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Abstract 

Condition monitoring is the process of observing a parameter, or multiple parameters, 

extracted from industrial assets which provide an indication of their overall health or 

presence of faults.  In many instances the data produced is numerous, difficult to 

understand and time consuming to analyse. In the nuclear power industry large 

volumes of data are captured through inspections and monitoring but only a relatively 

small amount of the data has associated health information. Machine learning has been 

identified as a solution to these issues allowing data to be analysed quicker and in 

greater volumes, alleviating some of the demands on the relevant engineers. 

Within this thesis two key contributions are made. The first is the development of a 

model of fuel channel bore estimation and subsequent deployment to make estimations 

of operational data. Fuel Grab Load Trace (FGLT) data is operational data which was 

never intended to be used in condition monitoring. Greater understanding of FGLT 

data was obtained by targeted analysis of specific regions of the data based on physical 

understanding of nuclear assets. The model was produced by combining techniques 

from machine learning supplemented with formalised engineering knowledge to 

provide decision support in a safety-related environment. The model was found to 

produce estimations of fuel bore within 1mm root mean square error on real historical 

FGLT data. 

The second is the exploration and implementation of semi-supervised machine 

learning techniques applied to the detection of cracks within nuclear reactor 

monitoring data. Semi-supervised machine learning is attractive as it provides 

comparable results to supervised machine learning techniques without the costly 

burden of labelling large volumes of data, a commonly occurring challenge in nuclear 

reactor core condition monitoring. Three different semi-supervised machine learning 

approaches have been evaluated and for the detection of cracks using FGLT data it has 

been found that Transductive Support Vector Machines have the best performance. 

In this thesis I demonstrate the benefits of machine learning and semi-supervised 

machine learning to decision support of nuclear reactors through two health 

monitoring related problems of nuclear reactor cores. Challenges still remain with the 

application of machine learning in the nuclear condition monitoring domain including 
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the high cost of obtaining labelled data, lack of historical operate to failure data and 

incorporating future data in the training of algorithms as it is made available. 
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1 Introduction 

1.1 Introduction to Research 

Commercial nuclear power stations have been in use throughout the world since the 

1950s. In the following years there has been a steady increase in new technologies 

which facilitated nuclear power stations as a commercial enterprise around the world, 

leading to the development of multiple different designs of nuclear power reactors 

including Pressurised Water Reactors (PWR), Boiling Water Reactors (BWR), High 

Power Channel Type Reactors (RMBK), Canada Deuterium Uranium (CANDU) and 

Advanced Gas-cooled Reactors (AGR), to provide some examples. Nuclear power is 

now integral to providing a base load generation of electricity to people across the 

world, in 2018 roughly 10% of the global electricity generation was produced through 

nuclear power. 

Monitoring and inspection are important for the safe operation of all nuclear power 

stations in the world. Many of the reactors around the world are nearing or have 

exceeded their initial design lives, which has led to an increase in the use of both 

inspection and monitoring equipment to ensure safe operation of life-limiting 

components within reactors (Coble, et al., 2015). Additionally, there has been a change 

in asset management since the design and construction of older nuclear stations such 

as extracting additional health information from data that is recorded through analysis 

and increasing the number of sensors being utilised for condition monitoring.  

In the United Kingdom the fleet of Advanced Gas-Cooled Reactors (AGR) are either 

approaching the end of their initial design lives or have had their operational lifetime 

extended. The current generation of nuclear reactors in the UK began their 

construction in 1965, with the first beginning generation in 1976 and the most recent 

beginning its commercial operation in 1989. The reactors had initial design lives of 35 

years, depending on the individual station. Since 2005 the UK’s AGR stations have 

been periodically inspected and have received lifetime extensions based on current 

understanding of their operational health, allowing for their continued operation 

beyond their initial closure dates. There are two reactors operating at each of the seven 
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AGR power stations in the UK and at the time of writing, the closure dates for these 

stations range from 2023 to 2030.  

When the reactors initially start generating electricity, the standard time between 

inspections of the graphite cores of AGRs was every 3 years. However, some of the 

older reactors in this generation are now being inspected yearly to gather more 

information about their current operational health. The increased number of 

inspections coincides with the recent discovery of a new type of crack, known as a 

keyway root crack, being found in some of the older reactors which had only 

previously been predicted (Robinson & Maul, 2011). These cracks have been expected 

to occur and are an indication of the reactor approaching the later stages of its 

operational life and therefore these new cracks must be considered when defining 

safety cases for the operation of these reactors (McLachlan, et al., 1995).  

Inspecting the core is a time-consuming task which requires the reactor to be offline. 

This results in economic losses due to extended periods where electricity is not being 

generated. While an individual reactor is taken offline it is estimated that there is a loss 

in revenue on average of roughly £0.5 million each day. Therefore, it is desirable to 

minimise the duration of statutory outages or safely reduce the frequency requirements 

of these inspections. Monitoring data, known as Fuel Grab Load Trace (FGLT) data, 

is obtained from onload and offload refuelling of the reactors has been demonstrated 

in recent years to be suitable for providing additional information about the health of 

the core (West, et al., 2006), despite previously only being used as a measure of safety. 

Manual analysis of this data is a lengthy process which requires specialised domain 

expertise. Condition monitoring through machine learning has been identified as a 

method to provide decision support tools to the manual analysis of monitoring data.    

Condition monitoring is the process of observing a parameter, or multiple parameters, 

extracted from industrial assets which provide an indication to its overall health or the 

presence of faults. In many applications the information produced is used to inform 

the operation of assets, as well as the planning of maintenance regimes. The most basic 

condition monitoring involves using sensors on structures, systems and components to 

measure characteristics, such as vibration or temperature, and checking that they are 

within a predefined range. If the values are outside of the defined range, it is a possible 



17 

 

indication of the presence of a fault. Applications of condition monitoring have been 

demonstrated in a vast range of fields including aerospace (Wechsler, et al., 2012) 

(Mazzoleni, et al., 2019), rail (Hodge, et al., 2015), manufacturing (Cholette, et al., 

2013) (Shi, et al., 2018), rotating electrical machines (Tavner, 2008) (Vishwakarma, 

et al., 2017), power distribution (Livshitz, et al., 2004) (Reddy, et al., 2017), wind 

turbines (Qiao & Lu, 2015) and in robot-assisted surgery (Dai, et al., 2015). The 

primary focus of this work is the application and subsequent analysis of data generated 

within condition monitoring of nuclear power stations through case studies of AGR 

stations. Machine learning has been identified (Ma & Jiang, 2011) as an approach, 

which when utilised can provide decision support to engineers by automating the 

process of data analysis. 

Machine learning allows automated learning of a desired subject without being 

explicitly programmed by a human. An example of this, is the exploration of the 

feature space to provide a means for automatically discovering and assessing patterns 

contained within the data. Machine learning has seen an increase in use recently due 

to the volume and frequency of collected data becoming larger as well as the 

improvement in computing performance (Wu, et al., 2014) (O'Leary, 2013) (Loyd's 

Register Foundation, 2014) (Dean, et al., 2018). Machine learning can perform 

analysis upon large volumes of data faster and more consistently than humans but only 

if it has been implemented and trained correctly.  

In the nuclear power condition monitoring domain, obtaining associated health 

information from monitoring data can be difficult.  There are two major challenges, 

the first is the limited number of domain experts to analyse the data. This is primarily 

due to the aging and mature nature of the nuclear power industry. In the UK no new 

nuclear power station has been built since 1988 resulting in a gap in skill within the 

industry. Additionally, many of the people with the domain expertise and involvement 

in the design of the nuclear reactors have retired. 

The second major challenge is the lack of available training data. The worldwide trend 

has been an increase in the amount of data that is obtained but in many instances this 

data has no associated information about them. In the context of AGRs, there are 

limited examples of labelled data to train machine learning algorithms. Ground truth 

data can only be obtained when the reactor is inspected at shutdown and on only ~10% 
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of the core per inspection.  A challenging problem is to accurately train machine 

learning algorithms which generalise well on future data when there is insufficient 

training data, it is also difficult to evaluate their performance when there are limited 

instances of ground truth training data. One method to address this problem within the 

nuclear domain has been to use unsupervised machine learning techniques (Baraldi, et 

al., 2013). Unsupervised machine learning does not require labelled ground truth 

training data and instead explores unknown relationships in the data such as sorting 

instances into similar clusters or detecting anomalous data. This will not be able to 

assign a classification to new data. A different identified solution to situations with a 

lack of labelled data is to use semi-supervised learning (Gouriveau, et al., 2013). 

However, as of writing this there has only been a limited number of applications within 

nuclear condition monitoring (Ma & Jiang, 2015) (Moshkbar-Bakhshayesh & 

Ghofrani, 2016). 

The key focus of the work in this thesis is to utilise data analytical techniques and 

machine learning to derive additional important information about the health of 

operating reactors. Challenges overcome in this domain include lack of labelled data, 

need for transparency of decisions and time pressures which leads to the need to 

explore semi-supervised techniques. They are demonstrated on the monitoring and 

inspection health data that is obtained from the graphite core, however the processes 

and approaches demonstrated in this thesis can be more broadly applied to other 

nuclear condition monitoring problems.  The graphite core is one of the life limiting 

factors of the reactors since it cannot be repaired or replaced. It is therefore required 

to periodically assess the health of the core of the reactor through inspections. These 

inspections target the graphite bricks that make up the structure of the core and look 

for cracks or other signs of ageing that may affect the reactors ability to operate safely.  

There are two challenges that are addressed in this research. Firstly, the ability to 

provide an estimate of the dimensional properties of the graphite bricks within the core 

using monitoring data, which was never originally designed to provide any health 

information about the core. This is achieved through a physical understanding the 

underlying of the contributing components of the data. The second challenge addressed 

determines the presence of cracked bricks within the core and does so by using both 

supervised and semi-supervised machine learning techniques. The results are 
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compared to demonstrate the applicability of using semi-supervised machine learning 

on nuclear condition monitoring data. Both tasks are currently undertaken at 

inspections with dedicated measurement and visual equipment. Therefore, the aim is 

to allow the data collected at monitoring events to produce the same high-quality 

measurement information that is obtained at inspections but more frequently.  

1.2 Novel Contribution 

This thesis makes the following novel contributions to the application of machine 

learning techniques for intelligent decision support in nuclear applications:  

The development of an approach for extracting reactor health information from 

data not originally designed for condition monitoring purposes. This approach 

augments existing reactor inspection regimes by providing a supporting health 

indicator. This is demonstrated through an application of fuel channel bore 

estimation. 

• An in-depth analysis of the fuel grab load trace by using knowledge of the 

physical properties of the reactor core and a supply of historical data 

• Development of a framework that removes unwanted components present in 

the fuel grab load trace, on a trace by trace basis 

• Improving the understanding of the different contributions of the fuel grab load 

trace by using historical data to explore its relationship to channel bore 

measurements and allows it to be generalised 

• Demonstration and evaluation of the performance of the algorithm on real 

nuclear power station fuel grab load trace data 

• Recommendation for the application of the algorithm on operational data for 

monitoring and inspection regimes 

This is demonstrated in chapter 4, where the algorithm is subjected to historical data 

which has been recorded from refuelling events at AGR stations. This data is analysed 

using knowledge of the physical design of the reactors and the mechanisms present 

during refuelling events to deconstruct the Fuel Grab Load Trace (FGLT) signals and 

extract the desired individual components. Through doing this a frictional component 

can be extracted which is related to the dimensions from the associated fuel channel. 
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Using inspection data as ground truth information multiple regression machine 

learning algorithms were trained and compared. The best implementation of the 

algorithm is then suggested for application on real world refuelling events. 

 

An evaluation and demonstration of semi-supervised learning approaches with 

respect to nuclear condition monitoring data, indicating improvements over 

traditional supervised machine learning classification techniques.  

• A critical review of three semi-supervised techniques exploring their 

suitability to nuclear condition monitoring data where obtaining labelled 

operational data of faults is a costly, time-consuming process  

• The first demonstration of semi-supervised machine learning techniques being 

applied to the UK’s fleet of nuclear power stations for condition monitoring 

purposes 

• Recommendation of the semi-supervised machine learning algorithm for the 

application of crack detection and its implementation  

This is demonstrated in chapter 5; the majority of historical FGLT data has been 

recorded and stored but never provided with an associated health information label. 

This has resulted in a large amount of unlabelled data compared to the limited amount 

of labelled health data available. Manually analysing the unlabelled data is a difficult 

and time-consuming process which only a small number of people would be able to 

extract useful health information from. In this scenario the health information is 

whether individual graphite bricks are cracked. The semi-supervised machine learning 

techniques that are being investigated are co-training, label propagation and 

transductive support vector machines. They are compared based on their performance 

of correctly classifying bricks; due to the imbalanced nature of the problem additional 

metrics other than the accuracy of the algorithms are assessed. These algorithms are 

then compared to the performance of their typical supervised counterparts. Finally, a 

recommendation of the technique to use on real world data is provided based on the 

evaluation of results. 
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1.3 Thesis Outline 

This thesis continues in chapter 2 by providing an overview of nuclear power 

generation. An objective of this chapter is detailing AGRs design and the methods of 

inspecting and monitoring them, with a primary focus on the graphite reactor core. 

Additionally, a subsection of the chapter delves into the monitoring data that is 

obtained at refuelling events of AGRs. This data is known as the FGLT and throughout 

this chapter the various physical components that contribute to its value are discussed 

and highlighted on an annotated diagram of a full trace. 

Chapter 3 discusses the approaches and methodologies of machine learning, as well as 

the applications within both the nuclear and wider condition monitoring domain. It 

focuses particularly on identifying what supervised, unsupervised and semi-supervised 

machine learning are and the situations where they are used. 

Chapter 4 details the novel contribution that has been made to the channel bore 

prediction model. It details the process by which the four components of the FGLT 

have been analysed and generalised. Through analysing years of historical data, it is 

shown how the extraction of the component, which is directly related to the estimation 

of fuel channel bore, is achieved. The chapter then goes on to describe the machine 

learning training of a linear regression model used to estimate fuel channel bore from 

FGLT data. 

Chapter 5 details the novel contributions that have been made to the evaluation of 

different semi-supervised machine learning algorithms for crack detection of graphite 

bricks in AGRs. This chapter includes the process of identifying and extracting 

important features from the data, incorporating a method of ensuring that there is class 

balance and testing the semi-supervised algorithms in an accurate way. The three semi-

supervised learning methods used for crack detection are the co-training algorithm, the 

label propagation algorithm and semi-supervised support vector machines. 

Chapter 6 summarises the conclusions contained in this body of work and discusses 

the further work that can be undertaken to progress this research further. A notable 

focus is the ambition to create a machine learning framework that combines the 

research already undertaken on semi-supervised machine learning with incremental 

machine learning. 
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2 Nuclear Power Background 

2.1 Introduction 

Nuclear power is important in the United Kingdom and around the world as a reliable 

method to generate electricity. As of 2020, there are currently 442 nuclear power 

reactors in operation worldwide that have an installed net generating capacity of 

389,791 MWe. In addition to this, there are roughly another 50 nuclear power reactors 

that are under construction worldwide. In the UK, nuclear power contributes to roughly 

20% of the energy generation portfolio, providing stable and reliable base-load 

generation capabilities. A major challenge facing the nuclear industry, both in the UK 

and abroad, is the age of the stations.  Many are in the latter stages of their operating 

lives and there is the desire to continue and extend their operation, provided it is safe 

to do so.  The key to making the case of lifetime extension is to understand both current 

and future health of the major reactor components, which is done by interpreting data 

gathered both during routine operations and through inspection during planned 

statutory outages.  A brief introduction into the principles of nuclear power generation 

will be provided, before focussing on the design and operation of the UK’s AGR 

stations and the associated data they generate, which are used as a case study for this 

thesis. 

2.2 Nuclear Power Generation 

There are five key components to generating electricity from nuclear power stations, 

these are:  

• A fuel that is used to generate heat 

• A moderator that allows for a sustainable fission reaction 

• Control rods which control the rate of the reaction within the core 

• A coolant which transfers the heat to boil water and generate steam 

• A steam turbine generator which transfers the energy from the steam to 

electricity 
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Nuclear fission occurs when a free neutron bombards a fissionable atom, typically a 

heavy element such as uranium, and becomes absorbed into the nucleus. The nucleus 

splits and in the case of uranium it splits into barium and krypton. In addition to the 

energy this process releases, it is possible that free neutrons are released in this process. 

A chain reaction process can result if there are further fissionable nuclei to absorb the 

free neutrons.  Controlling the chain reaction process is of great importance to ensure 

that the reaction is sustainable. The chain reaction can be controlled by changing the 

fuel mix and raising and lowering control rods. Choosing a suitable moderator is the 

main method for ensuring the reaction is sustainable. 

The primary function of a moderator is to slow down the speed of the fast neutrons 

produced in nuclear fission to change them into thermal neutrons, allowing the chain 

reaction to occur. Common types of moderators used in commercial nuclear are water 

(both light and heavy) and graphite.  

The purpose of control rods is to manage the rate of reaction by absorbing free neutrons 

within the core. They are inserted into the core by varying amounts as required to limit 

the reaction and control the amount of electricity that is generated. Additionally, they 

can be fully inserted under certain circumstances to completely shut down the reactors. 

The most common occurrence of this is when the reactor is being taken offline for 

inspection, but the control rods are used in the event of an emergency shutdown of the 

reactor. 

Once the reactor is self-sustaining the generated heat energy is required to be changed 

into electrical energy. Under most circumstances this is achieved by using a substance, 

known as a coolant, to transfer heat away from the core to the water in the steam 

generator. Lastly the coolant is used to boil water to convert it into steam. The steam 

is then used to power turbines which produce electricity from the generator. Some 

reactors differ when it comes to the process, such as Boiling Water Reactors (BWR), 

which use water as both a coolant and to produce steam to generate electricity.  

In the United Kingdom the main type of reactor design that is present is the AGR and 

as such further information will be provided about its design. 
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2.3 Advanced Gas-Cooled Reactor 

There are 15 nuclear reactors in the United Kingdom, 14 of these reactors are AGRs 

and the remaining type is a Pressurised Water Reactor (PWR). For the purpose of this 

thesis further detail is placed on AGRs. In the UK the AGRs are located at six different 

sites: Hunterston, Hinkley Point, Dungeness, Hartlepool, Torness and Heysham (with 

two stations).   

Dungeness B was the first station to begin construction in 1965 with an initial stated 

completion date of 1970. The design of the first generation AGR was based on a small-

scale experimental prototype which demonstrated the design of a gas-cooled nuclear 

reactor. However, throughout construction the scaling up of the prototype resulted in 

some problems resulting in a delayed completion date of 1983, 13 years after its initial 

date. In 2005 the operational lifetime of Dungeness B was extended by 10 years from 

its initial design life of 2008 (British Energy, 2005). This life extension was repeated 

in 2015 with upgrades and Dungeness B is scheduled to be closed in 2028 (EDF 

Energy, 2015). 

Hinkley Point B and Hunterston B were the same design as the Dungeness B reactors 

and began construction in 1967. The stations were completed and generating electricity 

in 1976. Since their construction they have had their operational lifetimes extended 

twice. The first, in 2007, extended the initial 35-year design life of the stations by an 

additional five years from 2011 to 2016 (British Energy, 2007). The second occurred 

in 2013 when the stations’ operational lives were extended by 7 years with 

decommissioning of the station planned in 2023 (EDF Energy, 2012). These stations 

however have been operating at lower power than they were stated. In 2006 they 

reduced power generation to roughly 70% of nominal operation (British Energy, 

2007); this was then increased to 80% in 2013 following modifications to the boilers.   

Hartlepool and Heysham I were then designed and built based on a slightly modified 

version of the first generation but with a multi-cavity pressure vessel. Hartlepool began 

construction in 1968 and was followed by Heysham I in 1970 but both were connected 

to the grid to begin generating in 1983. Both stations had an initial closure date of 

2009. Similarly to the other stations which have been mentioned, both Hartlepool and 
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Heysham I have had two individual 5 year life extensions resulting in the current 

closure dates of these stations being 2024 (EDF Energy, 2012) (EDF Energy, 2016). 

Lastly, Torness and Heysham II were designed and constructed last as a second 

generation AGR design that incorporated further safety features, primarily the use of 

more complex computerised control and instrumentation systems. These began 

construction in 1980 and were connected to the grid to begin generating in 1988.  As 

these are the newest stations it is no surprise that they are expected to be the last of the 

current fleet to be in operation. At the time of writing they are expected to be closed 

in 2030 having already been given an additional 7 years operational life extension 

(EDF Energy, 2016).  

2.3.1 Design 

At each AGR station in the UK there are two individual reactors. In an AGR the core, 

boilers and gas circulators are all contained within a single pressure vessel. The core 

of an AGR is composed of thousands of graphite bricks, interlocked over multiple 

layers. These bricks are not only important to form the structure of the core but also 

act as a moderator for the fission reaction. There are multiple different types of graphite 

bricks in the core including fuel channel, control channel, gas cooling channel and 

structural bricks which are all interconnected by graphite keys.  An example of the 

graphite bricks within the core can be seen in Figure 2.1 which clearly shows the 

interlocking nature of the core. A typical AGR in the UK will have over 300 graphite 

fuel channels with 10 or 11 brick layers within the core.  
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Enriched uranium oxide (UO2) is used as the fuel and is present as small hollow 

cylindrical which are located inside the fuel elements. In each fuel stringer there are 

eight fuel elements which are linked together by a tie bar, permitting for some 

flexibility of the fuel stringer and allowing it to conform to slight changes in the fuel 

channel shape. A diagram of a fuel assembly can be seen in Figure 2.2, containing a 

fuel stringer and a plug unit. The entire fuel assembly is roughly 26m in length, 

At the bottom of the fuel stringer, below the eight fuel elements, there is the bottom 

support and reflector, at the top of the fuel stringer there is the top reflector, also known 

as the central inertial collector. An important aspect of the design of the reflectors is 

the steel stabilising brushes which are in contact with the fuel channel walls. Attached 

to the bottom support and reflector is a set of three steel brushes which is known as the 

lower stabilising brush (LSB) and attached to the top reflector is a single stabilising 

brush known as the upper stabilising brush (USB). 

Figure 2.1 - Diagram of the keying structure of the graphite bricks within the core of an AGR 

(EDF Energy, 2018). 
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The plug unit contains a closure unit which allows for the pressure vessel boundary to 

be sealed. In addition, there is also a heat shield to reduce the flow of heat to the 

concrete and stand pipe, a biological shield is present to reduce radiation on the pile 

cap which is located on top of the pressure vessel. The purpose of the gag actuator 

located above the shields is to adjust the gas flow through the fuel channel to match 

the fuel’s heat production. Thermocouples are present to measure the temperature of 

the outlet gas which is used for control, indication and fault detection purposes. Inside 

the core the number of fuel stringers varies at the different stations but there are 

approximately 300 individual fuel stringers. 

 

 

 

 

 

 

 

 

 

Figure 2.2 - Diagram of a fuel assembly identifying its key points (Steer, 2005). 
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The 

coolant 

used within AGRs is carbon dioxide (CO2) and it is inserted into the bottom of the core 

to circulate throughout. Methane gas in present in the gas mixture of coolant, this is as 

a measure to reduce the amount of degradation that occurs within the graphite bricks 

of the core. The process of graphite brick degradation is discussed in a later subsection 

of this chapter. 

Figure 2.3 –  A cutaway drawing of  an AGR core enclosed within its pressure vessel. 
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There are roughly 80 boron control rods inside AGR reactors which can be used to 

control the rate of the reaction and are used to shut down a reactor completely. 

Additionally, in the event of a reactor trip they are inserted fully in to the core by 

gravity via an electromagnetic clutch being de-energised. The AGR design also has a 

backup if control rods are unable to shut down the reaction. In this scenario nitrogen 

gas can be injected into the core which absorbs free neutrons, stopping the reaction.  

Steer (Steer, 2005) provides a more detailed overview of the design of the AGR and a 

detailed and comprehensive overview of all aspects of the operation and maintenance 

of the AGR can be found in Modern Power Station Practice – Nuclear Power 

Generation (British Electricity International, 1992).   

2.3.2 Ageing Mechanisms 

Industrial assets degrade over time, in the case of the graphite moderator, the 

prolonged exposure to the harsh environment leads to changes in the physical structure 

of the graphite bricks. The stress caused by the graphite weight loss results in internal 

strain on the bricks which can cause their shape to distort and in some cases the bricks 

can crack due to this process. 

There are two key mechanisms that contribute to the degradation and aging of the 

graphite bricks inside the reactor core: radiolytic oxidation and irradiation. Radiolytic 

oxidation leads to significant graphite weight loss through the following process. 

Carbon dioxide coolant gas breaks down into carbon monoxide oxidising ions under 

the effects of irradiation as shown in Equation 1. 

 

 𝐶𝑂2 → 𝐶𝑂 + 𝑂 

 

Under most circumstances the oxidising ions will recombine with the carbon 

monoxide to produce carbon dioxide as shown in Equation 2.  

 

𝑂 + 𝐶𝑂 → 𝐶𝑂2 

 

In addition to this, the oxidising ions can combine with the carbon atoms that are 

present in the graphite structure. When this occurs carbon atoms are stripped from the 

Equation 1 

Equation 2 
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graphite, resulting in an overall weight loss that occurs as readily on the surface of the 

graphite, as it does in the internal pores, as shown in Equation 3.   

 

𝑂 + 𝐶 → 𝐶(𝑂) 

 

To slow down this process of radiolytic oxidation, carbon monoxide or methane gas 

can be added to help soak up the oxidising ions. (Brocklehurst & Kelly, 1993) 

(Neighbour, 2000) 

The second process of degradation is the irradiation of the graphite material. The 

graphite bricks are polygranular graphite, which is defined as containing the following 

as described by Neighbour (Neighbour, 2000): 

• Two or more carbonaceous species originating as filler binder or impregnant 

• A wide range of crystalline perfection and crystallite sizes in different parts of the 

microstructure 

• Complex networks of pores of different types that originate at different stages in the 

manufacture of the graphite and the filler 

The graphite in the reactor becomes irradiated by both neutrons and ionising gamma 

radiation. The graphite has a lattice structure of atoms and when they undergo 

irradiation they expand into the porous regions of the graphite structure, resulting in 

an increase in their dimensions. Figure 2.4 displays the different profiles for the aging 

of the graphite reactor bricks, including undelayed pore generation, unlimited pore 

closure and delayed steady state pore generation. 

  

 

Equation 3 



32 

 

 

 

At the beginning of the life of a reactor the dimensions of the graphite bricks shrink 

due to the weight loss caused by radiolytic oxidation and corrosion. This shrinkage 

occurs for a large portion of the life of the graphite bricks until turnaround is reached. 

Turnaround occurs when the expansions of the graphite lattices have expanded into all 

available pores and subsequent expansion increases the dimensions of the graphite. 

Originally this process was theorised to occur beyond the design lives of AGRs in the 

UK. However due to the life extension, it is believed that there is a small number of 

graphite bricks that are approaching or have surpassed the turnaround point. The 

primary reason for graphite bricks within the core cracking is due to dimensional 

change within the bricks. 

2.3.2.1 Graphite Brick Cracking 

In the context of AGR graphite core brick health, there are two main categories of 

cracks; they are described as axial and circumferential cracks. Circumferential cracks 

in cylindrical graphite bricks occur horizontally around the circumference of the fuel 

channel. The presence of this type of crack results in the narrowing of the fuel channel 

Figure 2.4 – The predicted aging profile of nuclear irradiated graphite bricks (Neighbour, 2000). 
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as the edges of the crack protrude into the fuel channel. These cracks have typically 

occurred at the beginning of the reactor’s life.  

Bore initiated axially cracked bricks occur vertically and propagate from the inside of 

the fuel channel to the outside surface of the brick. These cracks can vary from a small 

crack in a section of the brick to one which spans the entire vertical length. Axial 

cracks typically result in the fuel channels being widened, as the cracked bricks open. 

These types of cracks are caused by the forces acting on the graphite bricks during 

their operational life.  Bore initiated axial cracks are caused by the stresses and strain 

applied to graphite bricks in the lattice structure of the core. The main cause of these 

cracks is due to the weight and dimensional changes over the lifetime of the graphite 

brick. 

The last type of crack that is currently known about but is very rarely present in the 

graphite bricks are keyway root cracks. These cracks are very similar to bore initiated 

axially cracked bricks where they manifest as vertical cracks. They differ from bore 

initiated axial cracks by the way they are formed. They are typically formed after the 

graphite bricks have reached the turnaround point from radiolytic oxidation, where the 

graphite bricks stop shrinking and instead begin to swell. This alteration in structure 

results in a change in stresses and strain on the brick. This can cause keyway root 

cracks to form from the outsides of the bricks, in the keyway, and propagate inwards 

to the fuel channel.  

An example of a cracked brick can be seen in Figure 2.5. Figure 2.6 shows the 

differences between bore initiated axial cracks and keyway initiated axial cracks. It 

shows how in the early life of the reactors the tensile forces affect the inner bore and 

at the later stages in their life the tensile forces affect the outer area of the bricks at the 

keyways. 
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2.3.2.2 Implication of Aging 

There are two main implications of the aging process of the graphite bricks within the 

core of the reactor. The first is that the aging process causes dimensional change and 

cracking. A hypothetical situation where structural change of the graphite brick lattice 

Figure 2.5 - An example of a graphite brick which has an axial crack. 

Figure 2.6 – Comparison of the different stresses acting on the graphite brick. At the start of life the 

brick experiences compressive forces on its outside and tensile forces on its inside. Later in life the brick 

experiences tensile forces on its outside and compressive forces on its inside. 
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resulted in the control rod or fuel channels being blocked or misaligned would mean 

that reactor would not be able to sufficiently control of the rate of reaction.  

There are safety margins built in to the design of the reactor and conservative 

inspection regimes that ensure that the reactor can operate safely (Office for Nuclear 

Regulation, 2017). The ageing process has been studied (Brocklehurst & Kelly, 1993) 

and the effect of cracks physically modelled (Kralj, et al., 2005) but operational data 

can provide insight into the current state of aging within the core. 

The second implication of graphite brick aging is their reduced ability to function as a 

moderator. This occurs due to the weight loss associated with the oxidisation of the 

graphite. Losing the effectiveness of graphite as a moderator is potentially a life 

limiting factor of the reactor. However, it is much more likely that the loss of structural 

integrity through cracking and weight loss would limit the life of the reactor before 

this occurs. 

Monitoring and inspections of the graphite core are currently used in the normal 

operation of AGRs to obtain fuel channel health information. Monitoring events occur 

much more frequently but only provide complicated data that only infer the health of 

the core after analysis by domain experts. Inspections provide ground truth data of the 

current dimensions of fuel channels but are obtained much more infrequently during 

schedule outages. 

2.3.3 Monitoring – Fuel Grab Load Trace 

The FGLT is a measurement of the mechanical load that is exerted on the refuelling 

machine as the fuel stringer is removed from and inserted into the core during 

refuelling events. This recording is split into two distinct sections, the discharge trace 

is recorded when an old fuel stringer is removed from the core and the charge trace is 

recorded when a new fuel stringer is inserted into the core. Originally the load value 

was recorded as a safety measure to ensure that the fuel stringer safely travels through 

the fuel channel. An example of the use of this data could be in determining if the fuel 

stringer has become snagged during the refuel process, this will be indicated in a larger 

than expected load value present. A situation like this would then prompt graphite core 

operators to respond to the problem. In the last 10-15 years FGLT data has been seen 

to have other uses by being able to relate the load value to the friction experienced 

when the fuel stringer’s stabilisation brushes as it is being inserted or removed from 
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the core. Originally, the FGLT was recorded and stored on paper however a project 

was undertaken to create a database which is used to store digital copies of the traces 

(West, et al., 2008). Additionally, there has been a process undertaken to digitise the 

older paper traces and many of them have been stored in the database as well. 

An example of FGLT traces of the core region can be seen in Figure 2.7 with an 

example of a single brick layer being identified. Brick interfaces can be identified by 

peaks in the discharge trace and by troughs in the charge trace. 

Currently graphite core engineers manually analyse FGLTs after refuelling events to 

help provide an insight into the health of the graphite bricks within the core. They look 

for differences in the traces, such as abnormally high or low load values, and note their 

location in the trace. This knowledge is used to provide information and influence the 

operation of the station such as targeting specific fuel channels for inspection. 

Refuelling is scheduled to occur in AGRs roughly every 6-8 weeks and can occur 

either when the reactor is at a statutory outage or when the reactor is at low power. The 

fuel stringers typically reside within the core for 5-7 years before being refuelled 

(Steer, 2005). However, fuel stringers can occasionally be removed prematurely and 

shuffled into other fuel channels as required to aid in the operation of the reactor. 

Therefore, over the course of 8 years there should be relevant FGLT information about 

every fuel channel in the core. It is important to note that without analysis this obtained 

data does not currently provide health information. 

 

 

Figure 2.7 Example of a discharge (blue) and charge (red) trace obtained from the same 

refuelling event, with a magnified example of a single brick layer. 
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2.3.3.1 Walkthrough of a FGLT 

 

In this section a description of the underlying physical components of the load values 

produced at refuelling events is provided. Each refuelling event starts by producing a 

discharge trace as the fuel stringer is removed and ends with a charge trace as a fuel 

stringer is inserted into the core, as such this order will be retained in the walkthrough 

as seen in Figure 2.9.  

Figure 2.8 – Example of three different locations within the refuelling process and the FGLT 

showing: middle of the brick, interface between two bricks and leaving graphite core region 
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Initially the fuel stringer is located within the fuel channel and all locations are 

described with respect to the LSB. As it begins to be removed there is a transient region 

before the load value stabilises, in this region the LSB is passing through the graphite 

brick layers 1-4 while the USB is in the guide tube region. There is a drop off in load 

at the start of brick layer 4 which is due to the USB losing contact with the guide tube 

Figure 2.9 – An example of a discharge fuel grab load trace. 

Figure 2.10 - An example of a charge fuel grab load trace 
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as it becomes wider. Then as the LSB passes through brick layer 5 the gas ports of the 

fuel stringer join with the refuelling machine resulting in a change in the aerodynamic 

effects present in the trace. Additionally, at this time there is a further contribution 

from the USB when it passes through the narrower piston seal bore. After this from 

brick layer 6-11 there are no further USB contributions, except for some cases in brick 

layer 9 where slight contact can be made by the USB as it hunts for the entrance to the 

standpipe. Once the LSB exits the core but before it passes into the guide tube there is 

a region where it becomes wider leading to load values of the fuel stringer in 

suspension. After this region the LSB enters the narrower region of the steel guide tube 

and friction is once again present. The LSB then begins repeating the initial steps 

undertaken by USB at this point, but now when the guide tube widens, the brushes 

from the LSB are still in contact with the wall of the guide tube. Similarly to when the 

USB passes the piston seal bore there is an increase in friction when the LSB passes 

it. After this however the LSB enters the hotbox, a region where there should be no 

interaction with the brushes. Finally, the LSB passes into the stand pipe which should 

not cause any friction as it has a larger diameter than the brushes however some contact 

resulting in friction can still be present in this region. 

2.3.3.1.1 FGLT Sub-Components 

It is understood that there are four main components that contribute to the load value 

in the FGLT (West, et al., 2014). This can be seen in Equation 4. 

 

𝐿(ℎ) =  𝐾𝐿Ф(ℎ) +  𝐾𝑈Ф(ℎ + 𝑑) +  𝐹𝐺(ℎ) + 𝑚 

 

Where L is the measured load at height h, KL is a parameter which relates the friction 

caused by the lower stabilising brushes due to the channel bore (Ф) at height h to load. 

KU is a parameter which relates the friction caused by the upper stabilising brush due 

to the channel bore (Ф) at height h offset by d, the difference in height values between 

the LSB and USB. FG is the summation of any aerodynamic effects to the load value 

at height h and m is the mass of the fuel stringer, also known as the deadweight, which 

is constant.  

Each of the four contributions is discussed in the following sub chapters. 

 

Equation 4 
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2.3.3.1.2 Deadweight 

The deadweight of the fuel stringer is defined as the contribution that the mass of the 

fuel stringer exerts on the load mechanism. This contribution should be a constant 

value throughout the entire trace as the fuel stringer is not expected to change mass 

during the charge or discharge process. It is also believed that the weight contribution 

of the fuel pellets in the fuel stringer is negligible and therefore the change in their 

weight over the duration that they are in the core does not make a considerable 

difference to the deadweight contribution.  

In chapter 4 the deadweight is explored further using real monitoring data from 

refuelling events at an AGR station over a time period of 10-15 years. 

 

2.3.3.1.3 Aerodynamic Effects 

As stated in section 2.3.1, in AGRs the coolant which transfers heat away from the 

core is carbon dioxide (CO2). It is believed that there are three different effect profiles 

caused by coolant gas that depend on the mode of operation of the reactor during 

refuelling (West, et al., 2014). These are low power refuelling, offload pressurised 

refuelling and offload depressurised refuelling. The CO2 supports the weight of the 

fuel stringer during both the discharge and charge processes of refuelling so will 

always result in a lower load value. Low power refuelling has the largest reduction in 

load compared to the offload refuelling but all three follow the same general shape of 

aerodynamic contribution. Initially there is believed to be a constant contribution when 

the fuel stringer is within the core, following this there is a step change in the load with 

an overshoot that occurs as coolant gas flows into the refuelling machine resulting in 

a second steady state value. With reference to the location of this within the core the 

first steady state contribution occurs from the beginning of the discharge trace until 

the lower stabilising brush reaches brick layer 5. The step change with overshoot 

occurs within brick layer 5 and finally the second steady state region exists from brick 

layer 6 until the fuel stringer is outside the fuel channel.   

 In chapter 4 the aerodynamic effects of many refuelling events are explored to obtain 

a better understanding of their contributing. The different modes of operation of 

reactors are also investigated. 
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2.3.3.1.4 Upper Stabilising Brush Friction 

The upper stabilising brush (USB) is a single steel brush which is in the upper region 

of the fuel stringer. The brush, including the fuel stringer, has a diameter of 250.4mm. 

This is a smaller diameter than many of the regions within the core. Therefore, it is not 

always in contact with the fuel channel and refuelling machine. 

In comparison to the lower stabilising brush (LSB), which will be discussed in the 

following subchapter, the USB has a smaller diameter and is at the upper end of the 

fuel stringer. When analysing the effects of the USB it is important to note that that 

the load value is referenced with respect to the location of the LSB. The USB is roughly 

6 metres further up the channel; this means that any contribution from it will not have 

any relevance to the current brick. Another important consideration about the USB is 

that the maximum size of bore that is possible to be detected is roughly 250mm, as this 

is the diameter that the brush extends. The first region that it is present in is while the 

USB is in the guide tube. The guide tube has a diameter of 248.2 mm and is present 

from the start of the trace until near the start of brick layer 4 where it widens. The 

second region is in brick layer 5 where the USB enters an area of restriction from the 

piston seal bore with a diameter of 247.65 mm. There is sometimes one other region 

with a contribution from the USB which can occur midway through layer 9. This is 

due to the USB “hunting” for the entrance to the stand pipe which has a diameter of 

250.4mm. This last contribution from the USB is not always present as the brushes 

may not be physically in contact with it. 

The contribution of the USB is investigated using historical FGLT data later in chapter 

4 to help create a generalised understanding of its contribution during operation. 

 

 

 

2.3.3.1.5 Lower Stabilising Brush Friction 

The LSB with the fuel stringer included, has a larger diameter than the USB at 

266.2mm. Additionally the lower stabilising brush is not just a single brush like the 

USB but instead is three sets of stabilising brushes separated by steel chamfers. At the 
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beginning of their life the graphite bricks are machined to have an inner diameter of 

263mm resulting in constant contact with the LSB at all regions within the core. The 

LSB is the contribution which is directly related to the fuel channel bore dimensions. 

Changes in the channel bore can be observed in the load value of the FGLT. This 

relationship can be seen by observing the different brick layers and identifying the 

brick interfaces (the regions between two bricks that are narrower) as peaks in the 

discharge trace or troughs in the charge trace. 

It is also worth noting that the current belief is that there are two types of friction 

associated with the LSB, namely static and kinetic friction. Static friction occurs at the 

narrower brick interface when there is a quick change in the bore diameter resulting in 

a larger amount of force required to move the fuel stringer. Kinetic friction occurs 

during the brick layer when there are gradual changes in bore resulting in a smoother 

response in load value. This means that over the course of the trace there are different 

contributions to friction that need to be considered. 

In chapter 4 the LSB is visited in greater detail by analysing 10-15 years of refuelling 

data and establishing its relationship to channel bore measurements. 

2.3.4 Inspections 

Inspections are performed at statutory outages after fuel stringers have been vacated 

from their respective fuel channels. Statutory outages generally occur every 2-3 years; 

however, many of the older reactors are now being inspected every year. At outages 

roughly 20-30 of the fuel channels (~10% of the core) are subjected to inspections. 

CHANSELA (CHANnel SELection Assistant) (Watson, et al., 2011) is a channel 

inspection tool which combines multiple different sources of information to provide 

support for channel selection, as it is not feasible to inspect every channel at outages. 

Inspecting every channel would result in outages that would be economically costly 

due to the length of time it would take and unnecessary movement of the fuel stringers 

is not desired. Part of this tool also involves data visualisation of the graphite core 

simplified to an overview of the fuel channels to provide supporting knowledge of all 

the previous inspections that have been undertaken. It achieves this by having a 

backend database which contains all the data that has been recorded at previous 

inspections including channel diameters and crack descriptions. The main benefit 
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however is a set of rules that it operates on to provide recommendations about which 

channels should be inspected based on several factors. These rules exist like standard 

database queries but when combined with the data visualisation it is a very useful tool 

to understand the health of the core. In addition to the standard ruleset it is possible to 

create custom rules for the selection of channels. This is crucial as it allows this system 

to be able to be utilised later in life where the previous criteria for channels to be 

inspected are no longer applicable. Ensuring that the inspections are performed quickly 

and safely is important to allow the reactor to be brought back to operation as it is 

economically costly to have the reactors shutdown longer than is required. It is 

estimated that every day that a reactor is offline costs roughly £0.5 million in lost 

earnings. 

Inspections are important for the safe operation of AGRs as they are the only time it is 

possible to obtain ground truth information about the health of the core, allowing the 

graphite bricks to be assigned labels about their health. At monitoring, graphite core 

engineers can make assumptions about the current health of the graphite bricks in the 

core, such as widening/narrowing of fuel channels or the presence of cracks, but 

without inspecting the fuel channel it cannot be confirmed. 

2.3.4.1 Fuel Channel Bore Measurement 

Core Bore Inspection Unit/ Core Bore Measurement Unit (CBIU/CBMU) or New In-

Core Inspection Unit 2 (NICIE 2) are devices which are used during offline inspections 

to accurately measure the diameter of inspected channels (Cole-Baker & Reed, 2005) 

(Steer, 2005). The CBIU/CBMU device consists of 4 feelers which are spaced 90 

degrees apart. The feelers measure the distance from the centre of the channel to the 

channel walls as the device is lifted out of the channel. In addition to the feelers a set 

of four wheels (two above and two below the device) are used to ensure that the device 

is centred in the middle of the channel. Additionally, two tilt transducers determine the 

tilt experienced by the bricks on individual brick layers.  

An example of the data produced can be seen in Figure 2.11 where a single fuel 

channel’s diameter is recorded from brick layer 2 to brick layer 11. 
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The benefit of using bore measurement equipment allows core engineers ascertain core 

health information about the dimensions of the bricks. This includes being able to track 

the shrinkage rates when multiple inspections have been performed on the same 

channel at previous inspections. Cracks that have a significant impact on the 

dimensions of a fuel channel can be detected from bore measurement information 

however this information alone is often not enough for a confirmation of a crack. 

Other useful information that is obtained from dimensional bore measurements is the 

measure of whether the fuel channel is elliptical or remains circular. Additionally, as 

the bore dimensions are measured throughout the entire channel the bow of the 

individual bricks can be measured which shows the difference in diameter of the brick 

over its vertical length. All this information is valuable to graphite core engineers to 

accurately understand the current health of the core and its future process of aging. 

 

2.3.4.2 Visual Inspection 

 

In addition to measuring the dimensional properties of fuel channels, visual inspections 

are performed on the fuel channels. The inspections devices have a camera attached 
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Figure 2.11 – An example of the recorded output from bore measurement instrumentation 

highlighting the diameter of the middle point of each brick.  
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that records video footage of the inside of fuel channels. This process records videos 

of the device travelling from the bottom of the core to the top at six different 

orientations each rotated by 60 degrees. The field of view of the camera is greater than 

60 degrees and therefore six traversals of the channel provide a complete view of it. 

While this is happening graphite core engineers watch the footage and identify any 

signs of degradation such as cracks. If any are found the camera is inserted into the 

channel again to capture detailed footage of the specific defect. The camera at this 

point is free to follow the required shape of the defect to capture a clear representation 

of it. Once this is complete individual frames are extracted from the video footage and 

are manually stitched together to create a complete 2D image of the area of interest. 

An example of a manually stitched defect can be seen in Figure 2.12. 

 

 

 

 

In addition to the recorded video footage obtained at inspections there has been recent 

work that aims to create a complete image of every fuel channel inspected and is being 

called a “chanorama” (channel panorama) (West, et al., 2015).  This is performed by 

extracting horizontal strips from individual frames of the video footage and stitching 

these strips vertically to produce a complete vertical section of the channel. Once this 

has been performed for each of the traversals of the channel the six strips are then 

automatically aligned and stitched together horizontally. This process can be 

Figure 2.12 – An example of the recorded manual stitching process that occurs at scheduled offline 

inspections. 
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completed automatically from the video footage and is quicker than the manual process 

of stitching the video footage together. Currently this automated image stitching is 

performed in addition to the manual image stitching but will replace it eventually. 

The most recent state-of-the-art technique that is being researched for visual inspection 

of graphite cores is through a process called structure from motion (SfM). SfM uses 

multiple 2D image viewpoints of the same structure to recreate a 3D object. This 

process is completed from extracting individual frames from the video footage to 

recreate the entire channel; however, this is currently in the conceptual stages of 

research (Law, et al., 2017).  

The process of visual inspection has been greatly developed over the life of the 

reactors; this has been highlighted in Figure 2.13. Initially any defects were hand 

drawn to store as a record, following this the images of defects were manually stitched 

together in a time-consuming process and now this image process is able to be 

automated in a much quicker time by software (Bradford, 2015). In the future SfM is 

anticipated to be undertaken to obtain 3D information about defects. 

 

 

 

 

 

2.3.4.3 Trepanning 

Another technique to understand the health of the graphite is an invasive inspection 

technique, called trepanning, which involves removing a small cylinder of graphite 

from the bricks in the core. From the extracted graphite, the Young’s modulus and 

strength can be examined and tested (Tzelepi, et al., 2005). The amount of graphite 

removed is a diameter of 19mm with a depth of 6mm. By analysing small samples of 

the graphite, it is possible to obtain information about the overall health of the brick.  

The monitoring and inspection data provide information about the core but to obtain 

further health information, additional data analytics and machine learning techniques 

can be used.  
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Figure 2.13 – The progression of the visual recording of graphite bricks at offline inspection 

events. 
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2.3.4.4 Eddy Current Inspection 

 

Eddy current is the last method of inspection the graphite bricks within the core. It is 

a non-destructive testing method, the purpose of which is to be able to detect the 

presence of flaws in a conductible material. Eddy current testing can be used to 

monitor the health of reactor core graphite (Dekdouk, et al., 2012). This is due to there 

being a correlation with the electrical conductivity and the weight loss of graphite 

(Hacker, et al., 2000). 

The first prototype device for Eddy current testing was the Proof-of-Principle Eddy 

Current Tool (PoPECT) which allows for in core inspections of the graphite fuel 

bricks. The probe includes a rotating head which allows for both circumferential and 

vertical scan operation modes. 

Following on from PoPECT, the Prototype Eddy Current Inspection Tool (PECIT) was 

developed. The improvements from the PoPECT include three individual probes (a 

single probe coil, a differential probe and a radio gradiometer) and stabilising wheels 

at the upper and lower ends of the device. PECIT is also able to scan much larger areas 

of the bricks due to its ability to perform helical scans with a nominal pitch of 18mm.   

 

2.3.5 Graphite Core Health Assessment Research 

There have been many instances of research being undertaken to provide decision 

support for graphite core health assessment. The following section summarises the 

different approaches that have been taken the better understand the graphite core of 

AGRs. 

A method of tracking cracks is for an operator that manually extracts frames that 

contain cracks from a video recording of a fuel channel inspection during a scheduled 

outage. A method to speed up this process has been implemented by West (West, et 

al., 2015) where the frames from the video footage are automatically stitched together 

to create a 360-degree image of the channel. A crack detection algorithm can then be 

applied to the image and the locations and severity of the cracks can be stored. 

Wallace (Wallace, et al., 2010) has shown that the movement patterns of control rods 

are able to provide information, that can be used to understand the health of the 

graphite core. The control rods are used to control the rate of the reaction inside the 
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core. They can ascend from and descend into the control channels to do this and their 

height is recorded. As groups of control rods are provided with the same instruction, 

the differences in which they change in height can be used to infer possible faults in 

the control channels. 

The British Energy Trace Analysis (BETA) system (West, et al., 2008) has been 

deployed and its purpose is to provide decision support for domain experts during the 

scheduled refuelling events. BETA automatically identifies and extracts features form 

the refuelling traces using a rule-based algorithm. Once these features are extracted, 

they can be compared to benchmarks to detect anomalies. These benchmarks are 

obtained by analysis of normal condition refuelling events and will evolve and change 

over time. 

Stephen has shown how hidden Markov models can be utilised to detect deviations 

from expected values within FGLT data (Stephen, et al., 2009). Part of this work 

involved modelling Markov dynamics to learn an envelope of expected FGLT data 

behaviour and from this can then calculate the perplexity of this expected value to the 

recorded value. This work was undertaken to provide a method to interpret FGLT data 

without obtaining models of the underlying unknown relationships in the data. This 

work provided a demonstration of how a decision support tool could be implemented 

to allow graphite core engineers to monitor the ageing process of AGRs and draw more 

robust conclusions about the state of the core’s health. 

A substantial volume of other work has been undertaken on the health management of 

the UK’s AGR cores. The University of Bristol has constructed both a 1/8th and 1/4th 

scale model of the core of an AGR on a shaker table to help understand the effect that 

seismic activity has on the core (Shaw, et al., 2005) (Castro, 2005) (Brasier & Rogers, 

2011) (Dihoru, et al., 2011) (Roscow, et al., 2008)  (Horgan & Webster, 2014). It was 

not possible to construct a 1:1 scale model of the core as this would result in a model 

which is over 1000 tonnes in weight, which would be too heavy for any of the 

earthquake simulators in Europe (Dihoru, et al., 2016).  

Dihoru describes work which focusses on physically modelling the seismic effects on 

AGRs with degraded components (Dihoru, et al., 2016). Doubly axially cracked bricks 

were the primary focus of the seismic simulations consisting of a random configuration 

of 30% of brick layers 4-7 being axially cracked. The tests allow the core to experience 
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different types of vibration inputs including white noise, sinusoidal dwell and seismic. 

The displacements of the bricks are recorded and are used to understand the core health 

under different conditions to provide evidence for safe operating limits. 

Modelling has also been undertaken using Finite Element (FE) solid model analysis to 

simulate the state of the core components under different characteristics such as cracks 

in graphite bricks. One application of FE modelling is SALCOR (Solid Analysis of 

Loaded Core) (Salih & McLachlan, 2016). This application can represent the geometry 

of a loaded core and allows for simulating the opening, shear and separation of singly 

and doubly cracked fuel bricks as well as core behaviour resulting from keyway 

disengagement (Salih & McLachlan, 2016). Another FE model approach is GCORE 

which is specifically used for seismic assessments of the graphite core (Riley, et al., 

2016) (Cowell & Steer, 2016).  

Finally FE modelling has been undertaken to aid in the prediction of keyway initiated 

axial brick cracking (Tan, et al., 2016) and the propagation of such cracks (Crump, et 

al., 2016) (Pearce & Kaczmarczyk, 2016). Similar to the propagation of cracks, work 

has been undertaken to investigate secondary cracking, these are cracks that could have 

been caused by the release of energy of another crack (Booler, et al., 2016) and the 

interaction that cracked bricks have in their neighbouring regions (Teng, et al., 2016). 

Kyaw has modelled the cracking of graphite bricks that have undergone radiolytic 

oxidation and irradiation (Kyaw, et al., 2014).   

As mentioned previously and it being a large component of the work in this thesis, 

crack detection is of major importance to the safe operation of AGRs. A statistical 

method of modelling the evolution of bore initiated cracks using inspections has been 

shown by Robinson (Robinson, et al., 2016). Additionally, code has been developed 

by Robinson, called CrackSim, which enables judgements to be made about planned 

future inspections based on both cracking rates and uncertainties.  

Understanding the process of graphite brick cracking has been an important priority of 

AGR health research. A statistical approach has been considered to help anticipate the 

number of cracks that are expected to be found at inspections as well as predicting the 

types of cracks that are likely to be present (Maul, et al., 2008) (Tan, et al., 2011). 

Hodgkins has studied crack propagation using X-ray tomography to understand the 

behaviour of how the energy is dissipated in nuclear graphite (Hodgkins, et al., 2005). 
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Additionally, Hodgkins has also studied the effect that radiolytic oxidation has on the 

fractures within graphite bricks (Hodgkims, et al., 2008). 

Keyway initiated brick cracking research recently has been prominent in the literature 

in recent years due to the detection of the cracks in 2014. Bradford provides an 

overview of the process of reducing the uncertainties that have been present in the 

previous efforts to predict cracking (Bradford, 2016). Additionally, Bradford identifies 

areas of the uncertainty that have not been considered previously to allow for greater 

accuracy in the forecasts of cracks in future inspections. Leguillon has developed a 

tool for predicting the initiation of these cracks by accounting for both stress and 

energy conditions (Leguillon, et al., 2016).  

Investigating the microstructure of the gilsocarbon graphite is important to understand 

the changes that it is undergoing due to irradiation within the core of the reactor. An 

overview of the micromechanical testing of graphite is provided by Liu (Liu, et al., 

2016). The ACCENT program has been undertaken to help understand the impact that 

dimensional changes to the material and microstructure properties of graphite at 

various stages of irradiation (Taylor, et al., 2016). National Nuclear Laboratory has 

developed a micromechanistic model of polycrystalline graphite irradiation behaviour 

which models individual crystals (Tzelepi, et al., 2016). 

There has also been research work undertaken on the material property changes of 

graphite due to the fast neutron irradiation and radiolytic oxidation. This work is 

known as project Blackstone and allows an understanding of graphite at the end of life 

conditions for the UK’s nuclear reactors using a materials test reactor (Davies, et al., 

2016). Project Blackstone has currently undergone two phases of research and phase 

three is currently being undertaken and is expected to be complete in 2021. Phase one 

and two were focussed on property changes to the predicted end of life condition of 

the graphite bricks at the older reactors (Dungeness, Hunterston, Hinkley Point, 

Hartlepool and Heysham 1). Phase three is focused on the remaining stations 

(Heysham 2 and Torness). 

2.4 Challenges around Nuclear Monitoring 

Currently the worldwide trend for nuclear power stations is to extend their operating 

life beyond their initial design life. This can be seen in the United States where in 2012, 
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71 out of the 104 nuclear power plants that were in operation have had their life 

extended beyond their initial design life from 40 to 60 years (Meyer, et al., 2012), with 

many looking to extend that further to 80 years (Bond, et al., 2011).  In the United 

Kingdom the nuclear generation fleet is also undergoing life extension. The primary 

reason for this is that the nuclear reactors are still safe to operate and able to generate 

electricity beyond their initial designed lives. Life extension of AGRs is more 

economically beneficial than decommissioning existing reactors and building new 

reactors. Another benefit of this is that their operation allows for the maintenance of a 

reliable baseload for the country as old coal stations are expected to close. The current 

generating fleet in the United Kingdom has been generating since the 1970’s (World 

Nuclear Assocation, 2015) and many of the stations were originally expected to be 

shut down in the 2000’s, but now have had their operational lifetimes extended. In 

regard to the life extension of AGRs in the United Kingdom, McLachlan (McLachlan, 

et al., 1995) stated that the presence of a keyway root crack would mean that the station 

had reached the later stages of its operation life and that these cracks would need to be 

incorporated in to future safety cases. These cracks have now been identified in both 

Hunterston reactors and they are still planned to remain in operation until 2023 as the 

safety cases for operation have be redefined that show that the reactor can operate 

safely with the presence of these cracks. These cracks are no longer considered as life 

ending and require large amounts present to result in loss of structural integrity of the 

core. 

With this increased plant life, monitoring has become more prevalent as many of the 

components were not expected to be in use for double their initial life.  This has also 

shifted the type of maintenance that has been traditionally performed in nuclear power 

stations, from planned preventative maintenance to be more proactive in repair and 

maintenance of components (Agarwal, et al., 2013). This is where maintenance can be 

planned by using the condition monitoring data to not just detect faults but to predict 

when the next fault will occur or the remaining useful life (RUL) of an asset. The 

detection of faults is known as diagnostics and predictions of future faults or RUL are 

known as prognostics. This type of maintenance, if it is successful, is very 

economically beneficial to the nuclear operators as extended unnecessary outages are 

very costly in terms of lost possible revenue. Therefore, being able to plan efficient 
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maintenance ahead of time will reduce the money lost from outages. With suitable 

monitoring it will also reduce staff exposure to radiation either by having on-board 

sensors or by shortening the time that staff members are exposed through more 

efficient maintenance. This is not possible within the context of graphite reactor core 

bricks as they cannot be repaired or replaced. Therefore, they are inspected to ensure 

that they are safe to operate until the next statutory inspection. It is becoming more 

desirable for monitoring to provide more frequent health information.  Data analysis 

and machine learning are integral in obtaining valuable information to influence the 

health management of assets. 

2.4.1 Prognostic and Diagnostic Techniques 

The Department of Electrical and Computer Engineering at the University of Western 

Ontario have produced a review of fault detection and diagnosis methods focusing on 

nuclear power plants (Ma & Jiang, 2011). They identify that there are two key fault 

identification and detection methods; these are model-based and data-driven methods. 

Model-based methods require an understanding of the physical properties of the 

structure, system or component that is being monitored that can then be translated into 

a mathematical model. This model can then be used to predict what the normal 

degradation of a piece of equipment should be at a certain time in its lifecycle. Then 

the difference of the measurements to this value are known as residuals and these 

indicate any degradation that has occurred. Data-driven models are more prominent in 

a lot of condition monitoring approaches due to the complexity of trying to represent 

some structures, systems or components mathematically. Data-driven models 

primarily use machine learning techniques to learn about the application through 

previous historical operational data. They can be inadequate for some problems as they 

simply look for relationships in the data or its statistical properties rather than basing 

their decisions on the known physical properties of the equipment. In their review of 

prognostics for nuclear power, Coble (Coble, et al., 2015) states that data-driven 

methods are effective at predicting run to failure times of equipment but that 

understanding the physical mechanics of the system that leads to these is also 

invaluable. This is due to the nature of many faults in safety critical systems where it 

would be impractical and unsafe to let them run to failure such as in the nuclear power 

industry.  
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The Nuclear Engineering Department at the University of Tennessee have been 

focussing their research on prognostics, plant life extension and management as well 

as providing prognostic support for new builds, especially in advanced small modular 

reactors.  Coble (Coble & Hines, 2011) shows how a general path model is used to 

extrapolate a parameter in condition monitoring to be able to predict its time of failure 

through dynamic Bayesian updating techniques. This method won the 2008 Prognostic 

and Health Management Data Challenge where it could predict the degradation of an 

aircraft engine from multivariate simulator data when a fault condition has occurred at 

an unknown time. Welz (Welz, et al., 2015) has shown a lifestyle prognostic modelling 

method from beginning of life, through operational life and to end of life using 

Bayesian and bootstrap aggregation for the lifetime of a heat exchanger in a light water 

reactor. The modelling was then tested on a heat exchanger which was under 

accelerated aging. To construct the model, feature extraction was performed on the 

many sensor outputs to reduce the signals that would be input to the model. Barbieri 

(Barbieri, et al., 2015) has shown how trends and advances in prognostics has led to 

better and more efficient maintenance where remaining useful life estimations have 

been performed on experimental data from electric motors. Barbieri used feature 

extraction on a large amount of sensor variables to obtain the features that can be used 

to create a prognostic parameter that will allow the remaining useful life to be 

calculated by extrapolating the parameter to a failure threshold using a linear general 

path model. The method of generating these prognostic parameters was compared 

between using a genetic algorithm approach and an ordinary least squares estimation. 

2.4.2 Applications 

2.4.2.1 Cable Monitoring 

There has been a considerable amount of research into cable aging and management 

in nuclear power stations. This is due to many cases of plant life extension where it 

was never considered that these cables would be in operation as long as they are. 

Shumaker (Shumaker, et al., 2012) with the Analysis and Measurement Services 

(AMS) Corporation have described methods taken to identify, locate and 

repair/replace damaged cables in nuclear power stations. They do this by utilising 

many non-destructive testing methods as well as human inspection to predict the RUL. 
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AMS in cooperation with Polymer Aging Concepts, Inc (PAC) have developed micro-

sensors that can be installed into new and existing cables that can be used to indicate 

polymer material deterioration which can indicate the RUL. Further work has been 

completed by McCarter (McCarter, et al., 2015) at AMS showing how using indenter 

modulus measurements it is possible to estimate the RUL of instrumentation and 

control cables. Indenter modulus is performed by a probe gently pressing down on a 

cable and recording the change in displacement of the cable with respect to the force 

applied. This method is beneficial as it is a non-destructive type of testing compared 

to some methods of cable testing that can damage the cables such as elongation-at-

break. The indenter modulus test can also be performed while the cable is in operation. 

The RUL prediction was tested using the general path model (GPM), an appended 

general path model and a third order polynomial fit on thermally accelerated aged 

cables. It was found that both GPM estimations had high accuracy even with few data 

points and when the third order polynomial fit obtained sufficient data points it 

produced similarly accurate results. 

Bowler performed a review of many different cable monitoring techniques (Bowler & 

Liu, 2015) and the factors which affect the aging of the cables. They state that when 

cables are irradiated it can cause them to produce gas that can be trapped within the 

polymer and can cause series degradation of the electrical and mechanical properties 

of the cable and that under some situations the presence of oxygen can cause the cables 

to age at an accelerated rate even if the cables are at a lower temperature. Some 

methods of testing cables are through capacitive testing, permittivity of the polymer 

material, dielectric and mechanical testing. 

2.4.2.2 Online Condition Monitoring  

As stated previously more nuclear power stations are moving to using online condition 

monitoring and shifting from diagnostics to prognostics. There are many benefits of 

this such as being able to anticipate a failure when the signs first appear. This change 

from time scheduled maintenance to asset health scheduled maintenance may lead to 

overall shorter outage durations and less of them (International Atomic Energy 

Agency, 2008). Online condition monitoring can be seen with a collaboration of the 

U.S.  Department of Energy’s Light Water Reactor Sustainability program and the 

Electric Power Research Institute’s (EPRI) Long-Term Operations program to create 
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the Fleet-Wide Prognostic and Health Management (FW-PHM) software suite 

(Agarwal, et al., 2013). The FW-PHM suite consists of databases for fault analysis and 

RUL predictions and equivalent advisers which interpret the input data to provide 

centre and plant staff with decision support relating to faults and maintenance required. 

The fault database contains a comprehensive list of faults for all the utilities which are 

associated with the EPRI. With this comprehensive list there is also information on 

what equipment will the specific fault manifest in and what characteristics are used to 

identify the fault. It is then the fault diagnostic advisor which uses online monitoring 

data to determine if there are any faults and what those faults could be. This 

information is then provided to a technician who will now have much more specialised 

knowledge of the problem to decide about a specific piece of equipment. The RUL 

advisor will also get the fault prediction from the diagnostic advisor and will use that 

and the sensor information to obtain a prediction of the RUL. These RUL predictions 

are then stored in the RUL database which can then be consulted and used to predict 

when maintenance should occur. 

2.5 Conclusions 

Nuclear power electricity generation is an essential part of many countries generating 

capacity in the UK it makes up approximately 20% and is integral to provide a base 

load. This chapter has provided an overview of nuclear power generation with a more 

focussed look at the design and data obtained from the UK’s AGRs. The current fleet 

of AGRs that are operating are entering the later stages of their operational lives, the 

oldest of which have been connected to the grid since 1976. Each reactor has been 

individually granted life extensions based on safety cases of operation. In the context 

of this work the most important feature to consider about AGRs are their graphite 

cores. The graphite core within an AGR is made of graphite bricks which are degrading 

over the course of the reactor’s operational lifetime. The graphite bricks cannot be 

repaired or replaced and are therefore considered a life-limiting factor for the reactor. 

The main concern of graphite brick degradation is dimensional changes which are 

caused by irradiation and radiolytic oxidation. Initially at the start of their operational 

lives the graphite bricks begin shrinking, resulting in narrowing of fuel channels within 

the core. After many years inside the reactor the bricks reach turnaround point where 
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they begin expanding, resulting in the fuel channels becoming wider. The stresses 

applied to the bricks are different before and after the turnaround point which can result 

in different cracks developing at different points in the life of the reactor. 

Cracks in graphite fuel bricks are currently detected during scheduled inspections that 

occur when the reactor is offline. Dedicated measurement equipment is inserted into 

the core to measure the dimensions of the fuel channels and determine dimensional 

change. Additionally, this equipment has a camera to record footage of the inside of 

the fuel channel. Inspections are supplemented by FGLT monitoring data that is 

obtained more frequently at refuelling events. The load value of the FGLT is obtained 

from the combination of four different components: fuel stringer deadweight, 

aerodynamic effects from CO2, lower stabilising brush friction and upper stabilising 

brush friction. It is possible to know the expected contributions from each component 

at each point on a trace based on physical knowledge of the core. The lower stabilising 

brush friction is an important contribution to understand as it is directly related to the 

dimensions of the fuel channel. This relationship is investigated in the future chapters 

of this thesis. 

Ensuring that nuclear power stations are operating safely while their operational lives 

are being extended is of the utmost importance. In the later chapters of this thesis two 

different condition monitoring approaches are proposed, which provide decision 

support to graphite core engineers by extracting health information from FGLT data. 
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3 Data Analytics and Machine 

Learning 

3.1 Introduction 

Machine learning and data analytics are valuable tools for extracting useful 

information from operational data of assets. Machines learn by being provided with a 

large number of examples known as training data. Features of the examples are then 

analysed, such as their similarity to known historical examples, known 

concepts/classifications or how they are different from previous examples. This allows 

models to be developed that allow future examples to be sorted intelligently and 

correctly. Data analytics involves examining a set of data to be able to extract more 

information or meaning from the data than it currently provides. Data analytics can 

often be applied to guide the training methods of machine learning.  

Kevin P. Murphy defines the three primary types of machine learning that can be 

undertaken in his book Machine Learning A Probabilistic Perspective (Murphy, 

2012). These are: 

• Supervised machine learning,  

• Unsupervised machine learning  

• Reinforcement machine learning 

Common problems within machine learning often involve the distinction of whether 

the input data is labelled or unlabelled. Labelled data is input or training data which 

has meaningful information associated with them, these are typically either numerical 

or categorical values. Unlabelled data however, does not have associated data with 

them. Typically, in situations with labelled training data supervised machine learning 

is used and in situations with unlabelled data unsupervised machine learning is used. 

Semi-supervised machine learning, which utilises both labelled and unlabelled data, 

has not been included in the three main types of machine learning techniques. 

However, it is proposed here in this work that it should be considered. Semi-supervised 
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learning has a large amount of overlap between supervised and semi-supervised 

machine learning. Before defining clearly what semi-supervised learning is, it is 

important to clarify the differences and training methods of both supervised and 

unsupervised machine learning and additionally a short overview of reinforcement 

machine learning is provided. 

3.2 Supervised Machine Learning 

Supervised machine learning is the standard approach for most classification and 

regression problems. The main requirement of supervised machine learning is a supply 

of ground truth training data that is an accurate representation of the problem. This 

training data includes the input data which is accompanied by an associated label. The 

relationship between the input data and their labels are explored to produce a 

generalised function that represents the relationship between them. This generalised 

function can produce a solution to future, previously unseen, data. A benefit of 

supervised machine learning is, that provided there is sufficient labelled training data 

that is representative of the feature space, the problem should be solvable. The two 

most common objectives of a supervised machine learning problem are either 

classification or regression. 

3.2.1 Classification 

Classification is a supervised machine learning problem in which an algorithm is 

trained to predict a discrete class when provided with a new observation of data. 

Training a classifier requires a source of data with associated labels indicating which 

class they belong to. The training data is also required to be representative of the future 

data that is going to be supplied for classification, allowing the classifier to generalise 

well with respect to the problem. The properties of the inputs and outputs are explored 

to be related to each other. The classifier can then use this training information to create 

rules or functions which allow the various classes of data to be distinctly identified. 

This provides the classifier the ability to learn about the feature space of the problem. 

Once the classifier is trained it can then use its learned knowledge to provide 

classifications to data which it has never seen before. 

An example of a classification problem when related to condition monitoring could be 

being able to identify the specific type of rolling element bearings fault from vibration 
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signals (Abbasion, et al., 2007). As part of the classification process Abbasion was 

able to correctly classify the vibration input data into six different categories of faults 

in addition to a health classification. A benefit of many classification algorithms, in 

terms of fault detection, is that they not only identify that there is a fault in the data but 

provide an indication of what type of fault is present. 

3.2.2 Regression 

The main difference between classification and regression is that classification has a 

finite discrete amount of outputs available to the algorithm, whereas regression 

produces outputs that are continuous in nature. Supervised regression algorithms are 

trained similarly to classification algorithms; they require a training set of input data 

with associated output values. The algorithms explore the feature space of the data to 

construct a relationship between the inputs and the output that is sufficiently 

generalised to predict the correct output of future unseen input data. Calculating the 

RUL of assets, such as rolling bearing elements is an example of the use of regression 

(Loutas, et al., 2013). This can be achieved by recording health information paired 

with the degradation status of components to learn the relationship between them. This 

allows for predictions to be made when future data is obtained. 

3.3 Unsupervised Machine Learning 

Unsupervised machine learning is involved with learning the statistical properties of 

the input data without any knowledge of labels associated with that data. Traditional 

tasks that are performed by unsupervised learning are clustering, novelty detection and 

dimensionality reduction. It is performed by using an agnostic view of the problem 

and exploring the underlying density that is likely to have generated the input data’s 

distribution.  

3.3.1 Clustering 

Clustering is a machine learning approach and it is the unsupervised counterpart of 

classification. It involves grouping instances of data together that have similar 

properties. Clustering can be used as a method of data exploration during data mining 

and visualisation of data. An advantage of data clustering is that understanding can be 

obtained about the groupings of sets of data without the time-consuming process of 
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manual analysis and labelling. It can also be very useful for finding trends in the data 

and for understanding the distribution. 

Unsupervised clustering methods have been applied in nuclear condition monitoring 

applications by Baraldi to identify similar transients based on their characteristics 

(Baraldi, et al., 2013). This was performed firstly on an artificial case study to be 

verified prior to being applied to a simulation of a pressuriser in a PWR nuclear power 

station. The use of unsupervised clustering was very beneficial for future fault 

understanding and interpretation as it allowed for similar transients to be grouped 

together allowing for prototypical trajectories to be created per cluster. 

3.3.2 Anomaly Detection 

Anomaly detection is most often associated with unsupervised learning, however there 

are implementations of supervised anomaly detection algorithms. Anomaly detection 

is primarily used within data mining/exploration circumstances when all the data is 

from an unlabelled source. The most common application of novelty detection is when 

a large volume of “normal” data is accessible but there are very few instances of 

“abnormal” data (Pimentel, et al., 2015). There are numerous approaches to perform 

novelty detection; one such method is through a probabilistic approach. In this 

approach the training data is analysed to generate a probability density function of the 

data. The algorithm can then decide on a threshold to associate future data with 

“normal” conditions. Under many circumstances anomaly detection algorithms are 

viewed as a one-class classifier, where the trained data is normal operation. Typically, 

these algorithms are effective in being able to identify outliers in the data. 

Anomaly detection of intrusive malicious attacks of simulated supervisory control and 

data acquisition (SCADA) systems has been shown by Yang (Yang, et al., 2006). Jin 

has also shown how data driven anomaly detection can be performed on nuclear power 

station data by using symbolic dynamic filtering to mask the sensor degradation 

signatures (Jin, et al., 2011). In this case anomaly detection is achieved in real time on 

simulated data which used Gaussian noise to represent sensor uncertainties. Jin 

proposes that degraded sensors can be detected in real time for components within 

nuclear power stations which have low false alarm and missed detection rates. 
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3.3.3 Dimensionality Reduction 

Dimensionality reduction in the context of data analysis is involved in reducing the 

number of features that are used to represent the data. It is often beneficial to lower the 

number of dimensions in the input features of many algorithms to reduce their 

computational complexity in their training or their execution. Additionally, in many 

cases of high dimensionality data there are redundancies between features that can 

often be consolidated to reduced overall complexity.  

In many cases the features being used to describe the problem are very numerous 

which often makes it impossible for humans to understand the data visually.  

Therefore, by reducing the dimensionality of the data down to dimensions that are 

visually comprehensible, it can possible for humans to understand relationships in the 

data.  

3.4 Reinforcement Learning 

The last type of machine learning is reinforcement machine learning, this type of 

learning involves an agent having the ability to interact with its environment, typically 

through trial and error. The requirements for reinforcement learning are an agent and 

an environment that it can interact with. The agent obtains a description of the current 

state of the environment and from this state performs an action that will change the 

environment. This results in a reinforcement reward that indicates whether the action 

performed was beneficial or harmful to the desired response. This process then repeats 

with the new state of the environment. With the reward score appropriately tuned for 

the specific domain this can create a very knowledgeable agent. Additionally, for 

situations where the environment can be simulated, powerful computers can be used 

to simulate large quantities of outcomes that would be infeasible to have that amount 

of labelled output data for supervised learning. 
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Reinforcement machine learning has been shown on simulated experiments to have 

use in scheduling condition-based maintenance by Knowles to move away from 

scheduled maintenance while maintaining high reliability of assets (Knowles, et al., 

2011). The benefits of reinforcement machine learning within this context are that it is 

possible to optimise the performance of the algorithm with respects to long term 

rewards. If implemented well on a system this would save time and costs on 

maintenance over a long term.  

3.5 Semi-Supervised Machine Learning 

Semi-supervised learning combines aspects of both types of learning to produce new 

machine learning algorithms (Chapelle, et al., 2006) (Zhu & Goldberg, 2009). Semi-

supervised learning aims to improve the capability of learning algorithms when there 

is an insufficient amount of data that has been labelled. It does this by considering 

information from the unlabelled data that would otherwise have been ignored. This 

can involve looking at the statistical properties of the data such as distances between 

samples, distribution or density of samples and using what is known about the labelled 

data to train the algorithm with confidence.  

Figure 3.1 – Example of reinforcement learning where an agent can interact with the 

environment. 
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Semi-supervised learning so far has seen limited use in nuclear condition monitoring 

but there are two successfully applications in the literature (Ma & Jiang, 2015) 

(Moshkbar-Bakhshayesh & Ghofrani, 2016). Ma has shown how a combinational 

algorithm of spectral clustering and label propagation has managed to classify faults 

in a Canada deuterium uranium (CANDU) desktop simulator and a physical NPP 

simulator. Moshkbar-Bakhshayesh has shown a combinational supervised and semi-

supervised method using transductive support vector machines (TSVMs) for the 

detection and classification of NPP transients. 

3.5.1 Transductive or Inductive 

Within machine learning, especially within semi-supervised learning, there is a 

distinction on how the specific algorithms are applied. Transductive machine learning 

problems involve generating a solution to the problem that is confined to the labelled 

and unlabelled data that has been subjected to training. Additionally, when new data 

becomes available the algorithm would then have to be retrained to produce 

predictions for that data. Inductive machine learning instead, learns a function, using 

labelled and unlabelled data, which produces the output when provided with input data. 

Therefore, when new unlabelled data is obtained after the initial training, it can be 

supplied to the learned function to obtain an output prediction. This difference between 

these two learning paradigms leads to inductive algorithms requiring less computation 

time when being applied to new data whereas transductive algorithms will have larger 

computational complexity with every new sample of data. 

3.6 Algorithms 

The following subsections of this chapter will provide an overview of some algorithms 

which are employed within the wider condition monitoring domain found when 

investigating the literature.  Included within this subsection are the three semi-

supervised algorithms which are evaluated in chapter 5, these are discussed after 

describing their traditional supervised counterparts. 

3.6.1 Artificial Neural Networks 

Artificial neural networks (ANN) are a prominent type of machine learning. They 

involve replicating the biological neural networks that are present within the human 
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brain. They can be simplified down to a series of inputs, which are the features of the 

data, followed by a hidden layer or multiple hidden layers of differently weighted 

nodes that capture the knowledge of the problem. Finally, the last part of the structure 

of an ANN is the outputs which provide the classification for the input or in some cases 

the regression. The hidden layer nodes each contain a weight value and an activation 

function that consolidates the outputs from the previous layer and passes an output to 

the next layer. The number of hidden layers and the number of nodes in each layer can 

vary depending on the implementation and there is a specific field of artificial neural 

network implementation, which involves multiple hidden layers, known as deep 

learning. 

Neural networks are mainly trained by a process called backpropagation. It calculates 

the error at the output of the network using a validation set of data. This error value 

can then be traced backwards throughout the network to find the error value 

contribution from each of the nodes. From these values it is optimisation is performed 

on the value of the node weights in an attempt to reduce the overall error value. This 

is all performed under the assumption that the hidden layer nodes are initialised with 

random small weight values. 

   

 

 

 

 

 

 

 

 

 

 

 

Within the domain of nuclear power station condition monitoring Şeker has shown the 

use of recurrent neural networks (a type of ANN which incorporates memory) to detect 

anomalies in simulated operational data (Şeker, et al., 2003). Additionally, they have 

Figure 3.2 – Example of the architecture of an artificial neural network. 
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been shown to detect motor bearing damage and detect anomalies from the simulated 

operation of a high-temperature gas cooled reactor.  

Convolutional neural networks, a deep learning technique, has been proposed to be 

used within nuclear power plant conditional monitoring for the detection of cracks 

within visual monitoring data by Chen (Chen & Jahanshahi, 2018). Chen has 

demonstrated the ability to detect cracks on underwater metallic surfaces from nuclear 

inspection videos at very high accuracy, including detecting small cracks with low 

contrast and variant brightness. The downsides with this method however are the long 

computational time associated with deep learning and the large amount of training data 

required, which is not always possible to obtain in the nuclear power industry.  

3.6.2 K-Nearest Neighbours 

K-nearest neighbours (kNN) is a very simple to implement supervised algorithm which 

can be used for classification and regression. When a new instance of data is required 

to be assigned either a classification or regression value the nearest k data instances in 

the feature space are used to decide that value. The distance metrics for kNN can vary 

depending on the application, including Euclidean distance, Hamming distance, 

Pearson’s coefficient or Spearman’s coefficient as some examples. Once the nearest 

neighbours have been identified, depending on the implementation, they are given a 

weighting based on their relevance to the instance to be labelled. In some applications 

the weights will be uniform and a have a value of 1/k, whereas the weights of others 

will be weighted based on similarity to the current instance. With weights applied a 

voting system will be used to assign the current instance a value. 

Zio has shown the use of a fuzzy kNN algorithm in combination with genetic algorithm 

optimisation for diagnostic classification of nuclear transients by comparing this 

approach to others (Zio, et al., 2006). 

3.6.3 Support Vector Machines 

Support vector machines (SVM) and support vector regression (SVR) are types of 

supervised machine learning. In terms of classification SVMs produce a binary 

classification algorithm that distinguishes between two classes of data. Multi-class 

SVMs do exist but they are multiple SVMs stacked and working together. The basic 

principal of SVMs is to create a linearly separating hyperplane in the feature space, 
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between the two classes of data, as well as providing margins between the two classes. 

The bounds of this margin are represented by two additional hyperplanes which are 

parallel to the separating hyperplane. For the construction of a strong classifier it is 

desirable to maximise the distance between the parallel hyperplanes, while 

maintaining the separation of classes. Hard margins are used when no data is located 

within the margin and the data is linearly separable. However, in in situations where 

the data is not linearly separated soft margins are used, allowing instances of data to 

be present within the margin. Loss functions are used to ensure that the best margin is 

chosen for the overall performance, at the cost of some instances of data. The 

generation of the margin is achieved by choosing the data instances which are closest 

to the boundary between the two classes, these data instances are known as the support 

vectors.  

One of the key techniques for the training and implementation of SVM are the use of 

kernels. Kernel mapping is a process where the input data is mapped onto a higher 

dimensional space. This is particularly useful for classifying data which is not linearly 

separable but by transforming it into higher dimensional space it can become linearly 

separable. There are many different types of kernel to use to for SVM but the most 

commonly used is the radial basis function (rbf) as shown in Equation 5.  

 

𝐾(𝑥, 𝑥′) = exp (−
‖𝑥 − 𝑥′‖2

2𝜎2
) 

 

SVMs have been shown to have use in condition monitoring of nuclear power plant 

components by Liu, where a probabilistic SVR is used to provide short-term forecasts 

of out-of-control parameters (Liu, et al., 2013). This work was tested on a real data 

case study of a leak flow in the first seal of a reactor coolant pump where it achieved 

a high prediction distribution and confidence score. 

3.6.4 Co-Training 

Co-training is a semi-supervised learning technique that uses different views of the 

data to allow two classifiers to train each other using labelled and unlabelled data 

(Blum & Mitchell, 1998). It is important to note that there are assumptions with the 

Equation 5 
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views taken of the data. Firstly, each individual view of the data must be able to 

generate a suitable classifier provided that the problem was fully supervised and 

secondly the views of the data must be conditionally independent of each other. There 

are variations of co-training that use different base classifiers or use more than two 

classifiers such as tri-training (Zhou & Li, 2005). For the purposes of the AGR 

monitoring co-training is undertaken with two artificial neural networks being the base 

classifiers.  

Initially base classifiers are chosen and two classifiers are trained on their independent 

views of the labelled data. Each view of the unlabelled data is then subjected to their 

respective trained classifiers. A confidence score is obtained about the label assigned 

from the output of the classifier. The most confident instances of each view are then 

permanently given those labels and are then provided to the alternative view of the 

data classifier now as labelled data. This process is then iteratively repeated decreasing 

the instances of unlabelled data and increasing the instances of labelled data with each 

iteration. Once a suitable criterion is met, such as a certain number of iterations or a 

percentage of unlabelled data being given labels then the individual classifiers can be 

extracted to be used for future data based on a voting scheme. The pseudocode for the 

algorithm is as follows: 
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Co-training was initially proposed for text classification by Blum and Mitchel (Blum 

& Mitchell, 1998) but more recently has seen some uptake in the fields of condition 

monitoring, including bridge structural health monitoring (Yu, et al., 2012) and 

prognostic based applications (Hu, et al., 2015).  

Hu (Hu, et al., 2011) (Hu, et al., 2012) has proposed semi-supervised data driven 

algorithm for prognostics called COPROG. The algorithm is based on the co-training 

algorithm but extends its usefulness into the domain of condition monitoring 

prognostics and remaining useful life (RUL) calculation. Hu has been able to show the 

benefits of using both labelled and unlabelled data in examples of a simulation of a 

rolling-element bearing problem and an implementation of vibration monitoring of a 

faulty fan. COPROG much like co-training is a wrapper algorithm to train the 

underlying machine learning algorithms better. In the cases explored by Hu 

feedforward neural networks and radial basis networks were used as the learning 

algorithms within COPROG. It was found that the COPROG learning produced more 

Split Data into Labelled (L) and Unlabelled (U) instances  

Two base classifiers (C1 and C2) 

Produce two different view of L (L1, L2) and U (U1, U2) 

 

WHILE condition not met 

Train C1 using L1 

Train C2 using L2 

Subject U1 to C1 

Subject U2 to C2 

Remove most confident U1 from U2 and give to L2 

Remove most confident U2 from U1 and give to L1 

END 
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accurate predictions of the RUL of the bearings and fan than traditionalised supervised 

approaches when there is suitable unlabelled data to aid in the training process.  

3.6.5 Label Propagation 

Label propagation (Zhu & Ghahramani, 2002) is a transductive machine learning 

algorithm based on graph theory. Label propagation requires that an assumption is 

made that in the feature space that the closeness of data indicates that they are likely 

to have a similar class label. This allows labels to propagate from data instances to 

other instances through dense feature spaces. To perform label propagation initially a 

metric for similarity is chosen in this application the Euclidean distance (d) has be 

chosen and is calculated for all data instances of x as shown in Equation 6.  

 

𝑑𝑖𝑗
2 = ∑ (𝑥𝑖

𝑑 − 𝑥𝑗
𝑑)2

𝐷

𝑑=1
 

 

This creates a graph of the similarity matrix where every point of data is related to 

every other point of data. The Euclidian distance is scaled by the σ hyperparemeter to 

generate the weight matrix (w). The σ hyperparemeter controls the influence of the 

neighbouring data instances where tending to ∞ results in more data having an 

influence on labelling and a value tending to 0 results in only the closest neighbours 

influencing the label. A probability matrix (Tij) is then constructed based on the weight 

matrix as shown in Equation 8. The probability matrix is then transposed into a row matrix 

�̅�𝑖𝑗, Equation 9,  which is then used to iteratively update the label matrix (YU) as show in 

Equation 10. As the number of iterations tends to ∞ the value of YU tends to the specific 

positive or negative class providing classification to the unlabelled data. However, it 

is possible to not require this iterative process by using Equation 11 and additionally, does 

not require a prior estimation of the labels of the unlabelled data. 

 

𝑤𝑖𝑗 = exp (−
𝑑𝑖𝑗

2

𝜎2
) 

 

Equation 6 

Equation 7 



70 

 

𝑇𝑖𝑗 =  
𝑤𝑖𝑗

∑ 𝑤𝑘𝑗
𝑙+𝑢
𝑘=1

 

 

�̅�𝑖𝑗 =
𝑇𝑖𝑗

∑ 𝑇𝑖𝑘𝑘
 

 

𝑌𝑈 = �̅�𝑢𝑢𝑌𝑈 + �̅�𝑈𝑌𝐿  

 

𝑌𝑈 = (𝐼 − �̅�𝑢𝑢)−1�̅�𝑢𝑙𝑌𝐿  

 

Label propagation is a transductive algorithm in such that it can only be used to predict 

the classes that make up the training set of the data. Therefore, without invoking a 

further learning algorithm upon the now fully labelled data; new data will require the 

algorithm to be fully repeated to predict their classes. Alternatively, for future 

classifications, supervised machine learning algorithms can be trained using all the 

data as it now has labels.   

Ma has shown through using a combination of spectral clustering and label 

propagation it is possible to classify faults in a Canada deuterium uranium (CANDU) 

desktop simulator and a physical nuclear power plant simulator (Ma & Jiang, 2015). 

This approach was pursued due to the lack of training data associated to specific faults 

in nuclear power plant systems. When a fault is detected the data is stored as unlabelled 

data, where it is used with simulated fault data to be classified as a specific type of 

fault.  

Outside of nuclear condition monitoring an adapted label propagation algorithm has 

been shown to have applications for structural bridge health monitoring (Chen, et al., 

2014). In this work acceleration signals are collected from sensors on the bridge, 

however the challenging aspect of analysing these signals is the presence of many 

instances of unlabelled or unseen data. 

Equation 8 

Equation 9 

Equation 10 

Equation 11 
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3.6.6 Transductive Support Vector Machine 

Transductive Support Vector Machines (TSVM) (Vapnik, 1998) are an evolution of 

the basic concepts of Support Vector Machines (SVM). Their goal is to generate a 

hyperplane which separates two classes from the available training data. The 

optimisation of the location of this hyperplane is of great importance. This is achieved 

by maximising the margin between each class and the separating hyperplane, ensuring 

that, provided the training data is representative of operational data, the classifier is 

well generalised. Therefore, the optimisation problems involved with generating the 

optimal hyperplane, involves minimising the error rate of training data while 

maximising the distance of the nearest data instances to the separating hyperplane. 

TSVMs differ from SVMs by incorporating unlabelled data into the optimisation 

problem. An assumption of the data is that similar classifications of data should be 

close to each other in the feature space and that low-density regions in the feature space 

a naturally more likely to better classification boundaries.  

TSVMs have been utilised by Moshkbar-Bakhshayesh (Moshkbar-Bakhshayesh & 

Ghofrani, 2016)  by combining it with a supervised machine learning method to 

identify transients in nuclear power plants.  The two-part process consists of using a 

previously created algorithm containing autoregressive integrated moving average 

(ARIMA) model which was combined with an error back propagation (EBP) algorithm 

(Moshkbar-Bakhshayesh & Ghofrani, 2014). The downside of this first step method is 

that it is unable to cluster the unknown and unlabelled transients which are rectified 

by the inclusion of TSVM. 

The combinational proposed identifier was applied to a water-moderated reactor for 

the detection and classification of NPP transients. Through combining a previous 

supervised method for detecting transients in nuclear power stations with a semi-

supervised algorithm Moshkbar-Bakhshayesh has shown that semi-supervised 

machine learning can be used for classification purposes. Outside of nuclear condition 

monitoring, TSVMs have been shown to have applications for intelligent gear fault 

diagnosis by Shen (Shen, et al., 2012). In this situation the number of unlabelled data 

instances greatly outnumbered the number of labelled data and there was a lack of fault 

samples within the labelled data. TSVMs in this case proved to generalise better than 
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traditional SVM algorithms when additional unlabelled data was provided. Under 

circumstances such as this it can be very beneficial to make use of unlabelled data for 

improved performance. 

3.6.7 Decision Trees 

Decision trees (DT) are a method of supervised machine learning, one of their key 

advantages is that they are transparent in their process. This means that the specific 

reasons for their decisions are defined and ensures that there is traceability, allowing 

users to view all decisions made by the algorithm. This action can be very useful in 

determining if the algorithm has been trained effectively and not overtrained to the 

specific training data. 

Within the architecture of a DT the input data is referred to as the root of the tree. 

When this root is split by the decisions made during the learning process, these are 

referred to as branches. Finally, when the algorithm has stopped branching and each 

of the branches reaches a value that is referred to as the leaf nodes. 

A common method of training DTs is through information theory and considering the 

entropy of the information gained at each split in the tree. This allows the best feature 

of the data to be identified, permitting a decision about that feature to split the data 

into branches. This process is repeated on each branch until the tree has been fully 

grown. The DT can be pruned by removing the lowest nodes and decisions. Pruning is 

normally undertaken if the DT is overtrained and does not generalise well to unseen 

data. 

Fuzzy decision trees have been shown to have use in the diagnostics of the steam 

generators of pressurised water reactors by Zio (Zio, et al., 2009). This implementation 

built on a previous decision tree algorithm to better cope with overlapping data in the 

feature space a problem that can occur often in nuclear power diagnostics. 

Mu has shown the use of decision trees in conjunction with fuzzy rough sets for nuclear 

power station diagnostics (Mu, et al., 2014). In this work a decision tree was applied 

to a nuclear power station simulator to confirm that faults are still able to be detected 

and diagnosed after the parameter reduction of the fuzzy rough sets method. This 

application was able to detect many faults in the data including loss of coolant 
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accidents, feed water pipe ruptures, steam generator tube ruptures and main steam pipe 

ruptures. 

3.6.8 K-means 

The k-means algorithm is a common type of clustering algorithm which is used to 

cluster unlabelled data into k (a number defined by a user’s hyperparemeter) different 

groups. K-means shares similarities with the supervised K-nearest neighbour classifier 

algorithm. K-means clusters the data instances while minimising the within cluster 

variance. Upon the completion of the algorithm there will be “k” defined mean value 

locations and the data samples which are closest to these means are assigned the same 

grouping. 

The k-means algorithm in combination with principal component auto-associative 

support vector regression (PCSVR) has been implemented by Seo for on-line 

calibration monitoring of nuclear power station data (Seo, et al., 2011). In this context 

k-means has been chosen as it is a quick clustering tool to train. This allowed the data 

to be subdivided into groups that are similar to allow for the better implementation of 

the PCSVR algorithm. 

3.6.9 PCA 

Principal component analysis (PCA) is a common method of dimensionality reduction, 

particularly for data visualisation. PCA transforms data into a different coordinate 

system to maximise the variance in the first coordinate of the data and with each 

successive feature having less variance. Once this is performed the features which 

capture the smaller amounts of variance in the data can be omitted in favour of the 

largest impact features. Many features within data can have high correlation between 

them indicating strong relationships which might not be easily recognisable by human 

analysis.  

This can allow humans to visualise the data in comprehensible dimensional space with 

only a small loss of information within the data. Other uses are to reduce the 

computational complexity of algorithms by reducing the number of features allowing 

for faster training or allowing the use of the algorithms in real-time. 
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In the domain of nuclear condition monitoring PCA has been shown to be used in 

combination with artificial neural networks for fault detection by Hadad (Hadad, et al., 

2008). In this case PCA was used to reduce the complexity of the inputs required for 

an ANN. Through doing this, more accurate networks were able to be developed to 

provide better fault detection for operators. PCA has also shown to be used to reduce 

the dimensionality of the pressure difference in nuclear steam generators as a method 

to create a simpler formulation of the effects (Girard, et al., 2013). The reduction in 

dimensionality provides simplified input and outputs, which has allowed for a much 

more convenient framework for future development and other diagnostic contexts. 

3.7 Pre-Processing Steps 

In machine learning an important process before the algorithms can be trained is pre-

processing. This main reason for doing this is that the training data is not in an 

appropriate format for the specific machine learning algorithm. In this subsection 

two different pre-processing approaches are discussed: imbalanced data and feature 

extraction.  

3.7.1 Imbalanced Data 

In many machine learning problems, a big issue being faced is working with 

imbalanced data (He & Garxia, 2009). Imbalanced data describes the situation where 

one class of data is substantially numerous or lacking in data instances compared to 

the other classes of data in a learning problem. This is an issue as many machine 

learning algorithms have an inherent underlying assumption that they are operating on 

a balanced dataset. In many of these algorithms, minimising the absolute error is 

important and thus they favour the majority class. A well-known example of an 

imbalanced data set within the machine learning community is the mammography data 

set.  This two-class dataset contains mammography data to determine if a patient has 

breast cancer, there are 10,923 instances of the negative class but there are only 260 

instances of the positive class. Using this dataset as an example, if the learned 

algorithm simply classifies every output of as being negative the performance of the 

algorithm would be 97.7% accurate. This would be a very good score under normal 

circumstances, however with the knowledge that none of the patients who have cancer 

are getting correctly diagnosed, it demonstrates that this is solution is pointless.  
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This deceptive performance of accuracy can be avoided by considering the use of other 

metrics including recall and precision, which can provide context on the performance 

of specific classifications of data.  

The most basic metric of performance of the algorithms on the test data is their average 

performance on the test set; this can be seen in Equation 12. True positives (TP) and true 

negatives (TN) are instances of correctly classified the presence or absence of the 

condition being tested for. False positives (FP) and false negatives are the opposite; 

they are instances which have misclassified the presence or absence of the condition 

being tested for. However, using accuracy alone is not a suitable measure of the 

performance of the algorithms due to there being a class imbalance problem. 

Therefore, it is necessary to consider both the recall, precision and the resulting F1 

score to determine the most suitable classifier. In binary classification the recall value 

is important as it displays the mean percentage of the positive case in the testing set 

that is correctly detected and can be calculated as shown in Equation 13. Additionally, 

another important metric of performance is precision and can be calculated as shown 

in Equation 14. Precision is the mean percentage of the number of correctly identified 

positive cases compared to the total number of positive cases identified. This allows 

for a confidence in classification to be established and provides an insight into the 

likelihood into the probability of false positives. 

Lastly, F1 Score can be considered to bring both precision and recall together and can 

be calculated from Equation 15. F1 score can be more generally described as the F-score 

when precision and recall are not weighted similarly to each other, this can be seen in 

Equation 16 where β is the weighting factor (β values greater than 1 indicate greater 

priority on recall with β values less than 1 indicate greater priority on precision).   

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

 

Equation 12 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2. (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) 

 

𝐹 𝑆𝑐𝑜𝑟𝑒 = (1 + 𝛽2). (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) 

 

There are many methods to solve the class imbalance problem. Firstly, in many 

circumstances there are opportunities to resample the data to provide a more balanced 

dataset. Random oversampling and random undersampling are relatively simple 

techniques that are used to balance the distribution of classes within asset of data. 

Random oversampling is a process where additional data is obtained for the minority 

class through randomly duplicating some of the data until the distribution of the classes 

is equal. The main drawback of random oversampling is that instances of data become 

overrepresented in the training data and as such this can cause the resultant algorithms 

to exhibit overfitting as opposed to algorithms which generalise well to future data. 

Random undersampling on the other hand randomly removes instances of the majority 

class until the distribution of the classes is equal. A better method of obtaining a 

balanced distribution of classes in a dataset through undersampling is through a 

method known as informed undersampling. Informed undersampling’s objective is to 

reduce the number of samples from the majority class while retaining as much of the 

class information as possible. 

Synthetic oversampling follows the same principal as random oversampling by 

providing more examples of the minority class. It differs however by creating new data 

that intends to be representative of the data. A popular example of this type of 

oversampling that has been chosen to be applied to this class imbalance problem is the 

Equation 13 

Equation 14 

Equation 15 

Equation 16 
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Synthetic Majority Oversampling Technique (SMOTE) (Chawla , et al., 2002). 

SMOTE synthetically generates the new minority data samples by considering the 

current samples in the feature space and randomly generates the data on the lines 

between two data samples. 

Many learning algorithms can be altered under certain circumstances to perform better 

in situations of extreme class imbalance. One method of doing this is by applying 

different weight to the cost of classifying data instances, such as making the error 

contribution of misclassifying a minority class being much greater than the majority 

classes. Lastly another way to handle imbalanced data is to change the feature space 

that the algorithm is taught within to increase the size of the interclass margin between 

the classes. 

Measures taken to ensure that data is balanced are essential for the graphite brick crack 

detection that is discussed further in chapter 5. 

3.7.2 Feature Extraction 

Feature extraction is an important part of data mining and machine learning, it is a 

method of dimensionality reduction. Features are often chosen to try and capture the 

important parts of the data and reducing the amount of redundancy that is seen within 

instances of data. Feature selection can often be performed from a knowledge-based 

approach where knowledge elicitation is undertaken by domain experts to characterise 

the features that they would use in manual analysis. 

3.8 Evaluation of Algorithms 

Within machine learning algorithms it is important that overtraining does not occur. 

Overtraining is a situation where the output of the algorithm does not generalise well 

to unseen data and can only perform correctly on the data it has seen before in training. 

It is for this reason that many machine learning algorithms separate the training data 

into training, testing and sometimes validation sets, allowing the performance of the 

algorithms to be assessed on data which should be representative of future unseen 

operating data. This is an example of using cross validation for training. K fold cross 

validation is the most common type of cross validation, which is performed by 

randomly splitting the training data into k different groups. The chosen algorithm is 
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then trained k number of times where Each iteration trains on all groups of data except 

one which is used to test the performance of the algorithm. The test set is then cycled 

through all the groups of data throughout the iterations. The performance of the 

algorithm is then evaluated on all the iterations and it is possible to obtain metrics such 

as the mean performance, the confidence bounds of the algorithm through the standard 

deviation of the performance and the maximum/minimum performance of the 

algorithm. An extreme version of k fold cross validation is when k is equal to the total 

number of training data instances, at this point it is known as leave one out cross fold 

validation. This provides a good measure of the performance on every instance of data 

however the computational costs of this method often make this infeasible for large 

datasets. The last common type of cross validation is Monte Carlo cross validation. 

This method involves randomly splitting the data into a test and training set and 

evaluating the performance, which is then repeated many times to obtain metrics about 

performance. The benefits of this method are that the split of the data is no longer 

linked to the number of iterations that are to be performed. The downsides are that 

there are chances that some data instances will never be used in the training or testing 

set and thus the performance might not be truly representative of the data. 

3.9  Conclusions 

Machine learning and data analytics are invaluable tools for condition monitoring and 

fault detection. Through a study of the literature it has been shown that various types 

of machine learning approaches and techniques have been applied to a wide variety of 

nuclear power station problems.  

Machine learning can easily be split into three different categories based on learning. 

Reinforcement learning involves creating a learner than can interact with an aspect of 

its environment, with a target reward that aims to be optimised. Supervised learning 

involves learning a relationship between input data and associated labels. 

Unsupervised learning involves obtaining knowledge from a supply of data with no 

associated labels. Semi-supervised learning is a learning technique that is most 

commonly associated with supervised learning but borrows from the learning 

techniques of both supervised and unsupervised learning. Semi-supervised machine 

learning is still in its infancy stage with regards to nuclear condition monitoring. 
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However there have been some examples recently which have incorporated it for the 

purposes of fault detection and classification.  

Through this study several techniques have been identified as being applicable to 

solving the problems associated with the UK’s AGRs. The first problem being tackled 

is being able to investigate and model the relationship between FGLT through analysis 

and regression. Regression learning techniques have been shown to learn the 

relationship between inputs and outputs within machine learning. 

 Secondly detecting cracks in graphite bricks from FGLT data by comparing the 

performance of standard supervised and semi-supervised learning methods. Semi-

supervised machine learning excels in situations where there are large amounts of 

unlabelled data but limited labelled data available. This situation occurs within 

graphite brick crack detection as there is limited ground truth data available but much 

more frequent monitoring data. Ground truth inspection data is costly to obtain as the 

reactor needs to offline, whereas the unlabelled data can be obtained while the reactor 

is a low power. Semi-supervised machine learning therefore is an appropriate approach 

to address the problem. These two problems are covered in much greater detail in the 

following chapters. 
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4 Estimating Fuel Channel Bore 

from Fuel Grab Load Trace 

Data 

 

4.1 Introduction 

There are two ways to obtain information about the condition of the fuel channels 

inside the graphite core. The first method is through inspection, which occurs every 18 

months to 3 years during scheduled outages. This physical inspection is performed 

either by a Channel Bore Inspection Unit (CBIU) or a New In Core Inspection 

Equipment Mk 2 (NICIE 2) (Cole-Baker & Reed, 2005). The second method is 

through monitoring data obtained  every 6-8 weeks during refuelling events, called the 

Fuel Grab Load Trace (FGLT) (West, et al., 2006). This data measures the mechanical 

load of the fuel stringer as it is being removed (discharge) and inserted (charge) into 

the core. FGLTs are required to be recorded and stored by the station for safety 

purposes, as they can be used to detect faults occurring during the refuelling process 

(West, et al., 2007). However, this data can also be exploited to provide health 

information as fuel channel dimensional change can be observed in the FGLT. 

Engineers examine the FGLT and look for evidence of anomalous behaviour, such as 

step changes in load between the brick interface peaks, the presence of additional 

unexpected peaks or changes in the magnitude of the interface peaks. Developing a 

model that robustly and accurately estimates fuel channel bore when provided with 

FGLT data would provide operators with additional supporting evidence concerning 

the health of the core. 

This chapter will discuss a model that has been created which allows accurate 

estimations of the dimensions of the fuel channel to be obtained from FGLT data. One 

of the key benefits of this method is that FGLT data is already routinely recorded and 

stored. Therefore, no additional equipment or expertise is required to obtain this data. 

Additionally, the older recordings of FGLT data that were recorded on paper have been 
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digitised and are made available for analysis. The remainder of this chapter proceeds 

to explain the different components of FGLT data that produce the load value. The 

process of developing a model is then shown, including testing on a blind dataset. The 

dataset for testing was obtained from operational data from a nuclear power station in 

the UK. 

4.2 Signal Decomposition 

Within the signal processing domain there are numerous different techniques that are 

used to deconstruct signals. Some examples of this involve frequency domain analysis, 

wavelet transforms and singular spectrum analysis.  

The most common approach to frequency domain analysis is performed with the 

Fourier transform. The Fourier transform decomposes a time signal into its constituent 

frequencies, allowing knowledge to be obtained about the frequencies that are present 

and filters can be designed that remove unwanted components. Benbouzid describes a 

classical approach of using a fast Fourier transform for detecting faults in induction 

machines in their review (Benbouzid, 2000). Nandi discusses the ability for frequency 

domain analysis of vibration signals for electrical motors in their review (Nandi, et al., 

2005). 

An issue that is encountered with frequency domain analysis is that aspects of the time 

domain are lost when only considering the frequency domain. This is addressed by 

performing time-frequency analysis instead, such as the short-time Fourier transform 

or wavelet transforms. Peng and Kunpeng have provided reviews of the applications 

of the wave transform for condition monitoring and fault diagnostics (Peng & Chu, 

2004) and tool condition monitoring respectively (Kunpeng, et al., 2009). This method 

of signal deconstruction can be very useful for situations where certain signals change 

frequency over time. 

Another example of signal decomposition is singular spectrum analysis (SSA), a 

method of time series analysis (Golyandina, et al., 2001). SSA splits a signal into a 

sum of its components which can be used for extracting trends in the data at different 

resolutions, smoothing, extraction of periodic components and extracting structure 

from data (Golyandina & Zhigljavsky, 2013). Kilundu has demonstrated the 

effectiveness of using SSA along with a bandpass filter to extract features that are used 
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to identify tool wear (Kilundu, et al., 2011). A method of fault diagnosis of roller 

element bearings using SSA has been implemented by Murugabatgan (Murugabatgan, 

et al., 2013). 

The methods described so far could have success in isolating the different components 

but with some difficulties. The data that is recorded is independent of time and the 

sample rate that records the load value can vary from trace to trace. This would make 

it difficult to identify the different components based on their frequency.  

The chosen method for the extraction of the desired signal is a knowledge-based 

approach as there is a good understanding of the underlying components within the 

FGLT data. Combining the knowledge of the fundamental design of AGR reactors, 

including the design of the fuel stringers, with the data has allowed for the extraction 

of key components. An understanding of the components of FGLTs is required to do 

this. Firstly, this is achieved by manually analysing the different contributions of load 

value, then when sufficiently understood, the process can be automated to allow for 

large scale signal deconstruction of FGLTs. 

4.3 Four Components Analysis 

It is understood that there are four main components that contribute to the load value 

of the FGLT (West, et al., 2014); this can be seen in Equation 4. 

 

𝐿(ℎ) =  𝐾𝐿Ф(ℎ) +  𝐾𝑈Ф(ℎ + 𝑑) + 𝐹𝐺(ℎ) + 𝑚 

 

Where L is the measured load at height h. KL is a parameter which relates the friction 

to load caused by the lower stabilising brushes (LSB) due to the channel bore (Ф) at 

height h. KU is a parameter which relates the friction caused by the upper stabilising 

brush (USB) to load due to the channel bore (Ф) at height h offset by d, the difference 

in height values between the LSB and USB. FG is the summation of any aerodynamic 

effects to the load value at height h and m is the mass of the fuel stringer, also known 

as the deadweight, which is constant. When attempting to recreate an accurate bore 

measurement of the fuel channel it is important to understand the contributing 

components and to deconstruct the load into these four components. The ability to 

isolate the friction component from the LSB from the other components is the goal as 

Equation 4 
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it contains a relationship of load to bore. The next sections will go into detail on the 

process of investigation for each of the four components and what their contributions 

are to the FGLT. 

4.3.1 Deadweight Analysis 

The deadweight of the fuel stringer is the largest contributing load component within 

the FGLT. It corresponds to the mechanical load that the weight of the fuel stringer 

exerts on the refuelling machine during the refuelling process. An assumption that has 

been made about the weight of the fuel stringer is that over the course of a single FGLT 

it will have a constant value. However, there is no assumption that the deadweight is 

the same for all traces, even paired charge and discharge traces may have differing 

deadweight values. Therefore, if the value of the fuel stringer can be calculated at any 

point of a single trace, it can be removed from that entire trace. 

As mentioned in chapter 2, there is a region in the FGLT where both the LSB and the 

USB are in sections of the refuelling machine which is sufficiently wide that they are 

not in contact with the brushes. It is therefore assumed that within this region of the 

FGLT the recorded load value should be representative of only the deadweight and the 

aerodynamic effects of the carbon dioxide coolant gas. When considering exclusively 

the refuelling events that occur at offload inspections, the assumption is that there is 

only a minimal effect from any coolant gas. In this region an assumption is made that 

only the deadweight contribution in present. 

The deadweight region of the FGLT occurs when the lower stabilising brush region of 

the fuel stringer is in the area between the top graphite brick and the guide tube. This 

region can be identified on the discharge trace as a constant load value area located 

between two large load peaks, after the LSB has been removed from the topmost brick 

layer. Meanwhile this same region can be identified in the charge trace as a flat plateau 

region which occurs before a large load value trough, both of which occur prior to the 

LSB entering the topmost brick layer of the core. 

An example of the deadweight region of the discharge and charge trace can be seen in 

Figure 4.1 and Figure 4.2 respectively, with the deadweight region identified. The load 

values are shown in mV which can be directly related to the mass that is being exerted 
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on the load recording machine. The sample numbers indicate the frequency of the load 

recordings in this section with every sample being an individual recording. 

 

 

 

 

 

 

 

 

 

 

 

 

These points can be identified by selecting the end point of the topmost brick layer in 

the trace and then extracting the region physically above it. In the case of the discharge 

trace this occurs after the last graphite brick and in the case of the charge brick it occurs 

prior to entering the topmost brick. With the sampling rate of the load measuring 

device and the speed of the fuel stringer, it requires approximately 600 samples to 

capture the entire double peak feature. By reducing the search region to a smaller size, 

it is possible to identify key points that can be explored. These have been indicated in 

Figure 4.3  for the discharge and Figure 4.4 charge traces. These points are 

characterised by turning points in the traces, but these are hard to identify due to the 

data being noisy. Therefore, before any changing gradient detection can be performed 

the data must be denoised by smoothing with a moving average/mean filter. 

 

 

 

Figure 4.1 - Example of the discharge 

deadweight region identified on a FGLT. 
Figure 4.2 - Example of the charge 

deadweight region identified on a FGLT 
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In the case of discharge traces initially points B and E are identified by finding the 

largest points where there is a gradient change that are sufficiently separated from each 

other. By identifying the two peaks successfully this creates a window in which to 

search for the flat region of the trace. Again, gradient change point analysis is used to 

work from B and E to identify points C and D, which is the suspension region of the 

discharge trace.   

In the case of the charge trace initially point I is identified by finding the lowest 

minimum value within the range. Points H and J can be identified by searching for the 

rapid changes in gradient either side of I. Point G can then be identified by searching 

backwards from point H for the data point after a prolonged positive gradient. The 

suspension region of the charge trace is found between points G and H. 

Once the suspension regions have been identified they can have their mean values 

calculated. This was performed for all recorded traces for all the reactors during the 

years 2004-2015. The analysis was performed by identifying the double peak region 

in both the discharge and charge trace and extracting those regions. The results are 

Figure 4.3 – Example of identifying the key 

points within the discharge deadweight region. 

Figure 4.4 – Example of identifying the key 

points within the charge deadweight region. 
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shown through Figure 4.5 to Figure 4.8 where the onload and offload data has been 

identified with different colours in the histogram.  The purpose of doing this is to 

determine the variation between different fuel stringer’s deadweights.  

  

 

 

Figure 4.5 – Histogram showing the load value of the fuel stringer’s deadweight for reactor 1. 

Figure 4.6 – Histogram showing the load value of the fuel stringer’s deadweight for reactor 2. 
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It can be seen in Figure 4.5  through Figure 4.8 that there is a distinct distribution of 

higher load deadweight values. This confirms from a data analysis viewpoint that there 

Figure 4.7 – Histogram showing the load value of the fuel stringer’s deadweight for reactor 3. 

Figure 4.8 – Histogram showing the load value of the fuel stringer’s deadweight for reactor 4. 
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are differences in the load values between onload refuelling instances and offload 

refuelling instances. This was predicted as it is known that in this region of onload 

traces there should be contributions from aerodynamic gas effects. In the offload traces 

this should not be the case. However, in addition to the clearly distinct higher load 

value traces, there is a subset of the offload traces that have very similar values to the 

onload traces. This is attributed to the pressurised offload traces that also contain 

aerodynamic gas effects. Therefore, knowing this and the fact that the weight of the 

fuel stringer in terms of load can vary, it is important to be able to repeatedly identify 

the deadweight region, to understand its contributing value. Understanding the 

underlying aerodynamic effects better can provide an indication on the variation in the 

deadweight region. 

4.3.2 Aerodynamic Analysis 

The aerodynamic effects that are present in the FGLT are difficult to quantify since 

they are present and variable throughout the entire refuelling event. This is due to the 

unpredictable nature of the coolant gas flowing through the fuel assembly. At the 

beginning of the reactors lives the gas effects were modelled, however now that they 

are approaching the end of their initial design lives or have surpassed them the 

structure of the core is different.  The original aerodynamic gas flow models for low 

power refuelling offload pressurised and offload depressurised refuelling can be seen 

in Figure 4.9. 
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The previous assumptions were, that during offline refuelling event there is only a 

minimal effect from any coolant gas and as such does not need to be accounted for. To 

analyse the contribution from aerodynamic effects both the discharge and charge traces 

are required.  

 

𝐿(ℎ) =  𝐾𝐿Ф(ℎ) +  𝐾𝑈Ф(ℎ + 𝑑) − 𝐹𝐺(ℎ) + 𝑚 

 

𝐿(ℎ) =  −𝐾𝐿Ф(ℎ) −  𝐾𝑈Ф(ℎ + 𝑑) − 𝐹𝐺(ℎ) + 𝑚 

 

Based on the four-component model equation, shown in Equation 17 for discharge and 

Equation 18 for charge, by removing the deadweight from both traces and subtracting them 

from each other results in only the aerodynamic effects being present. An assumption 

that is made here is that the frictional response from the discharge and charge traces 

are equal but opposite contributions. Another assumption that is made is that the core 

conditions producing the aerodynamic effects are identical on both traces. 

When applying this to some onload traces a selection of the results of the residual gas 

are shown in Figure 4.10 through Figure 4.12. This is done by observing the difference 

Equation 17 

Equation 18 
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Figure 4.9 - Model of aerodynamic gas flow effects including low power refuelling, offload 

pressurised refuelling and offload depressurised refuelling. 
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between the charge and the discharge traces that have been produced by the same 

refuelling event. If the assumptions hold true, then the resulting trace should be twice 

the aero dynamic contribution. Halving this value should then provide the aerodynamic 

contributions over the course of a single FGLT. Although the shapes produced are very 

similar, they experience some variation from different channels. 

 

 

 

Figure 4.10 – An example of the aerodynamic contributions within the FGLT produce by taking 

the residual of the charge and discharge traces.  
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Another method used to analysis the aerodynamic force was to investigate the 

differences between onload and offload refuelling events on the same channel that 

Figure 4.11 – An example of the aerodynamic contributions within the FGLT produce by taking 

the residual of the charge and discharge traces. 

Figure 4.12 – An example of the aerodynamic contributions within the FGLT produce by taking 

the residual of the charge and discharge traces. 
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Figure 4.13 - The normalised aerodynamic contribution obtained from the difference between 

onload and offload charge FGLTs. 

were performed within a short time period. It is assumed that if the time between the 

two FGLTs is small enough, then the bore measurements should be the same and that 

the deadweight of the fuel stringer should be the same. Therefore, the difference 

between the load values from these two traces should only be from differences in 

aerodynamic forces.  From accessing the FGLT database, five of the channels were 

identified to have had both onload and offload refuelling events within two years. For 

these five channels the difference between onload and offload traces was calculated 

for both charge and discharge. This can be seen in Figure 4.13 for charge and Figure 

4.14 for discharge where all five differences are on the same figure. The differences 

have been normalised around the double peak feature value where they were set to the 

same value for both onload and off load traces. It can be seen in both the charge and 

discharge traces that they are quite similar in value but even more similar in shape. 

There are two distinct regions which are two different contributions of aerodynamic 

forces. At the low sample numbers is the in core aerodynamic forces, there is then a 

transient effect and then the higher sample numbers are when the refuelling machine 

has become part of the core. 
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Figure 4.14 - The normalised aerodynamic contribution obtained from the difference between 

onload and offload discharge FGLTs. 

 

 

 

 

 

 

 

 

 

 

 

These results are similar in shape to the gas flow profiles that were modelled over their 

core regions. However, the load contribution varies depending on the trace being 

investigated. This variation makes it very difficult to estimate what the aerodynamic 

contributions are for an individual trace.  

4.3.3 Upper Stabilising Brush Contribution 

The USB contribution is produced from the steel brushes that are located on the upper 

region of the fuel stringer. There are two regions of importance in the FGLT regarding 

the USB contribution. In the context of the discharge trace, the first region occurs when 

the fuel stringer is first lifted until the LSB enters the fourth brick layer. The second 

region occurs when the LSB is in the middle of brick layer 5 and corresponds with the 

USB passing the piston seal bore. These two regions have been identified on both a 

discharge and charge trace in Figure 4.15 and Figure 4.16 respectively. 
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The main goal of the data exploration in this section was to understand the properties 

of the USB friction and to determine what its effects are on the load trace. The simplest 

Figure 4.15 – An example of a charge trace with the upper stabilising brush regions identified. 

Figure 4.16 - An example of a discharge trace with the upper stabilising brush regions identified. 
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way of doing this was to investigate the regions where there is USB offset and 

determine the consistency between the other traces. This was first performed on layer 

5 for both onload traces and offload traces. The layer 5 regions for both onload and 

offload traces are shown in Figure 4.17. In the offload trace the USB interaction can 

be seen clearly as an offset of C from the rest of the brick layers load values. This is 

not the case for onload, at this point there is a transient effect occurring where the 

aerodynamic forces change as essentially at this point the refuelling machine is 

becoming part of the core and matching the coolant gas flow. This can be seen in the 

onload trace where there is more of a stepwise increase in the load value in the 

equivalent region. The values of C, D and E were calculated for each of the onload 

traces and the C value was calculated for the offload traces. It was found that the values 

of E in the onload and C in the offload traces were consistently showing the same 

values. This can be seen in Figure 4.18, where the traces have been plot in order of 

newest traces to oldest with the red values being the offload C values and the blue 

values being the onload E values.  

 

 

 

 

 

 

 

 

 

 
Figure 4.17 - Example of upper stabilising brush region in layer 5 for onload (left) and offload 

(right) discharge traces and respective features which were extracted. 
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There are some missing values for the traces which are shown as gaps at some trace 

numbers. The method to obtain the values from the traces was not as accurate for some 

of the older traces and for the case of some onload traces an E value is not calculable 

as the two steps are combined and the onload D value is then detected instead.  

This USB interaction produces a step change which is mainly located between the 

values of 60-100mV. As this step change is quite consistent it is possible to remove it 

from layer 5. The inaccuracies from determining the correct change in load can also 

be seen on the right side of Figure 4.18 where it the older traces from as early as 2002 

are. 

In comparison to the LSB, the USB has a smaller diameter and is at the upper end of 

the fuel stringer. When analysing the effects of the upper stabilising brush it is 

important to note that that the load value is referenced with respect to the location of 

the LSB. The USB is roughly 6 metres further up the channel; this means that any 

contribution from it will not have any relevance to the current brick. Another important 

consideration about the USB is the maximum size of bore that is possible to be detected 

is roughly 250mm as this is the diameter that the brush extends. This combined with 

the fact that only brick layers 3 through 11 are being modelled means that there are 

only a few regions that there are USB friction forces present. The first region it is 

Figure 4.18 - Comparison of magnitude of layer five USB region for all traces where blue 

values are onload traces and red values are offload traces. 
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present in is from the start of the trace while the USB is in the guide tube, which has a 

diameter of 248.2 mm, until near the start of brick layer 4 where the guide tube widens. 

The second region is in brick layer 5 where the USB enters an area of restriction from 

the piston seal bore with diameter 247.65 mm. There is sometimes one other region 

with a contribution from the USB which can occur midway through layer 9. This is 

due to the USB “hunting” for the entrance to the stand pipe which has a diameter of 

250.4mm. This last contribution from the USB is not always present as the brushes 

may not contact it at all.  

The USB contributions have been segregated into the two individual contributions, the 

guide tube and piston seal bore interactions. Additionally, they have been separated 

based on the reactor the data has been obtained from. The results can be seen in Figure 

4.19 to Figure 4.27. It is important to note that when generating these histograms some 

of the older traces which were digitised from paper copies have been too noisy to 

correctly identify and as such have been omitted.  

 

 

 

Figure 4.19 - Histogram of the guide tube USB contribution for reactor 1. 
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Figure 4.20 – Histogram of the piston seal bore USB contribution for reactor 1 

Figure 4.21– Histogram of the guide tube USB contribution for reactor 2. 
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Figure 4.23– Histogram of the guide tube USB contribution for reactor 3. 

Figure 4.22– Histogram of the piston seal bore USB contribution for reactor 2. 
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Figure 4.24 – Histogram of the piston seal bore USB contribution for reactor 3. 

Figure 4.25– Histogram of the guide tube USB contribution for reactor 4. 
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Figure 4.27– Histogram of the guide tube USB contribution for all reactors. 

Figure 4.26– Histogram of the piston seal bore USB contribution for reactor 4. 
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From these results, contributions from the USB are shown to have a range in values 

and appear to have a normal distribution associated with them. The variance from the 

USB contributions for both the guide tube (in brick layers 3 and 4) and for the piston 

seal bore (in brick layer 5), is too great to choose a single pre-set value to remove. 

Therefore, it is much more effective to detect the contributions on a trace by trace basis 

to remove them. This will result in a much more accurate value to remove from the 

trace in those regions. 

It was expected that the offset values for the USB contributions would have consistent 

values over all the traces due to them having consistent dimensions within the reactor. 

It is unexpected that their dimensions would change over time as they should not be 

experiencing degradation as they are outside of the reactor and are made of steel. It is 

thought that the reason that there is some variance due to the different quality of the 

brushes that have resided within the core resulting in some changes in the friction they 

produce.  

4.3.4 Lower Stabilising Brush Contribution 

The lower stabilising brush contribution to the FGLT value is the most important 

contribution as it is directly related to the fuel channel bore diameter. The LSB consists 

Figure 4.28 Histogram of the piston seal bore USB contribution for all reactors. 
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of three sets of brushes with stainless steel bristles and has a diameter of 266.2mm. 

This is larger than the initial diameter of the fuel channel, which at the beginning of 

its life was 263mm. This means that throughout the 11 brick layers of the core the LSB 

will be in constant contact with fuel channel walls. Therefore, if this component of the 

model can be isolated entirely it can be used to estimate the bore measurements of the 

channel.  The contribution from the LSB is a frictional component and therefore it will 

always be impeding the motion of travel. In the discharge trace this manifests itself as 

an increase in load value from the deadweight value, with the load increasing even 

further when the channel bore measurement decreases. It is the opposite case for the 

charge trace (inserting the fuel stringer into the core), where the addition of friction 

results in a decrease in load from the deadweight value. When the channel bore 

diameter measurement decreases in this trace it will be seen in the lowering of the load 

value. Initially to visualise the data scatter graphs were used to show the relationship 

that exists between the bore and the load. The results from this visualisation can be 

seen in Figure 4.29 where pink is layer 11, dark blue is layer 10, cyan is layer 9, green 

is layer 8 yellow is layer 7 and red is layer 6. Layers 1-5 have been excluded from the 

as they all contain upper stabilising brush (USB) friction contributions in addition to 

LSB contributions. It is important to note that for these scatter graphs the load values 

for each layer of the trace have had their respective deadweight removed. This same 
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process was performed on the charge traces which can be seen in Figure 4.30 with the 

same respective colours for the different layers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the results of the load to bore comparison there was a strong indication of a linear 

relationship over the data range provided and that there must be some underlying noise 

Figure 4.30 - Charge lower stabilising brush scatter analysis for layers 6-11 showing the 

relationship of load to bore. 

Figure 4.29- Discharge lower stabilising brush scatter analysis for layers 6-11 

showing the relationship of load to bore. 
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or features explaining why there is some variation. One possible reason for the noise 

is that the lower stabilising brush is three sets of brushes. This will mean that load 

value responsible from friction will be more of an average over a larger area than the 

precise measurements from the inspection devices. Another reason could be that the 

fuel stringers are removed after different durations of time within the core and some 

fuel stringers are moved to different fuel channels routinely. Both reasons could 

account for different responses and noise present within the traces. 

This assumption of linearity over the range of available bore measurements is different 

to the relationship which has been established through experimental work (Skelton, 

2007) which has been obtained through performing refuelling on artificially machined 

graphite. The produced equation from the experimental work can be seen in Equation 

19 where Fr is the frictional load value produced from the stabilising brushes in kg and 

𝜙 is the bore diameter of the brick in mm. The region of bore measurements where 

this holds true is displayed in Figure 4.31.  

 

𝐹𝑟 =  −0.024986𝜙3 + 18.8256𝜙2 − 4729.3581𝜙 + 396226 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation 19 

Figure 4.31 - Plot of variation of brush friction load against bore obtained from experimentation 

(West, et al., 2014). 
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Using the results from this, a model has been generated showing what effects changes 

to bore have on the frictional force found in the load trace (West, et al., 2014). The 

resulting model was a third-degree polynomial. It is important to note that the model 

had used results from as small bores as 251 mm, however from the real bore 

measurements there are only a few bricks less than 255 mm. The signals also contain 

a large amount of noise which could be attributed to the fact that there are multiple 

brushes contributing to the load and underlying core contributions which are not fully 

understood. Therefore, over this smaller range of bore a linear relationship may be 

observed as a starting point.  

4.3.5 Four Component Summary 

This subsection can be summarised as follows, the deadweight of the fuel stringer 

can be considered a constant load value throughout the core region of the trace. The 

aerodynamic effects of an onload trace can be described as two different load values 

with a transient region between them and for the offload trace the aerodynamic 

contributions are considered to be negligible. The USB contributes two regions to the 

trace that are experienced by two separate locations, the guide tube and the stand 

pipe. Lastly the LSB load contribution is directly related to the changes in friction 

caused by the narrowing and widening of the fuel channel. The simplified four 

contributions can be seen in Figure 4.32 for a discharge trace. 
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4.4 Lower Stabilising Brush Extraction 

Using the knowledge gained from the analysis of the components it is possible to 

remove their contribution from the overall trace which results in only the friction 

contribution from the LSB. It is important to note that due to the quality of the traces 

and inspection measurements that the first two layers of the trace are unused and 

discarded. 

The first step is to ascertain the extent of aerodynamic effects present within the trace. 

The process for uploading traces into the BETA database and in the future LoTAS 

(Load Trace Analysis Software) allows for metadata indicating the status of the reactor 

that the traces were obtained to be uploaded with the trace. Additionally, in the rare 

case where the metadata is missing the state of the reactor it is possible to categorise 

the traces as either onload or offload by using hierarchal clustering. The next stage is 

to calculate the deadweight contribution from the fuel assembly, as stated previously 

Figure 4.32 – Stylistic examples of the four contributions to the fuel grab load trace: the lower 

stabilising brush contribution, the upper stabilising brush contribution, the fuel stringer 

deadweight and the aerodynamic effects. 
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the double peak feature can be identified and the load contribution can be extracted 

and removed from the entire trace.  

At this point the contribution should only be from frictional forces from both sets of 

stabilising brushes. There are the two main USB friction contributions that are 

removed from the trace; these are the brick layer 5’s piston seal bore and the guide 

tube of layer 3 and partly 4.  The piston seal bore friction effect can be detected and 

suppressed by detecting the changes in load value in layer five at both sides. The 

beginning and end of the transition of contact of the USB is detected and used to 

calculate a value of load to be removed to suppress the USB. Then the transitional 

period when contact is made and when contact is lost is suppressed by connecting the 

start and end of the USB interaction to the rest of the trace. This same procedure is 

repeated to remove the guide tube interaction by detecting the step change at the lower 

end of brick layer 4. The only difference is that there is no beginning of this USB 

contribution and as such there can be greater inaccuracies in layer 3. 

4.5 Load to Bore Model 

With it being possible to extract the LSB frictional load contributions for the in-core 

region from brick layer 3 to 11, this can now be used to train a regression model. The 

purpose of the regression model is to understand the relationship between FGLT and 

bore. To do this training data is required that is representative to the operational data. 

4.5.1 Training Data 

The data used to train the regression model was obtained from inspections where both 

FGLTs and bore measurements are produced at the same refuelling event. At 

inspections, the fuel stringer needs to be fully removed to allow the inspection 

equipment to be inserted into the fuel channel. To safely remove the fuel stringer its 

mechanical load will be recorded for reactor trip protection. Therefore, every fuel 

channel inspection should be able to be paired up with its FGLT data. Over the four 

reactors that there are data for there is a relatively small amount of training data located 

in the database to be used to train and test the performance of the bore estimation 

algorithm compared to the amount of fuel channel within the reactors.  
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Due to the nature of the traces containing contributions from the USB the regions of 

the traces that can be used are limited. Therefore, brick layers that do not have any 

contributions from the USB are used to train the model. Additionally, an exception is 

also made for the topmost brick layer in the core as it is significantly shorter than the 

other brick layers and may not be consistent for training. For these reasons, only brick 

layers 6-10 are used for training purposes. In addition, the deadweight values are 

calculated for each trace and are removed from their respective bricks for training and 

testing. The last step of pre-processing of the data is to remove the brick interface 

points which contain the static friction components. Static friction occurs due to the 

narrowing of the fuel channel at the brick interface points, which requires a greater 

amount of force to move the stabilising brushes over them. Therefore, in these regions 

the frictional response will be different to the frictional forces present during the 

continuous motion of the fuel stringer, such as in the middle of graphite bricks.  Due 

to the static friction present at brick interface points, the first 20% and the last 5% of 

the bricks are disregarded when analysing FGLT data for bore estimations. More data 

is removed at the beginning of the bricks as it takes an amount of distance before the 

frictional forces return to normal motion. This region has been defined for the 

discharge load traces and is different when considering the charge traces; this is due to 

the direction of travel of the fuel stringer.     

 

4.6 Models for Mapping Load to Bore 

 

There is some variance between the load values for the same bore value. It is believed 

that this is due to different conditions that are present in the core. The residual gas in 

the core and the degradation of the steel stabilising brushes are believed to be the 

primary causes of the variation. 

Three models were trained using the ground truth data to allow for estimations of 

channel bore, these were a linear regression model, a quadratic regression model and 

a third order polynomial regression. The linear regression model was chosen as in the 

initial data exploration of the relationship of load to bore it was found that there was 

strong linear correlation between the two data sets in the regions without static friction. 
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The quadratic regression model was also chosen as it was believed that the friction 

relationship would exhibit a nonlinear relationship, particularly as the fuel channel 

becomes narrower. The third order polynomial was chosen as previous rig work that 

was undertaken by (Skelton, 2007) resulted in a cubic relationship. 

4.7 Evaluation of Model 

The evaluation of the model was undertaken by K-fold cross validation. K-fold cross 

validation is a method of cross validation whereby the data is split into K different 

groups. One group is used to test the performance of algorithms and the other groups 

are used as training data. This process is repeated for however many folds of data until 

all data has been tested. The results of the testing folds can then be used to obtain a 

generalised understanding of the performance of the models on future unseen data that 

has not been used to train the algorithms. The number of folds chosen for this 

application was 5-fold cross validation. Initially the different reactors are segregated 

in the training and testing process so that data is only trained and tested on the same 

reactor. The performances of the algorithms were evaluated on a per layer basis and 

this was done by calculating the mean absolute errors from the predictions and the bore 

data and the variance of estimation errors of the bore. These can be seen Table 4.1 for 

reactor 1 and on reactor 2. Additionally, the mean absolute error has been visually 

shown for reactor 1 in Figure 4.33 and for reactor 2 in Figure 4.34. 

 

 

 

 

 

 

 

 

 



111 

 

 Brick 

Layer 

3 

Brick 

Layer 

4 

Brick 

Layer 

5 
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Layer 

6 

Brick 

Layer 

7 

Brick 

Layer 

8 

Brick 

Layer 

9 

Brick 

Layer 

10 

Brick 

Layer 

11 

Linear Mean Absolute 

Error (mm) 

1.1189 0.8922 0.8239 0.7563 0.7764 0.6962 0.7366 0.6328 1.0565 

Linear Error Variance 

(mm) 

0.6862 0.2882 0.2760 0.2607 0.2139 0.1805 0.2395 0.2155 0.4323 

Quadratic Mean 

Absolute Error (mm) 

0.7032 0.7075 0.6794 0.6210 0.6299 0.5541 0.6708 0.7127 1.0986 

Quadratic Error 

Variance (mm) 

0.1465 0.1964 0.1965 0.1863 0.1470 0.0960 0.2118 0.2652 0.4134 

Cubic Mean Absolute 

Error (mm) 

0.6972 0.6629 0.6494 0.5919 0.5868 0.5545 0.7211 0.7266 0.9203 

Cubic Error Variance 

(mm) 

0.2988 0.1961 0.1997 0.1838 0.1442 0.1120 0.2224 0.2564 0.4409 

 

 Brick 

Layer 

3 

Brick 

Layer 

4 

Brick 

Layer 

5 

Brick 

Layer 

6 

Brick 

Layer 

7 

Brick 

Layer 

8 

Brick 

Layer 

9 

Brick 

Layer 

10 

Brick 

Layer 

11 

Linear Mean Absolute 

Error (mm) 

1.1443 1.1806 1.0557 1.0463 0.9275 0.8479 0.8328 0.6962 1.3882 

Linear Error 

Variance (mm) 

0.7007 0.6576 0.6309 0.4558 0.4691 0.3960 0.4717 0.4081 0.5840 

Quadratic Mean 

Absolute Error (mm) 

0.7461 1.0270 0.8356 0.8762 0.7503 0.6254 0.7469 0.8297 1.3054 

Quadratic Error 

Variance (mm) 

0.3285 0.5774 0.5275 0.4464 0.3774 0.3091 0.4319 0.4557 0.7588 

Cubic Mean Absolute 

Error (mm) 

0.7712 1.0446 0.8417 0.8784 0.7595 0.6254 0.7893 0.8125 1.2134 

Cubic Error Variance 

(mm) 

0.3430 0.6033 0.5647 0.4724 0.3872 0.3263 0.4397 0.4762 0.7560 

 

 

 

Table 4.1 – The mean absolute errors for each brick layer for reactor 1. 

Table 4.2 – The mean absolute errors for each brick layer for reactor 2. 
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Figure 4.33– The mean absolute errors for each brick layer for reactor 1. 

Figure 4.34 – The mean absolute errors for each brick layer for reactor 2. 
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It can be seen from the results of the K-fold cross validation testing that the 

performance of all the algorithms is better on reactor 2. It is believed that the reason 

for this is that typically in reactor 1 the bricks are similar to each other and there are 

less highly shrunken bricks. Additionally, for all models the errors on brick layer 11 

are larger than most of the other brick layers, this is attributed to not using brick layer 

11 as part of the training or testing data. It is worth noting however that these bricks 

are different in size and shape to the others and are subjected to the least amount of 

ageing mechanisms. Overall it can be seen that the quadratic and cubic regression 

models perform better than the linear model on both reactor 1 and reactor 2 however 

this is not the case for brick layers 10 and 11. Additionally the mean absolute error of 

the quadratic and cubic models has a mean absolute error of less than 1 mm for all 

brick layers outside of brick layer 11. This is seen as a success as this was more than 

the acceptable accuracy that graphite core engineers desired. There is very little 

difference between quadratic and cubic performance. The reason for this is due to the 

small region of bore that is available to be used for bore estimation training and testing 

resulting in the produced regression models being very similar over this region. 

The recommendation going forward for graphite brick bore estimation is to be 

undertaken with a quadratic model as they exhibit a lower amount of variance. 

However, it should be noted that outside the current range of bore in the training and 

testing data that the performance cannot be correctly estimated and when new 

operational data from the extremes of bore diameter are obtained further training 

should be performed. This will allow the accuracy of the algorithm to be improved and 

maintained as the graphite core ages. 

 

4.8 Conclusions 

This chapter has shown that it is possible to estimate fuel channel bore from FGLT 

data. To do this the four different components of the FGLT were explored. The 

deadweight of the fuel stringer has been established in terms of mechanical load. This 

has been explored for both onload and offload refuelling events and it has been shown 

that there are differences in these values. From this work an algorithm was developed 

to identify the specific region on the trace automatically to extract the fuel stringer’s 
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mass contribution and be able to remove it from the entire trace. The contributions of 

the USB have been able to be identified and analysed with respect to the load that they 

contribute to the overall trace. A method to automatically detect the change points that 

indicate the contribution has also been implemented for both the guide tube region and 

the piston seal bore regions of the trace. The aerodynamic effects have been explored 

and it has been found that it is a difficult task to be able to include this in a model due 

to their unpredictability. The lower stabilising brush has been shown to have linear 

properties which are why a linear regression model was originally proposed to model 

the relationship. 

It has been shown by identifying important areas of interest in the FGLT, that it is 

possible to remove contributions to the load value, such as fuel stringer deadweight 

and USB friction, which allows the lower stabilising brush to be extracted. This might 

have been able to be achieved through signal decomposition techniques such as 

singular spectrum analysis but due to the available information about refuelling events 

the knowledge-based approach was chosen. 

It was found that by comparing three different models of regression (linear, quadratic 

and cubic) that it is possible to accurately estimate fuel channel bore from FGLT data 

for 75% of the length of the brick. It was also found that out with one brick layer the 

mean average error for both quadratic and cubic models were within 1mm which is 

desirable for accurate predictions. The recommendation is to use either the quadratic 

or cubic model on new data but to retrain the model in the future with new training 

data that extends beyond the current limits of brick bore when it becomes available.  

The bore estimation framework could have great value in the future of monitoring the 

bore changes in AGR graphite bricks in the UK. The implementation of this algorithm 

could allow for much more frequent data to be obtained. A process flow diagram of 

the framework can be seen in Figure 4.35. Initially, the raw FGLT data is obtained and 

both the deadweight and upper stabilising brush contributions are removed leaving 

only the lower stabilising brush contribution. The isolated trace is then subjected to a 

regression model which has been previously trained on the relationship between the 

lower stabilising brush component and bore inspection measurement, allowing 

accurate bore estimations to be produced.  
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The performance of the regression model is good with many of the brick layers 

experiencing mean absolute errors of less than 1mm, which is desirable  However, the 

bricks at the extremes range of the training data do not perform as well. This means 

that retraining should occur when more data is made available. As the reactors age, the 

graphite bricks will be more likely to be in the regions that are considered the extremes 

at the time of writing. Therefore, to maintain accuracy retraining should be 

incorporated when applicable.  

Raw FGLT Data 

Deadweight and Upper Stabilising Brush 

Removal 

Extracted Lower stabilising Brush Frictional 

Component 

Trained Regression Model 

Bore Estimation 

Training Data 

CBIU/NICIE2 Inspection Bore 

Measurements 

Extracted Lower Stabilising 

Brush Frictional Component 

Figure 4.35 Bore estimation framework process flow diagram. 
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5 Semi-Supervised Learning for 

Advanced Gas-Cooled Reactor 

Graphite Brick Crack Detection 

5.1 Introduction 

As stated previously graphite bricks change shape over the duration of their life within 

the core. These changes in the graphite brick structure result in the brick experiencing 

compressive and tensile stresses, which can result in cracks developing. It would be 

beneficial to detect these cracks from the FGLT monitoring data.   A challenging 

aspect of developing a machine learning algorithm to detect cracks within graphite 

bricks is that there are an insufficient number of known cracks in the ground truth data 

to effectively train a classifier.  This is due to only a small number of channels being 

inspected at statutory outages every 1-3 years. Whereas, monitoring occurs much more 

frequently, roughly every 6-8 weeks, and records data that has no ground truth 

information associated, known as unlabelled data. Under most supervised machine 

learning approaches unlabelled data is not used, but by utilising semi-supervised 

learning techniques this unlabelled data can be useful. Therefore, three different semi-

supervised machine learning techniques have been applied to the graphite brick crack 

detection problem and their performance. The benefits of a semi-supervised approach 

are that a large amount of historical brick monitoring data, which can be used to 

supplement the smaller amount of labelled inspection data. This would circumvent the 

arduous, time-consuming task of the manual assessment of FGLT data, which requires 

specific domain expertise. 

As with the previously discussed problem of monitoring the bore dimensions of the 

graphite bricks, monitoring data produced at refuelling events has been chosen to be 

used to detect the presence of cracks in the graphite bricks.  This will allow more 

frequent information to be obtained that could aid in future inspections of the graphite 

cores as well as their operation. However, unlike the previous problem, which had 750 

data samples per labelled brick to use to train each labelled brick in this instance is 
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only considered as 1 data sample. This is further justification to pursue semi-

supervised machine learning approaches.  

Within the nuclear condition monitoring, it is unlikely to have a large amount of 

available failure data for systems and components. It is also becoming increasingly 

common for large amounts of operational data to be stored and to remain unlabelled 

(Strachan, et al., 2007). This is due to the volume and velocity of data that is being 

stored as well as the cost of having limited specialised engineers that can interpret the 

data. Semi-supervised machine learning has been identified in other domains for 

improved performance by allowing both labelled and unlabelled data to be used as 

training, such as in vibration monitoring of compressors (Potočnik & Govekar, 2017), 

structural health information of bridges (Chen, et al., 2014) and applications for on 

line fault diagnostics (Yuan & Liu, 2013). Specifically, within the nuclear power 

condition monitoring domain there have been two main contributions of semi-

supervised machine learning from Ma (Ma & Jiang, 2015) and Moshkbar-

Bakhshayesh (Moshkbar-Bakhshayesh & Ghofrani, 2016). 

5.2 Feature Extraction 

Initially, the features that have been chosen as inputs to the classifier were the base 

calculations which are obtained from the M/W point features (West, et al., 2008). The 

M/W point features shown on stylised discharge brick trace which can be seen in 

Figure 5.1.  They are named after the general shape that represents a single brick in 

the FGLT, where it can either be simplified to 5 points that look like the letters “M” 

and “W”. The points are calculated from different regions of the bricks with how their 

values are obtained shown in Table 5.1 where 0-100% indicates a relative location 

from the bottom of the brick to the top of the brick or left to right in the FGLT as 

indicated in Figure 5.1. These values were chosen to be able to obtain the key shape 

of the response of a single graphite brick in the trace. The base calculations then 

develop this further by performing operations on the bricks and their neighbours. 

These operations were originally chosen by graphite core engineers as a guideline to 

detect abnormal bricks and the calculations to obtain them can be seen in Table 5.2. In 

Table 5.2 the subscripts to the M/W points are indicating if they are obtained from the 
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neighbouring bricks specifically the upper or lower brick indicated by U and L 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1- Calculations to obtain W point features for a single brick from a discharge trace 

(West, et al., 2008) 

A The maximum load value between 0-10% of the brick 

B The minimum load value between 10-25% of the brick 

C The maximum load value between 25-75% of the brick 

D The minimum load value between 75-90% of the brick 

E The maximum load value between 90-100% of the brick 

0% 100

% 

Figure 5.1 - Single brick trace including interface regions with accompanying illustration of the 

M/W point features on stylized representation of a single brick FGLT. 
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In addition to these base calculations, addiontal graphite brick characterisation features 

have been chosen as additional inputs. These were chosen after discussions from 

graphite core engineers based on features they observe during manual analysis. These 

are the difference between the current bricks average load and the average load of the 

neighbouring bricks, both upper and lower. The last feature was the difference in load 

of the height of the highest peak in the middle 20-80% of the brick layer and the 

average load over that same region. These additional features can be seen in Table 5.3. 

Table 5.2 - Basic calculations for feature selection obtained from W point data for discharge 

trace (West, et al., 2008) 

BC1 Height of the upper brick interface peak for the previous brick layer (EL-

DL) 

BC2 Difference between the upper brick interface for the previous brick layer 

and the lower brick interface for the current layer (A-EL) 

BC3 Height of the lower brick interface peak for the current layer (A-B) 

BC4 Difference in the peak base heights between the upper brick interface for 

the previous brick layer and the lower brick interface for the current brick 

layer (B-DL) 

BC5 Difference in the peak base heights between the upper brick interface for 

the current brick layer and the lower brick interface for the next brick layer 

(D-BU) 

BC6 Difference in the upper brick interface peak for the current brick layer (E-

D) 

BC7 Difference between the upper brick interface for the current brick layer 

and the lower brick interface for the next brick layer (E-AU) 

BC8 Height of the lower brick interface peak for the next brick later (AU-BU) 

BC9 The difference between the mean load value of 45-55% and mean load 

value of 20-80% of the brick 
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5.3 Comparison of Semi-Supervised Machine Learning Algorithms 

5.3.1 Overview of Algorithms 

The following section details the application of different semi-supervised machine 

learning algorithms. The semi-supervised learning algorithms that have been applied 

are Co-training, label propagation and transductive support vector machines.  

1. Co-Training – A method which leverages two independent views and 

classifiers of the data to cooperatively learn about the unlabelled data from 

each other. This algorithm was originally developed by Blum and Mitchell 

(Blum & Mitchell, 1998) 

2. Label Propagation – A learning graph-based method which allows labels to 

propagate through unlabelled data based on a similarity metric, typically 

Euclidian distance. This algorithm was originally developed by Zhu and 

Ghahramani (Zhu & Ghahramani, 2002). 

3. Transductive Support Vector Machines (TSVM) or Semi-Supervised Support 

Vector Machines (S3VM) – A variation of support vector machines whereby, 

in addition to minimising the error due to the separating hyperplane, the margin 

between the two classes is maximised by incorporating low density regions in 

both the labelled and unlabelled data. This algorithm was originally theorised 

by Vapnik (Vapnik, 1998). 

Table 5.3 Additional basic calculations to be included as features for crack detection algorithm. 

BC10 The deference between the maximum load value of 20-80% of the brick and 

the mean load value of 20-80% of the brick 

BC11 The difference between the mean load value of 20-80% of the brick and the 

mean load value of 20-80% neighbouring lower brick 

BC12 The difference between the mean load value of 20-80% of the brick and the 

mean load value of 20-80% neighbouring upper brick 
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Co-training has been chosen as an algorithm to be investigated due to the nature of the 

available data. Co-training requires a minimum of two conditionally independent 

views of the same data to effectively operate (Krogel & Scheffer, 2004). Within the 

context of crack detection, the two views of the data are obtained from the discharge 

and charge traces of the same fuel channel. To the best of the author’s knowledge, at 

the time of writing there has not been reported use of co-training within the nuclear 

condition monitoring domain. The requirement for the training data is two independent 

viewpoints of the problem which is not necessarily available in a lot of circumstances. 

However due to the unique situation of the FGLT data having a discharge and charge 

trace this makes co-training a valid option for graphite brick crack detection.    

Co-training was originally developed and shown to have use in the classification of 

web pages by Blum in Mitchel (Blum & Mitchell, 1998). However, it has been used 

in other domains since. In bridge structural health monitoring co-training and tri-

training are proposed as a structural health data analysis model (Yu, et al., 2012). A 

modification of the co-training algorithm, known as COPROG (co-training-based 

data-driven prognostic approach) was proposed by Hu (Hu, et al., 2011) (Hu, et al., 

2012). The modification to the co-training algorithm is that instead of simply 

classifying a fault in the data it instead calculates a remaining useful life (RUL). This 

has been demonstrated in two applications in the literature, bearings and faulty fan. In 

these examples feedforward neural and radial basis networks were used as the base 

classifiers within the COPROG wrapper. 

Label propagation is being investigated due to its demonstrated application on nuclear 

condition monitoring simulator data by Ma (Ma & Jiang, 2015). Ma has shown how a 

combinational algorithm of a combinational algorithm of spectral clustering and label 

propagation has managed to classify faults in a Canada deuterium uranium (CANDU) 

desktop simulator and a physical nuclear power plant simulator. This method was 

chosen as there was difficulty in obtaining a sufficient volume of training data of 

specific faults in nuclear power plant systems that would be able to train a supervised 

classifier. Ma combined operational unlabelled fault data with simulated fault data 

within the label propagation algorithm to allow the classification of faults. Outside of 

nuclear condition monitoring label propagation has been shown to have applications 

for structural bridge health monitoring (Chen, et al., 2014). 
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TSVM are being targeted as an algorithm to investigate due to its shown uses in 

transient classification in nuclear power station context by Moshkbar-Bakhshayesh 

(Moshkbar-Bakhshayesh & Ghofrani, 2016). This is achieved by using a previously 

created algorithm containing autoregressive integrated moving average (ARIMA) 

model which was combined with an error back propagation (EBP) algorithm 

(Moshkbar-Bakhshayesh & Ghofrani, 2014). The downside of this first step method is 

that it is unable to cluster the unknown and unlabelled transients and is rectified by the 

inclusion of the semi-supervised learning algorithm TSVM. This combination 

demonstrates the ability of TSVMs for classification purposes such as in graphite brick 

crack detection. Outside of nuclear condition monitoring, TSVMs have been shown to 

have applications for intelligent gear fault diagnosis by Shen (Shen, et al., 2012). 

5.3.2 Supervised Competitors 

This section of the chapter will describe the implementations of the supervised 

machine learning algorithms that are being compared to the semi-supervised 

techniques. The three supervised algorithms that are being compared to the semi-

supervised learning algorithms are artificial neural networks (ANN), k-nearest 

neighbours and support vector machines. 

5.3.2.1 Artificial Neural Network 

Artificial Neural Networks are being chosen as a supervised machine learning to 

compare to Co-Training methods as they were the base classifier that was being trained 

in the process. The chosen ANN for supervised machine learning is the 

backpropagation multilayer perceptron.  

One hidden layer was chosen to be used to detect cracks as the comparisons are meant 

to be to off-the-shelf applications of the supervised techniques and deep learning 

ANNs are not being considered. 

The method of choosing the number of nodes in the hidden layer was by trial and error 

under the guidance of the fact that the number of nodes in should be between the size 

of the input and output layers. To aid in this process some general rule of thumb 

methods were used as a starting point to help identify the most consistent hidden layer 

size. These were defined by Heaton (Heaton, 2008) as follows: 
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• The number of hidden neurons should be between the size of the input layer 

and the size of the output layer. 

• The number of hidden neurons should be 2/3 the size of the input layer, plus 

the size of the output layer 

• The number of hidden neurons should be less than twice the size of the input 

layer. 

Through this method the hidden layer size was found to have the most optimal 

performance with a size of 10. 

5.3.2.2 Support Vector Machine 

Support Vector Machines are compared to TSVM as they are the base classifiers that 

are adapted to be suitable for semi-supervised machine learning.   

In addition to linear classification, nonlinear classification can be performed in much 

the same way by transforming the data into higher dimension space where it is linear 

separable.  

 

𝐾𝑅𝐵𝐹(𝑥, 𝑥′) = exp (−𝛾‖𝑥 − 𝑥′‖2) 

 

The radial basis function kernel was chosen to be used to allow the SVM to transform 

the data into a linearly separable space. The radial basis function equation can be seen 

Equation 20 where γ is a variable which gamma can be altered to define the influence 

of individual training examples with low values meaning they have further reaching 

influence and large values meaning they have much closer influence. Another 

parameter that is needed for SVMs is the C parameter that is associated with the cost 

of misclassification by the complexity of the decision surface. Large values of C 

indicate a complex surface with a greater number of samples as support vectors 

whereas small values create a smoother surface where less support vectors are used.  

For this application a grid search was used to iteratively establish the best parameters 

between 10-3
 and 103. The results of this process can be seen in Figure 5.2 which shows 

a heat map and gradient of the performance of the SVM on the cracked brick data set. 

From the result of this search it was found that the optimal value for the C parameter 

was 8 and for γ parameter the value was found to be 2. 

Equation 20 
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5.3.2.3 K-Nearest Neighbours 

K-Nearest Neighbours (kNN) was chosen as an appropriate algorithm to compare label 

propagation to. kNN and label propagation are similar as they are both graph based 

algorithms that provide labels to unlabelled data based on its similarity to other data. 

In k-nearest neighbours the unlabelled data is classified by a majority voting approach 

that is based on the other known labelled data. It does this by identifying the k nearest 

instances of data in the feature space. The class with the highest number of instances 

is then used to inform the classification of the data instance. This process can then be 

repeated for all the remaining data to allow for full classification of the unlabelled data. 

In the attempt for graphite brick crack classification the k value has been set to 3. 

Figure 5.2 – A heat map of the search for C and γ to find the optimal values for the radial basis 

function.  
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5.3.3 Training and Cross Validation 

The data used for training the semi-supervised learning algorithms is the FGLT data. 

The labelled portion of the FGLT is obtained at offline inspections, where visual 

inspection equipment is used to assess the health of inspected fuel channels. 

Unlabelled instances of the FGLT data are obtained at low power refuelling events. 

Additional labelled data can be obtained by assigning labels to unlabelled data if they 

have labelled inspection data from the same channel. For example, if a crack in a brick 

is observed during an inspection, which will mean that all future instances of 

monitoring that brick can be labelled as being cracked.  

It was possible to obtain 175 instances of labelled training data and an additional 524 

instances of unlabelled training data from the bricks in the core from a single AGR 

reactor. Of the labelled training data 40 instances are of cracked bricks while the 

remaining 135 instances do not contain any cracks. Without time consuming analysis 

there is no way to establish the classification split of the unlabelled data. It is not 

possible to assume that the unlabelled data with have the same distribution as the 

labelled data as there could be a bias in the specific channels that are inspected. For 

example, the CHANSELA software tool (Watson, et al., 2011) supports the inspection 

regime by selecting channels which have the highest criteria to be inspected. This can 

lead to more inspections of the bricks which are already known to be cracked or regions 

of the core that are more prone to cracking.  

Previous work (West, et al., 2008) has shown how, after discussion with domain 

experts, the general shape of a graphite brick can be extracted from a single FGLT by 

selecting five discrete points on the trace. Calculations are then performed on the value 

of the five points as well as the five characteristic points from both the bricks upper 

and lower neighbouring bricks on the same channel. By comparing the data relative to 

the neighbouring bricks this allows features to be extracted that are independent of 

offsets introduced by the trace or brick layer they are from.  

5.3.4 Artificially Generated Bricks 

Currently there is not a sufficient amount of cracked data to effectively test the 

algorithms due to a large class imbalance between the majority normal brick data and 
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the minority class crack data. Therefore, the decision was made to artificially generate 

new data exclusively for testing. To do this, two different types of cracks (bore 

initialled axial and circumferential) were chosen to be artificially generated for each 

of the layers being analysed.  

Artificial circumferential cracks were created by extracting regions of cracks in the 

FGLT that are from known circumferential cracks and then overlaying them onto 

known healthy brick inspection data. Similarly, to this to generate the bore initiated 

axially cracked data the load value over a brick region is increased by 10mV.  Through 

this process an additional eight cracks were introduced to be classified; one 

circumferential and one axial crack for each brick layer 7-10. Based on the theoretical 

understanding of how cracks affect FGLT data and visual inspection of the modified 

trace, these artificially generated brick would be identified as such by graphite core 

engineers. Figure 5.3 through Figure 5.10 shows the artificially generated crack FGLT 

data. The results of these artificially generated cracks will be discussed in the following 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 - Artificial circumferential crack on 

brick layer 7 of a discharge FGLT. 

Figure 5.4 - Artificial circumferential crack on 

brick layer 8 of a discharge FGLT. 
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Figure 5.6 - Artificial circumferential 

crack on brick layer 9 of a discharge 

FGLT. 

Figure 5.5 - Artificial circumferential crack on 

brick layer 10 of a discharge FGLT. 

Figure 5.7 – Artificial axial crack on 

brick layer 7 of a discharge FGLT. 
Figure 5.8 – Artificial axial crack on brick layer 8 of 

a discharge FGLT. 

Figure 5.9 - Artificial axial crack on brick layer 

9 of a discharge FGLT. 

Figure 5.10 - Artificial axial crack on 

brick layer 10 of a discharge FGLT. 
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5.4 Results 

To measure the performance of the three different semi-supervised learning algorithms 

(co-training, label propagation, TSVM) they were applied on the same AGR graphite 

brick monitoring data. Additionally, each of the semi-supervised learning algorithms 

has been compared to an equivalent supervised machine learning algorithm. Co-

training is compared against its base classifier, an artificial neural network (ANN). 

Label Propagation is compared to the k- nearest neighbour algorithm. Lastly TSVM 

are compared to traditional supervised support vector machines (SVM). To evaluate 

the performance of the algorithms a Monte Carlo approach to cross validation is 

undertaken, whereby over 100 iterations the training set and test set are shuffled 

randomly using a 3:1 ratio. This allows metrics of performance to be calculated that 

are generalised to the entire available labelled test set. It is also worth considering the 

differences between the deterministic and stochastic natures of the algorithms. 

Therefore, a Monte Carlo approach has been taken compared to a k-fold cross 

validation approach. For example, label propagation will always perform the same if 

the training and test data remain the same however ANNs start with randomly initiated 

values so there will be variations in performance regardless of the training and test 

data being consistent. 

The most basic metric of performance of the algorithms on the test data is the average 

performance on the test set; this can be seen in Equation 12. However, using accuracy 

alone is not a suitable measure of the performance of the algorithms due to there being 

a class imbalance problem. Therefore, it is necessary to consider both the recall, 

precision and resulting F1 score to determine the most suitable classifier. The recall 

value is important for graphite brick detection as it displays the mean percentage of 

crack bricks in the testing set that are correctly detected and can be calculated as shown 

in Equation 13. Recall provides more information than performance for detecting cracked 

graphite bricks due to the class imbalance. Normal graphite bricks that have not 

experienced any cracking outnumber those that have cracked. This means that basing 

analysis only on accuracy values result in bias towards correct classification on normal 

bricks. For this application however, it is important to understand the mean number of 

cracks that are detected by each algorithm. Additionally, another important metric of 

performance is the precision of the algorithms and can be calculated as shown in Equation 
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14. Precision, in the case of graphite bricks, is the mean percentage of the number of 

correctly detected cracked bricks out of all the cracked bricks detected. This allows for 

a confidence in classification to be established and provides an insight into the 

likelihood into whether detected cracked bricks are indeed cracked. 

Lastly, the F1 score can be considered to bring both precision and recall together and 

can be calculated from Equation 15. F1 score can be more generally described as the F-

score when precision and recall are not weighted similarly to each other, this can be 

seen in Equation 16 where β is the weighting factor (β values greater than 1 indicate greater 

priority on recall with β values less than 1 indicate greater priority on precision).  When 

considering this specific application, recall should be prioritised over precision as it is 

safer to be conservative with regards to the safe operation the reactors. Given the 

option it would be better to know the maximum possible number of cracks in the 

reactor than the minimum number of cracked bricks. 

Learning 

Algorithm 

Accuracy 

Mean (%) 

Accuracy 

Standard 

Deviation 

(%) 

Recall 

Mean 

(%) 

Recall 

Standard 

Deviation 

(%) 

Precision 

Mean (%) 

Precision 

Standard 

Deviation 

(%) 

F1 

Score 

(%) 

Co-Training 81.67 4.17 53.52 16.15 56.61 12.89 53.28 

ANN 75.91 4.77 73.51 9.88 45.35 9.09 55.34 

Label 

Propagation 

50.60 8.55 50.65 10.75 35.18 9.18 41.04 

K-NN 84.14 3.44 30.66 9.64 79.26 12.25 43.51 

TSVM 67.64 3.83 82.89 6.59 37.20 6.08 50.94 

SVM 81.84 3.43 62.23 10.38 55.49 9.58 57.98 

 

A possible reason that the precision of some of the semi-supervised learning algorithm 

falls while recall improves compared to their supervised counterparts is believed to be 

some overlap in the feature space. For example, some bricks which have experienced 

a large amount of shrinkage or alternatively have passed turnaround point and are now 

Table 5.4 – Results of the three semi-supervised machine learning algorithms as well as the 

three supervised machine learning algorithms. Comparing their accuracy, recall, precision and 

F1 score. 
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growing could result in the FGLT data being perceived as a cracked brick. This 

indicates that either the input features selected are not sufficient at boundary regions 

to distinguish between the classes or the FGLT does not provide enough fidelity in its 

inferred measurements to allow the finer nuances to be learned. Another reason 

misclassification may have been introduced is that the input features used to represent 

the bricks are reliant on the neighbouring bricks. This could be a reason for the low 

value of precision in many of the algorithms cases as some uncracked bricks may be 

getting misclassified based on their neighbours. 

The implemented algorithm with the highest accuracy was found to be the k-NN with 

a mean accuracy of 84.14% through a 100 iteration Monte Carlo cross validation.  

Transductive Support Vector Machine does not have the highest accuracy, but it does 

have the highest average value of recall at 82.89%. However, the downside of this is 

that the precision is 37.20% which indicates that many bricks identified as cracked 

would be false positives.   

K-NN has a very high accuracy but this is represented by a high precision of 79.26% 

but a lower recall of only 30.66%. This means that while the algorithm does not 

produce many false positive bricks it does misclassify a significant number of cracks. 

Co-training has reasonable accuracy at a measure at 81.67% however this is largely 

due to the nature of assessing the performance of algorithms on an imbalanced data 

set. When considering the cracked bricks in the testing data the recall and precision of 

co-trained ANNs are 53.52% and 56.61% respectively.  

The recall value of co-training is less than its supervised counterpart artificial neural 

networks with their recall values being 53.52% and 73.51% respectively. The reason 

for the poorer recall score of the co-training is due to the charge trace not being as 

good an indicator for cracked bricks as the discharge trace.  Therefore, perhaps as 

opposed to using co-training a self-training method of machine learning should be 

considered. Alternatively, by changing the input features of the two base classifiers 

co-training may be possible. This could be achieved by using half the features with 

base classifier 1 and the other half with base classifier 2 however the downside of this 

would be that both classifiers would be trained on fewer features potentially losing 

valuable classification information. 
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Label propagation does not perform as well with detecting the presence of cracks as 

the other algorithms. It has an accuracy of 50.6% with a precision and recall values of 

50.65% and 35.18% respectively. These low values would not be able to provide any 

confidence in the detection of cracked bricks and would identify less cracked bricks 

than simply guessing the classifications. The low values are most likely due to the data 

not being very easily separated within the feature space. 

Recall in this situation has been identified as the most important metric for 

performance as the classification process is not meant to replace the human manual 

labelling process but help expedite it. High recall values will allow this as most of 

cracked bricks will have been identified which is the most important aspect to graphite 

core engineers that are currently analysing this data. 

The recommendation for the most suitable algorithm for this problem is to use the 

semi-supervised TSVM algorithm primarily as it has the largest recall value. It could 

also be possible that the bricks that have been misclassified as cracked could be worth 

monitoring. Additionally, as the neighbouring bricks have been used to provide 

reference for some of the input features, this could be a reason why some bricks are 

getting misclassified. The bricks above and below them in the core could be cracked 

and as a result may influence the correct classification of the bricks being tested. 

The results could see some improvements and optimisation around achieving a high 

level of precision while still maintaining an appropriate level of recall. These 

improvements and others will be discussed further in the following chapter as future 

work. 

As mentioned previously in this chapter, artificially cracks were generated to provide 

some additional training data. Therefore, the eight cracks from Figure 5.3 through to 

Figure 5.10 underwent feature extraction and had each of the different crack detection 

algorithms applied to them. The results of the artificial cracks can be seen in Table 5.5 

– The accuracy of the six machine learning algorithms when applied to the artificial 

cracked brick data. only showing accuracy as only cracked bricks were present in the 

test set. 
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Learning Algorithm Accuracy (%) 

Co-Training 24.5 

ANN 70.25 

Label Propagation 50 

K-NN 25 

TSVM 100 

SVM 75 

 

It can be seen from these results that they are similar to the results of the inspection 

test data when considering cracked bricks. This demonstrates the ability of the 

algorithms on prominent crack data and effectively represents the algorithms’ recall 

performance. TSVM shows strong promise again on the artificial data where it 

correctly identified the cracks, something that none of the other algorithms managed. 

5.5 Discussion 

Co-training was chosen to be included in this comparison due to the availability of two 

independent views of the data in the form of the charge and discharge traces. If both 

individual algorithms were performed adequately on each trace, then the combination 

of both should have resulted in an overall better classifier. However, this was not the 

case as co-training performed worse than the performance of the base algorithm on the 

discharge trace. This is because it more difficult to identify cracked bricks on the 

charge traces compared to the discharge traces.  

Co-training has large potential for use within the nuclear condition monitoring in 

situations where there are multiple sensors and unlabelled data. A benefit of this family 

of algorithms is that they are wrapper algorithms and as such can be implemented with 

a variety of base classifiers. This could allow for existing approaches to condition 

monitoring being improved without changing the current underlying way in which 

Table 5.5 – The accuracy of the six machine learning algorithms when applied to the artificial 

cracked brick data. 
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their faults are detected. Additionally, in many circumstances due to the increase in 

the number of sensors monitoring assets which provide multiple viewpoint of the same 

equipment then co-training could see much greater use. 

Label propagation has failed to provide adequate results for graphite brick crack 

detection. This is contrasted to the successful implementation of the algorithm on 

nuclear fault detection by Ma where it was utilised to classify faults with significantly 

fewer training data for correct classification (Ma & Jiang, 2015).  

This could be for several reasons including the imbalanced data problem. In the case 

study provided the uncracked healthy bricks outnumbered the cracked bricks which 

can result in biases towards the more prominent class.  In addition to the imbalanced 

data it is know that the classes overlap in the feature space which results in many 

instances of misclassifications. Optimisation of the hyperparameters within label 

propagation is a difficult task to perform an exhaustive search. A manual search was 

undertaken to establish the hyperparameters with the best outcome. 

Additionally, Ma has combined the label propagation algorithm with a spectral 

clustering approach whereas in the cracked brick approach the data is only normalised 

before the algorithm is applied to the Euclidean distance of the data. The lack of a 

dimensionality reduction method in the crack detection may be responsible for the 

lower performance. 

TSVMs have seen a strong performance in this application, similar to their strong 

performance as a nuclear transient identifier by Moshkbar (Moshkbar-Bakhshayesh & 

Ghofrani, 2016). In the context of this work TSVMs show an improvement over 

traditional SVMs in terms of recall accuracy. This may not be desirable in all situations 

as it can result in high amounts of false positives. 

The biggest challenge with the data is the trade-off between precision and recall due 

to the overlap of classes in the feature space. In this case study regarding crack 

detection within graphite brick it is believed that having a high recall is important.  

5.6 Conclusions 

It has been shown that through extracting features from individual brick layers of the 

FGLT data can help in providing information of the presence of cracks within the 
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graphic bricks of AGRs. The points that have been extracted are chosen to characterise 

the M or W shape of the bricks represented in the FGLT in the discharge and charge 

traces respectively. It has been shown that these features can be identified through sets 

of rules which repeatedly achieve the correct identified points. When using this data 

to train a machine learning algorithm it has been identified that there is only a relatively 

small amount of available data which have labels of either cracked or non-cracked 

bricks, therefore semi-supervised machine learning has been used to make use of the 

large amount of available unlabelled data. This process is shown in a flow diagram in 

Figure 5.11 where the resultant output is the classification of the cracked status of the 

brick. 

It has also been identified that there is a need to address the class imbalance problem 

by using the SMOTE algorithm to allow a balanced dataset. This algorithm increased 

the number of samples on the minority class to be equal to the majority class by 

synthetically generating new samples. 

Six different algorithms, three semi-supervised and three supervised, were compared 

and it was found that the algorithm that produced the highest recall score was TSVM 

but did not have a high precision score. However due to recall having a larger impact 

than the precision of the algorithms it is the recommended algorithm to use for future 

cracked brick classifications. It has been identified that in these circumstances for high 

recall that semi-supervised machine learning can perform better than traditional 

supervised machine learning on this data set.  
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Figure 5.11 Semi-supervised cracked brick detection process flow diagram. 
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6 Conclusions and Future Work 

6.1 Introduction 

In the United Kingdom the Advanced Gas-cooled Reactors (AGR) are reaching the 

end of their initial design lives, by 2034 the current fleet of nuclear power stations will 

no longer be in operation.  One of the key life-limiting components of an AGR is their 

graphite core. The graphite core cannot be repaired or replaced and experiences 

degradation from the harsh environment within the core which can affect its structure.  

Therefore, it is essential to perform inspections to understand the health of the cores 

to ensure that the AGRs are safe to operate. To support these activities additional 

monitoring of the cores can be undertaken to provide more frequent understanding of 

the state of the graphite within the core but with it comes the need to analyse the data. 

Two different approaches have been applied to understand the two different methods 

of ageing in the core. Both methods, which use the monitoring data known as the fuel 

grab load trace (FGLT), have been presented and evaluated. Both approaches use data 

analytics and machine learning to allow a more frequent representation of the health 

of the core than is currently available. The methods that have been presented are not 

looking to replace the manual analysis undertaken by graphite core engineers, instead 

they are looking to provide decision support, suggestions and reduction in the duration 

of manual analysis required. This work contributes to allowing the AGRs in the UK to 

continue operating to their current closure dates or potentially beyond by providing 

more frequent and meaningful information that can be used to ascertain core health. 

6.2 Summary 

In chapter 2 an overview of nuclear power generation was provided. This chapter 

focused on the design and the inspection/monitoring tools of the reactor core of AGRs. 

Furthermore, greater detail was given to the data that can be obtained during scheduled 

refuelling events of AGRs.  This data is specifically known as the fuel grab load trace 

and its contributing physical component load values were discussed as well as 

highlighting them on an annotated copy of a full trace. An overview of work that has 
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been undertaken on condition monitoring and fault diagnosis of the UK’s AGR fleet 

is also present within this chapter. 

Chapter 3 detailed the approaches and methodologies of machine learning as well as 

the applications that they have been applied to within both the nuclear and wider 

condition monitoring domain. It focused on identifying what supervised, unsupervised 

and semi-supervised machine learning are and the situations where they are used. An 

overview of a several semi-supervised machine learning and more common machine 

learning algorithm was provided, identifying domains which they have seen use in. 

Chapter 4 detailed one of the novel contributions presented in this work; the channel 

bore prediction model. The process by which the four components of the FGLT were 

analysed and generalised using 10 years of historical data was discussed. This allowed 

for the understanding of the contributions from the deadweight of the fuel stringer the 

aerodynamic effects of the coolant gas and the upper stabilising brush. The benefit of 

the extraction of the lower stabilising brush friction within the FGLT, which is directly 

related to the estimation of fuel channel bore is explained. The chapter then goes on to 

describe the machine learning training and testing of a regression model, which is used 

to estimate fuel channel bore from FGLT data. The regression model with the best 

performance was found to be the quadratic regression model which was able to 

accurately predict fuel channel bore dimensions. 

Chapter 5 detailed the novel contributions that have been made to the evaluation of 

different semi-supervised machine learning algorithms for crack detection of graphite 

bricks in AGRs. It achieved this by comparing the performance of three semi-

supervised machine learning techniques to their equivalent supervised 

implementations. This chapter included the process of identifying and extracting 

important features of the data, incorporating a method of class balancing and testing 

the methods in an accurate method. The three semi-supervised learning methods used 

for crack detection are the co-training algorithm, the label propagation algorithm and 

semi-supervised transductive support vector machines. Transductive support vector 

machines were identified as being the most suitable classifier to address the graphite 

brick crack detection problem where a high recall value is required.  
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The novel contributions detailed in this thesis are: 

The development of an approach for extracting reactor health information from 

data not originally designed for condition monitoring purposes. This approach 

augments existing reactor inspection regimes by providing a supporting health 

indicator. This is demonstrated through an application of fuel channel bore 

estimation 

• An in-depth analysis of the fuel grab load trace by using knowledge of the 

physical properties of the reactor core and a supply of historical data 

• Development of a framework that can remove unwanted components present 

in the fuel grab load trace on a trace by trace basis 

• Improving the understanding of the different contributions of the fuel grab load 

trace by using historical data to explore the relationship to channel bore 

measurements and allow it to be generalised 

• Demonstration and evaluation of the performance of the algorithm on real 

nuclear power station fuel grab load trace data 

• Recommendation of the application of the algorithm on operational data for 

monitoring and inspection regimes 

 

An evaluation of semi-supervised learning approaches with respect to nuclear 

condition monitoring data, indicating improvements over traditional supervised 

machine learning classification techniques 

• A critical review of three semi-supervised techniques exploring their 

suitability to nuclear condition monitoring data where obtaining labelled 

operational data of faults is a costly, time-consuming process  

• The first demonstration of semi-supervised machine learning techniques being 

applied to the UK’s fleet of nuclear power stations for condition monitoring 

purposes 

• Recommendation of the semi-supervised machine learning algorithm for the 

application of crack detection and its implementation  
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6.3 Future Work 

 There are several opportunities for expanding and extending the work covered in this 

this thesis. 

6.3.1 Bore Estimation from FGLT 

 

As mentioned in chapter 4, the work that has been completed for the bore estimation 

from FGLT has only been trained and applied to only some of the reactors within the 

UK. Within the UK there are an additional 10 AGRs in operation where the bore 

estimation has not been applied to. Each set of stations is slightly different in design, 

such as having a slightly different number of bricks in the core, a different number of 

layers or different sizes of bricks. Therefore, due to the nature of how the bore 

estimation algorithm was implemented and trained it was not practical or able to apply 

its estimation to the other stations data. The next steps in the bore estimation algorithm 

would be to create a generalised algorithm that could be applied to the other stations. 

With further research into the designs of the other stations, it will be clear whether this 

could be as simple as changing where the USB interacts on the trace or whether a new 

regression model will have to be developed as the bricks and LSB exhibit a different 

frictional relationship. 

Additional work that is still required on the bore estimation is the inclusion of a 

predictive gas model that can allow predictions when the reactor is refuelling at low 

power. The main difficulty associated with validating bore estimation for onload data 

is the lack of available ground truth data to validate. Currently there are only a very 

small amount of cases where there has been an inspection and monitoring event within 

a short space of time to allow this. Therefore, any estimation that is made using the 

current implementations of the models does not have confidence bounds on the 

performance of the algorithm with low power refuelling data. This problem could 

hopefully be rectified as more data is made available with a greater number of repeat 

refuelling events or more detailed information about the coolant gas floes at low power 

refuelling.  
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6.3.2 Semi-Supervised Crack Detection 

It was found from the six machine learning methods tested that the best recall 

performance was from the TSVM semi-supervised implementation. However, one 

drawback of this method was that the precision of the implementation was low. This 

was not a problem due to the intended implementation of the algorithm, but future 

work should be to improve the precision and the overall accuracy of the 

implementation. One possible way that this improvement could be obtained is using 

ensemble techniques. 

Ensemble learning is a method that combines the decisions of multiple learning 

algorithms to produce an output. The most common way of doing this is through a 

voting scheme, this will typically be a weighted or dynamically weighted voting 

scheme that allows the theoretical best output to be found. It has been found in the 

literature that under circumstances where errors of individual classifiers are 

uncorrelated then by using an ensemble instead of a single classifier the classification 

will be more accurate (Sewell, 2011). 

The Department of Energy at the Polytechnic University of Milan have focussed on 

the applications of ensemble learning for identification with a focus on nuclear power 

station fault identification. Baraldi (Baraldi, et al., 2015) has investigated the use of 

data-driven techniques for signal reconstruction on data for fault detection through a 

comparison of three different methods. The three methods compared are Auto-

Associative Kernel Regression (AAKR), Fuzzy Similarity (FS) and Elman Recurrent 

Neural Network (RNN). These methods were found to have inherent advantages and 

disadvantages for detecting faults in temperature data in a rotating machine. However, 

these disadvantages could be overcome by considering them as part of an ensemble. 

Ensembles of classifiers have been shown to be useful for classifications of faults in 

nuclear power stations previously. Razavi-Far (Razavi-Far, et al., 2012) has shown the 

use of incremental learning with an ensemble of classifiers for classification of faults 

in a feedwater system of a boiling water reactor allowing for new classes of faults to 

be added in to the ensemble as they are found during operation. Baraldi has shown 

how (Baraldi, et al., 2010) an ensemble of principal component analysis (PCA) models 

can be used to increase accuracy and robustness in signal reconstruction. The method 



141 

 

uses dynamic aggregation of the signals with the aggregation parameters being altered 

based on the data that is being reconstructed. It has shown to have been used in a 

pressurised water reactor (PWR) pressurizer to perform signal reconstruction on noisy 

of faulty sensors. Liu (Liu, et al., 2015) has shown how it is possible to use an ensemble 

of regression techniques to predict the remaining useful life of a reactor coolant pump 

from time series data. Many individual probabilistic support vector regression modules 

are trained and are weighted based on fuzzy similarity analysis between the training 

sets used for each module and the input data to generate the prediction. 

Another improvement could be through the choice of the input features that are used 

to detect cracks. Currently the features are chosen based on the elicited features that 

human operators use. Future work could be undertaken to use a data driven approach 

to find suitable new features that may improve performance as there could be 

underlying relationships in the data that have yet to be discovered. 

Currently the semi-supervised crack detection algorithm detects the presence of cracks 

within the graphite bricks from FGLT data. However, an improvement that should be 

pursued in future could be the identification of what type of crack is present. The best 

implementation should be to do a two-stage approach where only the bricks which 

have been identified as cracked should be labelled with a crack type. This could be 

beneficial to the operators of the UK’s AGRs as not all cracks are of equal importance. 

For instance, keyway root cracks are going to be the most important cracks to monitor 

for the remainder of the AGRs’ operational life.  

6.3.3 Active Learning 

Active or query-based learning can be defined as a machine learning methodology 

where the algorithms improve by asking questions of the data (Settles, 2012). One of 

the key features of active learning is that it is an interactive learning process between 

the algorithm and the labelling source, which is sometimes called an oracle. The 

labelling source could be a domain expert in the case of nuclear condition monitoring, 

who can manually label the data that is being queried.  

There are three main methods of querying the oracle with samples to provide labels 

for them. These are query synthesis, stream-based selective sampling and pool-based 

sampling. Query synthesis involves the generation of theoretical samples which occur 
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inside the sample space. This method has the advantages of being able to generate a 

sample which can be very impactful to constructing the overall desired function. 

However, it may also produce meaningless data that is being queried such as situations 

that would not be able to occur or physically not make sense. Stream-based selective 

sampling involves the algorithm assessing every sample and deciding if that sample 

should be queried. The samples which are chosen to be queried are done so based on 

uncertainty criteria and that labelling that data will improve the overall algorithm. This 

situation may occur if the algorithm is having trouble assigning a class to the sample 

or conversely if it cannot be decided which class it belongs to out of multiple classes.  

Pool-based sampling on the other hand looks at a large sample of the labelled and 

unlabelled data and then decides based on the statistical properties of the distribution 

which samples will be most useful to query. The samples that would most likely be 

queried would be ones which are on or near the original boundaries decided by the 

initial labelled data. In a sense this method of active learning is very close to what 

semi-supervised learning is but with the ability to query the data.   

A kernel principal component analysis (KPCA) active learning algorithm has been 

used in ship machinery condition monitoring to select optimal training samples (Li-

Lin & Hai-chao, 2010). This was the solution to the problem which occurred where 

the training data was causing the algorithm to generalise too much to the results 

obtained from the test environment. Zhao has used a combination of semi-supervised 

learning and active learning to create a new algorithm that aims to optimise the samples 

that are chosen to be queried, the algorithm is called active Laplacian support vector 

machine (A-LapSVM) (Zhao, et al., 2011). This algorithm was shown to be an 

improvement over various other SVMs for the application of bearing diagnosis and 

gear fault detection when available labelled sample numbers are low. Zhang performs 

a comparison of two different types of support vector machine using active learning 

algorithms (Zhang, et al., 2006). These are active SVMs (ASVM) and probabilistic 

active SVMs (ProASVM). It is then shown that for rolling bearings faults then 

ProASVM performs better at diagnosing faults than ASVM. 

 

Active learning could be applied in future work as a substitute to or in combination 

with the semi-supervised learning methods used in graphite brick crack detection. It 
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could be particularly useful in the co-training methods discussed in chapter 5, where 

the unlabelled data with the highest confidence is provided a label. Before that occurs, 

the designated data could be shown to an oracle (a human with specialist knowledge 

of the problem) to ensure that they are being given the correct classification. 

Alternatively, the choice of the data that is being queried could be changed in co-

training to obtain better results. The queried data could instead be chosen as the data 

that the individual algorithms are the most unsure about, as classifying these instances 

will provide the greatest overall gain in information about the feature domain. A 

proposed method like this could be very useful in reducing the manual operators’ time 

when analysing data. They would have to manually analyse a small section of the data 

as opposed to all the data. 

6.3.4 Incremental Learning 

Incremental machine learning is where an algorithm can learn new information from 

new instances of training data, without forgetting previously learned information and 

without requiring previously used training data (Polikar, 2000). This has the benefit of 

not requiring old historical training data to be merged with new training data when 

there is a need for the algorithm to be updated. This method of learning is mainly used 

when training data is obtained in a batch process. One particular benefit of incremental 

learning is that if the new training data has a new classification then it can be included 

and learned as part of the algorithm. This is particularly beneficial in nuclear power 

station fault detection and diagnosis due to the potential introduction of previously 

unseen faults as the power stations are operating long past their initial design lives.  

Incremental learning has been shown to have use in condition monitoring for 

algorithms that need to be updated with new information over time. Vilakazi (Vilakazi 

& Tshilidzi, 2007) compares two incremental machine learning methods, Learn++ 

(Polikar, et al., 2001) and Fuzzy Adaptive Resonance Theory Mapping (FAM), on 

their performance of classifying high voltage bushing faults. It was found that FAM 

relied heavily on learning information in a correct order and implementing it with 

optimal parameters was challenging. Learn++ on the other hand, has issues of 

classifying new learned classes if there are only a small number of classifiers in the 

ensemble that have been trained to classify them. Until an updated version of the 

algorithm is used (which is discussed in the next section) the only solution is to match 
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the number of previously trained classifiers which are not trained on data containing 

that classification. This can lead to a highly computationally intensive algorithm when 

multiple new classes are required. Emmanouilidis (Emmanouilidis, et al., 2010) 

proposed a condition monitoring framework that would firstly use novelty detection 

that could identify conditions that had previously not been trained on. It would then 

indicate this as a potential new fault and could use that data as potential training data. 

Using incremental learning in cases like this show that diagnostic and prognostic 

approaches can be applied to problems that do not have an abundance of available data 

at the start of life but will progressively generate data to use. It would not be advised 

to use this method of novelty detection for training on safety critical systems, as it 

involves trying to detect faults appearing that have never been present before. Liu has 

developed an incremental learning algorithm that uses an Ellipsoid-ARTMAP 

classifier that is tested on a tool condition monitoring system that is used in milling 

(Liu, et al., 2015).  The reason why incremental learning is applicable for monitoring 

the wear of machining tools is that there are such a large number of possible outcomes. 

It would not be practical to create training data for every type of wear. Therefore, the 

algorithm must adapt over time as wear occurs while retaining its original training 

information. 

6.3.4.1 Learn++.NC Nuclear Condition Monitoring  

Learn++.NC algorithm is an incremental learning ensemble classification algorithm 

which has been based on the works of the original Learn++ algorithm (Polikar, et al., 

2001). The Learn++ algorithm is a supervised learning algorithm that allows for new 

classes of data to be added to the classifier without forgetting the original training of 

the classifiers. The main flaw with the Learn++ approach was that under many 

circumstances the number of new classifiers added would be required to be equal to 

the number of existing classifiers to be able to “outvote” them when a decision is being 

made. This is where the main difference comes in with the Learn++.NC algorithm 

(Muhlbaier, et al., 2009). The Learn++.NC algorithm introduces DW-CAV 

(dynamically weighted consult and vote) which allows a small number of classifiers 

to gain more weight in voting if they all share a confidence in a class that other 

classifiers have not been trained on.  
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The algorithm has two loops with one being nested inside the other. The outer loop 

determines the set of training data that is used (and what classes can be classified) and 

the inner loop is used to create a set number of classifiers on the current set of training 

data. Using weak classifiers, the ensemble is created. If all the classifiers are trained 

on all the data, it is just simply a weighted confidence calculation based on how 

accurate the results were on the validation training data. Once there are situations 

where new training data is being added that has unseen classes, DW-CAV calculates 

a value between zero and one for every class based on the number of classifiers that 

chose that class divided by the number of classifiers that could have chosen that class. 

The difference between this value and one is then used to multiply the weights of the 

classifiers that did not choose that class. Therefore, if the ratio is small it will not 

change the weights much but if the ratio is close to one, stating that all classes which 

can classify that class do, then the weights of the other classifiers will be reduced 

greatly.  

The Learn++.NC algorithm was shown to have applications in nuclear power 

generation condition monitoring for classifying faults in a feedwater system of a 

boiling water reactor (Razavi-Far, et al., 2012). The premise for this is that when new 

characteristics of leaks appear, they can be trained and included in the ensemble for 

future classifications. The novel idea of this approach is that it also allows for detection 

of new classes based on the Normalized Weighted Average of the entire ensemble 

Outputs (NWAO). As the name of NWAO suggests each individual input data in the 

system is subjected to all the classifiers. Then the output of these classifiers is 

normalised allowing an average value to be produced. For each class a value of 

between zero and one will be produced. A predetermined high and low threshold will 

have been set based on how sufficiently different a new class is required to be. For a 

new class to be defined the highest NWAO class must be less than the high threshold 

while at least one more class has a value greater than the lower threshold. Once these 

criteria are met repeatedly, the algorithm can then use this new data as training data. 

This was shown to work on simulated data where the transients of leaks in the 

feedwater system were being classified. When data about a location of a leak that was 

not previously classified is applied to the system the NWAO criteria is matched. This 

provided continuous data about the new classification which then was used to update 
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the Learn++.NC framework allowing for future instances of that class to be correctly 

classified.  

6.3.5 Future Framework 

One of the main problems with the crack detection algorithm is that there is currently 

not enough available ground truth data for confident results. Therefore, an evaluation 

of incremental machine learning approaches with respect graphite crack detection in 

nuclear condition monitoring should be performed. This could be demonstrated to 

provide decision support for the continued operation of AGR nuclear power stations. 

Firstly, an investigation of the suitability of batch incremental learning compared to 

traditional retraining of all available historical data when new ground truth training 

data is available at statutory outages should be undertaken. Furthermore, the ability for 

incremental machine learning to learn new types of degradation or adapt to changing 

classifications of previously learned classes should be explored for its application on 

UK nuclear condition monitoring data. In this approach new types of AGR graphite 

bricks cracks can be learned while still retaining the knowledge of the historically 

known crack types. This would demonstrate that not all future faults need to be known 

at the inception of the algorithm.  An example of this is that currently the historical 

supply of data contains a very limited supply of certain types of cracks, this is 

particularly apparent with keyway root cracks which until 2015 has seen very limited 

examples of in the data. This means that if there is a similar new classification found 

later in the reactors’ life substantial retraining would not be required to account for it. 

The framework that would be involved in the incremental graphite brick detection can 

be seen in Figure 6.1. This framework would combine the current implementation 

approach of using semi-supervised machine learning and combine it with incremental 

learning. 
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Figure 6.1 – Framework for future graphite brick crack identification which incorporated 

ensemble learning and incremental machine learning. 
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