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Abstract

To solve complex design problems, engineers cannot avoid to take into

account the involved uncertainties. This is important for the analysis

and design of hypersonic objects and vehicles, which have to operate

in extreme conditions.

In this work, two approaches for a high dimensional uncertainty quan-

tification (UQ) are developed. The first approach performs a single-

fidelity non-intrusive forward UQ, while the second one performs a

multi fidelity UQ, as an extension of the first approach. Both meth-

ods are focused on real engineering problems and, therefore, appro-

priate heuristics are included to achieve an optimal trade-off between

accuracy and computational costs.

In the first approach, the stochastic domain is decomposed into do-

mains of lower dimensionality, and, then, each domain is handled

separately. This is possible due to the application of the HDMR,

which is here derived in a new way. This new derivation allowed to

deduce important conclusions about the high dimensional modelling,

which are used in the prediction scheme. This novel approach for the

selection of the higher order interaction effects drastically reduce the

required number of samples. In order to have optimally distributed

samples for the problem of interest, the adaptive sampling scheme is

introduced. Moreover, the multi-surrogate approach is introduced in

order to improve the robustness of the method. The single-fidelity ap-

proach is tested on a debris re-entry case and the method is validated

with respect to the MC simulation method.

In the second approach, the multi fidelity approach has been devel-

oped. In order to have the optimal combination of the low fidelity

models, the power ratio approach is introduced. To correct the low fi-

delity model, the classical additive correction, adapted to work within

the HDMR approach, is used. The multi-fidelity approach has been

i



tested on the GOCE re-entry case, where the performed tests demon-

strate the potentialities of the method.

ii



Contents

List of Symbols and Acronyms viii

List of Figures xvi

List of Tables xxi

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Targets of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Derivation of cut-HDMR and new interpolation approach 9

2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Numerical approach - cut-HDMR model derivation . . . . . . . . 22

2.3.1 The interpolation process . . . . . . . . . . . . . . . . . . 25

2.4 Visualization of higher order sensitivity and sensitivity estimation 26

2.5 Discussion about Sensitivity analysis, interpolation process, and

Derivative Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Adaptive algorithm - The first order increment functions 31

3.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



3.2 Basic theory of the 1-D adaptive process . . . . . . . . . . . . . . 33

3.3 Numerical application of the 1-D adaptive algorithm . . . . . . . 37

3.4 Convergence - The stopping criteria . . . . . . . . . . . . . . . . . 38

3.4.1 Convergence - The local convergence . . . . . . . . . . . . 39

3.4.2 Convergence - The Global convergence . . . . . . . . . . . 43

3.5 The global process and the starting conditions . . . . . . . . . . . 45

3.6 Applied examples using the 1-D adaptive scheme . . . . . . . . . 47

3.6.1 Applied example using the adaptive algorithm . . . . . . . 47

3.6.2 Applied example for the global 1-D approach . . . . . . . . 49

3.6.3 Discussion about the applied example . . . . . . . . . . . . 52

3.7 Discussion about adaptive scheme for the first order increment

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Selection scheme for the high order increment functions 58

4.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 General prediction theory for the higher order increment functions 60

4.2.1 Deduction algorithm . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Prediction algorithm . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Neglection algorithm . . . . . . . . . . . . . . . . . . . . . 67

4.3 Selection residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Linear model of residuals . . . . . . . . . . . . . . . . . . . 72

4.4 Application of the selection scheme . . . . . . . . . . . . . . . . . 75

4.5 Discussion about the selection scheme and selection residuals . . . 84

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Adaptive algorithm - The higher order increment functions 90

5.1 Basic theory of the high dimensional adaptive algorithm . . . . . 91

5.2 Numerical application of the high dimensional adaptive algorithm 96

iv



5.3 Convergence - The high order increment functions . . . . . . . . . 99

5.3.1 Convergence - The higher order local convergence . . . . . 99

5.3.2 Convergence - The high order global convergence . . . . . 104

5.4 Global process for the higher order increment functions and the

starting conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Applied examples for the N-D adaptive scheme . . . . . . . . . . . 110

5.5.1 Applied example using the adaptive algorithm . . . . . . . 110

5.5.2 Applied example for the global N-D approach . . . . . . . 115

5.5.3 Discussion about the applied examples . . . . . . . . . . . 118

5.6 Discussion about the high dimensional adaptive scheme . . . . . . 119

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Multi surrogate modelling 123

6.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Idea and theory of multi surrogate modelling . . . . . . . . . . . . 125

6.2.1 Weighted mean value approach . . . . . . . . . . . . . . . 127

6.2.2 Local improvement approach . . . . . . . . . . . . . . . . . 135

6.2.3 Local improvement in the stochastic domain . . . . . . . . 139

6.3 Application of the multi surrogate approach . . . . . . . . . . . . 141

6.4 Applied examples for the multi surrogate approach . . . . . . . . 142

6.4.1 Discussion about examples . . . . . . . . . . . . . . . . . . 152

6.5 Discussion about the multi surrogate approach . . . . . . . . . . . 155

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Independent Polynomial Interpolation technique 159

7.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2 Theory of Independent Polynomial Interpolation technique . . . . 162

7.2.1 Derivatives of the domain of influence . . . . . . . . . . . . 166

7.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 166

v



7.4 Numerical application of the Independent Polynomial Interpolation 169

7.5 Applied examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.5.1 Discussion about applied examples . . . . . . . . . . . . . 176

7.6 Discussion about IPI . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8 Multi fidelity approach 182

8.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.2 Power ratio theory . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.3 Basic theory of the multi fidelity approach . . . . . . . . . . . . . 188

8.3.1 Correction of the low fidelity increment function . . . . . . 189

8.3.2 Selection of the low fidelity increment functions . . . . . . 191

8.4 Construction and application of the fidelity error function . . . . 194

8.4.1 Prediction approach for FEIF . . . . . . . . . . . . . . . . 196

8.4.2 Application of the prediction approach to the fidelity mod-

elling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.5 Numerical application of the multi fidelity modelling . . . . . . . 203

8.5.1 Application to the first order increment functions . . . . . 203

8.5.2 Application to the higher order increment functions . . . . 206

8.6 Applied example for the multi fidelity approach . . . . . . . . . . 212

8.6.1 Discussion about the applied example . . . . . . . . . . . . 213

8.7 Discussion about the multi fidelity scheme . . . . . . . . . . . . . 216

8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

9 Applied example: Probabilistic modelling of debris re-entry 221

9.1 Debris re-entry propagation . . . . . . . . . . . . . . . . . . . . . 221

9.1.1 Trajectory Dynamics . . . . . . . . . . . . . . . . . . . . . 222

9.1.2 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 223

9.1.2.1 Continuum flow regime . . . . . . . . . . . . . . 223

vi



9.1.2.2 Free molecular flow regime . . . . . . . . . . . . . 223

9.1.2.3 Transition flow regime . . . . . . . . . . . . . . . 224

9.2 Uncertain parameters of the re-entry case . . . . . . . . . . . . . . 224

9.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 225

9.3.1 Controlled normal re-entry . . . . . . . . . . . . . . . . . . 226

9.3.2 Uncontrolled ’Shallow’ re-entry . . . . . . . . . . . . . . . 229

9.3.3 Controlled ’Steep’ re-entry . . . . . . . . . . . . . . . . . . 243

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

10 Applied example: Gravity Field and Steady-State Ocean Circu-

lation Explorer 252

10.1 Gravity Field and Steady-State Ocean Circulation Explorer . . . . 253

10.2 Main study of the re-entry case . . . . . . . . . . . . . . . . . . . 254

10.3 Input and uncertain parameters of the re-entry case . . . . . . . . 257

10.3.1 Starting conditions for the uncertainty propagation . . . . 259

10.4 Results and discussion of the uncertainty propagation for GOCE

re-entry case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

11 Final discussion and conclusion 270

11.1 Discussion about the uncertainty propagation using the single fi-

delity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

11.2 Discussion about the multi fidelity approach . . . . . . . . . . . . 275

11.3 Future work and aims . . . . . . . . . . . . . . . . . . . . . . . . 277

11.4 Final Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Bibliography 280

vii



List of Symbols and Acronyms

f(x) function of interest

f0 Mean value of f(x) for ANOVA decomposition

fi(xi) Contribution of variable xi to function f(x) for ANOVA decomposition

fi,j(xi, xj) Correlated contribution of variable xi and xj to function f(x) for ANOVA decom-

position

cx Central point for the cut-HDMR model

cxi Central point of the random variable xi for the cut-HDMR model

pi(xi) Probability Density Function for variable xi

pi...j(xi, ..., xj) Joint probability Density Function

µ Total mean value of the function of interest

µt Partial mean value of increment function t

σ2 Total variance of the function of interest

σ2
t Partial variance of the increment function t

St Sensitivity indices of the increment function t

n Number of random variables for the function of interest

C Semi positive covariance matrix for the normal distribution

µPDF Mean value of given distributions for the normal distribution

dFt/dFi...j Increment function t / i...j

dFLFt /dFLFi...j Low fidelity increment function t / i...j

dFHFt /dFHFi...j High fidelity increment function t / i...j

z Number of samples of MC simulation applied on the surrogate model of the incre-

ment function, dFk(x)

sD Selected number of increment functions

viii



SdF kt (x)/SdF ki...j(x) Surrogate model of the increment function dFt(x)/dFi...j(x) in iteration

k

Fpos(x̃) Position function

FND−pos(x̃i, ..., x̃j) Multi dimensional Position function

d Maximum selected derivative order

x̃ Normalized stochastic random variable

kshift Shift coefficient

x̃k Vector of normalized samples used to create surrogate model SdF (x)

εk(xi) Error Comparison function in iteration k

εkND(xi, ..., xj) Multi Dimensional Error Comparison function in iteration k

ε̃k(x) 1-D Probability Error Comparison function in iteration k

EkND(xi, ..., xj) N-D Probability Error Comparison function in iteration k

εkND Vector of MDEC evaluations in iteration k

Ek
ND Vector of MD-PEC evaluations in iteration k

xknew New sample proposed with the adaptive algorithm in iteration k

rxi Vector of random numbers distributed accordingly to the input distribution, pi

rxND
i...j Vector of joint probability density according to vectors rx

Yk
i Vector of surrogate responses for variable i in iteration k using input vector xi

δDYk
i Vector of surrogate derivatives of the order D for variable i in iteration k using input

vector xi

Fpos Vector of values of the position function obtained for vector x̃

h̃pi Normalized histogram created from vector rxi

h̃p Normalized histogram created from vector rxND

ns Length of vector rxi

Rkµt Normal residual of the mean in iteration k for increment function t

Rkσt Normal residual of the variance in iteration k for increment function t

LRkµt Logistic residual of the mean in iteration k for increment function t

LRkσt Logistic residual of the variance in iteration k for increment function t

Rµsett Set residual of the mean for the local convergence process of the increment function

t

ix



Rσsett Set residual of the variance for the local convergence process of the increment func-

tion t

GRµset Global residual for the mean

GRσset Global residual for the variance

Vi Vector of samples used for variable i

Mtotal Set of all increment functions

Mselected Set of selected increment functions

Mtotal:j Set of all increment functions, which does not include the increment functions having

xj as a variable

Mselected:j Set of selected increment functions, which does not include the increment functions

having xj as a variable

dF j(x) Increment function without variable xj

dFFinal:total(x) Model composed of all increment functions

dFFinal:selected(x) Model composed of selected increment functions

dFneglected(x) Model composed of neglected increment functions

dFFinal:selected:j(x) Model composed of selected increment functions without variable xj

dFneglected:j(x) Model composed of neglected increment functions without variable xj

dFnot−included:j(x) Model composed of neglected increment functions with variable xj

εResidual:total(x) Function of residuals including all neglected increment functions

εR−T Deduction residual of the higher order increment functions for εResidual:total(x)

kεR−T Correction factor for the deduction residual

sD:j Number of increment function in set Mselected:j

εResidual:total:j(x) Function of residuals including all neglected increment functions without xj

as a functional variable

εR−T−j Deduction residual of the higher order increment functions for εResidual:total:j(x)

εResidual−not−included:j(x) Function of residuals including all neglected increment functions

with xj as a functional variable

εResidual−not−included:j Deduction residual of the higher order increment functions for εResidual−not−included:j(x)

pSdFt Sensitivity criteria for increment function dFt used in the prediction algorithm

εprediction Prediction residual for the higher order increment functions

εneglection Neglection residual for the higher order increment functions

x



minpxi Lower bound of the probability distribution pxi

maxpxi Upper bound of the probability distribution pxi

1pxi Lower bound of the allowed probability for variable xi

2pxi Upper bound of the allowed probability for variable xi

FResidualModel(x1, ..., xn) Linear model of residuals

cli Coefficient for the linear model of residuals

σi Vector of the partial standard deviations of all involved increment functions with

variable i as a functional variable

CL Coefficient for establishing the linear model of residuals in a case of insufficient

number of samples

σneglected Statistical properties of the linear model of residuals

σneglected:2 Statistical properties of the linear model of residuals without variable xj

sf(x) Surrogate model

sfi(x) Surrogate model i

µ(x) Weighted mean model

wmi Normalized weight coefficient for surrogate model i

Nm Number of active surrogate models

wfi(x) Correction function for the i-th surrogate model

K Number of samples in given iteration

wmnsij Normalized weight of sample j in current iteration for selected model i

wmsij Non-normalized weight of sample j in current iteration for selected model i

yij Difference between the function value and surrogate model i

σMS Scaling coefficient

σMS−p1 Standard scaling coefficient

σMS−p2 Modified scaling coefficient

Twf(x) Time weight function for the multi surrogate approach

εThreshold Neglection threshold for the multi surrogate approach

εT Empirical coefficient for the multi surrogate approach

ylj Vector of surrogate responses for sample j

Rlj Vector of surrogate accuracies for sample j

xi



RlLj Vector of surrogate accuracies for sample j considering only negative accuracies

RlRj Vector of surrogate accuracies for sample j considering only positive accuracies

wjµ Local weight for the mean model at sample j

wjfi Local weight for surrogate model i at sample j

MRLj Accuracy of the closest model from set RlLj at sample j

MRRj Accuracy of the closest model from set RlLj at sample j

fs:1 Surrogate model selected with MRLj at sample j

fs:2 Surrogate model selected with MRRj at sample j

wjfs:1 Local weight for the surrogate model selected with MRLj at sample j

wjfs:2 Local weight for the surrogate model selected with MRRj at sample j

wf
j Vector of local weight coefficients for the multi surrogate approach

θi(x,xc) Correlation function for surrogate model i with xc determining center of the corre-

lation function

wf
j Vector of local weight coefficients for the multi surrogate approach

J Vector of samples, where each sample consist of a set of local weights wf
j

KT Number of samples in set J

ri(x) Correlation vector for surrogate model i

sfIPI(x) Independent polynomial interpolant

Tc Number of samples in given stochastic domain for IPI

wr(x) Weight function for sample r

pfr(x) Independent surrogate model for sample r

L2 L2 Norm

NMC Number of samples for MC simulation in L2 Norm

PMF Power ratio

AMF Accuracy of the low fidelity model against the high fidelity model

TMF Time ratio of the low fidelity model and the high fidelity model

tL Computational time of the low fidelity model

tH Computational time of the high fidelity model

fHF (X) High fidelity function of interest

fLF (X) Low fidelity function of interest

xii



ε(X)/A(X) Additive correction

B(X) Multiplicative correction

µtε Partial expected value of FEIF

σ2
tε Partial variance of FEIF

M iMF

Low Set of selected increment functions from the low fidelity model iMF

Mhigh Set of selected increment functions from the high fidelity model

M iMF

Low:Consider Set of selected increment functions used for multi fidelity uncertainty propaga-

tion

σHFp Deduced statistical properties of the high fidelity model

σLF
i

p Deduced statistical properties of the i-th low fidelity model

R
MF i

MF

L
µt Residual of the mean value for the i-th low fidelity model

R
MF i

MF

L

(σt)2
Residual of the variance for the i-th low fidelity model

fHF Vector of responses from the high fidelity model

fLF Vector of responses from the low fidelity model

ε Vector of corrections

px Sample with known correction

Sdεi...j(x) Surrogate model for FEIF

Sdεi...j(x) Surrogate model for FEIF

pdFEt(x) Increment function t of the prediction error function at sample px

pFEt(x) Prediction error function at sample px for increment function t

SMF
T :t Total volume of the predicted error for increment function t

SMF
S:t Influenced volume of the predicted error for increment function t

h Altitude of debris

V∞ Speed of the object

γ Speed of the object

D Drag force

g Gravitational acceleration

g0 Gravitational constant, g0 = 9.81

ωE Earth’s rotational speed

RE Radius of the Earth

xiii



γ Path direction angle

χ Latitude position

λ Longitude position

Cp Local pressure coefficient

θ Maximum pressure point coefficient

Cτ Shear coefficient

σN Normal momentum accommodation coefficient

σT Tangential momentum accommodation coefficient

Tw Surface or body wall temperature

erf() Error function

s Speed ratio

RU Universal gas constant

sig10 Sigmoid function

T∞ Free stream temperature

CAD Computer Aided Design

CV Cross Validation

CoD Curse of Dimensionality

DE Derivative Equation

DSMC Direct Simulation Monte Carlo

EGG Electrostatic Gravity Gradiometer

ESA European Space Agency

FEIF Fidelity Error Increment Function

FOSTRAD Free Open Source Tool for Re-entry of Asteroids and Space Debris

FMF Free Molecular Flow

GPS Global Positioning System

HDMR High Dimensionality Model Representation

i-gPC Iterative generalized Polynomial Chaos

xiv



IPI Independent Polynomial Interpolation

JPDF Joint Probability Distribution Function

MC Monte Carlo

MDEC Multi Dimensional Error Comparison

MD-PEC Multi Dimensional Probability Error Comparison

ME-gPC Multi-Element generalized Polynomial Chaos

ODE Ordinary Differential Equations

PDE Partial Differential Equations

PC/gPC Generalized Polynomial Chaos

PDF Probability Distribution Function

SBO Surrogate Based Optimization

SSTI Satellite-to-Satellite Tracking Instrument

UQ Uncertainty Propagation

UQ-HDMR Uncertainty Quantification - High Dimensionality Model Representation

xv



List of Figures

1.1 Efficiency ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Flow chart of the main approach . . . . . . . . . . . . . . . . . . 26

2.2 Visualization of the final histogram . . . . . . . . . . . . . . . . . 27

2.3 Visualization of the partial histograms for each increment function 28

3.1 The position function created with 3 samples . . . . . . . . . . . . 36

3.2 Function of interest Ftest(x) . . . . . . . . . . . . . . . . . . . . . 47

3.3 Process of the adaptive sampling for the function of interest Ftest(x)

Blue - Interpolation Black - Original function Red cross - Sample

from the expensive function . . . . . . . . . . . . . . . . . . . . . 48

3.4 Convergence of the mean and the standard deviation for the func-

tion of interest - Ftest(x) . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Convergence of the mean and the standard deviation for the func-

tion Ftest(x) using various order of the maximum derivative . . . . 51

3.6 PDF obtained by MC sampling for the 9-D Steel column problem 52

3.7 PDF obtained by the adaptive method Left upper - case 1, Right

upper - case 2, Left lower - case 3, Right lower - case 4 . . . . . . 53

3.8 Comparison of PDF obtained by the MC sampling and the adap-

tive method Left upper - case 1, Right upper - case 2, Left lower -

case 3, Right lower - case 4 . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Flow chart for the selection scheme . . . . . . . . . . . . . . . . . 85

xvi



5.1 The multi dimensional position function, PosND(x̃), created with

9 samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Increment function dF12(x1, x2) . . . . . . . . . . . . . . . . . . . 111

5.3 Process of the ND-adaptive sampling for the function of interest

dF12(x1, x2) Blue circle - Sample from the expensive function . . . 113

5.4 Comparison of the Smolyak Sparse grid grid utilizing the Gaussian

abscissas (1) (a) and the adaptive scheme (b) . . . . . . . . . . . 114

5.5 PDF obtained by MC simulation . . . . . . . . . . . . . . . . . . 117

5.6 PDF obtained by the high dimensional adaptive UQ-HDMR Left:

Relative Accuracy 0.01 Right: Relative Accuracy 0.001 . . . . . . 117

5.7 PDF obtained with only the 1st order increment functions . . . . 118

5.8 Histograms for the selected increment functions of the Borehole

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 Basic idea for the multi surrogate approach . . . . . . . . . . . . . 128

6.2 Example of the non-normalized weighted coefficient function (Eq. (6.6))

using σMS = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Local weight function Left: 1-D case Right: 2-D case . . . . . . . 141

6.4 Scheme for the multi surrogate interpolation . . . . . . . . . . . . 142

6.5 Convergence of the mean value for Eq. (6.28) . . . . . . . . . . . . 145

6.6 Convergence of the standard deviation value for Eq. (6.28) . . . . 145

6.7 Convergence of the mean value for Eq. (6.28) . . . . . . . . . . . . 146

6.8 Convergence of the standard deviation for Eq. (6.28) . . . . . . . 146

6.9 Function of interest: Ftest:Jump(x) . . . . . . . . . . . . . . . . . . 147

6.10 Convergence of the mean value for Eq. (6.29) . . . . . . . . . . . . 148

6.11 Convergence of the standard deviation for Eq. (6.29) . . . . . . . 149

6.12 The final surrogate model for Eq. (6.29) . . . . . . . . . . . . . . 149

6.13 Function of interest Ftest:Simple(x) . . . . . . . . . . . . . . . . . . 150

6.14 Convergence of the mean value for Eq. (6.30 . . . . . . . . . . . . 151

6.15 Convergence of the standard deviation for Eq. (6.30 . . . . . . . . 152

xvii



6.16 Convergence of the mean value for Eq. (6.30) . . . . . . . . . . . . 153

6.17 Convergence of the standard deviation for Eq. (6.30) . . . . . . . 153

7.1 The grid sampling and the domain of influence for IPI . . . . . . 163

7.2 The local polynomial and its domain of influence for IPI . . . . . 165

7.3 IPI boundary approach for the 2-D stochastic domain . . . . . . . 169

7.4 Interpolation of Eq. (7.11) . . . . . . . . . . . . . . . . . . . . . . 172

7.5 Convergence of L2 criteria for Eq. (7.11) . . . . . . . . . . . . . . 173

7.6 Interpolation of Eq. (7.13) . . . . . . . . . . . . . . . . . . . . . . 174

7.7 Convergence of L2 criteria for Eq. (7.13) . . . . . . . . . . . . . . 174

7.8 Interpolation of Eq. (7.14) . . . . . . . . . . . . . . . . . . . . . . 175

7.9 Convergence of L2 criteria for Eq. (7.14) . . . . . . . . . . . . . . 176

7.10 Interpolation of Eq. (7.15) . . . . . . . . . . . . . . . . . . . . . . 177

7.11 Convergence of the L2 criteria for Eq. (7.15) . . . . . . . . . . . . 178

8.1 The low fidelity model efficiency diagram . . . . . . . . . . . . . . 187

8.2 The tensor product sampling and the area of influence . . . . . . 198

8.3 Example of 1-D prediction for FEIF . . . . . . . . . . . . . . . . . 199

8.4 Example of 2-D prediction for FEIF . . . . . . . . . . . . . . . . . 200

8.5 PDF obtained by the Monte Carlo simulation . . . . . . . . . . . 215

8.6 PDF obtained by the multi fidelity high dimensional adaptive UQ-

HDMR Left: Relative Accuracy 0.01 Right: Relative Accuracy 0.001215

8.7 Partial histograms for the selected increment functions of the Bore-

hole problem using the multi fidelity approach . . . . . . . . . . . 216

9.1 1000 samples from the interpolation routine of: Left: Temperature

Right: Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

9.2 Final histograms for the longitudinal distribution of the controlled

normal case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

9.3 Final histograms for the lateral distribution of the controlled nor-

mal case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

xviii



9.4 Partial histograms for the increment functions of the controlled

re-entry problem for the longitudinal impact distance . . . . . . . 233

9.5 Partial histograms for the increment functions of the controlled

re-entry problem for the lateral spreadiness . . . . . . . . . . . . 234

9.5 Partial histograms for the increment functions of the controlled

re-entry problem for the lateral spreadiness . . . . . . . . . . . . . 235

9.6 Final histograms for the longitudinal distribution of the shallow

re-entry case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

9.7 Final histograms for the lateral distribution of the shallow re-entry

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

9.8 The cause of the peak at the tail of the longitudinal HDMR PDF 240

9.9 Partial histograms for the increment functions of the shallow re-

entry problem for the longitudinal impact distance . . . . . . . . . 241

9.10 Partial histograms for the increment functions of the shallow re-

entry case for the lateral spreadiness . . . . . . . . . . . . . . . . 242

9.11 Final histograms for the longitudinal distribution of the controlled

steep re-entry case . . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.12 Final histograms for the lateral distribution of the controlled steep

re-entry case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

9.13 Partial histograms for the increment functions of the steep re-entry

case for the longitudinal impact distance . . . . . . . . . . . . . . 249

9.14 Partial histograms for the increment functions of the steep re-entry

case for the lateral spreadiness . . . . . . . . . . . . . . . . . . . . 250

9.14 Partial histograms for the increment functions of the steep re-entry

case for the lateral spreadiness . . . . . . . . . . . . . . . . . . . . 251

10.1 GOCE in orbit. Credits: ESA-AOES-Medialab . . . . . . . . . . . 253

10.2 Simplified CAD model of GOCE . . . . . . . . . . . . . . . . . . . 255

10.3 Mesh used in the high fidelity DSMC solver . . . . . . . . . . . . 256

10.4 Histograms of the partial increment functions for GOCE using the

single fidelity approach - part 1 . . . . . . . . . . . . . . . . . . . 261

xix



10.4 Histograms of the partial increment functions for GOCE using the

single fidelity approach - part 2 . . . . . . . . . . . . . . . . . . . 262

10.5 Histograms of the partial increment functions for GOCE using the

multi fidelity approach - part 1 . . . . . . . . . . . . . . . . . . . 263

10.5 Histograms of the partial increment functions for GOCE using the

multi fidelity approach - part 2 . . . . . . . . . . . . . . . . . . . 264

10.6 Final histogram for the single fidelity approach (left) and the multi

fidelity approach (right) . . . . . . . . . . . . . . . . . . . . . . . 264

10.7 Comparison of the final histogram obtained with the single fidelity

approach and with the multi fidelity approach . . . . . . . . . . . 265

10.8 Multiple runs of the single fidelity approach (left) and the multi

fidelity approach (right) . . . . . . . . . . . . . . . . . . . . . . . 268

11.1 Histogram for function F1(x1, x2, x3, x4) and function F2(x1, x2, x3, x4)297

11.2 Reconstruction approach of an increment function using input and

output histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

11.3 Visualization of histogram for function f1(x1, x2) - (a) and function

f2(x1, x2) - (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

xx



List of Tables

3.1 Distributions for the 9-D Steel column model . . . . . . . . . . . . 50

3.2 MC simulation for the 9-D Steel column model . . . . . . . . . . . 52

3.3 The results of the Adaptive UQ-HDMR approach . . . . . . . . . 52

5.1 Input distributions for the Borehole model . . . . . . . . . . . . . 115

5.2 MC simulation for the Borehole model . . . . . . . . . . . . . . . 116

5.3 Results of the high dimensional adaptive UQ-HDMR approach . . 116

5.4 Results of the selected increment functions for the Borehole problem116

6.1 List of surrogate models for Eq. (6.28) in case: 1 . . . . . . . . . . 144

6.2 List of correlation functions for the Radial Basis Functions . . . . 144

6.3 Parameters for SVM technique Y is the mean value of the training

set σY is the standard deviation of the training set K is the number

of training samples in the training set . . . . . . . . . . . . . . . 144

6.4 List of surrogate models for Eq. (6.28) in case: 2 . . . . . . . . . . 146

6.5 List of surrogate models for Eq. (6.29) in case: 3 . . . . . . . . . . 148

6.6 List of surrogate models for Eq. (6.30) in case: 4 . . . . . . . . . . 151

6.7 Starting condition for the case: 5 . . . . . . . . . . . . . . . . . . 152

7.1 List of interpolation techniques used for function Ftest(x) . . . . . 172

8.1 Distributions for the Borehole model . . . . . . . . . . . . . . . . 213

8.2 MC simulation for the Borehole model . . . . . . . . . . . . . . . 213

xxi



8.3 Results of the high dimensional multi fidelity adaptive UQ-HDMR

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.4 Number of function calls and computational times for the multi

fidelity approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.5 Results of the high dimensional single fidelity adaptive UQ-HDMR

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.6 Results of the selected increment functions for the Borehole problem214

9.1 Input distributions for the debris re-entry . . . . . . . . . . . . . . 227

9.2 MC simulation for normal re-entry problem . . . . . . . . . . . . 228

9.3 Results of the high dimensional adaptive UQ-HDMR approach for

debris re-entry: controlled-normal . . . . . . . . . . . . . . . . . . 228

9.4 Results of the partial increment functions for the longitudinal dis-

tribution considering the controlled re-entry . . . . . . . . . . . . 229

9.5 Results of the partial increment functions for the lateral distribu-

tion considering the controlled re-entry . . . . . . . . . . . . . . . 230

9.6 MC simulation for shallow re-entry problem . . . . . . . . . . . . 232

9.7 Results of the high dimensional adaptive UQ-HDMR approach for

debris re-entry: shallow angle . . . . . . . . . . . . . . . . . . . . 235

9.8 Results of the partial increment functions for the longitudinal dis-

tribution considering the shallow re-entry case . . . . . . . . . . . 236

9.9 Results of the partial increment functions for the lateral distribu-

tion considering the shallow re-entry case . . . . . . . . . . . . . . 237

9.10 MC simulation for the controlled steep re-entry problem . . . . . 244

9.11 Results of the high dimensional adaptive UQ-HDMR approach for

debris re-entry: controlled steep . . . . . . . . . . . . . . . . . . . 244

9.12 Results of the partial increment functions for the longitudinal dis-

tribution considering the controlled steep re-entry case . . . . . . 245

9.13 Results of the partial increment functions for the lateral distribu-

tion considering the controlled steep re-entry case . . . . . . . . . 246

10.1 Mesh properties for the Low/High fidelity DSMC solver . . . . . . 256

xxii



10.2 Gas properties for DSMC solver . . . . . . . . . . . . . . . . . . . 258

10.3 Input distributions for GOCE . . . . . . . . . . . . . . . . . . . . 258

10.4 Results of the increment functions for GOCE using the single fi-

delity approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

10.5 Results of the increment functions for GOCE using the multi fi-

delity approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

10.6 Final results of the UQ propagation for GOCE . . . . . . . . . . . 262

10.7 Computational times of the Low/High fidelity model for GOCE . 264

10.8 Difference for the single/multi fidelity approach in boundary samples267

11.1 Results of the increment functions for the Borehole problem using

residual: 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

11.2 Results of the increment functions for the Borehole problem using

residual: 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

11.3 Results of the increment functions for the borehole problem using

residual: 0.01 - multi fidelity . . . . . . . . . . . . . . . . . . . . . 305

11.4 Results of the increment functions for the borehole problem using

residual: 0.001 - multi fidelity . . . . . . . . . . . . . . . . . . . . 306

xxiii



1



Chapter 1

Introduction

”As we know there are known knowns. There are things we know we know. We

also know there are known unknowns. That is to say, we know there are some

things we do not know. But there are also unknown unknowns, The ones we

don’t know we don’t know.”

D. Rumsfeld, Feb. 12, 2002, Department of Defense news briefing

Modern engineering problems require new ways of solution to introduce higher

quality computing. It is common problem that performed simulations do not have

required accuracy, yet the physical or mathematical model is valid. Moreover,

the problem is even more complicated as one is never sure that a given model is

physically fully correct. These errors are usually created with model’s assump-

tions, which are not fulfilled or with inaccurately measured inputs. One of the

possible ways to bring computer simulations closer to reality is the application of

a statistical approach.

Mathematical models are usually created and calibrated in laboratory environ-

ment. However, a real industry equipment differs from the laboratory one and

such that the mathematical models have to tackle this difference. Moreover,

many engineering models are simplified in order to get the model applicable to

real problems. This represents another source of possible errors and the statistical

approach can highlight possible errors in the computational approach. It takes

into account all the small things, which are normally neglected in the process

of model creation. This includes things such as production errors, atmospheric

change or simple user errors can be considered in mathematical models when the

statistical approach is used.
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The uncertainty quantification or uncertainty propagation is extremely impor-

tant for the industry. As mentioned above, mathematical models differ from the

reality and one needs to estimate the influence of these uncertainties on the accu-

racy of the model. From the industrial point of view, uncertainty quantification

ensures that the designed product is going to have the same properties as the

produced part. Also, it helps to make the final product resistant to deviations

from the designed solution. However, to have a method which is applicable in

real industrial problems, it is necessary to perform simulations in a fast way.

1.1 Motivation

To bring computational simulations closer to reality, it is necessary to take into

account uncertainties in the modelling process. However, the problem is com-

plicated as it is necessary to take into account physical errors in the model of

interest. Currently, we define a two main kinds of uncertainties:

• Aleatoric: Known as statistical uncertainty, which represents the unknown

that differ each time an experiment is performed. These uncertainties are

inherent to the system and such that it is hard to reduce these uncertainties.

• Epistemic: Known as systematic uncertainty and this type of uncertainty

could be known in principle but it is not in practice. The missing knowledge

about the problem can originate from an inaccurate measurement or the

model neglects certain effects.

In reality, both uncertainties are present; however, the developed method aims

to quantify the aleatoric uncertainty.

The common approach used in the past was to assume a Gaussian distribution

around the final result. It was assumed that the Gaussian distribution considers

all aspects such as the physical errors in the model or errors in the measurement.

However, it was showed in many cases that this assumption is not correct. To

overcome this problem, it is necessary to implement statistical methods. An

example of necessity of statistical simulations is given in the work of Mehts et

al. (2)

One of the most simple statistical approaches is the Monte Carlo (MC) simula-

tion. It represents thousands or millions of runs with randomly modified inputs.
3



However, this approach is extremely expensive and in many engineering problems

not even possible as one run of a complex engineering code can take days. Nev-

ertheless, MC simulation still represents an easy to implement and very robust

method, where nice overview of MC methods is given in the work of Veach (3).

To overcome the computational burden, many new engineering approaches are

developed. These approaches try to propagate the uncertainty in a more sophis-

ticated way such as using simplified models, surrogate models or combination of

multiple fidelity models. A nice example of the multi fidelity modelling is shown

in the work of Ng and Eldred (4). However, the process of uncertainty quantifi-

cation is more complex from the engineering point of view. It is necessary to take

into account timing of the performed simulation, complexity of the problem and

also required accuracy.

Indeed, in many engineering problems, it is not necessary to perform extremely

accurate simulations. The extremely accurate simulations are extremely complex

to run and they require a complex programming skills yet the gain value is min-

imal. Therefore, a trade off between cost and gain has to be made. This can be

graphically shown in the following way:

Cost

Accuracy

Optimal

efficiency

Figure 1.1: Efficiency ratio

One needs to find the optimal point for his/her problem, where the accuracy of

the solution is sufficient and the cost of the problem is minimal. However, this

is a very delicate task as it depends on many factors. One of the ways how to

find such a point is the application of multiple physical models, which differs in
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fidelity, i.e. complexity and time of the solution. Another way is to use new

progressive ways of uncertainty propagation.

1.2 Targets of thesis

The main target of the thesis is to perform the efficient propagation of uncertainty

quantification. We try to establish a methodology, which could be widely applied

for complex engineering models such as DSMC or CFD simulations. However, we

do not want an extremely accurate uncertainty propagation method as obtaining

extremely high relative accuracies (e.g. < 10−10) represents a large computational

burden. In the case of an extremely accurate result, the effective gain in the

outcome is extremely small. In other words, the cost of the highly accurate result

is not worthy. In this work, we focus on the effective method, which provides

a result below a desired accuracy and yet it is still computationally feasible.

Therefore, we restrict ourselves to accuracies, which are sufficient yet do not

require large computational times.

One of the ways to perform uncertainty propagation and obtain a widely applica-

ble approach is using non-intrusive approach. Non-intrusive techniques consider

the code of interest as a black box. In other words, the connection between the

uncertainty propagation tool and the code of interest is only through set of inputs

and outputs. This step ensures that the developed tool can be widely used and

it is not restricted to only one possible application.

The non-intrusive approach requires the definition of a set of inputs and outputs,

i.e. the black-box function values. However, these methods suffer from the Curse

of Dimensionality (CoD) with respect to the set of inputs, which states that the

number of required samples (functional values) grows exponentially with addi-

tional parameters introduced into a problem. This leads to a dramatic increase

in the computational time and restricts the usage of the non-intrusive approaches

to a small number of parameters. One of the ways to decrease the computational

time is to use the multi fidelity approach.

The multi fidelity approach considers multiple models, which differs with accuracy

and mainly computational time. Therefore, with a proper combination of models

and a proper correction approach, one can obtain an accurate result with signif-

icantly lower computational time. However, this requires a methodology capable

of comparing accuracies and also the computational times of given models.
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The multi fidelity approach is not the only possible way to reduce the compu-

tational time. With the proper simplification of the stochastic domain, one can

gain a significant reduction in the computational time. However, this requires a

new and robust approach to current problems. Moreover, a proper combination

of multi fidelity modelling and new approach for UQ can bring large computa-

tional problems to a point, where accurate results are achievable with commodity

hardware.

Another important thing in the uncertainty propagation is the automation of

the process. The proposed method must be fully automatic and call the user in

outer limits. In other words, the method must start and adaptively adapt to the

problem of interest. This is necessary as many engineers are experts in their field

but have limited knowledge about the uncertainty propagation or non-intrusive

modelling. Therefore, the proposed method must handle all these aspects for the

user.

This requires a robust non-intrusive approximation model, which is capable of

handling all aspects. However, there is always a trade off between accuracy,

efficiency and robustness. Therefore, we focus on an efficient combination of

accurate and robust interpolation technique. This represents a real challenge in

the uncertainty propagation field.

1.3 Structure of thesis

The work is structured in the following way:

In the next chapter, after a brief overview on sensitivity and uncertainty quan-

tification approaches, the cut-HDMR approach used in this work is derived in a

new way, which allows to derive new statistical conclusions about the nature of

the posterior probability density function. The new derivation of the cut-HDMR

approach also allows to establish a new interpolation scheme, where the stochas-

tic domain is separated into smaller domains and for each domain, the associated

function can be interpolated with an independent interpolation technique. These

associated functions, called increments or increment functions, are defined on the

basis of levels, where the first level represents all the functions corresponding

to 1-D domains, the second level represents all the functions corresponding to

2-D domains, etc.. Moreover, since the proposed interpolation scheme allows to
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visualize the contribution of each variable (or variable interaction) via partial

histograms, also this visualisation approach is introduced in this chapter.

The third chapter is devoted to the description of the 1-D version of the adaptive

scheme, developed to have a more efficient sampling of the considered expensive

function. The adaptive scheme considers a local adaptive approach and a global

one. The local adaptive approach is focused only on some partial functions, while

the global approach focuses on the statistical properties of the problem of inter-

est. The combination of these two approaches creates a robust UQ propagation

tool for 1-D domains. Moreover, the local adaptive scheme considers a search

algorithm, which provides optimal ratio between exploration vs. exploitation for

newly proposed samples.

In the fourth chapter, the new scheme for the selection of important domains is

introduced. This scheme allows to select important domains with a very small

number of samples and therefore, dramatically reduces the necessary number of

samples, thus increasing the efficiency of the proposed HDMR based sensitivity

and UQ method.

The fifth chapter is focused on the description of the adaptive scheme for higher

dimensions. The high dimensional adaptive scheme, the N-N scheme, is again

a combination of a local and a global process. In the chapter, the differences

existing between the 1-D scheme and N-D scheme, are highlighted and discussed.

Up to chapter five, only Lagrange interpolation is considered and used, but this

technique is not robust and cannot handle discontinuities. Therefore, in chapter

six a new multi surrogate approach, which tries to select and combine the best

interpolation models for the considered problem is described. The multi surro-

gate approach exploits the characteristics of each surrogate model available and

implements a robust combination better suited for the different cases that can be

encountered.

In the seventh chapter, a new surrogate technique, which can better handle func-

tion discontinuities, is introduced. This newly proposed surrogate technique,

resembling the spline technique, is tested on various problems and proves to be

a competitive interpolation approach.

The eight chapter is devoted to the description of the multi-fidelity approach. In

the beginning, the power ratio approach, which allows comparing different fidelity

models in terms of speed and accuracy, is introduced. Then, the application to
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the cut-HDMR modelling is introduced and the use of the additive correction

is showed. Finally, the additive correction is transformed into the multi-fidelity

prediction scheme, which predicts the errors between different fidelity models,

contributing to keep the multi fidelity scheme efficient.

The ninth and tenth chapters describe two major test cases.

In the ninth chapter, the single fidelity approach is used to treat three cases of

space debris re-entry. For the uncertainty propagation, up to 16 random vari-

ables are considered, where 10 random variables represent the uncertainty on

atmospheric properties and the remaining 6 represent uncertainties on the initial

conditions of atmospheric trajectory. Results are validated against MC simula-

tions.

In the tenth chapter, both the single- and the multi-fidelity approaches are used

to perform the sensitivity and UQ analyses on the aerodynamic performance of

the ESA’s Gravity field and steady-state Ocean Circulation Explorer (GOCE)

satellite. Two different Direct Simulation Monte Carlo (DSMC) implementa-

tions/tuning are considered as low- and high-fidelity models. The results obtained

via single- and multi-fidelity approaches are compared and discussed, showing the

potentialities of the proposed multi-fidelity approach.

The last chapter gives a final summary of the proposed single- and multi-fidelity

approaches. In the discussion, the advantages and disadvantages of the proposed

methods are explained and discussed. The final part is given to draw general

conclusions and to introduce future developments.
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Chapter 2

Derivation of cut-HDMR and

new interpolation approach

In this chapter, the focus is given to the development of a new approach for the

surrogate modelling and sensitivity analysis. The final surrogate model (approxi-

mation model) is constructed as a sum of independent low dimensional surrogate

models. This approach proved to be an efficient way for surrogate modelling and

also opened new interesting conclusions, which are discussed in this chapter.

The new approach is based on Derivative Equation (DE), which is introduced

and derived in this chapter. Also, the statistical properties for DE are developed

and new statistical definitions are introduced. DE allows visualizing the influence

of each independent variable and combinations of variables. This is showed in

Sec. 2.4, where the approach is explained on a toy example.

The chapter is structured in the following way: In the theory section, Derivative

Equation (DE) is introduced. In the next section, DE is converted into the

numerical approach, which is more suited to a real application and the connection

with the well known cut-HDMR approach is showed. Also, the process of the

newly proposed surrogate modelling is explained. The last part is given to the

discussion of the interpolation process, the newly derived equation and also, the

visualization process.
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2.1 Literature review

Most of the sensitivity analysis methods handle the complex code as a black box,

i.e. they are working with inputs and outputs only. This requires running the

complex code many times with various inputs to obtain statistical properties of

the given model. The sensitivity analysis can be divided into two main aspects -

global and local sensitivity. The global sensitivity tries to estimate the influence

over the whole stochastic domain, while the local sensitivity only searches small

region of the stochastic space (5). Among the most popular sensitivity analysis

methods are the Monte Carlo (MC) based approaches, which represents a branch

of global sensitivity analysis. They randomly sample the stochastic domain with

a large number of samples and estimate the statistical properties of the given

model. Due to its nature, MC methods can cope with non-smooth functions.

The well known Sobol sensitivity method (6, 7) is based on the MC approach.

This method decomposes the output variance of the given model into parts at-

tributable to input variables. The outcome of the method is the quantification of

the influence of each variable and its interactions in the given model.

Another popular variance based method is the Fourier Amplitude Sensitivity

Testing (FAST) (8, 9). The method performs the sensitivity analysis for a smaller

number of required samples than the Sobol method. However, FAST is not

capable of sensitivity analysis on interaction terms in the given model. Later, the

FAST was extended to compute the total effect of a given variable. Despite the

fact that FAST performs more efficiently (in terms of required sampling) than

the Sobol method, the Sobol method is still the most widely used variance based

method due to its easy programming and robustness.

In order to get a better insight into the model and to visualize the influence of

a variable, scatter plots (6, 7, 10, 11) can be used. Scatter plots are very good

way to estimate the behaviour of a function in a given domain, but they require

a lot of experience on sensitivity analysis. In other words, one has to have an

experience in the given topic to validate the results obtained with scatter plots.

All the mentioned methods rely on a large number of samples, i.e. function calls.

This implies a large computational burden and in many cases, the time required

to run sensitivity analysis would be infeasible. For the purpose of reducing the

number of samples, the Method of Morris (MoM) (12) can be used. The MoM for

global sensitivity analysis is a modification of one-step-at-a-time methods (7). If
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one is interested in local sensitivity, the partial derivations can be used. Another

well used method is the linear regression (6, 7), but this approach requires that

the model of interest is linear.

For the visualization of sensitivity, the CobWeb plots (13), also known as web

diagrams, or the Variable Interaction Network (VIN) diagrams (14) can be used.

The Cobweb plots enable to visualize the combination of the input variables,

leading to a specific range of the output variable. The VIN diagrams can be used

to track and to visualize additive structures in a function of interest.

A way to overcome the computational time of sensitivity analysis is to build

a cheap surrogate model of the expensive function. Among the surrogate ap-

proaches, there are methods such as the Stochastic Collocation method (SC) (15,

16), the Polynomial Chaos (PC) (15, 16, 17, 18, 19, 20, 21, 22), the Kriging sur-

rogate model (9, 23, 24) and the Pade-Legendre approximation. These methods

are non-intrusive by nature, i.e. they consider the code of interest as a black box.

In the work of Sudret (25), the non-intrusive Polynomial Chaos is coupled with

the Sobol method and it allows to compute the Sobol Indices directly from the

PC expansion. However, this method requires a smooth underlying function.

In the case of other surrogate models, the sensitivity indices are obtained by

sampling these cheap models via MC approach. Unfortunately, one of the largest

limitations of surrogate models is the so called Curse of Dimensionality (CoD),

introduced by Richard Bellman (26). This problem is still an issue and it limits

the use of non-intrusive methods to a lower number of stochastic dimensions.

Various sampling techniques were proposed to handle the CoD problem. The

Latin Hyper-cube sampling (LHS) (9) was successfully used in various problems

and some different approaches are available, such as LaPSO (27), Uniform Design

(UD) (9) or Hammersley Sampling (19, 28).

In the framework of Uncertainty Quantification (UQ) problems, Smolyak Sparse

grid (29, 30, 31) and its various modification became very popular techniques.

This sampling strategy combined with Non-intrusive Polynomial Chaos (NIPC)

gives very accurate results for a low number of samples. Unfortunately, even this

approach is not affordable because of its high cardinality.

The cut-High Dimensional Model Representation (cut-HDMR) (32, 33) was de-

veloped to decouple the interaction effects of chemical systems. It was success-

fully used in other fields such as uncertainty quantification (34, 35), sensitivity

analysis (36, 37) and interpolation problems (38, 39, 40) and it proved to be a

11



very efficient tool for high dimensional problems, especially for high dimensional

integration.

In this section, all these problems together are addressed. The new way of surro-

gate modelling is presented and followed by a sensitivity analysis. The approach

is based on the cut-HDMR, which is here derived in a different way. A new equa-

tion is established, which is derived from ANOVA decomposition. The proposed

equation enlighten some important aspects of a high dimensional information

propagation and important conclusions are derived here. Following the deriva-

tion, the developed equation is transformed to the cut-HDMR model, which was

originally derived in the work of Rabitz et al. (32). In the work of Rabitz, the

cut-HDMR is directly obtained from the ANOVA decomposition without any

further explanation. Like the HDMR approach, the proposed approach allows

decomposing the stochastic space into sub-domains, which are then interpolated

separately via the selected interpolation technique. Each interpolation technique

is built accordingly to the conclusions obtained from a new derivation of the cut-

HDMR. The statistical properties of a given function are obtained using the MC

simulation on each interpolated sub-domain. The outcome on each interpolated

sub-domain can be visualized using histograms. This gives the user a completely

new insight into the problem.

2.2 Theory

In order to derive the cut-HDMR, let us first introduce a new equation, the Deriva-

tive Equation (DE), which is derived from the ANOVA decomposition (14, 41).

Let us consider an integrable function, f(x), which is defined on a n-dimensional

unit hypercube - [0, 1]n and x ∈ [0, 1]n. The ANOVA representation of f(x) can

be

f(x) = f0 +
n∑
s=1

n∑
i1<..<is

fi1...is(x) (2.1)

where 1 ≤ i1 < i2 < ... < is ≤ n and 1 ≤ s ≤ n. The explicit form of Eq. (2.1) is

f(x) = f0 +
n∑
i=1

fi(xi) +
∑

1≤i<j≤n

fi,j(xi, xj) + ...+ f1,...,n(x1, ..., xn) (2.2)

where f0 is the constant term and represents the mean value of f(x), the func-

tion fi(xi) represents the contribution of variable xi to function f(x), the func-

tion fi,j(xi, xj) represents the pair correlated contribution to f(x) by the input
12



variables xi and xj, which are defined as 1 ≤ i < j ≤ n, etc. The last term

f1,...,n(x1, ..., xn) contains the correlated contribution of all input variables and

the total number of summands for Eq. (2.2) is 2n.

The ANOVA representation is well known and its properties are well described

in various works (36, 37, 40). ANOVA stands for Analysis Of Variances and it

represents a particular form of statistical hypothesis testing. Its sums of squares

indicate the variance of each component of the decomposition and comparisons of

mean squares, along with additional statistical tests, it allows testing of a nested

sequence of models. Widely used linear models with coefficient estimates and

standard errors are also, closely related to the ANOVA decomposition. Moreover,

it is computationally elegant and a variety of experimental designs were adapted

for ANOVA.

In order to obtain the separated contributions of the function of interest, it is

necessary to obtain the derivative of the function of interest according to its vari-

ables. The derivative represents a separate contribution to the function of interest

for a given variable. Therefore, consider a function, f(x), which is derivable and

integrable. Accordingly, all terms in Eq. (2.2) are integrable and derivable too.

Let us derive each term in Eq. (2.2) accordingly to its generic variable xi and

obtain the infinitesimal increment

dfi(xi) =
∂f(x)

∂xi
dxi (2.3)

which for the two dimensional terms is

dfi,j(xi, xj) =
∂f(x)

∂xi, xj
dxidxj (2.4)

Higher order terms are derived accordingly. Since the first term on the right side

of the Eq. (2.2) is a constant, i.e. f0 = C, hence df0 = 0, then the infinitesimal

increment of function f(x) can be written as

df(x) =
n∑
i=1

∂f(x)

∂xi
dxi +

∑
1≤i<j≤n

∂f(x)

∂xi, xj
dxidxj + ...+

∂f(x)

∂x1, ..., xn
dx1...dxn (2.5)

The Eq. (2.5) is the basic form of DE and it relates the change of the function

of interest on the change of input variables. In other words, Eq. (2.5) gives the

infinitesimal increment of the function in a particular point. Moreover, the equa-

tion describes the relationship between the stochastic spaces. The propagation of

information from the lower order stochastic space to the higher order stochastic
13



space depends on given partial derivative of the function of interest. However,

the most important aspect is the independence of each derivative. The deriva-

tive of a function in a given direction is a separate function and such that can

be handled separately. Therefore, multiple surrogate techniques can be used for

the problem of interest, i.e. each derivative part in DE can be handled with

a different surrogate technique. On the other hand, DE is very hard to use in

the practical applications and obtaining derivatives from a function of interest is

in many cases a hard task and in some cases practically impossible. Therefore,

the integral form is introduced. The integral form is a necessary step to obtain

the well known cut-HDMR model. In order to derive the integral form, let us

integrate Eq. (2.5) in the same way as derivatives were applied

fi(xi) =

∫
∂f(x)

∂xi
dxi (2.6)

which for the two dimensional terms is

fi,j(xi, xj) =

∫ ∫
∂f(x)

∂xi, xj
dxidxj (2.7)

Higher order terms are derived accordingly. Each term is handled as a separate

function and therefore, it is integrated separately.

The left hand side term in Eq. (2.5) is integrated in the following way∫
df(x) = f(x) + C (2.8)

where x represents a vector of inputs and C = −f0, i.e. it is a constant. However,

it is more practical to use definite integrals. The definite integral gives to the

equation more physical meaning and represents a finite increment to the quantity

of interest. Therefore, let us rewrite Eq. (2.8) in the following form∫ f(x)

f(cx)

df(x) = f(x)− f(cx) (2.9)

where f(x) represents a function value at point x and f(cx) represents a function

value at point cx. Using the Eq. (2.9) and a definite integral for each summand,

the integrated form of the Eq. (2.5) reads

f(x)− f(cx) =
n∑
i=1

∫ xi

cxi

∂f(ξ)

∂ξi
dξi+

∑
1≤i<j≤n

∫ xi

cxi

∫ xj

cxj

∂f(ξ)

∂ξi, ξj
dξidξj + ...+

∫ x1

cx1

...

∫ xn

cxn

∂f(ξ)

∂ξ1, ..., ξn
dξ1...dξn

(2.10)
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where cx represents a central position in the stochastic space, called the central

point1. In the cut-HDMR model this point is called anchored point. In this work,

the central point is considered as the statistical mean value of a given stochastic

random variable for all following chapters, i.e. cxi = mean(xi). If a different

position is assumed, it will be explicitly noted in the text.

This equation is similar to the essence of the cut-HDMR approach and to clarify

the similarity, the transformation of the derivative equation into the cut-HDMR

approach is later introduced in Sec. 2.3. In this work, each integral part of

Eq. (2.10) is called increment function. The notation for the increment function

is dFt and the subscript represents the given increment function, which is bounded

as follow 1 ≤ t ≤ 2n − 1. The increment function represents a finite increment

to function f(x) and its physical meaning is the influence of the given stochastic

domain to the function f(x). The number of integrable variables represents the

order of the increment function and higher order increment functions, i.e. ≥ 2,

represent the influence of the interactions between variables.

In order to obtain the sensitivity analysis used later in many decision criteria, it

is necessary to define the mean value and the variance for a given function. Using

the integral form of DE, the mean value for Eq. (2.2) can be obtained. Let us

remind that the terms in Eq. (2.10) are independent and therefore, each term can

be integrated separately. The function (2.10) is integrated into following form

µ =

∫ ∞
−∞

f(x)p(x)dx = f(cx) +
n∑
i=1

∫ ∞
−∞

∫ xi

cxi

∂f(ξ)

∂ξi
dξipi(xi)dxi+

∑
1≤i<j≤n

∫ ∞
−∞

∫ ∞
−∞

∫ xi

cxi

∫ xj

cxj

∂f(ξ)

∂ξi, ξj
dξidξjpij(xi, xj)dxidxj + ...+∫ ∞

−∞
...

∫ ∞
−∞

∫ x1

cx1

...

∫ xn

cxn

∂f(ξ)

∂ξ1, ..., ξn
dξ1...dξnp1...n(x1, ..., xn)dx1...dxn

(2.11)

where pi(xi) is the Probability Density Function (PDF) for the given distribution.

The probability of each variable is handled separately too. This is a direct conse-

quence of the independence of terms in Eq. (2.10). From Eq. (2.11), the partial

expected value, µi, can be defined. The partial expected value for the first order

terms is written in the following way

µi =

∫ ∞
−∞

∫ xi

cxi

∂f(ξ)

∂ξi
dξipi(xi)dxi (2.12)

1In this thesis, an upper-script before a letter represents a specific position in the stochastic

space, e.g. c represents the central point
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and for the second order terms the function reads

µij =

∫ ∞
−∞

∫ ∞
−∞

∫ xi

cxi

∫ xj

cxj

∂f(ξ)

∂ξi, ξj
dξidξjpij(xi, xj)dxidxj (2.13)

where pij(xi, xj) is the joint PDF. If random variables are independent from each

other, then the PDF is given by

pij(xi, xj) = pi(xi)pj(xj) (2.14)

Higher order partial expected values are defined accordingly. Unfortunately, the

same approach cannot be applied to the higher order moment-generating func-

tions. The explanation is given in Appendix A. On the other hand, the partial

variance can still be defined, however, it cannot be summed as the expected value.

The partial variance represents a variance of the given increment function and it

is a very good estimation of sensitivity for given increment function. The first

order partial variance, σ2
i (xi), reads

σ2
i =

∫ ∞
−∞

(∫ xi

cxi

∂f(ξ)

∂ξi
dξi − µi

)2

pi(xi)dxi (2.15)

and for the second order terms the function reads

σ2
ij =

∫ ∞
−∞

∫ ∞
−∞

(∫ xi

cxi

∫ xj

cxj

∂f(ξ)

∂ξi, ξj
dξidξj − µij

)2

pij(xi, xj)dxidxj (2.16)

Higher order partial variances are defined accordingly. The work of Sobol (41) is

followed and sensitivity indices are defined in the following way

St =
σ2
t

σ2
(2.17)

where t represents the selected increment function, i.e. the partial variance func-

tion, which is bounded as follow 1 ≤ k ≤ 2n − 1 and σ2 represents the total

variance defined as

σ2 =

∫ ∞
−∞

(f(x)− µ)2p(x)dx =

∫ ∞
−∞

...

∫ ∞
−∞

((f(cx) +
n∑
i=1

∫ xi

cxi

∂f(ξ)

∂ξi
dξi+

∑
1≤i<j≤n

∫ xi

cxi

∫ xj

cxj

∂f(ξ)

∂ξi, ξj
dξidξj + ...+

∫ x1

cx1

...

∫ xn

cxn

∂f(ξ)

∂ξ1, ..., ξn
dξ1...dξn)− µ)2p(x)dx1...dxn

(2.18)

Note that

σ2 6=
2n−1∑
t=1

σ2
t (2.19)
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Sensitivity indices are all non-negative and by using them, the functional structure

and the rank of variables for given functions can be estimated. In most non-linear

functions, the theoretical approach is hard to apply and therefore, the derivative

equation is transformed to the numerical approach leading to the well known

cut-HDMR model.

Now, let us compare DE to the well known ANOVA decomposition. The basic

concept behind HDMR is that many physical systems do not exhibit high-order

cooperative behavior as it is proved by statistical evidence (see (42)). On one

hand, the ANOVA decomposition was developed in order to quantify the influence

of each variable or interaction of variables, but it does not show why the high-

dimensional inputs in the various cases have a null influence on the output. In

other words, the ANOVA decomposition does not provide an explanation why

higher order interactions have a smaller effect than the lower ones (see (41)). On

the other hand, DE explains why this phenomenon is happening, i.e. in most of

the cases, the high order partial derivatives are smaller than the low order partial

derivatives. Moreover, DE shows why samples in the particular space have an

influence on the final output, while other samples not. In other words, one can

understand the structure of a given function in the stochastic space and influence

of the lower stochastic domain on the higher ones. This cannot be deduced from

the HDMR approach.

Moreover, if we look at the term df(x) alone, that part can be understood as

a change of a function along the stochastic space. One can intuitively think,

that df(x) is basically infinitesimal change around the central point of a given

function, i.e. the size of uncertainty around given point. Therefore, let x be

a set of random variables with assigned distributions, then df(x) represents an

infinitesimal change in the final Probability Density Function (PDF) given by

Eq. (2.5). If we focus on the right hand side of the Eq. (2.5), it can be seen that

this change is given only by its derivatives. Therefore, we can propose following:

Proposition 2.2.1 Let f(x) be a function with range D ∈ [−∞ ∞]n and its

domain x ∈ <n. Let x be a set of random variables with given PDF, then the

shape of resulting PDF is given only by input distributions and derivatives of the

given function, f(x).

The above postulate is proved using MC simulation in Appendix B. However, one

can understand from the postulate that the most simple model, which propagates

uncertainty is a linear model, i.e. hyper-dimensional surface.
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The integral form of DE is a variation of the cut-HDMR approach (introduced

later in this chapter - see Sec. 2.3) and represents the finite increment to the

function of interest. On the other hand, the DE itself represents the infinitesimal

increment to the function of interest and this is the main difference between the

integral form of DE and DE itself. Moreover, the standard cut-HDMR represen-

tation (see (32) or Sec. 2.3) is written in a set of analytic equations and does

not allow to deduce important conclusions discussed later in this section. The

integral form of DE shows in a clear way properties of the increment functions

such as the zero-th value of the increment function if one of the integral limits is

equal to the central point or the connection between derivatives and increment

functions.

As discussed earlier, there can be obtained several conclusions from the integral

form of DE and its integral variation. The first very important observation can

be made from Eq. (2.13) and Eq. (2.16). It can be seen that the magnitude of an

integral part, e.g.

dFi.j(xi, xj) =

∫ xi

cxi

∫ xj

cxj

∂f(ξ)

∂ξi, ξj
dξidξj

increases with the distance from the central point. At the same time, if the

Gaussian distribution is assumed, the probability of occurrence, pij...k, decreases,

i.e. the most of the samples are distributed around the central point, where

interaction effects are negligible. Therefore, it can be concluded that tails of the

output distribution are mainly given by the higher order partial derivatives, i.e. if

the output distribution has heavy tails and the input distributions are light tailed

(most cases in real life), the interaction terms are very strong in the function of

interest (see Chap. 5). This observation can be extended to other probability

distributions if one realizes that the higher order increment functions work only

if the lower order increment functions works, e.g. in order to be the second order

increment function non-zero (dF1.2(x1, x2) 6= 0), all the first order increment

functions included must be non-zero also (dF1(x1) 6= 0 and dF2(x2) 6= 0). One

can understand that the lower order increment function has a higher probability

of being non-zero than the corresponding higher order increment function, i.e.

P (dFi(xi) 6= 0) > P (dFi.j(xi, xj) 6= 0)

Taking into account the structure of DE, i.e. its additive form, one can quickly

realize that tails of the posterior distribution are given by the higher order in-

teractions as tails of the posterior distribution represents the maximum distance

from the expected value. Therefore, we can propose following:
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Proposition 2.2.2 Let f(x) be a function with range D ∈ [−∞ ∞]n and its

domain x ∈ <n. Let y be the probability density function of an output of function

f(x), then the tails of the distribution y are heavier, the stronger interactions are

in function f(x).

In a practical sense, one can expect strong interactions (in the sense of HDMR),

if the observed output distribution has heavy tails. This is very important for sci-

entific disciplines such as reliability studies, where the main focus is given on the

tails of output distributions. Therefore, one interested into the tails of given dis-

tribution must always take into account higher order increment functions. Also,

the integral form of DE and proposed definition explain why the high dimensional

normal distribution has heavy tails. In other words, the normal distribution is

defined in the following way:

PDF (x1, ...xn) =
1√

(2π)n|C|
e−

1
2
(x−µPDF )TC(x−µPDF ) (2.20)

where C is the semi positive covariance matrix and µPDF represents the mean

value of given distributions. Application of DE to Eq. (2.20), one can easily see

that all the higher partial derivatives are non-zero. Therefore, one can conclude

that Eq. (2.20) have large tails. The proposed definition is confirmed in practical

examples given later in this thesis.

The second important conclusion is the stochastic domain dependence. This

aspect was already mentioned in Eq. (2.5) and it can be written as follows

if

∂f(x)

∂xi
= 0 ∀x ∈ Rn

then

∂f(x)

∂xj...∂xk∂xi
= 0 ∀x ∈ Rn

This statement can be extended to the increment functions in the following way

if

dFi(x) = 0 ∀x ∈ Rn

then
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dFij...k(x) = 0 ∀x ∈ Rn

where dFi represents the increment function. The above assumption comes nat-

urally from a basic integral calculus as an integration of 0 is always 0, i.e. inte-

gration of zero-th derivative is always 0. Moreover, the increment function will

be either increasing, decreasing or null, it will never be a constant in the given

domain. The second conclusion can be extended to the following statement.

Each high order partial derivative contains information about the low order par-

tial derivatives and vice versa, i.e. ∂f(x)/∂x1∂x2 contains information about

∂f(x)/∂x1 and about ∂f(x)/∂x2. Therefore, it can be concluded: for the first

case

if

∂f(x)

∂xi
≥ ∂f(x)

∂xi∂xj
∀x ∈ Rn

then

dFi(x) ≥ dFij(x) ∀x ∈ Rn

and for the second case

if

∂f(x)

∂xi
<

∂f(x)

∂xi∂xj
∀x ∈

(
Rn,

∂f(x)

∂xi∂xj
6= 0

)
then

dFi(x) < dFij(x) ∀x ∈
(
Rn,

∂f(x)

∂xi∂xj
6= 0

)
However, the second case was encountered only for rare problems and the first

case is valid for the majority of problems. From the above conditions and for

the first case, if the low order increment function converges 1 using a certain

number of samples, the higher order increment functions converge under less or

same number of samples for a given domain. This will lead to a simplification

of the sampling space and dramatic reduction of necessary samples. Moreover,

the sensitivity analysis has to hold the same condition. The same conclusion was

experimentally confirmed in (36).

1Convergent in the sense that the measured residual for the surrogate model used in given

increment function is below given threshold.
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One very important conclusion can be done with a connection to the Polynomial

models and the Smolyak Sparse grid approach. Smolyak noticed that the same

accuracy can be achieved using fewer samples if the higher domains are sampled

with a lower number of samples, i.e. use a lower order quadrature. He developed

the famous Smolyak Sparse grid approach for the numerical integration, where

higher order domains are sampled with a lower number of samples. With a

combination of the Generalized Polynomial Chaos, this created a powerful tool

to propagate uncertainty in high dimensional spaces. However, it was never

explained (according to author’s knowledge) why this approach works and more

importantly where this approach does not work (31). Let us explain why the

polynomial models combined with the Smolyak Sparse grid work on an applied

example and using DE. Let us assume the following function, f(x1, x2) = x51 +

x52 + x1x2 and its following derivatives:

∂f(x1, x2)

∂x1
= 5x41 + x2

∂f(x1, x2)

∂x2
= 5x42 + x1

∂f(x1, x2)

∂x1∂x1
= 1

In this particular example, the lower order derivatives are more complicated than

the higher ones, i.e. case 1. Because Eq. (2.5) holds and each term is independent,

it can be easily seen that to interpolate the second order derivative is much

easier than to interpolate the first order derivative. In other words, to create an

interpolation technique for the first order derivatives, one needs more samples

than for the second order derivative. Contrary, if the higher order derivatives are

more complicated than the lower ones, the polynomial chaos combined with the

Smolyak Sparse grid fails. Therefore, observing derivatives gives us insight, when

the Sparse Grid approach works and more importantly when it will not work

and another approach has to be used. If the higher order derivatives are more

complicated than the lower one, naturally one will need more samples in given

domain then in the lower domains. For example, Arrhenius equation is used

for chemical reactions. The Arrhenius equation is not very well derivable and

therefore, it will need more samples in higher domains. This is well documented

in work (43). Unfortunately, the chemical flows are more complicated and a

presence of discontinuities in the function is a common phenomenon. This issue

will be addressed later in this work.
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The last conclusion can be deduced from the derivatives in Eq. (2.5). Each

derivative represents a separable problem and such that allows using independent

surrogate techniques. Therefore, one can intuitively think that each of these

surrogate techniques has a local maximum accuracy, which can be acquired by

given surrogate technique. Therefore, if only a certain order of DE is selected,

i.e. not all increment functions are included in the final model, the maximum

achievable accuracy is given by the influence of the neglected increment functions.

In other words, adding higher orders of increment function will allow higher

accuracy. This is well shown in work of Zhang et al. (40).

2.3 Numerical approach - cut-HDMR model deriva-

tion

The integral form of DE can be applied to real problems, however, the derivatives

and integrals are not practical to compute. It is more convenient to transform

the integral form into a set of equations, which are easy to solve, i.e. transform

the integral form to the analytic equation. The numerical approach is based on

Eq. (2.10) and the well know First Fundamental Theorem of Calculus (44). The

theorem can be written in the following way

f(b)− f(a) =

∫ b

a

B(x)dx (2.21)

where B(x) is a continuous function on the closed interval [a, b]. Using the Second

Fundamental theorem of Calculus (44) and defining B(x) in the following way

B(x) =
∂f(x)

∂x

Eq. (2.21) can be rewritten such that

f(b)− f(a) =

∫ b

a

∂f(x)

∂x
dx (2.22)

This simple formula can be applied to the integral form of DE (Eq. (2.10)) for

all the first order derivatives. This step allows to cast off the derivative and the

integral and replace them with a simple equation.
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To closely explain the numerical application, let us consider a continuous function

f(x1, x2, x3). The first term in the integral form of DE using Eq. (2.22) reads

dF1(x1) =

∫ x1

cx1

∂f(ξ1,
c x2,

c x3)

∂ξ1
dξ1 = f(x1,

c x2,
c x3)− f(cx1,

c x2,
c x3) (2.23)

where cxi represents the position of the central point of the random variable xi.

The increment function, dF1(x), contains only one random variable and all other

random variables are held constant at their central value. Increment functions

for other variables (x2, x3) are created in a similar way.

Second order increment functions are a bit more complex to handle. Let us

consider the previous function and assume a point on a plane, e.g. x3 = cx3. If

we assume that all integration parts of the integral DE, which are involving x3,

are zero and this assumption allows to rewrite the integral form of DE as follows

f(x1, x2,
c x3)− f(cx1,

c x2,
c x3) =∫ x1

cx1

∫ x2

cx2

∂f(ξ1, x2,
c x3)

∂ξ1∂ξ2
dξ1dξ2

+

∫ x1

cx1

∂f(ξ1,
c x2,

c x3)

∂ξ1
dξ1 +

∫ x2

cx2

∂f(cx1, ξ2,
c x3)

∂ξ2
dξ2

(2.24)

Clearly the one dimensional integrals of Eq. (2.24) can be replaced by Eq. (2.23)

and a similar equation for x2. This leads to the following simplification

f(x1, x2,
cx3)− f(cx1,

cx2,
cx3) =

∫ x1

cx1

∫ x2

cx2

∂f(ξ1, ξ2,
cx3)

∂ξ1∂ξ2
dξ1dξ2

+f(x1,
cx2,

cx3)− f(cx1,
cx2,

cx3) + f(cx1, x2,
cx3)− f(cx1,

cx2,
cx3)

(2.25)

which can be rewritten into the following form1

dF12(x1, x2) =

∫ x1

cx1

∫ x2

cx2

∂f(ξ1, ξ2,
cx3)

∂ξ1∂ξ2
dξ1dξ2 =

f(x1, x2,
cx3)− f(cx1,

cx2,
cx3)− f(x1,

cx2,
cx3)

+f(cx1,
cx2,

cx3)− f(cx1, x2,
cx3) + f(cx1,

cx2,
cx3)

(2.26)

where the increment function, dF12(x1, x2), is treated as a function with only

two variables and the rest is held constant. These steps allow to cast off the

double integral and replace it with a simple equation. The same approach can be

1The equation can be simplified; however, in order to show the process, the equation is kept

in its original form.
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applied to remaining parts of the integral form of DE. Eq. (2.23) and Eq. (2.26)

are the same as in the cut-HDMR approach, see (32, 35, 45). From Eq. (2.23)

and Eq. (2.26) the following conclusion can be made:

∂dFi...k(x)

∂xi...∂xk
=

∂f(x)

∂xi...∂xk
(2.27)

The final step is to put all increment functions into the basic shape of the integral

form of DE, which reads

f(x1, x2, x3)− f(cx1,
c x2,

c x3) = dF1(x1) + dF2(x2) + dF3(x3) + dF12(x1, x2)+

dF13(x1, x3) + dF23(x2, x3) + dF123(x1, x2, x3)

(2.28)

For each increment function, an independent surrogate technique is used and

Eq. (2.28) represents a sum of independent interpolation techniques. More im-

portantly, the increment function can be sampled independently, which is direct

consequence of orthogonality of increment functions. Various techniques as a sur-

rogate model for each increment function can be used. For example a Kriging

surrogate model or Stochastic Collocation approach. Note that higher increment

functions in Eq. (2.28) can be zero and such that they can be easily neglected.

To compute the partial expected value and the partial variance, the established

theoretical partial mean and variance are not suitable. Therefore, a numerical

estimation of partial mean and variance follows

µt =
1

z

z∑
j=1

dFt(xj) (2.29)

σ2
t =

1

z − 1

z∑
j=1

(dFt(xj)− µt)2 (2.30)

where t represents a selected increment function and z represents the number

of samples of MC simulation applied on the surrogate model of the increment

function, dFt(x). The expected value is established as a sum of partial expected

values and reads

µ = f(cx) +
2n−1∑
t=1

µt (2.31)
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where n represents a number of random variables. The total variance is defined

as follows

σ2 =
1

z − 1

z∑
j=1

(
2n−1∑
t=1

dFt(xj)− µ

)2

(2.32)

where, again, n represents the number of random variables. One fundamental

problem arises from the estimation of the total variance. The total variance

requires all increment functions to be included and the number of samples required

grows exponentially with increasing number of random variables. Practically,

higher order increment functions are neglected if they have zero or very low

influence on the final result and the functions (2.31,2.32) become

µ ≈ f(cx) +

sD∑
t=1

µt (2.33)

σ2 ≈ 1

z − 1

z∑
j=1

(
sD∑
t=1

dFt(xj)− µ

)2

(2.34)

where sD represents a selected number of increment functions, which is limited

to sD ≤ 2n − 1. The sensitivity indices are obtained via Eq. (2.17).

2.3.1 The interpolation process

In this work, the increment functions are considered a separable problem. There-

fore, the surrogate model building process is done in a new and more efficient way,

where each increment function is handled as a separate problem and the final

model comes from the sum of various interpolation techniques. This allows com-

bining various interpolation techniques to overcome any interpolation problem.

The selected interpolation technique is applied in the following way. Let us con-

sider the general increment function dFt(xi, ..., xj), the interpolation model of the

increment function is created using only samples from the given stochastic domain

and the rest is held constant, i.e. only samples [cx1, ...,
c xi−1, xi, ..., xj,

c xj+1, ...,
c xn]

are considered. Other samples are completely neglected in the process of inter-

polation, i.e. they have a null influence on the process. The interpolation model

is created and stored. The statistical properties of the given increment function

are obtained using MC sampling applied directly to this surrogate model. The

final model is created as a sum of these models (Eq. (2.28)) and overall statistical
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properties are obtained directly from the final model. In Fig. 2.2 is showed a

diagram how the interpolation process is handled.

dF1(x) dF2(x) dFt(x)

F(x)

Surrogate
model

Surrogate
model

Surrogate
model

Re-combination

Figure 2.1: Flow chart of the main approach

2.4 Visualization of higher order sensitivity and

sensitivity estimation

The process of sensitivity visualization is easy and straightforward. At first, let

us recall the first important property of DE, the independence of the increment

function. This allows to visualize each increment function separately and observe

its influence on the model. For visualization purposes, histograms are used.

The first order increment function represents the sensitivity of one particular

variable as it can be seen in Eq. (2.23). Using MC sampling, the statistical

properties of this particular variable can be observed and its influence can be

estimated. From the obtained samples, the partial mean value and the partial

variance can be estimated. The partial mean value represents the influence of

the input distribution on the final mean value of the output distribution and the

partial variance represents the variability for the given distribution.
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Let us now assume a higher order increment function. In this case, if one of the

variables is equal to the central point, the increment function is zero, e.g. the

increment function dF12 have zero-th value at abscissas x1 and x2. Therefore, this

function represents a pure interaction effect, i.e. how a combination of variables

influences the final model. In the engineering world, this represents, for example,

chemical reactions in hypersonic flows.

In order to explain the above description on an example, let us consider the

following function

F (x1, x2, x3) = x31 + 0.1x22 − ex1x3 (2.35)

where xi is a random variable with an uniform distribution and defined on inter-

val [0, 2]. On this function, the properties of DE can be easily demonstrated and

the visualization of high order increment functions can be showed. Histogram of

each increment function is showed in Fig. 2.3 and the histogram of the function

F (Eq. 2.35) is showed in Fig. 2.2. From these histograms, it can be observed

Figure 2.2: Visualization of the final histogram

the influence of each random variable on the output. It can be seen that the

increment function, dF1, is moving the mean value to higher values and slightly

influencing the variance. The second increment function, dF2, is influencing the

mean value and the variance in a negligible way. However, it can be easily under-

stood from the histogram that the function is monotonic in a given range. From

the histogram of the increment function, dF3, it can be observed that the function

is monotonic and with slight influence on the final PDF. However, if variable x3

is coupled with variable x1, the increment function, dF13, plays the major role
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Figure 2.3: Visualization of the partial histograms for each increment function

on the shape of the final PDF and it is responsible for tails of the final distribu-

tion. In physical meaning, the increment function, dF13 represents an interaction

between inputs (x1, x3) such as, previously mentioned, chemical reactions. Note

that all the other increment functions in this example are zero and therefore, they

are not showed. Practical approach how to reconstruct a shape of an increment

function from the partial histogram is showed in Appendix C.

The integral form of DE equation allows visualizing the behaviour of a function in

the stochastic domain. Note that using DE is different than just simple sampling.

The derivative process separates variables of interest from the non-interesting

variables and following integration reshapes the function of interest, i.e. creates

a function of increment.

2.5 Discussion about Sensitivity analysis, inter-

polation process, and Derivative Equation

The possibility to combine various surrogate models brings a new way to in-

terpolate high dimensional problems. Followed by the sensitivity analysis, the
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approach brings a completely new insight into high dimensional uncertainty.

The independence of the increment functions allows establishing the statistical

properties of each increment function separately. This is very useful to estimate

the PDF of interaction terms, which is necessary for the prediction and neglection

of the higher order increment functions used later in this thesis. Moreover, the

influence of input probability can be established by application of MC sampling

with different input distributions to the created increment function model. How-

ever, the probabilistic approach to be valid, the central point has to be selected

as a mean of given random variables.

In this work, the interpolation process is slightly more complex to understand.

Each increment function is handled separately, i.e. for each increment function is

used a different surrogate model (see Fig. 2.2). This is later used in this thesis and

proved to be an efficient way to make the method robust and efficient. Moreover,

it is easier and more accurate to interpolate each problem separately rather than

trying to interpolate altogether. However, at the same time, each interpolation

technique represents a new challenge and errors in one interpolation technique

will propagate to the whole model. How to handle propagation of errors from

increment functions to the whole model is later explained in this thesis.

2.6 Conclusion

In this chapter, the cut-HDMR model is derived in a different way via the deriva-

tive equation, which is also defined here. In the derivation process of the cut-

HDMR model, important conclusions are made. The derivative equation shows

how the information in the stochastic space propagates from the lower order

stochastic space to the higher order stochastic space in an understandable way.

The interesting conclusion is made about the tails of the posterior PDF. It is

showed that the tails of the output distribution are mainly given by the high

order interaction terms. This is confirmed in the applied examples showed in

later chapters.

The new derivation of the cut-HDMR approach allowed different approach for

the approximation / interpolation process. The stochastic space is decomposed

into smaller spaces and these smaller domains are then interpolated with an

independent surrogate model. The final model is constructed as a sum of these
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partial surrogate models. Each of these partial surrogate models is constructed

with a different number of samples, which makes the overall process very effective,

especially in high dimensional spaces.

The cut-HDMR approach allowed a new type of sensitivity analysis and result

presentation. The sensitivity analysis is based on the Sobol approach and it is

extended visualizing the influence via the partial histograms. The visualization

is shown on a simple example and helps the user to get a deeper insight into the

influence of the stochastic variable.
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Chapter 3

Adaptive algorithm - The first

order increment functions

In this chapter, an adaptive scheme for the sampling procedure is introduced.

However, the focus is only on the first order increment functions. Extension to

the higher order increment functions is not straightforward and therefore, it is

introduced in the following chapters.

First, the theory is established for the adaptive sampling. The adaptive sampling

takes into account shape of the underlying problem and also the input probability

distribution. This leads to an optimal distribution of samples along given abscissa.

In the next section, the numerical application is introduced. The convergence

process is discussed in Sec. 3.4, where the local and global convergence process is

described. The adaptive scheme is tested on examples, where the first example, is

a simple 1-D problem. The second example is a 9-D real life problem, where the

global process is showed and results are compared with the Monte Carlo (MC)

simulations. Last sections are given to discussion about the adaptive process and

to the conclusion.

3.1 Literature review

In the most cases, the non-intrusive approach is relying on an approximation of

the expensive code. The approximation of interest can be a quantity of interest,

such as the mean and the standard deviation, or the behavior of an expensive

code in a domain of interest. In this respect, two main ways are currently dis-
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cussed in the literature: the first way relies on the numerical integration theory,

while the second approach builds a cheap emulator of the expensive code. The

numerical integration approach is easy to implement and it is a natural way if the

standard probability space (Lebesgue space) is used. The integration techniques

such as Non-Intrusive Polynomial Chaos (NIPC) (15, 16, 17, 18, 19, 20, 21, 22)

or stochastic collocation (SC) (15, 16) received a large interest in last years and

these techniques proved to be reliable over wide range of engineering problems

such as flow over airfoil (46), single phase rectifier (18) or acoustics of horn (4).

In the last example, the NIPC is performed as a multi fidelity uncertainty quan-

tification. However, the integration methods rely on the accurate estimation of

integration quantity, i.e. mean or standard deviation, while other characteristics

of the underlying function do not have to be produced in a satisfactory quality,

i.e. tails of the output distribution. Nevertheless, even this approach can be

considered as an approximation technique.

The second approach builds a cheap emulator of an expensive code, which be-

haves similarly to the expensive code. The statistical properties are obtained by

the Monte Carlo sampling directly on the emulator while taking advantage of a

low computational time of the emulator. This approach is useful for applications,

where the whole PDF is needed and it is mainly represented by methods such as

Polynomial models (47), Kriging Model (9, 23, 24), the Pade-Legendre approxi-

mation (48) and Radial Basis functions (9). However, the surrogate models have

certain drawbacks. One of the problems is the application of two methods, i.e.

the application of a surrogate model followed by the application of MC sampling.

Each method represents a source of error, which needs to be taken into account.

Currently, the main focus is given only to minimization of the error of the inter-

polation, i.e. surrogate model, while MC error is assumed to be negligibly small

due to a large number of samples.

Both approaches require a sampling strategy, where different sampling strategy

can significantly change the accuracy of the interpolation. All these aspects make

an interpolation process, using the surrogate model, very challenging and many

interesting papers (49, 50, 51) and books (9, 52) have been written about this

topic.

The common problem for both methods, either for an integration theory or

a surrogate modelling, is the Curse of Dimensionality, introduced by Richard

Bellman (26). This aspect limits the use of interpolation techniques to a low
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number of stochastic dimensions (¡5). In many previous works, sampling tech-

niques were proposed to handle the CoD problem. The Latin Hypercube sam-

pling (LHS) (9) was successfully used in various problems and some different

approaches are available, such as LaPSO (27), Uniform Design (UD) (9) or Ham-

mersley Sampling (19, 28). These sampling strategies coupled with a surrogate

model proved to be an efficient tool for surrogate modeling. In the framework of

Uncertainty Quantification (UQ) problems, Smolyak Sparse grid (30, 31) and its

various modifications became very popular. The Smolyak sparse grid sampling

strategy combined with the Non-intrusive Polynomial Chaos (NIPC) gives very

accurate results for a low number of samples.

Another aspect is the adaptive process of a numerical integration. The adaptive

Smolyak sparse grid was mainly used to handle non-smooth functions in various

applications (35, 53, 54) and it proved to be a reliable uncertainty quantification

tool. In the integration theory, the focus is also given to the adaptive selection of

a proper basis for an integrating polynomial (55, 56). This leads to an adaptive

sampling process and it helps to reduce the number of samples. On the other

hand, the adaptive techniques for a surrogate approach focus mainly on a sam-

pling process over the stochastic domain. The basic sequential sampling is based

on a random sampling, which maximize coverage of the stochastic space, while

the convergence of the surrogate model is observed (9, 51, 57, 58). Other meth-

ods (59, 60, 61) take into account progress of the surrogate model and take into

account the behaviour of the underlying function. Another interesting approach

is Lola-Voronoi (62), which tries to use gradients in sequential sampling. Very

popular sequential sampling is connected with a Kriging surrogate model (63, 64),

where connection of exploration and exploitation is given. All these methods ob-

tained a large interest in the recent development of powerful computers.

3.2 Basic theory of the 1-D adaptive process

For polynomial models used in the uncertainty quantification, the adaptive mech-

anism is based on the nested property of the Clenshaw-Curtis nodes (65) or Adap-

tive Newton-Cotes sampling based on a tree methodology (35). The Clenshaw-

Curtis nodes are positioned according to Clenshaw-Curtis equation and new sam-

ples, in each iteration, are added according to this equation. Adaptive Newton-

Cotes approach position new sample in the neighborhood of samples with the

33



highest error (66), where the error is obtained from a previous iteration. Other

works, which focus on the adaptive sampling for other surrogate techniques, such

as Kriging or radial basis function, can be based on various aspects. Sequential

sampling (60) position the new sample in an area of the highest error provided

by the surrogate model. Space filling design (67) position the new sample with

an aim to maximize the coverage area. Another method (59) focus on the use of

Laplacian in search of a position for new samples. There are multiple approaches

for surrogate models, however, it is not in a scope of this work to describe them

all.

In this work, the approach is handled as a surrogate modelling problem and the

algorithm directly finds position of a new sample. The propagation of uncertainty

is then done using the Monte Carlo sampling on a given surrogate model. In

order to introduce the basics of the algorithm, consider an integrable function,

f(x), which is defined on a n-dimensional unit hypercube - [0, 1]n and x ∈ [0, 1]n.

Decompose the function, f(x), using the cut-HDMR approach. The focus is

aimed on the first order increment function, dFi. The equation for the first order

increment function reads

dFi(xi) =

∫ xi

cxi

∂f(ξi,
cx)

∂ξi
dξi = f(xi,

cx)− f(cx) (3.1)

where xi represents the stochastic variable of interest, cxi represents i-th compo-

nent of the central point and f(xi,
cx) represents a function of interest with all

variables hold constant except xi. Note that the leading superscript represents

a position in the stochastic space. The central point is considered the statis-

tical mean value of a given stochastic random variable, i.e. cxi = mean(xi).

Let SdF k−1
i (xi) be the surrogate model of the increment function, dFi(xi), using

nSdF samples in iteration k − 1. Then, let SdF k
i (xi) be the surrogate model of

the increment function, dFi, using nSdF +kSdF samples in iteration k, where kSdF

represents added samples. The comparison of each surrogate technique is done

via the Error Comparison (EC) function, which reads

εk(xi) =
(
SdF k

i (xi)− SdF k−1
i (xi)

)2
Fpos(x̃i)+

d∑
D=1

1

(D + 1)!

((
∂DSdF k

i (xi)

∂xDi
− ∂DSdF k−1

i (xi)

∂xDi

)2
) 1

D+1

Fpos(x̃i)
(3.2)

where D represents the order of derivative, d represents the maximum selected

derivative order, xi represents the stochastic random variable, x̃i represents a
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normalized stochastic random variable and Fpos(x̃i) represents a position function

defined in the following. In the ideal case, the order of derivative, d, can go to

infinity, while for engineering purposes the order d should be truncated to a finite

number, e.g. d = 2 or d = 3. The normalized variable x̃i is defined as follows

x̃i =
xi − (max(xi)+min(xi))

2
(max(xi)+min(xi))

2

(3.3)

where min(xi) is the minimum for the given distribution of xi and max(xi) rep-

resents the maximum for the given distribution of xi. Note that the infinite

distributions are truncated to a finite number. The normalization assures that

the value of x̃i is bounded between −1 and 1. The position function, Fpos(x̃i),

represents a measurement of distance between samples and it reads

Fpos(x̃i) = min

(√
(x̃i −K(x̃i)(x̃i − x̃ki

)2)− x̃ki
)2
)

(3.4)

where x̃ki
represents a vector of normalized samples used to create given surro-

gate model, i.e. x̃ki =
(
x̃i1 , ..., x̃inSdF+kSdF

)
and function K(x̃i) is defined in the

following way

K(x̃i) = kshift
x̃i
| x̃i |

(3.5)

where kshift represents a shift coefficient. The shift coefficient can be set to a

constant for all engineering problems due to the process of normalization. How-

ever, the shift coefficient should be set between 0 and 0.5. The position function

represents an exploration searching process over the stochastic domain, i.e. the

stochastic domain is more thoroughly searched and the samples are not piled in

small region of the domain. An example of the position function is showed in

Fig. 3.1.

The EC function has several significant attributes. The first part of the EC func-

tion represents the difference of the interpolation process between each iteration.

If the selected maximum order of derivative is 0 (d = 0), then the EC function is

similar to the other techniques such as Generalization error (56) or Leave-one-out

error (56). The derivative part of the EC function compares the shape of given

surrogate models. Third part represents the position function. This part assures

that the EC function is zero at the position of a sampled point and a new sample

point is not positioned at already sampled positions. Moreover, the part

K(x̃i)(x̃i − x̃ki
)2
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Figure 3.1: The position function created with 3 samples

of Eq. (3.4) slightly curves the position function and therefore, the spacing is not

equidistant. For simple functions, this prevents the Runge phenomena (68) for

polynomial interpolation and improves the search over the stochastic domain.

When the EC function is defined, the next step is to take into account the in-

put probability distribution. Let pi(xi) be the Probability Distribution Function

assigned to a random variable xi. The Probability Error Comparison (PEC) is

then defined as follows

ε̃k(xi) = εk(xi)pi(xi) (3.6)

The final step is to obtain the position of a new sample. This is done in the

following way
xnewi = arg max

xi

ε̃k(xi) (3.7)

The proposed approach takes into account all necessary aspects of the probabilis-

tic surrogate modelling.

It is easy to see that in the case of a highly non-linear function, the main con-

tribution to PEC function is given by its derivative part, while in the case of a

flat plateau, the samples are spread more uniformly due to the position function.

Moreover, if the surrogate model oscillates, the derivative part of PEC function

takes a leading part and propose a new sample in the area of oscillations.
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3.3 Numerical application of the 1-D adaptive

algorithm

The analytic approach explains the theory behind the proposed algorithm, how-

ever, it is impractical for common use. Therefore, the numerical approach is pro-

posed. Let SdF k
i (xi) be the surrogate model of the increment function, dFi(xi),

using nSdF + kSdF samples in iteration k. Assume a vector xi of real numbers,

xi = (xi1 , xi2 , ..., xiz), which are equidistantly distributed on the abscissa i and

assume a vector rxi of random numbers distributed accordingly to the input dis-

tribution, pi. Then, the first and the last part of vector xi are defined in the

following way

xi1 = inf(rxi)

xiz = sup(rxi)
(3.8)

where inf stands for infimum and sup stands for supremum. The vector of

surrogate responses can be defined in the following way

Yk
i = SdF k

i (xi) (3.9)

Derivatives used in Eq. (3.2) can be obtained directly from a surrogate technique

or using the central finite difference method. The equation for the central finite

differences reads

δ1Y
k
i =

SdF k
i (xi +∆i)− SdF k

i (xi −∆i)

2∆i

(3.10)

where ∆i represents a difference step in direction i. Higher order derivatives are

obtained in a similar way. For current chapter, the Lagrange interpolation is used

and the derivatives are directly obtained from the interpolation model. However,

later in the work, Lagrange interpolation is replaced with a multi surrogate ap-

proach and the central differencing scheme is used. The normalization of vector

xi (Eq. (3.3)) is done in the following way,

x̃i =
xi − (max(xi)+min(xi))

2
(max(xi)+min(xi))

2

(3.11)

Using samples from vector x̃i, obtained in Eq. (3.11), and Eq. (3.4), values of the

position function along the stochastic space can be obtained. The last step is to

take Eq. (3.2) and obtain values of the EC function. The equation reads

εki =
(
Yk
i −Yk−1

i

)2
Fpos +

d∑
D=1

1

(D + 1)!

((
δDYk

i − δDYk−1
i

)2) 1
D+1

Fpos (3.12)
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where D represents the order of derivative, d represents the selected maximum

derivative order, k represents iteration of the adaptive process and Fpos represents

the values of the position function obtained for vector x̃i. Note that Yi is obtained

for vector xi and therefore, the given stochastic domain is thoroughly searched.

In this work, the PDF represents a weight factor. This factor helps to emphasize

regions, where the PDF have a high probability and neglects the areas of a low

probability. Therefore, the implementation of the probability into the proposed

adaptive code is done in the following way: Let rxi be the vector of random

numbers defined earlier. The histogram, hpi , is created from the vector rxi, where

the number of bins is equal to the number of samples in vector xi. The histogram

is normalized to obtain the probability distribution, h̃pi . The PEC function is

then calculated as follows

ε̃ki = εki h̃
p
i (3.13)

The final step is to find the position of a new sample, which is done in the following

way
xnewi = arg max

xi

ε̃ki (3.14)

The search is done over samples from vector xi, i.e. the sample from vector xi

with the large value of ε̃ki is selected as a position for new expensive function

sample. Only one sample is considered in each iteration. When a new sample

is found, the values of the function at a given point are obtained and stopping

criteria are tested (discussed in the following section). If the algorithm is not

stopped, the process is repeated from the beginning. The stopping criteria are

discussed in the following parts of this chapter.

3.4 Convergence - The stopping criteria

The convergence process of the adaptive approach for the proposed method is

slightly different from the other techniques. It is divided into two levels, where

the first level represents the convergence of each surrogate technique separately

and the second level represents the convergence of the whole model. First, the

local convergence is explained.
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3.4.1 Convergence - The local convergence

The basic idea of the adaptive process lies in the comparison of two surrogate

models. In other words, how added new sample influences the whole interpolation

process. The convergence criteria could be built directly on the PEC function,

however, it is not a good convergence criterion, although it converges in the L2

sense. Therefore, the convergence process is based on the observation of the mean

and the standard deviation of the surrogate model representation. Moreover,

this approach allows to compare the increment functions between themselves and

therefore, reduce the number of necessary samples.

The local convergence process is applied on each surrogate model independently,

i.e. each increment function is subject to an individual local convergence. Let

us assume a set of increment functions ST , where each increment function is ap-

proximated with an independent surrogate model. When the model is converged,

the stochastic space under which the model belongs, is not sampled anymore.

Let us now recall a useful statistical property of each increment function, the

partial mean and the partial standard deviation. The partial mean and the

partial variance are Eq. (2.12) and Eq. (2.15), respectively. The equations reads

µki =

∫ ∞
−∞

SdFi(xi)
kpi(xi)dxi (3.15)

(σki )2 =

∫ ∞
−∞

(SdFi(xi)
k − µi)2pi(xi)dxi (3.16)

The increment function dFi(xi) is replaced with SdFi(xi) to emphasize that the

surrogate model is used to estimate the statistical properties. The numerical

approach is followed and both equations (Eq. (3.15) and Eq. (3.16)) are replaced

with the following equations

µki ≈
1

ns

ns∑
t=1

SdFi(rxi)
k (3.17)

(σki )2 ≈ 1

ns − 1

ns∑
t=1

(SdFi(rxi)
k − µki )2 (3.18)

where ns represents the length of vector rxi. Note that PDF is explicitly given

in the samples of vector rxi. The total mean and the total variance of the first
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order increment functions are defined in the following way

µk ≈ f(cx) +

sD∑
i=1

µki (3.19)

(σk)2 ≈ 1

ns − 1

ns∑
t=1

(
n∑
i=1

SdFi(rxi)
k − µ

)2

(3.20)

The residual of the mean and the variance are estimated in the following way

Rk
µi

=

∣∣∣∣µki − µk−1i

µk

∣∣∣∣ (3.21)

Rk
σi

=

∣∣∣∣(σki )2 − (σk−1i )2

(σk)2

∣∣∣∣ (3.22)

where k represents an iteration of the process. The variance and the mean are

observed simultaneously. This is important aspect as both values have to be

fully converged to ensure the accuracy of the output distribution. Note that

Eq. (3.21) and Eq.(3.22) can diverge if the denominator goes to zero. This is

solved by additional convergence criteria discussed in the following part.

Observing only the total residuals (Eq. (3.21) and Eq.(3.22)) is not sufficient in

many cases, i.e. the number of samples is not optimal. The total variance (σ2) and

the total mean (µ) are constructed from all the involved increment functions and

therefore, all the constructed surrogate models are influencing the total variance

(σ2) and the total mean (µ). In a case that one of the surrogate model is diverging,

the whole convergence process is slowed. This is not desirable and therefore, one

more convergence condition is applied. The logistic convergence is defined as

follows

LRk
µi

=

∣∣∣∣µki − µk−1i

µki

∣∣∣∣ (3.23)

LRk
σi

=

∣∣∣∣(σki )2 − (σk−1i )2

(σki )2

∣∣∣∣ (3.24)

The normal and the logistic convergence have a very important relationship:

if all involved surrogate techniques are converged, the normal and the logistic

convergence hold the following condition

LRk
µi
≥ Rk

µi
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LRk
σi
≥ Rk

σi

On the other hand, if the condition is not met, one of the surrogate models

is diverging and it needs more samples. However, all the other models can be

fully converged. In order to decrease the necessary number of samples, the local

stopping criterion is implemented in the following way

Logistic convergence

if
LRk+1

µi
< Rµ

seti or Rk+1
µi

< Rµ
seti

and
LRk+1

σi
< Rσ

seti
or Rk+1

σi
< Rσ

seti

then→ stop

Normal convergence

(3.25)

where Rset represents the residual for a local convergence process. How to set

the residual is discussed later in this chapter. The proposed approach ensures

that each surrogate model is handled according to its influence to the final global

model, i.e. if the increment function has a significant contribution to the final

global model, the samples are added. On the other hand, the non-significant

increment functions are sampled with the minimum samples necessary to satisfy

the global accuracy. Moreover, the convergence process is stopped if the local

surrogate model is locally converged and further sampling would not bring desired

improvement. This ensure that the optimal number of samples is used. The whole

process of the local convergence is described in Alg. 1:
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Algorithm 1 Algorithm for the local convergence of the first order increment

functions - part 1

Initialize the process:

1. Obtain Rµ
seti and Rσ

seti
for each increment function

2. Obtain the maximum order of derivative d

3. Obtain the order of iteration k

4. Obtain ST of the selected increment functions

while set ST contains non-converged increment functions do

for i = 1 to length of set ST do

1. Construct the surrogate model SdF k
i (xi) for an increment function

dFi

2. Calculate all derivatives up to the selected order d for each sample in

vector xi

3. Calculate the position function Fpos (Eq. (3.4)) for each sample in

vector xi

4. Obtain stored values of derivatives for the surrogate model

SdF k−1
i (xi)

5. Calculate EC (Eq. (3.2)) and PEC (Eq. (3.6))

6. Obtain a position of the new sample (Eq. (3.7))

7. Store the values of derivatives for the surrogate model, SdF k
i (xi)

end for

1. Calculate the partial mean (Eq. (3.17)) and the partial variance

(Eq. (3.18)) for each increment function

2. Calculate the total mean (Eq. (3.19)) and the total variance (Eq. (3.20))

if k ≥ 2 then

1. Calculate the normal (Eq. (3.21) and Eq. (3.22)) and the logistic

residuals (Eq. (3.23) and Eq. (3.24)) for all incr. fun. from set ST
for i = 1 to length of set ST do

if Cond. 3.25 hold then

1. Consider the approximation of increment function, SdFi, from

set ST as converged
end if

end for

2. k = k + 1

else

1. k = k + 1

end if

end while
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Algorithm 1 Algorithm for the local convergence of the first order increment

functions - part 2

Finalize the process:

1. Store the residuals of each increment function

2. Store each surrogate model SdFi(xi)

3. Store the values of the sensitivity analysis

End

3.4.2 Convergence - The Global convergence

The local convergence ensures the properties of the interpolation technique for

each model. However, the accuracy of the final global model is not assured. The

sum of local errors, i.e. errors for each surrogate model used, can excess the

residual set by the user. This problem becomes even more significant with a

large number of random variables, i.e. surrogate model used. This problem can

be mathematically written in the following way

n∑
i=1

Rµ
locali

> GRµ
set (3.26)

n∑
i=1

R
(σ)2

locali
> GR

(σ)2

set (3.27)

where Rlocali represents a lower value of LRi (Eq. (3.23) and Eq. (3.24)) and Ri

(Eq. (3.21) and Eq. (3.22)) and GRset represents the global residual set by the

user. Therefore, an approach for a global convergence is applied.

The global convergence approach is based on the convergence of the mean and

the variance of the final global model, i.e. the total mean and the total variance.

The process to check the global convergence starts when the partial surrogate

models are locally fully converged under given threshold. The total mean and

the total variance are computed at each iteration and therefore, the convergence

rate of the whole process can be established. To compute the global convergence

residuals, the following equations are used

GRµ =

∣∣∣∣(µk)− (µk−1)

(µk)

∣∣∣∣ (3.28)
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GRσ =

∣∣∣∣(σk)2 − (σk−1)2

(σk)2

∣∣∣∣ (3.29)

where k represents the iteration. The global residuals (GRµ and GRσ) represent

the error of the final global model in the mean value and the variance and if the

global residuals are bellow threshold set by the user, the final global model is

fully converged.

Let us now focus on the aspect of not fully converged model. The first part is

the selection of surrogate models, which requires more samples. Each increment

function in the cut-HDMR approach has a different influence on the final model

and it converges for a different number of samples. Therefore, the selection pro-

cess is based on the convergence of the partial residuals, Rµ
locali

and Rσ
locali

. These

residuals take into account the global influence of a given surrogate model and

also, the local accuracy of a given prediction.

In order to introduce the algorithm, let STC be the set of all increment functions

in the final model, which contains the values of the residuals. The residuals

considered in the set STC are the maximum residuals for each surrogate model,

i.e.

STCi = max(Rσ
locali

, Rµ
locali

) (3.30)

The maximum residual from the whole set is selected and corresponding increment

function is selected for the accuracy improve. The local accuracy (used in the

Alg. 1) for the selected surrogate model is modified in the following way:

Rseti =
Rseti

2
(3.31)

The process of selection ends, when the sum of residuals in the set STC is smaller

then the global residual GRset, i.e. Eq. (3.26) and Eq. (3.27) are no longer valid.

The procedure is described in Alg. 2.
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Algorithm 2 Selection scheme for the improvement of the first order increment

functions

Initialize the process:

1. Obtain Rµ
seti and Rσ

seti
for each increment function

2. Obtain Rµ
locali

and Rσ
locali

for each increment function and create set STC

3. Obtain GRµ
set and GRσ

set

4. Create an empty set ST

if GRµ > GRµ
set or GRσ > GRσ

set then

while Eq. (3.26) and Eq. (3.27) hold do

1. Select the increment function with the highest residual from set STC,

i.e. max(STC)

2. Modify Rµ
seti and Rσ

seti
according to Eq. (3.31) and select the corre-

sponding increment function for the accuracy improvement, i.e. increase

a number of samples in given domain

3. Erase the increment function from set STC and store this increment

function in set ST
end while

end if

Finalize the process:

1. Store set ST for Alg. 1

2. Store residuals Rµ
seti and Rσ

seti
for Alg. 1

End

3.5 The global process and the starting condi-

tions

The global process starts with the selection of distribution for each random vari-

able, where each distribution is represented as the random vector, rxi, mentioned

in Sec. 3.3. The central point is selected to be the expected value of the random

vector, i.e. cxi = mean(rxi). The expensive function is decomposed into sub-

domains using the cut-HDMR approach and the boundaries of given stochastic

space are obtained. This is a step from the analytic approach to the numerical

one, wherein the analytic approach, the distribution is assumed to be an infinite

(Gaussian case) and in the numerical approach, the distribution has finite bound-

aries. The boundaries of the stochastic domain are easily set as the minimum

and the maximum of the random vector rxi.

45



Next step is to set the desired accuracy, GRset, and the maximum derivative

order, d, for the adaptive algorithm. The desired accuracy is set the same for the

expected value and the variance, i.e. GRµ = GRσ . This step ensures that all

the statistical properties are accurate as desired. The maximum derivative order

should be kept low due to the computational burden and therefore, the value of

2 is suggested for engineering problems.

The algorithm starts with a sample positioned in the central point. This step is

considered to be the zeroth iteration, i.e. k = 0. The first iteration (k = 1) is to

set the samples on the boundaries of given domain to circumscribe the interpola-

tion domain. In other words, to sample the boundaries of the stochastic domain,

e.g. f(xi1 ,
cxi) and f(xiz ,

cxi), where xi1 and xiz are defined in Sec. 3.3. The

algorithm can start the iterative process of an improvement for each increment

function. The global process is described in Alg. 3.

Algorithm 3 The global process for the first order increment functions

Initialize the process:

1. Set the probability distribution (the random vector rxi) for each random

variable

2. Set the central point cxi = mean(rxi)

3. Set the global residual GRset

4. Assign GRµ
set = GRset and GRσ

set = GRset

5. Assign for all Rµ
seti = GRµ

set and Rσ
seti

= GRσ
set

6. Compute the central point f(cxi) and set the iteration to 0, i.e. k = 0

7. Decompose the stochastic domain according the cut-HDMR model and

construct the increment functions dF (xi,
c x)

8. Assign all increment functions to set ST

9. Sample the boundaries of the stochastic space and set the iteration to 1, i.e.

k = 1

while GRµ > GRµ
set or GRσ > GRσ

set do

1. Call Alg. 1

2. Call Alg. 2

end while

Finalize the process:

1. Construct the final model accordingly to Eq. (2.28)

2. Sample the final model with the MC sampling and obtain the statistical

properties of the problem of interest
End
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3.6 Applied examples using the 1-D adaptive

scheme

To illustrate the proposed method, two examples are selected. The first example

is used for the adaptive algorithm, where the properties of the adaptive approach

are showed. The second example represents a common engineering problem,

where the global process is described. The results of the global process are then

discussed.

3.6.1 Applied example using the adaptive algorithm

In order to illustrate the method, let us introduce a simple example. The function

of interest is following

Ftest(x) = (6x− 2)2 sin(12x− 4) (3.32)

where x represents a random variable with a uniform distribution and boundaries

equal to [−1, 1]. This function is a non-linear function and it is showed in Fig. 3.2.
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Figure 3.2: Function of interest Ftest(x)

The function Ftest (Eq. (3.32)) has all necessary problematic attributes, which

can be found in engineering problems. It has a highly oscillatory region and

a flat area followed by a steep ascent. All these parts represent a problem for

interpolation techniques. First, let us focus on the interpolation process of the

function of interest. The interpolation process is showed in Fig. 3.3, where each

step in the adaptive sampling process is shown.
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Figure 3.3: Process of the adaptive sampling for the function of interest Ftest(x)

Blue - Interpolation

Black - Original function

Red cross - Sample from the expensive function

The function of interest is highly oscillatory and therefore, the algorithm starts to
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converge after a certain number of samples. An interesting part is the flat plateau,

where the interpolation technique starts to oscillate. This is a natural behaviour

of the Lagrange interpolation, which is prone to oscillation if the function has a

steep gradient followed by a plateau. The proposed method is able to capture this

phenomenon and sample the problematic region. The algorithm finds a suitable

interpolation for a highly non-linear function, which is desired property for an

adaptive approach as Partial Differential Equations are non-linear in general.

However, in this particular case, the maximum order of derivative is selected to

be d = 5. Such a high number for the maximum derivative is selected only for

this mathematical problem due to its high non-linearity.

The convergence of the mean and the variance for the function of interest is

captured in Fig. 3.4. The algorithm starts to converge after a number of samples

and steep convergence can be seen. The algorithm automatically sample the areas

of the greatest change, which can be seen in Fig. 3.3 between steps 3.3f and 3.3j.

Therefore, it can be said that the adaptive algorithm prevents the oscillations of

the interpolation technique. After the interpolation technique stops to oscillate,

the function starts to steeply converge.

Another interesting aspect is the influence of the maximum selected order of

derivative, d, in Eq. (3.2). The influence on the mean and the standard deviation

is showed in Fig. 3.5. It can be seen that the higher order derivative starts to

influence the convergence process after the overall shape is caught (Fig. 3.3o -

3.3q). This is due to the fact that the higher order derivatives become important

later in the ”polishing” process. However, most of the real problems converge

under a low number of samples and in order to reduce the computational burden,

it is suggested to keep the maximum allowed derivative low, e.g. d = 2.

3.6.2 Applied example for the global 1-D approach

The function selected for the application of the global process is the well known

steel column problem (22). The steel column function is a 9-D problem and it is

defined as follows

F (X) = Fs − P
(

1

2BDcolumn

+
F0

BDcolumnH

Eb
Eb − P

)
P = P1 + P2 + P3

Eb =
π2EBDcolumnH

2

2L2

(3.33)
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Figure 3.4: Convergence of the mean and the standard deviation for the function

of interest - Ftest(x)

where F (X) represents a safety margin function (MPa), Fs is the yield stress

(MPa), P1 is the dead weight load (N), P2 is the variable load (N), P3 is the

variable load (N), B is the flange breadth (mm), Dcolumn is the flange thickness

(mm), H is the profile height (mm), F0 is the initial deflection (mm) and E is

the Young’s modulus (MPa). Distributions given to each random variable are

summarized in Tab. 3.1.

ID Random

Variable

Distribution

type

Mean Standard

deviation
x1 Fs Log-Normal 400 35

x2 P1 Normal 500 000 50 000

x3 P2 Gumbel 600 000 90 000

x4 P3 Gumbel 600 000 90 000

x5 B Log-Normal 300 3

x6 D Log-Normal 20 2

x7 H Log-Normal 300 5

x8 F0 Normal 30 10

x9 E Weibull 210 000 4200

Table 3.1: Distributions for the 9-D Steel column model
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Figure 3.5: Convergence of the mean and the standard deviation for the function

Ftest(x) using various order of the maximum derivative

The algorithm is tested using various thresholds and the mean value and the

standard deviation are observed. The comparison is made with MC sampling

with distributions from Tab. 3.1 sampled directly on the model of interest. The

results of MC simulation are summarized in Tab. 3.2. The convergence of the

standard deviation and the mean value for various thresholds are summarized in

Tab. 3.3.
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Function calls Mean Standard deviation

100000 2.3336e+02 44.8231

Table 3.2: MC simulation for the 9-D Steel column model

Case Desired

accu-

racy

Function

calls

Mean Standard

Devia-

tion

Relative

error of

Mean

Relative

error of

S. D.
1 0.1 28 2.329e+02 44.3011 1.703e-03 1.164e-2

2 0.01 30 2.333e+02 44.5635 8.818e-06 5.792e-03

3 0.001 30 2.333e+02 44.5635 8.818e-06 5.792e-03

4 0.0001 32 2.333e+02 44.5636 7.524e-06 5.789e-03

Table 3.3: The results of the Adaptive UQ-HDMR approach

The histogram obtained via MC sampling is showed in Fig. 3.6. The histograms

obtained by the adaptive method for various thresholds are summarized in Fig. 3.7.

The comparison graphs of the MC method and the adaptive method are showed

in Fig. 3.8.
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Figure 3.6: PDF obtained by MC sampling for the 9-D Steel column problem

3.6.3 Discussion about the applied example

The uncertainty quantification is performed on the steel column problem, which

represents a standard engineering problem with various non-standard input dis-

tributions. Moreover, the problem is high dimensional (> 7 dimensions), which

makes it challenging for the most UQ techniques. Both of these aspects represent
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Figure 3.7: PDF obtained by the adaptive method

Left upper - case 1, Right upper - case 2, Left lower - case 3, Right lower - case 4

a significant challenge and the proposed algorithm was able to provide accurate

results using only the first order increment functions. It is impossible for the

algorithm to obtain higher accuracy because the interaction effects are not in-

volved in the final model, i.e. higher accuracy would require the involvement of

the higher order interaction terms in the final model. However, the method was

able to successfully recognize that adding samples to the stochastic domain would

not bring an increase of the accuracy. The method automatically recognizes when

the limits of the first order increment functions are met and it stops further sam-

pling. Therefore, the number of required samples is always kept optimal for given

desired accuracy.

Results of the algorithm using various accuracy levels are summarized in Tab. 3.3.

For the case 1, where the accuracy is set to 0.1, the algorithm uses the minimum

number of samples, e.g. 3 for each abscissa plus the central point. For the cases
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Figure 3.8: Comparison of PDF obtained by the MC sampling and the adaptive

method

Left upper - case 1, Right upper - case 2, Left lower - case 3, Right lower - case 4

2 and 3, the random variable x6 is sampled twice, i.e. the interpolation process

is done with 6 samples for this variable. Other variables converged after the

minimum allowed samples, e.g. 3 samples per abscissa plus the central point.

The case 4 is slightly more complicated. In the first iteration, the algorithm

sampled the variables x3, x4 and x6. The variables x3 and x4 are converged after

the second iteration and only the variable x6 is further sampled. The variable x6

is converged after 6 samples, e.g. 5 samples plus the central point. Therefore,

the variable x6 is the most problematic aspect of the whole problem.

The steel column problem is reported in (22) as a problematic due to the non-

standard input probability distributions. The proposed method naturally over-

come this problem as each problem is handled as a separate interpolation problem

and each distribution is handled numerically. Moreover, due to an anisotropic

sampling, the method uses an optimal number of samples. This is highly desired

for time expensive problems such as CFD simulations.
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3.7 Discussion about adaptive scheme for the

first order increment functions

In this chapter, only the first order increment functions are used. This leads to

a low number of samples, however, if the underlying function has strong interac-

tion effects, one needs to implement the adaptive algorithm for the higher order

increment functions. This algorithm is introduced later in the thesis.

The cut-HDMR approach allows decomposing the stochastic space, which dra-

matically simplifies the interpolation process. However, the overall accuracy of

the interpolation process is dependent on the selection of the central point. The

selection process is discussed in various works such as Gao and Hesthaven (69)

and Zhang et al. (40) and the optimal selection of the central point can improve

the accuracy of a solution by the order of 10. On the other hand, the optimal

position of the central point is not known a priory and to select the optimal posi-

tion of the central point, a random sampling has to be done. This step requires a

large (more than hundred) number of samples, which are not later used and this

is not acceptable for the approach taken in this thesis. Moreover, the accuracy of

the final surrogate model can be improved with additional higher order increment

functions introduced in the final model. Therefore, the central point is selected

as the mean value of the given distributions. Also, if the central point is selected

as the mean value of the given distributions, it has a physical meaning.

The adaptive algorithm is based on the idea of the comparison between surrogate

models in different iterations. In other words, the question is: how new samples

influence the surrogate model instead of how accurate the surrogate model is.

The accuracy of the surrogate model is automatically caught in the process. In

other words, if new samples do not change the surrogate model, it must mean that

the surrogate model reached its maximum accuracy, i.e. it cannot be improved

with additional samples. However, there is an important difference between our

approach and testing the surrogate process against new samples. If only samples

are used to measure accuracy in the process, the accuracy in those samples is

tested, wherein in our approach, we measure accuracy also around those samples.

This ensures that the final model does not have oscillatory regions and it is less

prone to over-fitting.

On the other hand, a disadvantage of our approach is that it is assumed the sur-

rogate model can approximate function according to the desired accuracy. For
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example, consider a linear model for a highly non-linear problem. In our ap-

proach, the model soon or later will converge, but the overall accuracy does not

have to be satisfactory. However, to solve this problem, one has to manually

change the interpolation technique and such that it is not suited for an auto-

matic method. Therefore, surrogate models which always react on new samples

(Lagrange interpolation, Spline etc...) are used in this work.

The proposed method searches over the whole stochastic domain and proposes

a new sample to the position of need. The adaptive process takes into account

multiple problematic aspects of the underlying function such as non-linearity,

oscillatory behaviour and the probability of the input variables. Moreover, it

is a combination of exploration and exploitation, which is highly desired in real

problems. The position function represents an exploration process, where samples

are uniformly distributed in a case of a simple function. On the other hand, the

EC function assures that the function of interest is sampled on positions, where

the interpolation process changed the most. The EC function represents the

exploitation approach and in combination with the position function, it creates

an automatic exploration/exploitation process. This assures that the stochastic

space is optimally searched and the surrogate model is correctly converged as it

can be observed on a given example in Fig. 3.3.

The EC function combined with a given probability distribution allows empha-

sizing the region of interest. A similar approach is used in the Polynomial chaos,

see (16, 18, 19). On the other hand, the probability distribution only emphasizes

the region of interest and does not influence the interpolation process. This al-

lows to combine the proposed method with any interpolation or approximation

technique and obtain a reliable uncertainty quantification method. This is done

later in this thesis, where a multi surrogate approach is introduced.

The method uses all samples to interpolate the domain of interest and this can

lead to an over-fitting phenomenon. However, the proposed PEC function sample

mainly those parts, where the interpolation process showed fast change, which

is a common behaviour of an over-fitting phenomenon. Therefore, the algorithm

naturally suppresses this problem.

The convergence process is built on two aspects, where the first aspect is the

convergence of the increment function and the second aspect is the convergence

of the whole problem. The convergence of the increment function is considering

the mean and the variance as a convergence criterion. Considering both statistical
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values assures that the final distribution has correct final statistical properties.

The second aspect is the global convergence, which ensures convergence of the

final model. It prevents unacceptable errors in a case of a large number of random

variables.

3.8 Conclusion

In this chapter, the adaptive sampling process for the first order increment func-

tions is introduced. The adaptive sampling process compares the surrogate mod-

els from different iterations and based on their differences propose a new sample.

The comparison is done via the EC function, which takes into account the po-

sition of previous samples, complexity of the underlying model and the input

probability distribution. Altogether, this ensures the optimal sample position for

the given increment function.

In this chapter is also introduced the convergence process for the first order

increment functions. The convergence process is separated into two steps. The

first step represents the local convergence, where the convergence of the first order

increment function is checked. The second step represent the global convergence,

where the properties of the final model composed of the first order increment

functions are tested. The global convergence ensure that the sum of the partial

residuals is lower than the requested threshold.

The adaptive sampling scheme is tested on the two examples. In the first ex-

ample, an analytic function is considered and the adaptive sampling properties

are showed. In the second example, a real engineering problem is considered. In

this example, the overall process is tested and properties of the whole method

are showed. The proposed method shows a very good agreement with the MC

simulation. Moreover, the method was able to recognize that further sampling

would not bring higher accuracy and finished.

The developed algorithm in this chapter considers only the first order increment

functions. Before we can focus on the higher order increment functions, it is

necessary to select the influential higher order increment functions. The selection

process is ensured with the selection scheme, which is topic of next chapter.
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Chapter 4

Selection scheme for the high

order increment functions

In this chapter, the focus is given to the Curse of Dimensionality (CoD) and

its mitigation. The selection scheme selects the important increment functions

and therefore, reduces the expensive samples required to interpolate the whole

problem. It is based on conclusions obtained in Chap. 2, deduction logic and

empirical knowledge. Contrary to commonly used interpolation techniques, the

selection scheme also decides about the convergence of the global model.

This chapter is structured in the following way: First the literature review for the

high dimensional interpolation is done. The literature review section is followed

by the prediction theory section, which is separated into three subsections. The

first subsection is the deduction approach, where is explained the inverse selec-

tion logic. The second subsection is the prediction approach, where is explained

the prediction of influence for each increment function. The last subsection is

the neglection approach, which neglects all the null increment functions. Once

the theory is set, the selection of residuals necessary for the decision process is

explained. In Sec. 4.4, the numerical application of the prediction theory and

the final model convergence process is explained. The last section is given to the

discussion about the prediction theory and its advantages and disadvantages.
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4.1 Literature review

The Curse of Dimensionality is one of the largest issues for the approxima-

tion/interpolation methods. This aspect limits the usage of approximation /

interpolation techniques to a low number of random stochastic variables. The

stochastic random variables alone do not represent a significant computational

burden, however, their interactions represent an exponential growth of a resource

demand. CoD represents a major problem for approximation/interpolation tech-

niques.

Currently, there are several ways how to handle the problem. One way to solve

CoD is to simply restrict the problem to a lower number of the random stochastic

domains, i.e. consider non-important variables as constants. However, this ap-

proach has two significant disadvantages. The first disadvantage is the restriction

of the stochastic domain and this naturally leads to an inaccurate result. More-

over, this can lead to large errors in the process, especially when one is interested

into tails of the output distribution. Moreover, the effect of errors is emphasized

in a case, where only linear effects are established, e.g. partial derivatives or lin-

ear regression. This is usually the case of expensive problems, where one cannot

afford large MC simulations.

To estimate the importance of given random stochastic variables, one needs to

run sensitivity analysis. This represents a second disadvantage as the samples

used for the sensitivity analysis are simply discarded. This leads to an additional

computer burden, which in a case of time expensive problems such as DSMC (70),

one cannot afford. On the other hand, the approach of holding certain variables

constant was successfully used in various works and proved to be sufficient in

many problems.

Another approach called Principal Component Analysis (PCA), developed by

Pearson (71), was successfully used to mitigate the effect of the CoD problem. Se-

ries of extensions to PCA such as Probabilistic PCA (72) or Principal curves (73)

were developed. Basically, PCA tries to transform the data to a new coordinate

system. Each stochastic variable is sorted according to its variance and made

independent. In other words, PCA tries to fit an N-dimensional ellipsoid to the

data set, where each axis of the ellipsoid represents a principal component.

The PCA were extended to Proper Orthogonal Decomposition (74) (POD) method,

also, known as the Karhunen-Loeve decomposition. The POD tries to approx-
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imate a function of interest over the stochastic domain as a finite sum in the

variables-separated form. When the sum goes to infinity, the approximation be-

comes exact. The method also, modifies the coordinate system in a way, that the

abscissas are aligned with the principal radii of an N-dimensional ellipsoid. The

POD and PCA were successfully used for many dimension reduction problems.

However, both methods rely on relatively large data set, i.e. the method is based

on statistical approach. Therefore, this method cannot be used in a case of a

limited data availability or an expensive code.

Interesting research into the CoD problem is done in (75, 76, 77, 78, 79). In these

works, the focus is given to the exploration of the high-dimensional space and

it is closely related to k-Nearest Neighbor search (80, 81). They provide inter-

esting observations such as ”hubbiness”, regarding the high dimensional spaces.

However, these works are not closely related to the topic of uncertainty quantifi-

cation. Nevertheless, they can provide insight into problems of high dimensional

modelling. These works also consider a reduction of the high dimensional space,

before an approximate model is done.

In this chapter, the approach to a high dimensional space (6 <) is taken in a

different way. The exponential growth of samples required for a high dimensional

space is given by the higher order increment functions (2 <). Therefore, restrict-

ing the number of higher order increment functions leads to a dramatic reduction

in necessary samples. However, the fundamental question is how to select the

important increment functions.

In all cases, it is necessary to do a preliminary analysis of the problem. Usually,

this incorporates a certain number of samples around given stochastic domain.

However, if one sample the stochastic space in a smart way, the samples do not

have to be neglected and they can be used further.

4.2 General prediction theory for the higher or-

der increment functions

The prediction algorithm is based on the cut-HDMR approach and conclusions

obtained in Chap 2. First, let us remind the integral form of the DE, which reads:

60



f(x1, ..., xn)− f(cx1, ...,
c xn) =

n∑
i=1

∫ xi

cxi

∂f(¸)

∂ξi
dξi+

∑
1≤i<j≤n

∫ xi

cxi

∫ xj

cxj

∂f(¸)

∂ξi, ξj
dξidξj + ...+

∫ x1

cx1

...

∫ xn

cxn

∂f(¸)

∂ξ1, ..., ξn
dξ1...dξn

(4.1)

where f(.) is the function of interest, n is the total number of random variables,

xi is the random stochastic variable and cxi is the central point for the given

stochastic variable. The central point is selected to be the mean value of given

input distributions, i.e. cxi = mean(xi). Also, let us remind a notation of the

increment function which reads

dFi...j(xi, ..., xj) =

∫ xi

cxi

...

∫ xj

cxj

∂f(¸)

∂ξi, ..., ξj
dξi...dξj (4.2)

Following this, let us remind important properties of the integral form of DE.

The first important attribute is the integration part, where if the central point is

equal to the second point, i.e., cxi = xi, the whole integral part becomes zeroth

and it can be neglected. Second important aspect is the derivative inside an

integral part. It is clear that if the derivative is zero, the integral part is zero

and the higher order integral parts, i.e. the increment functions, are also zeroth.

Moreover, the increment function is driven by the derivative part and therefore,

it can be used as a sensitivity measurement. In the last part, the final model is

composed of a sum of these increment functions, i.e.

f(x1, ..., xn)−f(cx1, ...,
c xn) =

n∑
i=1

dFi(xi)+
∑

1≤i<j≤n

dFij(xi, xj)+...+dFi...n(xi, ..., xn)

(4.3)

The prediction of the important interaction effects can be divided into three

steps. The first step represents the deduction approach, where the influence of

interaction effect is deduced. The second step represents the prediction approach,

where the influence of interaction effects are predicted and the last step is the

neglection approach, where domains are neglect based on few samples in given

domain.
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4.2.1 Deduction algorithm

To introduce the deduction algorithm, let us assume a following arbitrary function

f(x) and point in the stochastic domain 2x, where

2xi 6= cxi i = 1 · · ·n (4.4)

where n represents the number of variables and cxi represents the central point

and the superscript 2 represents the position in the stochastic domain, which

is defined by user. Let us assume set Mtotal, which consists of all increment

functions, i.e. the model contains all integral parts of Eq. (4.1). Next, let us

assume set Mselected, which consist of selected increment functions, i.e. some

integral parts of Eq. (4.1) are missing. Note that set Mselected is a subset of set

Mtotal. Two models can be composed of the proposed sets, i.e.

dFFinal:total(x) =
∑

tt∈Mtotal

dFtt(x) (4.5)

dFFinal:selected(x) =
∑

tt∈Mselected

dFtt(x) (4.6)

Eq. (4.5) is composed of set Mtotal and Eq. (4.6) is composed of set Mselected.

Subtracting Eq. (4.5) from Eq. (4.6) leads to the following equation

dFFinal:total(x)− dFFinal:selected(x) = dFneglected(x) (4.7)

where dFneglected(x) represents a sum of neglected increment functions, i.e. in-

crement functions not selected. Assuming previously defined point 2x, one can

establish a value of the neglected increment functions at given sample, i.e.

dFFinal:total(
2x)− dFFinal:selected(2x) = dFneglected(

2x) = εResidual:total(
2x) (4.8)

where εResidual:total(x) represents a function of residuals, i.e. function of neglected

increment functions. However, in reality, the model dFFinal:total is usually not

know. On the other hand, one can realize that the following condition must hold,

i.e.

dFFinal:total(
2x) = f(2x)− f(cx) (4.9)

In other words, obtaining function values at position 2x and subtracting them

from the central value, gives the influence of all increment functions in the point
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2x. Now, if the values of function εResidual:total(x) around the stochastic domain

are below given threshold, i.e.

εResidual:total(
2x) ≤ kεR−T εR−T (4.10)

then all the increment functions in dFneglected(x) have negligible effect on the

model and they can be excluded from the model, i.e. they do not need to be

sampled. The correction factor kεR−T is used to modify the convergence criteria

and εR−T represents the deduction residual. The correction factor and deduction

residual are discussed in Sec. 4.5.

The given approach can be extended to a point, where one can select increment

functions with a negligible effect. Let us assume point 3x, where

3xi 6= cxi
3xj = cxj

i = 1 · · · j − 1, j + 1 · · ·n (4.11)

For this particular point, some integral parts of Eq. (4.1) are zero and therefore,

these integral parts can be neglected from the final model. Let us assume set

Mtotal:j of increment functions, which does not include the increment functions

having xj as a variable, i.e.

dFFinal:total:j(x) =
∑

tt∈Mtotal:j

dF j
tt(x) (4.12)

where dF j(x) represents the increment function without variable xj. Next, as-

sume set Mselected:j, which consists of selected increment functions and it is a

subset of set Mtotal:j. Note that set Mtotal:j is a sub set of Mtotal and Mselected:j is

a subset of Mselected. One can construct the following model

dFFinal:selected:j(x) =
∑

tt∈Mselected:j

dF j
tt(x) (4.13)

where dFFinal:selected:j(x) is constructed using only selected increment functions,

i.e. it is constructed from set Mselected:j. Subtracting Eq. (4.12) from Eq. (4.13)

leads to the following equation

dFFinal:total:j(x)− dFFinal:selected:j(x) = dFneglected:j(x) (4.14)

where dFneglected:j(x) represents all neglected increment functions, which considers

variable xj at its nominal value. Assuming previously defined point 3x, one can

establish a value of the neglected increment functions at given point, i.e.

dFFinal:total:j(
3x)− dFFinal:selected:j(3x) = dFneglected:j(

3x) = εResidual:total:j(
3x)

(4.15)
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where εResidual:total:j(x) represents a function of residuals for increment functions

without xj as a functional variable, i.e. a function of neglected increment func-

tions. Usually, one does not know the model dFFinal:total:j a priory. However, the

following condition can be established

dFFinal:total:j(
3x) = f(3x,c xj)− f(cx) (4.16)

where f(3x,c xj) represents the function value, where Cond. 4.11 holds and f(cx)

represents the function value at the central point. In other words, obtaining

function values at position 3x and subtracting them from the central value, gives

the influence of all the increment functions, which have variable j as a functional

variable. Now, if the values of function εResidual:total:j(x) around the stochastic

domain are below given threshold, i.e.

εResidual:total:j(
3x) ≤ εR−T−j (4.17)

then all increment in dFneglected:j(x) have negligible effect on the model and can be

excluded from the final model, i.e. they can be neglected without being sampled.

To extend the deduction process further, one can invert the approach. In other

words, if the difference between the full model (Eq. (4.8)) and the model with-

out certain increment functions (Eq. (4.15)) is small, this means that the incre-

ment functions not included must have negligible effect. Therefore, subtracting

Eq. (4.6) from Eq. (4.15) leads to the following equation:

dFFinal:total:j(
3x)− dFFinal:selected:j(3x)− (dFFinal:total(

2x)− dFFinal:selected(2x))

= dFneglected:j(
3x)− dFneglected(2x) = dFnot−included:j(x) = εResidual−not−included:j(x)

(4.18)

However, in this case, samples 3x and 2x have to hold the following condition:

3xi = 2xi
3xj 6= 2xj

i = 1 · · · j − 1, j + 1 · · ·n (4.19)

One can quickly realize, that this condition can be easily fulfilled for the previous

two conditions (see Cond. 4.4 and Cond. 4.11) and therefore, smart sampling

reduce the number of samples drastically. Finally, one can set the following

neglect condition:

εResidual−not−included:j(x) ≤ εResidual−not−included:j x ∈

{
xj = 2xj

xi 6=j = 3xi 6=j
(4.20)

64



where εResidual−not−included:j represents the deduction residual defined later in this

work. However, in this case, one neglects the increment functions which do have

variable j as a functional variable.

Very important part is to estimate the residuals (εR−T , εR−T−j and εResidual−not−included:j).

These residuals are not independent and such that their estimation is based on a

mathematical background, which is later described in this chapter.

The deduction approach is based on an inverse logic, i.e. we deduce which in-

crement functions have a negligible effect and the remaining increment functions

must be in the final model. The process is independent of the surrogate model,

i.e. the deduction is done using only samples in the stochastic domain. It is

very efficient in reducing the higher order interaction terms. Especially for a

large number of the stochastic variables. However, to reduce the samples even

more and to make the selection scheme more efficient for most functions, another

selective approach is introduced.

4.2.2 Prediction algorithm

The prediction algorithm is based on an empirical knowledge that the higher order

increment functions do not have a high influence on the final model. Many of the

higher order increment functions have an extremely small influence on the final

model yet these functions still pass through the deduction process. Therefore,

it is worthy to predict the influence of the increment function and neglect the

increment function if the influence is below given threshold.

The prediction algorithm is based on results obtained in Sec. 2.2. First, let us

recall some basic aspects of the integral form of DE (Eq. (4.1)). The shape of

the increment functions is given by the derivative part and information about

the higher stochastic domains propagates via derivatives as it is concluded in

Sec. 2.2. In other words, one can estimate the influence of the higher domains,

using information from the lower domains.

The prediction algorithm stands on the idea that the higher order increment func-

tions are less influential than the lower order increment functions (see Sec. 2.2).

In other words, sensitivity of the higher domain is lower than sensitivity in the

lower domain, e.g.

min(SdF1 , SdF2) ≥ SdF12
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where SdFt represents a sensitivity of given increment function. However, it was

empirically found that using the above condition is very strict and therefore, the

condition for the sensitivity estimation is defined as follows:

pSdFt = mean(SdFi , ..., SdFj) (4.21)

where pSdFt represents the selected sensitivity criteria, e.g. the partial mean or the

partial variance. In other words, the mean value of estimated sensitivities is taken.

This ensures that the predicted value is always assumed higher than it really is.

The sensitivities are closely related to the variance of given increment functions

and in uncertainty propagation, one does not want to check only sensitivities,

i.e. variances, but also, the mean values. Therefore, the following predictions are

defined

µi...j = mean(µi, ..., µj)

(σi...j)
2 = mean((σi)

2, ..., (σj)
2)

(4.22)

where µt represents the partial mean value of the increment function dFt and (σt)
2

represents the variance of the increment function dFt. The increment function is

neglected if the following conditions hold:

µi...j ≤ εµprediction

&

σi...j ≤ εσprediction

(4.23)

where εprediction is the residual set by the user to neglect the increment function.

In this work, the prediction residual is set to the global residual set by the user,

i.e. εµprediction = GRµ
set and εσprediction = GRσ

set.

The prediction algorithm has several attributes, which are necessary to under-

stand. The first problem is a function, where the higher order increment functions

have a larger influence than the lower ones (see Sec. 2.2). In that case, the pre-

diction algorithm neglects an important interaction. Moreover, it can happen

that the lower domains are composed of badly derivable functions, where the

prediction algorithm fails. This problem was observed in the work of Mehta et

al. (82), where the prediction algorithm failed. However, the deduction algorithm

can detect this problem and therefore, it has a higher priority for the decision

process, i.e. one should consider the increment function fully neglected only if it

is neglected with the deduction algorithm. To illustrate the approach, consider

the following function:

f(x) = ex1x2x3
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and the central point is selected to be 0 for all three input variables. One can

easily see that the first and second order increment functions are 0 along the whole

stochastic space and such that these increment functions would be neglected.

Therefore, in this case, the first and second order increment functions are sampled

and considered as an important increment functions.

4.2.3 Neglection algorithm

The deduction and prediction algorithm detects the non-influential increment

functions. However, it can happen that a zeroth increment function passes the

selection process. The reason for this is that the deduction algorithm selects

the important increment functions in a group and inside the group, where are

important increment functions are also, the non-important ones. Moreover, the

lower order increment functions are important and the non-important increment

function is assumed to be important. It would be a waste of samples and com-

putational time to process these increment functions. Therefore, it is necessary

to use few samples to detect if the derivative in given domain is zero.

To introduce the approach, let us assume arbitrary second order increment func-

tion dFij(xi, xj) and also, the following point:

4xi 6= cxi
4xj 6= cxj
xk = cxk

k = 1 · · ·n
k 6= i 6= j

(4.24)

where cxi represents the central point and n represents the number of stochastic

variables. For many functions, the higher order increment functions can be ap-

proximated with a linear model and such that their increment is getting larger,

the further the we move from the central point. Therefore, the proposed point is

sampled on boundaries of the stochastic domain. Using the previously sampled

point and Eq. (2.26), one can establish the value of increment function at that

point, e.g. for n = 3

dF12(
4x1,

4 x2) = f(4x1,
4 x2,

cx3)− f(cx1,
cx2,

cx3)− f(4x1,
cx2,

cx3)

+f(cx1,
cx2,

cx3)− f(cx1,
4 x2,

cx3) + f(cx1,
cx2,

cx3)
(4.25)

If value of Eq. (4.25) is zero, one can conclude that the underlying derivative

is zero. However, it can happen that the selected point is passing the region

where the increment function is zero. Nevertheless, the increment function has an

influence around the stochastic domain and such that cannot be neglected. This
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problem can be solved by application of multiple points around given stochastic

domain.

Another issue with the neglection approach is the selection of the central point. If

the central point is selected in a way that the whole increment function is zeroth

around given stochastic domain, the neglection approach fails. However, this

problem is caught with the deduction approach and therefore, until the increment

function is neglected with the deduction approach, one can put the neglected

function aside. The process of application is described later in this chapter. The

last problem represents the numerical errors. The cut-HDMR model is prone to

the numerical errors and therefore, the following condition is given

if dF12(
4x1,

4 x2) < εneglection

then =⇒ neglect
(4.26)

where εneglection represents the user defined residual and in this work, it is set

to εneglection = 1−12. In this section, an applied example for the second order

increment function is used. However, the same logic applies to the higher order

increment functions and therefore, the neglection approach can be used for any

increment function.

4.3 Selection residuals

The very large problem in the prediction theory is the deduction residual, i.e. how

to set a residual to neglect given increment function. This topic is very important

because it decides the overall accuracy of the final model. If one selects a large

residual, the final model will be inaccurate. On the other hand, if one selects a

small residual, the number of the selected increment functions will be high with

a little added value, i.e. the price for the additional accuracy will be high. In

this work, we focus on an efficient approach and therefore, some compromise is

necessary.

First, let us have a look at the residual for the deduction approach. This residual

is the most important as it has the highest priority. One can simply select the

residual from experience of his/her knowledge of the problem. However, this

approach is not suggested as one can set the residual inaccurately. Therefore, a

more robust approach is considered in this work.
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To introduce the problematic, let us start with the following experiment. Let

us assume function f(x1), where only one stochastic input is considered. The

function is decomposed using the cut-HDMR approach as follows:

f(x1)− f(cx1) = dF1(x1) (4.27)

We want to interpolate the given function with an approximation technique and

desired relative accuracy is 0.01. One immediately see that the increment function

dF1(x1) have to be converged under a relative accuracy 0.01 as there are no other

increment functions in Eq. (4.27).

Let us now assume function f(x1, x2), where are considered two stochastic vari-

ables. This function can be decomposed using the cut-HDMR approach into

increment functions, e.g.

f(x1, x2)− f(cx1,
c x2) = dF1(x1) + dF2(x2) + dF12(x1, x2) (4.28)

Looking at Eq. (4.28), one can realize that the required relative accuracy of

increment function dF1(x1) (Eq. (4.28)) is higher than for the increment func-

tion, dF1(x1), from Eq. (4.27). In other words, for increment function dF1(x1)

(Eq. (4.28)), one needs less accurate surrogate model than in Eq. (4.27). This

is closely related to the sensitivity of a given function, i.e. the less influential

the variable or combination of variables is, the less accurate the surrogate model

has to be for given increment function. Moreover, the number of samples neces-

sary to achieve given convergence is lower and therefore, the surrogate model is

simpler. This can be extended to a case, where the convergence criteria are met

for a linear model. Note that the linear model is the most simple model which

propagates uncertainty (see Sec. 2.2). Moreover, the convergence criteria will be

achieved with a linear model, no matter what the underlying increment function

is, i.e. the underlying increment function can have an arbitrary shape.

Now, let us have a look on the linear model. In a case of inputs with the same in-

fluence, the output distribution of the linear model must be Gaussian or resemble

Gaussian. This is well known Central Limit Theorem (83). However, to extend

this approach for our problem and to explain further aspects of the problem, let

us consider the following example. Let us assume function f(x1, x2) = x1 + x2

with an uniform distribution for both stochastic variables defined as follows:
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Variable Prob. notation Min Max

x1 px1 0 1

x2 px2 0 1

Model will be linear only if it is composed of the first order increment function

and therefore, the other terms are not presented. The increment function has to

have the following form:

dFi(xi) = xi (4.29)

Now, we can compute the probability that the function will be between the max-

imum value (achievable with given input distributions, e.g. max(f(1, 1)) = 2)

and value lower than the maximum value. For explanation purposes, we select

f(x1, x2) = 1.9. Note that this value can be achieved with multiple combination

of inputs using the input distributions. Using the defined probabilities in the

previous table, one can compute the probability that the output will be between

previously defined values. The probability is calculated as follow:

P (1.9 < f(x1, x2) < 2) =

∫ 2px1=1
1px1=0.9

∫ −x2+1
1px2=0.9

dF1(x1)px1 + dF2(x2)px2dx2dx1∫ maxpx1=1
minpx1=0

∫ maxpx2=1
minpx2=0

dF1(x1)px1 + dF2(x2)px2dx2dx1

(4.30)

where minpxi is the lower bound of the probability distribution, pxi ,
maxpxi repre-

sents the upper bound of the probability distribution, pxi ,
1pxi represents the low-

est value of probability pxi for which we can get the required value of f(x1, x2) =

1.9 and 2pxi represents the highest value of probability pxi for which we can get

the required value of f(x1, x2) = 1.9. Eq. (4.30) represents the ratio of possi-

ble combination of inputs to obtain required value from the defined interval, e.g.

1.9 < f < 2. In other words, it represents the probability that the function value

will be between the given interval.

Now, let us assume an interval closer to the expected value (e.g. E(f(x1, x2)) = 1)

of the defined linear model composed of increment functions (Eq. 4.29). The

upper limit of the interval is selected to be f(x1, x2) = 1.9 and the lower limit of

the interval is selected to be f(x1, x2) = 1.8. Notice that the difference between

the results is the same for both intervals, e.g. 2−1.9 = 1.9−1.8. The probability

for given interval can be calculated as follows

P (1.8 < f(x1, x2) < 1.9) =

∫ 2px1=1
1px1=0.8

∫ −x2+1
1px2=0.8

dF1(x1)px1 + dF2(x2)px2dx2dx1∫ maxpx1=1
minpx1=0

∫ maxpx2=1
minpx2=0

dF1(x1)px1 + dF2(x2)px2dx2dx1

(4.31)
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Notice that the bounds of the finite integral in numerator changed, i.e. the

difference between the lower bound (e.g. 1px1 = 0.8) and the upper bound (e.g.
2px1 = 1) become larger. In other words, the volume represented by the integral

in numerator in Eq. (4.30) is larger compared to the volume represented by the

integral in numerator in Eq. (4.31). Therefore, for the linear model, the following

condition must hold:

P (1.9 < f < 2) < P (1.8 < f < 1.9) (4.32)

where P () represents the probability of given event. Note that this condition

holds only for linear models, but the input distribution can be any from the

Askey scheme of input distributions (see (84)) . However, Cond. 4.32 holds only

until the integral crosses the expected value, e.g. E(f(x1, x2)) = 1. After crossing

the expected value, the integral in the numerator will become smaller, i.e. the

probability of occurrence is going to be smaller. Using this idea, one can con-

clude that the propagated distribution must be Gaussian in nature. For multiple

dimensions, the integrals in the numerator can be easily modified; however, for

explanation purposes, only 2-D case is used.

In real cases, the influence of the input variables is not always the same as used

in above example. Therefore, let us modify given function in the way that the

influence of variable 1 is higher than influence of variable 2, e.g. f(x1, x2) =

1.9x1 + 0.1x2. The integral part of Eq. (4.31) has to be modified in the following

way

P (2 > f > 1.9) =

∫ 2px1=1
1px1=0.95

∫ −0.51x2+0.51
1px2=0

dF1(x1) + dF2(x2)dx2dx1∫ maxpx1=1
minpx1=0

∫ maxpx2=1
minpx2=0

dF1(x1) + dF2(x2)dx2dx1
(4.33)

Comparing Eq. (4.30) and Eq. (4.33), one can see that the integration range is

shortened for variable 1, i.e. the range of possible inputs is smaller. On the other

hand, the integration range of variable 2 is larger. One can understand that

smaller the integration range, the larger influence of the final distribution. In

certain cases, the input variable has such a large impact on the output distribution

that the condition of the output normal distribution is no longer valid. In other

words, there must be at least 2 variables with the same influence to have normal

output distribution. The result is confirmed in the appendix D.
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4.3.1 Linear model of residuals

Application of the conclusions is relatively easy. We try to build a linear surrogate

model for the neglected increment functions. In other words, estimate the statis-

tical influence of neglected increment function with a linear model. However, it

is necessary to use conclusions obtained in Sec. 4.2.1.

The first step represents a selection of samples for the linear model. These sam-

ples have to hold Cond. 4.4, i.e. all samples must differ from the central point.

These samples can be positioned all over the stochastic domain, however, it is

proposed to sample them on the boundaries of a given stochastic domain. This

step emphasizes the influence of given interactions and therefore, the important

interactions are selected in the process.

Next step represents the linear model, which reads:

FResidualModel(x1, ..., xn) =
n∑
i=1

clixi (4.34)

where n represents the number of stochastic variables and cli represents an un-

known coefficient, which needs to be established. In many cases, the number of

samples selected are not sufficient to establish the linear model, i.e. to use tech-

nique such as the least square fitting (47). Therefore, in this work, a simplified

approach is used. Each coefficient cli is set according to the following process

cli =
mean(σi)∑sD
t∈Mselected

σt
CL (4.35)

where σi is the vector of the partial standard deviations of all involved increment

functions, i.e. increment functions which have variable i as a functional variable

and σt is the partial standard deviation of the selected increment function. The

sum is done over all selected increment functions, i.e. increment functions in set

Mselected.

Now, let us have a closer look on Eq. (4.35). In the previous section, it was showed

that the sensitivity of input variables is extremely important for the posterior

distribution. This aspect is reflected in the weighted coefficient, cli, where each

coefficient is weighted according to its influence. This ensures that the input

distributions are proportionally influencing the posterior distribution. In other

words, the shape of the posterior distribution is mainly influenced by the input

distributions, which have the largest impact. Moreover, this approach ensures
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that the influential interactions will be more weighted and such that selected for

interpolation.

Next step represents the solution of Eq. (4.34). It is necessary to establish coef-

ficient CL in Eq. (4.35), which is done by substituting Eq. (4.35) to the linear

model, Eq. (4.34). The coefficient CL is solved using the following linear equa-

tion:

fresidual(
2x) =

n∑
i=1

mean(σi)∑sD
t∈Mselected

σt
CL(2xi) (4.36)

where 2xi represents the selected point (Cond. 4.4), fresidual(
2x) represents the

residual function value defined as follows

fresidual(
2x) = (f(2x)− f(cx))− dFFinal:selected(2x) (4.37)

The difference between function increment at position 2x (f(2x)−f(cx)) and given

model (dFFinal:selected(
2x) defined in Eq. (4.6)) represents the residual value. In

other words, we approximate the difference between the selected increment func-

tions and the actual increment at particular point 2x. In a case of multiple samples

satisfying Eq. (4.37), it is necessary to average their influence, i.e. calculate the

average of the residual values and compute coefficient CL.

The proposed approach is used only if there is insufficient number of samples, i.e.

the number of samples holding Cond. 4.4 is not enough to use the least square

fit. In other words, if there is enough samples to create the linear model using

methods such as least square fit, one should use these methods.

Once, the coefficient CL is solved, one can substitute Eq. (4.35) to the linear

model (Eq. (4.34)). Now, looking at function εResidual:total(x) (Eq. (4.8)), which

represents the function of neglected increment functions, one can understand that

the linear model represents the approximation of neglected increment functions.

In other words, the linear model is the approximation for all the neglected incre-

ment functions.

The fundamental question is why to use the linear model. We can look at the

conclusions from the previous section and realize that our idea is to pose a ques-

tion: ”Is the influence of the neglected increment functions on the final model so

small that they can be approximated with a linear model?”. If this assumption is

wrong, it is obvious that the considered increment functions cannot be neglected

and must be sampled.
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Once the linear model (Eq. (4.34)) is created, one can do MC simulation on

this cheap model to obtain the statistical properties, i.e. the mean value and

the standard deviation. These statistical properties reflect the properties of the

neglected values and if these values are too large, one needs to include more

increment functions in the final model. Therefore, the following condition can be

establish:

if

σneglected < εdeduction

then =⇒ The final model is converged

(4.38)

where σneglected represents the statistical properties obtained from the linear model

(Eq. (4.34)) and εdeduction represents the deduction residual, which is equal to the

deduction residual defined in Sec. 4.2.1, i.e. εdeduction = εR−T . In this work, the

deduction residual is set to the global residual defined in Sec. 3.4.2.

The proposed approach can be extended to selection of non-important increment

functions. However, one needs to replace Eq. (4.37) with the following equation

fresidual(
3x,c xj) = (f(3x,c xj)− f(cx,c xj))− dFFinal:selected:j(3x) (4.39)

where dFFinal:selected:j is model defined in Sec. 4.2.1. Also, one of the coefficients

cli in Eq. (4.35) is reduced to zero, i.e. clj = 0. As in the previous approach,

observing function εResidual:total:j(x), which represents the function of neglected

increment functions without increment functions considering xj as a variable,

one can understand that the linear model represents the approximation of these

increment functions. In other words, the linear model is the approximation for

all the neglected increment functions without xj as a variable. The same process

is applied for the selection process of increment functions, which are not included

in the model. However, Eq. (4.37) is replaced with the following equation:

fresidual(
3x,c xj) =

(f(3x,c xj)− f(cx,c xj))− dFFinal:selected:j(3x,c xj))

−(dFFinal:total(
2x)− dFFinal:selected(2x))

(4.40)

where dFFinal:selected is model defined in Sec. 4.2.1. Again, observing function

εResidual−not−included:j(x), which represents the function of increment functions not

included in the model, one can understand that the linear model represents the

approximation of the increment functions not included in the model.
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Different aspect is the convergence criteria defined in Cond. 4.38. This condition

has to be modified in the following way

if

σneglected:2 < εdeduction:2

then =⇒ Remove the involved increment functions

(4.41)

where σneglected:2 represents the statistical properties obtained from the linear

model (either constructed with the left hand side equal to Eq. (4.39) or equal to

Eq. (4.40), respectively) and εdeduction:2 represents the second deduction residual,

which is equal to the deduction residuals defined in Sec. 4.2.1, i.e. εdeduction:2 =

εR−T−j using Eq. (4.39) as a left hand side and εdeduction:2 = εResidual−not−included:j

using Eq. (4.40) as a left hand side, respectively. In this work, the second de-

duction residual is set to the global residual defined in Sec. 3.4.2. One can con-

clude that the model is fully converged, when Cond. 4.38 is fulfilled. Moreover,

Cond. 4.41 is fulfilled for all tested variables, when Cond. 4.38 is fulfilled.

4.4 Application of the selection scheme

The practical application of the prediction algorithm is relatively easy. How-

ever, one should always keep in mind the conclusions obtained in the previous

sections. The prediction algorithm starts with the fully converged first order in-

crement functions as it is done in the previous chapter (see Chap. 3). It should

be noted that the prediction approach is done only one level up, e.g. if the first

order increment functions are converged then only the second order increment

functions are considered etc... For explanatory purposes, an applied example will

be considered and it reads:

fEx−Pr(x1, x2, x3, x4) =

x1 + x2 + x3 + x4 + x1x2 + x1x3
(4.42)

where for each input variable, xi, is considered a uniform distribution with bounds

equal to −1 and 1. The first order increment functions are fully converged and

the second order increment functions are being tested. Prediction algorithm can

be divided into the following steps:

Step 1. First step represents the selection of the testing points for the deduction

algorithm, i.e. selection of points, which hold Cond. 4.4. These points are
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suggested to be positioned on the boundaries of a given stochastic domain,

where is the influence of the higher order increment emphasized. For these

points, it is necessary to obtain values of the function of interest, 2YF =

f(2X). For the proposed example, we consider sample point xi = 1, where

Eq. (4.42) is equal to 2YF = 6.

Step 2. It is necessary to obtain values of the model (Eq. (4.6)) at the test points

(Cond. 4.4), i.e.

dFFinal:selected(
2x) =

∑
tt∈Mselected

dFtt(
2x)

Using Eq. (4.37) one can establish the values of residuals, i.e.

fresidual(
2x) = (f(2x)− f(cx))− dFFinal:selected(2x)

The model (Eq. (4.6)) is constructed from the selected lower order increment

functions.

For our example, the model is constructed from the first order increment

functions and it reads,

dFFinal:selected(
2x) = dF1(

2x1) + dF2(
2x2) + dF3(

2x3) + dF4(
2x4) = 4

The value of residual is estimated for our example as follows:

fresidual(
2x1,

2 x2,
2 x3,

2 x4) =(
f(2x1,

2 x2,
2 x3,

2 x4)− f(cx1,
c x2,

c x3,
c x4)

)
−
(
dF1(

2x1) + dF2(
2x2) + dF3(

2x3) + dF4(
2x4)

)
=

6− 4 = 2

Step 3. It is necessary to construct a linear model, which will reflect the influence

of the neglected increment functions. In other words, we assume that the

neglected functions have such a low influence that they can be approximated

with a linear model (see Sec. 4.3.1). Using the residuals obtained in the

previous step, one can build a linear model using Eq. (4.34), i.e.

FResidualModel(x1, ..., xn) =
n∑
i=1

clixi
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This model is used to propagate the statistical properties, which are ob-

tained by MC simulation. The inputs for MC simulation are defined in

Sec. 3.3.

For our example, the linear model has the following shape

FResidualModel(x1, x2, x3, x4) = 0.5x1 + 0.5x2 + 0.5x3 + 0.5x4

where each coefficient is calculated with the following procedure. First, CL

coefficient is established with the following equation:

2 =
σ1∑1
t=4 σt

CL+
σ2∑1
t=4 σt

CL+
σ3∑1
t=4 σt

CL+
σ4∑1
t=4 σt

CL

= 0.25CL+ 0.25CL+ 0.25CL+ 0.25CL⇒ CL = 2

with the CL coefficient established, each coefficient is calculated using

Eq. (4.35) as follows:

cl1 =
σ1∑1
t=4 σt

CL = 0.25 2 = 0.5

cl2 =
σ2∑1
t=4 σt

CL = 0.25 2 = 0.5

cl3 =
σ3∑1
t=4 σt

CL = 0.25 2 = 0.5

cl4 =
σ4∑1
t=4 σt

CL = 0.25 2 = 0.5

Step 4. Once, the statistical properties are obtained, one can check the convergence

criteria of the final model (Cond. 4.38). If the condition is fulfilled, the final

model is converged and the whole process of model building is stopped.

For the proposed example, the statistical properties obtained with the linear

model are following:

µnormalized = 0

σnormalized =
σResidualModel

σFinal:selected
=

0.57

1.15
= 0.5

where µ represents the expected value obtained from directly the linear

model, σResidualModel represents the standard deviation obtained directly

from the linear model and σFinal:selected represents the standard deviation

obtained from the adaptive scheme for the first order increment functions

(see Chap. 3). The standard deviation is normalized in order to provide

percentual influence on the posterior distribution. In our case, the model

is not considered as a converged and therefore, the process continue.
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Step 5. If the condition is not fulfilled, one needs to establish, which increment

functions should be added. First, it is necessary to select variable j and

samples for testing, i.e. samples holding Cond. 4.11. Using these samples,

one needs to obtain values at these samples, e.g. 3YF = f(3X).

In the proposed example, the selected variable is 1 and the proposed sample

have the following coordinates:

Variable Notation Coordinate

x1
cx1 0

x2
3x2 1

x3
3x3 1

x4
3x4 1

The obtained value for this sample is 3YF = 3.

Step 6. Next step is to obtain value of the model (Eq. (4.13)) at the testing point (Cond. 4.11),

i.e.

dFFinal:selected:j(
3x) =

∑
tt∈Mselected:j

dF j
tt(

3x)

Note that the same model as in Step 2 is used. However, all the increment

functions, which do not include variable j are neglected, i.e. they are zero.

The value of residual is established with Eq. (4.39), i.e.

fresidual(
3x,c xj) = f(3x,c xj)− f(cx,c xj)− dFFinal:selected:j(3x)

For our example, the model has the following shape:

dFFinal:selected:1(
3x2,

3 x3,
3 x4) = dF2(

3x2) + dF3(
3x3) + dF4(

3x4)

and the value of residual is estimated as follows:

fresidual(
cx1,

3 x2,
3 x3,

3 x4) =

f(cx1,
3 x2,

3 x3,
3 x4)− f(cx1,

c x2,
c x3,

c x4)

−
(
dF2(

3x2) + dF3(
3x3) + dF4(

2x4)
)

=

3− 3 = 0

Step 7. As in Step 3, one needs to build a linear model (Eq. (4.34), i.e.

FResidualModel(x1, ..., xn) =
n∑
i=1

clixi
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Once, the linear model is build, one can propagate the statistical properties

using MC simulation. The inputs for MC simulation are defined in Sec. 3.3.

For our example, the linear model has the following shape

FResidualModel(x2, x3, x4) = 0.0x2 + 0.0x3 + 0.0x4

Note that cli coefficients are established in the same way as in Step 3;

however, the value of residual is 0 and therefore, all cli coefficients has to

be 0.

Step 8. The convergence criteria is checked with Cond. 4.41. If the condition is ful-

filled, one needs to exclude from the final model all the increment functions

up to the highest order.

In the proposed example, the statistical properties for the linear model

reads:

µnormalized:1 = 0

σnormalized:1 = 0

where µnormalized:1 represents the expected value obtained from directly the

linear model, σnormalized:1 represents the standard deviation obtained di-

rectly from the linear model (Step 7) and σFinal:selected represents the stan-

dard deviation obtained from the adaptive scheme for the first order incre-

ment functions (see Chap. 3). This result means that Cond. 4.41 is fulfilled

and therefore, the involved increment functions can be neglected without

loss of accuracy. The list of neglected increment functions read:

dF23(x2, x3) dF24(x2, x4) dF34(x3, x4) dF234(x2, x3, x4) dF1234(x1, x2, x3, x4)

Note that increment function dF1(x1) is irelevant for the problem as it is

equal to 0, i.e. dF1(
cx1) = 0.

Step 9. It is necessary to construct the linear model using the residual obtained

with Eq. (4.40), i.e.

fresidual(
3x,c xj) =

f(3x,c xj)− f(cx,c xj)− dFFinal:selected:j(3x,c xj))

−(dFFinal:total(
2x)− dFFinal:selected(2x))
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For our example, the residual is calculated as follows:

fresidual(
cx1,

3 x2,
3 x3,

3 x4) =

f(cx1,
3 x2,

3 x3,
3 x4)− f(cx1,

c x2,
c x3,

c x4)− dFFinal:selected:1(3x2,3 x3,3 x4)

−(dFFinal:total(
2x1,

2 x2,
2 x3,

2 x4)− dFFinal:selected(2x1,2 x2,2 x3,2 x4)) =

3− 3− (6− 4) = −2

and the linear model has the following shape:

FResidualModel(x2, x3, x4) = −0.67x2 − 0.67x3 − 0.67x4

where each coefficient is calculated with the following procedure. First, CL

coefficient is established with the following equation:

−2 =
σ2∑2
t=4 σt

CL+
σ3∑2
t=4 σt

CL+
σ4∑2
t=4 σt

CL

= 0.33CL+ 0.33CL+ 0.33CL⇒ CL = −2

with the CL coefficient established, each coefficient is calculated using

Eq. (4.35) as follows:

cl2 =
σ2∑2
t=4 σt

CL = 0.33 2 = 0.67

cl3 =
σ3∑2
t=4 σt

CL = 0.33 2 = 0.67

cl4 =
σ4∑2
t=4 σt

CL = 0.33 2 = 0.67

Step 10. The convergence criteria is again checked with Cond. 4.41. If the condition

is fulfilled, one needs to exclude from the final model all the increment

functions up to the highest order.

In the proposed example, the statistical properties for the linear model

reads:

µnormalized:1−n = 0

σnormalized:1−n =
σResidualModel

σFinal:selected
=

0.66

1.15
= 0.57

where µ represents the expected value obtained from the linear model,

σResidualModel represents the standard deviation obtained from the linear

model (Step 9) and σFinal:selected represents the standard deviation obtained

from the adaptive scheme for the first order increment functions (see Chap. 3).
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The standard deviation is normalized in order to provide percentual influ-

ence on the posterior distribution. This result means that Cond. 4.41 is not

fulfilled and therefore, the involved increment functions can not be neglected

without loss of accuracy.

Step 11. Repeat Step 5 - Step 10 for all variables. Once, all the variables are tested,

one can proceed to the prediction algorithm.

For our example, the selected test samples have the following coordinates:

Selected variable j x1 x2 x3 x4

2 1 0 1 1

3 1 1 0 1

4 1 1 1 0

Obtained residuals for each variable and neglected increment functions:

Selected

variable j

Residual

using

Eq. (4.39)

Residual

using

Eq. (4.40)

Neglected increment

functions

2 1 −1 -

3 1 −1 -

4 2 0

dF23(x2, x3), dF13(x1, x3),

dF12(x1, x2), dF123(x1, x2, x3),

dF1234(x1, x2, x3, x4)

Note that we provide only the values of residuals in order to show the

process. The liner models and corresponding statistical properties are not

showed. Also, the list of neglected increment functions is created as a

disjunction of all the neglected increment functions from the series of tests.

Step 12. The prediction algorithm takes into account only increment functions, which

passes the deduction algorithm and they are one level higher than the cur-

rent model, e.g. the model includes only the first order increment functions

and only the second order increment functions are tested. The first step

is to compute the statistical properties of converged increment functions.

For the convergence of the first order increment functions see Chap. 3 and

for the higher order increment functions see Chap. 5. Once, the statistical
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properties of involved increment functions are established, one can predict

the statistical influence using Eq. (4.22).

For our example, the selected increment functions added to the model are:

The predicted sensitivities for the proposed increment functions are:

dF12(x1, x2) dF13(x1, x3)

Increment function
Lower order

increment functions
µt σt Predicted µt Predicted σt

dF12(x1, x2)
dF1(x1) 0 0.33

0 0.33
dF2(x2) 0 0.33

dF13(x1, x3)
dF1(x1) 0 0.33

0 0.33
dF3(x3) 0 0.33

Step 13. Using Cond. 4.23 and the predicted statistical properties, one can select

which increment functions should stay in the final model. However, if all

the increment functions from this step are neglected and Step 4 (Cond. 4.38)

is not fulfilled, it means that the prediction failed. Therefore, it is necessary

to consider all the increment functions as functional, i.e. they need to be

sampled and interpolated.

For our example, the predicted statistical properties suggest that all the

increment functions are important and such that they need to be passed to

the neglection algorithm.

Step 14. The last step in the selection process is the neglection approach (see Sec. 4.2.3).

First, sample the stochastic domain with samples holding Cond. 4.24. One

does not need a large set of samples and in this work, only one sample is

used and it is positioned in the corner of the stochastic domain given by

the increment function. With Eq. (4.25) one can establish if the increment

function is zero, i.e. it can be neglected.

82



For the proposed example, we consider one sample for each increment func-

tion. The coordinates of the proposed samples are summarized in the fol-

lowing table:

Sample x1 x2 x3 x4

1 1 1 0 0

2 1 0 1 0

Obtained values for each increment function are summarized in the following

table:

Increment function Obtained increment

dF12(x1, x2) 1

dF13(x1, x3) 1

Step 15. The increment function is neglected if Cond. 4.26 is fulfilled. However, it can

happen that the increment function is zeroth in the whole stochastic domain

yet the deduction algorithm requires a higher order increment function. For

example, consider the following function:

f(x1, x2, x3) = ex1x2x3

where the central point is selected to be 0 for all three input variables. In

this case, the second order increment functions are 0; however, the zeroth

derivative condition is not holding, i.e.

∂f(x)

∂x
6= 0 ∀x ∈ Rn

In this case, the neglection algorithm fails to neglect a non-influential in-

crement function, i.e. the second order increment function is necessary for

the third order increment function. Therefore, the increment function has

to be sampled and included in the final model. Fortunately, this problem

is caught with the deduction algorithm.

For our example (Eq. 4.42), both the obtained increment functions have

non-zero increment and therefore, they have to be included in the final

model. These increment functions are going to be sampled with the N-

dimensional adaptive algorithm and these increment functions are:
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dF12(x1, x2) dF13(x1, x3)

Once, the second order increment functions are sampled and converged

(see Chap. 5), the model of selected increment functions (Eq. (4.6)) will be

enriched with these increment functions and the full model will have the

following increment functions:

dF1(x1) dF2(x2) dF3(x3) dF4(x4)

dF12(x1, x2) dF13(x1, x3)

This new model is then tested for the convergence (Step 4) and for the

proposed example, the residual is 0. Therefore, the final model is converged

and the whole process is considered as finalized.

The selection process is showed in Fig. 4.1.

4.5 Discussion about the selection scheme and

selection residuals

One of the largest problems in the uncertainty propagation field is CoD, which

represents a major obstacle in the high dimensional interpolation. The prediction

approach is a robust way to estimate the influence of the increment functions and

therefore, reduce the burden of high dimensionality. In recent years, it was a

custom to stop the cut-HDMR model at the second order increment functions.

However, this approach is not accurate enough and it could provide serious errors

in the estimation of the final PDF. For example, consider the following function:

f(x1, x2, x3) = ex1x2x3 (4.43)

where the central point is selected to be 0 for all three input variables. In this case,

the previously mentioned approach would provide a completely wrong solution.

Moreover, if one is interested in tails of the final PDF, the high order increment

functions (> 2nd order increment functions) play a vital role. The proposed

selection scheme has a safety mechanism to avoid false prediction and therefore,

it is a robust estimator.
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Figure 4.1: Flow chart for the selection scheme
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One can quickly realize that the minimum number of samples necessary to per-

form the deduction approach is n + 1 and unfortunately, these samples are not

used in any other process. One can say that using one sample for testing the

neglected variables is not enough, i.e. creating the linear model of residuals using

only one sample. However, it was found that for the selection process, one sample

is sufficient. On the other hand, when only one sample is selected, the position of

a sample can lead to over-estimating the influence of neglected increment func-

tions. This problem occurs in cases with strong interaction terms such as the

wing weight model (24). Moreover, the problem is magnified if the test sample is

selected on the edge of the stochastic domain, e.g. 2x = max(rx1), ...,max(rxn).

In this case, the input distribution is not taken into account and the influence of

non-important domains is emphasized. However, in order to simplify the work,

we position all the test points on the boundaries of given stochastic domain. The

model is considered fully convergent when the deduction approach neglects all

non-important increment functions using Cond. 4.38. This leads to an efficient

estimation of the important increment functions.

The deduction approach has one important property. If the test samples are

sampled in a smart way, one can completely avoid error in the interpolation

technique. In other words, made the deduction approach independent of the in-

terpolation technique. To explain this further, let us consider a three dimensional

case, where all the stochastic random variables have a uniform distribution with

bounds [−1 1]. The central point is selected at [0 0 0]. The first order increment

functions have to have samples at boundaries and therefore, let us assume the

following samples: the first sample is [1 0 0], the second sample is [0 1 0] and

the third sample is [0 0 1]. The deduction approach requires a sample to hold

Cond. 4.4, e.g. test sample 2x at position [1 1 1]. One can easily notice that

selected samples hold a cross section condition, which is defined later in Chap. 5

and a surrogate model is not required to perform the deduction approach. The

same process can be applied to the selection process for the important increment

function and therefore, the process is independent of a surrogate model.

In theory, the prediction approach should be considered a fully converged, when

Cond. 4.38 is fulfilled. However, in practice, the full model can be considered fully

converged if the prediction algorithm neglects all tested increment functions and

Cond. 4.38 is fulfilled to a certain degree. Therefore, we set the correction factor

kεR−T to 1 in a case of convergence testing in Step 4 and in a case of convergence

testing in Step 13, the correction factor kεR−T is set to 10.
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One further observation should be made from the deduction algorithm. The num-

ber of important increment functions increases when the accuracy is increased.

This leads to a dramatic increase in samples, especially if the high order incre-

ment functions are considered. On the other hand, if only the first order increment

functions are considered, the growth is only linear, i.e. very slow compared to

what would be expected. This leads to the following conclusion:

Proposition 4.5.1 The grow of samples in the sense of the Curse of Dimen-

sionality is a problem of the desired accuracy and not dimensionality.

In other words, one can construct a model using only the first order increment

functions and completely avoid the CoD problem1. However, in many cases, the

accuracy of the model is not sufficient. Therefore, it is necessary to apply a

selection process for the higher order increment functions.

Unfortunately, the deduction algorithm can select the non-important increment

functions. This is due to a fact that the increment functions are handled as a

group, i.e. each test is performed on a selected group of increment functions (see

applied example in Step 8). Therefore, it can happen that inside the group is a

combination of important and also, non-important increment functions. These

increment functions remain in the process and such that they would be sampled.

This represents an additional computational burden and therefore, to further

reduce the number of increment functions, the prediction algorithm is introduced.

The prediction algorithm is based on the conclusions obtained from DE (see

Sec. 2.2). The main advantage of the prediction is the neglection of the non-

important stochastic domains without sampling the domain. However, the pre-

diction is never certain and it should not be used as a sensitivity measure. The

only application should be on neglection or acceptance of the increment function.

Moreover, the prediction algorithm can falsely neglect the influential stochas-

tic domain under specific conditions. For example, consider Eq. (4.43), where

the tested increment functions are of the second order. In this case, the predic-

tion fails and provides the wrong solution. However, in combination with the

deduction algorithm, it creates a robust selection scheme which prevents false

neglections.

1In this work, CoD is understood as an exponential growth of samples when new dimensions

are added to the problem of interest.
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The neglection algorithm is the last part of the selection scheme. It is based on

assumption that the underlying derivative is zero. This approach helps to further

reduce the number of required samples in a case that the non-important increment

functions passed both previous selection processes. To explain the case, consider

the following function:

fEx−Pr:2(x1, x2, x3, x4) =

x1 + x2 + x3 + x4 + x1x2 + x3x4

where for each input variable, xi, is considered a uniform distribution with bounds

equal to −1 and 1. This example differs from Eq. (4.42) in the second interaction

effect and in this case, the deduction and prediction algorithm selects all the sec-

ond order increment functions. However, one can easily notice that the large part

of the increment functions are zero and such that they do not have to be sam-

pled. In this case, further sampling would only lead to a computational burden

and therefore, the neglection algorithm further reduce the required samples.

In theory, the definition holds for all functions. In practice, one can sample the

point in a wrong way and neglect an influential function. For example, consider

previously defined function (Eq. (4.43)) and the tested increment functions are of

the second order. These increment functions are zero along the whole stochastic

domain and such that they would be neglected. On the other hand, they are

required for the third order increment function and they need to be sampled.

However, this problem is extremely rare as it requires specific conditions. Never-

theless, in combination with the deduction approach, it creates a robust selection

scheme.

4.6 Conclusion

In this chapter, the selection scheme is introduced. The selection scheme selects

the important increment functions and such that prevents the exponential growth

in the number of required samples. The selection process is done in three ways.

The first way represents the deduction algorithm, which is based on an inverse

logic and conclusions obtained from the derivative equation. This step requires

some minimal sampling to be performed and these samples are not later used.

However, the overall gain in the efficiency (in terms of expensive samples) out-

weigh the commonly used schemes such as sampling all the lower order stochastic

domains at given order.
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The second way represents the prediction approach, which predicts the influence

of the non-sampled increment functions. The prediction is based on a combination

of empirical experience and conclusions obtained in Chap. 2. It brings additional

savings in the computational time. However, the prediction is not sufficiently

accurate to be used in the sensitivity analysis and such that it should be used

only in the decision process. Also, it was found that the prediction can fail for

certain types of problems. These failures are caught with the deduction algorithm.

The third way represents the neglection approach, which estimates the influence

of the higher order increment function with a small number of samples. The

neglection scheme is based on conclusions obtained in Sec. 2.2 and represents

an additional step towards improvement in efficiency. However, the neglection

scheme can fail in certain rare cases, but this is again caught with the deduction

algorithm.

Very important aspect of the prediction theory is the threshold selection. For

the deduction algorithm, the threshold is based on an approximation of the ne-

glected increment functions and such that establishing their influence on the final

model. This step allows implementing the probability distributions into the ne-

glection process. The threshold for the prediction approach and for the neglection

approach is based on an empirical experience.

The selection scheme is completely new way, how to estimate the influence of the

higher order interactions. Combination of all three algorithms creates a robust

estimator and brings large savings in the expensive function calls. Its importance

becomes significant when the number of random variables is higher than 4. In

the high dimensional spaces (> 10), the selection scheme becomes a necessity as

the required number of samples goes to thousands. Usually one cannot afford

such a large pool of samples.
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Chapter 5

Adaptive algorithm - The higher

order increment functions

In this chapter, the focus is on the development of the adaptive sampling scheme

for the higher order increment functions. The adaptive scheme sample the in-

crement functions, which are passed from the selection scheme. Same as in the

first order adaptive scheme, the high dimensional adaptive scheme considers the

local and global convergence process. In the local process, the convergence of the

higher order increment function is checked and in the global process, the conver-

gence of the order of increment functions is tested. However, the final convergence

decision still remains on the selection scheme.

The chapter is structured in the following way: The theory of the sampling scheme

for the N-D problems is introduced in the first section. In the second section,

the numerical application is given. In the third section, the convergence theory

is presented, where the local and global convergence processes are explained.

The fourth section is given to the simple N-D toy problem, where properties

of the sampling scheme are shown. The same section considers the Borehole

problem, where the global process is showed and results are compared to the MC

simulation. The applied example is followed by a discussion and the last section

is given to the conclusion.
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5.1 Basic theory of the high dimensional adap-

tive algorithm

To introduce the theory of the higher order adaptive scheme, let us recall the

higher order increment function. The higher order increment function reads:

dFi...j(xi, ..., xj) =

∫ xi

cxi

· · ·
∫ xj

cxj

∂f(x)

∂xi, ..., xj
dxi · · · dxj

Each increment function is a separate problem and similarly, as in the case of

the 1-D scheme, the adaptive algorithm is applied to each increment function

separately. In other words, the adaptive scheme is working only with a given

increment function and its underlying stochastic domain. The adaptive algorithm

is based on a comparison of surrogate models in each iteration and to compare the

surrogate models, the idea of Taylor expansion is used. However, the expansion

is done on errors between each iteration, which is similar to the 1-D adaptive

scheme.

Let SdF k−1
i...j (xi, ..., xj) be a surrogate model of the increment function, dFi...j(xi, ..., xj),

which is constructed with nSdF samples in iteration k−1. Then, let SdF k
i...j(xi, ..., xj)

be a surrogate model of the increment function, dFi...j(xi, ..., xj), which is con-

structed with nSdF +kSdF samples in iteration k, where kSdF represents additional

samples in the stochastic domain. The comparison of surrogate models is done

using the Multi Dimensional Error Comparison (MDEC) function, which reads

εkND(xi, ..., xj) =

d∑
D1=0

...
d∑

DnL=0

1

max(D1, ..., DnL)!

(∂SdF k
i...j(xi, ..., xj)

∂xD1
i ...∂x

DnL
j

−
∂SdF k−1

i...j (xi, ..., xj)

∂xD1
i ...∂x

DnL
j

)2
 1

max(1,D1,...,Dn)

PosND(x̃i, ..., x̃j) (5.1)

where d represents the selected maximum order derivative, k represents the given

iteration, xi represents the corresponding variable and x̃i represents the normal-

ized corresponding variable xi, which is defined later. Note that the number of

summands in Eq. (5.1) is given by the number of variables in a given increment

function. PosND(x̃) represents the multi dimensional position function, which

is a measurement of a distance between known samples and it is defined in the
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following way

PosND(x̃i, ..., x̃j) = min


√√√√ j∑

h=i

(x̃h −K(x̃h)(x̃h − xkh
)2 − xkh

)2

 (5.2)

where the vector operations are considered element-wise, x̃i represents the nor-

malized random variable xi, xki represents the vector of normalized samples

of variable i, which is used to create surrogate model SdF k
i...j(xi, ..., xj), i.e.

xki =
(
x̃ki1 , ..., x̃kinSdF+kSdF

)
and the last part is the shift function K(x̃i), which

is defined in the following way

K(x̃i) = kshift
x̃i
| x̃i |

(5.3)

where kshift is a shift coefficient, which is set to 0.3 in this work. The normalized

random variable is defined in a same way as in the 1-D case and the equation

reads

x̃i =
xi − (max(xi)+min(xi))

2
(max(xi)+min(xi))

2

(5.4)

where min(xi) is the minimum for given distribution of xi and max(xi) represents

the maximum for given distribution of xi. Note that in a case of infinite or semi

infinite distribution, the distribution is truncated to a finite number of standard

deviations. In other words, the stochastic domain is bounded by a minimum and

a maximum, which is defined by the user. The normalization process ensures that

the value of x̃i is bounded between −1 and 1. Example of the position function

PosND for two random variables is shown in Fig. 5.1.

The MDEC function represents search over the stochastic domain, which takes

into account behaviour of the function and also, a position of the known samples.

If the maximum derivative order is set to d = 0, then the technique is similar

to techniques such as Generalization error (56) or Leave-one-out error (56). In

Eq. (5.1), the derivative part compares the shapes of interpolants in different

iterations, which helps the search algorithm to select the next sample, i.e. the

position of the largest change. Note that all derivatives in Eq. (5.1) are taken

into account and therefore, the search is done over all interactions parts of the

given domain.

The multi dimensional position function assures that MDEC function is zero at

the position of a sampled point. It represents an exploration approach to the
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Figure 5.1: The multi dimensional position function, PosND(x̃), created with 9

samples

problem, where the derivative part represents the exploitation approach. A com-

bination of these two approaches creates a natural exploitation and exploration

scheme. The scheme is balanced by the nature of the function of interest. In

the case of a simple function, the position function helps to spread samples more

uniformly around given stochastic domain. This ensures that the stochastic space

is rigorously searched and the algorithm is not stacked in one particular area. On

the other hand, if the function of interest is complex, the derivative part force the

algorithm to sample the problematic part. Therefore, samples in the function of

interest are optimally spread around the stochastic domain.

The random variable can have various PDF, which needs to be taken into account.

In the proposed scheme, PDF represents a weight function, which emphasizes the

region of interest. To implement the probability distribution into the process, it

is necessary to modify MDEC function.

To introduce the modification, let pi(xi) be the Probability Distribution Function

assigned to the random variable xi. Then, the Joint Probability Distribution

Function (JPDF) is defined in the following way

pi...j(xi, ..., xj) =

j∏
h=i

ph(xh) (5.5)
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This step allows to take into account the probability distribution for the higher

order increment functions. Combining MDEC function (Eq. (5.1)) and JPDF

(Eq. (5.5)), the Multi Dimensional Probability Error Comparison (MD-PEC)

function can be defined in the following way

Ek
ND(xi, ..., xj) = εkND(xi, ..., xj)pi...j(xi, ..., xj) (5.6)

The proposed function takes into account all aspects of the uncertainty propaga-

tion. The derivative part represents behaviour of the underlying function, while

the position function ensures uniformity of samples around the stochastic domain

in a case of a simple function. Moreover, JDPF assures that the input probability

is taken into account.

The final step is to propose the position of a new sample. One can use the

constrained optimization algorithm, however, the search over the stochastic do-

main is complicated with restrictions. Therefore, an optimization approach is

introduced later.

The search for a new sample is not over the whole stochastic domain. First, let

us recall DE (Eq. (2.5)), which reads

df(x) =
n∑
i=1

∂f(x)

∂xi
dxi +

∑
1≤i<j≤n

∂f(x)

∂xi, xj
dxidxj + ...+

∂f(x)

∂x1, ..., xn
dx1...dxn

The higher order partial derivatives already includes the lower order partial

derivatives. In other words, the information from the lower stochastic domains

propagates to the higher ones (see Sec. 2.2). Moreover, each proposed sample

requires a sample from the lower stochastic domain, i.e. each sample has to hold

cross-section condition (see below). Therefore, one can assume that the best po-

sition for the new sample will lay in the cross-section of samples from the lower

domains. In other words, the best trade off between efficiency (number of samples

per the final model) and obtained accuracy (exploration/exploitation search of

the stochastic domain) is if the new sample lies in the projection of samples from

the lower domains.

The cross-section condition is necessary for all samples in the higher stochastic

domains and it reads: Each sample in the higher stochastic domain must have

a sample in the lower stochastic domain with the same coordinate, e.g. for the

second order increment function consider a sample [1 1] and the central point

[0 0], the considered samples in the lower domains are [1 0] and [0 1]. However, in
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some cases, a number of samples in the lower stochastic domain is not sufficient

for the higher stochastic domain. In that case, it is necessary to perform the

search over the whole stochastic domain. Therefore, the search over the domain

can be divided into two approaches.

The first approach searches the stochastic domain over the selected sub-domain

samples. As mentioned above, the best sample is selected from the projection

of samples from the lower domains in the stochastic space. This is done in the

following way: Select samples from one level lower sub-domains, e.g. for the

increment function dF123(x1, x2, x3), the selected samples belonging to the set of

increment functions dF12(x1, x2), dF13(x1, x3), dF23(x2, x3). Tensor product of

these vectors represents a set of possible positions for a new sample, i.e.

Vi...j = Vi ⊗ ...⊗ Vj (5.7)

where Vi represents a vector of samples from the lower stochastic domain. How-

ever, this set of samples includes samples, which have one of the coordinates equal

to the central point. These samples would not influence the given stochastic do-

main and therefore, they have to be neglected from the set.

Now, it is easy to process the set of samples, Vi...j, through MD-PEC (Eq. (5.6)).

Sample with the maximum value represents a new position for sampling of the

expensive function. This can be mathematically written in the following way

xknew = arg max
v∈Vi...j

Ek
ND(v) (5.8)

The second approach represents the search over the whole stochastic domain. The

search starts, when the set Vi is empty and there are no more unused samples. In

other words, all samples from set Vi are already used in the interpolation process.

This is done in the following way

xknew = arg max
x∈D

Ek
ND(x)

subject to: x 6= cx
(5.9)

where D represents the optimization domain, which is bounded by the input

distributions (see Sec. 3.3). The application of the optimization algorithm is not

straightforward. The MD-PEC function represents a highly problematic function

and direct application of the optimization technique to the problem of interest

would lead to a dramatic computational burden. To overcome this problem, a

numerical approach is used, which is later introduced in this chapter.
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The optimization algorithm is used when the higher order increment functions

have more complicated shape than the low order increment functions. In theory,

this happens in rare cases, where the partial derivatives have higher influence

than the lower ones (see Sec. 2.2). However, in practice, it can happen that the

lower order increment functions are converged closely to the allowed threshold.

In that case, the high dimensional surrogate model requires additional samples

to fulfil the accuracy condition. Note that the optimization process is run on the

surrogate models created for the given increment function. This ensures that the

computational burden is kept low.

In theory, the optimization process is straightforward. In practice, the analytic

form of the proposed algorithm is not well suited for a direct application and

therefore, the numerical approach is adopted. The numerical approach is dis-

cussed in the following section.

5.2 Numerical application of the high dimen-

sional adaptive algorithm

The application of the adaptive scheme is not straightforward as it needs to take

into account the underlying surrogate model, the nature of the problem and also,

the convergence criteria. Therefore, in this section, the numerical approach for

the high dimensional adaptive scheme is introduced.

In the first step, let us recall notation for the proposed approach. Let SdF k
i...j(xi, ..., xj)

be the surrogate model of the increment function, dFi...k(xi, ..., xk), using nSdF +

kSdF samples in iteration k. Let Vi...j be a set of possible positions for a new

sample, which is construed as a tensor product of all samples from the considered

lower stochastic domains, e.g. set V1 2 3 consider samples from sets V1 2, V1 3 and

V2 3. The set Vi...j consider combination of all samples and it is necessary to ne-

glect all non-influential samples. This includes all the samples with the following

attribute:

xt = cxt t = i · · · j (5.10)

In the next step, the adaptive scheme separates into two approaches. The first

approach consider a non-used samples in set Vi...j, i.e. some points in set Vi...j still

does not have a value from the expensive model. Therefore, we can perform the
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optimization process over samples which holds the cross-section condition. Now,

we can assume a vector of inputs xi...j, where each input is a sample from set

Vi...j, i.e.

xi...j ∈ Vi...j (5.11)

The second approach considers an empty set Vi...j. In other words, all the samples

are used in the interpolation process and it is necessary to perform the search

over the entire domain. In this case, one can run the expensive optimization

(Eq. (5.9)) algorithm, however, the MD-PEC function is highly non-linear and it

would create computation problems. Therefore, the same approach is taken as in

the case of 1-D adaptive sampling. The first step is to run the LHS design (9) in

the domain of interest. Note that the LHS design is used and not the stratified

sampling design (85), which takes into account underlying probabilities. The

influence of the input probability is introduced later in the process. As in the

first approach, it is necessary to discard all possibilities with the null influence,

i.e. application of Cond. 5.10. Next, assume vector xi...j, where each input is a

sample from the LHS design mentioned earlier, i.e.

xi...j ∈ LHSi...j (5.12)

where LHSi...j is LHS on the domain i...j. When the vector of possible positions

of the next sample, xi...j, is defined, the process of selection can start. First,

the normalization of all samples in vector xi...j is done using Eq. (5.4). The

normalization is also, applied on the surrogate model SdF k
i...j(xi, ..., xj). Next

step is to evaluate MDEC function (Eq. (5.1)) for all samples in vector xi...j. The

derivatives in the MDEC function can be obtained directly from the surrogate

model, such as in a case of Lagrange interpolation, or using the central finite

difference scheme.

The last part represents the application of the input probability into decision

criteria. Let rxNDi...j be the joint probability density of random vectors rxi, which

is defined in Sec. 3.3. This is mathematically written in the following way

rxNDi...j =

j∏
h=i

rxh (5.13)

Using the joint probability density, it is necessary to construct histogram hpi...j.

However, the histogram, hpi...j, is created with a number of bins equal to the
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number of samples in vector xi...j. The histogram hpi...j is normalized to obtain the

joint probability distribution, h̃pi...j. The following MD-PEC function is obtained

as follows

Ek
ND = εkNDh̃

p
i...j (5.14)

where εkND represents the vector of values obtained from Eq. (5.1). The last part

is to obtain the position of a new sample, which is done in the following way

xnew = arg max
xi...j

Ek
ND (5.15)

where xi...j are samples from set Vi...j (Eq. (5.11)) or from the LHS design (Eq. (5.12)).

Once, the position of a new sample is obtained, the process of sample proposition

is not finished. In the higher stochastic domains, there are other requirements,

which needs to be handled. For example, in a case of Lagrange interpolation,

it is necessary to sample the stochastic domain in a grid fashion, otherwise, the

interpolant starts to oscillate. Therefore, in each iteration, when a new sample

is proposed, it is necessary to add samples to fulfil all the conditions required by

the interpolant. To simplify the process, the additional samples are distributed

such that the tensor grid is constructed.

The second aspect represents samples in the lower stochastic domains. For all

samples, it is necessary to fulfil the cross-section condition (see Sec. 5.1). There-

fore, in a case of the second approach, it is necessary to obtain all samples be-

longing to the lower domains, e.g. increment function dF1 2 3 requires samples

from increment functions dF1, dF2, dF3, dF1 2, dF1 3 and dF2 3. There are two

ways how to obtain required values. The first way is to obtain the required values

from the surrogate model constructed in the lower stochastic domain. However,

this approach introduces an error into the surrogate modelling process and when,

the increment function is of a very high order (4 <), the error could be too large.

Moreover, the error is cumulative in nature and this is not desired. The second

way is simply to obtain the value from the expensive model and this approach is

taken in this work.
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5.3 Convergence - The high order increment func-

tions

The convergence process for the higher order increment functions is somehow

similar to the 1-D process, yet there are differences, which needs to be taken

into account. First, let us recall the whole convergence process, which is divided

into two levels. The first level represents the convergence of the final model and

the second level represents the convergence of the increment function order, e.g.

second, third etc... The convergence of the final model is done in the predic-

tion algorithm (see Sec. 4). Therefore, in this part, the focus is given to the

convergence of the increment function order.

The convergence process for given order can be separated into two steps. The first

step represents the local convergence and the second step represents the global

convergence. The high order local convergence focus only on given increment

function, while the high order global convergence focus on the current order of

the increment functions, i.e. the second order increment functions, the third order

increment functions etc... First, the higher order local convergence is discussed.

5.3.1 Convergence - The higher order local convergence

The algorithm is aimed for the uncertainty propagation and therefore, the ob-

served criteria is the mean value and the variance. In Sec. 2.2 is defined the

partial mean and the partial variance, which read:

µki...j =

∫ ∞
−∞
· · ·
∫ ∞
−∞

SdF k
i...j(xi...j)pi...j(xi...j)dxi · · · dxj (5.16)

(σki...j)
2 =

∫ ∞
−∞
· · ·
∫ ∞
−∞

(SdF k
i...j(xi...j)− µki...j)2pi...j(xi...j)dxi · · · dxj (5.17)

where SdF k
i...j(xi...j) represents the surrogate model in k-th iteration and pi...j(xi...j)

represents the joint probability distribution function for a given increment func-

tion. The increment function dFi...j(xi...j) is replaced with SdFi...j(xi...j) to empha-

size the fact that a surrogate model is used to estimate the statistical properties.

The partial mean and the partial variance represent the statistical properties of
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each increment function. However, to estimate the statistical properties, the nu-

merical approach is used and Eq. (5.16) and Eq. (5.17) are replaced with the

numerical equivalent, i.e.

µki...j =
1

z

∑
rxs∈rx

SdF k
i...j(rxs) (5.18)

(σki...j)
2 =

1

z − 1

∑
rxs∈rx

(SdF k
i...j(rxs)− µki...j)2 (5.19)

where z represents a number of samples in vector rx, i.e. the vector of random

inputs (Eq. (5.13)). In the same way, numerical approach can be used to estimate

the total mean (Eq. (2.33)) and the total variance (Eq. (2.34)). Equations for the

total mean and the total variance read:

µk = f(cx) +

sD∑
t=1

µkt (5.20)

(σk)2 =
1

z − 1

∑
rxs∈rx

(
sD∑
t=1

SdF k
t (rxs)− µ

)2

(5.21)

where sD represents a number of the selected increment functions and z represents

the number of samples in vector rx, i.e. the vector of random inputs. The

selected increment functions, sD, differs from the 1-D approach. In the 1-D

case, the statistical properties (Eq. (3.19) and Eq. (3.20)) are computed from all

the 1st order increment functions, where for the N-D case, only the lower order

increment functions are considered. For example, if the tested increment function

is the third order, then the considered increment functions are the first and the

second order plus the considered third order increment function. This step is

important as one cannot calculate the total mean and the total variance from

the not-converged increment functions. Using all the non-converged increment

functions in Eq. (5.20) and Eq. (5.21) would lead to a premature convergence and

therefore, to the non-accurate model.

Once the total mean and the total variance are established, one can compute the

residual between iterations. The residual of the total mean and the total variance

are estimated in the following way

Rk
µi...j

=

∣∣∣∣∣µki...j − µk−1i...j

µk

∣∣∣∣∣ (5.22)
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Rk
(σi...j)2

=

∣∣∣∣∣(σki...j)2 − (σk−1i...j )2

(σk)2

∣∣∣∣∣ (5.23)

where k represents an iteration of the process. Note that the total variance

and the total mean are observed simultaneously. This is important aspect as

both values have to be fully converged to ensure the accuracy of the uncertainty

propagation.

Observing only the residuals is not enough. The total variance and the total

mean are dependent on all involved surrogate models and if one of the surrogate

models is converging slowly, the total number of samples is not optimal. Same

as in the 1-D approach, one more convergence condition is applied - the logistic

convergence. The logistic convergence is defined as follows

LRk
µi...j

=

∣∣∣∣∣µki...j − µk−1i...j

µki...j

∣∣∣∣∣ (5.24)

LRk
(σi...j)2

=

∣∣∣∣∣(σki...j)2 − (σk−1i...j )2

(σki...j)
2

∣∣∣∣∣ (5.25)

Same as in the 1-D approach, the normal and logistic convergence condition holds

the following condition: if all involved surrogate techniques are converged, the

normal and the logistic convergence holds the following condition

LRk
µi...j
≥ Rk

µi...j

LRk
(σi...j)2

≥ Rk
(σi...j)2

To prove this claim, let us focus on the convergence of the expected value (Eq. (5.22)

and Eq. (5.24)). First, substitute Eq. (5.22) and Eq. (5.24) into the above condi-

tion: ∣∣∣∣∣µki...j − µk−1i...j

µk

∣∣∣∣∣ ≥
∣∣∣∣∣µki...j − µk−1i...j

µki...j

∣∣∣∣∣
Simplifying the above inequality leads to the following inequality:

µk ≥ µki...j
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It is clear that µk will be larger than µki...j, because µk is composed of µki...j.

Therefore, from the inequality, it is clear that the proposed condition has to

hold.

On the other hand, if the condition is not valid 1, one of the surrogate models

is divergent and it needs more samples in given stochastic domain. In order to

decrease the necessary number of samples, the local convergence is established in

the following way

if

LRk
µi...j

< Rµ
seti...j or Rk

µi...j
< Rµ

seti...j

and

LRk
(σi...j)2

< R
(σ)2

seti...j or Rk
(σi...j)2

< R
(σ)2

seti...j

then→ stop

(5.26)

where Rµ
set and R

(σ)2

set represent the set residual for a local convergence process.

This residual is set by the user and in this work, it is set to the desired accu-

racy (see Chap. 3). However, this residual is modified according to needs of the

problem. This is discussed later in this chapter.

The proposed approach ensures that each surrogate model is handled according

to its influence to the final model, i.e. if the increment function has a significant

contribution to the final model, the samples are added. Conversely, the non-

significant increment functions are left only with minimum samples. Moreover,

the convergence process is stopped if the local surrogate model is locally converged

and further sampling would not bring desired improvement. This ensures that the

optimal number of samples is used. The whole convergence process is described

in Alg. 4:

1Consider a case where the expected value is converging to 0 and the partial expected

values are converging to a different value. In this case, the final model is saved with the logistic

convergence, i.e. the final solution is convergent.
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Algorithm 4 Scheme for the high order local convergence - part 1

Initialize the process:

1. Obtain Rµ
seti...j and R

(σ)2

seti...j for each increment function in given order

2. Obtain the maximum order of derivatives d

3. Obtain the order of iteration k

4. Obtain set MD − ST of the selected increment functions for given order

while set MD − ST contains non-converged increment functions do

for t = 1 to the length of set MD − ST do

1. Construct the surrogate model SdF k
t (x) for increment function dFt

2. Construct a tensor product of all samples from one level lower stochas-

tic domain using Eq. (5.7) and erase all used samples
if Vi...j contains samples then

1. Assign all samples from set Vi...j to vector xi...j (Eq. (5.11))

else

1. Run LHSt in given stochastic domain

2. Assign all samples from LHSt to vector xi...j (Eq. (5.12))

end if

3. Calculate all derivatives up to the selected order d for each sample in

vector xi...j using surrogate model SdF k
t (x)

4. Calculate the position function, FND−pos, (Eq. (5.2)) for each sample

in vector xi

5. Calculate all derivatives up to the selected order d for each sample in

vector xi...j using surrogate model SdF k−1
t (x)

6. Calculate MD-PEC function(Eq. (5.14))

7. Obtain position of a new sample (Eq. (5.15))

8. Calculate the partial mean (Eq. (5.18)) and the partial variance

(Eq. (5.19)) for increment function dFt(x)

9. Calculate the total mean (Eq. (5.20)) and the total variance

(Eq. (5.21)) for increment function dFt(x)

10. Calculate the normal (Eq. (5.22) and Eq. (5.21)) and the logistic

residuals (Eq. (5.24) and Eq. (5.25)) for the increment function dFt(x)
if Cond. 5.26 hold then

1. Consider the increment function, t, from set MD − ST as

converged
end if

end for
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Algorithm 4 Scheme for the high order local convergence - part 2

1. Fulfil all necessary interpolation conditions for all the non-converged

increment functions, i.e. add samples to create a tensor grid

2. Obtain all the proposed samples from the expansive model, f(x)

3. k = k + 1

end while

Finalize the process:

1. Store the residuals of each increment function

2. Store each surrogate model SdFt(x)

End

5.3.2 Convergence - The high order global convergence

Same as in the 1-D local convergence, the high order local convergence ensures

the convergence of the increment function. However, it has the same drawbacks

as the 1-D approach, i.e. the sum of the local residuals can be greater then the

global residual set by the user. This problem can be written in the following way

SD∑
t=1

Rµ
localt

> GRµ
set (5.27)

SD∑
t=1

R
(σ)2

localt
> GR

(σ)2

set (5.28)

where Rlocalt represents a lower value of LRt and Rt. Even with a moderate

number of random stochastic variables (∼ 6), the number of possible interactions

is significant. One can quickly realize that the sum of all local residuals can lead

to large errors in the final model. Therefore, an approach for a global convergence

is introduced.

The global convergence approach is based on observation of the convergence of the

total mean and the total variance of the final model, i.e. the total mean and the

total variance of all converged increment functions including all the lower orders.

The process to check the global convergence starts when the partial surrogate

models are locally fully converged under given threshold. Note that the total

mean and the total variance are computed at each iteration k and therefore, the
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convergence rate of the whole process can be established. To compute the global

convergence residuals, the following equations are used

GRµ =

∣∣∣∣µk − µk−1µk

∣∣∣∣ (5.29)

GR(σ)2 =

∣∣∣∣(σk)2 − (σk−1)2

(σk)2

∣∣∣∣ (5.30)

where k represents the iteration. The same residuals are used in 1-D approach,

but in this case, the total mean and the total variance are computed from all the

increment functions included in the final model, i.e. from the order 1 up to the

current order. The global residuals, i.e. GRµ and GR(σ)2 , represent the error of

the final model. One can quickly realize, that if the global residuals are not under

the threshold, the final model is not fully converged.

Let us now focus on the aspect of not fully converged model. Same as in the 1-D

case, the convergence process is based on the observation of the partial residuals,

Rµ
localt

and R
(σ)2

localt
. However, the considered residuals are only of given order,

i.e. if the currently solved order is 2, then the considered residuals are only

for the second order increment functions. These residuals take into account the

global influence of a given surrogate model and also, the local accuracy of a given

prediction.

In order to introduce the algorithm, let MD − STC be the set of all increment

functions for given order in the final model. The final model considers all in-

crement functions, i.e. from the order 1 up to the current order. The residuals

considered in set MD−STC are the maximum residuals for each surrogate model,

i.e.

STCt = max(Rµ
localt

, R
(σ)2

localt
) (5.31)

The maximum residual from the whole set is selected and corresponding increment

function is selected for the accuracy improve. The local accuracy (used in the

Alg. 4) for the selected surrogate model is modified in the following way:

Rsett =
Rsett

2
(5.32)

As discussed above, it is necessary to improve the accuracy of the selected sur-

rogate model. However, one does not know a priori how to modify the residual

and therefore, it is empirically selected as a half of the requested value.
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The process of the selection ends when the sum of the residuals in set MD−STC
is smaller then the global residual GRset, i.e. Eq. (5.27) and Eq. (5.28) are no

longer valid. The procedure is described in Alg. 5.

Algorithm 5 Scheme for the selection of the higher order increment functions

for improvement

Initialize the process:

1. Obtain Rµ
sett and R

(σ)2

sett for each increment function for given order

2. Obtain Rµ
localt

and R
(σ)2

localt
for each increment function for given order and

create set MD − STC
3. Obtain GRµ

set and GR
(σ)2

set

4. Create an empty set MD − ST
if GRµ > GRµ

set or GR(σ)2 > GR
(σ)2

set then

while Eq. (5.27) and Eq. (5.28) hold do

1. Select the increment function with the highest residual from set

MD − STC, i.e. max(MD − STC)

2. Modify Rµ
sett and R

(σ)2

sett according to Eq. (5.32) and select the corre-

sponding increment function for the accuracy improvement, i.e. increase

number of samples in given domain

3. Erase the increment function from set MD − STC and store this

increment function in set MD − ST
end while

end if

Finalize the process:

1. Store set MD − ST for Alg. 4

2. Store residuals Rµ
sett and R

(σ)2

sett for Alg. 4

End

5.4 Global process for the higher order incre-

ment functions and the starting conditions

The global process for the higher order increment functions differs significantly

from the global process introduced in Sec. 3.5. The first difference is that the

necessary conditions to start the uncertainty propagation are already established.

This restricts the propagation of the probability distributions through the higher
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order increment functions and the adaptive sampling scheme. Moreover, in 1-

D case, the considered increment functions are only the first order, wherein, in

this case, the considered increment functions are all the higher order increment

functions that are of order ≤ the analyzed order, e.g. the second increment

functions, the third order increment functions etc...

The first step is to obtain the important increment functions for given order. The

selection scheme (see Sec. 4) selects the most important increment functions for

the given order. For the selected increment functions, the joint probability distri-

butions are constructed accordingly to Eq. 5.13, where the marginal probability

distributions are taken from the 1-D case (see Sec. 3.5). The boundaries of the

given stochastic space are also, established in the 1-D approach and for the higher

order increment functions, it is just a combination of the one dimensional cases.

The desired accuracy, GRset, is set the same as for the 1-D case and, in order to

simplify the process, it is the same for the expected value and for the variance,

i.e. GRµ = GR(σ)2 . The last part is to set the maximum derivative order, d,

for the high dimensional adaptive algorithm. It is suggested to keep this number

low, due to a large computational burden if the number is too high. Therefore,

suggested number is d = 2 or d = 3.

The difference between the 1-D case and the higher order adaptive scheme is the

position of the central point and all samples in the lower stochastic domains. In

the 1-D case, the position of the central point has to be selected, however, in the

higher order scheme, the position of the central point is already given. Moreover,

the samples from the lower stochastic domains are given and therefore, collecting

the central point and samples from the lower domains (in a case of the second

order increment function, it will be sampled on the abscissas) are considered as

the zeroth iteration, i.e. k = 0. The first iteration (k = 1) is to set the samples

on the boundaries of the given domain to circumscribe the interpolation domain.

The samples in the first iteration do not have to be positioned on the boundaries

of the interpolation domain, it depends on the interpolation technique selected.

However, an interpolation is always preferred over an extrapolation in this work.

In the 1-D approach, there is at least one sample positioned according to the

adaptive algorithm. This ensures that the increment function is not converged

prematurely as the first order increment functions are usually the important ones.

However, for the higher order increment functions, this step would lead to a large

number of samples with a very low added value, i.e. information provided with

107



these samples would be very low. Therefore, in the first iteration, it is checked,

if the influence of the surrogate model is higher then the convergence threshold,

i.e.

if

LR1
µt < Rµ

sett or R1
µt < Rµ

sett

and

LR1
(σt)2

< R
(σ)2

sett or R1
(σ)2 < R

(σ)2

sett

then→ stop

The considered increment function is converged if the condition holds and it is

not passed to the adaptive algorithm. This leads to savings in the computational

time and also, the number of samples is kept low. However, these increment

functions are considered in the global convergence process (see Sec. 5.3.2). The

global process for the higher order increment functions is described in Alg. 6.
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Algorithm 6 The global process for the higher order increment functions - part

1

Initialize the process:

1. Obtain all the input probability distributions from Alg. 3

2. Obtain the statistical properties of the final model constructed in Alg. 3

3. Predict the important second order increment functions using the selection

scheme (Sec. 4)

4. Assign the important second order increment functions to set MD − ST
if MD − ST is not empty then

while Stopping criteria not met do

1. Set the global residual GRset for given order of the increment

functions

2. Assign GRµ
set = GRset and GR

(σ)2

set = GRset

3. Assign for all Rµ
sett = GRµ

set and R
(σ)2

sett = GR
(σ)2

set

for t = 1 to the length of set MD − ST do

1. Construct the joint probability distribution (Eq. 5.13) for the

increment function, dFt(x), from set MD − ST
2. Construct the surrogate model SdF 0

t (x) for the increment func-

tion dFt(x)

3. Sample the boundaries of given increment function, dFt, from set

MD − ST
4. Construct the surrogate model, SdF 1

t (x), for increment function

dFt(x)

5. Calculate the partial mean (Eq. (5.18)) and the partial variance

(Eq. (5.19)) for each non-converged increment function

6. Calculate the total mean (Eq. (5.20)) and total variance

(Eq. (5.21))

7. Calculate the normal (Eq. (5.22) and Eq. (5.21)) and the logistic

residuals (Eq. (5.24) and Eq. (5.25)) for increment function dFt(x)
if Cond. 5.26 hold then

1. Consider the increment function, t, from set MD − ST as

converged
end if

end for
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Algorithm 6 The global process for the higher order increment functions - part

2

while GRµ > GRµ
set or GR(σ)2 > GR

(σ)2

set do

1. Call Alg. 4

2. Call Alg. 5

end while

4. Increase the maximum order of the increment functions

5. Predict the important higher order increment functions using the

selection scheme (Sec. 4) and update set MD − ST
end while

end if

Finalize the process:

1. Construct the final model accordingly to Eq. (2.28)

2. Sample the final model with the MC sampling and obtain the statistical

properties for the problem of interest

End

5.5 Applied examples for the N-D adaptive scheme

To illustrate the high order adaptive approach, two examples are selected. The

first example is used for the high order adaptive algorithm, where its main ad-

vantages and disadvantages are discussed. The second example represents the

application of the global process, i.e. the whole uncertainty propagation is done.

The second example represents the common engineering problem and the results

of the uncertainty propagation are then discussed.

5.5.1 Applied example using the adaptive algorithm

In order to illustrate the adaptive approach, let us introduce a simple function.

The function of interest is following

FND−test(x1, x2) =

2 + 0.25(x2 − 5x21)
2 + (1− 5x1)

2 + 2(2− 5x2)
2 + 7 sin(2.5x1) sin(17.5x1x2)

(5.33)

where xi represents a random variable with a uniform distribution and boundaries

equal to [0, 1]. However, in this case, the focus is given on the increment function
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dF12(x1, x2). Central point is selected to be at position [0.5 0.5]. The increment

function is shown in Fig. 5.2 and it reads

dF12(x1, x2) =

−6.128− 0.25(0.5− 5x21)
2 − 0.25(−1.25 + x2)

2+

0.25(−5x21 + x2)
2 − 7 sin(2.5x1) sin(8.75x1)

−6.642 sin(8.75x2) + 7 sin(2.5x1) sin(17.5x1x2)

(5.34)

Figure 5.2: Increment function dF12(x1, x2)

There are several aspects which have to be taken into account in the case of the

higher order increment functions. The most common aspect is the natural growth

of the increment function from the central point, i.e. the increment is getting

stronger, the further we move from the central point. This is a direct consequence

of the integration part in the increment function (see Sec. 2.2). However, this

aspect is valid only for functions, which can be accurately approximated with

a polynomial composed of a low order monomials, e.g. ≤ 4. Therefore, the

adaptive scheme should emphasize regions further from the central point in order

to improve the accuracy of the surrogate models for the higher order increment

functions.

The second aspect is the zeroth value of the increment function around its lower

stochastic domains, i.e. all planes and hyper-spaces passing the central point has

to be zero. Therefore, samples should be proposed only in the higher domains,

i.e. the scheme should avoid sampling the lower stochastic domains. The process

of sampling is shown in Fig. 5.3.
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Figure 5.3: Process of the ND-adaptive sampling for the function of interest

dF12(x1, x2)

Blue circle - Sample from the expensive function

The interpolation technique used for Eq. (5.34) is the multi dimensional Lagrange

interpolation (15, 16). Therefore, when the high order local convergence scheme

(Alg. 4) proposed a sample, it also samples all the necessary samples to fulfil the

tensor condition, i.e. to obtain samples in a grid way. This ensures that Lagrange

interpolation does not start to oscillate and provide a reliable interpolation.

The ND-adaptive scheme proposes samples to the positions of the greatest influ-

ence. Therefore, samples are mainly spread around the corners of the stochastic

domain. The algorithm also takes into account the zeroth influence of the lower

stochastic domain and therefore, it does not sample the abscissas or hyperplanes,

113



which belongs to the lower stochastic domains.

Lagrange interpolation has natural tendency to oscillate. The adaptive scheme

can recognize it and it proposes samples in the areas of largest oscillations as

it can be seen on steps from Fig. 5.3b to Fig. 5.3i. The function has the final

trend in Fig. 5.3q and the resulting steps are ”polishing” of the function to ensure

proper convergence.

The interesting part is the position of samples for the fully converged model.

Samples are mainly positioned in the corners of the stochastic domain and this

resembles the well known Smolyak Sparse grid approach. In other words, the pro-

posed adaptive scheme behaves similarly to the well known and proven method.

On the other hand, this is not something that would be surprising as the HDMR

approach using the Lagrange models is closely related to the polynomial chaos

approach (see Appendix E). One can suggest using well proven optimal sam-

pling criteria for polynomials such as Clenshaw-Curtis or Gaussian. However,

these schemes work well for polynomials, yet for other models such as Kriging,

they do not provide optimal results. Later in this work, the multi surrogate ap-

proach is introduced, where a combination of various surrogate models is used to

approximate the domain of interest. Therefore, we use the adaptive scheme to

have technique independent of the surrogate model, i.e. technique which provides

optimal sampling scheme regardless the surrogate model used.

The comparison of samples suggested by the adaptive scheme and the Smolyak

Sparse Grid is shown in Fig. 5.4.

(a) (b)

Figure 5.4: Comparison of the Smolyak Sparse grid grid utilizing the Gaussian

abscissas (1) (a) and the adaptive scheme (b)
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5.5.2 Applied example for the global N-D approach

The function selected for the application of the N-D global process is the well

known Borehole problem (86). It represents an 8-D physical problem and the

function reads

F (x) =
2πTu(Hu −Hl)

ln r
rw

(1 + 2LTu
ln r
rw
r2wKw

+ Tu
Tl

)
(5.35)

where rw represents the radius of borehole (m), r represents the radius of influence

(m), Tu represents the transmissivity of upper aquifer (m2/yr), Hu represents the

potentiometric head of upper aquifer (m), Tl represents the transmissivity of

lower aquifer (m2/yr), Hl represents the potentiometric head of lower aquifer

(m), L represents the length of borehole (m) and Kw represents the hydraulic

conductivity of borehole (m/yr). The output is water flow rate in m3/yr.

Distributions given to each random variable are summarized in Tab. 8.1.

ID Random

Variable

Distribution

type

Mean Standard

deviation
x1 rw Normal 0.10 0.0161812

x2 r Log-Normal 7.71 1.0056

x3 Tu Uniform 63070 115600

x4 Hu Uniform 990 1110

x5 Tl Uniform 63.1 11.6

x6 Hl Uniform 700 820

x7 L Uniform 1120 1680

x8 Kw Uniform 9855 12045

Table 5.1: Input distributions for the Borehole model

The comparison is made with MC simulation with distributions from Tab. 8.1

sampled directly on the model of interest. The results of MC simulation are

summarized in Tab. 5.2. The convergence of the standard deviation and the

mean value for various thresholds are summarized in Tab. 5.3. The selected

partial mean values and the partial variances for the second case are summarized

in Tab. 5.4. The maximum order of derivative is set to d = 3.

The histogram obtained via MC sampling is shown in Fig. 5.5. The histograms

obtained by the high dimensional adaptive method for various thresholds are

summarized in Fig. 5.6. The partial histograms are shown in Fig. 5.8. In
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Function calls Mean Standard deviation

100000 73.84 28.71

Table 5.2: MC simulation for the Borehole model

Case Desired

accuracy

Function

calls

Mean Standard

Devia-

tion

Relative

error of

Mean

Relative

error of

S. D.
1 0.01 87 73.85 28.70 1.821e-04 4.736e-4

2 0.001 126 73.84 28.70 2.977e-05 3.198e-4

Table 5.3: Results of the high dimensional adaptive UQ-HDMR approach

Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
rw 1.8174 531.4032 0.6402 0.6716

Hl -0.0258 72.1023 0.0090 0.0911

L 0.9143 71.5599 0.3221 0.0904

Kw 0.0030 16.7087 0.0010 0.0211

rw.Kw 0.0045 1.7665 0.0015 0.0022

rw.L 0.0153 7.5374 0.0053 0.0095

rw.Hl 0.0068 7.5901 0.0024 0.0096

rw.Hu 0.0128 7.5983 0.0045 0.0096

Table 5.4: Results of the selected increment functions for the Borehole problem

Fig. 5.7 is showed histogram obtained with only the first order increment func-

tions. Comparing the histogram obtained with the first order increment functions

only (Fig. 5.7) and histogram obtained with the full model (Fig. 5.6), one can

easily see the larger tail. This proves the conclusions obtained in the Chap. 2.

The comparison graphs of the MC method and the adaptive method are shown

in Fig. 5.6.
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Figure 5.5: PDF obtained by MC simulation

Figure 5.6: PDF obtained by the high dimensional adaptive UQ-HDMR

Left: Relative Accuracy 0.01 Right: Relative Accuracy 0.001
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Figure 5.7: PDF obtained with only the 1st order increment functions
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Figure 5.8: Histograms for the selected increment functions of the Borehole prob-

lem

5.5.3 Discussion about the applied examples

The uncertainty quantification is performed on the Borehole problem. Simplicity

and quick evaluation of the Borehole problem make it an ideal test case for engi-

neering applications of the method. The proposed method successfully converged

for a low number of samples and provided a very accurate representation of PDF,

leading to small errors between MC simulation and the proposed method. The

right tail of the final distribution is well described for both residuals (case 1 -

1e−2, case 2 - 1e−3). However, a slightly better tail is caught with case 2. This

is due to the additional higher order increment functions, namely the 3rd order

increment function, dF178. The list of all sampled increment functions is showed

in Appendix F.
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Variable x1 is mainly responsible for the final distribution as it can be seen from

comparison of Fig. 5.8a and Fig. 5.6. The other variables have a small or negligible

effect on the final distribution. The interaction effects represented in Fig. 5.8e -

5.8h are responsible for slight skewness and a longer tail on the right. An inter-

esting comparison is the difference between the converged model (Fig. 5.6) and

the model obtained with only the 1st order increment functions (Fig. 5.7). One

can see that the final model has elongated right tail and therefore, the higher

order increment functions are responsible for tails of the final distribution as it is

concluded in Sec. 2.2.

One can also notice that the number of samples starts to grow very fast with the

higher orders and the additional value of the higher order increment functions is

not very large (compared to the value of the first order). Therefore, in practice,

one should avoid using a large number of higher order increment functions of

not necessary. On the other hand, if the tails of the output distribution are

required such as in a case of the reliability study, then the usage of the higher

order increment functions is necessary.

In both cases (1 and 2), the method converged to prescribed accuracy, i.e. to

the set residual. However, the difference between results (see Fig. 5.6) compared

to MC simulation are negligible. Therefore, one can set a philosophical question

how the residual should be set.

5.6 Discussion about the high dimensional adap-

tive scheme

In this chapter, the high-dimensional scheme is presented and applied to the Bore-

hole example. The method extends the 1-D adaptive scheme defined in Chap. 3.

However, this approach focus on the interaction effects of given random variables,

i.e. the higher order increment functions. The local adaptive scheme focus only

on the sampling process of the given increment function, where the global pro-

cess ensures the selection of the important higher order increment functions. This

includes the predictor scheme defined in the previous section.

The high dimensional adaptive algorithm builds on the 1-D adaptive algorithm.

However, there are differences between these two. In the 1-D case, the sample se-

lection is free of choice and it is basically an optimization problem. In the higher
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dimensions, the search is restricted with a requirement of the cross-section con-

dition (see Sec. 5.1). To save the computational time, the projection of samples

is considered first. It is assumed that the adaptive algorithm already selected

the best position in the lower level and therefore, using the projection of samples

leads to the best position in the higher domains. This is a direct consequence of

the derivative equation (see Chap. 2). The algorithm switches to a random search

over the given domain, when all the lower domain samples are used. However,

this is a case of very few problems and very often, it leads to case 2 (see Sec. 2.2),

where the higher order derivatives are more complicated than the lower ones.

This is usually the case of chemical flows or flows including magnetic field.

The adaptive technique is not restricted to the specific surrogate technique and

any surrogate technique can be used. However, this brings an additional step to

the sampling process represented by the specific requirement of a selected surro-

gate model. One does not know a priory what technique is used as a surrogate

model and therefore, the adaptive technique cannot be optimal in some cases. In

other words, if the surrogate technique requires additional samples in a specific

position, the additional samples are not optimally placed. This is a particular

case of Lagrange polynomials, where the grid sampling approach is required (for

example, see Fig. 5.4b). On the other hand, this can be used as an advantage,

when multiple models are introduced in the surrogate process. This is discussed

in Chap. 6.

The ND-global process differs from the 1-D global process and the main differ-

ence is the usage of the predictor scheme. One quickly realizes that without the

predictor scheme, the number of samples required for the higher order increment

functions would be extreme. For example, in a case with 5 variables, there are 10

second order interactions. Considering a case, where samples are positioned in

corners of given stochastic domain, it means a minimum of 40 additional samples.

Many of these samples have a very low influence on the final model and there-

fore, it would be a large waste of a computational time. The same logic applies

for the increment functions in the global algorithm (Alg. 6), before the adaptive

scheme is run. This leads to dramatic savings in terms of a computational time,

especially in a case of large stochastic spaces, e.g. n > 10.

In the most adaptive schemes, the convergence criterion is based on observation

of a residual. However, here, the convergence criteria differs from the well known

approaches. In this work, the convergence process is separated into three aspects.
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The first aspect represents the convergence of the increment function, where

residuals of the expected value and the variance are considered. The second aspect

is the convergence of the final model for given set of increment functions, i.e. given

order of the increment functions. This step prevents from premature convergence

and it helps to ensure that the desired accuracy will be met. The third aspect

represents the convergence of the order for the increment functions and it is done

in the predictor scheme (see Sec. 4). The final model is fully converged, when the

predictor scheme neglects all non-important increment functions, i.e. there are

no additional increment functions to sample.

5.7 Conclusion

In this chapter, the adaptive sampling approach for the higher order increment

functions is introduced. The proposed adaptive sampling is an extension to the 1-

D approach, where the EC equation is modified to the N-D case - MDEC. MDEC

function takes into account the position of the previous samples, the complexity of

the underlying problem and input distributions. However, for the N-D increment

functions, it is necessary to respect the requirements of the selected interpolation

technique such as grid distribution of samples. This reduces the optimality of

proposed samples yet it is a necessary step.

In this chapter is also introduced the convergence process, which is separated

into three aspects. The first aspect is the local convergence, where the properties

of the increment function are tested. The observed criteria are the statistical

properties of given increment function.

The second aspect represents the global convergence, where the convergence of

total mean and total variance are checked. The global convergence ensures that

the final model is accurate enough and the sum of the local errors does not exceed

given threshold. This step is similar to the global convergence process defined in

Chap. 3.

In this chapter, the application of the selection scheme to the method is also

introduced. The selection scheme represents the third convergence aspect and it

is responsible for the final model convergence. This ensures that the number of

samples required to construct the final model is kept low. All these aspects make

the UQ propagator a very efficient tool.
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The proposed technique is shown in two examples. In the first example, an ana-

lytic function is considered, where the properties of the adaptive sampling scheme

are shown. Using the Lagrange interpolation as a surrogate model, it samples the

stochastic domain in a similar way as proven methods such as Smolyak Sparse

Grid. This proves the effectiveness of our method.

The second example considers the well known Borehole problem as a test case.

In this example, the whole method is tested and showed an excellent agreement

with the MC method for a fraction of cost (87 samples). Moreover, the right tail

is also very well described. In this example, conclusions obtained in Sec. 2 are

proven.
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Chapter 6

Multi surrogate modelling

The decomposition process introduced in Chap. 2 allowed to use multiple surro-

gate models for a single problem. With a proper combination of surrogate models,

the global robustness of the developed method can be greatly enhanced. However,

it is not known a priori what is the best combination of surrogate models.

In this chapter, the focus is given to the development of the multi surrogate

algorithm, which combines various surrogate models to obtain robust interpolant

for given increment function. The multi surrogate interpolation technique can be

divided into two schemes, where the first scheme measures the overall performance

of the selected interpolation technique over the domain and the second scheme

measure the local accuracy of the selected interpolation technique. Both schemes

measure the efficiency of the surrogate model over time (iterations) and discard

the diverging surrogate models. The final model is a combination of the most

accurate techniques.

The chapter is structured in the following way: First, the literature review of

the multi surrogate techniques is done. In the second section, the basic theory

is defined. In the following subsection, the mean weight approach is introduced.

Next subsection is given to the local improvement approach, where measurement

of the local accuracy is defined. The next subsection explains the application of

the local improvement to the overall process. In the third section, the application

of the overall interpolation technique is discussed. In the fourth section, the

multi surrogate interpolation technique is tested on various test functions. These

functions represent various cases, which can be encountered during uncertainty

quantification. In the sixth section, a discussion about results and conclusions is
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given. The last part is given to the final conclusion of this chapter.

6.1 Literature review

In many engineering problems, the usage of surrogate models provided a success-

ful approach, where these models replaced time consuming and expensive com-

puter simulations. Moreover, in many engineering areas such as optimization,

sensitivity analysis or uncertainty quantification, the surrogate models represent

the only viable solution to obtain an accurate result. However, these models rep-

resent a simplification of the real model and therefore, they represent a source of

errors.

One of the reliable approximation techniques is the Polynomial Chaos (87, 88, 89,

90, 91), which is also an efficient surrogate model. Another polynomial interpo-

lation scheme: Multi dimensional Lagrange Interpolation (92, 93) is widely used.

However, these approaches represent only a small portion of surrogate models

used for engineering problems. Interesting work on surrogate models are given in

works (49, 50, 52, 57, 94, 95, 96). Review of surrogate models used for computer

experiments is given in Chen et al. (97). They provide a general strategy for

multiple applications such as electrical engineering or mechanical engineering. In

the work of Gorissen et al. (98), surrogate models with the same base (surrogate

models using the same basis, e.g. Kriging, Radial Basis Functions (RBF)) are

compared on real cases. This provides useful tips for a good surrogate model

selection. In the work of Shan and Wang (99), a survey of surrogate models and

its applications is given. It also provides some interesting questions, which still

remain unsolved.

Many researchers focus on the usage of multiple surrogate models for the uncer-

tainty propagation, in order to obtain a robust and an efficient approach. An

interesting application of the surrogate model ensemble is shown in the works of

Zhang et al. (100, 101), where a combination of Extended-RBF, RBF and Kriging

is done. However, they consider all the models in the process and in the case of

a divergent model, the whole process can lead to a catastrophic failure. Another

multi surrogate approach is the Weight Average approach (102, 103), where surro-

gate models are weighted according to their performance. According to the work

of Boshop (103), using multiple models can reduce variance. However, in prac-

tice, the errors are correlated and the error reduction is not achieved. This was
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observed in the work of Viana (104), which also provides a rigorous and practical

insight into multi surrogate modelling. This work also provides various method-

ologies for selection of weights. Using multiple surrogates and Dempster-Shafer

theory is combined in the work of Muller and Piche (105). In this approach,

Dempster-Shafer theory is used to select a combination of the best surrogate ap-

proaches. Another approach using an ensemble of surrogate models is described

in the work of Ferreira and Serpa (95), where a least square approach is used for

a proper combination of surrogate models. A combination of multiple surrogates

and global optimization algorithm with an adaptive sampling is given in the work

of Viana et al. (106). The Efficient Global Optimization (EGO) is modified to

work with a set of surrogates models, making it more efficient optimization ap-

proach. In the work of Zhou et al. (107), the evolutionary algorithm is used to

combine interpolation and approximation techniques. Moreover, a combination

of surrogate models can create a beneficial effect on the final result, i.e. using

blessing and curse of uncertainty in the surrogate modelling (for the explana-

tion of a blessing and a curse of uncertainty on surrogate modelling see Zhou et

al. (107)).

In previous years, the main focus was given to a single surrogate approach and

not so many articles were given to the multi surrogate approach. However, a

multi surrogate approach can be an excellent way to have an efficient and a

robust surrogate model. Therefore, this part is given to a development of a

new surrogate approach, which can combine multiple surrogate models. The

important aspect is the neglection approach as in theory, the surrogate models

automatically converge. However, in practice, surrogate models suffer from the

numerical errors and slow convergence. Therefore, the multi surrogate approach

can overcome these problems and it can make the interpolation process more

robust and capable of efficiently handle a large number of real problems.

6.2 Idea and theory of multi surrogate mod-

elling

First, let us discuss the basic idea behind the multi surrogate modelling. This

problem can be tackled in many ways, where one way is to use ideas from the

project management. In the beginning, the project has a target which in our

case is the uncertainty propagation. The project manager, i.e. the algorithm, has
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no knowledge about the problem. Therefore, the project manager hires some-

body who knows what to do, i.e. UQ propagation technique. However, the first

question which needs to be answered is: who to hire.

In the beginning, the project manager hires only a few workers to get on the

right track and understand what the problem is about. In our case, the workers

represent surrogate models. However, when the project goes further, the project

manager hires more workers or removes some of them, i.e. adding or deleting

surrogate models from the problem of interest.

The hiring process is relatively simple. The project manager reads a curriculum

vitae and decides who to hire. In the case of surrogate modelling, curriculum

vitae represents the properties of the surrogate model, which are obtained from

various applications of given surrogate model and also, from the user’s experience.

The removal aspect is an important part as some of the workers can perform a

bad job. The same is for surrogate models, where some models can diverge and

therefore, it is important to delete them from the interpolation process. However,

the removal aspect represents a challenging part because the algorithm must know

about the performance of the surrogate model, i.e. how efficient is given the

surrogate model. This requires time and an effective comparison scheme.

The comparison scheme is a problematic thing as a worker can be below average;

however, in a certain area of the project, the worker can be a unique contribution.

The same applies to the surrogate models, where for example Kriging model is

better than PChip in the overall performance and PChip works better around

discontinuity. This makes things difficult and it needs to be taken into account.

Another aspect represents a worker’s wage as he/she can perform better than the

other workers. The efficient workers have a larger influence on the project and

therefore, they must have better wage than the average ones. One can easily see

a similarity in surrogate modelling. Some surrogate models perform better than

the other ones and this has to be reflected in their influence.

Let us now convert the above idea into a mathematical approach. The project

represents the final surrogate model, which can successfully approximate a given

problem. As said above, the worker is represented by a surrogate model and the

time is represented by an iteration in the sampling process. We are looking for

a final surrogate model composed of other surrogate models, which is robust and

also efficient, i.e. use as minimum expensive samples as possible and is accurate
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on a whole range of problems. The mathematical form of the final surrogate

model, sf(x), is defined in the following way

sf(x) = µ(x) (6.1)

where µ(x) represents the weighted mean of all the considered models and it reads

µ(x) =
Nm∑
i=1

wmisfi(x) (6.2)

where wmi represents the normalized weight coefficient for a given surrogate

model, Nm represents the number of selected surrogate models and sfi(x) repre-

sents the surrogate model. This is the core of the multi-surrogate approach. One

can understand that the payment for the surrogate model (worker) is represented

by a weight coefficient (wage). However, the wmi coefficient is constant over the

entire stochastic domain. The coefficient wmi represents the average accuracy of

the given surrogate model, i.e. the average performance of the worker and it is

further explained in the following sections.

As mentioned before, one worker can perform well in a certain range, i.e. one

interpolation technique can be very accurate over some parts of the stochastic

domain. This needs to be taken into account and the final surrogate model has

to be modified. Therefore, Eq. (6.1) is modified in the following way

sf(x) = µ(x) +
Nm∑
i=1

wfi(x)(sfi(x)− µ(x)) (6.3)

where wfi(x) represents the correction of the model over a certain range of the

stochastic domain, i.e. the local weight function. One can understand the local

weight as a reward for given work and sum of the corrections represents the local

advantages of given surrogate models over the entire stochastic domain. The local

weight function is further explained in the following sections.

This is the basic multi surrogate model. In the next subsections, the aim is

given to the definition of the weighted mean value approach and to the local

improvement.

6.2.1 Weighted mean value approach

In the weighted mean value approach, the basic idea is that the sum of various

models gives better prediction over one model. However, only the accurate models
127



have to be used and the inaccurate models have to be neglected from the final

model. The selection process is based on an assumption of inaccuracies in given

surrogate models.

To illustrate the basic idea of the weighted mean value approach, let us consider a

sample in the stochastic domain. Around given sample, a probability distribution

can be created to estimate the probability of passing surrogate models. In other

words, none of the surrogate models is going to exactly predict the position of

the sample, i.e. each surrogate model has an error of interpolation. If multiple

surrogate models are considered, one can create a probability distribution as

shown in Fig. 6.1. The probability distribution represents how accurately are

surrogate models distributed around a given point. In other words, what is the

probability that given surrogate model is at a particular position.

X

F(X)

Surrogate

Model 1

Surrogate

Model 2

Surrogate

Model 3

Surrogate

Model 4

Functional

value

Surrogate

sample

Assumed

Distribution

Figure 6.1: Basic idea for the multi surrogate approach

Based on the distribution around given sample, the weights for selected surrogate

models can be created. In other words, one can estimate a difference between

surrogate model and the test sample and based on these differences, the weights

can be created. Moreover, if some surrogate models are on the tails of given

distribution, these models can be neglect. However, to assess the validity of

given surrogate model, it needs to be done over a number of iterations.

Let us now focus on Eq. (6.2), which represents the weighted mean of the selected

surrogate models in a given iteration. For each model considered in a given
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iteration, the weighted coefficient wmi is defined in the following way

wmi =
1

K

K∑
j=1

(wmnsij) (6.4)

where K represents the number of samples in given iteration and wmnsij rep-

resents the normalized weight of sample j in the current iteration for selected

model i. This coefficient is defined in the following way

wmnsij =
wmsij∑K

j=1(wms
i
j)

(6.5)

where wmsij represents the non-normalized weighted coefficient for sample j in a

given iteration for selected model i. The normalization process ensures that the

sum of weighted coefficients is always 1, which is necessary condition to obtain

an interpolation technique. The non-normalized weighted coefficient is obtained

using the weight function, which reads

wmsij = e

− | yij || σMS |


(6.6)

where yij represents the difference between the function value for sample j and

surrogate model i at the previous iteration, i.e.

yij = f(xj)− sf i(xj) (6.7)

where f(xj) is the function value for sample j and sf i(xj) is the surrogate value

for sample j. Scaling coefficient σMS in Eq. (6.6) is defined in the following way

σMS−p1 =
1

K

K∑
j=1

1

Nm

Nm∑
i=1

| yij |

σMS−p2 =
1

K

K∑
j=1

| f(xj) |

if σMS−p2 < σMS−p1

σMS = σMS−p2

else

σMS = σMS−p1

end

(6.8)
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where Nm represents the number of active surrogate models, σMS−p1 represents

the standard scaling coefficient and σMS−p2 represents the modified scaling coef-

ficient. The standard scaling coefficient σMS−p1 scales the weight function, which

makes the weight function independent of the magnitude of the results. In other

words, the scaling assures that the errors of the surrogate model are relatively

compared to other surrogate models. However, the standard scaling coefficient,

σMS−p1, is prone to the numerical errors. If one of the models is diverging, the

standard scaling coefficient becomes too high and slows the neglection process

(described later). In that case, the modified scaling coefficient σMS−p2 is used.

This allows fast rejection of diverging models.

Let us have a closer look on the weight function (Eq. (6.6)). An example of this

function is showed in Fig. 6.2, where it can be seen that it resembles a Gaussian

distribution. This reflects the idea of the probability distribution defined earlier

in this section. This type of weight function is not the only one, which can be

used. Various types of weight functions can be applied; however, there are some

restrictions. The weight function has to be equal to 1 if yij = 0 and must be

monotonically decreasing. Moreover, it has to go to infinity at both sides. In this

work, we restrict ourselves only to the proposed function (Eq. (6.6)).

Figure 6.2: Example of the non-normalized weighted coefficient function

(Eq. (6.6)) using σMS = 1

The models used in the interpolation process are evolving over time, i.e. iter-

ations. However, the performance of each surrogate model can vary over itera-

tions. Therefore, it is necessary to observe the model over time and based on
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its behaviour during iterations, modify the weight (Eq. (6.4)) assigned in given

iteration.

First, let us define a time weight function, which reads

Twf(x) = e(−|x|) (6.9)

This function is monotonically decreasing and weights from the previous iteration

do not have such a high influence as those in the current iteration. It is necessary

to obtain weights from the previous and current iteration. In the zero-th iteration,

the weights are pre-defined by the user. The modified weights are defined in the

following way

wmni =

∑TMS

t=0 Twf(t)wmt
i∑T

t=0 Twf(t)
(6.10)

where TMS represents the current iteration1 and wmt
i represents the weight co-

efficient defined in Eq. (6.4). The upper script t represents an iteration, i.e.

wmt
i represents the weight coefficient in iteration t for surrogate model i. Using

Eq. (6.10), the modified weight coefficient for current iteration is established. The

last step is to normalize obtained coefficients, which is done in the following way

wmi =
wmni∑Nm
i=1 wmni

(6.11)

where wmni represents the modified coefficient defined in Eq. (6.10). To explain

the process a bit further, consider the third iteration, where 3 samples are added

in each step. In each previous iteration, the weighted coefficient is obtained

with Eq. (6.11) for each model and for current iteration the weight coefficient

is obtained with Eq. (6.4). Note that the sum in Eq. (6.11) is done over all

selected (active) model. To explain it a little bit further, consider a following list

of available models [1, 2, 3, 4, 5] and a list of active models [1, 2]. Therefore, the

sum is done over models [1, 2].

Let us now focus on the selection process. One of the main advantages of the

proposed approach is the possibility to use only selected models. Moreover, the

approach allows adding models later in the interpolation process. The selection

process is based on experience or knowledge of the problem. For example, one

1Iteration TMS differs from iteration k defined in the previous sections. In other words, the

adaptive algorithm is independent from the multi surrogate process. To explain the process

further, consider a problem, where the adaptive scheme processed 3 iteration and the multi

surrogate approach only one. In this case, k = k + 3 and T = T + 1.
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does know that Lagrange polynomials work better for simpler functions, i.e. lower

order polynomials. Therefore, the user selects only Lagrange polynomial for the

first few iterations. After few iterations, it is obvious that the function is not

simple and therefore, the user adds the Piecewise Cubic Hermite Interpolating

Polynomial (PChip) interpolation technique, which is more suited for discontinues

functions. In the process of convergence, the algorithm selects, which model

performs better and divide the weights accordingly. One can suggest that the

best way is to consider all the models from the beginning. However, this is not

an optimal approach as multiple models represent slower convergence process.

This is discussed in Sec. 6.4.1.

When multiple surrogate models are considered, the algorithm selects, which

interpolation technique is the best for given problem. In a case of diverging or

completely inappropriate surrogate model, the algorithm neglects the diverging

model from the portfolio of considered surrogate models. This represents another

advantage of the proposed technique. The advantages of various interpolation

techniques are well described in (49, 57, 95, 108, 109). Also, later in this work,

properties of various interpolation models are discussed.

The neglection process is defined in the following way. First, the neglection

threshold is defined, which reads

εThreshold =
1

εT

1

Nm

(6.12)

where Nm represents the number of selected surrogate models and εT is the em-

pirical coefficient, which is set to εT = 2.1 in this work. Based on the proposed

threshold, one can establish the following condition

if εThreshold > wmi

then =⇒ neglect the i-th surrogate model

from the database

(6.13)

However, it is necessary to apply above condition in an iterative manner. To

explain it further, consider a model database that consists of a large number of

active surrogate models. The difference between the models in numerical sense

would be too large and Cond. 6.13 would neglect a large portion of the surrogate

models in one step. Unfortunately, this aspect is problematic even, when
1

Nm

is introduced in Eq. (6.12). Therefore, after each neglection, the normalization

equation (Eq. (6.11)) is applied and the neglection process is repeated.
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When the weight is lower than the threshold for a given surrogate model, the

global weight, wmi, is set to 0 for all future iterations. One important aspect

should be also noted, when the surrogate model is neglected from the weighted

mean approach, the surrogate model is not considered at all. The proposed

approach is described in Alg. 7.
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Algorithm 7 Scheme for the weight mean coefficients

Initialize the process:

1. Obtain iteration T

2. Obtain function values (f(x)) for all samples in given iteration T

3. Obtain the weight values from all previous iterations

4. Obtain a set of active surrogate models

for i = 1 to the selected number of surrogate models Nm do

1. Obtain surrogate values sfi(x) for all samples in given iteration T

2. Obtain surrogate difference (Eq. (6.7)) for all samples in given iteration

T
end for

5. Construct the scaling coefficient (Eq. (6.8))

for i = 1 to the selected number of surrogate models, Nm do

1. Construct the non-normalized weights (Eq. (6.6)) for all samples in

iteration T using model i
end for

6. Normalize the non-normalized weight mean coefficients (Eq. (6.5))

for i = 1 to the selected number of surrogate models, Nm do

1. Calculate the time corrected non-normalized weight coefficient for model

i (Eq. (6.10))
end for

8. Normalize the non-normalized weight mean coefficients (Eq. (6.11))

9. Calculate the neglection threshold (Eq. (6.12))

while ∃ wmi . εThreshold > wmi do

1. Discard the surrogate model with the lowest weight mean coefficient,

wmi

2. Normalize the non-normalized weight mean coefficients (Eq. (6.11)) for

remaining surrogate models
end while

Finalize the process:

1. Store the mean weight coefficients

2. Update the database of active surrogate models

End
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6.2.2 Local improvement approach

Once the weighted means are established, one can focus on the local improve-

ments. Let us now extend the idea defined in Sec. 6.2.1, where ensemble of

surrogate models create a distribution in a given cross section (see Fig. 6.1).

One can assume that the surrogate model will have a similar behaviour in a close

neighbourhood around a given cross section. Therefore, the surrogate model with

the best approximation can be emphasized in a given neighbourhood. This ap-

proach reflects the idea of a worker performing better in a certain part of the

project.

Let us now focus on the local improvement in Eq. (6.3), which is represented by

wfi(x)(sfi(x)− µ(x))

The local weight coefficient, wfi(x), is a function, which is constrained between 0

and 1. However, to have correct final interpolant, it is necessary to establish the

following condition: sum of all local weight coefficients is constrained between 0

and 1, i.e.

0 ≤
Nm∑
i=1

wfi(x) ≤ 1

where Nm represents the number of selected surrogate models.

In order to obtain the local weight coefficients, it is necessary to start the process

with obtaining the weighted mean model (Eq. (6.1)) from the previous iteration

and establishing its value at given sample. Also, it is necessary to obtain func-

tional value for each selected surrogate model in the previous iteration and create

a vector of surrogate model values for a given sample, i.e.

ylj =
[
µT−1j , sfT−11 (xj), ..., sf

T−1
Nm

(xj)
]

(6.14)

where T represents the current iteration, µT−1(xj) represents the weighted mean

model (Eq. (6.1)) from previous iteration, sfT−1i (xj) represents the surrogate

model from the previous iteration and xj represents sample in the current itera-

tion. Subtracting the function value at a given sample from vector ylj gives the

estimation of accuracy. This is mathematically written in the following way

Rlj = ylj − f(xj) (6.15)

where the vector subtraction is element wise. Once, the accuracy of surrogate

models is established, one can see if the surrogate models describe the problem
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well. There are two possible cases. In the first case, sample f(xj) lies far away

from all the surrogate models, i.e. vector Rlj is either completely negative or

completely positive. In this case, all the surrogate models are diverging and it is

pointless to emphasize one of them. Therefore, all the local weights, wjfi , are set

to zero, i.e.
wjµ = 0

wjfi = 0
i ∈ 1...Nm (6.16)

where wjµ represents the local weight for the mean model at sample j and wjfi
represents the local weight for surrogate model i at sample j.

In the second case, the surrogate models describe the problem accurately and

therefore, emphasizing one surrogate model can bring a further increase in the

desired accuracy. This is reflected in vector Rlj, where both signs are present,

i.e. there are positive and negative accuracies. However, one wants to consider

only surrogate models closest to the true value, f(xj) and therefore, only two

surrogate models are considered. One from the left (negative accuracy) and one

for the right (positive accuracy). To select the closest models, first let us separate

vector Rlj into two separate vectors, where vector RlLj consist of only negative

accuracies and vector RlRj consist of only positive accuracies.

With vectors RlLj and RlRj , one can select the closest surrogate models. The

closest surrogate models are the ones, which are closest to the zero and their

selection can be mathematically written in the following way

MRLj = max component(RlLj ) (6.17)

MRRj = min component(RlRj ) (6.18)

In Eq. (6.17) and Eq. (6.18) two aspects are considered. The first aspect is the

accuracy of the selected model and the second aspect represents the selected

closest model. In other words, Eq. (6.17) and Eq. (6.18) carry two information,

one is the closest model and the second one is the accuracy of the selected model.

The last part is definition of the local weights for the selected surrogate models.

The local weight taken in this work are defined as a distance ratio from the

selected models. In other words, we emphasize the closest surrogate models

proportionally. This is done in the following way

wjfs:1 =
MRLj

MRRj −MRLj
(6.19)

wjfs:2 =
MRRj

MRRj −MRLj
(6.20)
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where wjfs:1 represents the local weight for the surrogate model, which is selected

with Eq. (6.17) and wjfs:2 represents the local weight for the surrogate model,

which is selected with Eq. (6.18). When the closest models are emphasized in

given sample j, the remaining models are automatically set to zero, i.e.

wjfi = 0
i 6= (fs:1, fs:2)
i ∈ 1...Nm

(6.21)

where fs:1 represents the selected model in Eq. (6.17) and fs:2 represents the

selected model in Eq. (6.18). To explain this step more closer, let us consider the

following example. Let us have an ensemble of 4 surrogate models (i = 1...4),

where set RlLj consists of surrogate model i = 1 and set RlRj consists of surrogate

models i = [µT−1, 2, 3, 4]. Using Eq. (6.17), the selected surrogate models are

fs:1 = 1 and fs:2 = 3. Once the models are selected, one needs to establish the

local weights for the selected models. This is done using Eq. (6.19) and its values

are establish to wjf1 = 2/3 and wjf3 = 1/3. The vector of local weight coefficients

then reads wf
j = [0, 2/3, 1/3, 0, 0]. If the weighted mean model is selected as the

closest model, the local weight assigned to the weighted mean model is erased

and automatically set to zero.

The proposed approach reflects the idea of the ensemble of surrogate models

creating a distribution at a given point. However, at the moment, a local weight

is established only at particular sample j. One wants to establish weights over

the whole stochastic domain and create a local weight function. This is the topic

of next section. The proposed approach is summarised in Alg. 8.
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Algorithm 8 Scheme for the local weight coefficients

Initialize the process:

1. Obtain the functional value at sample j for the weighted mean model from

the previous iteration (µT−1(xj))

2. Obtain function value at sample j for the expensive function (f(xj))

3. Obtain a set of active surrogate models from the previous iteration

(sfT−1i (x))

4. Construct the accuracy vector of surrogate models (Eq. (6.15))

if Set Rlj (Eq. (6.15)) contain only negative or positive accuracies then

1. Assign zero to the local weight of the weighted mean model, i.e. wjµ = 0

for i = 1 to the selected number of surrogate models, Nm do

1. Assign zero to the local weight of surrogate model i, i.e. wjfi = 0

end for

else

1. Separate set Rlj into set RlLj and RlRj
2. Obtain the closest surrogate models from set RlLj (Eq. (6.17))/ Obtain

its accuracy (Eq. (6.17))

3. Obtain the closest surrogate models from set RlRj (Eq. (6.18))/ Obtain

its accuracy (Eq. (6.18))

4. Obtain a local weight for surrogate model fs:1 (Eq. (6.19))

5. Obtain a local weight for surrogate model fs:2 (Eq. (6.20))

if fs:1 = µT−1j then

1. Assign zero to the weighted mean model, i.e. wjµ = 0

end if

if fs:2 = µT−1j then

1. Assign zero to the weighted mean model, i.e. wjµ = 0

end if

for i = 1 to the selected number of surrogate models Nm do

if i 6= fs:1 ∨ i 6= fs:2 then

1. Assign zero to the local weight of surrogate model i, i.e. wjfi = 0

(Eq. (6.21))
end if

end for

6. Assembly vector wf
j

end if

Finalize the process:

1. Store the vector of local weight coefficients (wf
j) for given sample j

End
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6.2.3 Local improvement in the stochastic domain

Once the local weights are established for given samples, one can start to establish

the local weights around the whole stochastic domain. In other words, create a

local weight function, which is defined over the whole stochastic domain. To

start the process, let us now consider a set of samples J, where each sample

consists of a set of local weights wf
j. These samples are spread over the stochastic

domain and they are obtained over multiple iterations. One wants to construct a

function, which connects all the samples for a given surrogate model. However,

it is necessary to hold the condition defined in the beginning of Sec. 6.2.2, which

states that the local weight function has to be constrained between 0 and 1.

Moreover, the local weight is known at one particular point in the stochastic

domain and using the phenomena ”regression paradox1” (110), one wants to

construct a function, which quickly goes to 0, i.e. goes back to the weighted

mean model.

For the moment, let us assume only surrogate model i. First thing is the correla-

tion function, which creates a relationship between samples J for surrogate model

i. The correlation function closely resembles the Kriging approach and there are

various types of correlation functions such as Gaussian or linear. Various works

on this topic are published, however, we use only the linear correlation function,

which is easy to implement and it cannot start to oscillate, i.e. it is bounded be-

tween 0 and 1 if the training values are bounded between 0 and 1. Moreover, one

does not need to run an expensive optimization algorithm to find the correlation

parameter. The linear correlation function reads

θi(x,xc) =
√
‖ x− xc ‖2 (6.22)

where xc represents the vector determining center of the correlation function.

Using Eq. (6.22) one can construct correlation matrix R, which is KT x KT

matrix, where KT represents the number of samples in set J. Each entry in the

correlation matrix, R, represents correlation between samples from set J for given

surrogate model i. The correlation matrix then reads

Ri =


θi(x1,x1) θi(x1,x2) · · · θi(x1,xKT )
θi(x2,x1) θi(x2,x2) · · · θi(x2,xKT )

...
...

...
...

θi(xKT ,x1) θi(xKT ,x2) · · · θi(xKT ,xKT )

 (6.23)

1regression paradox is an empirical observation, which states that if the observation is an

extreme, the next observation will be closer to the mean value.
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where xj represents the position of sample j from set J for surrogate model i.

Once the correlation matrix is defined, one needs to establish the correlation

vector, which represents the relationship between sample of interest and all the

training samples. The correlation vector reads

ri(x) =


θi(x,x1)
θi(x,x2)

...
θi(x,xKT )

 (6.24)

Using Eq. (6.23) and Eq. (6.24) one can construct a local weight function. The

local weight function reads

wfi(x) = ri(x)R−1i wf i (6.25)

where ri(x) represents the correlation vector for surrogate model i (Eq. (6.24)),

wf i represents the vector of local weights for surrogate model i and R−1i represents

the inverse of correlation matrix Ri (Eq. (6.23)) for surrogate model i. The final

model can be constructed using Eq. (6.3) and Eq. (6.25) and it reads

sf(x) = µ(x) +
Nm∑
i=1

ri(x)R−1i wf i(sfi(x)− µ(x)) (6.26)

Eq. (6.26) represents the final multi surrogate approach, where one can quickly

realize that Eq. (6.26) can be rearranged into more convenient matrix form. How-

ever, we use the provided form due to the practical programming application.

Example of 1-D and 2-D weight function (Eq. (6.25)) around the stochastic do-

main is given in Fig. 6.3. In the 1-D case, the local weight function is constructed

from 5 samples and it emphasizes Lagrange interpolation technique, which is

very lightly trusted around x1 = 1570. In other regions of the stochastic domain,

the Lagrange interpolation is not more accurate than the other interpolants and

therefore, the interpolant is not emphasized.

In the 2-D case, the local weight function is constructed using a tensor product

grid with 9 samples. The local weight function is constructed for the multi dimen-

sional Lagrange interpolation and the algorithm trust the interpolation technique

around x1 = −0.1 and x2 = ±1. However, this time the algorithm largely em-

phasize Lagrange interpolation as the other models are far less accurate around

this region. On the other hand, the accuracy of the interpolation technique in

other regions is not outstanding and therefore, the interpolation technique does

not receive special interest.
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Figure 6.3: Local weight function Left: 1-D case Right: 2-D case

6.3 Application of the multi surrogate approach

The multi surrogate approach can be used as an independent surrogate model

for an arbitrary function. However, its application to the increment function is

slightly different. One of the main differences between arbitrary function and

increment function is the influence of the lower domains, i.e. the increment

function is zero at the lower stochastic domains (see Sec. 2.2). Using samples

from the lower stochastic domains would slow down the convergence process for

the weighted mean approach and therefore, only samples not passing through

the central point are considered. To illustrate the problem, let us consider the

following increment function: dFi...j(xi, ..., xj). The only samples used for the

mean weight approach and for the local improvement are the ones, which hold

the following condition:

xt 6= cxt t = i...j (6.27)

where cxt represents the central point for the stochastic variable t (see Chap. 2).

Another aspect is the adaptive sampling process (see Chap. 3 and Chap. 5). The

adaptive scheme sample only one sample in the case of the first order increment

functions and few samples in the case of the higher order increment functions in

each iteration. However, it was empirically found that using only a few samples

for the mean weight approach can lead to a wrong model selection. Therefore,

one wants to adapt the weighted mean approach to the selected interpolation

techniques, which is done using a simple wait approach. In other words, we wait

for several iterations until the mean weight approach is processed. During this

waiting period, the local weights are assumed to be 0 and they are reassigned
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after the mean weights are assigned. The overall structure of the multi surrogate

structure is shown in Fig. (6.4).

Inputs

Multi-Sur.

approach

No

Yes

Weighted Mean

Value approach

Functional Values

at proposed

samples:

Main model

All surrogate

More than

1 model

No

Yes

Neglect surrogate

models

Local

Improvement

approach

Create

a local weight

function

Construct

main model

Keep weighted

mean weights

Assign 0 to

current local

weights

Figure 6.4: Scheme for the multi surrogate interpolation

6.4 Applied examples for the multi surrogate

approach

In order to illustrate the proposed multi surrogate scheme, let us introduce a

few simple examples. The first example represents a simple non-linear function,

which reads

Ftest:1(x) = (6x− 2)2 sin(12x− 4) (6.28)

where x represents the random variable with a uniform distribution and bound-

aries equal to [−1, 1]. The same function was introduced in Chap. 3 and it is an
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interesting example for the multi surrogate approach. In this example, the multi

surrogate approach is combined with the 1-D adaptive sampling scheme.

In the first run, we select a large number of surrogate models and all surrogate

models start from the first iteration. The list of selected surrogate models is given

in Tab. 6.1. The correlation functions for the Radial Basis Functions are showed

in Tab. 6.2. Also, in this run, Support Vector Machine (SVM) approximation

technique is used. This is not an interpolation technique and it is used for the

propose of showing that the proposed technique can work with approximation

techniques as well. The input parameters for SVM are shown in Tab. 6.3. Pa-

rameters defined in Tab. 6.3 are empirical and their purpose is to avoid a costly

optimization algorithm. The convergence of the mean value and the standard

deviation for all involved models is given in Fig. 6.5 and Fig. 6.6, respectively.

The convergence of the mean model (Eq. 6.1) is also provided, which is given in

order to show the influence of the local improvement. Discussion about results is

given in the next section.

- Surrogate
model

Mode Parameters

1 Lagrange Polynomial - -
2 Kriging Gaussian Cor.

Fun. / Trend:
Pol. 1nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

3 Kriging Gaussian Cor.
Fun. - Trend:

Pol. 2nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

4 Kriging Linear Cor.
Fun. / Trend:

Pol. 1nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

5 Kriging Linear Cor.
Fun. / Trend:

Pol. 2nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

6 Kriging Spline Cor.
Fun. / Trend:

Pol. 1nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

7 Kriging Spline Cor.
Fun. / Trend:

Pol. 2nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

8 Kriging Spherical Cor.
Fun. / Trend:

Pol. 1nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

9 Kriging Spherical Cor.
Fun. / Trend:

Pol. 2nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50
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10 Kriging Gen. Exp. Cor.
Fun. / Trend:

Pol. 1nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

11 Kriging Gen. Exp. Cor.
Fun. / Trend:

Pol. 2nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

12 PChip - -
13 Spline - -
14 Radial Basis

Function (RBF)
Cor. Fun. 1 -

15 Radial Basis
Function (RBF)

Cor. Fun. 2 -

16 Support Vector
Machine (SVM)

Gaussian λ = 0.5 CSVM and εSVM

17 Independent
Polynomial

Interpolation
(IPI)

- -

Table 6.1: List of surrogate models for Eq. (6.28) in case: 1

Correlation function -

1
√
x2 + x2c

2 e
−x2

2x2c

Table 6.2: List of correlation functions for the Radial Basis Functions

Parameters

CSVM = 1000max
(
| Y + 3σY |, | Y − 3σY |

)
εSVM = 1

100
σY√
K

Table 6.3: Parameters for SVM technique

Y is the mean value of the training set

σY is the standard deviation of the training set

K is the number of training samples in the training set

In the second run, the considered function is the same as in the previous case.

However, this time the list of provided models is smaller. In this case, the ne-

glect models are the one giving similar behaviour, i.e. from models given similar

convergence only one is considered. The list of models is given in Tab. 6.4. The

convergence of the mean value and the standard deviation for all the selected

models is given in Fig. 6.7 and Fig. 6.8, respectively. The convergence of the
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Figure 6.5: Convergence of the mean value for Eq. (6.28)

Figure 6.6: Convergence of the standard deviation value for Eq. (6.28)

mean model (Eq. 6.1) is also provided. Discussion about results is given in the

next section.

- Surrogate
model

Mode Parameters

1 Lagrange Polynomial - -
2 Kriging Gaussian Cor.

Fun. - Trend:
Pol. 2nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

3 PChip - -
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4 Independent
Polynomial

Interpolation
(IPI)

- -

Table 6.4: List of surrogate models for Eq. (6.28) in case: 2

Figure 6.7: Convergence of the mean value for Eq. (6.28)

Figure 6.8: Convergence of the standard deviation for Eq. (6.28)
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In the third case, a new function is introduced. This function represents a dis-

continues function and therefore, it represents a serious problem for surrogate

models such as Lagrange polynomial or Kriging. The discontinuous function is

showed in Fig. 6.9 and its mathematical definition reads

Ftest:Jump(x) =

{
sin(x) x ≤ 0.25

sin(x) + 1 x > 0.25
(6.29)

where x represents the random variable with a uniform distribution and bound-

aries equal to [−1, 1]. In this case, the multi surrogate approach is also combined

with the 1-D adaptive scheme and all the surrogate models start from the first

iteration. The list of selected surrogate models is given in Tab. 6.5. The conver-

gence of the mean value and the standard deviation for all the selected models is

given in Fig. 6.10 and Fig. 6.11, respectively. In this case, the final interpolation

is showed in Fig. 6.12, where the final model is showed with samples. Discussion

about results is given in the next section.

Figure 6.9: Function of interest: Ftest:Jump(x)

147



- Surrogate
model

Mode Parameters

1 Lagrange polynomial - -
2 Kriging Gaussian Cor.

Fun. - Trend:
Pol. 2nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

3 PChip - -

Table 6.5: List of surrogate models for Eq. (6.29) in case: 3

Figure 6.10: Convergence of the mean value for Eq. (6.29)

In the fourth case, a simple function is used, which can be easily interpolated with

any interpolation technique. The function is showed in Fig. 6.13 and it reads

f(x) = x3 + x2 + 30 (6.30)

where x represents the random variable with a uniform distribution and bound-

aries equal to [−1, 1]. The list of considered surrogate models is given in Tab. 6.6.

Samples are distributed using the 1-D adaptive sampling scheme and all the sur-

rogate models start from the first iteration. The convergence of the mean value

and the standard deviation for all the selected models is given in Fig. 6.14 and

Fig. 6.15, respectively. The convergence of the mean model (Eq. 6.1) is also

provided. Discussion about results is given in the next section.
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Figure 6.11: Convergence of the standard deviation for Eq. (6.29)

Figure 6.12: The final surrogate model for Eq. (6.29)
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Figure 6.13: Function of interest Ftest:Simple(x)

150



- Surrogate
model

Mode Parameters

1 Lagrange Polynomial - -
2 Kriging Gaussian Cor.

Fun. - Trend:
Pol. 2nd

Opt. par. θ = 10
low b. = 0.1 up b. = 50

3 PChip - -

Table 6.6: List of surrogate models for Eq. (6.30) in case: 4

Figure 6.14: Convergence of the mean value for Eq. (6.30)

Note: In the third iteration, the Lagrange polynomial (Model 1) is selected

the only model and the full model is composed only of the Lagrange

surrogate model. Therefore, the Lagrange polynomial (Model 1) is

not showed after the third iteration.

In the fifth case, the previous function (Eq. (6.30)) and the same list of surrogate

models are considered. However, in this case, the starting iteration is different

for each surrogate model, i.e. a surrogate model is considered active after a

prescribed number of iterations. The starting conditions are given in Tab. 6.7.

The convergence of the mean value and the standard deviation for all selected

models is given in Fig. 6.16 and Fig. 6.17, respectively. Note that in the case of

one surrogate model, only the full model is showed. Other models are coincident

with the full model. Discussion about results is given in the next section.
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Figure 6.15: Convergence of the standard deviation for Eq. (6.30)

Note: In the third iteration, the Lagrange polynomial (Model 1) is selected

the only model and the full model is composed only of the Lagrange

surrogate model. Therefore, the Lagrange polynomial (Model 1) is

not showed after the third iteration.

Surrogate model Starting iteration

1 1

2 10

3 6

Table 6.7: Starting condition for the case: 5

6.4.1 Discussion about examples

In the first example (Eq. 6.28), a large number of surrogate models is used, where

all the surrogate models start from the first iteration. During the convergence

process, the main model is slowly converging and in the process, it is neglecting

the non-converging surrogate models or slowly converging surrogate models. In

the final iteration, only two the most accurate models are selected and other

models are discarded. Regarding the results, the full model predicts better than

the mean model for the mean value. On the other hand, it performs slightly

worse in the last part of the convergence process. This problem is caused by the

local weight function, which is emphasizing the wrong models. This is quickly

recognized and in the final iteration, the problem despairs, i.e. both models
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Figure 6.16: Convergence of the mean value for Eq. (6.30)

Note: Only the main model is showed. Other models are not active.

Figure 6.17: Convergence of the standard deviation for Eq. (6.30)

Note: Only the main model is showed. Other models are not active.

converge to the same accuracy. Interesting step is in the 17-th iteration, where

the full model is more accurate by orders of magnitude than the other models.

This is consistent with the theory in ((103),p. 364), however, it is only valid for

a short range. On the other hand, the full model is somehow in the middle of all

the models, which is in agreement with findings in other works.

In the second example, a smaller database of models and the same function as in
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the case 1 is considered. One can see that the final model is converged in fewer

iterations and therefore, using a smaller number of expensive function calls. Also,

in the 26-th iteration, only one surrogate model is remaining and therefore, only a

full model is showed. One can conclude that using a smaller number of surrogate

models leads to a faster convergence. Moreover, one can see that using surrogate

models with the same basis (for example models 2 and 3 in the first example) only

prolong the convergence process and the gain is negligible. This is consistent with

an empirical observation, which states that if the manager has multiple persons

to manage, he needs more time to finish the project. This statement is called

Brooks law (111) and it is a claim about software project management according

to which ”adding manpower to a late software project makes it later”. Moreover,

using less surrogate models leads to a less computational burden.

In the third case, the discontinues function is considered and only a small number

of surrogate models is used due to the conclusions obtained from the previous ex-

amples. It can be clearly seen from convergence of the mean value (Fig. 6.10) and

the standard deviation (Fig. 6.11) that the multi surrogate approach is a robust

interpolation method. It selects PChip and neglects the diverging ones. This

aspect is required in many engineering problems as discontinuities are common

in real problems. Moreover, in Fig. 6.12 the final interpolation is showed, where

the adaptive algorithm nicely points out the sharp discontinuity. However, better

accuracy for the mean value and the standard deviation cannot be achieved as

the PChip interpolation technique cannot interpolate such a sharp discontinuity.

Nevertheless, provided accuracy is sufficient for the most engineering problems.

In the fourth case and the fifth case, a simple function is considered. This func-

tion is mostly encountered in real problems as many problems converge under

a low order polynomial. Moreover, from author’s experience, most of the incre-

ment functions can be interpolated using a low polynomial order. Regarding the

fourth case, all surrogate models start from the first iteration. However, in the

last case, the interpolation process starts using only one model, which leads to a

faster convergence. Therefore, one can conclude that starting with the right sur-

rogate model provides faster convergence. Moreover, the robustness of the multi

surrogate approach is not affected. In the case of the diverging surrogate model,

another model is added to the database and the best combination of models is

selected. In this work, other surrogate models are added to the database after

a prescribed number of iterations. The possibility of adding surrogate models
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to the multi surrogate approach after a certain number of iterations represents a

large advantage as it helps to keep the number of samples to the minimum.

6.5 Discussion about the multi surrogate ap-

proach

In modern uncertainty quantification problems, the polynomial based methods

received a lot of interest in recent years. These models provide a reliable and suf-

ficient approach in many cases. However, it can be easily encountered a problem,

where these models are not sufficient (112, 113). Moreover, these problems are

common in uncertainty propagation for hypersonic flows and entry propagation.

Therefore, to keep the approach efficient yet robust: the multi surrogate approach

is developed.

The weighted mean value approach resembles the Weighted Average Surrogate

(WAS) technique. However, it can discard or add surrogate models to the problem

of interest, which makes the approach very robust and efficient. New samples are

tested against active surrogate models after prescribed number of iterations and

based on an accuracy of given surrogate models, weights are assigned. However, in

some iterations, a surrogate model can be inaccurate, yet in the overall process,

the surrogate model is a good interpolant. Therefore, each weight is modified

according to the global accuracy obtained over time/iterations.

The multi surrogate approach has some empirical factors, which are based on the

author’s knowledge and experience. The εThreshold is purely given by an experience

and its modification can lead to a slower/faster convergence. Nevertheless, the

proposed empirical approach proved to be reliable and provided accurate results.

Another aspect is the time weight function (Eq. (6.9)), which can change the

convergence process. In this work, only the proposed function is tested and

other functions can provide a better efficiency. The same applies to the weight

coefficient function (Eq. (6.6)), which is based on author’s experience. Using

different weight coefficient functions can give a better performance. However,

this needs a larger investigation in the future. Nevertheless, all the proposed

functions work well for all the tested examples.

The local weight approach is designed to locally improve the interpolation model

and it proves to be working on provided examples. In the case of a larger list
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of active surrogate models, it provides better accuracy than the mean model.

However, when the number of surrogate models is low, the additional accuracy

is not high. Nevertheless, it is considered as a valuable additional tool in the

surrogate model building. The basic idea of the local weight approach is that the

surrogate model with the best accuracy is assumed to give the best accuracy in

a close neighbourhood. Therefore, emphasizing given model can bring additional

accuracy for the final surrogate model.

The local weight approach is composed of two aspects. The first aspect is the

weights obtained from one particular sample. These weights represent an accu-

racy of given surrogate models at given particular point. However, the weighted

mean model is also considered, which in many cases is the most accurate model

from the ensemble of models. The second aspect is the interpolation of weights

around the stochastic domain, which resemble the Gaussian process. In our case,

the linear correlation function is assumed, but other correlation functions can be

used. Nevertheless, one needs to hold all the restrictions. The linear correlation

function is used due to its simplicity and lack of the hyper-parameter, which

needs to be established by an expensive optimization technique.

The application of the proposed technique is straightforward for common prob-

lems. However, in the case of application to the cut-HDMR approach, one needs

to consider only samples, which belongs to the domain of interest. The samples

from lower domains are automatically 0 and therefore, these samples would slow

down the weight estimation process. Another aspect is the waiting period, which

is based on empirical experience. Using a small number of samples for the weight

estimation can lead to a wrong weight estimation and therefore, it is suggested to

use a larger number of samples. In this work, the number of test samples is driven

by the number of waiting iterations. In other words, the adaptive scheme sample

the stochastic domain with few samples and after a prescribed number of itera-

tions, the weights are estimated. During the waiting period, the mean weights

are kept and the new local weights are automatically 0. The local weights are

recomputed, when the algorithm is used.

Based on the results from the test cases and empirical experience, several rules

for the multi surrogate modelling can be established:

• Keep the number of active surrogate models to the minimum

156



• The considered surrogate models should be modelled in a different way,

i.e. avoid using various modifications of the same technique such as Kriging

with the linear trend function and Kriging with the second order polynomial

trend function etc...

• Start using surrogate models when it’s appropriate

– Polynomials for the first few iterations

– Piecewise interpolation for discontinues problems, i.e. after several

iterations

– Kriging models for highly oscillatory functions, i.e. after a large num-

ber of iterations

6.6 Conclusion

In this chapter, the multi surrogate approach is developed. The implementa-

tion of the multi surrogate interpolation technique is a necessary step in order to

make the method robust and capable to handle all engineering problems. Combi-

nation of various surrogate models can make our method an effective and robust

uncertainty propagation tool.

The developed multi surrogate interpolation method resembles the Kriging model;

however, it has several distinctions. The mean weight approach reflects the trend

function in Kriging model. It is composed as a weighted mean of the active

surrogate models. The local improvement approach resembles the spatially auto-

correlated error; however, in our case, the final interpolant is composed as a sum

of the local improvement functions for all the active surrogate models.

One of the main aspects, which distinguishing our technique from currently avail-

able techniques, is the possibility to add or discard the interpolation techniques

from the pool of active models. However, this requires an iterative process, i.e.

behaviour of each surrogate model is observed over time. Based on these ob-

servations, diverging surrogate models are discarded and the final interpolant is

constructed from the most accurate models.

However, it was found that using large pool of surrogate models leads to a pro-

longed convergence and such that to increase in the expensive function calls. This

is not desired behaviour and therefore, it is suggested to add models to the active
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pool after a certain number of iterations and accordingly to the solved problem.

This step ensures that the model is robust yet it remained an effective tool for

most commonly encountered problems.

Nevertheless, the developed multi surrogate interpolation technique can work

effectively without a prior knowledge of the behaviour of the selected interpolation

techniques, i.e. each problem can start with a large pool of surrogate model.

However, the convergence is not optimal.
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Chapter 7

Independent Polynomial

Interpolation technique

In this chapter, the focus is given to a development of a new surrogate model,

which can handle discontinuities in the function of interest. The proposed tech-

nique resemble spline method, however, it is built differently and offers a greater

possibility for future modifications. The basic idea is to have a fully discontinuous

model, which can be continuous on over a defined range. The continuous solution

is provided with a specific selection of a differencing scheme.

The chapter is structured in the following way: The first section is given to

a literature review, where various techniques for discontinuous interpolation are

discussed. In the second section, the theory of the Independent Polynomial Inter-

polation (IPI) is defined. The third section is given to the boundary conditions,

which are required by IPI. In the fourth section, the numerical application is

discussed and the fifth section is given to the applied examples, where the per-

formance of IPI is tested. The last two sections are given to the discussion about

IPI and conclusion.

7.1 Literature review

One of the largest problems in the surrogate modelling are discontinuities in the

function of interest. A sharp change in the function of interest cannot be han-

dled by many surrogate models and many Partial Differential Equations (PDE)

are discontinuous in nature. For example, the Burgers’ equation (114) has a
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discontinuity, which appears over time and this makes the problem even more

complicated. Unfortunately, this is a common problem in many engineering ex-

amples.

One of the first approaches, which tries to handle discontinuous functions is the

well known piecewise linear interpolation (115). It converges in all cases, however,

the convergence process is very slow. Another technique, which is commonly used

is the spline technique (115, 116). This technique has a large portion of varia-

tions and it was successfully used in many problems. Interesting interpolation

techniques is the cubic spline (117), which consider a polynomial of degree ≤ 3

and it requires continuity of the first and second derivative. This is an advantage

in a case of continuous or oscillatory functions, however, for sharp discontinu-

ity, this represents a serious flaw. Modification of the technique, which handles

better sharp discontinuities is the Shape-Preserving Piecewise Cubic polynomial

(PChip) (115, 118). This modification assumes a zero-th derivative in the local

optimum obtained from a set of samples. PChip works very well for functions

with discontinuities, however, in a case of the oscillatory function, this assumption

makes the interpolation not so accurate as the cubic spline. Another interesting

version of a spline is the Akima spline (119). In this case, derivatives are con-

structed in a geometric mean way. Unfortunately, for the Akima spline and the

PChip, the N-Dimensional approach is still missing. Other very interesting mod-

ifications of spline technique such as Not-a-knot, B-splines, and Bezier curves are

introduced in the work of Bartels et al. (116) and Levy (117).

Another interesting approach for discontinuous functions are wavelets (112, 120,

121), which can approximate discontinuous functions very well. On the other

hand, in the case of continuous problems, they converge in much slower rate than

the polynomial chaos (112). Also, wavelets suffer from the Curse of Dimension-

ality (CoD), however, this can be overcome to a certain point with an adaptive

scheme. Interesting combination of polynomials and wavelets is given in the

work of Lee et al. (122), where the proposed combination is applied to a filtering

problem. Application of wavelets enhanced with an importance sampling to the

uncertainty quantification problem is given in the work of Schiavazzi et al. (123).

In given work, the approach is tested on the famous Kraichnan-Orszag problem,

which represents a coupled system of non-linear ODEs.

Another approach, which tries to handle discontinuous problems are the Multi-

Element generalized Polynomial Chaos (ME-gPC) (124). The proposed technique
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combines gPC with a segmented approach i.e., it separates the stochastic space

into smaller domains, which are then interpolated with the low order generalized

Polynomial Chaos (gPC). This technique is very robust, however, due to the re-

gion segregation, it suffers from CoD. The adaptive approach to the ME-gPCE is

considered in the work of Li and Stinis (125) and Wan and Karniadakis (126, 127),

where the sub-domains are selected on a base of the local influence. This helps

to mitigate CoD, however, it still represents a large issue for ME-gPC. Neverthe-

less, ME-gPC provides very robust Uncertainty Quantification (UQ) technique.

The application of ME-gPC on a real case is in the work of Kewlani and Iag-

nemma (128), where Mobile Robot Dynamics is considered. This work provides

time comparison between common gPC and ME-gPC.

An interesting variation of gPC is the Iterative generalized Polynomial Chaos

(i-gPC). This approach handles problems with discontinuities in the function

slightly better and it also provides a good convergence in the case of continuous

function. Another approach called the simplex method (129) creates a local small

order polynomial over simplexes (N-D triangles). The method adaptively samples

the stochastic domain to adapt to the discontinuities in the function. Comparison

of i-gPC, wavelets, and simplex method is given in the work of Lucor et al. (130).

In the work of Ma (35) is provided a combination of HDMR modelling and adap-

tive algorithm for discontinuous problems. The proposed method works well for a

variety of discontinuous problems, however, it requires a large number of samples.

The Pade-Legendre and its application to the fluid dynamics simulation is given

in the work of Chantrasmi (48). Pade approximation uses a ratio of two polyno-

mials instead of one polynomial of a finite order. This helps to solve oscillation

problems around discontinuities. Application of Pade-Legendre approximation to

the Gibbs problem is done in the work of Hesthaven et al. (131). Another vari-

ation of Pade approximation is given in the work of Tampos et al. (132), where

Chebyshev polynomials are used.

In recent years, the discontinuous interpolation gains a large interest. Many en-

gineering problems suffer from discontinuities in the function and the well known

non-intrusive gPC is not able to handle these problems. In this part, a new inter-

polation technique is developed, which tries to handle the problem of discontinuity

in the function of interest.
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7.2 Theory of Independent Polynomial Interpo-

lation technique

The Independent Polynomial Interpolation (IPI) idea slightly differs from the

other approximation theories. The basic idea is that the known sample influences

only a small area in its neighbourhood and with other known samples in a close

neighbourhood of the sample, one can construct a local polynomial. Therefore,

the interpolation technique is constructed using a small number of samples and

its domain of influence is only local. This limits possible oscillation or divergence

of the final model. In other words, if one of the models starts to diverge, its

influence is only local. One can see that the same motivation lies behind the

spline interpolation.

To explain the mathematical approach, let us consider the following model

sfIPI(x) =
Tc∑
r=1

wr(x)pfr(x) (7.1)

where Tc represents the number of samples in given stochastic domain, wr(x)

represents a weight function for a given sample and pfr(x) represents the in-

dependent surrogate model. In this work, only polynomials are considered for

pfr(x). The final model, sfIPI(x), is constructed as a sum of local polynomi-

als, where each polynomial have a restricted area defined by the weight function,

wr(x).

Let us first focus on weight function wr(x). The weight function assumes that

the influence of the sample slowly fade away and it is zero in the next sample.

This requires a gridded sampling, i.e samples have to be distributed in a grid way

(see Fig. 7.1). Once the samples are distributed, one can construct the following

weight function

wr(x) =



1− x−cpx
c2x−cpx

cpx < x < c2x
x−c1x
cpx−c1x

c1x < x < cpx

1 x = cpx

0 x ≥ c2x

0 x ≤ c1x

(7.2)

where cpx represents the central sample, c1x represents the sample on the left

and c2x represents the sample on the right. An example of the weight function is
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Central Sample

Boundary Sample

Domain of

Influence

Right sample
Left sample

Weight function

Figure 7.1: The grid sampling and the domain of influence for IPI

showed in Fig. 7.1. The weight function in N-D system is defined in the following

way

wr(x1, x2, ..., xn) = wr(x1) wr(x2)...wr(xn) (7.3)

where n represents the number of the stochastic variables. One can quickly realize

that samples, which lies outside of the weight function have zero influence on the

interpolation process. This ensures that the polynomial is only local. Moreover,

the proposed weight approach ensure that the final weight is always 1 over the

whole stochastic domain, i.e.

1 =
Tc∑
r=1

wr(x) (7.4)

This condition ensures that the stochastic domain is properly interpolated.

Let us now define the polynomial function, pfr(x). In the proposed technique,

there are two types of polynomial functions. The first one the interior region

(common known samples) and the second one is defined for the boundaries of the

stochastic domain. At the moment, let us focus only on the interior region, where
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the polynomial is constructed from the central point and the closest samples. In

this case, the number of samples for given polynomial is given as 3n, where n

is the number of dimensions. The easiest solution is to construct a polynomial

only using given samples. However, we want to provide a continuous solution as

many real life cases are continuous. We impose a derivative condition on each

boundary sample and therefore, each boundary sample consist of a derivative

and its value. The key aspect is construction of the required derivative, which

is discussed later. Another aspect represents a boundary sample, which lies in

the corner of the domain of influence (see Fig. 7.1). For these samples, a cross

derivative is pre-described and the application of derivatives is showed in Fig. 7.2.

Using all available information and to create an interpolation approach, one can

construct an univariate polynomial of the 4-th order, which is extended to n-

dimensional space via the tensor product. In other words, we construct 4n order

polynomial. This polynomial is stable, i.e. it does not start to oscillate and it

provides enough smoothness for the most cases. For example, the 4-th order

polynomial in 1-D reads

pfr(x1) = cC + c4x
4
1 + c3x

3
1 + c2x

2
1 + c1x1 (7.5)

and for the 2-D case, it reads

pfr(x1, x2) = c0 + c1x
4
1 + c2x

3
1 + c3x

2
1 + c4x1 + c5x

4
2 + c6x

3
2 + c7x

2
2

+c8x2 + c9x
4
1x

4
2 + c10x

4
1x

3
2 + c11x

4
1x

2
2 + c12x

4
1x2 + c13x

3
1x

4
2 + c14x

2
1x

4
2 + c15x1x

4
2+

c16x
3
1x

3
2 + c17x

2
1x

3
2 + c18x1x

3
2 + c19x

3
1x

2
2 + c20x

3
1x2 + c21x

2
1x

2
2

+c22x
2
1x2 + c23x1x

2
2 + c24x1x2

(7.6)

where ci are unknown coefficients yet to be obtained. To construct all the basis

of local polynomials, the tensor product expansion is used and polynomials for

a larger number of the stochastic variables are constructed accordingly. Using

the polynomial and its derivatives, one can construct Vandermonde matrix (133).

With all the samples in the domain of influence (Fig. 7.2) and given Vandermonde

matrix, one can construct a set of linear equations. For the 1-D polynomial

example showed earlier, the Vandermonde matrix reads
1 cpx cpx2 cpx3 cpx4

1 c1x c1x2 c1x3 c1x4

1 c2x c2x2 c2x3 c2x4

0 1 2 c1x 3 c1x2 4 c1x3

0 1 2 c2x 3 c2x2 4 c2x3


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where cpx represents the central sample, c1x represents the sample on the left

and c2x represents the sample on the right. Note that the last two rows in

the Vandermonde matrix represents the polynomial for the derivative condition

imposed on the boundary samples. Vandermonde matrix for high dimensional

spaces, e.g. 2-D and 3-D, are defined accordingly.

To obtain the unknown coefficients in the set of linear equations, one needs to

solve the following equation

cr = V−1r ×Yr (7.7)

where Vr represents the previously described Vandermonde matrix for polynomial

pfr and Yr represents the vector of sample values and sample derivatives for

polynomial pfr. Note that only samples in given domain of influence are used,

i.e. each polynomial is solved independently. However, using simple inversion of

Vandermonde matrix in Eq. (7.7) is prone to the numerical errors. Therefore, in

this work, the Moore-Penrose pseudo-inverse (134) is used.

Derivative in Y

direction

Derivative in X

direction

Cross derivative

Samples for the

cross derivative

Samples for the X

derivative

Samples for the Y

derivative

Figure 7.2: The local polynomial and its domain of influence for IPI

Once all the local polynomials are fully established, one can create a final inter-

polation model using Eq. (7.1). How to obtain derivatives for a construction of

the polynomial is a topic of the next section.

165



7.2.1 Derivatives of the domain of influence

In many interpolation techniques, which require derivatives, a tricky approach

is used. For example, spline (116, 135) use neighbourhood samples to establish

derivatives. For Piecewise Cubic Hermite Interpolating Polynomial (PChip) (115),

a sort of weighted finite differences is used. In this case, the neighbourhood sam-

ples are considered. Contrary to this, Kriging enhanced with derivatives requires

derivatives directly from the code of interest. These derivatives are usually ob-

tained with a finite differences method or the expensive code provides derivatives

directly. In this work, derivatives are obtained from neighbourhood samples and

a central finite differencing scheme is used to provide a continuous model. To

illustrate the method, the following form of 1-D derivative is used:

∂f(pxi)

∂xi
≈ f(1xi)− f(2xi)

(pxi − 1xi) + (2xi − pxi)
(7.8)

where pxi represents the sample of interest, 1xi represents sample on the left of the

sample pxi and 2xi represents sample on the right of the sample pxi. The higher

order partial derivatives are computed accordingly and graphical representation of

the proposed scheme is shown in Fig. 7.2. Using the central differencing scheme,

we assume locally smooth problem around each sample. One can consider a

different approach for the derivative scheme, however, in that case, the final

model is not continuous. Nevertheless, this step can be advantageous in various

aspects such as a discontinuity in the function of interest.

7.3 Boundary conditions

There are two boundary aspects, which needs to be addressed. The first aspect

represents the boundary derivative as one cannot use the central differencing

scheme for the boundary samples of the stochastic domain. The second aspect

represents the boundary polynomial as one cannot use the full 4-th order polyno-

mial. The boundary polynomial has to be lower and it has to respect the number

of provided samples (see Fig. 7.3). Let us first address the boundary derivative.

For the boundary derivative, one can quickly realize that slightly different ap-

proach have to be taken. One can construct the required derivative accordingly

to the position of the central sample (pxi). Note that the central sample for given

local polynomial, pxi, represents the centre of the considered polynomial and it
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differs from the central sample, cxi, defined in the previous chapters. If there

are only samples on the left or on the right, one has to switch to the forward or

backward differencing scheme. In multiple dimensions, this leads to a combina-

tion of the central and the forward/backward differencing scheme. To illustrate

the approach closer, one can consider sample pxi. If there exist samples on the

left (1xi) and on the right (2xi), one use these samples. On the other hand, if one

side is missing (sample 1xi or sample 2xi), one replace the missing sample with

the central point (pxi). Clear example is showed in Fig. 7.3, where to establish

the derivatives in x and y directions for the central sample (the corner sample),

only the forward scheme is used. To establish the cross derivative, the only com-

bination of the forward differencing scheme is used, which leads to a construction

of the domain of influence from 4 samples (as showed in Fig. 7.3). The proposed

approach is summarized in Alg. 9.

Algorithm 9 Algorithm for obtaining derivatives at the boundary samples

Initialize the process:

1. Consider sample of interest px

2. Obtain the requested directions of the derivative

for i = 1 to all requested directions do

if Samples (px1, ...,
1xi, ...,

pxn) ∧ (px1, ...,
2xi, ...,

pxn) exist then

1. Consider the central differencing scheme in a given direction, i.e. use

samples (px1, ...,
1xi, ...,

pxn) and (px1, ...,
2xi, ...,

pxn) to estimate the

required derivative
else

1. Consider the forward/backward differencing scheme in a given direc-

tion, i.e. use samples (px1, ...,
1xi, ...,

pxn) and (px1, ...,
pxi, ...,

pxn) or

( px1, ...,
pxi, ...,

pxn) and ( px1, ...,
2xi, ...,

pxn) to estimate the required

derivative
end if

end for

3. Construct the requested derivative

Finalize the process:

1. Store the constructed derivative

End

Another aspect represents the boundary polynomial. One cannot construct the

full polynomial as described in the previous section (see Sec. 7.2). In order to
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construct the boundary polynomial, it is necessary to take into account the po-

sition of the sample. In other words, the order of polynomial depends on the

position of the central sample.

The first step is to obtain the number of samples, which lie in a close neighbour-

hood. This is done with the following equation

Nsamples =
n∏
i=1

(ki + 1) (7.9)

where n represents the number of stochastic variables and ki represents the num-

ber of neighbourhood samples, e.g. ki = 2 if there is a sample on the left and

right, ki = 1 if there is a sample only on the right or on the left. Once the number

of samples is known, the order of the polynomial can be established. Note that if

Nsamples = 3n, one can use the full polynomial described in the previous section

(see Sec. 7.2). Otherwise, Alg. 10 has to be used.

Algorithm 10 The polynomial basis creation algorithm for the boundary sam-

ples

Initialize the process:

1. Consider sample of interest px

for i = 1 to the number of stochastic variables n do

if Sample on the left (px1, ...,
1xi, ...,

pxn) and on the right

(px1, ...,
2xi, ...,

pxn) exists then

1. Construct polynomial basis xPi for P = 1...4

2. Store polynomial basis into set PS

else

1. Construct polynomial basis xPi for P = 1...3

2. Store polynomial basis into set PS

end if

end for

1. Construct a tensor product of all polynomial basis in set PS

2. Create the final polynomial

Finalize the process:

1. Store the constructed polynomial

End

To illustrate the proposed algorithm, let us consider the following example. As-

sume a 2-D stochastic space and a corner sample (see Fig. 7.3). Using Alg. 10,
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the final polynomial reads

pfi(x1, x2) = c0 + c1x
3
1 + c2x

2
1 + c3x1 + c4x

3
2 + c5x

2
2

+c6x2 + c7x
3
1x

3
2 + c8x

2
1x

3
2 + c9x1x

3
2 + c10x

3
1x

2
2 + c11x

3
1x2 + c12x

2
1x

2
2

+c13x
2
1x2 + c14x1x

2
2 + c15x1x2

(7.10)

Central Sample

Boundary Sample

Derivative in X

direction

Cross derivative

Derivative in Y

direction

Figure 7.3: IPI boundary approach for the 2-D stochastic domain

7.4 Numerical application of the Independent

Polynomial Interpolation

IPI has straightforward application. First step represents the construction of

derivatives. For each sample in the stochastic domain one need to construct all

the required derivatives, e.g. for n = 3 the following set of derivatives is required:
∂f(x)
∂x1

, ∂f(x)
∂x2

, ∂f(x)
∂x3

, ∂f(x)
∂x1∂x2

, ∂f(x)
∂x1∂x3

, ∂f(x)
∂x2∂x3

, ∂f(x)
∂x1∂x2∂x3

. We are considering only mixed

derivatives up to the order of n. For samples inside the domain, the central

differencing scheme (Eq. (7.8)) is used and for boundary samples, Alg. 9 is used.

Once for every sample has calculated all necessary derivatives, the independent

polynomials can be established. However, in the first part, the domain of influence

is created (see Fig. 7.1) for each sample in the stochastic domain. For each domain

of influence, the polynomial is established, where for the interior samples, the

common polynomial is used and for the boundary samples, Alg. 10 is used. Also,

for each sample, the weight function is constructed (Eq. (7.2) and Eq. (7.3)). Once

the polynomials are created and the derivatives are established, the algorithm
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can estimate the unknown coefficients for given polynomials using Eq. (7.7). The

final model (Eq. (7.1)) is than established as a sum of all the polynomials over

the whole stochastic domain. The whole process is described in Alg. 11.

Algorithm 11 Independent Polynomial Interpolation - part 1

Initialize the process:

1. Obtain samples in the stochastic domain, X

2. Obtain responses Y for samples obtained in step 1. Only responses are

obtained as derivatives are constructed in the following steps.
for r = 1 to the number of samples Tc do

1. Consider sample xr

2. For sample xr calculate the number of samples in a close neighbourhood,

Nsamples (Eq. (7.9))
if Nsamples = 3n then

1. Use the central differencing scheme for all required derivatives, e.g.

for n = 2 the following derivatives are required: ∂f(x)
∂x1

, ∂f(x)
∂x2

, ∂f(x)
∂x1∂x2

else

1. Call Alg. 9 for each required derivative, e.g. for n = 2 the following

derivatives are required: ∂f(x)
∂x1

, ∂f(x)
∂x2

, ∂f(x)
∂x1∂x2

end if

end for

for r = 1 to the number of samples Tc do

1. Consider sample xr

2. Construct the local domain of influence for sample xr, e.g. for n = 2

and interior sample xr see Fig. 7.1

3. Construct a set of local samples Xr and their responses, Yr. Note that

samples Xr and their responses , Yr are subset of samples X and their

responses Y obtained in step 1.

4. Construct a set of derivatives for samples Xr. These derivatives are

constructed in the previous for loop

5. For sample xr calculate the number of samples in a close neighbourhood,

Nsamples (Eq. (7.9))
if Nsamples = 3n then

1. Construct the full 4-th order polynomial

else

1. Call Alg. 10

end if
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Algorithm 11 Independent Polynomial Interpolation - part 2

6. Construct the Vandermonde matrix, Vr, using only samples from the

domain of influence

7. Compute the unknown coefficients for given polynomial (Eq. (7.7))

8. Construct the local polynomial and store it into set LP

9. Construct the weight function (Eq. (7.2) and Eq. (7.3)) and store it into

set WF
end for

Finalize the process:

1. Using set LP and WF , construct the final surrogate model, (Eq. (7.1))

End

The IPI represents a standalone surrogate model and such that it can be used

independently. However, it is necessary to couple IPI with the adaptive scheme

proposed in the previous chapters. IPI has a requirement to have samples in a

grid way, which is the same requirement as for the Lagrange polynomials. This

aspect is necessary due to the selected weight function; however, the nature of

the weight function does not require equidistant spacing. An example of the grid

sampling with various spacing between samples is given in Fig. 7.1. Therefore,

when the adaptive scheme (Chap. 5) propose a sample, it is necessary to obtain

additional samples in order to fulfil the grid sampling condition (Step 1. in Alg. 4

of Chap. 5).

7.5 Applied examples

To illustrate IPI, let us consider a set of examples. The first example is a contin-

uous 1-D function, which reads

Ftest(x) = (6x− 2)2 sin(12x− 4) (7.11)

where x represents the random variable with a uniform distribution and bound-

aries equal to [−1, 1]. This function is a non-linear function and it is showed in

Fig. 3.2. The same example was used for the adaptive scheme. However, in order

to provide comparison of various interpolation techniques, the adaptive sampling

is replaced with the Clenshaw-Curtis nodes. Function Ftest(x) is interpolated

with interpolation techniques showed in Table. 7.1. These techniques represent
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the piecewise interpolation techniques and they can handle most of the interpola-

tion problems. The convergence of the interpolation techniques is observed with

L2 criteria, which reads

L2 =
1

NMC

√√√√NMC∑
i=1

(Ftest(xi)− sf(xi))
2 (7.12)

where sf(x) represents the selected interpolation technique, Ftest(x) represents

the original function and NMC represents the number of tested samples, which

is set to 100000. The interpolation is showed in Fig. 7.4 and the convergence

history is showed in Fig. 7.5, where x-abscissa represents the number of training

samples. The results are discussed in the following section.

- Interpolation technique

1 IPI

2 Spline

3 PChip

Table 7.1: List of interpolation techniques used for function Ftest(x)

Figure 7.4: Interpolation of Eq. (7.11)

In the second example, the discontinuous function is considered and it reads

Ftest:Jump:1D(x) =

{
x sin(5x) x ≤ 0.25
1
x

sin(5x) x > 0.25
(7.13)
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Figure 7.5: Convergence of L2 criteria for Eq. (7.11)

where x represents the random variable with an uniform distribution and bound-

aries equal to [−1, 1]. The proposed function is showed in Fig. 7.6 with other

interpolation functions. The convergence history is showed in Fig. 7.7, where

x-abscissa represents the number of training samples. The results are discussed

in the following section.
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Figure 7.6: Interpolation of Eq. (7.13)

Figure 7.7: Convergence of L2 criteria for Eq. (7.13)
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The third example is the 2-D discontinuous function, which reads

Ftest:Jump:2D−1(x1, x2) =
1

|0.3− x21 − x22|+ 0.1
(7.14)

where xi represents the random variable with an uniform distribution and bound-

aries equal to [0, 1]. The proposed function is discontinuous and it was taken from

the work of Ma (35). All the functions are showed in Fig. 7.8 and the convergence

process is showed in Fig. 7.9, where x-abscissa represents the number of training

samples. The results are discussed in the following section.

(a) Original function (b) 2-D Spline interpolaton

(c) IPI interpolation

Figure 7.8: Interpolation of Eq. (7.14)

The fourth example represents a typical step function. The proposed function is

2-D and it reads

Ftest:Jump:2D−2(x1, x2) =



4 x1 ≤ 0.25, x2 ≤ 0.75

2 0.5 < x1 < 0.85, 0.25 < x2 < 0.7

1 x1 ≥ 0.85, x2 ≥ 0.7

3 x1 ≥ 0.75, x2 ≤ 0.25

0 For all other x1 and x2

(7.15)
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Figure 7.9: Convergence of L2 criteria for Eq. (7.14)

where xi represents the random variable with an uniform distribution and bound-

aries equal to [0, 1]. All the functions are shown in Fig. 7.10 and the convergence

process is shown in Fig. 7.11, where x-abscissa represents the number of training

samples. The results are discussed in the following section.

7.5.1 Discussion about applied examples

In the first case, a fully continuous function is considered. It can be seen from

Fig. 7.4 that IPI performs similarly to spline and in certain regions it has better

behaviour than PChip. However, in the convergence process (see Fig. 7.5), IPI is

between the spline function and PChip. The main aspect is the small oscillation

of the function, which spline handles better due to the adopted higher order

derivative. Nevertheless, IPI proves to be an efficient interpolation. On the other

hand, PChip suffers from inaccuracies in the interpolation process.

In the second case, a 1-D discontinuous function is considered. From the con-

vergence history (see Fig. 7.7), it can be seen that all functions have similar

convergence history. However, around samples, 20, 26, 42 and 48 (see Fig. 7.7),

the spline performs slightly worse than IPI due to the discontinuity and PChip

have the best accuracy. The higher order continuity is a disadvantage in this case.

Interesting part is the discontinuity itself (see Fig. 7.6), where IPI performs better
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(a) Original function

(b) 2-D Spline interpolaton

(c) IPI interpolation

Figure 7.10: Interpolation of Eq. (7.15)
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Figure 7.11: Convergence of the L2 criteria for Eq. (7.15)

than the spline, i.e. IPI stops to oscillate earlier (see provided details in Fig. 7.6).

Note that the adaptive algorithm defined in the previous sections focuses mainly

on the discontinuity (see Fig. 6.12) and therefore, IPI would provide better result

compared to spline due to the smaller oscillations around discontinuities.

In the third case, smooth function with a discontinuity is showed (see Fig. 7.8a).

Both interpolation functions exhibit similar properties, which is showed in the

convergence process (see Fig. 7.9). The interpolants slowly converge to the func-

tion of interest, however, due to the sampling scheme used, the discontinuity

is not properly interpolated. Nevertheless, IPI shows good behaviour around

discontinuity, i.e. smooth change to the continuous regions.

In the fourth case, the 2-D step function is considered. Multiple steps in the

stochastic space are introduced to test the behaviour of the proposed technique

(see Fig. 7.10a). From Fig. 7.10c and Fig. 7.10b, it can be seen that IPI behaves

much better around discontinuities. Oscillations are suppressed much earlier

rather than with a spline and also, oscillations are not so large as in the case of

the spline. This is reflected in the convergence process (see Fig. 7.11), where IPI

have slightly better accuracy.
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7.6 Discussion about IPI

The proposed interpolation technique represents a new approach to the piecewise

interpolation techniques. It is based on a sum of weighted local polynomials,

where the weight is slowly diminishing from the central sample. In other words,

the central sample represents the center of the domain of influence and the be-

haviour of the function is defined by samples in a close neighbourhood. In this

work, the domain of influence is considered only neighbourhood samples (see

Fig. 7.1). In future works, one can focus on using various domains of influence,

i.e. larger portions of samples in the domain of influence. This could lead to

a higher order polynomials, which could be advantages in a case of continuous

function. However, this needs larger research.

Another aspect is the local interpolating polynomial. In this work, the focus is

only on polynomials, however, nature of the proposed technique allows to use

combinations of various techniques such as a combination of polynomials of var-

ious orders or a combination of polynomials and Kriging models. Using a vari-

ous combination of techniques can bring higher accuracy and more importantly,

higher robustness. Nevertheless, due to the insufficient time, this part was not

closely examined.

The finite differencing scheme used to establish the derivatives is an important

aspect. In this work, we use a combination of the central differencing scheme and

the forward/backward differencing scheme, but the different differencing scheme

can improve the convergence around the discontinuities. For example, in a case

of a sharp discontinuity inside the 1-D stochastic domain (see Fig. 7.6), changing

the central derivative to the left hand side derivative for the sample on the left

from the discontinuity and to the right hand side derivative for the sample on the

right from the discontinuity, it can lead to a completely discontinues surrogate

model and such that provide a better accuracy. In other words, IPI can be fully

discontinues surrogate model. However, this still remains an open question and

possible future research.

One of the main advantages over the common spline functions is the solution

to the proposed local polynomials. Each polynomial represents a separate prob-

lem and therefore, a solution to the set of linear equations (Eq. (7.7)) is simpler.

Therefore, an extension to N-dimensional case is simple and easy. In other words,
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to construct a surrogate model, which can accurately approximate high dimen-

sional (> 4) problems, is easier than in a case of spline according to author’s

knowledge. On the other hand, the pre-processing solution takes more time as it

needs to find a N -number of solutions to the linear set of equations.

In the tested examples, the IPI behaves same as the spline interpolation. More-

over, it behaved better in the step discontinuous functions around discontinuity

(see Fig. 7.10). Contrary to this, in a fully continuous and oscillatory case, the

IPI behaved slightly worse than the spline. One can conclude that IPI stands

between the spline and PChip. Moreover, one can modify the local polynomi-

als to simulate the PChip behaviour, i.e. to assign zero-th derivative condition

on the central sample if all neighbourhood samples have a lower/higher value.

Unfortunately, this was not implemented due to the insufficient time.

7.7 Conclusion

In this chapter, a new interpolation technique is introduced. It was developed

in order to have an interpolation technique, which would suit our applications.

The developed technique resembles the well-known spline method, however, it

has several distinguishments.

The basic idea of the proposed method is to construct interpolant as a sum of

local interpolation techniques. In this work, the local interpolation technique

is selected the N-D polynomial, however, the nature of the method allows to

combine various interpolation techniques such as Kriging or N-D spline. Each

local interpolation technique is bounded by the weight function, which decreases

from the central point of the local polynomial until it reaches zero. In other words,

the influence of the local polynomial is strongest at the center and diminish with

distance. This ensures that the interpolation technique is only local.

Using weights to establish domain does not ensure the continuity of the inter-

polant. The continuous interpolant is achieved with the derivative boundary

condition on each local polynomial. In this work, the central differencing scheme

constructed from the neighbourhood samples is used. Combination of a various

differencing scheme can make the interpolant discontinuous, which is desired in

many engineering problems. However, this aspect was not explored deeper and

remains an open topic.
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The technique is tested on various problems and in all tested cases, it proves to be

competitive interpolant. It stands between the commonly used spline and PChip.

However, compared to these two techniques (and many other), our interplant

offers larger flexibility. Unfortunately, this flexibility is not investigated due to

time constraints and remains for future research.
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Chapter 8

Multi fidelity approach

In this chapter, the multi fidelity module is introduced. The multi fidelity is

designed to be a separate module and such that it works as an extension to the

previously defined method. It is based on a well proven additive correction, which

is here extended to the HDMR approach.

In order to measure the effectiveness of the low fidelity models, the power ratio

theory is introduced. It compares the accuracy and timing of given low fidelity

models and such that creates a criterion for selection of the low fidelity model.

The accuracy of the low fidelity model is measured with the error prediction

scheme. The error prediction scheme is based on the linear extrapolation of

the known difference between obtained samples. The prediction error predicts

the error of the mean value and the variance for the low fidelity model and in

combination with the power ratio theory, it creates a robust selection process for

the low fidelity model.

The chapter is structured in the following way: The first section is given to the lit-

erature review, where various works on the multi fidelity modelling are discussed.

In the second section, the power ratio is defined. The third section is devoted

to the correction scheme for the low fidelity model and also to the selection pro-

cess of the low fidelity model. The fourth section focus on the construction and

application of the prediction error function. The fifth section is the numerical ap-

plication of the multi fidelity module and it is divided into two subsections. The

first subsection is focused on the first order increment functions and the second

subsection is focused on the higher order increment functions. The sixth section is

given to the applied example, where the performance of the multi fidelity method
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is tested and compared to the MC simulation. The final sections are given to the

discussion about the multi fidelity scheme and to the conclusion.

8.1 Literature review

In the recent years, the multi fidelity approach gained a lot of interest. Its ability

to reduce the computational time significantly with a minimal loss of accuracy

can spread the use of uncertainty quantification methods to a wider range of

problems. Mainly industry, which needs a fast and reliable solution, is interested

in the multi fidelity approach.

One of the first birds in the multi fidelity modelling for computer codes using the

surrogate approach is issued in Kennedy and O’Hagan (136). The autoregression

approach for the multiple low fidelity models is used in given work and it is

followed by many other researchers (137, 138, 139). In the work of Kuya et

al. (137), a combination of the real data and the mathematical model using

the co-Kriging is introduced. The co-Kriging is combined with an optimization

technique in the work of Forrester et al. (140), where it is applied to the generic

transonic civil aircraft wing. Moreover, in this work, advantages of co-Kriging

are discussed and it provides a nice explanation of the co-Kriging interpolation.

Interesting combination of the Latin HyperCube sampling and the co-Kriging

interpolation is given in the work of Xiong et al. (141). The proposed work

also incorporates a cross validation to estimate the validity of interpolation. The

combination of a simple Kriging and a low fidelity model is done in the work

of Lee et al. (142), where the Kriging is used to correct the low fidelity model

to emulate the expensive model. The proposed method is applied to various

aerospace problems.

Global optimization method using the multi fidelity approach and the sequential

sampling is given in the work of Son et al. (138). In given work, the multi fidelity

approach is taken from the work of Kennedy and O’Hagan (136), however, the

scale parameter (defined in the work of Kennedy and O’Hagan (136)) is replaced

with an approximation function. Another modification of the work of Kennedy

and O’Hagan (136) is given in the work of Qian et al. (139), where a stationary

Gaussian process and the scale parameter are assumed to be an approximate

function. The multi fidelity approach is successfully applied to an optimization
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problem of a heat exchanger. A combination of Kriging and a genetic optimiza-

tion algorithm is given in the work of Zhu et al. (143). In given work, the Kriging

surrogate model is used to interpolate differences between the fidelity models.

In the work of Robinson et al. (144) is showed the multi fidelity approach for

optimization, where various optimization techniques are introduced including the

trust region or the space mapping approach. The optimization techniques are

applied to the wing design problem. Multi fidelity methods for multidisciplinary

design are introduced in the work of March (145). This very interesting work

considers constrained and unconstrained multi fidelity optimization using trust

region approach and the optimization technique is later on modified to the mul-

tidisciplinary problems. The proposed optimization method is applied to the

structural/aerodynamic optimization problem. The multi fidelity approach for

optimization under uncertainty is given in the work of Ng and Willcox (146) and

Ng (147), where the control variate estimator is modified to use the multi fidelity

models. This approach proved to be very efficient, on the other hand, it requires

a large number of function calls (for the low fidelity and for the high fidelity) and

therefore, it cannot be used in CFD applications or DSMC codes. Nevertheless,

in the work of Ng (147), the proposed approach considers also the timing (in

terms of computational time) of given fidelity models and this is not considered

in any other work according to author’s knowledge.

A very important method used for the multi fidelity optimization is the space

mapping method first introduced in the work of Bandler et al. (148). The space

mapping method modifies the high fidelity parameter space to be an image of

the low fidelity parameter space. However, the space mapping approach requires

an optimization algorithm to be applied to the low fidelity model and this is not

feasible for expensive computational problems. Nevertheless, the space mapping

approach gained a lot of interest among researchers (149, 150, 151, 152, 153, 154).

Interesting introduction into the space mapping theory is given in the work of

Bakr et al. (155). In the proposed work, the space mapping optimization is clearly

explained and a combination of classical optimization methods and space mapping

optimization is showed. Very interesting work on the space mapping is given in the

work of Robinson (156). In given work, new Surrogate Based Optimization (SBO)

methods are established, where the number of input parameters can vary between

the fidelity models. Review of the space mapping optimization techniques and

its progress up to the year 2004 is given in the work of Bandler et al. (157).
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Currently, the multi fidelity approaches used in industry are shown in Adams

et al. (84). Dakota software represents a robust approach to the non-intrusive

sensitivity analysis, optimization and uncertainty quantification. This software

package can be connected with other mathematical models, which are handled

as a black box and it is tested in various cases, where it proved its reliability.

It considers the multi fidelity approach using the polynomial chaos. Another

work combining the polynomial chaos and the multi fidelity approach is shown

in the work of Ng and Eldred (4). The method is successfully applied to many

examples including the horn acoustics problem. Various techniques for SBO are

discussed in the work of Eldred and Dunlavy (158) and the efficiency of the

multi fidelity approach is shown. In given work, the additive and multiplicative

surrogate correction1 is used to correct the low fidelity model. The application

of the Dakota software using multi fidelity polynomial chaos for an uncertainty

propagation on a wind turbine is given in the work of Padron et al. (159). An

example of the application of the multiplicative correction for the trust region

optimization is discussed in the work of Alexandrov et al. (160).

8.2 Power ratio theory

The basic question in the multi fidelity modelling is the comparison of fidelity

models. In other words, how to select the best model or combination of models for

a given problem, where one wants to obtain the best ratio of speed and accuracy.

Based on the comparison, select the best model for a given problem. However,

the decision process is very complicated. In this work, the focus is given on the

selection of the low fidelity model, i.e. we assume that the high fidelity model is

defined by the user and a list of the low fidelity models is given to the algorithm.

We define a new approach, where a decision is made on a basis of accuracy and

timing of given low model. The decision process is based on power ratio PMF ,

which represents the efficiency of given low fidelity model against the high fidelity

model. The power ratio is defined in the following way

PMF =
AMF

TMF
(8.1)

where AMF represents the accuracy of the low fidelity model against the high

fidelity model and TMF represents the time ratio of the low fidelity model and

1The additive and multiplicative corrections are discussed in the following sections.
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the high fidelity model. The accuracy, AMF , is defined in the following way

AMF = e−Q
MF

(8.2)

where QMF represents the quantity of interest, e.g. an error of the mean value

or an error of the standard deviation. The quantity of interest QMF has to be

positive and therefore, the accuracy ratio ranges from 0 to 1. The time ratio is

defined in the following way

TMF =
tL

tH
(8.3)

where tL represents the computational time of the low fidelity model and tH

represents the computational time of the high fidelity model. The time ratio is

never 0 and it is always positive.

The power ratio has some important properties. Closely examining Eq. (8.1), it

can be easily understood that if the time of the low fidelity model is higher than

the high fidelity, no matter the accuracy, it is worthless to use the low fidelity

model. To extend this approach, the model which is extremely inaccurate is also,

useless as it would need to be corrected all the time. In other words, extremely

inaccurate low fidelity model is useless no matter how fast it is. Therefore, there

exists a separation line, which separates the efficient low fidelity models from the

inefficient ones. Based on this aspect, one can construct a diagram showed in

Fig. 8.1 and create a separation line which connects 0 and 1. In other words,

a line which separates the efficient models from the inefficient ones. Obviously,

models which lie in the region of inefficiency are not worthy to use. Therefore,

the following condition can be established

if

PMF < 1

The low fidelity model is inefficient→ stop using it

One can understand that the power ratio basically represents the efficiency of

the low fidelity model. In other words, the low fidelity model with the higher

power ratio should provide better efficiency. On the other hand, one can protest,

that models slower yet more accurate should be a better choice. It is necessary

to realize that the accuracy of a given model (discussed later) can always be

corrected. On the other hand, one cannot correct the computational time for the

low fidelity model. This leads us to a conclusion that the main constraint for
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the low fidelity modelling is the computational time. The power ratio takes all

this into account and therefore, the low fidelity model with the highest ratio is

selected.

A

MF

T

MF

1

1

0

Area of inefficient

low fidelity model

Area of efficient

low fidelity model

Figure 8.1: The low fidelity model efficiency diagram

The power ratio represents the basic stone of multi fidelity modelling in this

work. It compares the low fidelity models and provides a sort of selection cri-

terion. However, it only defines, which model selects and not when. The topic

of application of the power ratio and the process of model selection is discussed

later.
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8.3 Basic theory of the multi fidelity approach

One of the main advantages of the HDMR approach is the separation of the

stochastic domain into smaller sub-domains. Each sub-domain represents a sep-

arate problem and therefore, it can be handled as an independent interpolation

problem. In other words, one can apply the multi fidelity approach separately

to each increment function. However, it is necessary that the proposed multi

fidelity approach has the same properties as the function of interest, i.e. the

HDMR approach must be able to be applied to the multi fidelity scheme as well.

In order to correct the low fidelity model, it is necessary to construct a sort of

correction function. However, before the correction function is defined, let us

discuss some basic aspects of the multi fidelity modelling. Currently, there are

considered two approaches for the multi fidelity corrections, where the first one

is the additive correction

ε(x) = fHF (x)− fLF (x) (8.4)

and the second one represents the multiplicative correction

B(x) =
fHF (x)

fLF (x)
(8.5)

where fHF (x) represents the high fidelity model and fLF (x) represents the low

fidelity model. We consider only the additive correction, because the integral

form of DE can handle the additive correction, while the multiplicative correction

represents a problem. In other words, it is necessary to perform several analytic

operations (described later), which are problematic in the case of multiplicative

correction.

The high fidelity model, fHF (x), and the low fidelity model, fLF (x), can be

separated using the HDMR approach as both models are independent functions.

Therefore, one can conclude that the additive correction (Eq. (8.4)) can be sep-

arated into the increment approach as well. The mathematical form then reads:

dε(x) = dFHF (x)− dFLF (x) (8.6)

where dFHF (x) represents the high fidelity increment function and dFLF (x) rep-

resents the low fidelity increment function. Moreover, due to application of the

additive correction, each increment function follows Eq. (8.6). This is important

aspect as all the conclusions about increment functions (see Chap. 2) are valid
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for the correction function. The derivation of the increment function is given in

the next section.

8.3.1 Correction of the low fidelity increment function

To derive the additive increment function defined in the previous section, let us

remind the additive correction function (Eq. (8.4)), which reads

ε(x) = fHF (x)− fLF (x) (8.7)

where fHF (x) represents the high fidelity function and fLF (x) represents the low

fidelity function. Eq. (8.7) is called Fidelity Error Function (FEF) through this

work. More useful in the multi fidelity modelling are the derivatives of given

functions, i.e. comparing the derivatives of given fidelity models. Therefore,

application of derivative to Eq. (8.7) leads to the following equation

∂ε(x)

∂xi...∂xj
=
∂fHF (x)

∂xi...∂xj
− ∂fLF (x)

∂xi...∂xj
(8.8)

Let us now recall the increment function (Eq. (2.26)), which reads

dFi...j(xi, ..., xj) =

∫ xi

cxi

...

∫ xj

cxj

∂f(ξi, ..., ξj,
cx...)

∂ξi...∂ξj
dξi...dξj (8.9)

Application of Eq. (8.9) to Eq. (8.8) and with little rearrangement, one can obtain

the following result ∫ xi

cxi

...

∫ xj

cxj

∂fHF (ξi, ..., ξj,
cx...)

∂ξi...∂ξj
dξi...dξj =∫ xi

cxi

...

∫ xj

cxj

∂fLF (ξi, ..., ξj,
cx...)

∂ξi...∂ξj
dξi...dξj +

∫ xi

cxi

...

∫ xj

cxj

∂ε(ξi, ..., ξj,
cx...)

∂ξi...∂ξj
dξi...dξj

(8.10)

Following the same approach used in Sec. 2.3, one can replace the integral form

into more algebraic shape and Eq. (8.10) can be rearranged into the following

form:

dFHF
i...j (xi, ..., xj) = dFLF

i...j(xi, ..., xj) + dεi...j(ξi, ..., ξj) (8.11)

where dFLF
i...j(xi, ..., xj) represents the low fidelity increment function and dεi...j(ξi, ..., ξj)

represents the Fidelity Error Increment Function (FEIF). FEIF represents the ad-

ditive correction of the increment function (Eq. 8.6) and through the chapter, this
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description is used. As mentioned in the previous section, FIEF follows all rules

for the increment functions.

In Chap. 2, we defined statistical properties of an increment function. Using the

partial expected value (Eq. (2.33)) and the partial variance (Eq. (2.34)) from

Sec. 2.3, one can establish the multi fidelity expected value and the multi fidelity

partial variance. The mathematical form of the multi fidelity partial mean value

and the multi fidelity partial variance reads

µt =
1

z

z∑
j=1

(dFLF
t (xj) + dεt(xj)) (8.12)

σ2
t =

1

z − 1

z∑
j=1

(dFLF
t (xj) + dεt(xj)− µt)2 (8.13)

where z represents the number of samples of MC simulation applied to the surro-

gate model of the low fidelity increment function, dFLF
t (x), and the Fidelity Error

Increment Function, dεt(xj). The approximation of the Fidelity Error Increment

Function, i.e. the surrogate model for FEIF, is discussed later.

Let us now closely examine the statistical properties of the multi fidelity increment

function. Eq. 8.12 can be separated into two aspects - the partial expected value

of the low fidelity model and the partial expected value of FEIF. This can be

done without loss of generality and calculate the expected value using only FEIF,

one can define the partial expected value of FEIF, which reads

µtε =
1

z

z∑
j=1

dεt(xj) (8.14)

where t represents the selected increment function. This function has a large

meaning for the multi fidelity modelling because it is measuring the difference

between the expected value of the high fidelity model and the low fidelity model.

Therefore, observing the mean value for FEIF can give the user great insight into

differences of given fidelity models. This aspect is discussed later in this chapter,

where the prediction algorithm for the fidelity errors is established.

On the other side, the multi fidelity partial variance cannot be completely additive

without loss of generality. To explain this statement, let us assume uncorrelated

variance of the low and high fidelity model, i.e.

Cov(dFLF
t (x), dFHF

t (x)) = 0 (8.15)
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The high and low fidelity models are completely independent and hence, there is

no correlation between them. In other words, Eq. (8.7) is valid only if Cond. 8.15

holds. Using above condition and Eq. (8.7), one can establish the partial variance

for FEIF, i.e.

σ2
tε =

1

z − 1

z∑
j=1

(dεt(xj)− µtε)2 (8.16)

The variance of FEIF represents the deviation from the mean error, which rep-

resents how much FEIF changes over the stochastic domain. In other words,

how large are differences between models. This function is discussed later in this

chapter, where the prediction algorithm for the fidelity errors is established.

8.3.2 Selection of the low fidelity increment functions

In the previous chapters, one of the main aspects of the proposed approach is to

consider the increment function as a separate problem. One can easily extend

this approach to the multi fidelity modelling, where only important increment

functions are corrected. In other words, it is necessary to correct the low fidelity

model with samples from the high fidelity model only when the increment function

has a significant effect on the final result. The basic question is: which increment

functions have to be corrected and how.

One cannot assume anything about the low fidelity model. Therefore, for the

first order increment functions, it is necessary to obtain the central point and

the boundary samples, which help us to create the first order FEIF and obtain

basic knowledge about the problem. It is necessary to do this step for all the low

fidelity models as one needs to understand the efficiency of each low fidelity model.

However, considering the results obtained from the multi surrogate modelling (see

Sec. 6.4.1), one should keep the number of low fidelity models low, e.g. one or

two.

To illustrate the problem in a better perspective, consider the following problem:

Let us assume a single fidelity approach, where it is necessary to obtain kMFH

samples, e.g. kMFH = 100, to have a fully convergent solution. Each sample

cost tMFH time units, e.g. tMFH = 10. Now, let us consider the multi fidelity

approach, where number of the low fidelity models is nMFL , e.g. nMFL = 1000

and each of these low fidelity models cost tMFL time units, e.g. tMFL = 1. One

can quickly realize that the single fidelity approach is already finished, while the
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multi surrogate approach knows only the accuracy of all the models in the central

point. It could not create FEIF to establish the fidelity differences. With the

illustrated problem, one can construct the following condition for a number of

the low fidelity models:
nMFL∑
i=1

tMFL
i < kMFH tMFH

In other words, the number of low fidelity models is limited by the complexity

of function, i.e. how many samples are required to have a convergent model.

This is reflected in the efficiency of the multi fidelity modelling because when the

user sets the convergence residual low, the uncertainty propagation will converge

early and the algorithm will not have enough time to use the low fidelity models.

Moreover, one needs other samples in different positions in the stochastic space,

which are used to create FEF. FEF needs to be created for each low fidelity model

and this increases the overall computational time. Therefore, it is suggested to

keep the number of the low fidelity models as low as possible.

Once, the boundary samples are obtained, the statistical properties can be ob-

tained and the algorithm can start selecting the models required for the uncer-

tainty propagation. The numerical application of the selection process is discussed

later. Before we define the selection process, let us have a closer look at the higher

order increment functions.

For the higher order increment function (≥ 2), the process is slightly different.

Correcting all the higher order increment functions would lead to a large number

of the high fidelity function calls and this is not an efficient approach. However,

one cannot assume that all the higher order interactions are included in the low

fidelity model. In other words, the low fidelity model can be simplified and

a large number of the higher order increment functions can be neglected from

given model. This is also, author’s experience. Moreover, this could represent

a serious flaw in UQ propagation if the problem has strong interaction effects

such as in the hypersonic flows, where the chemical reactions take place. These

reactions are highly active and have a key influence on the final shape of PDF.

Therefore, it is necessary to ensure that the higher order interactions are also,

included in the low fidelity model.

The way how to discover the interaction effects inside the considered model is

the prediction algorithm (see Chap. 4). The prediction algorithm is exactly the

same as in the previous chapters, however, this time, it is applied to the high
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fidelity model and all the low fidelity models. One needs to compare the low

fidelity model to the high fidelity model and obtain a common set of functional

increment functions, i.e. constructing a logical conjunction of two predicted sets

(one for the high fidelity and one for the low fidelity). This is mathematically

written in the following way

M iMF

Low:Consider = M iMF

Low ∧Mhigh (8.17)

where M iMF

Low represents the set of selected increment functions from the low fi-

delity model iMF and Mhigh represents the set of selected increment functions

from the high fidelity model. Set M iMF

Low:Consider considers all the low fidelity in-

crement functions, which can be used for uncertainty propagation. However, set

M iMF

Low can consider also low fidelity increment functions, which are not in set

Mhigh. These increment functions must not be considered because it is necessary

to obtain a correction to the high fidelity model and not vice versa.

Once the prediction algorithm selects the important increment functions, the

algorithm can decide, which increment functions needs to be corrected with the

high fidelity model. In the first step, it is necessary to sample the boundary

samples with the low fidelity model and construct the basic statistical properties.

We sample the boundary samples in order to circumscribe the given stochastic

domain. The low fidelity model selected for the boundary samples is the one with

the highest power ratio, i.e. the predicted values are combined with the power

ratio (Eq. (8.1)), which is done in the following way

PMF =
e−(σ

HF
p −σLFip )

TMF i
(8.18)

where σHFp represents the statistical properties of the high fidelity model and σLF
i

p

represents the statistical properties of the i-th low fidelity model. The statistical

properties are obtained from the linear model of residuals (Eq. (4.34)) and only

the standard deviation is considered in this work.

When the boundary samples are obtained, FEIF can be created and the statistical

properties can be established. Based on the sensitivity results obtained from the

first step, one can select, which increment functions needs to be re-interpolated,

i.e. corrected with the high fidelity model. For uncertainty quantification prob-

lems, the mean value and the variance is used and the mathematical form reads
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if R
MF i

MF

L
µt ≤ Rµ

sett ∨R
MF i

MF

L

(σt)2
≤ R

(σ)2

sett

Consider only the low fidelity samples

else

Re-interpolate the low fidelity samples

end

(8.19)

where R
MF i

MF

L
µt represents the residual of the mean value for the i-th low fidelity

model (see Eq. (3.21)), R
MF i

MF

L

(σt)2
represents the residual of the variance for the

iMF -th low fidelity model (see Eq. (3.22)) and Rsett represents the residual for a lo-

cal convergence process (see Eq. (3.25)). Cond. 8.19 is tested in each iteration and

for each increment function considered. For the sake of clarity, in Cond. (8.19)

is not showed the current iteration and given increment function. If the pro-

posed condition is valid, the increment function is selected for re-interpolation,

i.e. correction with the high fidelity model. Note that, in order to reduce the

computational burden, only samples in the low fidelity model are used for the

proposed condition.

8.4 Construction and application of the fidelity

error function

In the previous section, the Fidelity Error Function is established and its appli-

cation to the HDMR approach is also introduced. The incremental form of FEF

reads

ε(x)− ε(cx) =
n∑
i=1

∫ xi

cxi

∂ε(¸)

∂ξi
dξi+

∑
1≤i<j≤n

∫ xi

cxi

∫ xj

cxj

∂ε(¸)

∂ξi, ξj
dξidξj + ...+

∫ x1

cx1

...

∫ xn

cxn

∂ε(¸)

∂ξ1, ..., ξn
dξ1...dξn

(8.20)

and the Fidelity Error Increment Function (FEIF) reads

dεi...j(x) =

∫ x1

cx1

...

∫ xn

cxn

∂ε(¸)

∂ξ1, ..., ξn
dξ1...dξn (8.21)

Let us now closely examine equations above. There are various ways how to con-

struct Eq. (8.21), however, in this work a point wise approach is taken. Samples
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from the low fidelity model and the high fidelity model are collected at particular

positions and compared. To introduce the approach, let us consider a vector of

error fidelity responses, which reads

ε = fHF − fLF (8.22)

where fHF represents the vector of responses from the high fidelity model and fLF

represents the vector of responses from the low fidelity model. Both responses

are obtained using the same sample matrix X. Using Eq. (8.20) and the vector

of fidelity errors ε, one can construct a set of FEIF samples using the approach

discussed in Sec. 2.3, e.g. for n = 3, the second order fidelity error increment

function reads

dεzsij = ε(xzsi , x
zs
j ,

cxzs... )− ε(xzsi , cx
zs
j ,

cxzs... )− ε(cxzsi , x
zs
j ,

cxzs... ) + ε(cxzsi ,
cxzsj ,

cxzs... )

(8.23)

where xzsi represents sample zs from the input matrix, X, for stochastic variable

i and cxzs... represents the central sample for given stochastic variables. Using all

the obtained samples, one can construct surrogate model Sdεi...j(x).

The surrogate model, Sdεi...j(x), can be created using various types of surrogate

models such as Lagrange interpolation, PChip or IPI. However, author’s sugges-

tion is to use the piecewise interpolation models (For example, IPI). These models

prevent oscillations and do not diverge over the whole stochastic domain.

Unfortunately, the surrogate model represents a source of errors for the multi

fidelity modelling. However, if the underlying function does have a complicated

shape, the adaptive scheme (See Sec. 3 and Sec. 5) automatically place samples

in the problematic regions. Therefore, improving the accuracy of the surrogate

model and also reducing the fidelity error. On the other hand, if the underlying

function is not complicated, the interpolation scheme should have no problems

to interpolate the problem accurately. Again, let us remind that we assume same

trends between the low fidelity model and the high fidelity model1.

1Under the term, ”same trends” for the low and high fidelity models is understood that both

models have similar derivatives in all directions for given increment function. Also, possible

discontinuity or oscillatory behaviour in the stochastic domain is presented in both fidelity

models.
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8.4.1 Prediction approach for FEIF

The interpolation technique used for the surrogate model, Sdεk(x), represents

a source of error. One is never sure what is the behaviour of fidelity models

between known samples. However, one can expect the same behaviour in a close

neighbourhood of a known sample and create a sort of prediction around a given

sample. Therefore, prediction approach for possible errors is developed.

To establish the prediction, let us have a closer look on Eq. (8.8). The difference

between derivatives of given fidelity models can highlight areas of large disagree-

ments. In other words, when the difference between derivatives is known at one

particular sample, one can predict the difference in a close neighbourhood. Taking

the absolute value of Eq. (8.8) and application of the linear approximation, one

can extrapolate the differences between fidelities. Therefore, we can construct a

Linear Fidelity Error Prediction (FEPLinear) function, which is mathematically

written in the following way

FEPLinear(xi, ..., xj) = εpx +

∣∣∣∣∣
(

∂ε(x)

∂xi...∂xj

∣∣∣∣
x = px

)∣∣∣∣∣ (x− px)

=

∣∣∣∣∣
(
∂fHF (x)

∂xi...∂xj

∣∣∣∣
x = px

− ∂fLF (x)

∂xi...∂xj

∣∣∣∣
x = px

)∣∣∣∣∣ (x− px)

(8.24)

where px represents the sample, where both derivatives (low fidelity and high

fidelity) are known and εpx represents the constant error term at position px.

Note that usually the correction is known at point px and therefore, the constant

error term is equal to 0.

However, using only linear extrapolation is not efficient and one can extend this

approach to involve surrogate model Sdεt(x). Therefore, using definite integral

for given sample pxi, one can obtain an increment to the prediction at particular

point along given dimension, i.e.

pdSFEPi...j(xi, ..., xj) =

∫ xi

pxi

...

∫ xj

pxj

∣∣∣∣∂Sdεi...j(ξ)

∂ξi...∂ξj

∣∣∣∣ dξi...dξj (8.25)

where Sdεi...j(¸) represents the previously defined surrogate model for increment

function i...j and pxi represents the sample position, where both fidelity values

(low and high) are known. Note that in Eq. (8.25), the surrogate model for the

increment function is used instead of Eq. (8.24). This is possible due to the

properties of the integral form of DE, namely Cond. 2.27.
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One can realize that Eq. (8.25) resemble an increment function, where the central

point is sample px. However, the absolute value prevents direct transformation to

the algebraic form. Unfortunately, direct application of Eq. (8.25) is not practical

and it would lead to an extreme computational burden. Therefore, a trick is used

to transform Eq. (8.25) into the increment function format. The absolute value

is set in front of the definite integral, i.e.

pdSFEPi...j(xi, ..., xj) =

∣∣∣∣∣
∫ xi

pxi

...

∫ xj

pxj

∂Sdεi...j(ξ)

∂ξi...∂ξj
dξi...dξj

∣∣∣∣∣ (8.26)

This modification is not mathematically correct, yet it is necessary to obtain fast

solution. One can transform Eq. (8.26) into more appropriate shape, i.e.

pdSFEPi...j(xi, ..., xj) = |dSdεi...j(x)(xi, ..., xj)| (8.27)

To obtain prediction in all directions, one needs to compute error increment in all

directions. Using Eq. (8.20) and Eq. (8.27), one can construct the final solution

for given sample as a sum of all increment predictions, i.e.

pFEPt(xi, ..., xj) = pSdεt(
pxi, ...,

p xj) +

j∑
i2=i

pdSFEPi2(xi2)

+
∑

i≤i2<j2≤j

pdSFEPi2j2(xi2 , xj2) + ...+ pdSFEPi...j(xi, ..., xj)

(8.28)

where Sdεt(xi, ..., xj) represents the surrogate model of FIEF for increment func-

tion t, pxi represents the sample, where the value for the low fidelity and the high

fidelity model is known and pSFEPt(xi, ..., xj) represents the error prediction for

given sample px. Using the whole expansion (Eq. (8.28)) is still very expensive in

the adaptive process and therefore, we restrict the error prediction only for the

first order increment functions, i.e.

pFEPt(xi, ..., xj) = pSdεt(
pxi, ...,

p xj) +

j∑
i2=i

pdSFEPi2(xi2) (8.29)

In the previous parts, we worked with a predictive error for one sample px. In

other words, creating the prediction using only one known sample. However, the

stochastic domain is composed of many samples, where the correction is known,

i.e. samples used to construct surrogate model Sdεt(x). More importantly, one

can realize that Eq. (8.28) is zero at sample px. This is consistent with the the-

ory as we want the prediction error to be zero at sample, where the correction
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is known. Therefore, one needs to construct Eq. (8.29) for all samples in given

stochastic domain. The error prediction is done as a minimum of all neighbour-

hood samples, where only samples closest to the position of the prediction are

considered. For example, for 1-D problems, the closest samples are one on the

left and one on the right of the requested position of the prediction. At particular

position, one can estimate the error as a minimum of error prediction from all

neighbourhood samples. This is mathematically done in the following way

FEPt(xi, ..., xj) = min( p1FEPt(xi, ..., xj), ...,
psnFEPt(xi, ..., xj)) (8.30)

where superscript pm represents sample xm = [xi, ..., xj], where Eq. (8.29) is

constructed. For 1-D case, Eq. (8.30) can be simplified as follows

FEPt(xi) = min( p1FEPt(xi),
p2FEPt(xi)) (8.31)

where p1FEPt(xi) represents the error prediction function for sample on the left

and p2FEPt(xi) represents the error prediction function for sample on the right.

In higher dimensions, the tensor product sampling is adopted, which simplifies the

sample neighbourhood approach. The example of a close neighbourhood approach

for the tensor product sampling is showed in Fig. 8.2. Also, an illustrated example

of Eq. (8.30) is provided for 1-D (Fig. 8.3) and for 2-D (Fig. 8.4).

Domain of

influence

Position of

prediction

Sample with a

known low and

high fidelity value

Figure 8.2: The tensor product sampling and the area of influence
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Figure 8.3: Example of 1-D prediction for FEIF

Note: In this 1-D example, 3 samples are considered, where the correction is

known ( p1x = 5000, p2x = 7500, p3x = 8000). For the region between

x=5000 and x=7500, FEPt(x) is constructed using p1FEPt(x) and p2FEPt(x).

For the region between x=7500 and x=8000, FEPt(x) is constructed using
p2FEPt(x) and p3FEPt(x).

Once the prediction model is created, one can establish the probable error of the

mean value and the variance, respectively. Using Eq. (8.14) and Eq. (8.16), one

can replace the fidelity error increment function with Eq. (8.30). This leads to

the following predicted error of the mean value,

µFEP t ≈
1

z

z∑
j=1

FEPt(xj) (8.32)

and the predicted error of the variance,

(σFEP t)
2 ≈ 1

z − 1

z∑
j=1

(FEPt(xj)− µFEP t)2 (8.33)

where z represents the number of samples in MC simulation and t represents the

selected increment function. The predicted mean value represents the probable

error if the current model is used and the predicted variance represents the os-

cillation around the predicted mean, i.e. how much the error deviates. In other

words, using the low fidelity model and the surrogate model for correction of the

low fidelity model, the predicted error in the statistical properties is given by

Eq. (8.32) and by Eq. (8.33).
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Figure 8.4: Example of 2-D prediction for FEIF

Note: In this 2-D example, 12 samples are considered, where the correction

is known. For example, for the position of prediction at:

x1 = 160 and x2 = 6000;

The following samples and their corresponding FEP functions are used:
p1x1 = 200, p1x2 = 5000; p2x1 = 140, p2x2 = 5000;
p3x1 = 140, p3x2 = 7500; p4x1 = 200, p4x2 = 7500;

One can set a fidelity convergence criteria using above equations, but first it is

necessary to establish the relative error for Eq. (8.32) and Eq. (8.33). The relative

error for the predicted mean is defined in the following way

REµt =
µtFEP
µ

(8.34)

where µ represents the total mean (see Eq. (3.19) and Eq. (5.20)) for given itera-

tion. The relative error for the predicted variance is defined in the following way

RE(σt)2 =
(σtFEP )2

(σ)2
(8.35)

where (σ)2 represents the total variance (see Eq. (3.20) and Eq. (5.21)) for given

iteration. The relative error for the statistical properties represents a conver-

gence criteria for the multi fidelity approach. One can compare Eq. (8.34) and
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Eq. (8.35) to a pre-described residual and decide, if the correction function is ac-

curate enough, i.e. if the correction function requires more high fidelity samples.

However, this approach does not take into account position of samples. In other

words, when two samples are close to each other, using the high fidelity model

for both samples would require additional computational time with little gain in

accuracy. Therefore, an empirical modification is introduced, which takes all this

into account. This is topic of next section.

8.4.2 Application of the prediction approach to the fi-

delity modelling

The adaptive scheme defined in the previous chapters (see Chap. 3 and Chap. 5)

sample the stochastic domain according to needs of the interpolation function.

It takes into account position of the previous samples, the input distribution and

complexity of the underlying function. However, it is optimized for the single

fidelity approach. In other words, imagine a situation that the adaptive scheme

proposes a sample, where the fidelity error function is very accurate. This would

lead to a waste of the computational time and therefore, it is necessary to take

into account accuracy of the fidelity model in given area. In other words, it is

necessary to assess the accuracy of the correction function in the area of the

proposed sample.

To take into account the accuracy of the correction function, one needs to modify

Eq. (8.34) and Eq. (8.35) to take into account position of the proposed samples.

In this work, an empirical approach is taken, where comparison of volumes is

done. One can compute the overall area (volume) which is compared to the

area (volume), where the adaptive scheme proposed a sample. The overall area

(volume) is computed in the following way

SMF
T :t =

∫
R

FEt(x)dx (8.36)

where R represents the entire domain of integration and t represents the selected

increment function. The integration domain is defined by the input distributions

(see Sec. 3.3). Next step represents the computation of a volume covered by the

sample. This is mathematically done in the following way

SMF
S:t =

∫ Sxi

pxi

...

∫ Sxj

pxj

FEt(xi, ...xj)dxi...dxj (8.37)
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where pxi represents the sample, where correction is known, Sxi represents the

proposed sample and t represents the selected increment function. The com-

parison of two volumes represents the magnitude of influence for given sample.

Therefore, one can define the volume ratio, i.e.

SMF
t =

SMF
S:t

SMF
T :t

(8.38)

where t represents the selected increment function. Using the volume ratio

(Eq. (8.38) and the relative error for the predicted mean/variance (Eq. (8.34)/Eq. (8.35)),

one can establish an empirical equation for error estimation of the error mean/variance,

when additional sample is corrected with the high fidelity solution. Mathematical

formulation for the error estimation of the mean value reads

REµt:sample = NsS
MF
t REµt (8.39)

and for the variance reads

RE(σt)2:sample = NsS
MF
t RE(σt)2 (8.40)

where REµt represents the relative error for the predicted mean (Eq. (8.34)),

RE(σt)2 represents the relative error for the predicted variance (Eq. (8.35)), Ns

represents the number of the low fidelity samples added in the current iteration

and t represents the selected increment function. The number of low fidelity

samples added in current iteration Ns represents an empirical approach, because

it can happen that the additional samples are added in a way that Eq. (8.39)

and Eq. (8.40) are bellow given threshold. However, the relative error for the

predicted mean and the predicted variance is higher than given threshold and the

correction function needs to be improved with additional high fidelity samples.

One can understand Eq. (8.39) and Eq. (8.40) as error of given proposed sample,

where in Eq. (8.34) and Eq. (8.35), the error of the whole domain is considered.

Once the relative error for each sample is defined, one can establish the selection

criteria. In other words, one needs to select which samples are required for re-

interpolation. This is done using the following re-interpolation criteria

if RE(σt)2:sample ≥ Rsett ∨REµt:sample ≥ Rsett

Sample needs re-interpolation→ Compute given sample with the high fidelity model

(8.41)

where t represents the selected increment function and Rsett represents the resid-

ual for the local convergence process (see Eq. (3.25)). Above condition is tested
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for each proposed sample separately and if the condition is met for given sample,

the high fidelity function value is obtained at the position of given sample. When

the sample is obtained, one can construct the correction at given sample and

improve the accuracy of the correction surrogate model Sdεt(x).

8.5 Numerical application of the multi fidelity

modelling

The numerical application of the proposed approach is relatively straightforward.

It represents a modification of the proposed algorithm in the previous chapters

to implement the multi fidelity scheme. However, there are some difficult parts

in the process.

The first part represents the central sample. It is necessary to obtain the central

sample for the high fidelity model and for all the low fidelity models. Also, it is

necessary to obtain the boundary samples for the first order increment functions

using the high fidelity model and all the low fidelity models. Once the samples

are obtained, the algorithm can estimate the power ratio, PMF , and construct

FEIF for each variable. Following this, the algorithm can estimate the stochastic

influence of given increment functions, i.e. the partial mean value and the partial

variance. Next, the algorithm can start the adaptive scheme for the first order

increment functions (see Chap. 3) and propose new samples. Application of the

multi fidelity scheme for the proposed sample is the topic of the next section.

8.5.1 Application to the first order increment functions

Once the samples are proposed and surrogate model Sdεt(x) is constructed, the

sensitivity of the first order increment functions can be established. As mentioned

in Sec. 8.4, one can use various surrogate techniques, but it is suggested to use

the piecewise interpolation, which is not prone to divergence. Surrogate model

Sdεt(x) is also, used for the prediction of the fidelity error. For every sample,

where the correction is known, the algorithm needs to construct Eq. (8.29). Once

the prediction functions are established, the algorithm can use Eq. (8.31) to

establish the predicted fidelity error over given stochastic domain.
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In the next step, the algorithm needs to establish the partial stochastic values,

i.e. the mean value of the predicted error (Eq. (8.32)) and the variance of the

predicted error (Eq. (8.33)). These values are established propagating the same

matrix as for the MC simulation (see Chap. 3) through the given surrogate model.

The mean value of the predicted error and the variance of the predicted error are

used to establish the relative errors (Eq. (8.34) and Eq. (8.35)) for given increment

function. Note that for the first order increment functions, the total variance and

the total mean established at the current iteration are used.

In the next step, the algorithm must establish the overall area (volume) of the

prediction error (Eq. (8.36)), where the area (volume) is given by the minimum

and the maximum of the input distributions (see Sec. (3.3)). For each pro-

posed sample by the adaptive scheme, the algorithm needs to establish the area

(volume) between the proposed sample and the sample, where the correction is

known (Eq. (8.37)). Next step represents the estimation of the error of the mean

(Eq. (8.39)) and the error of the variance (Eq. (8.40)) for each sample proposed in

the current iteration. After obtaining the errors for all samples, it is necessary to

test if the accuracy of a given sample is sufficient, which is done using Cond. 8.41.

In the case of insufficient accuracy, the algorithm needs to re-interpolate sample

with the high fidelity model, i.e. obtain the high fidelity value for given sample

and construct a new surrogate model, Sdεt(x).

In the next step, it is necessary to select the low fidelity model, which should be

used for the proposed sample. The selection of the low fidelity model is based on

the power ratio, i.e. application of the relative predicted fidelity error (Eq. (8.34)

and Eq. (8.35)) to the power ratio (Eq. (8.1)). This is mathematically done in

the following way

PMF
µt =

e−(REµt )

TMF
(8.42)

PMF
(σt)2

=
e−(RE(σt)

2 )

TMF
(8.43)

where TMF represents the time ratio for given low fidelity model and t represents

the selected increment function. Note that Eq. (8.42) and Eq. (8.43) have to be

higher than 1 (see Cond. 8.2) in order to consider the low fidelity model efficient.

The low fidelity model with the highest power ratio is used for given sample

and when the surrogate model is selected, the algorithm can return to the re-

interpolation aspect. In a case that all the low fidelity models have the power

ratio lower than 1, only the high fidelity model is used. The proposed multi
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fidelity modification for the global process to the first order adaptive scheme is

showed in Alg. 12 and in Alg. 13 is showed the multi fidelity scheme for the local

convergence.

Algorithm 12 Multi fidelity global process

Initialize the process:

1. - 5. Same steps as in Alg. 3

for iMF = 1 to number of the low fidelity models do

6. Compute the central point f(cx) for the iMF -th low fidelity model and

set the iteration to 0, i.e. k = 0
end for

7. - 8. Same steps as in Alg. 3

for iMF = 1 to number of the low fidelity models do

9. Sample the boundaries of the stochastic space using the iMF -th low

fidelity model and set the iteration to 1, i.e. k = 1
end for

while GRµ > GRµ
set or GR(σ)2 > GR

(σ)2

set do

1. Call Alg. 13

2. Call Alg. 2

end while

Finalize the process:

1. - 2. Same steps as in Alg. 3

End
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Algorithm 13 Multi fidelity scheme for the local convergence - Part 1

Initialize the process:

1. - 4. Same steps as in Alg. 1

while set ST contains non-converged increment functions do

for t = 1 to length of set ST do

1. - 7. Same steps as in Alg. 1

end for

1. - 3. Same steps as in Alg. 1

if Cond. 8.19 hold then

for t = 1 to length of set ST do

for iMF = 1 to number of the low fidelity models do

1. Select samples common to the low/high fidelity model and

create sample increments (Example Eq. (8.23))

2. Construct the surrogate model, Sdεk(x)

3. Construct the Fidelity Error (Eq. (8.31))

4. Compute the statistical properties for the Fidelity Error

(Eq. (8.32) and Eq. (8.33)) and the relative errors for the pre-

dicted statistical values (Eq. (8.34) and Eq. (8.35))

5. Compute the area of the Fidelity Error (Eq. (8.36))

6. Compute the area of the proposed sample (Eq. (8.37))

7. Compute the sample error prediction (Eq. (8.39) and

Eq. (8.40))

8. Compute the power ratios (Eq. (8.42) and Eq. (8.43))

end for

1. Select the low fidelity model with the best power ratio and sample

given increment functions
if Cond. 8.41 hold then

1. Re-interpolate the sample with the high fidelity model

end if

end for

end if

8.5.2 Application to the higher order increment functions

The application to the higher order increment functions is slightly different, yet

again straightforward. First, it is necessary to establish which increment functions
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Algorithm 13 Multi fidelity scheme for the local convergence - part 2

if k ≥ 2 then

1. Same step as in Alg. 1

for t = 1 to length of set ST do

if Cond. 3.25 hold then

1. Same step as in Alg. 1

end if

end for

2. k = k + 1

else

1. k = k + 1

end if

end while

Finalize the process:

1. - 3. Same steps as in Alg. 1

End

can be approximated by the low fidelity model. Therefore, a direct application of

the prediction algorithm (Chap. 4) to all the low fidelity models and also, to the

high fidelity model is necessary. Note that the prediction algorithm must use the

same test samples (see Sec. 4.2.1) for all the fidelity models. Once, the important

increment functions are obtained for all the low fidelity models, the algorithm

can create a set of increment functions, which can be approximated with the

low fidelity model (Eq. (8.17)). It is necessary to apply this approach, when an

additional higher order increment functions are considered, e.g. changing from

the second order to the third order increment functions etc...

When the algorithm selects the increment functions, which can be approximated

with the low fidelity model, the boundaries of the stochastic domains can be

sampled. Note that the low fidelity model is assumed to have the same trends

(see earlier in Sec. 8.4) as the high fidelity model. The algorithm selects the low

fidelity model with the highest power ratio (Eq. (8.18)). In a case that all the

low fidelity models have power ratio lower than 1, only the high fidelity model

is used. Using the selected low fidelity model, the algorithm can sample the

boundaries of the stochastic domain. Once the boundaries are established and

the interpolation process of given increment function is done, the algorithm can

establish the sensitivities of given stochastic domain. Next step is the application
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of Cond. 8.19, which select the important increment functions for re-interpolation,

i.e. correction with the high fidelity model.

The increment functions selected for re-interpolation needs to be sampled with the

high fidelity model. It is necessary to stabilize the interpolation model and there-

fore, the algorithm needs to sample all the boundary samples with the high fidelity

model. Once the boundary samples are obtained, the algorithm can construct

the higher order correction surrogate, Sdεk(x), using the preselected surrogate

technique, e.g. Lagrange interpolation.

Next steps are essentially the same as in the case of the first order increment func-

tions. For every sample, where both functional values (the low fidelity model and

the high fidelity model) are known, the algorithm needs to construct Eq. (8.29).

Once the prediction functions are established, the algorithm can use Eq. (8.31)

to establish the predicted fidelity error over given stochastic domain. The partial

stochastic values are obtained using Eq. (8.32) and Eq. (8.33) and with applica-

tion of MC simulation. The mean value of the predicted error and the variance

of the predicted error are used to establish the relative errors (Eq. (8.34) and

Eq. (8.35)) for given increment function.

The overall volume is established using Eq. (8.36), where the boundaries of the

stochastic domain are given by the input distributions (see Sec. (3.3)). The area

between known sample and the proposed sample is obtained using Eq. (8.37).

The algorithm needs to estimate the error for the mean (Eq. (8.39)) and for the

variance (Eq. (8.40)) for each sample proposed in the current iteration. Using

Cond. 8.41, the algorithm select samples, which needs to be re-interpolated. How-

ever, there is a difference between the 1-D approach and N-D approach. For the

higher order increment functions, it is necessary to fulfil the requirements of the

surrogate model used for FEIF. For example, Lagrange interpolation requires a

tensor product sampling in order to stabilize the interpolation process. There-

fore, if the algorithm selects a sample in the stochastic domain, it automatically

selects for re-interpolation also samples to fulfil the conditions required by the

interpolation technique. In this work, the tensor product sampling is used in all

cases (see Chap. 5), which simplifies the problem.

As in the case of the first order increment functions, the selection process for the

low fidelity model is based on its power ratio. The power ratio is established for

all considered low fidelity models using Eq. (8.42) and Eq. (8.43). Note that if

the power ratio is under 1, the low fidelity model is automatically discarded from
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the process (see Sec. 8.2). The global process for the multi fidelity higher order

increment functions is showed in Alg. 14 and the local convergence process for

the higher order multi fidelity algorithm is showed in Alg. 15

Algorithm 14 Global process for the multi fidelity higher order increment func-

tions - part 1

Initialize the process:

1. - 2. Same steps as in Alg. 6

3. Predict the important second order increment functions using the predictor

scheme (Chap. 4) for the high fidelity model

for iMF = 1 to number of the low fidelity models do

1. Predict the important second order increment functions using the pre-

dictor scheme (Chap. 4) for the iMF -th low fidelity model
end for

4. Select the low fidelity model with the highest power ratio (Eq. (8.18)) for

each considered increment function

5. Assign the selected second order increment functions to set MD − ST
if MD − ST is not empty then

while Stopping criteria not met do

1. - 3. Same steps as in Alg. 6

for t = 1 to length of set MD − ST do

1. Same step as in Alg. 6

2. Construct the surrogate model, SdF 0
t (x), for the increment func-

tion, dFt, using the selected low fidelity model

3. Same step as in Alg. 6

if Cond. 8.19 holds then

1. Sample the boundaries of given increment function, dFt, with

the high fidelity model

2. Construct the error increments (Example Eq. (8.23)) and cre-

ate the surrogate model, Sdεt(x)

3. Correct the low fidelity values with the surrogate model,

Sdεt(x)
end if

4. - 7. Same steps as in Alg. 6

if Cond. 5.26 hold then

1. Same step as in Alg. 6

end if

end for
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Algorithm 14 Global process for the multi fidelity higher order increment func-

tions - part 2

while GRµ > GRµ
set or GR(σ)2 > GR

(σ)2

set do

1. Call Alg. 15

2. Call Alg. 5

end while

4. Same step as in Alg. 6

5. Predict the important higher order increment functions using the

predictor scheme (Chap. 4) for the high fidelity model

for iMF = 1 to number of the low fidelity models do

1. Predict the important higher order increment functions using the

predictor scheme (Chap. 4) for the iMF -th low fidelity model
end for

end while

end if

Finalize the process:

1. - 2. Same steps as in Alg. 6

End

Algorithm 15 Scheme for the multi fidelity high order local convergence - part

1

Initialize the process:

1. - 4. Same steps as in Alg. 4

while set MD − ST contains non-converged increment functions do

for t = 1 to length of set MD − ST do

1. - 2. Same steps as in Alg. 4

if Vi...j contains samples then

1. Same step as in Alg. 4

else

1. - 2. Same steps as in Alg. 4

end if

3. - 10. Same steps as in Alg. 4

if Cond. 5.26 hold then

1. Same step as in Alg. 4

end if

end for

210



Algorithm 15 Scheme for the multi fidelity high order local convergence - part

2

1. Same step as in Alg. 4

for t = 1 to the length of the set MD − ST do

if Cond. 8.19 hold then

for iMF = 1 to number of the low fidelity models do

1. Update/Construct the surrogate model, Sdεt(x)

2. Construct the Fidelity Error (Eq. (8.31))

3. Compute the statistical properties for the fidelity error

(Eq. (8.32) and Eq. (8.33)) and the relative errors for the pre-

dicted statistical values (Eq. (8.32) and Eq. (8.33))

4. Compute the area of the fidelity error (Eq. (8.36))

5. Compute the area of the proposed samples (Eq. (8.37))

6. Compute the sample error prediction (Eq. (8.39) and

Eq. (8.40))

7. Compute the power ratios (Eq. (8.42) and Eq. (8.43))

end for

for j = 1 to the number of proposed samples do

1. Select the low fidelity model with the best power ratio and

sample given increment functions
if Cond. 8.41 hold then

1. Re-interpolate the sample with the high fidelity model

2. Fulfil all necessary interpolation conditions for surrogate

model Sdεt(x), i.e. obtain other samples if necessary
end if

end for

end if

end for

2. Obtain all the proposed samples from the selected models, fHF (x) and

fLF (x)

3. k = k + 1

end while

Finalize the process:

1. - 2. Same steps as in Alg. 4

3. Store surrogate model Sdεt(x) for all the increment functions and all the

low fidelity models

End
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8.6 Applied example for the multi fidelity ap-

proach

The function selected for the multi fidelity approach is the well known Borehole

problem. However, in this case, multiple models defined in the work of Xiong et

al. (141) are used. The high fidelity model is the same as used in Sec. 5.5.2 and

it is defined as follows

FH(x) =
2πTu(Hu −Hl)

ln r
rw

(1 + 2LTu
ln r
rw
r2wKw

+ Tu
Tl

)
(8.44)

where rw represents the radius of borehole (m), r represents the radius of influence

(m), Tu represents the transmissivity of upper aquifer (m2/yr), Hu represents

the potentiometric head of upper aquifer (m), Tl represents the transmissivity

of lower aquifer (m2/yr), Hl represents the potentiometric head of lower aquifer

(m), L represents the length of borehole (m) and Kw represents the hydraulic

conductivity of borehole (m/yr). The output is water flow rate in m3/yr.

The low fidelity model is defined as follows

FL(x) =
5Tu(Hu −Hl)

ln r
rw

(1.5 + 2LTu
ln r
rw
r2wKw

+ Tu
Tl

)
(8.45)

where rw represents the radius of borehole (m), r represents the radius of influence

(m), Tu represents the transmissivity of upper aquifer (m2/yr), Hu represents the

potentiometric head of upper aquifer (m), Tl represents the transmissivity of lower

aquifer (m2/yr), Hl represents the potentiometric head of lower aquifer (m), L

represents the length of borehole (m) and Kw represents the hydraulic conduc-

tivity of borehole (m/yr). The output is water flow rate in m3/yr. Distributions

associated with each random variable are summarized in Tab. 8.1.

The comparison is done with MC simulation. The selected surrogate model for

the correction function is the spline interpolation for the first order increment

functions and IPI for the higher order increment functions. MC simulation is

applied directly to the high fidelity model (Eq. (8.44)) and the results of MC

simulation are summarized in Tab. 8.2. The convergence of the mean value and

the standard deviation for the multi fidelity approach is summarized in Tab. 8.3

and the number of functions calls and also, the computational time is summarized

in Tab. 8.4. The selected partial mean values and the partial variances for the

multi fidelity approach are summarized in Tab. 8.6 and their partial histograms

are shown in Fig. 8.7.
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ID Random

Variable

Distribution

type

Mean Standard

deviation
x1 rw Normal 0.10 0.0161812

x2 r Log-Normal 7.71 1.0056

Min Max

x3 Tu Uniform 63070 115600

x4 Hu Uniform 990 1110

x5 Tl Uniform 63.1 11.6

x6 Hl Uniform 700 820

x7 L Uniform 1120 1680

x8 Kw Uniform 9855 12045

Table 8.1: Distributions for the Borehole model

Function calls Mean Standard deviation

100000 73.84 28.71

Table 8.2: MC simulation for the Borehole model

Case Desired

accu-

racy

Function

calls

Mean Standard

Deviation

Relative

error of

Mean

Relative

error of

S. D.
1 0.01 - 73.84 28.71 5.017e-06 1.000e-03

2 0.001 - 73.84 28.71 1.713e-05 6.701e-04

Table 8.3: Results of the high dimensional multi fidelity adaptive UQ-HDMR

approach

8.6.1 Discussion about the applied example

The uncertainty quantification is performed on the Borehole problem using the

multi fidelity approach. Same as in the single fidelity case, the proposed multi

fidelity approach successfully converged for a low number of samples and provided

a very accurate representation of PDF, leading to small errors between MC and

the proposed method. The right tail of the final distribution is well described for

both residuals (case 1: 1e− 2, case 2: 1e− 3). The list of all sampled increment

functions is showed in Appendix G.

The number of simulations required for the high fidelity and the low fidelity

code is summarized in Tab. 8.4, where the number of the high fidelity calls is in
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Case Model Function calls Time of one simulation [s]

1 High Fidelity (Eq. (8.44)) 40 0.0112

1 Low Fidelity (Eq. (8.45)) 88 3e-05

2 High Fidelity (Eq. (8.44)) 59 0.0112

2 Low Fidelity (Eq. (8.45)) 126 3e-05

Table 8.4: Number of function calls and computational times for the multi

fidelity approach

Note: Considered high fidelity model (Eq. (8.44)) is artificially slowed down in

order to test the performance of the method.

Case Desired

accuracy

Function

calls

Mean Standard

Devia-

tion

Relative

error of

Mean

Relative

error of

S. D.
1 0.01 87 73.85 28.70 1.821e-04 4.736e-4

2 0.001 126 73.84 28.70 2.977e-05 3.198e-4

Table 8.5: Results of the high dimensional single fidelity adaptive UQ-HDMR

approach

Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 1.8174 531.4032 0.6402 0.6716

6 -0.0258 72.1023 0.0090 0.0911

7 0.9177 71.4914 0.3230 0.0904

8 0.0030 16.7087 0.0010 0.0211

1.8 0.0045 1.7665 0.0015 0.0022

1.7 0.0150 7.6117 0.0053 0.0096

1.6 0.0069 7.5866 0.0024 0.0096

1.4 0.0128 7.5985 0.0045 0.0096

Table 8.6: Results of the selected increment functions for the Borehole problem

both cases lower than in the single fidelity approach (see Tab. 8.5). However, the

important part is the overall time. For the single fidelity approach with requested

relative accuracy 0.01, the required computational is 0.97 [seconds], where for the

multi fidelity approach the total required time is 0.45 [seconds]. There is more

than twice gain in the computational time1. For the single fidelity approach

1Only computational time of the low fidelity model and the high fidelity model is considered.

The processing time of the adaptive algorithm is not counted.
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Figure 8.5: PDF obtained by the Monte Carlo simulation

Figure 8.6: PDF obtained by the multi fidelity high dimensional adaptive UQ-

HDMR

Left: Relative Accuracy 0.01 Right: Relative Accuracy 0.001

with requested relative accuracy 0.001, the required computational time is 1.41

[seconds], where for the multi fidelity approach the total required time is 0.66

[seconds]. Again the reduction of the computational time is around 2.

The interesting part is the accuracy of the mean, which is higher for the multi

fidelity case. However, the difference is negligible for the real application and

it can be attributed to the properties of the surrogate models, which are used

for the interpolation. Regarding the error of the standard deviation, for both

residuals (case 1: 1e− 2, case 2: 1e− 3), the multi surrogate approach is slightly

worse than the single fidelity approach. This is the expected result, however, the

multi fidelity approach in both cases provided requested accuracy. Nevertheless,

this represents a standard trade-off between gained computational time and lost

accuracy. Also, a number of the high fidelity samples does not grow so fast as

in the case of the single fidelity. This can be attributed to the accuracy of the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.7: Partial histograms for the selected increment functions of the Borehole

problem using the multi fidelity approach

correction function. The more samples the increment function requires to fulfil

the convergence criteria, the more accurate and useful the correction function is.

In other words, when additional samples are added to the stochastic domain, the

correction function becomes more accurate. Therefore, the correction function

can be used more often and the algorithm does not have to call the high fidelity

model.

The partial histograms (Fig. 8.7 for the multi fidelity approach and Fig. 5.8 for the

single fidelity approach) are also similar and therefore, the multi fidelity approach

can be used to estimate the partial histograms. However, using the partial values

without corrections can lead to dramatic errors. Therefore, it is not suggested to

use partial histograms obtained only with the low fidelity model.

8.7 Discussion about the multi fidelity scheme

In this chapter, the multi fidelity approach is introduced. It is considered a sep-

arate module for the commonly used single fidelity approach. Therefore, the

proposed method can handle both approaches - single and multi. The multi fi-

delity approach takes into account time and accuracy of given low fidelity models,

which is not considered in many previous works.
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The power ratio defined is Sec. 8.2 represents a selection approach for the low

fidelity models. It provides a comparison criterion, which takes into account the

accuracy and timing of the low fidelity model. Based on the comparison, the

algorithm can select the best model for given increment function. However, the

important aspect of the power ratio is that it can show the efficiency of the low

fidelity model, i.e. if the low fidelity model can reduce the computational burden

and provide accurate results.

In this work, the quantity of interest for the selection process is considered the

predicted error of the mean value and variance, respectively. However, the concept

is general and the quantity of interest could be any type of accuracy, e.g. L2 norm.

The multi fidelity approach is separated into two schemes: the first order incre-

ment functions and the higher order increment functions. A priori, there is no

sufficient knowledge about the first order increment functions and therefore, for

each first order increment function, boundary samples are obtained in order to

obtain the basic knowledge about the problem. However, for the higher order

increment functions, one can deduce a large portion of information based on the

derivative equation (Eq. (2.5)) and it is a waste of the high fidelity samples to

correct all the increment functions. Therefore, a selection process is introduced.

The selection process includes selection approach (see Chap. 4), which allows

selecting the important increment functions. The predicted increment functions

can be compared and proper model can be assigned to each increment function.

This represents an important aspect as an empirical experience shows us that

many low fidelity models do not include interaction effects in the final process.

Once, the selection approach is performed, the important higher order increment

functions are corrected. It is necessary to sample the boundaries of the given

increment function and stabilize the interpolant. Many interpolants (Lagrange,

IPI etc...) have troubles with extrapolation and this can lead to extreme errors.

This aspect is crucial in higher dimensions (e.g. > 2), where one cannot track

the behaviour of the surrogate model.

The correction surrogate model, Sdεk(x), represents an important aspect in the

multi fidelity modelling. The surrogate model is created with samples, where

the functional values for both models (low and high fidelity) are known. The

correction can be additive or multiplicative, however, in this work, only additive

correction is used. The additive correction can be easily used in the integration

theory, which is part of the statistical analysis, i.e. computation of the mean
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value and the variance, respectively. Moreover, the modification of the increment

function approach is straightforward with the additive correction. Another aspect

represents the accuracy of given correction surrogate model. The errors from

the correction model propagate to the final surrogate model and influence the

final solution. Therefore, using a global polynomial function for the correction

surrogate model is not suggested as polynomials are prone to oscillations.

The prediction of errors for the fidelity correction surrogate model is based on

the linear prediction, i.e. using the difference between derivatives at given point

and linearly approximate the difference in a close neighbourhood. However, the

linear approach is modified to use the surrogate model, Sdεk(x), which provides

more accurate results. This approach is later on extended to take into account

other samples, where the correction is known. The fidelity predicted error func-

tion (Eq. (8.30)) represents the predicted error between two models, which differs

in computational time and accuracy. The fidelity predicted error function is

simplified to use only the first order increment functions (see Eq. (8.29)), which

introduce a source of errors into prediction. However, if one considers the compu-

tational time gained with the simplification, it is a good trade-off between speed

and accuracy. Note that the fidelity error prediction does not influence the final

result and it is some sort of the expected error (not a real error). Therefore, it

can be taken as only informative.

The overall prediction does not take into account position of other known sam-

ples. Therefore, the error estimation is modified for each sample and estimation

of volumes is used. One can assume that the influenced volume of the error

prediction function represents the change of the statistical value, i.e. the par-

tial mean and the partial variance. In other words, how the additional sample

influences the statistical properties. This leads to the proposed more efficient

approach, where a position of the proposed sample is considered. To illustrate

the problem, consider a sample in the region of good fidelity agreement. The low

fidelity model is accurate enough and correction would bring only computational

waste. Contrary, if the sample lies in a region of large fidelity disagreement, the

high fidelity model must correct the low fidelity one. This approach reflects the

regional accuracy of the low fidelity model against the high fidelity model.
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8.8 Conclusion

In this chapter, the multi fidelity module is introduced. This module represents

an additional approach to the high dimensional uncertainty propagation when

multiple models with different fidelity are available. However, there is involved a

trade-off between the gain of computational speed and loss of accuracy.

In order to create comparison criteria for selection of the low fidelity models, the

power ratio theory introduced. The power ratio takes into account the compu-

tational time and accuracy of given low fidelity model and such that creates a

comparable criterion, which allows selecting the most efficient low fidelity model.

In our case, the accuracy is measured as the difference between the mean value

and the standard deviation for the low and high fidelity model. However, the na-

ture of the approach allows measuring the accuracy in different ways such as L2

norm. A very important aspect of the power ratio theory represents the efficiency

line, which separates the effective low fidelity models from the ineffective ones.

The effective low fidelity models can be used in the multi fidelity modelling and

some gain can be achieved, but the ineffective models do not provide marginal

improvement and such that their usage is not beneficial.

The multi fidelity correction is based on the additive correction, which is imple-

mented into the HDMR approach. The additive correction is selected due to its

simplicity and easy modification to the HDMR approach. The correction function

is then constructed as a surrogate model using samples, where the correction is

known. Observing the partial statistical values of the correction function gives

an interesting insight into the difference between fidelity models.

The correction function is used to develop the prediction approach, which helps to

estimate the accuracy of the selected low fidelity model. The basic idea is to use

the linear approximation to predict the error at the uncorrected locations. Using

this approach to predict the error in the partial mean and the partial standard

deviation helps to decide if the correction function needs additional samples to

improve its accuracy. Moreover, plotting the prediction function allows deeper

insight into the regional accuracy of given low fidelity model. This helps the user

to better understand the differences between given models.

Important aspect represents the difference between the first order increment func-

tions and the higher order increment functions. For the first order increment

functions, nothing can be assumed about the low fidelity model and such that it
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is necessary to obtain boundary samples for each first order increment function.

This helps to establish the power ratio for given low fidelity model and decide if

the low fidelity model is efficient or not. Contrary, this restricts the number of

low fidelity models to a low number as using a large pool of the low fidelity mod-

els only prolong the computational time and beneficial gain is lost. For the high

order increment functions, correcting all the increment functions would lead to

extreme cost and such that only the important increment functions are corrected.

To find, which increment functions are important, the selection scheme is used.

The selection scheme is applied to each low fidelity model and this represents

another reason to keep the number of the low fidelity models low.

The multi fidelity module is tested on the well known Borehole problem, which

is introduced in Chap. 5. The results are compared to MC simulation and the

savings in time are compared to the single fidelity approach. In this deterministic

case, the advantages of the multi fidelity approach are shown.
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Chapter 9

Applied example: Probabilistic

modelling of debris re-entry

In this chapter, the developed single fidelity uncertainty quantification method is

applied to the re-entry problem. We consider a spherical object, which is falling

from the low earth orbit (120 km) down to the Earth ground. The observed

criterion is the location of impact on the ground, i.e. the longitudinal and lat-

eral position. Three test cases are considered, which differs in the flight path

angle. Interesting conclusions are obtained for the re-entry cases and results are

discussed in detail. A discussion is mainly aimed at the efficiency and accuracy

of the proposed method.

The chapter is structured as follows: In the first section, the re-entry simulation

tool is described. The second section is given to a description of the uncertain

input parameters and its necessities. The results are discussed in the third section

and the last section is given to the conclusion.

9.1 Debris re-entry propagation

Space Situational Awareness (SSA) is quickly becoming imperative for nations

around the world, especially those with space capabilities. As the low Earth

orbit debris and spacecraft population that has exceeded their operational lifetime

rise each year, the rate at which objects re-enter the Earth atmosphere will also

steadily rise. Most of these objects will probably not reach the ground for impact;

however, parts of large objects like rocket bodies and satellites or resident space
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objects with a mass greater than a ton have a high probability of surviving the

harsh re-entry environment. The surviving parts can be hazardous (e.g. fuel tanks

with unused hydrazine or radioactive components) and can cause damage and

casualties within a populated area. The impact location of an object re-entering

the atmosphere can be altered by uncertainties in initial conditions, atmospheric

characteristics, and object properties, as well as break-up/fragmentation events.

For the re-entry simulation, the Free Open Source Tool for Re-entry of Asteroids

and Space Debris (FOSTRAD) is used. The goal of FOSTRAD is to have a high

fidelity code, which will avoid the complexity of a spacecraft-oriented approach.

The framework for FOSTRAD is modular in nature, where work on modules is

done in the work of Mehta et al. (2, 161, 162).

9.1.1 Trajectory Dynamics

The atmospheric entry simulation is set to begin at an altitude of 120 km. A

simple spherical object re-entering the Earth’s atmosphere is modelled as a point

mass and tracked through the atmosphere down to ground. The dynamics of the

object is governed by the following system of differential equations:

V̇ = V∞ sin(γ) (9.1)

V̇∞ = −D
m
− g sin(γ) + ω2

E(RE + h) cos(φ)(sin(γ) cos(φ)− cos(φ) cos(χ) sin(φ))

(9.2)

γ̇ =

(
V∞

RE + h
− g

V∞

)
cos(γ) + 2ωE sin(χ) cos(φ)+

+ ω2
E

RE + h

V∞
cos(φ)(cos(χ) sin(γ) sin(φ) + cos(γ) cos(φ))

(9.3)

χ̇ = −
(

V∞
RE + h

)
cos(φ) sin(χ)tan(φ) (9.4)

φ̇ =

(
V∞

RE + h

)
cos(γ) cos(χ) (9.5)

λ̇ =

(
V∞

RE + h

)
cos(γ) cos(χ)

cos(φ)
(9.6)

where h represents the altitude, V∞ represents the speed of the object, γ repre-

sents the flight path angle, D represents the drag force, g represents the gravita-

tional acceleration, ωE represents the Earth’s rotational speed, RE represents the

radius of the Earth, γ represents the path direction angle, χ represents the lati-

tude and λ represents the longitude. The gravitational acceleration is modelled
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as a function of the altitude given as:

g = g0

(
h

RE + h

)2

(9.7)

where g0 represents the gravitational constant set to 9.81ms2. The integration

scheme used is the Runge Kutta method (163).

9.1.2 Aerodynamics

The object of interest is modelled as a sphere with triangular facets. The pressure

and shear contribution are modelled independently as a function of local flow with

respect to inclination angle. The axial and normal force coefficients are computed

as integrals of the pressure and shear distributions over the surface.

9.1.2.1 Continuum flow regime

The aerodynamic contribution in the continuum flow regime is computed using

the modified Newtonian theory, which reads:

Cp = Cp,max sin2(θ) (9.8)

where Cp represents the local pressure coefficient and θ represents the maximum

pressure point coefficient. The shear contribution in the continuum regime is

assumed to be 0.

9.1.2.2 Free molecular flow regime

The aerodynamic contribution of each facet in the free molecular regime is com-

puted using Schaaf and Chambres (164) closed-form analytic model, which reads

Cp =
1

s2

[(
2− σN√

π
s sin(θ) +

σN
2

√
Tw
T∞

)
e−(s sin(θ))

2

+{
(2− σN)

(
(s sin(θ))2 +

1

2

)
+
σN
2

√
πTw
T∞

s sin(θ)

}
(1 + erf(s sin(θ)))

]
(9.9)

Cτ = −σN cos(θ)

s
√
π

[
e−(s sin(θ))

2

+
√
πs sin(θ)(1 + erf(s sin(θ)))

]
(9.10)
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where Cp represents the pressure coefficient, Cτ represents the shear coefficient,

σN represents the normal momentum accommodation coefficient, σT represents

the tangential momentum accommodation coefficient, Tw represents the surface or

body wall temperature, T∞ represents the free stream temperature, V∞ represents

the speed of the object or free stream velocity, erf() represents the error function

and s represents the speed ratio, which reads:

s =
V∞√

2RUT∞
(9.11)

where RU represents the universal gas constant. The above equations can be

found in the work of Schaaf and Chambre (164).

9.1.2.3 Transition flow regime

Aerodynamic computations in the transition regime are performed using the sig-

moid bridging functions, which are introduced in the work of Mehta et al. (161).

The developed function uses the sigmoid as the basis function and to obtain

optimized accuracy, two sigmoid functions are used. The sigmoid function reads,

CXtrans = CXc+

+ (CXfm − CXc)[asisig10(bsilog10(Kn) + csi) + dsisig10(esilog10(Kn) + fsi) + gsi]

(9.12)

where asi - gsi represents the fitting constants and sig10(x) represents the sigmoid

function, which reads

sig10(x) =
1

1 + 10(−/+)x
(9.13)

where the sign of the exponent depends on the trend of the coefficient across the

transition region.

9.2 Uncertain parameters of the re-entry case

For the debris re-entry case, a 16-D case is considered. This represents a high

dimensional problem, which requires a large number of simulations - expensive

function calls. In this work, we focus on the longitudinal and lateral distributions

of the impact location, which are computed using the following relation:

yd = F (X)Re (9.14)
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where yd represents two separate distributions in the longitudinal and lateral

directions and Re represents the radius of the Earth. These distributions cor-

respond to two separate outputs of F (X), which are the longitude and latitude

angle difference between the entry point and the impact location. One should

keep in mind that this problem represents two separate uncertainty propagation

problems.

Three cases are investigated. All cases consider the same uncertain inputs and

differ only in the flight path angle distribution. The first case represents the

controlled normal re-entry, where the flight path angle range from 0 to −2.5

degrees. This case represents common re-entry problem and results are applicable

to re-entry of rocket parts or satellites. The second and third case represents the

re-entry, where the first case considers the shallow angle (0 - −0.1 degrees) and

the second case considers the steep angle (−4.5 - −5.5 degrees).

The first 10 random variables represent the atmospheric conditions and are con-

sidered to be uncertain. However, the code for debris propagation requires a con-

tinuous function for the atmospheric properties and to overcome this problem,

the interpolation routines were developed. Distribution data for the atmospheric

properties were taken from the US standard atmosphere (165). The mean value

for the altitude 120 km is read off the US standard atmosphere and the standard

deviation was assumed to be the same as for the altitude 90 km. The example

of the interpolation is showed in Fig. 9.1. Each function call uses one sample.

The atmosphere is assumed to be composed of N2 and O2 and the mole fraction

of N2 is considered to be uncertain. The heat capacity (Cp) of the free-stream

air that has an effect on the computation of drag coefficient through the pressure

behind the shock is also assumed to be uncertain. The input distributions are

summarized in Tab. 9.1.

9.3 Results and discussion

The uncertainty propagation is done on the debris re-entry. Three cases are

considered, where the first represents the normally controlled re-entry and the

other two cases represent the uncontrolled re-entry with a shallow angle and

controlled re-entry with a steep angle, respectively. First, let us discuss the

controlled re-entry.
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Figure 9.1: 1000 samples from the interpolation routine of:

Left: Temperature Right: Density

9.3.1 Controlled normal re-entry

The results of MC simulations are summarized in Tab. 9.2 and results obtained by

the adaptive UQ-HDMR method are summarized in Tab. 9.3. Sensitivities of all

the selected increment functions are given in Tab. 9.4 for the lateral distribution

and in Tab. 9.5 for the longitudinal distribution.

The flight path angle (x13) has the strongest effect on the longitudinal impact

location and it is responsible for more than 75% of the total variation in the

final distribution and offset from the central sample is more than 130 km. The

direction angle (x16) has the strongest effect on the lateral distribution with all

other independent variables providing a negligible contribution. In the longi-

tudinal direction, an important contribution is given by the increment function

dF13.14, which represents the interaction of the flight path angle and the re-entry

speed. In the lateral direction, important contributions come from the interac-

tion effects of the direction angle, the re-entry speed, and the flight path angle.

These interaction effects are responsible for the tails of the final distribution, if

one considers only the direction angle, the final distribution would collapse to the

uniform distribution.

In Fig. 9.2 is shown the final histogram for the longitudinal distribution, which

is obtained with our method and also, with MC simulation. The lateral distri-

bution is showed in Fig. 9.3, where histograms obtained by our method and MC
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ID Random

Var.

Description Distrib.

type

Mean Standard

dev.
x1 T0 Temperature at 0 km [K] Gumbell 280 16.667

x2 T20 Temperature at 20 km [K] Gumbell 218 7.333

x3 T50 Temperature at 50 km [K] Landau 252 16.667

x4 T70 Temperature at 70 km [K] Landau 187 24.0

x5 T90 Temperature at 90 km [K] Normal 185 25.0

x6 T120 Temperature at 120 km [K] Normal 360 24.0

x7 ρ0 Density at 0 km [kg/m3] Normal 1.225 8.167e-2

x8 ρ40 Density at 40 km [kg/m3] Normal 4.0e-3 5.330e-4

x9 ρ90 Density at 90 km [kg/m3] Normal 3.416e-6 5.693e-7

x10 ρ120 Density at 120 km [kg/m3] Normal 2.222e-8 3.703e-9

Min Max

x11 XN2 Percentage of N2 [%] Uniform 0.784 0.816

x12 Cp Heat Capacity [J/K] Uniform 1304.35 1441.65

x13 γ Flight path angle [deg] - Shallow Uniform 0 -0.1

γ Flight path angle [deg] - Normal Uniform 0 -2.5

γ Flight path angle [deg] - Steep Uniform -4.5 -5.5

x14 V∞ Re-entry speed [m/s] Uniform 7410 7790

x15 m Mass of debris [kg] Uniform 243.75 256.25

x16 χ Direction Angle [deg] Uniform 87.5 92.5

Table 9.1: Input distributions for the debris re-entry

simulation are displayed. One important aspect should be noted. Very high rel-

ative error for the final mean for the lateral case is caused by the ill-conditioned

relative error. In other words, one can see from Fig. 9.3 that the final distribution

is symmetrical around 0 and therefore, improving absolute accuracy will lead to

increase of the relative error, i.e. 0/0→∞. The error between our method and

MC simulation is around 7m with a spread over 600km and therefore, one can

consider an obtained result as an accurate one. From all given figures, one can

understand that our method provided an accurate result with negligible errors

and therefore, one can state that the proposed method works well.

The partial histograms are showed in Fig. 9.4 for the longitudinal distribution

and in Fig. 9.5 for the lateral distribution. For the longitudinal distribution,

the partial histogram for the flight path angle (x13) suggests that the underlying

function has a parabolic shape (i.e. x2). This suggests that the same error in
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measuring higher velocities will lead to a larger uncertainty. The same conclusion

can be applied to the re-entry speed (x14). Also, the size of the contribution

suggests that these two variables are responsible for the overall shape of the final

distribution. The final distribution has a sharp peak that smoothly transitions

into a long tail. The peak and the long tail is a result of the second order increment

functions, where the tail is caused by a steep ascent in the underlying function in

one of the corners of the given stochastic domain, i.e. to avoid such a strong tail,

the input distributions need to be shortened from one side. The smooth decrease

on the left side of the interaction increment function is responsible for the smooth

decrease on the left side in the final distribution.

For the lateral case, the main shape of the final distribution is from the direction

angle (x16). The distribution exhibits a smooth Gaussian-like transition from the

tails to the peak where a plateau feature is quite clearly visible. The smooth tran-

sition is contributed to the interaction effects of the increment functions dF13.16

and dF14.16, whereas the plateau is derived from the uniform distribution of the

increment function dF16. The very long tails of the final distribution are obtained

with the increment function dF13.14.16, i.e. the third order interaction of the flight

path angle, the direction angle, and the re-entry speed.

Function calls Mean longitudinal Standard dev. longitudinal

100000 2.328e+03 7.733e+02

Mean lateral Standard dev. lateral

100000 5.085e-02 6.418e+01

Table 9.2: MC simulation for normal re-entry problem

Case Desired

accu-

racy

Function

calls

Mean Standard

Deviation

Relative

error of

Mean

Relative

error of

S. D.
Longitudinal 0.01 91 2.330e+03 7.785e+02 8.591e-04 6.724e-03

Lateral 0.01 124 5.664e-02 6.495e+01 1.139e-01 1.200e-02

Table 9.3: Results of the high dimensional adaptive UQ-HDMR approach for

debris re-entry: controlled-normal
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Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 1.1036e-02 2.1632e-03 5.4489e-08 4.5898e-15

2 -6.7442e-05 1.3578e+00 3.3299e-10 2.8809e-12

3 -5.6970e-02 3.6448e+02 2.8128e-07 7.7333e-10

4 -2.6796e-01 3.1826e+01 1.3230e-06 6.7528e-11

5 -7.1419e-02 3.7174e+00 3.5262e-07 7.8874e-12

6 1.8877e-03 5.2654e-01 9.3202e-09 1.1172e-12

7 1.0087e-05 6.0361e-08 4.9802e-11 1.2807e-19

8 9.9100e+02 1.4726e+08 4.8929e-03 3.1245e-04

9 1.0291e+03 1.7914e+08 5.0812e-03 3.8009e-04

10 5.0657e+01 1.2840e+06 2.5011e-04 2.7243e-06

11 -1.2810e-03 7.6214e-01 6.3248e-09 1.6171e-12

12 -4.2154e+00 4.8746e+04 2.0813e-05 1.0343e-07

13 1.3197e+05 3.6725e+11 6.5161e-01 7.7922e-01

14 2.8101e+04 3.8826e+10 1.3874e-01 8.2380e-02

15 -2.4426e+01 8.2723e+06 1.2060e-04 1.7552e-05

16 -6.7447e+02 3.6563e+05 3.3301e-03 7.7578e-07

13.14 3.9540e+04 6.4843e+10 1.9523e-01 1.3758e-01

9.14 1.2458e+02 3.2518e+07 6.1510e-04 6.8995e-05

9.13 2.1854e+01 1.8683e+07 1.0790e-04 3.9641e-05

Table 9.4: Results of the partial increment functions for the longitudinal distri-

bution considering the controlled re-entry

9.3.2 Uncontrolled ’Shallow’ re-entry

The results of MC simulations for the shallow re-entry case are summarized in

Tab. 9.6 and results obtained with the adaptive UQ-HDMR method for the shal-

low re-entry case are summarized in Tab. 9.7. Sensitivities of all the selected

increment functions are given in Tab. 9.8 for the longitudinal distribution and in

Tab. 9.9 for the lateral distribution. In Fig. 9.6 is showing the final histogram for

the longitudinal distribution, which is obtained with our method and with MC

simulation. Comparison of both methods is also provided in given figure.

The lateral distribution is showed in Fig. 9.7, where histograms obtained with our

method and MC simulation are displayed. In both cases, the distribution looks

almost identical. However, there is a small peak at the end of the longitudinal
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Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 6.7575e-19 8.1108e-36 9.2454e-21 2.3574e-45

2 -4.1296e-21 5.0909e-33 5.6500e-23 1.4797e-42

3 -3.4884e-18 1.3666e-30 4.7727e-20 3.9720e-40

4 -1.6408e-17 1.1933e-31 2.2449e-19 3.4683e-41

5 -4.3731e-18 1.3938e-32 5.9832e-20 4.0511e-42

6 1.1559e-19 1.9742e-33 1.5814e-21 5.7381e-43

7 6.1764e-22 2.2632e-40 8.4503e-24 6.5780e-50

8 6.0681e-14 5.5214e-25 8.3021e-16 1.6048e-34

9 6.3016e-14 6.7166e-25 8.6215e-16 1.9522e-34

10 3.1019e-15 4.8142e-27 4.2438e-17 1.3993e-36

11 -7.8439e-20 2.8576e-33 1.0732e-21 8.3056e-43

12 -2.5812e-16 1.8277e-28 3.5315e-18 5.3122e-38

13 8.2633e-12 1.3910e-21 1.1306e-13 4.0431e-31

14 1.7207e-12 1.4558e-22 2.3542e-14 4.2312e-32

15 -1.4957e-15 3.1016e-26 2.0463e-17 9.0149e-36

16 -6.0825e+00 2.9858e+09 8.3218e-02 8.6782e-01

14.16 1.0191e+01 2.8120e+07 1.3943e-01 8.1732e-03

13.16 4.6801e+01 3.1536e+08 6.4031e-01 9.1659e-02

9.16 -1.2461e+00 1.4266e+05 1.7049e-02 4.1465e-05

8.16 4.0492e-01 1.0467e+05 5.5400e-03 3.0422e-05

13.14 2.2512e-12 3.7074e-22 3.0800e-14 1.0776e-31

13.14.16 8.3658e+00 1.1104e+08 1.1446e-01 3.2275e-02

Table 9.5: Results of the partial increment functions for the lateral distribution

considering the controlled re-entry

distribution (Fig. 9.6), which is not caught by our method. We run deeper analysis

to understand this peak and it was found that the peak is a result of small

oscillation in the MC distribution that is not captured with the interpolation

technique for the increment function dF14 (see Fig. 9.8). Unfortunately, such

problems (capturing small deviations from the interpolation function) cannot be

solved in general and are inherent to numerical integration and interpolation

methods and form as such a limitation of the HDMR method.

The same problem as in the previous case represents the high relative error for the

final mean of the lateral case. Again, the final distribution is symmetrical around
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Figure 9.2: Final histograms for the longitudinal distribution of the controlled

normal case

0 and therefore, a more accurate result will lead to a higher relative error, i.e.

0/0 → ∞. Nevertheless, the difference between MC and our method is around

20 meters, where the spreadiness is around 600 kilometres. Therefore, one can

conclude that our method provides an accurate result for the lateral distribution

as can be seen in Fig. 9.7.

The partial histograms are shown in Fig. 9.9 for the longitudinal distribution and

in Fig. 9.10 for the lateral distribution. For the longitudinal case, the important

variable is the re-entry speed (x14), which also gives the overall shape of the output

distribution. The shape of the partial histogram suggests that the increment

function has a parabolic shape (x2) and therefore, higher velocities will lead to a

higher uncertainty. Next variable influencing the output is the flight path angle

(x13), where the partial histogram suggests the linear shape of the increment

function. The important interaction effect is the combination of the re-entry

speed and the flight path angle. This interaction effect is responsible for the
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smooth transition on the left and right side of the output distribution.

For the lateral distribution, the most influential variable is the direction angle

(x16), which is responsible for the plateau in the final distribution. The smooth

transition is again given by the interaction effects, namely the increment function

dF14.16, dF13.16, dF8.16 and dF9.16, however, this time the tails are no so strong

as in the normal re-entry case and therefore, higher order interactions are not

included.

Function calls Mean Longitudinal Standard dev. Longitudinal

100000 3.807e+03 9.197e+02

Mean Lateral Standard dev. Lateral

100000 4.146e-02 1.066e+01

Table 9.6: MC simulation for shallow re-entry problem

Figure 9.3: Final histograms for the lateral distribution of the controlled normal

case
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s)

Figure 9.4: Partial histograms for the increment functions of the controlled re-

entry problem for the longitudinal impact distance

Note: Output number: 1 - Longitudinal impact distance

Output number: 2 - Lateral spreadiness
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 9.5: Partial histograms for the increment functions of the controlled re-

entry problem for the lateral spreadiness

Note: Output number: 1 - Longitudinal impact distance

Output number: 2 - Lateral spreadiness
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(u)

Figure 9.5: Partial histograms for the increment functions of the controlled re-

entry problem for the lateral spreadiness

Note: Output number: 1 - Longitudinal impact distance

Output number: 2 - Lateral spreadiness

Case Desired

accu-

racy

Function

calls

Mean Standard

Deviation

Relative

error of

Mean

Relative

error of

S. D.
Longitudinal 0.01 80 3.798e+03 7.785e+02 2.354e-03 2.665e-02

Lateral 0.01 108 5.783e-02 1.084e+01 3.948e-01 1.713e-02

Table 9.7: Results of the high dimensional adaptive UQ-HDMR approach for

debris re-entry: shallow angle
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Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 1.2867e-02 2.9407e-03 4.7516e-08 3.6354e-15

2 -9.6873e-05 1.8752e+00 3.5774e-10 2.3182e-12

3 -5.7214e-02 4.1188e+02 2.1128e-07 5.0918e-10

4 -3.3922e-01 5.1683e+01 1.2527e-06 6.3891e-11

5 -1.3942e-01 3.0501e+01 5.1487e-07 3.7706e-11

6 1.0830e-02 1.6553e+01 3.9995e-08 2.0463e-11

7 1.0319e-05 6.2593e-08 3.8105e-11 7.7380e-20

8 1.1156e+03 1.6708e+08 4.1199e-03 2.0655e-04

9 1.6633e+03 4.0741e+08 6.1424e-03 5.0365e-04

10 2.4320e+02 2.1903e+07 8.9810e-04 2.7077e-05

11 -3.4832e-03 5.6268e+00 1.2863e-08 6.9560e-12

12 -7.5151e+00 1.7393e+05 2.7752e-05 2.1502e-07

13 7.1023e+02 2.3184e+09 2.6228e-03 2.8661e-03

14 2.6347e+05 8.0587e+11 9.7294e-01 9.9623e-01

15 -3.5105e+01 1.5726e+07 1.2964e-04 1.9441e-05

16 -1.1176e+03 1.0039e+06 4.1271e-03 1.2410e-06

13.14 -1.9597e+03 8.8256e+07 7.2368e-03 1.0910e-04

10.14 -7.3394e+01 3.2508e+06 2.7103e-04 4.0187e-06

9.14 -4.0132e+02 2.4705e+07 1.4820e-03 3.0540e-05

Table 9.8: Results of the partial increment functions for the longitudinal distri-

bution considering the shallow re-entry case
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Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 7.8789e-19 1.1026e-35 9.0871e-21 1.1182e-45

2 -5.9317e-21 7.0309e-33 6.8413e-23 7.1303e-43

3 -3.5034e-18 1.5443e-30 4.0406e-20 1.5661e-40

4 -2.0771e-17 1.9378e-31 2.3957e-19 1.9652e-41

5 -8.5372e-18 1.1436e-31 9.8464e-20 1.1598e-41

6 6.6316e-19 6.2062e-32 7.6486e-21 6.2939e-42

7 6.3184e-22 2.3469e-40 7.2873e-24 2.3801e-50

8 6.8313e-14 6.2644e-25 7.8788e-16 6.3530e-35

9 1.0185e-13 1.5275e-24 1.1747e-15 1.5491e-34

10 1.4892e-14 8.2124e-26 1.7175e-16 8.3284e-36

11 -2.1328e-19 2.1097e-32 2.4599e-21 2.1395e-42

12 -4.6017e-16 6.5214e-28 5.3074e-18 6.6136e-38

13 4.3489e-14 8.6926e-24 5.0158e-16 8.8155e-34

14 1.7573e-11 3.1813e-21 2.0268e-13 3.2262e-31

15 -2.1496e-15 5.8963e-26 2.4792e-17 5.9797e-36

16 -1.0407e+01 8.7407e+09 1.2003e-01 8.8643e-01

14.16 7.1791e+01 1.1174e+09 8.2800e-01 1.1332e-01

13.16 -1.9397e+00 1.9680e+06 2.2372e-02 1.9959e-04

9.16 -2.0868e+00 3.9527e+05 2.4068e-02 4.0085e-05

8.16 4.7933e-01 1.4266e+05 5.5283e-03 1.4468e-05

Table 9.9: Results of the partial increment functions for the lateral distribution

considering the shallow re-entry case
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Figure 9.6: Final histograms for the longitudinal distribution of the shallow re-

entry case
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Figure 9.7: Final histograms for the lateral distribution of the shallow re-entry

case
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Figure 9.8: The cause of the peak at the tail of the longitudinal HDMR PDF

Note: The graph represents the increment to the longitudinal impact distribution

(Y abscissa) on the change of speed during the re-entry process (X abscissa).

For the re-entry speed between 7700 and 7800, the interpolation fails to

accurately describe the stochastic domain as can be seen on the difference

between the MC simulation and the interpolation model. Hence, the small

peak on the right side of the longitudinal distribution (Fig. 9.6).
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Figure 9.9: Partial histograms for the increment functions of the shallow re-entry

problem for the longitudinal impact distance

Note: Output number: 1 - Longitudinal impact distance

Output number: 2 - Lateral spreadiness
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Figure 9.10: Partial histograms for the increment functions of the shallow re-

entry case for the lateral spreadiness

Note: Output number: 1 - Longitudinal impact distance

Output number: 2 - Lateral spreadiness
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9.3.3 Controlled ’Steep’ re-entry

The results of MC simulations are summarized in Tab. 9.10 and results obtained

with the adaptive UQ-HDMR method are summarized in Tab. 9.11. Sensitivities

of all the selected increment functions are given in Tab. 9.12 for the longitudinal

distribution and in Tab. 9.13 for the lateral distribution. In Fig. 9.11 is showing

the final histogram for the longitudinal distribution, which is obtained by our

method and with MC simulation. The lateral distribution is showed in Fig. 9.12,

where histogram obtained with our method and MC simulation are displayed. In

both cases, the distribution looks almost identical and both residuals are under

prescribed tolerance.

Several interesting observations can be made on comparing the longitudinal and

lateral distributions for the different cases (un-controlled shallow and controlled

normal and steep cases):

1. The longitudinal distribution seems to approach a normal distribution with

steeper flight path angle, which is expected because as the re-entry occurs

at steeper angles, the amount of time the object spends traversing the atmo-

sphere is drastically reduced and so is the chance for the other uncertainties

(especially atmospheric) to have an effect.

2. The longitudinal impact distribution for the shallow re-entry case is not as

wide as that for the normal case because of a smaller input distribution of

the flight path angle. Both distributions have the same larger boundary be-

cause the input flight path angle distributions for both cases have a common

boundary at zero degrees that corresponds to the largest impact distance

from the entry point. The longitudinal distribution for the controlled steep

case has a very small spread with large impact probabilities close to the

mean value of the distribution and has no overlap with the other two cases

because the object falls well short of the impact locations for the other cases

due to the high flight path angle values.

3. The lateral impact distributions for the shallow and normal cases have the

same spread (boundary values) corresponding to the common boundary

value of zero degrees in the input distributions for the flight path angle

while the distribution is much narrower for the steep case. Increasing the

flight path angle results in large impact probabilities close to the mean value

of the distribution.
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Function calls Mean Longitudinal Standard dev. Longitudinal

100000 8.900e+02 4.412e+01

Mean Lateral Standard dev. Lateral

100000 -2.940e-00 2.248e+01

Table 9.10: MC simulation for the controlled steep re-entry problem

Case Desired

accu-

racy

Function

calls

Mean Standard

Deviation

Relative

error of

Mean

Relative

error of

S. D.
Longitudinal 0.01 84 8.902e+05 4.425e+04 2.573e-04 3.100e-03

Lateral 0.01 127 -2.964e-00 2.247e+04 8.200e-03 6.678e-04

Table 9.11: Results of the high dimensional adaptive UQ-HDMR approach for

debris re-entry: controlled steep

The partial histograms are showed in Fig. 9.13 for the longitudinal distribution

and in Fig. 9.14 for the lateral distribution. For the longitudinal distribution, the

most influential variables are the flight path angle and the re-entry speed (mea-

sured with partial variance). From the partial histograms, one can understand

that increment function for the re-entry speed (x14) is linear and the increment

function for the flight path angle (x13) is slightly curved yet very close to linear.

The interaction effects have negligible influence on the final distribution and only

brings uncertainty to the final solution. For the lateral case, one can see that

the influence of the direction angle is even higher, in this case, i.e. it is responsi-

ble for the plateau in the lateral distribution. Again, the interaction effects are

responsible for the smooth transition of the final distribution, however, they do

not have any special effect on the final distribution. Moreover, comparing the

previous cases, one can see that the influence of interaction effects is diminishing.

9.4 Conclusion

In this chapter, the single fidelity approach is applied to the re-entry propagation

problem. In all the considered cases, the developed method provided very good

results for an excellent number of expensive function calls. Moreover, it provided

deeper insight into debris re-entry and showed the importance of the probabilistic

modelling.
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Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 1.5969e-02 4.5295e-03 4.9937e-06 2.3103e-12

2 -1.6104e-04 3.1030e+00 5.0360e-08 1.5827e-09

3 -4.7919e-02 1.7323e+02 1.4984e-05 8.8354e-08

4 -2.2300e-01 5.0003e-01 6.9732e-05 2.5504e-10

5 -7.1047e-03 1.7789e-02 2.2217e-06 9.0732e-12

6 5.0908e-05 3.4684e-04 1.5919e-08 1.7690e-13

7 1.0234e-05 6.1582e-08 3.2002e-09 3.1409e-17

8 5.5167e+02 4.5043e+07 1.7251e-01 2.2974e-02

9 1.5987e+02 6.1107e+06 4.9992e-02 3.1167e-03

10 2.4520e+00 1.1313e+03 7.6675e-04 5.7702e-07

11 -6.3865e-05 1.8939e-03 1.9971e-08 9.6598e-13

12 -2.9540e+00 5.0781e+02 9.2373e-04 2.5901e-07

13 1.9207e+03 1.6530e+09 6.0062e-01 8.4311e-01

14 2.1576e+02 2.5203e+08 6.7470e-02 1.2854e-01

15 -9.2191e+00 1.2242e+06 2.8829e-03 6.2438e-04

16 -2.8065e+02 6.3305e+04 8.7759e-02 3.2288e-05

13.14 4.4114e+01 2.8550e+06 1.3795e-02 1.4562e-03

9.13 8.5510e+00 1.5342e+05 2.6739e-03 7.8250e-05

8.13 1.6323e+00 1.3301e+05 5.1043e-04 6.7841e-05

Table 9.12: Results of the partial increment functions for the longitudinal distri-

bution considering the controlled steep re-entry case

The trajectory propagation is governed by a system of differential equations and

the considered object is a simple sphere to simplify the propagation, where three

aero-dynamical regimes are considered. The aero-dynamical regimes are the con-

tinuum flow, the free molecular flow, and the transition regime. This allows

propagating the object from the high altitude to the ground. The observed cri-

terion is the impact location in the longitudinal and lateral location.

In given test cases, we consider 16 uncertain parameters. First 10 uncertain

parameters represent the atmospheric properties. We developed an interpolation

routines1 for these 10 parameters in order to simulate the uncertain atmosphere

1For each input parameter, a random sample is considered and the interpolation process is

constructed between these samples. Lagrange interpolation is considered for the temperature

and for the density. Also, isopycnic point for density is considered at the altitude of 10km.
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Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 9.7783e-19 1.6983e-35 1.8278e-19 3.3790e-44

2 -9.8612e-21 1.1634e-32 1.8433e-21 2.3148e-41

3 -2.9342e-18 6.4950e-31 5.4848e-19 1.2923e-39

4 -1.3655e-17 1.8748e-33 2.5524e-18 3.7302e-42

5 -4.3504e-19 6.6699e-35 8.1321e-20 1.3271e-43

6 3.1172e-21 1.3004e-36 5.8269e-22 2.5874e-45

7 6.2665e-22 2.3089e-40 1.1714e-22 4.5940e-49

8 3.3780e-14 1.6888e-25 6.3144e-15 3.3602e-34

9 9.7891e-15 2.2911e-26 1.8298e-15 4.5585e-35

10 1.5014e-16 4.2418e-30 2.8065e-17 8.4396e-39

11 -3.9106e-21 7.1011e-36 7.3099e-22 1.4129e-44

12 -1.8088e-16 1.9040e-30 3.3812e-17 3.7883e-39

13 1.0435e-13 6.1329e-24 1.9506e-14 1.2202e-32

14 1.3212e-14 9.4494e-25 2.4696e-15 1.8801e-33

15 -5.6451e-16 4.5899e-27 1.0552e-16 9.1322e-36

16 -2.4924e+00 5.0134e+08 4.6590e-01 9.9749e-01

15.16 2.5140e-01 7.8919e+02 4.6993e-02 1.5702e-06

14.16 7.6188e-01 1.6212e+05 1.4242e-01 3.2257e-04

13.16 -1.4480e+00 1.0583e+06 2.7067e-01 2.1057e-03

9.16 -2.1655e-01 4.1401e+03 4.0479e-02 8.2374e-06

8.16 1.7945e-01 3.7133e+04 3.3545e-02 7.3881e-05

Table 9.13: Results of the partial increment functions for the lateral distribution

considering the controlled steep re-entry case

along the whole propagation. Other uncertain variables are connected to the

properties of the considered object.

All results obtained with our method show very good agreement with the MC

simulation. However, the relative error in the mean value for some cases is very

large. This is caused by badly defined relative error as the final distribution has

the mean value around 0 and therefore, dividing by a number close to 0 will

lead to an extreme value. Nevertheless, the final histogram shows an excellent

similarity.

The partial histograms allowed deeper insight into the re-entry propagation prob-

lem. The interesting conclusion is about the tails of given distribution, which is
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Figure 9.11: Final histograms for the longitudinal distribution of the controlled

steep re-entry case

mainly caused by the interaction between flight path angle and the re-entry speed.

This interaction is valid for both lateral and longitudinal distribution and such

that decrease in this interaction lead to decrease in the spreadiness of the final

result. Another interesting result represents the uncertainty at various flight path

angles. If the flight path angle is large enough, the tail of the final distribution

is starting to shrink. Therefore, increase accuracy in the flight path angle could

improve the re-entry estimation in the future.
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Figure 9.12: Final histograms for the lateral distribution of the controlled steep

re-entry case
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Figure 9.13: Partial histograms for the increment functions of the steep re-entry

case for the longitudinal impact distance

Note: Output number: 1 - Longitudinal impact distance

Output number: 2 - Lateral spreadiness
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Figure 9.14: Partial histograms for the increment functions of the steep re-entry

case for the lateral spreadiness

Note: Output number: 1 - Longitudinal impact distance

Output number: 2 - Lateral spreadiness
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(u)

Figure 9.14: Partial histograms for the increment functions of the steep re-entry

case for the lateral spreadiness

Note: Output number: 1 - Longitudinal impact distance

Output number: 2 - Lateral spreadiness
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Chapter 10

Applied example: Gravity Field

and Steady-State Ocean

Circulation Explorer

In this chapter, the single fidelity and the multi fidelity uncertainty quantification

is applied and tested on a hypersonic example. However, the considered test case

is computationally expensive and the full Monte Carlo simulation cannot be used

for validation purposes. Therefore, the single fidelity approach is used.

The test case is the re-entry of GOCE satellite when it started to fall down

from the orbit. Due to the nature of the problem (rarefied flow), Direct Simu-

lation Monte Carlo (DSMC) is used to calculate the properties of the flow and

the observed uncertain criterion is the drag coefficient. The model used for the

simulation is simplified CAD model, which was provided by ESA.

The chapter is structured in the following way: In the first section, the GOCE

satellite is introduced, its main purpose and a short history are given. In the

second section, the basic set-up for the DSMC simulation is introduced. This

includes a description of the simplified CAD model and mesh. The third section

is devoted to the definition of the inputs and uncertain parameters. Also, in this

section, the starting conditions for the uncertainty propagation are introduced.

In the fourth section, the results and discussion about results are given. The final

section presents the conclusions.
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10.1 Gravity Field and Steady-State Ocean Cir-

culation Explorer

Figure 10.1: GOCE in orbit. Credits: ESA-AOES-Medialab

The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) was

intended to map in unprecedented detail the Earth’s gravity field. The spacecraft

was mainly equipped with highly sensitive gravity gradiometer consisting of three

pairs of accelerometers. This equipment was able to measure the gravitational

gradients in all three orthogonal axes.

It brought new insight into oceanic behaviour, which was the main driver for this

mission. Using data from other satellites and data from GOCE, scientists were

able to track the direction and speed of geostrophic ocean currents. Moreover, the

accuracy of the instrument on board of GOCE allowed improving the resolution

of the geoid.

The satellite’s excellent stability kept GOCE stable as it flew through the upper

thermosphere. An ion propulsion system continuously compensated the aerody-

namic forces and continuously restoring the path of the spacecraft to the inertial

trajectory. Moreover, an ion propulsion was without vibration as it is common
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for chemical propulsions and therefore, it limits the errors in the gravity gradient

measurements due to non-gravitational forces.

However, once the GOCE run out of fuel and the satellite started re-entry to the

atmosphere, another part of the mission started. For three weeks, GOCE was

flying around earth and measuring all aspects of the space flight, which include

the EGG gradiometer data, the orbital data from the SSTI GPS receiver, the

attitude information from the star trackers, magnetometer measurements of the

Earth’s Magnetic Field, currents actuating the magnetic torquers and the linear

accelerations sensed by the six ultra-sensitive accelerometers. The uncontrolled

re-entry took part on 01:16 CET on 11 November 2013 near the Falkland Islands1.

10.2 Main study of the re-entry case

During its mission, GOCE gathered a large amount of data, which are extremely

useful for validation. However, confronting pure measurements with a single point

calculation would mean that all the uncertainty in the measurement is not con-

sidered. Therefore, it is necessary to include the uncertainty in the mathematical

model and create a robust validation approach. The solution of the flow prop-

erties around GOCE represents an expensive simulation and therefore, it is an

ideal test case for the proposed single and multi fidelity approach.

The solution technique selected for the hypersonic flows is the DSMC simulation,

which solves Boltzmann’s equation by using a statistical representation of the

particles in the rarefied flow. DSMC approach can provide a high fidelity rep-

resentation of the molecular gas dynamics, where it simulates the behaviour of

each individual molecule. However, this means a serious computational cost. A

DSMC simulation can be described in three main phases:

• Mesh generation and particle initialization

• Particle movements and collision simulations

• Average field properties computation

1Information obtained at: http://www.esa.int/Our_Activities/Observing_the_

Earth/GOCE [Date: 20/11/2016]
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Figure 10.2: Simplified CAD model of GOCE

The DSMC solver selected for the work is the dsmcFoamStrath code (166), de-

veloped at the Strathclyde University. For the nature of the problem, a mixed

specular-diffusive model along with a variable hard sphere model for the inter-

particles collisions and viscosity model is selected. The aerodynamics of the model

is solved as a Free Molecular Flow (FMF) problem.

The DSMC computation of the rarefied gas flow is mesh dependent and mesh

has to be refined in accordance with an increase in density. Therefore, leading to

raising in the number of particles and computational cost. Using free molecular

flow allowed to constrain the number of particles inside a cell, which is constrained

by the field size and geometry’s surface modelled quality. Moreover, the cell size

has to be a fraction of the mean free path.

The mesh is generated from the simplified CAD model shown in Fig. 10.2. The

CAD model was provided by ESA for the re-entry study. The meshing tool is

selected the SnappyHexMesh tool and for visualization is used ParaView. The

mesh is generated using only half symmetry model to reduce the computational

time, which is possible because only the side slip angle is considered uncertain

during the simulation, while other geometries influencing parameters are consid-

ered constant. The field size is 8 x 2.5 x 6 [m] and the cell size ratio to the mean

free path is of 2 ∼ 3. There are constructed two approaches, which differs in

mesh properties and mainly in computational time. The properties of the mesh

for the high/low fidelity model are summarized in Tab. 10.1 and an example of

the mesh for the high fidelity model is showed in Fig. 10.3.
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- Low fidelity

model

High fidelity

model
Total volume 120 120

Total number of cells 24675 24675

Particles per cell 5 20

Avogadro’s number 6.0221409e+23 6.0221409e+23

Reference area for CD 0.565 0.565

Number of steps to average forces and

CD after convergence

10 6

Wait time for the convergence check 1 0.1

Maximum time to provide the latest re-

sult

3000 3000

Percentage max. error 1 0.5

Table 10.1: Mesh properties for the Low/High fidelity DSMC solver

Figure 10.3: Mesh used in the high fidelity DSMC solver
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10.3 Input and uncertain parameters of the re-

entry case

The orbital data, which are required by the DSMC solver are characterized by

NRLMSISE-00 model (167). This model is dependent on altitude, latitude, lon-

gitude, a day of the year and magnetic index. The following GOCE’s data and

initial conditions are used:

• Detailed geometric model (Fig. 10.2 and Fig. 10.3)

• Orbit parameters

• Atomic composition: See Tab. 10.2

• Mass density

• Longitude: 0 deg

• Latitude: 0 deg

• Altitude: 260 km

• Angle of attack: 0 deg

For DSMC simulations, which use the inter-particle collision model and the gas-

surface interaction, a set of other parameters is used:

• Wall Temperature: 350 K

• Atomic species diameter: See Tab. 10.2

For the uncertainty propagation, 9 uncertain parameters are selected as the pro-

posed method is suited for the high dimensional problems. The selection of the

uncertain parameters is based on an expert knowledge of the problem and it is

believed that these parameters are the most influential. The uncertain param-

eters are summarized in Tab. 10.3. For random variables 1, 2, 7, 8 and 9, the

maximum and minimum values of the input distributions are based on expert

knowledge. However, the minimum and maximum values for the distributions of

variables 3, 4, 5 and 6 are obtained as a yearly average from NRLMSISE-00.
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- Ar N2 O2 O NO N

Mass 66.3e-27 46.5e-27 53.12e-27 26.56e-27 49.88e-27 23.25e-27

Diameter 4.17e-10 4.17e-10 4.07e-10 3.00e-10 4.2e-10 3.00e-10

Rotational de-

grees of freedom

0 2 2 0 2 0

Vibrational

modes

0 1 1 0 1 0

Omega 0.81 0.74 0.77 0.8 0.79 0.8

Alpha 1 1 1 1 1 1

Characteristic

vibrational

temperature

0 3371 2256 0 2719 0

Dissociation

temperature

0 113500 59500 0 75500 0

Char. diss.

quantum level

0 33 26 0 27 0

Table 10.2: Gas properties for DSMC solver

ID Random

Variable

Distribution

type

Min Mean Max

x1 Speed ratio Uniform 7.841 8.090 8.356

x2 Side-slip Uniform -5 0 5

x3 O Uniform 8.16e+14 1.52e+15 2.45e+15

x4 N2 Uniform 2.85e+14 4.88e+14 7.95e+14

x5 O2 Uniform 9.01e+12 1.40e+13 2.15e+13

x6 Ar Uniform 8.32e+10 1.58e+11 2.87e+11

x7 Relax. Coef. Uniform 5 250 5000

x8
Twall
Tflow

Uniform 0.3209 0.3325 0.3440

x9 Ac. Coef. Gamma 0.8 0.93 1

Table 10.3: Input distributions for GOCE
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10.3.1 Starting conditions for the uncertainty propaga-

tion

First, it is necessary to set-up the UQ process. The selected output of interest

is considered the drag coefficient, CD. The random nature of the DCMS code

does not allow very high accuracy as the randomness in results influence the con-

vergence criteria. In other words, the randomness of outputs does not allow the

convergence residual to be lower than given randomness, i.e. the code would never

converge. Therefore, the relative residual is set to 0.03. This allows using the

developed code for the stochastic processes because the randomness is suppressed

with the high tolerance.

The first UQ propagation is done with the single fidelity approach, where only the

high fidelity code is used. The second UQ propagation considers two fidelity codes

with the same number of random inputs. Only two fidelity levels are considered as

more fidelity levels would only increase the computational burden (see Sec. 8.3.2).

The surrogate models selected for the uncertainty propagation are based on re-

sults obtained in Sec. 6.5. For the first order increment functions, the selected

models are Lagrange interpolation and PChip interpolation (PChip is selected in

a case that the function of interest is discontinuous). The Lagrange interpolation

is used from the start and the PChip is considered active after 5 iterations (see

Sec. 6.2). For the higher order increment functions, only IPI (Chap. 7) is used.

For the multi fidelity error correction function, the spline is used for the first

order increment functions and IPI is considered for the higher order increment

functions. The spline and IPI are selected due to the fact they are robust and

stable interpolants.

10.4 Results and discussion of the uncertainty

propagation for GOCE re-entry case

The uncertainty propagation is applied twice. In the first case, the single fidelity

approach is used and in the second case, the multi fidelity case is considered. For

both cases, results are obtained and compared.

The sensitivity results for the single fidelity approach are summarized in Tab. 10.4

and the graphical representation is given in Fig. 10.4. The multi fidelity sensitiv-
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ity results are summarized in Tab. 10.5 and a graphical representation is given

in Fig. 10.5. The statistical properties (the expected value and the standard de-

viation) are summarized in Tab. 10.6 and timing of the high/low fidelity model

is given in Tab. 10.7. The final histogram for the single fidelity approach and for

the multi fidelity is shown in Fig. 10.6. The comparison of the final histograms

is given in Fig. 10.7.

Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 0.0038 0.0009 0.0179 0.0387

2 0.1780 0.0235 0.8236 0.9432

3 0.0037 1.3979e-05 0.0175 0.0005

4 0.0035 1.4004e-05 0.0164 0.0005

5 0.0037 1.5135e-05 0.0173 0.0006

6 0.0017 1.1556e-05 0.0080 0.0004

7 0.0014 2.7220e-06 0.0064 0.0001

8 0.0030 1.0143e-05 0.0139 0.0004

9 0.0136 0.0003 0.0629 0.0126

2.9 -0.0016 4.9516e-05 0.0076 0.0019

2.4 -0.0009 4.5219e-06 0.0045 0.0001

2.3 -0.0013 8.3482e-07 0.0015 3.3378e-05

1.2 -0.0004 1.2581e-05 0.0019 0.0005

Table 10.4: Results of the increment functions for GOCE using the single fidelity

approach

First, let us discuss results for the single fidelity approach. The CD is distributed

between CD = 3.43 and CD = 4.11 (see Fig. 10.6 on the left). Therefore, we

can conclude that DSMC simulation and UQ propagation provided a reliable re-

sult. Unfortunately, there is no possibility to validate the result with the full MC

simulation as running 100000 would be too huge computational effort (Compu-

tational times for the high fidelity model and the low fidelity model are given in

Tab. 10.7). Observing the results (Tab. 10.4) and partial histograms (Fig. 10.4),

one can understand that the side-slip angle (x2) is the most influential variable

and gives the basic shape of the final distribution, i.e. its elongation around the

x abscissa and peak around CD = 3.52. Moreover, the influence of the side-slip

angle on the final distribution is very large and positive. Therefore, the distribu-

tion is on the right side of the central point (CD = 3.47). One can conclude that
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Figure 10.4: Histograms of the partial increment functions for GOCE using the

single fidelity approach - part 1

assuming Gaussian distribution and using deterministic approach can lead to a

significant error in the final result.

Interesting influence has the interaction effect (Increment function dF2.9(x2, x9))
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(m)

Figure 10.4: Histograms of the partial increment functions for GOCE using the

single fidelity approach - part 2

Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 -0.0018 0.0011 0.0095 0.0451

2 0.1759 0.0238 0.8994 0.9448

3 -0.0018 2.1214e-06 0.0094 8.3872e-05

4 -0.0006 5.9122e-05 0.0031 0.0023

5 0.0002 5.0040e-06 0.0014 0.0001

6 0.0013 2.3284e-06 0.0068 9.2057e-05

7 -0.0042 2.9940e-05 0.0216 0.0011

8 0.0016 5.7459e-06 0.0085 0.0002

9 0.0043 3.1284e-05 0.0223 0.0012

2.9 -0.0006 6.6591e-05 0.0033 0.0026

2.7 0.0015 2.9333e-05 0.0078 0.0011

2.5 -0.0001 5.3121e-06 0.0007 0.0002

1.2 0.0010 1.8474e-05 0.0056 0.0007

Table 10.5: Results of the increment functions for GOCE using the multi fidelity

approach

Case Residual

set

Function

calls

Mean Standard

Deviation
Single F. 0.03 57 3.6794 0.1555

Multi F. 0.03 HF:38 / LF: 48 3.6529 0.1597

Table 10.6: Final results of the UQ propagation for GOCE

of the side-slip angle (x2) and the accommodation coefficient (x9), which is slightly

tailed to the negative values and therefore, moving CD value to the left of the cen-
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Figure 10.5: Histograms of the partial increment functions for GOCE using the

multi fidelity approach - part 1

tral sample (CD = 3.47). The interaction effect (increment function dF1.2(x1, x2))

of the side-slip angle (x2) and the speed ratio (x1) brings only uncertainty to the

problem due to its symmetricity. However, this interaction is responsible for the
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(m)

Figure 10.5: Histograms of the partial increment functions for GOCE using the

multi fidelity approach - part 2

Model fidelity Computational time [Sec.] Computer center Cores

High F. 1923 ARCHIE-WeSt 12

Low F. 519 ARCHIE-WeSt 12

Table 10.7: Computational times of the Low/High fidelity model for GOCE

Note: Properties of ARCHIE-WeSt can be found at: www.archie-west.ac.uk

Figure 10.6: Final histogram for the single fidelity approach (left) and the multi

fidelity approach (right)

steep slope on the left and tail on the right of the final distribution. The speed ra-

tio (x1) is not very influential and creates a symmetrical contribution to the final

distribution. However, interesting part represents the partial histogram, which

shows that the contribution is mainly negative or positive and with low probabil-

ity around 0. This suggests that the increment function has large steep around

the central point and flat regions on its borders. The chemical composition (x3,
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Figure 10.7: Comparison of the final histogram obtained with the single fidelity

approach and with the multi fidelity approach

x4, x5, x6), relaxation coefficient (x7) and temperature ratio (x8) excluding the

argon (x6) are positive, however, not very influential. The uncertain variable

Argon (x6) creates elongation around the x abscissa. However, its large peak in

slight negative values creates a negative contribution to the final PDF, i.e. values

on the left of the central point. Nevertheless, the contribution is very small, i.e.

negligible. The accommodation coefficient (x9) represents a small, yet influential

contribution to the final distribution. Interesting part represents the large peak

on the left side and also, on the right side. The shape of the partial histogram

suggests a flat region on the left and right and steep ascent in the center.

Let us now focus on the multi fidelity approach. The relative difference in the

mean value is around 0.72% and the relative difference in the standard deviation

is around 2.74%. Both values are within the prescribed tolerance of 3% and it can

be concluded that the multi fidelity approach works. However, there is a constant

bias in the final distribution (see Fig. 10.7), yet the distributions look similar. To

explain the bias, we compared the boundary samples for the first order increment

functions obtained with the single fidelity approach and with the multi fidelity

approach. These samples are in all cases corrected with the high fidelity model

(the same model used for the single fidelity approach) and therefore, they must

have the same value. Obtained results are summarized in Tab. 10.8, where one

can see that for each boundary sample, the final value of the increment function

differs. Moreover, some of the values are completely negative, i.e. the increment

function gives only negative increment and therefore, move the final distribution

to the left of the central point. In other words, the randomness of DSMC created
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in a single fidelity case positive increment function, while in the multi fidelity

case completely negative increment function. Sum of these negative increment

functions (see Fig. 10.5) creates the observed bias.

In order to show the randomness, we performed the uncertainty propagation mul-

tiple times using the single fidelity approach and the multi fidelity approach. In

Fig. 10.8 are showed 4 runs of the multi fidelity code and two runs of the single

fidelity code. It can be seen that the variance of both codes is relatively high and

the randomness of the expensive code influences the results. Nevertheless, the

proposed method converged below the desired accuracy. Moreover, randomness

of DSMC is also responsible for the selection of different higher order increment

functions (see Tab. 10.4 and Tab. 10.5). The selection process of higher order in-

crement function is based on the influence of samples in the higher order domains

(see Sec. 4.2.1) and random nature of these samples influences the importance

of given higher order increment functions. However, the multi fidelity approach

selected the same important increment functions and therefore, the final result

does not differ.

From the partial histogram of the side-slip angle (x2) for the single fidelity ap-

proach (Fig. 10.4) and the multi fidelity approach (Fig. 10.5), one can see that the

partial histograms look exactly the same. In this case, the randomness is small

and therefore, one can compare given partial histograms. Also, the interaction

effect (increment function 2.9) of the side-slip angle (x2) and the accommodation

coefficient (x9) have the same behaviour. The interaction effect (increment func-

tion 1.2) for the side-slip angle (x2) and the speed ratio (x1) is slightly different.

This can be attributed to the interpolation error of the fidelity error function

and also, to the random nature of both fidelity codes. Regarding the other in-

crement functions with a small influence on the final distribution, one cannot

compare these partial histograms as these histograms are too much influenced by

the random error.

The number of low fidelity samples is smaller than the number of samples in

the single fidelity approach (see Tab. 10.6). One would expect that the number

of samples should be same or higher than in the single fidelity approach as the

function of interest stays the same, i.e. the number of samples required to approx-

imate the function of interest should be the same. This problem can be explained

by the randomness of DSMC code because the total number of the function calls

will be different with each run. Computing the total computational time for the
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Random

Variable

Left

bound-

ary

Single

F. inc.

Multi

F. inc.

Right

bound-

ary

Single

F. inc.

Multi

F. inc.

x1 7.841 0.0529 0.0529 8.356 -0.0430 -0.0550

x2 -5 0.4940 0.4880 5 0.5410 0.5310

x3 8.16e+14 0.0040 0 2.4540e+15 0.0059 -0.0049

x4 2.848e+14 0.0109 0.0110 7.9490e+14 0.0040 -0.0030

x5 9.012e+12 0.0069 0 2.1530e+13 0.0029 0.0100

x6 8.317e+10 -0.0010 -0.0009 2.8660e+11 0.0120 0.0060

x7 5 0.0059 0.0020 5000 0.0049 -0.0009

x8 0.3209 0.0049 0.0070 0.3440 0.0120 0.0070

x9 0.7491 0.0219 0.0169 0.9957 0.0069 0.0020

Table 10.8: Difference for the single/multi fidelity approach in boundary samples

single fidelity approach (30.45 computational hours) and for the multi fidelity

approach (27.22 computational hours), one can estimate that the multi fidelity

approach improved the speed of solution around 10.6%. The small gain in the

computational speed (compared to the deterministic case provided in Chap. 8) is

mainly due to the small requested accuracy. It is necessary to correct all bound-

ary samples for the first order increment functions and the algorithm does not

have enough time to use the low fidelity model as all the non-important increment

functions are already converged under prescribed tolerance.

10.5 Conclusion

In this chapter, application of the developed method to the GOCE re-entry case

is done. The uncertainty propagation is done in two ways. The first way considers

only the single fidelity approach and the second way considers the multi fidelity

approach.

In the proposed test case, GOCE is at high altitude and at the hypersonic speed.

This represents a fully rarefied flow and therefore, DSMC approach is selected to

solve the flow properties. The solver used is the in-house developed dsmcFoam-

Strath code applied on the simplified CAD model and the uncertain criterion

considered is the drag coefficient. We consider 9 uncertain parameters, where 3

represents the flight properties, 4 are given to the chemical composition of the
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Figure 10.8: Multiple runs of the single fidelity approach (left) and the multi

fidelity approach (right)

atmosphere and remaining 2 are parts of the DSMC solver.

A difference between the high fidelity code and the low fidelity code is mainly

due to the number of particles in the solution and the convergence residual for

the DSMC solver. This allowed obtaining a much faster code, i.e. the low fidelity

code. However, this code needs to be corrected with the high fidelity code. Using

advantages from both codes, the UQ propagation is performed under shorter

time.

The results obtained with the developed method suggest that using simple de-

terministic approach is not enough and it can lead to serious errors in the final

solution. The DSMC code is random in nature and such that it is hard to use

approximation techniques for this code. However, even in this case, the developed

method provided an accurate result. It was not possible to validate the developed

method against the MC simulation due to time constraints.

The validation of the multi fidelity approach is done against the single fidelity

approach. As mentioned above, the DSMC code is random to a certain degree

and such that the final results can vary. We run additional simulations to confirm

the variance of the final results. The multi fidelity approach provided a faster

solution, yet the gain is not large. This is due to the low requested accuracy

and a small number of total function calls (57). Also, the main influence on the

drag coefficient is done by the side-slip angle, more than 90%, and this means

that the other variables converge very fast, i.e. the low fidelity model lose its

advantage. Nevertheless, the multi fidelity approach provided a reliable result
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below the desired accuracy.

The final distribution is mainly given by the side-slip angle and its interactions

with other variables, which creates small tails on the boundaries of the final

distribution. An interesting fact is that most of the first order increment functions

are positive, i.e. moving the final distribution to the higher values and therefore,

using only deterministic approach will lead to a certain bias. This again proves

the necessity of probabilistic modelling.
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Chapter 11

Final discussion and conclusion

In this chapter, the overall summary of the developed single fidelity and the multi

fidelity method is discussed. The chapter is divided into four sections, where the

first section is devoted to the single fidelity method. The second section is given

to the discussion about the multi fidelity module. The third section is focused

on the future aims and possible plans. The last section is given to the final

conclusion.

11.1 Discussion about the uncertainty propaga-

tion using the single fidelity model

Many non-intrusive techniques create a simplified model, which mimics the orig-

inal model. These simplified models are computationally more affordable and

sampling techniques, such as the Monte Carlo simulation, can be applied directly

to them in order to perform UQ. These simplified models are called surrogate

models, and they are constructed by using the expensive code as a black-box

tool. However, the construction of these surrogate models is very complex and

delicate.

We developed a new non-intrusive uncertainty propagation method. First, the

stochastic domain is decomposed into smaller domains. This is possible due to

the derivative equation (see Chap. 2), which decomposes the stochastic domain

with an application of the partial derivatives. Using these partial derivatives,

the increment function is constructed. The increment function is an independent

contribution to the final model and it is handled as a separate problem. Each
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one of these increment functions is approximated separately and the final model

is constructed as a sum of these increment functions. This represents a large

simplification to the approximation methodology as it is easier to approximate

series of small (low dimensional) problems rather than one large problem. Each

one of these increment functions follows a certain set of rules. These rules al-

low a large simplification of the problem of interest and therefore, mitigate the

computational burden.

The important aspect represents the statistical properties of the increment func-

tion. The partial mean value obtained from the increment function represents

the movement of the final mean value and the partial variance represents the

importance of the increment function, i.e. how big the influence of the increment

function on the final distribution is. These values are obtained with the MC

simulation, which is applied directly to the increment function (or its surrogate

model). This step allows visualizing the partial histogram, representing the sta-

tistical contribution to the final statistics. The main advantage of the partial

histogram is that it provides deeper insight into the final statistics and behaviour

of the function. Moreover, using the conclusions obtained from the derivative

equation, the behaviour of the underlying increment function can be established.

This is extremely useful in higher domains, where the increment function cannot

be plotted, allowing the user to focus on the problematic parts of the stochastic

domain.

Let us now discuss the conclusions obtained with the Derivative Equation (DE).

The first important conclusion obtained with the DE is related to the shape of

PDF, which depends only on the partial derivatives and input distributions. The

second important conclusion is about the tails of the final distribution: if the

function has strong interaction effects, i.e. the higher order increment functions

have a large influence, the final probability distribution is heavy-tailed. This is

an important aspect of the statistical measurement as when the measurements

are heavy-tailed, models that consider this aspect must be taken into account.

To provide an efficient method for an uncertainty quantification, usually, the De-

sign of Experiments (DOE) plays an important part. However, this work focuses

on an adaptive sampling, where the basic idea of the adaptive scheme is based

on the comparison of interpolants between different iterations. It is divided into

several steps. The first step represents the error comparison function, which

compares the change in the function. The second step represents the position
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function, which considers the position of previous samples. The combination of

these two steps creates a natural exploitation vs. exploration approach, where

simple functions are uniformly sampled and functions with complicated regions

are mainly sampled in these regions. The last point represents the input proba-

bility distribution, which behaves as a weight function and such that emphasizes

regions with large probability. These three points let to the implementation of a

function, whose maximum indicates the new sampling location. A very important

property is that this proposed adaptive scheme naturally takes into account the

behaviour of the interpolation technique. In other words, in the case of Lagrange

interpolation, the samples are added to the boundaries to stabilize the inter-

polant, where on the other hand, in the case of piecewise interpolation, samples

are more evenly distributed.

The previously mentioned error comparison function could be used as the con-

vergence measurement, but that is impractical. Therefore, the total mean (mean

of the final model) and the total variance (variance of the final model) are used

as convergence criteria. with a two steps approach.

The first step represents the local convergence, where only the convergence of the

increment function is checked. Based on the sensitivity analysis provided in each

iteration step, the algorithm can easily decide which increment functions need

more samples. This provides an optimal sampling scheme for the problem of in-

terest. To further improve the convergence, the logical convergence is introduced.

This convergence takes into account only the behaviour of the increment func-

tion and helps to avoid unnecessary sampling if one of the increment functions is

diverging.

The second step represents the global convergence, which protects the algorithm

from the premature convergence, i.e. if the final mean and the final variance

is not converged under prescribed tolerance, the problem still needs additional

samples. Both steps ensure that the final model is converged under pre-scribed

tolerance.

The main growth of samples is due to high order interactions and such that it is

necessary to restrict the sampling of higher order domains as much as possible.

The commonly used approach using HDMR modelling is to stop adding the higher

order increment functions in the prescribed order. However, this approach can

lead to serious problems and it can lead to completely wrong results. Moreover, it

is not very efficient in a case of a large number of stochastic variables. Therefore,
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the prediction scheme is developed. The prediction scheme consists of three main

aspects.

The first aspect is the deduction approach, which deduces what increment func-

tions should be used. It is based on an inverse logic and with very few prop-

erly placed samples, it can estimate the influence of the higher order increment

functions. The second aspect represents the prediction algorithm, which is an

empirical approach to the selection process. The deduction algorithm selects a

large portion of the important higher order increment functions yet some of them

do not need to be very important. This is due to a small number of samples

used for the deduction algorithm and therefore, the prediction is done to fur-

ther reduce the number of increment functions. If the increment function has a

small predicted effect, it is neglected from the sampling process. The prediction

algorithm is based on conclusions obtained from DE and reflects the behaviour

of the stochastic domain. However, it should be kept in mind that it is still a

prediction and therefore, results from the prediction should not be used in any

other way. The last part of the prediction scheme is the neglection algorithm,

which is again based on conclusions obtained from DE. It samples the selected

increment function with a small number of samples, e.g. 1, and estimates the

value of the increment function. In the case of small influence, the increment

function is neglected.

An important part of the prediction scheme is the estimation of the neglection

residual, i.e., how small influence the increment function must have to be ne-

glected. The residuals are selected on a basis of a statistical influence of the

neglected increment functions. In other words, we build a linear model which

represents the influence of the neglected increment functions and propagating

the statistics over this model defines the required residual for the selection pro-

cess. An interesting fact is that the model has to be linear, which is a result of

the conclusions obtained in Sec. 4.3.

The prediction scheme is also responsible for the convergence of the whole method-

ology, i.e. the final model. The final model is convergent when there are no more

important increment functions to add. This aspect represents the main difference

between commonly used convergence approaches and our method.

Once the portion of the important higher order increment functions is known,

the higher order adaptive scheme can be applied. The higher adaptive scheme

represents an extension of the first order adaptive scheme and it is based on
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the same logic. The error comparison function and the position function are

slightly modified to take into account the higher dimensions. However, the largest

difference represents the requirement of the interpolation technique. In higher

dimensions, some interpolation techniques have special requirements, which needs

to be fulfilled. This step makes the position of new samples not optimal yet it is

necessary in order to have stable and accurate interpolation technique. Therefore,

one more step is added to the sampling process in order to fulfil the condition

required by an interpolant. For example, in the case of Lagrange interpolation,

the tensor grid is constructed.

The convergence process is also, almost identical to the first order convergence

process. The small difference is an estimation of the total variance and the

total mean considered, which are considered in the convergence process. This

step allows a slightly more accurate solution to the influence of the increment

function.

Altogether, the whole procedure creates an efficient interpolation approach. How-

ever, this approach is not fully robust. There can be found functions, where the

whole algorithm diverges due to the interpolation technique. To overcome this

problem, the multi surrogate interpolation technique is developed. The proposed

interpolation technique is based on a simple idea of project management, where

the main algorithm behaves as a project manager and selects the most accurate

and fast solution to the problem. The mathematical model resembles the Kriging

surrogate model, yet it has some several distinctions. The process of weight selec-

tion is iterative in nature and requires an iterative (adaptive) scheme. Therefore,

a combination of the adaptive scheme and the multi surrogate model is done.

However, the focus of the developed technique is not on efficiency but mainly

to provide a more robust interpolant. Nevertheless, the proposed technique is

still very efficient. The robustness of the code is shown on many examples and

important conclusions are obtained. These conclusions are later on used in the

multi fidelity approach.

The last part of the single fidelity approach is given to the new interpolation

technique - Independent Polynomial Interpolation (IPI). This technique is de-

veloped in order to have a technique, which would suit our problems. In other

words, which would be capable to handle adaptive scheme, the proposed HDMR

approach, and high dimensional discontinuities. IPI resemble the spline technique

in the higher dimensions yet in discontinues problems it is more efficient. On the
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other hand, for continues cases, it is slightly worse. IPI represents a new way for

interpolation processes and with further research, it can be much more efficient

than the previously mentioned spline.

11.2 Discussion about the multi fidelity approach

In this work, the multi fidelity approach is considered as a separate module for

the single fidelity UQ propagation tool. In other words, the whole approach can

be used in the single fidelity way or in the multi fidelity way. This makes the

developed method very practical.

One of the main problems of the multi fidelity modelling represents the selection

process of the low fidelity models. The power ratio theory tries to answer this

question. The power of the code of interest is represented by a simple equation,

which considers two main aspects. The first aspect represents the accuracy of

the lower fidelity model and the second aspect represents the time of the lower

fidelity model. This theory provides simple comparison criteria for the low fidelity

model selection. The nature of the method allows using various accuracy criteria

for comparison such as L2 error. However, in this work, only the mean value

and the variance is used as an accuracy comparison criteria. The model with the

highest power ratio represents the best low fidelity model for a given problem and

such that it is selected for replacement of the high fidelity model. However, it is

necessary to correct the low fidelity model to reduce the possible errors.

Another aspect of the power ratio represents the line of efficiency, which sepa-

rates the efficient low fidelity models from the inefficient ones. The inefficient

models are automatically neglected from the process as they do not provide any

benefit to the problem. Unfortunately, this concept does not take into account

the complexity of correction of the low fidelity model. In other words, if the low

fidelity model needs too many corrections, i.e. high fidelity model function calls,

the low fidelity models lose its advantage and the actual computation time is

higher. Nevertheless, on provided examples (Borehole model and GOCE), it is

showed that the proposed concept works.

The power ratio helps to select the best low fidelity model. However, the impor-

tant question is: which increment functions need to be corrected. For the first

order increment functions, one cannot assume anything about the low fidelity

model and to get the first insight into accuracy and efficiency of the low fidelity
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model, it is necessary to correct the boundary samples. This allows to create a

simple correction function and establish the first prediction for the low fidelity

model. This step is done for all the lower fidelity models and the best model is

selected. However, one can quickly realize that in the case of a large number of

the low fidelity models, the whole process loses its advantage. Therefore, it is

suggested to keep the number of the low fidelity models low, e.g. 1 or 2.

In order to correct the low fidelity model, the additive correction is used. We

restrict ourselves to the additive correction due to its easy application to the

HDMR model and proven functionality. Moreover, the additive approach can

be easily used in combination with integration. On the other hand, using the

multiplicative approach would lead to problems with integration parts in the

higher dimensions and such that it is neglected from this work. The additive

correction is implemented via the Fidelity Error Increment Function (FEIF),

which represents the additive correction for the HDMR approach. An important

aspect is that it follows all the rules defined for the HDMR model. For the

interpolation purposes, it is suggested to use a piecewise interpolation technique

as these techniques are not prone to oscillations.

The Fidelity Error Increment Function is used in the error prediction process.

This approach tries to predict the error in the mean value and in the variance if

the low fidelity model is used. It is based on the linear prediction of the error

between the fidelity models from the position, where the correction is known. In

other words, we assume that the error of the low fidelity model can be predicted

with the linear extrapolation around known correction. Using this prediction, the

error on the mean value and the variance can be established. This is used as a

criterion for the decision process if the correction function needs more high fidelity

samples. For our purposes, the predicted error is transformed to the statistical

error, however, the predicted error can be used to estimate other properties such

as estimation of the error at one particular position or visualization of the fidelity

error (for example Fig. 8.3).

Another important aspect is the selection of the higher order increment functions.

Correcting all the higher order increment functions would lead to a large waste of

samples and therefore, the prediction algorithm is applied to all the low fidelity

models. The prediction algorithm compares the selected increment functions

and if the increment function is presented in both fidelity models, then the low

fidelity model is used for the prediction. Note that in the case of the single fidelity
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approach, the prediction algorithm (see Chap. 4) is not a necessity, however, in

the case of the multi fidelity approach, it represents a compulsory thing.

Once the higher order increment functions are selected, the algorithm uses only

the low fidelity model to estimate the influence of the higher order increment

functions. One cannot correct all the higher order increment functions as the

whole process of the multi fidelity modelling would lose its advantage. Therefore,

only the important increment functions are corrected. This approach is based

on an assumption that the low fidelity model has the same trends. It should be

kept in mind that errors of uncorrected increment functions are propagated to the

final solution, yet it is assumed that the influence of the uncorrected functions

is extremely low and the final solution is not influenced much. However, if the

uncorrected increment function does not behave in a similar manner such as the

high fidelity model, the error can influence the final solution. Nevertheless, this

problem is caught with the prediction scheme.

11.3 Future work and aims

In this work, a new scheme for the uncertainty modelling is presented. This

scheme is brand new and requires a rigorous testing, which will take part in

near future. Considered future testing examples are going to range from simple

analytic models to complex stochastic methods such as DSMC.

The adaptive scheme is currently independent of the interpolation technique.

Therefore, next focus will be given to the adaptive connection of the interpo-

lating method. Also, convergence criteria will be coupled with the interpolation

technique. For example, piecewise interpolation needs more samples to prove

convergent than the global ones.

The prediction approach represents a new thing, yet it is proven to be working

efficiently. However, it still offers large possibilities for extensions. Therefore,

the further potential improvements will be investigated. Another step will be

focused on usage of the results from the prediction approach to the interpolation

process. In other words, construct an interpolation scheme from the samples used

for the prediction. This should lead to improvement of the overall efficiency of

the proposed method.
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The multi surrogate modelling technique is developed to make a robust approach

to the uncertainty propagation. However, it is still dependent on the database of

provided models. This database will be extended in the future steps to other in-

terpolants and approximation techniques. Also, an ideal combination of surrogate

models will be established.

Another aspect of the multi surrogate approach represents the starting iteration

for each surrogate model, i.e. when the surrogate model becomes active in the

approximation process. In this work, the user sets the starting iteration based on

his/her personal experience and this is not an optimal approach. Therefore, an

automatic selection approach will be developed in the next steps.

IPI is a new approach to the piecewise interpolation and it opens new possibilities.

One of the possible improvement represents the selection of the derivative scheme,

which can greatly improve its efficiency in the case of discontinues functions. Also,

selection and distance of the weight function can improve accuracy in a case of

continues function. Therefore, a combination of the adaptive scheme and IPI

using new derivative schemes and weight functions will be investigated.

The last part represents the multi fidelity module. The efficiency line separating

the efficient model from the inefficient ones in the power ratio theory will be

closely investigated as it provides interesting insight into multi fidelity modelling.

Another aspect represents the selection criteria for the higher order increment

functions. A more complex selection process is going to be investigated, which

will take into account differences between estimated influences.

The surrogate model considered for correction is going to be investigated more

deeply. It is necessary to develop an adaptive scheme, which will adaptively

select the best model. This should improve the correction of samples from the

low fidelity models.

11.4 Final Conclusion

In this work, a new way of uncertainty propagation and multi fidelity modelling

is introduced. The proposed method is tested on two examples and it proved

to be very efficient. Moreover, the proposed method can be applied to other

uncertainty propagation problems.

278



Important conclusions about statistical propagation are obtained with the new

approach. These conclusions are proved on applied examples and they can be

used in various other scientific disciplines.

The derivative equation derived in this work represents an important piece of

information for the high dimensional modelling. It shows in clear and under-

standable way, how the information propagates from the lower domains to the

higher ones. However, further research into aspects of the derivative equation

will be necessary.

A new way of sensitive analysis is introduced. The user can understand how each

variable influences the final result and partial histograms show the influence of

given variable over the stochastic domain. This aspect represents an important

step in the statistical modelling.

Many of the proposed techniques can be used independently, however, the main

strength of the proposed method lies in the combination of all the approaches

altogether. The non-intrusive uncertainty propagation is suited for various kind

of problems and such that it is not restricted to only space applications. How-

ever, this needs to be proved with additional examples. Nevertheless, the main

application still remains the uncertainty quantification for re-entry propagations

and hypersonic flows.
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APPENDIX A

Let us assume a function, f(x1, x2), with two random variables. The variance is

computed in the following way

σ2 =

∫ ∞
−∞

∫ ∞
−∞

((∫ x1

cx1

∂f(ξ)

∂ξ1
dξ1 +

∫ x2

cx2

∂f(ξ)

∂ξ2
dξ2 +

∫ x1

cx1

∫ x2

cx2

∂f(ξ)

∂ξ1, ξ2
dξ1dξ2

)
− µ

)2

p(x1, x2)dx1dx2
(11.1)

Now, let us closely look on the inner part of Eq. (11.1). The inner part can be

expanded in the following way((∫ x1

cx1

∂f(ξ)

∂ξ1
dξ1 +

∫ x2

cx2
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dξ2 +
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(11.2)

If the same approach as in Sec. 2.2 is followed, the inner part of Eq. (11.1) is

expanded in the following way(∫ x1

cx1

∂f(ξ)

∂ξ1
dξ1 − µ1

)2

+

(∫ x2

cx2

∂f(ξ)
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12

(11.3)

Eq. (11.2) clearly differs from Eq. (11.3). Therefore, a sum of the partial variances

is not the total variance as it is mentioned in Sec. 2.2.
296



APPENDIX B

To prove the statement given in Sec. 2.2, let us assume the following equations:

F1(x1, x2, x3, x4) = 5000 +
x31 − x32 − ex

2
3x1

x4

F2(x1, x2, x3, x4) =
x31 − x32 − ex

2
3x1

x4

where xi represents a random variable with a uniform distribution and boundaries

equal to [0, 1]. These two functions are different, however, their derivative (along

all directions) are the same. Therefore, according to a given statement, their

histograms should have the same shape. Let us now create a histogram using

MC simulation with 100000 sample.

Figure 11.1: Histogram for function F1(x1, x2, x3, x4) and function

F2(x1, x2, x3, x4)

From given figures, it is obvious that the shape of both histograms is the same.

Therefore, one can conclude that the shape is given only by a derivative of the

function of interest.
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APPENDIX C

One of the main advantages of the proposed approach are the increment functions,

which can be plotted and one can understand the behaviour of the problem.

However, this approach is possible only in a case of the lower stochastic domains

and in the higher domains, one need to use the partial histogram to understand

the shape of given increment function. Knowing the input histogram and the

output partial histogram, the increment function can be reconstructed. The

following approach helps to practice the understanding of the higher order partial

histograms.

Let us assume the following function:

F (x) =
1

x2
(11.4)

where x represents the random variable with a uniform distribution and defined

on interval [0.5, 1.5]. Let us assume an input histogram, which is constructed with

6 bins and the final histogram, which is constructed with 6 bins. To simplify the

problem, let us divide the function F(x) (Eq. (11.4)) into 6 segments and replace

the function in each segment with a linear approximation. This is showed in

Fig. 11.2.

First, it is necessary to realize that the surface of the input histogram and the

output histogram is the same. The same applies for each bin of the output

histogram (assuming that the input bin is constructed with the same number

of samples as the output bin). The linear model basically scales the histogram

and one can see that each bin in the input histogram is scaled on the output.

Knowing the input histogram and the output histogram, one can, with a little

bit of training, reconstruct the increment function using a linear approach.

For the higher stochastic domains, one needs to realize that all the lower stochastic

domains are zero and all the work is done in the corners of an increment function.

Therefore, if a partial histogram of a higher order increment function is elongated

in one direction, it means that one of the corners of the increment function has a

steep ascent. The same linear approach can be used for the higher order increment

functions.
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Figure 11.2: Reconstruction approach of an increment function using input and

output histogram
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APPENDIX D

To prove the statements from Sec. 4.3, we consider the following functions:

f1(x1, x2) = x1 + x2

f1(x1, x2) = 1.9x1 + 0.1x2

Random variables x1 and x2 have the following distributions:

Variable Min Max

x1 0 1

x2 0 1

The histograms are showed in Fig. (11.3), where the histogram for function

f1(x1, x2) is closer to the Gaussian distribution than the histogram for function

f2(x1, x2).

(a) (b)

Figure 11.3: Visualization of histogram for function f1(x1, x2) - (a) and function

f2(x1, x2) - (b)
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APPENDIX E

Resemblance between Polynomial models and High Dimen-

sional Model Representation

To show the resemblance between these techniques, let us first assume the fol-

lowing 2-D polynomial function:

f(x1, x2) = c0 + c1x1 + c2x
2
1 + c3x2 + c4x

2
2 + c5x1x2 (11.5)

where ci represents an unknown coefficients yet to be established. To establish

mentioned coefficients, one can use various techniques such as least square esti-

mate. However, it should be noted that these coefficients are data driven and not

model driven.

The cut-HDMR for the function with two random variables reads:

f(x1, x2) = f(cx1,
c x2) + dF1(x1) + dF2(x2) + dF12(x1, x2) (11.6)

where cxi represents the central point. Let us now assume a quadratic polynomial

model for each increment function. Each increment function in Eq. (11.6) is

represented with a polynomial expansion in the following shape:

dF1(x1) = c10 + c11x1 + c12x
2
1

dF2(x2) = c20 + c21x2 + c22x
2
2

dF12(x1, x2) = c120 + c121 x1 + c122 x
2
1 + c123 x2 + c124 x

2
2 + c125 x1x2

(11.7)

where cki represents an unknown coefficient yet to be established. Next step

represents substitution of the increment functions into Eq. (11.6). The final

equation reads

f(x1, x2) = (f(cx1,
c x2) + c10 + c20 + c120 ) + (c11 + c121 )x1

+(c12 + c122 )x21 + (c21 + c123 )x2

+(c22 + c124 )x22 + c125 x1x2

(11.8)

one can quickly notice, that the structure of Eq. (11.8) is same as in Eq. (11.5).
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Therefore, one can re-write coefficients ci as follows

c0 = f(cx1,
c x2) + c10 + c20 + c120

c1 = c11 + c121

c2 = c12 + c122

c3 = c21 + c123

c4 = c22 + c124

c5 = c125

(11.9)

One can conclude that using the polynomial models for each increment function

is same as using polynomial model for the whole problem.
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APPENDIX F

Increment functions for the Borehole problem

The collection of all increment functions, which are interpolated in the Borehole

problem is given in Tab. 11.1 for accuracy 0.01 and in Tab. 11.2 for accuracy

0.001

Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 1.8167 531.4599 0.6368 0.6719

2 0.0003 1.6899e-05 0.0001 2.1367e-08

3 -4.2337e-06 5.9210e-10 1.4841e-06 7.4865e-13

4 -0.0276 72.0510 0.0096 0.0911

5 -0.0042 0.0005 0.0014 7.5009e-07

6 -0.0258 72.1023 0.0090 0.0911

7 0.9307 71.2253 0.3262 0.0900

8 0.0030 16.7087 0.0010 0.0211

7.8 -0.0011 0.2449 0.0003 0.0003

6.8 -0.0012 0.2390 0.0004 0.0003

6.7 -0.0013 1.0657 0.0004 0.0013

4.8 0.0002 0.2379 9.5616e-05 0.0003

4.7 -0.0006 1.0646 0.0002 0.0013

1.8 0.0045 1.7586 0.0015 0.0022

1.7 0.0153 7.5383 0.0053 0.0095

1.6 0.0068 7.5906 0.0024 0.0095

1.4 0.0128 7.5988 0.0045 0.0096

Table 11.1: Results of the increment functions for the Borehole problem using

residual: 0.01
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Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 1.8174 531.4032 0.6402 0.6716

2 0.0003 0 1.6899e-05 0.0001 2.1359e-08

3 -4.2337e-06 5.921e-10 1.4915e-06 7.4836e-13

4 -0.0276 72.0510 0.0097 0.0910

5 -0.0042 0.0005 0.0014 7.4980e-07

6 -0.0258 72.1023 0.0090 0.0911

7 0.9143 71.5599 0.3221 0.0904

8 0.0030 16.7087 0.0010 0.0211

7.8 -0.0011 0.2449 0.0003 0.0003

6.8 -0.0012 0.2390 0.0004 0.0003

6.7 -0.0013 1.0657 0.00048 0.0013

5.8 -3.2310e-06 8.7318e-06 1.1382e-06 1.1036e-08

5.7 -0.0001 4.3686e-05 6.1972e-05 5.5215e-08

5.6 3.2455e-07 9.3983e-06 1.1433e-07 1.1879e-08

4.8 0.00027276 0.2379 9.6092e-05 0.0003

4.7 -0.0006 1.0646 0.0002 0.0013

4.5 -9.5909e-06 9.4325e-06 3.3788e-06 1.1922e-08

1.8 0.0045 1.7665 0.0015 0.0022

1.7 0.0153 7.5374 0.0053 0.0095

1.6 0.0068 7.5901 0.0024 0.0096

1.5 -0.0005 0.0004 0.0001 6.2257e-07

1.4 0.0128 7.5983 0.0045 0.0096

1.7.8 0.0008 0.0251 0.0002 3.1775e-05

Table 11.2: Results of the increment functions for the Borehole problem using

residual: 0.001
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APPENDIX G

Mathematical derivation of Multi surrogate approach

The collection of all increment functions, which are interpolated in the Borehole

problem using the multi fidelity approach is given in Tab. 11.3 for accuracy 0.01

and in Tab. 11.4 for accuracy 0.001

Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 1.8167 531.4599 0.6401 0.6715

2 0.0003 1.7708e-05 0.0001 2.2375e-08

3 -4.2331e-06 5.8271e-10 1.4917e-06 7.3629e-13

4 -0.0276 72.0510 0.0097 0.0910

5 -0.0042 0.0006 0.0014 7.6253e-07

6 -0.0258 72.1023 0.0091 0.0911

7 0.9173 72.0352 0.3232 0.0910

8 0.0030 16.7087 0.0010 0.0211

7.8 -0.0008 0.1551 0.0003 0.0001

6.8 -0.0009 0.1513 0.0003 0.0001

6.7 -0.0010 0.6748 0.0003 0.0008

4.8 0.0002 0.1506 7.6487e-05 0.0001

4.7 -0.0005 0.6741 0.0001 0.0008

1.8 0.0035 1.1136 0.0012 0.0014

1.7 0.0150 8.0493 0.0053 0.0101

1.6 0.0071 8.0394 0.0025 0.0101

1.4 0.0133 8.0471 0.0046 0.0101

Table 11.3: Results of the increment functions for the borehole problem using

residual: 0.01 - multi fidelity
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Increment

function

Partial

Mean

Partial

Variance

Mean

Sensitivity

Variance

Sensitivity
1 1.8174 531.4032 0.6397 0.6718

2 0.0003 1.7708e-05 0.0001 2.2389e-08

3 -4.2331e-06 5.8271e-10 1.4901e-06 7.3675e-13

4 -0.0276 72.0510 0.0097 0.0910

5 -0.0042 0.0006 0.0014 7.6300e-07

6 -0.0258 72.1023 0.0090 0.0911

7 0.9177 71.4914 0.3230 0.0903

8 0.0030 16.7087 0.0010 0.0211

7.8 -0.0008 0.1551 0.0003 0.0001

6.8 -0.0009 0.1513 0.0003 0.0001

6.7 -0.0013 1.0657 9.0506e-07 0.0013

5.8 -2.5711e-06 5.5295e-06 4.9277e-05 6.9912e-09

5.7 -0.0001 2.7664e-05 9.0914e-08 3.4978e-08

5.6 2.5827e-07 5.9515e-06 7.6408e-05 7.5248e-09

4.8 0.0002 0.1506 9.6092e-05 0.0001

4.7 -0.0006 1.0646 0.0002 0.0013

4.5 -7.6322e-06 5.9732e-06 2.6867e-06 7.5522e-09

1.8 0.0045 1.7649 0.0015 0.0022

1.7 0.0150 7.6117 0.0052 0.0096

1.6 0.0068 7.5866 0.0024 0.0095

1.5 -0.0004 0.0003 0.0001 3.9438e-07

1.4 0.0128 7.5948 0.0045 0.0096

1.7.8 0.0006 0.0159 0.0002 2.0128e-05

Table 11.4: Results of the increment functions for the borehole problem using

residual: 0.001 - multi fidelity
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