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ABSTRACT

In the field of cold formed structural steels, in which the load carrying members
consist of thin-walled sections, failure often occurs due to the development of local
buckles which are initiated in the compression elements. The work presented in this
thesis details experimental and theoretical investigations conducted to study the
behaviour of some thin-walled beams which fail mainly due to local buckling. The
ultimate load carrying capacity and collapse behaviour of plain channel, lipped channel
and zed section beams in simple bending were examined and the results were then
used in an extension of the theory to predict the behaviour of indeterminate beams of
similar cross-section which experience plastic moment redistribution before ultimate
collapse. The findings from an experimental investigation on the effects of strain
hardening on the material strength of cold formed sections are also included in this

thesis.

The thesis begins with a short introduction, followed by a review of relevant published
literature, which focuses mainly on the use of the plastic mechanism approach in the

theoretical analysis of failure modes in thin-walled structures.

The theoretical method of using an elastic buckling analysis in conjunction with a
separate plastic analysis to estimate the behaviour of thin-walled beams in the entire
range of loading history, from the initial linear elastic characteristics to the collapse
behaviour of the beams as they are loaded beyond the ultimate load carrying
capacities, is described in chapter 2. Two theoretical methods of using the results
from the study of the collapse characteristics of beams in simple bending to predict
the behaviour of multi-spanning beams are presented in chapters 2 and 3. These
theories are then applied in models for plain channel, lipped channel and zed section

beams in chapters 3, 4, and 5 respectively.




Details of the rather extensive experimental investigations carried out to examine the
behaviour of beams of the selected sections are then presented in chapter 6. The
resulting predictions generated by the theoretical models which are based on the
findings from these experiments are compared with the experimental load-deflection
results in chapter 7 of this thesis. Results based on conventional simple elastic and
plastic theories and the BS 5950 : Part 5 : 1987 are also presented for comparison.
Generally, good agreement was found between the results of current theory and the

experimental findings.

The experimental work on the effects of strain hardening on the yield strength of cold
formed sections is detailed in chapter 8 where the results and observations are

included.

Discussion of the presented work is carried out in detail in chapter 9, which also
summarises the conclusions drawn from the studies and some recommendations for

further research and extension of the analysis.

The publications cited in this thesis are listed in a bibliography. These are arranged in
alphabetical order with reference to the authors. The thesis is then concluded by three

appendices which supplement the main text.
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NOMENCLATURE

All symbols are defined where they first appear in the text. In most cases, only one
meaning has been assigned to each symbol, but where this is not the case, the

interpretation will be evident from the context. For convenience, the notation is listed

below.

A Cross-sectional area.

a Plastic hinge travel distance.

B Width of vacuum box.

b Elemental plate width.

b Effective width.

by Effective width of a stiffened element.
beu Effective width of an unstiffened element.

Plastic mechanism size.
Plate flexural rigidity. (= 126:11] )

Depth of beam section.

Young's modulus of elasticity.

Plastic modulus for strain hardening materials.
Equivalent forces.

Compressional stress on the effective element.
Gravitational acceleration. (=9.81 m/sec?)

Smhma oo

g

H Manometer head in (cm H,0).

H, Vickers hardness number.

h Position of the neutral axis of bending.

I Second moment of area.

Lo Second moment of area based on the effective section.

K Local buckling coefficient.

k Strength coeficient.

L Length of beam span.

1y Plastic hinge length which is dependent on the bolt positions.
M General symbol for bending moment.

Moy Bending moment considering elastic buckling.

M, Section ultimate bending moment capacity.

M) Bending moment of the global plastic hinge at the hinge angle of p.
n, Plate fully plastic bending moment capacity.

m;, Reduced bending moment capacity of a plate subjected to axial

compression.
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Reduced moment capacity of an inclined plastic hinge.
Plate plastic bending moment for strain hardening materials.
General symbol for stress resultants in N/mm. (= ¢ - ¢)
Position of the neutral axis of bending.

Applied load.

Local buckling stress.

Section squash load.

Applied pressure.

General symbol for radius of curvature.

Mean radius at plastic hinges.

Plate thickness.

Applied uniformly distributed load.

General symbol for beam deflection.

Mid-span beam deflection.

Volume.

General symbol for energy dissipation.

Lip size.

Components describing position with reference to a co-ordinate axis.
Plastic section modulus.

Plastic mechanism hinge angles.

Virtual quantity.

General symbol for strain.

Angle of global plastic hinge rotation.

Density of H,0. (=1000 kg/m”)

General symbol of stress.

Compressional stress on the effective element.
Extreme fibre stress.

Material yield stress.

Stress in the strain hardening region of material behaviour.
Tensile extreme fibre stress.

Corner average yield strength.

Principle stresses.

Poisson's ratio.

General symbol for shear stress.

Generalised strain.

Generalised stress.
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Chapter 1 : Introduction and Literature Survey

1.1 INTRODUCTION

The evolution of structural form has brought about much change since the early days
when structures were often comprised of stout stone columns and massive arches.
The introduction of metals into structural engineering in the late eighteenth century
started a trend towards structural members of ever increasing slenderness. With the
development of mild steel in the later part of the nineteenth century, came the ability
to produce thin-walled structural elements made of a strong ductile material. These
thin-walled members have since become very important in present day structural
designs, not just in building construction, but in fields ranging from the aerospace

industry to the manufacture of oftice furniture and home appliances.

The success of thin-walled structural steel is mainly due to the advantages of high
structural efliciency and high strength to weight ratio which comes with the usage of
these steel members, these factors being of upmost importance in applications such as
vehicle construction, ships, bridges and cranes where self-weight of the structure has
to be a minimum. Minimising metal content can also prove to be very economically
advantageous, not just in the savings in material cost but also in handling and
transportation. By replacing the traditionally used timber with thin-walled steel
sections in the construction of houses, some enterprising North American builders
have also been able to replace large work crews with only a few men armed with
some simple power tools, making huge savings in labour costs. Cold forming
production methods allows thin-walled sections to be produced in a wide variety of
shapes and dimensions, with the additional options such as protective coatings and
insulating fillers, adding to the versatility and popularity of this family of structural

products.

[39)
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Thin-walled structural members do however come with their own perculiar problems
which have to be taken into consideration during design, one of the most prominent of
these problems being their tendency to buckle. The need for control of buckling is a
major factor that dictates the final structural form. This has been the subject of much
research in the past decades, but in spite of the numerous investigations, work in this
specialised field has by no means reached finality. Books such as that of Walker et al
[78] presents a good overall introduction to the subject, and go on to discuss some
useful analytical solutions for the problems usually faced in the designing of cold

formed structural steel components.

It would be impossible to address all the possible problems that could be encountered
in the field of thin-walled structures in this introduction, so only a very brief
discussion shall be presented in this section on the most prominent failure mechanisms
that usually operate on thin-walled structural members. The thinness of the material in
this class of structural members gives rise to behavioural phenomena not usually
encountered by the thicker hot-rolled sections and there are several important modes
of failure which thin-walled sections may be prone to. Slender columns are likely to
experience overall column buckling, a common occurrence even in some heavier
sections of sufficient length. Certain thin-walled sections with low torsional stiffness
may fail due to torsional flexural buckling in which all the cross-sections along the
member retains ;;S“ Briginal shape but there is twisting of cross-sections relative to
their neighbours. Sections with relatively thin wide component plates tend to be
susceptible to local buckling, an important design consideration in this field. These
local buckles can be easily identified by the wavelike deflections in the elements of the
section which experience compression, the wavelength of the deformation being in the
same order as the width of the element. In beams, local buckling may take effect as
local buckling of compression flanges in which buckles form on the plates under
compressive stress reducing the beam stiffness and overall load carrying capacity. A

more devastating form of local instability in beams is web crippling which occurs in

v
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areas of the beam subjected to concentrated loads and at support points. It is not
unusual for thin-walled structures to fail with a combination of two or more of the
mentioned buckling modes, this can sometimes prove to be extremely dangerous like
in the case where the critical loads to cause local buckling are very close to the overall
buckling load in a strut, such a member would collapse very suddenly with little load
carrying capacity after initial failure. On the other hand, the engineer may want to
design the member to this effect for the optimisation of the design, when there is an
alternative load path and the collapse of that member does not compromise the safety
of the structure as a whole. Interaction between local and overall buckling generally
reduces the buckling load to a value below that of each of the buckling modes acting

alone, this interaction must hence be taken into account during design.

1.1.1  Scope and Objectives

The present study is concerned primarily with cold-formed thin gauge steel beams in
which ultimate failure is brought about by local buckling of compressed plate elements
at the portions along the beams where the effects of bending moments are most
adverse. The main subjects of this study are plain and lipped channel section beams,

and some work is presented on zed sections subjected to similar treatment.

Although local buckles may not cause immediate failure, they can drastically alter the
stress system within the member, reducing the stiffness of the compressed elements
against further compression, thus hastening the ultimate failure of the beam. It is one
of the primary objectives of this thesis to investigate the behaviour of thin-walled
statically determinate beams of the selected sections subjected to bending in the full
range of loading, covering the pre-buckling state, initialisation of buckling,
post-buckling behaviour preceding the ultimate load and the final phase of bending
collapse and to develop theoretical models that can closely approximate the behaviour

through relatively simple means. The beam characteristic behaviours are represented
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in load-deflection or bending moment-rotation plots, which shows the important
characteristics of collapse load and the collapse behaviour after failure has been

initiated.

With comprehensive information of the collapse behaviour of the beams with a single
failure section, the behaviour of statically indeterminate beams of similar
cross-sections, in which multiple failure sections along it's length has to develop
before collapse is possible, is then predicted. The case of multi-spanning beams is an
example of this type of situation and it is the other primary objective of the current
work to study the behaviour of thin-walled beams with multiple spans as they are
loaded beyond the initiation of failure. With such beams, as the loads are increased,
bending moments throughout the beam increases proportionally in the elastic domain
up to such time when buckling occurs at the points along the beam where the effects
of bending moment are most severe. These initial failure points are usually found at
the location of the supports between spans where moments are maximum. Although
buckling and perhaps plasticity would have caused these sections of the beam to lose
some of their moment carrying capacity at this point, the applied loads can still be
increased since the other portions of the beam have yet to reach their ultimate loading
conditions. The failing sections over the supports can be said to shed some of the load
carrying responsibility as they lose their ability to maintain resisting moments, the
additional loads are hence taken up by other portions of the beam. On further
increases of the applied loads, the ultimate moment capacity of the next most severely
loaded beam portions would eventually be reached and when sufficient failure points
have formed, the beam will collapse. This phenomenon is known as 'moment

redistribution’ and is the subject of study for much of this thesis.

Murray [40,41,42] has defined the "toughness" of a structure as it's ability to
withstand limited amounts of overload, initial imperfections, load eccentricity and so

on. It is an important concept in structural design. The toughness of a structure could




Chapter 1 : Introduction and Literature Survey

be increased by increasing it's ductility, by introducing alternative load paths, choosing
shapes of cross-sections that do not lead to sudden (brittle) collapse. To determine
whether a structure has these desirable properties, it is necessary to study it's
post-collapse behaviour. Collapse characteristics of thin-walled structures can be
obtained by analysing the behaviour of the local plastic mechanism that develop
during the collapse of the structure. Such information can be very useful in certain
applications. One such application is in the design of structures in earthquake zones,
where the ductility of the collapsing structure is of upmost importance in the event of
severe trémors, it has to collapse slow enough for the occupants to have time to
escape. Another important application is in energy absorbing devices such as in the
safety of car structures, the ability for the car structure to control the deceleration of
the impacting bodies in a crash situation, in this case called the vehicle
crashworthiness, can mean the saving of lifes. In the design of bus superstructures,
passenger cabins of trucks and vehicles with roll bars, knowledge of the collapse
behaviour of the structure can be used to predict the loss of survival space in the
vehicle in roll-over situations as it collapses inwards with an ever decreasing load

carrying capacity.

Although the present work is mostly directed towards the study of cold formed steel
beams as applied in building construction, it is hoped that the techniques developed
and observations documented in this thesis will be useful to further work in other

applications of thin-walled structures as well.

The long known fact that the mechanical properties of steel can be changed when the
material is subjected to large plastic strains is an important advantage for cold formed
structural steel, since the mechanical strength is usually improved in the process. As a
secondary objective, an experimental investigation into this phenomenon was

undertaken and this work is presented in chapter 8 of this thesis.
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1.1.2 Work presented in this thesis

Theoretical models of plastic collapse mechanisms are used with an energy approach
to generate predictions of post failure load-deflection behaviour of the beams of
selected cross-sections, as they are subjected to loads in the full range of loading and
some ways through the collapse. Two separate theories will be used to construct the
full range of behaviour, an elastic analysis incorporating an effective width approach
will be used to obtain the elastic loading lines and collapse curves based on a plastic
mechanism method will be superimposed onto the elastic lines. The intersection of the
two lines will provide the estimation of the ultimate [oad of the beam and the part of
the collapse curve after the intersection will show the collapse characteristics. A full

description of the technique is presented in chapter 2 of this thesis.

Experimental investigations of the problem are presented, in which samples of the
selected beam sectionsjfé‘s’ted as single and double span beams, supported through
cleats. The theoretical plastic collapse mechanisms are modelled to closely resemble
the fold line patterns observed in the laboratory but certain simplifying idealisations
have been used so as to allow relatively simple and quick analysis that does not
require the solving of complicated non-linear mathematical expressions or a
tremendous amount of computing time and power, usually intrinsic to numerical
methods. The load-deflection data collected from the experiments are subsequently

used to verify the theoretical models.
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This study starts with a brief survey of the existing literature on the subject, which will
be presented in the remainder of this chapter. This literature survey presented in the
following sections begins with a brief look at the more popular methods that have
been used to analyse elastic plate buckling. The next section takes a quick look at the
effective width approach which has been widely used in numerous design codes. The
third section reviews the methods used in predicting plate behaviour in the
elasto-plastic range followed by a small section on the behaviour of thin-walled
beams. The review then looks at the research relating to the use of the plastic
mechanism approach which is the method employed in the thesis and ends with some

concluding remarks to the literature survey.
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1.2 BUCKLING OF PLATES

Investigations into the behaviour of thin-walled structures have led many researchers
to study the behaviour of plates in buckling, since these are the elements from which
thin-walled structures are constructed. The following paragraphs summarises some of

the contributions made in this field of study.

St Venant [75] in 1883, derived the differential equation for the elastic buckling of a

plate subjected to in-plane stresses, shown below as equation 1.2.1.

tw 5w O'w | otdw _
v +2——5x2(_5y2 + P +55e = 0 Eqn(1.2.1)

In the equation, D is the flexural rigidity of the plate, ¢ the plate thickness, ¢ the
stress in the x direction and w the plate deflection.

Bryan [10] in 1891, presented the first solution to this equation for a square simply
supported plate in uniaxial compression. The non-linear differential equations
governing the post-buckling behaviour of an initially perfect plate were derived by
von Karman in 1910 and these were developed further by Marguerre to include initial
plate geometric imperfections in 1939, these equations are commonly referred to

nowadays as the von Karman or Marguerre equations.

Since those early solutions, a number of investigators have developed solutions and
methods to analyse the buckling behaviour of plates, a number of which have been
presented in textbooks by Bleich [6] and Timoshenko and Gere [73]. Some of the

more popular methods are briefly highlighted in the following paragraphs.
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Based on the principle of conservation of energy, the Rayleigh's method allows simple
approximations to be obtained through the use of a single algebraic expression which
describes the shape of the buckled member. This method was improved upon by Ritz
who used the principle of minimum potential energy. This improved technique is

commonly known as the Rayleigh-Ritz method.

Galerkin's method is another means of obtaining approximations. In the method, the
postulated deflection form must satisfy all boundary conditions, compatibility and
equilibrium. Solutions are found through putting the deflection expressions into the
governing differential equation to express the total potential energy of the system and

solving the resulting equations.

The first exact solution to the von Karman equations was obtained by Levy [29] in
1942, this solution . is for square simply supported plates subjected to compressive
stress on two opposing edges. The stress function series was derived from the von
Karman compatibility equation and by substituting that and a double Fourier sine
series, for the deflection, into the equilibrium equation, the coefficients for the
deflection series were obtained. This method has since been adopted by other

investigators.

Yamaki [81] also used a Fourier series for deflections, solving the equilibrium
equation through Galerkin's method, obtained solutions for initially imperfect plates

with several sets of boundary conditions.

Rhodes and Harvey [60,61,62], presented a series of papers aimed to address the
problem of uniaxially compressed plates with the loaded edges restrained elastically
from rotation which was applicable to more cases in practical structures than the

simply supported or clamped boundary assumptions which were actually the limiting

10
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conditions for the compressed plate. The first of these papers, [60], detailed a
theoretical analysis of the post-buckling behaviour of uniformly compressed, initially
perfectly flat plates, simply supported at the loaded edges and elastically restrained
from rotation to an equal degree on both unloaded edges. The general approach was
to postulate a series of functions for the deflection form of the buckled plate, to obtain
the corresponding stress system within the plate by solving von Karman's
compatibility equation exactly for those deflection functions and to apply the principle
of minimum potential energy to evaluate the values for the coefficients in the
deflection series for given values of end compression, hence obtaining the final
deflection and stress system of the plate. The results obtained generally compared well
with those from other authors and experimental data. The second paper, [61], utilised
the same general analysis method to deal with uniformly compressed plates that had
the unloaded boundaries in either elastic restraints against rotation to an equal or
unequal degree on both edges, or rotational restraints on one edge with the other
edge free. Using four terms in the postulated deflection series, gave accurate results
for cases where the loads were not higher than twice the buckling load. However, the
lost of accuracy as the load was increased beyond the buckling load could be
prevented by introducing more terms into the deflection series of the post-buckling
analysis. The third publication, [62], was an extension of the nethod which
considered plates that were either compressed eccentrically or loaded eccentrically. It
was found that the behaviour of compressed plates is extremely sensitive to the

method of load application.

Treating a lipped channel section as a system of thin plates joined at the edges,
Loughlan and Rhodes [33,34] studied the interaction buckling of pin-ended lipped
channel columns under combined compression and bending. The semi-energy method
of the theoretical analyses were based on a method which included a post-buckling
analysis using the Rayleigh-Ritz solution of the von Karman plate equations for the

local buckles in conjunction with a simple column analysis. Using a two term

11
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deflection series for the post-local buckling analysis provided a continually changing
locally buckled form during the loading. The overall behaviour was determined by
using the differential equation for an eccentrically loaded simply supported column,
the flexural rigidity of the column and the eccentricity of the applied load were based
on the properties of the locally buckled column. Similar analyses were used in more
recent publications by Loughlan and Upadhya [35] and Loughlan and Nabavian [36]

which dealt with plain channel and I-section columns respectively.

Amongst the various techniques developed to analyse buckling problems, there are
numerical methods which facilitate the solving of cases with relatively more
complicated geometry, boundary conditions and loading configurations through the
use of micro-computers. Three such techniques are the Finite Difference, the Finite

Element and the Finite Strip methods, which shall be briefly reviewed in the following

paragraphs.

The Finite Difference Method first introduced by L.F. Richardson in 1911 and later
worked on by L. Collatz and M.G. Salvadori, is an approximate numerical method for
evaluating buckling loads. It is based on the use of approximate expressions for the
derivatives in the governing differential equation and boundary conditions and iterates
for the buckling load through successive approximation. Detailed discussion of this
method is presented in textbooks such as Bleich [6] and Timoshenko and

Woinowsky-Krieger [74].

The Finite Element Method may be based upon the principle of virtual work or the
minimisation of potential energy in a theoretical structure made up of "Finite
Elements". With the stiffness matrix of the chosen "Element" defining the elemental
load-displacement characteristics, strain energy in the structure is worked out from
nodal displacements. The results from this method is sensitive to the stiffness matrix

formulation of the "Elements" and the choice of size and formation of the "Finite
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Elements" that make up the theoretical model. This technique can be very powerful,
enabling the solving of complicated problems in buckling. Introduction to this method
can be found in various textbooks such as Zienkiewicz [84], but effective application

of this technique to real problems requires much experience.

The Finite Strip approach is a specialised technique adapted from the Finite Element
method for buckling problems. Instead of constructing the theoretical model out of

the usual "Finite Elements”, "Finite Strips" are used, each strip having constant cross
sectional properties along it's length. By taking the deflections of the structure in the

longitudinal direction of the strips as being of a specified form, the problem becomes

unidirectional.

A review of the developments in plate buckling research presented by Walker [77],
highlights some of the important landmarks in the history of the subject and discusses
in some detail, the more recent work that has been the basis of new design codes
including that for the analysis of cold-formed steel sections. This review concentrates

on the behaviour of rectangular plates subjected to relatively simple forms of in-plane

loading.
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1.3 THE EFFECTIVE WIDTH APPROACH

The Effective Width concept has become very important in the subject of
post-buckling behaviour of thin-walled structures. This concept is usually applied as a
semi-empirical method that allows the consideration of buckled components with
relatively simple analysis, making it ideal for application in the design of practical
structures. Effective width equations in various forms have been adopted in most
cold-formed steel design specifications on both sides of the Atlantic. Much have been
written about this topic in the past , it is not the intention of the author to review the

numerous published literature but to take a very brief and somewhat historical look at

the subject.

L. Schuman and G. Back, in 1930 conducted a large series of tests on compressed
plates and discovered that the ultimate load capacity of plates, wide and thin enough
to buckle under load, is relatively insensitive to increases in width. The conclusion
drawn from that observation is that after buckling, a plate behaves as though only part

of it's width is effective in carrying load.

In investigating this phenomenon in 1932, T. von Karman, E. Sechler and L. Donnel
developed the first Effective Width expression for an initially perfect plate. The
expression was developed further to include the effects of initial imperfections by G.
Winter who had been a major contributor to the field of cold-formed sections in the
USA. Winter [80] used experimental findings to extend von Karman's effective width
equation into a more practical semi-empirical approach for the design of cold formed
steel components and this work still forms the basis of the effective width equations

adopted by the AISI standard at present.
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A detailed review of the Effective Width approach was presented by Rhodes [54],
which includes a brief historical overview of the topic. The various forms of effective
width and their application in various situations are explained in this reference, along
with some recommendations on the subject. The various equations adopted by the

cold formed steel design codes in a number of different countries are also discussed.
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1.4 PLATE BEHAVIOUR IN THE ELASTO-PLASTIC RANGE

Moxham [39] employed the Rayleigh-Ritz method to obtain the first rigorous
elasto-plastic analysis for rectangular plates in compression with the unloaded edges
simply supported and free to pull in. The analysis used a flow theory to model the
inelastic material behaviour and included discretisation through the plate thickness to

allow for gradual spread of plasticity.

Crisfield [13,14] used a Finite Element analysis to study the inelastic behaviour of
plates. A full section yield criterion as derived by Ilyushin in 1956, was used in
conjunction with the Prandtl-Reuss flow rule for the constitutive relations. By using
the full section yield criterion, discretisation through the plate thickness was not
required but this approximate approach caused the slopes in the resulting
load-shortening curves to be excessively steep in the region after the ultimate load.

Frieze et al. [16] used a similar approach in a Finite Difference analysis in 1976.

Little [31,32] utilised an approach which is very similar to that of Moxham, except
that Little used a variational principle in which a particular energy function was
minimised. This approach was able to produce quick solutions that were in fair

agreement with those of Moxham and Crisfield.

Rhodes [53] suggested a simple and computationally efficient approach in predicting
the load-end shortening behaviour of plates subjected to in-plane compression and in
the elastic-plastic range. The method used the elastically derived effective width of a
buckled plate and the hypothesis that this effective width adequately described
post-yield behaviour. Although the basis of the method was not mathematically
proven, the consistently high accuracy of prediction for plates with various boundary

conditions considered in the paper proved the validity of the method, in those cases.
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The research into elasto-plastic plate buckling behaviour in the United Kingdom was
reviewed by Bradfield [7] in 1982. Mofflin & Dwight [38] using Little's energy
minimisation approach, developed a method for inelastic plates and plate assemblies
based on the Finite Strip. Key & Hancock [26] later used a similar Finite Strip

approach and a modified Newton-Raphson technique for the problem.
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1.5 BUCKLING BEHAVIOUR IN THIN-WALLED BEAMS

The analysis of thin-walled sections subjected to bending is slightly more complicated
in comparison to compressed members, for this reason, most of the earlier works put

forward to describe post-buckling behaviour in thin-walled beams are of an empirical

nature.

Winter [80], in the late nineteen forties, was the first to provide a means to analyse
problems of this nature. Winter considered the stiffened and unstiffened compression
flanges of beams as individual plates that had the unloaded edges simply supported
and simply supported-free respectively, and used the Effective Width approach to
describe the behaviour of the buckled beam. In a large set of beam experiments, strain
readings on the tension and compression flange were taken as the applied moments
increased, this enabled the monitoring of the changes in the position of the neutral axis
and the subsequent evaluation of the effective width of the compression flange. In this
work, it is interesting to note that it was assumed that the stress distribution was fully

plastic over the section during collapse.

The study of the interacfion of the plate components in thin-walled beams was first
undertaken by Harvey [20], who provided another empirical approach to the problem.
The effective width of the compression flange at failure was found by rearrangement
of the plate buckling formula and assuming that the buckling stress was equal in

magnitude to the material yield stress.

Graves-Smith [17] developed a numerical procedure for the prediction of the collapse
loads of thin-walled box section beams in pure bending, whereby the large deflection

equations were used along with the consideration of non-linear material behaviour.
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An important contribution came from Rhodes [52] and Rhodes & Harvey [58,59] on
the post local buckling behaviour of thin-walled beams. Theoretical analysis and
experimental work was presented for lipped channel and trapezoidal section beams
subjected to pure bending conditions. Local instability was examined by using the
combined strain energy stored in the component plates that made up the buckled
section. Post buckling beam behaviour was studied using a semi-energy approach,
whereby the stresses and deflections through the section are linked by solving the von
Karman compatibility equation for the component plate, the stress and deflection
magnitudes were then obtained through energy considerations. A simple plasticity
theory, based upon the idealised elastic-perfectlyrm:iberial characteristic, was
incorporated in the analysis to enable the estimation of the ultimate moment capacity
of the beam. The theoretical predictions were generally found to be in agreement with
the experimental data. Unlike Winter who considered the compression flange of the
beams as single plates, Rhodes considered the effects of the adjacent plate
components on the flange by means of edge restraint coefficients. A simple expression
for the critical moment to initiate local instability, together with the use of the

Effective Width approach on the compression flange was also put forward for design

purposes.

In two subsequent publications, Rhodes [55,56] dealt with the effects of local
buckling on the behaviour of bending elements of thin-walled sections. In the first, a
theoretical analysis was presented which could be used to avoid the complexities
introduced by using the Effective Width approach in this kind of problem. A
semi-energy method whereby a deflection form was postulated for the local buckles in
the element undergoing in-plane bending. By using von Karman's compatibility
equation, the corresponding stress system in the plate and the total potential energy
was written in terms of the unknown deflection coefficients, the Principle of minimum
potential energy was then applied to obtain the deflection magnitudes, and hence the

stresses, applied loads and moment in the section. The second paper documented an
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experimental investigation on the performance of unstiffened flanges of plain channel

beams in bending where the flanges comprise the bending elements.

Ratliff [50] in 1975, conducted an experimental study on the combined effect of
bending and web crippling on twenty six double span channel beams, with and
without web reinforcements. It was found that all the specimens eventually collapsed
by flange and web buckling. Empirical formulae to design against bending-crippling

interaction were suggested for C-shaped beams with stiffened and unstiffened webs.

Hetrakul & Yu [21] conducted a similar study, on cold-formed steel I-beams in 1979.
Interaction formulae, based on a regression analysis of the experimental results, were

obtained for I-beams subjected to combined bending and web crippling.

Roberts & Azizian [64], in 1983, derived energy equations governing the
geometrically non-linear behaviour of thin walled, open sectioned bars subjected to
axial, flexural and torsional displacements. Assumptions of small displacements and
linear elastic material behaviour were used and subsequent solutions of the governing
equations were obtained using the Finite Element method. The results were combined
with an approximate failure criterion to predict failure loads of I-beams with initial
imperfections. The failure load predictions compared satisfactorily with experimental

data.

Benson [5], studied the non-linear moment-curvature response of long, thin, open
section beams which had an axis of symmetry in the cross section and bent in such a
manner that a flattening of the cross section occurred symmetrically. The problem was
analysed by means of a closed, convergent sequence of algebraic and integral

equations solved through iterations by a micro-computer. In the paper, results of
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circular and angle section beams were compared with existing literature. It was found

that bifurcation of the cross sections occurred.

A number of other approaches to the problem of beams failing due to the onset of
local buckling exists in current literature, one of the important methods is based on
the Plastic Mechanism approach and is the subject of discusston in the next section of
this review. The Finite Strip method is another important technique in the subject of
thin-walled beams, this approach was used by Hancock [19], amongst other
researchers, to study thin I sections in bending. The most widely used analysis method
in present design codes is based on the Effective Width approach and is well reviewed

in publications such as Rhodes & Walker [63] and Rhodes [57].
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1.6 COLLAPSE BEHAVIOUR USING PLASTIC MECHANISM
ANALYSIS

The effects of plasticity have received much attention from many researchers in the
field of thin-walled structures in recent years. Much have been written on non-linear
elasto-plastic buckling behaviour and most of these theories are based on numerical
methods. One exception is the plastic mechanism approach, also known as spatial
plastic mechanism analysis, in which relatively accurate results can be obtained in a
simpler way as compared to the rigorous treatment usually employed in numerical
methods. Plastic mechanism analysis produces predictions of the collapse behaviour of
buckled components which can be used together with the results from a suitable
elastic analysis (modelling the elastic loading up stage) to estimate ultimate load
carrying capacity. In addition, this method usually produces relatively accurate
load-deflection characteristics some ways after the ultimate failure has been initiated,
this information can sometimes be very useful in the design of steel structural

members.

Korol and Sherbourne [27] in 1972, used a plastic mechanism approach to predict the
ultimate strength of plates in uniaxial compression in a theoretical investigation of
plates simply supported at all four edges. The ultimate loads were estimated by the
intersection of the post buckling loading path with the unloading line derived from the
plastic collapse mechanism. The postulated mechanism which would later be
affectionately known as the pitch-roof mechanism is shown in Fig.1.6.1 . The
mechanism consists of straight hinge lines which preserves it's essential form as the
deformation increased. In the collapse stage, it was assumed that the material was
rigid-perfectly plastic and obeyed the Tresca yield criterion, analysis was based on the
principle of virtual work and considered the model in strips, with the shear stresses
between strips neglected. The geometrical proportions of the mechanism were taken

as that which would correspond to the minimum end load at any given deflection.
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Small initial imperfections were considered in the analysis but all strain hardening
effects were ignored. The collapse model which also ignored elastic strains was
kinematically admissible with the membrane strains needed to keep all edges straight
while maintaining continuity taken into account in the energy terms. It was found that
the ultimate load was profoundly affected by the magnitude of initial imperfections but
the theoretical plastic mechanism unloading line in itself was insensitive to initial
imperfections. Since the complex plastic behaviour in real plates was simulated by the
simple mechanism, it was stated that the resulting strength estimates would have to be

tested against experimental data to verify the validity of this method.

In a subsequent paper, Sherbourne and Korol [67] presented results from a series of
testsin which six aluminium square section tubes (each simulating four plates with the
unloaded edges free to rotate), made from 1.68mm thick plates with the length-to-
width ratio of 3 and width-to-thickness varying from 106 to 31.8 . It was found that
the very slender specimen possessed a considerable membrane strength beyond the
buckling load while for the very stift specimen, the buckling load was in excess of the
theoretical ultimate load. Plots of the applied loads verses transverse deflections
showed that while the initial elastic bending and membrane behaviour may have
considerable variations for the four plates comprising each tubular specimen, they
tend to follow the same unloading curve, particularly as the deflections became large.
Good agreement between the theoretical plastic mechanism line and the experimental
collapse curve was found only in the more slender specimens. It was also observed
that only in early post-buckling were the upper bound requirements satisfied and for
all the specimens tested the theoretical load carrying capacity underestimated that in
the real plates as the deflections grew large. The authors suggested that this was due
to the fact that the analysis only considered the loading of hinge lines at their "new"
locations, as the deflections increased, ignoring the unbending of the hinges at the

previous position. Also, the material possessed some strain hardening properties not

[2%)
'vd



Chapter 1 : Introduction and Literature Survey

accounted for in the theoretical model. They concluded that the ultimate load

predictions overestimated the real capacity of the plates.

The same work was also later dealt with in Sherbourne and Korol [68] and a similar
approach was used in conjunction with an effective width analysis by Sherbourne and

Haydl [66] to predict ultimate loads in uniaxially compressed plates.

In a study of the collapse behaviour of thin stiffened panels, subject to axial,
transverse bending and combined axial-bending loads, Murray [40,41] observed two
plastic failure mechanisms for the stiffened panels, which he classed as Mode I and
Mode II mechanisms, shown in figure 1.6.2 . Mode I failure being caused by plate
buckling and Mode II by stiffener buckling. Independent strips in the direction of the
applied axial loads were considered, the load carrying capacity of each strip at any
magnitude of deflection was found through considerations of beam-column
interaction and integration allowed estimates for the panel as a whole. Shear effects
between strips were ignored. In the rigid-plastic analysis of Mode I mechanisms,
Murray used a small and a large deflection theory for the analysis. A numerical
minimisation technique was employed to fix the size of the mechanism.
Complimenting the theoretical study was a series of full scale tests (up to 9.5m by
2.44m) of panels stiffened by bulb flats, twelve of which were completed at the time
of publication. It was found that Mode 11, stiffener buckling caused rapid collapse
while Mode I, plate failures were followed by gradual lost of strength. Murray
emphasised the importance of the knowledge of the behaviour of structures in plastic
collapse, not only to be able to predict how the structure may fail but also as a means
to measure the sensitivity to imperfections, especially in thin-walled structures where

very often, the ultimate load is followed by rapid failure.

Walker and Murray [79], in a paper aimed to explain and predict the manner in which

rectangular plates subjected to uniform compression along two opposite edges behave
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when they are compressed beyond their ultimate failure load, used a similar rigid-
plastic formulation to obtain the plastic collapse curve to a pitch-roof mechanism
identical in shape to the Sherbourne and Korol mechanism shown in Figure 1.6.1 .
The membrane action required to render the mechanism kinematically admissible was
considered in the analysis assuming that all the membrane deformation took place at
the hinge lines and at a constant stress equal to the yield stress. The resulting
theoretical load-deflection behaviour was compared to the experimental data from
Sherbourne and Korol, and reasonable agreement was found for the maximum load
and rate of plate collapse. It was shown that the elastic membrane stress in a plate can
influence the final plastic mechanism developed after ultimate failure. With increasing
axial load, the plate develops a regular pattern of buckles in roughly square panels,
however, the irregularities of initial imperfection plays a dominant role and instead of
developing a plastic mechanism observed in ref. [40,41], as shown in figure 1.6.3,
only one section may become fully developed, while the buckles throughout the
remainder of plate decrease in amplitude and finally disappears after failure. The
pitch-roof mechanism analysis was subsequently applied to the Mode I (plate
buckling) failure of the stiffened plate problem studied by Murray in ref. [40,41],
again showing reasonable agreement with experimental findings. The only significant
difference between Murray's mechanism and the pitch-roof mechanism is that the
outer hinge lines are moved inwards, which had the affect of raising the plastic
collapse line in the load-deflection plots. It was stipulated that Murray's mechanism
has maximum separation of the outer hinges while the present mechanism has these
hinges as close together as they can be, thus, the two collapse curves are bounds and

the actual collapse curve lay somewhere between them.

In a subsequent publication, Murray [42] used the analysis and experimental findings
from ref. {40,41,79] with the Perry-Robertson formula used with a newly derived
expression for the imperfection coefficient and the effective width method to form an

approach to the determination of collapse loads for steel plates stiffened longitudinally
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with torsionally weak (open-section) stiffeners and loaded axially, in pure bending or
a combination of the two. Simple design rules were also recommended in the paper
for the case of axial loading, along with a slightly more complicated procedure for the

cases with transverse loading.

Rawlings and Shapland [51] presented a simple theoretical analysis based on the
plastic mechanism approach to accompany findings from a series of tests where very
thin square box sections were axially crushed. All straight fold lines were used in an
assumed geometry of fold pattern where sizes were taken oft the tested specimens.
Elastic deformations were neglected in the plastic analysis and the plate fully plastic
moment expression was used for all hinges. Effects of kinking of the corner edges
were taken into account in the analysis and it was found that these mechanisms

forming at the corners contributed a significant amount of energy absorption.

Davies et.al. [15] in an investigation of the failure behaviour of stiffened and
unstiffened rectangular plates under uniaxial compression, found that a consistent
pattern of yield lines formed quickly after the ultimate load was reached. The idealised
mechanism is again the pitch roof mechanism (figure 1.6.4(a)), and was analysed as a
rigid-plastic mechanism obeying the Tresca yield criterion. The analysis included
shearing forces as the authors found that shear stresses affected not only the shape of
the mechanism but also the collapse behaviour of the plate. The behaviour of the
mechanism was analysed by considering the plate to be made up of strips which are
free to slide relative to each other. Figure 1.6.4 (b)&(c) shows two characteristic
strips. The plastic hinges were assumed to be formed under the influence of a bending
moment M, a compressive membrane axial force N, acting at the mid plane of the
plate and a shearing force S, acting uniformly over the thickness as shown in

figure 1.6.4(d). The yield criterion in terms of the moment and forces on the section is

given by equation 1.6.1 and by assuming that the shearing force S is small, the
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approximate yield criterion is represented by equation 1.6.2. In the equations below,
o, is the yield strength, T is the maximum shear stress and t is the plate thickness.

-7 () () = Ean (16.1)

:Ti+(%)2+(§5)2=1 Eqn. (1.6.2)
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The angle of the inclined hinges (relative to the unloaded edges) was fixed at 35.5°

since this was the minimum angle for which the inequalities implicit in the yield
criterion (‘C—,’- <1, )TV- < 1,2 < 1) holds true. The aspect ratio of the mechanism was

taken from experimental observations which indicated that a fixed value of 0.7 would

be reasonable. Relatively good estimates of ultimate loads were obtained.

In 1981, Murray and Khoo [46] put forward the idea of using basic true mechanisms
to construct more complicated failure mechanisms found during the collapse of
thin-walled structural members. Following an experimental investigation in which
various thin-walled steel sections, loaded in bending, axial compression or a
combination of these loads were tested to failure, the authors developed a set of eight
basic mechanisms that would form the building blocks for all the observed failure
mechanisms observed in the laboratory, table 1.6.1 shows these basic mechanisms
together with their corresponding characteristic equations. Further, it was suggested
that three types of fully-plastic zones, namely the compression, tension and shear yield
zones, could be used with the basic mechanisms to form models for quasi-
mechanisms. The characteristic equations were developed using a formulation similar

to that used in the first authors earlier papers, such as in ref. [41], and the analysis of
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local collapse mechanisms could be done by using an assembly of the relevant basic
mechanisms and yield zones such that compatibility and equilibrium are satisfied.
Murray and Khoo suggested that the test results verified that the method produced
fairly accurate theoretical plastic collapse behaviours although there was a tendency
for the theory to underestimate the load carrying capacity during collapse, this was
said to be due to two possible factors. Firstly, the local mechanisms do not always
form at mid-length of a loaded member, which was assumed in the analysis presented
in the paper and secondly, in quasi mechanisms, strain hardening in fully-plastic zones
should be allowed for by using a higher yield stress in those zones instead of the

material virgin strength that was used in their analysis.

Murray later presented the same analysis method in ref. [43,44] along with
demonstrations of how to estimate energy absorption of collapsing thin-walled
members through examples. More detailed analysis was also presented for some
sections which were examined theoretically using combinations of the basic

mechanisms.

An important contribution on the subject came from Tidbury and Kecman [72] and
Kecman [25] , who was studying the bending collapse behaviour of rectangular and
square section tubes, which was widely used in buses, special purpose vehicles,
roll-over and falling object protective structures. Kecman used a limit analysis
technique to derive a set of formulae relating the hinge moment and associated angle
of rotation of the collapsing tubes. The simplified theoretical collapse mechanism
based upon the hinge collapse modes observed in the laboratory, which proved to be
very repeatable during numerous tests, was a true mechanism consisting of fixed and
travelling yield lines, as shown in figure 1.6.5. In the analysis, the fullv-plastic moment
of the plate was taken as the individual hinge capacity but the usual material yield
strength was replaced by an experimentally derived maximum nominal flow stress of

the material in uniaxial tension. Rolling radii for the travelling yield-lines were taken
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to be decreasing during global hinge rotation and was estimated using an empirical
equation. The moment capacity of the collapsing beam M(B) was found using equation
1.6.3, shown below.

H(B+AB)—1I
M(p) = LEE-TO Eqn. (1.6.3)

where W is the summation of the energy absorbed in the hinges
0 is the overall hinge rotation
and AB is a small change in hinge rotation.

The resulting theoretical moment-rotation characteristics were checked with the
experimental data from 56 quasi-static tests of 27 different sections and were deemed

very satisfactory.

The same plastic mechanism was observed by Seki and Sunami [65] in their
investigation of the energy absorption of thin-walled box sections subjected to

combined bending and axial compression.

Narayanan and Chow [47] studied biaxially compressed perforated plates and
presented an approximate method of predicting the post-buckling behaviour and the
ultimate load carrying capacity of approximately square thin mild steel plates with
square and circular centrally located holes. The theoretical plastic unloading
behaviour was obtained using a method based on plastic mechanism analysis, the
mechanism used is made up of four diagonal yield lines in the square plate with rigid
quadrantal segments between the yield lines, the plate edges and yield lines forming
the axes of rotation for the rigid regions, as shown in figure 1.6.6 . The plastic
analysis utilised a simplified form of the Von Mises yield criterion. Theoretical
collapse loads were estimated from the intersection of the plastic unloading line and

the elastic loading curve. A satisfactory degree of accuracy which was slightly
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unconservative was found for the method in a comparison of the theoretical and

experimental collapse loads.

In a study of collapse behaviour of some thin-walled sections by Sin [70], long and
short uniaxially compressed flat plates, plain channels and plain trapezoidal channels
in pure bending with the unstiffened elements in compression, corner crinkling and
box sections loaded axially and in bending were examined. Sin used the plastic
mechanism approach with a reduced hinge moment equation, shown below as
equation 1.6.4, which took into account both bending moment and axially applied

compressional forces in hinges inclined to the global bending axis.

\/ l_(%)z

== Eqn. (1.6.4)
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where M = Reduced plastic moment of the inclined hinge
M, = Fully plastic plate bending moment
Y = Hinge inclination to global bending axis

and —\\— = Ratio of end thrust to the section squash load.

The von Mises yield criterion was applied in the formulation. In the collapse
mechanisms, membrane strain energy was considered in the quasi mechanisms, effects
of initial imperfections were incorporated in some of the models and a minimisation
process was adopted to fix the size and geometrical proportions of the mechanism so
that the theoretical collapse load was minimum for each mechanism. Some of the

plastic mechanisms analysed are shown in figure 1.6.7. In general, reasonable

agreement was found with the experimental data and results from other investigators.

In an investigation into the behaviour of thin-walled channel section columns, in

which slender channels fabricated from high strength steel plates by welding were the
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subjects, Rasmussen [48] analysed the post-ultimate collapse behaviour of the channel
section columns by employing the theory for spatial plastic mechanisms from Murray
[40,41,44] and Murray and Khoo [46]. Rasmussen considered three plastic
mechanism models, the true flange mechanism, the quasi flange mechanism and the
web mechanism which are shown in figure 1.6.8. The mechanisms resembles those
identified in the paper by Murray and Khoo [46] and the formulations follow closely
to those presented in the mentioned papers, and is therefore not discussed further.

Some of this work was also later published in Rasmussen and Hancock [49].

Prompted by the lack of analytical models for the design of thin-walled sections
against web crippling, Bakker [3] researched into the subject with the aim of gaining
understanding of web crippling behaviour in cold-formed steel members and
developing a theoretical model usable in design. Bakker examined hat and deck
sections with unstiffened web and flange elements subjected to the combined action of
a concentrated load and a bending moment and produced a web crippling model based
on the plastic mechanism analysis as shown in figure 1.6.9. The kinematically
admissible plastic mechanism used the von Mises yield criterion and considered the
effects of work hardening in the travelling hinges using approximate factors in the
energy equations which depended primarily on the ratio of the.yield and tensile
strength of the basic material. From a comparison of the theoretical results generated
using the mechanism with experimental data, it was found that the approach gave
reasonable predictions. Much was written on the mechanics of the web crippling
behaviour and it's effect on the load-deflection characteristics of the failing beams.

This work was also published in ref. [2,4].

Mahendran and Murray [37] presented a paper on how imperfections in thin steel
plates affected the type of plastic mechanism that forms when in-plane compression is
applied. The analytical study used Galerkin's method of solving the Marguerre's

equations to determine the elastic loading up behaviour of the plate with the location
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of the first yield point in the imperfect plate known and subsequently the critical
geometric imperfection level that would cause the "flip-disc" type mechanism to form

instead of the "pitch-roof" type.

An investigation into the failure of triangular cross-section girders in pure bending
was conducted by Koételko and Krolak [28] in which four possible collapse plastic
mechanisms were suggested, shown in figure 1.6.10 . The fully-plastic plate bending
moment was taken as the hinge moment capacities and the rolling radii of the
travelling hinges were estimated using the method put forward by Kecman {25]. The
authors approximated the bending moment of the collapsing beams using equation

1.6.5, below.

M(O) — I1{(6+A0)-11(6-AB)

248 Eqn.(1.6.5)

where M =the bending moment of the global plastic hinge
W =the sum of the energy absorbed in the yield lines
and 6 =the angle of rotation of the global plastic hinge.

It was found that in the mechanism called T1, approximately 50% of the total energy

absorbed during collapse was contributed by the travelling yield lines.

Zhao and Hancock [82,83] reviewed existing formulae for the reduced plastic
moment capacity of an inclined yield line subjected to axial force by Murray [40,41],
Davies et.al. [15], Bakker [2] and Murray [44] and found them to be statically
inadmissible, since the effects of an existing twisting moment was not considered. The
authors derived reduced moment formulae based on both the Tresca and the von
Mises yield criterion which took the effects of the twisting moment on the reduction
of the plastic moment capacity into account and verified them experimentally. It was

proposed that these new formulae are statically admissible and hence lead to lower
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bound solutions. The solving of these formulae requires an iterative process that
makes their application rather difficult, in view of this problem, the authors also
suggested simplified expressions, derived from regression studies, to permit easy

application of their theory.
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1.7 CONCLUDING REMARKS ON THE REVIEW OF
LITERATURE

A substantial amount of literature on the buckling of structures has been published as
this subject has received much attention from researchers for over two centuries. It
was not the intention of this literature survey to review each contribution to the
theory of buckling in structures. This chapter presented a brief discussion to highlight
the contributions deemed most important and relevant to the present work, in the
author's opinion. The author would like to apologise for seeming to ignore some work

while mentioning other contributions which in some opinions may be of less

importance.

The literature survey has highlighted some publications of historical interest and other
more recent work which are typical of the active research currently being pursued.
The investigations carried out in this field can be seen to have moved it's focus from
the elastic buckling behaviour of plates to the study of assembled structural members,
and in more recent years, into non-linear elasto-plastic and plastic behaviour where

interest in ultimate strength of structures have become one of the main considerations.

A large number of investigators have studied the buckling behaviour in thin-walled
structures and much has been written on the subject, but most of the theoretical
analysis in current design codes dealing with thin gauge steel products are based on
the elastic theory of material behaviour, which in the authors opinion, can sometimes
produce very conservative estimates. There is much to gain in understanding the

behaviour of the structures in the non-linear elasto-plastic and plastic region.

Researchers like Murray [40,41,45] have commented on the importance of

understanding the post-failure collapse behaviour of thin-walled structures, mostly
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relating to the safety aspects of a structure in the event of failure. The author agrees
with that comment, adding that in the case of statically indeterminate problems, such
as that found in multi-spanning beams, section failure characteristics are essential in
predicting the overall collapse of the structure which experiences plastic bending

moment redistribution.

Advances in the micro-computer field has made numerical methods such as Finite
Elements very popular since these offer solutions to complicated problems which are
otherwise insolvable, but in the authors opinion, these methods in the current stage of
development requires a substantial amount of computational expenses and skilful
users with experience to produce realistic results. Furthermore, setting up and fine
tuning of the models can be very laborious and time consuming rendering these

methods rather impractical for standardised design.

A number of researchers have used the plastic mechanism approach to approximately
predict the collapse loads of various thin-walled structures by combining a suitable
elastic buckling formulation with the plastic collapse characteristics derived from the
rigid-perfectly plastic analysis of failure mechanisms observed in collapsing structures
and it can be said that in general, rather satisfactory estimates of ultimate loads have
been acquired through this technique. The analysis process is relatively simple and
requires much less computing time than in the rigorous treatments used in numerical
methods, rendering the method quicker and more readily applicable in design
situations. These being the reasons for the adoption of this approach in the current

work presented in this thesis.

The various authors have developed a number of reduced moment capacity formulae
for an inclined hinge subjected to axial compression and some of these have been
reviewed by Zhao and Hancock [82,83], various assumptions of stress distribution

across the thickness of the plates have also been used for the formulation of the
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moment capacity equations. The reduced moment equation used in the current work
is developed in chapter two of this thesis, the final form is identical to that of Sin [70]
but the derivation is different in some stages and is deemed by the author to be more
mathematically correct. The assumed stress distributions across the plate is also

detailed in section 2.4.2 of chapter two.

Walker and Murray [79] and Mahendran and Murray [37] have explored the effects of
imperfections on the final form of the plastic mechanisms that develops in compressed
plates. It is the author$ opinion that in the failure of thin-walled beams, it is the local
bending moment and in some cases the effects of concentrated loads that usually
causes failure mechanisms to form at the portions of the beam that experiences the
most severe loading conditions and small imperfections have a secondary role in the
determination of the location and final form of the plastic mechanisms. Further, in the
consideration of beams supported through cleats, which are very commonly used in
purlins and cold-formed floor beams, the main subjects in this study, the presence of

the cleats and bolts affects the form of the plastic mechanism in the collapsing beams.

Most of the work reviewed relating to the use of the plastic mechanism approach have
studied plates, and some sections in idealised loading conditions, such as axial
compression, pure bending or combinations of the two, these investigations are very
useful for the understanding of general behaviours of the sections, but some
allowances have to be made before such analysis can be applied to specific practical
problems such as those studied in this thesis, beams with cleat supports. It is the
intention of the author to investigate the problem using the plastic mechanism
approach with some simplifying idealisations that permits relatively simple theoretical

treatment in the analysis.
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The existence of strain hardening in the materials used in forming the thin-walled
structural members has the eftect of increasing the local effective yield strength in
parts of the member where relatively large strains are experienced. Researchers such
as Sherbourne and Korol {27,67] and Murray and Khoo [46] have commented that
this effect should be taken into account to produce more accurate predictions of
plastic behaviour. This effect will be briefly studied in the current work and a
somewhat crude but simple method of incorporating material strain hardening
considerations into the plastic analysis during collapse will be discussed in chapter 8

(section 8.4).
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2.1 INTRODUCTION

The behaviour of thin-walled beams is more complicated to analyse than their thicker
counterparts of more solid cross-sections for which the simple beam theories have
been formulated. In addition to the infestation of plasticity, the failure of thin-walled
sections could be brought about by elastic or plastic buckling, which could take the
form of overall buckling, local buckling, lateral torsional buckling or a combination of
the different buckling modes. In laterally stable beams, local buckling is by far the

most common cause of premature failure and is the subject of the current work.

In attempting to model the problem theoretically, the effects of elastic or plastic local
buckling, depending on the slenderness of the section, and plasticity must be
considered. In later stages of collapse, the local plastic mechanisms that would have
developed from the local buckles have to be modelled if the post-ultimate behaviour is
to be predicted. In the region of the ultimate load, the beam section where failure has
initiated experiences the combined effects of local buckling and perhaps the spreading
of yield zones across the section, this region of the loading history is known as the
elasto-plastic region of the loading characteristics, so called because the material in
parts of the failure section are still elastic while other portions are plasticizing.
Although this topic has been well researched, in the whole of the elasto-plastic region
of behaviour, there are many gaps in the current state of knowledge and further
experimentation and theoretical research is required to clarify many problems. All
existing theories for the elasto-plastic region are based on deterministic techniques
and attempts at analysis of this problem is indeed too complicated for practical
purposes. This is unfortunate because the maximum loads tend to occur in this region,
this has led to the current situation whereby there are very many theories and
associated models of failure but nearly all of them seem to be based upon one or more
empirical rules. However, a technique exists and has been employed by several

researchers in various fields, in which a relatively simple method of arriving at an
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approximation of the loading characteristics is possible without having to exactly
solve the elasto-plasticity problem. This technique involves the use of a separate
elastic theory with considerations for local buckling, with a rigid-plastic analysis based
on the plastic mechanism approach to estimate the ultimate loads and the

post-ultimate collapse behaviour of a failing member.

Figure 2.1.1 shows the load-mid span deflection plot of a typical statically determinate
thin-walled beam in a three point bending configuration as it is loaded beyond the
collapse load, following a linear elastic loading up stage, the beam experiences local
buckling at mid span, accompanied by some plasticising at the same location causing
the loading up line to become non-linear towards the ultimate load and finally curves
over to unload non-linearly as the beam collapses, losing it's load carrying capacity as
the deflection increases. The theoretical model consist of combining the results from
an elastic analysis which incorporates an effective width approach to account for the
first stages of local buckling settling in and the rigid-plastic analysis which predicts the
beam behaviour in the region where collapse is well on the way and the local plastic
mechanism at mid span is well developed. The intersection of the elastic loading line
and the collapse curve indicates the theoretical estimation of the ultimate beam load
and the elastic line before intersection is assumed to be followed immediately by the
portion of the collapse curve after intersection to form the prediction for the load-

deflection characteristic of the beam in the entire range of loading.

From figure 2.1.1, it can be seen that the elastic and rigid-plastic theories complement
one another, the elastic theory is able to define the deflections and stresses up to a
point where failure has been initiated while the position of the rigid-plastic curve
determines the absolute limit of load carrying capacity, for above this region, the
structure cannot carry a load and remain in a state of equilibrium, it hence intersects
the elastic line preventing further increases of load at the approximate ultimate load of

the theoretical load plot. Other researchers, who have been mentioned in section 1.6
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of this thesis, have found this technique of using separate elastic and rigid-plastic
analyses of thin-walled mild steel structures to give reliable results without excessively
complicated and lengthy efforts, and it will be employed in the current study of

thin-walled cold-formed beams.

In the following sections, the formulation of the equations which would be used for
the analysis of the thin-walled beams in subsequent chapters will be discussed, the
assumptions and simplifying idealisations required to reduce the theories to a state
that would allow relatively simple computations and hence easy applicability to

practical problems, will also be presented as the formulae are developed.
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2.2 MATERIAL MODELS

The material properties of mild steel have made this material very popular indeed in
the past century. Amongst it's wide range of applications, mild steel has been
extensively used in the field of thin-walled structures, especially in the form of
cold-formed steel sections. The relatively high strength and ductility of these steels
permits them to be cold worked readily with little difficulties allowing the production
of thin-walled sections of various shapes and sizes to be done through relatively

simple cold forming processes, such as press braking, folding and cold rolling.

The cold-formed beams examined in this thesis are made from mild steels of various
compositions, but material tests have shown that they generally fall into one of the
two material behavioural groups described here. The typical shapes of the uni-
directional tensile stress-strain characteristics, obtained through tensile testing
according to BS 10 and BS EN 10 002-1 : 1990 [9], of the two groups of materials
are shown in figure 2.2.1(a) & (b).

In the first, figure 2.2.1(a), more commonly found in mild steels, the stress follows a
linear elastic behaviour 'oa’ up to the limit of proportionality at a, after which some
non-linearity occurs. The stress peaks at the upper yield point 'b' and almost
immediately drops off to the lower yield point 'c’ where some fluctuation usually
occurs before it stabilises at the lower yield stress, the strains increase at constant
stress from 'c’ to 'd' and this lower yield stress is taken as the material yield strength
for most design purposes. After the point 'd', the stress begins to increase with strains
again, but at a rate which is only a fraction of that during the elastic loading up, this
increase being brought about by strain hardening. A second peak is then reached at
point 'e', known as the ultimate tensile strength of the material, after which the

material breaks down causing fracture at point 'f.

o
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The second behaviour, illustrated in figure 2.2.1(b), is more commonly found in alloy
steels and non-ferrous metals. Following the linear elastic stage of loading behaviour,
non-linearity sets in as plasticizing occurs in the material to more gradually reach the
plateau in the plot where the stress is constant with increasing strains, as compared to
the first case. Strain hardening occurs as before to bring about the ultimate tensile
load and subsequently fracture. The yield strength of the material in this case is taken
as the 0.2% proof stress at point 'b', the stress corresponding to 0.2% plastic strain in

the material.

In the analysis of the beams examined in the current work, two idealised material
models will be employed, the first is used in the elastic theory and it is commonly
referred to as the linear elastic perfectly plastic material. Figure 2.2.2 shows the
characteristics of this ideal material, the linear elastic region is followed immediately
by the plastic flat line where it is assumed that the plastic strain increases at a constant
stress equal in value to the material yield strength until fracture occurs. This
assumption has been widely used in traditional elastic failure criterion whereby failure

is said to have occurred at first yield.

In the case of the current work, the elastic analysis will be used in conjunction with a
plastic theory to establish the failure loads. In the plastic analysis, the rigid-plastic
material assumption applies, figure 2.2.3 illustrates the stress-strain characteristics
that this ideal material possesses. It neglects all elastic strains, considering all plastic

strain to grow at a constant stress equal in value to the yield strength of the material.

Both the ideal material assumptions does not take into account the effects of strain
hardening. This effect may become important only as the strains get large, as can be
seen in figure 2.2.1, in the elastic and initial post yield regions, strain hardening effects
are minute if in existence at all, hence it is perfectly acceptable to neglect it in the

elastic analysis here since it is only used to model the initial loading stage where the

52



Chapter 2 : Theoretical Concepts

strains are still small. There is however the strain hardening eftects left behind in the
cornes of the sections during fabrication, these cold-formed corners generally possess
local effective yield strengths higher than that in the virgin material, which in turn has
the effect of increasing the section strength, This issue will be addressed in chapter 8
and 9 of this thesis where relatively simple methods of accounting for strain hardening
in the corners will be presented, together with a simple method of accounting for

strain hardening in the plastic hinges.

It might also be noted that both the ideal materials do not take into consideration the
Bauschinger effect, the error that this may cause is deemed to be small for the beams

in this study since no full load reversals are involved.

9
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2.3 THE ELASTIC THEORY

The elastic analysis for the current study combines the solution from the conventional
elastic beam theory using the Macaulay's method with the effective width approach
set out in BS 5950 : Part S, ref. [8]. These solutions are discussed separately in the

following two sections and the approach for the combined use of the two parts is

explained in section 2.3.3.

2.3.1 Elastic Beam Solution

The simple elastic bending of the thin-walled beam is considered using the Macaulay's
method to estimate the beam deflections for a single span beam. The beam is assumed
to be simply supported at both ends and loaded by a concentrated downward force at
mid span, figure 2.3.1.1 shows the beam loading configuration. From the Macaulay's

solution, the deflection of the elastic beam at any point is given by Eqn.(2.3.1.1), and

the mid span (also the load point) deflection is given by Eqn.(2.3.1.2).

v= é(—%x? +Ex-L] 4 P,Léx) Eqn.(2.3.1.1)
Vs = 4_,;% Eqn(2312)

where [....] are Macaulay brackets
v is the beam deflection x mm away from the left support
vmsis the mid span deflection
P is the applied mid span load
L is the beam span length
E is the Young's modulus of Elasticity
and [ isthe beam section second moment of area.
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The elastic bending moment of the beam is given by Eqn.(2.3.1.3),
M=E Eqn.(2.3.1.3)

where M is the maximum bending moment occuring at mid-span.

2.3.2 Effective Width

The Effective Width equations recommended in the British Standard, BS 5950 :
Part 5 : 1987, ref. [8], are employed here to account for the effects of local buckling
of the compression elements in the beams. Before the Effective Width can be
determined, two parameters have to be worked out. The first is the local buckling

critical stress, from the general solution for plate buckling, shown as Eqn.(2.3.2.1),

—g.EL_E
Pcr—K b 12(1—\)3) Eqn(2321)

where P, is the local buckling stress
K is the local buckling coefficient
b is the plate width
t isthe plate thickness

and v isthe material Poisson's ratio.

From Eqn.(2.3.2.1), by assuming £ =205 kN/mm’ and v =0.3, the equation can be
simplified to

2
P = 185000K(§) Eqn.(2.3.2.2)

The local buckling coefficient for the various cases of geometry is found using the

equations listed in Appendix I of this thesis.
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Two Effective Width equations are then applicable, depending on the beam

cross-section and plane of bending relative to the beam. These are listed below as

Eqn.(2.3.2.3) and Eqn.(2.3.2.4) for the stiffened and unstiffened elements under

uniform compression respectively.

2.3.3

l 471-0.2
beffzb[l +14{ (,{—) : -0.35} } Eqn.(23.23)

J

Bew = 0.89b,5+0.11b Eqn.(2.3.2.4)

where by is the Effective Width for a stiffened element
be. is the Effective Width for an unstiffened element
and f. is the compressional stress on the effective element.

Method of elastic analysis

The elastic analysis adopts the linear elastic perfectly plastic material model as

illustrated in figure 2.2.2 and considers the buckling of the compression element of the

beam by utilising the reduced section properties based upon the Effective Widths of

the buckled elements to calculate the moment carrying capacity and deflections of the

beam.

Consider the compression element of a beam section under uniaxial stress, on the

onset of buckling at the critical local buckling stress, only the effective portion the

element is assumed to carry any stress, therefore when the compressional stress in the

element reaches or exceeds the critical buckling stress, the effective widths of the

buckled element can be calculated using Eqn.(2.3.2.3) or Eqn.(2.3.2.4) and the

reduced section properties of the buckled beam section can then be worked out, based

on the effective widths.
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With the average compressive stress on the effective element, 6, (=f; in the
effective width equation), the stress distribution across the beam cross-section can be

plotted, figure 2.3.3.1, and the stress on the tension edge can be found through similar

triangles, in terms of the compressive stress.

6i= 20 au Eqn.(2.3.3.1)

The equivalent forces acting on the section can then be written in terms of the average

compressive stress. Taking the case of the plain channel section as an example,
F1 =0avb'beu -1 Fz:oavb?

d—h)?- —h)-b-
F3 = Gaw 50— Fa = 0= Eqn.(2.3.3.2)

The position of the neutral axis of bending is determined by considering horizontal

equilibrium,
F1+F2=F3+F4

and for this case, this yields,

($)0

boibrd Eqn.(2.3.3.3)

h=

The section moment carrying capacity can now be found from the equivalent forces.

| 2d=h)

Mo =F1-h+F2- 2+ F3. 20 4 paid - py Eqn.(2.3.3.4)
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Considering the beam under three point bending, the mid span load is then given by

4\,
pP=== Eqn.(2.3.3.5)

Using elastic beam theory, the mid span deflection of the beam is given by

p-L}
Vs = I8Ely Eqn.(2.3.3.6)

where /.5 is based on the reduced cross-section at the point along the beam
where the bending moment is maximum.

In summary, before buckling initiates, deflections are worked out for the each load
step from Eqn.(2.3.1.2). After buckling has started in the compression element,
indicated by the local critical buckling stress, values of the longitudinal stress at the
compressional elements of the buckled section are increased in steps and substituted
into either Eqn.(2.3.2.3) or Eqn.(2.3.2.4) depending on the section, to find the
effective width of the element. The corresponding bending moments and reduced
section properties are then calculated using Eqn.(2.3.3.1) to Eqn.(2.3.3.4), after
which the loads and deflections are evaluated using Eqn.(2.3.3.5) and Eqn.(2.3.3.6)
respectively, for each load step. This procedure yields the data for the plotting of the

theoretical elastic loading line.
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2.4 THE RIGID-PLASTIC THEORY

In the behaviour of thin-walled structures after local buckling has commenced, as the
local buckling deformations increase during loading, plasticity spreads in the section
and the maximum plastic bending moment capacity in some portions of the
component plate is eventually reached. These portions often manifest themselves in
the form of yield lines in which the material has gone completely plastic. From this
point onwards, the plate deformations starts to concentrate at the yield lines while the
adjacent platelets flatten as they unload elastically. These yield lines will also be
referred to as hinge lines or simply hinges in this thesis, so called because any attempts
to increase the loading would cause the adjacent platelets to fold along these lines,
which allow large rotations without significant changes in the resisting bending
moment. These hinges are unlike true hinges in that they do not allow free relative
rotation of the connected platelets, instead, they permit rotation with a almost

constant plastic bending moment in resistance.

The system of yield lines forms plastic mechanisms, like those described in section 1.6
of this thesis, which characterises the deformation of the thin-walled member during
collapse. The relatively uncomplicated geometry of these plastic mechanisms allows a
simple plastic analysis of the collapse behaviour during the folding of the component
plates in a buckled section. The analysis is equivalent to the plastic analysis of beams
and frames of compact members presented by Horne [73], with the exception that the
cross-section distortions in the locally buckled sections adds complexity to the

analysis.

The theory ignores elastic deformations utilising the rigid-perfectly plastic material
model, as described in section 2.2, which implies that while the rotations about the

hinge lines takes place at a almost constant plastic moment, the adjacent plates
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remains flat and displaces as rigid bodies, with exceptions. This assumption is difficult
to justify for the initial stages for failure but it lays the foundation for a relatively
simple plastic analysis of a buckled section well into collapse where the plastic

mechanisms are well developed.

2.4.1 Hinge Plastic Moment of Resistance

The resisting bending moment in plastic hinges that form on buckled thin-walled
structures, in the absence of significant axial, shear or torsional forces, is given by the

fully plastic moment capacity of the plate,
my,=12, -G, Eqn.(2.4.1.1)

where m,represents the plate fully plastic moment capacity
Z, is the plastic section modulus
and o, is the material yield stress.

For a flat plate, the cross-section is essentially a simple rectangular section as shown

in figure 2.4.1.1(a), and the fully plastic section modulus is given by

Z, = Eqn.(2.4.1.2)
and the fully plastic moment capacity is

mp =G, 2 Eqn.(2.4.1.3)

The buckled component plates of a thin-walled beam, even when the beam is in pure
bending, are subjected to axial force plus bending. The axial force has the effect of

reducing the fully plastic moment capacity of the plate.
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For a rectangular section subjected to a combination of axial force and bending,

shown in figure 2.4.1.1(b), the fully plastic moment is reduced to

m, = mp[l - (-,fi) } Eqn.(2.4.1.4)

where P is the applied axial force
and P, is the squash load of the section (P, = 6,bd).

2.4.2 The Reduced Plastic Moment of an Inclined Hinge

In the previous section, Eqn.(2.4.1.4) provides a means to calculate the plastic
moment resisting hinge rotations for a plate subjected to axial compression where the
hinge is perpendicular to the direction of the applied forces. In the plastic mechanisms
that form during the collapse of thin-walled structures, plastic hinges can occur at

various angles and this causes a further reduction in the resisting moment of the hinge.

Consider an inclined hinge AB subjected to axial compression, as shown in
figure 2.4.2.1, the material within the hinge is assumed to have yielded while the
adjacent platelets are rigid as bending occurs about the axis 0-0. The transformed

stress resultants (using two dimensional stress transformation) acting on the inclined

hinge due to the end thrust are given by
N, = %(1 +cos2y) Eqn.(2.4.2.1)
Ny = 3(1 - cos 2y) Eqn.(2.4.2.2)

Ny = 5sin2y Eqn.(2.4.2.3)
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Sforce
)

where N is the applied axial stress resultant in N/mm (= =

y is the angle of hinge inclination
and N,, N, N,, are the resulting direct and shear stress resultants acting on

the hinge.

Now consider the general case of stresses acting on the inclined hinge with the axial

end compression and bending action, as shown in figure 2.4.2.2. The normal stress o,
is produced as the combined result of N, and the bending action, while 6, and 1,
are due purely to N, and N, respectively.

N X 1\/.\}'

Oy = s and ‘rxy = e Eqn(2424)

Assuming the yield portion follows the flow rules of the von Mises criterion in a 2-D

stress system, Eqn.(2.4.2.5) relates the stresses.

(61 -02)*+(02-03) +(03-0,)* =202 Eqn.(2.4.2.5)

0':+G)') + J(GX“G,V):*“‘“E)'

where G2 = ( 3 >

By assuming a 2-D stress system, 63 = 0 and rearranging,
G} — 00y + [oi +313, - cf,] =0 Eqn.(2.4.2.6)

Solving Eqn.(2.4.2.6), which is a quadratic equation in g,

5, = g[oxi fcg -4(c?+3t3 - o2) ] Eqn.(24.2.7)
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Across the hinge line AB, to have yield under bending action, the stress on either side

of the zero stress position is given by Eqn.(2.4.2.7), which can be rewritten as

oy = 3lox 0t Eqn.(2.4.2.8)

where o, = J4c?, -3cl-121%, .

Taking 0-0 as the mid-thickness axis, the distribution of the normal stress, o, over the

thickness of the hinge is shown in figure 2.4.2.3.
Considering unit width, take moments about the point O,
my = %(ox + ao)n(-z'- - %) + %(ao - crx)n(% - -;1)
giving
mY = 5(t = mo, Eqn.(2.4.2.9)
Summing the forces along axis 0-0,
Ny = 305 + o) = 5(0t6 = 0. )(1 - 1)
giving

.’\ty""é [a 0_6.“]

Eqn.(2.4.2.10)
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Substituting Eqn.(2.4.2.10) into Eqn.(2.4.2.9) and rearranging yields

! = ﬁ:[%(ag ~62)+ N,lo, - N;] Eqn.(2.4.2.11)

Taking the fully plastic plate moment capacity per unit width as

Oot?
mp = Eqn.(2.4.2.12)

and substituting Eqn.(2.4.2.1) through to Eqn.(2.4.2.4) into Eqn.(2.4.2.11) then
dividing it by Eqn.(2.4.2.12) and rearranging, we obtain the final unit width reduced

moment expression for the inclined hinge under axial compression.

Eqn.(2.4.2.13)

=
A
&
—_
|
&lw
i
F=
S~
9
2.
=
19
-
TN
T
(9%
2.
=
19
<
N~

where N, = o,1.

A further modification to this equation has been formulated to account for material
strain hardening, the plate fully plastic moment term can be replaced by one which
considers the material to be rigid-linear strain hardening. The details of this

modification is presented in section 8.4 of this thesis.
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2.4.3 Some concepts relating to Plastic Mechanism Analysis

In the plastic mechanism analysis technique employed in the current work, it is
assumed that the material follows a rigid-perfectly plastic behaviour, deformations are
assumed to be concentrated at the yield lines taking the form of bending about the
hinges with the platelets between the hinges remaining flat. At this point, a distinction
should be made between true mechanisms and quasi mechanisms, as defined by
Murray and Khoo [46]. A true mechanism is a mechanism which can develop with
only rotational deformations about the yield lines alone, while quasi mechanisms
cannot develop without normal or shear deformations in some of the yield lines or
alternatively in-plane membrane deformations in the flat plates between the hinges. A
suggested test to determine the classification of the mechanism is to construct a
cardboard model of the mechanism and the true mechanism will deform with only
folding of the hinges while quasi mechanisms would require some cuts to be made
along some hinges before the mechanism can deform. This test can sometimes be
misleading, especially when the cardboard is deteriorated. For thin plates, the energy
associated with membrane strains is larger than the energy for plate bending, it then
can be argued that whenever kinematically possible, a true mechanism will develop,
theoretically speaking. In the collapse of real thin-walled structures however, this is
rarely the case and great care has to be taken in the creation of theoretical plastic
mechanisms, so that oversimplification of quasi mechanisms and neglecting of

necessary membrane strains does not occur.
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According to the plastic mechanism theory for beams and frameworks by
Baker et.al. [1], an exact rigid-plastic solution will satisfy all three of the basic

conditions listed below.

- Equilibrium - each part of the structure and the structure as a whole is in

equilibrium with the applied loads and the reactions at the supports.

- Mechanism - sufficient plastic hinges are developed so that the whole or part of the

structure can deflect as a mechanism.

. Yield - at no point in the structure can yield be exceeded.

Except in the simplest of structures, it is extremely difficult to satisfy all three
conditions simultaneously, approximate methods that satisfies only two of the
conditions are therefore very useful. The upper bound method satisfies the equilibrium
and mechanism conditions and it gives estimations of the failure loads which are either
equal to or more often higher than that in the actual structure. Although this method
overestimates the loads, with some care, the differences can be made very small,
producing very useful results. In contrast, the lower bound method gives failure
predictions which are equal to or lower than the actual, this method satisfies the
equilibrium and yield conditions. Since lower bound solutions are conservative, they

are more readily accepted in current design situations.

The plastic mechanism analysis used in the current work adopts the upper bound
approach in a limit analysis technique. The reason that overestimates are obtained in
the current method is the fact that the chosen plastic mechanisms are rarely as "good"

as that which the structure itself will adopt.
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2.4.4 Method of Rigid Plastic Analysis

By assuming a kinematically admissible mechanism, a mechanism load can be
calculated by equating the external incremental work to the total internal incremental
energy dissipation in the hinges and membrane strain areas (where applicable). A
series of mechanism loads are calculated, each based on a geometrical configuration
differing from the previous one by a small amount corresponding to the deformation
mode of the assumed mechanism. The series of mechanism load versus deformation
data is used to form the rigid plastic curve that describes the collapse behaviour of the

failed section.

In classical yield line theory, a mechanism is determined by defining a pattern for the
overall (global) plastic mechanism which is made up of stationary hinges, different
mechanisms with different yield line patterns result in different mechanism loads. The
decisive mechanism is taken as the pattern which produces the smallest mechanism
load. Using this method for the current work, it may be found that for increasing
deformations, slightly different hinge patterns produce the smallest loads in the
successive load steps. It may therefore be necessary to consider some hinges as
travelling yield lines (also known as moving hinges or rolling mechanism lines), which

makes it possible for the yield line pattern to change in proportion.

In practice however, it may be difficult to determine the complete yield line pattern by
simply assuming any theoretical plastic mechanism and minimising the mechanism
loads. It is therefore wise to base the theoretical models partly on the observations of
yield patterns occurring in actual sections during tests, or on the elastic buckling
behaviour of the thin-walled section. This is the approach adopted in the current
work, observed plastic mechanisms are simplified to form the basic theoretical model
of the plastic mechanism and the final geometrical proportions of the yield pattern is

taken as that which produces the minimum failure load. The observed mechanisms for
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the beams of various cross-sections examined and the simplifications are detailed in

chapters 3, 4 and 5 where the theoretical plastic mechanism models for the respective

sections are developed.

An energy approach based on the principle of virtual work is then applied to the
theoretical yield line pattern, equating the sum of the external work from the bending
about the global plastic hinge to the sum of the internal energy dissipated in the
bending about the stationary yield lines, rolling of the travelling hinges and membrane
straining. The energy equations used for these four actions are described in the
following subsections (2.4.4.1 to 2.4.4.4). The relationships between the angular
rotations of the hinges is determined by considering geometry and by writing all
angles in terms of the global hinge angle and equating the energies, a governing

equation describing the unloading behaviour of the failing beam may be obtained.

2.4.4.1 Bending Energy of the Global Plastic Hinge

In the collapse of the buckled beam, the rigid plastic assumption implies that all the
deformations in the beam are assumed to concentrate at the plastic mechanism where
failure was initiated, considering the failure section as the global plastic hinge, the
external work done in the collapsing beam is simply the energy required to cause

global bending about the hinge and the work done is calculated using Eqn.(2.4.4.1).

W = M(1) - Ot Eqn.(2.4.4.1)

where M()is the moment capacity of the global plastic hinge at hinge angle 1
and  8p is a small increment in the global hinge rotation.
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2.4.4.2 Energy dissipated in Stationary Hinges

The reduced moment expression derived in section 2.4.2 is used to calculate the

energy dissipation at stationary hinges. The energy term for the stationary hinge is

therefore given by
W = my] - (hinge - length) - 3o, Eqn.(2.4.4.2)

where m} is derived from Eqn.(2.4.2.13)
and 8o is the small increment in local hinge rotation corresponding to dyt.

2.4.4.3 Energy dissipated in Travelling Hinges

The energy dissipated in travelling hinges are calculated using a technique similar to

that used by Kecman [25], and is given by

Swepr—~,
Wiw=2 -mll- Shepimdrea Eqn.(2.4.4.3)

where r is the rolling radius of the travelling hinge,

Swept — Area is the area the hinge sweeps through corresponding to Sp
and the factor 2 accounts for the actions of unfolding of the hinge at the
original position and refolding at the new location.

It should be noted that this expression only accounts for the idealised folding and
unfolding action of the travelling hinge as it is moved to the new location, it does not

take into consideration the increase in hinge rotation which may have occurred during

the movement.
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2.4.4.4 Membrane Strain Energy

The plastic membrane strain energy is estimated by assuming that the regions
experiencing membrane strain are completely plastic and that there is only uni-
directional stress existing in the flat platelets, the energy dissipation is therefore

calculated using

Wmem = Ivol(co : E)d\"O/ Eqn(2444)

where ¢ is the unidirectional strain.

The unidirectional stress idealisation is possible for the compression flange of channel
and zed sections since one of the edges is unrestrained except for the lips in the lipped
sections which offers little resistance to strains in the buckled section. In cases where
this assumption does not hold true, 2-D stress states would need to be used, and the

total membrane strain energy would be the sum of the work in each of the principle

directions.
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2.5 INDETERMINATE BEAM PROBLEMS

In indeterminate beam problems, such as multi-spanning beams, collapse only occurs
if sufficient failure sections develop, according to the mechanism condition of the
plastic theory described previously in section 2.4.3. These failure sections would
invariably occur at the locations along the beam where the bending moments are most
adverse. As the deformations increase, the local buckles develop into local plastic
mechanisms. The most severely stressed sections of the beam reaches their ultimate
moment capacities and starts to shed some of their load. As they unload following
their collapse characteristics, the load shed is taken up by other portions of the beam
which were not so severely loaded. Increases of the applied loading is therefore
possible up to such point where failure eventually occurs elsewhere, satisfying the
mechanism condition. This phenomenon is called plastic moment redistribution and
can increase the ultimate loads for multi-spanning beams by substantial amounts

depending on the geometrical proportions of the beam.

In the current work, double span beams have been examined and the following
paragraphs describes the technique developed to estimate the load-deflection
characteristics for double spanning beams from the results obtained in the study of

beams with single global plastic mechanisms.

The elastic and plastic mechanism theories described in the preceding sections enables
the load-deflection characteristics of beams that fail with a single global plastic
mechanism to be ascertained, this result can be converted easily to moment versus
hinge rotation data, by assuming that deformations along the beam is concentrated at

the global plastic hinge, which is simply another way of representing the same

information.
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Consider two beams with identical cross-sections in single and double span set-ups as
shown in figures 2.5.1(a) and 2.5.1(b) respectively. Since the beam sections are the
same, it can be assumed that the collapse mechanism that develops in both beams will
be very similar, if not identical, hence it can be assumed that the moment-rotation
characteristics for all the global plastic mechanisms that will develop in the beams are
the same as that obtained from the modelling of single spanning beam. This is the

basis of the current method.

By using an energy approach, the incremental external work done by the applied
forces can be equated to the sum of the internal work by the three global plastic

hinges as shown below.

2:-P-8v=2-M(1) Sy +2-Ma(nj) - dpa Eqn.(2.5.1)

where the moments of the failure section A and M5 are functions of half the

global plastic hinge rotation angles

I
and  H3=7F.

The angles of rotation of the hinges can be related to the load point deflections by
considering geometry and the instantaneous bending moments at any hinge angle are
derived from the single span results. Eqn.(2.5.1) enables the construction of the load-

deflection characteristic plot for the double spanning beams.

The simple method described above is based purely on the energy approach and is
capable of producing rather good estimates in cases where the span length of the
double span beam is of the same order as that of the single span beam which provides
the moment-rotation data. A more generally applicable method of solution will be
presented in chapter 3, section 3.5 4, in which elastic solutions are used in conjunction

with the energy approach for double span beam load-deflection predictions.
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Although only double span beams where investigated in the current thesis, the
proposed technique can be easily extended to accommodate multi-spanning beams.
Since the methods are rather simple and do not deviate too much from conventional
beam analysis, it was deemed unnecessary to carry out multi-span beam experiments

exclusively for the current investigation.

This chapter has briefly stated the methods used in this study of thin-walled beams in
collapse, to gain fuller understanding of the approach and application of these

techniques, the reader may want to proceed to chapter 3, where the models for plain

channel beams are developed.
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3.1 INTRODUCTION

Local buckling in thin-walled sections subjected to bending is a familiar problem
which has received much attention from researchers for a number of years. Most of
the work focused on the prediction of the ultimate load carrying capacity and
deflection characteristics of the members which are not only prone to local buckling,
but may be susceptible to torsional instability, effects of localised loading and various

problems due to the support system.

Current design codes such as BS 5950 : Part 5 : 1987 [8], like most other codes from
around the world which deal with thin-walled members, applies the Effective Width
concept in one form or another in designing against buckling, much of the

recommendations being based on empirical formulations.

Investigations carried out on plain channel sections in bending includes that by
Rhodes [52] which studied channels in bending such that the unstiffened flanges
comprise the bending elements, analysis involved using the effective width method.
Murray and Khoo [46] and Murray [44] developed theoretical collapse analysis for
plain channel columns using the plastic mechanism approach, five possible
mechanisms were observed during the experimental investigation and by considering
the complete mechanism as an assembly of strips of elementary mechanisms, the
resulting theoretical collapse curve was in good agreement with the experimental
findings. Sin [70] examined plain and trapezoidal channels in pure bending, such that
the stiffened webs were in tension while the flanges were subjected to bending, failure
modes similar to those found by Murray and Khoo were observed and analysis based
on the plastic mechanism approach produced results which agreed well with acquired
experimental data. Rasmussen [48] also studied channel section columns using the

plastic mechanism approach similar to that of Murray.
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The analysis of plain channel beams is the subject of this chapter, the theoretical
methods discussed in chapter 2 will be applied to channels which are loaded such that
the stiffened webs forms the bending elements while the thin-walled flanges could be

considered to be in pure tension and compression.

An experimental investigation was performed in the laboratory, in which 48
thin-walled mild steel plain channel beams were tested. Single and double span beams
are supported and loaded through cleats which are bolted to the webs of the beams.
The actual yield line patterns that formed on the failed sections during the experiments

were used as the basis for the simplified theoretical plastic mechanism presented later

in this chapter.

The analysis presented in this chapter attempts to predict the elastic, post-buckling
and post-ultimate collapse load and deflection behaviour of the beams examined. As
the theories involved have already been presented in chapter 2, much of this chapter
focuses on the development of the plastic collapse mechanism model which will be

used to generate the collapse curves.

The general method employed to analyse the plastic mechanism is to first establish the
relationship between the overall rotation of the beam portions on either side of the
failure section and the rotation at each hinge line within the plastic mechanism,
through geometrical considerations. The energy method is then used to equate the
virtual work done due to the overall beam rotation to the sum of the internal energy
dissipated during hinge rotation, travel and in any plastic membrane strain which may
be required to maintain kinematic admissivity. Some sizes within the mechanism are
dictated by the beam geometry and support layout but there is one independent
variable in this model which would have to be found through a mechanism load

minimisation process.
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3.2 THE PLAIN CHANNEL MECHANISM

The experiments conducted on the plain channel specimens revealed that one failure
mechanism would consistently form in the beams at the loading cleat for the case of
the single span beam and at the central support and loading cleats for the double span
case, which was expected as those are the regions where bending moments are most
adverse. Figures 3.1.1 to 3.1.4 illustrates the typical failure mode found on the tested
plain channels. The observed pattern of yield lines were simplified to form the

postulated theoretical plastic mechanism shown in figure 3.2.1 and 3.2.2.

The simplified mechanism consists of 6 fixed hinges, 4 stationary hinges with variable
length and 3 travelling hinge lines, all of which were assumed to be straight. There are
also two triangular regions in plastic membrane strain in the tension flange. The
independent mechanism size 'c’, see figure 3.3.1, would later have to found through
load minimisation. In comparing the theoretical mechanism with the observed failure
section, the most prominent difference is found in the compression flange, hinges 'AE'
and ‘DH' were assumed to be perpendicular to the flange edge while the
corresponding lines in the actual failure section s almost invariably inclined. The
reason for not using an inclination on hinges 'AE' and 'DH' is that this would introduce
an independent angle which would be reduced to zero in a load minimisation process.
Twisting occurs as the mechanism matures, however, most of the effects are

considered elastic and therefore neglected in this analysis.

It should also be noted that the presence of the bolts on the web has two significant
effects, firstly in determining the length of hinge 'FG' and secondly in limiting its’

travel down the web as the mechanism develops.
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3.3 GEOMETRICAL RELATIONSHIPS

The angle 1 is taken as the primary independent variable in this model and all varying
sizes and hinge angles are written directly or indirectly in terms of it. The following

equations defines the important sizes and angles required for the analysis of the plastic

mechanism.

From figure 3.3.1,

tang; =5 Eqn.(3.3.1)

Due to the travel of hinge 'FG', from figure 3.3.2(a) and (b),

tan0; = Eqn.(3.3.2)

where a is the distance that hinge 'FG' has travelled.

S I

From figures 3.3.1 and 3.3.3, taking the origin of the co-ordinate axis at the node 'T',

yr =d-a(l +sinB,) Eqn.(3.3.3)
ye=c-sinji+d-cosB; - cosp Eqn.(3.3.4)
xg=c-cosp—d-cosB;-sinp Eqn.(3.3.5)
tan&} = %f Eqn.(3.3.6)
and p=E&;-& Eqn.(3.3.7)
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Referring to figure 3.3.3, it can be shown that,
sin(03 + ) = [ “2E | Eqn.(3.3.8)
Also  cos(0; +p) =% Eqn.(3.3.9)

Hence, using Eqn.(3.3.8) and (3.3.9) and substituting into the expression Eqn.(3.3.3),

(3.3.4) and (3.3.5), we obtain,

d-cospL-cos0; +a(l +sinB;)—c-sin (cos“[——"—_c'cos 'u_d'zoserﬁ" “D
=d-c-sinp Eqn.(3.3.10)

where 0, =tan™ (3)

Eqn.(3.3.10) may used to find the distance of travel for hinge FG', a at any angle .
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3.4 ENERGY TERMS

Hinges AE and DH

The angle O3 is defined by Eqn.(3.3.8), referring to figure 3.3.2(b) and figure 3.3.3, it
can be shown that

/
05 = tan™'(tanB3 - cosH3)
_ L i d- . - ;
= tan '(tan[sm l{csm p+d-cos 63 czsu d+a(l+smﬁz)} - u:l . cosez)

Eqn.(3.4.1)

The energy dissipated in hinges 'AE' and 'DH' is then given by

W =2-m,,r1—<£)2 -b-O;

Wy=2-m, 1—(#—)2 - b

_ .1 [ csin ped-cos 0-cos p—d+a( 1 +sin B
tan ’(tan[sm l{Csmp cos ‘c:w +a(l+sin 2)} —pl:|'C0562)

Eqn.(3.4.2)
Hinges BF and CG
[t can be shown that, (where (8 + u)’ is viewed in line with 'BF")
63 + u)’ =tan"'(tan[O3 + 1] - cosH;) Eqn.(3.4.3)
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Hence, the energy dissipated in hinges 'BF' and 'CG' is given by
M 2 /
Wy=2. m,,[l - (7) ] -(b+a) 03 +1) Eqn.(3.4.4)

W2=2-mp{1—(§71)2]-(b+a)-

- . =1 [ csin p+d-cos 63-cos pi—d- i
tan ‘(tan[sm 1{csmp cos zu;sp +a<l+s"]02>}]'00862)

Eqn.(3.4.5)
Hinges KI and JL
The energy dissipated in hinges 'KI' and 'JL' is
Ws =2-mp[l —(ﬁ’:)z:l-b-u Eqn.(3.4.6)
Hinges Fland GJ
Referring to figure 3.4.1(a), the coordinates of P4 is given by
Xps=f-COSp—g-sinpt Eqn.(3.4.7)
yps=f-sinp+g-cosut Eqn.(3.4.8)
and zpy=g-tanb; Eqn.(3.4.9)
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Also yps=d-a Eqn.(3.4.10)
Therefore, from Eqn.(3.4.8) and Eqn.(3.4.10),
f-sinp+g-cosp=d-a Eqn.(3.4.11)

Now, from figure 3.4.1(a) and (b),

“‘cos©
tanéz =f 3 =

and substituting Eqn.(3.3.1) into the above expression,

__ Jd-cos 6
- ¢

Eqn.(3.4.12)
then substituting Eqn.(3.4.12) into Eqn.(3.4.11) yields,

d- .
f=——ta Eqn.(3.4.13)

. d-cos §9-cosp
sin p+——7—

So that

-12p3
Xp4

04 =tan

g{2]

Eqn.(3.4.14
—tan-l{ __8Lla) qn.( )
= tan (f-cos p-g-sin p.)
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The energy dissipated by hinges 'FI' and 'GJ' is given by

r~ -

Wea=2-mp 1—(,%) J-(d—a)-94

a

21
_1. ()] w-ay tan-'[ —=L8]__
Wa=2-mp 1 (M) (d-a) tan (fcosu-g-sinu) Eqn.(3.4.15)

Hinges EI and HJ

Consider the point PS' originally perpendicular to 'EI' and intersecting 'FI' at F in the

undeformed state, as shown in figure 3.4.2, the length from PS' to F is given by

(P5’F) =(d-a) - sin&, Eqn.(3.4.16)

In any deformed state, where the new position of P5' is indicated by PS5, since the

elemental plates are assumed inextensible, this length remains the same.

Now A =(d-a)-(P5F)sin&,
= (d-a)- cos’E; Eqn.(3.4.17)

and h=Hh-cosH,

Substituting Eqn.(3.4.17) into the above equation,

h=(d-a) cos?€; - cosh, Eqn.(3.4.18)
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The z co-ordinate of point PS5 is given by

Zps = h . Sinez
= (d-a)-cos?E; - sinb, Eqn.(3.4.19)

The angle of rotation of hinge 'EI' is then given by

(PS'F)
=sin"'([£] - cos&2) Eqn.(3.4.20)

And the energy dissipated in hinges 'EI' and 'HJ' is given by

M

ez ] () e st

[T P p—

Eqn.(3.4.21)

Hinge FG

The total energy dissipated in hinge 'FG' is given by two components, the first from

the hinge travel and the second from the increment in hinge rotation angle and can be

expressed as

] 5)'] @y + m{ ()]
) YR

=TT )

We=2- 1y 62 Eqn.(3.4.22)

where [, is dictated by the position of the bolts that is tightened to the cleat
and  r is the rolling radius for the travelling hinge.
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Hinges EF and HG

Assuming that since the hinge lengths and change in hinge angles are small, the energy
due to the change in hinge rotation angle is also small and hence can be neglected, the

energy dissipated in hinges 'EF' and 'HG' due to hinge travel is

Eqn.(3.4.23)

Membrane strain_in tension flange

Referring to figure 3.2.1, 3.3.2(b) and figure 3.4.3, due to the rotation of section b-b,
the point P6' at the edge of the tension flange on section b-b moves to a new location
P6 causing the strain (in the x-direction) on the edge of the flange between P6 and K.
This strain is assumed to occur within the triangular area K-P6-I and can be calculated

from the expression below,

Zsi 2
£x = ,/1 -2 Eqn.(3.4.24)

Assuming this is a plastic strain, the membrane energy is given by

=G, 1-€b-cC Eqn.(3.4.25)
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Hence, the total internal energy dissipation is given by

Wim(u) =

Wi+We+Ws+Ws+Ws+Ws+Wa+2-Wohem

2-m,,[1 (1(‘,’)2]~b-

tan”‘ (tan I:Slﬂ 1 {c sin p+d-cos B4-cos p,v.—d+a(l+sm 01) } i :l . cosez)

+ 2-mp[l— = 2} (b +a)

- +d-cos 6 ~d+a(l 0
tan ‘(tanl:sn -1 { e'sin p+d-cos zcosp +a(1+sin 2)}]'00592)

_1( 8[5] \

kfcus p-g-sin .u)

2
-‘% -(d-a) tan

+2-nzp[1—(1%)2]-b-pt
()]

+ 2-mp[ -

mp[l-(l“—l%)z]

+ 2. ,(’c2+d2).._| ay .
JT_%(;T{,) ZSi“zir(4—3-sinz§2) sin ([] COS&;)

2 . 3

' ,np[l—(F“u)z] NEA n,,[l—(Tf,)z] 6,
-3 A‘T:) ‘ l—%(ﬁ)
+ 2. M g
b2sin’0,

+ G, 1- x -1 b.c

Eqn.(3.4.26)
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3.5 ANALYSIS PROCEDURES

The following sections details the procedures adopted for obtaining the theoretical

results for the plain channel beams.

3.5.1 Single span load-deflection predictions

The total internal energy can be equated to the external virtue work done derived in

the previous section as follows

2-M-(2:-8)) = Win(rt +01t) = Win(1t — 3p1) Eqn.(3.5.1)

Eqn.(3.5.1) was then used to calculate the plastic mechanism moment capacity M at
any angle p.

The equation had to be solved by trial and error for every step increment of the
overall hinge angle, the program PC8.bas, written in BASIC, was created to deal with
the evaluation of the data points, this program is listed in Appendix II. The output

from this calculation program includes the load versus deflection data for the entire
range of overall hinge angle, up to the limiting lock-up condition, and the results were

then used to construct the theoretical collapse curves.

The evaluation of the elastic loading line follows the procedure discussed in chapter 2.
Another BASIC program was written to perform the calculations, listed in

Appendix II as ELASTICS bas, it was created to generate the elastic line data. The
elastic line can then be plotted together with the collapse curve to form the theoretical

load- deflection prediction for the single span beams.
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3.5.2 Determination of mechanism size 'c'

The theoretical plain channel mechanism described in sections 3.2 to 3.4 has two
lock-up conditions, when these occur, the characteristics of the mechanism drastically
changes and no additional rotation is possible without a new set of equations, and
since parts of the mechanism have come into contact, the mechanism loads would
tend to increase again with further increases in overall hinge rotation after a lock-up

condition has been reached.

The first lock-up condition occurs when the size 'a', travel distance for the hinge FG',
reaches the maximum as dictated by the location of the bolts that secures the beams to

the cleats. This lock-up condition is delayed when the size 'c' is reduced.

The second lock-up condition occurs when

c-cospt—d-cosB;-sinpt <0 Eqn.(3.5.1)

This lock-up condition is hastened by reductions in the mechanism size 'c'.

Reducing the size 'c' is generally accompanied by reductions in mechanism loads for
all rotation angles that can be evaluated using the equations stated in sections 3.3 and
3.4. This is illustrated in figure 3.5.1, where the collapse curves using a number of
different c to d ratios are plotted. It can be observed that the change in mechanism
loads are very small for ratios between 0.127 to 0.164, with the longest possible

collapse curve corresponding to (¢/d)=0.145.
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Based on these findings, the size of 'c' was taken as 0.145 d for the plain channel

mechanism model, the size that would minimise the theoretical mechanism loads

without causing premature lock-up.

The chosen size for 'c' agreed well with the observed corresponding sizes in the tested
beams which varied between 0.14d to 0.18d. Hence all the theoretical results for the

plain channels were analysed using ¢=0.145d.

3.5.3 Double span load-deflection predictions

The theoretical double span beam load-deflection predictions are derived from the
single span load-deflection characteristics assuming that all the three portions in the
beams where bending moments are the most adverse will collapse with the same
characteristics as that in the single span beams. The first failure section to develop will
be found at the central support, this being followed by similar failure modes at the

load points.

The theoretical double span predictions can be based on the experimental single span
results or from the theoretical single span data. The first stage of the process is to
convert the load-deflection data to moment versus (deflection / half span length) or
simply called moment-hinge rotation data, for the single failure section. The double
span loads can then be found from using the energy method to equate the virtualwork
done by the applied loads and the energy dissipated due to the rotation of the 'global

hinges', of which the characteristic are known from the single span analysis.

From section 2.5 of this thesis, referring to figure 2.5.1, the energy equation is

P-8v=MQu) - Sy +Mub) - s
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where pj =5

Since = sin"(Lil) Eqn.(3.5.2)
w2 =sin" (%) Eqn.(3.5.3)
and M3=py + 2 Eqn.(3.5.4)

Differentiating Eqn.(3.5.2) and (3.5.3), gtves

Sy = —=—"8v Eqn.(3.5.5)

and Sz = L + : - dv Eqn.(3.5.6)
M) u ] | )

P:M(u,)-__[_"__z+M(u§)- [(_‘) += '): }Eqn.(3.5.7)
‘-ﬁ Ly Z!: -Ly

Jl- i Ly

where M(,ul)} and M(n5)are derived from the single span results
and H3y = ‘;

The analysis method described above was written into a BASIC program which was
then used to evaluate theoretical double span beam results using both theoretical and
experimental single span load-deflection data. The program is listed in Appendix II as

DSB3.bas.
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3.5.4 Alternative Double span analysis

The procedure described in the previous section considers the double spanning beams
collapsing by means of a single overall beam mechanism which consists of three
similar failure points along the beam. It is therefore essentially a mechanism approach
which is inherently rather sensitive to errors in any part of the single span
moment-hinge rotation characteristics. The span lengths of the double spanning beams
and the single span beam analyses which provide the moment-rotation data must also
be of the same order to facilitate good predictions. An alternative method for
multi-span beam analysis will be presented in this section. This analytical procedure is
based on the elastic beam analysis technique employing the Macaulays' method and
uses only the collapse portion of the moment-rotation characteristics found in the

study of the single span beams.

Two separate Macaulay solutions are formulated for the beam, the first models the
initial linear elastic loading of the complete double spanning beam as shown in

figure 3.5.2, this solution is applied up to the point where the ultimate moment of the
beam portion over the central support is reached. As the beam fails at the support, the
second Macaulays' solution is invoked, as shown in figure 3.5.3, the double span
beam is now considered as two simply supported beams with a moment applied at the
location of the central support, this resisting moment simulates the effects of the
collapse mechanism which has formed at the support. The magnitude of the resisting
moment varies with the slope of the beam over the support and can be determined

from the collapse portion of the moment-rotation characteristics as found from the

single span analysis.
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From the Macaulays' solution for the first stage, the load point deflection is given by

v=iﬁ c~[L—L1]—%i-[L—L1]3) Eqn.(3.5.8)

NAAEEAR
wrre 708 58)"-(5)')
ReLl?  PL3
and c=- -

On the onset of collapse over the central support, the second Macaulays' solution

provides the deflection expression shown below as Eqn.(3.5.9).

e 31;,:’ . Lf-(LL—L.)Z +1p2(§1);;2 . (3(1%) 2 _ (LT‘) 3 -2. (LL_l)) Eqn.(3.5.9)

where M(}t) is the resisting moment of the collapsing section over the
support.

As the failed section over the centre sheds it's load, the resisting moment decreases as
the load point deflections increase, and the corresponding load at any angle of

rotation of the beam over the support is found from Eqn.(3.5.10).

p= 6ET yrp-L+2-Af(p)-L*
= Ly(L-L\)Q2L-L))

Eqn.(3.5.10)

where  represents the slope of the deflected beam over the support.

The loading on the beam sections at the load points increases until their ultimate

moment capacities are eventually reached, at which point the entire beam collapses as
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a mechanism with three hinges along it's length and Eqn.(3.5.7) is employed to relate

the applied loads to the deflections, as described in section 3.5.3.

The elastic buckling effects can be taken into account in this analysis by using the
effective cross-sectional properties as found according to the equations set out in the
BS5950 ; Part 5 ; 1987, used in the same manner as in the elastic solution for the
single span beams discussed previously. The minimum effective cross-sectional
properties which is found from considering the most adverse bending moments at the

central support are assumed for the entire length of the beam.

The Basic program written for this double span analysis is listed in Appendix II as

MSBPC .bas.

The comparison between the theoretical single and double span results evaluated
using the methods described in this chapter and the experimental findings is presented
in chapter 7 of this thesis. The theoretical loads tend to be underestimates when the
deflections become large, especially in the double span beams but the ultimate load
predictions agreed rather well with the experimental findings in most cases. Further

discussion of the results and the plain channel mechanism mode! will be carried out in

chapter 9.
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Figure 3.1.1 : Observed Plain Channel mechanism

e

\ Figure 3.1.2 : Observed Plain Channel mechanism

L
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Figure 3.1.3 : Observed Plain Channel mechanism

Figure 3.1.4 : Observed Plain Channel mechanism
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Figure 3.2.1 : Theoretical Plain Channel mechanism /
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Figure 3.2.2 : Theoretical Plain Channel mechanism
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PARAMETER STUDY FOR ¢
PLAIN CHANNEL MECHANISM

Load (kN)

[ Elastic line

0 5 10 15 20 25 30 RH]

Mid-span deflections (mm)

Using the 22.5x55 Section, t=.6 Span=5§30

\ Figure 3.5.1
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Chapter 4 : Analysis of lipped channel beams

4.1 INTRODUCTION

This chapter presents the study conducted on lipped channel sections loaded as beams
in the same manner as the plain channels of chapter 3. The addition of lips to the
channel not only increases the modulus of the section through the addition of material,
but in cases where the lip is of adequate width, it also serves as a stiffener for the
flange, thus increasing the critical buckling stress of the compressed flange and
preventing early buckling. Lipped channel sections are more widely used as structural
members than their plain channel counterparts, common examples are the C-section

beams for Mezzanine floors and beams for suspended ceilings.

The analysis techniques for the lipped channels examined in this chapter is essentially
the same as that for the plain channels described previously. The formulation would
look very similar to those found in the previous chapter with the addition of some
terms to account for the effects of the presence of the lips. In the elastic analysis, the
compressive flanges are considered to be stiffened elements if the size of the lip is at
least 20% of the flange width, according to BS5950 ; Part 5 ; 1987, ref. [8]. The
corresponding buckling coefficients and critical buckling stresses are then worked out
for the compression flange using the equations stated in chapter 2 of this thesis. The

effective section properties used in the analysis also takes account of the lips.

As in the plain channel study, this investigation commenced with the testing of a set of
72 lipped channel beams in the laboratory. These beams were produced from mild
steel sheets of three different thicknesses and consisted of sections with four different
lip sizes for each thickness. As before, the theoretical collapse plastic mechanism was
modelled to closely resemble those observed in the experimental investigation. It may
be useful to state again that these single and double span beams examined were

supported and loaded through cleats which are fastened to the webs of the beams by
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means of bolts. The effects of this method of support have been discussed in

chapter 3 and are also relevant for the lipped sections.

In addition, the results from a set of 6 full scale cleat supported lipped channel floor
beam experiments, tested in double span configuration in a vacuum box which
subjects the beams to uniformly distributed loading were analysed. The layout and
conditions of these experiments are described in detail in chapter 6 of this thesis.
These C-section floor beams were supplied by Metal Sections Limited of West

Midlands, United Kingdom and are marketed as standard components for mezzanine

flooring systems.

The following sections details the analytical study of the beams under the different
conditions of loading. Since the theoretical concepts applied in the analysis has
already been discussed in chapter 2, the following work presented will mainly focus

on the development of the plastic mechanism for the lipped channel beams.

In the analysis of the double spanning beams under uniformly distributed loading, an
additional theoretical plastic collapse mechanism for failure at a location along the
span (not affected by the presence of cleat supports) will be developed and presented
in chapter S of this thesis. In view of the similarities between these analyses and those

for the zed sections examined in chapter 5, the theoretical work for these beams will

not be detailed in this chapter.
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4.2 THE LIPPED CHANNEL MECHANISM

The observed pattern of yield lines found on the tested lipped channekare very similar
to those found in the plain channels, figures 4.2.1 and 4.2.2 illustrates the typical
failure form. Since the yield lines in the web and flanges  were so similar to those in
the plain channel specimens, the postulated plastic failure mechanism for the lipped
channels is merely an extension of the plain channel mechanism. The governing energy
equation would be taken as that stated in the previous chapter as Eqn.(3.4.26) with
the addition of three terms to account for the energy dissipated in the lips of the

current subjects. Figure 4.2.3 shows the theoretical plastic mechanism for the lipped

channels.

On close examination of the lips on the test specimens, when the overall plastic
mechanism was well developed, two types of idealised lip behaviour can be used to
summarise the failure modes in the lips. Referring to figure 4.2.3, the lips are in
compression at locations 'A’, ‘D', 'K" and 'L, with the compressive strain minimum at
the flange edge and maximum at the lip edge. The second mode of lip failure occurs at
locations 'B' and 'C' where the lip seems to experience in-plane bending. With
considerations to these observations, it was decided that the three hinge lip
mechanism which will be detailed in section 4.2.2, would be most appropriate for the
sections of the lips that were in compression and that the second mode of failure
would be modelled as membrane bending of the lips. The following subsections details

the formulation of the energy terms that would be used to account for these two

effects.
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4.2.1 The Energy of Membrane Straining in the Lips

The behaviour of the lip at the locations 'B' and 'C' (figure 4.2.3), is theoretically
modelled as elements subjected to in-plane bending. The rigid-pesfectly plastic
material behaviour is assumed to be governing in the plastic mechanism analysis and
as such, the portions of the lip that experiences membrane strains are assumed to be

completely plastic and under unidirectional stress with the magnitude equal to the

material yield strength.

Figure 4.2.4 shows the geometry of the lip section in in-plane bending. Noting that the
lip size is a mid-thickness dimension, the radii of curvatures for the membrane lip can
be determined from the radius of bend of the hinges 'BF' and 'CG' to maintain
compatibility between the flange edge and the lip material. The mean radius of

curvature and radii at the extreme fibres of the lip is therefore given by,

Ro=r+73 Eqn.(4.2.1)
Ri=R,+7% Eqn.(4.2.2)

where R,is the mean radius of curvature
R, and R_are the radii of curvature of the extreme fibre on the tension

and compression sides respectively

r is the local hinge radius of bend
and w is the lip size.

From the geometry (figure 4.2.4), the extreme fibre strain can be derived,

Eqn.(4.2.4)

m
I
]
i

S
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Referring to figure 4.2.4, the original area (undeformed state) affected by the

membrane strain can be written as

A=R, 0-dR Eqn.(4.2.5)

where 06 = (05 + 1)/, the angle of rotation of hinges 'BF' and 'CG', see
figure 3.3.3.

The plastic membrane strain energy in the tension side is given by

W1m:=1'J‘§;00'8-R0-66-a'R
e (3o e

=1-0,-0¢- i;— Eqn.(4.2.6)
Similarly, on the compression side, the membrane energy is

Wine =1 [ (-00)- (& ~1) - Ry 86 - dR

=1-G,-06- % Eqn.(4.2.7)

The total membrane energy of lip bending at locations B and C is therefore

wi
Win=t6o-66"7 Eqn.(4.2.8)
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4.2.2 Three Hinge Lip Mechanism

The postulated plastic mechanism for the lip at the flange locations 'A’, D', 'K' and 'L’

is shown in figures 4.2.5. It consists of three straight stationary hinge lines and has
one independent variable, , which describes the angle that separates the hinges.

Hinge AN
Referring to figure 4.2.5(b) and (c), length MN is given by

MN=w-tanf Eqn.(4.2.9)
and lengths j and k are given by

j=MN-cosB7 Eqn.(4.2.10)

kzw-cos(e;{‘) =J
=w-tanf- [cos (07) —cose7} Eqn.(4.2.11)

Also
. (9
k=w-sin (?’) Eqn.(4.2.12)
From Eqn.(4.2.11) and Eqn.(4.2.12),

9, =cos™!| cos (73 Eqn.(4.2.13)
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Hence, the energy dissipated in hinge 'AN' is given by

(e
sin| =

2 /
=2- m,,|il - (;‘,i) :‘-w- cos™!| cos (97’) e Eqn.(4.2.14)

Hinges AM and AQ

Referring to figure 4.2.5(d) and (e), it can shown that

8% = tan™![tanB - cos @] Eqn.(4.2.15)
and

sing =3 Eqn.(4.2.16)
From figure 4.2.5(b), the length n is given by

n=w-tanf-sin (%) +1 - COS (GTI’) Eqn.(4.2.17)
And from figure 4.2.5(¢)

cosQp =17
= Eqn.(4.2.18)

7
93

tanp-sin (7) +c0s (i)

—
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Rearranging Eqn.(4.2.18) and substituting it into Eqn.(4.2.16) yields

m=w-sin| cos! mﬁ.sm( %;]ms(%) } Eqn.(4.2.19)

Consider a point P7 perpendicular to 'AO’ and intersecting 'AN" at 'N', as shown in

figure 4.2.5(b), assuming that the platelets between the hinges are inextensible, the

length P7-N remains constant and is given by
(P7-N)=w-sinf Eqn.(4.2.20)
Hence, from figure 4.2.5(f)

m

Sines = (777-_1\3

giving

0s = sin"[sw] Eqn.(4.2.21)

sinf
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The energy dissipated at hinges 'AM' and 'AQ' is therefore

m,,[l-(.:T:) 2]
jl—%(-&%) 2sinzﬁ-(‘t—li-sinszo) cos B
mp[l—(ﬁ’:) 2]

“ [1‘%(L')zsinzﬁ-(:t-a-sin!p) B {sin"[:::‘g]} Eqn.(4.2.22)

y My

Wp=2-

where ¢ = cos™ ~ =
lanB-sin(—;-)ﬂ‘os(T")

Therefore, the total energy dissipated in the lip mechanisms at 'A' and 'D' is given by
Wiu=2Wn+Wg) , Eqn.(4.2.23)

The three hinge mechanisms at 'K' and 'L' are identical to those at 'A' and 'D' except
that they depend on the angle i instead of 8. The energy terms are therefore

v 2 N sin(g)
Wn=2-mp 1- (E) w1 cos”!| cos (-2-) - ————m“é

}} Eqn.(4.2.24)

R o)) P P

\ll l'%(#;) :Si":ﬂ’(-‘-}sinz[}) cosp sin

Eqn.(4.2.25)

; o | [
where @ =c0s [mnﬁ-sin(?)“"s(%))
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The total energy dissipation of the lip mechanisms at 'K' and 'L is

Wi = 2(Wi + W) Eqn(4.2.26)

4.2.3 The Total Internal Energy

The total internal energy dissipated in the lipped channel mechanism is given by the

eight terms of Eqn.(3.4.26) and Eqn.(4.2.3), (4.2.23) and (4.2.26) derived previously,

shown as the following Eqn.(4.2.17).
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Win!(“-): W]+W2+W3+W4+W§+W6+W7+2'Wmem+Wlm+WL-‘l+WlK

.
= 2-mp[l~(ﬁ) - b-
tan“‘(tan[sin_l {c-sinp.+d.cosOz‘czsr-t—dm(lﬂiue:)} - “] . COSGZ)
i \f 2
+ 2-m, 1—(‘{7') (b +a)
tan"-(tan {-sin"]d{ ¢-sin p+d-cos 92~czs u—d+a(l+sin 8;) } ] . COS 62)
i M 2]
+ 2-m, 1—(;7> b p
- 27 ( g.l:”_] \
M =1 Stdd
+ 2. np ] - (m) | : (d”a)' tan Kfcos H=g-sin ;1)
mp[l—(%)z]
+ 2. : 2 -(ch+d2).sin'l([§]-cos§2)
1-3(3L ) sin’e,(4-3-sin%e; )
2 )2
mp{l—(r"/:) } (@ly) mp[l'(-%) ] /,.0
* e Taray Y
f1-3(4) 1-3(4)
‘ 3Ny \ N\ My
mp[l—(“"T:)‘:] ca
t 5
=)
y i\
T2
+ co.t.(fl—bs:% —1) b-c
2
+ Go-t-(@3+p) -5

-+

4-m,,{1—(

i

M

My

2
T‘[L) J “W-<{COoS
)]

) :sin:[}(-l-l-sinz[i)

\f

Aoy

3
-3

(

mp[l—(‘

|_}(%) ‘sin:B~(4—3-sinzB)

w
cosf

-1 cos(

Eqn.(4.2.17)
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43 ANALYSIS PROCEDURE

The analysis of the lipped channel beams follows the procedures discussed in

section 3.5 of this thesis. Relevant changes were made in the formulations for the
elastic analysis to consider the compression flange as stiffened elements where the lips
were of an adequate size (b/S) and to include the effects of the lips in the

determination of the second moment of area of the sections.

The following BASIC programs written for the calculations are listed in Appendix II.
« ELASTICS.bas - For the elastic loading line.
- LC8.bas - For the plastic collapse curve.
+ MSBLC.bas - For the construction of the double span
load-deflection characteristics using the alternative method
discussed in section 3.5.4 of the thesis.
- DSB3 bas - For the double span load-deflection characteristics using

the energy approach detailed in section 3.5.3 of this thesis.

4.3.1 Determination of the hinge inclination angle for the three hinge lip
mechanism

The three hinge lip mechanism described in section 4.2.2 has an independent variable,
B which dictates the inclination of the two outer hinge lines. The angle that was used
for the final analyses was determined by a mechanism load minimisation process. The

parameter study on 3 found that the minimum energy dissipation in the three hinge
mechanism of the lip occurred when f§ = 50°.

Figure 4.3.1 shows the moment contribution of the three hinge mechanisms with Bset
to 30° 35°, 40° 45°, 50° and 60°. Little difference was found between the 45° and 50°

lines, the 55° line almost coincides with the 45° line and is therefore not shown.
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4.3.2 Analysis of the beams subjected to Uniformly Distributed Loading

The analysis method used to examine the double spanning lipped channel beams
subjected to Uniformly Distributed Loading is almost identical to the analysis of the
zed sections tested under similar conditions, which is presented in the following
chapter. The only difference between the two formulations is in the sizes of the
flanges and lips of the sections, the lipped channels have an axis of symmetry while
the zed sections studied have flanges and lips of unequal sizes on either sides of the

web. Keeping this point in view, the reader may want to proceed to chapter 5 for the

details of the theoretical analysis of these beams.

The results from the experiments condu-cted on the lipped channel beams and the
theoretical predictions are presented in chapter 7 of this thesis and discussed in
chapter 9. By considering the lips of the channels in the manner described, the
interaction between the stresses at the edge of the flange and lip is neglected but the
postulated theoretical plastic mechanism predicted the collapse behaviour of the

beams rather well in most of the cases examined.
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Figure 4.2.1 : Observed Lipped Channel mechanism

\ Figure 4.2.2 : Observed Lipped Channel mechanism
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\ Figure 4.2.4 : Membrane Bending of the Lip /
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Front view

Figure 4.2.5(a)

(C)

K Figure 4.2.5 : The Three Hinge Lip Mechanism
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K Figure 4.2.5 : The Three Hinge Lip Mechanism
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PARAMETER STUDY OF beta
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5.1 INTRODUCTION

The work presented in this chapter deals with thin-walled cold formed lipped zed
section beams which are commonly used as purlins in roof systems. The specimens
examined in this investigation were standard sections as components of roofing
systems as supplied by Metal Sections Limited of West Midlands, United Kingdom.
These sections differ from the lipped channels in geometry since the flanges on
opposing faces of the web are of unequal widths, the nesting flange where the roof

sheetings are mounted being wider. The lip stiffeners on the flanges of any zed section

are also of different sizes.

As with the plain and lipped channel studies, beam specimens of various sizes were
examined in the laboratory. A set of 28 single span zed section beams were tested in
the three point bending configuration, pinned on either end and centrally loaded
through cleats which were bolted to the webs of the beams. The cleats and bolts used
in the experiments were also of standard dimensions which were designed for the
beam sections and supplied by Metal Sections Limited. A further set of 8 double span
beams were tested in a vacuum box, these beams being supported at either end and
centrally by cleats and subjected ®uniformly distributed loading. The test details of
both sets of experiments, along with a description of the working principles of the

vacuum box will be presented in chapter 6 of this thesis.

Theoretical analysis of the zed section beams follows the procedures already
discussed in chapters 2, 3 and 4. The remainder of this chapter presents the

modifications and additional formulations used in this theoretical investigation of zed

section beams studied.
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5.2 THE COLLAPSE MECHANISMS

The use ' of uniformly distributed loading in the double span beam tests brought about
an additional degree of realism to these studies as the beams are rarely point loaded
through cleats in practice. The theoretical analysis of these beams requires the
examination of failure modes at the cleat supports and at the portion of the beam
along the span where bending moments are most adverse after the section over the
supports have started to fail. Two plastic collapse mechanisms are therefore needed

for the analysis. The following sections detail - the mechanisms used in the current

work.

5.2.1 Plastic Mechanism at Cleat Locations

The experimental investigations revealed that the plastic mechanisms which brought
about collapse in the beam sections at the location of the cleat supports were
consistent with those found in the lipped channels. Figure 5.2.1 and 5.2.2 shows the
typical failure form observed during the testing of the single span zed section beams.
The pattern of yield lines appearing on the web, flanges and lips of the collapsing
beams are the same as those discussed in chapter 4, as such, the postulated theoretical
lipped channel mechanism can be applied to the zed sections. Figure 5.2.3 illustrates
the theoretical plastic mechanism assumed in the current investigation. The energy
equation stated in the previous chapter as Eqn.(4.2.17) was adapted for the analysis of
the zed section beams, the modifications to the energy terms were merely to account
for the non-symmetrical flange and lip sizes. The modified equation will not be shown

in this chapter as the changes only involve the flange and lip sizes, b and w

respectively.
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5.2.2 Plastic Mechanism of beam failure along the span

The observations made during the experimental examination of double span lipped
channel and zed section beams with uniformly distributed loads applied along the
entire span were used to construct the theoretical plastic mechanism for failures along
the beam span presented in this section. The failure form is illustrated in figures 5.2.4
and 5.2.5, with the simplified theoretical model shown in figure 5.2.6. The theoretical
mechanism is similar in form to the plain and lipped channel mechanism presented
previously, however, since there is no cleat to hold the web in position or control the
horizontal size of the mechanism, it is simpler and has no twisting effects. This

mechanism can be considered a simplified version of the lipped channel mechanism.

The independent parameters, mechanism size ‘¢’ and angle of the inclined hinges in the
lips are taken as those used in the plain and lipped channel mechanism analyses in
chapters 3 and 4. The following paragraphs develops the geometrical relationships

and energy terms for the mechanism.

5.2.2.1 Geometrical Relationships

Referring to figure 5.2.7(a), taking the reference co-ordinate axis at the node 'I' as

shown in figure 5.2.6, let the position of point 'F' in the z-direction be represented by

a, from continuity considerations,

Fi=d-a Eqn.(5.2.1)

where d is the web depth of the section.
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The height of 'F' is then given by

Yr= JFF -a?
=Jd*-2-a-d Eqn.(5.2.2)

From figure 5.2.7(c), with the mechanism size 'c' as defined in figure 5.2.7(b),

ye=c-sinn+d-cosp

and xg=c-cosp—d-sinu Eqn.(5.2.3)
Also from figure 5.2.7(c),
¢ =xz+ Qe -yr)’

Substituting Eqn.(5.2.2) and (5.2.3) into the above expression and rearranging yields

d:“(c‘-sin pd:Cos = | 2 ~(c-cos p=d-sinj)” ) :

a= = Eqn.(5.2.4)

which describes the size 'a’ in terms of the overall hinge rotation p1.
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5.2.2.2 Energy Terms

Hinges AE and DH

From figure 5.2.7(c),

sin(u +03) = 22

substituting Eqn.(5.2.2) and (5.2.3) into the expression and rearranging,

c

. —1{ csinp+d-cos p—-yd*~2-a-d
035 = sin ( ) - U Eqn.(5.2.5)

Hence, the energy dissipated in hinges AE and DH is given by

Wi=2-m, 1—(;7{')2 -52-05

2 c-sin -cos pi- y d2-2-a-
=2 1= ()| 2 (o (e ) )
Eqn.(5.2.6)
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Hinge BE

Using Eqn.(5.2.5), the energy dissipated in hinge BF is

2
Wy=2-mp 1—(;%) (b2 +a)

=2-m, 1-(:—,’”)2 (b2 +a)

Hinge KI

The energy dissipated in K1 is given by

W3=2-m,,|:1—(%)2]b1-u

Hinge FI

Referring to figure 5.2.7(d),

02 = sin”! (j’:)

(03 +1)

-1 (c-sin p+d-cos p~ Jd*-2-a-d \
3

- sin

Eqn.(5.2.7)

Eqn.(5.2.8)

Eqn.(5.2.9)
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and f=a-cos0; Eqn.(5.2.10)
From figure 5.2.7(e),

£, = tan—l@ Eqn.(5.2.11)

and E;=E&,-p Eqn.(5.2.12)

Also from figure 5.2.7(e), consider the point P2, which lies on the hinge 'EF' and at

the same height as the point 'F', using the co-ordinate axis with the origin at I,
Xpy = yr-tan&} | Eqn.(5.2.13)
Looking in the line of 'FI', as shown in figure 5.2.7(f),
tan, = -v%

substituting Eqn.(5.2.2) and Eqn.'s (5.2.9) to (5.2.13) into the above expression, and

rearranging, yields

0. =tan"( a'cos[sm-l(ﬁ)] j Eqn.(5.2
! m-[an{tan“(ﬁ)—u] an(-2.14)
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Therefore, the energy dissipated by the hinge FI is

W, = 2-mp[l —(i)z}-(d—a)-&;

My

\ 2 _ a-cos sin“'(j_'—a)
=2 mp[ 1- () ] (d-a)-tan l(/m[.m.,[wn-'(g)-u]

Eqn.(5.2.15)

Hinges EI and HI

Referring to figure 5.2.7(g), consider the point P3 on 'El' such that the line 'P3-F' is
perpendicular to 'EI' and passes through the point 'F'. The length P3-F' can be

estimated as

(P3F) = FI - sin€,
=(d-a)-sing; Eqn.(5.2.16)

From figure 5.2.7(h), looking in the line of 'ET,

- -1 a
=Sin (mj—) Eqn.(5.2.17)




Chapter 5 : Analysis of Zed Section Beams

Hence, the energy dissipated in hinges EI and HI is given by

mp[l-(%)z]

W5=2' { = 'JCZ'("dZ‘eS
Jl_%(—’%’-) sin:i_z(4—3-sinzé_,2)
mp[l—(.""l,f—’)zJ
=2- ; Jet+d 'Si"—l(w—a)‘-’sin‘—z)
[[RETEAERER PN ’
Eqn.(5.2.18)
Hinges EF and FH

Neglecting the small changes of angle of the hinges, the energy dissipated in the

travelling hinges EF and FH is

W5=2'!=:' -a,'fc Eqn(5219)

where 7 is the mean hinge rolling radius.
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Lip Membrane Energy

Adopting the formulation developed in chapter 4, Eqn.(4.2.8), the lip membrane

energy is given by

2

Win=00-1-06 = Eqn.(5.2.20)

where 06 =03 +1
G, is the material yield strength
and ¢ is the material thickness.

Lip Three Hinge Mechanism at A and D

The lip mechanism energy dissipation at A and D is given by Eqn.(4.2.14) and

Eqn.(4.2.22) developed in the previous chapter, these equations are adapted as shown

below

”'P[z“(ﬁ) ] 2 {sin“F"ll“-’]} Eqn.(5.2.21)

-1 1
where ¢ =cos
¢ (lun[}-sin(%})ﬂ%(%)]
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Lip Three Hinge Mechanism at K

The equations developed in chapter 4, stated as Eqn.(4.2.24) and (4.2.25) are again
adapted for the current mechanism. The energy dissipated in the lip mechanism at the

location K is given by

2 sin| £
WIK=4'HIPI:1 —(%) J.wl .{cos—l|:cos (525) _ 1;.(.;5) J}

mp[l-("—"’;) Z]

+4. - Eqn.(5.2.22)
E(%)zsin:[}-(-l—}sinz[}) B { [ inf j|}
where ¢/ = COS"[ " ]
tanBvsin(f)wos(?)
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The total internal energy dissipation is therefore given by

W,,,,=W1+W2+W3+W4+W5+W5+W1,,,+WL4+W[K
2 . o T30
= 2.mp[l—(:7’“) ].bz-(sin"(c’“n’m"L : Gl d)—u)

i A 2] . -1 (c-sinp+d~cos _u—\"'dz—2~a~d\
+2.mp| 1=\ (b2 +a) - sin L )

My _J [
[ M 2]
+2-m, 1—(;: -bl-p

- 2" a-cos | sin
+ 2-mp| 1- (A"_’u) (d-a)- tan-l( /dZ-z.a-dl;mn[tan ‘(}) }]J
A d ¢
mp[l—(#’)z]

= Jet+d? -sin"l(-—".—)
VI l—%(ﬁ) ‘sinzi_:(-'&—}sinzgz)

(d-aysin &,
s\
m,,[l-—(m)] e

s

+ Go-1-(83+1) —j—
,,.,,[1 (., ) ] L2 {sin"[sﬂ}}

!f _%(_’) 25m B (4—3 -sin B) cos sinf

+ 4-mpl } wl -{cos"[cos(g) "%(,ET)]}

g
) J 1-3(AL) sin2p.(4-3.sin’p) =Tk {Sln l[ssi::g ]}

M,

Eqn.(5.2.23)
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5.3 ANALYSIS PROCEDURES

The analysis methods used in the theoretical treatment of the zed section beams are
essentially the same as in the previous two chapters where plain and lipped channels
were studied. The following sections 3 'intended to highlight the modifications which
have been made to the formulations in order to cope with the zed sections, most
important is the section on double span beam analysis since the loading conditions are

quite different from that discussed in the previous two chapters.

5.3.1 Single span load-deflection predictions

All the single span zed section beams were tested in the same manner as the channel
sections, theoretically, they were considered to be simply supported at both ends and
loaded centrally through a cleat bolted to the web. Essentially, this is a study of the

beam behaviour at the point of support.

The theoretical collapse analysis of these beams was done using the lipped channel
mechanism described by Eqn.(4.2.17) in chapter 4 with relevant changes to the flange
and lip sizes in the equations. The total internal energy was equated to the external
work done using Eqn.(3.5.1) as before and the elastic solution was obtained from a
modified version of ELASTICS.bas, which considered the unsymmetrical geometry of
the zed cross-section. Since this work is so similar to that for the lipped channels, the

reader may refer to chapter 4 for the details of the analysis.
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5.3.2 Double span load-deflection predictions

The theoretical methods detailed in this section were applied in the study of the
double spanning zed section beams and some of the lipped channel beams first
introduced in chapter 4. These beams were subjected to uniformly distributed loading
in a vacuum box and supported by cleats at mid-length and each end. The reader may

want to refer to chapter 6 for the detailed test descriptions.

As in the point loaded double span beams, with initial loading, maximum bending
moments would be found at the central support and it is at this point along the beam
that buckling and subsequently plastic mechanisms will first appear. On further
loading, the beam section over the support would eventually proceed into the colla{pse
mode, shedding some of it's moment carrying capacity as the deflections increased. At
this point, the distributed loads carried by the beam can still be increased since the
portions of the beam between the supports have yet to reach their full load carrying
potential. Hence, the loads continue to rise until such time that the ultimate bending

moment is reached at a location somewhere along the beam span, after which the

loads drop off as the beam collapses.

The ultimate moment and collapse characteristics of the beam section over the central
support can be obtained from the single span beam studies described in section 5.3.1.
Similar analyses were carried out for the ultimate moment and collapse behaviour of
the beam sections along the span, away from the supports. Using the mechanism
developed in section 5.2.2, described by Eqn.(5.2.23) and the same elastic analysis

used for the single span beams, moment-rotation information was obtained for beam

failure along the span.
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The following paragraphs detail the method used to construct the theoretical double
span load-deflection predictions from the two types of beam collapse behaviour

characteristics in terms of moment-rotation data of the failure section.

The technique applied in this section was first introduced in chapter 3, section 3.5.4 of
this thesis. The analysis essentially consist of three parts, the initial elastic loading
stage, the subsequent loading stage where the beams over the central support has

started to fail and the final collapse stage.

In the initial loading stage, the complete double span beam is analysed as an elastic
beam using the Macaulay's beam method. Figure 5.3.1 shows the forces acting on the
elastic beam in this first stage. The second moment of area used for the Macaulay
solution is based on the minimum effective section as calculated according to BS5950
; Part 5 ; 1985, ref. [8], as detailed in chapter 2 of this thesis. This minimum effective
section was calculated using the maximum bending moment along the beam which

occurs over the central support. The elastic mid-span deflection from the Macaulay's

solution is given by

U-L?
Vins = 192-El 5 Eqn(531)

where v,is the mid-span deflection
U is the applied uniformly distributed load
L is the span length between supports
E is the material Young's modulus of elasticity
and Iz is the second moment of area of the minimum effective

cross-section.

The bending moment at the central support, M3, is calculated from

Mg =YL Eqn.(5.3.2)
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As the loads are increased, the bending moment at the central support eventually
reaches the ultimate value as found from the single span analysis, the moment capacity
of the beam over the support starts to decrease according to the collapse
characteristics and the analysis moves onto the second stage. The double spanning
beam is then considered as two simply supported single span beams with a resisting
moment at the location of the former central support, as shown in figure 5.3.2. The
magnitude of this resisting moment is a function of the angle of rotation which in this
part of the analysis is the slope of the beam at point 'B'. Therefore, by increasing this
slope in steps, the resisting moment can be found from the single span
moment-rotation data for beam collapse at cleat supports. The applied distributed

load can be evaluated from the slope equation of the Macaulay's solution at x=0,

u-L?  Mp(pyl
Elgr-n=57 "3

Rearranging gives

24( Bl 2L
U= E Eqn.(5.3.3)

where Mg()is the resisting moment of the failing beam portion at the support
and  p is the slope of the beam at x=0.

The mid-span deflection can then be determined from the Macaulay's solution as

_ 1 (suLt  Msyl®
Vs = Elg\ 384 16 Eqn(534)
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The second stage solution is applicable up to the point where the maximum bending

moment along the beam span reaches the ultimate value. The Macaulay moment

equation for the second stage analysis is
M. =-Mp() + [Wu) T]'x-%x—z Eqn.(5.3.5)

where [....] are Macaulay brackets.

For the position along the span where maximum bending moment occurs at any

Mp(p)
( BL 2) U -xm—o

giving

_ Mz n L
5 Eqn.(5.3.6)

Substituting Eqn.(5.3.6) into Eqn.(5.3.5) yields the expression for the maximum

bending moment along the beam

_ My | G Me(w)
Mm— 2W-L: + s 2 Eqn.(5.3.7)

The collapse point along the beam is given by the value of x,, when M,, reaches the
ultimate moment capacity and the collapse plastic mechanism will form at this position

along the beam span.




Chapter 5 : Analysis of Zed Section Beams

The final collapse stage is theoretically treated using the energy method in the same
manner as in chapter 3. Eqn.(3.5.7) states the governing equation for the point loaded
double span beams. With a similar procedure, it can be shown that the governing

equation for the beam subjected to uniform distributed loading is

(%) Eqn.(5.3.8)

where M3p(111) is the instantaneous value of resisting moment over the
central support from the single span moment-rotation data
Mp(3) is the instantaneous moment capacity of the beam section
along the span that has begun to fail

-

/ 13

and u3=

S|

The entire procedure was coded into a program written in BASIC named MSBZ2.bas

which is listed in Appendix II of this thesis.

With slight modifications, the program was adapted for the double span lipped
channel beams under uniformly distributed loading. Since the changes only affected

the calculations for evaluating the effective second moment of area, the modified

program is not listed.

The results of both the experimental and analytical investigations will be presented in
chapter 7 of the thesis and they will be further discussed in chapter 9. Generally, the

theoretical predictions agreed well with the experimental findings, especially for the

double spanning zed sections.
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Figure 5.2.1 : Observed Zed Mechanism at Cleat Location
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\ Figure 5.2.3 : Theoretical Zed Mechanism at Cleat Location
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Figure 5.2.5 : Observed Zed Mechanism along the span
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\ Figure 5.2.6 : Theoretical Zed Mechanism along Span
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6.1 INTRODUCTION

Researchers in the fields of the applied sciences and engineering are often plagued by
the danger of becoming totally preoccupied with the idealised world of theoretical
interpretation and mathematical stmulation which may lead to the loss of sight of the
realities of the material world. Proof testing has been a long standing tradition in
engineering development and it is the author's opinion that this practice is not only
important in the creation of new 'hardware' but in theoretical work as well.
Experimental verification is crucial in any research program which aims to form new
theory and the collected experimental data should become the target for theoretical

predictions. It is with this spirit that the current studies were carried out.

This chapter details the test program which was carried out with the aim of providing
ideas and experimental verification data for the development of the theories presented
in the preceding chapters. The experiments were designed to suit the primary
objectives of the current study and closely conform with the assumed conditions for
the theoretical models while maintaining a high degree of practicality, as far as
possible. Generally, the test beams were designed to fail in bending with local
buckling effects being the major cause of the initiation of failure. In order to facilitate
the study of the effects of plastic moment redistribution on the ultimate loads of
multi-spanning beams, the study of the single spanning beam sections under
investigation had to extend beyond the ultimate failure load region of loading history,
some ways into the collapse behaviour. With these objectives in view, extensive
experimental investigations were carried out on plain channel, lipped channel and zed
section beams which were supported through cleats and loaded either through similar
cleats or subjected to simulated uniformly distributed loading conditions. The
particular interests for the study were in the pattern of yield lines that form during

collapse and the load-deflection behaviour through the entire range of loading.
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6.2 OBJECTIVES OF THE INVESTIGATIONS

The basic objective of the experimental investigations detailed in this chapter is to
study the most common failure modes that bring about ultimate failure in the selected
beam sections and the subsequent collapse behaviour associated with those failure

modes. The aims of the experiments are as follows :

(1) To study the general behaviour of thin-walled beams which are supported

through cleats as they are loaded beyond ultimate failure and into collapse.

(i)  To obtain information on the failure modes associated with the collapse of
plain channel, lipped channel and zed section beams in order to facilitate the

construction of theoretical plastic collapse mechanisms for the rigid-plastic

analysis of the beams.

(i)  To examine the load-deflection behaviour of the selected beam sections in the

entire range of loading.

(iv)  To provides the means to verify and assess the results of the theoretical

models developed in chapters 3, 4 and 5 of this thesis.
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6.3 MATERIAL PROPERTIES

The beam specimens tested in the experimental investigations came from various
sources, some of the sections were prefabricated (cold rolled) while others were
produced from mild steel sheets by cold folding. In all cases, samples of the beam
material were tested for the mechanical properties of the steels in accordance with
BS 18 ; Part 3 ; 1987, for thin steel specimens and BS EN 10 002-1 ; Part 1 ; 1990,

for the tensile testing of metallic materials.

A total of 35 tensile tests were conducted to ascertain the relevant material properties
of the beam materials examined in the current study. All tensile test specimens were
machined to the shape and sizes as detailed in figure 6.3.1 and tested in a Mayse
Testing Machine which has a closed-loop hydraulic system with computer control and
extensometer feedback ensuring a constant strain rate. During the tests, a Denison
electronic extensometer with a 50 mm gauge length was affixed onto the specimen to
give instantaneous output of the specimen strain. The machine was set to test at

6.4 mm/min which introduced a strain rate of 0.08 mm/min to the tensile specimens,
which is well within the BS 18 specification of 0.15 mm/min. Voltage signals
proportional to the applied load were derived from a specially fitted transducer which
was calibrated by certified personnel. The signals from the extensometer and load

transducer were fed into an A3-size X-Y plotter which automatically recorded the

load/extension behaviour of the specimens onto graph paper.

Typical stress-strain behaviour found in the beam materials have been discussed in

chapter 2 of this thesis. Table 6.3.1 summarises the relevant results of these tensile

tests.
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Source

Thickness

(mm)

Yield Stress
(N/mm?°)

Ultimate Stress

(N/mm?)

203mm deep Plain Channel

2

261.5

314

" 55mm deep Plain Channel 0.6 260.5 342
|| 80mm deep Lipped Channel 0.78 174.14 303
80mm deep Lipped Channel 1.17 181.63 317.44
80mm deep Lipped Channel 1.97 201.1 320.56
165mm deep Lipped Channel 1.6 410 533
220mm deep Lipped Channel 1.79 412 535.6
127mm deep Lipped Channel 2 358 465 .4
122mm deep Zed Section 1.48 324 465

l’7 142mm deep Zed Section 1,49 345 446
I[ 172mm deep Zed Section 1.52 308 3934
122mm deep Zed Section 1.56 362 458

w 232mm deep Zed Section 1.73 326 4647
II 262mm deep Zed Section 1.74 350 451
142mm deep Zed Section 1.96 306 387

F 172mm deep Zed Section 235 352 450
L 262mm deep Zed Section 2.99 320 443 82

Table 6.3.1 : Mechanical Properties of Beam Materials
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6.4 APPARATUS

In the 9 sets of experiments which make up the test program for the current study of
thin-walled beams, two test apparatus were used. The first being the Tinius Olsen
electro-mechanical testing machine which was used for all the single span beam tests
and the double span beams which were loaded through cleats. The second apparatus
is a vacuum box which was used for the two sets of double span tests in which the
beams were subjected to simulated uniformly distributed loads. The following two
sections describes these two test machines along with the supporting instrumentation

which was used in the beam experiments.

6.4.1 Tinius Olsen Electro-Mechanical Testing Machine

The Tinius Olsen testing machine is a 200,000 Ib universal screw driven machine
installed in a laboratory of the Mechanical Engineering department of the University
of Strathclyde. It is calibrated annually by Namas Test House (Bayliss Brown
Limited) according to the specifications of BS 1610:11:85, and the built-in load

transducer was certified to be within 0.5% accuracy for the entire period in which the

test program was carried out.

The test machine applies loads by means of a moving crosshead which is raised or
lowered by the action of four electrically controlled power screws. The screws rotate
in synchronicity and in different directions so as to avoid applying torsional stresses to
test specimens. Loads are measured by means of a torsion bar system installed in the
machine base and indicated on an analogue meter on the control panel of the machine,

a voltage signal output proportional to the load is also available for additional

instrumentation.
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The speed of the crosshead movement during test is electronically controlled by
setting the control unit to either displace the crosshead at a constant speed or
automatically adjust the movement to apply loads at a constant rate. The former mode

was used for all the beam experiments of the study.

The following additional instruments were used with the Tinius Olsen for the beam

experiments :

(a) Displacement Transducers

In all the beam experimentﬁ, electrical resistive displacement transducers were
employed to monitor the beam deflections at selected points. These transducers have
a maximum range of approximately 70 mm and were powered using signal amplifiers
which provided a stable DC voltage. Output voltage signals were linearly proportional

to the detected displacements throughout the transducer range.

(b) X-Y Graph Plotters

Gould series 2000 X-Y plotters manufactured by Bryans Recorders Ltd, were used to
record the continuous signals from the Tinius load transducer and the displacement
transducers as the beams were loaded to failure. These plotters were regularly
calibrated to the transducers to ensure accurate load and deflection readings of the
optimum range for each test. The instantaneous output from these plotters also served

to provide a means to monitor the progress of each beam test during the loading

process.

Figure 6.4.1 shows the Tinius Olsen testing machine with a typical beam test set-up.
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6.4.2 Vacuum Box

The vacuum box in which 2 sets of the double span beam experiments (subjected to
uniformly distributed loading) were conducted, is situated in the main laboratory of
the Mechanical Engineering department of the University of Strathclyde. Figure 6.4.2
shows the vacuum box. The apparatus was constructed for the purpose of testing
cold-formed roof purlins and is essentially an airtight box of wooden construction,
12.01 min length, 2.438 m wide and 1 m high. It was designed to accommodate
thin-walled beams of up to 12 m lengths and is equipped with a vacuum system
capable of producing partial vacuums within the box of up to approximately 10% of
the atmospheric pressure, which converts to approximately 8.83 kN/m" of effective
pressure. The applied vacuum within the box effectively induces an applied pressure
(atmospheric pressure) onto the outside walls of the box and the top surface which is
usually covered by thin-walled steel roof sheeting which is supported by the beams
under test. Atmospheric pressure is therefore used to simulate the uniformly

distributed loading condition on the test subjects within the airtight test environment.

The typical test set-up is illustrated in figure 6.4.3. Longitudinal beams securely
bolted to the strong-floor of the laboratory provides the rigid base for the test
structure to be installed on. In a typical beam test, cross beams are fastened to these
longitudinal beams and the cleats which support the thin-walled test beams are bolted
onto the top of the relatively rigid cross beams. Corrugated steel roof sheeting are
installed onto the test beams providing the surface area for atmospheric pressure to
act upon. The assembly is subsequently covered by a strong continuous polythene
sheet which is sealed against the walls of the vacuum box to provide the airtight

environment necessary for the pressure test.
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During the tests, air removal by the suction pump is regulated by a butterfly valve
which controls the rate of pressure change within the vacuum box, which effectively
controls the rate of load application. The relative pressure of the partial vacuum
within the box is monitored by a calibrated manometer, a diaphragm type electronic
pressure transducer and a hand-held digital electronic pressure gauge for quick
readings of pressure. The pressure transducer provides an output voltage linearly
proportional to the applied vacuum and this signal was channelled to a calibrated X-Y
graph plotter. Displacement transducers were used for the measurement of mid-span
beam deflections and together with the continuous pressure signals, were recorded by
the X-Y plotter onto A3 size graph paper. The displacement transducers and X-Y

graph plotters used in these experiments were the same as those used in the Tinius

Olsen beam tests.

The partial vacuum created within the airtight box during the tests were measured and
recorded in terms of barometric column height of water (cm [H,0]). These readings

can be converted to pressure acting on the covering which is supported by the test

beams using Eqn.(6.4.1) below.

O=p .g-l—g% Eqn.(6.4.1)

where Q is the effective applied pressure in (N/m’)

p is the density of water (= 1000 kg/m’)

g is the gravitational acceleration (= 9.81 m/sec”)
and  H is the measured head in (cm [H.O]).
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This pressure can then be converted to applied effective uniformly distributed load on

each of the two test beams using :

0B
U, =

2-1000 \
(l()()()-o,x 1 %, B

2-1000

=0.0981-H-= Eqn.(6.4.2)

where U,is the applied effective load due to the applied vacuum in (kN/m)
B is the internal width of the vacuum box =2.438 m

and  the factor 2 is to account for the two test beams installed.

and U=U,+U;+Us Eqn.(6.4.3)

where U is the overall load carried by each beam in (kN/m)
U, is the loading due to the weight of the covering
and U, is the self-weight of the beam under test.
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6.5 TEST PROGRAM

The test program for the current study of thin-walled beams consists of 9 sets of
experiments on 3 different beam cross-sections of various thicknesses and
proportions. All of the experiments reported in this chapter were conducted by the
author except the set of lipped channel double span beam tests which were performed
by J.Rhodes, C.B.Chan and S.H.Tan in April of 1990 for Metal Sections Limited,
who graciously consented to the use of the findings in the current investigation. All
Zed section tests and a number of the Lipped Channel tests were commissioned by

Metal Sections Limited and the details are reproduced here with the permission of

that company.

The important details of the experiments will be presented in the following

subsections.

6.5.1 Some Important Considerations and Aspects of Test Design

This section highlights the important aspects and constraints related to the design of
the beam tests. It also details the criteria which governed the selection of some of the
important dimensions of the test beam specimens. Much of the constraints discussed

in the following paragraphs are due to limiting factors of available machinery in the

laboratortes.

6.5.1.1 DBeam Dimensions

The current investigation is intended to study the bending effects in the selected
thin-walled beam sections, as such, it is of interest to avoid the situation where failure

is brought about mainly by shear force effects. The span of the beam specimens had to
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be of sufficient length for this reason. Based loosely on the BS 5950 ; Part 5 ; 1987
recommendations (Section 10.3) on the testing of members in bending, which limits
the minimum length of test specimen to 8 times the greatest cross-sectional

dimension. It was adopted as a general rule that beams for the current study would

have spans of at least 8 times the greatest cross-sectional dimension (which in all

cases for the sections studied, is the depth of the beams).

It was the intention of the author to study beam sections with a small range of flange
width to web depth ratios and flange width to thickness ratios. This was not
completely possible for the lipped channels which were fabricated in the laboratories
since the minimum flange width was limited by the size of the clamping blades of the
folding machine. The depth of the beams could not be increased since this would
require the beam span to be made longer, according to the rule discussed in the
previous paragraph, which could not be achieved in the laboratory since the length of
the fabricated beams were limited by the 2 m length capacity of the folding machine

and guillotine used to produce the specimens.

The thickness of the fabricated beam specimens was also limited to 2 mm, since this

was the thickest mild steel material that the folding machine could take.

In an attempt to maintain consistency with the cold-formed steel manufacturers, the
radii of cold-formed corners were kept to the minimum. The ideal mean radius of
bend to thickness ratio of 1 was never achieved in any of the fabricated sections due
to the rigidity and design of the folding machines available in the laboratories. The

typical radius to thickness ratio found in the cold-folded sections ranged from 2 to

over 3.
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6.5.1.2 Sizing of Bolted Connections

Hexagonal bolt and nuts were used to secure the beam specimens through their webs
onto the supporting cleats. In keeping with the standard tolerance that cold-formed
steel manufacturers use for their cleat supported systems, all the bolt holes used in the

experiments were sized 2 mm larger than the nominal bolt sizes.

In the zed section and some of the lipped channel beams which were supplied by
Metal Sections Limited, the M16 and M12 bolts used were part of a set of the

standard accessories that were designed for the beam sections.

For the remainder of the beam tests, bolt sizes were selected in accordance to the
recommendations outlined in section 8.2 of BS 5950 ; Part 5 ; 1987, for bolted
connections. In the design of the beam tests, the shear capacity of the bolts were
checked against the estimated maximum possible shear loads the bolts may be
exposed to. These maximum loads were based on the fully plastic beam section
modulus which provided crude overestimates of the maximum loading conditions.
The bearing capacity of the connected elements were also considered in the bolt
selection process and the estimated fully plastic loads were again used to design

against bearing failure at the connections.

6.5.1.3 Double Beam Double Span system

In view of the fact that the beam sections studied in the current investigation are open
sections which are not symmetrical about the plane of the webs, all the double span
beam tests were conducted in the double beam configuration in which two identical
sections were loaded in each double span beam test, such that the webs of the beams

faced one another. This was done to minimise the torsional effects such as cleat
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rotation about the beam longitudinal axis, which may be induced during the loading
process. This problem did not exist in the single span tests since the loading cleats
were firmly bolted to the testing machine crosshead which prevented cleat rotation. In
the double span tests however, loads were applied through a lever system which was
designed to maintain equal magnitudes of applied forces on each of the loading points
located in each span, torsional effects were therefore designed against using the
double beam system which provided an additional axis of symmetry for the beam

assembly. The layout of the assembly will be detailed in section 6.5.3.

With the double beam system, spacers were used to separate the two beams so that at
no time are the beams in contact with each other, this prevented the buckles that

formed on the webs of each beam from interfering with each other.

6.5.2 Single Span Beam Tests

In the current study of thin-walled beams, 4 sets of beam specimens were
experimentalexamined in the single span configuration. These specimens were pinned
by means of a single bolt at each end, which were hand tightened to allow free end
rotation during the loading process, simulating the simply supported end conditions.
Loads were applied using a single cleat securely bolted to the beam at the web and

firmly attached to the crosshead of the Tinius Olsen testing machine. Figure 6.5.1

shows the general test layout.

Load point beam deflections were measured by a displacement transducer positioned
to monitor displacements of the lower web/flange junction as indicated in figure 6.5.2,
this being the area of the beam section where local deformations are least likely to

affect the deflection readings.
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In order to minimise the end shortening effects on the applied loads, the bolt holes in
the support cleats were flattened at the base to allow horizontal movement of the end

bolts towards beam centre. This modification to the bolt holes is illustrated in

figure 6.5.3.

Test Procedure

The procedure followed for the performance of the single span beam tests is briefly
summarised in this section. These practices were adopted to reduce experimental

errors, which may affect the test results, to a minimum.

All on-line X-Y graph plotters were carefully calibrated to the load and displacement
transducers prior to the tests. The axes for the A3 sized graphs were set to

appropriate ranges to maximise the data resolution for each test.

The Tinius Olsen testing machine and signal amplifier which powered the
displacement transducers were switched on at least 15 mins before the
commencement of each test to allow the equipment to "warm up" so that stabilised
voltages are supplied to the transducers during the recorded experiments. This
practice however, does not result in stabilised voltage supplies during the beginning

and end of normal office hours when the 240 volt main power supply experiences

fluctuations.

The following is a step by step listing of the procedure taken during the tests which

also served as a checklist when the tests were being conducted.
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(1)  With the supports and displacement transducer (with mounting) on the test
bed of the Tinius Olsen testing machine, set the load readings on the Tinius

load indicator and graph plotter to zero, ensuring that the machine is set to the

appropriate loading range.

(2)  Fit the test beam to the loading cleat, hand tightening the bolts.

(3)  Adjust the machine crosshead position and assemble the end supports, leaving

the bolts hand tightened, ensuring alignment of the loading and supporting

cleats.

(4)  Tighten all bolts, except the ones that pin the beam ends, and secure the

support beams to the machine test bed using G-clamps.

(5)  Position the displacement transducer and set deflection reading on the graph

plotter to zero.

(6)  Apply a pre-test loading of approximately 75% of the first yield load to
remove any possible slippage in the assembly and to allow supports to "settle

into place". Check that the load and defection transducers are on-line, then

remove the pre-test load.

@) Re-zero the deflection reading on the graph plotter and commence the actual

beam test.

Steps (1) to (7) were then repeated for the next beam specimen.
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6.5.3 Double Span Cleat Loaded Beam Tests

The experimental investigations included 3 sets of double beam, double span tests
conducted on the Tinius Olsen test machine, applying equal loads via a roller and
lever system at 2 locations along each beam through loading cleats. The beams were

supported by cleats at mid-length and the ends. Figure 6.5.4 shows the general layout

of the these tests.

Deflections of the beam at both the load points along the beam were monitored and

the measured machine load was later divided equally into 4 for the applied load at

each loading point of each beam.

Three methods of separating the beams during the tests were used. The first method
was used for the 55 mm deep plain channels in which washers were used to separate
the loading cleats as shown in figure 6.5.5. The second method was applied to the
203 mm deep plain channels, in which tubes and long bolts were used to separate the
beams at 4 locations along the beams, see figure 6.5.6. The lipped channel beams
tested with cleat loading used a method similar to the first. Instead of using washers
between the loading cleats, a rigid steel plate was employed to hold the loading cleats

apart. This method is illustrated in figure 6.5.7.

The end support cleats were prepared in the same manner as in the single span tests to

allow end shortening of the beams.
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Test Procedure

The pre-test procedures for these double span beam tests were the same as that

described in section 6.5.2. The following lists the step by step procedure which is

slightly different from that for the single span tests.

(M

(2)

4)

(5)

(6)

Assemble the beam specimens onto the supports with all the bolts firmly

tightened (except for the end bolts) and the end support beams secured to the

machine test bed by means of G-clamps.

With the displacement transducers (with mountings) on the test bed, set the

load readings on the Tinius load indicator and the graph plotter to zero.

Fit the loading cleats onto the beams and place the loading beam along with

the rollers in position as shown in figure 6.5.4.

Position the displacement transducers under the loading points and set the

deflection readings on the graph plotters to zero.

A pre-test load of 0.75 times the first yield load is then applied to take out the

slippage within the assembly and then removed.

The deflections on the plotters are reset to zero and the actual beam test

is performed.

The above steps (1) to (6) are repeated for the next pair of double span beams.
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6.5.4 Vacuum Box Tests

Of the 5 sets of double spanning beam tests, 2 were performed using the vacuum box.
The working principles of the box have been briefly described in section 6.4.2. This

section details the important information regarding test procedures used to carry out

the beam tests.

The layout of the test set-up is shown in figure 6.4.3, the test beams were mounted
onto the supporting cleats using 4 bolts at the central support and 2 bolts at each of
the ends. In the set of double span zed section beam tests, galvanised steel roof
sheeting were secured onto the beams using self-drilling, self tapping screws,
approximately 200mm apart. In the case of the lipped channel double spans, 38 mm

clipboard floor boards were used instead of the roof sheeting.

Displacement transducers were used to measure mid-span deflections. The
transducers were positioned mid way across the roof sheeting and connected to a X-Y

graph plotter which also received signals from the pressure transducer.

The procedure followed during the tests are as follows :

(1) Set up the test assembly as shown in figure 6.4.3 ensuring that all cross beams

are secured to the longitudinal beams and all bolts are tightened.

(2)  Cover up the assembly with an appropriately sized polythene sheet which is
free from leakage and seal the sheet against the walls of the vacuum box
(using strong waterproof duct tape) ensuring that the box is completely air
tight and there is sufficient loose polythene to wrap around all corners without

having to break the seal.
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(3) Position the displacement transducer and set the deflection and pressure

readings of the graph plotter to zero.

4) Open up the suction control valve to apply an appropriate pre-test load,

unload and begin the actual test.
Steps (1) through (4) is repeated for subsequent beam tests.

In the set of double span zed section beams tested, two of the beam experiments were
conducted with the beams set up with the nesting flange facing downwards and the
roof sheeting mounted onto the underside of the beams. This effectively simulated the

up-lifting of the roof and enabled the current study to examine the effectiveness of the

theoretical beam models in such situations.

All important dimensions of the test set-ups are summarised at the end of this chapter
in table 6.5.1 referring to figures 6.5.8, 6.5.9 and 6.5.10 for the layouts. Individual

beam specimen dimensions will be presented in chapter 7 of this thesis along with the

relevant results from the experiments.
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6.6 EXPERIMENTAL OBSERVATIONS

This section presents the general observations made during the laboratory testing of
the beam sections. These observations and their implications with regard to the
experimental results and the theoretical assumptions are considered in detail in

chapter 9 although some of the points are briefly discussed as they are presented in

this section.

The failure mechanisms observed on the plain channels, lipped channels and zed
sections were almost identical in shape, as expected. In almost all of the tests,
buckling initiated first in areas of the flanges under compression at the loading point
along the single span beams and the central support for the doubles. Although these
buckles were the first to develop, they did not seem to bring about ultimate fatlure
which only occurred after local buckles in the web had formed. This observation is
true for all the beams except in the case of the double span lipped channels tested on
the Tinius Olsen testing machine which seem to failure by a different mode, this will
be discussed further later in this section. The typical web and flange mechanisms
observed have been previously presented in chapters 3, 4 and S of the thesis. The
dimension that characterises the mechanism size, described by 'c’ in the theoretical

mechanisms were found to range between 0.145 to 0.2 times the web depth of the

tested beam sections.

Yield "zones" that form the observed failure mechanisms tended to be curved and had

definite radii of bending as opposed to the theoretical assumption of straight hinges of

concentrated yield lines.
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Elastic buckles were seen to form in the flanges of the plain channel beams, these
local buckles were observed as wavelike formations along the free edge of the
compression flange which disappeared when the loads were removed following the
end of the pre-test loading procedure. During the actual test, the amplitude of these
"waves" which initially seem to growth proportionally with increases in overall beam
deformations eventually reduced as the plastic mechanisms developed, but they did
not completely disappear until the applied loads were completely removed. It would
appear that as the plastic mechanisms matured, additional deformations tended to

concentrate at the yield regions but the elastic buckles were not completely absorbed

as assumed in the theory.

In the double span tests, collapse usually occurred only in one of the spans. For the
beams tested in the Tinius Olsen testing machine, as the ultimate load is reached in
one of the spans, further increases in load are impossible since the failed span of the
beam is experiencing a reduction of load carrying capacity and would simply deform
as the crosshead moved down, the beam assembly would therefore be unable to

sustain loads high enough to fail the second span.

Symmetry was not always achieved in the mechanisms forming in the single span
beams, this is especially evident in the zed sections. Due to misalignments in the
drilled bolt holes which accommodated the loading cleats and slippage occurring at
some bolts and not others, half mechanisms sometimes developed, in which plastic

hinges only formed on one side of the loading cleat.

Almost all the outer hinges forming in the flanges of the beams of all three cross-
sections were inclined, instead of being perpendicular to the edge of the flange as
assumed in the theoretical models. The observed inclination angles measured relative
to the beam longitudinal axis ranges from 30° to 60°. This was accompanied by some

flange curling which was relatively more severe for the compression flanges.
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Due to the cross-sectional shape of the zed sections, the beam section would be
expected to tend to deflect horizontally (sideways as seen from the end of the beam)
as well as vertically when loads are applied. In the single span experiments conducted
on these sections, any horizontal beam movement was prevented by the loading cleat
which was firmly secured to the machine crosshead and the end supports which were
clamped to the machine test bed. Due to the restraining of the horizontal movements,
the zeds tended to experience some twisting which caused the beams to exhibit a little

more flange curling than the channels.

The phenomenon of flange curling was extreme in many of the double spanning lipped
channels which were tested in the Tinius Olsen machine, in which typical mechanisms
did not form. Figures 6.6.1 and 6.6.2 illustrates this behaviour where the failure mode
is very different from that found in the other sections. This was assessed to occur in
beamns where the depth of the beam cross-section was close to the width of the
flanges, especially as the lip size increased. The loads measured in the tests where this
behaviour was observed tended to be lower than those for the beams that failed with

the typical plastic mechanisms forming in the web and flanges.

In order to ensure repeatability of the experiments, agleast two tests were conducted
in each of the beam experiments. Except for the case of the fabricated double span
lipped channels tested in the Tinius Olsen machine, all observed plastic mechanisms

were consistent and the beam tests were repeatable within normal experimental

tolerances.
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From the testing of the plain channels, it can be seen that variations in the flange
width did not affect the web mechanisms or the general pattern of the complete web
and flange collapse mechanism. However, such variations can affect the loads since
increasing the flange width lowers the critical buckling stress of the flange promoting

early initiation of local buckling.

The abruptness of the collapse of the beams tested in the Tinius Olsen test machine
was not identified although local buckles did develop rather suddenly, especially in the
thinner specimens, which was evident from the noise the beams made during some of
the tests. The test beams did not collapse suddenly as the testing machine applied
loads by means of crosshead movement which was set to a constant rate of
displacement. This method of load application constitutes static testing which is
appropriate for the single span experiments since the collapse behaviour was of
importance, for later application in multi span analysis. The double span beam tests
conducted in the vacuum box were more realistic in terms of practical collapse speed
characteristics. The beams were seen to collapse very suddenly after attaining peak
loading levels. This was observed as rapid beam deflections accompanied by loud
"bangs" during the tests, typically two in which failure sequence, the first when the

beam section above the central support failed and the second when failure along one

of the spans occurred.

Some bearing problems were observed in the end bolt holes of the beam specimens
tested in the Tinius Olsen machine. This became apparent as some of the bolt holes
were found to have been elongated by the end bolts. The effect was rather small,
approximately 1 mm of elongation in the case of the 55 mm deep plain channels and

up to approximately 2.5 mm in the 203 mm deep sections.

177



Chapter 6 : Experimental Investigations

Although attempts were made to remove all possible slippage in the beam assemblies
using the pre-test loading procedure, the applied loads (0.75 times the first yield load)
were sometimes insufficient to ensure "contact" in all the bolt connections. As a

result, small amounts of slippage occurred during some of the tests.

In general, the experimental results obtained indicate that the theoretical analysis
adequately simulates the behaviour of the beams under investigation within reasonable

accuracy and the primary objectives of the experimental study was achieved.
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Figure 6.4.2 : Vacuum Box
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Single Span Beam Tests

Beam Section | Beam Depth]  Span [L) cl 2 Bolt size Remarks
_(mm) {(nun) {mm) __(mm)
Plain Channels 55 550 25 30 M3
Plain Channels 203 1750 135 62 Mlé6
Lipped Charuls§  80/85 1200 30 0 Mi2  |Only 2 bolts were used in the loading cleat.
Zed Sections 122 1500/ 2250; 56 70 Mlé6
Zed Sections 142 1750 / 3000 56 70 M1i6
Zed Sections 172 2250 /3500 86 70 Mié6
Zed Sections 202 2250/ 3750 116 70 M16
Zed Sections 232 2500 / 4000 146 70 M16
Zed Sections 262 2500 / 4000) 176 70 Mi6
Double Span Beams Tested with Loads applicd through Cleats
_ Beam Section | Beam Depthl Span |L)] | Load point ¢cl c2 s Boly(l) Boly(2) Remarks
{num) {mm) 1L1] (mun) {1mm) {(mm) (mm) size size
Plain Channels 55 550 150 25 30 50 M3 Mg Spacer niethod 1. *
Plain Channels 203 1800 450 120 50 140 MI16 M22  |Spacer method 2, 4 pairs of tubes equally spaced along beams. *
Lipped Channels 80/85 975 292.5 30 0 50 MI12 M12 2 bolts on each loading cleat, spacer miethod 3. *
Double Span Vacuum Box Tests
_Beam Section | Beam Depth]  Span [L] cl c2 s Bolt size Remarks
(tmm) (num) (mm) {mm) (mm)
Zed Sections 172 6000 86 70 1220 M16  |Covered with cormugated steel roof sheeting,
Zed Sections 202 6000 116 70 1220 M16  |Covered with corrugated steel roof sheeting.
Lipped Channels 127 5000 50 66 1260 MI12  jCovered with 38mm floor boards.
Lipped Channels 165 4000/ 55008 RO 66 1260 M12  [Covered with 38mm floor boards.
Lipped Channels 220 6000 100 66 1260 M12  |Covered with 38mm floor boards.

* Refer to section 6.5.3 for the descriptions of the spacer nwethods

Table 6.5.1 : Beam Test Set-up Dimensions
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Chapter 7 : Examination of Theoretical and Experimental Results

7.1 INTRODUCTION

Theoretical models for the analysis of plain channel, lipped channel and zed section
beams supported by means of cleats and fail in bending mainly due to the infestation
of local buckling have been presented in chapters 3, 4 and S respectively. The testing
of beam specimens of these cross-sections in simple and rather extensive experimental
investigations of the subject have been described in chapter 6. The results from the
theoretical and experimental studies will be examined in this chapter which aims to
present the acquired beam load-deflection behavioural characteristics in a comparative
manner. The adequacy of the analysis methods used to generate the theoretical results
will be assessed in this chapter with particular attention directed towards the accuracy
of the ultimate load predictions. The ultimate moment capacity results from the single
span beam studies will also be compared to predictions based on the design methods

suggested in BS 5950 : Part 5 : 1987, ref. [8], for the design of cold-formed sections.

This chapter only serves to present the consolidated results from the investigations of
the previous four chapters and to highlight the findings from the comparison of the
theoretical results and the experimental data. Discussions of the findings from this
examination will be presented in detail in chapter 9, although some brief initial

remarks may be included in the following sections.

The results will be presented in three separate sections, categorised by the beam
cross-sections. Due to the volume of results obtained from the studies, only selected
plots of beam load versus deflection behaviour will be shown, with all ultimate
moment capacity findings summarised in data tables for the single span beams at the
end of each section. Tables for the double span beams are presented to compare the

ultimate load results from the experiments and some design criterions.
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Chapter 7 : Examination of Theoretical and Experimental Results

7.2 PLAIN CHANNEL BEAMS

The study of plain channel beams examined two sets of slender sections in the single
and double span configuration, which included 4 sets of beam experiments carried out
in the Tinius Olsen testing machine. The two sets of sections are grouped according
to the depth of the beam webs, these being 203 mm and 55 mm. Three flange widths
were examined in the first group (50 mm, 75 mm and 100 mm) and four in the second
group (15 mm, 22.5 mm, 27.5 mm and 32.5 mm). The sections were made from

2 mm and 0.6 mm thick mild steel respectively. The plain channel sections will be

referred to in this thesis by the flange width followed by the web depth in mm.

7.2.1 Single Span Beams

The experimental load-deflection behaviour of the plain channel single span beams are
plotted together with the corresponding theoretical elastic loading lines and collapse
curves in figures 7.2.1, 7.2.2, 7.2.3 and 7.2.4 which shows the results for the 50-203,
15-55, 22.5-55, and 27.5-55 sections respectively. Theoretical ultimate loads
calculated using the first yield and fully plastic section bending moment capacities
based on the full cross-sectional dimensions and the bending moment capacity of the
beam sections according to the recommendations of BS 5950 : Part 5 : 1987, are also
indicated in the figures. The BS 5950 moment capacity of the sections are essentially
the first yield bending moments based on the effective cross-sectional dimensions as
found from the consideration of local buckling in the compression flange of the

beams, the method of estimation is outlined in Appendix III of this thesis.

The collapse curves for the 203 mm deep channels were constructed using the mean
corner radius to thickness ratio of 2.5 while the 55 mm deep sections utilised the ratio

of 2. These being the average values found on the experimental beam sections.

189



Chapter 7 : Examination of Theoretical and Experimental Results

ﬁ

50-203-2-PLAIN CHANNEL

SINGLE SPAN (1750 mm)
LOAD (kN)
30
25 —....-—- &0k Do Sk ey ol 5 Ty o Rar s St S e SO S aa W B g b T 1 Y g SR 1 ST o
= f Fully Plastic '
& /ﬁlastic }ine : 4 :
20 _.\/ e == FlestiYield Siaus s "ok
= BS 5950
1511\, -
w—f-.- - s e , ; _
£ . Experimental
s ] : o
) ' Collapse Curve
R W
0 5 10 15 20 25 30 s 40 43 50 55 60 65
MID-SPAN DEFLECTION (mm)
K Figure 7.2.1 /
f 15-55-0.6-PLAIN CHANNEL \
SINGLE SPAN (550 mm)
LOAD (kN)
R]
SEle O R R T O R L BT
Y s et el H v e S AT LR SR IR S U T
- Elastic line ;
\/‘ Fully Plastic
N e - First Yield |
= BS 5950
l E - - oo e WM e te e e aiie e et
o Experimental
0.5 —Hlf~ e i3 Tl e R et -
Collapsei curve|
0 — f : - : ; .
0 s 10 15 20 25 30 s

MID-SPAN DEFLECTION (mm)

Figure 7.2.2

190



Chapter 7 :

Examination of Theoretical and Experimental Results
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7.2.2 Double Span Beams

The results from the cleat loaded double span plain channel beams tested are
plotted in figures 7.2.5, 7.2.6, 7.2.7 and 7.2.8 which shows the results for the
50-203, 15-55, 22.5-55, and 27.5-55 sections respectively.

The figures also includes theoretical load-deflection predictions determined using
the energy method for double spanning beams discussed in chapter 2 (shown in
the figures in continuous lines) and the alternative method using the elastic beam
estimation technique discussed in chapter 3 (shown in the figures as broken lines).
Each of these theories provides two contributions in each of the graphs shown, the
first based on the theoretical single span behaviour while the second used the

experimental single span behaviour ascertained from the beam tests.

The theoretical maximum loads based on the first yield, fully plastic and BS 5950 :
Part 5 bending moment capacities are also indicated in the plots for comparison.
These loads are determined by applying the maximum moments at the central
support location along the beams and using conventional elastic beam analyses to

estimate the corresponding loads and reactions acting along the beam span.
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7.2.3 Summary of Results

The detailed results for the plain channel sections studied are summarised in

tables 7.2.1 and 7.2.2, for the single and double spanning beams respectively.

The experimental moment capacity results for all the single span plain channel
beams examined are shown in table 7.2.1, in which ultimate bending moment

capacity based on the following criterions are also presented :

(1) Current theory as discussed in chapter 2 and 3 of this thesis.
(2) First yield using the full cross section.
(3) Fully plastic section using the full cross section.

(4) Maximum moment capacity according to BS 5950 : Part 5 : 1987.




961

Beam Section

Ultimate Moment Capacity (Nmm)

Flange Width Web Depth Thickness Beam Span Experimental Current First Fully BS 5950
(mm) (mm) (mm) (mm) Theory Yicld Plastic Part 5
1 50 203 2 1,750 7,218,750 7,109,375 8,672,81923 | 10,433,457.75 | 7,256,056.53
2 50 203 2 1,750 6,825,000 7,109,375 8,672,819.23 | 10,433,457.75 | 7,256,056.53
3 75 203 2 1,750 7,000,000 8,312,500 11,300,980.96 { 13,061,532.75 | 8,108,952.18
4 75 203 2 1,750 6,912,500 8,312,500 11,300,980.96 | 13,061,532.75 | §,108,952.18
5 15 55 0.6 550 209,687.5 197,656.25 202,086.43 240,626.98 171,825.24
6 15 55 0.6 550 202,812.5 197,656.25 202,086.43 240,626.98 171,825.24
7 15 55 0.6 550 190,781.25 197,656.25 202,086.43 240,626.98 171,825.24
15 55 0.6 550 184,250 197,656.25 202,086.43 240,626.98 171,825.24
9 225 53 0.6 550 244,750 235,468.75 265,859.42 304,397.38 192,350.54
10 225 55 0.6 550 226,875 235,468.75 265,859.42 304,397.38 192,350.54
l 225 55 0.6 550 230,312.5 235,468.75 265,859.42 304,397.38 192,350.54
12 225 55 0.6 550 214,500 235,468.75 265,859.42 304,397.38 192,350.54
13 27.5 55 0.6 550 251,625 259,531.25 308,374.74 346,910.98 203,783.95
14 27.5 35 0.6 550 240,625 259,531.25 308,374.74 346,910.98 203,783.95
15 27.5 55 0.6 550 235,125 259,531.25 308,374.74 346,910.98 203,783.95
16 275 55 0.6 550 191,812.5* 259,531.25 308,374.74 346,910.98 203,783.95
17 325 55 0.6 550 258,500 283,250 350,890.07 389,424.58 214,290.4
18 325 55 0.6 550 247,500 283,250 350,890.07 389,424.58 2142904
19 325 55 0.6 550 240,625 283,250 350,890.07 389,424.58 214,2904
20 325 55 0.6 550 220,000 283,250 350,890.07 389,424.58 2142904

* Beam test affected by support misalignment.

Table 7.2.1 : Single Span Plain Channel Beams.
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Chapter 7 : Examination of Theoretical and Experimental Results

The double span ultimate load experimental results are presented in table 7.2.2, along

with the maximum theoretical loads based on the following criterions :

(1) Current theory using the energy method for double span predictions (as
presented in section 3.5.3) using the theoretical single span beam

behaviour. [Shown in table 7.2.2 as Theory 1 (Theoretical).]

(2) Current theory using the energy method for double span predictions (as
presented in section 3.5.3) using the experimental single span beam

behaviour.[Shown in table 7.2.2 as Theory 1 (Experimental).]

(3) Alternative theory based on the elastic beam solutions for double
spanning beams (as presented in section 3.5.4) using the theoretical
collapse curves obtained from single span beam analyses.

[Theory 2 (Theoretical) in table 7.2.2.]

(4) Alternative theory based on the elastic beam solutions for double
spanning beams (as presented in section 3.5.4) using experimental collapse
curves obtained from the single span beam tests.

[Theory 2 (Experimental) in table 7.2.2.]

(5) First yield occurring over the central support.

(6) Beam section over the central support becoming fully plastic.

(7) Bending moment over the central support reaches the maximum

moment capacity as determined according to BS 5950 : Part 5 : 1987.
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Beam Section

Ultimate Beam Load (kN)

Flange Width Beam Theory 1 Theory 1 Theory 2 Theory 2

- Web Depth [ Span - LL1*} Experimental | (Theoretical) §(Experimental)} (Theoretical) | (Experimental)
- Thickness (mm)}  (mm)

Fully
Plastic

BS 5950
Part 5

50-203-2 1800450 314 344 . 354 384

35.33

24.57

22 75-203-2 1800-450 34 39.9 3506 41 37

H 3827 4423 27.46 |
23 752032 1800450 32 39.9 356 41 37 3827 4423 27.46
24 1002032 | 1800450 35.5 45 - 472 - 47.17 53.13 29.83 ]
25 100-2032 | 1800450 34.6 45 ] 472 - 47.17 53.13 2983 |
26 155506 | 550-150 32 29 3.15 2.95 319 2.12 2.52 1.8
27 15-550.6 | 550-150 3.1 2.9 315 2.95 3.19 2.12 2.52 1.8
28 | 225-5506 | 550-150 15 341 3.64 35 3.88 2.79 319 2.02

Ezt) 22.5-5506 | 550-150 34 3.41 3.64 3.5 3.88 2.79 319 2.02 ‘]

§ 30| 2755506 | 550150 3.74 3.76 378 3.86 3.96 3.23 3.64 2.14
3| 275-5506 | 550-150 3.56 3.76 3.78 3.86 3.96 3.23 364 2.14
32 | 325-5506 | 550-150 376 4.1 3.92 42 405 3.68 4.08 225

* L1 is the position of the loading points from the central support.

Table 7.2.2 : Double Span Plain Channel Beams
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Chapter 7 : Examination of Theoretical and Experimental Results

On close examination of the results from the single span plain channel beams, it
may be observed that the current theory, using the combination of an elastic
analysis and collapse plastic mechanism analysis to estimate the ultimate loads,
has proven to give rather good approximations that agrees well with the

experimental findings.

Although the BS 5950 : Part 5 recommendations on the bending moment capacity
of the beams seem to work well for the extremely slender sections, the method
tends to underestimate the ultimate loads in most practical cases. This is to be

expected since it considers first yield for the maximum moment capacity.

The theoretical double span ultimate load predictions from both the theories
presented in chapters 2 and 3 provides reasonable estimates for the plain channel
beams examined. All the other design criterions considered for the double
spanning beams underestimates the ultimate loads since they do not take plastic
moment redistribution into account at all. This finding proves that the effects of
monient redistribution is very important in double and multi-spanning beams such

as those examined in the current study.

In general, the current theory and the plain channel collapse mechanism for failure
at cleat locations have proven to be reasonably adequate for the plain channel

sections. The theoretical results compares well with the experimental findings in

most cases.
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7.3 LIPPED CHANNEL BEAMS

The study of lipped channel beams in the current work attempted to examine 2 sets of
thin-walled cold-formed lipped channel sections of various proportions and
thicknesses. Single and double span beams were loaded through cleats on the Tinius
Olsen test machine and an additional set of double span beams were subjected to
uniformly distributed loading in the vacuum box, described in chapter 6 of this thesis.
Similar to the plain channels of the previous section, the lipped channels in this section

will be identified by their flange width, web depth, lip size and thickness (in mm)

separated by hyphens.

7.3.1 Single Span Beams

The experimental load-deflection behaviour of some of the single span beams are
plotted together with the theoretical predictions in figures 7.3.1, 7.3.2, 7.3.3 and
7.3.4, which shows the results for the 67-80-9-1.17, 65-80-12-1.17, 70-80-25-1.17
and 75-85-20-1.965 sections respectively. As in the previous section, theoretical loads

based on the first yield, fully plastic and the BS 5950 : Part S for each of the sections

are indicated in the graphs.

The mean corner radius to thickness ratio for the specimens made from the two
different materials was found to be 2. This being the average value measured on the

fabricated sections and this was used in the theoretical plastic mechanism analyses.
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7.3.2 Double Span Cleat Loaded Beams

The results of some of the cleat loaded double span beams examined are plotted in
figures 7.3.5, 7.3.6, 7.3.7 and 7.3.8. As in section 7.2, four theoretical plots
accompany each set of experimental lines, these being the predictions from the two

double span analysis techniques discussed in chapter 4.

The cross-sectional geometry of the fabricated lipped channel specimens caused a
number of the single span beams (section 7.3.1) and most of the double span
beams of this section to fail in a mode rather different from the other beam
sections examined in the current work. The presented graphs in figures 7.3.5,
7.3.6, 7.3.7 and 7.3.8 are therefore included only as reference for the discussions
presented in chapter 9 of this thesis. The theoretical results based on the theory
presented in chapter 4 are not expected to compare well with the experimental

plots for these double span beams since the modes of failure do not match.
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7.3.3 Double Span Beams Subjected to Uniformly Distributed Loads

The beam sections examined in this section were supplied by Metal Sections
Limited and were designed for mezzanine flooring systems. Five sections were
examined in this investigation, the details of the cross-sectional dimensions are
presented in table 7.3.2 and the beam specimens will be referred to in this thesis by
the manufacturers' section reference. The beam specimens were tested in the
vacuum box as double spanning beams subjected to uniformly distributed loads as

described in chapter 6. The loads referred to in this section are therefore uniform

loads in (kN/m) units.

The results for the 127M16, 165M16 and 220M 18 sections (see table 7.3.2 for
section details) are presented in figures 7.3.9, 7.3.10, 7.3.11 and 7.3.12, where the
experimental mid-span deflections are plotted against the applied loads.
Theoretical load-deflection predictions based on the elastic beam approximation
method for double span beam analysis (detailed in section 5.3.2 of chapter 5) are
also plotted over the experimental results and shown in continuous lines labelled
as 'Theory 2' in the graphs. Theoretical results from the energy approach (as
discussed in chapters 2 and 3) are also included in the plots shown in broken lines
and labelled 'Theory 1'. These theoretical predictions utilised the results from the
plastic mechanism analyses presented in chapter 5 and assumed all mean corner

radii to be 2 times the material thickness.

Theoretical maximum loads derived from the assumptions of first yield, fully
plastic and bending moment capacities based on BS 5950 : Part 5, occurring over

the central supports are indicated in the figures for comparison.
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7.3.4 Summary of Results

The detailed results for the single span lipped channel beams deemed to have failed in
the manner simulated by the current theory are presented in table 7.3.1. Since the
fabricated double span beam specimens tested with loading applied through cleats
were found to collapse with a different failure mode, the results were deemed
irrelevant to the current study and excluded in this section. The mezzanine floor
beams tested under uniformly distributed loading (section 7.3.3) provide the double

span lipped channel results for the current examination, these results are detailed in

table 7.3.2.

Table 7.3.1 contains the bending moment capacities for the relevant single spanning

lipped channels based on the following considerations .

(1) Experimental ultimate moment capacity.
(2) Current theory.

(3) First yield using the full beam cross section.
(4) Fully plastic section bending moment.

(5) Maximum bending moment according to BS 5950 : Part 5 : 1987.
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Beam Section

Ultimate Moment Capacity (Nmm)

S/No | Flange Width | Web Depth Lip Size | Thickness | Beam Span | Lxperimental Current First Fully BS 5950
(mm) (mm) {mm) (mm) (mm) Theory Yield Plastic Part 5

33 67 80 9 1.17 1,200 1,140,000 1,132,500 1,435,966.488 | 1,558,838.044 969,581.668
H 34 67 80 9 1.17 1,200 1,125,000 1,132,500 1,435,966.488 | 1,558,838.044 | 969,581.668
“ 35 65 80 12 1.17 1,200 1,212,000 1,182,000 1,430,636.287 | 1,562,947.931 | 991,884.104

36 65 80 12 1.17 1,200 1,170,000 1,182,000 1,430,636.287 | 1,562,947.931 | 991,884.104
ﬂ 37 75 85 20 1.17 1,200 1,350,000 1,665,000 1,774,623.454 { 1,954,354.133 | 1,586,319.263
ll 38 735 85 20 1.17 1,200 1,320,000 1,665,000 1,774,623.454 | 1,954,354.133 | 1,586,319.263
H 39 70 80 25 1.17 1,200 1,455,000 1,635,000 1,581,174.396 | 1,765,499.073 | 1,471,208.671

40 70 80 25 117 1,200 1,350,000 1,635,000 1,581,174.396 | 1,765,499.073 | 1,471,208.67}
I 41 67 80 9 1.965 1,200 2,453,076.9 2,225,000 2,606,832.931 | 2,828,857.187 | 2,707,218.075
Il 42 67 80 9 1.965 1,200 2,225,000 2,225,000 2,606,832.931 | 2,828,857.187 | 2,707,218.075
! 43 65 80 12 1.965 1,200 2,515,384.6 2,296,153.8 | 2,598,074.932 | 2,837,127.917 | 2,754,451.81
H 44 65 80 12 1.965 1,200 2,400,000 2,296,153.8 2,598,074.932 | 2,837,127.917 | 2,754,451.81
H 45 75 85 20 1.965 1,200 2,850,000 3,112,500 3,232,799.992 | 3,558,673.056 | 3,490,138.66
“ 46 75 85 20 1.965 1,200 2,662,500 3,112,500 3,232,799.992 | 3,558,673.056 | 3,490,138.66

47 70 80 25 1.965 1,200 2,475,000 3,000,000 2,877,719.105 | 3,212,205.334 | 3,165,431.031

48 70 80 25 1.965 1,200 2,025,000 3,000,000 2,877,719.105 | 3,212,205.334 | 3,165,431.031

Table 7.3.1 : Single Span Lipped Channel Beams

sjnsay [paualiadxy pup [Dona10ay] Jo uonpununxy : [ 1d)dey)




Chapter 7 : Examination of Theoretical and Experimental Results

The experimental results found from the testing of the lipped channel floor beams in

the vacuum box are represented in table 7.3.2, with the theoretical beam loads based

on the following criterions :

(1) Current double span theory based on the energy approach and using
theoretical loading characteristics.

[Shown in table 7.3.2 as Theory 1]

(2) Alternative double span beam theory based on the elastic beam approach
and using theoretical collapse characteristics.

[Shown in table 7.3.2 as Theory 2]

(3) First yield occurring over the central support.

(4) Fully plastic section over the central support.

(5) Bending moment of the beam over the central support attains the moment

capacity as determined according to BS 5950 : Part 5 : 1987.
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Section Details

Section reference No.

Flange Width Web Depth Lip Size Thickness
(mun) (mm) (mm) (mm)
127TM16 63 127 13 1.6
127M20 63 127 13 2
165M16 63 165 13 1.6
165M20 03 165 13 2
220M1i8 63 220 13 1.79
Beam Section Ultimate Beam Load (kN/m)
S$/No. | Scction Reterence Beam Length Experimental Theory ! Theory 2 First Fully 3S 5950
per Span (nmm) (Theoretical) (Theoretical) Yield Plastic Part 5
49 127M106 3,000 295 2.615 2.854 2.429 2.731 2,124
30 127M20 3,000 3.94 3 324 2.626 2.953 2.568
51 165M16 3,500 3.229 238 3.057 2.809 3219 2.34
52 165M16 4,000 6.257 5.257 5.714 5312 6.085 4425
Cs3| aesM20 | ssw0 .48 324 348 | 30 3484 2.855
54 220M18 6,000 4.4 3.88 4.08 3.876 4.549 3.187

Table 7.3.2 : Double Span Lipped Channel Beams (U.D.L.)
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Chapter 7 : Examination of Theoretical and Experimental Results

On examination of the results for the fabricated lipped channel beams tested in the
single span configuration, is may be observed that in a number of the experiments,
comparatively larger gaps separates the experimental and theoretical collapse curves
as compared to the plain channel results. This is thought to be due to the effects of
flange curling in these lipped sections which had rather large flange widths relative to
the web depths. The amount of flange curling varied from section to section, in some
cases, the effects were so substantial that the current theory was completely
unsuitable for the mode in which the beams failed. This occurred for almost all of the

0.775 mm thick single spans and the double span beams.

The results for the double span floor lipped channel beams tested in the vacuum box
seems to show that the current theory for double span predictions using the elastic
beam method [Theory 2] (detailed in section 5.3.2 of chapter 5) produces results that
agree well with the experimental findings while the energy approach [Theory 1] does
not. This shows that the energy method = only works well when the deflections at the
region of the ultimate load are small. In the case of the relatively long floor beams
examined, where there is quite a large amount of elastic beam deflections between the
failure at the central support and the ultimate failure, the energy method is rather

unreliable, since it does not adequately consider the elastic deformations of the beam

between supports.

The theoretical ultimate load predictions tor the double span floor beams (based on
the current 'theory 2') tend to be underestimates when compared to the experimental
findings of the beam loads, this may be due to the use of 38 mm thick floor boards
during the beam tests. The rather thick floor boards that were screwed onto the beams
would be likely to increase the bending moment capacity of the portions of the beam

experiencing failure where the deformations are large.

Further discussion of the results will be presented in chapter 9 of this thesis.
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Chapter 7 : Examination of Theoretical and Experimental Results

7.4 ZED SECTION BEAMS

The study of zed section beams examined a set of sections supplied by Metal Sections
limited which were designed to serve as purlins for roof systems. Single span
specimens were tested in the Tinius Olsen Test machine and pairs of double span
beams were tested in the vacuum box which applied uniformly distributed loading as
described in chapter 6. As in section 7.3.3, the zed sections will be referred to in this
thesis by the manufacturers' section reference, the section details will be listed with
the tabulated results in section 7.4.3. It should be noted that these zed sections have a
nesting flange, onto which roof sheeting are attached, which is wider than the other

flange, the lips of each section are also of unequal sizes.

7.4.1 Single Span Beams

The selected experimental load-deflection behaviour for the single span zed sections
are plotted in figures 7.4.1 to 7.4.8 with the corresponding theoretical elastic lines and
collapse curves derived from the analysis presented in chapter S. The theoretical loads
based on the first yield, fully plastic section and maximum moment capacity according
to BS 5950 : Part 5 : 1987 are also indicated in the graphs for comparison. It should
be noted that these Zed sections were designed to be used with roof sheeting which
are screwed onto the beams. The absence of the sheeting in these beam tests coupled
with the fact that the Zed cross-section is not doubly symmetrical (which gives rise
to bi-axial bending tendencies) caused premature collapse of the specimens tested.
The maximum moment capacity calculated according to BS 5950 : Part 5 which does

not consider these factors therefore tends to overestimate the ultimate loads.

All the theoretical collapse curves for the zed sections were calculated using the mean
corner radius to thickness ratio of 2, this being the average value found on the

specimens examined in the experimental investigation.
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Chapter 7 : Examination of Theoretical and Experimental Results

7.4.2 Double Span Beams

Four pairs of double span zed section beams were tested in the vacuum box under
uniformly distributed loading. Due to the unsymmetrical nature of the beam sections,
two of the tests were conducted with the simulated uniform loading applied on the
nesting flange and the other two tests were conducted with the beams assembled
upside down, so that bending in the opposite direction was applied. The graphs for
the latter tests are labelled 'Up-lift' since these experiments translates to the practical

situation of having the roof lifted by low air pressure.

The experimental findings are shown in figures 7.4.9, 7.4.10, 7.4.11 and 7.4.12, which
includes results from the two theoretical methods for double span beam predictions.
The lines based on the energy method (introduced in chapter 2) are shown in the
graphs as broken lines and labelled "Theory 1' while the results from the elastic beam
method (see chapter 5) are plotted in continuous lines and labelled 'Theory 2'.
Theoretical loads based on the assumptions of first yield, fully plastic section and
maximum moment capacity according to BS 5950 : Part 5, over the central support,

are indicated in the graphs for comparison.
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Chapter 7 : Examination of Theoretical and Experimental Results

7.4.3 Summary of Results

The experimental and theoretical results are presented in tables 7.4.1 and 7.4.2 for the

single and double span zed section specimens respectively.

The origins of the theoretical result columns are the same as that described in

section 7.3.4, the reader may want to refer to that section for the notations adopted

for the following data tables.
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Beam Section

Ultimate Moment Capacity (Nmm)

S/No Section Flange Widths{ Web Depth] Lip Sizes | Thickness| Beam Span| Experimental Current First Fully BS 5950
Reference No. (mm) (mm) (mm) (mm) (mm) ‘Theory Yield Plastic Part 5
55 122715 54/49 122 19/21 1.48 1,500 3,750,000 4,537,500 4,777,708.32 | 5,565,642.674 | 4,531,095.641
56 122715 34749 122 19721 1.48 2,250 3,993,750 4,162,500 4,777,708.32 | 5,565,642.674 ] 4,531,095.641
57 1227.16 54/49 122 19721 1.36 1,500 4,672,500 3,103,625 5,615,086.773 | 6,541,389.168 | 5,321,206.547]
58 1227216 54/49 122 19721 1.56 2,250 5,062,500 4,687,312.5 | 5,615,086.773 | 6,541,389.168 | 5,321,206.547]
39 142715 54/49 142 19/21 1.49 1,750 3,317,375 5,519,062.5 6,266,171.59 | 7,347,925.876 | 5,741,976.498]
60 142715 54/49 142 19721 1.49 3,000 5,587,500 4,912,500 6,266,171.59 | 7,347,925.876 | 5,741,976.498
I ol 142720 54/49 142 19/21 1.96 1,750 7,000,000 6,737,500 7,229,146.017 | 8,479,966.096 | 7,123,908.104
H 062 1427.20 34 /49 142 19721 1.96 3,000 7,237,500 6,000,000 7,229,146.017 | 8,479,966.096 | 7,123,908.104]
63 172715 65760 172 19721 1.52 2,250 6,187,500 6,750,000 8,261,509.429 | 9,629,271.995 | 7,246,970.08{
ﬂr 04 1727.15 65 /60 172 19721 1.52 3,500 0,825,000 6,125,000 8,261,509.429 [ 9,629,271.995 | 7,246,970.08
65 172225 65 /60 172 19721 235 2,250 13,218,750 12,093,750 | 14,353,776.816§ 16,739.019.64 | 13,955,135.1¢
66 172725 65760 172 19721 235 3,500 13,562,500 10,850,000 |14,353,776.816§ 16,739,019.64 |3,955,I35.l‘)l
67 202716 63/060 202 19721 1.58 2,250 8,789,062.5 9,703,125 12,292,390.73 | 14,472,286.75 | 10,214,918 .35
68 2027.16 65/60 202 19721 1.58 3,750 8,554,687.5 8,906,250 12,292,390.73 | 14,472,286.75 1 10,214,918.35
H 09 202725 65 /60 202 19721 235 2,250 18,562,500 15,058,125 | 17,816,928.46 {20,990,000.44 | 16,844,934.28
70 202725 65760 202 19721 235 3,750 17,812,500 13,312,500 | 17,816,928.46 | 20,990,000.44 | 16,844,934 28|
ﬂ 71 202715 65/60 202 19721 147 2,250 7,875,000 8,006,250 10,430,082.97 | 12,278,610.97 | 8,562,806.85
H 72 232718 76 /69 232 19/21 1.73 2,300 11,428,750 12,946,250 | 16,055,690.41 | 18,941,321.51 | 13,308,364 51
Il 73 232718 76169 232 19721 1.73 4,000 12,154,000 11,615,000 | 16,055,690.41 1 18,941,321.51 | 13,308,364.51

Table 7.4.1 : Single Span Zed Section Beams (Continued on the next page)
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Beam Section

Ultimate Moment Capacity (Nmm)

S/No Section Flange Widths | Web Depth] Lip Sizes | Thickness| Beam Span| Experimental Current First Fully BS 5950
Reference No. (mm) (1mm) (mm) (mm) (mm) Theory Yield Plastic Part 5
gz 232725 76169 232 19721 2.35 2,500 20,187,500 18,750,000 | 23,306,802.17 | 27,509,577.24 | 21 ,3l7,870.03‘
75 232725 76769 232 19/21 2.35 4,000 24,900,000 16,750,000 | 23,306,802.17 | 27,509,577.24 | 21,31 7,870.03!,
76 2327.16 76169 232 19721 1.58 2,500 10,687,500 12,125,000 16,052,948.81 | 18,935,790.54 | 12,371,059.29,
77 262720 80/72 262 19/21 1.96 2,500 15,562,500 16,375,000 ] 20,562,643.3 | 24,429,881.58 | 17,518,858.93
78 2627220 80/72 262 19/21 1.96 4,000 17,100,000 14,800,000 | 20,562,643.3 | 24,429,881.58 { 17,51 8,858.‘)3|
7Y 262729 80/72 262 19721 299 2,500 25,000,000 27,856,250 | 32,282,290.58 | 38,389,122.03 30,72(),858.37]
RO 262729 80772 262 19721 2.99 4,000 27,000,000 25,000,000 | 32,282,290.58 | 38,389,122.03 | 30,720,858.37]
81 262716 80772 262 19/2] 1.38 2,500 11,153,750 14,711,250 ] 19,397,989.65 | 23,038,474.66 | 14,163,772.56,
82 262718 80772 262 19/21 1.74 2,500 12,875,000 16,250,000 | 20,950,540.8 | 24,885,896.71 [ 16,321,097.21

Table 7.4.1 : Single Span Zed Section Beams (Continued)
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Section Details

Section reference No. Flange Widths Web Depth Lip Sizes Thickness
(mm) (mm) (mm) (mm)
172715 05 /60 172 19/21 1.52
202716 65 /60 202 19/21 1.58
Beam Section Ultimate Beam Load (kN/m)
S$/No. | Section Reference Beam Length Experimental Theory 1 Theory 2 First Fully BS 5950
per Span (inm) (Theoretical) (Theoretical) Yield Plastic Part 5
83 172215 6,000 1.7575 1.6125 1.775 1.8359 2.14 1.61
84 202716 6,000 2.5625 23 2.5625 2.7310 3.216 2.27
85 172715 (Up-1ift) 6,000 1.85 1.675 1.825 1.8359 2.14 1.61
86 202716 (Up-lift) 6,000 2.3875 233 2.625 27310 3.216 227

Table 7.4.2 : Double Span Zed Section Beams (U.D.L))
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Chapter 7 : Examination of Thearetical and Experimental Results

The theoretical results for the zed section specimens examined suggested that these
sections have relatively narrow flanges and according to the BS 5950 : Part 5 : 1987
recommendations, the compression flanges do not experience elastic buckling before
the ultimate bending moment, determined by the plastic mechanism theory, is reached.
On examination of the single span experimental results, it may be observed that the
maximum loads calculated using the moment capacity based on the BS 5950 : Part 5
recommendations tends to overestimate the ultimate loads for a number of the
sections. This is due to the bi-axial bending effects in these beam sections which are
not doubly symmetrical that were not accounted for in the BS 5950 : Part §
calculations. In most cases, the current theory produces ultimate load predictions

which agree better with the experimental findings.

On examination of the theoretical and experimental load-deflection behaviour plots
for the single span specimens, it can be seen that the experimental deflections at which
the ultimate loads occur tend to be larger than the theoretical predictions and that the
difference is more pronounced in these zed sections than in the plain channel sections
and some of the lipped channel specimens examined. This is thought to be due to the
tendency of the flanges to curl as the beams are loaded. With the presence of the lips,
this tendency is higher than that for the plain channels and the effect is further
encouraged by the cross-sectional asymmetry of the zed sections. However, the
current theory does produce good estimates of the ultimate section bending moment

capacities and the experimental results shows that the theory is generally applicable

for the zed sections investigated.

From the double span beam results, two observations may be immediately obvious.
The first concerns the adequacy of the two theoretical methods for the analysis of the
double span beams. The plots indicate that the energy method (Theory 1), first
introduced in chapter 2 of this thesis, produces results which are inferior to the elastic

beam approach presented in chapter 5. This is again attributed to the fact that these
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Chapter 7 : Examination of Theoretical and Experimental Results

relatively long beams tends to exhibit rather large elastic deformations before the
ultimate failure occurs, just as in the lipped channel floor beams examined in the
previous section. This further supports the conclusion that the latter method for
analysis of multi-spanning beams is more reliable for beams which ultimately collapses
after a relatively large amount of elastic beam deformation along the spans following

the development of plastic mechanisms at the supports between the spans

The second observation for the double span specimens relates to the difference
between the shapes of the theoretical and experimental load-deflection plots for the
beams tested for up-lift. The match in the shape of the theoretical plots with the
experimental are not as good as in the first two tests where the beams are loaded on
the nesting flange. This is thought to be due to the fact that the compression flanges
along the span of the beams in the up-lift experiments are unrestrained against side
way movement whereas the roof sheeting screwed onto the compression flanges of
the first two beam tests prevents any such side way movements. The beams in the
up-lift tests hence failed with some torsional buckling effects, however, the current

theory was still able to produce rather good ultimate load predictions.

Further discussion of all the findings will be carried out in chapter 9 of this thesis, the
reader may want to proceed to that chapter for a fuller understanding of the

discoveries made during these beam investigations.
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Chapter 8 : Effects of Strain Hardening in Cold Formed Sections

8.1 INTRODUCTION

It has long been known that the processes of cold forming in the fabrication of many
thin-walled steel structural members causes profound changes in the material
properties of the metal in the finished sections. Three most commonly used
production methods for cold-formed steel are press braking, cold rolling and folding,
all of which generally have the effect of increasing the yield and ultimate strengths of
the material in the region of the cold formed corners, which is accompanied by a
reduction in ductility. In the case of cold rolling, the normal pressure applied to the
flat portions during fabrication can cause marked changes in the local material

properties in regions away from the corners.

In the design of cold-formed steel sections, it seems only just to consider any such
effects as the heightened strength levels which can contribute substantially to the
effective load carrying capacity of the structural sections, can lead to more
economical designs. This prompted the author to dedicate a chapter of the current
thesis to study the positive effects that can be gained from considering strain
hardening in the material of the cold-formed sections. Experimental investigations
were conducted rﬁdﬁe aim of understanding the strength characteristics and the
distribution and extent of the cold forming effects, with particular interest in the yield
strength ?r‘r: cold-formed corners. Experimental results are compared with available
theories to determine the improved section properties of thin-walled mild steel

sections that were produced by imposing large plastic strains during a cold forming

process.

Researchers such as Walker [76] had discovered that the material properties were not
uniform over the entire cross section of cold-formed sections, the yield as well as the

ultimate material strengths were higher in the region of the corners as compared to
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the flats, tensile tests on strips cut from channels revealed the strength distributions as

shown in figure 8.1.1.

In the first of a series of three papers, Chajes et.al. [11] studied the effects of cold
work in cold forming on the mechanical properties of light-gauge steel, by
investigating simple unidirectional tensile straining of flat sheet steel. This initial study,
although not directly relevant to the current work, lead to an important contribution
to the subject by Karren [23], that dealt with more complex types of cold straining
associated with the forming of corners in the manufacturing of structural steels.
Karren assumed that the plastic strain hardening region of the stress-strain trace of the

steels he investigated could be represented by a power law, as described in

Eqn.(8.1.1).

c=k-(€) Eqn.(8.1.1)

where k is the strength coefficient
n is the strain hardening exponent
and & & € are the generalised stress and strain respectively.

Deriving the material constants empirically, the concepts of effective stress and
effective strain from plasticity theory were employed to develop equations to predict
tensile yield strength of corners. Two analytical corner models were used, the first
considered wide flat sheets subjected to pure flexure while the second included the
effect of radial pressure during plastic forming. The resulting formulae are shown here

as Eqn.(8.1.2) and Eqn.(8.1.3) respectively.

For wide flat plates subjected to pure flexure, the corner yield stress is
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Cyc = 7w Eqn.(8.1.2)
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where b=0.945-1.31517 and m = 0.803n these being empirical variables
and (%) is the ratio of the inside corner radius to the sheet thickness.

Considering the effect of radial pressure during forming, the corner yield stress is

n
Oy = kb(%) Eqn.(8.1.3)
where b=1.0-13n and m=0.8551+0.035.

The theoretical predictions compared well with experimental findings and it was
found that the yield strength after cold working may be considerably higher than the
original ultimate tensile strength of the material. Also, the increase in ultimate strength
due to strain hardening in corners was smaller than the increase in yield strength,

causing marked reductions in the spread between yield and ultimate strengths.

In a subsequent paper, Karren and Winter [24], conducted an extensive experimental
investigation to study the mechanical properties of full cold formed sections in
relation to the virgin materials from which the sections were fabricated and presented
a method by which the full section tensile yield strength of members may be predicted
from the results of simple tensile coupon tests. This was accomplished by using the
equations developed in Karren [23], to estimate the strength of the corners and a
weighted averaging technique, which took into account the areas of the flats and the
corners, for the overall average section strength. Yield strength found in corners were
considerably higher than those in the flat portions, as illustrated in figure 8.1.2. The

effects of the increased yield strength on the inelastic buckling of thin-walled columns

(%)
(9]
—_—
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were also dealt with experimentally and theoretically. Theoretical predictions of the
buckling behaviour using the weighted average yield strength and a generalised
tangent modulus equation for the columns was in good agreement with experimental
results. It was observed during the stub column tests that buckling always began in
the flat elements, spreading to the corners after additional loading, evidently, the flats
having a lower yield point, started to buckle locally at an average cross-sectional
stress at or slightly above their own lower yield point, thus preventing the higher yield
strength of the corners to be fully effective. It was also found that the changes in yield
and ultimate strengths in the flats were small if not negligible in the sections produced

by press braking but these changes may be much larger in cold rolled sections.

Lind and Schroff [30] presented a similar theory, based on fewer assumptions, the
theory produced an analysis which was considerably simplified and specialised for a
simple linear strain hardening law. The idea of the theory was that whether a corner
had a large or small radius, the cold work, equal to the integral of the applied moment
with respect to the angle of bend, should be about equal if the strain hardening is
linear. The work is therefore independent of the corner radius, neglecting the elastic
effects. Further, if the increase in yield strength is a linear function of the work of
forming, the increase in yield strength of the corner will also bé a linear function of the

work of forming. The increase in yield force is given by Eqn.(8.1.4).

AP=(50)1-(fu—15)- (;‘I)—) Eqn.(8.1.4)

where  is the material thickness
and  f. & f, are the ultimate and yield strength of the material respectively.

The results obtain from using Eqn.(8.1.4) compared well with experimental data and

Karren's findings.
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The formulation developed by Lind and Schroff formed the basis of the clauses for
section yield strength in the BS 5950 : Part 5 : 1987 [8] for calculating the increased
average yield strength in cold-formed sections, Eqn.(8.1.5) shows the expression as

written in the code.

Yea = Ys"'g’l—:(US“ Ys) Eqn.(8.1.5)

A

where Y, and Y, are the increased average and virgin yield stresses
Us is the virgin material ultimate strength
N is the number of full 90° bends

and A is the gross area of the cross-section.

According to the code, the average section yield stress is limited to 1.25 times virgin
strength or the ultimate strength, whichever is smaller for the case. Modifications
would have to be made for the compressional yield strength if the increased strength

is to be applied to elements in compression.

The formulation developed by Lind and Schroff [30] and is essentially the same as
that in the BS 5950 : Part 5 : 1987 [8], which is based on a linear strain hardening
model and takes the increase in strength due to cold work into account by replacing
the yield strength by the ultimate strength at each 90° bend over an arc length of five
times the material thickness. This arc length is modified in proportion to the angle of
bending for angles other than 90°. The method was adopted in BS 5950 : Part 5
because of it's simplicity and the ease of application which made it readily applicable
in the design of cold formed sections. This method of estimating the work hardened
strength does not consider the radius of bend as a parameter, the theory assumes that
the increase in strength is a linear function of the cold work involved in forming the
bend which is independent of the bend radius, a smaller radius simply concentrates the
same amount of work into a smaller area, the net average increase in strength

remaining the same. It is also assumed that the yield strength in compression is the
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same magnitude as the yield in tension, this does not cause too much inaccuracies as

found by Karren [23] and Lind and Schroff {30].

The changes in mechanical properties of the cold formed steels are mainly caused by
strain hardening and strain ageing, these effects are illustrated in figure 8.1.3. Curve A
represents the stress-strain behaviour of the virgin material, curves B and C shows
unloading in the strain hardening range and subsequent reloading, while curve D
demonstrates the reloading behaviour after strain ageing. Both strain hardening and
ageing causes increases in the apparent yield strength on subsequent reloading with
reductions in ductility. The degree and extent of these effects seem to be dependent

on a number of factors, which are listed below :-

- Type of steel.

- Magnitude of the stresses involved.

. Direction of stress with respect to the direction of cold work.
- Material stress-strain index.

- Ratio of ultimate-to-yield strength.

- Radius of bend to thickness ratio.

and - The extent of cold work.

Amongst the items listed, the ratio of ultimate-to-yield strengths in the virgin material
and radius-to-thickness ratio of the formed corners are the most important factors,
higher strength ratio generally means more potential in the increase of corner
strengths and tighter radii of bends causes greater degrees of straining and hence

higher local yield strengths.

The increase in yield strength due to strain hardening occurs when cold working of

the material in the sections causes sufficiently large strains which drives the material
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behaviour into the work hardening range. The physical problem dealt with is the
subsequent uniaxial tension and compression of the formed corners in the direction

perpendicular to the initial cold work applied to the steel plates during fabrication.

In relation to the current investigation, the effects of strain hardening can alter the
effective section strength in elastic bending. In addition, the relatively large strains
that exists at the hinges of the plastic collapse mechanisms can also cause increases in
the plastic moment of the hinged plate, this increase can be accounted for by a simple
means, which will be discussed in section 8.4 of this chapter. This simple method was

applied in the plastic mechanism analyses presented in chapters 3, 4 and 5 of this

thesis.

The following two sections present the experimental investigations conducted by the
author to study the effects of strain hardening on the yield strength of cold formed
corners. Due to the complexity of the theoretical aspects of the problem and time
constraints, the analytical study has not been completed and may be the subject of
further research. The experimental studies undertaken were aimed to increase the
understanding of the characteristics of the work hardened corners. Two types of
experiments were carried out, the first (section 8 2), consisted of tensile testing of
cold formed mild steel specimens which included corners, this enabled the
consolidation of a set of data which describes the strengths of the corners in uniaxial
tension for a range of thicknesses and radii of bend. The second type of experiments
(section 8.3), involved the use of hardness testing to estimate the relative strength of
the material distributed within the corner regions, this also enabled the determination

of the spread of the effects of cold work in the region of the bends.
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8.2 TENSILE TESTING OF COLD FORMED CORNERS

In order to quantify the average strength of cold formed corners, tension tests on
specimens consisting of flat and corner elements were the subjects of this first type of
strain hardening experiments. The specimens were fabricated from mild steel sheets
similar to those used to produce the plain and lipped channel beams examined in
earlier chapters. Two series of experiments were conducted on such tensile test
specimens made in a small range of thicknesses and ratios of corner radius to
thickness. In the first series, the specimens were bolted at the ends as the specimens
were subjected to tension and in the second series, similar specimens were held at the

ends by way of pins and clamping blocks. These experiments are detailed in the

following subsections.

8.2.1 Corner Tensile Experiments (Series One)

In this first series of corner tensile experiments, specimens were manufactured from
mild steel sheet material in which the thickness ranged from 1.6 mm to 3 mm with 45°
and 90° bends and corner radius to thickness ratios ranged from 1 to 3. A total of 20

corner specimens were successfully tested along with 8 flat specimens which provided

the virgin material properties.

The specimens were tested in the Tinius Olsen Testing machine where tensile forces
were applied onto the specimens through purpose designed end pieces which will be

detailed in section 8.2.1.2.
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8.2.1.1 Fabrication of the Test Specimens

The corners were formed in a roller bending rig designed and constructed for the
purpose of fabricating these specimens, figures 8.2.1.1 and 8.2.1.2 illustrates the rig
construction and the corner forming process respectively. This rig was designed to
form corners with controlled radii of bend on thin gauge mild steel, this being
achieved by means of the lower forming roller of the bending rig which is ideally of
the same radius as the inside radius to be formed on the specimens. A number of
lower rollers were prepared for the various corner sizes. The bending process is

summarised in the following procedure list :

1) Referring to figure 8.2.1.2(i), the flat plate which had been cut to the
appropriate width is clamped onto the base plate of the bending rig by
means of a clamping plate. The forming rollers are then adjusted for

position such that they are in contact with the specimen plate.

2) The upper roller that is pinned onto the roller arm which is pivoted about
an axis coinciding with that of the lower roller, is then brought around to

form the corner on the specimen. See figures 8.2.1.2 (ii) and (iii).

3) The angle of the formed corner is checked with a template and further
bending is performed if necessary. The specimen is only released from the

bending rig when the required angle of bend is achieved.

The specimens are then trimmed and milled to the final shape as shown in
figure 8.2.1.3, in which mid section containing the gauge length of 50 mm is
approximately one third the width of the end portions. Figures 8.2.1.4 and 8.2.1.5

shows the final dimensions of each of the tested specimens.
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Standard flat tensile specimens according to BS EN 10002-1 : 1990 were also
prepared from each material, the shape and dimensions of these flat specimens is
shown in figure 6.3.1 of chapter 6. The specimens containing the corners were
dimensioned similar to the standard pieces as far as possible, with a similar

"bone-shaped" outline to ensure that failure would not occur at the held ends during

the tension test.

8.2.1.2 Tension Tests

Both types of tensile specimens were tested on the 200,000 Ibs Tinius Olsen universal
testing machine, figures 8.2.1.6 and 8.2.1.7 shows the test set-up, in which a Denison
50 mm extensometer was used to monitor the strains within the gauge length of the
test pieces. All specimens were tensioned to fracture with the gauge length strains and
applied tensile loads continuously monitored and recorded by an X-Y plotter
(described in chapter 6) in the form of load-extension graphs. The test conditions are
the same as that for the tension tests described in section 6.3 of this thesis for material
properties. A more detailed description of this series of experiments along with a full

set of the recorded graphs can be found in Chua [76].
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8.2.1.3 Results (Corner Tensile Tests, Series One)

Some selected plots of the stress-percentage elongation behaviour of the tensile tests
specimens are shown at the end of this chapter. Figures 8.2.1.8 and 8.2.1.9 illustrates
the typical results observed for the flat specimens which indicate the virgin material

characteristics. Figures 8.2.1.10 to 8.2.1.12 shows the typical findings for specimens

with 45° corners while the figures 8.2.1.13 to 8.2.1.15 were plotted for specimens

with 90° corners.

Table 8.2.1 summarises the consolidated results from these series of experiments,
along with theoretical predictions of average corner strength calculated using the
methods by Karren [23] and Lind and Schroff [30]. In the table, corner areas are
calculated for the portion of the cross section within the gauge length of the
specimens that is within the 90° or 45° arc. With the corner and overall cross sectional
areas known, the average yield strength of the corners can be calculated since the
resisting force contribution by the flat portions of the cross-section can be estimated
from the virgin yield strength of the material. This inherently assumes that the cold
forming effects only affect the portion of the cross section within the corner region, an
assumption which will be supported by findings presented in section 8.3 of this thesis.

The use of various permanent set values of yield approximations will be discussed in

section 8.2.1.4.
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Test No. Inside | Thickness Corner | Virgin(2%)] Ultimate] P.S. | Virgin(PS)] Expt.(PS) Expt.% Karren% ] Lind %
Radius (mm) Arca Yield Tensile Yicld Yield Increase Incrcasec | Increase
(mm) (mm~"2) Stress Stress Stress Stress
2A 4 2 15.7079 230.57 327.37 0.6 232.33 416.45 79.25 56.16 53.45
2B 4 2 21.544 230.57 327.37 0.6 232.33 430.13 85.14 56.16 38.97
2C 6 2 28.51 230.57 327.37 0.6 232.33 429.63 84.92 43 .85 29.45
2D 6 2 29.748 230.57 327.37 0.6 232.33 397.63 71.15 43 .85 28.23
2E 2.5 2 10.9955 230.57 327.37 0.6 232.33 68291 193.94 71.76 76.36
3C 7 3 40.6553 | 300.531 466.3 1 341.08 447.12 31.09 65.93 61.05
D 7 3 40.0553 | 300.531 466.3 | 341.08 45847 34.42 65.93 6197
Mo 4 1.6 12.0637 444.43 548.76 0.4 465.07 456.26 -1.89 28.84 24 91
M7 6 2.3 28.4707 486.02 546.26 0.2 486.02 607.3 2495 16.22 13.60
M§ 6 2.5 28.0747 486.02 346.26 0.2 486.02 570.28 17.34 16.22 13.80
2H 10 2 17.2787 230.57 327.37 0.6 232.33 423.12 82.12 29.71 24.30
21 10 2 17.2787 230.57 327.37 0.6 232.33 424,98 82.92 29.71 24.30
2) 10 2 17.2787 230.57 327.37 0.6 232.33 398.87 71.68 29.71 24.30
2K 10 2 17.2787 230.57 327.37 0.6 232.33 386.78 66.48 29.71 24.30
2L 12 2 20.4203 230.57 327.37 0.6 232.33 427.11 83.84 25.01 20.56
M 12 2 20.4203 230.57 327.37 0.6 232.33 380.65 63.84 25.01 20.56
3G 12 3 31.8086 300.531 466.3 1 341.08 497.33 45.81 49 42 39.02
3 12 3 31.8086 | 300.531 466.3 1 341.08 302.56 4734 49 .42 39.02
31 15 3 38.8772 | 300.531 466.3 1 341.08 47145 38.22 43.07 31.92
3] 15 3 38.8772 | 300.5331 466.3 1 341.08 486.13 42.53 43.07 3192

Note : - All Stresscs in N/mm’.
- P.S. is the Permanent Sct % Plastic Strain at which the Experimental Stresses arc compared.
- % Increases are the improvements in Corner Yield Stresses over the Virgin Yicld Strength.

Table 8.2.1 : Corner Tensile Experiments (Series One)
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8.2.1.4 Observations and Comments (Corner Tensile Tests, Series One)

Average corner strengths found in this set of experiments generally ranged from 17%
to 85% over the yield strength of the virgin material, these values being calculated
based on corner areas in the 90° or 45° arc. This implies that all the effects of the cold

work were assumed to occur within the bent portions of the plates.

The bending rig was design for forming the corners of the corner specimens with a
tight control of the inside corner radius. The use of this rig however, required the
shaping of the specimens to be done after the corners were formed, since a rather
large clamping area was necessary during the bending process. This presented some
difficulties in the machining process, leading to a compromise of having the edges
angled rather than perpendicular to the flat elements. Figure 8.2.1.16 illustrates the

milling process for the corner specimens.

The rigidity of the bending rig was also found to be inadequate for the 3 mm thick
plates, especially for the smaller bend radii. The adjustable parts of the rig which was
implemented to allow various sizes of specimens to be fabricated in the same rig

proved to be problematic, as a result, many intended specimens had to be temporarily

abandoned.

The use of bolts to fasten the specimens between the cross-heads of the Tinius Olsen
testing machine allowed ill effects of bending of the specimens containing the corners
as the loads were applied, figure 8.2.1.17 illustrates this problem whereby some
bearing of the bolt holes occurred. This lead to non-uniform yielding over the
cross-section of some of the tensile specimens which showed up in the load-extension
plots as rather irregular shaped traces before the curve stabilised when yielding had

spread over the entire cross-section.
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On close examination of the experimental results, it may be realised that the
elasto-plastic region of load-extension plots for the corner specimens are rather
different from those found in the virgin materials. The corner specimens tended to
exhibit relatively more gradual transition from elastic to plastic behaviour with a
longer elasto-plastic curve as compared to the flat specimens which had not been cold
worked. For this reason, the conventional method of estimating the yield stress of
material (with a relative smooth transition between elastic and plastic behaviour) in
which the 0.2% permanent set value of stress is taken as the yield was deemed to be
unsuitable for the corner specimens, since the material in the gauge length of the
specimens are still in the early stages of the elasto-plastic transition at strains of 0.2%.
For the purpose of the current work, larger permanent set values of stress were used
to assess the yield strength of the corner specimens. A permanent set value was
chosen for each of the material thicknesses such that the stress at these chosen strains
were in the plastic region of the load-extension behaviour that was 'linear'. By taking
the virgin strength of the material at the same permanent set as for the corner
specimens, the increase in yield strength could be estimated and it is on the basis of

this increase that the experimental results were compared to the theoretical results

presented in table 8.2.1.

From the data presented in table 8.2.1, it can be seen that rather large differences
exists between theoretical predictions using the methods by Karren [23] and Lind and
Schroff [30] and the experimental findings for some of the specimens, with most of

the theoretical estimates on the conservative side.

Further discussion of the experimental findings will be presented in chapter 9 of this

thesis.
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8.2.2 Corner Tensile Experiments (Series Two)

In this series of corner tensile experiments, specimens similar to those of the first
series were fabricated for testing. Specimens containing 90° corners were made from
mild steel sheet material of 5 different thicknesses, with the ratio of inside bend radius
to thickness ranging from 0.917 to 3.16. A total of 42 corner specimens along with 10

standard flat tensile specimens were successfully tested in this series.

8.2.2.1 Fabrication of the Test Specimens

An air-braking rig was designed and constructed for the purpose of cold forming the
corners of the specimens, this rig is shown in figure 8.2.2.1 and is used with the Tinius
Olsen Testing machine which provides the driving force for the bending operation.
The rig essentially consists of two main parts, the lower roller assembly which sits on
the test bed of the Tinius Olsen and rigidly holds the two lower rollers in position
during the bending operation and the upper roller which is attached through a ram to
the moving crosshead of the Tinius Olsen machine. The size of the upper roller
controls the inside radius of the cold formed corners, for the current set of specimens,
5 sets of upper roller/ram were manufactured to enable the fabrication of the test
specimens. A pair of guide pins wére welded to each of the upper rollers, these pins

serves to hold the test specimens in place as the upper roller is brought down to form

the corners.

In the forming operation, specimens which had been milled to the final 'bone' shape
and size, and with the pin holes drilled, are positioned onto the lower rollers and

aligned using the guide pins of the upper roller. Figure 8.2.2.2 illustrates this

243



Chapter 8 ; Effects of Strain Hardening in Cold Formed Sections

operation. The upper roller is then brought down by lowering the crosshead of the
Tinius Olsen to form the required 90° corner on the test specimen. By monitoring the
displacement of the upper roller and the applied bending force, the energy applied in

the cold working process of forming the corners could later be estimated.

Packing plates on the sides of the lower rollers allowed minor adjustments and the
lower roller mountings could be positioned to suit each thickness of specimen. The
final position of the lower rollers and final depth of the upper roller movement was

found by trial and error operations on sample specimens. Figure 8.2.2.3 details the

specimen dimensions.

8.2.2.2 Tension Tests

The fabricated corner specimens were clamped at each end by means of two pairs of
purpose designed clamping blocks. Locating pins in each pair of clamping blocks
ensured that the specimens would not slip against the clamping blocks. Figure 8.2.2.4
shows the method of clamping the specimens in the Tinius Olsen test machine using

the wedged grips of the machine during the tension tests.

As in the first series of corner tensile experiments, a 50 mm Denison extensometer
was employed to monitor the strains within the gauge length of the specimens during
the tests. Load-extension graphs were plotted for each specimen using X-Y plotters
which continuously registered the applied tensile forces and extensometer readings as
each specimen was tensioned to fracture. Test conditions were kept to that for the

tensile testing of standard yield specimens as described in section 6.3 of this thesis.
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8.2.2.3 Results (Corner Tensile Tests, Series Two)

Some selected experimental plots of stress versus percentage elongation are shown at
the end of this chapter. Figures 8.2.2.5 and 8.2.2.6 shows the typical behaviour of the

virgin material and figures 8.2.2.7 to 8.2.2.10 illustrates the findings for the corner

specimens.

A summary of all the corner tensile test results is presented in table 8.2.2 where the
increase in the average corner yield strength is compared to the theoretical predictions
based on the theories of Karren [23] and Lind and Schroff [30]. As in table 8.2.1, only
the corner strengths are considered in this table, with the contributions from the flat
elements on each side of the corners removed by assuming they yield at the virgin

material yield stress.

The full set of experimental plots along with further details of this series of

experiments can be found in Han [18].
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Test

Inside

Thickness| Corner Virgin | Ultimate | Virgin Expt Expt % | Karren % | Lind %
No. Radius (mm) Area 0.2%) Tensile (1%) (1%) Increase | Increase | Increase
{mm) (mm~"2) Yield Stress Yield Yield
Stress Stress Stress
ti-1 2.50 0.95 4.44 181.99 303.93 201.84 490.80 143.16 63.53 68.09
12-1 2.50 0.95 4.44 181.99 303.93 201.84 495.83 145,65 63.53 68.09
t3-1 2.50 0.95 4.44 181.99 303.93 201.84 506.77 | 151.08 63.53 68.09
12-1 3.00 0.95 5.19 181.99 303.93 201.84 430.89 113 .48 56.17 58.30
12-2 3.00 0.935 5.19 181.99 303.93 201.84 437.19 116.60 56.17 58.30
12-3 3.00 0.95 5.19 181.99 303.93 201.84 448.07 121.99 56.17 58.30
14-1 223 1.85 9.23 208.21 304.56 212.18 428.21 101.81 77.95 85.82
14-2 2.25 1.85 9.23 208.21 304.56 212.18 486.12 129.11 77.95 85.82
14-3 2.25 1.85 9.23 208.21 304.56 21218 437.86 106.36 77.95 85.82
5-1 2,75 1.85 10.68 208.21 304.56 212.18 389.30 83.48 70.51 74.15
t5-2 2.75 1.85 10.68 208.21 304.56 212.18 364.28 71.68 70.51 74.15
13-3 2.75 1.85 10.68 208.21 304.56 212.18 372.62 75.62 70.51 74.15
16-1 4.00 1.85 14.31 208.21 304.56 212,18 361.53 70.39 57.44 35.33
16-2 4.00 1.85 14.31 208.21 304.56 212,18 342.86 61.59 57.44 55.33
16-3 4.00 1.85 14.31 208.21 304.56 212.18 339.75 60.12 57.44 35.33
t7-1 2.50 2 11.00 292.95 357.27 289.48 619.01 113.84 43.78 39.93
17-2 2.50 2 11.00 292.95 357.27 289.48 566.29 95.62 43.78 39.93
9-1 2.75 2 11.78 292,95 357.27 289.48 494 .42 70.80 41.52 37.27
19-2 2.75 2 11.78 292.95 357.27 289.48 535.30 84.92 41.52 37.27
t10-1 4.00 2 15.71 292.95 357.27 289.48 460.76 59.17 32.97 27.95
t10-2 4.00 2 15.71 292.95 337.27 289.48 481.17 66.22 32.97 27.95
tii-1 5.00 2 18.85 292.95 357.27 289.48 482.06 66.53 28.13 23.29
th1-2 5.00 2 18.85 292.95 357.27 289.48 474.15 63.79 28.13 23.29
tit-3 5.00 2 18.85 292.95 357.27 289.48 43493 50.25 28.13 23.29

Table 8.2.2 : Corner Tensile Experiments (Series Two) [Continued on the next page]
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Test Inside | Thickness{ Corner Virgin | Ultimate } Virgin Expt Expt % ] Karren% | Lind %
No. Radius (mm) Area (0.2%) Tensile (1%) (1%) Increase | Increase | Increasc
{(mm) (mm"2) Yield Stress Yield Yield
Stress_ Stress | _Stress

t13-1 2,75 2.75 17.82 279.09 408.94 278.84 501.39 79.81 85.84 98.72
t13-2 2,75 2.75 17.82 279.09 408.94 278.84 513.88 84.29 85.84 98.72
t14-1 4.00 2.75 23.22 279.09 408.94 278.84 463.64 66.27 71.57 753.77
t14-2 4.00 2.75 23.22 279.09 408.94 278.84 434.87 55.96 71.57 75.77
t16-1 5.25 2.75 28.62 279.09 408.94 278.84 399.30 43.20 61.90 61.47
t16-2 5.25 2.75 28.62 279.09 408.94 278.84 404 .83 45.18 61.90 61.47
t16-3 5.25 2.75 28.62 279.09 408.94 278 .84 404 .83 45.18 61.90 61.47
t16-4 5.25 2,75 28.62 279.09 408.94 278.84 373.71 34.02 61.90 6147
t17-1 2.75 3 20.03 309.02 461.22 349.088 685.35 96.33 92.93 110.65
t17-2 2.75 3 20.03 309.02 461.22 349.088 583.17 67.06 92.93 110.65
t18-1 4.00 3 25.92 309.02 461.22 349.088 596.68 70.93 77.76 85.51
t18-2 4.00 3 25.92 309.02 461.22 349.088 596.68 70.93 77.76 85.51
120-1 5.25 3 31.81 309.02 461.22 349.088 557.82 59.79 67.51 69.67
120-2 5.25 3 31.81 309.02 46122 349.088 543.82 55.78 67.51 69.67
120-3 525 3 31.81 309.02 461.22 349.088 564.82 61.80 67.51 69.67
121-1 7.75 3 43.59 309.02 461.22 349.088 526.96 50.95 53.84 50.84
121-2 7.75 3 43.59 309.02 461.22 349.088 526.96 50.95 53.84 50.84
(21-3 7.75 3 43.39 309.02 461.22 349.088 516.74 48.03 53.84 50.84

Note : - All Stresses in N/mny’.
- All Experimental Stresses are compared at the Permancnt Sct of 1% Plastic Strain.

- % Increases are the improvements in Corner Yield Stresses over the Virgin Yield Strength.

Table 8.2.2 : Corner Tensile Experiments (Series Two)
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8.2.2.4 Observations and Comments (Corner Tensile Tests, Series Two)

The experimental results shows that the increase in yield strength at the corners
ranged from 34% to 151% over the virgin material yield stress. The increase being

higher for the tighter corners with the smaller radius of bends for all the thicknesses

examined.

The theoretical predictions using the methods by Karren [23] and Lind and Schroff
[30] seem to underestimate the increase in corner strength for the specimens made
from the three thinner materials (0.95 mm, 1.85 mm and 2 mm) and overestimate the
effect for the thicker materials (2.75 mm and 3 mm), the overestimation being worse
for the specimens with tighter bend radii. This is thought to be due to the corner
forming process in which the ultimate loads were exceeded for some the thick
specimens with tight corners. This was evident from the load-upper roller
displacement trace monitored during the cold forming. Hence, for those specimens, it
can be said that the corners were 'over-bent', in that the outer fibres were tensioned

beyond the ultimate tensile stress which rendered them incapable of maintaining their

resistance to subsequent loading.

The rigidity problems encountered with the bending rig described in section 8.2.1
were eradicated in the second bending machine used to produce the specimens in this
second series of corner tensile experiments. It may be said that this second bending
machine is overly rigid in that it is capable of damaging the specimens when tight
corners are bent on thick material, as in some cases of the 2.75 mm and 3 mm
specimens examined. This second method of forming the corners on the tensile test
pieces also enables the monitoring of the applied forces and reactions during the cold

forming process which proved to be useful in recognising over-bending of specimens.
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By machining the final shape of the tensile specimens before the cold forming of the
corners, originally (before bending) rectangular cross-sections were achieved and the
measurement of the cross-sectional areas were more precise. The milling process was

also simplified since the specimens were flat at this stage.

The use of clamping blocks and locating pins for holding the ends of the specimens
during the tension tests eliminated the problems of rotations in the specimen ends as
illustrated in figure 8.2.1.18. In this second series of tests, the ends were securely held
in all cases and there was no slippage between the specimens and the clamping blocks,
and the locating pins did not cause any bearing problems on the specimens. However,
some bending was observed on the specimens as the tensile stresses were applied,
these formed half sine-waves within the gauge section of the test specimens,
illustrated in figure 8.2.2.11. This effect can now be attributed to the fact that the
gauge cross-section is unsymmetrical with the centroid which did not coincide with
the line of the applied loading, especially considering the fact that the corner region
possessed varying yield strengths. The relatively long elasto-plastic region found in
the load-extension plots of the first series of corner tensile experiments which also
appeared in this second series of tests, can now be confirmed to be intrinsic to the
cross-section of the specimens and not because of bending effects due to bolt bearing
problems in the first series of experiments. Since the current study is concerned with
the increase in yield strength due to the cold forming of the corners, the use of
stresses compared at the permanent set of 1% plastic strain adequately overcomes the
problems of having a long elasto-plastic region of material behaviour for this series of
experiments, this does not cause much error since the plastic region of material

behaviour is rather linear for the specimens tested.

Further discussion of this series of experiments will be presented in chapter 9 of this

thesis.
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8.3 CORNER HARDNESS EXPERIMENTS

This set of experiments was conducted with the aim of determining the distribution of
yield and ultimate strength over the cross-section of mild steel plates containing cold
formed corners. The use of static indentation hardness testing enabled detailed
mapping of the hardness over the cross-section to be ascertained and by relating these
hardness measurements to yield and ultimate strengths, strength variations could be

estimated. Average corner yield and ultimate strengths were also calculated from the

detailed data and compared with theoretical predictions.

The set of specimens in these experiments consisted of 16 plate samples containing
cold formed corners cut from the same pieces which was used in the corner tensile
experiments (series one), the material and section properties of the specimens should
therefore be identical to those examined by tensile testing (series one) and

comparisons of the results could be made in order to verify the findings from both sets

of experiments.

In these experiments, 1.5 inch long specimens were moulded in epoxy resin and
subsequently milled and ground to expose smooth flat cross-sections with 45° and 90°
corners. Location lines were then marked onto each cross-section as illustrated by

figure 8.3.1 and hardness readings were taken along each of these lines.
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8.3.1 Method of Hardness Measurement

Hardness readings using an Avery-Denison visual hardness testing machine with a
Vickers Pyramidal diamond indentor were then measured along the location lines, 4 to
6 readings were taken along each line, depending on the plate thickness. The Vickers
hardness number was used to quantify the hardness, and is calculated from the applied
load during indentation divided by the pyramidal area of indentation, using

Eqn.(8.3.1) shown below.
H, = 1.8544% Eqn.(8.3.1)

where H.is the Vickers hardness number
p is the applied load
and  d is the average diagonal length of the pyramidal indentation.

The hardness test procedure was in accordance to BS EN 23878 and consisted of
applying a load of between 1 to 120 kg through the diamond tip indentor for a period
of between 10 to 15 seconds, removing the indentor and measuring the diagonal
lengths of the indentation lett on the surface of the specimen. In order to maximise the
number of data points in the relatively small cross-sectional area, the load of 10 kg

was selected for these experiments.

A full description of these experiments together with a complete set of the plotted

results can be found in Sim [69].
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8.3.2 Relationship between Hardness number and Yield / Ultimate Strength

The work of Tabor [71] was employed to approximate the local yield and ultimate
strengths of the material from the hardness data. Based on the assumption that the
strain hardening region of the material stress-strain curve could be described by the
power law, Tabor found that the yield strength of most metals could be estimated by

Eqn.(8.3.2), which relates the results from the Vickers hardness test to the yield

stress.

4-p -
Y= S Snd Eqn.(8.3.2)

where Y is the material yield strength
p is the load applied during indentation
and d is the average diagonal length of the pyramidal indentation.

And Eqn.(8.3.3) was used to relate the Vickers hardness number to the ultimate

tensile strength of the material.

X
1-x{ 12.5

where U; is the material ultimate tensile strength
H. is the Vickers hardness number
and  x is the material stress-strain index.

From the expressions, it can be seen that both the approximate yield and ultimate

estimates are directly proportional to the Vickers hardness number.
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8.3.3 Results (Corner Hardness Experiments)

The vast amount of detailed data collected in this set of experiments made it difficult
to present the results from all the 16 specimens examined, two sets of results were
selected and presented at the end of this chapter. Each set consists of two subsets,

one for the corner and the other for the adjacent flat plate element, and each subset

contains :-

1) Table of estimated yield strength at each data point

2) Table of estimated ultimate strength at each data point

3) 3 dimensional plot of estimated yield strength

4) 3 dimensional plot of estimated ultimate strength

5) 2 dimensional plot of the average (for each location line) yield strength

6) 2 dimensional plot of the average (for each location line) ultimate strength

Figures 8.3.2 to 8.3.9 shows the complete set of results for the 2 mm thick specimen
with a 90° corner of inside radius 2 mm and figures 8.3.10 to 8.3.17 shows the results

for the 3 mm thick specimen with a 90° corner of inside radius of 2 mm.

A summary of the average estimated corner yield and ultimate strengths is presented
in table 8.3.1, along with experimental increases in average corner yield strength and

theoretical predictions using the work of Karren [23] and Lind and Schroff [30].
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Test] Inside | Thickness| Angle JElementof] Expt. Expt. Virgin Virgin Virgin | Virgin UTS| Expt% | Karren% ] Lind%
No. | Radius (mm) (Deg) | Specimen | Average| Average Yield {UTS from| (2%) Yield from Increase Increase | Increase
(mm) Comer | Comer |Stress frond Hardness | Stress from|  Tensile
Yield UTs Hardness Est. Tensile Test
Stress Est. Test
1 10 2 45 Comer 326.20 426.87 282.27 369.39 230.57 327.37 19.05 29.73 24.30
Flat 292.45 382.72 282.27 369.39 230.57 327.37 4.42
2 12 2 45 Comer 376.09 451.19 282.27 369.39 230.57 327.37 40.69 25.02 20.56
Flat 290.57 380.25 282.27 369.39 230.57 327.37 3.60
3 15 2 45 Comer 313798 422.29 282.27 369.39 230.57 327.37 24.16 19.49 13.63
Flat 294.35 383.84 282.27 369.39 230.57 327.37 5.24
4 10 3 45 _ Comer 400.30 561.27 351.55 492.91 300.53 466.30 16.22 52.06 31.81
Flat 366.93 514.47 351.55 49291 300.53 466.30 5.12
s 12 3 45 | Comer | 40854 | 572.81 | 35155 | 49291 | 30053 | 466.30 18.96 49.42 39.02
Flat 392.87 551.24 351.55 492.91 300.53 466.30 13.75
6 15 3 45 Comer 414.43 581.08 351.55 49291 300.53 466.30 20.92 43.07 31.92
Flat 388.58 544.03 351.55 492.91 300.53 466.30 12.32
7 2 2 20 Comer 35376 | 462.39 282.27 369.39 230.57 327.37 31.01 71.76 76.36
T Fla | 28732 | 37599 | 28227 | 369.39 | 23057 | 327.37 2.19
X 4 2 90 Comer 353.74 462.94 282.27 369.39 230.57 327.37 31.00 56.16 53.45
Ilat 281.07 367.81 282.27 369.39 230.57 327.37 -0.52
9 6 2 920 Comer 348.78 | 457.40 282.27 369.39 230.57 327.37 28.85 43.85 29.45
Flat 27027 § 353.67 282.27 369.39 230.57 327.37 -5.20
10 2 3 90 Comer 428.71 601.17 351.55 492.91 300.53 466.30 25.67 114.66 91.86
Flat 36907 | 517.48 351.55 | 49291 300.53 466.30 5.83
i1 4 3 90 Comeer 541.08 780.89 351.55 492.91 300.53 466.30 63.07 85.04 60.46
Flat 367.39 515.13 351.55 492.91 300.53 466.30 5.27
12 6 3 90 Conmer 439.60 587.31 351.55 49291 300.53 466.30 29.30 65.93 61,97
Flat 369.25 | 517.18 351.55 | 49291 300.53 466.30 5.89
13 12 2 45 Comer 325.53 426.00 282.27 369.39 230.57 32737 18.76 25.02 20.56
T 29556 | 38809 | 28227 | 36939 | 23057 | 32737 5.76
14 4 2 90 Comer 321.08 | 440.83 282.27 369.39 230.57 327.37 16.83 56.16 53.45
Flat 295.74 | 387.01 282.27 | 369.39 230.57 327.37 5.84
15 4 1.6 9% Comer 456.26 | 661.77 282.27 409.42 444.43 548.76 39.15 16.22 13.60
Flat 387.32 416.74 282.27 409.42 444.43 548.76 23.64
16 6 2.5 90 Comer | 46739 | 634.97 434.37 590.1 486.02 546.26 6.79 16.22 13.80
Flat 44638 | 606.41 434.37 590.1 486.02 546.26 2.47

Note : - All Stresses in N/mm?®.
- Virgin Stresses from Hardness estimation were derived from Hardness measurements taken in regions of the

specimen: remote from the cold formed comers.
- All Experimental Comer Stress Increases were caleulated taking the Stresses from Hardness estimation as Virgin.
- % Increases are the improvements in Comer Yield Stresses over the Virgin Yield Strength.
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8.3.4 Observations and Comments (Corner Hardness Experiments)

The use of hardness measurements to estimate the material strengths achieved the
primary objective of harvesting relatively detailed mappings of the distribution of the
varying degree of increase in material yield stress due to cold work, the thinness of
the plates limited the number of data points across the thickness of the specimens,
thus preventing the realisation of the true distribution of strain over the thickness and
the location of the neutral fibre, however, the technique served well in obtaining the

variations in material properties along the length of the bend and adjacent flats.

The use of the simple expressions of Tabor [71] to approximate the values of the yield
and ultimate strength from the hardness numbers may not have given result of high
accuracy, this was evident from the difterences found comparing the data with that
obtained through simple tensile testing of identical material, however, the precision of
the expressions used is not critical if data from the hardness tests were used only as a
gauge of the amount of increase in strength rather than strength in absolute terms.
Taking the estimated yield and ultimate strengths calculated using Eqn.(8.3.2) and
Eqn.(8.3.3) of a remote point some distance from the corners of the specimen as the
datum, the increases in strengths at various points in the vicinity of the corners can be
worked out and this difference can then used to estimate the corner strengths, this
method would work well assuming that the hardness numbers are linearly

proportional to the yield and ultimate stresses.

It was observed from examining the plots that in both the yield and ultimate strengths,
the regions with the elevated strengths tended to end 2 mm to 3 mm from the edge of
the bent material, it can also be seen in table 8.3.1 that the average strengths in the 10
mm long flats elements adjacent to the corners are in most cases only slightly above

the virgin strengths. It is therefore quite correct to assume that all the effects of cold
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working during the forming of the corners are in fact concentrated within the 45° or

90° arc of the corners.

The experimental plots shows that the strengths within the arc of the bend does vary,
with the peak strengths occurring at the toe of the corners (mid length on the arc of
the bend), the maximum yield stress can reach values of up to 1.8 times the virgin
yield strength, which can be much higher than even the ultimate tensile strength of the
virgin material. The strengths are also generally higher at the outer fibres of the

corners, which is to be expected since the strains applied during cold forming are

larger in those regions.

The increases in the yield strength of the corners found in this set of corner hardness
experiments are generally smaller than those found in the corner tensile experiments.
The corner yield stress estimates were in reasonable agreement with those found in
the tensile experiments but by considering the differences between the estimated
corner yield strengths and the estimate virgin yield stress (derived by the same method

for a point remote to the corner region) as the increase in strength, the percentage

increases in yield were rather low.

From the results in table 8.3.1, it can be seen that both the theoretical methods of
predicting corner strength by Karren [23] and Lind and Schroff [30] produced some
results with large differences from the experimental findings, in a number of cases, the
theories overestimates the corner strengths by quite a large margin, this brought about

some doubt in the dependability of these two theories in the prediction of the corner

strengths.

The findings from this set of corner hardness experiments will be discussed further in

chapter 9 of this thesis.
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8.4 STRAIN HARDENING IN PLASTIC HINGES

In the plastic mechanism theory presented in chapter 2 of this thesis, the rigid-
perfectly plastic material model was employed, in which strain hardening was not
accounted for. This assumption is perfectly acceptable if the strains within the beams
were relatively small, but during the formation of the plastic collapse mechanisms, the
material at the outer fibres of the plastic hinges can experience very high levels of
strain, in which case, neglecting the strain hardening effect of the material could lead
to significant errors, especially if the margin between the yield and ultimate strength of
the actual beam material is large. This section details a simple method of accounting

for the additional resisting moment in the plastic hinges due to material strain

hardening.

The technique starts off by assuming that the plate material behaviour can be idealised
as a rigid-linear strain hardening material with the ultimate tensile stress occurring at

approximately 15% strain, as shown in figure 8.4.1. The plastic stress at any strain can

then be estimated by Eqn.(8.4.1)
Osh =Co+Ep-€ Eqn.(8.4.1)
where the plastic modulus is given by

— (oull"‘ao)
Ep=—"15 Eqn.(8.4.2)

where G, is the material ultimate tensile strength.
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It is further assumed that the material behaves in the same manner under compression
as it would under tension. Considering the plate bending at the plastic hinges to be

purely flexural, the stress distribution across the thickness of the plate can be idealised
as that shown in figure 8.4.2. The strain varies linearly across the thickness, maximum

strain occurring at the extreme fibres which can be found using Eqn.(8.4.3).

82}
Y
il

[FIEN =) I(<
p

|-

Eqn.(8.4.3)

[
(V<]

where y is the distance of the fibre from the neutral axis

and 9 is the ratio of the mean corner radius of bend to the thickness.

The stress at the extreme fibres can then be found using Eqn.(8.4.1) and the plastic

plate bending moment capacity can be estimated by Eqn.(8.4.4).

Cot? I
Mpsp = ==+ (G = Co)g Eqn.(8.4.4)
where o.is the stress corresponding to €. at the extreme fibres.

According to equations presented above, and taking that the ultimate tensile stress of
the material occurs at 15% strain, a mean corner radius to thickness ratio of 3.333
would bring the stress at the outer fibres to the ultimate tensile strength. In the
experimental investigations, the observed radius to thickness ratios were as small as 2
in some cases and in the mechanism theory presented in chapter 2, it was assumed

that the rolling mechanism lines would maintain their original radii (in the

manufactured state).
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For the purpose of the current work, it was assumed that the extreme fibre stresses at
the yield lines of the plastic mechanisms could be estimated to be equal to the ultimate

tensile material strength, this would allow Eqn.(8.4.4) to be simplified to :
0.13 2
Mpsh = 0_4__ +(©Cun — Go)%’ Eqn.(8.4.5)

The plate moment capacity found from Eqn.(8.4.5) was used to replace the fully
plastic plate moment, m,in the equations used for the plastic mechanism analysis
presented in chapters 2, 3, 4 and S of this thesis. This simple approach produced

plastic mechanism loads which agreed well with the experimental findings of beam

collapse behaviour, this was seen in chapter 7 where the results were compared.
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/

Dimensions of 90° Bend Specimens

SECTION X-X
Note : All dimensions in mm
Specimen No. t R A B (& D Area (total)
2A 2 4 16.83 1576 | 19.12 | 17.27 61.834
2B 2 4 17.20 | 1494 | 1891 | 16.91 61.212
2C 2 6 17.94 1487 | 18.00 | 15.95 57.834
2D 2 6 18.00 | 1562 | 20.08 | 18.22 63.181
2E 2 2.5 14.53 10.41 14.36 | 10.85 53.054
3C 3 7 18.20 | 1563 | 16.00 | 12.49 73.541
3D 3 7 18.13 15.55 | 1590 | 12.38 73.047
M6 1.6 4 16.06 | 14.50 | 15.00 | 13.19 43.035
M7 2.5 6 16.77 1439 [ 16.00 | 13.33 61.594
M8 2.5 6 16.41 14.01 15.79 | 13.18 60.859

\o

Figure 8.2.1.4 : Specimen Dimensions
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Dimensions For 45 ° Bend Specimens

N

ol X ’o

o == o 135° )
e}
o}

L_,., L
S0
210 ]

LL

L 50
SECTION X-X
Note : All dimensions in mm
Specimen No. t R A B C D Area (total)
2H 2 8 1112 9.11 11.30 | 931 52.137
21 2 8 12.14 | 1022 | 10.00 | 7.93 52.383
bl | 2 10 1253 | 1063 | 10.10 [ 8.01 52.791
2K 2 10 11.88 9.92 11.18 [ 8.50 52.157
2L 2 12 1246 | 1053 | 10.50 | 8.43 51.891
M 2 12 1244 | 10.51 10.60 | 8.53 52.141
3G 3 12 13.62 | 1069 | 1230 | 9.23 78.921
3H 3 12 13.75 | 1082 | 12.50 ( 7.89 78.743
k]| 3 15 13.39 | 1043 | 1270 | 9.66 78.111
3 3 15 1420 | 1138 | 11.20 | 8.04 78.526

N

Figure 8.2.1.5 : Specimen Dimensions
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Figure 8.2.1.8 : Standard Tensile Test
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TENSILE TEST
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Figure 8.2.1.9 : Standard Tensile Test
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Test Specimen 3-H
Thickness: 3 mm Radius: 12 mm Angle of Bend : 45
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k Figure 8.2.1.12 : Corner Specimen Tensile Test /
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TENSILE TEST

Test Specimen M-7
Thickness : 2.5 mm Radius : 6 mm Angle of Bend : 90
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Chapter 8 : Effects of Strain Hardening in Cold Formed Sections
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Chapter 8 : Effects of Strain Hardening in Cold Formed Sections

.

Specimen No. Thickness a (mm) b (mm) Inside Radius | X-Sect Area
(mm) (mum) (mm"2)
Tl-1 0.95 48 23.97 5 22.77
Ti1-2 0.95 48 24.08 ] 22.88
T1-3 0.95 48 24.06 s 22.86
T2-1 0.95 48 24 6 22.8
T2-2 0.95 48 24 6 23.3
T2-3 0.95 48 24 6 22.8
T4-1 1.85 48 23.95 4.5 44.34
T4-2 1.85 48 23.95 4.5 44.34
T4-3 1.85 48 23.95 4.5 44.34
Ts-1 1.85 48 24 5.5 44.4
TS-2 1.85 48 24 5.5 44.4
T5-3 1.85 48 24 3.3 44.4
. T6-1 1.85 48 24.05 8 44.5
:—____——_:_1 T6-2 1.85 48 24.05 8 44.5
i T6-3 1.85 48 24.05 8 44.5
s ;‘ T7-1 2 76 38.05 s 76.1
o T7-2 2 76 38.05 s 76.1
" f——'— T9-1 2.05 76 377 5.5 772
T9-2 2.05 76 37.7 5.5 77.2
T10-1 2.05 76 37.9 8 71.6
T10-2 2.05 76 37.9 8 71.6
RN 2 T11-1 2 76 38.1 10.5 76.2
T11-2 2 76 38.05 10.5 76.1
s T11-3 2 76 38.05 10.5 76.1
.’ T13-1 275 76 38.1 5.5 104.77
= T13-2 2.75 76 38.1 5.5 104.77
o T14-1 2.78 76 381 8 106
T14-2 2.78 76 38.1 8 106
T16-1 2.78 76 38.07 10.5 105.83
T16-2 2.8 76 38.1 10.5 106.86
T16-3 2.8 76 38.1 10.5 106.86
T16-4 2.8 76 38.1 10.5 106.86
T17-1 2.98 76 38.05 5.5 113.39
T17-2 3 76 38.1 5.5 114.15
Ti18-1 3 76 38.1 8 114.3
T18-2 3 76 38.1 8 114.3
T20-1 3 76 38.1 10.5 1143
T20-2 3 76 38.1 10.5 1143
T20-3 3 76 38.1 10.5 114.3
T21-1 3 76 38.1 15.5 114.3
T21-2 3 76 381 15.5 1143
T21-3 3 76 38.1 15.5 114.3

Figure 8.2.2.3 : Specimen Dimensions
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K Figure 8.2.2.4 : Clamping Arrangement
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Chapter 8 : Effects of Strain Hardening in Cold Formed Sections
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Figure 8.3.2 : Corner Hardness Experiment (3D Stress Distribution)
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Chapter 8 : Effects of Strain Hardening in Cold Formed Sections
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Figure 8.3.6 : Corner Hardness Experiment (3D Stress Distribution)
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Chapter 8 : Effects of Strain Hardening in Cold Formed Sections
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Ulumate Tensile Strength

Ultimate Tensile Strength (N/mm?)
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Chapter 8 : Effects of Strain Hardening in Cold Formed Sections
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Ultimate Tensile Strength

Ultimate Tensile Strength (N/mm?)

Tension Compression

1 mm 646.67 599.51 567.45 496.30 541.06 595.82
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Figure 8.3.15 : Corner Hardness Experiment (3D Stress Distribution)

g 1a1dey)

uuapavy umag Jo spajjq

ut Ji

128 pauio] plo)

Suo1,




Chapter 8 : Effects of Strain Hardening in Cold Formed Sections

410.00
90 degrees 3mm  Radius of' 2 (10mm flat measurement)
400.00 -
390.00
380.00 \,

37000 1

360.00

Yield Stress

350.00

340.00 -

330.00

44—t

320.00

imm 2mm 3mm

Figure 8.3.16 : Stress Distribution

\

o
e
BN

540.00 1

1
|

90 degrees 3mm Radius of 2 (10mm flat measurement)

520.00 -1

e

g
8

Ultimate Tensile Strength)

Figure 8.3.17 : Stress Distribution

10mm

480.00 T+

460.00

440.00 : ! i t t t ¢ 1 5
1mm 2mm 3mm 4mm Smm 6mm 7mm 8mm 9mm

290



Chapter 8 : Effects of Strain Hardening in Cold Formed Sections

»
»

.

15%

Figure 8.4.1 : Rigid-Linear Plastic Material Behaviour

e/

=/

\




Cbhapter Dine

9.1

9.2

94

9.5
9.6

Discussions, Conclusions and Recommendations

GENERAL

EXPERIMENTAL ASPECTS

9.2.1 Fabrication of Beam specimens

9.2.2 Bearing problem at Bolt Connections

9.2.3 Symmetry in Beam Spans

VERIFICATION OF THE THEORETICAL RESULTS
9.3.1 The Plastic Mechanisms

9.3.2 The Single Span Beams

9.3.3 The Double Span Beams

9.3.4 Alternative Failure Mode in the Lipped Channels

EFFECTS OF STRAIN HARDENING
IN COLD FORMED SECTIONS

9.4.1 Corner Tensile Experiments

9.4.2 Corner Hardness Experiments
CONCLUSIONS

SUGGESTIONS FOR FUTURE RESEARCH

292



Chapter 9 : Discussions, Conclusions and Recommendations

9.1 GENERAL

In the field of engineering research, it is not unusual to find that during the course of
an investigation into a subject, the researcher finds a string of related subjects which
are in need of attention and each investigative project can lead to several others. It is
therefore very difficult to absolutely complete research work in any one general topic
without confining the final recommendations to specific situations in which the

conditions have been considered.

In chapter 2, the method of utilising separate elastic and plastic solutions to estimate
the ultimate load carrying capacity of thin-walled beams that fails due to the
infestation of local buckling was introduced. The analytical techniques were then
applied in theoretical models for plain channels, lipped channels and zed sections in
chapters 3, 4 and 5 respectively. The theoretical predictions based on these models
were then compared with the results from reasonably extensive experimental
investigations in chapter 7 of this thesis. Experimental work on the effects of strain
hardening on the yield strength of thin-walled sections was presented in chapter 8.
This chapter aims to discuss the findings of the theoretical and experimental studies of
the previous chapters and highlight the conditions under which the present theories
are applicable. The thesis ends with a number of conclusions which have been drawn
from the current work and a few recommendations which are hoped to be of value to

other workers in the field of thin-walled structures and future investigations.
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9.2 EXPERIMENTAL ASPECTS

The main objectives of the beam experimental investigations of the current study were
to provide insight into the behaviour of the selected beams as they are subjected to
loads beyond the ultimate load carrying capacity and experimental data to verify and
assess the performance of the theoretical models. These objectives were achieved by
the experimental program described in chapter 6, within reasonable laboratory
standards. From the observations made during the beam tests, the assumptions made
in the development of the theoretical analysis methods presented in this thesis did not
violate any major rules that govern the behaviour of the physical beam specimens.
There are however, a number of observations that suggest reasons for minor
discrepancies between the theoretical and experimental results for the beam tests

which have been deemed to be successful, these will be highlighted in this chapter.

The following sections presents discussions of some problems encountered during the

execution of the experimental program and how these affected the results.

9.2.1 Fabrication of the Beam specimens

Some of the beam specimens described in chapter 6 were produced in the laboratories
of the University of Strathclyde. The fabrication process included the shearing of mild
steel sheets to the required dimensions and cold folding right angled corners to form
the final plain and lipped channel cross-sections. The guillotine and folding machine
available for the task limited the total length of each beam specimen to a maximum of
2 m, which limited the span length for the double spanning beams to approximately
0.975 m.This presented no problems for the plain channels as the cross-sectional
dimensions could be reduced so that the ratio of beam span to the maximum

cross-sectional dimension remains above 8 (design rule for the specimens). In the case
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of the lipped channels however, in which the minimum width of the flanges was
limited by the size of the fixed folding blade of the folding machine, in order to adhere
to the design rule on the minimum span length, meant that the final cross-section of
the lipped channels had flanges which were only slightly smaller than the webs. These
cross-sections are not of much practical use since the BS 5950 : Part 5 : 1987 [8)]
limits the stiffened flange width to 60 times the thickness (section 4.2 of the code). As
a result, all the fabricated lipped channel beams tested were considered to be of
secondary importance in the current study as such cross-sections are unlikely to be

adopted for use in practical structural sections.

9.2.2 Bearing problem at Bolt Connections

Although the beam specimens tested were designed against bolt bearing problems
using the recommendations of the BS 5950 : Part 5, the single end bolt holes in some
of the beams experienced the 'digging in' of bolts. This was evident from the observed
elongation of these holes after the beam tests. There are two reasons for this
phenomenon, the first is the fact that all end bolts were only hand tightened during the
experiments so that relatively free rotation was allowed at the ends and the second
relates to the difference in size between the bolts used and the corresponding bolt
holes. Following the excepted standard adopted by the cold formed steel industry, all
bolt holes were bored 2 mm larger than the nominal bolt diameters, this resulted in
very small actual bearing areas for these bolts, as illustrated by figure 9.2.1, which
promoted the 'digging in' of the bolts. Although this effect caused only very small
downward displacements (typically 1 mm to 2 mm) of the entire beam which added to
the beam deflections monitored during the tests, the difference between the elastic
deflections of the experimental results and the theoretical elastic lines is quite

obviously noticeable (see graphs in chapter 7, figures 7.2.1 to 7.2.4).
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9.2.3 Symmetry along the Beam Spans

In the beam experiments, symmetry was not always achieved between the two halves
of the single span beams and between the two spans of the double span specimens.
This effect resulted in the failure mechanisms developing along the beams which were
not symmetrical about the centre of the beam specimens, however, this did not
critically affect the experimental results. In the single spanning beams which are not
symmetrical, 'half-mechanisms' developed as illustrated by some of the photographs
presented in chapters 4 and 5, figures 4.2.2, 5.2.1 and 5.2.2, in which obvious yield
lines developed only on one side of the loading cleat, the overall effect of this is to
approximately double the global hinge angle on one half of the plastic collapse
mechanism while reducing the hinge angle on the other side to a negligible value, as
demonstrated by figure 9.2.2. This causes almost the same net energy dissipation in
the overall mechanism as in the case of the development of a complete plastic
mechanism. There are a few possible causes for this effect, these being errors in the
position of the bored bolt holes, misalignment of the loading cleat, unequal height of
the end supports and the contact at the bolt connections being different on each half
of the beam. In beams w',:'ere ultimate failure is followed by collapse with reducing
moment capacity at the failure section, it can be shown that non-symmetrical failure
mechanisms actually dissipate slightly less energy than complete mechanisms. It is

therefore likely that 'half- mechanisms' tend to develop whenever possible.

Similar causes also resulted in the failure of only one span in the double spanning
beams but again, this did not affect the comparison of results since the theoretical
analysis examines each span of the beams separately. The beam tests were conducted
on a displacement controlled test machine and the applied loads were transmitted to
the loading cleats through a roller / lever system which always applied equal loads on
each span. As soon as one span fails and begin to shed load, the other span would not
be able to attain it's ultimate load. It is therefore very rare to fail both spans

simultaneously since the two spans of the beams are rarely completely identical.
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9.3 Verification of Theoretical Results

The topic of elasto-plastic behaviour has received much attention from researchers in
recent years. A number of authors have found that the use of plastic collapse
characteristics from analysis using the plastic mechanism approach in conjunction with
a suitable elastic buckling formulation can produce rather satisfactory estimates of the
ultimate loads of thin-walled structural members which buckle locally. Methods based
purely on the elastic theory of material behaviour tend to result in rather conservative
approximations. The plastic mechanism approach provides a relatively simple means
of estimating the plastic strength of structures. This approach has been adopted in the
current study and the results have proven to be generally satisfactory for the

thin-walled beam sections examined.

9.3.1 The Plastic Mechanisms

In the theoretical plastic mechanism analyses presented in this thesis, bending energy
of the plastic hinges were calculated using the reduced moment capacity of the hinges
which took into consideration the inclination of the hinges to the bending axis and the
effects of the axial compression. In addition, the use of the modified plate plastic
bending moment capacity in the formulation, presented in section 8.4 of this thesis,
enabled the utilisation of the strain hardened strength of the material. The theoretical
plastic collapse mechanisms presented in chapters 3, 4 and 5 are based on the yield
line patterns observed during the experimental investigation of the beam sections and
are kinematically admissible mechanisms which satisfies the equilibrium and
mechanism conditions, introduced in chapter 2, section 2.4.3. The theoretical collapse
characteristic obtained are therefore theoretical upper bound solutions, however, the
mechanism load minimisation procedures used to determine the final geometry of the

plastic mechanisms seem to have oversimplified the theoretical mechanisms.
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The general belief that since the energy involved in the bending of plates about the
plastic hinges is lower than the membrane straining effects, true mechanisms (as
defined by Murray [44]), would theoretically occur whenever possible, may not be
universally true. In the plastic mechanisms examined in the current study, the outer
hinges on the compression flanges of the tested beams were inclined at an angle of
between 30° to 60° to the bending axis of the beam cross-section. In the theoretical
models, this inclination could not be justified since it will not only increase the length
of the outer hinges but it would also require additional membrane straining on the
adjacent platelets to maintain kinematic admissivity. In keeping with the adopted

theoretical assumptions, the inclination of these hinges was ignored to minimise the

mechanism loads.

In all the presented mechanisms, the independent mechanism size 'c' was found by
means of a mechanism load minimisation process and considering the mechanism
lock-up conditions, the value of 0.145 times the web depth was adopted for all the
mechanisms according to this approach which enabled the maximum hinge rotations
before lock-up occurred. This assumption was supported by experimental findings,
the experimental mechanism size 'c' ranged between 0.145 to 0.2 times the web depth.
For the lipped sections, the second independent variable was the inclination angle of
the outer hinges of the lip mechanisms which was taken as 50° as suggested by load
minimisation procedures. This angle was also found to produce the minimum loads in

a similar situation encountered by Sin [70] for a plain channel mechanism.

The current method of mechanism analysis reacts to increases in compression flange
width by increasing the plastic hinges length for the flange hinge lines which ultimately
increases the mechanism loads. In the experimental investigations, it was observed
that in some cases, the ultimate load carrying capacity of the beam can actually be
reduced by a wide flange, since the critical buckling stress is reduced. The current

theories were deemed to be satisfactory for the practical ranges of the compression
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flange width, and had the tendency to overestimate the loads when the flange ratio of

width to thickness exceeded 40.

9.3.2 The Single Span Beams

For the plain channel sections examined, the current theory produced beam ultimate
moment capacity predictions that compared well with the experimental results. The
maximum bending moment capacity evaluated using the recommendations of the
BS 5950 : Part 5 seem to work better for the very slender sections (with 203 mm

webs) while underestimating the ultimate loads for the more practical sections.

The fabricated single span lipped channel beams examined were observed to
experience some degree of flange curling due to the relatively wide flanges. The
theoretical deflection estimates, in which no account for such effects were taken
therefore did not compare very well with the experimental results. In spite of this,
most of the theoretical predictions were rather good for the sections which did fail

mainly due to the local plastic mechanisms.

The single span zed sections were not as predictable as the plain channels, due to the
shape of the cross-section, the restraining of the tendency for the section to deflect
sideways at mid span (along the cross-sectional bending axis) as the loads were
applied, caused the compression flanges to curl in some of the specimens, especially
for the deeper and thicker sections. This effect caused the elastic behaviour of the
theoretical beams to stray from the experimental loading lines which subsequently
may have affected the ultimate loads. The discrepancy generally became larger for the
beams with longer spans since the deflections involved were larger. Nevertheless, the
theoretical results from the presented analyses using the modified plastic mechanism
for the lipped channels were generally in good agreement with the experimental

findings.
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The zed sections examined had relatively narrow flanges and for these cross-sections,
the presented predictions based on the BS 5950 recommendations overestimated the
ultimate moment capacity of a number of the beam specimens. This can be observed
from figures 7.4.1 to 7.4.8 and table 7.4.1 presented in chapter 7. In the calculations
presented in this thesis which adopted formulations from BS 5950 : Part 5, the
bi-axial bending effects of these non doubly symmetrical cross-sections were not
considered. This caused the overestimation of the maximum moment capacity of a

number of the single span zed section beams.

The relatively small amounts of flange curling in some of the tested beams had the
effect of reducing the effective second moment of area of the experimental beam
sections, this in turn caused the experimental deflections to become larger than the
theoretical behavioural predictions. This phenomenon, together with the effects of
bolt bearing at the ends of the beam and the possible elastic compression of the
supports under the supporting cleats, caused the experimental deflections of a
majority of the beams to be greater than the theoretical deflections. This can be seen
in the plots presented in chapter 7 (figures 7.2.1t07.2.4,7.3.1to 7.3.4 and 7.4.1 to
7.4.8) for the single span beams of all three cross-sections examined. The theoretical
load predictions are generally good, and the difference of deflection between the
experimental and theoretical collapse curves does not affect ultimate load predictions

for the double span beams.
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9.3.3 The Double Span Beams

Two theories have been presented for the evaluation of double span beam load-
deflection behaviour, the results from both of these methods have been presented in
chapter 7 for the double spanning beams tested. From the comparison of the results, it
is immediately obvious that both methods are suitable for the double span beams
tested on the Tinius Olsen machine, see figures 7.2.5 to 7.2.8, where the loads were
applied by means of loading cleats. However, for the more practical specimens tested
in the vacuum box, see figures 7.3.9 to 7.3.12 and 7.4.9 to 7.4.12, where the span
lengths were much longer and uniformly distributed loads were applied, the first
method (introduced in chapter 2) based purely on the energy method, proved to be
inferior to the more generally applicable method (introduced in chapter 3) of using
two stages of elastic beam solutions with the energy method to construct the entire
range of loading behaviour in multi-spanning beams. The reasons for this relates to
the way in which the elastic deflections were accounted for in the theories. Since the
elastic deflections in the first method (energy approach) were estimated from the
single span loading line, the span length for the double span beams has to be similar to
the span length of the single span beam from which the collapse characteristics are
taken for the double span analysis. For the specimens tested in the vacuum box, the
spans of the double spanning beams were much longer than the sample beams tested
in single span configuration, the second method which considered the initial stages of
the loading of those beams by means of elastic beam solutions could therefore predict
the larger elastic deflections which were found in the experiments more closely. The

second theory is therefore recommended for general use.

In all cases, the current theory predicted the ultimate loads of the double span beams
examined reasonably accurately. The theoretical maximum loads based on the

BS 5950 : Part 5 recommendations always underestimated the experimental ultimate
loads, this is to be expected since these solutions did not account for the effects of

plastic moment redistribution.
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For the lipped channel beams tested in the vacuum box, it may be realised that the
experimental loads were a little higher than the theoretical estimates in some cases,
figures 7.3.9 to 7.3.12, this was thought to be due to the use of 38 mm thick
(clipboard) floorboards to cover the floor beams during the tests. As these boards
were screwed onto the beams, they would have possibly strengthened the beams
against bending, especially at the region of the central supports where the beam
bending deformations during collapse were large. This would account for the

discrepancies between the theoretical and experimental results for these beams.

For the double span zed sections tested, two of the tests were conducted with the
system set up for up-lift experiments in which the roof sheeting were fitted onto the
tension flange (between supports). In view of the beam cross-section and the fact that
the compression flanges were not prevented from sideway movements by the roof
sheeting, as in the download tests, sideway deflections developed as local buckling set
in causing the beams to twist. This explains the difference in the shape of the
theoretical and experimental load-deflection plots presented in chapter 7, figures
7.4.11 and 7.4.12, however, the theoretical ultimate load predictions were very close

to the experimental ultimate loads.
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9.3.4 Alternative Failure Mode in the Lipped Channels

The high proportion of the flange width to web depth ratio for the fabricated lipped
channels caused a set of 0.775 mm thick single span beams and most of the double
span specimens tested in the Tinius Olsen to fail wi£h extreme amounts of flange
curling which did not allow regular plastic mechanisms such as those described in this
thesis to form. The beams were deemed to fail in a mode which is quite different from
that found in the other beams examined in the current study. No attempt was made to
analyse these beams theoretically since these were not typical of the practical sections
which are likely to be used in practice. As mentioned in section 9.2.1, the flanges of
these beams violated the maximum width provisions of BS 5950 : Part § and as such

could only be considered to be of secondary importance in the current study.

On examination of the presented double span lipped channel results which were
deemed to have failed by the alternative mode, it can be observed that the shapes of
the load-deflection behaviour are rather different from the other beams examined, see
figures 7.3.5 to 7.3.8. The elastic deformations on these plots are much greater before
the ultimate loads are reached, the elasto-plastic regions stretches over a larger span
of beam deflections and the drop off in load following the ultimate load point is much

more gradual. These characteristics seem to accompany this mode of beam failure.
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9.4 EFFECTS OF STRAIN HARDENING IN COLD FORMED
SECTIONS

A number of researchers have uncovered evidence that the cold forming processes
employed in the fabrication of thin-walled sections have the effect of work hardening
the steel so that the strength of the material in the formed corners is increased. The
research on this topic is still far from completion, in the author's opinion, there is
much to be learnt in the behaviour of the cold formed section and how the valuable
additional strength can be effectively accounted for in design. This section of the
thesis discusses the observations and findings brought into focus by the author's

experimental investigations into this topic.

From observing tests on stub columns, Karren and Winter [24] realised that the flat
regions of the columns, having a lower yield point, started to buckle locally at an
average cross-sectional stress at or slightly above their own lower yield point thus
preventing the higher yield strength of the corners to be fully effective. This casts
some doubt on the use of the full effect of the work hardened corner strength in the
elastic analysis of locally buckled structures. As such, no attempt was made at this
stage to incorporate cold forming effects in the analysis of the thin-walled beams

examined in this thesis.
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9.4.1 Corner Tensile Experiments

In an attempt to discover the relationship between the corner radius to thickness ratio
and the increase in strength imparted in the corner material of cold formed sections,
mild steel plates were formed into test specimens containing 90” and 45° bends for
tensile and hardness testing. From the results of the experiments, it was noticed that
the 2.75 mm and 3 mm thick specimens, especially those with tight corners, displayed
relatively lower increases in corner strength compared to the thinner specimens. On
examining the load-deformation data collected during the fabrication of the second
series of corner tensile test specimens, it was realised that those 2.75 mm and 3 mm
specimens had been subjected to bending loads beyond the ultimate loading capacities
to various degrees. It was therefore concluded that those pieces had been 'over-bent'
and portions of the cross-section must have sustained irrecoverable damage during the
cold forming process. Assuming a simple strain situation depicted by figure 8.4.2, the

outer fibres of the corner section would theoretically sustain damage when

9 < Eqn.(9.4.1)

Z'Eull

where 9 is the mean corner radius to thickness ratio
and &, is the strain at which the ultimate tensile stress occurs.

For a material that attains ultimate tensile stress at 13% strain, damage according to
this simple model is theoretically possible when the mean radius to thickness falls
below 3.33, which is not rare in commercial sections. The actual ratio of course
depends on the ductility of the material used for the section and the actual strain
model is more complex, but this exercise demonstrates the possibility of causing

damage to the corner material by over-bending.
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From the corner tensile experimental results, there is evidence to show that reducing
the corner radius to thickness ratio (within the ranges of between approximately 1.8
to 3) does not have a great net effect on the overall average strength of the corner
specimens. Although the maximum strength and the average corner strength for tight
corners are higher, the corner cross-sectional area in which the elevated strength is
present is relatively smaller for the tighter corners and hence the overall effect for the

entire section is not improved by much.

The maximum increase in the yield strength of the corner material found in the corner
tensile specimens is approximately 150% over the virgin yield strength. Comparing
the experimentally derived increase in yield strength to the theoretical predictions
based on the formulations by Karren [23] and Lind and Schroff [30], both the theories
tend to underestimate the increase in yield for all the specimens which were deemed
to be undamaged during the cold forming process (all except the 2.75 mm and 3 mm
thick specimens). There is therefore more potential in corner strength than the

theories predict.

During the tensile testing of the corner specimens, it was discovered that the
stress-strain behaviour of the cross-sections with cold formed corners could be quite
different from that of the virgin material from which the corner specimens were made.
The stress-strain plots for the corner specimens, see figures 8.2.1.10to 8.2.1.15 and
8.2.2.7 to 8.2.2.10, generally exhibited relatively more gradual transition from linear
elastic to stabilised plastic behaviour. With the larger region of elasto-plastic material
behaviour, the technique of taking the stress that occurs at 0.2% plastic strain as the
estimated yield point for flat tensile test specimens is not suitable for the specimens
containing corners. Higher values of permanent set were used to assess the relative
increase in the average overall yield strength of the corner specimens, these were
chosen so that the stresses were measured at stabilised regions of plastic behaviour

whereby the stresses were approximately linearly proportional to the plastic strains.
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During the tensile straining of the corner test specimens, it was observed that the
sections tended to bend with the free edges experiencing larger tensile strains than the
corner regions, this was accompanied by some 'flattening out' at mid-length of the
angled sections, these behaviours are demonstrated in figure 9.4.1. These effects were
more obvious in the first series of corner tensile experiments due to the bearing
problems in the bolted connections that secured the ends of the specimens. The
clamping technique used in the second series of corner tensile experiments worked
well and effectively applied tensile stresses relatively uniformly distributed over the
test cross-section, see figure 9.4.2, the bending and flattening effects could therefore
be attributed to the natural mechanical behaviour of the test sections. Considering the
fact that the corner specimens consisted of flat elements which behaved like the virgin
material and corner elements which had a higher yield point and relatively lower
ductility, the tensile stresses and strains carried by the two types of elements would be
different during the tension tests. The corner specimens could therefore be thought of
as a composite of two metals and as the tensile stresses were applied, the flat elements
exhibited a higher level of axial strain in order to sustain a stress level equivalent to
that carried by the stiffer corner elements. In addition to this, the corner elements have
a strength distribution such that the centre of the bends had the highest strength, the
strength reduced towards the flat elements and this elevated strength due to cold
forming reducing to that of the virgin material 2 mm to 3 mm into the flat element.
Hence, as the tension test progressed, the free edge of the flat elements eventually
yielded first at the virgin yield stress, the yielding then spread towards the corners
until ultimate failure. This would explain the bending and flattening effects in the
cross-section since the free edges experienced higher strains than the corners. The
progressive yielding which starts at the free edges working it way towards the corner
produces the gradual transition from linear elastic to stabilised plastic behaviour which

was observed in the stress-strain plots.
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9.4.2 Corner Hardness Experiments

The increase in yield and ultimate strength of the cold formed corners were assessed
by comparing the Vickers' hardness measurements in the corner region of the
specimens with that taken at a remote point where the material could be assumed to
behave like the virgin material. Generally, the average increases in strength of the
corners found in these experiments were smaller than those found in the tensile

experiments, with a maximum average corner yield strength of 163% of the virgin

yield point.

The distribution of strength over the cold formed corner specimens were established,
yield and ultimate strength peaked at the 'toe’ of the corners (mid way through the arc
of the bends) with values of yield up to 1.8 times the virgin. The elevated strength
levels reduced towards the flat elements until approximately 2 mm to 3 mm into the
flats where the strengths were equivalent to the virgin strengths. Measurements were
taken 10 mm into the flat elements, and the average yield strength over this 10 mm

length of flats was found to be approximately 5% over the virgin yield stress.

In the other direction of the cross-section, higher strengths were found in the outer
fibres of the thickness where the plastic strains experienced during the cold forming

process were relatively larger than those at the core.

From these findings, it can therefore be confirmed that plastic bending effects does
not occur evenly over the arc length of the corners, maximum strains are experienced
at the centre of the bends, at the outer fibres, and the effects diminish towards the flat
elements. It would not be unreasonable to assume that work hardening only affected

the immediate vicinity of the corners over the arc of the bend.
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Although the evidence suggests that there is a definite relationship between the
hardness and the yield / ultimate strength of the material, the results evaluated using
the formulations of Tabor [71] did not compare very well with those from the tensile
experiments. Nevertheless, the experiments conducted using this technique

successfully established the relatively detailed distribution of work hardening effects

on the material in the cold formed corners.
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9.5 CONCLUSIONS

Theoretical and experimental investigations on the behaviour of some thin-walled
beams, which focused on the ultimate carrying capacity and collapse behaviour, have
been presented. The subject of the effects of plastic moment redistribution on the
behaviour of indeterminate beams have also been examined as part of the beam
studies. Experimental work relating to the effects of strain hardening on the strength
of thin-walled sections with cold formed corners was performed and the findings have

been detailed in this thesis. This section summarises the conclusions that can be drawn

from the studies in the following paragraphs :

The method of combining an elastic analysis with a plastic mechanism analysis to
estimate ultimate load carrying capacity and to describe the behaviour before and after
the ultimate load of beams composed of thin plates which buckle locally has been
proven to be able to provide good approximations through relatively simple analysis.
The initial yielding which usually occurs at the surface of locally formed buckles is
followed shortly after by through thickness yielding which leads to the formation of
the yield lines which make up plastic mechanisms. The initiation and growth of
plasticity in the thin-walled beam, which invalidates the elastic theory, occurs within a
relatively short elasto-plastic region. The theoretical collapse curves from plastic
mechanism analysis therefore intersects the elastic loading lines within a narrow
transition region in which neither of the theories are governing and with care, rather

good ultimate load predictions are possible.

The plain channel mechanism presented in chapter 3 has proven to be a rather
versatile theoretical model, the pattern of yield lines in the flanges and web of this
idealised plastic mechanism works well in the simulation of the consistently observed

pattern of yield lines found in the plain channel beam experiments. With minor
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modifications, this theoretical mechanism can be used to model collapse in lipped

channels and lipped zed sections, with reasonable accuracy, as demonstrated by the

models presented in chapters 4 and 5.

The general approach described in the previous two paragraphs is suitable for sections
which do not have excessively wide flanges. When the width of the flanges
approaches or exceeds 60 times the thickness of the section, the failure mode which
accompanies the collapse of the beam section is rather unpredictable, and may include
relatively large amounts of flange curling with unsymmetrical patterns of yield lines.
Within the range of flange widths examined in this study, the theoretical predictions of

beam behaviour are generally most accurate for sections with flanges of width less

than 40 times the material thickness.

The consideration of axial compression, hinge inclination to the cross-sectional
bending axis and strain hardening strength in plastic moment capacity, in the energy
dissipation in the yield lines of plastic mechanisms seem to have worked well with the
postulated theoretical mechanisms presented in this thesis. The results generated by
the current theoretical models are generally in good agreement with the experimental
findings. In comparison with the recommendations of BS 5950 : Part S, the code is
only more accurate for extremely slender sections, while it underestimates moment
capacities of the more practically proportioned cross-sections (used by cold formed
steel manufacturers). The code also does not provide for plasticity in indeterminate
beams except for compact sections and can hence severely underestimate ultimate

loads in multi-span beams which buckle locally.

The experiments on double spanning beams have revealed that the effects of plastic
moment redistribution can contribute substantially to further load carrying capacity
after the first collapse mechanisms have developed along the beams. Simple design

methods which do not take such moment redistribution into account could severely
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underestimate the ultimate beam loads. Although the full ultimate load capacity of
such beams is not likely to be used in design since the beam deflections may become
quite large after the initiation of failure, the additional capacity may go into reducing

the safety factor of such beams in some applications.

The theoretical method of using two stages of elastic beam analysis along with a final
collapse stage based on the energy approach, first introduced in section 3.5.4 of this
thesis, has proven to be give good approximations of multi-spanning beam behaviour.
For beams with relatively short spans for which the collapse behaviour of a single
failure point in a beam of similar span is known, the simpler method based purely on
energy considerations, introduced in section 2.5, can also provide good multi-span

load predictions.

There is enough evidence from this study to suggest that with further refinements to
the analytical techniques presented in this thesis, this method of beam analysis could

become a very powerful tool for the designers of thin-walled beams.

The study on the effects of strain hardening on cold formed sections described in this
thesis have not reached a theoretical conclusion, however, the experimental findings
have shown that the theories by Karren [23] and Lind and Schroff [30] (which was
adopted by BS 5950 : Part 5 : 1987) tends to underestimate the increases in the yield
strength of the corner material. The distribution of the increased strength derived from

strain hardening effects over the cross-section of the cold formed corner has been

determined.

\O¥]
—
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9.6 SUGGESTIONS FOR FUTURE RESEARCH

The study of the elasto-plastic behaviour of thin-walled beams is by no means
complete, however, the author hopes that the work presented in this thesis will add to
the useful knowledge on the subject and perhaps inspire others to carry out further
research in order to gain greater understanding of the elasto-plastic and collapse
behaviour of thin-walled structures which are prone to local buckling. Such
knowledge would enable reliable plastic design procedures to be developed for this
class of structures which has much potential. The following paragraphs list the aspects
of the work that have not been covered by the current study, in which the author feels

further research may be needed.

In the current work on the behaviour of locally buckled beams, much attention was
focused onto the theoretical derivation of the plastic collapse curve, however, the
approximation of the ultimate beam loads using the current analysis method depends
also on the elastic solution. It may therefore be appropriate to improve the elastic
analyses of the problems, the presented theory only accounts for the local elastic
buckling effects through the use of the effective width approach, it may be
advantageous to extend the elastic analysis to include the eftects of flange curling and
perhaps twisting of the elastic beams for the lipped sections, particularly for the zed
section beams which tend to exhibit these behaviours. It is the opinion of the author
that these effects would reduce the elastic bending stiffness of the beams which may

improve the accuracy of the ultimate load predictions.

The beam tests conducted in the Tinius Olsen test machine for the current study did
not anticipate the importance of the small amounts of beam movement due to the

effects of bolt bearing problems and perhaps support deformation at the ends of the

beams, although these effects does not affect the theoretical predictions of beam
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behaviour, they contributed to the deflections which were measured at the load
points and made the experimental results appear to be further from the theoretical
plots than they should, it may be worthy to refer to Eurocode 3 (Draft). [85] before
conducting similar beam experiments. This document recommends the measuring

of the end deflections of the beam so that they may be eliminated in subsequent

presentation of the experimental results.

The work presented on the effects of strain hardening on the strength of sections
containing cold formed corners only covers the preliminary experimental findings
on this topic and there is much work to be done before the additional material
strength can be effectively utilised in the design of cold formed sections. As the
increase in the average strength in the corners could be as high as 250% of the
virgin yield stress, a reliable theory that could accurately predict such increases
could prove to be extremely useful towards economical designs of cold formed
steels. However, it should be cautioned that the theory would need to consider the
interactions between the elements which behave as the virgin material and the
strain hardened corner elements and the full effect of the increased corner strength
may not be usable in practical load carrying members. The use of the finite
element approach may be considered for this problem but the analysis would
require the development of perhaps a subroutine within the solution procedure
which would take into account the cold work that have been applied in forming the
corners and it's effects on the subsequent yielding of the strain hardened corner

material in a direction perpendicular to the initial strains applied during the cold

forming process.

The current study on thin-walled beams has only considered plain channels, lipped
channels and zed sections, it may be useful to attempt similar analysis on beams of
other cross-sections. Some work on box sections have been performed by the

author and it was found that the plastic mechanism developed by Kecman [25] for
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the collapse of square section tubes compares well with the typical pattern of yield

lines found in the collapse of rectangular and trapezoidal box section beams.

The work presented in this thesis have been focused on the static loading of
thin-walled beams, with some refinements, the postulated plastic mechanisms

could be applied to similar beams under dynamic loading situations.

The author would like to conclude this chapter by expressing a sincere hope that

the work presented in this thesis will contribute to the useful knowledge of the

behaviour of thin-walled structures.
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Appendix I
LOCAL BUCKLING COEFFICIENT

According to BS 5950 : Part 5 : 1987

Appendix II
BASIC PROGRAMS

Appendix ITI
MAXIMUM BENDING MOMENT CAPACITY

According to BS 5950 : Part 5 : 1987
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LOCAL BUCKLING COEFFICIENT
According to BS 5950 : Part 5 : 1987
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Appendix I : Local Buckling Coefficient

The following local buckling coefficient expressions are extracted from Appendix B

of the British Standard 5950 : Part S : 1987, and are applicable to the compression

elements of beams.

A)

B)

&)

Stiffened Elements connected to webs on both sides

K=~T7-73=-0.0914° Eqn.(AL1)

0.

where h= i—f (See figure Al.1 for B, and B.)

Stiffened Elements connected to a web on one edge and a lip on
the other

K=~5.4-22-0021° Eqn.(Al2)
where h= g—f (See figure ALl for B, and B,)

Unstiffened Elements
K~128-32-0.0025h Eqn.(AL3)

where h = g% (See figure AI2 for B, and B.)
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Appendix I

BASIC PROGRAMS

PC8.bas 333
Collapse curve for Plain Channel Cleat Mechanisms

ELASTICS bas 340
Elastic loading line for Plain Channel beams

DSB3.bas 342

Double Span beam analysis
based purely on the energy approach

MSBPC .bas 345

Double Span beam analysis for Plain Channels
based on two stages of elastic beam solutions and
the energy approach

LC8.bas 350
Collapse curve for Lipped Channel Cleat Mechanisms

ELASTICS.bas 358
Elastic loading line for Lipped Channel beams

MSBLC.bas 361

Double Span beam analysis for Lipped Channels
based on two stages of elastic beam solutions and
the energy approach

Z1 bas 366

Collapse curve for Zed section Mechanisms along the
span of beams subjected to Uniformly Distributed Loads

MSBZ2 bas 373

Double Span analysis for Zed section beams subjected to
Uniformly Distributed Loads based on two stages of elastic
beam solutions and the energy approach
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Appendix 1T : BASIC Programs : PC8.bas

PC8.bas

This program calculates the data points for the collapse curve of Plain Channel
beams using the PC8 plastic mechanism.

DECLARE SUB ACOS (value AS DOUBLE, angle AS DOUBLE)
DECLARE SUB ASIN (value AS DOUBLE, angle AS DOUBLE)
DECLARE SUB ATE (c#, d#, amax#, mu#, af#, adiffin#)

DIM pt(5), diff(5)

DEFDBL A-Z

10 CLS

ON ERROR GOTO 199

INPUT "YIELD STRESS OF BEAM MAT'L (N/mm~2) ".ys
INPUT "ULTIMATE STRESS OF BEAM MAT'L (N/mm”2) "; us
INPUT "THICKNESS OF CHANNEL MAT'L (mm) "y
INPUT "FLANGE WIDTH (mm)(centre-line dim) " b
INPUT "CHANNEL DEPTH (mm)(centre-line dim) " d
INPUT "MECHANISM SIZE ¢ (mm) " e

" *mu BEING THE ANGLE OF BEND OF THE BUCKLED BEAI\I *

INPUT "LAST POINT FOR nu in (deg) " mul
mul =mul /180 * 3.141593
INPUT "INTERVAL FOR MU in (deg) " muintv

muintv = muintv / 180 * 3.141593

INPUT "DISTANCE BETWEEN HORIZONTAL BOLTS " Ib
INPUT "DISTANCE BETWEEN TOP AND TOP BOLTS "; amax
INPUT "RADIUS-to-THICKNESS RATIO FOR HINGES "; brtr
INPUT "SPAN LENGTH in (mm) " sl
INPUT "FILENAME FOR THE DATA POINTS " file$
file$ = "a:" + file$ + ".DAT"

OPEN file$ FOR OUTPUT AS #1

PRINT #1, "SECTION DETAILS"

PRINT #1, "

PRINT #1, "YIELD STRESS OF BEAM MAT'L (N/mm~2) " ys

PRINT #1, "ULTIMATE STRESS OF BEAM MAT'L (N/mm"2) :"; us

PRINT #1, "THICKNESS OF CHANNEL MAT'L (mm) "t

PRINT #1, "FLANGE WIDTH (mm) b

PRINT #1, "CHANNEL WEB DEPTH (mm) o d

PRINT #1, "MECHANISM SIZE ¢ (mm) e

PRINT #1, "INTERVALS FOR mu (deg) " muintv /3.141593 * 180

PRINT #1, "DISTANCE BETWEEN HORIZONTAL BOLTS " Ib
PRINT #1, "DISTANCE BETWEEN TOP AND TOP BOLTS :": amax
PRINT #1, "RADIUS-to-THICKNESS RATIO - brtr
PRINT #1, "SPAN LENGTH (mm) g
PRINT #1," "

A9y
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Appendix II : BASIC Programs : PC8.bas

PRINT #1, " Angle Moment Cap. Load Defln Dift
PRINT #1, "mu(deg) (Nmm) (kN) (mm) (Nmmrad)
PRINT #1, "oremesees cemsemmmsmmemmes coscen cocoooon comcococoooo

REM ke ok s o ok 3k ok ok ok o ok kK ok e ok ik ok 0k ok ok ok ok oK sk ok o

REM * Calculation of the data points *
REM **********************************

'The ultimate moment -
mult=ys*t*((b*d)+(d’\2)/4)

'The rolling radius :-
rr=brtr *t

'Calculation of the mpsh (Considering strain hardening)
mp=ys*(t"2)/4

ssh = us
mpsh = mp + (ssh - ys) *(tn2)/6
mp = mpsh

FOR mu = (muintv + (.001 / 180 * 3.141593)) TO mul STEP muintv

mul = mu - muintv
mu2 = mu + muintv

CALL ATE(c, d, amax, mu, a, adiffin)
CALL ATE(c, d, amax, mul, al, adiffinl)
CALL ATE(c, d, amax, mu2, a2, adiffin2)

' Check for lock-up condition

teta2 = ATN((a/ d))

mulu = ATN((c / (d * COS(teta2))))

IF (mu = mulu) OR (mu > mulu) THEN
PRINT "LOCK UP CONDITION 2"

PRINT #1, "LOCK UP CONDITION 2 at mu = "; mu/3.141593 * 180

GOTO 201
END IF
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REM* MARGIN HALVING IS USED TO FIND THE m DATA POINTS.*

pt(1) =1
pt(5) = mult
pt(3) = ((pt(5) - pt(1)) / 2) + pt(1)
count =1
20 count = count + 1
pt(4) = ((pt(5) - pt(3)) / 2) + pt(3)
pt(2) = ((pt(3) - pt(1)) / 2) + pt(1)

FORI=1TOS5
[ =INT(I)
m = pt(l)

'START OF ENERGY EQUATION

' Left hand side expression
ths = 4 * m * muintv

' Right hand side of the work equation

'When a = amax, lock-up also occurs
IF (a2 > amax) THEN GOTO 200
teta2l = ATN((al / d))
teta22 = ATN((a2 / d))

'Right side first expression

hml=2*mp*(l-(m/mult)*2)*b

f3 = ¢ * SIN(mul) + d * COS(mul) * COS(teta2l) - d +al * (1 + SIN(teta21))
CALL ASIN((f3 / c), f4)

etall = ATN(((TAN((f4 - mul))) / COS(teta2l)))

£5 = ¢ * SIN(mu2) + d * COS(mu2) * COS(teta22) - d + a2 * (1 + SIN(teta22))
CALL ASIN((f5 / ¢), f6)

etal2 = ATN(((TAN((f6 - mu2))) / COS(teta22)))

rhsl =hml * etal2 - hml * etall

'Right side second expression
hm2=2*mp*(1-(m/mult)*2)*(b+a)
eta2] = ATN(((TAN(f4)) / COS(teta21)))
eta22 = ATN(((TAN(f6)) / COS(teta22)))
rhs2 = hm2 * eta22 - hm2 * eta2l
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'Right side third expression
rhs3 = hml * mu2 - hml * mul

'Right side forth expression

hmd =2 *mp * (1 -(m/mult)*2) *(d - a)

£7=(d - al)/ (SIN(mul) + (d * COS(mul) * COS(teta2l))/ c)

f8 =f7 * d * COS(teta2l)/c

tetadl = ATN((f8 * al / (d * (f7 * COS(mul) - f8 * SIN(mul)))))
f9 = (d - a2) / (SIN(mu2) + (d * COS(mu2) * COS(teta22)) / c)

£10 =9 * d * COS(teta22) /¢

tetad2 = ATN((f10 * a2/ (d * (9 * COS(mu2) - f10 * SIN(mu2)))))
rhs4 = hm4 * tetad2 - hm4 * tetad1

'Right side fifth expression

zeta2 = ATN((c/ d))

f11 =SQR((c "2 +d " 2))

hmS =2 * mp * (1 - (m/ mult) * 2) / (SQR(1 - 75 % ((m/ mult) ~2) *
((SIN(zeta2)) ~ 2) * (4 - 3 * ((SIN(zeta2)) "~ 2)))) * fl1

£12 = (al / ¢) * COS(zeta2)

CALL ASIN(f12, tetaS1)

f13 = (a2 / ¢) * COS(zeta2)

CALL ASIN(f13, teta52)

rhsS = hmS * teta52 - hmS * tetaS]

'Right side sixth expression

hm6 =mp * Ib * (1 - (m/ mult) * 2) / (SQR((1 - .75 * ((m / mult) ~ 2))))
etabl =2 *al /rr+ teta2l

etab2 =2 * a2 / rr + teta22

rhs6 = hm6 * eta62 - hm6 * eta6l

'Right side seventh expression

hm7 =2 *mp * (1 - (m/ mult) ~2) / (SQR((1 - .75 * ((m/ mult) * 2))))
eta7ll =c*al/rr

eta72=c*a2/rr

rhs7 = hm7 * eta72 - hm7 * eta7l

'Right side First membrane strain expression

meml1=ys*b*c*t* (SQR((1 +((b~2)/ (c"2)) * (SIN(teta21)  2))) - 1)
meml2=ys *b*c* t * (SQR((1 +((b"2)/ (c " 2)) * (SIN(teta22) *2))) - 1)
rhs8 = mem12 - meml1]

rhs = rhs1 + rhs2 + rhs3 + rhs4 + rhs5 + rhs6 + rhs7 + rhs8
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'END OF ENERGY EQUATION

diff{(I) = rhs - lhs
difi{I) = ABS(diff(I))
NEXT I
IF diff{3) <.0000001 OR count = 500 THEN
m = pt(3)
GOTO 100
END IF
IF diff(2) < diff{4) THEN
pi(3) = pt(3)
pt(3) = pi(2)
ELSE
pt(1) = pt(3)
pt(3) = pt(4)
END IF

GOTO 20

100
PRINT "BINGO !"

'"TO CONVERT MOMENT-ANGLE DATA TO MID SPAN LOAD-DEFL
load = (4 * m/sl) / 1000 ECTION
defin = sl /2 * SIN(mu)

PRINT TAB(2); : PRINT USING "## ####"; (mu * 180 / 3.141593):
PRINT TAB(11); : PRINT USING "#é##titt# ##"; m; '

PRINT TAB(25). : PRINT USING "### #sbsssss™: diff(3);

PRINT TAB(40). : PRINT USING "### ##tsts": adiffin

PRINT #1, TAB(1); : PRINT #1, USING "## ######4#", (mu * 180/ 3.141593);
PRINT #1. TAB(12): : PRINT #1, USING "###t##h 44", m; '
PRINT #1. TAB(28). : PRINT #1, USING "### ####"; load;

PRINT #1. TAB(38); : PRINT #1, USING "### ###4": defln;

PRINT #1. TAB(50). : PRINT #1, USING "### ###ititst"; diff(3):

PRINT #1. TAB(70). - PRINT #1, USING "### st ttthtt", adiffin

NEXT mu

CLOSE #1
GOTO 201
199 PRINT "ERROR IN FILE OR PROGRAM"

GOTO 300
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200 PRINT "MECHANISM LOCKED UP (CONDITION 1) ! "
PRINT #!. "MECHANISM LOCK UP CONDITION | AT MU=", mu2/
3.141593 * 180
201 PRINT "FINISHED "
202 INPUT "TRY AGAIN "; resp$
IF resp$ = "Y" OR resp$ = "y" THEN GOTO 10
PRINT "PROGRAM TERMINATED"

300 END

SUB ACOS (value AS DOUBLE, angle AS DOUBLE)
x = value

angle = ATN((-x) / SQR((-x) * x + 1)) + 1.5708

END SUB

SUB ASIN (value AS DOUBLE, angle AS DOUBLE)
x = value

angle = ATN(x/ SQR((-x) * x + 1))

END SUB

SUB ATE (¢, d, amax, mu, af, adiffin)
DIM q(5), adif{5)
"Trial and Error routine for finding a2
REM* MARGIN HALVING IS USED TO FIND THE a2 DATA POINTS.*
q(1) =.000001
q(5) =amax + 1
q(3) = (a(5) - a(1)) /2) + q(1)
qcount = 1
12 qcount = qcount + 1
q(4) = ((a(5) - a(3)) / 2) + a(3)
q(2) = ((aB3) - (1)) / 2) +q(1)

FORJ=1TO5
J = INT(J))
a=q()

Isl =d * COS(mu) * COS((ATN((a/ d))))

fs2=a* (1 + SIN((ATN((a/d)))))

f14 = (¢ * COS(mu) - d * SIN(mu) * COS((ATN((a/d)))) /¢
CALL ACOS(f14, f15)

Is3 = ¢ * SIN(f15)

rs=d - ¢ * SIN(mu)

adif(J) = ABS((Is1 + Is2 - Is3 - rs))
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NEXT J
IF adif(3) < .0000001 OR qcount = 1000 THEN
af = q(3)
adiffin = adif(3)
GOTO 14
END IF
IF adif(2) < adif(4) THEN
q(5) =a(3)
q(3) =a(2)
ELSE
q(1) =q(3)
q(3)=q4)
END IF

GOTO 12

14

PRINT "MAGIC !"
END SUB
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ELASTICS.bas

This program calculates the elastic loading line for Plain Channel beams.

DEFDBL A-Z
10 CLS

ON ERROR GOTO 200

INPUT "MAT'L YIELD STRESS (N/mm*2) "y
INPUT "THICKNESS OF THE BEAM MATL (N/mm~2) "; t
INPUT "FLANGE WIDTH (mm) " b
INPUT "WED DEPTH (mm) "
INPUT "FULL SPAN LENGTH (mm) "
INPUT "FILENAME FOR DATA + FILES

FILE$ = "a:" + FILES$ + ".dat"
OPEN FILES FOR OUTPUT AS #1
PRINT #1, "MAT'L YIELD STRESS (N/mm"2) :"; ys

PRINT #1, "MAT'L THICKNESS (mm) Mt
PRINT #1, "FLANGE WIDTH (mm) b
PRINT #1, "WEB DEPTH (mm) M d

PRINT #1, "SPAN (mm) ey
PRINT #1, "DEFLECTN(mm) LOAD(KN)"
1) A PR — "

young = 207000
pratio = .3

' Convert to centre line dimension
d=d-t
b=b-(t/2)

q=d/b
k=128-((8*q)/(2+q)-.0025*(q"2)

IF k < 425 THEN k = .425

Per=k * ((t/b) ~2) * (3.141593 ~ 2) * young / (12 * (1 - (pratio * 2)))

IF (ys < Pcr) THEN
PRINT "THIS BEAM DOES NOT BUCKLE ELASTICALLY "
GOTO 201

END IF
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FOR avstr =0 TO ys STEP 2

IF (avstr < Pcr) THEN
' No Buckling
h=d/2
beu=b

ELSE

* Elastic Buckling
beff=b * (1 + 14 * (((avstr / Pcr) ~.5) - .35) ~4) ~ (-.2)
beu= .89 * beff+.11 *b
h=(((d"2)/2)+(d *b))/(beu+d+b)

END IF

I1=beu*(t"3)/12+beu*t* (h"2)
2=t*t"3)/12+t*(h"3)/4
B=t*(d-h)"3)/12+(d-h)*t*(d-h)~2)/4
[4=b*(t"3)/12+b*t*((d-h)"2)
Ixx=11+12+13 +14

f1 = avstr * beu * t
f2=avstr/2*h*t
f3=avstr*((d-h)"2)*t/(2*h)
fa=avstr*(d-h)y*b*t

m=fl*h+f2*2*h/3+53*2/3*(d-h)y+f4*(d-h)
load=4*m/l
defln = load * (1~ 3) / (48 * young * Ixx)

PRINT TAB(2); : PRINT USING "##.####"; defln;
PRINT TAB(12); : PRINT USING "### ####"; (load / 1000)
PRINT #1, TAB(2); : PRINT #1, USING "## ####"; defln;

PRINT #1, TAB(12); : PRINT #1, USING "### ###4", (load / 1000)

NEXT avstr

CLOSE #1

GOTO 201
200 PRINT "ERROR IN PROGRAM OR FILENAME"

GOTO 300
201 PRINT "FINISHED"

300 END
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DSB3.bas

This program was designed to calculate load-deflection data for double span
beams from single beam moment-mu data (based purely on the energy

approach).

DECLARE SUB asin (value, angle)

DECLARE SUB intp (file$, mu, m)

2 CLS

ON ERROR GOTO 30

INPUT "Input single span Moment-mu data filename (Forget a: & .dat) "; f$
INPUT "New data filename for the load-deflection data (Forget a: & .dat)"; newf$
file$ = "a:" + f§ + ".dat"

newf$ = "a:" + newf$ + ".dat"

OPEN newf$ FOR QOUTPUT AS #2

INPUT "Enter Span length L1 (mm) [Central sup to load pt] ", 11
INPUT "Enter Span length (mm) " gl
2=sl-11

PRINT "Analysing "; file$; "AND STORING IN "; newf$

PRINT #2, "Double Span load-deflection (kN-mm) constructed from "; f$
FOR defln=0TO 70 STEP .1
vmul =defln/ 11

CALL asin(vmul, mul)
mul =mul /3.14159 * 180

vmu2 = defln/ 12
CALL asin(vmu2, mu2)
mu2 =mu2/3.14159 * 180

mu3 =(mul + mu2)/2

CALL intp(file$, mul, m1)
CALL intp(file$, mu3, m2)

f1 =11 * (SQR((1 - ((defln ~2) / (11 ~ 2)))))
£2 =12 * (SQR((1 - ((defln ~2) / (12 ~ 2)))))
p=((ml/fl)+ m2*((1/f1)+(1/1£2))))/ 1000
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PRINT TAB(2); : PRINT USING "### ###"; defln;
PRINT TAB(12); : PRINT USING "####iti ###54" p;
PRINT TAB(29); : PRINT USING "## ##": mul:

PRINT TAB(36); : PRINT USING "## ##": mu3;

PRINT TAB(43); : PRINT USING "####i#i### #": m1:
PRINT TAB(55); : PRINT USING "#####i### #": m2

PRINT #2, TAB(2); : PRINT #2, USING "### ##4": defln:
PRINT #2, TAB(12); : PRINT #2, USING "####### sttt o
PRINT #2, TAB(29); : PRINT #2, USING "## ##". mul;

PRINT #2, TAB(36); : PRINT #2, USING "## ##": mu3;

PRINT #2, TAB(43); : PRINT #2, USING "######44 #": m1:
PRINT #2, TAB(55); : PRINT #2, USING "######ti# #"; m2

NEXT defln

30 PRINT "Error in filename or program"
GOTO 201
200 PRINT "EOF encountered"
PRINT "CONVERTED DATA STORED IN "; g$
201 CLOSE#2
INPUT "RUN THIS PROGRAM AGAIN "; b$
IF b$ ="Y" OR b$ ="y" THEN GOTO 2

END

SUB asin (value, angle)

x = value

angle = ATN(x/ SQR((-x) * x + 1))
END SUB
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SUB intp (file$, angle, moment)
OPEN file$ FOR INPUT AS #1

INPUT #1, line$
INPUT #1, x1, y1

1000 INPUT #1, x2, y2
IF line$ = "" OR line$ = "EOF" THEN GOTO 20000

IF angle > x1 AND angle < x2 THEN GOTO 2000
IF angle = x1 THEN
moment =yl
GOTO 2500
END IF
IF angle = x2 THEN
moment = y2
GOTO 2500
END IF

x]1 =x2

yl =y2
GOTO 1000

2000 moment = (((angle - x1)/ (x2 - x1)) * (y2 - y1)) +yl

2500 CLOSE #1
GOTO 20010
20000 PRINT "Error in interpolation”
20010
END SUB
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MSBPC.bas

This program was designed to calculate load-deflection data for double span
Plain Channel beams from collapse characteristics derived from single span
beam moment-mu data (based on two stages of elastic beam solutions and the

energy approach).

DEFDBL A-Z
DECLARE SUB asin (value, angle)
DECLARE SUB intp (f$, angle, moment)

10 CLS
ON ERROR GOTO 200

INPUT "MATL YIELD STRESS (N/mm*2) " vs
INPUT "THICKNESS OF THE BEAM MATL (mm)  "; t
INPUT "FLANGE WIDTH (mm) " b
INPUT "WED DEPTH (mm) 0 d
INPUT "FULL SPAN LENGTH (mm) "ol
INPUT "LOAD POINT DISTANCE (mm) "l
INPUT "FILENAME FOR DATA " file$

file$ = "a:" + file$ + ".dat"

INPUT "FILENAME FOR THE COLLAPSE DATA ", cdfile$
cdfile$ = "a:" + cdfile$ + " dat"

OPEN file$ FOR OUTPUT AS #1

PRINT #1, "MAT'L YIELD STRESS (N/mm”2) Mys
PRINT #1, "MAT'L THICKNESS (mm) Mt
PRINT #1, "FLANGE WIDTH (mm) " b
PRINT #1, "WEB DEPTH (mm) d
PRINT #1, "SPAN (mm) sl
PRINT #1, "LOAD POINT DISTANCE N B
PRINT #1, "CONSTRUCTED FROM " cdfile$
PRINT #1, "DEFLECTN(mm) LOAD(kN)"

PRINT #1, " "

' Convert d to centre line dimension

d=d-t

b=b-(t/2)

young = 207000

OPEN cdfile$ FOR INPUT AS #2
INPUT #2, line$

INPUT #2, mum, mmax

CLOSE #2
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pratio = .3

q=d/b

k=128-((8*q)/(2+q)-.0025*(q"2)

IF k < .425 THEN k = 425

Pcr=k *((t/b)"2)*(3.141593 "~ 2) * young / (12 * (1 - (pratio " 2)))

FOR avstr =0 TO (10 * ys) STEP 1

IF (avstr < Pcr) THEN
' No Buckling
h=d/2
beu=b

ELSE

' Elastic Buckling
beff=b * (1 + 14 * (((avstr/ Pcr) ~ .5) - .35) ~ 4) ~ (-.2)
beu = .89 *beff+ .11 * b
h=(((d"2)/2)+(d*b))/(beu+d+b)

END IF

[1=beu* (t"3)/12+beu*t*(h"2)
R=t*h"3)/12+t*(h"3)/4
B=t*(d-h)~3)/12+(d-h)*t*((d-h)~2)/4
[4=b*(t"3)/12+b*t*((d-h)"2)
Ixx=11+12+13+14

f1 = avstr * beu * t
f2=avstr/2*h*t
f3=avstr*((d-h)"2)*t/(2*h)
f4=avstr*(d-h)/h*b*t

M=fl*h+f2*2*h/3+f3*2/3*(d-h)+f4*(d-h)

p=-M/((sl/2)*((3*1/s)~2)-((11/s)~3))-11)
ra=p/2*(3*((11/sl)~2)-((11/sl)”3))
c=ra*(sl"2)/6-p/6*(1173)/sl

load =p

defln=(1/(young * Ixx)) * (c * (sl -11) -ra/ 6 * ((sl - 11) * 3))
mb=M

IF (mb = mmax) OR (mb > mmax) THEN GOTO 100
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PRINT TAB(2); : PRINT USING "#### ####", defln;

PRINT TAB(16); : PRINT USING "### ####"; (load / 1000)
PRINT #1, TAB(2); : PRINT #1, USING "#### ####"; defln;
PRINT #1, TAB(16); : PRINT #1, USING "### ####"; (load / 1000)

NEXT avstr

' Mid support collapsed

100
FOR mu =0 TO .174533 STEP .000174533#

mub =mu/3.141593 * 180
CALL intp(cdfile$, mub, mb)

load = (young * Ixx * mu + mb * sl /3) / (((sl - 11) * st/ 6) - (((sl - 11) ~ 3) / (6 * s1)))

dl=mb/2*(1"2)

d2=mb* (11 ~3)/(6 *sl)

d3 =load * (sl - 11) * (11 ~3) /(6 * sl)
dd=mb*sl*I11/3

dS=1load *11/6 * (((sl - I1) *sl) - (((sl - 11) ~ 3) / sI))
defll = (d1 -d2 - d3 - d4 + d5) / (young * Ixx)

IF (mu = 0) THEN ddif = defl1
defll = defll - ddif

p = load

ra=p/2*@G*((11/sl)~2)-((11/sl)~3))
c=ra*(sl"2)/6-p/6*(11"3)/sl

defl2 =(1/(young * Ixx)) * (c * (sl -11) -ra/ 6 * ((s| - 11) "~ 3))

defln = defll + defl2

rb = (mb + load * (sl - 11)) /sl
md = (rb * 11 - mb)
IF (md = mmax) OR (md > mmax) THEN GOTO 150

PRINT TAB(2); : PRINT USING "#### ####" defln:
PRINT TAB(16); : PRINT USING "### ###4"; (load / 1000)
PRINT #1, TAB(2); : PRINT #1, USING "#### ###4": defln:
PRINT #1, TAB(16); : PRINT #1, USING "### ###4"; (load / 1000)

NEXT mu
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' Collapsed at b and d
150 dlast = defln

12=sl-11
FOR dinc=0TO 100 STEP .1

vmul =dinc/ 1
CALL asin(vmul, mul)
mul =mul /3.14159 * 180

vmu2 = dinc/ 12
CALL asin(vmu2, mu2)
mu2 =mu2/3.14159 * 180

mu3 = (mul + mu2)/2

CALL intp(cdfile$, mul, ml)
CALL intp(cdfile$, mu3, m2)

f1 =11 * (SQR((1 - ((dinc ~ 2) / (11 ~ 2)))))
2 =12 * (SQR((1 - ((dinc ~ 2) / (12 ~ 2)))))
p=((ml/f1)+(m2* ((1/f1) +(1/£2))))
load =p

ra=p/2*G*((117sh)~2)-((175])~3))
c=ra*(sl"2)/6-p/6*(11"3)/sl

de = (1/(young * Ixx)) * (c * (sl - 11) -ra/ 6 * ((sl - 11) * 3))
dec =de-dp

IF (dinc = 0) THEN dec =0

defl = dinc + dlast + dec

PRINT TAB(2), : PRINT USING "#### ####", defl,

PRINT TAB(16); : PRINT USING "### ####", (load / 1000)
PRINT #1, TAB(2); : PRINT #1, USING "#### ####", defl;

PRINT #1, TAB(16); : PRINT #1, USING "### ####"; (load / 1000)

175
dp =de
NEXT dinc
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CLOSE #1

GOTO 201

200 PRINT "ERROR IN PROGRAM OR FILENAME"
GOTO 300

201 PRINT "FINISHED"

300 END

SUB asin (value, angle)

x = value

angle = ATN(x / SQR((-x) * x + 1))
END SUB

SUB intp (f$, angle, moment)
OPEN f$ FOR INPUT AS #2
INPUT #2, line$
INPUT #2, x1, y1
x0 = x1
xl =x1 -x0
1000 INPUT #2, x2, y2
x2 =x2 -x0
IF angle > x1 AND angle < x2 THEN GOTO 2000
IF angle = x]1 THEN
moment =yl
GOTO 2500
END IF
IF angle = x2 THEN
moment = y2
GOTO 2500
END IF
x] =x2
yl =y2
GOTO 1000
2000 moment = (((angle - x1)/ (x2 - x1)) * (y2 -y1)) +yl
2500
CLOSE #2
GOTO 20010
20000 PRINT "Error in interpolation”
20010
END SUB
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LCS8.bas

This program calculates the data points for the collapse curve of Lipped
Channel beams using the LC8 plastic mechanism,

DECLARE SUB ACOS (value AS DOUBLE, angle AS DOUBLE)
DECLARE SUB ASIN (value AS DOUBLE, angle AS DOUBLE)
DECLARE SUB ATE (c#, d#, amax#, mu#, af#, adiffin#)

DIM pt(5), diff(5)

DEFDBL A-Z

10 CLS

ON ERROR GOTO 199

INPUT "YIELD STRESS OF BEAM MAT'L (N/mm~2) " ys
REM INPUT "YIELD STRAIN OF BEAM MAT'L (10%-6 st) ", sty
INPUT "ULTIMATE STRESS OF BEAM MATL (N/mm*~2) "; us

INPUT "THICKNESS OF CHANNEL MAT'L (mm) "y
INPUT "FLANGE WIDTH b
INPUT "CHANNEL DEPTH (mm) " g

Y
", ¢

INPUT "LIP SIZE (mm)
INPUT "MECHANISM SIZE ¢ (mm)

INPUT "LIP MECHANISM ANGLE, beta (deg) " beta
REM* mu BEING THE ANGLE OF BEND OF THE BUCKLED BEAM *
INPUT "LAST POINT FOR MU in (deg) " mul

mul =mul/ 180 * 3.141593

INPUT "INTERVAL FOR MU in (deg) " muintv
muintv = muintv/ 180 * 3.141593

INPUT "DISTANCE BETWEEN HORIZONTAL BOLTS - ", Ib

INPUT "DISTANCE BETWEEN TOP AND TOP BOLTS " amax
INPUT "RADIUS-to-THICKNESS RATIO FOR HINGES " brtr
INPUT "SPAN LENGTH in (mm) " gl
INPUT "FILENAME FOR THE DATA POINTS " file$
file$ = "a:" + file$ + ".DAT"

OPEN file$ FOR OUTPUT AS #1

PRINT #1, "SECTION DETAILS"

PRINT #1, " "

PRINT #1, "YIELD STRESS OF BEAM MATL (N/mm"2) " ys
REM PRINT #1, "YIELD STRAIN OF BEAM MAT'L (10-6 st) :"; sty

PRINT #1, "ULTIMATE STRESS OF BEAM MATL (N/mm~2) :": us

PRINT #1, "THICKNESS OF CHANNEL MAT'L (mm) "t
PRINT #1, "FLANGE WIDTH (mm) " b
PRINT #1, "CHANNEL WEB DEPTH (mm) - d
PRINT #1, "LIP SIZE (mm) W
PRINT #1, "MECHANISM SIZE ¢ (mm) e

PRINT #1, "LIP MECHANISM ANGLE, beta (deg) " beta

-
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PRINT #1, "INTERVALS FOR mu (deg) :"; muintv /3.141593 * 180

PRINT #1, "DISTANCE BETWEEN HORIZONTAL BOLTS ", Ib
PRINT #1, "DISTANCE BETWEEN TOP AND TOP BOLTS :"; amax

PRINT #1, "RADIUS-to-THICKNESS RATIO " brtr
PRINT #1, "SPAN LENGTH (mm) gl
PRINT #1, " "

PRINT #1, " Angle = Moment Cap. Load Defln Dift
PRINT #1, "mu(deg) (Nmm) (kN) (mm)  (Nmmrad)
PRINT #1, " emmmmmmmmmmn  mmmmmm mmmmeme cmmceeemeee

REM sk ok ke ke kel ok ok ok K 3K 3k K 3K K o oK o ok o e ok ok ok ok ok ok ok ok ok K

REM *  Calculation of the data points
REM e ok ok 3 3 ok ok ok sk 3k ok ok ok K ke sk 3k ok ok ok ok ok ok ok ok sk o e e e ok ke

%*

beta = beta/ 180 * 3.141593

'The ultimate moment :-

d=d-t

w=w-(t/2)

b=b-t
mult=ys*t*((b*d)+(d"2)/4+w*(d-w))

'The rolling radius :-
rr=brtr * t

'Calculation of the mpsh (Considering strain hardening)
mp=ys*(t"2)/4

ssh=us

mpsh =mp + (ssh-ys) * (t"2)/6

mp = mpsh

FOR mu = (muintv + (.001 / 180 * 3.141593)) TO mul STEP muintv

mul = mu - muintv
mu2 = mu + muintv

CALL ATE(c, d, amax, mu, a, adiffin)
CALL ATE(c, d, amax, mul, al, adiffinl)
CALL ATE(c, d, amax, mu2, a2, adiffin2)

' Check for lock-up condition

teta2 = ATN((a/ d))

mulu = ATN((c / (d * COS(teta2))))

IF (mu = mulu) OR (mu > mulu) THEN
PRINT "LOCK UP CONDITION 2"

-
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PRINT #1, "LOCK UP CONDITION 2 at mu="; mu/3.141593 * 180
GOTO 201
END IF

REM* MARGIN HALVING IS USED TO FIND THE m DATA POINTS.*
t(1)=1

gt(S) = mult

pt(3) = ((pt(5) - pt(1)) / 2) + pt(1)

count = 1

20 count = count + 1
pt(4) = ((pt(5) - pt(3)) / 2) + pt(3)
pt(2) = ((pt(3) - pt(1)) / 2) + p(1)

FORI=1TO5
I=INT(I)
m = pt(I)

'START OF ENERGY EQUATION

' Left hand side expression
lhs =4 * m * muintv

' Right hand side of the work equation

"When a = amax, lock-up also occurs
IF (a2 > amax) THEN GOTO 200
teta2l = ATN((al / d))
teta22 = ATN((a2/ d))

'Right side first expression

hml=2*mp*(1-(m/mult)*2)*b

3 =c * SIN(mul) +d * COS(mutl) * COS(teta21) - d +al * (1 + SIN(teta2l))
CALL ASIN((f3 / c), f4)

etal1 = ATN(((TAN((f4 - mul))) * COS(teta21)))

5 = ¢ * SIN(mu2) + d * COS(mu2) * COS(teta22) - d + a2 * (1 + SIN(teta22))
CALL ASIN((f5 / ¢), 16)

etal2 = ATN(((TAN((f6 - mu2))) * COS(teta22)))

rhs] = hml * etal2 - hml * etall

'Right side second expression
hm2=2*mp*(l-(m/mult)*2)*(b+a)
eta2l = ATN(((TAN(f4)) * COS(teta21)))
eta22 = ATN(((TAN(f6)) * COS(teta22)))
rhs2 = hm2 * eta22 - hm2 * eta2l
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'Right side third expression
rhs3 = hml * mu2 - hml * mul

'Right side forth expression

hmd =2 *mp * (1 - (m/mult) *2) *(d - a)

f7=(d - al)/(SIN(mul) + (d * COS(mul) * COS(teta2l))/ c)

f8 =7 *d * COS(teta2l)/c

tetad] = ATN((f8 * al / (d * (f7 * COS(mul) - f8 * SIN(mul)))))
fo = (d - a2) / (SIN(mu2) + (d * COS(mu2) * COS(teta22))/ c)

f10 =9 * d * COS(teta22)/c

tetad2 = ATN((f10 * a2 / (d * (f9 * COS(mu2) - f10 * SIN(mu2)))))
rhs4 = hm4 * teta42 - hm4 * tetad1

'Right side fifth expression

zeta2 = ATN((c/ d))

f11=SQR((c*2+d"2))

hm5 =2 * mp * (1 - (m/ mult) ~ 2) / (SQR(1 - .75 * ((m / mult) ~ 2) *
((SIN(zeta2)) A 2) * (4 - 3 * ((SIN(zeta2)) ~ 2)))) * f11

f12 = (al / c) * COS(zeta2)

CALL ASIN(f12, teta51)

f13 = (a2 / c) * COS(zeta2)

CALL ASIN(f13, tetaS2)

rhsS = hmS * tetaS52 - hm3 * tetaSl

'Right side sixth expression

hm6 =mp * Ib * (1 - (m/ mult) ~ 2) / (SQR((1 - .75 * ((m / mult) * 2))))
eta6l =2 * al /rr + teta2l

eta62 =2 * a2 /rr + tetal22

ths6 = hmé6 * eta62 - hm6 * eta6l

'Right side seventh expression

hm7=2*mp * (1 - (m/ mult) ~2) / (SQR((1 - .75 * ((m / mult) * 2))))
eta7ll =c*al/rr

eta’72=c*a2/rr

rhs7 = hm7 * eta72 - hm7 * eta7l

'Right side First membrane strain expression

memll =ys*b*c*t* (SQR((l +((b"2)/(c”2)) * (SIN(teta2l) ~2))) - 1)
memi2=ys*b*c*t* (SQR((1 +((b"2)/(c"2))* (SIN(teta22) "~ 2))) - 1)
rhs8 = mem12 - meml1

'Right side lip membrane expression at B and C
Imeml =ys *t * eta2l *(w"2)/2
Imem2=ys *t*eta22 *(w"2)/2

rhs9 = Imem2 - Imeml

[9¥]
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'Right side lip mechanism at A and D

lhml=4*mp*(l-(m/mult) *2) *w

Ihm2=4*mp * (1 - (m/mult) ~2)/(SQR(1 - .75 * ((m/ mult) ~ 2) *
((SIN(beta)) ~ 2) * (4 - 3 * ((SIN(beta)) " 2)))) * w / (COS(beta))

f14 = COS((etal 1/ 2)) - (SIN((etall / 2))) / TAN(beta)

CALL ACOS(f14, etal011)

f15 = COS((etal2/ 2)) - (SIN((etal2/ 2))) / TAN(beta)

llup = f15 * w * TAN(beta)

IF (llup = 0) OR (llup <0) THEN GOTO 198
CALL ACOS(f15, etal012)

£16 = 1/ (COS((etal1/ 2)) + SIN((etal 1 / 2)) * (TAN(beta)))
CALL ACOS(f16, f17)

18 = (SIN(f17)) / (SIN(beta))

CALL ASIN(f18, etal021)

£19 =1/ (COS((etal2 / 2)) + SIN((etal2 / 2)) * (TAN(beta)))

CALL ACOS(f19, £20)

£21 = (SIN(f20)) / (SIN(beta))

CALL ASIN(f21, etal022)

rhs10 = (lhm1 * etalO12 - Ihml * etalO11) + (Ihm2 * etal022 - lhm2 * etal021)

'Right side lip mechanism at K and L

£22 = COS((mul/2)) - (SIN((mul/ 2))) / TAN(beta)
CALL ACOS(f22, etal111)

£23 = COS((mu2 / 2)) - (SIN((mu2 / 2))) / TAN(beta)
llup2 = {23 * w * TAN(beta)

IF (llup2 = 0) OR (llup2 < 0) THEN GOTO 198
CALL ACOS(f23, etal 112)

24 = 1/(COS((mul / 2)) + SIN((mul / 2)) * (TAN(beta)))

CALL ACOS(f24, £25)

26 = (SIN(f25)) / (SIN(beta))

CALL ASIN(f26, etal121)

£27 =1/ (COS((mu2 / 2)) + SIN((mu2 / 2)) * (TAN(beta)))

CALL ACOS(f27, £28)

£29 = (SIN(f28)) / (SIN(beta))

CALL ASIN(f29, etal122)

ths11 = (lhml * etal 112 - lhml * etal111) + (Ihm2 * etal 122 - |hm2 * etal121)

rhs = rhsl + rhs2 + rhs3 + rhsd + rhsS + rhs6 + rhs7 + rhs8 + rhs9 + rhs10 + rhs11

'END OF ENERGY EQUATION
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diff{I) = rhs - lhs
diff{I) = ABS(diff{1))
NEXT I
IF diff{3) < .0000001 OR count = 500 THEN
m = pt(3)
GOTO 100
END IF
IF diff(2) < diff{4) THEN
pi(5) = pt(3)
pt(3) = pt(2)
ELSE
pt(1) = pt(3)
pt(3) = pt(4)
END IF
GOTO 20
100
PRINT "BINGO !"

'TO CONVERT MOMENT-ANGLE DATA TO MID SPAN LOAD-DEFLECTION
load = (4 * m/sl) / 1000
defln = sl / 2 * SIN(mu)

PRINT TAB(2); : PRINT USING "##.####"; (mu * 180/ 3.141593);
PRINT TAB(11); : PRINT USING "####titittttitt #4" m;

PRINT TAB(25); : PRINT USING "### #ittitis": diff(3);

PRINT TAB(40); : PRINT USING "### #4464 adiffin

PRINT #1, TAB(1); : PRINT #1, USING "#4.######4", (mu * 180/ 3.141593);
PRINT #1, TAB(12); : PRINT #1, USING "#####utti# #4": m:

PRINT #1. TAB(28); : PRINT #1, USING "### ##4#" load;

PRINT #1, TAB(38); - PRINT #1, USING "### ##44". defln;

PRINT #1, TAB(50), : PRINT #1, USING "#### ####HH5EEEE" diff(3);
PRINT #1, TAB(70); : PRINT #1, USING "### ##44#586E44", adiffin

NEXT mu

CLOSE #1
GOTO 201
198 PRINT "LIP MECHANISM LOCK UP !"
PRINT #1, "LIP MECHANISM LOCK UP AT MU =", mu2/3.141593 * 180
GOTO 201
199 PRINT "ERROR IN FILE OR PROGRAM"
GOTO 300
200 PRINT "MECHANISM LOCKED UP (CONDITION 1) !

(9% )
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PRINT #1, "MECHANISM LOCK UP CONDITION 1 AT MU="; mu2/
3.141593 * 180
201 PRINT "FINISHED "
202 INPUT "TRY AGAIN "; resp$
IF resp$ ="Y" OR resp$ = "y" THEN GOTO 10
PRINT "PROGRAM TERMINATED"
300 END

SUB ACOS (value AS DOUBLE, angle AS DOUBLE)
x = value

angle = ATN((-x) / SQR((-x) * x + 1)) + 1.5708

END SUB

SUB ASIN (value AS DOUBLE, angle AS DOUBLE)
x = value

angle = ATN(x / SQR((-x) * x + 1))

END SUB

SUB ATE (c, d, amax, mu, af, adiftin)
DIM q(5). adif{5)
'Trial and Error routine for finding a2
REM* MARGIN HALVING IS USED TO FIND THE a2 DATA POINTS.*
q(1) =.000001
q(5) =amax + 1
q(3) = ((q(5) - q(1)) / 2) + q(1)
qcount = 1
12 qcount = qcount + |

q(4) =((a(5) - q(3) / 2) + q(3)

q(2) =((a(3) - q(1) 7 2) + q(1)

FORJ=1TOS5
J = INT(J))
a=qQJ)

Is1 =d * COS(mu) * COS((ATN((a / d))))

Is2=a* (1 +SIN((ATN((a/ d)}))))

f14 = (¢ * COS(mu) - d * SIN(mu) * COS((ATN((a/d)))))/c
CALL ACOS(f14, f15)

1s3 = ¢ * SIN(f15)

rs =d - ¢ * SIN(mu)

adif{)) = ABS((Is1 + Is2 - Is3 - rs))
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NEXTJ
IF adif(3) <.0000001 OR qcount = 1000 THEN
af = q(3)
adiffin = adif(3)
GOTO 14
END IF
IF adif(2) < adif{4) THEN
q(5) =4q0)
q(3)=a(2)
ELSE
q(1) =a(3)
q(3) =q(4)
END IF

GOTO 12
14
PRINT "MAGIC !"

END SUB
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ELASTICS.bas

This program calculates the elastic loading line for Lipped Channel beams.

DEFDBL A-Z

10 CLS

ON ERROR GOTO 200

INPUT "MAT'L YIELD STRESS (N/mm”"2) "ys
INPUT "THICKNESS OF THE BEAM MAT'L (N/mm~2) ";t
INPUT "FLANGE WIDTH (mm) " b
INPUT "WED DEPTH (mm) " d
INPUT "LIP SIZE (mm) "W
INPUT "FULL SPAN LENGTH (mm) "
INPUT "FILENAME FOR DATA " FILES

FILES = "a" + FILES + ".dat"
OPEN FILES FOR OUTPUT AS #1
PRINT #1, "MAT'L YIELD STRESS (N/mm~2) :"; ys

PRINT #1, "MAT'L THICKNESS (mm) Mt

PRINT #1, "FLANGE WIDTH (mm) b
PRINT #1, "WEB DEPTH (mm) !
PRINT #1, "LIP SIZE (mm) Y

PRINT #1. "SPAN (mm) oy
PRINT #1, "DEFLECTN(mm) LOAD(N)"
PRINT #1, "wememmemmemeememeemen oo :

mult=ys*t*({(b*d)+(d"2)/4+w*(d-w))
young = 207000
pratio = .3

q=d/b

IF (w=(b/5)) OR (w > (b/ 5)) THEN
k=54-((14*q)/(6+q)-(02*(q"3))
IF(k<4) THEN k=4

ELSE
k=128-((8*q)/(2+q))-.0025*(q"2)
IF k < 425 THEN k = 425

END IF

Per=k * ((t/b)"2)*(3.141593 ~ 2) * young / (12 * (1 - (pratio " 2)))

-
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FOR avstr =0 TO (10 * ys) STEP |

IF (avstr < Pcr) THEN
' No Buckling
h=d/2
bef=b

ELSE

' Elastic Buckling
beff="b * ((1 + 14 * (((avstr / Pcr) ~ .5) - .35) " 4) ~ (-.2))
beu =.89 * beff+ .11 *b

IF (w=(b/5))OR(w>(b/5)) THEN
bef = beff

ELSE
bef = beu

END IF

h=(((d"2)/2)+(d*b)+(w*d))/(bef+(2*w)+d+b)

END IF

[1=bef* (t"3)/12+bef*t* (h"2)
2=t*(h"3)/12+t*(h"3)/4
B=t*((d-h)~3)/12+d-h)*t*(d-h)~2)/4
I4=b*(t"3)/12+b*t*((d-h)"2)
[S=t*(w"3)/12+w*t*((h-(W/2))"2)
[6=t*(wn3)/12+w*t*((d-h-(w/2)"2)
kx=11+12+I3+14+15+16

f1 = avstr * bef * t
f2=(avstr/2)*h*t

f3=avstr *((d-h)~2)*t/(2*h)
fa=avstr *((d-h)/h)*b*t
fs=avstr *w*t*((h-w)/h)

f6 = (avstr /2) * w*t * (w/h)
fI=avstr*w*t*((d-h-w)/h)
f8=16

M=fl*h+£2*2*h/3+f3*(2/3)*(d-h)+f*(d-h)+5*(h-(w/2)+
£6 % (h-(w/3)+f7*(d-h-(w/2))+f8*(d-h-(w/3))

IF (M > mult) THEN M = mult
load =4 * M/l
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defln = load * (1~ 3)/ (48 * young * Ixx)

strdif = ABS((ys - avstr))
IF (strdif < 1) THEN yload = load

PRINT TAB(2): : PRINT USING "##.####"; defin;
PRINT TAB(12); - PRINT USING "### ####"; (load / 1000)
PRINT #1, TAB(2); : PRINT #1, USING "## ####4", defln;

PRINT #1, TAB(12); : PRINT #1, USING "### ####"; (load / 1000)
IF (M = muit) THEN GOTO 199

NEXT avstr

199  PRINT #1, "First Yield Load : "; yload
PRINT #1, "Mult : ", mult

CLOSE #1

GOTO 201

200 PRINT "ERROR IN PROGRAM OR FILENAME"
GOTO 300

201 PRINT "FINISHED"

300 END
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MSBLC.bas

This program was designed to calculate load-deflection data for double span
Lipped Channel beams from collapse characteristics derived from single span
beam moment-mu data (based on two stages of elastic beam solutions and the

energy approach).

DEFDBL A-Z
DECLARE SUB asin (value, angle)
DECLARE SUB intp (f$, angle, moment)

10 CLS

ON ERROR GOTO 200
INPUT "THICKNESS OF THE BEAM MAT'L (N/mm~2) ";t
INPUT "FLANGE WIDTH (mm) "'b
INPUT "WED DEPTH (mm) " d
INPUT "LIP SIZE (mm) " w
INPUT "FULL SPAN LENGTH (mm) "l
INPUT "LOAD POINT DISTANCE (mm) " 11
INPUT "FILENAME FOR DATA " file$
fileS = "a:" + file$ + ".dat"

INPUT "FILENAME FOR THE COLLAPSE DATA " cdfile$
cdfile$ = "a:" + cdfile$ + ".dat"

OPEN file$ FOR OUTPUT AS #1

PRINT #1, "MAT'L THICKNESS (mm) Mt

PRINT #1, "FLANGE WIDTH (mm) b

PRINT #1, "WEB DEPTH (mm) Md

PRINT #1, "LIP SIZE (mm) Mw

PRINT #1, "SPAN (mm) sl

PRINT #1, "LOAD POINT DISTANCE M

PRINT #1, "CONSTRUCTED FROM " cdfile$

PRINT #1, "DEFLECTN(mm) LOAD(kN)"

PRINT #l‘ " e '

' Convert d to centre line dimension
d=d-t

b=b-t

w=w-(t/2)

young = 207000

361



Appendix II : BASIC Programs : MSBL.C.bas

h=d/2
I1=b*(t"3)/12+b*t*(h"2)
[2=t*(h"3)/12+t*(h"3)/4
B=t*(d-h)"3)/12+d-h)*t*(d-h)~2)/4
[4=b*(t"3)/12+b*t*((d-h)"2)
IS=t*(wh3)/12+w*t*((h-(w/2))"2)
I6=t* (W 3)/12+w*t*((d-h-(w/2)"2)
Ixx=11+12+3+14+15+16

OPEN cdfile$ FOR INPUT AS #2
INPUT #2, line$

INPUT #2, mum, mmax

CLOSE #2

FOR p =0 TO 100000 STEP 50
ra=p/2*(G*((I1/s))~2)-((11/sl)"3))
c=ra*(sl*2)/6-p/6*(11"3)/sl

load = p

defln = (1 / (young * Ixx)) * (¢ * (sl -11) -ra/ 6 * ((sl - 11) * 3))
mb=p*1l-ra*sl

IF (mb = mmax) OR (mb > mmax) THEN GOTO 100

PRINT TAB(2); : PRINT USING "#### ####", defln;

PRINT TAB(16); : PRINT USING "### ##4#" (load / 1000)
PRINT #1, TAB(2); : PRINT #1, USING "#### ####", defln;
PRINT #1, TAB(16); : PRINT #1, USING "### ####", (load / 1000)

NEXT p

' Mid support collapsed

100

FOR mu =0 TO .174533 STEP .000174533#
mub=mu/3.141593 * 180

CALL intp(cdfile$, mub, mb)

load = (young * Ixx * mu = mb * sl /3)/ (((sl - I1) *sl/6) - (((sl-11) ~3) /(6 *sl)))

dl=mb/2*(1"2)

d2=mb* {1 *3)/(6 *sl)

d3 =load * (sl-11) * (11 ~3) /(6 * sl)
dd=mb*sl*11/3

ds=1load *11 /76 * (((sl -11) * sy - (((sl - 11) ~ 3) / s1))
defll =(d1 -d2-d3 - d4 —- dS)/ (young * Ixx)

“wd
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IF (mu = 0) THEN ddif = defll
defll = defll - ddif

p = load

ra=p/2*@G*((11/sl)~2)-((1/s)~3))
c=ra*(sl”"2)/6-p/6*(1"3)/sl

defl2 = (1 / (young * Ixx)) * (¢ * (sl - [1) -ra/ 6 * ((sl - I11) " 3))

defln = defll + defl2

b = (mb + load * (sl - 11))/ sl
md = (rb * 11 - mb)
IF (md = mmax) OR (md > mmax) THEN GOTO 150

PRINT TAB(2); : PRINT USING "#### ####", defln,

PRINT TAB(16); : PRINT USING "### ####", (load / 1000)
PRINT #1, TAB(2); : PRINT #1, USING "#### ####", defln;
PRINT #1, TAB(16); : PRINT #1, USING "### ####", (load / 1000)

NEXT mu

' Collapsed at b and d
150 dlast = defln

12=sl-11
FOR dinc =0 TO 100 STEP .1

vmul =dinc /11
CALL asin(vmul, mul)
mul =mul /3.14159 * 180

vmu2 = dinc/ 12
CALL asin(vmu2, mu2)
mu2 =mu2/3.14159 * 180

mu3 = (mul + mu2)/2

CALL intp(cdfile$, mul, ml)
CALL intp(cdfile$, mu3, m2)

f1 =11 * (SQR((1 - ((dinc ~ 2) / (11 ~ 2)))))
£2 =12 * (SQR((1 - ((dinc ~ 2) / (12 ~ 2)))))
p=((ml/f1)+(m2*((1/f1)+(1/£2))))
load =p

192
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ra=p/2*G*((11/sh)~2)-((11/sl)~3))
c=ra*(sl"2)/6-p/6*(1173)/sl

de = (1/(young * Ixx)) * (c * (sl -11) -ra/ 6 * ((sl - 11) " 3))
dec =de - dp

IF (dinc = 0) THEN dec =0

defl = dinc + dlast + dec

PRINT TAB(2), : PRINT USING "#### ####"; defl;

PRINT TAB(16); : PRINT USING "### ####"; (load / 1000)
PRINT #1, TAB(2); : PRINT #1, USING "#### ####", defl;

PRINT #1, TAB(16), : PRINT #1, USING "###.####"; (load / 1000)

175
dp = de
NEXT dinc

CLOSE #1

GOTO 201

200 PRINT "ERROR IN PROGRAM OR FILENAME"
GOTO 300

201 PRINT "FINISHED"

300 END

SUB asin (value, angle)

x = value

angle = ATN(x / SQR((-x) * x + 1))
END SUB

SUB intp (f$, angle, moment)
OPEN {3 FOR INPUT AS #2

INPUT #2, line$
INPUT #2, x1, yl
x0 = x1

x1 =x1-x0

1000 INPUT #2, x2, y2
x2 =x2-x0

IF line$ = "" OR line$ = "EOF" THEN GOTO 20000

IF angle > x1 AND angle < x2 THEN GOTO 2000
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IF angle = x1 THEN
moment =yl
GOTO 2500

END IF

IF angle = x2 THEN
moment =y2
GOTO 2500

END IF

x1 =x2

yl =y2
GOTO 1000

2000 moment = (((angle - x1)/ (x2 - x1)) * (y2 - y1)) + yI

2500
CLOSE #2
GOTO 20010
20000 PRINT "Error in interpolation”
20010
END SUB
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Z1.bas

This program calculates the data points for the collapse curve of Zed section
beams using the Z1 plastic mechanism which applies to failure sections along
the span of beams subjected to Uniformly Distributed Loads.

DECLARE SUB ACOS (value AS DOUBLE, angle AS DOUBLE)
DECLARE SUB ASIN (value AS DOUBLE, angle AS DOUBLE)

DIM pt(5), diff(5)

DEFDBL A-Z

10 CLS

ON ERROR GOTO 199

INPUT "YIELD STRESS OF BEAM MAT'L (N/mm”2) ".ys
INPUT "ULTIMATE STRESS OF BEAM MAT'L (N/mm”2) "; us
INPUT "THICKNESS OF CHANNEL MAT'L (mm) "t
INPUT "COMPRESSION FLANGE WIDTH (mm) "'b
INPUT "TENSION FLANGE WIDTH (mm) " b2
INPUT "CHANNEL DEPTH (mm) " d
INPUT "COMPRESSION FLANGE LIP SIZE (mm) "W
INPUT "TENSION FLANGE LIP SIZE (mm) " w2
INPUT "MECHANISM SIZE ¢ (mm) "
INPUT "LIP MECHANISM ANGLE, beta (deg) ", beta
REM* mu BEING THE ANGLE OF BEND OF THE BUCKLED BEAM *
INPUT "LAST POINT FOR MU in (deg ", mul
mul =mul /180 * 3.141593

INPUT "INTERVAL FOR MU in (deg) " muintv

muintv = muintv / 180 * 3.141593 :

'INPUT "DISTANCE BETWEEN HORIZONTAL BOLTS " 1b
'INPUT "DISTANCE BETWEEN TOP AND TOP BOLTS ", amax
INPUT "RADIUS-to-THICKNESS RATIO FOR HINGES ~ "; brtr
INPUT "SPAN LENGTH in (mm) " sl
INPUT "FILENAME FOR THE DATA POINTS " file$
fileg = "a:" + file§ + ".DAT"

OPEN file$ FOR OUTPUT AS #1

PRINT #1, "SECTION DETAILS"

PRINT #1, " el

PRINT #1, "YIELD STRESS OF BEAM MAT'L (N/mm"2) ys
PRINT #1, "ULTIMATE STRESS OF BEAM MAT'L (N/mm”2) :"; us
PRINT #1, "THICKNESS OF CHANNEL MAT'L (mm) "t
PRINT #1, "FLANGE WIDTH [comp,ten] (mm) ", b, b2
PRINT #1, "CHANNEL WEB DEPTH (mm) - d
PRINT #1, "LIP SIZE [comp,ten] (mm) W, W2
PRINT #1, "MECHANISM SIZE ¢ (mm) v
PRINT #1, "LIP MECHANISM ANGLE, beta (deg) ", beta
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PRINT #1, "INTERVALS FOR mu (deg) " muintv/ 3.141593 * 180
PRINT #1, "DISTANCE BETWEEN HORIZONTAL BOLTS :“;Ib
PRINT #1, "DISTANCE BETWEEN TOP AND TOP BOLTS :"; amax

PRINT #1, "RADIUS-to-THICKNESS RATIO - brtr
PRINT #1, "SPAN LENGTH (mm) )

PRINT #1, " " '

PRINT #1, " Angle = Moment Cap. Load Detln Dift adif"
PRINT #1, "mu(deg) ~ (Nmm) (kN)  (mm)  (Nmmrad) (mm)"
PRINT #1, "eesomooome  smemmmccemmwmmms memmme wmccccc ceeeeccceee eeeeee "

REM 4 # %k s ook koo ok Kok X

REM * Calculation of the data points *
REM sk o sk 2k ok 2 ok e ok 3 ok oKk 3k d de ok ok ok ok ok ok 3k K ok ok ok e ok ok ke ok ok ok

beta =beta/ 180 * 3.141593

‘The ultimate moment :-
d=d-t
w=w-(t/2)

b=b-t

b2=b2-t
w2=w2-(t/2)

n=(d+b2+w2-b-w)/2
mult=ys*t*(b*n+(n"2)/2+((d-n)"2)/2+b2*(d-n)+w*(n-(w/2))
+w2*(d-n-(w2/2)))

'The rolling radius :-
rr=brtr * t

'Calculation of the mpsh (Considering strain hardening)
mp=ys*(t"2)/4

ssh = us

mpsh=mp + (ssh-ys) *(t"2)/6

mp = mpsh

FOR mu = (muintv + (001 / 180 * 3.141593)) TO mul STEP muintv

mul = mu - muintv
mu2 = mu + muintv
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a=((d"2)-(c*SIN(mu)+d*COS(mu) - SQR((c "2 - (¢ * COS(mu) - d *
SIN(mu)) #2))) ~2) /(2 * d)

al =((d*2)-(c*SIN(mul)+d* COS(mul) - SQR((c*2 - (c * COS(mul) -d *
SIN(mul))*2))~2) /(2 * d)

a2 =((d"2) - (c * SIN(mu2) +d * COS(mu2) - SQR((c "2 - (¢ * COS(mu2)-d *
SIN(mu2))~2)))~2)/(2*d)

REM* MARGIN HALVING IS USED TO FIND THE m DATA POINTS.*
pt(1)=1
pt(5) = mult
pt(3) = ((pt(5) - pt(1)) / 2) + pt(1)
count =1
20 count = count + 1
pt(4) = ((pt(5) - pt(3)) / 2) + pt(3)
pt(2) = ((pt(3) - pt(1)) / 2) + pt(1)

FORI=1TOS
I = INT(I)
m = pt(I)

'START OF ENERGY EQUATION

' Left hand side expression
lhs =4 * m * muintv

' Right hand side of the work equation

'Right side first expression

hml =2*mp * (1 - (m/ mult) ~2) *b2

f3=c* SIN(mul) +d * COS(mul) - SQR((d"~2 -2 *al * d))
CALL ASIN((f3 / ¢), f4)

etall =f4 - mul

£S5 =¢ * SIN(mu2) +d * COS(mu2) - SQR((d 2 -2 * a2 * d))
CALL ASIN((f5 / ¢), f6)

etal2 = f6 - mu2

rhsl =hml * etal2 - hml * etal 1

'Right side second expression

hm2=2*mp * (I - (m/ mult) * 2) * (b2 + a)
eta2l = f4

eta22 = f6

rhs2 =hm2 * eta22 - hm2 * eta21l
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'Right side third expression
hm3=2*mp*(l-(m/mult)*2) *b
rhs3 = hm3 * mu2 - hm3 * mul

'Right side forth expression

hm4=2*mp * (1-(m/mult)~2)*(d-a)

f7=al/(d-al)

CALL ASIN(f7, teta2l)

f8 = al * COS(teta2l)

teta4] = ATN((f8 / (SQR((d ~ 2 - 2 * al * d)) * TAN((ATN((c / d)) - mu1)))))
f9=a2/(d-a2)

CALL ASIN(9, teta22)

f10 = a2 * COS(teta22)

tetad2 = ATN((f10 / (SQR((d ~ 2 - 2 * a2 * d)) * TAN((ATN((c / d)) - mu2)))))
rhs4 = hm4 * tetad42 - hm4 * tetadl

'Right side fifth expression

zeta2 = ATN((c / d))

f11=SQR((c*2+d"2))

hmS=2*mp * (1 - (m/ mult) ~2)/(SQR(I - .75 * ((m/ mult) ~ 2) *
((SIN(zeta2)) ~ 2) * (4 - 3 * ((SIN(zeta2)) * 2)))) * f11

f12=al / ((d - a) * SIN(zeta2))

CALL ASIN(f12, tetaS1)

f13 =a2/((d - a) * SIN(zeta2))

CALL ASIN(f13, tetaS2)

rhs5 = hm5 * teta52 - hm$ * tetaS1

'Right side sixth expression

hm6 =2 *mp * (1 - (m/ mult) ~ 2) / (SQR((1 - .75 * ((m / mult) ~ 2))))
etabl =c*al/rr

etab2=c*a2/rr

rhs6 = hm6 * eta62 - hmo6 * eta6l

'Right side lip membrane expression at B
Imeml =ys *t * eta2l * (w2 "2)/2
Imem2=ys *t *eta22 * (Ww2"2)/2
rhs7 = lmem2 - Imem|

'Right side lip mechanism at A and D

Ihml =4 *mp * (1 - (m/ mult) * 2) * w2

Ihm2=4*mp * (1 - (m/ mult) *2) / (SQR(1 - .75 * ((m / mult) ~ 2) *
((SIN(beta)) ~ 2) * (4 - 3 * ((SIN(beta)) " 2)))) * w2/ (COS(beta))

fl4 = COS((etal 1/ 2)) - (SIN((etal 1 / 2))) / TAN(beta)

CALL ACOS(f14, etal0l1)

f15 = COS((etal2/ 2)) - (SIN((etal2 / 2))) / TAN(beta)
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llup = f15 * w * TAN(beta)

IF (llup = 0) OR (llup < 0) THEN GOTO 198
CALL ACOS(f15, etal012)

f16 =1/ (COS((etall /2)) + SIN((etall / 2)) * (TAN(beta)))

CALL ACOS(f16, f17)

18 = (SIN(f17)) / (SIN(beta))

CALL ASIN(f18, etal021)

£19 =1/ (COS((etal2 / 2)) + SIN((etal2 / 2)) * (TAN(beta)))

CALL ACOS(f19, £20)

£21 = (SIN(f20)) / (SIN(beta))

CALL ASIN(f21, etal022)

rhs8 = (Ihm1 * etalO12 - [hm1 * etalO11) + (lhm2 * etal022 - [hm2 * etal021)

'Right side lip mechanism at K

22 = COS((mul / 2)) - (SIN((mul/ 2))) / TAN(beta)
CALL ACOS(f22, etal 111)

23 = COS((mu2 / 2)) - (SIN((mu2 / 2))) / TAN(beta)
llup2 = f23 * w * TAN(beta)

IF (llup2 = 0) OR (llup2 <0) THEN GOTO 198
CALL ACOS(f23, etal 112)

f24 =1/(COS((mul /2)) + SIN((mul / 2)) * (TAN(beta)))

CALL ACOS(f24, 25)

26 = (SIN(f25)) / (SIN(beta))

CALL ASIN(f26, etal 121)

£27=1/(COS((mu2/2)) + SIN((mu2 / 2)) * (TAN( beta)))

CALL ACOS(f27, £28)

29 = (SIN(f28)) / (SIN(beta))

CALL ASIN(f29, etal 122)

iIhm3=4*mp* (1 -(m/mult)*2)*w

Ihmd =4 * mp * (1 - (m/ mult) ~2) /(SQR(1 - .75 * ((m / mult) ~ 2) *
((SIN(beta)) ~ 2) * (4 - 3 * ((SIN(beta)) " 2)))) * w/ (COS(beta))

rhs9 = (Ihm3 * etal 112 - [hm3 * etal 111) + (lhm4 * etal 122 - lhm4 * etal 121)

rhs = rhsl + rhs2 + rhs3 + rhsd + rhsS + rhs6 + rhs7 + rhs8 + rhs9

'END OF ENERGY EQUATION
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diff(I) = rhs - lhs
diff{(I) = ABS(difH(I))
NEXT I
IF diff{3) <.0000001 OR count = 500 THEN
m = pt(3)
GOTO 100
END IF
IF diff(2) < diff(4) THEN
pt(5) = pt(3)
pt(3) = pt(2)
ELSE
pt(1) = pt(3)
pt(3) = pt(4)
END IF

GOTO 20
100
PRINT "BINGO !"

'TO CONVERT MOMENT-ANGLE DATA TO MID SPAN LOAD-DEFLECTION
load = (4 *m/ sl)/ 1000
defln = sl /2 * SIN(mu)

PRINT TAB(2); : PRINT USING "## ####": (mu * 180 /3.141593);
PRINT TAB(11); : PRINT USING "######ERE ##", m,

PRINT TAB(25); : PRINT USING "### #sti#" diff(3);

PRINT TAB(40); : PRINT USING "### ########4"; adiffin

PRINT #1, TAB(1); : PRINT #1, USING "## #######"; (mu * 180/ 3.141593);
PRINT #1, TAB(12): : PRINT #1, USING "###8#6544 34", m,

PRINT #1, TAB(28); : PRINT #1, USING "### ##4#", load,

PRINT #1, TAB(38); : PRINT #1, USING "### ####"; defin,

PRINT #1, TAB(50); : PRINT #1, USING "###4 #us#ssstt", diff(3);
PRINT #1, TAB(70); : PRINT #1, USING "##4 #######48#4", adiffin

NEXT mu

CLOSE #1
GOTO 201
198 PRINT "LIP MECHANISM LOCK UP !"
PRINT #1, "LIP MECHANISM LOCK UP AT MU =", mu2/3.141593 * 180
GOTO 201
199 PRINT "ERROR IN FILE OR PROGRAM"
GOTO 300
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PRINT #1, "MECHANISM LOCK UP CONDITION | AT MU=", mu2/
3.141593 * 180
201 PRINT "FINISHED "
202 INPUT "TRY AGAIN "; resp$
IF resp$ ="Y" OR resp$ ="y" THEN GOTO 10
PRINT "PROGRAM TERMINATED"
300 END

SUB ACOS (value AS DOUBLE, angle AS DOUBLE)
x = value

angle = ATN((-x) / SQR((-x) * x + 1)) + 1.5708

END SUB

SUB ASIN (value AS DOUBLE, angle AS DOUBLE)
x = value

angle = ATN(x / SQR((-x) * x + 1))

END SUB
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Appe

MSBZ2.bas

This program was designed to calculate load-deflection data for double span
Zed section beams subjected to Uniformly Distributed Loads from collapse
characteristics derived from single span beam moment-mu data (based on two
stages of elastic beam solutions and the energy approach).

DEFDBL A-Z
DECLARE SUB asin (value, angle)
DECLARE SUB intp (f3, angle, moment)

10 CLS

ON ERROR GOTO 200

INPUT "MAT'L YIELD STRESS (N/mm”2) " ys
INPUT »THICKNESS OF THE BEAM MAT'L (N/mm~2) ";t
INPUT "TOP FLANGE WIDTH (mm) " b
INPUT "BOTTOM FLANGE WIDTH (mm) " 52
INPUT "WED DEPTH (mm) "q
[NPUT "TOP LIP SIZE (mm) "W

[NPUT "BOTTOM LIP SIZE (mm)
[NPUT "FULL SPAN LENGTH (mm) sl
[NPUT "FILENAME FOR DATA " file$

file$ = "a:" + file$ + ".dat”

[NPUT "FILENAME FOR THE CENTRAL SUP COLLAPSE DATA "; cfile$
cfile$ ="a" + cfile$ + ".dat" '
[NPUT "FILENAME FOR SPAN COLLAPSE DATA " mfile$

mfile$ = "a:" + mfile$ + ".dat”

OPEN file$ FOR OUTPUT AS #1

PRINT #1, "MAT'L YIELD STRESS (N/mm~2) ", ys

PRINT #1, "MAT'L THICKNESS (mm) ey

PRINT #1, "FLANGE WIDTH (mm) b

PRINT #1, "BOTTOM FLANGE WIDTH (mm) :"; b2

PRINT #1, "WEB DEPTH (mm) e d

PRINT #1, "LIP SIZE (mm) o
RINT #1, "BOTTOM LIP SIZE (mm) w2

PRINT #1, "SPAN (mm) :u.' sl

PRINT #1, "CONSTRUCTED FROM - cdfile$

PRINT #1, "DEFLECTN(mm) LOAD(kN)"

N .

+ Convert d to centre line dimension

d=d-t

b=b-t

p2=b2-t
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w2=w2-(t/2)
young = 207000

OPEN cfile$ FOR INPUT AS #2
INPUT #2, line$

INPUT #2, mum, mmax

CLOSE #2

OPEN mfile$ FOR INPUT AS #3
INPUT #3, line$

INPUT #3, mudm, mdmax
CLOSE #3

pratio = .3

q=d/b

IF (w=(b/5)) OR (w>(b/5)) THEN
k=54-((14*q)/(6+q)-(.02*(q"3))
IF (k<4) THEN k=4

ELSE
k=128-((8*q)/(2+q))-.0025*(q"2)
[F k <.425 THEN k = 425

END IF

Per=k * ((t/b)"2) *(3.141593 ~ 2) * young / (12 * (1 - (pratio " 2)))
FOR avstr =0 TO (10 * ys) STEP 1

IF (avstr < Pcr) THEN
' No Buckling
bef=>b

ELSE

' Elastic Buckling
beff=b * ((1 + 14 * (((avstr / Pcr) * .5) - .35) " 4) ~(-.2))
beu=.89 * beff + .11 * b

IF (w=(b/5)) OR (w>(b/5)) THEN
bef = beff
ELSE
bef = beu
END IF
END IF
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h=(((d"2)/2)+(d*b2)+(W2*d)-((Ww2"2)/2)+((w"2)/2))/(bef+d+b2
+w+w2)

I1=bef*(t"3)/12+bef*t*(h"2)
2=t*"3)/12+t*(h"3)/4
B=t*(d-h)"3)/12+(@d-h)*t*(d-h)"2)/4
14=b2*%(t"3)/12+b2*t*((d-h)"2)
IS=t*(wWA3)/12+w*t*((h-(W/2)"2)
I6=t*(wW273)/12+w2*t*((d-h-(w2/2))"2)
Ixx=I1+12+13+14+15+16

f1 = avstr * bef * t
f2=(avstr/2)*h*t
f3=avstr*((d-h)"2)*t/(2*h)
f4=avstr *((d-h)/h)*b2*t
f5=avstr*w*t*((h-w)/h)

f6 =(avstr/2) *w *t* (w/h)
f7=avstr *w2*t*((d-h-w2)/h)
f8=avstr/2*w2*t*(w2/h)

M=fl*h+R2*2*h/3+f3*(2/3)*(d-h)+f4*(d-h)+f5*(h-(w/2)+
£6 % (h-(wW/3)+f7*(d-h-(W2/2))+f8*(d-h-(w2/3))

wload =8 * M/ (sl * 2)

defln = (1 / (young * Ixx)) * wload * (s] ~ 4) / 192
mb=M

IF (mb = mmax) OR (mb > mmax) THEN GOTO 100

PRINT TAB(2); : PRINT USING "#### ####"; defln;

PRINT TAB(16); : PRINT USING "### ####", (wload / 1)
PRINT #1, TAB(2); : PRINT #1, USING "#### ####", defln;
PRINT #1, TAB(16); : PRINT #1, USING "### ####", (wload / 1)

NEXT avstr

' Mid support collapsed
100

dinc=0
xmax = (mmax / (wload * sl)) + (sl / 2)
11 = xmax
12=sl-11
vmul =dinc /11
CALL asin(vmul, mul)
mul =mul /3.14159 * 180
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vmu?2 = dinc / 12
CALL asin(vmu2, mu2)
mu2=mu2/3.14159 * 180

mu3 = (mul + mu2)/2

CALL intp(cfile$, mul, ml)
CALL intp(mfile$, mu3, m2)

f1 =11 * (SQR((1 - ((dinc ~ 2) / (11 ~2)))))
£2 =12 * (SQR((1 - ((dinc ~ 2) / (12 ~ 2)))))
wloadf = ((m1/f1) + (m2 * (1 /f1) + (1/£2)))) / (sl / 2)

FOR mu =0 TO .174533 STEP .000174533#
mub =mu/3.141593 * 180
CALL intp(cfile$, mub, mb)

wload = 24 * (young * Ixx * mu+ mb * sl/3)/ (sl * 3)
defll = ((5 * wload * (sl ~ 4) / 384) - (mb * (s| ~ 2) / 16)) / (young * Ixx)

IF (mu = 0) THEN ddif = defll

defll = defll - ddif

defl2 = (1 / (young * Ixx)) * wload * (sl ~ 4) /192
defln = defll + defl2

xmax = (mb / (wload * sl)) + (sl / 2)

PRINT TAB(2); : PRINT USING "#### ####"; defln;

PRINT TAB(16); : PRINT USING "### ####", (wload / 1)
PRINT #1, TAB(2); : PRINT #1, USING "#### ####", defln,
PRINT #1, TAB(16); : PRINT #1, USING "### ####", (wload / 1)

IF (wload = wloadf) OR (wload > wloadf) THEN GOTO 150

NEXT mu

' Collapsed at b and d
150 dlast = defln

11 = xmax
12=sl-11

PRINT 11
INPUT vynx
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FOR dinc =.5 TO 1000 STEP .5

vmul =dinc /1
CALL asin(vmul, mul)
mul =mul /3.14159 * 180

vmu2 = dinc /12
CALL asin(vmu2, mu2)
mu2 =mu2/3.14159 * 180

mu3 = (mul + mu2)/2

CALL intp(cfile$, mul, ml)
CALL intp(mfile$, mu3, m2)

f1 =11 * (SQR((1 - ((dinc ~ 2) / (11 ~ 2)))))
£2 =12 * (SQR((1 - ((dinc ~ 2) / (12 ~ 2)))))
wload = ((m1/f1) + (m2 * ((1/f1) + (1/ £2)))) / (s / 2)

IF (11 = (sl/2)) OR (11 > (sl / 2)) THEN
dms = (sl/2) /11 * dinc
ELSE
dms=(1-((sl/2)-11)/12) * dinc
END IF

de = (1/ (young * Ixx)) * wload * (sl ~4)/192
dec =de - dp
IF (dinc = .5) THEN dec =0

defl = dms + dlast + dec

PRINT TAB(2); : PRINT USING "#### ####"; defl;
PRINT TAB(16); : PRINT USING "###.###4": (wload / 1)
PRINT #1, TAB(2); : PRINT #1, USING "#### ###4": defl;
PRINT #1, TAB(16); : PRINT #1, USING "### ###4". (wload / 1)

dp =de
NEXT dinc

CLOSE #1

GOTO 201

200 PRINT "ERROR IN PROGRAM OR FILENAME"
GOTO 300

201 PRINT "FINISHED"

300 END
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SUB

asin (value, angle)

x = value
angle = ATN(x / SQR((-x) * x + 1))

END

SUB

1000

2000

2500

SUB

intp (f$, angle, moment)
OPEN f$ FOR INPUT AS #2

INPUT #2, line$
INPUT #2, x1, yl
x0=x1
x1=x1-x0

INPUT #2, x2, y2
x2=x2-x0

IF line$ = "" OR line$ = "EOF" THEN GOTO 20000

IF angle > x1 AND angle < x2 THEN GOTO 2000
IF angle = x1 THEN

moment =yl

GOTO 2500

END IF
IF angle = x2 THEN

moment = y2
GOTO 2500
END IF

x1 =x2

yl = y2
GOTO 1000

moment = (((angle - x1) / (x2 - x1)) * (y2 - yl1)) + yl

CLOSE #2

GOTO 20010

20000 PRINT "Error in interpolation”
20010
END SUB




Appendix

MAXIMUM BENDING MOMENT CAPACITY
According to BS 5950 : Part 5 : 1987
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The following guidelines for the calculation of the bending capacity of thin-walled
beam sections are based on the recommendations of BS 5950 : Part 5 : 1987,

Section 5, for the design of members subject to bending.

For the sections examined in the current study, the moment capacity is determined on

the basis of the limiting compressive stress in the stiftened webs, which is estimated

from,

[

P, = 1.13—0.0019‘—,’(%) Co Eqn.(A3.1)

where P, is the limiting compressive stress in the web
d is the overall web depth
t is the material thickness

and O,is the material yield strength.

The effective width of the compression flange of the beam 1s then worked out using

Eqn.(2.3.2.3) or Eqn.(2.3.2.4), by substituting

fe=Po Eqn.(A3.2)
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The second area of moment for the section is then calculated using the effective cross-

sectional dimensions and the moment capacity is determined using

oy
M. = 3ZP, Eqn.(A3.3)

where M is the bending moment capacity (BS 5950 : Part 5 : 1987)
[c]- is the effective section second area of moment

and  Vcis the distance of the neutral axis of bending from the compression
edge in the eftective section.

For sections which satisfy the conditions stated in section 5.2.3.1 of the BS 5950 :

Part 5, the plastic bending capacity is utilised according to the following criterion.

For sections with stiffened compression elements,

ta|—

(a) for =<25 (2%) (plastic cross section)
MQ = Mp

(b) for &2 40( b“)

M. = Mc
(c) for 25(780> : < % < 40(2;5)) i
L i)
My =M, + ———M, - M.)
lx(c—‘al :

Eqn.(A3.4)
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where b is the full width of the compression flange
M ,is the fully plastic bending capacity
and M’ is the modified moment capacity which includes plastic effects.

For sections with unstiffened compression elements

ta)——

(a) for =< 8(280) (plastic cross section)

/‘\

QI'!;’

h
|.1|—

~I<r

M. =M, +

N
N
gra
N
u|—

Eqn.(A3.5)
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