve 

                 Total number of loops in which the algorithm will reach to its convergence 

point.  The steps followed by DEA can be explained as follow; 

Step 6. 1: 

Initialize the random number of locations     in searching space for DEA. During this 

stage, a matrix will be generated as        , where    is for number of variables or dimension 

for each location. 

Step 6. 2: 

Compute predefined probability    according to  (6. 1). 

Step 6. 3: 

Compute the fitness function or objective function    for the given locations. 

Step 6. 4:  

From                         , find the position of the locations  (   ) in each     

column and name it as  . Therefore,   specifies the index of  (   ) value in 

                        . 

Step 6. 5: 

Initialize the Effective radius    for each  (   ) in                         . It is 

recommended to choose   /   of the searching space. 
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Step 6. 6: 

Compute the accumulative fitness function according to (6. 2). 

  (   )  
 

  
  (    | |)        (   )          ,      ,       - 

(6. 2) 

 

Step 6. 7: 

Find the best location in the matrix of                          for each     column. 

In other words, find the alternatives assigned to the variables and let their     . 

Step 6. 8: 

For the variables of         , compute the probability     of the alternatives 

(                        ) as          

      
    

∑     
   
   

            (6. 3) 

 

Step 6. 9: 

Assign probability equal to    according to the procedure mentioned in Algorithm 6. 2 

(from line       ). For optimization, DEA follow the main steps are described in the form of 

pseudo code in Algorithm 6. 2: Pseudo code of Dolphin Echolocation Algorithm. 
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Algorithm 6. 2: Pseudo code of Dolphin Echolocation Algorithm 

INPUT:  

   initialize random locations as matrix of        

   Initialize the                              

   initialize power degree as         

   initialize maximum number of loops as              

   initialize predefined probability as          

   initialize     and    within the range of any defined integers 

   compute the  initial value of    using  (6. 1) 

REPEAT: 

                                                       

                     

      compute the fitness function as    

          

                    

                    

       find location position  (   ) from     column of                          , name as   

                             

        compute   (   )  using  (6. 2) 
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                     from                          

                      from                          

                             

                

            

           

          

                     from                          

                       from                          

       compute probability of choosing alternatives as      using  (6. 3) 

           

          

                     from                          

                      from                          

                             

                

             

            (    )     
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OUTPUT: 

    Optimal Solutions for fitness function 

 

6.3 Literature Review 

Dolphins make use of an echolocation system in order to detect and distinguish between 

objects under water. Bats have an integrated echolocation system that uses sound waves that 

usually vary and diversify depending on both the prey‘s location and the environment. Scientific 

studies have indicated that a dolphin‘s echo signals often fail to sense prey size or structure 

recognition, whereas the bat echo signals do so effectively.  The signal duration, repetition and 

bandwidth varies as the bat gets nearer to the prey location. This particular bat feature cannot be 

found in the dolphin echolocation system. The broadband and short duration of dolphin echo 

signals improves the dolphin‘s sensing capabilities in accordance with the environment and 

prey‘s location. This function facilitates the dolphin in narrowing down its search from a global 

search to a local search in an effective way in the prey‘s direction [227] – [230].  On the other 

hand, bats have an impressive searching capability in the starting stage of the algorithm but later 

on, the algorithm severely suffers from poor searching in its local searching space, meaning that 

it can easily be trapped by the local optima [169], [204]. This means that both algorithms are 

embedded with an echolocation system that has some limitations in terms of its searching 

capabilities. Several attempts have been made to improve the BA and DEA algorithms based on 

their echolocation feature. For instance, Kim et al. [231] presented BIH (Bat Intelligent Hunting) 

algorithm for solving various complex optimization problems. In BIH, bat locates and captures 

its prey utilizing its echolocation feature. The proposed algorithm was applied for multiprocessor 

scheduling problem. Bora et al. [232] proposed a novel version for bat that is used to optimize 
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the mono and multi-objective based optimization problems related to direct current wheel motor. 

Further modification in the echolocation feature of bat was proposed by Biswal et al. [233] to 

provide the optimal solutions in the economic load dispatch system. Niknam et al. [234] 

presented a multi-objective based modified bat algorithm for constrained based dynamic 

economic dispatch problem. A self-tuning integral controller in bat echolocation feature based 

algorithm was presented by kumaravel and Kumar [235] for static synchronous compensator 

problem. On the other hand, many research applied DEA for various applications optimization 

problems. For instance, Zulkifli et al. [236] optimize the size of photovoltaic system by utilizing 

the version of DEA algorithm. DEA with tuning of its parameters is applied for multi-objective 

based reactive power dispatch optimization problem by Kanagasabai et al. [237]. The hybrid 

model of DEA and ACO was presented by Mahdi et al. [238] for optimal discrete sizing of truss 

structures. Similarly, Mahesh et al. [239] presented the hybrid algorithm, called as DECSA 

(Dolphin Echolocation and Crow Search Algorithm) for the cluster based energy aware routing 

optimization problem in wireless sensor networks. 

Despite the fact that the echolocation systems applied by bats and dolphins possess a 

number pros and cons in accordance with the environment and the type of prey focused on, both 

algorithms (BA and DEA) predominantly depend on the echolocation feature for prey (optimal 

solution) searching. In straightforward terms, both algorithms (Bat and DEA) use features of the 

echolocation systems in different formats (sound waves and sonar waves) for prey searching. 

While they have some benefits to their echo systems, the algorithms also have some flaws in 

terms of their parameters which limit their searching capability. This echolocation feature 

encouraged our research team to generate a hybrid model of BA and DEA, which includes the 

positive features of the “standard” BA and DEA algorithms that will smartly handle exploration 

and exploitation capabilities and thus produce optimal solutions for various optimization 

problems. 

6.4 Optimization Model of the MPLS Network  

In this section of the chapter, the optimization model for MPLS network will be 

presented, in which two conflicted objective functions      minimizing energy consumption and 

constrained based routing functions will be considered. These objective functions are integrated 
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with multiple constraints and thus, reflected as MCOP optimization problem in MPLS networks. 

For the given MCOP MPLS optimization model, the chapter offers a solution in the form of 

proposed metaheuristic optimization algorithm, which is described in the following sections. 

Various experiments are conducted for optimization model by proposed algorithm in order to 

validate algorithm`s performance in different network scenarios. For the considered MCOP 

MPLS model, the graph theory is employed in which MPLS network is represented as graph   

and is dependent on the number of nodes as vertices   and links as edges  , where   (   ). 

The number of   
   routers are included in the routers set as       or    *              + and 

for total number of    links in the network are the member of link set as      or   *  (   )       

         +. Each   (   ) link is connected between   node to   node in the network. In the 

considered optimization network model, the traffic demand is received at ingress LSR, which 

then compute the optimal paths based on the objective functions.  

6.4.1 Minimizing Energy Consumption Objective 

Function 

In order to optimize energy consumption in the MPLS network, this objective function is 

managed into two levels; where the first level introduces the minimization of energy 

consumption at routers and links level, while the second level minimizes the total link capacity 

utilization. In simple words, the objective function will optimize the total energy in the network 

by minimizing both at routers and links level as well as by managing network traffic according to 

links capacity.  Let us consider the capacity of the   (   ) link         as  (   ) , where  (   )    

and is identified by line cards of   router to   router in the network. The ingress LSR receive     

traffic demand, where       . In the network, the demand   traffic must transfer a volume of  

   from source router  ( ) to destination router  ( ). The energy consumption of the chassis in 

  
   router is denoted as    while  (   ) represents the energy efficiency of the line cards 

connecting the links in the network. The binary variables    and    are introduced here for 

       status of    router (s) and   (   ) links in the network, respectively. In addition to this, for 

traffic demand   flow over   (   ) link is represented by a continuous variable  (   )
 . In the 

considered energy aware traffic engineering MPLS network optimization problem consists of 



117 
 

those    routers and   (   ) links which have minimum energy consumption and then each traffic 

demand utilize multi-path flow minimizing the total link capacity utilization. The energy 

optimization based objective function can be formulated as; 

                                  

      ( ∑          ∑ ∑  (   ) (   )
  

        (   )
            

) 

(6. 4) 

Subject to constraints; 

       *    +              Constraint (6.4. 1) 

 

                             (   )       Constraint (6.4. 2) 

 

                     (   )       Constraint (6.4. 3) 

 

                     (   )       Constraint (6.4. 4) 

 

     ( ∑ ∑  (   )
  

          (   )
      

)  (6. 5) 

Subject to constraints; 

∑  (   )
 

  (   )
          

     ∑  (   )
 

  (   )
          

     
                           Constraint (6.5. 1) 

∑  (   )
  

        

      (   )                   (   )       Constraint (6.5. 2) 
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 (   )
                  (   )                   Constraint (6.5. 3) 

where     

                                                               
    { 

                ( )

                ( )
                      

 

Eq. (6. 4) demonstrates the minimum energy consumption objective function at routers 

and links, whereas the Eq. (6. 5) is used to minimize the total link capacity utilization. Constraint 

(6.4. 1) identifies that the variable    is either   or   which shows that the router is    or    . 

From Constraint (6.4. 1) to Constraint (6.4. 4) ensures that all the   (   ) links can only be 

activated between the switched    routers        ( ) router to  ( ) of the network. Constraint 

(6.5. 1) ensures the data flow from one router to another router        ( )    ( ). Constraint 

(6.5. 2) represents the capacity constraints in which the capacity of each link must be equal to or 

greater than the data flow over it. While Constraint (6.5. 3) requires the  (   )
  variable as non-

negative to confirm the traffic flow over the selected link. 

6.4.2 Optimizing Constrained based Routing Objective 

Function 

For optimizing the constraint based routing objective function, there are some additional 

variables that need to be defined for the given MPLS topology. In the MPLS network, the 

originating or source LSR is denoted as    while the termination or destination LSR is presented 

as   . Available bandwidth of the link is   , administration cost of the link is    and the 

maximum allocation multiplier factor of the link is denoted as   . In the considered MLPS 

topology, the ingress LSR is   , whereas the egress LSR is   . In between ingress LSR and egress 

LSR, one or more LSPs originate as   and each LSP is the member of LSP set as  . The 

bandwidth of the LSP is   . The maximum number of hops through LSP is represented by   . To 

confirm that the computed LSP based on the links that belongs to the list set of MPLS network, a 

variable     is initiated with the following condition as; 
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     {
                                         (   )        

                                                                                
 

The constrained based routing optimization leads to an objective function that minimizes 

the sum of administration costs of all the selected links and the total traffic flow over each link. 

This can be formulated as; 

                                            ( ∑ ∑       
      (   )

      

)  (6. 6) 

 Subject to constraints; 

∑       
    

                      (   )        
Constraint (6.6. 1) 

∑           
  (   )      

               Constraint (6.6. 2) 

∑    
    (   )|    

                      |     Constraint (6.6. 3) 

∑    
    (   )|    

                      |     Constraint (6.6. 4) 

∑    
    (   )|    

      ∑    
    (   )|    

                       |         |      
Constraint (6.6. 5) 

                            Constraint (6.6. 6) 

Constraint (6.6. 1) approves that the link capacities are not exceeded from the given 

capacity range. Constraint (6.6. 2) limits the number of LSR hops in an LSP. Constraint (6.6. 3) 

and Constraint (6.6. 4) confirms that all LSPs in the network are originating and terminating 

accordingly. Constraint (6.6. 5) ensures that an LSP is routed through intermediate LSRs in the 
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network, which ensures an end-to-end path across the network. At the end, the Constraint (6.6. 6) 

describes that the decision variable     is either   or   for all LSPs across the network. 

6.5 Proposing Hybrid Bat Dolphin Echolocation (HBD) 

Algorithm for the Optimization Problem 

Both Bat and DEA algorithms have different strategies of searching the optimal solutions 

in searching space, but both rely on their echolocation capabilities. In this section of the chapter, 

a hybrid model of Bat and DEA algorithms is introduced and entitled as “HBD (Hybrid Bat 

Dolphin Echolocation)” algorithm. The proposed HBD algorithm will be described with the 

support of the pseudo codes of the Algorithms , flow chart, figures, and discussed steps as 

follow; 

Step 6.6. 1:  Initialize random positions in searching matrix using Bat algorithm 

parameters: 

This step contains searching matrix initialization, locating random positions, and then 

computes their position value using fitness function. The following stages will be followed at 

this initial stage; 

i. Define the UB (Upper Bounds) and LB (Lower Bounds) of searching space as 

searching matrix. 

ii. Initialize random positions as   
           in searching space with dimensions 

   in iteration  , where     *         +  

iii. Initialize random velocities as   
          . 

iv. Define maximum and minimum frequencies ranges as      and      

v. Outline the maximum and minimum ranges of loudness parameter as       

and      . 

vi. Initialize random value of loudness parameter as   
 . 

vii. Initialize pulse rate as   
 . 
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viii. Compute the fitness function for the initial positions as   
 . 

ix. Find the best searching agent as             
 . 

Step 6.6. 2:  Processing Loop of the algorithm; 

During processing loop, the algorithm will start converging towards optimal solution in 

searching space with respect to the number of iterations. The following actions will be taken as; 

i. Define the number of iterations / generations in which the algorithm will approach 

towards optimal solutions in searching space. 

ii. Update frequency as   
    using Eq. (6. 7), having   ,    - ; 

  
          (           )   (6. 7) 

iii. Update velocities of each position using Eq. (6. 8) as; 

  
      

   (   
                

  )   
    (6. 8) 

iv. Based on updated velocities, update the positions    using Eq. (6. 9);  

  
       

     
    (6. 9) 

 

v. To compute the local best position for searching agents, a condition is applied and if 

this condition is satisfied then the local best position can be updated based on Eq. (6. 

10). 

                    
           

             
      

          
(6. 10) 

vi. Now compute the fitness function for the updated positions   
   . 
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Step 6.6. 3:  Comparing the fitness function values; 

This step check the fitness function values for each searching agent and investigate that 

whether the fitness function value is improved with respect to searching agent updated position 

or not. Based on the fitness function values the proposed HBD will take some actions, which are 

described below as; 

i. Compare the previous fitness function values   
  for each searching agent    

    with 

its updated fitness function value   
    as; 

 

               
       

           

  
    

    

  
    

    

                    
      

           

        

                     
    (             )                   

             

 (6. 11) 

(6. 12) 

(6. 13) 

In the above     condition the minimum fitness values are considered as optimal values 

and the position against those values are also taken as improved position of searching agents. 

Therefore,    the condition is satisfied then the fitness value will be updated with new fitness 

value as Eq.  (6. 11) and also the position of that particular agent will be updated, shown in Eq. 

(6. 12). Whereas,    the condition is not fulfilled, then according to Eq. (6. 13), that specific 

searching agent position along with its fitness function value will be figured-out from the 

searching agents‘ population.  

Step 6.6. 4:  Initializing the new positions for searching agents; 

In this stage, the unimproved positions   
    (having sub-optimal fitness function values) 

of searching agents will be updated. For this purpose several steps will be taken as; 

i. From the dimensions (  ) of each searching agent   
   , take the dimension with 

maximum value as      and the dimension with minimum value      . 
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ii. Take      as upper bound               and lower bound as        . 

iii. Initialize the searching space matrix within defined LB and UB for each searching 

agent. 

iv. Each searching agent will initialize random position in the searching space matrix. 

Step 6.6. 5:  Sorting searching space order in the form of Alternative Matrix of DEA 

Technique; 

During this process, the searching space for each searching agent position will be sorted 

in an ascending or descending order, this will be done by taking following steps; 

i. The searching space for each variable is sorted into one matrix of searching space 

in an ascending or descending order. This matrix is known as                   . 

ii. From the                    take one location as searching agent position    
   . 

iii. Initialize the radius    of the effective searching agent position    
   . The range of 

radius should be       of the searching space, and                          

iv. Within this searching domain or radius (    *          }), find the positions 

   
    in the     columns of                    . 

Step 6.6. 6:  Apply the fitness function for the updated positions; 

At this stage, the updated positions will be checked with fitness function as; 

i. After updated positions for searching agents from                   , the 

fitness function will be applied again. 

ii. Such as,    the updated fitness function is better than the previous fitness function 

then takes the update position of searching agent as improved position,      go back to 

Step 6.6. 4.  

Step 6.6. 7:  Achieving optimal solution; 

During this final stage of the algorithm, the archive of optimal solutions is collected along with 

other important steps, which are explained as follow; 
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i. Store the optimal fitness function values and consider the update positions as 

improved positions compared to previous positions of the searching agents. 

ii. As the algorithm is coherently converging towards optimal solutions in searching 

space, then the loudness parameter    value will decrease and pulse-rate   
  increases, 

using below mathematical expressions; 

  
         

   (6. 14) 

  
      

  [       (   )] (6. 15) 

 

Algorithm 6. 3: Pseudo code of Proposed Bat Dolphin Echolocation Algorithm  

        Optimal Solutions from the searching space matrix 

Step 6.6. 1:  Initialize random positions in searching matrix using Bat algorithm parameters: 

           searching agents   in each dimension (     *         +)          

    initialize random positions   
                 

    initialize random velocities   
                  

    initialize frequencies (maximum and minimum frequency with ranges)   
  ,          -  

    initialize loudness levels (maximum and minimum loudness with ranges)    ,            -  

    initialize random value of   
    

    initialize random value of   
    

    compute fitness function values as   
  for initial random positions of    

  

    compute              
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Step 6.6. 2:  Processing Loop of the algorithm; 

          number of iterations   maximum number of iterations    

               
   ,         in each           

      update frequency   
    using Eq. (6. 7)    with random   ,    - 

      update velocities   
    using Eq. (6. 8) 

      update positions   
    using Eq. (6. 9)  

                  
     

       compute              
    based on Eq. (6. 10) 

                 

      compute fitness function values as   
    for updated positions of    

    

Step 6.6. 3:  Comparing the fitness function values; 

                    
       

                

       update    
  with    

     as   
    

     according to Eq.  (6. 11) 

       update positions as   
    

    as given in Eq. (6. 12) 

                          
      

                

       find the unimproved fitness function values from   
    

       find non-optimal position    
    against      

      values  

           

Step 6.6. 4:  Initializing the new positions for searching agents; 
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       take       and        from each unimproved    
    

       take      value as UB and      as LB for the searching space 

       initialize searching space with the defined boundaries of UB and LB. 

       Initialize random values within this searching space 

Step 6.6. 5:  Sorting searching space order in the form of Alternative Matrix of DEA Technique; 

       initialize the                        

       from the                         take one location as searching agent position      
    

       at      
      take the effective radius     

       within the radius of        *        + find the positions of       
     in                        

Step 6.6. 6:  Apply the fitness function for the updated positions; 

       update positions    
       from                        

       compute the fitness function    
       values for the updated positions      

        

           

      minimize loudness    
       using Eq.(5.5) (6. 14) 

      increase pulse rate      
      using Eq. (6. 15) 

      compute average loudness   
   

          

Step 6.6. 7:  Achieving optimal solution; 
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     update              
   

     store optimal solutions 

         

 

 

Fig. 6. 1: Proposed HBD Flow Chart 
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6.6 Experimental Assessment of the Proposed HBD 

Algorithm 

In order to investigate the performance of the proposed HBD algorithm, the experiments 

were conducted in two categories. The first set of experiments was implemented to solve the 

MCOP optimization problem in MPLS networks (described in section Error! Reference source 

not found.) while the second set of experiments were performed to analyze the algorithm 

efficiency in relation to mathematical optimization functions. For all of the experiments, the 

HBD algorithm performance was not only measured in terms of generating optimal solutions for 

MPLS networks but also to investigate the HBD outcomes (as solutions) in comparison to its 

competitive algorithms.  For this purpose, the familiar metaheuristic algorithms were considered 

for the experiments and they consist of the Bat, DEA, PSO, GWO, and WOA (Whale 

Optimization) algorithms. To determine the simulation-based results, the MATLAB 2016a 

package is used. During the experimental results analysis, the research focused on analyzing 

every algorithm‘s convergence rate in relation to the optimal solutions in the searching space 

while dealing with the MPLS optimization problem. This was also done for the mathematical 

optimization functions. On top of that, the statistical data was also collected to inspect the 

algorithm outcomes. The brief description of the implemented experimental results has been 

discussed in the later sub-sections. 

6.6.1 Obtained Pareto Graphs for the HBD Algorithm  

The MPLS optimization model (described in section Error! Reference source not 

found.) is based on two objective functions. Therefore it is an essential part of the proposed 

HBD algorithm in terms of offering solutions that do not dominate one another. Simply put, the 

HBD will produce non-dominant solutions for the multiple objective-based optimization model 

of MPLS network and it will produce results in the form of Pareto Front. For this experiment, six 

versions of the HBD algorithm were arranged as HBD-n   HBD-1, HBD-2, HBD-3, HBD-4, 

HBD-5, and HBD-6, where  *     +.  These versions of HBD vary in terms of the number of 

searching agents and the number of iterations, as illustrated in Table 6. 1. For the considered 

HBD versions, the experiments were conducted over a different number of nodes such as 
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            and     nodes. The reason for considering this variation is to review the success 

of the HBD algorithm while generating Pareto Front graphs for various scales of network. For 

the considered experiment, the results were obtained in the form of Pareto Front graphs as shown 

in Fig. 6. 2 (a d). To generate the Pareto Fronts present in the various versions of HBD-n, the 

non-dominant solutions were collected during the simulations and then the solutions were 

connected as points with lines. In 6. 2 the six versions of HBD-n such as HBD-1   HBD-6 

successfully generated non-dominant solutions in the form of Pareto fronts for the considered 

objective (constrained-based routing and energy consumption) functions in the MPLS 

optimization model for different network sizes. This means that all versions of HBD-n (HBD-

1  HBD-6) can generate Pareto fronts on a small to large scale in MPLS networks. The Pareto 

fronts graphs in Fig. 6. 2 (a d) also shows that the constrained-based routing and energy 

consumption objective functions are contradictory to each other. There is still some place for 

solutions as non-dominant points, which the HBD algorithm can successfully produce. In 

addition to this, the HBD algorithm also confirmed that this algorithm has the capability to 

manage multi-objective optimization problems while generating non-dominant solutions 

irrespective of the algorithm`s number of iterations and searching agents. The Pareto fronts in 

Fig. 6. 2 establish the fact that the HBD algorithm‘s performance predominantly does not depend 

on the number of searching agents and the number of iterations. It has the competence of 

producing non-dominant solutions for conflicting-based objective functions in any network. 

Table 6. 1: Proposed HBD Algorithm Various Versions for Pareto Front Experiment 

Version Number of Searching Agents Number of Iterations 
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Fig. 6. 2: Pareto front graphs for D   10, 40, 80, and 120 Nodes MPLS Network 
 

6.6.2 Convergence Analysis of HBD Compared to Other 

Algorithms for MPLS Optimization 

The convergence rate reflects the searching capability of algorithms for optimal solutions 

in the searching domain. It has always been considered an essential parameter used to measure 

the examining metaheuristic algorithms‘ performance. Metaheuristic algorithms converge 
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towards optimal solutions over a number of iterations. If there exists either an exploration or 

exploitation problem during the iterations, then it affects the convergence of the algorithm. To 

evaluate the proposed HBD algorithm for the considered MPLS optimization problem, the 

convergence of HBD was monitored and compared with its competing metaheuristic (Bat, DEA, 

PSO, GWO, and WOA) algorithms in terms of convergence over     iterations. All of the 

mentioned algorithms were implemented over a different number of node network        

         and     nodes as shown in the figures (Fig. 6. 3 (a d) and Fig. 6. 4 (a d)) 

respectively. The experiment used to monitor the convergence of the various node networks was 

conducted for both objective (constrained-based routing and energy consumption cost) functions. 

Fig. 6. 3 (a d) depicts the convergence activity of the HBD, Bat, DEA, GWO, and WOA 

algorithms for the constrained-based routing cost objective function whereas Fig. 6. 4 portrays 

the convergence activity of the aforementioned algorithms for the energy consumption cost 

objective function. Both Fig. 6. 3 (a d) and Fig. 6. 4 (a d) were used to make a comparative 

analysis between the proposed HBD algorithm and its rival algorithms (Bat, DEA, PSO, GWO, 

and WOA). The purpose of this comparison is to investigate the convergence of the HBD 

algorithm while comparing it to the already recognized metaheuristic algorithms for the given 

MPLS optimization problem.  

While exploring the results of Fig. 6. 3 (a d), it can clearly be observed that the HBD 

algorithm convergences efficiently compare to the other algorithms. As an illustration, Fig. 6. 3 

(a) depicts the convergence of HBD, Bat, DEA, PSO, GWO, and WOA algorithms for a 10 node 

network. In this case, HBD converges without a problem and it generates optimal solutions 

during the iterations. In contrast, the other algorithms do not converge during a number of 

iterations and as a consequence, they generated sub-optimal solutions. For example, the Bat, 

DEA, PSO, GWO, and WOA algorithms did not converge between      to      ,      to 

     ,      to      ,       to      , and      to      in terms of iterations. Similar findings 

can be seen in Fig. 6. 3 (b), (c) and (d). However, for Fig. 6. 3 (b, c, and d), the results for Bat, 

DEA, PSO, GWO, and WOA are worse when compared to Fig. 6. 3 (a). This means that these 

algorithms have a more damaged convergence when implemented over large scale networks. On 

the other hand, the HBD algorithm has coherent convergence towards optimal solutions from a 

small to large scale in MPLS networks; hence it produced optimal solutions for the constrained-

based routing objective function during the iterations. Fig. 6. 4 (a d) shows the convergence 
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activity results for the energy consumption objective functions in a number of node networks. In 

Fig. 6. 4 (a d), a similar trend can be observed for the HBD algorithm and its competitive 

algorithms in which HBD outclasses its competing algorithms for convergence activity during 

the iterations compared to the Bat, DEA, PSO, GWO, and WOA algorithms. For example, in 

Fig. 6. 4 (b), it can be seen that the HBD algorithm generates optimal solutions during the 

iterations, whereas the other aforementioned algorithms had poor convergence in a number of 

iterations. In Fig. 6. 4 (b), GWO is stuck from      iteration until the end. The similar tendency 

of poor convergence can be witnessed for the Bat, DEA, PSO, and WOA algorithms during 

various iterations. Similarly in Fig. 6. 4 (a, c, and d), the proposed HBD algorithm has proven its 

superiority in terms of convergence rate compared to the Bat, DEA, PSO, GWO, and WOA 

algorithms. Fig. 6. 4 (a d) reveals the better convergence of the proposed HBD algorithm 

compared to its competing algorithms when it comes to optimizing the energy consumption cost 

objective function.  From the findings discussed in 3 (a d) and Fig. 6. 4 (a d), it can be 

concluded that the HBD algorithm can converge consistently for optimal solutions in the 

searching space of both constrained-based objective functions. The other algorithms have poor 

convergence in terms of the considered optimization problems and therefore they fail to produce 

optimal solutions. 
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Fig. 6. 2: Convergence of HBD, Bat, PSO, DEA, WOA and GWO Algorithms for Routing Costs 

Function  



134 
 

 
Fig. 6. 3: Convergence of HBD, Bat, PSO, DEA, WOA and GWO for Energy Consumption 

Function  

6.6.3 Statistical Analysis of the Results Obtained for 

Network Optimization 

For advanced research into the HBD algorithm`s performance, the data was collected 

from the experiments and measured using statistical parameters       Mean, Standard Deviation 

and Optimal Solution. For this experiment, each algorithm (HBD, Bat, DEA, PSO, GWO, and 

WOA) was executed for          , where each     consists of     iterations. We then 

arranged the data in the form of tables as illustrated in Table 6. 2 and Table 6. 3. Table 6. 2  

describes the statistical data results obtained by the constrained-based routing costs objective 

functions while Table 6. 3 provides the details of the results collected for the energy 
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consumption cost-objective function. The experiments were conducted over           and 

    nodes MPLS networks. For both tables (Table 6. 2 and Table 6. 3), the statistical parameters 

were employed for an in-depth study of the HBD algorithm while comparing its obtained results 

with the competing algorithms (Bat, DEA, PSO, GWO, and WOA). The Best value is considered 

to be an optimal solution and it is obtained from         . The Mean values were also 

calculated for         . The Best and Mean values were used for minimal values as part of the 

optimal solution. Based on the results given in Table 6. 2 and Table 6. 3, the algorithms are 

ranked according to ranking formula. This helps to summarize the results for each algorithm in 

the tables. However, the ranking is only applied to the Mean values in the tables. 

During the assessment of Table 6. 2 and Table 6. 3, the ranking results revealed that the 

HBD algorithm outperforms its competing algorithms by obtaining minimum (optimal) solutions 

in the form of Mean values. This implies that according to the Mean values obtained in Table 6. 

2 and Table 6. 3 (for both the constrained-based routing and energy consumption cost-objective 

functions), the HBD algorithm produced optimal solutions in the form of Mean values from the 

experiments, meaning that it was had a              . The second closest rank was obtained 

by the GWO algorithm for both objective functions in Table 6. 2 and Table 6. 3. In a similar 

manner, the Best (minimum / optimal)values achieved by all algorithms showed the supremacy 

of HBD algorithm in terms of providing significantly better solutions compare to its competing 

algorithms. The best solutions offered by the HBD algorithm can easily be spotted in Table 6. 2 

and Table 6. 3. This clearly proves that the proposed HBD algorithm offers optimal solutions 

with a substantial difference compared to the Bat, DEA, PSO, GWO, and WOA algorithms. The 

third parameter of Standard Deviation represents the deviated values from the mean. When 

analyzing the Standard Deviation values, it was observed that the HBD algorithm has minimal 

values for this parameter, which in turn shows that for every    , the random values in the form 

of solutions do not deviate a lot from the mean values. Metaheuristic algorithms are stochastic in 

nature and offer random solutions. The minimum Standard Deviation values show that the 

algorithm offers random solutions with the smallest deviance. In Table 6. 2 and Table 6. 3, it can 

be seen that the HBD algorithm provided the minimum Standard Deviation values for the 

objective functions compared to the Bat, DEA, PSO, GWO, and WOA algorithms.  
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Table 6. 2: Statistical Data for Optimizing Constrained based Routing Costs Objective Function 

                             

     

       

     

     

      3.57E+01 3.90E+01 4.17E+01 5.52E+01   

      3.89E+01 4.44E+01 5.42E+01 7.71E+01   

     6.23E+01 8.82E+01 1.23E+02 1.48E+02   

     1 1 1 1 4 1 

     

      1.62E+02 1.72E+02 1.89E+02 2.01E+02   

      1.85E+02 1.89E+02 2.01E+02 2.22E+02   

     1.06E+02 1.23E+02 1.32E+02 1.40E+02   

      6 5 5 5 21 5 

     

      1.54E+02 1.77E+02 1.92E+02 2.03E+02   

      1.66E+02 1.98E+02 2.10E+02 2.40E+02   

     1.11E+02 1.53E+02 1.61E+02 1.68E+02   

      5 6 6 6 23 6 

     

      6.10E+01 8.18E+01 8.89E+01 9.42E+01   

      6.81E+01 9.81E+01 1.01E+02 1.19E+02   

     1.56E+02 1.88E+02 1.95E+02 2.11E+02   

      2 2 2 2 8 2 

     

      9.01E+01 9.76E+01 1.10E+02 1.63E+02   
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      1.18E+02 1.20E+02 1.33E+02 1.89E+02   

     1.63E+02 1.97E+02 2.00E+02 2.57E+02   

      3 3 3 3 12 3 

     

      1.12E+02 1.36E+02 1.58E+02 1.89E+02   

      1.46E+02 1.54E+02 1.79E+02 2.02E+02   

     2.09E+02 2.56E+02 2.99E+02 3.21E+02   

      4 4 4 4 16 4 

 

Table 6. 3: Statistical Data for Minimizing Energy Consumption Costs Objective Function 

                             

     

       

     

     

      4.16E+01 4.53E+01 6.02E+01 6.91E+01   

      5.01E+01 7.22E+01 8.01E+01 8.32E+01   

     1.36E+02 1.45E+02 1.69E+02 2.12E+02   

     1 1 1 1 4 1 

     

      2.52E+02 2.61E+02 2.63E+02 2.90E+02   

      2.65E+02 2.68E+02 2.81E+02 3.00E+02   

     2.66E+02 2.77E+02 3.21E+02 3.49E+02   

      6 6 5 4 21 6 

     

      1.89E+02 2.16E+02 2.69E+02 3.30E+02   

      1.94E+02 2.22E+02 2.82E+02 3.45E+02   



138 
 

     4.00E+02 4.20E+02 4.87E+02 5.12E+02   

      4 4 6 6 20 5 

     

      1.00E+02 1.11E+02 1.42E+02 1.59E+02   

      1.09E+02 1.20E+02 1.52E+02 1.68E+02   

     3.77E+02 4.06E+02 4.45E+02 4.99E+02   

      2 2 2 2 8 2 

     

      1.68E+02 1.90E+02 2.04E+02 2.30E+02   

      1.82E+02 2.01E+02 2.33E+02 2.39E+02   

     2.99E+02 3.36E+02 3.41E+02 3.88E+02   

      3 3 3 3 12 3 

     

      1.90E+02 2.02E+02 2.25E+02 3.02E+02   

      2.00E+02 2.31E+02 2.44E+02 3.11E+02   

     1.69E+02 2.06E+02 2.31E+02 3.50E+02   

      5 5 4 5 19 4 
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6.6.4 Investigation of the HBD Algorithm in Relation to 

Mathematical Functions 

Mathematical optimization functions, also known as test or benchmark functions are used 

to evaluate the optimization algorithms. Researchers working in the field of metaheuristics assess 

the optimization algorithm characteristics such as the convergence rate, precision and efficiency 

using benchmark optimization functions. Benchmark functions are useful for testing new 

algorithms in an unbiased way. Benchmark functions are classified into two groups, namely 

unimodal and multimodal functions. To examine the HBD algorithm`s performance, the 

experiments were conducted over a number of unimodal and multimodal functions. This 

experiment was grouped into two parts. The first part of the experiment was implemented over 

benchmark (unimodal and multimodal) functions to analyze the convergence rate of the HBD 

algorithm and to compare its performance with the Bat, DEA, PSO, GWO, and WOA 

algorithms. In the later experiments, statistical data was collected and measured using the 

parameters of Mean, Standard Deviation and Optimal Solutions to examine the HBD algorithm`s 

performance with its competing algorithms.  The lists of unimodal and multimodal functions 

used in the experiments have been given in Table 6. 4. 

Table 6. 4: List of Unimodal and Multimodal Optimization Functions  

Functions Type Math. Expression Range 
Optimum 

Value 

Schwefel 

2.20 

Unimodal ∑|  |

 

   

 ,        -      

Sphere Unimodal ∑  
 

 

   

 ,           -      

Sum Square Unimodal ∑   
 

 

   

 ,       -      
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Zakharov Unimodal 
∑  

 

 

   

 (∑      

 

   

) 

 (∑      

 

   

)  

,      -      

Elliptic Unimodal ∑(   )(   ) (   )  
 

 

   

 ,        -      

Power Unimodal ∑|  |
(   )

 

   

 ,    -      

Quartic Unimodal ∑   
      (   )

 

   

 ,           -      

Schwefel 

2.22 

Unimodal ∑|  |  ∏|  |

 

   

 

   

 ,        -      

Ackley Multimodal 

      

(

     √∑  
 

 

   
)

 

    (
 

 
∑    (    )

 

   

)    

     ( ) 

,               -      

Griewank Multimodal     ∑
  
 

    
 ∏   (

  

√ 
)   

 

   

 

   

 ,        -      

Holzman 2 Multimodal ∑    
 

   

   

 ,      -      

Hyper 

Ellipsoid 

Multimodal ∑      
 

 

   

 ,        -      
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Csendes Multimodal ∑  
 (     

 

  
)

 

   

 ,    -      

Rastrigin Multimodal     ∑,  
       (    )-

 

   

 ,           -      

Cosine 

Mixture 

Multimodal     ∑   (    )  ∑  
 

 

   

 

   

 ,    -      

Schwefel 

2.26 

Multimodal  
 

 
∑     √|  |

 

   

 ,        - 
  
         

As mentioned before, the experiments were conducted in order to monitor the 

convergence of the HBD algorithm along with its competing algorithms before making a 

comparative analysis based on the results obtained in the form of figures (Fig. 6. 5 and Fig. 6. 6). 

Fig. 6. 5 (a   h) outlines the convergence graph results for the HBD, Bat, DEA, PSO, GWO, and 

WOA algorithms for the unimodal functions (from the list in Table 6. 4). Fig. 6. 6 (a   h) depicts 

the convergence activity results obtained from the aforementioned algorithms for multimodal 

functions (Table 6. 4).  While reviewing the results in Fig. 6. 5 and Fig. 6. 6, it can be noted that 

the HBD algorithm continues its performance in an impressive way in terms of convergence 

during the iterations, as shown in Fig. 6. 5 (a   h). It can be observed that for all of the unimodal 

functions, the HBD algorithm successfully obtained an optimal solution, which is      (as 

shown in Table 6. 4). It is also witnessed that the HBD algorithm converges faster during the 

early iterations and it quickly achieves the optimal solutions (values) for the unimodal functions, 

unlike the Schwefel 2.20 and Elliptic functions, where the convergence is slightly slower 

compared to the other functions. The other metaheuristic algorithms       Bat, DEA, PSO, GWO, 

and WOA, have poor convergence during the iterations. Therefore in most cases, these 

algorithms failed to achieve optimal values. The Bat and DEA algorithms have the worse 

convergence for all unimodal functions and in many cases, these algorithms extremely failed to 

converge even during the earlier iterations. PSO, GWO, and WOA showed some convergence 

during the iterations but still failed to achieve optimal values (solutions), except for the Elliptic, 

Sum Square, and Sphere functions. Furthermore it can also be noticed that the Bat, DEA, PSO, 
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GWO, and WOA algorithms did not converge during certain iterations. As an example of the 

Schwefel 2.22 function, PSO did not converge between the       -       iterations. In the same 

way, Bat, DEA, GWO, and WOA did not converge between the       -      ,        to     , 

        to     , and           -       iterations accordingly. This pattern of poor convergence 

can be observed for all of the other given unimodal functions as shown in Fig. 6. 4 (a   h).  

Regarding the graphs of the multimodal functions given in Fig. 6. 5 (a   h), the results of the 

HBD algorithm look identical to the unimodal functions with respect to its performance 

concerning convergence activity. In Fig. 6. 5 (a   h), the HBD algorithm has the best 

convergence activity compared to the Bat, DEA, PSO, GWO, and WOA algorithms, thus 

offering an optimal solutions for the considered multimodal functions (from Table 6. 4). In the 

case of the Schwefel 2.26 and Ackley functions, HBD converges towards optimal solutions 

continuously during the iterations but it couldn‘t achieve an optimal solution. On the other hand, 

other competing algorithms drastically failed to converge during the iterations for the Schwefel 

2.26 and Ackley functions. Therefore it can be stated that although HBD couldn‘t achieved an 

optimal solution for the Schwefel 2.26 and Ackley functions, it still maintained its consistent 

convergence during the iterations compared to its rival algorithms. For the rest of the multimodal 

functions, the HBD algorithm outperforms the rest of the competitive algorithms (Bat, DEA, 

PSO, GWO, and WOA) in terms of convergence activity as well as obtaining an optimal 

solution. From both figures (Fig. 6. 5 and Fig. 6. 6), it can be seen that the HBD algorithm offers 

optimal solutions as well as cohesive convergence during the iterations. 
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Fig. 6. 4: Convergence of HBD, Bat, PSO, DEA, WOA and GWO for Unimodal Functions 
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Fig. 6. 5: Convergence of HBD, Bat, PSO, DEA, WOA and GWO for Multimodal Functions 

 

6.6.5 Analyzing the Statistical Data Obtained from the 

Unimodal and Multimodal Functions 

For the in-depth analysis of HBD and its competitive algorithms over the unimodal and 

multimodal functions, the algorithms were simulated over          for               and 

     dimensions. The gathered data was explored using statistical parameters      Means, 

Standard Deviation and Optimal Solutions (values). The experimental data for unimodal 

functions has been presented in Table 6. 5   Table 6. 12, while the multimodal function results 

are given in Table 6. 13   Table 6. 20 (Appendix). For the experiments, the unimodal and 

multimodal functions are considered in Table 6. 4. While studying the results obtained for the 
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unimodal functions (Table 6. 5   Table 6. 12), the proposed HBD algorithm has successfully 

generated optimal solutions, with respect of Means, Standard Deviation and Optimal solutions, 

for all unimodal functions. The ranking formula is applied to the Mean results of the tables in 

order to distinguish between each algorithm`s performance with a better understanding. The 

optimal results for each function have been highlighted in bold in the tables. The HBD algorithm 

ranks     in the              in all tables (Table 6. 5   Table 6. 12) for unimodal functions. 

In other words, the HBD algorithm has clearly shown its dominance in terms of generating 

optimal solutions compared to its rival algorithm in the tables (Table 6. 5   Table 6. 12). For the 

results in Table 6. 13   Table 6. 20, although the HBD algorithm is ranked     as the 

             in all multimodal functions, in some functions HBD couldn‘t generated optimal 

solutions, specifically for the larger dimensions. For example, for the       and         

Ackley function, optimal values are not achieved by HBD but still, the algorithm confirms its 

ranking     in the table. Similar trends can be seen for the Cosine Mixture and Schwefel 2.26 

algorithms. However, the HBD algorithm has again shown its effective and impressive 

performance by offering optimal solutions for most cases of multimodal function. From the 

results of the tables (Table 6. 5   Table 6. 12 and Table 6. 13   Table 6. 20), it can be concluded 

that the HBD algorithm offers optimal solutions as seen in the statistical data obtained from the 

experiments. Thus it has proven its effective convergence effects in the form of proving better 

results.  

6.7 Summary 

This chapter offers a hybrid algorithm of the Bat and DEA algorithms, named the “HBD 

(Hybrid Bat Dolphin Echolocation)” algorithm. The purpose of offering this new hybrid 

algorithm is to come with a metaheuristic algorithm that can produce optimal solutions by 

maintaining the balance between the exploration and exploitation processes. The proposed HBD 

algorithm emphasized over echolocation features of Bat and DEA algorithms. To test the 

proposed HBD algorithm performance, two phases of experiment were implemented. One stage 

of the experiment was to apply the HBD algorithm over an application such as MPLS 

optimization and the second type of experiment was planned to cover the unimodal and 

multimodal functions. For the MPLS optimization, the MCOP-based MPLS optimization model 
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is presented in the chapter, in which two constrained--based objective functions are considered. 

The constrained-based routing costs and energy consumption costs, in addition to the objective 

functions and MCOP-based problem formulation, are presented in section 6.3. For the presented 

MPLS optimization problem, the proposed HBD algorithm is applied in order to produce an 

optimal solution. A number of experiments were conducted and comparative analyses were made 

using the Bat, DEA, PSO, GWO, and WOA algorithms. As the MPLS optimization model was 

based on multiple objectives, the HBD algorithm was applied to the optimization model to 

generate non-dominant solutions in the form of the Pareto front, as shown in Fig. 6. 2. Detailed 

comparative analysis was conducted in the experiments using the convergence parameters (Fig. 

6. 3 and Fig. 6. 4) and statistical parameters such as Mean, Standard Deviation and optimal 

solutions (Table 6. 2 and Table 6. 3). From the results in Fig. 6. 3, Fig. 6. 4, Table 6. 2 and Table 

6. 3, the proposed HBD algorithm showed a quick and effective convergence rate that supported 

the algorithm in terms of generating optimal solutions. In the experiments on the unimodal and 

multimodal functions, the results in Fig. 6. 5, Fig. 6. 6, Table 6. 5   Table 6.12, and Table 6. 

13   Table 6. 20 clearly present the efficiency of the proposed HBD algorithm in terms of the 

convergence rate as well as the statistical parameters. It can be observed in the results of the 

chapter that the Bat and DEA algorithms had a worse convergence rate for the MPLS 

optimization problem and also for the benchmark functions, whereas the HBD algorithm 

impressively offered optimal solutions for the MCOP-based optimization model of MPLS 

networks and for the benchmark functions. 
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Chapter 7 

Obtained Results and Future Work 

7.1 Summary of Obtained Results  

Advanced applications implemented over MPLS networks require better traffic 

management in order to avoid network congestion and to offer maximum throughput. Therefore, 

for MPLS optimization, the MCOP based optimization models were proposed consisting of 

multiple objectives based functions along with constraints. For such complex optimization 

problems, the novel metaheuristic algorithms were developed and analyzed. The contributions of 

this thesis are summarized below; 

7.1.1 PMLG-PSO for Resource Reservation and Traffic 

Load Balancing Costs Functions  

To address the MCOP based MPLS optimization model a modified version of PSO 

algorithm is proposed as PMLG-PSO algorithm. For MPLS optimization, the resource 

reservation and traffic load balancing costs objective functions are mathematically formulated as 

an optimization problem. The PMLG-PSO algorithm introduced new concept of six registers 

(shown in Table 4. 1), used as a technique to counter the exploration problem in the algorithm. 

The improved version is successfully applied to the considered MPLS optimization model that 

generates both Pareto based solutions together with optimal solutions for both objective 

functions. The experimental results of PMLG-PSO in the form of convergence activity and 

statistical measures (as Mean, Standard Deviation and Optimal solutions) are comprehensively 

compared with PSO, Bat, APSO and DA algorithms, in which PMLG-PSO clearly showed its 

dominance with remarkable outcomes. To analyze the effects of stochastic nature of PMG-PSO 

algorithm, the Krushkal Wallis test was also implemented that ensures the algorithm does not 

suffer from abrupt solutions for various numbers of network sizes and iterations.  
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7.2.1 ABAT for Routing Delay and Load Balancing Costs 

Function  

A novel version of “ABAT (Adjustable Bat)” algorithm implanted with loudness 

optimizer is proposed for the optimization of routing delay and load balancing costs objective 

functions. The mathematical formulation of both objective functions are presented as MCOP 

based optimization model of MPLS networks. The ABAT was designed to offer both Pareto front 

based solutions along with optimal solutions. Various version of ABAT are presented as      

                        and        with different loudness levels to highlight 

the role of loudness parameter in the convergence of algorithm. For this purpose the number of 

experimental setups were designed and implemented, which shows that the       with higher 

value can improve te algorithm`s performance. Furthermore, the LO is introduced as new 

parameter in ABAT which improved the algorithm convergence rate and thus, generated optimal 

solutions for the given optimization problem. A comprehensive comparative analysis of ABAT 

has done with other popular algorithms      Bat, CBA, PSO and DEA algorithms. The results in 

the form of convergence activity, generating optimal solutions and statistical data analysis 

showed that ABAT that was implemented with LO have brought a significant improvement in the 

Bat algorithm. Therefore, the results offered by ABAT are much superior to its competing 

algorithms for MPLS optimization problem. 

7.3.1 HBD for Energy Consumption and Constrained 

based Routing Costs Functions 

The echolocation is the common and important feature in both Bat and Dolphin 

Echolocation algorithms, which plays a substantial role for the convergence of the mentioned 

algorithm and thus helps to generate optimal solutions for complex optimization problems. 

Taking the beneficial features of both (Bat and DEA) algorithms, a novel algorithm named as 

HBD is developed and offered for the described MCOP based optimization model of MPLS 

networks. For the given optimization problem, energy consumption and constrained based 

routing is mathematically formulated. The proposed HBD algorithm has provided not only the 
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optimal solutions for energy consumption and constrained based routing costs functions but also 

had the capability to generate non-dominant solutions in the form of Pareto front graphs. The 

significance of the HBD was also proved by applying the offered algorithm over mathematical 

optimization functions in order to test the capability of HBD while comparing with Bat, DEA, 

PSO, GWO, and WOA algorithms. The number of experiments was conducted for testing the 

convergence activity of HBD algorithm over mentioned objective functions for MPLS networks 

as well as on benchmark functions. For in depth analysis, the statistical parameters were also 

employed to compare the HBD efficiency with its competing algorithms, for which HBD has 

clearly shown its effective performance compared to other aforementioned algorithms. From the 

results (in the form of figures and tables), the performance of HBD algorithm was 

comprehensively investigated and thus, it can be concluded that HBD algorithm has come as a 

effective approach that has successfully solved the MPLS optimization problem and also 

checked over number of unimodal and multimodal benchmark functions.  

7.2 Future Work 

The main focus of the thesis was to offer novel metaheuristic optimization algorithms as 

improved versions for the developed MCOP based model of MPLS networks. For this research 

work, PSO, Bat and DEA algorithms were considered, in which an extensive research is 

presented in each algorithms and the improved version is offered. However, there is still a room 

of research in this area, which can be considered for future research direction. 

PSO algorithm has developed long ago, yet it maintains its popularity due to its flexible 

parameters that plays a twisting role for the improvement in algorithm`s performance. In addition 

to this, the PSO belongs to a family of swarm based algorithms, which depends on number of 

searching agents and its two parameters      cognitive and social behavior feature are very 

important and can be considered for future research work for algorithm improvement. Beside 

this, the presented PMLG-PSO is applied for the MCOP based optimization problem of MPLS 

network; however this PMLG-PSO can also be used for different objective functions for MPLS 

network optimization. A comprehensive analysis of PMLG-PSO over benchmark functions can 

also be an interesting future research work direction. All these directions of research can enhance 

the proposed PMLG-PSO performance.   
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In this thesis an extensive research work has presented on the Bat algorithm, in which 

significance of loudness parameter is highlighted and then offered a LO implanted over ABAT 

algorithm that enhanced algorithm`s performance. However, the optimal value of       and 

      during the initial stage of the Bat algorithm can be a challenging task for future research. 

In addition to this, there are other parameters such as frequency and pulse rate in the algorithm 

that can also be taken for further consideration in order to understand the impact of these 

parameters and can improve over algorithm`s performance. The proposed ABAT can also be 

applied over benchmark mark functions for an extensive research analysis.  

The proposed HBD algorithm is applied for MPLS optimization as well as for benchmark 

functions. As future research direction, the parameters in HBD algorithm can be play a vital role 

for performance improvement in the algorithm. For example, the LO parameter of ABAT can be 

utilized in HBD and then extensively studied its influence over the algorithm`s performance. 

In addition to abovementioned, the optimization of MPLS network is presented and tested using 

simulation tool of Matlab 2016, this work can be deployed over MPLS based routers using the 

described objective functions along with proposed algorithms (PMLG-PSO, ABAT, and HBD). 

Furthermore, the presented algorithms can also be applied for the optimization of other 

applications such as vehicle routing problem, feature selection problem in machine learning 

algorithms, transportation problems and so on. Metaheuristic algorithms consist of a long list of 

algorithms that requires a comprehensive research for not only apply these techniques for various 

applications but also to enhance algorithm performance by offering improved versions. 
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Appendix 
 

Table 6. 5: Schwefel 2.20 (Unimodal) Function  

                                     

     

       

     

     

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     1 1 1 1 1 5 1 

     

      1.4502e+01 1.0153e+02 4.2116e+02 8.3222e+02 1.2569e+03   

      1.5281e+01 1.0618e+02 4.2137e+02 8.3408e+02 1.2624e+03   

     1.6193e+00 1.6772e+00 5.1355e-01 2.3761e+00 9.6632e+00   

      6 6 6 6 6 30 6 

     

      4.0582e+00 9.8142e+00 4.1868e+01 2.3526e+02 6.1088e+02   

      4.4255e+00 1.0247e+01 4.2848e+01 2.3622e+02 6.1122e+02   

     5.6236e-01 5.6488e-01 8.0142e-01 6.5698e-01 6.4279e-01   

      5 4 4 4 5 22 4 

     

      1.1010e+00 1.8811e+00 3.7406e+00 3.8701e+01 1.1055e+02   

      1.8754e+00 3.7644e+00 1.1435e+01 8.0186e+01 1.8854e+02   

     7.9568e-01 3.6381e+00 9.1353e+00 4.0617e+01 7.8094e+01   
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      3 2 2 2 3 12 2 

     

      1.3668e+00 4.9866e+00 1.1800e+01 8.4798e+01 1.1003e+02   

      1.8636e+00 6.2258e+00 1.6009e+01 8.7426e+01 1.4036e+02   

     6.7660e-01 2.3594e+00 6.7086e+00 8.5499e+00 4.3902e+01   

      2 3 3 3 2 13 3 

     

      2.2656e+00 2.2951e+01 5.1323e+01 2.8721e+02 5.8160e+02   

      2.6368e+00 2.5054e+01 5.1588e+01 2.8749e+02 5.8319e+02   

     4.2723e-01 1.4886e+00 5.1588e+01 8.6113e-01 4.8746e+00   

      4 5 5 5 4 23 5 

 

Table 6. 6: Sphere (Unimodal) Function  

                                    

      

       

     

     

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     2.5 2.5 2.5 1 1 9.5 1 

     

      1.3818e+00 1.8589e+02 6.0469e+02 1.4330e+03 8.2363e+03   

      1.4261e+00 1.8589e+02 6.0469e+02 1.4460e+03 8.2515e+03   

     1.4333e-01 5.8320e-14 1.7626e+01 2.4000e+01 2.7036e+01   



180 
 

      5 5 5 5 6 26 5 

     

      1.6072e+00 5.5992e+02 6.7557e+02 3.5755e+04 8.0325e+03   

      1.6072e+00 6.0272e+02 6.9004e+02 3.5755e+04 8.0325e+03   

     2.6780e-15 6.7076e+01 6.2325e+00 4.8800e+02 8.9556e+01   

      6 6 6 6 5 29 6 

     

      0.0000e+00 0.0000e+00 0.0000e+00 6.5518e-01 1.3949e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 8.5689e-01 1.6634e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 4.3039e-01 1.6634e+00   

      2.5 2.5 2.5 2 2 11.5 2 

     

      0.0000e+00 0.0000e+00 0.0000e+00 1.6562e+02 1.2729e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 1.7916e+02 1.8411e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 1.3820e+01 1.0830e+00   

      2.5 2.5 2.5 4 3 14.5 3.5 

     

      0.0000e+00 0.0000e+00 0.0000e+00 2.2446e+00 4.4851e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 2.2446e+00 4.4851e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      2.5 2.5 2.5 3 4 14.5 3.5 
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Table 6. 7: Sum Square (Unimodal) Function  

                                     

     

       

     

     

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     2.5 1.5 1 1 1 7 1 

     

      1.0822e+01 6.0138e+03 1.2556e+04 3.9207e+04 4.0087e+04   

      1.2307e+01 6.5006e+03 1.2984e+04 3.9448e+04 4.0137e+04   

     2.3630e+00 1.1458e+02 7.9254e+02 2.7274e+02 1.5575e+02   

      5 6 6 6 6 29 6 

     

      1.0285e+01 4.2283e+01 1.3922e+03 3.7776e+04 3.8200e+04   

      1.4866e+01 4.4912e+01 1.3965e+03 3.7776e+04 3.8200e+04   

     1.8878e+00 5.6030e+00 4.4743e+00 7.4650e-12 7.4650e-12   

      6 4 4 5 5 24 5 

     

      0.0000e+00 1.0771e+00 6.4480e+01 1.2249e+02 1.6123e+02   

      0.0000e+00 5.8101e+00 8.1445e+01 1.7018e+02 4.1973e+02   

     0.0000e+00 8.5710e+00 1.9307e+01 5.9608e+01 2.9999e+02   

      2.5 3 3 3 2 13.5 3 
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      0.0000e+00 0.0000e+00 2.5974e+00 2.9584e+01 1.1084e+03   

      0.0000e+00 0.0000e+00 5.3803e+00 7.9738e+01 1.3134e+03   

     0.0000e+00 0.0000e+00 4.9763e+00 1.1067e+02 1.3134e+03   

      2.5 1.5 2 2 3 11 2 

     

      0.0000e+00 5.5657e+01 3.2872e+03 3.4276e+04 3.6811e+04   

      0.0000e+00 5.6597e+01 3.3169e+03 3.4276e+04 3.6811e+04   

     0.0000e+00 4.2030e+00 9.1454e+01 7.4650e-12 7.4650e-12   

      2.5 5 5 4 4 20.5 4 

 

Table 6. 8: Zakharov (Unimodal) Function  

                                     

     

       

     

     

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     1.5 1 1 1 1 5.5 1 

     

      1.2615e+01 3.7556e+02 4.1898e+01 1.6336e+02 3.2992e+02   

      1.3018e+01 8.0047e+02 4.6944e+01 1.6580e+02 3.3444e+02   

     1.8032e+00 1.3078e+03 2.2564e+01 2.2629e+00 5.8575e+00   

      5 6 4 4 4 23 4 

     



183 
 

      8.5003e+01 3.8137e+01 7.2866e+02 4.4884e+03 2.5958e+03   

      8.7679e+01 3.9040e+01 7.2910e+02 6.7167e+04 2.7143e+03   

     5.5648e+00 6.0628e-01 1.6825e+00 7.5923e+04 7.0369e+01   

      6 4 6 6 5 27 6 

     

      6.6657e-01 1.2145e+00 2.3611e+00 1.4771e+01 3.4559e+01   

      1.1096e+00 2.2557e+00 3.9488e+00 4.0443e+01 7.5536e+01   

     8.8551e-01 1.5967e+00 2.4622e+00 6.0426e+00 1.8092e+01   

      3 3 2 2 3 13 3 

     

      0.0000e+00 1.0949e+00 8.3388e+00 4.2513e+01 2.3264e+01   

      0.0000e+00 1.2648e+00 1.0802e+01 5.8707e+01 3.3578e+01   

     0.0000e+00 5.2311e-01 3.2681e+00 1.5028e+01 2.5190e+01   

      1.5 2 3 3 2 11.5 2 

     

      6.5138e+00 4.2671e+01 9.9343e+01 2.8985e+02 2.6249e+03   

      6.7738e+00 4.8479e+01 1.3652e+02 3.2349e+03 5.6788e+04   

     5.3228e-01 2.5978e+01 1.6625e+02 9.0645e+03 1.2621e+05   

      4 5 5 5 6 25 5 
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Table 6. 9: Elliptic (Unimodal) Function  

                                    

     

       

     

     

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     1.5 1 1 1 1 5.5 1 

     

      6.2742e+00 3.8263e+02 2.4299e+02 2.6488e+02 5.6487e+02   

     6.5947e+00 3.9926e+02 2.8767e+02 2.8672e+02 5.6581e+02   

     5.1253e-01 2.6070e+01 1.9256e+01 9.4684e+00 2.8881e+00   

     5 6 5 4 4 24 5 

       

      4.5690e+01 2.7239e+02 8.4498e+02 4.1755e+03 1.3541e+03   

     4.5690e+01 2.7239e+02 8.4498e+02 4.1755e+03 1.3541e+03   

     7.2900e-15 5.8320e-14 0.0000e+00 0.0000e+00 2.3328e-13   

     6 5 6 6 5 28 6 

     

      0.0000e+00 7.2487e-01 1.2872e+00 1.3401e+01 2.1851e+01   

     0.0000e+00 1.0929e+00 1.9850e+00 1.4974e+01 2.6601e+01   

     0.0000e+00 6.3042e-01 1.6621e+00 6.4829e+00 8.3313e+00   

     1.5 2 2 2 2 9.5 2 
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      1.0099e+00 6.0873e+00 7.2294e+00 5.7419e+01 1.5059e+02   

     1.3336e+00 7.0595e+00 7.9467e+00 5.9292e+01 1.9915e+02   

     5.0732e-01 2.2424e+00 9.0321e-01 5.7646e+00 8.6297e+01   

     3 3 3 3 3 15 3 

     

      3.6677e+00 1.8080e+01 6.3021e+01 1.2191e+03 1.6861e+03   

     3.9991e+00 1.8242e+01 6.3021e+01 1.2555e+03 1.7434e+03   

     7.9024e-01 5.0024e-01 0.0000e+00 1.1200e+02 1.7628e+02   

     4 4 4 5 6 23 4 

 

Table 6. 10: Power (Unimodal) Function  

                                     

     

       

     

           

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     3.5 3 2 1 1 10.5 1 

     

      0.0000e+00 1.9230e+00 4.9128e+00 3.2789e+01 1.2206e+02   

      0.0000e+00 1.9230e+00 4.9128e+00 3.2976e+01 1.2696e+02   

     0.0000e+00 2.2781e-16 9.1125e-16 5.7616e-01 3.3956e+00   

      3.5 6 6 5 6 26.5 6 
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      0.0000e+00 0.0000e+00 0.0000e+00 3.3515e+01 7.4519e+01   

      0.0000e+00 0.0000e+00 0.0000e+00 3.3515e+01 7.4519e+01   

     0.0000e+00 0.0000e+00 0.0000e+00 7.2900e-15 1.4580e-14   

      3.5 3 2 6 5 19.5 5 

     

      0.0000e+00 0.0000e+00 7.1533e-01 4.2645e-02 5.1727e+00   

      0.0000e+00 0.0000e+00 1.6075e+00 7.3714e+00 3.0888e+01   

     0.0000e+00 0.0000e+00 1.7632e+00 1.1570e+01 3.1604e+01   

      3.5 3 5 2 3 16.5 3.5 

     

      0.0000e+00 0.0000e+00 4.0392e-02 3.7556e+00 5.9533e-01   

      0.0000e+00 0.0000e+00 9.2445e-01 1.0519e+01 7.9151e+00   

     0.0000e+00 0.0000e+00 2.1363e+00 1.2018e+01 2.1569e+01   

      3.5 3 4 3 2 15.5 2 

     

      0.0000e+00 0.0000e+00 0.0000e+00 3.2340e+01 7.3263e+01   

      0.0000e+00 0.0000e+00 0.0000e+00 3.2340e+01 7.3263e+01   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.4580e-14   

      3.5 3 2 4 4 16.5 3.5 
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Table 6. 11: Quartic (Unimodal) Function  

                                     

     

       

     

           

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     2 1.5 1.5 1.5 1 7.5 1 

     

      5.2668e+00 1.0966e+01 3.6412e+01 3.4013e+01 1.4269e+02   

     6.7014e+00 1.0966e+01 4.2476e+01 3.4817e+01 1.4483e+02   

     2.0057e+00 3.6450e-15 1.9344e+00 6.1973e-01 1.5328e+00   

     5 4 4 3 3 19 4 

     

      4.9819e+00 7.1722e+01 1.7716e+03 1.8280e+02 6.8221e+02   

     7.6560e+00 7.5375e+01 1.7773e+03 1.8280e+02 6.8221e+02   

     6.2941e-01 1.1245e+01 1.7344e+01 5.8320e-14 3.4992e-13   

     6 5 6 4 6 27 6 

     

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.8659e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.6130e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.2461e+00   

     2 1.5 1.5 1.5 2 8.5 2 
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      0.0000e+00 2.2074e-01 4.7551e+00 1.3429e+02 8.4767e+01   

     0.0000e+00 9.7479e-01 1.5504e+01 5.5660e+02 1.5403e+02   

     0.0000e+00 1.5571e+00 1.9331e+01 5.9276e+02 1.2308e+02   

     2 3 3 5 4 17 3 

     

      1.2741e+00 7.7403e+01 4.2080e+02 1.3218e+03 3.7434e+02   

     1.6330e+00 7.9249e+01 4.2316e+02 1.3218e+03 3.7434e+02   

     1.6050e+00 8.2530e+00 7.2623e+00 0.0000e+00 5.8320e-14   

     4 6 5 6 5 26 5 

 

Table 6. 12: Schwefel 2.22 (Unimodal) Function  

                                     

     

       

     

           

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     1 1 1 1 1 5 1 

     

      5.1157e+00 1.4576e+01 4.4305e+01 1.1658e+02 1.8582e+02   

      5.5501e+00 1.4576e+01 4.4773e+01 1.1739e+02 1.8678e+02   

     5.4579e-01 9.1125e-15 6.8723e-01 1.1289e+00 8.8798e-01   

      6 5 4 4 4 23 4.5 
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      3.2532e+00 1.3819e+01 5.4180e+01 3.0409e+02 6.3577e+02   

      3.5147e+00 1.3819e+01 5.4180e+01 3.0409e+02 6.3577e+02   

     6.1547e-02 3.6450e-15 7.2900e-15 5.8320e-14 3.4992e-13   

      4 4 5 5 5 23 4.5 

     

      7.0457e-01 3.0115e+00 1.6732e+01 2.7531e+01 7.3676e+01   

      2.7981e+00 4.7072e+00 2.1040e+01 3.7775e+01 1.0108e+02   

     2.2234e+00 2.5544e+00 6.5052e+00 2.0313e+01 3.0484e+01   

      3 2 2 2 2 12 2 

     

      1.1395e+00 5.9077e+00 1.4975e+01 8.1781e+01 1.0057e+02   

      1.8616e+00 6.6394e+00 1.8696e+01 9.1483e+01 1.2709e+02   

     1.0057e+00 1.7875e+00 7.4614e+00 1.2010e+01 3.9494e+01   

      2 3 2 3 3 13 3 

     

      3.7744e+00 2.0481e+01 7.9690e+01 4.4834e+02 9.0195e+02   

      4.3051e+00 2.1307e+01 8.0640e+01 4.5054e+02 9.0850e+02   

     6.8288e-01 1.3369e+00 2.9239e+00 6.7790e+00 2.0146e+01   

      5 6 6 6 6 29 6 
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Table 6. 13: Ackley (Multimodal) Function  

                                     

     

       

     

           

      0.0000e+00 0.0000e+00 0.0000e+00 1.8948e+01 1.7727e+01   

      0.0000e+00 0.0000e+00 0.0000e+00 1.9704e+01 2.1546e+01   

     0.0000e+00 0.0000e+00 0.0000e+00 3.1848e+01 4.6889e+01   

     1 1 1 3 4 10 1 

           

      4.6611e+00 1.2232e+01 1.7506e+01 1.7725e+01 1.9013e+01   

      7.1403e+00 1.3103e+01 1.7898e+01 1.9399e+01 2.1023e+01   

     2.3762e+00 1.3754e+00 1.1064e+00 5.9558e-01 4.1066e+00   

      2 2 5 2 3 14 2 

           

      1.2898e+01 1.9314e+01 1.5040e+01 2.1105e+01 2.2774e+01   

      1.4398e+01 1.9642e+01 1.5561e+01 2.5220e+01 2.5188e+01   

     1.1018e+00 5.8331e-01 7.2986e-01 2.2478e+00 1.8984e+00   

      4 4 2 6 5 21 5 

           

      1.6600e+01 1.9228e+01 1.4602e+01 1.9206e+01 1.9916e+01   

      1.8078e+01 1.9970e+01 1.5880e+01 1.9206e+01 2.0076e+01   

     1.7602e+00 5.6164e-01 2.1800e+00 4.0699e-01 1.3216e-01   

      6 6 3 1 2 18 3 

           

      1.3181e+01 1.9264e+01 1.6513e+01 2.0141e+01 1.8058e+01   
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      1.5148e+01 1.9770e+01 1.7044e+01 2.0141e+01 1.8936e+01   

     2.9518e+00 6.0863e-01 1.0735e+00 2.0141e+01 3.6498e-01   

      5 5 4 5 1 20 4 

           

      1.1794e+01 1.6411e+01 1.8699e+01 1.9325e+01 2.4654e+01   

      1.1917e+01 1.7363e+01 1.9189e+01 1.9748e+01 2.6296e+01   

     5.4997e-01 9.7662e-01 8.7354e-01 4.6348e-01 1.9147e+00   

      3 3 6 4 6 22 6 

 

Table 6. 14: Griewank (Multimodal) Function  

                                     

     

       

     

           

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     3.5 3.5 2.5 2 2 13.5 1 

           

      0.0000e+00 0.0000e+00 0.0000e+00 5.1335e+00 9.4908e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 6.9099e+00 1.0370e+01   

     0.0000e+00 0.0000e+00 0.0000e+00 1.9746e+00 1.3622e+00   

      3.5 3.5 2.5 5 5 19.5 4 

           

      0.0000e+00 0.0000e+00 3.0919e+01 4.1262e+01 1.9983e+02   

      0.0000e+00 0.0000e+00 3.1630e+01 4.1262e+01 2.0191e+02   
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     0.0000e+00 0.0000e+00 8.2005e-01 6.7856e-01 5.5271e+00   

      3.5 3.5 6 6 6 25 6 

           

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      3.5 3.5 2.5 2 2 13.5 2 

           

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      3.5 3.5 2.5 2 2 13.5 2 

           

      0.0000e+00 0.0000e+00 6.1880e-01 3.9488e+00 7.0197e+00   

      0.0000e+00 0.0000e+00 6.2105e-01 3.9488e+00 7.7770e+00   

     0.0000e+00 0.0000e+00 5.4909e-03 8.9760e-01 1.6711e+00   

      3.5 3.5 5 4 4 20 5 

 

Table 6. 15: Holzman 2 (Multimodal) Function  

                                     

     

       

     

           

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   
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     3 1.5 1 1 1 7.5 1 

           

      0.0000e+00 7.9041e+00 1.6591e+01 9.5795e+01 2.1101e+03   

     0.0000e+00 7.9041e+00 1.7216e+01 9.5795e+01 2.1335e+03   

     0.0000e+00 1.8225e-15 9.8410e-01 2.7779e+00 1.4436e+01   

     3 6 5 4 6 24 5 

           

      1.0664e+00 5.5395e+00 1.7145e+01 9.8904e+01 1.9850e+02   

     1.0664e+00 5.5395e+00 1.7145e+01 9.8904e+01 1.9850e+02   

     2.2781e-16 2.7338e-15 7.2900e-15 2.9160e-14 5.8320e-14   

     6 5 4 6 5 26 6 

           

      0.0000e+00 0.0000e+00 6.9494e-01 9.3845e+00 2.5341e+01   

     0.0000e+00 0.0000e+00 6.8443e+00 1.5161e+01 3.2339e+01   

     0.0000e+00 0.0000e+00 7.4470e+00 3.3659e+00 1.0627e+01   

     3 1.5 2 2 2 10.5 2 

           

      0.0000e+00 2.2007e-01 2.3935e+00 6.7464e+01 1.0178e+02   

     0.0000e+00 1.8104e+00 7.0434e+00 7.9656e+01 1.0178e+02   

     0.0000e+00 2.8564e+00 7.2873e+00 1.3778e+01 3.9327e+01   

     3 3 3 3 3 15 3 

           

      0.0000e+00 5.3554e+00 1.9813e+01 9.6978e+01 1.9637e+02   

     0.0000e+00 5.3554e+00 1.9813e+01 9.6978e+01 1.9637e+02   

     0.0000e+00 1.8225e-15 3.6450e-15 4.3740e-14 8.7480e-14   
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     3 4 6 5 4 22 4 

 

Table 6. 16: Hyper Ellipsoid (Multimodal) Function  

                                     

     

       

     

           

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     1 1 1 1 1 5 1 

           

      1.4521e+01 2.7466e+01 2.1244e+01 2.7027e+01 7.3912e+01   

      2.5119e+01 2.7466e+01 2.2805e+01 3.0134e+01 9.8227e+01   

     4.3705e+00 7.2900e-15 2.8844e+00 1.8405e+00 1.9075e+01   

      5 3 3 2 2 15 2.5 

           

      4.0885e+01 3.9281e+01 1.0581e+02 1.3046e+02 4.1661e+02   

      4.1300e+01 3.9281e+01 1.0581e+02 1.3046e+02 4.1661e+02   

     5.2188e-01 7.2900e-15 2.9160e-14 2.9160e-14 1.1664e-13   

      6 5 5 3 4 23 5 

           

      1.0128e+00 2.4041e+00 1.6030e+01 7.7147e+01 9.6209e+01   

      9.0460e+00 8.7784e+01 1.2209e+02 3.6733e+02 7.1516e+02   

     1.1365e+01 2.1685e+02 2.2020e+02 7.7087e+02 1.9631e+03   

      3 6 6 5 6 26 6 
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      1.4765e+00 6.6727e+00 1.0511e+01 6.0385e+01 2.1388e+02   

      2.9242e+00 2.6525e+01 1.0511e+01 5.7573e+02 2.5463e+02   

     4.4343e+00 3.3087e+01 3.5277e+02 5.7573e+02 8.4263e+01   

      2 2 2 6 3 15 2.5 

           

      9.3032e+00 3.5658e+01 7.5172e+01 1.5599e+02 4.5090e+02   

      9.3032e+00 3.5658e+01 7.5172e+01 1.5599e+02 4.5090e+02   

     9.3032e+00 7.2900e-15 1.4580e-14 2.9160e-14 0.0000e+00   

      4 4 4 4 5 21 4 

 

 

Table 6. 17: Csendes (Multimodal) Function  

                                     

     

       

     

           

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     3.5 2 1 1 1 8.5 1 

           

      0.0000e+00 4.5826e+00 1.9670e+01 1.2032e+02 2.4178e+02   

      0.0000e+00 4.5826e+00 1.9670e+01 1.2456e+02 2.4500e+02   

     0.0000e+00 9.1125e-16 7.2900e-15 4.0436e+00 8.5933e+00   

      3.5 6 6 5 4 24.5 5 
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      0.0000e+00 3.4314e+00 8.2447e+00 1.1330e+02 2.4634e+02   

      0.0000e+00 3.6649e+00 1.1483e+01 1.1399e+02 2.4634e+02   

     0.0000e+00 2.0792e-01 4.5274e+00 7.0414e-01 2.9160e-14   

      3.5 4 3 4 5 19.5 4 

           

      0.0000e+00 0.0000e+00 1.4087e+00 8.4378e+00 9.7667e+00   

      0.0000e+00 0.0000e+00 5.7182e+00 2.9452e+01 4.0140e+01   

     0.0000e+00 0.0000e+00 8.3490e+00 3.9623e+01 7.2687e+01   

      3.5 2 2 2 2 11.5 2 

           

      0.0000e+00 0.0000e+00 1.6102e+01 2.2509e+01 4.9638e+01   

      0.0000e+00 0.0000e+00 1.6102e+01 5.0826e+01 1.0421e+02   

     0.0000e+00 0.0000e+00 7.2266e-01 5.0826e+01 9.6974e+01   

      3.5 2 4 3 3 15.5 3 

           

      0.0000e+00 4.0775e+00 1.6467e+01 1.2758e+02 2.6050e+02   

      0.0000e+00 4.0775e+00 1.6467e+01 1.2758e+02 2.6050e+02   

     0.0000e+00 9.1125e-16 0.0000e+00 1.4580e-14 0.0000e+00   

      3.5 5 5 6 6 25.5 6 
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Table 6. 18: Rastrigin (Multimodal) Function  

                                     

     

       

     

           

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     1 1 1 1 1 5 1 

           

      2.2400e+02 9.1178e+02 2.0528e+03 1.1245e+04 2.0083e+04   

      2.2591e+02 9.1327e+02 2.0917e+03 1.1658e+04 2.0114e+04   

     2.1675e+00 4.5714e+00 6.8985e+01 1.6095e+03 1.0266e+02   

      6 6 6 6 6 30 6 

           

      4.5606e+00 1.6274e+01 3.6254e+01 1.6699e+02 3.2838e+02   

      1.9951e+01 5.2467e+01 1.2453e+02 6.2353e+02 5.9907e+02   

     2.0071e+01 8.8019e+01 1.1145e+02 9.6681e+02 1.2106e+03   

      4 4 3 2 2 15 3 

           

      1.0023e+02 3.0648e+02 1.0000e+03 5.0313e+03 1.0701e+04   

      1.0451e+02 3.0648e+02 1.0163e+03 6.1129e+03 1.2257e+04   

     7.8657e+00 6.8825e+01 6.7338e+01 1.8125e+03 3.1571e+03   

      5 5 5 5 5 25 5 

           

      2.0132e+00 6.8061e+00 4.1214e+01 3.0809e+01 2.4393e+02   



198 
 

      3.1201e+00 1.6518e+01 2.4538e+02 7.8960e+02 1.8769e+03   

     4.9501e+00 2.0507e+01 2.8545e+02 2.4307e+03 2.6181e+03   

      2 3 4 4 4 17 4 

           

      7.0407e+00 1.0879e+01 4.2093e+01 3.4880e+02 1.3784e+03   

      9.2378e+00 1.4938e+01 5.3374e+01 6.2930e+02 1.8038e+03   

     9.2378e+00 1.8154e+01 5.0450e+01 6.3695e+02 6.6997e+02   

      3 2 2 3 3 13 2 

 

Table 6. 19: Cosine Mixture (Multimodal) Function  

                                     

     

       

     

           

      0.0000e+00 0.0000e+00 0.0000e+00 1.2419e+00 6.5648e+01   

      0.0000e+00 1.0054e+00 3.1500e+00 3.2065e+01 9.9826e+00   

     0.0000e+00 2.1151e+00 6.4854e+00 3.8619e+01 8.9327e+01   

     3 1 1 1 1 7 1 

           

      1.4935e+00 7.8637e+00 2.8223e+01 1.5004e+02 3.0995e+02   

      1.6437e+00 7.8637e+00 2.8223e+01 1.5395e+02 3.1226e+02   

     1.7033e-01 1.8225e-15 1.4580e-14 3.6451e+00 3.1282e+00   

      6 6 6 5 6 29 6 

           

      0.0000e+00 5.0331e+00 2.6067e+01 1.5085e+02 2.0213e+02   

      0.0000e+00 5.5002e+00 2.6810e+01 1.5122e+02 2.0775e+02   
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     0.0000e+00 4.4445e-01 1.8257e-01 6.6435e-01 2.4489e+01   

      3 4 3 3 4 17 3 

           

      0.0000e+00 2.1876e+00 1.4821e+00 3.6711e+01 8.9966e+01   

      0.0000e+00 2.7727e+00 7.5920e+00 5.2575e+01 1.6331e+02   

     0.0000e+00 1.3506e+00 9.2225e+00 3.6366e+01 9.0490e+01   

      3 2 2 2 3 12 2 

           

      0.0000e+00 4.8056e+00 2.4579e+01 1.5170e+02 1.0192e+02   

      0.0000e+00 5.1003e+00 2.8201e+01 1.5755e+02 1.2932e+02   

     0.0000e+00 4.7747e-01 3.3628e+00 6.0077e+00 6.8305e+01   

      3 3 5 6 2 19 4 

           

      0.0000e+00 5.5970e+00 2.7515e+01 1.5187e+02 3.0542e+02   

      0.0000e+00 5.5970e+00 2.7515e+01 1.5187e+02 3.0542e+02   

     0.0000e+00 9.1125e-16 3.6450e-15 5.8320e-14 1.1664e-13   

      3 5 4 4 5 21 5 

 

Table 6. 20: Schwefel 2.26 (Multimodal) Function  

                                     

     

       

     

           

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

      0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   

     0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00   
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     2.5 1 1 1 1 6.5 1 

           

      3.9932e+00 3.2889e+01 1.2883e+02 8.1819e+02 9.9686e+02   

      4.9415e+00 3.6367e+01 1.3035e+02 8.2340e+02 9.9786e+02   

     8.7109e-01 2.3361e+00 3.2878e+00 9.3682e+00 2.8670e+00   

      6 6 5 6 6 29 6 

           

      3.2929e+00 1.1312e+01 1.3048e+02 3.1977e+02 8.2245e+02   

      3.5400e+00 1.1679e+01 1.3659e+02 3.2440e+02 8.2880e+02   

     5.0779e-01 1.1284e+00 1.4388e+00 1.7259e+00 2.9903e+00   

      5 4 6 4 5 24 5 

           

      0.0000e+00 7.9770e-01 3.4857e+00 9.7608e+00 4.0634e+01   

      0.0000e+00 1.4726e+00 1.0907e+01 2.1480e+01 1.0935e+02   

     0.0000e+00 9.4046e-01 1.0162e+01 1.8619e+01 9.8839e+01   

      2.5 2 2 2 2 10.5 2 

           

      0.0000e+00 3.0738e+00 1.9247e+01 2.6046e+01 1.6955e+02   

      0.0000e+00 3.6453e+00 1.9698e+01 5.2189e+01 1.9794e+02   

     0.0000e+00 1.3015e+00 2.0167e+00 4.4561e+01 3.1661e+01   

      2.5 3 3 3 3 14.5 3 

           

      0.0000e+00 1.5255e+01 7.3255e+01 3.6363e+02 7.5390e+02   

      0.0000e+00 1.5468e+01 7.3645e+01 3.6987e+02 7.6182e+02   

     0.0000e+00 9.4985e-01 1.7432e+00 1.7205e+01 2.4372e+01   
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      2.5 5 4 5 4 20.5 4 

 


